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Preface of the Editor

Radars are not only used in aerospace and defense. Today, we encounter radars in
many areas of everyday life without explicitly noticing them. Especially motion
detection, e.g. for opening doors or in alarm systems, is widespread. Another
important field of application is automotive environment sensing. Thanks to
enormous progress in semiconductor technologies as well as in packaging and
interconnection techniques, radar systems have been increasingly integrated into
vehicles for about 20 years. Although radar systems do not offer the resolution of
optical systems by far, they can, in contrast to them, still deliver useful measured
values even in bad weather conditions or in a dirty state. In addition, radar
sensors have the advantage that they can be mounted invisibly behind plastic
surfaces and, unlike cameras, do not permit the identification of persons. This,
together with the technological possibilities that now allow a complete radar
system to be integrated in a chip, gives radar technology enormous potential for
new areas of application in the future. One option that has been the subject of
intensive research for several years is gesture recognition for controlling various
applications ranging from consumer electronics and household appliances to
industrial plants and machinery. The algorithms used for this purpose are based
on machine learning methods, with a clever selection of features extracted
from radar measurements and the design of the radar system itself playing a
particularly important role.

This is exactly where the work of Dr. Alexandros Ninos comes into play. In
Corporate Research at Robert Bosch GmbH, he performed scientific research
on gesture recognition with radar sensors. In contrast to most previous research
on the subject, the author has focused on macro gestures. After building a radar
system for macro-gesture detection and he implemented a real-time gesture
detection for this purpose. In particular, in addition to Doppler, he has included
azimuth angle in his feature list for the neural network, achieving 94.3% accu-
racy for his 10 classes of gestures. Based on openly available human motion
generation software, Dr. Ninos has created an automatic tool for generating
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macro gestures including the radar backscattering behavior of those gestures.
This allows a large number of gestures to be generated very quickly for training
the network. He was able to show that a network trained with this synthetic
data still achieved 84.2% accuracy on real test data. In the third part of the
work, novel tracking and clustering techniques were implemented to separate
and recognize gestures of multiple people by the radar system.

The work of Dr. Alexandros Ninos thus represents an important innovation to
the state of the art. I am sure that his innovative concepts and the remarkable real-
time demonstrator will draw much attention and find many followers worldwide.
For Dr. Ninos, with his creativity and extremely high efficiency, I wish him
further much success in his career and economic endeavors.

Prof. Dr.-Ing. Thomas Zwick

- Institute Director -
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Zusammenfassung

Digitalgerite wie Mobiltelefone, Computer und eingebettete Systeme in Fahr-
zeugen spielen eine wichtige Rolle im heutigen Alltag. Gleichzeitig steht das
Internet der Dinge unmittelbar bevor, was bedeutet, dass bald die meisten Ge-
rite in einem Smart Home Teil eines Systems sein werden, das auf die Befehle
eines Benutzers reagiert und dabei optimal auf die Umgebung abgestimmt ist.
Fiir ein solches intelligentes Gebdude wiren Informationen iiber die Anzahl der
Personen in den einzelnen Raumen aus verschiedenen Griinden erforderlich, z.
B. zur Optimierung der Beliiftung. Dariiber hinaus werden immer mehr Anwen-
dungen eine beriihrungslose Mensch-Maschine-Schnittstelle fiir Unterhaltungs-
und Hygienezwecke erfordern.

Die oben genannten Funktionen kdnnen mit einem iiblichen kamerabasierten
System zur stindigen Uberwachung der Bewohner umgesetzt werden. Radar-
sensoren stellen eine bessere Alternative dar, da sie keine Bedenken hinsichtlich
des Datenschutzes aufkommen lassen, billiger sind, wenig Strom verbrauchen
und hinter KunststoffstoBstangen versteckt werden konnen. Auf dem Verbrau-
chermarkt wurden sie jedoch hauptsichlich fiir Mikrogestenerkennung ein-
gesetzt (d. h. fiir kleine Handbewegungen nur wenige Zentimeter vom Gerit
entfernt) und nicht als multifunktionales System zur Verfolgung und Erkennung
des Benutzerverhaltens. Ziel dieser Doktorarbeit ist die Entwicklung eines sol-
chen Radarsystems zum Einsatz in Verbraucheranwendungen.

Zunichst habe ich mich auf die Gestenerkennung auf Makroebene konzentriert,
d. h. der Benutzer befindet sich einige Meter entfernt und kann sich iiberall im
Sichtfeld des Gerits befinden; ein solches Szenario ist bei Alltagsaufgaben in ei-
nem Haus sehr hiufig. Der Grund warum ich diese Anwendung ins Auge gefasst
habe, liegt in zwei Punkten. Erstens sind Makrogesten mit Radar die am wenigs-
ten in der Literatur erforschte Anwendung, obwohl sie bei der beriihrungslosen
Mensch-Maschine-Interaktion in einem Smart-Home-System die wichtigsten
sind. Zweitens bieten stufenweise Verbesserungen von Mikrogesten, die in un-
mittelbarer Nihe des Gerits erfolgen, keine deutliche Verbesserung des Funkti-
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onsspektrums oder des Bedienungskomforts im Vergleich zu Touchscreens, die
allgegenwirtig sind und wesentlich mehr Funktionen bieten. Nachdem ich die
Gesten ausgewihlt hatte, konnte ich mit der Datenerhebung anfangen, wobei
sich zehn Versuchspersonen beteiligten. Nach griindlicher Literaturrecherche
und Evaluierung bekannter Methoden habe ich eine neuartige Signalverarbei-
tungskette entwickelt, die Informationen aus der Ankunftsrichtung integriert
und empirische Merkmalsextraktion verwendet. Die Genauigkeit der Testdaten
erreichte 95% bei einer Modellgrofe von nur 34kB.

Wihrend der vorgenannten Arbeit stellte ich drei Griinde fest, die die Datener-
hebung erschweren. Die Gesten miissen an vielen Stellen innerhalb des Sicht-
felds erfasst werden, da die Radialgeschwindigkeit (einer der vier Outputs des
Sensors) stark von der Lage der Versuchsperson sowie von der Armbewegung
abhingt. AuBerdem muss die jeweilige Geste mit unterschiedlicher Geschwin-
digkeit erfolgen, um moglichst mehrere Szenarien zu erfassen. Schlielich gibt
es eine gewisse Variabilitdt in der Art und Weise, wie Menschen ihre Arme be-
wegen, und dies muss im Trainingsdatensatz erfasst werden. Die Erfassung von
Proben von verschiedenen Personen, an vielen Orten und in unterschiedlichen
Geschwindigkeiten erfordert daher einen hohen manuellen Aufwand. Die Er-
zeugung von synthetischen Daten ist ein im maschinellen Lernen sehr beliebtes
Konzept zur Losung dhnlicher Probleme bei der Bilderkennung. Ich habe ein
solches System fiir mmWave-Anwendungen entwickelt, welches Proben fiir sie-
ben Gesten erstellen kann, wobei die Bewegungsgeschwindigkeit und die Lage
des virtuellen Benutzers unterschiedlich sind. Nachdem ich 600 Proben erstellt
hatte, programmierte ich ein Modell mit der gleichen Signalverarbeitungskette
wie zuvor und testete es mit dem echten bereits gesammelten Datensatz. Die
Genauigkeit erreichte 84,2%, ein recht hoher Wert, bedenkt man, dass beim
Training keine echte Probe verwendet wurde.

Im néchsten Teil meiner Arbeit habe ich mich auf Mehrbenutzerszenarien kon-
zentriert. Zunichst implementierte ich zwei hédufig verwendete Algorithmen,
Group Tracker und Cluster First Track Later, die fiir die Verfolgung von Per-
sonen konzipiert sind. Fiir jede verfolgte Person im Sichtfeld habe ich die
bestehende Pipeline zur Gestenerkennung laufen lassen und so Gestenerken-
nung und Tracking gleichzeitig erreicht. Nachdem ich mit mehreren nahen
beieinander liegenden Objekten experimentiert hatte, stellte ich fest, dass das
Tracking eine entscheidende Komponente ist. Wenn z. B. die Abbildung der
Punktziele zu bestimmten Strecken fiir einige wenige Frames nicht exakt ist,

v



Zusammenfassung

wird die Gestenerkennung fehlschlagen. In bestimmten Szenarien haben sich
die bestehenden Methoden nicht bewiéhrt. Deshalb habe ich einen neuen aus
beiden Methoden zusammengesetzten Ansatz entwickelt, den ich als ,,Group
Tracker with Clustering* [Cluster-Tracking (auch Gruppen-Tracking genannt)]
bezeichnen mochte.

Der letzte Schritt in meiner Forschung bestand darin, herauszufinden, wie der
Benutzer dem System eine kontinuierliche Eingangsgrofle bereitstellen kann.
Dies wiirde viel mehr Verbraucheranwendungen ermoglichen, da der Benut-
zer nicht nur einen Befehl aus einer zuldssigen Liste auswihlen, sondern auch
einen Wert angeben konnte. Unter Beriicksichtigung der Einschriankungen der
Millimeter-Wellen-Technologie habe ich die intuitivste Methode gefunden, die
Hand des Benutzers zu verfolgen. Ich habe eine Verarbeitungskette entwickelt,
die, sobald sie ausgeldst wird, die Spur des Benutzers in Korper und Hand
aufteilt und dann beide weiterverfolgt. Fiir die Erfassung der Bodenwirklich-
keit habe ich ein kamerabasiertes System mit einer RGB-D-Kamera und einer
iblichen Pipeline zur Lagebestimmung verwendet. Ich stellte fest, dass bei
schnellen Handbewegungen die Abweichung der geschitzten Lage der Hand-
verfolgung erhoht wurde. Dies war zu erwarten, da das Radar die Lage und nicht
den Geschwindigkeitsvektor der Hand erfasst. Daher benétigte der Filter einige
Messschritte, bis er zu den richtigen Werten konvergierte. Zur Verbesserung ha-
be ich zwei Radarknoten in einem losen gekoppelten Netz verwendet und ihre
Messungen kombiniert. Auf diese Weise schitzte ich den Geschwindigkeits-
vektor der Hand in einem einzigen Snapshot und verwendete diese Information
in einem adaptiven Kalman-Filter, den ich als ,,Multi-Model with Velocity
Estimation® [Multimodell mit Geschwindigkeitsabschitzung] bezeichnete.






Abstract

Digital devices like mobile phones, computers, and embedded systems in vehic-
les play an important role in our everyday lives. At the same time, the presence
of Internet of Things is imminent, which means that soon the majority of the
devices in a smart house will be part of a system that senses and reacts to a
user’s commands optimally, in accordance with the surroundings. Such a smart
building would inevitably require information about the number of people in
each room for several reasons, such as for optimizing the ventilation. In addition,
more and more applications will require a touchless human-machine interface
for purposes that range from entertainment to hygiene.

The aforementioned features could be implemented with a state-of-the-art
camera-based system that would continually monitor the residents. Radar sen-
sors present a better alternative since they do not raise privacy concerns, offer
cheaper, low-power solution and can be hidden behind plastic casings. However,
in the consumer market they have been used mostly for micro-gesture recogni-
tion (i.e., small hand movements few centimeters from the device) and not as
a multi-functional system that can track and recognize user behavior. The aim
of this thesis is the development of such a Radar system that could be used for
consumer applications.

Initially, I focused on gesture recognition on a macro-level, in which case the
user is at a distance of a few meters and could be anywhere in the field of view
of the device; such a scenario is very common in everyday tasks in a house.
The reason why I targeted this application is twofold. Firstly, macro-gestures
with Radar are the least studied application in the literature, even though they
are the most prominent ones in touchless human-machine interactions in a
smart home system. Secondly, incremental improvements of micro-gestures,
which are performed in close proximity to the device, do not provide significant
improvement in the range of functionalities or ease of use, in comparison
to touch screens, which are ubiquitous and offer much more functionality.
Once I selected which gestures would be useful, I started the data collection
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that included ten subjects. After a thorough literature research and evaluation
of state-of-the-art methods, I developed a novel signal processing chain that
integrates information from direction of arrival and uses empirical feature
extraction. The accuracy of the test set reached 95% while the model size is
only 34kB.

During the aforementioned work, I came across three reasons that make data-
collection hard. The gestures have to be captured in many locations within
the FoV because the radial velocity information (one of the four outputs of
the sensor) heavily depends on the position of the subject as well as the arm
motion. Furthermore, each gesture has to be performed with different speed in
order to capture more possible scenarios. Finally, there is some variability in the
way people move their arms which has to be captured in the training dataset.
As a result, recording samples from different people, in many locations and
different speeds requires significant manual labor. A synthetic dataset generator
is a concept quite popular in machine-learning, that solves similar problems in
image recognition tasks. I developed such a system for mmWave applications,
that is capable of generating samples for seven gestures, with variable speed
of execution and location of the virtual user. After generating 600 samples, I
trained a model using the same signal processing chain as before and tested it
with the real dataset that I had already collected. The accuracy reached 84.2%,
a quite high value considering that no real sample was used during training.

In the next part of my work, I focused on multi-user scenarios. Initially, I
implemented two commonly used algorithms, Group Tracker and Cluster First
Track Later, that are designed for people tracking. For each tracked person in the
FoV Iran the existing gesture recognition pipeline, thus achieving simultaneous
gesture recognition and tracking. After experimenting with multiple objects
close to each other, I found that the tracking part is a crucial component. For
example, in case that the mapping of point-targets to tracks is not accurate for
a few frames, the gesture recognition part will fail. In certain scenarios existing
methods did not perform well, that is why I developed another approach that I
called Group Tracker with Clustering, with elements from both methods.

The final step in my research was to figure out a way so that the user could
provide an analog input to the system. This would enable many more consumer
applications, since the user would be able not only to select one command
among an allowed list, but also to provide a value. The most intuitive way that
I found, taking into consideration the limitations of mmWave technology, is to
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track the hand of the user. I developed a processing chain that, once triggered,
splits the track of the user into body and hand and then continues to track both.
For collecting ground-truth, I used a camera-based system with an RGB-D
camera and a state-of-the-art pose-estimation pipeline. I found that during fast
hand maneuvers, the residual of the estimated position of the hand-track was
increasing. This was expected since the Radar measures the position and not the
velocity vector of the hand. Thus, the filter required a few measurement frames
until it converged to the correct values. In order to improve that, I used two
Radar nodes in a loosely coupled network and combined their measurements.
This way, I estimated the velocity vector of the hand in a single snapshot, and
used that information in an adaptive Kalman Filter that I called “Multi-Model
with Velocity Estimation”.
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1 Introduction

1.1 Motivation

Radio Detection and Ranging (Radar) sensors have been used in the automotive
industry for developing safety features in series production. In addition, their
low-cost, compact size, relatively low power consumption, and their robust-
ness in any weather made them an indispensable component for any experi-
mental autonomous vehicle. During the last years there have been significant
breakthroughs that improved the resolution in all three available measurement
dimensions, distance, radial velocity and Direction of Arrival (DoA).

In my thesis, I use this sensing technology for consumer applications, in which
the typical Key Performance Indicators (KPI) that characterize the resolution
and maximum unambiguous measurements are not useful. The important part
lies in the algorithm development that leads to novel use-cases. In some scenari-
os, calculating the distance with high accuracy could be meaningless, in others
the DoA could provide little extra information. Thus, the term Radar does not
represent what is of importance here. However, throughout the thesis I will use
this term to designate the sensor system that I use.

Existing work has focused on recognizing the so called micro-gestures, those
are hand or even finger movements performed few centimeters on top of the
device [LGK*16]. I believe that such a feature is not very useful since it offers
similar functionality to a touchscreen or buttons; the main benefit is the touch-
less interaction which is suitable for applications with hygiene requirements.
However, I was motivated by this work and decided to improve it. I focused on
applications in which the user is positioned few meters away from the sensor
and would like to interact with it, i.e., in scenarios where the user needs to
control certain devices in the house.



1 Introduction

1.2 Scientific Contributions

The main contributions of my work are in the field of signal processing of Radar
data. These are:

1.

Gesture recognition in macro level using empirical feature extraction
[NHZ21b].

Synthetic dataset generator for macro-gesture recognition with mmWave
technology [NHAZ21].

Multi-user gesture recognition in macro level [NHZ21a].
Improvement in people tracking with Radar sensors [NHHZ22].
Hand tracking with Radar sensors [NHHZ22].

1.3 Outline

The remainder of this Thesis is structured as follows:

e Chapter 2 introduces the topic of Radar, provides basic theoretical back-

ground, explains the modulation, and the baseband signal processing
pipeline that is used throughout this Thesis.

