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4.4 The supersymmetry algebra 46

5 Superfield formalism 49
5.1 Superfields 49

vii



viii Contents

5.2 Representations of symmetry generators: a recap 52

5.3 Representation of SUSY generators as differential operators 54

5.4 Useful θ identities 56

5.5 SUSY transformations of superfields 58

5.6 Irreducible SUSY multiplets 60

5.6.1 Left-chiral scalar superfields 61

5.6.2 Right-chiral scalar superfields 63

5.6.3 The curl superfield 64

5.7 Products of superfields 64

5.8 Supercovariant derivatives 65

5.9 Lagrangians for chiral scalar superfields 68

5.9.1 Kähler potential contributions to the Lagrangian density 70

5.9.2 Superpotential contributions to the Lagrangian density 72

5.9.3 A technical aside 74

5.9.4 A master Lagrangian for chiral scalar superfields 75

5.10 The action as an integral over superspace 76

6 Supersymmetric gauge theories 79
6.1 Gauge transformations of superfields 79

6.2 The Wess–Zumino gauge 84

6.2.1 Abelian gauge transformations 84

6.2.2 Non-Abelian gauge transformations 86

6.3 The curl superfield in the Wess–Zumino gauge 89

6.4 Construction of gauge kinetic terms 92

6.5 Coupling chiral scalar to gauge superfields 95

6.5.1 Fayet–Iliopoulos D-term 98

6.6 A master Lagrangian for SUSY gauge theories 98

6.7 The non-renormalization theorem 104

7 Supersymmetry breaking 105
7.1 SUSY breaking by elementary fields 106

7.2 F-type SUSY breaking: the O’Raifeartaigh model 107

7.2.1 Mass spectrum: Case A 109

7.2.2 Mass spectrum: Case B 111

7.3 D-type SUSY breaking 113

7.3.1 Case A 114

7.3.2 Case B 114

7.4 Composite goldstinos 115

7.5 Gaugino condensation 116

7.6 Goldstino interactions 117

7.7 A mass sum rule 118

7.7.1 Scalar contributions 118



Contents ix

7.7.2 Vector contributions 119

7.7.3 Fermion contributions 119

7.8 Explicit supersymmetry breaking 121

7.9 A technical aside: γ5-dependent fermion mass matrices 124

8 The Minimal Supersymmetric Standard Model 127
8.1 Constructing the MSSM 127

8.1.1 Parameter space of the MSSM 134

8.1.2 A simplified parameter space 136

8.2 Electroweak symmetry breaking 138

8.3 Particle masses in the MSSM 141

8.3.1 Gauge bosons 141

8.3.2 Matter fermions 142

8.3.3 Higgs bosons 144

8.3.4 Gluinos 148

8.3.5 Charginos and neutralinos 149

8.3.6 Squarks and sleptons 155

8.4 Interactions in the MSSM 161

8.4.1 QCD interactions in the MSSM 161

8.4.2 Electroweak interactions in the MSSM 164

8.4.3 Interactions of MSSM Higgs bosons 174

8.5 Radiative corrections 184

8.5.1 Higgs boson masses 184

8.5.2 Squark mass 187

8.5.3 Chargino and neutralino masses 187

8.5.4 Yukawa couplings and SM fermion masses 188

8.6 Should the goldstino be part of the MSSM? 188

9 Implications of the MSSM 190
9.1 Low energy constraints on the MSSM 191

9.1.1 The SUSY flavor problem 191

9.1.2 The SUSY C P violation problem 195

9.1.3 Large C P-violating parameters in the MSSM? 196

9.2 Renormalization group equations 199

9.2.1 Gauge couplings and unification 199

9.2.2 Evolution of soft SUSY breaking parameters 204

9.2.3 Radiative breaking of electroweak symmetry 209

9.2.4 Naturalness constraint on superparticle masses 211

9.3 Constraints from b → sγ decay 214

9.4 Bs → μ+μ− decay 217

9.5 Muon anomalous magnetic moment 220

9.6 Cosmological implications 221



x Contents

9.6.1 Relic density of neutralinos 223

9.6.2 Direct detection of neutralino dark matter 228

9.6.3 Indirect detection of neutralinos 230

9.7 Neutrino masses 231

9.7.1 The MSSM plus right-handed neutrinos 232

10 Local supersymmetry 235
10.1 Review of General Relativity 236

10.1.1 General co-ordinate transformations 236

10.1.2 Covariant differentiation, connection fields, and

the Riemann curvature tensor 238

10.1.3 The metric tensor 240

10.1.4 Einstein Lagrangian and field equations 242

10.1.5 Spinor fields in General Relativity 243

10.2 Local supersymmetry implies (super)gravity 245

10.3 The supergravity Lagrangian 251

10.4 Local supersymmetry breaking 257

10.4.1 Super-Higgs mechanism 258

11 Realistic supersymmetric models 261
11.1 Gravity-mediated supersymmetry breaking 264

11.1.1 Hidden sector origin of soft supersymmetry

breaking terms 264

11.1.2 Why is the μ parameter small? 268

11.1.3 Supergravity Grand Unification (SUGRA GUTs) 269

11.2 Anomaly-mediated SUSY breaking 278

11.2.1 The minimal AMSB (mAMSB) model 280

11.2.2 D-term improved AMSB model 284

11.3 Gauge-mediated SUSY breaking 285

11.3.1 The minimal GMSB model 287

11.3.2 Non-minimal GMSB models 293

11.4 Gaugino-mediated SUSY breaking 294

11.5 An afterword 296

12 Sparticle production at colliders 298
12.1 Sparticle production at hadron colliders 299

12.1.1 Chargino–neutralino production 301

12.1.2 Chargino pair production 308

12.1.3 Neutralino pair production 310

12.1.4 Slepton and sneutrino pair production 312

12.1.5 Production of gluinos and squarks 314

12.1.6 Gluino or squark production in association with

charginos or neutralinos 319



Contents xi

12.1.7 Higher order corrections 321

12.1.8 Sparticle production at the Tevatron and LHC 322

12.2 Sparticle production at e+e− colliders 322

12.2.1 Production of sleptons, sneutrinos, and squarks 325

12.2.2 Production of charginos and neutralinos 328

12.2.3 Effect of beam polarization 331

12.2.4 Bremsstrahlung and beamstrahlung 335

13 Sparticle decays 338
13.1 Decay of the gluino 342

13.1.1 g̃ → ud̄W̃ j : a worked example 342

13.1.2 Other gluino decays 346

13.2 Squark decays 350

13.3 Slepton decays 353

13.4 Chargino decays 357

13.4.1 A chargino degenerate with the LSP 360

13.5 Neutralino decays 361

13.6 Decays of the Higgs bosons 364

13.6.1 Light scalar h 365

13.6.2 Heavy scalar H 366

13.6.3 Pseudoscalar A 366

13.6.4 Charged scalar H± 367

13.7 Top quark decays to SUSY particles 367

13.8 Decays to the gravitino/goldstino 368

13.8.1 Interactions 368

13.8.2 NLSP decay to a gravitino within the mGMSB

model 371

14 Supersymmetric event generation 374
14.1 Event generation 377

14.1.1 Hard scattering 377

14.1.2 Parton showers 377

14.1.3 Cascade decays 379

14.1.4 Models of hadronization 382

14.1.5 Beam remnants 383

14.2 Event generator programs 383

14.3 Simulating SUSY with ISAJET 384

14.3.1 Program set-up 384

14.3.2 Models for SUSY in ISAJET 385

14.3.3 Generating events with ISAJET 388

15 The search for supersymmetry at colliders 394
15.1 Early searches for supersymmetry 395



xii Contents

15.1.1 e+e− collisions 395

15.1.2 Searches at the CERN Sp p̄S collider 397

15.1.3 A light gluino window? 397

15.2 Search for SUSY at LEP and LEP2 398

15.2.1 SUSY searches at the Z pole 398

15.2.2 SUSY searches at LEP2 399

15.2.3 SUSY Higgs searches at LEP2 401

15.3 Supersymmetry searches at the Tevatron 402

15.3.1 Supersymmetry searches at run 1 403

15.3.2 Prospects for future SUSY searches 407

15.4 Supersymmetry searches at supercolliders 414

15.4.1 Reach of the CERN LHC 416

15.4.2 SUSY reach of e+e− colliders 423

15.5 Beyond SUSY discovery 427

15.5.1 Precision SUSY measurements at the LHC 427

15.5.2 Precision measurements at a LC 437

15.5.3 Models of sparticle masses: a bottom-up approach 450

15.6 Photon, muon, and very large hadron colliders 452

16 R-parity violation 454
16.1 Explicit (trilinear) R-parity violation 457

16.1.1 The TRV Lagrangian 457

16.1.2 Experimental constraints 459

16.1.3 s-channel sparticle production 465

16.1.4 � R decay of the LSP 466

16.1.5 Collider signatures 468

16.2 Spontaneous (bilinear) R-parity violation 470

17 Epilogue 474
Appendix A Sparticle production cross sections 476

A.1 Sparticle production at hadron colliders 476

A.1.1 Chargino and neutralino production 476

A.1.2 Gluino and squark production 478

A.1.3 Gluino and squark associated production 481

A.1.4 Slepton and sneutrino production 482

A.2 Sparticle production at e+e− colliders 483

Appendix B Sparticle decay widths 491
B.1 Gluino decay widths 491

B.1.1 Two-body decays 491

B.1.2 Three-body decays to light quarks 492

B.1.3 g̃ → Z̃i t t̄ and g̃ → Z̃i bb̄ 493

B.1.4 g̃ → W̃i t b̄ decays 499



Contents xiii

B.2 Squark decay widths 501

B.3 Slepton decay widths 506

B.4 Neutralino decay widths 509

B.4.1 Two-body decays 509

B.4.2 Z̃i → Z̃ j f f̄ decays 511

B.4.3 Z̃ j → W̃ +
i τ−ντ decays 516

B.5 Chargino decay widths 516

B.5.1 Two-body decays 516

B.5.2 Three-body decay: W̃i → Z̃ jτ ν̄τ 519

B.6 Top quark decay to SUSY particles 523

Appendix C Higgs boson decay widths 524
C.1 Decays to SM fermions 524

C.2 Decays to gauge bosons 525

C.3 Decays to sfermions 526

C.4 Decays to charginos and neutralinos 528

C.5 Decays to Higgs bosons 529

Bibliography 531

Index 533



Preface

Supersymmetry (SUSY) is a lovely theoretical construct, and has captured the

imagination of many theoretical physicists. It allows for a new synthesis of particle

interactions, and offers a new direction for the incorporation of gravity into particle

physics. The supersymmetric extension of the Standard Model also ameliorates

a host of phenomenological problems in the physics of elementary particles, if

superpartners exist at the TeV scale. These new states may well be discovered in

experiments at high energy colliders or in non-accelerator experiments within the

next few years!

There are several excellent books that explore the theoretical structure of super-

symmetry. These advanced texts are rather formal, and focus more on the theoretical

structure rather than on the implications of supersymmetry. This makes them some-

what inaccessible to a large number of our experimental as well as phenomeno-

logical particle physics colleagues, working on the search for the new particles

predicted by supersymmetry. Our goal in this book is to provide a comprehensive

(and comprehensible) introduction to the theoretical structure of supersymmetry,

and to work our way towards an exploration of its experimental implications, espe-

cially for collider searches. Although we have attempted to orient this book towards

experimentalists and phenomenologists interested in supersymmetry searches, we

hope that others will also find it interesting. In particular, we hope that it will pro-

vide theorists with an understanding and appreciation of some of the experimental

issues that one is confronted with in the search for new physics.

We use the language of four-component relativistic spinors throughout this text,

rather than the sometimes more convenient approach using two-component spinors.

Although this makes some of the manipulations, especially in Chapters 5–6, appear

to be somewhat more cumbersome, we felt that the use of four-spinors, which is

familiar to most “practical particle physicists,” would make up for this. For this

reason, and also because we did not want to adopt a schizophrenic approach using

two-component spinors for some things, and four-component spinors for others,

we have eschewed the use of two-component spinors throughout.

xiv
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After a review of the Standard Model (mainly to set up notation) and an exami-

nation of the motivations for weak scale supersymmetry, the text naturally divides

into three parts. The first part (Chapters 3–7) of the book introduces supersymme-

try, and details how to construct globally supersymmetric relativistic quantum field

theories. We provide a “master formula” for the Lagrangian of a general, globally

supersymmetric non-Abelian gauge theory that can serve as the starting point for

the construction of supersymmetric models of particle physics. The inclusion of

supersymmetry breaking is discussed in Chapter 7.

The second part of the book applies these lessons and develops the so-called

Minimal Supersymmetric Standard Model, the MSSM, which is (almost) the direct

supersymmetrization of the Standard Model. The physical particles of the MSSM

are identified, and their various couplings, which are necessary for exploration of the

broad phenomenological implications of the theory, are calculated. An assortment

of implications of the MSSM are examined in Chapter 9, including the SUSY

flavor and CP problems, renormalization group running, cosmological dark matter,

and more. We discuss local supersymmetry (which, we show, includes general

relativity) in Chapter 10, and in the following chapter present an overview of some

of the specific mechanisms by which Standard Model superpartners may acquire

supersymmetry breaking masses and couplings.

The final third of the book is oriented towards collider physics. We detail the

calculations of scattering cross sections and decay rates starting from the couplings

of supersymmetric particles that were found in Chapter 8. We focus on technical as-

pects of these calculations, including methods for dealing with Majorana particles,

which the reader may not be familiar with. We also outline methods for simulation

of collider scattering events in which supersymmetric matter has been produced.

We then discuss what has been learned, and what may be learned, about weak

scale supersymmetry from past, present, and future experiments at both hadron and

e+e− colliders. In a final chapter, we go beyond the MSSM, but only insofar as

to introduce R-parity violation, which changes the phenomenology considerably.

In three appendices, we present formulae for evaluating tree-level scattering cross

sections at electron–positron as well as hadron colliders, decay rates of supersym-

metric particles, and decay rates of the several Higgs bosons present in all SUSY

models. Various exercises are interspersed throughout the text. Some of these are

pedagogical in nature, asking the reader to fill in or complete a calculation, while

others develop the subject beyond the discussion in the text.

We have not attempted to make a comprehensive list of references to the vast

literature on supersymmetry. Where we develop a topic from scratch, we reference

only some of the classic papers on the subject. Sometimes, this means that we may

not reference earlier pioneering work in favor of more complete studies that may

prove more useful to a reader attempting to learn the subject. However, where we
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content ourselves with stating a particular result rather than deriving it completely –

this is more frequently the case in the latter part of the text where we discuss

supersymmetry phenomenology – we provide a reference where the reader may

find further details. Thus, except for referencing some classic papers, we generally

provide references only to papers where necessary details not presented in the text

may be found. We apologize to the reader for this shortcoming, and also to the

many researchers whose work has not been explicitly referenced.

Although we hope that the interested reader will work through the entire book,

those who are interested only in phenomenology and are willing to accept supersym-

metric couplings from the MSSM at face value, can skip Chapters 3–7 altogether.

Chapter 10 can also be omitted without essential loss of continuity. Alternatively,

the reader who is interested in model-building but does not want to work through the

machinery of SUSY may use the “master formula” in Chapter 6 as a starting point,

focussing on its use for writing down supersymmetric models. We urge all readers

to visit Chapter 3, where many of the extraordinary properties of supersymmetric

theories are explicitly illustrated.

We assume that the reader is familiar with tree-level calculations in quantum

field theory through QED, as presented, for instance, by the first seven chapters

of Introduction to Quantum Field Theory, by M. Peskin and D. V. Schroeder. We

also assume some familiarity with the Standard Model of particle physics, but just

in the unitarity gauge, as presented for instance in Collider Physics, by V. Barger

and R. J. N. Phillips. No prior knowledge of supersymmetry is assumed. Indeed

we have done our utmost to develop this subject from scratch, paying attention

both to concepts as well as to technical details that will enable the reader to carry

out research in the field. However, while we have emphasized pedagogy in our

development of topics to do with supersymmetry, it is not possible to be as detailed

on every topic that is necessary for describing the implications of supersymmetry

for particle physics. Aside from tree-level quantum field theory and the basics of

the Standard Model that we have already mentioned, these might include the ideas

of the parton model, collider kinematics, Grand Unification, renormalization group

methods, Big Bang cosmology etc. that have become part of the repertoire of many

working particle physicists. Although we develop these ideas enough for the reader

to be able to follow along, the reader who is interested in their detailed development

is urged to consult the references in the text, and also the excellent treatment in the

many text books listed in the Bibliography.

In writing this book, we are indebted to an enormous number of people, in-

cluding teachers, students and colleagues from whom we have learned much.

One of us (XT) benefited vastly from S. Weinberg’s lectures on supersymme-

try at the University of Texas at Austin in Spring 1982. Much of what we know

is the result of collaborations and discussions over the years with many people,
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C. Burgess, D. Castaño, C. H. Chen, M. Chen, D. Denegri, M. Dı́az, D. Dicus,

C. Dionisi, M. Drees, D. Dzialo-Karatas-Giudice, J. Ellis, J. Feng, J. Ferrandis,

J. Freeman, R. Godbole, J. Gunion, H. Haber, K. Hagiwara, B. Harris, S. Hesselbach,

K. Hikasa, C. Kao, T. Krupovnickas, T. Kamon, C. S. Kim, W. Majerrotto, S. Martin,
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1

The Standard Model

The 1970s witnessed the emergence of what has become the Standard Model

(SM) of particle physics. The SM describes the interactions of quarks and lep-

tons that are the constituents of all matter that we know about. The strong

interactions are described by quantum chromodynamics (QCD) while the elec-

tromagnetic and the weak interactions have been synthesized into a single elec-

troweak framework. This theory has proven to be extremely successful in de-

scribing a tremendous variety of experimental data ranging over many decades

of energy. The discovery of neutral currents in the 1970s followed by the direct

observation of the W and Z bosons at the CERN Sp p̄S collider in the early

1980s spectacularly confirmed the ideas underlying the electroweak framework.

Since then, precision measurements of the properties of the W and Z bosons

at both e+e− and hadron colliders have allowed a test of electroweak theory at

the 10−3 level. QCD has been tested in the perturbative regime in hard collision

processes that result in the breakup of the colliding hadrons. In addition, lattice

gauge calculations allow physicists to test non-perturbative QCD via predictions

for the observed properties of hadrons for which there is a wealth of experimental

information.

1.1 Gauge invariance

One of the most important lessons that we have learned from the SM is that

dynamics arises from a symmetry principle. If we require the Lagrangian density

to be invariant under local gauge transformations, we are forced to introduce a

set of gauge potentials with couplings to elementary scalar and fermion matter

fields that, apart from an overall scale, are completely determined by symmetry

principles. The most familiar example of such a field theory is the electrodynamics

of Dirac fermions or complex scalars, where the invariance of the Lagrangian under

1



2 The Standard Model

spacetime-dependent phase transformations,

ψ(x) → eiqψα(x)ψ(x),

or

φ(x) → eiqφα(x)φ(x),

requires us to introduce the vector potential Aμ, with a coupling given by,

L = iψ̄γμ Dμψ − mψ̄ψ − 1

4
Fμν Fμν, (1.1a)

or

L = (Dμφ)∗(Dμφ) − m2φ∗φ − 1

4
Fμν Fμν. (1.1b)

Here, Dμ is the gauge covariant derivative given by Dμ = ∂μ + iqψ/φ Aμ(x), Fμν =
∂μ Aν − ∂ν Aμ and qψ/φ is any real number identified with the charge of the field. It

is easy to check that if, in addition to the local phase transformation of the fields ψ

and φ, the vector potential transforms inhomogeneously as

Aμ(x) → A′
μ(x) = Aμ(x) − ∂μα(x),

the Lagrangians of Eq. (1.1a) and Eq. (1.1b) will be invariant under the set of local

gauge transformations. The phase transformations of the fermion or scalar “matter”

fields form the group U (1). We will thus regard electrodynamics as a gauge theory

based on the group U (1), which is an Abelian group – i.e. its elements commute

with one another. We stress two features of these Lagrangians.

� The coupling of the vector potential (identified with the photon field when the

theory is quantized) to matter fields is given by the “minimal coupling principle”

where the ordinary derivative is replaced by the gauge-covariant derivative. For

fermionic matter, this gives the familiar fermion–antifermion–photon “vector”

coupling (proportional to the charge qψ ), while in the case of scalar matter, we

have both a three-point derivative coupling to the photon proportional to the

charge qφ and a four-point non-derivative scalar–scalar–photon–photon coupling

proportional to q2
φ . The point to be made is that the form of the interactions of

the photons with matter is completely fixed by the requirement of local gauge
invariance.

� The photon field is massless because a mass term 1
2
m2

γ Aμ Aμ would not be locally

gauge invariant. The matter fields may, however, be massive.

Yang and Mills, and independently Shaw (and later Utiyama), generalized this

idea to more complicated transformations of matter fields that form a non-Abelian

group rather than the group U (1). The construction of these Yang–Mills gauge
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theories is given in many texts and will not be repeated here. Instead of a single

photon field, we now have several gauge fields (equal to the number of generators)

in the adjoint representation of the gauge group. Matter and gauge fields (VAμ) are

again “minimally coupled” via the prescription

∂μ → Dμ = ∂μ + igtAVAμ,

where tA is the matrix representation of the group generator in the representation to

which the matter field belongs (for example, if the gauge group is SU (2) with matter

forming SU (2) doublets, tA = 1
2
σA, where σA (A = 1, 2, 3) are the Pauli matrices),

and g is a universal (gauge) coupling constant. Again, as before, there can be no

mass term for the gauge potentials, and the interaction of matter and gauge fields

is fixed by the local gauge symmetry. There are some important distinctions from

the Abelian case.

� The gauge field strength FAμν = ∂μVAν − ∂νVAμ − g f ABC VBμVCν , where f ABC

are the structure constants of the gauge group, contains a new term in addition

to the curl that is present in electromagnetism. This results in self-interactions of

the non-Abelian gauge fields, and has important physical consequences such as

the well-known asymptotic freedom of QCD.
� The “charge” factor in the minimal coupling principle for the non-Abelian case

is replaced by g × tA. As a result, for simple groups, the coupling of matter to

gauge bosons is determined to be the universal coupling g times a determined

group theory factor. Thus the gauge boson couplings to matter are considerably

more restrictive than in the U (1) case where the charge q was any real number.

In particular, the ratio of charges in the U (1) case need not be a rational number.

1.2 Spontaneous symmetry breaking

We are familiar with the fact that the symmetries of the Hamiltonian (or the symme-

tries of the equations of motion) do not coincide with the symmetries of the solutions

of these equations. For instance, Newton’s laws governing the gravitational force

between the Earth and the Sun are rotationally symmetric, yet the motion of the

Earth around the Sun (i.e. a solution to the rotationally invariant equations of mo-

tion) is confined to a plane. Moreover, the orbit of the Earth, in general, is elliptical,

and not even invariant under rotations about a single axis. This is also true in quan-

tum theory. The p, d, f . . . orbitals of the hydrogen atom are rotationally variant

solutions of the rotationally invariant Schrödinger equation.

What then does it mean for a Hamiltonian to be invariant under some symmetry

transformation? These symmetries do not reflect themselves as symmetries of the

solutions to the corresponding equations of motion. What is true, however, is that

given a solution to the equations of motion, then we can find other solutions with
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the same energy by acting on the known solution by the symmetry transformation:

for the example of the Earth’s orbit that we considered, orbits where this ellipse

is differently oriented (but with the Sun still at the focus) correspond to allowed

motions and have the same total energy as the original orbit. If, however, the solution

that we found itself happens to be invariant under the symmetry transformation,

new solutions cannot be generated in this way.

In quantum field theory, we are especially interested in the symmetries of the

ground state of the system, since it is the excitations of the ground state that are

identified as particles. If, however, a ground state is not invariant under a symmetry

transformation, we know there must be another solution with the same energy; i.e.

the ground state must be degenerate. If the symmetry transformation that leaves

the equations of motion invariant is labeled by a continuous parameter, in general

there will be a continuous infinity of ground states. Which one should we choose to

build the spectrum of excitations upon? The answer is that it does not matter. It

is, however, important to note that once we make this choice, and express the

Hamiltonian (or the Lagrangian) in terms of fields whose quanta correspond to

excitations about any one particular ground state, the original symmetry of the

action is no longer manifest. The underlying symmetry is hidden, and is (perhaps

misleadingly) generally referred to as being spontaneously broken.

Although the symmetry is not really broken, it will not be obvious to an ob-

server doing experiments with particles that are excitations of one of the many

ground states of the theory. This is not to say that the underlying symmetry has no

experimental implications. For instance, in a renormalizable theory, all coupling

constant relationships for dimension four operators implied by the symmetry are

preserved even when this symmetry may be spontaneously broken. It is this feature

that gives us the universality of gauge interactions even though the gauge symmetry

is spontaneously broken. Relationships between lower dimensional operators can,

however, be modified by spontaneous symmetry breaking. A familiar example of

this is the fact that gauge bosons may acquire mass via the Higgs mechanism even

though, as we have seen, the explicit inclusion of such a mass term is forbidden by

gauge invariance. Indeed our interest in gauge theories with spontaneous symmetry

breaking stems mainly from this single observation, which allows the construction

of gauge theories where (some of) the gauge bosons acquire mass, resulting in

short-range forces as required by phenomenology.

We assume that the reader is sufficiently familiar with the physics of spontaneous

symmetry breaking which is discussed in many excellent text books, so that we will

not describe the Goldstone and Higgs phenomena here. Instead, we confine our

discussion to some very general features of symmetry and spontaneous symmetry

breaking. Our purpose is mainly to illustrate that these familiar considerations also

apply to supersymmetry.
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We begin by considering the action of a symmetry transformation (which, by

definition, leaves the equations of motion invariant) on a state. This can be written

as,

|ψ〉 → |ψ ′〉 = eiαQ|ψ〉, (1.2)

where Q is the generator of the transformation and α is a real parameter. The

symmetry in question may be a spacetime symmetry in which case Q would be

one of the generators of the Poincaré group, or it may be an internal symmetry. In

general, we get a new state. As we have mentioned, the action of this transformation

on the ground state is especially important: the symmetry is spontaneously broken,

unless

eiαQ|0〉 = |0〉, (1.3a)

or equivalently,

Q|0〉 = 0. (1.3b)

The symmetry transformation changes the dynamical variables (which are operators

O acting on the states) as,

O′ = eiαQOe−iαQ ≈ O + iα[Q,O], (1.4)

where the last equality holds for an infinitesimal transformation. We thus see that

in order for a symmetry not to be spontaneously broken, we must have

〈0|δO|0〉 ≡ iα〈0|[Q,O]|0〉 = 0, (1.5)

where δO is the change in O under the (infinitesimal) symmetry transformation.

Of course, δO is itself a dynamical variable.

In quantum field theory,1 the field operators are the dynamical variables O. In

this case, as we have just seen, the vacuum expectation value (VEV) of some (pos-

sibly composite) field operator acts as the order parameter for symmetry breaking.

In order that Poincaré invariance not be spontaneously broken, only spin zero field

operators may acquire a VEV. If this is to result in the spontaneous breaking of a

symmetry generated by Q, then the field operator in question must transform non-

trivially under this symmetry. In the SM one is led to introduce a weak isodoublet

of spin zero fields that acquires a VEV and results in the spontaneous breaking of

1 In this case, the operator Q is obtained as the space integral of the time component of a Noether current. We
will not enter into discussions as to whether the integral is defined or whether we necessarily have to discuss
these issues in terms of densities. We will merely state that as long as we refer only to commutator brackets of
Q with some dynamical variable, we appear to be safe.
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electroweak gauge symmetry. We will see in Chapter 7 that these general consider-

ations apply to supersymmetry, so that at least in this sense supersymmetry is not

different from other familiar symmetries.

1.3 Brief review of the Standard Model

The SM is a non-Abelian Yang–Mills type gauge theory based on the group

SU (3)C × SU (2)L × U (1)Y, with SU (2)L × U (1)Y spontaneously broken to

U (1)em. Color SU (3)C is assumed to be unbroken.

1.3.1 QCD

The SU (3)C gauge bosons are the gluons and the resulting gauge theory is QCD.

Quarks are assigned to the fundamental 3 representation. Thus antiquarks are as-

signed to the conjugate 3∗ representation. All other particles are SU (3)C singlets,

and do not directly couple to the gluons. The QCD Lagrangian is given by

LQCD = −1

4
G AμνGμν

A +
∑

i=flavors

q̄i (i 	D − mi )qi (1.6)

where Gμν A = ∂μG Aν − ∂νG Aμ − g f ABC G BμGCν , Dμ = ∂μ + igs
λA
2

G Aμ and qi

contains a color triplet of quarks of flavor i . Quantization of the theory is possible

if appropriate gauge fixing terms are added to the QCD Lagrangian.

The QCD couplings of matter fermions with the gluons can now be extracted by

expanding the QCD Lagrangian. The self-interactions of the gluons are completely

fixed by gauge invariance. The interaction Lagrangian reads,

LQCD 
 −gs
∑

i q̄iγ
μ λA

2
G Aμqi + 1

2
gs f ABC (∂μG Aν − ∂νG Aμ)Gμ

B Gν
C

− 1
4
g2

s f ABC f AB ′C ′ G BμGCνGμ

B ′ Gν
C ′ . (1.7)

A summation over the repeated color indices A, B. . . is implied, and the sum in the

first term is again over all quark flavors.

1.3.2 The electroweak model

In order to allow a chiral structure for the weak interactions,2 the left- and right-

handed components of quark and lepton fields are assigned to different representa-

tions of the electroweak gauge group SU (2)L × U (1)Y. The SU (3)C × SU (2)L ×
U (1)Y assignment for the matter fields of the first generation of quarks and leptons

2 The QCD and QED couplings of fermions are vectorial because their left- and right-chiral components are
assumed to have the same charge.
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Table 1.1 The matter and Higgs boson field
content of the Standard Model along with the

gauge quantum numbers.

Field SU (3)C SU (2)L U (1)Y

L =
(

νL

eL

)

1 2 −1

eR 1 1 −2

Q =
(

uL

dL

)

3 2 1
3

uR 3 1 4
3

dR 3 1 − 2
3

φ =
(

φ+
φ0

)

1 2 1

is shown in Table 1.1. The other generations are copies of this in that they have the

same pattern of quantum numbers.

We should mention that we could equally well have written the SM field content

solely in terms of left-handed fermion fields. In that case, instead of the right-handed

eR, uR and dR, we can work with their charge conjugates, (eR)c, (uR)c, and (dR)c,

which are left-handed fields that have opposite hypercharge assignments from those

shown in Table 1.1. Needless to say, these charge-conjugated quark fields would

transform according to the 3∗ representation of SU (3)C. This way of writing the

field content of the SM will be useful when we consider the supersymmetrization

of the SM.

The electroweak Lagrangian is given by

LEW = Lgauge + Lmatter + LHiggs + LYukawa, (1.8)

where

Lgauge = −1

4
WAμνW μν

A − 1

4
Bμν Bμν, (1.9)

Lmatter =
∑

generations

[
iL̄ 	DL + iQ̄ 	DQ + iūR 	DuR + id̄R 	DdR + iēR 	DeR

]
, (1.10)

LHiggs = |Dμφ|2 + μ2φ†φ − λ(φ†φ)2, (1.11)
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and

LYukawa =
∑

generations

[

−λe L̄ · φeR − λd Q̄ · φdR − λuε
ab Q̄aφ

†
buR + h.c.

]

, (1.12)

where the Ds are appropriate covariant derivatives for each matter multiplet, and

εab is the completely antisymmetric SU (2) tensor with ε12 = 1.

The interaction Lagrangian for the electroweak theory is more complicated since

the SU (2)L × U (1)Y symmetry is assumed to be spontaneously broken to U (1)em.

The electroweak symmetry breaking sector of the SM is particularly simple, and

consists of a single complex SU (2)L doublet φ of spin zero fields with gauge

quantum numbers shown in Table 1.1. The field φ acquires a VEV signaling the

spontaneous breakdown of electroweak symmetry. This VEV is left invariant by

one combination of SU (2)L and U (1)Y generators which generates a different U (1)

group identified as U (1)em. The corresponding linear combination of gauge fields

remains massless and is identified as the photon,

Aμ = sin θWW3μ + cos θW Bμ (1.13)

with sin θW = g′/
√

g2 + g′2 and cos θW = g/
√

g2 + g′2, while all other gauge

fields acquire mass via the Higgs mechanism. The physical particles in the bosonic

sector of the SM are: the photon, a pair of charged massive spin 1 bosons

W ±

W ±
μ = (W1μ ∓ iW2μ)/

√
2, (1.14)

a massive spin 1 neutral boson Z0

Z0
μ = − cos θWW3μ + sin θW Bμ, (1.15)

and finally, one neutral scalar boson HSM, the Higgs boson, which is left over as

the relic of spontaneous symmetry breaking. In order to establish our notation,

and also for the convenience of the reader, we list the interactions of the physical

particles of the SM that we will use later when we discuss phenomenological

issues.

The interactions of quarks and leptons with gauge bosons can, as usual, be

worked out from the minimal coupling prescription discussed above, and simply

rewriting the SU (2)L × U (1)Y gauge fields in terms of the mass eigenstate photon,

W ±, and Z0 fields. For the electroweak gauge couplings of matter we find,

Lneutral = −e
∑

f

q f f̄ γ μ f Aμ + e
∑

f

f̄ γ μ(α f + β f γ5) f Zμ, (1.16a)
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Table 1.2 The constants α f and β f that
appear in Eq. (1.16a). The couplings are
independent of the fermion generation.

Here t ≡ tan θW and c ≡ cot θW.

f q f α f β f

� −1 1
4
(3t − c) 1

4
(t + c)

ν� 0 1
4
(t + c) − 1

4
(t + c)

u 2
3

− 5
12

t + 1
4
c − 1

4
(t + c)

d − 1
3

1
12

t − 1
4
c 1

4
(t + c)

and

Lcharged = − g√
2

(

ūγ μ 1 − γ5

2
VKMdW +

μ + ν̄γ μ 1 − γ5

2
�W +

μ + h.c.

)

. (1.16b)

Here g is the SU (2)L gauge coupling, and e ≡ g sin θW is the electromagnetic

coupling. The weak mixing angle θW is given in terms of g and the weak hypercharge

coupling g′ by g′ ≡ g tan θW. The constants α f and β f that appear in Eq. (1.16a)

are listed in Table 1.2. In Eq. (1.16b), VKM is the Kobayashi–Maskawa matrix that

arises because the weak interaction quark eigenstates and the corresponding mass

eigenstates do not coincide. It should also be understood that u and d in Eq. (1.16b)

contain all three generations of up- and down-type quarks, respectively, with matrix

multiplication implied over the generation indices.

Exercise Verify that the gauge interactions in Eq. (1.16a) are reproduced when we
replace the right-handed fermions with (Ec)L, (U c)L, and (Dc)L in our assignment
of quantum numbers for the fundamental fields. We use capital letters to denote
these fields only to match the notation that we will use later, but here (Ec)L is just
left-handed SU (2) singlet positron field, (eR)c, and likewise for (U c)L and (Dc)L.

The couplings of the Higgs boson to the gauge bosons are given by,3

LH V V = gMW HSM(W +
μ W μ− + 1

2
sec2 θW ZμZμ) (1.17a)

and

LH H V V = g2

4
(W +

μ W μ− + 1
2

sec2 θW ZμZμ)H 2
SM, (1.17b)

3 We write all interactions in the unitary gauge where there are no unphysical fields.
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while the self-interactions of the SM Higgs boson are given in terms of its mass

m HSM
=

√
−2μ2 by,

LH = −gm2
HSM

4MW

H 3
SM − g2m2

HSM

32M2
W

H 4
SM. (1.18)

The electroweak vector bosons also have self-interactions with the couplings given

by,

LW W V = −ig
[
W +

μνW μ− − W −
μνW μ+]

(Aν sin θW − Z ν cos θW)

− igW −
ν W +

μ (Aμν sin θW − Zμν cos θW), (1.19a)

and

LW W V V = −g2

4

{[
2W +

μ W μ− + (Aμ sin θW − Zμ cos θW)2
]2

− [
W +

μ W −
ν + W +

ν W −
μ + (Aμ sin θW − Zμ cos θW)

× (Aν sin θW − Zν cos θW)
]2

}

. (1.19b)

In Eq. (1.19a), Aμν = ∂μ Aν − ∂ν Aμ, and likewise for Zμν and Wμν .

Since the two chiralities of matter fermions belong to different representations of

SU (2)L × U (1)Y, it is not possible to include fermion mass terms without explicitly

breaking gauge invariance. As for electroweak gauge bosons, these masses are also

generated when electroweak symmetry is spontaneously broken. Fortunately, one

does not have to introduce additional fields for this purpose. The scalar doublet φ

in Table 1.1 (or its charge conjugate) has gauge invariant, renormalizable Yukawa

interactions of the form Q̄φdR or L̄φ�R (Q̄φcuR) to down-type (up-type) fermions,

which acquire mass when the field acquires a VEV. These Yukawa interactions result

in a scalar coupling of the Higgs boson HSM to SM fermions that is proportional to

the corresponding fermion mass, and is given by,

LYukawa = −
∑

i

λ fi√
2

f̄ i fi HSM, (1.20)

where λ fi = gm fi√
2MW

. The sum extends over all flavors of quarks and leptons. Notice

that the Yukawa couplings of all but the top quark in Eq. (1.20) are much smaller

than all the gauge couplings.
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What lies beyond the Standard Model?

The Standard Model is a consistent, renormalizable quantum field theory that ac-

counts for a wide variety of experimental data over an energy range that encom-

passes a fraction of an electron volt to about 100 GeV, a range of over twelve orders

of magnitude.1 Initially, the SM was tested at the tree level, but the remarkable

agreement between SM predictions and the precision measurements at the CERN

LEP collider have tested the SM to at least a part per mille and, more importantly,

have established that radiative corrections as given by the SM are essential for

agreement with these data. Quite aside from this, the SM also qualitatively explains

why baryon and lepton numbers appear to be approximately conserved: with the

particle content of the SM, it is not possible to write renormalizable interactions

that do not conserve baryon and lepton numbers, so that these interactions (if they

exist) must be suppressed by (powers of) some new physics scale.