Chapter 3 presents the experimental hardware system that was used, its
components, and the calibration process.

Chapter 4 introduces the concept of macro-gesture recognition with mm-
Wave technology and its advantages in comparison to the more popular
micro-gestures. It describes the gestures that were selected, as well as the
data collection from ten subjects. Finally, it presents the signal processing
pipeline that I developed, the experimental results and comparisons with
the state-of-the-art.

Chapter 5 is dedicated to the description of a synthetic dataset generator
that I developed, which is capable of simulating seven gestures and of
generating an artificial dataset with 600 samples. In addition, it discusses
why such a generator is of importance for gesture recognition tasks.



1.3 Outline

Finally, synthetic samples are compared with real ones and a machine
learning model trained on synthetic samples is tested on real samples.

» Chapter 6 focuses on the use-case of people tracking. Specifically, it
presents two state-of-the-art methods for people tracking using mmWave
technology. Moreover, it describes a method that I developed which is
robust in certain complex scenarios with multiple users.

e Chapter 7 combines many of the aforementioned topics. It introduces
the concept of multi-user gesture recognition and shows results from two
users performing gestures. Hand-tracking based on mmWave is also intro-
duced; a novel adaptive Kalman Filter is presented that uses information
from two Radar nodes to better track hand maneuvers.

e Chapter 8 summarizes the most important contributions of the Thesis
and provides suggestions for further improvements.

Fig. 1.1 summarizes the connection between the different chapters of the Thesis.

2. Theoretical
Background
.

3. Description of
e Radar Demonstrator A
e .
,/ ~
N
4. Macro Gesture 6. People
Recognition A e Tracking
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5. Synthetic 7. Consumer
Dataset Generator Applications

Figure 1.1: Chapters of the Thesis and their connection
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1 Introduction

Throughout this work the pronoun “we” is used when something was developed
or designed with other colleagues in the department. Whereas, when something
was developed solely by myself the pronoun “I” is used.

Python programming language in combination with Numpy [HMvdW*20] was
used for matrix manipulation and Scipy [SVG*20] for scientific computing. In
Appendix A.3 I provide Unified Modeling Language (UML) diagrams with the
software architecture that I designed and developed for this work.



2 Radar Basics

This chapter provides a basic theoretical background for Radar sensors. To
remain as much focused as possible to the contributions of this Thesis, I will
present only the basics of the FMCW Radar sensor, focusing on the formulas
to calculate distance, radial velocity and DoA. Then, I will present the Multiple
Input Multiple Output (MIMO) concept and I will elaborate on the baseband
signal processing pipeline.

2.1 Radar Principle

Radars’ main usage has been the detection of objects (namely Radar targets),
as well as the estimation of their parameters, such as the distance of the object,
the radial velocity and the DoA. Radars transmit electromagnetic waves which
are reflected from the aforementioned Radar targets. Fig. 2.1 shows a typical
example of a target in the Field of View (FoV) of a Radar sensor and the
coordinate system that will be used throughout this Thesis.

xT

)

ol

Yo 7

Figure 2.1: Target in the FoV of a Radar sensor and 3D coordinate system, d stands for distance, ¢
for azimuth DoA and 0 for elevation DoA.



2 Radar Basics

2.1.1 Distance-Velocity measurement

In general, Radars use the time-of-flight principle to measure the distance of
an object. In Eq. 2.1 the distance is calculated using the delay 7 between
transmission and reception of the signal and the velocity of propagation cg
which is approximately equal to the speed of light in vacuum.

d=—2> 2.1

Using the Doppler frequency shift fp = f. — frx, in other words the diffe-
rence of the transmitted and received frequency, it is possible to calculate an
approximation of the radial velocity as in Eq. 2.2.

b~ C0fp _ _AcfD
Y 2

(2.2)

where f. denotes the transmitting frequency and A, the equivalent wavelength
of the signal.

2.1.2 Direction of Arrival

In order to calculate the position of a target in 3D space, an estimation of
the DoA of the reflected waves is needed. In this work, I use the concept of
Digital Beamforming (DBF), which does not require mechanical steering of
the antennas. Following, the fundamentals of DBF and its assumptions are
introduced.

The signals from all directions are received simultaneously by multiple recei-
ving antennas. Due to different antenna positions, the receiving signals will
have a phase difference, which contains the information about DoA. As depic-
ted in Fig. 2.2, the antenna positions can be regarded as sample points of the
spatial wave. Therefore, the DoA estimation corresponds to the estimation of
spatial wave frequencies, i.e. the phase progression over the antenna elements.
If the sample points are sufficiently dense, which is a prerequisite for the un-
ambiguous coherent processing, the ratio of the array aperture and wavelength
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determines the angular separability [LY11]; i.e. the capability to resolve two
closely located targets.

Wavefront

Target

YA

Figure 2.2: DoA estimation using antenna array with one transmitter and four receivers. The signals

arrive at each receiving antenna with a phase-shift which depends on the antenna
positions.

Assembling the input from the receiving antennas Ng_ into column vector form,
gives the snapshot of a linear array at a fixed time, as in Eq. 2.3.

Y =[y[0] y[1] ... Y[NRX _1]]T
S B pmsan Ns e 0) g
=AJl e‘]ky e_j(NRx_l)ke]T
= Aa,(0) 2.3)

where kg = 2md, sin(0)/A. is the normalized spatial frequency in radians
per sample as projected into the plane of the array face, a;(6) is the spatial
steering vector and d, is the constant distance between antennas. Thus, there
is a one-to-one relationship between the DoA of a plane wave and the spatial
frequency across the array face. The range of 6 is +7; equivalently the range of

kg is +2nd, /A.. For an excellent review of array signal processing the reader
is referred to [KV96,Ric14].
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The positions of the antennas and generally the antenna array play an important
role since the beam width and the radiation pattern are directly affected. In a
nutshell, radiation pattern refers to the angular dependence of the strength of
the radio waves from the antenna. Whereas beam width is the angle between
the half power points of the main lobe, when referenced to the peak effective
radiated power of the main lobe. It is a common practice to use Uniform Linear
Array (ULA), in which case the elements have a constant distance. Recent
works have used sparse arrays which allow the reduction of antenna elements
while keeping the same aperture size [LY 11]. The disadvantage of this trade-off
is that this sparse setting introduces an increased side lobe level and potentially
ambiguities. An important assumption in the DBF is the so-called narrow-band
assumption. In other words, the array aperture (i.e. the physical size measured
in wavelengths) must be smaller than the inverse relative bandwidth [KV96].

2.1.3 Radar Equation

Using the well known Radar equation [Ric14], it is possible to estimate the
received power P, on an antenna, as a function of the transmitted power P;, the
gain of transmitting and receiving antennas G, and G, the Radar cross-section
(RCS) o, wavelength A and the distance of a target, according to the formulation
given by Eq. 2.4.

P,G,G,A?
gz;;%g (2.4)
(4rm)°ry
Thus, the total attenuation ay from the transmitting antenna to target k and back
to the receiving antenna is calculated using Eq. 2.5.

P, G,G. A0
ap = — = ﬁ
P (4n)’r]

(2.5)
Using the time-delay and attenuation defined above, the voltage referred re-
lationship between the received signal uf" and the transmitted signal uz" is
provided by Eq. 2.6.



2.2 Chirp Sequence FMCW Signal Model

U (t) = Vagu"™ (t — ) (2.6)

2.2 Chirp Sequence FMCW Signal Model

Various modulation schemes that provide distance and radial velocity measure-
ments have been developed; we decided to use chirp-sequence FMCW because
it is well-studied in the literature and many commercial sensors are already
available [HTS*12] [KR14]. A system that uses such modulation transmits a
series of chirps (also called ramps) with a constant amplitude, and a frequency
that changes linearly. Once the signals are reflected by the targets and received,
they are mixed with the transmit chirp. This results in a frequency which de-
pends on the distance and radial velocity, known as beat frequency fpeqr, as
shown in Eq. 2.7.

B chirp

) 2.7

fheut = fo - fo = Tk
Tchirp

The T¢pirp, which stands for chirp duration, is relatively short and the slope
relatively high. This way, the portion of the f;.4; induced by the distance of the
target is significant. In other words, the Doppler term can be neglected. In order
to measure radial velocity, many chirps are sequentially transmitted and proces-
sed similar to Doppler processing for pulse-Doppler Radar [Ric14]. Therefore,
it is possible to calculate distance and velocity independently, through proces-
sing each chirp separately and the phases of consecutive chirps. In this Thesis,
the samples within one chirp are referred to as fast-time samples, whereas the
chirp is referred to as slow-time.

In detail, consider a linear frequency chirp fr.(t) as in Eq. 2.8 with a slope k..
Jrx(0) = finin + krt (2.8)

The modulated signal is calculated by integrating the frequency into the phase
[Ric14], as in Eq. 2.9.
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MTx(l) — ej27r/f7-x(t)dt — ej(nkrt2+27rfmint+6)[)) (2.9)

6 being the phase of u’*(¢) for ¢ = 0. Using the above and Eq. 2.5 yields the
FMCW received signal as in Eq. 2.10.

M;fx(t):Mej(nkr(t_Tk)2+2ﬂf(t_Tk)+90) (210)

By mixing the transmit and received signal, the baseband signal uiF is calcu-
lated. Our Radar system creates a sequence of L chirps, using linear frequency
modulation [KR14], with each of them lasting Tchirp. Fig. 2.3 shows a sequence
with four chirps and the echo signal from a target near the Radar.

— TX1
AR Received signal

0 200 400 600
Time (us)

Figure 2.3: Linear FMCW with four chirps and return signal from one target (OIEEE [NHZ21b]).

The following equation describes the baseband signal, which is the output of
mixing of transmitted and received signal:

s(t,1) = eI27 (fBt=fDlTehing+¢) 2.11)

where [ is the chirp index.

10



2.3 MIMO Principle

Table 2.1 provides the formulas for calculating the maximum unambiguous
distance and radial velocity of a target, as well as their resolution. A more
rigorous signal model can be found in [KR14].

Distance | Radial Velocity
; o 1
Resolution | 3 Benmy 3L Tamp
: co-K P
Maximum 2Bchirp 4'Tchirp

Table 2.1: Resolution and maximum unambiguous value for distance and radial velocity (OIEEE
[NHZ21b]).

2.3 MIMO Principle

MIMO Radar is widely used in target detection due to the high angular resolution
that it offers. A MIMO system that consists of Nr, transmitting and Ngy
receiving elements could be equivalent, as far as the angular resolution is
concerned, to a virtual array with N7 - Ng, receiving elements. For a MIMO
Radar to easily separate the signals transmitted by different antennas, the most
intuitive and simple way is Time Domain Multiplexing (TDM). In TDM, each
transmitter transmits its own waveform alternatively, and there is no overlap
between any two transmissions [ZR12,HY19].

A typical example is shown in Fig. 2.4, in which the transmitting duration and
pause between chirps is selected so that the total duration of two consecutive
chirps is equal to that of Fig. 2.3. This way, the resolution and maximum
unambiguous radial velocity will be the same in both cases.

11
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77.2 — TX1
— TX2

0 200 400 600 800
Time (us)

Figure 2.4: Time Division Multiplexing using FMCW (©IEEE [NHZ21b]).

2.4 Baseband Processing for Chirp Sequence
FMCW

Using Analog to Digital Converters (ADC) for each receiver, the continuous
time signal of Eq. 2.11 is sampled and for each chirp, Discrete Fourier Transform
(DFT) is applied, as shown in equation 2.12.

K-1
D(m.1)= Y s(k.1)- e 27 2.12)
k=0

The sample index is denoted with k, the number of samples with K and the
beat frequency index with m. When this procedure is completed for all chirps,
a second DFT is applied for each distance gate, in order to estimate the Doppler
frequency, as shown in Eq. 2.13.

L-1
V(m,n) = Z D(m, 1) - e 7271 (2.13)
=0

12
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where n is the Doppler frequency index. The DFT can be computed with a Fast
Fourier Transform (FFT) algorithm that reduces the complexity to O (nlogn).
Therefore, with an efficient 2D-FFT, a distance-velocity estimation is com-
pleted. Targets are represented by peaks at locations corresponding to their
distances and velocities in a 2D image.

As mentioned in [KR14], due to the two measurements for beat and Doppler
frequency, the distance d and radial velocity v, for each detected target can be

calculated as follows:
chlrp c

= —(fB+fD)2 Bo
chirp

(2.14)

A
vr==fp> (2.15)
2
where Behrp is the chirp bandwidth.

In this Thesis, I use the FMCW MIMO Radar. Therefore, for each 7x-Rx path
one distance-velocity image will be generated. Signal to Noise Ratio (SNR) and
thus the detection performance can be improved by integrating these images.
I use Non-Coherent Integration (NCI), since it is superior to other integration
methods in terms of computational efficiency and offers a reasonable increase
in SNR [Hak18]. In NCI, phase information is discarded, instead, the squared
magnitudes of the data samples from all 7x-Rx combinations are integrated
(i.e., summed).

The Constant False Alarm Monitoring (CFAR) family of algorithms determine
the power threshold above which any return signal can be considered to originate
from a target as opposed to one of the spurious sources. These could either
be internal to the Radar receiver or from sources external to the Radar. If the
threshold is set too low, more targets will be detected, at the expense of increased
numbers of false alarms. On the other hand, if the threshold is set too high, fewer
targets will be detected, together with low number of false alarms. The CFAR
processor estimates the mean interference power in the Cell Under Test (CUT)
by using the measured data in the adjoining cells. The most common approach
is called Cell Averaging (CA) CFAR because the threshold is estimated from
an average of the power in the cells adjoining the CUT. In this work I used
Ordered Statistics (OS) CFAR which orders the reference window data samples
to form a new sequence in ascending numerical order. The k-th element of the

13
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Integrated Magnitude CFAR Magnitude
Spectrum (dB) Targets (dB)
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(a) NCI spectrum (b) Bins that surpass the noise floor.

Figure 2.5: Example of the NCI spectrum and the bins that surpass the noise floor calculated by
CFAR.

ordered list is called k-th order statistic. For example, the first order statistic
is the minimum and the N-th order statistic is the maximum. In OS-CFAR
the k-th order statistic is selected as representative of the interference level
and the threshold is set as a multiple of this value. More detailed information
about detection fundamentals and CFAR can be found in [Ricl4]. A typical
example of an integrated Radar spectrum and the equivalent targets that pass
the threshold level can be found in Fig. 2.5. It is important to note that the high
values close to zero distance and velocity are due to the antenna coupling; they
are suppressed before CFAR is applied.

In order to locate a target in three-dimensional space, the DoA in azimuth and
elevation needs to be estimated. I use the Deterministic Maximum Likelihood
(DML) approach which is an intuitive and fast method for single-target, single-
snapshot scenario. The word deterministic comes from the assumption that
the received signal wave-forms are deterministic and unknown. The idea is
to “steer” the array in one direction at a time and measure the output power.
For each detected target, a matrix multiplication of the complex spectrum v (a
vector with Nyg, elements), with the conjugate of the steering matrix takes
place, according to Eq. 2.16.

Z =|vxay (2.16)

14



2.4 Baseband Processing for Chirp Sequence FMCW

The absolute value of this multiplication will be maximum at the direction of
arrival of the target. In Section 3.2, it is explained how to calculate such a
steering matrix ag by performing an experiment in an anechoic chamber. The
number of rows in this matrix equals the number of virtual antennas Ny g, and
the number of columns equals the angles Ny that need to be estimated. Finally, it
is important to point out that before the angle estimation it is a common practice
to compensate the motion-induced phase errors due to the TDM [BRW17].

At this point, the distance, radial velocity and direction of arrival in azimuth and
elevation are available. In addition, an estimation of the SNR can be calculated,
since the CFAR algorithm provides an estimation of the noise floor. These
attributes are saved in a container for each detected target and passed to the next
layers of processing. Fig. 2.6 shows the steps during baseband processing for a
chirp sequence FMCW. Last but not least, in the Appendix A.3.11 provide UML
diagrams with the software architecture that I developed for the implementation
of baseband processing.

15
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’ Constant False Alarm Rate Monitoring nggg't?gngf

’ Non Coherent Integration ‘

%ZD-ﬁ 2D-ﬁ EERE 2D-FFT
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Figure 2.6: Baseband processing steps for chirp sequence FMCW. The time-domain signal will be
processed through 2D-FFT and then non-coherently integrated. A CFAR algorithm will
detect the target and provide the locations to the angle estimation algorithm. The latter
will also use the complex spectrum from 2D-FFT to calculate the direction of arrival.
Finally, all the estimated information, distance, radial velocity, DoA and SNR, will be
saved in a container and will be given to the next layers of processing.

2.5 Alternative technologies

Ultrasound, camera-based and Light Detection and Ranging (Lidar) sensors
could be an alternative solution for consumer applications. However, in our
opinion Radars have significant advantages, which if exploited properly could
lead to significantly better solutions.

Several products can already accomplish similar tasks by utilizing camera-
based sensors, but there are certain drawbacks involved with such technology.
Accurate detection of gestures is difficult because of varying illumination,

16



2.5 Alternative technologies

shadows, complex background, and other factors [CSBM18]. The complex ar-
ticulated shape of the hand makes it hard to model the appearance of both
static and dynamic gestures. Variation of gesture parameters due to spatio-
temporal variance in hand postures makes the recognition process more diffi-
cult [CSBM18]. It is important to point out that processing images, frame to
frame, for extracting hand information is usually computationally inefficient
for portable devices [GWL19]. In addition, it is not possible to hide a came-
ra behind non-transparent material like cloth or plastic. Finally, people tend
to feel uncomfortable when they are in the FoV of a camera, due to privacy
concerns [CA09].

Ultrasound sensors use sound waves with frequencies higher than the upper
audible limit of human hearing. Ultrasound signals are not different from the
“normal” (audible) sound signals in their physical properties, except that hu-
mans cannot hear them. A common application that is developed with this
technology is the automatic door opener, in which case the sensor detects a per-
son’s approach and opens the door. Such sensors can detect intruders, since the
ultrasound can cover a wide area from a single point. There are several reasons
why this technology is not popular for smart-home applications. To begin with,
the maximum range is usually 2-3 meters, which make it unsuitable for outdoor
scenarios or large rooms. In addition, if the selected modulation allows Dopp-
ler measurement, the maximum unambiguous velocity is significantly lower in
comparison to a Radar. Finally, the microphones and the speakers (i.e. receivers
and transmitters) are significantly larger in comparison to an antenna optimized
for mmWave frequency [ZLW].

Lidar measures the range of targets through light waves from a laser instead
of radio or sound waves. The transmitter emits laser light at the target object,
and the pulse is reflected if a target object lies in the FoV. The distance is then
calculated by using the relationship between constant speed of light in the air,
and the time of flight of the signal. The main advantages include very high
resolution and accuracy, as well as fast update-rate, which makes it suitable
for fast moving objects. Moreover, it provides shorter wavelength compared to
Radar or Ultrasound which makes it suitable for creating 3D maps of an object.
Finally, as this technology is not passive, it is appropriate both for day and night
conditions. However, the beam-width is very narrow, thus the sensor has to be
rotated in order to scan the scene in front of it. This requires a bulky mechanical

17
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Indicator/Technology Camera | Ultrasound | Lidar Radar
Cost Low Low High Low
Size Small |Medium |Large Small
Speed detection No No No Yes
Angular Resolution High |Low High Medium
Object classification High |No Medium Low
Distance estimation Stereo | Yes Yes Yes
Deteriorate under poor lighting | Yes No No No
Hidden integration No Limited Optical window | Yes

Table 2.2: Comparison of different technologies.

structure which increases the cost and maintenance requirements, to a value not
suitable for consumer market.

An overview of the available technologies and their KPI is available in Table
2.2. A Radar system could be the ideal candidate for sensing applications in a
smart-home application since it is low-cost, consumes low-power, can be hidden
behind plastic bumps and has enough resolution to understand its surroundings.

18



3 Radar Demonstrator

3.1  Hardware Setup

In this Thesis, [ use an experimental FMCW Radar sensor with two transmitters
and four receivers. Fig. 3.1 shows a block diagram with the high level overview
of the hardware. It consists of a high frequency and a baseband part, which
are located on separate Printed Circuit Boards (PCB). The high frequency
part includes the two-channel transmitter and four-channel receiver, a Voltage
Controlled Oscillator (VCO) and a Phase-Locked Loop (PLL) capable of fast
linear frequency ramps of up to 2 GHz bandwidth, as well as the transmit and
receive antennas. The setup allows MIMO, operating multiple transmitters in
TDM.

The baseband board contains the analog interface electronics, ADCs, digital
logic, and power supply. The digital logic itself consists of an FPGA part,
which controls the real-time operation of the Radar sensor and an ARM micro-
controller at 800MHz, which acquires the data and communicates with a host
PC connected over Ethernet. Fig. 3.2 shows an image of frontend and baseband
boards.

2
™ Lz

4
RX (7A__

] &
FPGA e PC

Ethernet

Figure 3.1: Simplified block diagram of the Radar sensor setup (OIEEE [NHZ21b]).
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Figure 3.2: Radar hardware with frontend and baseband boards (OIEEE [NHZ21b]).

The center frequency is at 77 GHz, which is suitable for automotive but not for
commercial or industrial applications. However, the signal processing pipelines
that I developed can be used by a sensor that operates at 60 GHz without
modifications. The frequency differs by only 20%. Therefore, no noticeable
difference in reflectivity, velocity unambiguity or resolution is expected.

Last but not least, the antenna array consists of elements with three series fed
patches and an additional matching structure at the feedline. The antennas are
optimally positioned at a distance of approximately half lambda horizontally
and the transmitters are placed accordingly at a distance of lambda to generate
a MIMO virtual array. Thus, it is possible to calculate the DoA in azimuth and
elevation.
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3.2 Antenna Array Calibration
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Figure 3.3: Calibration setup in an anechoic chamber with a rotating radar and a fixed corner
reflector.

3.2 Antenna Array Calibration

Hardware imperfections, like differences in transmission line lengths, manufac-
turing uncertainties and variances in radio-frequency components, create the ne-
cessity for antenna calibration [HHZZ16]. Following the tutorial in [VRD*20],
we conducted two calibration measurements using a corner reflector and a ro-
tating Radar in azimuth and elevation respectively, and extracted the steering
vector for each direction.

We use a corner reflector that we assume to be a point-target in the far field
of the antenna array with a known azimuth angle 8 = 6. As it was mentioned
in Chapter 2, for a plane wave impinging the antenna array, the phase at the
receive antenna is described by the exponential term in the signal model of
Eq. 2.3. By applying an angle-dependent calibration measurement, the phase
term ¢ (6) = 2x(d/A) sin(@) can be determined. All in all, we used a rotating
structure that rotated the Radar around the center of the frontend and a corner
reflector in the far field of the antenna array like in Fig. 3.3
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Since the antenna array contains elements in two dimensions, we performed two
calibration measurements, one for azimuth and one for elevation. The angular
step size that we used in both cases was 1°. This way, we created two steering
vectors a,, (0) and a,,, (6) as in Eq. 2.3. In case that only one of the two
dimensions is required then the steering matrix a, used in 2.16 will be equal to
one of the two steering vectors. For example, when the application layer needs
to track people, then it is common practice to calculate the DoA in azimuth
only. Whereas, when the application layer requires complex three-dimensional
arm gestures, it is needed to calculate the DoA also in elevation.

In order to achieve that, the steering matrix must have as many columns as
the azimuth-elevation combinations. Such a steering matrix could be calculated
with a separate experiment that would rotate the Radar in all possible angles.
However, we decided that this solution is not optimal since it would require
almost three days, taking into consideration the restrictions of the setup. That is
why, we used the existing two steering vectors and calculated an estimation of
a steering vector for two-dimensional angle estimation. We calculate the outer
product of the two steering vectors and then divide it with one of the two vectors
in initial position, as in Eq. 3.1.

a,.(p) ®a,,(0)
e ay,. (0)
The output ay,,, is a three dimensional tensor and is not suitable yet for DoA

calculation. In the last step, we reshape it so that it has Ny gy rows and Ng - Ny
columns; this can be used in Eq. 2.16 for DoA.

(3.1)

An unambiguous estimation of the angular position of the target is one of the
fundamental requirements for solving a DoA problem. The term unambiguity
describes the ability of the antenna array to uniquely distinguish the DoA
of return signals. This is related to the well-established concept of grating
lobes [Ricl4]; a grating lobe in the receiving array beam-pattern causes an
ambiguity in the angular estimation. In [EZO98] the authors formally introduce
the ambiguity function as in Eq. 3.2.

aﬁl(gi) - ag (6’]-)

_ 3.2
T, (8 [Tas (6,1 6.2

x(6:,0;) =
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Figure 3.4: Ambiguity function in azimuth dimension, for an antenna array with two transmitters
and four receivers (OIEEE [NHZ21b]).

The ambiguity function y(6;, 6;) refers to the autocorrelation of the receiving
array steering vector calculated at the positions 6; and 6, respectively. An
ambiguity takes place when it is not possible to distinguish between two di-
rections. Fig. 3.4 and Fig. 3.5 show the ambiguity function for azimuth and
elevation dimension respectively. The highest value of the autocorrelation has
been achieved along the main diagonal only when 6 = [-60°, 60°] in azimuth
and 6 = [-30°,30°] in elevation. Therefore, there are no ambiguities for 120°
and 60° in azimuth and elevation respectively. This was expected since the
antenna array is not an ULA but a sparse array [LY 11]. Finally, the 3dB beam-
width [Ric14] was calculated and was found to be 100° and 45° for azimuth
and elevation respectively.

3.3 Modulation Parameters

The modulation that we used has a chirp duration for each transmitter of 66 ps,
a bandwidth of 1.5GHz and 64 transmitted chirps per transmitting antenna.
We also added a pause of 50 us after each chirp in order to satisfy maximum
unambiguous velocity and velocity resolution that we believe are suitable for
gesture recognition application. Therefore, one complete measurement frame
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Figure 3.5: Ambiguity function in elevation dimension, for an antenna array with two transmitters
and four receivers.

takes almost 15 ms. In order for the signal processing chain to run smoothly we
added an extra 5 ms and the total sampling period reached 20 ms. Fig. 2.4 shows
the TDM-FMCW that was used throughout this Thesis. The system parameters
are summarized in Table 3.1.

3.4 Software Development

In the framework of this Thesis, I implemented the software framework that
controls the Radar hardware, which was provided by the department. I relied
heavily on Object Oriented Programming (OOP) since each hardware compo-
nent could easily be characterized by certain attributes and methods that can be
applied on it. Moreover, I used shallow inheritance interfaces and made more
use of composition, in order to create classes that could be re-used in future
projects.

The Radar hardware contains many integrated circuits that need to be properly
“opened” and “closed”. For example a Programmable Gain Amplifier (PGA),
a Digital to Analog Converter (DAC), an ADC, etc. I created a class for each
of them which inherits from a base class called Device and contains abstract
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Name Value
Antenna Gain 10dBi
Transmit power 12dBm
FoV (az/el) 120/60°
Antennas (receiving/transmitting) 472

Center Frequency 76.75 GHz
Chirp duration 66 us
Chirps per Tx Antenna 64

Break between chirps 50 us
Bandwidth 1.5GHz
Measurement duration 15ms
Break between measurements Sms

Total duration 20 ms
Maximum unambiguous distance 6.4m
Range resolution 0.1m
Radial velocity resolution 0.13 m/sec
Maximum unambiguous radial velocity | 4.2 m/sec

Table 3.1: System parameters (OIEEE [NHZ21b]).

methods for opening and closing the device. Each subclass implements the
abstract methods and if needed contains extra methods. For example, the PGA
class contains setter/getter methods for adjusting the gain.

The complete Radar demonstrator consists of three different boards, namely the
FPGA, the frontend and the baseband board. I developed a dedicated class for
each of them, which is a subclass of the Component base class. The Component
has abstract methods for powering up and down as well as for suspending and
resuming operation. The BasebandBoard class is connected with the afore-
mentioned ICs using composition and it delegates certain functionality to them
(i.e., increase the gain of amplifier). Finally, the class Radar uses composition
to connect to the aforementioned boards; when the user has a request, the class
delegates it to the responsible board class. For example, when the user asks to
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power up the Radar, it will delegate the call to all connected Components, in a
specified sequence. Fig. 3.6 shows a simplified UML diagram of the software
architecture of the Radar demonstrator.
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Component
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Figure 3.6: Software architecture of the Radar demonstrator. It consists of the Frontend class
responsible for controlling the Radar chip, the FPGA for controlling the chirp sequences
and data collection, and the BasebandBoard for controlling the analog parts. The classes
PGA, DAC, ADCAUX, ADC are derived from the base class Device, but it is not
mentioned in the diagram for easier understanding.
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4 Macro Gesture Recognition

The analysis and results presented in this Chapter come from the author’s
publication [NHZ21b], alongside Jiirgen Hasch and Thomas Zwick.

4.1 Introduction

Interaction with digital devices has been achieved with a variety of practices
throughout the years, such as physical manipulation of proxy remote devices
(e.g. wireless mouse) or direct physical interaction with the input device (e.g.
touch screens) [GWL19]. Despite the ease that we have earned in using these
devices through direct contact, there is an increasing need for contactless inter-
action via gesture recognition. Varying ways have been proposed, including the
attachment of sensing devices on the hand. Such an approach is sub-optimal as
it adds additional peripherals to the equation [LLC*19]. Recent developments
in computer vision allowed the analysis and the identification of hand motion in
real time, using cameras [MYG™"16]. However, in such setups the system requi-
res a significant amount of power, which often makes it unsuitable for mobile
devices or for long-term usage. Since miniaturized low-power Radar sensors
became affordable [HTS*12], there was a considerable interest in the develop-
ment of consumer applications. Google Soli was the first project to demonstrate
that hand gesture recognition is possible with such a technology [LGK*16].

Some studies [KT16, AZS18] tackle the above problem by using Continuous
Wave (CW) Radars, which can measure the radial-velocity between sensor and
moving arm, but not the distance. Others [LGK™* 16] make use of Frequency Mo-
dulated Continuous Wave (FMCW) systems, which additionally take advantage
of the distance information.

The micro-Doppler (mD) effect is caused by signals returned from a target that
incorporates vibrating or rotating structure [CLHWO06]. A moving arm is such
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4 Macro Gesture Recognition

a target and in many studies a mD spectrogram is utilized, since it represents
a signature of the movement. In [LGK*16,LHYC18, AZS18,RJ19] empirical
features are developed to extract as much information from the spectrogram
as possible, including the length of a gesture, the ratio of negative to positive
Doppler frequency, the bandwidth of mD frequency and the spectral power
distribution. In [LZRG17], the authors make use of the fact that such a spectro-
gram is sparse and apply the Orthogonal Matching Pursuit (OMP) algorithm to
extract features. Convolutional Neural Networks (CNN) are also widely used
for the feature extraction of mD, reporting improved results [KT16, CML*19].

Other studies [WSL*16,ZTZ18, WWZ*19] use Range Doppler Maps (RDM),
generated from FMCW Radars, which contain only spatial information of the
movement. In these cases, many consecutive images need to be processed in
order to get the temporal information. In these studies, a CNN is used for
the feature extraction and Long short-term memory (LSTM) is utilized for
modeling the dynamics of a gesture. This comes at a cost of running a machine
learning network in every frame, as well as with a high memory footprint.
However, it combines information from the range and the radial velocity of the
targets, whereas during the generation of mD images, the range information is
discarded.

Using the DoA of the detected targets is crucial [SFL*20]. In [CLFG] the authors
developed a multi-static Radar with four receiving antennas that generated four
mD images which were used by a novel CNN architecture. Since the antennas
are placed a few cm apart, each spectrogram depends on the DoA, which is
exploited by the classifier to improve the accuracy. Using DoA from collocated
antennas is also possible, as shown by [SAHLE19]. The authors created a new
heat-map with the same shape as the mD image but instead of the magnitude,
they depict the DoA in each bin. Then, a custom CNN is used for feature
extraction on the stacked images. Moreover, [CML* 19, WJZ*19] created three
feature maps from the Radar data, Range-Time, Doppler-Time and Angle-Time
by integrating range, Doppler and DoA in the time domain respectively; these
maps were simultaneously sent to a CNN for feature extraction. In [SFGP19] the
authors also embedded DoA by creating two extra maps, one for elevation and
one for azimuth. Initially, the authors calculated mD signatures by integrating
the range dimension using multiple frames. Then, they calculated the phase
differences for each measurement cycle, using two receiving antennas for each
dimension. Moreover, they created images with the same shape as an mD
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map by integrating the range dimension of the phase differences. Finally yet
importantly, [SFL*20] combined five attributes of the K most important bins
of the Range Doppler map, in L measurement cycles to generate a feature cube
(5, K, L). Two of the five attributes contained information from elevation and
azimuth of the detected target. Thus, their classifier in the next stage could
identify 3D gestures with a high accuracy.