The SM is nevertheless incomplete. Experimental arguments in support of this

are:

� E1 The solar and atmospheric neutrino data, interpreted as neutrino oscillations,

strongly suggest neutrinos have mass.
� E2 Observations, starting with Zwicky in 1933 and continuing to this day with

studies of the fluctuations in the spectrum of the relic microwave background from

the Big Bang, have established the existence of cold dark matter in the Universe

for which there is no candidate in the SM.2

� E3 Observations of type Ia supernovae at large red shifts as well as the cosmic

microwave background radiation both suggest that the bulk of the energy of

1 This is a rather conservative estimate. For instance, it may be argued from the dipole nature of planetary
magnetic fields that (at least) electrodynamics has been tested out to Solar System distance scales.

2 Gravitational microlensing data disfavor black holes (at least in our galactic halo) as dark matter, while dark
matter in the form of ordinary baryons condensed into brown dwarfs is excluded, both because it would lead
to conflicts with Big Bang nucleosynthesis as well as with the baryon density as determined from the acoustic
peaks in the cosmic microwave background spectrum.

11
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the Universe resides in a novel form dubbed “dark energy”. This could be the

cosmological constant first introduced by Einstein, or something more bizarre.
� E4 Gravity exists.

There are also theoretical or aesthetic considerations that suggest that the SM cannot

be the complete story.

� T1 We lack any understanding of particle masses and mixing patterns, which

results in the large number of underlying parameters in the SM.
� T2 The choice of gauge group and particle representations is completely ad hoc.
� T3 Although we can incorporate the spontaneous breakdown of electroweak

symmetry by introducing new scalar fields, we have to do so “by hand” via an

arbitrary scalar potential; i.e. there is no understanding of why the squared mass

parameter for the Higgs field is negative. Indeed, it remains to be seen whether

VEVs of elementary scalar fields are the origin of electroweak symmetry breaking.

While these arguments (especially E1–E3) all point to new physics, without

further assumptions, they do not point decisively to the scale for this new physics.

Fortunately, there is a somewhat different argument that not only suggests that

there should be new physics, but also that the scale of the new physics is close to

the electroweak scale. To understand this, we must first examine the divergence

structure of the radiative corrections in the SM.

2.1 Scalar fields and quadratic divergences

Let us begin by considering radiative corrections to quantum electrodynamics de-

scribed by the Lagrangian (1.1a). The theory describes the interactions of a fermion

with a photon. As discussed in the exercise below, these interactions conserve chi-
rality: a left-handed fermion, when it emits (or absorbs) a photon, remains left

handed, while a right-handed fermion remains right handed. The kinetic energy

term also conserves chirality. Indeed the only term in (1.1a) that does not conserve

chirality is the mass term. This observation has an immediate consequence. Because

the emission or absorption of a photon cannot change the chirality of the fermion,

any radiative correction to the fermion mass (which by the exercise below is an

operator that connects ψL with ψR) must vanish to all orders in perturbation theory

if the fermion mass is zero! In other words,

δm ∝ m.

It is well known that the loop integrals that enter these calculations are divergent.

If we regularize these using a Lorentz invariant cut-off �, by dimensional analysis
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the cut-off dependence has to be given by,

δm ∝ m ln
�

m
.

Naive dimensional analysis would have suggested that δm ∝ �. However, because

of chiral symmetry, the actual divergence is much milder. We say that chiral sym-

metry protects fermion masses from large radiative corrections. This terminol-

ogy may seem strange since the correction diverges when we take the cut-off to

infinity – what we mean by this will be explained below.

We could similarly ask how interactions modify the photon mass. If one naively

introduces the same cut-off to regularize the integrals for vacuum polarization, it is

well known that the corrections to the squared mass of the photon are quadratically

divergent. This would imply that electromagnetic gauge invariance is broken! The

cut-off is, however, not a gauge invariant regulator.3 If instead we use a gauge-

invariant regulator (such as dimensional regularization) the radiative correction to

the photon mass vanishes. We say that gauge invariance protects the photon from

acquiring a mass.4 Indeed in quantum electrodynamics of fermions, the leading

divergence in any quantity is logarithmic, as the reader may readily argue from

dimensional analysis. There are no quadratic or linear divergences.

The divergence structure of field theories with elementary scalars is, however,

quite different. To see this, we will examine the radiative corrections to the scalar

boson mass in the SM. We could equally well have performed the same analysis

for scalar electrodynamics defined by (1.1b) and arrived at the same conclusion.

Examples of one-loop corrections to m H are shown in Fig. 2.1. The first of these

graphs gives a momentum independent energy shift to the single scalar boson state.

Using standard quantum mechanics perturbation theory, this may be evaluated by

computing the diagonal element of the interaction Hamiltonian given by the second

term in (1.18). Since the answer is independent of the momentum of the state, it

corresponds to a mass correction. We find,

δm2
HSM

= 〈HSM|g2m2
HSM

32M2
W

H 4
SM|HSM〉 = 12

g2m2
HSM

32M2
W

∫
d4k

(2π )4

i

k2 − m2
HSM

,

= 12g2m2
HSM

32M2
W

1

16π2

(

�2 − m2
HSM

ln
�2

m2
HSM

+ O(
1

�2
)

)

, (2.1)

3 This is simple to see. Under gauge transformations, Aμ(x) → Aμ(x) − ∂μα(x), or in k-space, Aμ(k) →
Aμ(k) − ikμα(k), for all values of k. We see that even if we cut off the modes with k > � in one gauge,
these do not vanish in a different gauge – i.e. a cut-off on the momentum integrals is a gauge-dependent notion.

4 We are tacitly ignoring the possibility of dynamical gauge symmetry breaking first pointed out by J. Schwinger,
Phys. Rev. 125, 397 (1962).
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+

Figure 2.1 Examples of quadratically divergent Feynman graphs contributing to
the corrections to the Higgs boson mass in the Standard Model.

where 12 comes from 12 possible field contractions. We see that this correction

is quadratically divergent. Mass corrections are more conventionally computed

by evaluating the correction to the scalar propagator. We will do so in Chapter 3

for scalar fields in a simple supersymmetric model introduced therein, and see

that, once again, there are quadratically divergent contributions to the scalar boson

mass.

Within the SM, there are other quadratically divergent contributions to the scalar

mass from gauge boson loops, as well as from fermion loops. The computation

of the gauge boson loop contribution is very similar to the one that we have just

performed, and will be left as an exercise for the reader. We will not evaluate the

fermion loop contribution at this point since we perform a very similar calculation in

the next chapter. We only note that we expect the top loop contribution to dominate,

and further, that this correction is also quadratically divergent, but with opposite

sign for the �2 term to the Higgs loop contribution. This difference in signs between

contributions from boson and fermion loops is a general feature.

Exercise Define the chiral projections ψL/R ≡ PL/Rψ , where PL = 1−γ5

2
and PR =

1+γ5

2
. For any two Dirac spinors ψ and χ , verify that,

ψ̄γμχ = ψLγμχL + ψRγμχR,

ψ̄χ = ψLχR + ψRχL.

Convince yourself that these identities imply that the kinetic energy term and the
interaction term in (1.1a) preserve chirality, while the mass term does not. Would
chirality be conserved had the interaction been axial vector instead of vector?

2.2 Why is the TeV scale special?

Having established the difference between the divergence structure of quantum

field theories with and without elementary scalar fields, let us examine the sense
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in which this difference may be of relevance. We note at the outset that quadratic

divergences do not imply any logical problem. The SM is a renormalizable quantum

field theory, and we can use it to evaluate radiative corrections to any precision that

we may choose. Indeed, we have already observed that unless these corrections are

included, SM predictions are at variance with precision measurements from LEP

and other colliders. What then is the problem?

To understand this, we write the one-loop corrected physical Higgs boson mass

as,

m2
HSM

(phys) � m2
HSM

+ c

16π2
�2, (2.2)

where m2
HSM

is the Higgs mass squared parameter in the Lagrangian and the second

term denotes the quadratically divergent correction in (2.1); we have dropped the

ln � terms in writing this formula. The coefficient c depends on the various coupling

constants of the SM. In writing (2.2), we only integrate over the energy–momentum

range for which we expect the SM to provide a reasonable description. In other

words, we interpret the cut-off � as the scale at which the SM ceases to be valid.

This may be because new degrees of freedom that are not included in the SM begin to

become important. These new degrees of freedom may be unknown heavy particles

whose effects are negligible at low energy, for instance, new particles associated

with grand unification. It is also possible that the SM breaks down because of new

form factors (whose origin may be some unknown strongly coupled dynamics) that

develop at the scale �. The scale � might be as low as several TeV, but certainly

no higher than the reduced Planck scale MP � 2.4 × 1018 GeV, the scale at which

quantum gravity corrections are expected to become important.

How do we judge what values of � are reasonable? Perturbative unitarity ar-

guments imply that the physical Higgs boson mass m HSM
(phys) that appears on

the left-hand side of (2.2) has to be smaller than a few hundred GeV.5 If we now

require (2.2) to be satisfied without excessive fine tuning between the two terms on

its right-hand side, we would have to deduce that � ≤ O(TeV). Again, we stress

that this conclusion stems not from a logical inconsistency of the SM but from

the additional “no fine-tuning requirement” that we impose on our theory. In the

SM the fine tuning that is required can be truly incredible: if we assume the va-

lidity of the SM as a low energy effective theory below the GUT scale, and take

� = MGUT ∼ 1016 GeV, then the Lagrangian mass parameter m2
HSM

will have to be

fine-tuned to 1 part in 1026 to provide the needed cancellation that will maintain

a physical Higgs mass below its unitarity limit. In contrast, the logarithmic term

in (2.1) contributes a correction which is ∼ m2
HSM

even for � ∼ MP. This is what

5 D. Dicus and V. Mathur, Phys. Rev. D7, 3111 (1973); B. Lee, C. Quigg and H. Thacker, Phys. Rev. D16, 1519
(1977).
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we meant when we said above that the ln � corrections, which are also present for

fermions, are not large. Put somewhat differently, the large �2 corrections imply

that if we use the high energy theory (from which the SM originates as the effective

low energy theory) to make predictions at TeV energies, these predictions would

be extremely sensitive to the parameters of the high energy theory if � 
 1 TeV.

While this is not logically impossible, this is usually thought to be symptomatic

of a deeper problem. We refer to this as the fine-tuning problem of the SM. If we

take this seriously, we are led to the conclusion that there must be new degrees
of freedom that manifest themselves in high energy collisions at the TeV energy
scale. This is especially exciting because we expect this scale to be directly probed

by experiments at the Large Hadron Collider (LHC) which is expected to begin

operation at CERN in 2007.

2.3 What could the New Physics be?

Although the arguments that we have made point to the existence of new degrees of

freedom at the TeV scale, they do not by themselves provide clues as to what this

new physics might be. Before proceeding further, however, let us carefully examine

if it is possible to evade the conclusion about the existence of new physics at the

TeV energy scale.

1. An obvious out is to accept that nature is fine-tuned, and proceed. We would then

have to give up on deducing the parameters of the low energy theory from high

scale physics, in the manner that we were able to deduce the Fermi coupling

G F in terms of the parameters of electroweak gauge theory. Some authors have

recently suggested such a philosophy. They argue that while there have been

several proposals that allow us to solve the fine-tuning problem of the SM that

we have discussed, it is still necessary to fine-tune the cosmological constant,

and to much greater extent than the scalar mass. They argue that accepting the

greater fine tuning but not the lesser one seems artificial. We will not pursue this

line of reasoning any further here.

2. There are no elementary scalar fields in nature (and hence no associated fine-

tuning issues), but composite states of tightly bound fermions play the role

of the Higgs boson. This is the idea behind the technicolor model, which

posits new technifermions that interact and bind together via an asymptoti-

cally free QCD-like technicolor interaction, that becomes confining at the TeV

scale.6 Technicolor dynamics causes technifermions to condense, leading to a

breakdown of electroweak gauge invariance. This attractive picture runs into

problems when we attempt to use the same idea to give masses to fermions.

6 For reviews, see e.g. E. Fahri and L. Susskind, Phys. Rep. 74, 277 (1981) and K. Lane, hep-ph/0202255.



2.3 What could the New Physics be? 17

Construction of realistic models with massive fermions requires the introduction

of yet other extended technicolor interactions. The simplest models predict flavor-

changing neutral current processes at unacceptably large rates. More complicated

technicolor theories can be constructed to avoid these problems, but the mod-

els become cumbersome and are often in conflict with data involving precision

electroweak measurements. We remark that the technicolor approach predicts

several pseudo-Goldstone bosons with masses in the several hundred GeV to

TeV range as their signature.

3. The arguments leading to (2.2) are inherently perturbative, and would break

down if interactions of Higgs bosons with themselves or with the gauge or

fermion sector became strong at the scale �. One might then expect that

these strong interactions would result in new resonances, especially in the

Higgs boson and electroweak gauge boson scattering amplitudes, that would

reveal themselves in high energy collisions. Even if there is no resonance, just

an increase in the scattering amplitude may be experimentally observable in

some channels, for instance in W ±W ± scattering, where the background is

small.7

4. A very radical alternative that has received some attention in the last several

years is that gravitational effects become strong at an energy scale close to the

weak scale. The motivation is to explain the evident difference in the size of

gravitational and gauge interactions. Specifically, it is envisioned that there are

additional compact spatial dimensions with a size Mc � MP, and that (unlike

SM gauge interactions) gravitational interactions permeate all these dimensions.

Gravity appears weak at distances 
 M−1
c because most of the flux is “lost”

in these additional dimensions. These extra dimensions are directly probed in

particle collisions at energy scales >∼ Mc where effects of gravitation become

important. In such a scenario, the cut-off � in (2.2) would be ∼ Mc and the fine-

tuning problem disappears if Mc ∼ O(TeV). In this case, we would expect to see

exotic effects from Kaluza–Klein resonances of ordinary particles, production

of black holes of masses a few times Mc, and strong gravity at high energy

colliders.8

5. We have implicitly assumed that if a theory has quadratic divergences, these

will necessarily show up at the lowest order. It is logically possible that the

quadratic divergence only appears at the multi-loop level, but cancels at the

one-loop level. In this case, the second term on the right-hand side of (2.2) will

have additional powers of 16π2 in the denominator, and the scale � will be

correspondingly pushed up. Scenarios where quadratic divergences appear only

at the two-loop level have recently been constructed, and go under the rubric

7 See e.g. J. Bagger et al., Phys. Rev. D49, 1246 (1994) and Phys. Rev. D52, 3878 (1995).
8 For principles and overview, see C. Csaki, hep-ph/0404096; see also J. Hewett and M. Spiropulu, Ann. Rev.

Nucl. Part. Sci. 52, 397 (2002) for a review of the phenomenological implications of extra dimensional models.
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of Little Higgs models.9 They require new particles to ensure this cancellation.

It appears that the parameter space of the simplest of these models is already

severely constrained by experimental data. Also, it is clear that this approach

only postpones the problem by a couple of orders of magnitude in energy, so that

we will need yet more new physics at the 100 TeV scale.

We see that all but the first of these alternatives to attempt to evade the perturbative

argument that led us to conclude that there would be new degrees of freedom that

could be explored at the TeV scale invoke new strong interactions at this scale, and

so lead to potentially observable signatures in particle scattering at
√

s ∼ O(TeV).

Naively, we would also expect that these strong interactions might not decouple,

and potentially lead to observable effects in precision measurements at LEP.

The alternative is to assume that the arguments that lead to (2.2) are valid, and

that there are new degrees of freedom that are perturbatively coupled to the particles

of the SM. These new degrees of freedom must then serve to cancel the quadratic

divergence that appears because of the presence of elementary scalars. Moreover,

it is desirable to have this cancellation occur to all orders, not just at the one-loop

level. We have already had a glimmer of how such a cancellation may be arranged

when we remarked that the boson and fermion loops led to opposite signs for the

coefficient of the �2 term in (2.2). However, in general, one would not expect this

cancellation to be complete except by accident, and further, even if we somehow

got fermion loops to cancel boson loops at the one-loop level, we would not expect

the cancellation to continue at higher orders, unless the couplings of fermions
and bosons are somehow related. Such relations occur only due to symmetries.10

However, all symmetries that we know (Lorentz symmetry, baryon or lepton U (1)

symmetry, isospin, . . .) relate the properties of bosons (fermions) to those of other

bosons (fermions), but never those of bosons to those of fermions. A symmetry that

relates properties of bosons and fermions is a truly novel symmetry referred to as

a supersymmetry.

We will see that supersymmetry requires that for every boson, a fermion partner

should exist, and vice versa. In other words, every SM boson (fermion) has an as

yet unseen fermionic (bosonic) supersymmetric partner. Moreover, supersymmetry

relates the interactions of SM particles and their supersymmetric partners in the

same way that isospin relates the interactions of protons and neutrons. It is these

9 For a review, see M. Schmaltz, hep-ph/0210415.
10 Relativistic quantum electrodynamics is a well-known precedent for a symmetry changing the divergence

structure of the theory. This theory has charge conjugation invariance, and requires the presence of anti-
particles. In classical theory, it is well known that the self energy of the electron diverges inversely as its size (or
equivalently, linearly as the cut-off �). The existence of the positron is irrelevant for the classical calculation.
The quantum fluctuations include the effects of all particles and thus know about the positron whose existence
serves to cancel the linear divergence, leaving the electron self energy that depends logarithmically on the size
of the electron.
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supersymmetric particles that serve as the new perturbatively coupled degrees of

freedom that act to cancel the quadratic divergences of the SM.

We should make a clear distinction between the fine-tuning problem, and the issue

of the origin of the very small ratio between the weak and GUT or Planck scales.

Supersymmetry, by itself, does not explain why we have such a small dimensionless

ratio. However, once we introduce this ratio by choosing the parameters of the

Lagrangian accordingly, this ratio is not destabilized by radiative corrections if the

theory is supersymmetric, or if (as we will see in Chapter 3 and again in Chapter 7)

supersymmetry is broken appropriately. In the literature, this is also stated by saying

that supersymmetry solves the technical aspect of the gauge hierarchy problem that

is endemic to theories with elementary scalar fields.

Supersymmetry was discovered in the late 1960s and early 1970s under quite dif-

ferent motivations.11 The first four-dimensional globally supersymmetric quantum

field theory was written down in 1974 by Wess and Zumino, and supergravity was

discovered shortly thereafter (though attempts to construct locally supersymmetric

theories had been made much earlier). While Fayet had already pioneered many

phenomenological studies of supersymmetry, it was only after it was recognized

that supersymmetry provided a solution to the fine-tuning problem of the SM that

there was an explosion of interest in the particle physics community.12 The simplest

viable supersymmetric version of the SM – the Minimal Supersymmetric Standard

Model, or MSSM – was developed in the early 1980s, and has since served as the

starting point for many phenomenological analyses.

Although it is possible that the fine-tuning problem is solved by something no

one has yet thought of, from our vantage point today, the motivations for examining

supersymmetry are numerous, and remain as strong as ever.

� Aesthetics
Two pillars upon which the fundamental laws of physics are formulated are the

theories of relativity and quantum mechanics. These two are successfully merged

within the highly constrained (and hence predictive) framework of relativistic

quantum field theory. Haag, Lopuszanski, and Sohnius generalized earlier work by

O’Raifeartaigh and by Coleman and Mandula, and showed that the most general

symmetries of the S-matrix are a direct product of the super-Poincaré group,

which includes supersymmetry transformations linking bosons with fermions in

addition to translations, rotations and boosts, with the internal symmetry group.

It would be a pity if nature did not make use of this additional mathematical

structure at some level.

11 For an early history, see G. L. Kane and M. Shifman, The Supersymmetric World: The Beginning of the Theory,
World Scientific (2000).

12 E. Witten, Nucl. Phys. B188, 513 (1982); R. Kaul, Phys. Lett. B109, 19 (1982).
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� Ultra-violet behavior and fine tuning
We have already seen that, unlike the case of the Standard Model, the scalar

potential of supersymmetric models is stable under radiative corrections, pro-

vided that supersymmetric particle masses are comparable to the weak scale.

Supersymmetric grand unified models are thus technically natural.
� Connection to gravity

By elevating global supersymmetry transformations to local ones, one is forced

into introducing a spin 2 massless gauge field, the graviton, which mediates grav-

itational interactions (together with its superpartner, the gravitino) in much the

same way as local gauge invariance requires us to introduce gauge bosons. Just as

gauge invariance is sufficient to fix the dynamics, local (super)symmetry dictates

the dynamics of supergravity, which includes Einstein’s general relativity. Like

any four-dimensional theory of gravity, this supergravity theory is not renormal-

izable. Nonetheless, this connection to gravity is very tantalizing.
� Ultra-violet completeness

Except for supersymmetry, all the extensions of the SM that we considered above

to ameliorate the fine-tuning problem are effective theories and require even more

new physics at a scale that is only a couple of orders of magnitude above the TeV

scale.13 While this is not necessarily an argument against such scenarios, the fact

that supersymmetric theories can in principle be extrapolated all the way to the

GUT or Planck scales is especially attractive.
� Connection to superstrings

Supersymmetry is an essential ingredient of superstring theories, thought to be

candidates for a consistent, finite quantum theory of gravitation. In this frame-

work, the problem of non-renormalizability of gravitational theory is bypassed by

moving away from point-like particles to intrinsically finite theories of extended

objects, open or closed loops of a fundamental string. Superstring theories have

enjoyed an important success in the counting of microscopic states of a string

black hole.

In addition to these aesthetic considerations, there are several experimental ar-

guments that also highlight the promise of supersymmetric models.

� Unification of gauge couplings
The values of running gauge couplings measured at LEP do not unify if we evolve

these to high energies using the renormalization group equations of the Standard

Model. If instead, we extrapolate the gauge couplings from Q = MZ to Q =
MGUT using supersymmetric evolution equations, they unify remarkably well

provided superpartner masses are in the range 100 GeV–10 TeV. It is extremely

13 Models with warped extra dimensions may be a possible exception to this.
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suggestive that this scale agrees so well with the scale that we inferred from

fine-tuning arguments. Unless this is a perverse accident, this strongly points

toward supersymmetric Grand Unification. Moreover, the value of MGUT that is

obtained is somewhat higher than in non-supersymmetric GUTs; this reduces the

amplitude for proton decay by GUT boson exchange, bringing this contribution in

accord with lower limits on the proton lifetime. Potentially larger superpotential

contributions to the proton decay amplitude have to be controlled, however.
� Cold dark matter

All supersymmetric models with a conserved R-parity quantum number include

a stable massive particle which is usually electrically and color neutral, and so

makes an excellent candidate for the observed cold dark matter in the Universe.
� Radiative breakdown of electroweak symmetry

In the SM, electroweak symmetry breaking (EWSB) can be accommodated by

appropriate choice of the parameters of the scalar potential, without any expla-

nation for this choice. We will see in Chapter 11 that in many supersymmetric

models, scalars with the same gauge quantum numbers have the same mass param-

eters, renormalized at some high scale. Over a large part of the model parameter

space, renormalization effects drive the Higgs boson squared mass parameters

to negative values, while those for scalars with non-trivial SU (3)C × U (1)em are

left positive, resulting in the observed electroweak symmetry breaking pattern.

Radiative electroweak symmetry breaking, as this mechanism is known, occurs

naturally if mt ∼ 100–200 GeV. While this mechanism is very attractive, it cannot

be regarded as a complete explanation since there are parameter ranges for which

color and electromagnetic gauge invariance may be broken. We should add that

it also requires that the soft SUSY breaking parameters are ∼TeV.
� Decoupling in SUSY theories

Radiative corrections from SUSY particles in loops to electroweak observables

in LEP experiments rapidly decouple with SUSY particle masses, so that SUSY

models can readily replicate the apparent successes of the SM in explaining the

LEP data. This is not to say that all SUSY loops decouple. For instance, SUSY

loop corrections to the couplings of quarks and leptons to Higgs scalars (and

hence to the relation between fermion masses and Yukawa couplings) do not

necessarily decouple.
� Mass of the Higgs boson

The Higgs boson of the SM can have mass of any value between the lower limits

set by LEP and LEP2 experiments (m HSM
> 114.4 GeV), up to ∼ 800 GeV. The

much more constrained Higgs sector of the MSSM requires the lightest Higgs

scalar h to have mass mh
<∼ 135 GeV. Meanwhile, precision measurements of

electroweak parameters which are sensitive to the mass of the Higgs boson point

towards mh ∼ 120 GeV, with mh
<∼ 200 GeV at the 95% CL.
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The wide array of issues that are addressed by the inclusion of supersymmetry in

particle physics has led many physicists to suspect that supersymmetry is realized

in nature, perhaps at or just above the TeV energy scale. The goal of this book

is to show how weak scale supersymmetry can be incorporated into the basic

laws of physics, and detail how to extract the observable consequences of the

supersymmetry hypothesis. The important and exciting conclusion is that the idea

of weak scale supersymmetry can be tested at various collider and non-accelerator

experiments.



3

The Wess–Zumino model

The simplest four-dimensional quantum field theory with supersymmetry realized

linearly, i.e. where the transformed field is a linear function of the original fields,

was written down in 1974 by Julius Wess and Bruno Zumino.1 The Wess–Zumino

(WZ) model is interesting not only because it illustrates many of the characteristics

of more complicated supersymmetric models within a toy framework (this forms the

subject of this chapter), but also because Yukawa interactions of the supersymmetric

SM can be written as a straightforward extension of this model.

3.1 The Wess–Zumino Lagrangian

3.1.1 The field content

Let us consider a field theory with the Lagrangian given by

L = Lkin + Lmass. (3.1a)

1 J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974). This is not, however, the first paper on (relativistic)
spacetime supersymmetry. This distinction belongs to Y. Golfand and E. Likhtman, JETP Lett. 13, 323 (1971)
who introduced the supersymmetric extension of the Poincaré algebra. Motivated by the possibility that the
neutrino could be the Goldstone fermion (see Chapter 7) associated with the spontaneous breakdown of a
fermionic symmetry, D. Volkov and V. Akulov, JETP Lett. 16, 621 (1972) and Phys. Lett. B46, 109 (1973)
independently constructed a model with non-linearly realized supersymmetry. Local supersymmetry was first
considered by D. Volkov and V. Soroka, JETP, 18, 312 (1973). In this remarkable paper, they noticed the need for
dynamical spin 2 and spin 3

2 fields, noted the connection with gravity, and also what we now refer to as the super-
Higgs mechanism; see Chapter 10. Wess and Zumino wrote their seminal paper quite unaware of any of these
developments in what was formerly the Soviet Union. Two-dimensional world sheet supersymmetry (which
is conceptually distinct from the spacetime supersymmetry that is the subject of this book) was discovered in
1971 in string models by A. Neveu and J. Schwarz, Nucl. Phys. B31, 86, (1971), and by P. Ramond, Phys.
Rev. D3, 2415 (1971), and recognized as such by J. Gervais and B. Sakita, Nucl. Phys. B34, 632 (1971).
We refer the interested reader to SUSY 30, Proc. of the International Symposium Celebrating 30 Years of
Supersymmetry, K. Olive, S. Rudaz and M. Shifman, Editors, Nucl. Phys. B 101 (Proc. Suppl.) (2001), and
to The Supersymmetric World, G. Kane and M. Shifman, Editors (World Scientific, 2000) for a view of these
developments through the eyes of the pioneers of supersymmetry.
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Lkin = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ∂/ ψ + 1

2
(F2 + G2). (3.1b)

Lmass = −m[
1

2
ψ̄ψ − G A − F B]. (3.1c)

Here, A and B are real scalar fields with mass dimension [A] = [B] = 1, while

ψ is a 4-component Majorana spinor field with mass dimension [ψ] = 3/2. A

Majorana spinor is its own charge conjugate, so that

ψ = ψc = Cψ̄T , (3.2a)

where the charge conjugation matrix C satisfies

Cγ T
μ C−1 = −γμ (3.2b)

CT = C−1 = −C (3.2c)

and

[C, γ5] = 0. (3.2d)

Notice that (3.2a) is a constraint equation that says only two of the four components

of ψ are independent. For instance, projecting out the right chiral component of

(3.2a) yields

ψR ≡ 1 + γ5

2
ψ = Cγ 0 1 − γ5

2
ψ∗ = Cγ 0ψ∗

L (3.3)

which shows that ψR is completely determined by ψL.2

The fields F and G in (3.1b) and (3.1c) are also real scalar fields with mass

dimension [F] = [G] = 2. Since they have no kinetic energy term, these fields

do not propagate, and their Euler–Lagrange equations are purely algebraic. It is,

therefore, simple to write F and G in terms of the propagating fields, and eliminate

them from the Lagrangian altogether. For this reason, these fields are customarily

referred to as auxiliary fields. Explicitly, the Euler–Lagrange equations,

∂L
∂φi

− ∂μ

∂L
∂(∂μφi )

= 0, (3.4)

for the Lagrangian (3.1a), with φi = F and G, give

F = −m B, G = −m A. (3.5)

We thus see that F and G are not dynamically independent. The reason for intro-

ducing the auxiliary fields F and G, as we will soon see, is that it allows us to

2 Throughout this book we use the convention that γ5 is a real, symmetric matrix with γ 2
5 = 1.
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write supersymmetric variations as linear transformations on the fields, even in an

interacting theory. It is interesting to see that the number of bosonic and fermionic

degrees of freedom in the Lagrangian (3.1a) exactly balance, regardless of whether

the Euler–Lagrange equations are satisfied: without equations of motion, there are

four real components for the Majorana spinor field which are balanced by the four

real scalars, A, B, F , and G. We can, however, eliminate the auxiliary fields using

(3.5) to obtain the Lagrangian for the dynamically independent fields which then

takes the form,

L = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ − 1

2
m2(A2 + B2) − 1

2
mψ̄ψ. (3.6)

This is the Lagrangian for free fields A, B, and ψ . When these fields obey their

respective equations of motion, their quanta correspond to two spin zero particles

A and B, and a self-conjugate, spin 1
2

particle, all with the same mass. Once again,

we see that there is an exact match between the bosonic and fermionic degrees of

freedom.

3.1.2 SUSY transformations and invariance of the action

In quantum field theory, a symmetry transformation is a transformation which leaves

the equations of motion for the fields of the theory invariant. This is guaranteed if the

action S = ∫
d4xL is left invariant under the transformation. In particular, if the La-

grangian L is invariant, or if it changes by a total derivative L → L′ = L + ∂μ�μ,

the action remains invariant. This can be seen by applying the four-dimensional

version of Gauss’ theorem,
∫

V d4x∂μ�μ = ∫

∂V dσ�μnμ, to the transformed La-

grangian. The quantity �μ vanishes on the boundary ∂V as long as it is assumed

that the fields vanish at spatial infinity, and field variations are equal to zero at the

end points of the time integration.

Wess and Zumino noted that under the following set of infinitesimal field trans-

formations, where A → A + δA, etc., with

δA = iᾱγ5ψ, (3.7a)

δB = −ᾱψ, (3.7b)

δψ = −Fα + iGγ5α + ∂/ γ5 Aα + i∂/ Bα, (3.7c)

δF = iᾱ∂/ ψ, (3.7d)

δG = ᾱγ5∂/ ψ, (3.7e)

the Lagrangian (3.1a) changes by a total derivative. Here, α is a spacetime-

independent anticommuting Majorana spinor parameter with dimension [α] =
−1/2. The linear transformations (3.7a–3.7e), which clearly mix boson fields with

fermion fields, are known as supersymmetry transformations.
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To verify the invariance of the action under the above transformations, we first

note that bilinears of Majorana spinors have special symmetry properties. For ex-

ample, for Majorana spinors ψ and χ ,

ψ̄χ = ψT Cχ = ψaCabχb = −χb(−Cba)ψa = χT Cψ = χψ, (3.8a)

where the first minus sign in step three is due to the anticommutativity of spinor

fields and the second is due to the antisymmetry of C .3 In a similar fashion, using

the properties γ T
5 = γ5 and C−1γ T

μ C = −γμ, it is straightforward to show that

ψ̄γ5χ = χ̄γ5ψ, (3.8b)

ψ̄γμχ = −χ̄γμψ, (3.8c)

ψ̄γμγ5χ = χ̄γμγ5ψ, (3.8d)

ψ̄σμνχ = −χ̄σμνψ. (3.8e)

Exercise As discussed in the previous footnote, when χ = ψ , we have to worry
that χ and ψ̄ do not perfectly anticommute. Except for the case μ = 0, in
(3.8c), the unwanted delta function term disappears because T r (γ 0�) = 0, for
� = γ5, γk, γ5γμ and σμν . This trace does not, however, vanish for � = γ0. Show
that (3.8c) still holds if we understand the field product to be normal ordered.

Now we apply the supersymmetry transformations to each term ofLkin, and make

use of the product rule ∂μ( f · g) = ∂μ f · g + f · ∂μg and the relations (3.8a–3.8e):

1

2
δ[(∂μ A)2] = (∂μ A)∂μδA = i∂μ Aᾱγ5∂μψ,

= ∂μ(i∂μ Aᾱγ5ψ) − i�Aᾱγ5ψ, (3.9a)

1

2
δ[(∂μ B)2] = −∂μ Bᾱ∂μψ,

= ∂μ(−∂μ Bᾱψ) + �Bᾱψ, (3.9b)

i

2
δ[ψ̄∂/ ψ] = i

2
[δψ̄∂/ ψ + ψ̄∂/ δψ]

= ∂μ(− i

2
F ᾱγμψ) + iᾱ∂/ Fψ + ∂μ(−1

2
Gᾱγ5γμψ)

− ᾱ∂/ Gγ5ψ + ∂μ(
−i

2
ᾱγ5∂/ Aγμψ) + iᾱγ5�Aψ

+ ∂μ(
1

2
ᾱ∂/ Bγμψ) − ᾱ�Bψ, (3.9c)

1

2
δ(F2) = iF ᾱ∂/ ψ

3 If χ = ψ , then the fields (at equal times) do not anticommute to zero but to a multiple of γ0 times a delta
function. Since γ0 is traceless, the result in (3.8a) still holds.
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= ∂μ(iF ᾱγμψ) − iᾱ∂/ Fψ, (3.9d)

1

2
δ(G2) = Gᾱγ5∂/ ψ

= ∂μ(Gᾱγ5γμψ) + ᾱ∂/ Gγ5ψ, (3.9e)

where � = ∂μ∂μ = ∂2/∂t2 − ∂2/∂x2 − ∂2/∂y2 − ∂2/∂z2 = ∂/ ∂/ . By combining

the terms contributing to Lkin in Eq. (3.9a–3.9e), we see that

δLkin = ∂μ(−1

2
ᾱγμ∂/ Bψ + i

2
ᾱγ5γμ∂/ Aψ + i

2
F ᾱγμψ + 1

2
Gᾱγ5γμψ), (3.10a)

so that Lkin changes by a total derivative under a SUSY transformation. The reader

can similarly check that δLmass is a total derivative.

Exercise Show that

δLmass = ∂μ(m Aᾱγ5γμψ + im Bᾱγμψ) (3.10b)

under the supersymmetry transformations (3.7a–3.7e).

We now recall Noether’s theorem which states that for every continuous sym-

metry transformation in a field theory, there is a corresponding current which is

conserved, as long as the field equations are satisfied. For the case at hand, where

δL = ∂μ�μ, the current is given by

ᾱ jμ(x) =
∑

fields φi

∂L
∂(∂μφi )

δφi − �μ, (3.11)

with φi = A, B, and ψ . The variations δφi as well as the quantity �μ depend

linearly on the transformation parameter ᾱ. The contributions to jμ from the A, B,

and ψ fields are

∂L
∂(∂μ A)

δA = ∂μ Aiᾱγ5ψ, (3.12a)

∂L
∂(∂μ B)

δB = ∂μ B(−ᾱψ), and (3.12b)

∂L
∂(∂μψ)

δψ = ᾱ[
1

2
(iF + Gγ5)γ μ + 1

2
∂/ (−iAγ5 − B)γ μ]ψ. (3.12c)

Combining the above with (3.10a) and (3.10b), we can explicitly construct the

current (known in this case as the supercurrent). Notice that the supercurrent itself

carries a spinorial index since its time component has to integrate to the spinor

generator of supersymmetry transformations. We find

jμ = ∂/ (−iAγ5 − B)γ μψ + im(iAγ5 − B)γ μψ. (3.13a)
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For later use, notice that the supercurrent may also be written as,

jμ = ∂/ (−iAγ5 − B)γ μψ + (Gγ5 + iF)γ μψ. (3.13b)

Exercise Show that ∂μ jμ
a = 0 if the fields A and B satisfy the Klein–Gordon equa-

tion, and ψ satisfies the Dirac equation.

The conserved charges associated with the current jμ
a (x) are then given by

Qa =
∫

j0
a (x)d3x . (3.14)

In the next section, we will explicitly compute the super-charge Qa for the WZ

Model, and show that it indeed generates the SUSY transformations (3.7a–3.7e) as

long as the field equations hold.

Exercise Verify that if we substitute the solutions (3.5) to the Euler–Lagrange
equations for F and G into the SUSY transformation laws (3.7d–3.7e), the resulting
“on-shell” transformations are consistent with (3.7a) and (3.7b) as long as A, B,
and ψ satisfy their equations of motion.

3.1.3 The chiral multiplet

For the purposes of the development of superfield calculus, we remark that the

fields of the WZ model can be conveniently written in terms of complex fields,

S = 1√
2

(A + iB)

ψL = 1 − γ5

2
ψ (3.15)

F = 1√
2

(F + iG)

where S, ψL, and F transform into one another under the SUSY transformations

(3.7a–3.7e). It is straightforward to check that these transformations can be written

as,

δS = −i
√

2ᾱψL, (3.16a)

δψL = −
√

2FαL +
√

2∂/SαR, (3.16b)

δF = i
√

2ᾱ∂/ ψL . (3.16c)
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Since ψR is not independent of ψL, we only have to specify how ψL transforms.