Automatic detection of a gesture is a pivotal part of a real-time recognition
system. [ZTZ18, WSL*16] achieved that by using a CNN combined with an
LSTM. In [SFGP19] a Faster R-CNN object detection framework was used to
identify the Region of Interest in the feature map that could contain a gesture
and send it to the classifier. On the other hand, in [SFL*20,LPS*11] the power
content of the returning signal in each frame was used to identify if a significant
event took place.

The aforementioned work focused on the detection and identification of micro-
gestures, which are small hand or finger movements performed only a few
centimeters away from the sensing device. On the contrary, I developed a system
that is capable of recognizing macro-gestures, so that a user could interact with
the device using his/her arm at a distance of a few meters. Fig. 4.1 exhibits
such a typical interaction setup. Furthermore, the proposed system does not
use a CNN or LSTM, for inferring the gesture type, which usually require
hardware accelerators, but relies on empirical feature extraction which can be
implemented in an embedded system. Finally yet importantly, I evaluated the
effect of certain system parameters in the average accuracy of the classifier.

The remainder of this chapter is structured as follows: Section 4.2 introduces the
novel signal processing pipeline for gesture recognition. Section 4.3 explains
the macro-gestures and Section 4.4 provides details on how the dataset was
recorded. Finally, Section 4.5 presents the results of my method and compares
it against the state-of-the-art. An introduction to Machine Learning (ML) is
available in Appendix A.2 and detailed pictures of the gestures can be found in
Appendix A.1.
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Figure 4.1: Macro-gesture example, “swipe-up” in front of the sensing device (OIEEE [NHZ21b]).

4.2 Processing Pipeline

This section describes the processing steps needed to transform time-domain
raw Radar data in a form suitable for ML, the feature extraction method and
the ML model. After I get the recorded signal from the ADC of receiving
channels, I apply a 2D-FFT for calculating the RDM and then I estimate the
noise floor using a CFAR algorithm, as explained in Section 2.4. In the next
step, I replace the bins of RDM that do not exceed the noise floor, with zeros.
Then, I calculate the mD vector by selecting the maximum power bin for every
fixed radial velocity value along the range dimension. I chose not to integrate
over range, as is usually the case in FMCW Radar, in order to be able to apply
DBF in the selected bins. This way, I significantly reduce the processing time
for each frame, since DBF is applied only to a few bins of the mD vector
which are actually important for gesture recognition. The above procedure is
repeated for each measurement frame and the mD vectors are concatenated so
as to create the mD image, which is sparse due to the CFAR thresholding. This
image constitutes the first out of the three feature maps that will be used in the
next stages of the pipeline.

After that, I developed an algorithm which identifies if a significant event took
place, in order to initiate the classification process. According to this algorithm,
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if the maximum radial velocity in the mD image is higher than a given threshold
for a certain amount of time, then an event is taking place. These two hyper-
parameters depend on the event type that needs to be detected. For dynamic
hand gestures I selected a velocity threshold equal to 0.8 m /s and a minimum
duration of 200 ms. The machine learning model expects input with a certain
shape, that is why I set the total event duration as a third hyper-parameter
equal to 50 frames. However, this raises a problem in case the user completes a
gesture faster than the prefixed value, because she/he would have to wait until
the remaining frames are recorded and sent to the classifier [SFL*20]. Hence
the event detector also searches for the ending point of the gesture, by checking
if the maximum velocity is below 0.8 m /s for 200 ms. If the end of the gesture
is detected, then the remaining frames of the event window are filled with zeros
and sent to the next stage of the pipeline.

After event detection, I create two more feature-maps with the same shape as
the mD image, whose amplitude refers to the DoA in azimuth and elevation
respectively. Thus, in total three images transform the arm movement, as it was
captured by the sensor, in a compact form that contains valuable information
about the radial velocity and the DoA.

Next, I developed an empirical method that generates a one-dimensional signal
from each feature-map. For the mD image I use the highest velocity of each
frame and for the two DoA maps, I use the median angle of each frame. At
this stage, I have three one-dimensional signals which contain information on
the radial velocity and the DoA in azimuth and elevation. For simplifying the
classification even further, I decided to extract certain features out of the three
signals. These are the following:

1. Number of zero-crossings in radial velocity.

2. Arguments of maximum and minimum radial velocity.
3. Maximum and minimum radial velocity.

4. Maximum and minimum angle in azimuth and elevation.
5

. Angle in azimuth and elevation when radial velocity reached its maximum
and minimum value.
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Figure 4.2: Signal processing chain for gesture recognition with mmWave sensor (©IEEE
[NHZ21b]).

T'use the aforementioned 13 values for training a Multi Layer Perceptron (MLP)
with 32 neurons in the hidden layer [GBC16]. Fig. 4.2 shows a diagram with
the proposed signal processing pipeline.

4.3 Gestures

Previous studies have focused on the detection of hand gestures conducted on
top of a mmWave sensor at a distance of a few centimeters. This could be
very useful for sensors integrated in a mobile phone, like the Google Pixel
4 [TWJ*21]. However, my goal is to simulate a smart home application in
which a device is attached on a wall or on a TV. That is why during data
collection, the Radar was facing the room and each subject was located at a
distance approximately 2-3 meters from it. I found that a range higher than three
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meters would deteriorate the results due to the low RCS of a human arm, the
noise characteristics of the sensor and the large FoV in azimuth and elevation
which decrease the gain. I selected ten gestures for the subjects to perform:

1. Random movement/walk
Pull

Push

Swipe up

Swipe down

Swipe right

Swipe left

Rotate

A S N e

Wave
10. Push-pull

Figures that depict the gestures are available in Appendix A.l. I recruited ten
subjects with various heights and ages to perform the above gestures in an
intuitive manner. Each subject had to repeat each gesture 15 times; this way |
collected 10 x 10 x 15 = 1500 samples. In order to simulate a real scenario as
good as possible, each subject conducted the gestures at three different aspect
angles in relation to the device. The first location was in front of the sensor, the
second around 20° to the left and the third around 20° to the right.

4.4 Dataset Collection

For the collection of the dataset, I developed a data logging application using
the Bokeh library [Bok18]. When the subject conducts a gesture, the processing
pipeline will detect it and plot the three feature maps. The administrator should
either discard the gesture (in case that something went wrong) or select the
gesture type that took place and save the data. In that case, the application saves
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the raw Radar data and the processed feature maps, then the detection process
is resumed.

4.5 Results

4.5.1 Automatic Gesture Detection

Fig. 4.3 shows an mD image with five gestures and the output of the event
detection algorithm. The first and second are a “push” and “pull” respectively,
for which the algorithm correctly finds the start and end point. The third gesture
is a “push-pull”; the algorithm manages to identify that it is a single event. On
the other hand, the fourth and fifth gestures have a small break between them
and the algorithm managed to correctly separate them.

It is important to point out that I fine-tuned the gesture detection part, so that
small movements would be identified and would trigger the classifier. The latter
is responsible for discarding random motions by classifying them as "Random
movement". If a gesture was not detected, then two main causes could have
contributed. Either the user performed it in an unsuitable manner with very low
or high velocity, or the SNR was not enough and CFAR failed to separate noise
from useful targets. However, even if a poorly performed gesture was detected,
the Machine Learning (ML) part would most likely provide inaccurate result,
since it was not trained with similar samples.

4.5.2 Feature Maps

As already mentioned, feature maps are generated after an event is detected.
Fig. 4.4 shows a typical example of the maps from a “pull” gesture, whereas
Fig. 4.5 shows the ones from a “push”. Even for a naked eye it is easy to extract
important features, like the fact that target velocity is always positive during the
former and always negative during the latter. It should be noted that in both cases
the DoA in azimuth and elevation does not show a significant change. However,
things are quite different in Figures 4.6 and 4.7 which show the results from
a “swipe left” and a “swipe right” gesture respectively. In these cases, radial
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Figure 4.3: Micro Doppler stream with five different gestures, the red bounding box shows the start
and end of the gesture as it was estimated by the event detection algorithm (OIEEE
[NHZ21b]).

velocity changes sign and DoA in azimuth dimension has a significant change
over time.

It is important to point out that when the subject performs a “swipe right” from
a different position, for example 20° from bore-sight, then the radial velocity
will not change sign and will look like a “pull”. In that case the azimuth feature
map will be important for the classification since it will be able to capture
positive or negative slope of the DoA, as shown in Fig. 4.8. In a similar fashion,
the elevation feature map is important for the “swipe up” and “swipe down”
gestures. Therefore, the above heat-maps contain the needed information to
correctly classify hand gestures.

Fig. 4.9 shows the one-dimensional signal of the same “swipe right” as in Fig.
4.8, after applying the method explained above. The first subplot contains the
envelope of the mD image and the second subplot the median angle of each
measurement frame. The increase in azimuth from -20 to 5 is an important
feature that can be used at the next stage for classification.
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Figure 4.4: Feature maps generated from the DSP chain during a “pull” gesture. The first one refers
to Micro-Doppler, the second one to DoA in azimuth and the last one in elevation

(©IEEE [NHZ21b]).
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Figure 4.5: Feature maps generated from the DSP chain during a “push” gesture. The first one
refers to Micro-Doppler, the second one to DoA in azimuth and the last one in elevation

(©IEEE [NHZ21b]).
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Figure 4.6: Feature maps generated from the DSP chain during a “swipe left” gesture. The first one
refers to Micro-Doppler, the second one to DoA in azimuth and the last one in elevation

(©IEEE [NHZ21b]).
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Figure 4.7: Feature maps generated from the DSP chain during a “swipe right” gesture. The first
one refers to Micro-Doppler, the second one to DoA in azimuth and the last one in
elevation (OIEEE [NHZ21b])).
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Figure 4.8: Feature maps generated from the DSP chain during a “swipe right”” gesture, subject was
located 30° from bore-sight. The first one refers to Micro-Doppler, the second one to
DoA in azimuth and the last one in elevation (OIEEE [NHZ21b]).
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Figure 4.9: Time-series generated from the DSP chain during a “swipe right” gesture. The first
subplot refers to Micro-Doppler and the second one to DoA in azimuth and elevation
(©IEEE [NHZ21b]).
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4.5.3 Supervised Learning

During training I split the dataset in two parts, train and test. The train set
contains 80% of the samples and the test set 20%. In order to prevent the model
from over-fitting, I used weight regularization and dropout [SHK* 14, GBC16].
Fig. 4.10 shows the confusion matrix for the test set. The average accuracy is
higher than 90% for all classes and 94.3% overall, which shows that the signal
processing chain transforms the data coming from the mmWave sensor in a
representation which is well-suited for training a MLP.

Ialso used a CNN architecture for extracting features from the feature-maps but I
could not achieve better results in comparison to the empirical feature extraction
approach. CNNs are the state-of-the-art approach for image recognition, given
enough training samples. In my case, the number of samples is relatively low,
but for series production like Google 4, thousands of participants could be used
to collect millions of samples [LG20]. Then, a CNN would probably provide
higher average accuracy.

In addition, I investigated the effect of certain system parameters in the classi-
fication average accuracy. In the first case, I evaluated the significance of high
frame rate by using a 2x and 3x down-sampled dataset. Moreover, I assessed the
importance of having two transmitting elements in comparison to one, which
would reduce the amount of virtual antennas used for angle estimation by half.
Last but not least, I combined the above cases and created a dataset that used
one transmitting antenna and the frame rate was 2x down-sampled. Fig. 4.11
contains the confusion matrices for the above cases

It is worth pointing out that reducing the number of transmitters or decreasing
the frame rate reduces the power consumption and lowers the hardware cost.
Results showed that decreasing the frame rate 3x significantly decreased the
average accuracy, which is a clear sign that a low frame rate cannot capture the
dynamics of the arm movement. However, a system with frame rate of 25 Hz
or one transmitting antenna achieves average accuracy above 90%. For certain
consumer applications one could compromise with lower accuracy in order to
achieve lower costs or lower power consumption. Table 4.1 summarizes the
average accuracy that was achieved in the test set under different approaches.

41



4 Macro Gesture Recognition

none

pull 4
push4 O
swipe-up q .10
o
2 swipe-down+ 0
PR
2 swipe-right{ O
'_
swipe-left4 0
wave 4 O
push-pull 4 0
rotate 0
¢ N X N KL e N (2
RO
N ¢ & K g ¢
) 9$\Q R N

Predicted label

Figure 4.10: Confusion matrix with the original modulation. The accuracy for each class is higher

than 90% and the average accuracy is 94.3% (©IEEE [NHZ21b]).

Frame Rate (Hz) | Transmitters | Average Accuracy (%)
50 2 94.3
25 2 92.0
17 2 87.6
50 1 90.3
25 1 88.3

Table 4.1: Average accuracy of the test set (QIEEE [NHZ21b]).
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() On the left side, the frame rate was decreased 2x and the average accuracy reached 92%. Where-
as on the right side the frame rate decreased 3x and the average accuracy reached 87.6%.
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(b) On the left side, only one transmitting antenna was used and the average accuracy reached
90.3%. Whereas on the right side the frame rate decreased 2x and one transmitting antenna was
used, the average accuracy reached 88.3%.

Figure 4.11: Confusion matrices for different modulation parameters and average accuracy of test
set (OIEEE [NHZ21b]).
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4.5.4 Deployment

For the real-time implementation, we used an Intel i7-8650U @ 1.9GHz. When a
gesture is not detected, the median processing runtime is 10.1 ms and it includes
2D-FFT, CFAR, micro-Doppler, DoA estimation, and event detection. In case
of a gesture detection runtime reaches 40.3 ms, which is higher than the frame
period (i.e. 20 ms). In order for the system to achieve real-time performance, I
discard the next frame that is waiting to be processed.

We also selected a Raspberry Pi 4 as target hardware to deploy the application,
since it has low cost and capacity to run the Python package that I developed.
Results showed that median processing runtime in case that an event is not
detected is 31.5 ms. According to Table 4.1, if a frame rate equal to 25 Hz is
selected, the average accuracy will drop by 2.3%. On the same time, the allowed
processing runtime can be up to 40 ms, more than enough for the Raspberry Pi
to handle it. In case that an event is detected and the gesture recognition pipeline
is triggered, the median runtime reaches 67.4 ms and like before I discard the
next frame, so that real-time performance is achieved.

In conclusion, if the designer is willing to decrease the average accuracy by
2.3%, my suggested method can be deployed in a low cost system. In case that a
hardware accelerator is to be used, the low-level signal processing steps, which
require more than 30 ms, could be transferred to it. Then a Raspberry Pi, or any
similar processing unit, would be responsible only for the gesture recognition
part; thus a frame rate of 50 Hz could be possible.

4.5.5 Comparison with state-of-the-art approach

In [SFL*20] a thorough comparison can be found between several machine
learning approaches for gesture recognition with mmWave sensors. The “Multi-
Feature encoder + CNN” yielded high average accuracy and on the same time
has as significantly smaller memory footprint in comparison to the rest. That is
why I consider this method as state-of-the-art and decided to implement it and
train a model with the dataset that I collected.

In a nutshell, the algorithm sorts the bins of each RDM according to their am-
plitude, selects the first 25 and for each of them saves five attributes, amplitude,
range, radial velocity, DoA in azimuth and elevation. If an event is detected, it
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Figure 4.12: Confusion matrix for the feature encoder combined with CNN. The average accuracy
in all classes is higher than 84% and 90.5% overall (OIEEE [NHZ21b]).

creates a tensor with the last 40 frames. The three-dimensional tensor is called
feature cube and is used to train a CNN and an MLP. In order to make a fair
comparison, I applied CFAR thresholding before selecting the bins, like in my
pipeline. This way I made sure that only bins above the noise floor will be used
for training the machine learning model. Also I used the last 50 frames like in
my case and [ used the same train and test set as with my DSP chain. Last but not
least, I experimented with the number of bins used in each frame and found that
50 instead of 25 achieved the highest average accuracy in the test set, equal to
90.5%. Fig. 4.12 shows the confusion matrix for the different classes. Table 4.2
summarizes the comparison between my method and the one from [SFL*20].
It is important to mention that the number of floating point operations refer
to the ML model. In my case, more calculations are needed for extracting the
empirical features.
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4 Macro Gesture Recognition

My method | Feature Encoder
Average Accuracy (%) 94.3 90.5
Memory Footprint (MB) 0.015 35.7
Floating point operations in ML model | 1602 18.3M

Table 4.2: Comparison with state-of-the-art (OIEEE [NHZ21b]).