Thus, S, ψL, and F together constitute an irreducible supermultiplet in much the

same way that the proton and neutron form a doublet of isospin. Further, analogous

to the isospin formalism that treats the nucleon doublet as a single entity, there is a

formalism known as the superfield formalism that combines all three components

of the supermultiplet into a superfield Ŝ. Since only one chiral component of the

Majorana spinor ψ enters the transformations, such superfields are referred to as

(left) chiral superfields. Because the lowest spin component of the multiplet has

spin zero, this superfield is known as a left-chiral scalar superfield. We will defer

detailed discussion of the superfield formalism until Chapter 5.

3.1.4 Algebra of the SUSY charges

We have already seen in Chapter 1 that a continuous symmetry transformation can be

written in terms of the corresponding generator. This is also true of supersymmetry

transformations, the difference being that the parameter of the transformation α is

a Majorana spinor whose components anticommute with themselves and also with

fermionic operators. Just as in (1.4), we may write the change of the field S under

an infinitesimal SUSY transformation as,

S → S ′ = eiᾱQSe−iᾱQ ≈ S + [iᾱQ,S] = S + δS ≡ (1 − iᾱQ)S . (3.17)

Here, Q is the (Majorana) spinor generator of the SUSY transformation except

in the last equality, where we have abused notation in that Q there denotes the

representation of the super-charge generator (explicitly worked out in Chapter 5),

in the same way that the translation generator Pμ is represented by i∂μ when we

write [Pμ,S] = −i∂μS. We thus write the change of the field S as δS = −iᾱQS.

We can now work out the algebra for the Q’s and their conjugates Q̄ by considering

the commutator of two successive SUSY transformations – the first by parameter

α1, and the second by parameter α2. For the case of the scalar field S, since δ1S =
−√

2iᾱ1ψL, then

(δ2δ1 − δ1δ2)S = −2i

{

−F ᾱ1

1 − γ5

2
α2 + ᾱ1γ

μ 1 + γ5

2
α2∂μS

}

+2i

{

−F ᾱ2

1 − γ5

2
α1 + ᾱ2γ

μ 1 + γ5

2
α1∂μS

}

= 2iᾱ2γ
μα1∂μS

= −2ᾱ2γ
μα1[Pμ,S]. (3.18)
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We can work out the same commutator in terms of the SUSY generator Q using

δS = [iᾱQ,S] to obtain,

δ2δ1S = [iᾱ2 Q, δ1S] = [
iᾱ2 Q, [iQ̄α1,S]

]

= − [
iQ̄α1, [S, iᾱ2 Q]

] − [
S, [iᾱ2 Q, iQ̄α1]

]
, (3.19)

where in the last step we have used the Jacobi identity,

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0,

that holds for any three bosonic operators, A, B, and C , as the reader may easily

verify. Applying (3.19) twice, we readily obtain

(δ2δ1 − δ1δ2)S = −ᾱ2aα1b[{Qa, Q̄b},S]. (3.20)

Finally, by equating the right-hand sides of (3.18) and (3.20) we can write the

algebra obeyed by the SUSY generators as,

{
Qa, Q̄b

} = 2(γ μ)ab Pμ (3.21)

where Pμ is the Poincaré group generator of spacetime translations.

A similar calculation can be performed for the commutator of SUSY transfor-

mations on the field ψL. It is straightforward to show

(δ2δ1 − δ1δ2)ψL = −2i[(ᾱ2∂/ ψL)α1L − (ᾱ1∂/ ψL)α2L ]

− 2i[(ᾱ2∂μψL)γ μα1R − (ᾱ1∂μψL)γ μα2R]. (3.22)

To proceed further, we need to apply a Fierz re-arrangement to the spinors, and

combine the two α’s into a bilinear.

Exercise The set of 16 matrices �i = {
1, γ5, γμ, iγμγ5, σμν

}
(withσμν = i

2
[γμ, γν]

for μ > ν), with �i defined the same way except with all the indices upstairs, have
the properties Tr�i = 0 (for �i �= 1) and Tr�i� j = 4δi

j . These matrices can be
used as a basis of expansion for any other 4 × 4 matrix. In particular, for the
combination of spinors

ψ̄(1)ψ(2)ψb(3) ≡ ψ̄a(1)ψa(2)ψb(3) = ψb(3)ψ̄a(1)ψa(2),

the quantity can be written as ψb(3)ψ̄a(1) = ∑

i ci�
i
ba. Multiplying both sides of

this expansion by � jab and summing over a and b, show that c j = − 1
4
ψ̄(1)� jψ(3),

so that

ψ̄(1)ψ(2)ψb(3) = −1

4

∑

j

ψ̄(1)� jψ(3)(� jψ(2))b. (3.23)
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Applying the Fierz re-arrangement to (3.22) yields

(δ2δ1 − δ1δ2)ψL = 2i

4

∑

i

(ᾱ2�
iα1 − ᾱ1�

iα2)PL�iγ
μ∂μψL

+ 2i

4

∑

i

(ᾱ2�
iα1 − ᾱ1�

iα2)PLγ μ�i∂μψL, (3.24)

where the chiral projection operators PL allow only the vector and axial-vector

forms of �i to contribute. Using relations (3.8c) and (3.8d) on the �A and �V terms,

we find

(δ2δ1 − δ1δ2)ψL = iᾱ2γμα1[γ μγ ν + γ νγ μ]∂νψL

= 2iᾱ2γ
μα1∂μψL. (3.25)

Comparison of this expression with the corresponding expression involving the Q
and Q̄ operators again verifies the relation (3.21).

Exercise Show that the commutator of two SUSY transformations applied to the
auxiliary field F again leads to the anticommutator (3.21).

We thus see that (3.21) is valid acting on each component of an arbitrary field, so

that it may be regarded as an operator relation.

The appearance of the translation generator in (3.21) shows that supersymmetry

is a spacetime symmetry. Conservation of supersymmetry implies

[Qa, P0] = 0, (3.26a)

or, from Lorentz covariance,

[Qa, Pμ] = 0. (3.26b)

The commutators of Q with the Lorentz group generators Jμν are fixed because we

have already declared Q to be a spin 1
2

Majorana spinor.

The supersymmetry algebra described above is not a Lie algebra since it includes

anticommutators. Such algebras are referred to as graded Lie algebras. Haag, Lo-

puszanski, and Sohnius have shown that (except for the possibility of neutral ele-

ments and of more than one spinorial charge Q) the algebra that we have obtained

above is the most general graded Lie algebra consistent with rather reasonable

physical assumptions. Models with more than one SUSY charge in the low energy

theory do not lead to chiral fermions and so are excluded for phenomenological

reasons. We will henceforth assume that there is just a single super-charge.
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3.2 Quantization of the WZ model

The main purpose of this section is to review the implementation of the WZ model

as a quantum field theory. This provides us with an opportunity to set up our con-

ventions for the field expansions as well as for the (anti)commutators of the creation

and annihilation operators. In the process we will also see how the quantization of

the Majorana field differs from the more familiar quantization of the Dirac field.

We always use the four-component spinor notation that many particle physicists

are most familiar with.

We adopt the canonical quantization procedure, wherein the fields are regarded

as quantum operators acting upon a Fock space of particle states. For the scalar

fields A and B, the conjugate field momenta are 
A = ∂L/∂( ∂ A
∂t ) = ∂ A/∂t ≡ Ȧ

and 
B = Ḃ. The equal time commutators for the A and B fields are stipulated

to be

[A(x), Ȧ(y)] = iδ3(x − y), [A(x), A(y)] = [ Ȧ(x), Ȧ(y)] = 0, (3.27a)

[B(x), Ḃ(y)] = iδ3(x − y), [B(x), B(y)] = [Ḃ(x), Ḃ(y)] = 0. (3.27b)

The Hermitian field operators A and B can be Fourier expanded such that

A(x) =
∫

d3k

(2π )3

1

2Ek

(

ake−ikx + a†
keikx

)

, (3.28a)

B(x) =
∫

d3k

(2π )3

1

2Ek

(

bke−ikx + b†
keikx

)

, (3.28b)

where the a (a†) and b (b†) operators are annihilation (creation) operators satisfying

[ak, a†
l ] = (2π )32Ekδ

3(k − l), [ak, al] = [a†
k, a†

l ] = 0, (3.29a)

[bk, b†
l ] = (2π )32Ekδ

3(k − l), [bk, bl] = [b†
k, b†

l ] = 0. (3.29b)

The usual four-component Dirac spinor field ψD is quantized by stipulating the

equal-time anticommutators,

{ψDa(x), ψ
†
Db(y)} = δabδ

3(x − y),

{ψDa(x), ψDb(y)} = {ψ†
Da(x), ψ

†
Db(y)} = 0. (3.30)

The field is expanded using distinct creation and annihilation operators for particles

and antiparticles as,

ψD(x) =
∫

d3k

(2π )3

1

2Ek

∑

s

[ck,suk,se−ikx + d†
k,svk,seikx ]. (3.31)
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These creation and annihilation operators satisfy the well-known anticommutation
relations which we will not write out here. Note that for a Dirac spinor,

〈0|T ψDa(x)ψ̄Db(y)|0〉 = SFab(x − y), and (3.32a)

〈0|T ψDa(x)ψDb(y)|0〉 = 〈0|T ψ̄Da(x)ψ̄Db(y)|0〉 = 0. (3.32b)

A similar procedure for quantizing a four-component Majorana field ψ cannot
be followed because the Majorana spinor is constrained by the Majorana condition

ψ = ψc = Cψ̄T , i.e. only two of the four components of the Majorana spinor are

independent. To proceed further, we evaluate the field expansion for the conjugate

Dirac field ψc
D. Using the spinor relations uc ≡ CūT = v and vc ≡ C v̄T = u, we

find

ψc
D(x) =

∫
d3k

(2π )3

1

2Ek

∑

s

[c†k,svk,seikx + dk,suk,se−ikx ]. (3.33)

Next, impose the constraint ψ = ψc. The constraint is respected if we require c = d
and c† = d†, so that the Majorana spinor field expansion is just

ψ(x) =
∫

d3k

(2π )3

1

2Ek

∑

s

[ck,suk,se−ikx + c†k,svk,seikx ], (3.34)

with

{ck,r , c†l,s} = (2π )32Ekδrsδ
3(k − l), {ck,r , cl,s} = {c†k,r , c†l,s} = 0. (3.35)

The condition ψ = ψc is the analogue of the reality condition for the scalar fields

A and B; the condition ck = dk implies the identity of the particle and antiparticle

quanta of this field. For a Majorana spinor field, we still have

〈0|T ψa(x)ψ̄b(y)|0〉 = SFab(x − y), (3.36)

but now, because ψ = Cψ̄T and ψ̄ = ψT C , 〈0|T ψa(x)ψb(y)|0〉 and

〈0|T ψ̄a(x)ψ̄b(y)|0〉 do not vanish as in the case of a Dirac field. It is easy to show

that

〈0|T ψa(x)ψb(y)|0〉 = SFac(x − y)CT
cb and (3.37a)

〈0|T ψ̄a(x)ψ̄b(y)|0〉 = CT
ac SFcb(x − y). (3.37b)

We must not forget to include these contractions when computing matrix elements

of operators involving products of Majorana spinor fields.

The four-momentum operator Pμ for the WZ model can now be explicitly con-

structed from the energy–momentum tensor T μν . Recall

T μν =
∑

fields φi

∂L
∂(∂μφi )

∂νφi − gμνL, (3.38)
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where

Pμ =
∫

T 0μd3x . (3.39)

Substituting the field expansions (3.28a), (3.28b), and (3.34) into (3.39) and per-

forming a rather lengthy calculation leads to

Pμ =
∫

d3k

(2π )32Ek
kμ[a†

kak + 1

2
δ3(0) + b†

kbk + 1

2
δ3(0) (3.40)

+
∑

s

(c†k,sck,s − 1

2
δ3(0))]

=
∫

d3k

(2π )32Ek
kμ[a†

kak + b†
kbk +

∑

s

c†k,sck,s]. (3.40)

Thus, in the WZ model, we see that for the field four-momentum operator, the

zero-point energy terms exactly cancel due to equal and opposite bosonic and

fermionic contributions. This is the first of several examples of the cancellation

of infinities in supersymmetric models. Expressions for the rotation and boost

generators of the Poincaré group can be similarly constructed, but we will not do so

here.

It is, however, instructive to explicitly construct the super-charge from the su-

percurrent (3.13a) for the WZ model. We find,

Q =
∫

j0d3x (3.41)

=
∑

s

∫
d3k

(2π )32Ek

{

(akγ5 + ibk)c†k,svk,s − (a†
kγ5 + ib†

k)ck,suk,s

}

.

It should be apparent from this expression that the action of Q on a bosonic

(fermionic) state results in an admixture with a fermionic (bosonic) state.

Exercise Verify Eq. (3.41).

It is now possible to explicitly show that the generators Pμ and Q obtained above

commute with each other as indeed they should.

We can now use the expression (3.41) for the super-charge to work out the effect

on the dynamically independent field operators of the WZ model.
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Exercise Using the expression (3.41) for the super-charge in the WZ model, verify
that for an infinitesimal SUSY transformation,

δA = [iᾱQ, A] = iᾱγ5ψ,

δB = [iᾱQ, B] = −ᾱψ,

δψ = [iᾱQ, ψ] = ∂/ γ5 Aα + i∂/ Bα − im Aγ5α + m Bα.

The first two of these expressions are just the transformations of the A and B fields

in (3.7a) and (3.7b), whereas the last of these corresponds to the transformation

(3.7c) for δψ where the auxiliary fields are eliminated via their Euler–Lagrange

equations. The fact that F and G do not appear on the right-hand side could have

been anticipated since these do not appear in the form of the supercurrent.

3.3 Interactions in the WZ model

Up to this point we have been discussing free field theory which, despite being

supersymmetric, would not be of interest if interactions could not be incorporated.

Following Wess and Zumino, we add interaction terms given by

Lint = − g√
2

Aψ̄ψ + ig√
2

Bψ̄γ5ψ + g√
2

(A2 − B2)G + g
√

2AB F, (3.43)

to the Lagrangian (3.1a). It can be verified by brute force that Lint is separately

supersymmetric. The calculation is rather messy. We will demonstrate the super-

symmetry of this Lagrangian more elegantly in Chapter 5 using the superfield

formalism.

Once again we can eliminate the auxiliary fields F and G via their Euler–

Lagrange equations which get modified to,

F = −m B − g
√

2AB (3.44a)

G = −m A − g√
2

(A2 − B2), (3.44b)

and obtain the total Lagrangian in terms of the dynamical fields as,

L = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ − 1

2
m2(A2 + B2) − 1

2
mψ̄ψ

− g√
2

Aψ̄ψ + ig√
2

Bψ̄γ5ψ − gm
√

2AB2 − gm√
2

A(A2 − B2)

−g2 A2 B2 − 1

4
g2(A2 − B2)2. (3.45)

Several features of the Lagrangian in (3.45) are worth stressing.
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1. It describes the interaction of two real spin zero fields and a Majorana field with

spin half. As before, the number of bosonic and fermionic degrees of freedom

match.

2. There is a single mass parameter m common to all the fields.

3. Although the interaction structure of the model is very rich and includes parity-

conserving scalar and pseudoscalar interactions of the scalar A and pseudoscalar

B with the fermion, as well as all possible (renormalizable) parity conserving

trilinear and quartic scalar interactions, there is just one single coupling constant

g. We thus see that supersymmetry is like other familiar symmetries in that it re-

lates the various interactions as well as masses. The mass and coupling constant

relationships inherent in (3.45) are completely analogous to the familiar (approx-

imate) equality of neutron and proton masses or the relationships between their

interactions with the various pions implied by (approximate) isospin invariance.

Before closing we remark that Iliopoulos and Zumino observed that unlike

(3.13a), the expression (3.13b) for the supercurrent holds also in the presence of

interactions, provided of course that the auxiliary fields satisfy (3.44a) and (3.44b).4

We will use this observation in Chapter 7 when we discuss the interactions of the

massless Goldstone fermion that appears as a result of spontaneous supersymmetry

breaking.

3.4 Cancellation of quadratic divergences

We have already mentioned that the existence of supersymmetric partners serves to

remove the quadratic divergences that destabilize the scalar sector of a generic field

theory. We will illustrate this cancellation of quadratic divergences for the simple

case of the WZ model. Consider the corrections to the “one-point function”

〈�|A(x)|�〉 = sum of all connected diagrams

with one external point

of the field A to first order in the coupling constant g in (3.45). Here |�〉 is the

ground state of the interacting theory. The relevant interaction Hamiltonian from

(3.45) is

Hint = −Lint � g√
2

Aψ̄ψ + g√
2

m AB2 + g√
2

m A3. (3.46)

The loop corrections to the one-point function are represented by the tad-

pole diagrams shown in Fig. 3.1. Expanding the matrix element 〈�|T A(x)|�〉

4 J. Iliopoulos and B. Zumino, Nucl. Phys. B76, 310 (1974).
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A

B

A A

Aψ

Figure 3.1 Lowest order diagrams contributing to quadratic divergences in the
one-point function of A.

perturbatively to order g gives,5

−i
g√
2

∫

d4 y D A
F (x − y)

[
(−1)TrSF (y − y) + m DB

F (y − y) + 3m D A
F (y − y)

]
,

where the factor 3 in the last term arises from three possible contractions involving

the A3 interaction term. The factor in the square brackets is proportional to

Tr

∫
d4 p

p/ − mψ

− m
∫

d4 p

p2 − m2
B

− 3m
∫

d4 p

p2 − m2
A

=
∫

d4 p

p2 − m2
ψ

4mψ − m
∫

d4 p

p2 − m2
B

− 3m
∫

d4 p

p2 − m2
A

. (3.47)

Here, we have deliberately denoted the masses that enter via the propagators by

m A, m B , and mψ , although these are exactly the same as the mass parameter m
that enters via the trilinear scalar couplings in (3.45). We first see that because all

these masses are exactly equal in a supersymmetric theory, the three contributions in

(3.47) add to zero. Thus although each diagram is separately quadratically divergent,

the divergence from the fermion loop exactly cancels the sum of divergences from

the boson loops. Two remarks are in order.

1. In order for this cancellation to occur, it is crucial that the A3, AB2, and Aψ̄ψ

couplings be exactly as given in (3.45).

2. The quadratic divergence in the expression (3.47) is independent of the scalar

masses, m A and m B . It is, however, crucial that the fermion mass mψ is exactly

equal to the mass m that enters via the trilinear scalar interactions in order

for the cancellation of the quadratic divergence to be maintained. If the boson

masses differ from the fermion mass mψ , the expression in (3.47) is at most

5 For a review, see Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Perseus Press (1995),
Chapter 4, where DF (x − y) is defined.
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A A

A A A A

ABψ

Figure 3.2 Lowest order diagrams contributing to quadratic divergences in the
two-point function of A.

logarithmically divergent. As we have discussed, logarithmic divergences do not

severely destabilize scalar masses.

It is also instructive to inspect the lowest order quadratic divergences in the two-

point function of A defined as 〈�|T A(x)A(y)|�〉. The one-loop contributions to

the quadratic divergences are shown in Fig. 3.2. 6 The first diagram of Fig. 3.2 gives

a contribution

−g2

2

∫

d4zd4z′ D A
F (x − z)D A

F (z′ − y)

× [
(−1)TrSF (z − z′)SF (z′ − z) + TrCT CT SF (z − z′)SF (z − z′)

]
,

where the second term in the square parenthesis arises because contractions of the

Majorana ψ (and ψ̄) field with itself do not vanish as noted in (3.37a) and (3.37b).

The integration over the intermediate points z and z′ can be performed by writing

the Fourier expansions of each of the propagators. One then finds that the correction

from the fermion loop in Fig. 3.2 is given by,

g2

∫
d4 p

(2π)4

1

p2 − m2
A

e−ip(x−y)

∫
d4q

(2π )4
Tr

[
1

(q/ − mψ )

1

(−p/ + q/ − mψ )

]
1

p2 − m2
A

.

From the second diagram where the fields A(x) and A(y) can be contracted in two

ways we get,

−i
g2

2
2

∫

d4zD A
F (x − z)D A

F (z − y)DB
F (z − z),

while the third diagram for which we have twelve possible contractions yields,

−i
g2

4
12

∫

d4zD A
F (x − z)D A

F (z − y)D A
F (z − z).

Once again, we can do the integration over z using the momentum expansion of the

propagators. By combining the contributions from the diagrams in Fig. 3.2, we see

that including the lowest order correction to the two-point function of A changes

6 There are additional quadratic divergences in the two-point function from the tadpoles of Fig. 3.1 which, as we
have just seen, separately cancel.
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the momentum space propagator as

i

p2 − m2
A

→ i

p2 − m2
A

+ i

p2 − m2
A

(−i
(p))
i

p2 − m2
A

,

with the divergences all being contained in the function 
(p) given by

i
(p) = g2

∫
d4q

(2π )4

[

Tr

(

(q/ + mψ )

q2 − m2
ψ

.
(−p/ + q/ + mψ )

(q − p)2 − m2
ψ

)

− 1

q2 − m2
B

− 3
1

q2 − m2
A

]

. (3.48)

It is now straightforward to see that once again the quadratic divergences cancel

between fermionic and bosonic loops. Moreover, this cancellation occurs for all val-

ues of particle masses. This is because trilinear scalar interactions do not contribute

to the quadratic divergence that we have just computed. It is, however, crucial that

the fermion Yukawa coupling (g/
√

2) is related to the quartic scalar couplings on

the last line of (3.45).

Exercise Verify Eq. (3.48) and check that the quadratic divergence cancels.

Exercise Verify that the quadratic divergence cancels in the one-loop tadpole and
mass corrections to the B field.

3.5 Soft supersymmetry breaking

The fact that the quadratic divergences continue to cancel even if the scalar boson

masses are not exactly equal to fermion masses (as implied by SUSY) is absolutely

critical for the construction of phenomenologically viable models. We know from

observation that SUSY cannot be an exact symmetry of nature. Otherwise, there

would have to exist a spin zero or spin one particle with exactly the mass and charge
of an electron. Such a particle could not have evaded experimental detection. The

only way out of this conundrum is to admit that supersymmetric partners cannot

be degenerate with the usual particles. Thus, supersymmetry must be a broken

symmetry.

Would the breaking of supersymmetry destroy the delicate cancellation of

quadratic divergences in field theoretic models? Fortunately, it does not. We have

just seen (by the two examples above) that if SUSY is explicitly broken be-

cause scalar masses differ from their fermion counterparts, no new quadratic di-

vergences occur. We state here (without proof) that this is true for all processes,
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and to all orders in perturbation theory. It is, therefore, possible to introduce new

terms such as independent additional masses for the scalars which break SUSY

without the reappearance of quadratic divergences. Such terms are said to break

SUSY softly. Not all SUSY breaking terms are soft. We have already seen that

if mψ �= m, the expression in (3.47) is quadratically divergent. Thus additional

contributions to the fermion mass in the Wess–Zumino model results in a hard
breaking of supersymmetry. Similarly, any additional contribution to just the quar-

tic scalar interactions will result in the reappearance of a quadratic divergence in

the correction to m2
A since these contributions only affect the last two diagrams in

Fig. 3.2.

Are there other soft SUSY breaking terms possible for the WZ model? Recall the

combinatorial factor 3 in the last term in (3.47). This tells us that the contribution

of the A loop from the trilinear A3 interaction is exactly three times bigger than the

contribution from the B loop from the AB2 interaction (the coupling constants for

these interactions are exactly equal). Thus, there will be no net quadratic divergence

in the expression (3.47) even if we add a term of the form,

Lsoft = k(A3 − 3AB2) (3.49)

to our model, where k is a dimensional coupling constant. Obviously, this interaction

does not give a quadratically divergent correction to the one-loop, contribution to

m2
A. It is an example of a soft supersymmetry breaking interaction term. We remark

that this term can be written in terms of S = A+iB√
2

as

Lsoft =
√

2k(S3 + h.c.) (3.50a)

while an arbitrary splitting in the masses of A and B can be incorporated by including

a term,

Lsoft = m ′2(S2 + h.c.) (3.50b)

into the Lagrangian. It will turn out that super-renormalizable terms that are analytic

in S are soft, while terms that involve products of S and S∗ (except supersymmetric

terms such as S∗S already present in (3.45)) result in a hard breaking of SUSY.

Exercise Check that an interaction proportional to (S2S∗ + h.c.) ∼ (A2 + B2)A
leads to a quadratically divergent contribution to the expression in (3.47).

Although we have illustrated the cancellation of quadratic divergences with just a

few examples, it is important to stress that this is a general feature of supersymmetric

theories. As we will elaborate upon in Section 6.7, this cancellation of quadratic

divergences occurs to all orders in perturbation theory.
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The supersymmetry algebra

4.1 Rotations

In classical mechanics, rotations of three-vectors can be represented by a rotation

matrix R acting upon vectors such as x = (x, y, z) as

xi → x ′
i = Ri j x j . (4.1)

In quantum mechanics, rotation transformations are represented by unitary op-

erators U (θ) acting upon state vectors |ψ〉 such that

|ψ〉 → |ψ ′〉 = U (θ)|ψ〉, (4.2)

where the direction of θ is along the axis about which the rotation occurs, and its

magnitude is the rotation angle. For infinitesimal rotations, the operator U (θ) can

be written as U (θ) � 1 + iθ · J, where the Hermitian operators J are the rotation

generators. For spinless states, Ji can be represented as differential operators (Jk =
1
2
εi jk Ji j , with Ji j = −i(xi∂ j − x j∂i )), it is easy to check that the commutation

relations

[Ji , Jj ] = iεi jk Jk (4.3)

are satisfied for i, j = 1, 2, 3 ↔ x, y, z. Finite rotations can be built up from an

infinite product of infinitesimal ones, so that the operator U (θ) = exp(iθ · J). The

operators U (θ) form a representation of the Lie group SU (2), for which the Ji are

the group generators, and where Eq. (4.3) defines the Lie algebra associated with

the group SU (2). Since the parameters θi each run over a compact domain 0 to 2π ,

we say that SU (2) is a compact Lie group.

A Casimir operator is an operator that commutes with all of the group generators.

The eigenvalues of a Casimir operator are unchanged under group transformations,

so they serve as a useful tool to classify group representations. The representations of

SU (2) can be labelled according to the eigenvalues of the quadratic Casimir operator

41
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J 2 = J · J, for which J 2| jm〉 = j( j + 1)| jm〉, with j = 0, 1/2, 1, 3/2, 2, . . . For

the j = 1/2 representation, the operators Ji can be represented by the Pauli spin

matrices Ji = σi/2, and the state vectors can be represented by 2-component

spinors. Higher j representations can be constructed by taking direct products

of lower j representations. For higher j representations of SU (2), the Ji ’s can be

represented by (2 j + 1) × (2 j + 1) matrices, and the corresponding state vectors

by 2 j + 1 component column matrices.

4.2 The Lorentz group

We want to build a quantum theory that is invariant under Lorentz transforma-

tions. We restrict our discussion to proper, orthochronous Lorentz transformations,

i.e. boosts and rotations, and neglect parity and time reversal. In addition to rota-

tions which mix the spatial coordinates amongst themselves, we now have boost

transformations which mix the time co-ordinate x0 with the spatial co-ordinates;

e.g. a boost along the x1 direction can be written as x ′0 = x0 cosh φ + x1 sinh φ,

x ′1 = x0 sinh φ + x1 cosh φ, x ′2 = x2 and x ′3 = x3. The usual velocity parameter

β that characterizes the boost is given in terms of the rapidity φ by β = tanh φ. The

infinitesimal transformation matrix U that transforms quantum mechanical states

can then be augmented to,

U (θ,φ) � 1 + iθ · J + iφ · K, (4.4)

where Ki are the boost generators and φ points along the direction of the boost.1 A

Lorentz transformation is thus characterized by the six parameters (θi , φ j ). Since

the parameters φ j are not restricted to a compact interval, the Lorentz group, unlike

the rotation group, is not compact.

The Lorentz group generators satisfy

[Ji , Jj ] = iεi jk Jk, [Ki , Jj ] = iεi jk Kk, [Ki , K j ] = −iεi jk Jk . (4.5)

The first of these relations shows that rotation generators form a closed sub-algebra,

so that the rotation group forms a subgroup of the Lorentz group. The commutator of

two boost generators is a rotation generator (this is the origin of Thomas precession)

so that the boosts, by themselves, do not form a sub-algebra.

The Lorentz algebra that we have introduced above can be written in a manifestly

covariant form by writing the generators as the six components of an antisymmetric

second rank tensor generator Mμν , with Mi j = εi jk Jk and M0i = −Mi0 = −Ki .

The commutators for the Lorentz group generators can then be recast into covariant

1 For infinitesimal boosts, notice that |φ| = |β|.
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form

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ). (4.6)

To find the finite-dimensional unitary representations of the Lorentz group,

the generators can be alternatively written by defining Si = 1
2
(Ji + iKi ) and

Ti = 1
2
(Ji − iKi ). In this case, it is easy to check that the commutators of the

generators become

[Si , Sj ] = iεi jk Sk, [Ti , Tj ] = iεi jk Tk, [Si , Tj ] = 0, (4.7)

i.e. the algebra decomposes into the product of two independent SU (2) groups,

for which we know the representations. For the Lorentz group, there are thus two
Casimir operators, S2 and T 2, with eigenvalues s(s + 1) and t(t + 1), again with

s, t = 0, 1/2, 1, . . . (Note that J 2 is no longer a Casimir operator since it no longer

commutes with all the group generators, e.g. [J 2, K1] �= 0.) The irreducible rep-

resentations can be categorized according to values of (s, t). A Lorentz scalar

transforms as the (0, 0) representation while a four-vector transforms as (1/2, 1/2)

representation. There are two distinct fundamental representations (1/2, 0) and

(0, 1/2), each of which corresponds to two-spinors. The (1/2, 0) object, as we

will soon see, transforms as a left-handed Weyl two-spinor whose components are

usually denoted by ψL A, with A = 1, 2. The (0, 1/2) object transforms as a right-

handed two-spinor with components ψ Ȧ
R , where the dot on the index calls attention

to the fact that the spinor transforms under the second of the two SU (2) groups.

Exercise Verify that the boost transformation for a state transforming as the
(1/2, 0) and (0, 1/2) representations of the Lorentz group are respectively given by
ψ ′

L,R = (cosh φ

2
∓ σ · p̂ sinh φ

2
)ψL,R, where p̂ is a unit vector along the direction

of p. Recalling that tanh φ = β, show that the spinors for states with momentum p
can be obtained from the corresponding rest frame states as,

ψL,R(p) = E + m ∓ σ · p√
2m(E + m)

ψL,R(0).

Noting that ψL(0) = ψR(0) because there is no preferred direction in the rest frame
to define the particle’s handedness, show that

(E ± σ · p)ψL,R(p) = mψR,L (p).

This is just the Dirac equation in two-component notation. Notice that for m = 0,
we have (σ · p̂)ψL,R(p) = ∓ψL,R(p), which justifies the use of our labels left and
right for the states transforming as the (1/2, 0) and (0, 1/2) representations of the
Lorentz group.
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A four-component Dirac spinor can be built out of the direct sum of two-

component spinors (1/2, 0) ⊕ (0, 1/2) so that

ψ D
a =

(
ψL A

χ Ȧ
R

)

. (4.8)

The two spinors ψL and χR are independent. It is simple to check that the two-

component spinor −iσ2ψ
∗
L transforms as a (0, 1/2) representation of the Lorentz

group, i.e. it transforms as χR. We can thus construct a different four-component

spinor whose right-handed piece is completely determined by its left-handed pieces

via χR = −iσ2ψ
∗
L. This four-spinor would transform as the (1/2, 0) ⊕ (0, 1/2) rep-

resentation of the Lorentz group, but would have just half as many independent

components as ψ D above. It can be expressed as

ψa =
(

ψL A

(−iσ2ψ
∗
L) Ȧ

)

. (4.9)

This object is the Majorana spinor that we have already encountered in Chapter 3,

and the relation χR = −iσ2ψ
∗
L is simply (3.3).2 Since the Dirac spinor contains

twice as many independent components as a Majorana spinor, it can be thought of

as a combination of two Majorana spinors, in much the same way that we can think

of a complex number as a combination of two real numbers.

Many textbooks and review articles use the more fundamental two-component

spinor notation. Here, we formulate everything in terms of four-component spinors,

which are perhaps more familiar to particle physicists interested in performing

phenomenological calculations.

4.3 The Poincaré group

In addition to rotations and boosts, the other spacetime transformations include

translations in space and time. Translations in space and time are generated by

the energy–momentum operator Pμ, which can be represented by the differential

operator Pμ = i∂μ. The Poincaré group is formed by combining rotations, boosts,

and translations. We then have ten independent generators: the six Mμν plus the

four Pμ. It is then straightforward to work out the commutation relations for the

2 In Chapter 3 and elsewhere, ψL,R is also used to denote the four-component spinor PL,Rψ which has only
two non-vanishing components in the representation where the matrix γ5 is diagonal. These non-vanishing
components are just the components of the two-spinor ψL,R discussed in this chapter. Although this is an abuse
of notation, it should be clear from the context whether we are using ψL,R to denote four- or two-component
spinors.
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generators, using their representation as differential operators. One finds:

[Pμ, Pν] = 0, (4.10a)

[Mμν, Pλ] = i(gνλ Pμ − gμλ Pν), (4.10b)

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ). (4.10c)

To classify the representations of the Poincaré group, we again look for Casimir

operators. One of these is the operator P2, which certainly commutes with all

the group generators. Its eigenvalue operating on particle state vectors is just the

squared mass P2|ψ〉 = m2|ψ〉. The other Casimir operator is obtained from the

Pauli–Lubanski four-vector Wμ = 1
2
εμνρσ Pν Mρσ , with W μ Pμ = 0. The square of

the Pauli–Lubanski vector, W 2, can be shown to commute with all the generators

of the Poincaré group. Notice also that in the rest frame (of a massive state) W i

is proportional to the rotation generator J i . The various representations of the

Poincaré group were first worked out by Wigner. The physically realized unitary

representations which are of interest to us are:

� P2 ≡ m2 > 0, with W 2 = −m2s(s + 1), where s denotes the spin quantum num-

ber s = 0, 1
2
, 1, . . . Thus, these states correspond to particles of definite mass and

discrete spin values.
� P2 = 0, W 2 = 0 so that Wμ = λPμ. Here λ is the state helicity value, and λ = ±s,

for s = 0, 1
2
, 1, . . . These correspond e.g. to single particle states of massless

particles such as photons with λ = ±1 or the graviton with λ = ±2.
� Finally, Pμ ≡ 0, corresponding to the vacuum state which is invariant under

Poincaré transformations.

In the 1960s, a number of papers were written about the possibility of embedding

the spacetime symmetries (i.e. the Poincaré group) into some larger master group

such as SU (6) that would serve as a more general framework for the symmetry of

the laws of physics. These efforts culminated in several no-go theorems, the most

general of which was the Coleman–Mandula theorem.3 It states the following.

Theorem Let G be a connected symmetry group of the S matrix (its generators

commute with the S matrix), and assume the following.

� G contains a subgroup which is locally isomorphic to the Poincaré group (Poincaré

invariance).
� All particle types correspond to positive energy representations of the Poincaré

group. For any finite mass m, there are only a finite number of types of particles

with mass less than m.

3 S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
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� Elastic scattering amplitudes are analytic functions of the Mandelstam variables

s and t in some neighborhood of the physical region, except at normal thresholds,

and the S matrix is non-trivial in the sense that essentially any two one-particle

momentum states scatter, except perhaps for isolated values of s.
� Finally, a technical assumption: the generators of G, considered as integral oper-

ators in momentum space, have distributions as their kernels.

Coleman and Mandula asserted that if these conditions hold, G is locally isomorphic
to the direct product of a compact symmetry group and the Poincaré group.

Stated more simply, under a number of physically reasonable assumptions, it

is not possible to form a non-trivial merger of the Poincaré symmetry with other

symmetries of the S matrix into a bigger group. It is not possible to have a larger

spacetime symmetry and, further, internal symmetries such as local gauge sym-

metries or additional global symmetries (e.g. isospin) can only be realized as a

direct product of these symmetry groups with the Poincaré group. It is intriguing

that all the Poincaré group symmetries of the S matrix are in fact realized in na-

ture. It is important to recognize that Coleman and Mandula did not envisage the

possibility of anticommuting spinorial charges in their analysis. It is precisely the

inclusion of these that allows us to enlarge the spacetime symmetry group to include

supersymmetry, as we have already seen in Chapter 3.

4.4 The supersymmetry algebra

Our investigation of the Wess–Zumino model in Chapter 3 shows that it is possible

to construct a relativistic quantum field theory that is invariant under supersymmetry

transformations, for which the generators are anticommuting spinorial charges Qa .

We saw that the algebra of the Qa’s (this involved anticommutators, which is how

the Coleman–Mandula theorem is circumvented) closes to yield Pμ, so that the

supersymmetry is, in effect, a spacetime symmetry. In this sense, supersymmetry

can be looked upon as a generalization of the special theory of relativity.

We had already worked out the algebra of the spinorial generators Qa amongst

themselves and with the translation generators in Chapter 3. Since this involves

anticommutators of the super-charges, it is called a graded Lie algebra. The com-

mutator of the Lorentz generators with the super-charges Qa is simply given by the

fact that these are spin 1
2

objects. We can thus write the supersymmetric extension

of the Poincaré algebra, known as the super-Poincaré algebra, as

[Pμ, Pν] = 0, (4.11a)

[Mμν, Pλ] = i(gνλ Pμ − gμλ Pν), (4.11b)

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ), (4.11c)

[Pμ, Qa] = 0, (4.11d)
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[Mμν, Qa] = −( 1
2
σμν)ab Qb, (4.11e)

{Qa, Q̄b} = 2(γ μ)ab Pμ. (4.11f)

Since Q is a Majorana spinor charge, we can use the last of these relations to work

out the anticommutators between two Q’s or Q̄’s.

Exercise: Verify that

{Qa, Qb} = −2(γ μC)ab Pμ,

{Q̄a, Q̄b} = 2(C−1γ μ)ab Pμ.

An extension of the Coleman–Mandula type analysis that allows for spinorial

charges was worked out by Haag, Lopuszanski, and Sohnius who showed that the

super-Poincaré algebra above is indeed the most general extension of the Poincaré

algebra, provided we have just a single spinorial charge Q.4 These authors also

showed that theories with more than one spinorial generator are possible. These

are referred to as extended supersymmetry theories. Such theories do not allow

chiral representations which, as we know, are crucial for phenomenology. Only

theories with a single spinorial generator Qa , known as N = 1 supersymmetry

theories, allow chiral representations. For this reason, we restrict our attention only

to N = 1 supersymmetry.5 To sum up, the Haag–Lopuszanski–Sohnius theorem

tells us that the most general symmetry of the S matrix is the direct product of some

internal symmetry with super-Poincaré invariance.

The irreducible representations of the super-algebra can be worked out as usual

by finding the relevant Casimir operators. For the SUSY algebra above, the operator

P2 again commutes with all generators, so that all particles occurring in a super-

multiplet will have the same mass. However, the square of the Pauli–Lubanski

pseudovector W 2 is no longer a Casimir invariant, so that supermultiplets can now

contain particles of differing spins. We will not discuss the construction of a new

Casimir operator for this case, but instead focus on the particle supermultiplets that

furnish representations of the super-Poincaré algebra.

For the massive case P2 ≡ m2 > 0, the representations are labeled by (m, j)

with j = 0, 1/2, 1, . . . For fixed m, the complete supermultiplet contains a state

each corresponding to spin s = j ± 1/2, and two states with spin s = j (except

for the case j = 0 where the state with s = j − 1/2 is absent), all of which have

the same mass. Notice that the number of helicity states for the two objects with

spin j [2(2 j + 1)] is exactly balanced by the corresponding number of helicity

4 R. Haag, J. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975).
5 The underlying fundamental theory could be an extended supersymmetric theory, but all but one (or none!)

of the supersymmetries must somehow be broken at much higher scales, leaving an N = 1 supersymmetric
theory as the extension of the Standard Model that could have phenomenological relevance.
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states for the two states with spins j ± 1
2

[2( j + 1/2) + 1 + 2( j − 1/2) + 1]. This

is just the statement that the number of bosonic and fermionic helicity states are the

same. If j = 0, we have the multiplet of the Wess–Zumino model – two spin zero

states and two spin half states – as we discussed in Chapter 3. If j = 1/2, there are

four bosonic degrees of freedom (three spin 1 and one spin zero) balanced by four

fermionic degrees of freedom corresponding to two Majorana spin half fermions

as we will see when we study spontaneously broken gauge theories.

For the massless case, one can show that if j is the state with largest helicity in

a supermultiplet, it is always accompanied by another state with helicity j − 1/2.

Furthermore, a Lorentz invariant field theory always contains these states together

with their CPT conjugates which have opposite helicities, − j and − j + 1/2 and

which are also massless. These states constitute a complete massless supermultiplet.

If j = 1/2, this multiplet consists of two fermionic states with helicities ±1/2, and a

pair of spin zero bosonic states. This multiplet occurs in the massless Wess–Zumino

model. Such a multiplet would also describe a massless neutrino and antineutrino

together with its supersymmetric partners which would be two spin zero states

(which can be regarded as quanta of one massless complex scalar field). For j = 1,

the bosonic states would correspond to a massless gauge boson (helicities ±1); the

fermionic partner states, which have helicity ±1/2, then correspond to a Majorana

fermion referred to as a gaugino. This “gauge multiplet” is a crucial ingredient

of supersymmetric gauge theories, which form the basis of all supersymmetry

phenomenology. Finally, if j = 2, we see that the two bosonic states have helicities

±2. These are thought to correspond to a graviton, the massless spin two quantum

that mediates gravity. The fermionic partners of these j = 2 states have helicities

±3/2 and describe a spin 3
2

massless Majorana fermion referred to as a gravitino.

This “gravity multiplet” is essential for theories in which the parameter α of SUSY

transformations depends on xμ. These locally supersymmetric theories necessarily

involve Einsteinian gravity, and are referred to as supergravity theories.
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Superfield formalism

We saw in Chapter 3 how the Wess–Zumino model could be formulated in terms

of the fields S, ψL, and the auxiliary field F , which transform into each other

under a supersymmetry transformation. Here, we simply “pulled a Lagrangian out

of a hat”, and verified by brute force that (at least the free part of) this Lagrangian

led to a supersymmetric action. While this example was instructive, it provided no

guidance as to how to write down other more complicated supersymmetric theories.

We alluded, however, to the fact that we could think of the fields, S, ψL, and F as

the components of a single entity, a chiral superfield.1

The superfield formalism provides a convenient way to formulate general rules

for the construction of supersymmetric Lagrangians, even for theories with non-

Abelian gauge symmetry that are the foundation of modern particle physics. The

superfield calculus that we develop in this and succeeding chapters will provide us

with a constructive procedure for writing down theories that are guaranteed to be

supersymmetric. This procedure will ultimately be used to write down the simplest

supersymmetric extension of the Standard Model. This theory, augmented with suit-

able soft supersymmetry breaking terms, is known as the Minimal Supersymmetric

Standard Model, or MSSM.

5.1 Superfields

To begin, we would like to somehow combine the fields S, ψL, and F into a single

“superfield”, in much the same way that the neutron and proton fields are combined

into a single “nucleon” field in the isospin formalism. The fields S and ψ transform

differently under Lorentz transformations so that it is by no means obvious how to

combine these fields into a single entity called a superfield in which the component

fields all enter on the same footing, i.e. we do not combine the scalar bilinear in ψ

1 A. Salam and J. Strathdee, Nucl. Phys. B76, 477 (1974).
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with the scalarsS andF . We are thus led to introduce a new Majorana spinor θ , with

components θ1, θ2, θ3, and θ4, which can be combined with ψ to make a Lorentz

scalar that can then be “added” to S. Furthermore, since the components of ψ obey

anticommutation relations, the components of θ will be taken to be anticommuting

Grassmann numbers, so that

{θa, θb} = 0. (5.1)

We will further assume that

{θa, ψb} = 0. (5.2)

Note that Eq. (5.1) implies that θaθa = 0 (no sum on a).

The spinor θ is determined by the four independent quantities θa that we have

introduced. We emphasize that these are not complex numbers, but are a new type

of object, a Grassmann number. Although these do not commute, we should be

clear that they are not operators, but anticommuting numbers, in the same sense

that usual complex numbers are commuting numbers. These Grassmann numbers

(sometimes also referred to as a-numbers in analogy with commuting c-numbers)

also anticommute with fermionic operators, but commute with bosonic operators.

The Majorana condition, θ̄ = θT C means that the components of the conjugate

spinor θ̄ are completely determined in terms of the four independent θas. Thus

a product of any chain of larger than a total of four θ or θ̄s is identically zero.

Alternatively, it will sometimes be convenient to think of two components of θ and

two components of θ̄ as independent, or that each of the two components of θL and

θR are independent.

A superfield is a function of xμ and θ . The spinor θ (together with the coordi-

nate vector xμ) is a superfield label in exactly the same way that the coordinate

vector xμ is a label in the conventional formulation of field theory. We will denote

superfields by carets and let �̂(x, θ ) stand for a general superfield. The field �̂ thus

depends on four (commuting) spacetime co-ordinates xμ and on four anticommut-

ing co-ordinates, θa . The extension of four-dimensional spacetime to include the

four anticommuting dimensions is usually referred to as superspace. Whether the

anticommuting variables have a physical significance, or whether they serve only

as bookkeeping devices is something we will not dwell upon.

An important property of functions of Grassmann variables follows from the fact

that any power series expansion in terms of the anticommuting co-ordinates always

terminates because the square of any Grassmann variable is zero. For instance, if

η is a Grassmann variable, and we have a function f (η), then f (η) = A + Bη,

where A and B are just ordinary (real or complex) numbers. The power series

expansion terminates with the first term in η. A function g(x, η) would have a similar

expansion, except that the coefficients A and B would now be (real or complex)
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functions of x . We can similarly write the superfield �̂ in terms of independent

products of the four θa variables, with coefficients that are functions of spacetime

co-ordinates xμ.

Exercise Verify that from the four Grassmann variables θa, a = 1, 2, 3, 4, one can
make exactly 16 independent products of 0, 1 . . . 4 θs. The most obvious choice is
1, θa (4 terms), θaθb (6 terms, because of the anticommutativity of the θas), θaθbθc

(4 terms, as any one θa from the unique quartic term in the θs can be omitted) and
finally one quartic term, θ1θ2θ3θ4.

We could thus expand �̂(x, θ ) = A + Bθ1 + · · · + Pθ1θ2θ3θ4. It is, however,

more convenient to expand the superfield in terms of

1 term independent of θ ; 1, (5.3a)

4 terms linear in θ ; choose θ̄γ5, (5.3b)

6 terms bilinear in θ ; choose θ̄ θ, θ̄γ5θ, θ̄γμγ5θ, (5.3c)

4 terms trilinear in θ ; choose θ̄γ5θ · θ̄ , (5.3d)

1 term quartic in θ ; choose (θ̄γ5θ )2, (5.3e)

since this manifestly displays the Lorentz properties of the “expansion coefficients”

which will ultimately be the usual fields in the theory. Terms such as θ̄γμθ and θ̄σμνθ

are identically zero due to Eqs. (3.8c) and (3.8e). We can thus write a general

superfield as,2

�̂(x, θ ) = S − i
√

2θ̄γ5ψ − i

2
(θ̄γ5θ )M + 1

2
(θ̄ θ )N + 1

2
(θ̄γ5γμθ )V μ

+i (θ̄γ5θ )[θ̄ (λ + i√
2
∂/ ψ)] − 1

4
(θ̄γ5θ)2[D − 1

2
�S]. (5.4)

Thus, the coefficients in the above expansion are the sixteen component fields

S, ψ, M, N , V μ, λ, and D. (5.5)

Here, V μ is a vector field and ψ and λ are spinor fields. In general, the bosonic fields

are complex, while ψ and λ are Dirac fields. The peculiar form of the coefficients of

trilinear and quartic terms in θ in this expansion as well as the factors of half and
√

2

is chosen for future convenience. It should be obvious to the reader that although

any scalar superfield can be written as in Eq. (5.4), this form is not unique. We will

2 Actually, this is not the most general superfield since we have assumed that the θ independent term in the expan-
sion is a Lorentz scalar. It is possible, and indeed necessary as we will see when we consider supersymmetric
gauge theories, to introduce superfields where this is not the case. Such superfields will carry an additional
index which specifies the Lorentz transformation property of their leading, i.e. θ -independent component. We
will refer to the superfield in Eq. (5.4) as a scalar superfield.



52 Superfield formalism

regard (5.4) as the canonical form. Any other expansion can be straightforwardly

reduced to this canonical form using identities amongst the Grassmann variables

introduced later in this chapter.

Let us compute the Hermitian conjugate superfield �̂†. We will need the identi-

ties,

(ψ̄χ )† = χ̄ψ = ψcχ c, (5.6a)

(ψ̄γ5χ )† = −χ̄γ5ψ = −ψcγ5χ
c, and (5.6b)

(ψ̄∂/ χ )† = ∂μχ̄γμψ = −ψc∂/ χ c, (5.6c)

so that

(θ̄ θ )† = θ̄ θ, (5.7a)

(iθ̄γ5θ )† = iθ̄γ5θ, and (5.7b)

(θ̄γ5γμθ )† = θ̄γ5γμθ. (5.7c)

Then,

�̂†(x, θ ) = S† − i
√

2θ̄γ5ψ
c − i

2
(θ̄γ5θ )M† + 1

2
(θ̄ θ )N† + 1

2
(θ̄γ5γμθ )V μ†

+ i(θ̄γ5θ )[θ̄ (λc + i√
2
∂/ ψc)] − 1

4
(θ̄γ5θ )2[D† − 1

2
�S†]. (5.8)

We define the superfield �̂ to be real if �̂ = �̂†. In this case, we see that the bosonic

fields are real and the fermionic fields are Majorana (ψ = ψc and λ = λc). It was for

this reason that we inserted the factors of i in our superfield expansion in Eq. (5.4).

In general, however, �̂ need not be real.

Exercise Verify the relations in (5.6a), (5.6b), and (5.6c). Notice that these hold
regardless of whether the spinors are Dirac or Majorana.

5.2 Representations of symmetry generators: a recap

In quantum field theory, symmetry transformations act on field operators which are

the dynamical variables. We focus on symmetries which are linear transformations

of the field operators. A symmetry operation, with a set of parameters αa , due to

the action of the set of generators Qa can thus be written as,

eiαa Qa φme−iαb Qb = (
e−iαa ta

)

mn φn. (5.9a)

It is important to understand that
(
e−iαa ta

)

mn are simply numerical coefficients.

There are, of course, as many parameters αa as there are generators Qa , and for
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each Qa we have a matrix coefficient (ta). For an infinitesimal transformation, this

becomes,

δφm = iαa[Qa, φm] = −i(αata)mnφn. (5.9b)

By considering the action of successive symmetry transformations and using the

Jacobi identity,

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0,

in the last step, it is straightforward to show that

δ2δ1φm = [iα2b Qb, δ1φm] = − [iα1a Qa, [φm, iα2b Qb]] − [φm, [iα2b Qb, iα1a Qa]] ,

which then yields,

(δ2δ1 − δ1δ2)φm = [[iα2b Qb, iα1a Qa], φm] . (5.10a)

The result of the successive transformations can also be written in terms of the

numerical coefficients tmn introduced above as,

δ2δ1φm = −α1a(ta)mnα2b(tb)npφp,

so that the right-hand side of Eq. (5.10a) can also be written as,

(δ2δ1 − δ1δ2)φm = −α1aα2b[ta, tb]mpφp, (5.10b)

with the usual matrix multiplication rule for the product of the matrices ta and tb
appearing on the right-hand side.

The set of generators Qa satisfies algebraic commutation relations that are de-

termined by the symmetry in question. If these are the generators of spacetime

symmetries, these are the commutation relations of the Poincaré algebra. If these

are generators of internal symmetry transformations, they satisfy the commutation

relations of the corresponding symmetry algebra. In both these cases (and many

others that we encounter), the algebra is a Lie algebra, so that the commutation

rules can be written as,

[Qa, Qb] = i fabc Qc,

where the coefficients fabc are the structure constants of the algebra. Requiring

the right-hand sides of (5.10a) and (5.10b) to be the same, we see that the set of

coefficient matrices ta must satisfy,

[ta, tb] = −i fbactc = i fabctc.

In other words, these coefficient matrices obey the same commutation relations

as the abstract generators Q. We say that these furnish a representation of the

symmetry algebra.
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Exercise We implicitly assumed that the parameters αa are commuting numbers
when we showed that the matrices ta obey the same commutation relations as the
generators Qa. If instead the parameters are anticommuting numbers, and the
generators Qa and Qb obey an anticommutation relation, show that corresponding
matrices ta and tb obey these same relations, and so, furnish a representation of
this graded algebra. In this case, of course, the exponential in Eq. (5.9a) becomes
a polynomial.

The familiar Pauli matrices or the Gell-Mann matrices are examples of matrix

representations of the generators of internal symmetry groups SU (2) and SU (3).

But what does all this have to do with the representation of spacetime symmetry

generators by differential operators that we have seen in Chapter 4? The under-

lying idea is the same. For instance, the momentum, defined as the generator of

translations, satisfies

φ → φ′ = φ(x + a) = eiaμ Pμφe−iaμ Pμ � φ(x) + aμ ∂φ

∂xμ
+ · · · (5.11)

For an infinitesimal translation we find,

φ′ = φ + δφ = (1 + iaμ Pμ)φ(1 − iaμ Pμ) = φ + aμ ∂φ

∂xμ
, (5.12)

or

[Pμ, φ] = −i∂μφ. (5.13)

Using Eq. (5.9b), we see that the translation generator Pμ can be represented by

δ(x − x ′) × i∂μ (where the indices m and n are the continuous spacetime indices x
and x ′). It is customary to omit the “identity matrix” δ(x − x ′) when writing this,

and we frequently say that Pμ is represented by the differential operator i∂μ. The

other generators of the Poincaré algebra can be similarly represented by differential

operators. It is then straightforward to check that the differential operators furnish

a representation of the Poincaré algebra, i.e. they obey the same commutation

relations as the generators.

5.3 Representation of SUSY generators as differential operators

We have just seen that the generators of the Poincaré algebra can be represented

by differential operators, where the derivative is with respect to the spacetime

co-ordinate. We now want to realize the spinorial generator of supersymmetry

transformations Q as a differential operator in superspace acting on the superfield

�̂(x, θ ).
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This requires us to first explain what is meant by derivatives with respect to

Grassmann numbers θa . First, since the four θas (or, the four θ̄as) are independent

we define,

∂θa

∂θb
= δab and

∂θ̄a

∂θ̄b
= δab. (5.14)

Then, since θa = Cabθ̄b, we have

∂θa

∂θ̄b
= Cab. (5.15)

If we have a product of θs, we must bring ∂/∂θa next to the θ we wish to differentiate,

e.g.

∂

∂θc
(θaθb) = ∂θa

∂θc
θb − θa

∂θb

∂θc
= δacθb − θaδbc, (5.16)

where the “−” sign arises because the θs anticommute. Differentiation of a product

of θ̄s or a combination of θs and θ̄s is analogously defined.

Since Q is a spinor operator, its action on a superfield �̂ correspondingly changes

its Lorentz transformation properties by either taking away or adding a θ to each

term. Since, as we have just seen, differentiation with respect to θa removes a θ ,

we are led to try,

[Qm, �̂] =
(

Mmn
∂

∂θ̄n
+ Nmnθn

)

�̂(x, θ ), (5.17)

where the matrices Mmn and Nmn (which may depend on x) have to be determined.

The reader may wonder why we wrote the derivative with respect to θ̄ rather than

θ . By Eq. (5.15), these are the same up to the numerical matrix Cab. We will see

shortly that by writing it as in Eq. (5.17), the matrix M becomes a multiple of the

identity matrix, and we can write the representation of a SUSY transformation with

the Majorana spinor parameter α as,

[
ᾱQ, �̂

] =
(

ᾱ
∂

∂θ̄
+ ᾱNθ

)

�̂. (5.18)

We can work out what N must be by applying the Jacobi identity to two successive

SUSY transformations by amounts α1 and α2. This gives,
[[

ᾱ1 Q, ᾱ2 Q
]
, �̂

] = [
ᾱ1 Q,

[
ᾱ2 Q, �̂

]] − [
ᾱ2 Q,

[
ᾱ1 Q, �̂

]]
. (5.19)

We then write each term on the RHS as an action of successive SUSY transforma-

tions using (5.18) to obtain,
(

ᾱ1

∂

∂θ̄
+ ᾱ1 Nθ

) (

ᾱ2

∂

∂θ̄
+ ᾱ2 Nθ

)

�̂ − (2 ↔ 1).
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A little manipulation of indices (and remembering that both θs and αs are anticom-

muting variables) shows that the terms involving no derivatives with respect to θ̄

give zero, as do the terms involving two such derivatives. We are then left only with

two terms, each involving a θ derivative from one factor multiplying Nθ from the

other factor. We leave the following as an exercise for the reader.

Exercise Verify that the RHS of (5.19) reduces to
[−ᾱ1aᾱ2b (NC)ba + ᾱ2bᾱ1a (NC)ab

]
�̂ .

On the other hand, the inner commutator of the LHS of (5.19) becomes

ᾱ2bᾱ1a{Qa, Qb} = −2ᾱ2bᾱ1a(γμC)ab Pμ

so that
[
[ᾱ1 Q, ᾱ2 Q] , �̂

] = 2iᾱ2bᾱ1a(γμC)ab∂μ�̂.

We are thus led to require that the matrix N must satisfy,

(NC)ba + (NC)ab = 2i (∂/ C)ba ,

whose solution may be written as N = i∂/ . Of course, because each term in the

Jacobi identity is quadratic in Q, we cannot fix the overall factor in front of (5.18)

from this. The choice of this factor is a convention. We will choose it to be i, which

as we will see later is consistent with the SUSY transformations of chiral scalar

superfields that we have already introduced in Chapter 3. We thus obtain the desired

realization of the SUSY generator,

[
ᾱQ, �̂

] = i

(

ᾱ
∂

∂θ̄
+ iᾱ∂/ θ

)

�̂. (5.20)

This expression for the supersymmetry generator is the analogue of (5.13) for the

translation generator.

5.4 Useful θ identities

Before proceeding further, we have a short digression to establish a number of useful

identities for Grassmann numbers θ that we have introduced into our formalism.

These identities are especially useful when we do superfield manipulations. For

instance, we may need to take a product of two (or more) superfields which, since it

is just a function of x and θ coordinates, is itself a superfield, but not in the canonical

form of Eq. (5.4). Indeed most manipulations will leave us with a superfield which

is not in this canonical form. However, in order to read off the components of the

resulting superfield, or simply to add superfields, we will need to be able to recast
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any superfield into canonical form. We have found the following identities to be

very useful for this purpose, and we will use them repeatedly in our subsequent

manipulations.

One manipulation that we need repeatedly is regrouping θs and θ̄s into a common

set of bilinears. For this purpose, it is very useful to note that,

θa θ̄b = −1

4

{
θ̄γ5θ (γ5)ab + θ̄ θδab − (θ̄γ μγ5θ )(γμγ5)ab

}
. (5.21)

This is the basic formula that underlies the Fierz re-arrangement discussed in

Chapter 3.

We list below various relations that we have found very useful for superfield

manipulation. We outline how to establish these, and leave it to the reader to verify

these in detail.

Bilinear Identities

θ̄γμθ = 0, (5.22a)

θ̄σμνθ = 0, (5.22b)

θ̄γμγνθ = gμνθ̄θ, (5.22c)

θ̄γ5γμγνθ = gμνθ̄γ5θ, (5.22d)

θ̄γμθL/R = −θ̄γμθR/L, (5.22e)

θ̄γμγ5θL/R = θ̄γμγ5θR/L. (5.22f)

The first two are the result of the Majorana character of θ and follow immediately

from (3.8b) and (3.8c) of Chapter 3. To establish the next two, decompose γμγν

into its symmetric and antisymmetric parts, and use (3.8e) to see that the latter

gives zero. Finally, the last two follow from the fact the vector bilinear identically

vanishes.

Trilinear Identities

θ̄ θ · θ = −θ̄γ5θ · (γ5θ), (5.23a)

θ̄ θ · θ̄ = −θ̄γ5θ · (θ̄γ5), (5.23b)

θ̄γ5γμθ · θ = −θ̄γ5θ · (γμθ ), (5.23c)

θ̄γ5γμθ · θ̄ = θ̄γ5θ · (θ̄γμ). (5.23d)

To prove the first, we note that we can write the left-hand side in terms of θ

alone (using θ̄ = θT C) as θT
L CθLθR + θT

R CθRθL. Here, we have used the fact that

any product of three θLs or three θRs identically vanishes as only two of these are

independent (and θs anticommute). The reader can similarly check that the right-

hand side of (5.23a) reduces to this same quantity. Eq. (5.23b) can be proven in the

same manner, or alternatively, by taking the Dirac conjugate of (5.23a).
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To establish (5.23c) we first show using Eq. (5.21) that

(θLγ5γμθL)θR = (θRγ5γμθR)θR = −1

2
(θ̄γ5θ )PRγμθ,

(θLγ5γμθL)θL = (θRγ5γμθR)θL = −1

2
(θ̄γ5θ)PLγμθ.

Combining these appropriately immediately leads to (5.23c). Eq. (5.23d) may be

obtained by taking the Dirac conjugate of (5.23c).

Quartic Identities

θ̄γ5θ · θ̄ θ = 0, (5.24a)

θ̄γ5θ · θ̄γμγ5θ = 0, (5.24b)

θ̄ θ · θ̄γμγ5θ = 0, (5.24c)

(θ̄ θ )2 = −(θ̄γ5θ )2, (5.24d)

θ̄γ5γμθ · θ̄γ5γνθ = −gμν(θ̄γ5θ )2. (5.24e)

The first of these follows if we recognize that θ̄�θ = θT
R CθR ± θT

L CθL where

the upper (lower) sign corresponds to � = I (γ5), and use the fact that a product of

three or more θLs or θRs identically vanishes. Writing the left-hand side of (5.24b)

or (5.24c) in terms of its chiral components immediately shows that it vanishes.

Multiplying Eq. (5.23a) on the left by θ̄ immediately leads to (5.24d). Finally, the

last of these identities may be obtained from θ̄γ5γμθ · θ̄γ5γνθ = −θ̄γ5θ · θ̄γ5γνγμθ

which follows from Eq. (5.23c); then using (5.22d) immediately yields (5.24e).

Exercise Convince yourself that the θ identities that we have listed are valid.

The trilinear [quartic] identities show how various trilinear [quartic] terms in θ

can be recast as θ̄γ5θ · θ̄ [(θ̄γ5θ )2] that appear in our canonical form of the superfield

in (5.4). Quadratic terms can be similarly cast into the forms appearing there. We

expect that it is now clear to the reader how any other form for the expansion of the

superfield may be reduced to this canonical form.

5.5 SUSY transformations of superfields

We are now in a position to compute how a general superfield �̂(x, θ ) changes

under an infinitesimal SUSY transformation. Our starting point is the relation

δ�̂ = i
[
ᾱQ, �̂

] =
(

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

)

�̂. (5.25)
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To proceed, we must work out the action of ∂/∂θ̄ on various terms in �̂. For

instance, to work out ∂

∂θ̄
(θ̄ θ ), it helps again to keep track of spinor indices:

∂

∂θ̄a
(θ̄bθb) = θa − θ̄bCba.

But

θ̄bCba = CT
abθ̄

T
b = −(C θ̄T )a = −θa

so that

∂

∂θ̄
(θ̄ θ ) = 2θ. (5.26a)

In a similar fashion, we can show that,

∂

∂θ̄
(θ̄γ5θ ) = 2γ5θ, (5.26b)

∂

∂θ̄
(θ̄γμγ5θ ) = 2γμγ5θ, (5.26c)

∂

∂θ̄ a
(θ̄γ5θ ) · θ̄b = 2(γ5θ )a θ̄b + θ̄γ5θδab, (5.26d)

∂

∂θ̄
(θ̄γ5θ )2 = 4(θ̄γ5θ ) · (γ5θ ). (5.26e)

We can now evaluate the RHS of Eq. (5.25). First, using χ ≡ λ + i√
2
∂/ ψ , we

find

−ᾱ
∂

∂θ̄
�̂ = i

√
2ᾱγ5ψ + iθ̄γ5αM − θ̄αN − θ̄γ5γμαV μ + i

2
θ̄ θ ᾱγ5χ

− i

2
θ̄γ5θᾱχ + i

2
θ̄γμγ5θᾱγ μχ + θ̄γ5θ θ̄γ5α

[

D − 1

2
�S

]

. (5.27)

Next,

−iᾱ∂/ [θ�̂] = −iᾱ∂/Sθ −
√

2ᾱ∂/ θ θ̄γ5ψ − 1

2
θ̄γ5θᾱ∂/ θM

− i

2
θ̄ θ ᾱ∂/ θN − i

2
θ̄γ5γμθᾱ∂/ θV μ + θ̄γ5θᾱ∂/ θ θ̄χ. (5.28)

The superfield in Eq. (5.27) is already in the canonical form. We have used the

(anti)symmetry properties of Majorana spinor bilinears as well as (5.21) to write it

this way. We must similarly re-arrange the last expression so that we can combine

it with (5.27) to obtain δ�̂ (with components δS, δψ , . . .) in the canonical form. By

comparing “coefficients”, we obtain the transformation laws for the components of
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a general scalar superfield:

δS = i
√

2ᾱγ5ψ, (5.29a)

δψ = −αM√
2

− i
γ5αN√

2
− i

γμαV μ

√
2

− γ5∂/Sα√
2

, (5.29b)

δM = ᾱ
(

λ + i
√

2∂/ ψ
)

, (5.29c)

δN = iᾱγ5

(

λ + i
√

2∂/ ψ
)

, (5.29d)

δV μ = −iᾱγ μλ +
√

2ᾱ∂μψ, (5.29e)

δλ = −iγ5αD − 1

2
[∂/ , γμ]V μα, (5.29f)

δD = ᾱ∂/ γ5λ. (5.29g)

Exercise Perform the required algebra to obtain the transformation laws for the
components of the scalar superfield.

Equations (5.29a)–(5.29g) define a linear transformation of the component fields,

and, as expected for a SUSY transformation, the variation of a bosonic (fermionic)

field is proportional to a fermionic (bosonic) field.

5.6 Irreducible SUSY multiplets

We have just seen that the components of a general scalar superfield transform into

one another under supersymmetry. This does not, however, mean that we require

all the components to be simultaneously present. Of course, we cannot arbitrarily

leave out any component since these would “be generated” by the transformation.

For instance, if we said S was absent, we would see that it would be generated by

the transformation as long as ψ �= 0. It is, however, possible that there might be a

smaller set of component fields which transform into just one another under SUSY.

If we find such a set, we say the representation furnished by the original (larger)

set is reducible. If this set cannot be reduced any further, we say that it furnishes

an irreducible representation of supersymmetry.

Exercise A familiar example of the concept of irreducibility is the representation
(of the 3-D rotation transformation) furnished by the tensor T i j = xi y j , where xi

and y j are the components of two co-ordinate vectors. Under rotations, the nine
components of T i j clearly transform into one another. Show that the six compo-
nents of Si j = xi y j + x j yi as well as the three components of Ai j = xi y j − x j yi
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separately transform into one another. Show further that while Ai j furnishes an
irreducible representation, the representation furnished by Si j can be reduced fur-
ther into a traceless symmetric tensor S̄i j = Si j − 1

3
Trace(S)δi j whose five compo-

nents transform among themselves, and the unit tensor δi j , which is inert under the
transformations. This is, of course, the familiar statement that the combination of
two angular momentum 1 states gives states with angular momenta 0,1, and 2.

5.6.1 Left-chiral scalar superfields

Our examination of the Wess–Zumino model in Chapter 3 showed us that there

is a consistent supersymmetric model that can be written down in terms of just

the S, ψL, and F fields. Furthermore, Eq. (3.16a)–(3.16c) show that these three

fields (which are contained in our general superfield) form a multiplet under

SUSY transformations. It should, therefore, be possible to find a representation

where several of the components of the general superfield �̂ are zero or un-

physical. In other words, the representation furnished by the components of �̂

should be reducible. Since the Wess–Zumino multiplet (3.15) does not include

any vector field, we naturally look for a representation where the field strength

(∂μVν − ∂νVμ) vanishes, i.e. Vμ = ∂μζ . We must, of course, require that this

is not altered by the SUSY transformations (5.29a)–(5.29g). In order that δV μ

is also a pure gradient, we infer from (5.29e) λ = 0. Then, requiring δλ = 0,

gives us

δλ = −iγ5αD − 1

2
[γρ, γμ]∂ρ∂μζα = 0,

which, in turn, implies D = 0. We can thus consistently choose

λ = D = 0, Vμ = ∂μζ.

The set of SUSY transformations then reduces to,

δS = i
√

2ᾱγ5ψ, (5.30a)

δψ = −αM√
2

− i
γ5αN√

2
− i

γμαV μ

√
2

− γ5∂/Sα√
2

, (5.30b)

δM = i
√

2ᾱ∂/ ψ, (5.30c)

δN =
√

2ᾱ∂/ γ5ψ, (5.30d)

δV μ =
√

2ᾱ∂μψ. (5.30e)
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These can then be written as,

δ

[
∂μS ∓ iV μ

√
2

]

= ∓2iᾱ∂μψ L
R
, (5.31a)

δψ L
R

= −M ∓ iN√
2

α L
R

± ∂μS ∓ iV μ

√
2

γμα R
L
, (5.31b)

δ

[M ∓ iN√
2

]

= 2iᾱ∂/ ψ L
R
. (5.31c)

We then see that the fields

(∂μS − iV μ)√
2

, ψL,
M − iN√

2
(5.32)

transform into one another, as does the set

(∂μS + iV μ)√
2

, ψR,
M + iN√

2
. (5.33)

Let us recapitulate what we have accomplished. Starting with a scalar multiplet,

by choosing λ = D = 0 and Vμ = ∂μζ , we have reduced the original multiplet

into two multiplets such that the component fields of each multiplet transform only

among themselves. If the superfield �̂ that we started with was real, then these two

reduced multiplets are conjugates of one another. If, however, we had started with

a complex field �̂, the two multiplets are unrelated. A superfield transforming as

the set (5.32) is called a left-chiral superfield, while one transforming as the set

(5.33) is called a right-chiral superfield. We trust that it is clear that our reduction

procedure is conceptually identical to the example of reducing the second rank

co-ordinate tensor into its scalar and the traceless symmetric and antisymmetric

parts, discussed in the last exercise.

Finally, let us recover the field content of the Wess–Zumino model. We can

reduce a complex superfield �̂ as described above, and set all the components in

the set (5.33) to zero, consistent with SUSY transformations. In other words, we

can choose ψR = 0, V μ = i∂μS and let N = iM ≡ iF . Then, the field content

of our model will be a complex spin zero field S, ψL (or equivalently, a four-

component Majorana spinor ψ whose right-handed components are chosen to make

it Majorana) and a complex field F . Making the appropriate substitutions in (5.4),

we obtain the expansion of a left-chiral scalar superfield,

ŜL = S + i
√

2θ̄ψL + iθ̄ θLF + i

2
(θ̄γ5γμθ )∂μS

− 1√
2
θ̄γ5θ · θ̄∂/ ψL + 1

8
(θ̄γ5θ )2�S. (5.34)
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The transformation laws for the component fields are then

δS = −i
√

2ᾱψL, (5.35a)

δψL = −
√

2FαL +
√

2∂/SαR, (5.35b)

δF = i
√

2ᾱ∂/ ψL, (5.35c)

which is exactly the same as in Eq. (3.16a)–(3.16c). Throughout the remain-

der of this book, we will reserve S, ψ , and F to denote components of chiral

superfields.

Exercise Convince yourself that the components of the left-chiral superfield form
an irreducible multiplet. In other words, show that it is not possible to set any of
the components (or combinations thereof) to zero.

Exercise In our reduction of the general superfield to the left-chiral scalar su-
perfield, we took Vμ = ∂μζ , and λ = D = 0. Show that any attempt to reduce the
system by setting V μ = 0 with iγμλ + √

2∂μψ = 0, etc. collapses the system of
equations.

5.6.2 Right-chiral scalar superfields

In order to obtain a right-chiral scalar superfield, we set ψL = 0, V μ = −i∂μS and

N = −iM ≡ F in (5.4) so that

ŜR = S − i
√

2θ̄ψR − iθ̄ θRF − i

2
(θ̄γ5γμθ )∂μS

− 1√
2
θ̄γ5θ · θ̄∂/ ψR + 1

8
(θ̄γ5θ )2�S. (5.36)

We note that the field

Ŝ†
L = S† − i

√
2ψ̄θR − iθ̄ θRF† − i

2
(θ̄γ5γμθ )∂μS†

− 1√
2
θ̄γ5θ · θ̄∂/ ψR + 1

8
(θ̄γ5θ )2�S† (5.37)

has the form of a right-chiral scalar superfield.
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5.6.3 The curl superfield

Let us define the field strength tensor field Fμν ≡ ∂μV ν − ∂νV μ. It is then straight-

forward to check that,

δFμν = −iᾱ[γ ν∂μ − γ μ∂ν]λ, (5.38a)

δλ = −iγ5αD + 1

4
[γν, γμ]Fμνα, and (5.38b)

δD = ᾱ∂/ γ5λ, (5.38c)

so that the components Fμν , λ, and D transform into each other. Nevertheless,

it is not possible to choose S, ψ , M, and N all equal to zero, since (because of

(5.29b) this choice is not invariant under a SUSY transformation. In a gauge theory,

however, which is where we will have need for the curl superfield, there is more

freedom because of gauge invariance. We will see in the next chapter how it is

possible to work with a multiplet containing only the Fμν , λ, and D fields. Such

a gauge multiplet will be derived from a real superfield that contains the gauge

potential V μ.

5.7 Products of superfields

We begin by noting that the expansion,

ŜL(x, θ ) = S(x) + i
√

2θ̄ψL(x) − i

2
(θ̄γ5θ )F + i

2
(θ̄ θ )F + i

2
(θ̄γ5γμθ )∂μS(x)

− 1√
2
θ̄γ5θ · θ̄∂/ ψL(x) + 1

8
(θ̄γ5θ )2�S(x), (5.39)

for a left-chiral scalar superfield can be succinctly written in terms of a new variable

x̂μ = xμ + i
2
θ̄γ5γμθ as,

ŜL(x, θ ) = S(x̂) + i
√

2θ̄ψL(x̂) + iθ̄ θLF(x̂). (5.40)

To see this, we can expand each of the fields in (5.40) as power series around

x̂ � x . Since any term can contain at most two θs and two θ̄s, this expansion must

terminate. We can thus write S(x̂) as

S(x̂) = S(x) + i

2
(θ̄γ5γμθ )∂μS(x) + 1

2!
(

i

2
)2(θ̄γ5γμθ )(θ̄γ5γνθ )∂μ∂νS(x)

= S(x) + i

2
(θ̄γ5γμθ )∂μS(x) + 1

8
(θ̄γ5θ )2�S (5.41)
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where we have used identity (5.24e) to obtain the last term. Likewise, using (5.23d)

we have

θ̄ψL(x̂) = θ̄

[

ψL(x) + i

2
(θ̄γ5γμθ )∂μψL(x)

]

= θ̄ψL(x) + i

2
(θ̄γ5θ )θ̄∂/ ψL. (5.42)

Finally, from (5.24b) and (5.24c) we have

θ̄ θF(x̂) = θ̄ θF(x) and θ̄γ5θF(x̂) = θ̄γ5θF(x). (5.43)

Combining these results, we arrive at Eq. (5.40).

The important point about Eq. (5.40) is that it shows that a left-chiral scalar

superfield is a function of just x̂ and θL (recall that θ̄R = θT
L C). The θR dependence

of ŜL enters only via x̂ . If we take the product of two (or more) left-chiral scalar

superfields, it will again be a function of just x̂ and θL, and can be written in the

form of Eq. (5.40). We thus conclude that a product of any number of left-chiral
scalar superfields is itself a left-chiral scalar superfield.