4.6 Concluding Remarks

I developed a real-time mmWave based macro-gesture recognition system using
the experimental setup with four receiving and two transmitting antennas. I
recorded a dataset with nine gestures from ten different subjects, which were
positioned approximately two meters from the Radar in three different locations.
The proposed signal processing chain and feature extraction method transforms
ADC data from the sensor into feature maps, extracts empirical features in a two-
step approach, and feeds the result to an MLP for classification. Furthermore,
a custom made event detection algorithm detects if a gesture took place and
only then activates the ML part. My method achieved 94.3% average accuracy.
Following, I evaluated the effect of two system parameters, the frame rate and
the antenna number, on the classification accuracy. I found that decreasing the
frame rate two times or using one transmitting antenna does not significantly
decrease the average accuracy, even though it can lower the cost of the sensor.
Moreover, I deployed my method in a low-cost embedded system and found that
a real-time performance is possible. Last but not least, I compared my method
with the state-of-the-art approach and found out that my model achieved higher
average accuracy in the test set, even though my model is significantly smaller.
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5 Synthetic Dataset Generator

The analysis and results presented in this Chapter come from the author’s
publication [NHAZ21], alongside Jiirgen Hasch, Mario Emilio Pizano Alvarez,
and Thomas Zwick.

5.1 Introduction

Hand micro-gesture recognition has become available by using miniaturi-
zed, low-power Radar sensors, and was first demonstrated by the Soli pro-
ject [LGK*16]. After that, many research groups focused on reproducing and
improving the results, which required the collection of a significant amount of
training samples. In [WSL*16], 2750 samples were recorded from 11 subjects,
each performing 10 gestures 25 times. Similarly, in [SFL*20] the authors col-
lected 7200 samples from 20 subjects which performed 12 gestures 30 times.
In both cases, the authors recorded micro-gestures that were performed a few
centimeters above the device. However, as I showed in Chapter 4, the subjects
conducted gestures at an approximate distance of around 2 m from the device,
not only bore-sight but also in various positions inside the FoV of the sensor.
In total, I collected 1500 samples from 10 subjects that carried out 10 different
gestures, including random movements which were regarded as noise.

Collecting this amount of data requires manual effort and is time-consuming.
Moreover, in case that the sensor hardware (e.g., antenna configuration) or
the modulation is modified, the measurements have to be repeated. Therefore,
the need for a simulator that is able to generate artificial samples for various
experimental cases arises. It is important to point out that in many other machine
learning problems several dataset generators have been proposed [ALMI11,
PPVT19,GSN20, MBS*20].
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5 Synthetic Dataset Generator

The contribution of such a generator for the mmWave case could be threefold: it
could first and foremost significantly reduce the experimental time for the data
recordings, it could enable the testing of a broader spectrum of experimental
cases, and finally, it could explore various options for the modulation and
hardware parameters [TADW18]. As such, it could increase the variability of
samples, especially in the case of macro-gestures during which the subject could
be placed at different locations.

Many approaches have been presented on simulating human motion combined
with mmWave sensing. In [THCD16] the authors used a kinematic model
from [BTT90] to generate synthetic mD [CLHWO06] spectrogram and to train
a deep learning model. A similar application-specific approach was developed
in [SSM*17] for simulating the reflections of cyclists. The authors manually
created a model with point targets that represented various parts of the bicycle
and the person riding it. In both approaches, only a specific kind of motion
could be generated, limiting the number of use-cases that could be simulated.

In [OUY17] the authors surpassed this problem by using Blender [Com20],
and its ray tracing capability for graphic simulation. More specifically, after
designing a static scene, they used the rendered images “z-pass” and “com-
bined pass”, through which they calculated the distance, DoA and amplitude
information of the object that was in each pixel of the images. The number of
point targets was defined by the number of pixels of the rendered images, which
can be set by the user. It is worth pointing out that the scene was static and only
the Radar sensor was allowed to move.

In [TADW19], the authors created dynamic gestures by using another rendered
image called “speed vector pass”, which contains information about pixels
moving in two dimensions. The authors were able to generate spectrogram
from a synthetically generated human figure that was waving both hands. In
[TADW18], Blender was again used to generate an arbitrary animation and
created multiple variants via a Python script. Then, they extracted the position
of the body joints, used them in a custom FMCW Radar simulator and generated
a dataset with 2000 samples per gesture.

Finally yet importantly, in [GRC*19] another method was presented for gene-
rating synthetic Radar data for gesture recognition. The authors converted a
Kinect dataset into Radar signatures using a simulation framework, then they
extracted several features out of the spectrogram and used them to train an ML
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5.2 Synthetic Dataset Generation

model with four gestures. However, they did not test the accuracy of their model
with a real Radar dataset; they only compared Radar data with the output of
their simulator and found meaningful similarities.

In this chapter, I present a novel system which can generate synthetic Radar data
for seven arm gestures. I used it to produce a dataset that contains 600 samples,
with varying speed of execution and varying position of the animation relative
to the Radar. Using the processing chain presented in Chapter 4 I generated three
feature maps for each synthetic sample, extracted empirical features and trained
amachine learning model. I tested the trained model using the real dataset that I
collected from ten subjects who repeated the same gestures 15 times. The model
yielded 84.2% accuracy in the real dataset, indicating a successful combination
of the proposed simulator and feature extractor.

5.2 Synthetic Dataset Generation

The pipeline for generating a synthetic sample consists of four main parts, as
illustrated in Fig. 5.1. First, a human model is selected and the animation is
configured so that it moves its arm according to a specified gesture. Then, using
Blender the animation is simulated and its point targets are extracted and used
in the third step which simulates a Radar sensor. Finally, the pipeline from my
previous work is used to transform time-domain data in a form suitable for ML.

5.2.1 Generation of Human-Body animations

Blender is an open source 3D creation suite, which supports the entirety of the
3D pipeline: modeling, rigging, animation, simulation, rendering, compositing,
and motion tracking [Com20]. It offers a rich API for Python scripting that can
be employed to customize the application and write specialized tools.

To create a Blender scene, it is necessary to first generate 3D models out of
primitives (cubes, cylinders, spheres, etc.) by joining them or modifying their
mesh. Meshes consist of vertices, edges and faces, and define the shape of
a 3D model. Fig 5.2 shows an example of a mesh structure, derived from the
documentation of Blender. It is also possible to import 3D models from libraries;
Fig. 5.3 shows the one that we used, which we obtained from the TurboSquid
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Configure Animation

(type, speed, position)

l Blender Scene
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l ADC values

Radar Signal Processing
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Figure 5.1: High level description of the sample generation process (QIEEE [NHAZ21]).

library. Models, as well as other Blender objects (e.g., camera, lights) can be
arranged in the scene by modifying their location, rotation or scale.

In order to generate gestures, an armature has to be assigned to a model. Arma-
tures include bones, which can be rotated to modify the shape of the mesh of a
model or a 3D object. This way, the pose of a model can be selected according
to the use-case. For defining a gesture, the user has to set key-points in the
beginning and ending part of the motion, then Blender will calculate the positi-
ons of intermediate frames by solving the inverse kinematics problem. I created

99 ¢

synthetic data for the gesture classes “push”, “pull”, “swipe-left”, “swipe-right”,
“rotate”, “wave”, “push-pull”, similar to the ones defined in [NHZ21b]. Fig.
5.4 shows the model that was created, together with the armature, performing

a “swipe-left”.

5.2.2 Extract Point Targets from Animation

After generating the animation that performs a gesture, the point-targets need
to be extracted and given to the Radar simulator. These targets are actually the
vertices of the body model. I use the API of Blender to access their position
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Figure 5.2: Example of mesh structure, Blender

Figure 5.3: Body Model from TurboSquid library
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5 Synthetic Dataset Generator

Figure 5.4: Human model with armature performing “swipe-left"gesture (OIEEE [NHAZ21]).

for all simulated frames, then I can easily calculate their velocity. After that,
I apply ray casting to find the ones visible by the Radar at each frame. If the
vertex is not visible at a particular frame, I set the RCS value to zero, so that it is
not taken into consideration during the Radar simulation. With the above steps
I managed to extract a tensor with dimensions: number of vertices X number of
frames. Each element of the tensor contains position, velocity and RCS of the
vertex. Fig. 5.5 shows an overview of the extraction process.

5.2.3 Radar Simulator

The simulator utilizes a monostatic Radar, with multiple Rx and 7x antennas.
It generates the output of a Radar sensor, given the location, velocity and RCS
of point targets that are provided as input. The first step is to calculate the travel
time of the wave from the transmitting antenna to the target and back to the
receiving antenna. Then I use Eq. 2.5 to calculate the attenuation of the wave.
In the next step, I use Eq. 2.9 and 2.10 to calculate the time domain transmitted
and received signal for one chirp. By mixing the signals the baseband signal
is calculated, which is what a Radar sensor would record using its ADC. I
repeat this procedure for multiple chirps in order to achieve the chirp sequence
waveform like in Section 2.2.

The user can configure the simulator in order to approximately mimic the
hardware. For example, the user can provide values for the Noise Figure (NF)
and gain of the Low Noise Amplifier (LNA). Moreover, an input matrix defines
the antenna gain for a discrete set of DoA. This way, the return signals of the
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Figure 5.5: Overview of the pipeline for extracting targets from a Blender animation (OIEEE
[NHAZ21]).
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Figure 5.6: Flowchart of the Radar simulator with two transmitting, two receiving antennas and
one point-target (depicted by "T”). The signal source will be amplified and the antenna
gain will be calculated based on the target’s location. Similarly, in the receiving side,
the antenna gain will be calculated for each target, the returned signals will be amplified
and sent to the mixer for calculating the baseband signal (OIEEE [NHAZ21]).

animation will depend on its aspect angle. Last but not least, the simulator can
also handle TDM-MIMO scheme for improved DoA estimation. Fig. 5.6 shows
a flowchart with the basic blocks of the simulator fora2 7'x - 2 Rx configuration.

5.3 Results

Through the synthetic data generation I wanted to create samples that would
capture many corner-cases of a real scenario. That is why I created 60 samples
for each human animation, using different configurations. The parameters that I
can modify are the position of the Radar and the speed of execution. In addition,
I found that some subjects performed the “push”, “pull” and “rotate” with high
variability, that is why I created two different animations for each of the above
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Figure 5.7: Examples of synthetically generated “push” gesture with different motion characteri-
stics. In the first row, the motion has a duration of 13 frames, whereas in the second 16.
The columns contain samples with varying maximum velocity (OIEEE [NHAZ21]).

three gestures. In total, I created ten animations, through which I generated 600
samples.

Typical examples of the variability that was achieved are shown in Fig. 5.7. 1
modified the duration of motion from 13 to 16 frames and I also varied by 40%
the speed of the arm gesture.

5.3.1 Feature Maps

In this subsection, I present the generated feature maps for a few typical gestures.
The first row contains the results using real hardware and the second row using
the simulator. Columns correspond to the mD, and the DoA in azimuth and
elevation respectively.

The magnitude of the mD for the synthetically generated samples is significantly
lower in comparison to the real samples. It is important to point out that on
purpose I did not want to fine-tune the simulator’s parameters to match the
power of the real gestures (e.g., RCS, transmitted power, noise figure), in order
to show that the ML pipeline can extract meaningful features without taking into
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Figure 5.8: Feature maps of a “push” gesture as captured by Radar sensor in the first row and
generated by simulator in the second (OIEEE [NHAZ21]).

consideration the absolute power value. In other words, the gesture recognition
pipeline that I use remains invariant to the absolute power value, and as such
can generalize across different levels of Radar noise and RCS.

In Fig. 5.8 the feature maps correspond to the “push” gesture. Fig. 5.9 depicts the
mD maps of a “swipe-left”, that is why in the Azimuth Feature Map, the DoA
slowly decreases. Similarly, Fig. 5.10 depicts a “swipe-right”, consequently the
DoA in the Azimuth Feature Map increases.

The result in Fig. 5.11 shows the effect of the subject’s position relative to the
Radar. The mD map looks similar to a “push” gesture, since in this case the
hand of the user always has negative radial velocity. However, the Azimuth
Feature Map captures the variation and that information is propagated to the
ML model.

5.3.2 Supervised Learning

As already mentioned, I used the synthetically generated dataset and the signal
processing pipeline to train a classifier and I tested it on the real dataset that
I collected. The average accuracy in the test set was 84.2%, Fig 5.12 depicts
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Figure 5.9: Feature maps of a “swipe-left” gesture as captured by Radar sensor in the first row and
generated by simulator in the second (OIEEE [NHAZ21]).
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Figure 5.10: Feature maps of a “swipe-right” gesture as captured by Radar sensor in the first row
and generated by simulator in the second (OIEEE [NHAZ21]).
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Figure 5.11: Feature maps of a “swipe-left” gesture as captured by Radar sensor in the first row and
generated by simulator in the second. Subject was positioned on the right side of the
Radar, which had a significant effect on the mD map (©IEEE [NHAZ21]).

the confusion matrix of the test set. In addition, Table 5.1 provides details of
the classification results for each class. This indicates that the synthetic dataset
generator can be used for pre-training an ML model and could be very helpful
for capturing certain known corner cases. Then the model can be further fine-
tuned with a dataset collected using the Radar sensor. Table 5.2 summarizes
the proportion of the synthetic and real samples as well as the overall accuracy.
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Gesture # Samples | Precision | Recall
Pull 120 0.9 0.88
Push 120 0.83 0.69
Swipe-Right | 60 0.68 0.93
Swipe-Left |60 0.83 0.76
Wave 60 0.99 0.90
Push-Pull |60 0.72 0.99
Rotate 120 0.97 0.79

Table 5.1: Detailed results of each gesture from supervised learning (OIEEE [NHAZ21]).
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Figure 5.12: Confusion Matrix of test set (OIEEE [NHAZ21]).
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Table 5.2: Attributes of the datasets and result of supervised learning (OIEEE [NHAZ21]).
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Figure 5.13: Scatter plot with three classes. The left subplot contains results from measurements
and right subplot from simulation (OIEEE [NHAZ21]).

5.3.3 Empirical Feature Extraction

As a final step for comparing the synthetic and the real dataset, I compared
the features that are generated by the processing pipeline in both cases. First, |
created three-dimensional scatter plots, where the left subplot shows real, and
the right shows synthetic data. Fig. 5.13 shows samples from gestures “swipe-
left”, “swipe-right” and “rotate” using the features 2, 3, and 8. Likewise, Fig.
5.14 shows samples from gestures “pull”, “push”, “push-pull” and “wave” using
features 1, 4, and 5.

In addition, I performed the Kruskal-Wallis H-test [KWS52], to test the null
hypothesis that the population median of the synthetic and real data are equal
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Figure 5.14: Scatter plot with four classes. The left subplot contains results from measurements
and right subplot from simulation (OIEEE [NHAZ21]).

for each feature. When the p-value is below the significance level 0.05, then the
test rejects the null hypothesis. In other words, there is not enough evidence
to suggest that the samples come from the same distribution, therefore it is
concluded that they come from different ones. The reason why I selected a
Kruskal-Wallis test instead of ANOVA test is that the former is a non-parametric
test that does not assume normality (a Shapiro [SW65] test on the data indicated
that the features do not come from a normal distribution). Fig. 5.15 shows the
result of the Kruskal-Wallis test for all combinations of gestures and features.
In this intra-feature level, the majority of features appear to come from different
distributions for the real and synthetic case.

Nevertheless, since the classifier uses non-linear combinations of the features,
it is not the absolute value of each feature that defines the result, rather the offset
among their distributions. To visualize that, Fig. 5.16 shows that the pairs (real
- first row, synthetic- bottom row) of distributions of each feature are very close,
relative to the others. To also test this beyond the apparent visual inspection, I
performed a Wilcoxon non-parametric paired test [Wil45] for the medians of
the distribution of each feature, for the two cases. I did so for each of the seven
gestures. The test accepted the null hypothesis that the two (synthetic medians
and real medians) come from the same distribution in all the gestures (p-value
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Figure 5.15: Result of Kruskal-Wallis H-test. Green color indicates p-values < 0.05 (i.e. real and
synthetic data come from different distributions), and red indicates p-values > 0.05.
The Y-axis shows the different gesture types and the X-axis shows the seven features
used in the classifier (OIEEE [NHAZ21]).

- Pull | Push|Swipe- |Swipe- | Wave | Push- | Rotate
Right |Left Pull

p-value |0.30/0.35 | 0.83 0.35 0.67 |0.87 0.36

Table 5.3: Result of the Wilcoxon test for the medians of the distribution of each feature. The
test accepts the hypothesis that the two feature sets come from the same distribution
(©IEEE [NHAZ21]).