In a similar fashion, a right-chiral scalar superfield ŜR can be written as just a

function of x̂† and θR:

ŜR(x, θ ) = S(x̂†) − i
√

2θ̄ψR(x̂†) − iθ̄ θRF(x̂†). (5.44)

This then establishes that the product of two (or more) right-chiral scalar superfields

is a right-chiral scalar superfield.

Exercise By explicit multiplication, or otherwise, convince yourself that the prod-
uct of a left-chiral superfield with a right-chiral superfield is a general superfield.

5.8 Supercovariant derivatives

Covariant derivatives are defined so that when these act on any object, they yield a

new object with the same transformation properties as the original one. For instance,

in gauge theories, unlike the ordinary derivative, the gauge covariant derivative

acting on a field whose components transform according to a representation R of

the gauge group, is a new field with components that transform in the same way.

Since the representation (5.25) of the generator for supersymmetry includes the

second term with a θ in it, it is clear that, under SUSY, the components ∂�̂/∂θ̄

transform differently from those of �̂. This is in contrast to spatial derivatives where,

because Pμ commutes with the super-charge, the components of ∂μ�̂ transform the
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same way as those of �̂. Thus ordinary spacetime derivatives are automatically

covariant with respect to SUSY transformations.

To facilitate the construction of invariant functions of superfields and their deriva-

tives with respect to θ , we want to define a supersymmetric covariant derivative D
so that the components of D�̂ transform the same way as the components of �̂

under a supersymmetry transformation. We thus require,
[

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

]

D�̂ = D

[

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

]

�̂. (5.45)

We will leave it to the reader to verify that the fermionic derivative operator,

D = ∂

∂θ̄
− i∂/ θ, (5.46)

anticommutes with − ∂

∂θ̄
− i∂/ θ and satisfies (5.45) because the fermionic parameter

α anticommutes with θ .

Exercise Verify that the expression for D in (5.46) satisfies (5.45).

For later use, we will define a related derivative D̄ so that D = C D̄T so that

D satisfies the “Majorana condition”. We can readily find the explicit form for D̄.

Starting with D̄ = DT C , we find,

D̄b =
[

∂

∂θ̄a
− i(∂/ θ )a

]

Cab

= ∂

∂θc

∂θc

∂θ̄a
Cab − i(∂/ C θ̄T )aCT

ba

= − ∂

∂θb
+ i(θ̄∂/ )b

so that

D̄ = − ∂

∂θ
+ iθ̄∂/ . (5.47)

We can also define left and right SUSY covariant derivatives by acting on D with

the projectors PL or PR. To do so, we note that θ̄a = θ̄Lb PRba + θ̄Rb PLba immediately

gives us,

∂θ̄a

∂θ̄Lb
= PRba and

∂θ̄a

∂θ̄Rb
= PLba, (5.48)

which implies,

∂

∂θ̄La
= ∂

∂θ̄b

∂θ̄b

∂θ̄La
= ∂

∂θ̄b
PRab. (5.49)



5.8 Supercovariant derivatives 67

Although it should be clear from the context, we clarify that we are taking the

derivative with respect to the conjugates of the spinors θL or θR. A similar relation

holds for ∂/∂θ̄R, so that

∂

∂θ̄L

= PR

∂

∂θ̄
and

∂

∂θ̄R

= PL

∂

∂θ̄
. (5.50)

We then have

DL ≡ PL D = ∂

∂θ̄R

− i∂/ θR (5.51a)

DR ≡ PR D = ∂

∂θ̄L

− i∂/ θL, (5.51b)

where DL + DR = D. Finally, let us also define,

D̄R ≡ DT
L C and D̄L ≡ DT

R C. (5.52a)

Clearly, D̄R + D̄L = (DT
L + DT

R )C = DT C = D̄. Note that once again our defi-

nition is consistent with the “Majorana condition” for the spinorial operator D.

Notice also that,

D̄L = DT
R C = DT PT

R C = D̄ PR , (5.52b)

and

D̄R = DT
L C = DT PT

L C = D̄ PL . (5.52c)

We will leave it to the reader to verify that by steps very similar to those that led us

to (5.51a) and (5.51b) we obtain,

D̄L = − ∂

∂θR

+ iθ̄R∂/ , (5.53a)

and

D̄R = − ∂

∂θL

+ iθ̄L∂/ . (5.53b)

As one more exercise in the manipulation of the supercovariant derivative, we

establish an identity involving DL and DR to be used in the next chapter. We compute

the anticommutation relation

{DLa, DRb} =
{

∂

∂θ̄Ra
− i(∂/ θR)a,

∂

∂θ̄Lb
− i(∂/ θL)b

}

= −i

{

(∂/ θR)a,
∂

∂θ̄Lb

}

− i

{
∂

∂θ̄Ra
, (∂/ θL)b

}

= −i
∂

∂θ̄Lb
(∂/ θR)a − i

∂

∂θ̄Ra
(∂/ θL)b.
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To obtain the last step we can explicitly act on a superfield and, since the θs

anticommute, see that just the terms shown survive. Finally, since θR = C θ̄T
L and

θL = C θ̄T
R , we have ∂θRb/∂θ̄La = Cba and ∂θLb/∂θ̄Ra = Cba , so that

{DLa, DRb} = −i(∂/ C)ab − i(∂/ C)ba

= −2i(∂/ C)ab. (5.54)

Exercise Similarly show that

{DLa, DLb} = {DRa, DRb} = 0.

Thus any term with a product of three DLs or three DRs vanishes.

To conclude this section, we show that the action of DR on a left-chiral superfield

ŜL(θL, x̂) gives zero. To evaluate the first term, we note that the θ̄L dependence enters

only via x̂ , and we can write,

∂ŜL

∂θ̄L

= ∂ŜL

∂ x̂μ

∂ x̂μ

∂θ̄L

= ∂ŜL

∂ x̂μ

i

2

∂(θ̄γ5γ
μθ )

∂θ̄L

= ∂ŜL

∂xμ
· iγ μθL,

where in the last step we used θ̄γ5γμθ = 2θ̄LγμθL. We thus establish the important

property,

DRŜL =
(

∂

∂θ̄L

− i∂/ θL

)

ŜL = 0. (5.55)

Working the steps backwards, we see that this is also a sufficient condition for any

field to be a left-chiral superfield. The reader can similarly show,

DLŜR = 0. (5.56)

We remark that the result of the last exercise in the previous section follows imme-

diately from Eq. (5.55) and (5.56).

5.9 Lagrangians for chiral scalar superfields

Our goal in this section is to present a systematic strategy to construct actions that

are invariant under supersymmetric transformations. This means that the variation

of the Lagrangian density can at most be a total derivative. In fact, the Lagrangian

density can never be a SUSY invariant. This follows simply from the SUSY algebra.
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By manipulations similar to (3.20) of Chapter 3 we get,

(δ2δ1 − δ1δ2)L = −2ᾱ2γμα1∂μL.

This would, of course, have to vanish if L were truly a SUSY invariant. We would

then be led to conclude thatL is a constant and that the theory has no dynamics. Thus,

SUSY transformations always change the Lagrangian density by a (non-vanishing)

total derivative.

The first observations toward our goal stem from Eq. (5.29g) and Eq. (5.35c)

which show that the D-component (the coefficient of (θ̄γ5θ )2) of any superfield

and the F-component of chiral superfields (the coefficient of θ̄ θL of a left-chiral

superfield, or the coefficient of θ̄ θR of a right-chiral superfield) transform as a total

derivative under a SUSY transformation. This leads us to two important conclu-

sions:

� if we take the product of any number of chiral superfields and their Hermitian

conjugates, the D-term of the product superfield will change only by a total

derivative under SUSY transformations, and
� if we take the product of only left- (or only right-) chiral superfields, the F-term

of the product will also change by just a total derivative. The would-be D-term

(i.e. the coefficient of (θ̄γ5θ )2) of this product is already a total derivative.

These D- or F-components of the composite (product) superfield are themselves

products of the ordinary fields that were the components of the individual superfields

in the product. Thus, these D- and F-terms are candidates for a SUSY Lagrangian.

With just chiral scalar multiplets, we can only obtain a theory with spin 0 and spin
1
2

fields.

The recipe for obtaining SUSY invariant actions (given a set of N chiral super-

fields) is now in hand. We start with two functions K (Ŝ†
Li , ŜL j ) and f̂ (ŜLi ) of a

set of left-chiral superfields ŜLi , where i = 1, . . . , N . Since Ŝ†
Li is a right-chiral

superfield, K is a general superfield, while f̂ is a left-chiral superfield. Then, the

D-term of K and the F-term of f̂ are candidates for a SUSY Lagrangian density.

The function K is called the Kähler potential and the function f̂ is known as the

superpotential. We make two clarifying remarks.

� There is no loss of generality in writing the superpotential as a function of just left-

chiral superfields because every right-chiral superfield ŜR j can, by the analogue

of Eq. (5.37), be written as a left-chiral superfield
(
ŜR j

)†
.

� The reader may wonder why we do not include the D-term of the superpotential

in the Lagrangian. We see from Eq. (5.34) that the coefficient of the (θ̄γ5θ )2 term

of any left-chiral superfield is itself a total derivative, and so does not contribute to
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the action. For the same reason, terms in the Kähler potential that do not depend

on both ŜL and Ŝ†
L would also be irrelevant.

Just as the scalar potential specifies any theory of spin zero and spin half fields in

usual field theory, a supersymmetric field theory with chiral superfields is specified

by the Kähler potential together with the superpotential. We now compute the

Lagrangian density for any SUSY theory with just spin zero and spin half fields in

terms of these functions. For simplicity, we will restrict our discussion to theories

that are power counting renormalizable.

5.9.1 Kähler potential contributions to the Lagrangian density

We begin with the computation of the Kähler potential contribution to the action.

This requires us to compute the coefficient of the (θ̄γ5θ )2 term (or the D-term)

of the function K . For this reason, this contribution is frequently known as the

“D-term contribution” to the Lagrangian density.

Renormalizability imposes stringent restrictions on the form of K , and also as

we will see below, on the form of the superpotential. To see this, we have to do

some dimensional analysis. We will denote the mass dimension of any quantity X
as [X ]. Since [P] = 1, from the SUSY algebra {Q, Q̄} = 2γ μ Pμ, we must have

[Q] = [Q̄] = 1/2. (Remember that Q = C Q̄T implies [Q] = [Q̄].) Then from

Eq. (5.25), we obtain [θ ] = [θ̄ ] = −1/2.

If, in our expansion (5.34) of the chiral superfield, we now choose the scalar field

S to have the canonical dimension [S] = 1, then [ψ] = 3/2 and [F] = 2, just as

for the Wess–Zumino model. Indeed the left-chiral superfield ŜL can be assigned

[ŜL] = 1. Since [(θ̄γ5θ )2] = −2, then

[K D-term] = [K ] + 2. (5.57)

If this D-term is to represent a renormalizable Lagrangian, then [K D-term] ≤ 4, so

that

[K ] ≤ 2 (renormalizable theory) (5.58)

and the Kähler potential is at most a quadratic polynomial of Ŝ and Ŝ†. In non-

renormalizable theories (such as supergravity), higher powers may be present. In

fact, then K need not even be a polynomial.

As already noted, chiral superfields have only gradient D-terms, so there is no

point writing linear terms (or for that matter terms involving just Ŝ or just Ŝ†) in

the Kähler potential. In a renormalizable theory, since cubic and higher terms are

not allowed in K , the most general form of K is a real function (to ensure the
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Hermiticity of the Lagrangian density)

K =
N∑

i, j=1

Ai j Ŝ†
i Ŝ j . (5.59)

Without loss of generality, we can choose a basis so that Ai j is diagonal, and the

fields Ŝi can be normalized so that the Aii = 1. Then

K [Ŝ†, Ŝ] =
N∑

i=1

Ŝ†
i Ŝi (5.60)

is a general choice for K in a renormalizable theory.

Exercise For the curl superfield, show that if we choose [V μ] = 1, we would
have [λ] = 3/2 and [D] = 2. Notice that unlike the chiral supermultiplet, the mass
dimension of the curl superfield vanishes, so that renormalizability considerations
do not restrict the power of this multiplet in the Kähler potential. It cannot, of
course, enter the superpotential since it is not a chiral superfield. We will exploit
this in the next chapter when we discuss supersymmetric gauge theories.

We now have only to compute the coefficient of the (θ̄γ5θ )2 term in the product

Ŝ†
i Ŝi . In so doing, we need only keep terms with four θ ’s or θ̄ ’s in any combination.

Multiplying the expansion (5.37) by (5.34), four sets of terms will arise.

The first set of terms is

• 1

8
S†�S(θ̄γ5θ )2 + 1

8
�S†S(θ̄γ5θ )2 + 1

4
(θ̄γ5γμθ )(θ̄γ5γνθ )∂μS†∂νS.

We integrate by parts on each of the first two terms above, and discard the surface

terms. For the third term, apply identity (5.24e). The result is that

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2∂μS†∂μS. (5.61)

The second set of terms is

• iψ̄θR(θ̄γ5θ )θ̄∂/ ψL − i(θ̄γ5θ )θ̄∂/ ψRθ̄ψL.

In the first term, re-write ψ̄θR → ψ̄Lθ and apply the Fierz re-arrangement identity

(5.21) to the θ θ̄ product. The second and third terms of (5.21) lead to vanishing

contributions via the identities (5.24a) and (5.24b), respectively, while the second

term of (5.21) leads to a contribution − i
4
(θ̄γ5θ )2ψ̄L∂/ ψL. Similarly, the second

term of • above leads to a contribution − i
4
(θ̄γ5θ )2ψ̄R∂/ ψR. Since ψ = ψL + ψR is

Majorana, we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2 i

2
ψ̄∂/ ψ. (5.62)
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The third set of terms consists of

• θ̄ θRθ̄ θLF†F .

By expanding the PL and PR projection operators and using (5.24a) and (5.24d),

we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2F†F . (5.63)

A fourth set of terms

• 1

2
θ̄ θR(θ̄γ5γμθ )F†∂μS + 1

2
(θ̄γ5γμθ )θ̄ θL∂μS†F

will identically vanish due to identities (5.24b) and (5.24c).

Putting all the pieces together, we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2{∂μS†∂μS + i

2
ψ̄∂/ ψ + F†F}. (5.64)

We will define the D-term to be the coefficient of the − 1
2
(θ̄γ5θ )2 term in the product

Ŝ†
LŜL since this gives us the canonically normalized kinetic energy terms for the

scalar field S and the Majorana spinor field ψ . The D-term contribution to the

Lagrangian density for a single chiral scalar superfield is thus

LD = ∂μS†∂μS + i

2
ψ̄∂/ ψ + F†F . (5.65)

The field F enters without any derivative. It turns out to be an auxiliary field that

satisfies an algebraic equation of motion.

5.9.2 Superpotential contributions to the Lagrangian density

We now turn to the computation of the superpotential contributions to the La-

grangian density. This is proportional to the coefficient of the θ̄ θL, or the F-term, of

the superpotential function. These contributions are therefore frequently referred

to as F-term contributions. Dimensional analysis tells us that the F-term of the

superpotential f̂ has dimensions [ f̂ ] − 1. In a renormalizable theory, therefore, the

superpotential is at most a cubic polynomial in Ŝi .
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We can formally write any superpotential as a power series about Ŝ = S as,

f̂ (Ŝ) = f̂ (Ŝ = S) +
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i

+ 1

2

∑

i j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j

+ 1

3!

∑

i jk

∂3 f̂

∂Ŝi∂Ŝ j∂Ŝk

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j (Ŝ − S)k

+ · · · (5.66)

Here, Ŝ = S means that after the derivative is evaluated, each superfield is set to

be the scalar component so that these “derivative coefficients” are functions of just

the scalar fields. The terms (Ŝ − S)i are at least linear in θ so that there can be at

most four factors of this type because any product of five θs and θ̄s vanishes. In

fact, because the superpotential is a function of only left-chiral superfields, even

the product of four factors vanishes, so that there really are no terms represented

by the ellipsis in the expansion above.

Let us now isolate the potential sources of the θ̄ θL terms in f̂ (Ŝ) whose coefficient

is the item of interest to us. We see that:

1. the first term in the expansion will not contribute since it has no θs,

2. the last terms cannot contribute since they all contain at least three θs,

3. the
∑

i ∂ f̂ /∂Ŝi |Ŝ=S(Ŝ − S)i term contributes with the θ̄ θL coefficient from

Ŝ − S, and

4. the 1
2

∑

i j ∂2 f̂ /∂Ŝi∂Ŝ j |Ŝ=S(Ŝ − S)i (Ŝ − S) j term contributes when (Ŝ − S)i

and (Ŝ − S) j each contribute a term linear in θ .

The form of the term from item 3 above is easy to write down; using (5.34) it is

just

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i = ∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(
iFi θ̄ θL

)
. (5.67)

The term from item 4 can be written as

1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j = 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(i
√

2ψ̄i PLθ )(i
√

2θ̄ψ jL)
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= 1

4

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PL

[
θ̄ θ1 + θ̄γ5θ · γ5 − θ̄γμγ5θ · γ μγ5

]
PLψ j

= 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

θ̄ θLψ̄i PLψ j , (5.68)

where we have used identity (5.21).

The coefficient of θ̄ θL in f̂ (Ŝ) is thus

i
∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi + 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j , (5.69)

where a sum over the various fields is implied. This term is not Hermitian, since

f̂ is intrinsically complex. However, we note that the F-term of the right-chiral

superfield [ f̂ (Ŝ)]† which also leads to a SUSY-invariant action gives just the Her-

mitian conjugate of the expression (5.69). We will add this to obtain a Hermitian

Lagrangian density.

In defining the F-terms, we will actually take the coefficient of−θ̄ θL as the choice

for a Lagrangian. This is purely conventional. We will choose the size of the terms

in the superpotential to give mass and interaction terms with usual normalizations

in the Lagrangian density. Thus,

LF = −i
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi − 1

2

∑

i, j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j

+ i
∑

i

⎛

⎝
∂ f̂

∂Ŝi

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

F†
i − 1

2

∑

i, j

⎛

⎝
∂2 f̂

∂Ŝi∂Ŝ j

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PRψ j .

(5.70)

We remark that nowhere in our derivation of (5.70) did we need to assume the

dimensionality of the superpotential.

5.9.3 A technical aside

The careful reader may have noticed that we did not allow the superpotential to con-

tain terms involving supercovariant derivatives of the superfield. This is because the

supercovariant derivative of a chiral superfield is not, in general, a chiral superfield.

However, by the exercise immediately following (5.54), we see that the product

of any three right (or left) supercovariant derivatives vanishes. Hence, even for a

general superfield �̂, D̄L DR�̂ must be a left-chiral superfield (since DR acting on

this vanishes). This raises the question whether such terms (or functions thereof)
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may be included in the superpotential of a more general theory not involving just

chiral superfields.

First, we note that up to total derivatives, this term is just −∂2�̂/∂θR∂θ̄L so that

it just removes one θR and one θ̄L from the general expansion (5.4) of �̂. Aside

from total derivatives, this then leaves only terms with M or N (with no θ or θ̄ ), a

term with λ (with one θ̄ ) and a term with D (with a θ̄γ5θ ). Up to total derivatives,

the F-term (which is proportional to the coefficient of θ̄ θL) of D̄L DR�̂ is then just

a multiple of the D component of �̂ and would be included in our general list of

contributions from the Kähler potential.

Next, the reader may worry about terms like ŜL D̄L DR�̂ since this is also a

left-chiral superfield. However, since DRŜ = D̄LŜ = 0, this can be written as

D̄L DR(Ŝ�̂) which we just argued that we do not need to include. Powers of D̄L DR�̂

are just a special case of this. We thus see that there is no loss of generality in not

including supercovariant derivatives of superfields in the superpotential as long as
we allow for a general Kähler potential (which can include terms involving these

derivatives). In a renormalizable theory, however, the choice of Kähler potential is

greatly restricted as we have already noted. Finally, we remark that our analysis

above shows that certain F-terms (which lead to non-renormalizable interactions

in four dimensions) can be rewritten as D-terms.

5.9.4 A master Lagrangian for chiral scalar superfields

We can now combine the D- and F-term Lagrangian candidates above to arrive

at the general Lagrangian for renormalizable theories involving only chiral scalar

superfields:

L = LD + LF

=
∑

i

[

∂μS†
i ∂

μSi + i

2
ψ̄i∂/ ψi + F†

i Fi

]

− i
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi − 1

2

∑

i, j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j

+ i
∑

i

⎛

⎝
∂ f̂

∂Ŝi

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

F†
i − 1

2

∑

i, j

⎛

⎝
∂2 f̂

∂Ŝi∂Ŝ j

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PRψ j . (5.71)

We see that while the fields Si and ψi have conventional kinetic energy terms, the

fields Fi have no kinetic energy term, and so are not dynamical fields.
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At this stage we eliminate these auxiliary fields from the Lagrangian by using

their (algebraic) Euler–Lagrange equations:

∂L
∂F†

i

= 0 ⇒ Fi + i

(

∂ f̂

∂Ŝi

)†

= 0, (5.72a)

∂L
∂Fi

= 0 ⇒ F†
i − i

∂ f̂

∂Ŝi

= 0. (5.72b)

We thus obtain the general supersymmetric Lagrangian for theories with just scalars

and spinors to be

L =
∑

i

(∂μSi )
†(∂μSi ) + i

2

∑

i

ψ̄i∂/ ψi −
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S

− 1

2

∑

i, j

[

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i
1 − γ5

2
ψ j + h.c.

]

. (5.73)

The third term yields the scalar potential (which is quartic if the superpotential is

cubic). The masses and Yukawa interactions of fermions are all included in the last

term. The model dependence of the theory enters via the choice of the superpotential

which can be an arbitrary function (at most a cubic polynomial for renormalizable

theories) of left-chiral superfields, but not their Hermitian conjugates.

Exercise (Recovering the Wess–Zumino model) To recover the Wess–Zumino
model, complete with interactions, create a theory with a single left-chiral scalar
superfield ŜL � (S, ψL, F). Let S = A+iB√

2
and F = F+iG√

2
, where A, B, F, and

G are real scalar fields. Assume a superpotential of the form f̂ = 1
2
mŜ2 + 1

3
gŜ3.

Recover the Lagrangian terms given in Eq. (3.1b), (3.1c), and (3.43). This exercise
completes the proof that the WZ model interaction terms Eq. (3.43) are, in fact,
supersymmetric.

5.10 The action as an integral over superspace

Supersymmetric actions are commonly expressed as integrals over superspace.

To understand how this is accomplished, we must first define integration over

Grassmann numbers. Consider the integral over the entire range of η of a function

f (η) of a single Grassmann variable η:
∫

f (η)dη =
∫

(A + Bη)dη,
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where we have expanded f as a power series in η. Following Berezin,3 we define
∫

dη = 0 (5.74a)

∫

dη · η = 1. (5.74b)

Notice that (5.74b) implies that the dimension of η is the negative of that of dη –

hence dη should not be thought of as an increment of η. This then gives
∫

f (η)dη =
∫

(A + Bη)dη = B.

Exercise Verify that with this definition, Berezin integration is a linear operation,
i.e. that

∫
dη[a f (η) + bg(η)] = a

∫
dη f (η) + b

∫
dηg(η), where a and b are (com-

muting) constants and f and g are functions. Show also that the integral
∫

dη f (η)

over the entire range of η is invariant under finite shifts η → η + η′ of the integra-
tion variable by a Grassmann-valued constant.

For integrals over several Grassmann variables, there is a sign ambiguity. We de-

fine the integral over several variables by requiring that the variable to be integrated

first be moved to the extreme left: we thus have,
∫

dη1dη2 · η1η2 = −
∫

dη1dη2 · η2η1 = −1. (5.75)

We are now ready to see how to write the D- and F-term contributions to the

action as integrals over superspace. The D-term contribution to the Lagrangian

density was defined as the coefficient of − 1
2
(θ̄γ5θ )2 when the Kähler potential

is expanded in the canonical form. Since (θ̄γ5θ )2 is quartic in the θs, it must be

proportional to θ1θ2θ3θ4. Plugging in an explicit representation for the Dirac γ

matrices shows that (θ̄γ5θ )2 = 8 θ4θ3θ2θ1. A look at (5.4) then tells us that
∫

dθ1dθ2dθ3dθ4 K
(
Ŝ†, Ŝ

) ≡
∫

d4θ K
(
Ŝ†, Ŝ

)

equals 8 times the coefficient of (θ̄γ5θ )2 in the expansion of K . Since we have

defined the D-term as the coefficient of − 1
2
(θ̄γ5θ )2, we can write the D-term part

of the action as,
∫

d4xLD = −1

4

∫

d4xd4θ K
(
Ŝ†, Ŝ

)
. (5.76)

3 See The Method of Second Quantization, F. A. Berezin, Academic Press (1966).
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To see how to write the F-term action as a superspace integral, it is most straight-

forward to work in the chiral representation where, as in (4.9), the upper (lower)

components of the spinor correspond to the two left-(right-)chiral components; i.e.

(θ1, θ2, θ3, θ4) = (θL1, θL2, θR1, θR2). It is then easy to check that θ̄ θL = 2θL2θL1.

From the form (5.34) for the expansion of an (elementary or composite) left-chiral

superfield, we see that
∫

dθL1dθL2 f̂ (ŜL) ≡
∫

d2θL f̂ (ŜL)

is exactly twice the coefficient of θ̄ θL in the expansion of the superpotential. Since

the F-term contribution to the Lagrangian density was defined to be the coefficient

of −θ̄ θL in this expansion, we see that the F-term part of the action can be expressed

as
∫

d4xLF = −1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

. (5.77)

While the F-term of left-chiral superfields involves integration over just the two

Grassmann co-ordinates θL1 and θL2, the D-term involves an integration over θR1

and θR2 as well. In the literature, it is instead common to see integrations over

d2θ and d2θ̄ , where θ and θ̄ are two-component spinors. Eq. (4.9) provides the

connection. The two undotted components in (4.9) of the Majorana spinor θ (i.e.

the two components of our θL) are frequently denoted by θi while the two dotted

components are denoted by θ̄ i (i = 1, 2). The analogue of our integration over the

two θL (θR) co-ordinates is then integration over the two components of θ (θ̄ ).
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Supersymmetric gauge theories

Local gauge invariance is a very powerful requirement. It is a symmetry principle

that provides a powerful rationale for (Yang–Mills type) dynamics which, together

with the ideas of spontaneous symmetry breaking, forms the basis of the Standard

Model. To preserve the spectacular success of the Standard Model, it is reasonable to

expect that its supersymmetric extension will incorporate the gauge principle. This

then leads us to consider theories that are both supersymmetric and locally gauge

invariant. In this chapter, we develop a formula analogous to Eq. (5.73) for a gauge

invariant supersymmetric model with an arbitrary gauge group and any number of

“matter” chiral superfields in specified representations of this group. This formula

will then be our starting point for developing the Minimal Supersymmetric Standard

Model or, for that matter, globally supersymmetric grand unified theories.

6.1 Gauge transformations of superfields

We saw in Chapter 4 that internal symmetry transformations must commute with

the super-charge. Thus the various components of the superfields must transform

in the same way under any internal symmetry transformation and, in particular,

under a local gauge transformation. Hence, for a chiral scalar supermultiplet with

components (S, ψ, F), we want the Lagrangian density to be invariant under the

local gauge transformations,

Sa(x) → [
eigtAωA(x)

]

ab Sb(x), (6.1a)

ψa(x) → [
eigtAωA(x)

]

ab ψb(x), (6.1b)

Fa(x) → [
eigtAωA(x)

]

ab Fb(x), (6.1c)

where we write the local transformation parameters as ωA(x) to distinguish them

from the SUSY transformation parameter α or the Majorana coordinate θ . The

ωA(x) are, of course, real functions of x , g is the gauge coupling constant, and the

79
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tA are matrix representations of the generators of the gauge group that satisfy the

Lie algebra [tA, tB] = i f ABC tC .

What would be the corresponding transformation property of the superfield Ŝ(x)?

The answer would be easy if the ωA were independent of x : then we would have

simply that Ŝa → [
eigtAωA

]

ab Ŝb. However, such a form cannot be correct for a

local gauge transformation because of the derivatives that appear in the expansion

in Eq. (5.34) or (5.36).

Recall, however, that the expansion (5.40) of the superfield in terms of x̂ =
x + i

2
θ̄γ5γμθ has no derivatives. We would then be tempted to consider the trans-

formations,

Ŝa(x̂, θ ) → [
eigtAωA(x̂)

]

ab Ŝb(x̂, θ ).

The component fields would then transform as

Sa(x̂) → [
eigtAωA(x̂)

]

ab Sb(x̂),

ψa(x̂) → [
eigtAωA(x̂)

]

ab
ψb(x̂),

Fa(x̂) → [
eigtAωA(x̂)

]

ab
Fb(x̂).

These reduce to (6.1a)–(6.1c) for θ = 0. This cannot, however, be right either

because after the gauge transformation, the components of Ŝ, which was a left-

chiral superfield, no longer transform as a left-chiral superfield. This is because

eigtAωA(x̂) (which has only one component field ωA) is not a left-chiral superfield.

To ensure that the gauge transformed left-chiral superfield remains a left-chiral

superfield, we are forced to introduce a set of left-chiral scalar superfields �̂A

with as many members as the generators of the gauge group. We then consider the

superfield transformation,

Ŝa(x̂, θ ) →
[

eigtA�̂A(x̂)
]

ab
Ŝb(x̂, θ ), (6.2)

which at least has the virtue that the transform of a left-chiral superfield remains a

left-chiral superfield. The components then transform as

Sa(x̂) →
[

eigtA�̂A(x̂)
]

ab
Sb(x̂), (6.3a)

ψa(x̂) →
[

eigtA�̂A(x̂)
]

ab
ψb(x̂), (6.3b)

Fa(x̂) →
[

eigtA�̂A(x̂)
]

ab
Fb(x̂). (6.3c)

Setting θ = 0, i.e. looking at the scalar components of (6.3a)–(6.3c), we see that

we almost recover (6.1a)–(6.1c), except for what looks like a complex gauge trans-

formation parameter (since the scalar components of �̂A are complex functions of

x). We will return to this later.



6.1 Gauge transformations of superfields 81

We stress here that the “parameter superfield” �̂ is not a dynamical degree

of freedom. Its components are just classical functions (Grassman-valued in the

fermion case) of the spacetime co-ordinates. We need to introduce such a field so

that after a gauge transformation, chiral superfields transform appropriately under

a supersymmetry transformation.

Now that we have been able to sensibly extend the notion of gauge transforma-

tions to chiral superfields, we proceed to examine how to couple these in a gauge

invariant way. Here, and in the following, by gauge invariance we will mean in-

variance under this extended gauge transformation. Since all interactions of chiral

superfields with one another are given by the superpotential, we begin our study

with that. However, because the superpotential is simply a polynomial of chiral

superfields and does not contain any spacetime or supercovariant derivatives, it is

clear that choosing it to be invariant under global gauge transformations ensures it

is also invariant under the transformations (6.2). The Lagrangian density derived

from this is then also invariant.

We thus have only to worry about the Kähler potential contributions which give

rise to the kinetic terms for the component fields. For renormalizable theories, the

Kähler potential is given by (5.60). We see immediately that this term is not invariant

under the transformation (6.2) for the chiral superfield because the gauge param-

eter superfield �̂A is intrinsically complex. We have (with matrix multiplication

implied),

Ŝ† → Ŝ†e−igtA�̂
†
A

and, as a result, the Kähler potential term,

Ŝ†Ŝ → Ŝ†e−igtA�̂
†
A eigtB�̂B Ŝ

is no longer a gauge invariant. This should not be surprising. In the usual formulation

of gauge theories, kinetic terms for the scalar or fermion fields are also not gauge

invariant. We have to introduce new fields (the gauge potentials) and couple these to

the scalars or fermions via a gauge covariant derivative to obtain a gauge invariant

Lagrangian that includes these kinetic terms.1

Towards this end, we are led to introduce a set of gauge potential superfields

�̂A in which the vector potentials reside. These are not chiral superfields, but are

chosen to satisfy the reality conditions �̂
†
A = �̂A so that their bosonic components

are real while their fermionic components are Majorana. This ensures that the vector

potential and the gauge field strength are real. The SUSY transformation rules for

1 In fact, the parallel is exact since global gauge invariance of the Yukawa interactions of fermions as well as
the scalar potential ensures these are also locally gauge invariant, just as the global gauge invariance of the
superpotential (which leads to Yukawa interactions and the scalar potential in a supersymmetric theory) also
guarantees its local gauge invariance.
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its components are given by Eq. (5.29a)–(5.29g) of Chapter 5 (with the index A
implied). We will see shortly that it is possible to work with the components S,

ψ,M, and N set to zero. The curl supermultiplet that contains the field strengths

is then constructed from �̂A, just as the field strengths Fμν

A are constructed from

the vector potentials.

In order to maintain local gauge invariance of the Kähler potential, we modify

it to,2

K = Ŝ†e−2gtA�̂A Ŝ (6.4)

where it is, of course, implicit that the dimensionality of the matrix tA depends on

the representation to which the chiral superfield belongs. We then require that the

Kähler potential remains invariant under a gauge transformation, i.e.

Ŝ†e−igtP �̂
†
P e−2gtA�̂′

A eigtQ�̂Q Ŝ = Ŝ†e−2gtA�̂A Ŝ.

This then fixes the gauge transformation rule for the fields �̂A to be,

e−igtP �̂
†
P e−2gtA�̂′

A eigtQ�̂Q = e−2gtA�̂A . (6.5)

Notice that the Kähler potential is now not a polynomial in the fields since the

field �̂ is exponentiated. It still has mass dimension 2, however, because as noted in

the exercise following Eq. (5.60) of the last chapter, [�̂] = 0, and renormalizability

is not affected.

Let us define a left-chiral superfield

gtAŴA ≡ − i

8
D̄DR

[

e2gtC �̂C DLe−2gtB�̂B

]

(6.6)

where the DR/L are the right/left supercovariant derivatives defined in Chapter 5.

Its chiral nature follows because we have already checked (see the exercise be-

low (5.54)) that the components of DR anticommute, so that by the “Majorana

character” of D, DR(D̄DR) = DR(DT
R C DR) = 0. The leading component (i.e. the

θ -independent term) of the superfield ŴA is a spinor, and we will call this a left-

chiral spinor superfield (as opposed to a left-chiral scalar superfield).

Exercise Convince yourself that none of the properties that we have derived for
chiral superfields depended upon the fact that the leading component was a scalar.
In other words, these properties of chiral superfields hold for ŴA also. In particular,
powers of ŴA are left-chiral superfields (though not necessarily Lorentz scalars).

2 The Kähler potential (5.60) of a renormalizable theory is trivially invariant under global gauge transfor-

mations. More generally, if the Kähler potential K (ŜL, Ŝ†
L) is chosen to be globally gauge invariant, then

K (ŜL, Ŝ†
Le−2gtA�̂A ) will also be locally gauge invariant if �̂A transform as discussed below. This is because

the product of any representation times the adjoint contains the original representation.
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Since we know the corresponding transformation rule for �̂A, we can now work

out how the fields ŴA transform under a gauge transformation. We have,

gtAŴA →
− i

8
D̄DR

[

eigtP �̂P e2gtC �̂C e−igtP ′ �̂†
P ′ DLe

igtQ′ �̂†
Q′ e−2gtB�̂B e−igtQ�̂Q

]

.

Now, since DL�̂
†
Q′ = 0 (because �̂

†
Q′ is a right-chiral superfield),

e−igtP ′ �̂†
P ′ DLe

igtQ′ �̂†
Q′ = DL,

and our gauge transformation simplifies to,

gtAŴA → − i

8
D̄DR

[

eigtP �̂P e2gtC �̂C DLe−2gtB�̂B e−igtQ�̂Q

]

.

The same type of argument allows us to move D̄DR past the left-chiral superfield

eigtP �̂P , and we find that

gtAŴA → − i

8
eigtP �̂P

[

D̄DRe2gtC �̂C DLe−2gtB�̂B e−igtQ�̂Q

]

.

The DL in the square brackets may act on either e−2gtB�̂B or e−igtQ�̂Q . When it acts

on the latter, the corresponding contribution to the square bracket becomes,

D̄DR DLe−igtQ�̂Q .

Since DRe−igtQ�̂Q = 0, we can replace DR DL by the anticommutator, and then

using (5.54), obtain DR DLe−igtQ�̂Q = −2i∂/ Ce−igtQ�̂Q . Then, since spacetime and

supersymmetric covariant derivatives commute, we get

D̄DR DLe−igtQ�̂Q = −2i∂μ D̄Lγ μCe−igtQ�̂Q =
2i∂μ D̄LCγ μT e−igtQ�̂Q = −2i∂μ(γ μ DRe−igtQ�̂Q )T = 0

where the expression in the brackets vanishes because �̂Q is left handed. Thus, we

only get a contribution when DL acts on e−2gtB�̂B thereby giving us our final result

for the gauge transformation of ŴA,

tAŴA → eigtP �̂P tB ŴBe−igtQ�̂Q . (6.7)

Notice that unlike the transformation law (6.5) for the gauge potential superfields

�̂A which entailed both �̂A and �̂
†
A, the transformation law for tAŴA brings in

only the fields �̂A. In fact, tAŴA transforms as a gauge field strength F A
μν (except

that the local transformation parameter is a superfield).3

3 See, for example, Introduction to Quantum Field Theory by M. Peskin and D. Schroeder, Perseus Press (1995),
Eq. (15.36), where the field strength transforms as tA Fμν A → eigtP αP tB FμνB e−igtQαQ .
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Let us summarize the main results for local gauge transformations of superfields.

Chiral superfields transform as

Ŝ → eigtA�̂A Ŝ and Ŝ† → Ŝ†e−igtA�̂
†
A ; (6.8a)

the gauge potential superfield transforms as

e−2gtA�̂A → eigtP �̂
†
P e−2gtB�̂B e−igtQ�̂Q ; (6.8b)

finally, the superfields

gtAŴA = − i

8
D̄DR

[

e2gtC �̂C DLe−2gtB�̂B

]

transform as

tAŴA → eigtP �̂P tB ŴBe−igtQ�̂Q . (6.8c)

We will see below that it is the superfield ŴA that contains the field strength Fμν

A ,

and we will work out its other components. But first, to connect up this rather

formal discussion with the usual formulation of gauge theories, let us work out the

transformations (6.8b), and later (6.8c), in terms of the component fields.

6.2 The Wess–Zumino gauge

In the last chapter, we showed that under supersymmetry the Fμν , λ, and the D
components of the curl superfield transformed into one another, but we did not

discuss the other components of this multiplet. The reason for this, as we show

next, is that we can work with all but the λ, V μ, and D components of the gauge
potential superfield set to zero. Then, because the curl superfield is derived from

the gauge potential, the question of the other components does not arise.

6.2.1 Abelian gauge transformations

We begin by working out the transformations (6.8b) in component form for an

Abelian theory. In this case, (6.8b) reads,

g�̂′ = g�̂ + i
g

2
(�̂ − �̂†). (6.9)

Notice that i g
2
(�̂ − �̂†) is a real superfield so that �̂ remains real under a gauge

transformation.

Recall that �̂ is a classical left-chiral scalar superfield. We denote its components

by ω, ξL, and ζ . We are abusing notation here by using the symbol ω both for the

(real) parameter of the local gauge transformation in (6.1a)–(6.1c) as well as for the



6.2 The Wess–Zumino gauge 85

(complex) scalar component of �̂, but we trust that this will not cause confusion.

We can expand �̂ in its canonical form,

�̂ = ω(x) + i
√

2θ̄ ξL(x) + iθ̄ θLζ (x) + i

2
θ̄γ5γμθ∂μω(x)

− 1√
2
θ̄γ5θ θ̄∂/ ξL(x) + 1

8
(θ̄γ5θ )2�ω(x). (6.10)

Then,

i
g

2
(�̂ − �̂†) = i

g

2

{

i
√

2ωI + i
√

2θ̄ ξ + i√
2
θ̄ θζR + 1√

2
θ̄γ5θζI

+ i√
2

(θ̄γ5γμθ )∂μωR + 1√
2
θ̄γ5θ θ̄∂/ γ5ξ + i

√
2

8
(θ̄γ5θ )2�ωI

}

,

where, ω = ωR+iωI√
2

and ζ = ζR+iζI√
2

. Reading off the components of (6.9) immediately

tells us that under a gauge transformation, the various components of �̂ transform as,

S ′ = S − 1√
2
ωI, (6.11a)

ψ ′ = ψ − i

2
γ5ξ, (6.11b)

M′ = M − 1√
2
ζI, (6.11c)

N ′ = N − 1√
2
ζR, (6.11d)

V μ′ = V μ − 1√
2
∂μωR, (6.11e)

λ′ = λ, (6.11f)

D′ = D. (6.11g)

This transformation preserves the reality of the Bose fields and the Majorana

nature of the Fermi fields.

The important thing to note is that even if we started with a multiplet with non-

zero (S, ψ, M, N , V μ, λ, D), by choosing ωI, ξ , ζI, and ζR appropriately, we

can set S ′, ψ ′, M′, and N ′ to zero! This choice is called the Wess–Zumino gauge.

Of course, if after setting these to zero we perform another SUSY transformation,

we will re-generate these components again. Thus, the Wess–Zumino (WZ) gauge

is not supersymmetric.
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The local parameter ωR(x) is not fixed by our choice of the WZ gauge, and the

transformation corresponding to just this parameter reads,

V μ′ = V μ − 1√
2
∂μωR, (6.12a)

λ′ = λ, (6.12b)

D′ = D, (6.12c)

while the other components are not affected by it. We still have the freedom to

perform the gauge transformations (6.12a)–(6.12c). But these are the usual gauge

transformations for an Abelian theory. The gauge field changes by a gradient, and the

transformation parameter is the real part of the scalar component of the parameter

superfield �̂, while the other components (which, being partners of a gauge field,

must be neutral) remain invariant under the gauge transformation. In other words,

the choice of the WZ gauge does not fix the gauge in the usual sense of the term.

6.2.2 Non-Abelian gauge transformations

We will now work out the transformation laws for the gauge potential superfields

of a non-Abelian gauge theory. Our starting point will be Eq. 6.8b:

e−2gtA�̂′
A = eigtP �̂

†
P e−2gtB�̂B e−igtQ�̂Q . (6.13)

In this case, because the matrices tA do not commute with one another, it is not

possible to explicitly display the transformation to the WZ gauge as we did for

the Abelian case above. Using the fact that a product of the exponential of three

arbitrary matrices u, v, and w can be written (using the Baker–Campbell–Hausdorff

formula) as,

euevew = ez,

with

z = u + v + w + 1

2
[u, v] + 1

2
[u, w] + 1

2
[v, w] + · · · ,

where the ellipsis denotes terms with nested commutators, we see that (6.13) gives

us,

2gtA�̂′
A = 2gtB�̂B + igtB(�̂B − �̂

†
B) + g2 fBC DtD(�̂B�̂C − �̂C�̂

†
B)

+ ig2

2
fBC DtD�̂B�̂

†
C + · · · (6.14)

The nested commutators that we have ignored have even higher powers of couplings.

We first observe that the first two terms of (6.14) are the same as the corresponding
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equation for the Abelian case. Moreover all other terms, including the ellipsis,

vanish in this case since the structure constants are zero. We now see that there

is an iterative procedure for going to the WZ gauge for the non-Abelian case. To

zeroth order in g, the gauge transformation that we need is identical to (6.11a)–

(6.11g) discussed above. But this must be corrected to the next order in g to include

terms on the second line of (6.14), and then again to include the yet higher order

terms denoted by the ellipsis. The point of this argument is only to convince the

reader that there is a Wess–Zumino gauge even for non-Abelian theories, where the

SA, ψA,MA, and NA components of the field �̂A can be set to zero.

From now on, we will work in the WZ gauge where the gauge potential superfield

can be written as,

�̂A = 1

2
(θ̄γ5γμθ )V μ

A + iθ̄γ5θ θ̄λA − 1

4
(θ̄γ5θ )2DA. (6.15)

We must remember that the components ωIA, ξA, and ζA of the parameter superfield

�̂A are now fixed, and the only gauge freedom corresponds to transformations that

depend on the parameter ωRA (which, we will see, is the gauge transformation

in the conventional sense). We will thus compute how the components of �̂A

change under the gauge transformation (6.13) taking the parameter superfield with

ωIA = ξA = ζA = 0, and ωRA/
√

2 ≡ αA. In other words, we take,

�̂A = αA(x) + i

2
(θ̄γ5γμθ )∂μαA(x) + 1

8
(θ̄γ5θ )2�αA(x) (6.16)

and

�̂
†
A = αA(x) − i

2
(θ̄γ5γμθ )∂μαA(x) + 1

8
(θ̄γ5θ )2�αA(x). (6.17)

This transformation clearly preserves the WZ gauge. For simplicity, we will only

compute an infinitesimal gauge transformation.

In evaluating the LHS of (6.13), we need only keep terms in the expansion of

the exponential to second order, since each term in (6.15) is at least quadratic in θ .

Thus,

e−2gtA�̂′
A = 1 − gθ̄γ5γμθ (t · V μ′) − 2ig(θ̄γ5θ )θ̄ (t · λ′)

+ 1

2
(θ̄γ5θ )2

{
gt · D′ − (gt · V μ′)(gt · V ′

μ)
}
. (6.18)

We have used (5.24e) to cast the expression in canonical form and introduced the

notation t · X as a shorthand for tA X A.
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A straightforward substitution of (6.16), (6.17), and (6.15) into the RHS of

Eq. (6.13) yields, to first order in αA,

1 − gtA

[

θ̄γ5γμθV μ

A + 2i(θ̄γ5θ )θ̄λA − 1

2
(θ̄γ5θ )2DA

]

− 1

2
g2tAtB(θ̄γ5θ )2V μ

A VμB

+ ig
[

(α · t), e−2gtA�̂A

]

+ g

2
θ̄γ5γμθ

{

∂μα · t, e−2gtA�̂A

}

+ i

8
g(θ̄γ5θ )2

[

�α · t, e−2gtA�̂A

]

.

The last term of this expression vanishes because the commutator has at least two

θs yielding a term with more than four θs. The second last term involving an

anticommutator has two non-vanishing terms:

gθ̄γ5γμθ∂μα · t + g2

2
(θ̄γ5θ )2∂μαAVμB{tA, tB}.

The third last term becomes

− ig
[
(α · t), gt · V μθ̄γ5γμθ

] + 2g
[
(α · t), gθ̄ t · λ

]
θ̄γ5θ

+ i
g

2
[(α · t), gt · D] (θ̄γ5θ )2 − i

g

2

[
(α · t), (gt · V μ)(gt · Vμ)

]
(θ̄γ5θ )2.

Putting all the pieces together, the RHS of (6.13) becomes

1 − θ̄γ5γμθ (gt · V μ − g∂μα · t + ig[α · t, gt · V μ])

− 2i(θ̄γ5θ )θ̄ (gt · λ + ig[α · t, gt · λ])

+ 1

2
(θ̄γ5θ )2

(
gD · t − (gt · V μ)(gt · Vμ) + g2∂μαAVμB{tA, tB}

+ ig2[α · t, t · D] − ig[α · t, (gt · V μ)(gt · Vμ)]
)
. (6.19)

Equating the coefficients of −gθ̄γ5γμθ in (6.19) and (6.18) leads to,

(t · V μ′) = t · V μ − ∂μα · t + igαAV μ

B [tA, tB]. (6.20)

Comparing coefficents of −2ig(θ̄γ5θ )θ̄ gives,

(t · λ′) = t · λ + igαAλB[tA, tB]. (6.21)

Finally, by equating coefficients of g
2
(θ̄γ5θ )2 we get,

t · D′ − g(t · V μ′)(t · V ′
μ) = t · D + igαADB[tA, tB] − g(t · V μ)(t · Vμ)

+ g∂μαAVμB{tA, tB} − ig2αAV B
μ V μC [tA, tBtC ].
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Exercise Using the relation

i[tA, tBtC ] = − f AB DtDtC − f AC DtBtD,

show that Eq. (6.20) leads to

−g(t · V μ′)(t · V ′
μ) = − g(t · V μ)(t · Vμ) + gVμA∂μαB{tA, tB}

− ig2[tA, tBtC ]αAV B
μ V μC .

Using the result of the exercise above, it is easy to show that

D′
C = DC − g f ABCαADB . (6.22)

It is now easy to see from (6.20) and (6.21) that for an infinitesimal gauge

transformation by a parameter αA, the component fields of the gauge potential

superfield transform as,

V μ′
C = V μ

C − ∂μαC − g f ABCαAV μ

B , (6.23a)

λ′
C = λC − g f ABCαAλB, (6.23b)

D′
C = DC − g f ABCαADB . (6.23c)

The first of these is exactly what we expect for the gauge transformation of a non-

Abelian gauge potential. The vector field V μ

C does not transform covariantly in

that its transformation includes the inhomogeneous ∂μαC piece. The fields λC and

DC transform covariantly under the gauge transformation (i.e. the transformation

is homogeneous). For the λC , for instance, this is just what we expect since it

corresponds to fermions in the adjoint representation of the gauge group.

6.3 The curl superfield in the Wess–Zumino gauge

Before we can proceed with the construction of supersymmetric Lagrangians for

gauge theories, we need to work out the explicit form of the curl superfield ŴA

introduced in Eq. (6.6):

gtAŴA = − i

8
D̄DR

[

e2gtA�̂A DLe−2gtB�̂B

]

.

We will work in the WZ gauge where �̂A is given by (6.15). The calculation is

rather lengthy, so we will break it up into a number of steps, and leave it to the

reader to work through the details.

Step 1: Act with D = ∂/∂θ̄ − i∂/ θ on e−2gtA�̂A to obtain

De−2gtA�̂A = −2gt · V μ(γ5γμθ ) + ig
[
θ̄ θγ5t · λ − (θ̄γ5θ )t · λ − θ̄γ5γαθγ αt · λ

]

+ 2(θ̄γ5θ )γ5θ{gt · D − g2(t · V )2} − ig(t · ∂/ �V )θ (θ̄γ5θ )

− 1

2
g(θ̄γ5θ )2γ5(t · ∂/ λ), (6.24)
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where we have, as usual, made use of various θ identities to cast the result in

canonical form.

Step 2: Act with PL on the above expression to obtain

DLe−2gtA�̂A = 2gt · �V θR − ig
[
2θ̄ θRt · λL + θ̄γ5γαθγ αt · λR

]

− 2(θ̄γ5θ )θL{gt · D − g2(t · V )2}
− ig(t · ∂/ �V )θL(θ̄γ5θ ) + 1

2
(θ̄γ5θ )2(gt · ∂/ λR). (6.25)

Step 3: Next we multiply this by e2gt ·�̂ to find after some tedious algebra,

e2gt ·�̂ DLe−2gt ·�̂ = 2gt · �V θR − 2igθ̄ θRt · λL − ig(θ̄γ5γαθ )γ αt · λR

− 2θ̄γ5θ{gt · D + i
g

2
(t · ∂/ �V ) + 1

2
ig2 f ABC tC �VB �VA}θL

+ 1

2
(θ̄γ5θ )2

{
(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR

}
. (6.26)

The structure constants in (6.26) come from writing the product tAtB of Lie algebra

generators as the sum of a commutator and an anticommutator. The former gives

the structure constants, while the symmetry of the latter (under interchange of A
and B) helps to reduce the expression to the form given above.

Step 4: Work out D̄ 1+γ5

2
D to find

D̄
1 + γ5

2
D = − ∂

∂θa
PRab

∂

∂θ̄b
+ θ̄ θL� − 2i(PR∂/ θ )c

∂

∂θc
. (6.27)

We can now work out the action of ∂
∂θa

PRab
∂

∂θ̄b
on various terms in (6.26) involving

θ . Using (5.26a)–(5.26e), we obtain:

∂

∂θa
PRab

∂

∂θ̄b
θ̄ PRθ = 4, (6.28a)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5γαθ ) = 0, (6.28b)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5θ )θLc = 4θLc, and (6.28c)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5θ )2 = −8θ̄ θL. (6.28d)
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We thus obtain the action of D̄ 1+γ5

2
D on (6.26) to find

8igt · λL + 8{gt · D + i
g

2
(t · ∂/ �V ) + i

g2

2
f ABC tC �VB �VA}θL

+ 4θ̄ θL{(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR} + 2gθ̄ θL(t · � �V )θR

+ ig(θ̄γ5θ )2(t · �λL) − 4ig∂μ(t · �V )γ μθL − 8gθ̄∂/ θL(t · λL) + 4g∂/ t · λRθ̄ θL

+ 8iθ̄∂/ θL{gt · D + i
g

2
(t · ∂/ �V ) + i

2
g2 f ABC tC �VB �VA}θL. (6.29)

Step 5: To complete our calculation, we will exploit the fact that ŴA is a left-

chiral superfield; hence, its dependence on θ̄L and θR can arise only through x̂ . To

obtain ŴA, we can thus pick off the terms involving only θ̄R and θL from Eq. (6.29),

including of course the θ independent term, and then simply change the argument

in the component fields from x to x̂ . These terms are,

8igt · λL + 8{gt · D + i
g

2
(t · ∂/ �V ) + i

g2

2
f ABC tC �VB �VA}θL

+ 4θ̄ θL{(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR} − 4ig∂μt · �V γ μθL + 4gθ̄ θL∂/ t · λR

= 8igt · λL + 4igγ μγ ν[(∂μVν A − ∂νVμA)tA + g f ABC VμB Vν AtC ]θL

+ 8gθ̄ θLtC [∂/ δAC + g f ABC �VB] λRA + 8gt · DθL. (6.30)

Since Fμν A = ∂μVν A − ∂νVμA − g f ABC VμB VνC , the term in the first square brack-

ets above is just tA Fμν A. Also, recall that the gauge group structure constants furnish

a representation – the adjoint representation of the gauge group: [tadj
C ]AB = −i fC AB .

Using this, the second set of square brackets above yields

[∂/ δAC + g f ABC �VB]λRA = [∂/ δC A + ig(tadj
B )C A �VB]λRA,

which is the gauge covariant derivative acting on the field λA that always belongs

to the adjoint representation of the gauge group.

Thus, the θ̄L and θR independent part of D̄DR{e2gt ·�̂ DLe−2gt ·�̂} is:

8igtAλAL + 4igγ μγ ν tA Fμν AθL

+ 8gθ̄ θLtA(�DλR)A + 8gtADAθL.

Comparing this with our definition (6.6) of gtAŴA, and then replacing the argument

x with x̂ we find that, in the WZ gauge,

ŴA(x̂, θ ) = λLA(x̂) + 1

2
γ μγ ν Fμν A(x̂)θL − iθ̄ θL(�DλR)A − iDA(x̂)θL, (6.31)

where �DAC = ∂/ δAC + ig(tadj
B )AC �VB is the gauge covariant derivative in the ad-

joint representation. The interested reader can explicitly check that, aside from the



92 Supersymmetric gauge theories

factor 8igtA, expanding the component fields about x̂ = x indeed reproduces the

expression in (6.29).

We note the following:

� We have already remarked that ŴA is a left-chiral spinor superfield. We see

explicitly that the θ independent term in ŴA is a spinor. In addition to its gauge

index A, it carries a spinor index which we have suppressed.
� ŴA has components λA, Fμν A, and DA; the spinor λA and the scalar DA are the

same components that are in the gauge potential superfield �̂A, but instead of the

vector potential, the third component of ŴA is the field strength.
� The product ŴAŴA is gauge invariant but not Lorentz invariant. Since Ŵ c

A =
CŴ

T

A transforms as the adjoint representation also, but is a right-chiral superfield,

the combination

Ŵ c
AŴA

is a gauge-invariant, Lorentz-invariant bilinear in ŴA, and is a product of only
left-chiral superfields. Its F-term is, therefore, a candidate for the Lagrangian

density.

Exercise Show that

Ŵ c
A = λ̄RA + 1

2
Fμν Aθ̄Rγ νγ μ

− iθ̄ θL

[

−λ̄LA

←
∂/ −g fC B Aλ̄LC �VB

]

− iDAθ̄R. (6.32)

6.4 Construction of gauge kinetic terms

We have just seen that the F-term of Ŵ c
AŴA is a candidate for a supersymmetric

action. Moreover, inspection of (6.31) and (6.32) shows that this term contains

a contribution proportional to Fμν

A Fμν A so that this term potentially contains the

gauge kinetic term. Before computing it, however, let us do some dimensional

analysis to see the constraints imposed by renormalizability.

The dimensionality of the superfield ŴA can be worked out as

[ŴA] = [D̄DD] = [(
∂

∂θ
)3] = 3

2
.

Since renormalizability requires that the (composite) superfield whose F-term is

proportional to the Lagrangian density have mass dimension ≤ 3, this function can

at most be quadratic in ŴA. We are thus left with just Ŵ c
AŴA as the most general
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Lorentz and gauge invariant bilinear.4 Notice also that since ŴA carries with it a

spinor index, it can only enter via even powers, assuming that the other fields in the

theory are just chiral scalar superfields. We do not, therefore, have to worry about

products of ŴAs and ŜLi in a renormalizable theory.

We are thus led to compute the θ̄ θL term of Ŵ c
AŴA. We can do so by simply using

the form (6.31) for ŴA and setting x̂ = x because, since x̂ − x is already bilinear

in θ , any other contribution to the θ̄ θL term can only come from the θ independent

term of this product. But this contribution is proportional to θ̄γμθ and not θ̄ θL that

we are looking for, and so does not contribute. We thus have,

Ŵ c
AŴA

∣
∣
∣
θ̄ θL term

=
[

λ̄RA + 1

2
Fμν Aθ̄Rγ νγ μ + iθ̄ θL

(

λ̄LA

←
∂/ +g fC B Aλ̄CL �VB

)

− iDAθ̄R

]

×
[

λLA + 1

2
γ μ′

γ ν ′
Fμ′ν ′ AθL − iθ̄ θL

(
∂/ λRA + g fC ′ B ′ A �V ′

BλRC ′
) − iDAθL

]∣
∣
∣
∣
θ̄ θL term

.

The sources of θ̄ θL terms are,

1.

(

−iλ̄RA(∂/ λRA + g fC B A �VBλRC ) + i(λ̄LA

←
∂/ +g fC B Aλ̄CL �VB)λLA

)

θ̄ θL

2. 1
4

Fμν A Fμ′ν ′ Aθ̄Rγ νγ μγ μ′
γ ν ′

θL,

3. −DADAθ̄ θL, and

4. − i
2

Fμν Aθ̄Rγ νγ μDAθL − i
2

Fμν Aθ̄Rγ μγ νDAθL.

In the first term above, we can integrate by parts and shift the derivative acting

on λ̄A to one acting on λA, at the cost of a sign. Then, up to a surface term that we

will not display, the derivative terms together yield the usual kinetic term for the

spinor field λ aside from a factor of −2.

The second term can be simplified by noting that,

θ̄Rγ νγ μγ μ′
γ ν ′

θL = 1

4
T r

[

γ νγ μγ μ′
γ ν ′

PL{θ̄ θI + θ̄γ5θ · γ5 − θ̄γ5γρθ · γ5γ
ρ}

]

= 1

2
(θ̄ θL)T r

[

γ νγ μγ μ′
γ ν ′

PL

]

where we have used (5.21). This then simplifies to
(

1

2
Fμν A Fμν

A + i

4
ενμμ′ν ′

FAμν FAμ′ν ′

)

θ̄ θL. (6.33)

4 It is clear from (6.31) that γ5ŴA = −ŴA so that Ŵ c
Aγ5ŴA is not an independent term.
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The first term in (6.33) is the usual gauge kinetic term apart from a factor −2, while

the second term can be re-written as

1

4
ενμμ′ν ′

FAμν FAμ′ν ′

= −εμνμ′ν ′
(∂μ AAν − g

2
f ABC ABμ ACν)(∂μ′ AAν ′ − g

2
f AB ′C ′ ABμ′ ACν ′)

= −εμνμ′ν ′
∂μ(AAν∂μ′ AAν ′ − g

3
f ABC AAν AB ′μ′ AC ′ν ′)

− εμνμ′ν ′ g2

4
f ABC f AB ′C ′ ABμ ACν AB ′μ′ AC ′ν ′ .

In the last step the 1/3 enters because it does not matter upon which of the three

gauge potentials the derivative acts – they all give the same contribution. We will

leave it to the reader (see exercise below) to check that the last line of the expression

above vanishes, so that the second term of (6.33) turns out to be a total derivative

and makes no contribution to the equations of motion.

Finally, the last term in our list contracts a symmetric and antisymmetric tensor,

and so identically vanishes.

Exercise Verify that

εμνμ′ν ′
g2

4
f ABC f AB ′C ′ Aμ

B Aν
C Aμ′

B ′ Aν ′
C ′ = 0.

Hints: one way to verify this is to note that we may write,

tP fP BC Aμ

B Aν
C = [tB, tC ]Aμ

B Aν
C ≡ [Aμ, Aν]

tQ fQ B ′C ′ Aμ′
B ′ Aν ′

C ′ = [tB ′, tC ′]Aμ′
B ′ Aν ′

C ′ ≡ [Aμ′
, Aν ′

],

where we have introduced matrices, Aμ ≡ Aμ

BtB etc. Then since T r (tP tQ) ∝ δP Q,
the term in question becomes εμνμ′ν ′ T r (AμAνAμ′

Aν ′
) (aside from a multiplicative

constant), and so vanishes because of the cyclic property of the trace.

Collecting all terms from the computation of the coefficient of θ̄ θL in Ŵ c
AŴA

and inserting an additional −1/2 to put the gauge kinetic terms in canonical form,

we obtain a supersymmetric and gauge-invariant Lagrangian density LGK for the

gauge field kinetic terms,

LGK = i

2
λ̄A �DACλC − 1

4
Fμν A Fμν

A + 1

2
DADA, (6.34)

where, as before,

Fμν A = ∂μVν A − ∂νVμA − g f ABC VμB VνC and

(�Dλ)A = ∂/ λA + ig(tadj
B �VB)ACλC .
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We see that we have the usual gauge kinetic term for the Yang–Mills field. We

also have a gauge invariant kinetic term for the massless spin 1
2

fields λA in the

adjoint representation of the gauge group. The spin zero fieldsDA enter without any

derivatives so these will turn out to be auxiliary fields that satisfy algebraic equations

of motion. The quanta of the theory whose Lagrangian density is LGK would thus

be massless vector bosons together with a set of massless spin 1
2

fermions, both in

the adjoint representation of the gauge group. These fermions are termed gauginos.

Exercise In our derivation of the Lagrangian density (6.34), we dropped surface
terms. Show that these can be written as,

1

4
εμνρσ Fμν

A Fρσ

A − i

2
∂μ

(
λAγ μγ5λA

)
.

These terms do not contribute to the field equations. Even so, they might be relevant
in a non-Abelian gauge theory when instanton effects are important. In Abelian
gauge theories, they have no effect.

We remark that the superfield Ŵ c
AŴA is intrinsically complex, and it was only

fortuitous that the surface terms that we ignored were anti-Hermitian. This would

not be a problem, since, as in the case of the Lagrangian density for chiral superfields

that we obtained in the last chapter, we would simply have added the Hermitian

conjugate. The point, however, is that (since the Hermitian and anti-Hermitian parts

are separately supersymmetric and gauge invariant) a supersymmetric gauge theory

may include terms proportional to the surface terms shown in the preceding exercise.

In non-Abelian gauge theories, the corresponding constant of proportionality is

conventionally written as θ (not to be confused with the Grassmann number θ that

we have been using).

Finally we note that it is only in the WZ gauge that we can set the scalar com-

ponents of �̂A to zero. This is what gave us only a finite number of terms in the

expansion (6.6) of ŴA, and not an infinite series. The latter would have resulted in

a non-polynomial Lagrangian where renormalizability would not have been at all

clear.

6.5 Coupling chiral scalar to gauge superfields

We have already seen that the gauge interactions of chiral superfields enter via the

Kähler potential (6.4),

Ŝ†
Le−2gtA�̂A ŜL. (6.35)

There is one such term for every chiral scalar superfield that we introduce. The

(θ̄γ5θ )2 component is a candidate Lagrangian density. In the previous chapter we



96 Supersymmetric gauge theories

had seen that, for g = 0, these gave rise to the kinetic energy terms for the scalar

and fermion components of the chiral supermultiplet.

To work out this quartic term in θ , we substitute the expansions for Ŝ†
L and ŜL

from Eqs. (5.34) and (5.37) together with the unprimed version of (6.18) for the

exponential of �̂ in the WZ gauge. There are then four sources of θ4 terms in (6.35).

First, we have the quartic terms from just Ŝ†
LŜL multiplying the 1 from the expo-

nential, which was exactly what we had worked out in Chapter 5. These terms are,

Ŝ†
LŜL

∣
∣
∣
θ4

= −1

2
(θ̄γ5θ )2{ i

2
ψ̄∂/ ψ + F†F + (∂μS)†(∂μS)}. (6.36a)

Next we have contributions from,

−Ŝ†
Lag(t · V μ)abŜLb(θ̄γ5γμθ ), (6.36b)

where the chiral superfields contribute two factors of θ . Then we have another

contribution from,

−2ig(θ̄γ5θ )Ŝ†
La θ̄ (t · λ)abŜLb (6.36c)

with one θ from the chiral superfields, and finally, we have a contribution from,

1

2
(θ̄γ5θ )2Ŝ†

La{gt · D − g2(t · V )2}abŜLb. (6.36d)

Non-zero terms from (6.36b) can only come when we have either θL and a θ̄L or

θR and a θ̄R from the chiral superfields. These contributions are:

2ψ̄aθR[−gt · V μ]abθ̄ψLb(θ̄γ5γμθ ) − i

2
(θ̄γ5γμθ )∂μS†

a[−gt · V ν]abSb(θ̄γ5γνθ )

+ i

2
(θ̄γ5γμθ )S†

a[−gt · V ν]ab∂μSb(θ̄γ5γνθ ).

Using (5.21) on the first of these terms, and (5.24d) on the remaining terms to cast

this in the canonical form, we obtain,

1

2
gψ̄(t · �V )ψL(θ̄γ5θ )2 − i

2
(θ̄γ5θ )2∂μS†[gt · V μ]S + i

2
(θ̄γ5θ )2S†[gt · V μ]∂μS.

Note that in the first term here we can rewrite (for reasons that will become clear

shortly) the fermion bilinear using,

−ψ̄a(t · �V )ab
1 − γ5

2
ψb = ψ̄b(t · �V )ab

1 + γ5

2
ψa

= 1

2

[−ψ̄(t · �V )ψL + ψ̄(t∗· �V )ψR

]
.

The terms from (6.36c) are

−2ig(θ̄γ5θ )(−i
√

2ψ̄aθR)θ̄ (t · λ)abSb − 2ig(θ̄γ5θ )S†
a θ̄ (t · λ)ab(−i

√
2θ̄ψLb).
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Again, casting these in canonical form using the relations for bilinears of Majorana

spinors together with (5.21), we obtain

g√
2

(θ̄γ5θ )2(t · λ)abψRaSb + g√
2

(θ̄γ5θ)2S†
a(tA)abλ̄AψLb.

We take the Lagrangian density to be the coefficient of − 1
2
(θ̄γ5θ )2 in (6.35) which,

as we saw in the last chapter, gives the correctly normalized kinetic terms for the

scalar and fermion components of Ŝ.

Collecting all the terms from Eq. (6.36a)–(6.36d), we find that the contribution

to the Lagrangian density from Ŝ†e−2gtA�̂A Ŝ is,

Lgauge = i

2
ψ̄∂/ ψ + (∂μS)†(∂μS) + F†F

+ i(∂μS)†g(t · V μ)S − iS†g(t · V μ)∂μS − S† [
gt · D − g2(t · V )2

]
S

+ 1

2

[−gψ̄(t · �V )ψL + gψ̄(t∗· �V )ψR

]

−
( √

2gS†tAλ̄A
1 − γ5

2
ψ + h.c.

)

. (6.37)

We can now cast the interactions of the scalar and fermion components of the

chiral superfields with gauge bosons in the familiar form using gauge covariant

derivatives introduced in Chapter 1. The covariant derivatives on S are,

DμS = ∂μS + igt · VμS (6.38a)

(DμS)† = (∂μS)† − igS†t · Vμ. (6.38b)

For the action of the covariant derivative on the Majorana spinor ψ , we must be

careful because (3.3) shows that its left- and right-handed components are complex

conjugates of one another.5 Thus, if ψL transforms according to a representation

given by tA, then ψR transforms according to the conjugate representation whose

generators are given by −t∗
A.

An aside on conjugate representations Consider a field φ that transforms under
some representation of a group, and let tA be a matrix representation of the corre-
sponding generators. Then if φ → eiαAtAφ, φ∗ → e−iαAt∗

Aφ∗ = eiαA(−tA)∗φ∗. In other
words, the conjugate field transforms with generators (−tA)∗.

It is easy to see that these satisfy the same Lie algebra [tA, tB] = i f ABC tC as
the generators tA. Since the structure constants can be chosen to be real, we have

5 Only if we insist that the left- and right-handed components transform the same way, can we conclude that the
fermion must belong to a real representation. For the case of the U (1) group, this will mean that the charge
of the fermion is zero. But we stress that it is possible to represent each chirality of a charged particle by a
Majorana field. Then one of the chiral components of this Majorana field corresponds to the field of the particle,
while the other corresponds to the antiparticle field.
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[t∗
A, t∗

B] = −i f ABC t∗
C , or [−t∗

A, −t∗
B] = i f ABC (−t∗

C ). Thus, if tA is a set of represen-
tation matrices, then −t∗

A is equally good. If the set of d × d matrices tA furnish a
representation denoted by d, the matrices −t∗

A provide another equally good repre-
sentation of the same dimensionality. This is known as the conjugate representation
and is denoted by d∗.

The gauge covariant derivative on a Majorana fermion ψ whose left-chiral com-

ponent transforms via a representation furnished by tA is thus given by,

Dμψ = ∂μψ + ig(t · Vμ)ψL − ig(t∗ · Vμ)ψR. (6.38c)

We can then write the Lagrangian (6.37) as,

Lgauge = i

2
ψ̄ �Dψ + (DμS)†(DμS) + F†F

−gS†t · DS +
(

−
√

2gS†tAλ̄A
1 − γ5

2
ψ + h.c.

)

. (6.39)

6.5.1 Fayet–Iliopoulos D-term

We have seen that the D-term of any superfield is a candidate for a Lagrangian. The

D-term of a product of chiral superfields, being a total derivative, is not interesting.

However, the D-term of the gauge potential multiplet �̂A is not a derivative of

anything. It is independent of the terms that we have considered so far. As we saw

in (6.23c), it is however gauge covariant and not gauge invariant, unless of course

f ABC = 0, i.e. when the gauge group is Abelian. We can thus include

LFI = ξpDp (6.40)

in the Lagrangian density, where p runs over each U (1) factor of the gauge group,

where ξp are coupling constants with mass dimension [ξp] = 2.

It is easy to see that the D-term of higher powers of �̂ is not gauge invariant.

6.6 A master Lagrangian for SUSY gauge theories

We now collect the various contributions to the Lagrangian density of a renormal-

izable supersymmetric gauge theory that we have obtained into a single master

formula which will serve as the starting point for SUSY model building. Our

Lagrangian density consists of,

L = LGK + Lgauge + LF + LFI, (6.41)

where LGK, Lgauge, and LFI have been constructed in this chapter, and LF is as

given in Eq. (5.70) of Chapter 5. LGK and Lgauge have been explicitly constructed
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to be gauge invariant. Since the superpotential f̂ is a sum of products of superfields

without any (spacetime or supercovariant) derivatives, LF will be just a product of

fields with no derivatives. Thus, the condition for LF to be locally gauge invariant

is that it simply be globally gauge invariant. This is guaranteed if the superpotential

is globally gauge invariant.

The complete Lagrangian for renormalizable, supersymmetric gauge theories is

L =
∑

i

(DμSi )
†(DμSi ) + i

2

∑

i

ψ̄i �Dψi +
∑

i

F†
i Fi

+ i

2

∑

A,B

λ̄A �DABλB − 1

4

∑

A

Fμν A Fμν

A + 1

2

∑

A

DADA

+
(

−
√

2g
∑

i

S†
i t · λ̄

1 − γ5

2
ψi + h.c.

)

− g
∑

i,A

S†
i (tADA)Si

−
∑

p

ξpDp +
∑

i

⎧
⎨

⎩
−i

(

∂ f̂

∂Si

)

Ŝ=S
Fi + i

(

∂ f̂

∂Si

)†

Ŝ=S
F†

i

⎫
⎬

⎭

−1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Si∂S j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Si∂S j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j , (6.42)

where i, j denote the matter field types, A is the gauge group index, and p runs

over all the U (1) factors of the gauge group.

To obtain our final formula, we may eliminate the auxiliary fields Fi and DA via

their equations of motion, which are purely algebraic:

Fi = −i

(

∂ f̂

∂Si

)†

Ŝ=S
and F†

i = i

(

∂ f̂

∂Si

)

Ŝ=S
(6.43a)

DA = g
∑

i

S†
i tASi + ξA. (6.43b)

Substituting into Eq. (6.42), we arrive at the master formula for supersymmetric

gauge theories:

L =
∑

i

(DμSi )
†(DμSi ) + i

2

∑

i

ψ̄i �Dψi +
∑

α,A

[
i

2
λ̄αA(�Dλ)αA − 1

4
FμναA Fμν

αA

]

−
√

2
∑

i,α,A

(

S†
i gαtαAλ̄αA

1 − γ5

2
ψi + h.c.

)
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−1

2

∑

α,A

[
∑

i

S†
i gαtαASi + ξαA

]2

−
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S
(6.44)

−1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Ŝi∂Ŝ j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j ,

where the covariant derivatives are given by,

DμS = ∂μS + i
∑

α,A

gαtαAVμαAS, (6.45a)

Dμψ = ∂μψ + i
∑

α,A

gα(tαAVμαA)ψL − i
∑

α,A

gα(t∗
αAVμαA)ψR, (6.45b)

(�Dλ)αA = ∂/ λαA + igα

(

tadj
αB �VαB

)

AC
λαC , (6.45c)

FμναA = ∂μVναA − ∂νVμαA − gα fαABC VμαB VναC . (6.45d)

The index α that suddenly appears in (6.44) is simply to allow for several gauge

couplings that would be present if the gauge group is not simple.

Exercise Observe that unlike ordinary derivatives, the covariant derivatives de-
fined above do not commute. Show that their commutator is given by,

[
Dμ, Dν

] = i
∑

α,A

gαtαA FμναA . (6.46)

We will return to this result when we consider the covariant derivative in general
relativity.

We note the following features of our master Lagrangian density (6.44).

1. The first line is the usual gauge-invariant kinetic energies for the components of

the chiral and gauge superfields. The derivatives that appear are gauge-covariant

derivatives appropriate to the particular representation in which the field belongs.

For example, if we are talking about SUSY QCD, for quark fields in the first

line of Eq. (6.44) the covariant derivative contains triplet SU (3)C matrices: i.e.

Dμ = ∂μ + igs
λA
2

V μ

A , whereas the covariant derivative acting on the gauginos in

the following line will contain octet matrices. These terms completely determine

how all particles couple to gauge bosons. As in any gauge theory, this coupling

is fixed by the minimal coupling prescription.

2. The next line describes the interactions of gauginos with the scalar and fermion

components of chiral superfields. We will see later that matter particles as well

as Higgs bosons together with their superpartners belong to chiral scalar su-

permultiplets. Thus, this term describes how gauginos couple matter fermions
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to their superpartners, or Higgs bosons to their superpartners. Notice that these

interactions are completely determined by the gauge couplings. Here tαA is the

appropriate dimensional matrix represention of the group generators for the αth

factor of the gauge group, while gα is the corresponding gauge coupling constant

(one for each factor of the gauge group). Matrix multiplication is implied.

3. The third line describes the scalar potential. This has two distinct contributions.

The first term on this line is determined solely by the gauge interactions and has its

origin in the auxiliary fieldDA. This term is referred to as the D-term contribution

to the scalar potential. The second term comes from the superpotential f̂ . We saw

in the last chapter that this term arises when the auxiliary fields Fi are eliminated

from the Lagrangian density. This set of terms is, therefore, referred to as F-term

contributions to the scalar potential.