> (.3), as it can be seen in Table 5.3, which supports what can be seen in the
box-plot figure.

Finally, as a sanity check, I wanted to evaluate whether this difference in the
intra-feature distribution of the real and synthetic data that was pointed out by
the Kruskall-Wallis test plays a significant role in the supervised learning. To
do so, I calculated the average accuracy of the classifier after I excluded the two
features (number 6 and 7 at the Fig. 5.16) that had no significant p-value (i.e.
whose real and synthetic distribution was completely different) for all gesture
types. The classifier yielded 74% compared to the original 84.2%. This again
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Figure 5.16: Box-plot for each feature of the “pull” gesture. The first row contains samples collected
from the Radar and the second row from the simulator (OIEEE [NHAZ21]).

indicates that the classifier uses non-linear combinations of the input features,
and as such it remains invariant to absolute variations of the median of each
single feature.

5.3.4 Distinction from related work

Previous work managed to simulate human motion and combine it with a Radar
simulator, but did not test a classifier trained with synthetic samples on real
data. As a result, a quantitative comparison with a known benchmark is not
possible.

I tried to use methods suggested in literature for exporting point-targets from
animations but without success. The authors of [OUY 17] published source code,
which is only suitable for static scenes. Furthermore, I managed to reproduce
the method explained in [TADW19] for exporting moving point-targets from
Blender using “speed vector pass”. However, the point-target information was
accurate enough only for 2D movements but not for complex 3D motions.
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5.4 Concluding Remarks

In this chapter, I presented a method to generate synthetic datasets for arm
movements, and I used it for training an ML model for gesture recognition with
mmWave technology. The performance of the model was evaluated on real data,
which I had already collected using an experimental sensor, yielding an average
accuracy of 84.2%. Therefore, I demonstrated how a novel data-generator like
the one I presented here can contribute in the pre-training phase of a model,
as well as for capturing corner cases related to the speed of execution and the
position of the subject, that are difficult to reproduce during data collection. To
the best of my knowledge, this is the first time that a model trained with synthetic
Radar data is tested on real Radar data and achieves such high accuracy.
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The analysis and results presented in this Chapter come from the author’s pu-
blication [NHHZ22], alongside Jiirgen Hasch, Michael Heizmann, and Thomas
Zwick.

6.1 Introduction

People tracking with high resolution Radar sensors has been demonstrated in
research as well as in commercial products. There are two major families of
algorithms; [Ins18, MCN14] use the “Group Tracker” (the name is defined
in [Ins18]) whereas [PMR21, WES17,ZLW*19] follow another approach that I
named “Cluster First Track Later”. After thoroughly experimenting with both
methods, I found that in certain scenarios they do not offer a robust solution.
That is why I defined my own approach which is heavily based on the “Group
Tracker” but also uses a clustering part; therefore, I named it “Group Tracker
with Clustering”. In the next sections, I will thoroughly describe all three
methods and compare them under different scenarios. Finally, I will show that
my approach outperforms the current state of the art in complex scenarios.

6.2 Signal Processing Pipeline

The signal processing can be broken down into two main parts. The first is
related to the baseband processing of raw data and has been presented in
Section 2.4. The second part is all about tracking and can be broken into the
Kalman Filter (KF), track management, and tracking for extended targets.
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6.2.1 Kalman Filter

In the simple case of a single point target, after each measurement frame is
completed, an estimate is available with its distance, radial velocity and DoA,
for the local coordinate system of the sensor. However, this estimate contains
uncertainty since it is corrupted by noise. By collecting a series of measurements
over time and combining these with an a priori known kinematics model, it is
possible to improve the accuracy. The KF is a popular and well-studied way
to achieve that. It deals effectively with the uncertainty due to noisy sensor
data and, to some extent, with random external factors. The filter produces
an estimate of the state of the system as a weighted average of the system’s
predicted state and of the new measurement.

The system to be observed must fit the below model for each time step k:

x;;,l =kak+Bku_}<+M7k (6.1)

Z_;( = Hkx_}( + V_’k (6.2)

F is known as the state transition matrix, X is the state vector, By describes the
input model, i} is in the input vector, and W is the process noise, assumed to
be drawn from zero mean multivariate normal distribution, with covariance Qy.
For the measurement equation, Hj transforms filter’s state to the observation
Zk» Vk Tepresents the measurement noise, assumed to be drawn from zero mean
multivariate normal distribution, with covariance Ry.

The processing of the filter consists of two steps, namely predict and update.
In the former, a state estimate is calculated using the kinematics model and
the pre-computed noise covariance. The update step will calculate the residual,
using the new measurement and the state estimate. In addition, it will calculate
the Kalman gain Kg and finally update the state estimate. A more rigorous
explanation can be found in [Ric14].

Designing the KF requires the definition of the state and measurement vector,
the corresponding noise covariance matrices Q and R, the transition matrix F
and the observation matrix H. In this work, I use a linear KF like in [Wagl18].
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The state vector contains the position and velocity in two dimensions whereas
the measurement vector contains the position:

X = [posy, posy,vely,vely] (6.3)
7= [posx, posy] (6.4)

Radars do not directly estimate the position in Cartesian space, but with the
pre-processing step of Eq. 6.5 it is possible to calculate it using the distance and
DoA in azimuth. This technique is called Converted Measurements Kalman
Filter (CMKF)

Z-;< = [rk sin(@k), T COS(@k)] (6.5)

6.2.2 Tracking Extended Targets

Fig. 6.1 shows a flowchart that explains the two state of the art approaches for
tracking people, “Cluster First Track Later” and “Group Tracker”. In addition, it
presents my own approach, in which I combine characteristics from the existing
methods; I named it Group Tracker with Clustering.

For all methods, I will assume that at timestamp k there are already a few
tracks available and the system will update their state based on a new Radar
measurement. During the first measurement, previous tracks are not available,
in that case density based clustering can be used for the initial guess of the
clusters.

Cluster First Track Later

Initially, the prediction step of the KF is applied. In other words, the kinematics
model and the state of the filter up to timestamp k — 1 are used to predict the
location of the existing tracks at timestamp k. In the next step, a density-based
clustering algorithm (e.g. DBSCAN [EKSX96]) is applied to find clusters with
high concentrations of point-targets. A common approach is to use Cartesian
two-dimensional space, but some researchers also use the radial-velocity and
search for clusters in a three-dimensional space. In addition, some researchers
use improved versions of DBSCAN that exploit the fact that the Radar targets
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Figure 6.1: Tracking methods for high resolution Radar sensors (OIEEE [NHHZ22]).

can only be in a grid (distance, DoA, radial velocity) [LSF*18]. Finally, some
researchers exploit the polar coordinate system of a Radar sensor [WFS15],
since the same object generates many point-targets when it is located close to
the Radar [WFS15].

When the second step is completed, the large number of point-targets will be
mapped to a significantly lower number of clusters. The centroid of each cluster
is calculated by a weighted average of the position of the targets belonging to
the cluster; the magnitude of the target is used as weight. Thus, targets with
strong return signals will have a higher effect in calculating the centroid of the
cluster.

During the fourth step, an association algorithm is used (e.g., Hungarian al-
gorithm [KuhO5]) to assign new clusters to existing tracks. If a cluster is not
assigned to an existing track, then a new track is initiated; a task handled by
the track management system. Finally, the state of the KF for all the tracks is
updated using the new information.
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6.2 Signal Processing Pipeline

A typical problem that rises with this method is when two tracks come very
close to each other. For example, when two people shake their hands, hug, or
when a person comes close to a piece of furniture. In that case, the density
based algorithm will consider that the point-targets in the area of the two
objects belong to one cluster and then assign it to the closest track. The other
track will not be updated for a number of frames and might be deleted by the
track management system. In [WFS18] the authors acknowledged the problem
and suggested a solution that uses Ordering Points To Identify the Clustering
Structure (OPTICS) [ABKS99]. They provide an algorithm that detects when
two tracks have merged in one cluster and then utilizes the hierarchical cluster
information to split the cluster into two smaller ones. The authors claim that the
OPTICS algorithm has a computational demand slightly higher than DBSCAN.

In my evaluations I found that it actually needs significantly higher runtime
and is not optimal for real-time systems. That is why I used the main concept
of their pipeline which is to identify when two tracks have merged and in that
case use K-Means [L1082] to find two clusters within the merged cluster. This
generated similar results and was faster. However, I believe that the concept of
clustering first and then trying to identify “track merge” will not be robust in
cases when a large number of tracks come close to each other.

Group Tracker

The second popular approach does not rely on a clustering algorithm to find
dense regions in the point-targets. Like in the previous method, the prediction
step of the KF is applied, for all tracks, using prior information. Then for
each existing track i/ and for all available point-targets j obtained at time k,
their distances are calculated (using Euclidean or Mahalanobis function). The
distance represents the amount of innovation the new measurement adds to an
existing track. The amount of innovation that is acceptable depends on the gate
size. In other words, point-targets that do not satisfy a distance criterion will
not be considered as possible candidates for assignment to the Track under Test
(TuT).

After gating and calculating the distances, the point-targets will be assigned
to the tracks with the lowest distance. Then, for each TuT a centroid will be
calculated using the new point-targets that have been assigned to it. The targets
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that are not assigned will be processed by a density based algorithm, in order
to find if new objects entered the FoV. In that case, the track management,
described in Section 6.2.3, will take over and handle new tracks. Finally, like in
the previous method, the state of the KF for all the tracks is updated using the
new measurement.

In comparison to “Cluster First Track Later” the main difference is that a density
based algorithm is not utilized for updating existing tracks. Thus, the method
is much more robust against the track merge issue. A very important parameter
is the allowed gate. In case that a high value is set, then during an arm gesture
all the point-targets of the arm will be inside the gate. However, noisy targets
next to the track could also be assigned. When a low value is used, only the
point-targets of the body of a human will be used in the track. The rest of
the targets (e.g. arm) could be assigned to neighboring tracks or create a new
independent track. This trade-off is one of the most important deficiencies of
the method.

Group Tracker with Clustering

After implementing both methods, I found that in certain scenarios, which I
will show in Section 6.3, tracking is not reliable. In my opinion, the “Group
Tracker” is explicitly more robust when it comes to many users getting close to
each other. However, I found that during arm gestures it fails to correctly assign
the point-targets of the arm to the correct track.

In order to improve that, the first thing to do is to increase the size of the
allowed gate. In this case, I allow targets at least one meter from a track to
be associated with it. Of course, this modification on its own would lead to
significant problems, since targets from other users or random noise would
be assigned to the TuT. That is why I modified the fourth step; instead of
simply finding the center of assigned targets, I apply a density-based clustering
algorithm on the associated targets and keep the ones that belong in the generated
cluster. In case that more than one cluster is generated, I select the targets that
belong to the larger cluster and assign them to the TuT. I allow the targets that
belonged to other clusters to be used by other tracks.

This way I observed the following two benefits: First, the clustering algorithm
will discard noisy targets that satisfied the criteria of CFAR, since they will not
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form a dense region. Second, if targets from other users are initially associated
with the TuT at step three, the density-based clustering algorithm will discard
them because they will form a new smaller cluster, separated from the main
one.

6.2.3 Track Management

Track management is responsible for generating new tracks when new objects
appear in the FoV and for deleting tracks which have not been updated. In case
that a cluster is not assigned to a track, a new temporary track is created. If this
track is matched with a cluster for ten consecutive iterations, it is marked as
a stable track. In other words, a new track is not created any time a cluster is
not assigned to existing tracks, since it may not be robust due to noise or ghost
targets.

Using a similar approach, when a track is not updated with a cluster for 50
frames, it is removed from the track list. I had to keep in mind two things when
I decided this value. On the one hand, the system needs to delete tracks that
were initiated by mistake, so a rather small number is needed. On the other
hand, when an another object blocks the TuT for a few frames, a waiting period
is needed until the object moves and the TuT is visible again.

6.3 Results

In this section I present results that I collected with the Radar hardware described
in Chapter 3.

6.3.1 People Tracking

In the first set of experiments I show a typical scenario of two users coming
close to each other. Fig. 6.2 shows the three phases of the experiment and
compares the aforementioned methods. As explained in 6.2.2, the Cluster First
Track Later merges the tracks when the users come close, since the density
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based algorithm considers the dense point-cloud in the region as one object. On
the other hand, the other two methods by design avoid that.

6.3.2 Arm Movement

In the second set of experiments, I show results from multi-user gesture reco-
gnition experiment; the two users were intentionally placed close to each other.
User-0 performed swipe-up and swipe-down, whereas User-1 performed only
swipe-left and swipe-right gestures. They simulated a scenario during which
the system would need to separate the return signals from two users.

In Fig. 6.3 I show two typical examples when Group Tracker fails to assign
targets to the correct users, when they are close to each other. In the first case,
point-targets that belong to User-1 are assigned to User-0 because they are closer
to the track’s centroid. However, Group Tracker with Clustering correctly found
that the point-targets initially assigned to User-0 do not form a dense cluster
and rejected them. These point-targets were assigned to the next track that was
close and could form dense cluster, the one from User-1. In the second case,
I show a typical example of noisy point-targets being assigned in the TuT. In
case of Group Tracker with Clustering, the clustering method identified that the
noisy targets do not form a dense cluster and rejected them.

6.4 Concluding Remarks

In this chapter, I presented two common approaches for tracking people using
a Radar sensor and I introduced my own method which contains elements from
both. I evaluated them in complex scenarios and showed that reliable people
tracking is a prerequisite for consumer applications.
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(c) The two users go back to their original position. In the case of Cluster First Track Later a new track has

been generated with ID 13 and the history of the old track is lost. For the other two methods, track merge
did not take place and both tracks continue to exist.

Figure 6.2: Example of people tracking with two users approaching each other that shows the
track merge problem in the Cluster First Track Later method. The color of the targets
represents the assigned cluster (OIEEE [NHHZ22]).
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(b) In this frame Group Tracker method assigns the noisy point-targets close to User-1 to him. On the other
hand, Group Tracker with Clustering used DBSCAN and identified that these point-targets do not create a
dense cluster and regards them as noise. Similar is the situation for the User-0 who remains static.

Figure 6.3: In this scenario the two users perform arm gestures sequentially. I provide two corner
cases in which the Group Tracker provides non-satisfactory results (OIEEE [NHHZ22]).
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7 Extensions of Gesture
Recognition

The problem presented in this Chapter is tackled in the author’s publications
[NHHZ22,NHZ21a] alongside Jiirgen Hasch, Michael Heizmann, and Thomas
Zwick.

7.1 Introduction

In the previous chapters, I have presented two use-cases that could be useful for
a smart-home application, gesture recognition with a single user and tracking
people. I also showed that reliable people tracking is a prerequisite for any
application that involves multiple users, since it maps hundreds point-targets
to actual objects. For example, in case that a person is performing a swipe
gesture and another person is walking nearby, the system needs to separate
them and recognize both activities. Otherwise, the combined mD input from
both extended targets will be provided to the ML for classification and the
estimation will not be accurate. In a similar fashion, in [RHK] the authors
tracked all extended Radar targets and managed to distinguish living from
non-living objects in a complex scene. In this chapter, I focus on multi-user
macro gesture recognition and hand tracking, but the list goes on and is only
limited by the imagination of the researcher. For example, object recognition
like in [YMR™*18] could play an important role. Fig. 7.1 shows an overview of
the signal processing blocks with four feasible applications, either developed in
this work or available in literature.
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Figure 7.1: Overview of a Radar system with signal processing blocks and possible applications in
smart-home scenarios (OIEEE [NHHZ22]).

7.2 Multi-User Gesture Recognition

In case that two users perform a gesture simultaneously, the processing pipeline
of Chapter 4 will not be able to separate the return signals. Thus, the generated
feature maps will contain concatenated information from both arm movements.
In order to fix that problem, I utilize the tracking algorithm from Chapter 6 and
build on top of that the gesture recognition pipeline from Chapter 4.

From the baseband processing and people tracking steps, I have extracted the
detections and their attributes (e.g. distance, radial velocity, DoA in azimuth
and elevation) that belong to each track. The next step is to calculate the mD
vector and the equivalent DoA vector, like in Chapter 4, for each track. I achieve
that by doing the following: For each Doppler gate I collect the corresponding
detections, select the one with the highest amplitude and save its attributes. In
case that no detection was available, the mD would have a zero value. Thus, for
all Doppler gates I have selected detections with a certain amplitude and DoA
in azimuth and elevation. This way, it is possible to generate Feature Maps like
in [NHZ21b], with using point-cloud instead of using RDMs.