4. Finally, the last line of Eq. (6.44) describes the non-gauge, superpotential inter-

actions of matter and Higgs fields as well as fermion mass terms. Since this line

describes the interaction of fermion pairs with scalars, the Yukawa interactions

of the SM can arise from this term. In other words, all the Yukawa couplings are

contained in the superpotential.

5. We note here that in a supersymmetric theory, the scalar potential contains no

new couplings other than the gauge couplings and the “Yukawa couplings” and

fermion mass terms already present in the superpotential. This is the result of

supersymmetry which relates the masses as well as couplings of fermions and

bosons within a supermultiplet. Additional terms in the scalar potential are pos-

sible if supersymmetry is softly broken.

We conclude this chapter by presenting a recipe for the construction of renor-

malizable supersymmetric gauge theories.

(a) Choose a gauge group and the representations for the various supermultiplets,

taking care to ensure that the theory is free of chiral anomalies. Matter fermions

and Higgs bosons form parts of chiral scalar supermultiplets, ŜLi , while gauge

bosons reside in the real gauge supermultiplet �̂A. Keep in mind that we will

need a chiral scalar superfield for every chiral component of matter fermions

that we want to introduce.

(b) Choose a superpotential function which is a globally gauge-invariant polyno-

mial (of degree ≤ 3 for renormalizable interactions) of the various left-chiral

superfields.

(c) The interactions of all particles with gauge bosons are given by the usual “min-

imal coupling” prescription.

(d) Couple the gauginos to matter via the gauge interactions given in the second

line of (6.44).
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(e) Write down the additional self-interactions of the scalar matter fields as given

by the third line of (6.44).

( f ) Write down the non-gauge interactions of matter fields coming from the super-

potential. The form of these is given by the last two terms of (6.44).

This theory is, of course, exactly supersymmetric. The final step for obtaining

realistic models is to incorporate supersymmetry breaking. This forms the subject

of the following chapter.

Exercise Construct the Lagrangian density for supersymmetric quantum electro-
dynamics using (6.44) and the recipe just mentioned.

Remember that you will need to introduce two left-chiral scalar supermultiplets
in order to obtain a massive Dirac electron. The left-handed part of the Majorana
fermion field in the first multiplet will annihilate the left-handed (Dirac) electron,
while the corresponding component in the second multiplet will annihilate a left-
handed positron. By the Majorana property, the right-handed part of this fermion
will annihilate right-handed electrons. The Dirac electron field is then the sum of
the left-handed part of the first and the right-handed part of the second. There are,
therefore, two scalar partners (one for each chiral component) of the Dirac electron.

Show that the interaction of the photon with the Dirac electron is exactly as you
would expect in QED, while the corresponding couplings to the scalar electrons
are as in scalar QED. Work out the couplings of the photino (the SUSY partner of
the photon) to the electron and the scalar electron.

Before concluding, we remark that the action for superymmetric gauge theories

can also be written as an integral over superspace. We have,

S = −1

4

∫

d4xd4θ
[

Ŝ†e−2gtA�̂A Ŝ + 2ξp�̂p

]

−1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

− 1

4

∫

d4xd2θLŴ c
AŴA, (6.47)

where the ξp are dimensionful couplings for Fayet–Iliopoulos terms, one for each

U (1) factor of the gauge group.

It is, perhaps, worth emphasizing here that supersymmetry is also restrictive

in a sense that we have not yet encountered because we have been dealing with

renormalizable theories. In this case, supersymmetry mandated the existence of

superpartners with well-defined interactions, but (aside from the holomorphy re-

quirement on the superpotential), did not restrict the spacetime structure of the

interactions. However, not all interactions that we might imagine in ordinary field

theory can be incorporated in a supersymmetric theory. This is exemplified in
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the exercise below where we assert that an arbitrary “Pauli magnetic moment” of

fermions is forbidden in a U (1) gauge theory.

Exercise Show that supersymmetry precludes the introduction of the “Pauli term”
(even if it is generalized to include transitional magnetic moments), ψ1σμνψ2 Fμν +
h.c., in a globally supersymmetric Abelian gauge theory.

One way to proceed is as follows. Since the Pauli term is a dimension 5 operator,
in a supersymmetric theory it must arise either from a dimension 4 term in the
superpotential, or from a dimension 3 term in the Kähler potential. Moreover,
since this term is (anti-)linear in ψ1, ψ2, and Fμν , it must originate in a superfield
term that includes (at least) one power of Ŝ1 and Ŝ2 (or in the case of the Kähler
potential, possibly Ŝ†

1 or Ŝ†
2), the left-chiral superfields whose spinor components

are ψ1 and ψ2, and one power of the left-chiral spinor curl superfield Ŵ exhibited in
(6.31) whose θ component is the gauge field strength Fμν . But the mass dimension
[Ŝ1] = [Ŝ2] = 1, and [Ŵ ] = 3/2, so that [Ŝ1Ŝ2Ŵ ] = 7/2 > 3, showing that this
term cannot originate in a dimension 3 superfield operator in the Kähler potential.

Finally, note that though Ŝ1Ŝ2Ŵ is a (possibly) gauge invariant left-chiral super-
field, it is not Lorentz invariant because it is a spinor under Lorentz transformations:
in order to be able to include it in the superpotential, we have to contract the spinor
index on Ŵ . We do so by letting a supersymmetric covariant derivative (remember
that this also has a spinor index) act on any one of the superfields in the product:
this then results in a dimension 4 superfield product as required. We have, however,
already seen that the supercovariant derivative acting on a left-chiral superfield
does not leave it as a left-chiral superfield, so that terms that include such a super-
covariant derivative are not allowed in the superpotential. We thus conclude that
the “Pauli term” is absent if supersymmetry is unbroken.6

Notice that our argument relies only upon dimensional counting and hence
applies equally to electric as well as magnetic dipole moments. Also, its validity is
independent of whether these dipole moments are diagonal (for Dirac fermions) or
transitional.

We thus conclude that in supersymmetric models, anomalous magnetic moments
or radiative transitions of elementary fermions (contained in chiral supermulti-
plets) are possible only if supersymmetry is broken. In other words, contributions
from supersymmetric partners in the loops exactly cancel SM contributions if su-
persymmetry is unbroken. Measurements of anomalous magnetic moments of SM
fermions or radiative decays of heavy quarks or leptons potentially provide infor-
mation about supersymmetry breaking. We will return to this in Chapter 9.

6 This was first noted by S. Ferrara and E. Remiddi, Phys. Lett. B53, 347 (1974).
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6.7 The non-renormalization theorem

Supersymmetric theories have better ultra-violet behavior than their non-

supersymmetric counterparts. We have already seen an illustration of this in our

examination of the one-loop corrections in the Wess–Zumino model, where it was

shown that quadratically divergent loop integrals all cancelled. It is now understood

that this apparently miraculous cancellation of quadratic divergences is a general

consequence of the SUSY non-renormalization theorem which states that to any

order in perturbation theory, any loop correction can be written as a D-term, i.e.

one particle irreducible loop corrections do not generate F-terms. In particular,

there are no loop corrections to the superpotential.

This was first established by using supergraph methods,7 a perturbative technique

that maintains manifest supersymmetry throughout the calculation in the same way

that Feynman diagram techniques keep the Lorentz covariance manifest.8 A more

direct proof of this theorem was given by Seiberg who recognized that the holo-

morphy of the superpotential (which is a direct consequence of supersymmetry)

suffices to establish that there are no perturbative loop corrections to the superpo-

tential, as long as the regularization procedure preserves supersymmetry and gauge

invariance.9

D-terms in the action of a supersymmetric theory lead to the kinetic energy terms

for the components of chiral superfields, so that corrections to these lead to so-called

“wave function renormalization”. Since loop corrections do not change the super-

potential, superpotential masses and couplings are renormalized only because of the

wave function renormalization; i.e. supersymmetry precludes additional renormal-
ization of the mass terms in the superpotential. The reader familiar with the basics of

renormalization in quantum field theory will immediately recognize that the wave

function renormalization is at most logarithmically divergent in the cut-off, thereby

establishing that supersymmetric theories are free of quadratic divergences to all

orders in perturbation theory. This is important because the existence of quadratic

divergences played the central role in persuading us that there must be new physics

at the TeV scale. It is the non-renormalization theorem that assures us that TeV

scale superpartners can stabilize the electroweak symmetry breaking sector of the

supersymmetric extension of the SM in the sense discussed in Chapter 2.

7 M. T. Grisaru, W. Siegel and M. Roček, Nucl. Phys. B159, 429 (1979).
8 Supergraph methods were introduced by A. Salam and J. Strathdee, Phys. Rev. D11, 1521 (1975) and developed

by other authors. See e.g. J. Honerkamp et al., Nucl. Phys. B95, 397 (1975) and S. Ferrara, Nucl. Phys. B93,
261 (1975).

9 N. Seiberg, Phys. Lett. B318, 469 (1993).
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Supersymmetry breaking

The fundamental relation

[Q, Pμ] = 0

of the supersymmetry algebra tells us that if supersymmetry is exact, every bosonic

state other than the vacuum state must have a corresponding fermionic partner with

exactly the same energy, assuming that we can identify P0 with the Hamiltonian.

To see this, we simply note that if |B〉 is a bosonic eigenstate of the Hamiltonian

with eigenvalue EB , we must have,

P0(Q|B〉) = Q P0|B〉 = EB Q|B〉,
so that |F〉 ≡ Q|B〉 is a fermionic eigenstate of this same Hamiltonian, with the

same energy EB . Thus the only bosonic states which are not paired with a fermionic

state are those that are annihilated by Q. States with non-vanishing four-momenta

transform non-trivially under supersymmetry (and so, are not annihilated by Q),

and the only candidate for an unpaired bosonic state is the vacuum state. For massive

single particle states in the rest frame, this implies that in a supersymmetric theory

bosons and fermions must come in mass-degenerate pairs.

This is, of course, experimentally excluded since we know, for instance, that there

is no integer spin charged particle with the same mass as that of the electron. Su-

persymmetry must, therefore, be a broken symmetry. While we cannot exclude the

possibility that SUSY is explicitly broken by soft terms, it is much more appealing

to consider that, like electroweak gauge symmetry, SUSY is broken spontaneously.

As with bosonic symmetries, if the generator Q of a supersymmetry transforma-

tion does not annihilate the vacuum, then supersymmetry is spontaneously broken.

In correspondence with Eq. (1.5), we then write the condition for supersymmetry

not to be spontaneously broken as

〈0|δO|0〉 ≡ i〈0|[ᾱQ,O]|0〉 = 0, (7.1)

105
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where, in field theory, the dynamical variable O is a field operator and δO is its

variation under a supersymmetry transformation with a Grassmann parameter α. If

we find a field operator such that its variation is non-zero in the ground state, then

supersymmetry will be spontaneously broken. Just as familiar gauge symmetries

may be broken by vacuum expectation values (VEVs) of either elementary or

composite field operators, O may be either elementary or composite. In order for

Poincaré invariance not to be spontaneously broken, δO must be a spinless operator.

Since SUSY connects fields whose spins differ by 1/2, O must thus be a spinorial

operator.

7.1 SUSY breaking by elementary fields

Up to this point, we have two classes of fields in a SUSY theory: the chiral scalar

superfield and the curl superfield (or equivalently the gauge potential superfield).

To identify potential order parameters for SUSY breaking, let us look at the trans-

formation of their spinor components.

The variation of the spinor component of the chiral scalar superfield is

δψL = −
√

2FαL +
√

2∂/SαR

while for that of a gauge superfield we have the variation of the spinor component

as

δλA = −iγ5αDA + 1

4
[γν, γμ]Fμν

A α,

(we may equivalently discuss the gauge potential superfield 	̂ � (V μ, λ,D) with

similar results). Since Poincaré invariance requires,

〈0|∂μS|0〉 = 〈0|Fμν |0〉 = 0,

the condition for SUSY to be spontaneously broken is,

〈0|Fi |0〉 �= 0 or 〈0|DA|0〉 �= 0 (7.2)

for some fields. We will refer to these two possibilities as F-type or D-type SUSY

breaking.

Since the auxiliary fields are given by (6.43a) and (6.43b) of the last chapter, we

conclude that supersymmetry is spontaneously broken if the system of equations,

(

∂ f̂

∂Si

)

Ŝ=S
= 0 (F-type) (7.3a)
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or

g
∑

i

S†
i tASi + ξA = 0 (D-type) (7.3b)

does not have any solutions. Otherwise, supersymmetry is unbroken. In this chapter

we will examine several toy models to illustrate both the F- and D-type SUSY

breaking mechanisms.

Two comments are in order.

� The master formula (6.44) for the Lagrangian for SUSY gauge theories contains

the terms,

L � −Vscalar ≡ −1

2

∑

A

DADA −
∑

i

|Fi |2.

Thus, if any of the auxiliary fields develop a VEV, then so will the scalar potential.
� If Q|0〉 �= 0, then the state has infinite norm. This is because

‖ Q|0〉 ‖2=
∫

d3x〈0| j0†(x)Q|0〉

(where jμ(x) is the spinorial Noether current corresponding to the super-charge

Q) diverges in a translationally invariant theory unless Q annihilates the vacuum.

This is exactly as for the case of spontaneous breaking of bosonic symmetries.

It is often loosely stated that spontaneous SUSY breaking is signalled by the

VEV of the Hamiltonian. This is not the case since if the Hamiltonian density

develops a constant VEV, its integral does not exist. In fact, just as in the familiar

case of ordinary symmetries where the charges do not exist when the symme-

try is spontaneously broken, the generators of the super-algebra do not exist if

supersymmetry is spontaneously broken; the charge and current densities are,

however, well defined and it is only these that we need for most manipulations in

field theory.

7.2 F-type SUSY breaking: the O’Raifeartaigh model

A simple supersymmetric model exhibiting spontaneous breaking of supersymme-

try was written down by O’Raifeartaigh in 1975.1 It contains three chiral scalar

superfields X̂ � (X, ψX ,FX ), Ŷ � (Y, ψY ,FY ), and Ẑ � (Z , ψZ ,FZ ) interacting

via the superpotential,

f̂ (X̂ , Ŷ , Ẑ ) = λ(X̂2 − μ2)Ŷ + m X̂ Ẑ , (7.4)

1 L. O’Raifeartaigh, Nucl. Phys. B96, 331 (1975).
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with m and λ as real parameters. Since Fi = −i(∂ f̂ /∂Ŝi )
†
Ŝ=S , we have

iFX = 2λY †X † + m Z †, (7.5a)

iFY = λ(X †2 − μ2), and (7.5b)

iFZ = m X †. (7.5c)

Note that both 〈FY 〉 and 〈FZ 〉 cannot simultaneously be zero. Hence, supersym-

metry must be broken.

The scalar potential of this model is,

V (X, Y, Z ) =
∑

i

|Fi |2 = |2λXY + m Z |2 + λ2|X2 − μ2|2 + m2|X |2. (7.6)

Notice that the potential is a sum of non-negative terms. This is a general feature

of theories with global supersymmetry. Indeed, we see from the master formula

(6.44) that the D- and F-term contributions to the scalar potential are separately

non-negative.

To find the minimum of this potential, observe that the first term can be made

to be zero no matter what 〈X〉 and 〈Y 〉 are since 〈Z〉 is chosen to cancel it. The

vacuum state is, therefore, infinitely degenerate. The direction (in field space) along

which the first term vanishes is referred to as an F-flat direction (since the value

of the potential is flat along this direction). Flat directions frequently occur in

supersymmetric models. We should add here that the flatness of the (tree-level)

potential is generally removed when quantum corrections are taken into account.

Returning to the potential of the O’Raifeartaigh model, the minimum thus de-

pends only on the last two terms of (7.6) that define the self-couplings VX for the X
field. We break the complex field X into real and imaginary parts X = XR+iX I√

2
, so that

VX = λ2|X2 − μ2|2 + m2|X |2

= λ2

4
(X2

R + X2
I )2 + 1

2
(m2 − 2λ2μ2)X2

R

+1

2
(m2 + 2λ2μ2)X2

I + λ2μ4. (7.7)

We will examine two cases for VX , illustrated in Fig. 7.1.

Case A: If m2 > 2λ2μ2, the minimum of VX is clearly at 〈X〉 = 0. In this case,

〈Z〉 = 0 but 〈Y 〉 is undetermined, and Vmin = λ2μ4. Y is a flat direction of the scalar

potential.

Case B: If m2 < 2λ2μ2, 〈XR〉 �= 0 but 〈X I〉 = 0 since the coefficient of

X2
I is positive. The minimum will occur at 〈XR〉2 = 2μ2 − m2/λ2 and 〈Z〉 =

− 2λ
m

√

μ2 − m2

2λ2 〈Y 〉. At the minimum, Vmin = −λ2

4
(2μ2 − m2/λ2)2 + μ4λ2. Note

that the minimum does not occur at 〈X〉2 = μ2.
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Figure 7.1 Scalar potential in the O’Raifeartaigh model for case A with m/μ = 2
and λ = 1, and case B with m/μ = λ = 1. In both cases, X I = 0.

7.2.1 Mass spectrum: Case A

Next we will construct the mass matrix for the scalar fields of case A in the

O’Raifeartaigh model. As usual, we first shift the fields by their VEVs, and then

rewrite the scalar potential in terms of the shifted field YS = Y − 〈Y 〉 together with

X and Z to obtain,

V = |2λX (YS + 〈Y 〉) + m Z |2 + λ2|X2 − μ2|2 + m2|X |2. (7.8)

There are no bilinear terms in the field YS which must, therefore, be massless. Let

us write X = XR+iX I√
2

and Z = ZR+iZI√
2

. We can now work out the scalar mass squared

matrix for the four real fields. In the basis (XR, ZR, X I, ZI) it is given by,

⎛

⎜
⎜
⎝

m2 + 4λ2〈Y 〉2 − 2λ2μ2 2λm〈Y 〉 0 0

2λm〈Y 〉 m2 0 0

0 0 m2 + 4λ2〈Y 〉2 + 2λ2μ2 2λm〈Y 〉
0 0 2λm〈Y 〉 m2

⎞

⎟
⎟
⎠

(7.9)

where we have taken 〈Y 〉 to be real. If 〈Y 〉 �= 0, then X and Z mix. Regardless of

the mixing, however, the trace of the matrix gives,
∑

bosons

M2 = 2m2 + 2(m2 + 4λ2〈Y 〉2). (7.10)

To find the fermion masses, we must examine fermionic bilinear terms that can

be derived from the superpotential. These terms will arise from second derivatives
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of the superpotential, evaluated at the VEV of the scalar fields. Since only Y has

a VEV, it is clear that just ∂2 f̂ /∂ X̂2 or ∂2 f̂ /∂ X̂∂ Ẑ yield non-zero contributions.

In particular, ψY is a massless fermion. For the remaining fermions, in the basis of

(ψX , ψZ ), we have the mass matrix,

Mfermion =
(

2λ〈Y 〉 m
m 0

)

(7.11)

so that

MfermionM†
fermion =

(
4λ2〈Y 〉2 + m2 2λ〈Y 〉m

2λ〈Y 〉m m2

)

. (7.12)

We thus see that,
∑

fermions

M2 = m2 + (m2 + 4λ2〈Y 〉2). (7.13)

The supertrace is defined as

ST rM2 =
∑

particles

(−1)2J (2J + 1)m2
J , (7.14)

where the sum is over all particles in the theory, J is the spin and m J is the mass.

In any model where supersymmetry is unbroken, the degeneracy of the fermion

and boson masses, together with the equality of bosonic and fermionic degrees of

freedom obviously means that the supertrace must vanish. In the case under study,

summing over all bosons and fermions, we obtain

ST rM2 = 0 (7.15)

even though supersymmetry is spontaneously broken. We will shortly see that (at tree

level) the supertrace is always zero for theories with only chiral scalar superfields,

even if supersymmetry is spontaneously broken.

Exercise Work out the mass spectrum of the model. Show that aside from the
complex massless boson field Y and the massless fermion ψY , the remaining boson
squared masses are,

m2 + 2λ2〈Y 〉2 − λ2μ2 ± [
(m2 + 2λ2〈Y 〉2 − λ2μ2)2 − m2(m2 − 2λ2μ2)

] 1
2 ,

m2 + 2λ2〈Y 〉2 + λ2μ2 ± [
(m2 + 2λ2〈Y 〉2 + λ2μ2)2 − m2(m2 + 2λ2μ2)

] 1
2 ,

while the remaining fermion masses are,
√

λ2〈Y 〉2 + m2 ± λ〈Y 〉.
You can now confirm that the supertrace formula is satisfied. Notice also that if
Vmin = λ2μ4 vanishes, supersymmetry is restored in the spectrum.
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The fact that there is a massless fermion in the spectrum is a general feature

in theories with spontaneous supersymmetry breaking. This fermion is called the

goldstino. It is the analogue of the Goldstone boson that arises when global bosonic

symmetries are spontaneously broken. We will not present a general argument that

shows that spontaneous SUSY breaking always results in a goldstino. The proof

parallels that given by Goldstone, Salam, and Weinberg for the Goldstone theorem.2

The goldstino is a spin 1
2

fermion because the SUSY generator itself carries spin
1
2
. It is the fermionic partner of the auxiliary field that develops a SUSY breaking

VEV.

Notice that aside from the ±2λ2μ2 terms in the diagonal XR and X I entries in the

mass matrix for scalars, the mass matrices look supersymmetric. In other words,

but for these terms, the mass matrices (7.9) and (7.12) would be those of a theory

with unbroken SUSY. This should not be surprising because, at tree level, the order

parameter FY for SUSY breaking (and hence also the goldstino) couples to only

the X field, as is evident from the form of the superpotential.

It is easy to see from the result of the exercise above that the heaviest boson is

heavier than the heaviest fermionic state. But because the sums over the squared

masses of the bosons and fermions are the same, this also means that the lightest

of the massive bosons must be lighter than the lightest of the massive fermions. In

other words, the spontaneous breaking of supersymmetry results in fermion masses

that are bracketed between the boson masses. The “SUSY breaking” 2λ2μ2 contri-

bution does not enter the fermion masses, but splits the boson masses about their

would-be value (equal to the fermion masses) in the absence of SUSY breaking.3

Since this pattern of mass splittings has its origin in the vanishing of the supertrace –

a general feature in models with global supersymmetry broken spontaneously by

F-terms – it is very difficult to use this mechanism to get realistic models with

global supersymmetry broken at the TeV scale: these models typically give a

spin zero superpartner lighter than all the fermions, and so run into conflict with

experiment.

7.2.2 Mass spectrum: Case B

We can now similarly work out the mass spectrum for Case B, where the min-

imum occurs at 〈XR〉2 = 2μ2 − m2/λ2, 〈X I〉 = 0, with a flat direction along

〈Z〉 = − 2λ
m

√

μ2 − m2

2λ2 〈Y 〉. For the most part, we will leave it to the reader to work

out the details for this case. From the scalar potential, it is straightforward to work

2 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962), Sec. III.
3 It is reasonable that spontaneous SUSY breaking yields new contributions to boson masses but not to fermions.

We saw in Chapter 3 that a SUSY breaking mass for a fermion in a chiral scalar multiplet would have been a
hard breaking of supersymmetry.
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out the scalar mass matrix. The bosonic contribution to the supertrace is as given

in the exercise below.

Exercise For case B, calculate the bilinear terms in the scalar potential of the
shifted fields and show that

∑

bosons

M2 = 4λ2(〈XR〉2 + 〈YR〉2 + 〈YI〉2 + 2μ2). (7.16)

(Remember that 〈XR〉 �= 0, while 〈X I〉 = 0.)

To identify the goldstino, we recall that the auxiliary fields obtain VEVs

i〈FX 〉 = 0, (7.17a)

i〈FY 〉 = λ(
1

2
〈XR〉2 − μ2), (7.17b)

i〈FZ 〉 = m
〈XR〉√

2
. (7.17c)

We can then work with orthogonal linear combinations of the superfields Ŷ and Ẑ ,

so that the auxiliary component of just one of the linear combinations develops a

VEV:

P̂ =
m〈XR〉√

2
Ŷ − λ( 1

2
〈XR〉2 − μ2)Ẑ

√
1
2
m2〈XR〉2 + λ2( 1

2
〈XR〉2 − μ2)2

≡ Ŷ cos θ − Ẑ sin θ (7.18a)

and

Q̂ =
λ( 1

2
〈XR〉2 − μ2)Ŷ + m〈XR〉√

2
Ẑ

√
1
2
m2〈XR〉2 + λ2( 1

2
〈XR〉2 − μ2)2

≡ Ŷ sin θ + Ẑ cos θ. (7.18b)

In this case, we have 〈FP〉 = 0 and 〈FQ〉 �= 0. We then expect that ψQ , the fermionic

component of Q̂, will be the massless goldstino field. To establish this, as well as

to obtain the fermionic contribution to the supertrace, we write the superpotential

in terms of X̂ , P̂ , and Q̂,

f̂ (X̂ , P̂, Q̂) = λ(X̂2 − μ2)(P̂ cos θ + Q̂ sin θ ) + m X̂ (Q̂ cos θ − P̂ sin θ ).

(7.19)

We see from (6.44) that ψQ is massless since there is neither a diagonal mass for it

(no Q̂2 term in the superpotential) nor a bilinear mixing with either ψP or ψX .
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Exercise That there is no mixing of ψQ with ψP is obvious from the superpotential.
Verify that the ψX –ψQ mixing term also vanishes.

In the (ψX , ψP ) basis, the non-vanishing fermion mass submatrix can be written

as,

Mfermion = M1 − γ5

2
+ M† 1 + γ5

2
, (7.20a)

with,

M =
(

2λ
〈YR〉+i〈YI〉√

2

√
2λ cos θ〈XR〉 − m sin θ√

2λ cos θ〈XR〉 − m sin θ 0

)

. (7.20b)

Except when 〈YI〉 = 0, the fermion “mass matrix” is γ5-dependent. The reader who

is not familiar with how to deal with this is referred to the technical note at the end

of this chapter.4 There, we show that the squared masses of the fermions are given

by the eigenvalues of the matrix M†M.

Exercise By explicitly computing the sum of the squared masses for the fermions
in case B, verify that the supertrace once again vanishes.

7.3 D-type SUSY breaking

As an illustration of SUSY breaking by D-terms, we consider a simple model

with just one chiral superfield coupled to a U (1) gauge field. We include a Fayet–

Iliopoulos (FI) D-term. Gauge symmetry precludes any superpotential interactions.

The scalar potential for this model is just

V = 1

2
D2 = 1

2
(gS†S + ξ )2. (7.21)

The minimum of the potential occurs at

(a) 〈S†S〉 = 0 if ξ > 0,

(b) 〈S†S〉 = −ξ

g
= |ξ |

g
if ξ < 0.

In case (a), SUSY is spontaneously broken because the D-term acquires a vacuum

expectation value. The gauge symmetry remains unbroken because 〈S†S〉 = 0. In

case (b), the U (1) gauge symmetry is spontaneously broken but SUSY remains

intact.

4 The matrices M and N of the note can be identified as M+M†
2 = M and M†−M

2 = iN .
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7.3.1 Case A

In this case, the auxiliary field D = gS†S + ξ acquires a VEV 〈D〉 = ξ . Because

there is no superpotential, the chiral fermion ψ remains massless. The FI term

causes a mass splitting with the scalar S, which acquires a mass
√

gξ .

The U (1) gauge boson and gaugino are massless at tree level. The gaugino, which

is the partner of the D field that acquires a VEV, plays the role of the goldstino.

In this toy theory, since the complex field S is the only state to acquire mass, the

supertrace is just

ST rM2 = 2gξ

in accord with the general sum rule Eq. (7.35) discussed later in this chapter. Notice

that, unlike the O’Raifeartaigh model, this model does not suffer from the problem

of “scalars lighter than fermions.”

7.3.2 Case B

In this case, gauge symmetry is spontaneously broken because S acquires a VEV,

but SUSY remains intact. Let us work out the spectrum of the model to see explicitly

how this works.

Bosons

The relevant piece of the Lagrangian for vector bosons is

L � [
(∂μS)† − igVμS†] [∂μS + igV μS] − 1

4
Fμν Fμν. (7.22)

We note that by redefining the phase of S, 〈S〉 can be chosen to be real without loss

of generality. As usual, we then shiftS → S + 〈S〉 and then re-write the Lagrangian

in terms of S = SR+iSI√
2

(here, SR and SI are fluctuations about the vacuum) to obtain

L � 1

2
(∂μSR)2 + 1

2
(∂μSI)

2 +
√

2g〈S〉Vμ∂μSI + g2〈S〉2VμV μ − 1

4
Fμν Fμν.

The field SI can be absorbed by a local gauge transformation by an amount −SI√
2g〈S〉 .

This piece of the Lagrangian becomes

L � 1

2
(∂μSR)2 + g2〈S〉2VμV μ − 1

4
Fμν Fμν. (7.23)

The vector boson has developed a mass m2
V = 2g2〈S〉2 = 2g|ξ |, while the SI field

has disappeared, being eaten by the vector boson field. This is, of course, the

familiar Higgs mechanism. A real scalar SR remains. Its mass can be obtained from

the scalar potential (7.21).
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Exercise Show that the Higgs field SR of our toy model has the same mass as the
vector boson.

Fermions

Since there is no superpotential, bilinear terms for fermions come only from gaug-

ino chiral fermion mixing induced by a VEV of the scalar field. The relevant

term is,

L � −
√

2〈S〉gλ̄
1 − γ5

2
ψ + h.c.

We see that there are two degenerate Majorana fermions that can be combined into

a single Dirac fermion χD = 1−γ5

2
ψ + 1+γ5

2
λ, with a mass again equal to that of the

bosons.

Thus, in case B, the physical particles are one massive spin 1 boson and a

spin 0 boson, each with mass
√

2g|ξ | and one Dirac fermion with the same

mass. The spectrum is clearly supersymmetric, but the original gauge symmetry is

hidden.5

7.4 Composite goldstinos

We have considered examples where the goldstino is an elementary field that occurs

in the Lagrangian. This need not always be the case. The goldstino may be a

composite fermion just as the composite pion may be regarded as a (pseudo)-

Goldstone boson.

This is realized if chiral fermions condense. If Ŝ and Ŝ ′ are two left-chiral

superfields,

Ŝ = S(x̂) + i
√

2θ̄ψL + iθ̄ θLF(x̂) and

Ŝ ′ = S ′(x̂) + i
√

2θ̄ψ ′
L + iθ̄ θLF ′(x̂),

then the composite field ŜŜ ′ is given by,

ŜŜ ′ = SS ′(x̂) + i
√

2θ̄ (S ′ψL + Sψ ′
L)(x̂) − 2θ̄ψLθ̄ψ ′

L(x̂) + iθ̄ θL(FS ′ + SF ′)(x̂).

Using the fact that −2θ̄ψLθ̄ψ ′
L = θ̄ θLψ̄ ′ψL, we have

ŜŜ ′ = SS ′ + i
√

2θ̄ (Sψ ′
L + S ′ψL) + iθ̄ θL(SF ′ + FS ′ − iψ̄ ′ψL). (7.24)

5 This spectrum corresponds to that of the j = 1/2 supermultiplet discussed toward the end of Section 4.4.
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Thus, the auxiliary component of the composite superfield contains the product of

the fermion components of the elementary superfields.

This led theorists in the 1980s to consider SUSY technicolor-like models where

Ŝ and Ŝ ′ were taken to be n and n∗ representations of a confining group SU (n).6

It was assumed that the chiral fermions would condense forming an SU (n) singlet

condensate. If such a condensate forms, then SUSY is dynamically broken by the

F-term of the composite superfield. The goldstino field would then be a composite

object, the fermionic component (S ′ψL + Sψ ′
L) of a composite superfield. Whether

or not such a condensate forms is a dynamical question, and is more difficult to

address.

7.5 Gaugino condensation

If we allow non-renormalizable interactions (as we must if we want to include

gravity in our effective low energy theory), some of our considerations have to be

suitably generalized. Of importance to us here is the fact that instead of starting

with just Ŵ c
AŴA whose θ̄ θL component led to the kinetic term for gauge fields and

gauginos, we could have started with

f AB(ŜLi )Ŵ c
AŴB

whose θ̄ θL component also leads to a SUSY invariant action. To maintain gauge

invariance, we must require that the dimensionless function f AB transform as a

representation contained in the symmetric product of two adjoints. The function

f AB is known as the gauge kinetic function. For a renormalizable gauge theory, we

must have f AB = δAB , but otherwise more general forms are possible.

We will explore some important implications of a non-trivial gauge kinetic func-

tion in later chapters. For the present purposes, we only note that in supergravity

models the expression (6.43a) for the auxiliary component of chiral superfields is

modified: in particular, it picks up a term proportional to,

∂ f AB

∂ŜLi

∣
∣
∣
∣
Ŝ =S

λ̄AλB .

Thus if there are new strong gauge interactions that result in a non-vanishing con-

densate 〈λ̄AλA〉 of gauginos, supersymmetry may be dynamically broken.7 Gaugino

condensation is considered by many authors as a promising way of breaking super-

symmmetry.

6 M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981); S. Dimopoulos and S. Raby, Nucl. Phys.
B192, 353 (1981).

7 S. Ferrara, L. Girardello and H. P. Nilles, Phys. Lett. B125, 457 (1983).
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7.6 Goldstino interactions

It is well known that at low energy, the couplings of Goldstone bosons to other

particles are fixed only by symmetry considerations, and do not depend on the

details of the model. One might similarly expect that the low energy interactions of

the goldstino with other multiplets are similarly model-independent. To understand

how this comes about, we begin by recalling that (3.13b) tells us that each chiral

multiplet contributes

jμ = ∂/ (−iAγ5 − B)γ μψ + (Gγ5 + iF)γ μψ,

to the supercurrent. We may thus write the supercurrent as,

jμ = ∂/ (−iAgγ5 − Bg)γ μψg + (Ggγ5 + iFg)γ μψg + jμ,rest, (7.25a)

where the subscript g refers to the fields in the goldstino multiplet, and jμ,rest

includes contributions to the supercurrent from all other supermultiplets. If SUSY

is spontaneously broken by the vacuum expectation value of the complex auxiliary

field

〈F〉 =
〈

Fg + iGg√
2

〉

,

that we take to be real, the supercurrent acquires a term linear in the goldstino field,

and can be written as,

jμ = i
√

2〈F〉γ μψg + ∂/ (−iAgγ5 − Bg)γ μψg + (Ggγ5 + iFg)γ μψg + jμ,rest,

(7.25b)

where Fg and Gg now denote the shifted fields.

Conservation of the supercurrent then implies that

0 = ∂μ jμ = i
√

2〈F〉∂/ ψg + ∂μ jμ,rest + · · · (7.26)

where the ellipsis denotes bilinear (or higher, after the auxiliary fields Fg and Gg are

eliminated) terms in fields from the goldstino supermultiplet. This is the equation of

motion for the goldstino. It may be obtained from the phenomenological Lagrangian

density,

Lgoldstino = i

2
ψ̄g∂/ ψg +

[
1

2
√

2〈F〉 ψ̄g∂μ jμ,rest + h.c.

]

+ · · ·

= i

2
ψ̄g∂/ ψg +

[ −1

2
√

2〈F〉
(
∂μψ̄g

)
jμ,rest + h.c.

]

+ · · · , (7.27)

where in the last step, we have omitted a term that is a total derivative. Again, the

ellipsis denotes couplings of the goldstino to its superpartner which are not relevant

to our discussion. By using the explicit form of the supercurrent (3.13b) it is now
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straightforward to work out the couplings of the goldstino with fields in other
supermultiplets. The first term in the supercurrent that originates in the kinetic

energy piece of the Lagrangian gives rise to a model-independent interaction of

the goldstino with the scalar and fermion members of the chiral multiplet with

components (S, ψ). We will leave it to the reader to work out that

Lgoldstino = i

2
ψ̄g∂/ ψg − i

〈F〉
(
∂μψ̄g

)
[

∂/Sγ μ 1 + γ5

2
ψ − ∂μS†γ μ 1 − γ5

2
ψ

]

+ · · · ,

(7.28)

where the ellipsis denotes other interactions of the goldstino. There is one such term

for each chiral multiplet. In a gauge theory, gauginos and gauge bosons also con-

tribute to the supercurrent, and there will be an analogous gauge boson–gaugino–

goldstino interaction. We will return to these goldstino couplings when we consider

decays of supersymmetric particles into gravitinos (the superpartners of the gravi-

ton) in Chapter 13.

7.7 A mass sum rule

In previous sections, we alluded to the fact that the superparticle spectrum is sig-

nificantly constrained even when SUSY is spontaneously broken. For instance,

for F-type breaking, we saw that ST rM2 = 0, which implied that at least one of

the scalar components of chiral scalar superfields must be lighter than any of the

fermions. For D-type breaking, we saw that this was not always the case. These

features are not particular to the specific model that we considered. To see this, we

can compute the squared masses of each particle using the Lagrangian density in

(6.44), and hence the respective contributions to the supertrace.

Tree-level masses are defined by the coefficients of bilinear terms in fields ex-

panded about the minimum of the scalar potential. The mass sum rule we obtain

holds somewhat more generally, in that it holds for “masses” defined about any

scalar field configuration, not just a local extremum. These “masses” are, of course,

field-dependent. The immediate payoff is that we can immediately infer that our

ST r formula is also valid for the special case of spontaneously broken gauge sym-

metries where we are computing the coefficients of field bilinears about a non-trivial

classical minimum.

7.7.1 Scalar contributions

The scalar potential of a supersymmetric theory has the form,

V (S,S∗) =
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ =S
+ 1

2

∑

A

(
∑

i

S†
i gtASi + ξA

)2

, (7.29)

where we suppress the index α in (6.44).
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Potential mass terms include terms like S†S as well as terms like S2 + h.c.

We will let the reader check (see exercise below) that while the latter terms may

affect the individual masses, they never contribute to the trace of the scalar mass

matrix. Hence the scalar boson contribution to the supertrace can be obtained

from,

m2
i j = ∂2V

∂S†
i ∂S j

.