The rest of the processing chain is similar to [NHZ21b]. For each track the
event detection algorithm will search for significant motion. If a positive result
is given, an empirical method will generate a one-dimensional signal from each
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Figure 7.2: Signal processing pipeline for multi-user tracking and gesture recognition (OIEEE
[NHHZ22]).

feature-map; for the mD image I use the highest velocity of each frame, for
the two DoA maps I use the median angle of each frame. For simplifying the
classification even further, another feature extraction step provides 13 features. I
use the same ML model that I trained in [NHZ21b] that is capable of recognizing
ten classes. Fig. 7.2 shows a diagram with the proposed signal processing
pipeline.

7.3 Hand Tracking

Gesture recognition, either on micro or on macro scale, allows the user to have a
level of control in a digital system with a set of known commands. However, in
many cases a system requires a value within an allowed range, for example when
controlling the volume of a TV. In my opinion, an intuitive way to achieve that in
a touchless manner is via tracking the hand of the user. Camera-based systems
and recent achievements in ML made that possible [BGR*20]. However, such a
solution raises privacy concerns [VKC19] and consumes significant amount of
power not only due to the sensor but also due to the processing that is involved.
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More information and comparison with alternative technologies can be found
in Section 2.5. I tackled this problem using only mmWave technology and to
the best of my knowledge, I am the first to introduce the concept.

Once people tracking is completed, the system knows the location of people
or large objects in the FoV. When one of the users starts performing a gesture,
the tracking algorithm will assign the point-targets to the user’s track. This
information accumulated over time is useful for gesture recognition as explained
in Section 7.2. However, since the tracking algorithm assigns the point-targets
of the arm to the track that belongs to the user, it is not possible to separately
track the hand movement.

That is why during the first step of hand tracking, the system needs to split
the existing user track into body and hand. The user can inform the system to
do that using a triggering mechanism (e.g., voice, button, gesture, etc.). For
example in my work, I achieved that with the arm gesture called “rotate”. In
order to split the user track into two separate tracks for body and hand I use the
K-means algorithm [L1082] and configure it to find two different clusters using
the original. I assign the cluster with less number of point-targets to the hand
and the other one to the body.

Once the above is completed, I can use the existing tracking method and track
the location of the hand for any number of frames. However, I found that using
a single Radar is not a robust solution for the following reasons. The FoV of a
single sensor might not be enough to capture a complete arm movement from
left to right (or vice-versa), in case that the user is close to the sensor. To make
matters worse, when the user is a few degrees on the left or right side of the
Radar, this situation is more critical. In addition, the number of point-targets
assigned to the hand is in many cases not enough for a reliable clustering. Last
but not least, I already mentioned that the measurement vector of the tracking
filter is the position of the cluster. Thus, during a maneuver of the hand, the
filter requires few updates until it converges.

In order to overcome these issues, I improved the hardware setup and created a
loosely coupled network using two identical Radar nodes similar to [CD21]. The
measurement frames of the two Radars are triggered with a few microseconds
time difference, in order to avoid interference between the Radar signals. The
two nodes are positioned at a distance of a few centimeters (e.g., 30cm) in
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x-axis. In Section 7.3.2, dedicated on the experimental Radar system, I provide
more information on the topic.

7.3.1 Signal Processing Chain

In the following, I will describe the signal processing chain. After applying
the baseband processing for each Radar individually, the two sets of point-
targets are concatenated. Therefore, the FoV is now significantly larger since it
combines the FoV from both sensors. In addition, when the hand of the user is in
the overlapping FoV of both sensors, there are two benefits. Firstly, the number
of point-targets assigned to the hand track will be higher. Secondly, if the hand
is considered as a point target, it is possible to estimate its velocity vector in a
single snapshot as I will explain in subsection 7.3.1. This information can be
used in the KF and reduce the residual during a hand maneuver.

Fig. 7.3 shows the geometric setup of a two-node Radar network and a moving
target. The goal is to estimate the velocity vector of a small target, which moves
in a two-dimensional Cartesian space. The Radars measure in each snapshot the
radial velocity v1, and v2, respectively. In addition, they measure the azimuth
angle ¢1 and ¢2. Using basic trigonometric transformations it is possible to
derive Eq. 7.1.

vl | |cos(¢l),sin(¢l)| |vx 7.1
V2, cos(¢2),sin(¢2) | vy '
This can be reformulated as in Eq. 7.2.
v, = AV (7.2)

Using high resolution Radar nodes, the baseband processing will generate many
targets even for small objects. In that case, the aforementioned equations can be
extended by adding one row for each detected target for each sensor as in Eq.
7.3.

79



7 Extensions of Gesture Recognition

vl
V2 "
Vg

VR

Node 1 Node 2 Y

X

Figure 7.3: Example geometry of a two-node Radar network and one moving target (OIEEE [NH-
HZ22)).

vl, cos(¢ly),sin(¢ly)

v2, cos(¢21), sin(¢21) | |y,
1= : (7.3)
: : Vy
VN, cos(¢pN), sin(¢pN)
This can be reformulated as in Eq. 7.4.
v, = Hv (7.4)

The above system is overdetermined; using the pseudo-inverse the velocity
vector can be estimated as in Eq. 7.5.

v=(HTH)'"HTV, (7.5)

Naturally, the above system could be solved with numerical methods as in Eq.
7.6, but this is out of the scope of this work.

¥ = argmin||v}, — HV||? (7.6)
v
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Figure 7.4: Multi Model with Velocity Estimation. Used for hand tracking with two Radar nodes
(©IEEE [NHHZ22]).

Multiple Model with Velocity Estimation

The estimated velocity can be used in the measurement vector of KF. However,
the hand of the user is not always in the FoV of both sensors, thus it is not a
good idea to rely only on the single snapshot estimated velocity.

To surpass this issue, I developed the Multiple Model with Velocity Esti-
mator (MM VelEst), that utilizes two KFs; I was influenced by the Multiple
Model Adaptive Estimator (MMAE) [ZM15] and Interacting Multiple Models
(IMM) [BSLKO1]. The first filter that I use is similar to the people-tracking
case, whereas the second includes the estimated velocity in Cartesian space in
the measurement vector. When the single snapshot estimated velocity is not
available, I use the first KF to update the state of the track and when it is availa-
ble I use the second KF. In either case, since the state vector is the same, I can
use the previous estimation of the state and covariance matrix. Fig. 7.4 shows
the diagram for MM VelEst.
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Figure 7.5: Diagram of a loosely coupled Radar sensor network, used for hand tracking including
a camera for verification (OIEEE [NHHZ22)).

7.3.2 Experimental Radar System

For the hand tracking application, I modified the setup in order to facilitate a
second Radar node. I use Precision Time Protocol (PTP), which generates a
master slave relationship among the clocks in the system. All clocks ultimately
derive their time from a clock known as the grand-master clock [noa08]. This
way, each sensor node is synchronized on the shared system time of the network.

Fig. 7.5 shows a diagram that describes the system and Fig. 7.6 depicts the
Radar setup.

7.4 Results

7.4.1 Multi-User Gesture Recognition

In the following examples the combination of tracking and gesture sensing
capabilities will be shown. Two users were performing gestures and the system
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Figure 7.6: Hardware setup with two Radar nodes, approximately 60cm apart (OIEEE [NHHZ22]).

could simultaneously track them and recognize their movements. One of the
users is performing swipe-left/right and the other one swipe-up/down. This
demonstrates that the framework can achieve multi-user gesture sensing and
that the ML model can provide accurate results for different ranges. Fig. 7.7
and 7.8 show the result of multi-user gesture sensing.

7.4.2 Hand-Tracking

In order to evaluate the performance of the system, I collected ground truth
using one RGB-D camera, the Intel RealSense, and utilized the Mediapipe
package [BGR*20] to extract the pose of the user. Fig. 7.9 shows two frames
that I recorded during hand-tracking, the output of the pose-estimation and
finally the tracks that are generated by my framework.
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Figure 7.7: Example with two users performing gestures. One of them performs swipe-left whereas
the other one swipe-up. The framework can track the users and then recognize the

gestures.
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Figure 7.8: Example with two users performing gestures. One of them performs swipe-right whereas
the other one swipe-down. The framework can track the users and then recognize the
gestures.
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Figure 7.9: Example of hand-tracking. The image on the right side shows the projected Radar tracks

with a rectangle symbol and the estimated pose from Mediapipe with circles and lines
(©IEEE [NHHZ22]).
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Figure 7.10: Hand Tracking: Comparison between MM VelEst and single KF. For Ground Truth
an RGB-D sensor was used together with Mediapipe for pose estimation (OIEEE
[NHHZ22]).

Fig. 7.10 shows the estimation of position from the ground truth and the two
estimation methods that I used. In addition, Fig. 7.11 shows the residual of
the two parameter estimators in comparison to the ground truth. Both filters
provide similar results until frame 300; up to this part the hand of the user was
moving relatively slow. After that the residual of the KF increased and reached
0.4 meters. However, the MM VelEst appears to be unaffected, since it can use
the single snapshot velocity estimation in the kinematics model.

7.4.3 Comparison with camera-based solution

It is worth pointing out that I found it hard to collect accurate ground-truth
when the color of the clothes of the user was similar to the background, or
when there were reflections from the sun. In addition, in many cases the ground
truth from the camera-based system was corrupted when the hand was moving.
On the other hand, it was very accurate and robust with static poses. Therefore, I
believe that a high-accuracy system should integrate both camera and mmWave

86



7.5 Concluding Remarks

Ground Truth from Camera (X-Axis)

E 0.5 ’
5
= 0.0
w
£ L// \\J
-0.5
0 100 200 600
Residual
E 0.25 >§
§ 000l W "\/\Ww PN N N \/W m\"}%
'g —— Radar KF W\\/v ’\\Jm
T —0.257 ___ Radar MMVelEst ! %
100 200 300 400 500 600

Measurement Frame

Figure 7.11: Hand Tracking: The first subplot shows the reference signal from the camera-based
system whereas the second subplot compares the residual of the two parameter esti-
mators (KF and MM VelEst) (OIEEE [NHHZ22]).

based sensors in order to get the best of two worlds. A possible example could
be the Microsoft HoloLens which already has a built-in hand tracking feature.

7.5 Concluding Remarks

In this chapter, I presented two novel applications that could be realized with
mmWave technology. Both of them are suitable for a smart-home and could
improve the human machine interaction systems. With the multi-user gesture
recognition, I extended my work on gesture recognition and combined it with
people tracking for the first time. Similarly, the hand-tracking feature is a novel
application of mmWave technology and to my knowledge I am the first to
introduce it.
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8.1 Summary of Key Contributions

Transitioning Radar technology from the automotive to the consumer market
was the main motivation of this Thesis. The vast majority of similar scientific
works focused on micro-gestures performed a few centimeters above a Radar
sensor. The popularity of that approach increased even more when Google
launched Pixel 4 with an integrated Radar sensor. Such a solution utilizes only
one of the important attributes of Radar technology, that of mD.

My decision to focus on macro-gesture recognition and tracking was based on
the fact that they constitute the basis of most of the contactless HMI, and they
render possible a larger range of applications. At macro scale, the mD is not
anymore the important feature for predicting the gesture type, since the DoA
plays an equally crucial role. Integrating this information in a form suitable for
machine learning, using the Feature Maps was a significant step. On top of that,
using empirical features instead of a CNN provided two more benefits. Firstly,
the sample size of the training dataset did not need to be tens of thousands as
is usually expected; roughly one thousand samples were enough. Secondly, the
inference part needs much lower processing power since the used model has
only 32 nodes. The average accuracy in the test set for ten classes, including
random motion, was 94.3% at SOHz frame rate and 92% at 25Hz, comparable
to research works that focus on micro-gestures only.

In my next work, I created an automated tool capable of creating synthetic
samples for gesture recognition with a Radar sensor. Such synthetic dataset
generators are very useful in the computer vision and machine learning com-
munity. However, initial efforts to bring them in the mmWave world were either
unsuccessful or lacking important features. Blender, the free and open source
3D creation suite was utilized for generating human-like animations that per-
form gestures. Using its Python API, I extracted point-targets from all frames
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of the animations and fed them in a Radar simulator that I developed. The
latter provides time domain Radar data in a similar form as the experimental
sensor and can be used by the aforementioned processing chain, designed for
gesture recognition. I used those samples to train a machine learning model
and I evaluated its performance on the real dataset that I had already collected,
yielding an average accuracy of 84.2%. This shows that the data-generator can
contribute in the pre-training phase of a model, as well as for capturing corner
cases related to the speed of execution and the position of the subject, that are
difficult to reproduce during data collection.

After having completed an in-depth analysis on the topic of gesture recognition
for single user in the FoV, I evaluated existing people tracking algorithms.
Such algorithms are the corner-stone for applications in multi-user scenarios,
since they allow to split the point-cloud into multiple point-clouds, one for
each person, and process its history. I selected two commonly used, namely
the “Group Tracker” and the “Cluster First Track Later”, which performed with
accuracy that agreed with the ones reported by their authors, in simple scenarios.
However, in more complex cases with more than two people or when users are
close to each other and move their arm, the performance of the above two
methods deteriorated. My approach called “Group Tracker with Clustering”,
combined ideas from both methods without inheriting their drawbacks, was
able to perform better in the aforementioned scenarios.

Finally, I developed two features that would be useful for a smart-home appli-
cation. The first one tackled the problem of multi-user gesture recognition for
the first time with mmWave technology. To achieve that, I combined my peo-
ple tracking method with my gesture recognition pipeline. The second feature
focused on hand-tracking, solely with a Radar system; improved accuracy was
accomplished by using a second Radar node and an adaptive Kalman filter that
made use of an estimated velocity vector of the hand.

8.2 Outlook

In the aforementioned results, the users were always placed at a distance lower
than three meters. At higher range, the results are deteriorated due to the low
RCS of a human arm, the noise characteristics of the sensor and the large FoV in
azimuth and elevation which decrease the gain. Similarly, during hand-tracking
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at a higher distance, the number of targets generated by the arm is too low,
and consequently the hand-track is deleted by the track maintenance algorithm.
A modern fully integrated Radar System on a Chip [RGG*21] provides much
better SNR characteristics and a bandwidth up to 4GHz. Thus, a dense point-
cloud would be available at longer range.

The number and position of antennas also play a crucial role. By optimizing
the antenna array in azimuth dimension and increasing the angle resolution, the
system would be able to identify more objects in the scene. Furthermore, in
case that more antennas are used to improve the elevation resolution, it would
be possible to apply hand-tracking in three dimensions. It is important to note
that adding more antennas in a consumer application is significantly easier in
comparison to the automotive domain, in which the requirement for maximum
unambiguous velocity leads to very short chirps.

During the experiments I found that the maximum radial velocity during fast
arm motions is around 4 m/sec and is achieved during the push or pull gestures.
However, in case that gestures with only lateral movement are selected (i.e.,
swipe-right/left/up/down, etc.) then the required maximum unambiguous velo-
city will be significantly decreased, like in [HLG"21]. This means that the chirp
duration can be higher and thus even more antennas could be used with TDM.

In future work, a system needs to be developed with SW-HW co-design and take
into consideration performance, power consumption, cost and flexibility. An
architect should choose wisely the target hardware for the different processing
blocks. For a block that no major modifications are expected in the future,
it is highly suggested to sacrifice flexibility and optimize the rest as much
as possible by implementing it in an Application Specific Integrated Circuit
(ASIC) or FPGA. The baseband processing constitutes such a block.

On the other hand, algorithm development for tracking people with mmWave
sensors is an up-and-coming topic and the designer should expect frequent
improvements in the future. That is why my suggestion is to use C++ for this
part, since it is commonly used in Robotics, offers very high levels of code
re-use and an efficiency very similar to C programming language. An ARM
processor should be capable of performing the processing in real-time, since
the point-cloud that is generated from baseband processing usually has only a
few hundred targets. Finally, for the gesture recognition part, flexibility is of
importance, so that new empirical features could be easily integrated. In case
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that a large data collection takes place, with aim of collecting tens of thousands
of samples, most likely a CNN will outperform the empirical feature extraction
solutions. Thus, a GPU will be needed for a real-time inference.

Regarding the frontend, during my work I used an experimental one which was
developed within our laboratory. Currently, several semiconductor manufactu-
ring companies offer 27y — 4R, or even 3T, — 4R, with antenna on package.
Some of them even provide software development kits which include baseband
processing and tracking algorithms. As a result, all the RF/Antenna design and
low-level signal processing topics are abstracted in a single chip. This could
reduce the development time significantly and bring the product to the market
faster.

Finally, more applications could be developed using mmWave technology. Re-
cent studies have shown that it is possible to identify if an object is living or not
and measure the respiration rate of humans [RHK]. Another interesting feature
would be to identify if an object is an animal or a human. For that task, recent
methods developed for Lidar technology, like the PointNet [CSKG17], could
be easily transferred in the mmWave domain and classify objects.
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A.1 Gestures

In the following figures, the nine gestures used in Chapter 4 are presented.

(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.1: Pull

(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.2: Push
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al g I

(@) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.3: Swipe-Up

\

(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

U

Figure A.4: Swipe-Down

(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.5: Swipe-Right
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(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.6: Swipe-Left

(a) First part of gesture  (b) Second part of (c) Third part of gesture  (d) Last part of gesture

gesture

(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.7: Rotate

Figure A.8: Wave. The three parts need to be repeated 2-3 times.
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(a) First part of gesture (b) Intermediate part of gesture (c) Last part of gesture

Figure A.9: Push-Pull

A.2 Machine Learning

In this section I will provide a gentle introduction to the topic of ML and more
specifically in Multilayer Perceptron and Convolution Neural Networks. Those
who are interested in a deeper level are encouraged to consider textbooks with
a comprehensive coverage of the fundamentals such as [GBC16] and [Bis06].

A.2.1 Basic Definitions

Computers can easily solve problems described by a list of formal, mathematical
rules. However, it is very hard to program them to perform intuitive tasks for any
human, like speech and image recognition. Instead of programming them, the
state-of-the-art solution is to allow them to learn from examples and understand
the world in terms of a hierarchy of concepts. An ML algorithm is an algorithm
that is able to learn from data. A more formal definition found in [GBC16] is
the following: “A computer program is said to learn from experience E with
respect to some class of tasks 7" and performance measure P, if its performance
at tasks in 7', as measured by P improves with experience E£”. The above sounds
more complicated than it actually is and I will try to break it down.

Tasks are usually described in terms of how the ML system processes a sample
(also called example). A sample is a collection of features that have been
measured, and is usually represented as a vector y € R" where each entry y; is
another feature. For example, the features of an image are the values of the pixels.
Many tasks can be solved with machine learning (e.g., classification, regression,
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machine translation, anomaly detection, imputation of missing values, etc.), in
this work only classification tasks are needed. In this case, the computer is asked
to specify which of k predetermined categories a new sample belongs to. To
solve that, the algorithm needs to produce a function f : R" = {1,..., k}.

A quantitative measure of the performance P is used to evaluate the ML algo-
rithm. For classification tasks the most common approach is to use the accuracy
of the model, which is the proportion of samples for which the model produces
the correct output. It is important to evaluate a model with samples that it has
not seen before, since this determines how well it will work when deployed in
the real world. Therefore, a separation of the test set and of the training set,
which is used for training the model, needs to take place.

ML algorithms can be categorized as unsupervised or supervised by what kind
of experience E they are allowed to have during training. The term supervised
learning originates from the view of the label being provided by an instructor or
teacher who shows the ML system what to do. In this work, I used supervised
learning so that each sample in the dataset contains features and is associated
with a label (also called target). One common way of describing a dataset is with
a design matrix X that contains a different sample in each row. Each column
corresponds to a different feature.

A.2.2 Multilayer Perceptron

Multilayer Perceptron, also called feed-forward neural network, is commonly
used to approximate some function f*. For example, a classifier y = f*(x)
maps an input y to a category y. Such a network defines a mapping y =
f (x;0) and learns the values of the parameters 6 that result in the best function
approximation. The name feed-forward originates from the fact that information
flows through the function being evaluated from y, through the computations
used in f, and finally to the output y. There are no feedback connections
that connect the output to the input of the model. Such models are of great
importance in many ML problems and they are used extensively in commercial
applications.

The model is associated with a directed acyclic graph describing how the
functions are composed together. In case of three functions f M, f () and
£3) | the first, second and third layer respectively. They will form f(y) =
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Figure A.10: Simple example of an MLP. It consists of three input nodes, one hidden layer with
three nodes, and an output layer with two nodes.

FOFD(FD(x))). The name “deep learning” arose from such models with
a large number of layers, since the length of the chain is equivalent to the depth
of the model. During training, each sample y specifies what the last layer (also
called output) must do. The learning algorithm must decide how to use all the
layers, intermediate and output, to best implement an approximation of f*. The
intermediate layers are sometimes called hidden layers because they are not
directly observable from the systems inputs and outputs.

This model is called neural because it is inspired by neuroscience and each
element of each layer may be interpreted as a neuron. Rather than thinking
of each layer as representing a single function, it can be considered as many
units that act in parallel, each representing a vector to scalar function. Each unit
resembles a neuron in the sense that it receives input from many other units and
computes its own activation value. However, modern neural network research
is guided by mathematical and engineering disciplines and its goal is not to
mimic the behavior of the brain.

Learning occurs in the MLP by changing connection weights after each piece
of data is processed, based on the amount of error in the output compared to the
expected result. It is possible to represent the degree of error in an output node
J in the n-th sample point by e ;(n) = d;(n) —y;(n), where d is the target value.
The node weights can then be adjusted based on corrections that minimize the
error in the entire output, given by E(n) = % > e; (n). Using gradient descent
and back-propagation, the change in each weight 1s calculated. The user needs
to set the hyper-parameter learning rate which defines how quickly the weights
will converge to a response. Fig. A.10 shows a simple example of an MLP with
one hidden layer that consists of three neurons.
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A.2.3 Convolutional Neural Networks

They are a specialized kind of neural network for processing data that has
a known grid-like topology. Typical examples include time-series and image
data. The former can be thought of as a 1-D grid taking samples at regular
time intervals, whereas the latter as a 2-D grid of pixels. CNNs have been
successful in practical applications and are considered state-of-the-art for image
recognition and image segmentation. The name convolutional indicates that the
model employs a mathematical operation called convolution instead of matrix
manipulation in at least one of the layers.

In its most general form, convolution is a specialized linear operation on two
functions (f and g) that produces a third function (f * g) that expresses how the
shape of one is modified by the other. In that case f is considered as the input
and g as kernel, which is similar to a weighting function. Convolution leverages
three important ideas that can help improve an ML system: sparse interactions,
parameter sharing and equivariant representations.

In case of MLP every output unit interacts with every input unit. However, when
an image is processed the input could contain thousands of pixels, but certain
features like edges occupy only tens or hundreds of pixels. As a result, only
sparse interactions are needed which also has the benefit of fewer parameters
and memory requirement reduction. The improvement in efficiency is quite im-
portant; if there are m inputs and n outputs, then matrix multiplication requires
m X n parameters and the algorithms have O (m X n) runtime. If the number
of connections for each output is limited to k, then the sparsely connected
approach requires only k X n parameters and O (k X n) runtime.

Parameter sharing refers to using the same parameters for more than one func-
tion in a model. In an MLP, each node is used only once when computing the
output of a layer. In other words, it is multiplied by one element of the input and
then never revisited. In a CNN, each member of the kernel is used at a every
position of the input. Thus, rather than learning a separate set of parameters
for every location, only one set is learned. This does not have an effect on the
runtime of the forward propagation but it reduces the storage requirements.

Equivariant representation means that if the input changes then the output
changes in the same way. In case of images, the convolution creates a 2-D map
of where certain features appear in the input. If the objects in the input are
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moved, its representation will move the same amount in the output. This is
useful when processing images and it is important to detect edges in the first
layer of a CNN. The same edges appear more or less everywhere in the image,
so it is practical to share parameters across the entire image.

A typical layer of a CNN consists of three stages. Initially, the layer performs
several convolutions in parallel to produce a set of linear activation. Then each
linear activation is run through a nonlinear activation function, such as the
Rectified Linear Unit. Finally, a pooling function down-samples feature maps
by summarizing the presence of features in patches of the feature map. Two
common pooling methods are average pooling and max pooling that summarize
the average presence of a feature and the most activated presence of a feature re-
spectively. In any case, pooling helps to make the representation approximately
invariant to small translations of the input.

Two popular CNN architectures that include aforementioned layers can be found
in Fig. A.11.

A.3 Software Architecture

In the following section, I provide UML diagrams for the most important
software packages that I developed. The first part is about baseband processing
of time-domain Radar data; theoretical background can be found in Section 2.
The second part provides diagrams for the tracking package, more info about
people tracking can be found in Section 6. Finally, the third presents diagrams
for the synthetic dataset generator; detailed information and results are available
in Section 5.
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LeNet AlexNet
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‘ Dense: 4096 fully connected neurons ‘
v RelLu, dropout p=0.5
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v
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Figure A.11: Comparison of the architectures of LeNet and AlexNet by CMG Lee using da-
ta from http://d21.ai/chapter_convolutional-neural-networks/lenet
.html and http://d21.ai/chapter_convolutional-modern/alexnet.html.
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A.3.1 Baseband Processing
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Figure A.12: Software architecture of the noise calculator that uses CFAR. It can use four different
algorithms and apply them in range, velocity as well as in 2D window functions. The
NoiseCalculator CF AR has two attributes, one for applying the window function
and one for applying the CFAR algorithm, this way these two orthogonal parts of the
algorithm are decoupled. The strategy pattern is used for the CFARWindow and
CF ARAlgorithm interfaces.
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FFTProcessorNumpy

FFTProcessor

do(self, data, dim_name)

FFTProcessorFFTW

FFTProcessorFixedPoint

do(self, data, dim_name)

do(self, data, dim_name)

do(self, data, dim_name)

Figure A.13: Software architecture of the FFT processing part. Strategy pattern is used to implement
three back-ends, one with Numpy, one with FFTW [FJ05] and one with a fixed-point
implementation in C.

SpectrumGeneratorFMCW

window_fast_time
window_slow_time
generate_spectrum(self, data,
controller)

SpectrumGeneratorOFDM

window_fast_time
window_slow_time
generate_spectrum(self, data,
controller)

/

/

/

~a

SpectrumGenerator
/ \
\

tx_antenna_num
slow_time_num
fast_time_num
fast_time_duration
fast_time_pause
sampling_frequency
bandwidth
center_frequency
break_between_packets
data_type
cell_migration
detrend_flag
integration_method
channels
fft_processor
velocity_vector
range_vector

do(self, data, controller)
calc_range(self, rage_init, radial_vel)
generate_spectrum(self, data,
controller)

SpectrumGeneratorCW

\| window_slow_time

\

generate_spectrum(self,
data, controller)
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Figure A.14: Software architecture of the part that generates the spectrum from the time do-
main data, with concrete implementations for FMCW, OFDM and CW. In this case,
the template pattern is used, do being the template method in the abstract class
SpectrumGenerator. The sub-classes provide a concrete implementation of the
generate_spectrum method. The SpectrumGenerator “has-a” (compositi-
on) FFT Processor through which it implements the FFT.
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AngleEstimatorBartlett

AngleEstimatorCapon
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AngleEstimatorVoid
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Figure A.15: Software architecture of the part that performs DoA. The template pattern is used,
do being the template method in the abstract class Angle Estimator. The sub-
classes provide a concrete implementation of the _do method. In case of DML, the
spatial spectrum can be calculated with two different backends, Numpy or Numba.

AngleEstimatorVoid is used when the user did not request DoA calculation, in
that case the template method do is an empty call.
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Targets

mutable

frame
slow_time
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spectrum_comp
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spatial_spectrum
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dataFrame()
dataset()
pos_cartesian()
pos_spherical()

Figure A.16: Software architecture of the container of the point-cloud. Targets is a Python
Dataclass and is also “frozen”, which means that once it is instantiated the values of
the attributes cannot be modified. That is useful in case that a function tries to modify
it by mistake. For example, the clustering part will use the point-cloud to generate
clusters, but it must not modify it. Some information of the point-cloud is still mutable
(i.e. non-frozen), this is available in the TargetsMutable class. This architectural
choice was made because during the baseband processing, the location of the sensor
is not known, this is set later. For concatenating point-clouds from multiple sensors,
T used the composite pattern, implemented by TargetsComposite. The benefit
is that the user of TargetsComposite class is not aware if only one sensor or
multiple sensors are used, since the interface is exactly the same.
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MultiplexingCompensator
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Figure A.17: Software architecture of the part that compensates the effect of multiplexing, like in
TDM-MIMO. The strategy pattern is used and two cases have been implemented.
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Figure A.18: Software architecture of the complete baseband processing chain. The facade pattern
is used so that the interaction of complex components is masked within one class.
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A.3.2 Tracking
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_— .
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algorithm algorithm
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Figure A.19: Software architecture of the part that clusters the point-cloud into objects. The strategy

pattern has been used to implement several algorithms, while keeping the same

interface.
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Figure A.20: Software architecture of the different kinematics models that I have tried.
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Figure A.21: Software architecture for the available parameter estimation approaches. It can handle
different KF like linear, non-linear (EKF, UKF) as well as adaptive (IMM, MMAE).

The MM VelEst is also available, developed for hand-tracking. The estimator can use
any Model instance shown in A.20.
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ParameterEstimator

estimator
observations_target
observations_cluster
idx_targets_in_track
sensor_pos

stable

finds

misses

frames

gesture
position_history
position(self)
position_cov(self)
velocity(self)
dispersion_matrix(self)
n_targets(self)
is_event(self)
update(self)
calc_state_uncertainty(self)

TrackComposite

_tracks

n_active(self)

n_updated(self)
remove_inactive(self)
add(estimator, observations_target,
observations_cluster,
idx_targets_in_track, targets)
remove(self, track)
create_outputs(self)

Figure A.22: Software architecture for the container of the detected tracks. Track is a Python
Dataclass that holds all attributes of a track. For concatenating multiple tracks, I used
the composite pattern, implemented by TrackComposite.

GroupTracker -

cluster_after_association
update(self, targets)

ClusterFirstTrackLater

cluster_after_association
update(self, targets)

S ParameterEstimator

cluster_maker

dt

distance

sigma

tracks

conf_estimator

estimator

do(self, targets)
update(self, targets)

x

TrackComposite

Figure A.23: Software architecture of the complete tracking processing chain. It combines the
facade pattern so that interaction with multiple modules is possible and the template
pattern. The template method update is implemented by the two available sub-

classes.



A.3 Software Architecture

A.3.3 Radar Simulator

/

/

FrequencyModulationOFDM t

config_ofdm
calc_received_signal(self,
sample_time, time_flight,
transmitted_signal, attenuation,
name)
calc_transmitted_signal(self,
sample_time, amplitude)
save_adc_dataset(self, data_adc,
conf_scene, simulation_dir, signals)
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fast_time_pause
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fast_time_num
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fast_time_duration_total(self)
calc_received_signal(self,
sample_time, time_flight,
transmitted_signal, attenuation,
name)
calc_transmitted_signal(self,
sample_time, amplitude)
save_adc_dataset(self, data_adc,
conf_scene, simulation_dir, signals)

y FrequencyModulation FrequencyModulationCW

frequency_shift_rsd
phase_noise_simulator
calc_received_signal(self,
sample_time, time_flight,
transmitted_signal, attenuation,
name)
calc_transmitted_signal(self,
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save_adc_dataset(self, data_adc,
conf_scene, simulation_dir, signals)

[y

FrequencyModulationFMCW

ramp_slope_offset_rsd
calc_received_signal(self,
sample_time, time_flight,
transmitted_signal, attenuation,
name)
calc_transmitted_signal(self,
sample_time, amplitude)
save_adc_dataset(self, data_adc,
conf_scene, simulation_dir, signals)

Figure A.24: Software architecture of the frequency modulation scheme, CW, FMCW and OFDM

are available.

AmplitudeModulationINTRA

_calc_phase_total(self,amplitude,
phase_shift)

AmplitudeModulation

do(self, amplitude, channel_idx)

_calc_phase_total(self,amplitude,

hase_shift)

*
AmplitudeModulationINTER AmplitudeModulationConst:

_calc_phase_total(self,amplitude,
phase_shift)

_calc_phase_total(self,amplitude,
phase_shift)

Figure A.25: Software architecture of the amplitude modulation scheme. User can select between
constant amplitude for all chirps, different amplitude during chirp transmission (IN-
TRA) or different amplitude for each chirp (INTER).
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Figure A.26: Software architecture of the simulator platform. The Scene class contains all the attri-
butes that the simulation needs, including the Radar and the point-targets. The Radar
class consists of the AmplitudeModulator, the FrequencyModulator, the
BackendBoard, SignalMultiplexer and the Mixer.
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