We can then write this as,

ST rM2
scalars = 2

∑

i, j

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ =S

(

∂2 f̂

∂Ŝi∂Ŝ j

)∗

Ŝ =S

+ 2
∑

A

DAT r (gtA) + 2
∑

i,A

g2S†
i tAtASi , (7.30)

where the 2 comes from the fact that each complex scalar is really two degrees of

freedom, and DA is a shorthand for
∑

i S
†
i gtASi + ξA.

7.7.2 Vector contributions

The vector boson mass matrix arises from the kinetic energy terms for scalars:

L � (DμSi )
†DμSi = (∂μSi + igtAVμASi )

†(∂μSi + igtB V μ

B Si ).

Here i labels different chiral scalar multiplets. Every multiplet that transforms

non-trivially under the gauge group contributes to the “field-dependent” vector

mass matrix. Of course, the tree-level physical masses will get contributions from

only those multiplets that develop a gauge symmetry breaking VEV. The vector

contribution to the supertrace is,

ST rM2
vectors = 2 × 3 × g2

∑

A,i

(S†
i tA)(tASi ), (7.31)

where the factor of 2 arises because the vector fields are real, and the 3 comes from

the three degrees of freedom for each massive spin 1 field (the factor 2J + 1 in the

definition of the ST r ).

7.7.3 Fermion contributions

The technical note on γ5-dependent fermion mass matrices at the end of this chapter

shows that if the fermion bilinears in the Lagrangian density for Majorana fermions
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is given by,

L � −1

2
χ̄aMab

1 − γ5

2
χb + h.c.

= −1

2
χ̄RMχL − 1

2
χ̄LM†χR, (7.32)

then the squared masses of the fermions are given by the eigenvalues of the matrix

MM†.
In our master formula (6.44), fermion bilinears arise from the superpotential

interactions in the last line, or from mixing between gauginos and chiral fermions

in line 2. The relevant terms can be written as,

L � −1

2

(
λ̄A ψ̄i

)
(

0
√

2g(S†tA) j√
2g(S†tB)i

(
∂2 f̂

∂Ŝi ∂Ŝ j

)

Ŝ =S

)

1 − γ5

2

(
λB

ψ j

)

+ h.c. (7.33)

We can now easily obtain the fermionic contribution to the supertrace,

ST rM2
fermions = (−1) × 2 ×

[
∑

i,A

4g2(S†tA)i (tAS)i

+
∑

i, j

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ =S

(

∂2 f̂

∂Ŝi∂Ŝ j

)∗

Ŝ =S

]

, (7.34)

where the 2 comes from the two spin degrees of freedom for the Majorana fermions.

We can now combine the contributions (7.30), (7.31), and (7.34) to obtain the

tree-level mass sum rule for globally supersymmetric models with spontaneously

broken supersymmetry,

ST rM2 = 2
∑

A

DATr(gtA). (7.35)

Here, the trace refers to a sum over complex fields in the chiral supermultiplets.

Nowhere in its derivation did we assume that we are at an extremum of the scalar

potential. If we now evaluate this at a non-trivial classical minimum, the masses

entering on the left-hand side are simply the tree-level masses in the theory, while

the right-hand side is the D term whose VEV is one of the order parameters for

SUSY breaking.

We now understand why the supertrace vanished for both cases in the

O’Raifeartaigh model but not for the model with D-type SUSY breaking. We also

note that the right-hand side of (7.35) vanishes if the gauge group is simple. For a

model such as the MSSM, with a U (1) hypercharge symmetry, the right-hand side

will vanish since the representations are chosen to be anomaly free, i.e. the sum of
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all the U (1)Y charges cancels. The problem of light scalars then re-surfaces even

in models with D-type SUSY breaking.8

Exercise By decomposing the complex scalar fields into their real and imaginary
parts, show that terms such as m

′2
i jSiS j + h.c. cannot contribute to the supertrace.

Hint: Aside from “off-diagonal” terms involving products of real and imagi-
nary parts of fields which cannot contribute to the trace, show that these terms
can be written as 1

2
(m

′2
i j + m

′2∗
i j )(SRiSR j − SIiSI j ), so that the real and imaginary

components make equal and opposite contributions to the trace.

7.8 Explicit supersymmetry breaking

There is as yet no compelling theory of SUSY breaking. We have alluded to potential

phenomenological problems that arise if global supersymmetry is spontaneously

broken at the TeV scale. Indeed, the strategy most common to model-building today

is to assume that supersymmetry is broken in a sector of a theory that is essentially

decoupled from our world of quarks, leptons, and gauge and Higgs bosons (and their

superpartners). The effects of SUSY breaking in this “hidden sector” are then com-

municated to our world by messenger interactions. The low energy phenomenology

that results is qualitatively dependent on what these messenger interactions are, but

we will return to this in later chapters.

It is fair to say that we have not yet discovered the dynamics which causes the

breaking of supersymmetry. Hopefully, when this dynamics is discovered, we will

find that supersymmetry, like gauge symmetry, is spontaneously broken. The spon-

taneous breaking of supersymmetry does not alter the supersymmetry relationship

between various (tree level) dimensionless couplings in the Lagrangian density in

Eq. (6.44).9 For instance, (tree level) chiral fermion–scalar–gaugino interactions

are fixed by the usual gauge coupling. As we saw in Chapter 3, altering these would

be a hard breaking of supersymmetry in that it would result in a re-appearance

of quadratic divergences that we have worked so hard to eliminate. Spontaneous

breaking of supersymmetry does not lead to new quadratic divergences.

In the absence of knowledge about SUSY breaking dynamics, the best that we can

do is to parametrize the effects of SUSY breaking by adding to the Lagrangian all

possible SUSY breaking terms, consistent with all desired (unbroken) symmetries

at the SUSY breaking scale, that do not lead to the re-appearance of quadratic

8 In realistic models because electric charge is strictly conserved and particles with different charges cannot mix,
the supertrace vanishes separately in each charge sector. In other words, there should be an up-type scalar quark
lighter than the up quark, a down-type scalar quark lighter than the down quark, and an integrally charged
scalar lighter than an electron!

9 Spontaneous SUSY breaking means 〈F〉 or 〈D〉 �= 0, but the dimensionless (gauge or superpotential) couplings
come from the unshifted parts of F and D.
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divergences. In Chapter 3, we referred to such operators as soft SUSY breaking

operators, and gave examples of these in the context of the Wess–Zumino model.

Girardello and Grisaru have classified the forms of the soft breaking operators

in a general theory.10 They have shown that to all orders in perturbation theory,

� linear terms in the scalar field Si (relevant only for singlets of all symmetries),
� scalar masses,
� and bilinear or trilinear operators of the form SiS j or SiS jSk (where Ŝi Ŝ j and

Ŝi Ŝ j Ŝk occur in the superpotential),
� and finally, in gauge theories, gaugino masses, one for each factor of the gauge

group,

break supersymmetry softly. In general, masses of fermions in chiral supermulti-

plets, chiral fermion–gaugino mixing masses (these are relevant only if there are

chiral supermultiplets in the adjoint representation of the gauge group), and trilinear

scalar interactions involving Si and S†
j are hard. Finally, all dimension four SUSY

breaking couplings are hard.

It is not hard to understand why the dimensionful mass terms and trilinear in-

teractions listed above lead to softly broken supersymmetry. If SUSY is explicitly

broken by an operator with a coupling MSUSY with dimension of mass, a quadratic

divergence in any operator would have a coefficient proportional to MSUSY
2,

where 
 is the ultra-violet cut-off. Only dimension one operators (i.e. operators

linear in a spin-zero field) can have such a coefficient. Thus, in a theory in which

there are no scalars that are singlets of all the symmetries, all dimensionful, renor-

malizable SUSY breaking operators are soft. In theories with singlets, we get further

restrictions by studying the quadratic divergences in tadpole graphs, and the further

restrictions listed by Girardello and Grisaru apply.

Spontaneous breaking of supersymmetry leads to soft SUSY breaking operators.

We illustrate this with examples of scalar and gaugino mass terms, as well as

trilinear SUSY breaking scalar interactions. These operators, as we will see, play

an important role in realistic model building. If there is a left-chiral superfield Û
whose F-term develops a SUSY breaking VEV, then the terms,

1

M2

∫

d4θÛÛ †ŜLŜ†
L = |〈F〉|2

M2
S†S + · · · , (7.36a)

1

M

∫

d2θLÛ Ŵ c
AŴA = 〈F〉

M
λ̄AλA + · · · , (7.36b)

and

1

M

∫

d2θLÛ Ŝi Ŝ j Ŝk = 〈F〉
M

SiS jSk + · · · (7.36c)

10 L. Girardello and M. Grisaru, Nucl. Phys. B194, 65 (1982).
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are, respectively, mass terms for chiral supermultiplet scalars, gauginos, and trilinear

interactions of chiral supermultiplet scalars in an effective theory (below the scale

M) with spontaneously broken supersymmetry.

In the literature one sometimes sees soft terms of an explicitly broken SUSY

theory written in this way. Then Û , which has only a non-vanishing F-component

(equal to the SUSY breaking parameter), is not a dynamical superfield. This is then

a technical device, and Û is referred to as a spurion.

We summarize this section by listing all SUSY breaking operators consistent

with the absence of quadratic divergences in any renormalizable theory. These are:

1. Linear, bilinear, and trilinear scalar self-interactions analytic in the complex

scalar field, consistent with gauge and other symmetries. Linear terms are ob-

viously absent if there are no singlet superfields. It is customary to write the

bilinear and trilinear soft breaking interactions as

Bi jμi jSiS j and Ai jk fi jkSiS jSk

where the terms μi j Ŝi Ŝ j and fi jkŜi Ŝ j Ŝk occur in the superpotential. It should,

however, be kept in mind that such soft SUSY breaking terms are possible even

if the corresponding terms have been set to zero in the superpotential.

2. Scalar mass terms, and

3. gaugino mass terms.

The soft SUSY breaking Lagrangian may thus be written as

Lsoft =
∑

i

CiSi +
∑

i, j

Bi jμi jSiS j +
∑

i, j,k

Ai jk fi jkSiS jSk + h.c.

−
∑

i, j

S†
i m2

i jS j − 1

2

∑

A,α

MAαλ̄AαλAα − i

2

∑

A,α

M ′
Aαλ̄Aαγ5λAα, (7.37)

where α runs over the different factors of the gauge group. We note that there

are two types of gaugino bilinears that we have introduced above. The first of

these is what the reader will recognize as a usual mass term for gauginos. The

second term is a C P-odd “mass term” that is not precluded unless we further as-

sume that the SUSY breaking sector does not contain additional sources of C P
violation. In models without gauge singlet superfields (of which the MSSM, dis-

cussed in the next chapter, is an example), additional terms may be allowed. These

include,

4. mixing mass terms between gauginos and fermion members of chiral supermul-

tiplets in an adjoint representation, and

5. trilinear scalar interactions of the form SiS jS∗
k .
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Mass terms for fermions in a chiral supermultiplet are redundant since these can be

reabsorbed into the bilinear terms in the superpotential, together with appropriate

redefinition of soft SUSY breaking masses and couplings in the scalar sector.

It is important to stress that the introduction of explicit SUSY breaking terms into

the Lagrangian is a parametrization of our ignorance about the dynamics of SUSY

breaking. An understanding of SUSY breaking (which will hopefully be obtained in

the future) should lead to Lsoft, but with the various soft SUSY breaking parameters

being determined in terms of the (presumably much fewer) fundamental parameters

of a more complete theory.

7.9 A technical aside: γ5-dependent fermion mass matrices

We see from the last line of the master formula (6.44) that the bilinear terms

in (Majorana) fermion fields will, in general, be γ5-dependent. This is what we

encountered in our discussion of Case B of the O’Raifeartaigh model. Similar terms

can also arise from mixing between the gauginos and “matter” fermions when the

scalar fields on the second line of (6.44) acquire complex VEVs. We thus have

to understand how to obtain the fermion mass spectrum from these γ5-dependent

fermion mass matrices.

We write the fermion bilinear terms in the Lagrangian density as,

−L = 1

2
N̄i [Mi j + iγ5 Ni j ]N j , (7.38)

(summation is implied) where Ni are Majorana spinors and i is a label that dis-

tinguishes different particle types. Hermiticity of L requires that M and N are

Hermitian matrices. Since the Ni are Majorana spinors, M and N also have to be

symmetric (and hence real) matrices since N̄i�N j = N̄ j�Ni for � = I or γ5. This

will be crucial later. The Lagrangian density can be written by separating the left-

and right-chiral parts of the spinors as,

−2L = N̄Li [Mi j + iNi j ]NR j + N̄Ri [Mi j − iNi j ]NL j .

We can always find unitary matrices U and V such that V †[M + iN ]U = D, and

U †[M − iN ]V = D†, where D is a diagonal (but not necessarily real) matrix. V
is the unitary matrix that diagonalizes the Hermitian matrix [M + iN ][M − iN ]

to give,

V †[M + iN ][M − iN ]V = DD†.

U is the corresponding matrix for [M − iN ][M + iN ] which is also Hermitian.

It is important to note that [M + iN ][M − iN ] and [M − iN ][M + iN ] have

the same (real and positive) eigenvalues. Furthermore, since M and N are real
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matrices, if the column X is an eigenvector of [M + iN ][M − iN ], then X∗ is an

eigenvector of [M − iN ][M + iN ] with the same eigenvalue. As a result, we can

choose V = U ∗. This guarantees that the spinor ψ ′ defined by,

NL = V ψ ′
L, NR = Uψ ′

R = V ∗ψ ′
R

is Majorana when the original spinorN is Majorana. Writing the Lagrangian density

(7.38) in terms of ψ ′ we obtain (with matrix multiplication implied),

−L = 1

2
[ψ̄ ′

L Dψ ′
R + ψ̄ ′

R D†ψ ′
L], (7.39)

which (though it still contains a γ5-dependent mass term) is now diagonal in par-

ticle type. We can now get rid of this γ5 dependence in the fermion bilinears by

performing chiral rotations,

ψ ′
L j = e−iφL j ψL j , ψ ′

R j = e−iφR j ψR j ,

(no summation over j). These transformations leave the kinetic terms invariant. If

we write the elements of the diagonal matrix D by

Di = mi e
iai ,

with mi and ai as real numbers, the γ5 dependence in (7.39) is removed if we choose,

ai + φLi − φRi = 0.

This, of course, fixes only the difference φLi − φRi , but not the two separately. In

order to maintain the Majorana character of ψi , we should also choose,

φLi = −φRi .

We can now write (7.39) in terms of ψ to obtain,

−L =
∑

i

mi

2
[ψ̄LiψRi + ψ̄RiψLi ] =

∑

i

mi

2
ψ̄iψi . (7.40)

We see that the mi are then the positive masses for the fermions. A straight-

forward way to obtain these is to note that the m2
i are the eigenvalues of D†D

which, of course, coincide with eigenvalues of (M − iN )(M + iN ) (or of

(M + iN )(M − iN )).

We should remember several things from this discussion.

� “Fermion masses” (by this we mean the coefficient of ψ̄ψ in the Lagrangian

density) are not physical objects. It is only the squares of these that give the

squared masses of the fermions. A special case of this that we will have frequent

occasion to use is when a fermion mass has the “wrong sign”. In this case,

the reader can easily check that the transformation, ψ → γ5ψ fixes this sign.
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This does not, however, preserve the Majorana nature of ψ . If ψ is Majorana,

the appropriate transformation should be ψ → iγ5ψ . Both these transformations

preserve the kinetic terms, but may introduce additional γ5 matrices as well as

i’s in interaction terms. These are important as they lead to physically observable

changes in amplitudes.
� For a system of fermions, the physical masses are given not by the eigenvalues

of the “fermion mass matrix” (which need not even be Hermitian). Instead, the

eigenvalues of the mass matrix times its Hermitian adjoint are the squares of the

fermion masses.
� We can eliminate γ5 dependence in fermion bilinears by separately rotating the

left- and right-chiral components. Care must be taken, however, if we are dealing

with Majorana fermions, to preserve their Majorana character. Such γ5-dependent

mass terms, which are not precluded by Poincáre invariance, frequently signal

C P violation.11 In two-component notation, the analogue of these is phases in

masses for spinor fields.

11 Recall that ψ̄γ5ψ is odd under C P .
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The Minimal Supersymmetric Standard Model

At this point, we have all the ingredients necessary for constructing a supersym-

metric version of the Standard Model, complete with explicit soft SUSY breaking

terms. The simplest such model, known as the Minimal Supersymmetric Standard

Model, or MSSM, is a direct supersymmetrization of the Standard Model (except

for the fact that one needs to introduce two Higgs doublet fields). It is minimal

in the sense that it contains the smallest number of new particle states and new

interactions consistent with phenomenology.

To construct the MSSM, we follow the recipe for the construction of supersym-

metric gauge theories at the end of Chapter 6 and proceed as follows:

1. We choose the gauge symmetry group for the theory to be the Standard Model

gauge group, SU (3)C × SU (2)L × U (1)Y.

2. We select the matter content of the theory, to be realized as left-chiral scalar

superfields, with gauge quantum numbers exactly as in the Standard Model.

The Higgs sector is chosen to consist of two left-chiral scalar superfields with

opposite hypercharge.

3. We choose the form of the superpotential.

4. Finally, we compute the supersymmetric Lagrangian using the master formula

Eq. (6.44), and augment it by all possible soft SUSY breaking terms consistent

with the gauge and Poincaré symmetries as discussed in Chapter 7.

8.1 Constructing the MSSM

As mentioned, we choose the gauge symmetry of the Standard Model: SU (3)C ×
SU (2)L × U (1)Y. The gauge bosons of the SM are promoted to gauge superfields.

In the Wess–Zumino gauge,

Bμ → B̂ � (λ0, Bμ,DB),

WAμ → ŴA � (λA, WAμ,DW A), A = 1, 2, 3, and

gAμ → ĝA � (g̃A, G Aμ,Dg A), A = 1, . . . , 8.

127
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The second step is to stipulate the matter content of the MSSM. The fermion

fields of the SM are promoted to chiral scalar superfields, with one superfield for

each chirality of every SM fermion. Since the superpotential must be a function

of just left-chiral superfields, instead of using the right-handed fermions as the

building blocks, we will, as mentioned in Chapter 1, use their left-handed charge

conjugates. The matter superfields then consist of,

(
νiL

eiL

)

→ L̂ i ≡
(

ν̂i

êi

)

,

(eiR)c → Êc
i ,

(
uiL

diL

)

→ Q̂i ≡
(

ûi

d̂i

)

,

(uiR)c → Û c
i ,

(diR)c → D̂c
i ,

where i = 1, 2, 3 refers to the generation of each field, i.e. û3 contains the

dynamical fields t̃L and ψtL (in addition to the corresponding auxiliary field).1

To be explicit, we write down the superfield expansions which contain the electron

fields:

ê = ẽL(x̂) + i
√

2θ̄ψeL(x̂) + iθ̄ θLFe(x̂) (8.1)

while

Êc = ẽ†R(x̂) + i
√

2θ̄ψEcL(x̂) + iθ̄ θLFEc (x̂). (8.2)

In Eq. (8.2), the scalar component destroys the superpartner of the SU (2) sin-

glet (left-handed) positron, or creates the superpartner of the SU (2) singlet (right-

handed) electron, and so is written as ẽ†R.

The familiar four-component Dirac spinor for the massive electron is built from

the two Majorana spinors ψe and ψEc . Since ψeL and ψEcR have the same electric

charge (see the discussion immediately following Eq. (6.38b) of Chapter 6), we

may write this Dirac field as,

e = PLψe + PRψEc . (8.3)

The other massive matter fermions of the SM are similarly constructed.

1 We do not introduce fields for the right-handed neutrinos. Although such fields are very likely to be present in
nature, they will be part of some extension of the MSSM.
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Exercise The construction of the massive Dirac spinor in terms of two Majorana
spinors can be most easily seen in the chiral representation for γ matrices, with

γ 5 =
(−1 0

0 1

)

,

(the bold-face entries are 2 × 2 matrices). Check that the Majorana spinors

ψe =

⎛

⎜
⎜
⎝

e1

e2

−e∗
2

e∗
1

⎞

⎟
⎟
⎠

and ψEc =

⎛

⎜
⎜
⎝

e∗
4

−e∗
3

e3

e4

⎞

⎟
⎟
⎠

.

can be combined via Eq. (8.3) into an arbitrary Dirac spinor.

Exercise Check that the kinetic energy terms for the Majorana spinors ψe and ψEc

in our master formula yield the kinetic energy term for the Dirac spinor e; i.e. verify
that (up to a total derivative),

i

2
ψ̄e∂/ ψe + i

2
ψ̄Ec∂/ ψEc = iē∂/ e. (8.4)

The reader will have noticed that in promoting the SM fields to superfields, we

have introduced many new particles, in order to complete the multiplets of super-

symmetry. The existence of these new states is a prediction of supersymmetry, in

exactly the same way the existence of the �− was the prediction of flavor SU (3)

way back in the 1960s, or the existence of the Z0 boson is a prediction of the SM

symmetries. The superpartners of matter fermions are spin zero particles, known

as sfermions. There is a sfermion pair (the spin zero particle and its antiparticle)

for each chiral fermion in the SM, with the same internal quantum numbers as

the fermion. The spin zero partners of quarks are the scalar quarks, or squarks
for short. Likewise, the spin zero partners of the leptons are the scalar leptons or

sleptons. Other s-words such as selectron, smuon, and stau are analogously de-

fined. The subscripts L and R on the scalar fields in (8.1) and (8.2) refer to the

chirality of the corresponding electron. These selectrons are referred to as left-

(right-)selectrons, and sometimes loosely referred to as left-handed (right-handed)

selectrons. It should, of course, be clear that selectrons, being spinless, cannot have

handedness or chirality. Left- and right-squarks, sleptons, smuons, staus are simi-

larly defined. The Higgs and gauge fields have fermionic superpartners respectively

known as higgsinos and gauginos.
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Next, we introduce the Higgs multiplets of the theory. The usual Higgs doublet

of the SM is promoted to a doublet of left-chiral superfields:

φ =
(

φ+

φ0

)

→ Ĥu =
(

ĥ+
u

ĥ0
u

)

. (8.5)

It transforms as a doublet 2 under SU (2)L and carries weak hypercharge Y = 1.

The usual Yukawa interactions of its scalar component with matter fermions must

arise via the superpotential, since our list of soft SUSY breaking interactions does

not include interactions of chiral fermions. The VEV of the scalar component of

ĥ0
u gives mass to up-type quarks but, unlike in the SM, cannot give a mass to the

T3 = −1/2 fermions. This is because the Y = −1 field needed to give mass to these

would have to be the scalar component of the right-chiral superfield ĥ0†
u , and so, not

allowed in the superpotential. We contrast this with the situation in the SM where

the charge conjugate field φc = iσ2φ
∗ with weak hypercharge Y = −1 could be

responsible also for the mass of the down-type fermions. We are thus forced to

introduce a second left-chiral scalar doublet superfield,

Ĥd =
(

ĥ−
d

ĥ0
d

)

, (8.6)

which transforms as a 2∗ under SU (2)L and has weak hypercharge Y = −1. The

VEV of ĥ0
d can give mass to the down-type quarks and the charged leptons.

Remarkably, the introduction of this second doublet also solves another problem

that we have unwittingly created. In promoting φ → Ĥu , we have introduced new

fermions, the hypercharge Y = 1 higgsinos ψh+
u

and ψh0
u

into the theory, which

upsets the successful cancellation of triangle anomalies in the SM. However, the

higgsinos in the Y = −1 doublet have just the right quantum numbers to restore

the anomaly cancellation.

The third step in our construction procedure is to choose a superpotential to

describe the interactions between the various chiral superfields. For the MSSM, we

take this to be,

f̂ = μĤ a
u Ĥda +

∑

i, j=1,3

[
(fu)i jεab Q̂a

i Ĥ b
u Û c

j + (fd)i j Q̂a
i Ĥda D̂c

j + (fe)i j L̂a
i Ĥda Êc

j

]
.

(8.7)

The indices a and b are SU (2) doublet indices, and explicitly exhibit the contractions

needed for the invariance of the superpotential under SU (2)L transformations. In

all but the second term, a doublet 2 is contracted with an antidoublet 2∗, and this

contraction is trivial. In the second term, εab is the completely antisymmetric SU (2)

tensor with ε12 = 1. Its presence reflects the fact (familiar from elementary quantum

mechanics) that it is the antisymmetric combination of two doublets that is an SU (2)

singlet. The color indices on the triplet (antitriplet) superfields Q̂ (Û c, D̂c) contract
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Table 8.1 The matter and Higgs superfield content
of the MSSM along with gauge transformation

properties and weak hypercharge assignments, for
a single generation.

Field SU (3)C SU (2)L U (1)Y

L̂ =
(

ν̂eL

êL

)

1 2 −1

Êc 1 1 2

Q̂ =
(

ûL

d̂L

)

3 2 1
3

Û c 3∗ 1 − 4
3

D̂c 3∗ 1 2
3

Ĥu =
(

ĥ+
u

ĥ0
u

)

1 2 1

Ĥd =
(

ĥ−
d

ĥ0
d

)

1 2∗ −1

trivially, and have been suppressed. Also, it is easily checked that the hypercharge

of each term sums to zero, so the superpotential is invariant under U (1)Y. The

f terms are elements of 3 × 3 Yukawa coupling matrices with indices i, j = 1–3

corresponding to the various generations. In general, the (f)i j as well as μ are

complex numbers.

The reader can easily check that the superpotential in Eq. (8.7) respects baryon

and lepton number conservation, where these are defined in their natural manner:

B = 1/3 (−1/3) for quark (antiquark) superfields, L = 1 (−1) for the lepton (an-

tilepton) superfields, and zero for the Higgs and gauge superfields. The gauge (and

gaugino) interactions on the first three lines of our master formula (6.44) obviously

conserve B and L also.

Within the SM, the requirement of gauge invariance automatically guarantees

baryon and lepton number conservation for all renormalizable interactions. Unfor-

tunately, this is not the case in the MSSM. Because there are scalar fields that carry

baryon or lepton number (the scalar components of quark and lepton superfields),

it is possible to write down renormalizable operators that do not conserve B or L
that are consistent with the SM gauge symmetries as well as supersymmetry. To

see this, we simply note that the additional superpotential interactions, the terms

f̂ L/ =
∑

i, j,k

[
λi jkεab L̂a

i L̂b
j Ê c

k + λ′
i jkεab L̂a

i Q̂b
j D̂c

k

] +
∑

i

μ′
iεab L̂a

i Ĥ b
u , (8.8a)
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and

f̂ �B =
∑

i, j,k

λ′′
i jkÛ c

i D̂c
j D̂c

k , (8.8b)

are consistent with SU (3)C × SU (2)L × U (1)Y symmetry, but violate the conser-

vation of lepton and baryon number, respectively. Since the superpotential terms

(8.8a) and (8.8b) are at most cubic in the superfields, they result in renormalizable

interactions that do not conserve L or B.

Obviously, the presence of such terms is dangerous since B- or L-violating

processes are strongly constrained by experiment. For instance, if conservation of

baryon number and lepton number are both violated, protons will decay at extremely

rapid rates. In the spirit of minimality of new interactions, we will insist upon B
and L conservation, and set these terms to zero. The SUSY non-renormalization

theorem then ensures that these will not be radiatively generated.

Before proceeding to construct the Lagrangian for the MSSM, let us digress to

discuss alternative symmetries that can be invoked to justify the absence of these

terms. After all, the conservation of baryon number and lepton number are bro-

ken by non-perturbative effects, and so cannot be exact. The unwanted terms can

also be forbidden by requiring that the superpotential be invariant under a new

type of parity (often referred to as matter parity), where quark and lepton super-

fields are odd, while the gauge and Higgs superfields are even. This requirement

then allows the superpotential terms in (8.7), while forbidding those in (8.8a) and

(8.8b).

Exercise Convince yourself that all the kinetic terms as well as the non-
superpotential interactions in our master formula (6.44) conserve matter parity.
It may be simplest to do so by observing that, except for the term involving the
superpotential, all terms in (6.47) are manifestly invariant under the matter parity
transformation.

The conservation of matter parity works out to be equivalent to the conservation

of R-parity defined (for the component fields) by,

R = (−1)3(B−L)+2s, (8.9)

where s is the spin of the field. Note that because of the (−1)2s dependence, the scalar

and fermion (spinor and vector) components of a chiral scalar (spinor) superfield

have opposite R-parities. If we now take the Grassmann co-ordinate θ to be odd

under R, we see that R-parity transformation of the superfield is just the matter
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parity transformation discussed above. A look at (6.47) of Chapter 6 shows that

R-parity violation can only come from R-odd B- and L-violating terms in the

superpotential.

Exercise Starting with the definition (8.9) for R-parity, verify that the SM fermions,
gauge bosons, and both Higgs doublets are R-even, while their superpartners are
R-odd. In models with conserved R-parity, this quantum number therefore provides
an unambiguous distinction between “ordinary particles” and superpartners.

It may appear that the assumption of R-parity conservation is equivalent to the

conservation of B and L . This is the case for renormalizable operators in a theory

whose field content is that of the MSSM. For higher dimensional operators, this

need not be the case as is exemplified by the exercise below.

Exercise Verify that the low energy superpotential of an effective low energy theory
could contain the R-parity invariant operators

εab L̂a Ĥ b
u εcd L̂c Ĥ d

u or Û cÛ c D̂c Êc.

Observe that the first of these violates the conservation of lepton number while the
latter violates both lepton and baryon number conservation. These operators could
be responsible for neutrino masses and proton decay, respectively, even if R-parity
is conserved.

Can you construct an R-parity and gauge invariant operator that conserves
L but not B? Such an operator could, for instance, be responsible for neutron
anti-neutron oscillations.

We repeat that our choice of the MSSM superpotential to be that given by (8.7) is

dictated only by constraints of minimality of new interactions. The resulting conser-

vation of R-parity has important phenomenological consequences as we will see.

We should mention, however, that it is possible to construct phenomenologically

viable models in which R-parity is not conserved. Indeed, we will discuss such

models in Chapter 16, but now we proceed with the construction of the MSSM.

Up to this point, we have stipulated the symmetries, field content, and super-

potential of the MSSM. We can now use the master formula (6.44) to write down

the complete globally supersymmetric Lagrangian. The final step is to write down

the various soft SUSY breaking terms for the MSSM.
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We may use Eq. (7.37) to write all gauge invariant soft SUSY breaking terms.

They are

Lsoft = −
[

Q̃†
i m2

Qi j
Q̃ j + d̃†

Ri m
2
Di j d̃R j + ũ†

Ri m
2
Ui j ũR j

+ L̃†
i m2

Li j L̃ j + ẽ†Ri m
2
Ei j ẽR j + m2

Hu
|Hu|2 + m2

Hd
|Hd |2

]

−1

2

[
M1λ̄0λ0 + M2λ̄AλA + M3 ¯̃gB g̃B

]

− i

2

[
M ′

1λ̄0γ5λ0 + M ′
2λ̄Aγ5λA + M ′

3
¯̃gBγ5g̃B

]

+
[

(au)i jεab Q̃a
i H b

u ũ†
R j + (ad)i j Q̃a

i Hdad̃†
R j + (ae)i j L̃a

i Hdaẽ†R j + h.c.
]

+
[

(cu)i jεab Q̃a
i H∗b

d ũ†
R j + (cd)i j Q̃a

i H∗
uad̃†

R j + (ce)i j L̃a
i H∗

uaẽ†R j + h.c.
]

+ [
bH a

u Hda + h.c.
]
, (8.10)

where the generation indices i, j , as well as the SU (2) indices a, b, are implicitly

summed over. Hermiticity requires that the scalar mass squared matrices are 3 × 3

Hermitian matrices, each of which can be written in terms of 6 real and 3 imaginary

parameters. The six gaugino mass parameters (Mi , M ′
i ) with i = 1–3 corresponding

to the three factors of the MSSM gauge group, are real. The terms with M ′s violate

C P invariance. The a and c matrices that describe trilinear scalar interactions are

general 3 × 3 complex matrices, just like the Yukawa matrices. The parameters m2
Hu

and m2
Hd

are real, while the b bilinear term is, in general, complex. The trilinear

interactions involving c matrices are frequently not written down because such

terms are strongly suppressed in many models, but there is really no reason to

exclude these within the MSSM framework.

At this point, we have the complete Lagrangian for the MSSM. Of course, it

is written in terms of fields with definite quantum numbers for the gauge group.

Upon spontaneous symmetry breaking, fields with the same color, electric charge,

and spin may mix. The spectrum and couplings of the mass eigenstates have to be

extracted from this Lagrangian.

8.1.1 Parameter space of the MSSM

It is now worthwhile to count the free parameters that enter the MSSM Lagrangian.

Recall that the SM has nineteen free parameters: three gauge couplings g1, g2, and

g3, the parameter θQCD, μ and λ from the Higgs potential, six quark and three lepton

masses, plus three mixing angles, and one C P-violating phase in the Kobayashi–

Maskawa matrix.

In the MSSM, we have in the gauge sector again g1, g2, g3, and θQCD, plus we

have six gaugino masses M1, M2, M3 and M ′
1, M ′

2, and M ′
3. As noted in the exercise
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below, one of the C P-violating gaugino masses can be removed by performing a

chirality transformation of the gaugino field. By convention, we choose this to be

M ′
3. Thus, we have nine parameters in the gauge sector of the model.

In the Higgs sector, we have the real mass terms m2
Hu

and m2
Hd

, together

with μ from the superpotential and its corresponding soft SUSY breaking term

b. The latter two are complex but one of the phases, usually taken to be the

one associated with b, can be absorbed by redefining the overall phase of one

of the Higgs fields. Thus, in the Higgs sector of the MSSM, we have five real

parameters.

Finally, we turn to the matter fermions and their superpartners. First, there are

five soft SUSY breaking Hermitian mass matrices for the scalar partners of the

quarks and leptons, with six real parameters plus three phases each, for a total

of 45 parameters. Then, we have three 3 × 3 complex Yukawa coupling matrices

(18 × 3 = 54 parameters). There are another 54 terms in three corresponding a-

parameter matrices and the same number in the c matrices. This gives a total of 207

parameters in the flavor sector, but not all of them are physical.

To count the number of unphysical parameters, i.e. those parameters that can

be removed by field redefinitions, we first note that the kinetic terms and gauge

interactions are invariant under a global U (3)5 transformation, one U (3) corre-

sponding to transformations amongst each of the three L̂ i , Êc
i , Q̂i , Û c

i , and D̂c
i . It

is just the superpotential Yukawa terms, and the SUSY breaking a and c terms that

are not invariant under these global chiral transformations, which can thus be used

to remove some of these parameters. Since any U (3) can be parametrized by three

angles and six phases, 5 × (3 + 6) = 45 parameters of the 207 that we obtained

above should be removable. However, two of the phases in U (3)5 correspond to the

conservation of the total B and L: since the corresponding transformations leave

the Lagrangian invariant, they cannot be used to do any useful field redefinitions.

Summing up the gauge, Higgs, and matter sectors, we have a model with a total

of 9 + 5 + 207 − 43 = 178 parameters in the MSSM. As we stated above, the 54

c parameters are usually not included in the MSSM which is then said to contain

124 parameters.

Presumably, once we understand the mechanism underlying SUSY breaking

(including how it is conveyed to the superpartners of the SM particles), it will be

possible to reduce this plethora of parameters to a handful of truly fundamental

parameters. But until then, one of the principal goals of model builders is to arrive

at phenomenologically viable but economic models, based on well-motivated as-

sumptions of physics at high energy scales, each with just a few model parameters.

It is reasonable to expect that once sparticles are discovered, a determination of

their properties will serve to discriminate between these models, thereby pointing

the way to the underlying theory.
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Exercise Show that, for an appropriate choice of φ, the transformations g̃L →
e−iφ g̃L, g̃R → eiφ g̃R (this maintains the Majorana property of g̃) can be used to
eliminate the C P-violating mass parameter M ′

3 of the gluino field. In fact, we
used this procedure in our discussion following Eq. (7.39) of the technical note
in Chapter 7. The phase φ, which then shows up in the g̃qq̃L,R couplings, can be
absorbed by redefinition of the squark fields. We should emphasize that this does
not mean that the M ′

3 term is irrelevant, but only that this term does not give rise to

observable C P-violation. The physical mass of the gluino is mg̃ =
√

M2
3 + M ′2

3 ,
and it is this quantity that appears as the coefficient of the “usual gluino mass
term” after the C P-violating gluino bilinear is rotated away.

Note also that we cannot simultaneously remove M ′
1 or M ′

2 since the phase that
needs to be absorbed into the squark field will now be different. That we choose to
remove the C P-violating mass of the gluino rather than the SU (2) or U (1) gaugino
is, of course, only a convention.

Exercise Using arguments similar to the ones for the MSSM, show that the Yukawa
sector of the SM with n generations (assuming neutrinos are massless) contains
n real parameters in the lepton sector and n(n + 3)/2 real parameters and n(n −
3)/2 + 1 phases in the quark sector.

Note that, unlike the MSSM, the SM with massless neutrinos separately conserves
the lepton number for each generation.

8.1.2 A simplified parameter space

We have just seen that the MSSM contains an intractably large number of parameters

for meaningful phenomenological analyses. While we have no direct knowledge of

these parameters, we can nonetheless make reasonable simplifying assumptions to

facilitate our discussion.

We begin by recalling that our motivation for weak scale supersymmetry was

to stabilize the electroweak symmetry breaking sector of the SM which suffered

from the presence of quadratic divergences. We saw, at least by example, that softly

broken SUSY theories have the virtue that they do not suffer from these: the masses

of the superpartners set the scale for radiative corrections to the Higgs boson mass,

and hence the weak scale. This is the raison d’être for weak scale supersymmetry.

We thus require that the SUSY breaking parameters as well as μ are in the range

of the weak scale, or at least not larger than a few TeV. This is our most important

assumption.
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Next, we note that the scalar matter sector of the MSSM generically would have

large flavor violation in both the squark and slepton sectors if the off-diagonal terms

in the corresponding mass matrices or the a or c matrices are comparable to the

diagonal terms. Moreover, we saw that the scalar sector of the MSSM has many

physical phases that serve as novel sources of C P violation. Even at low energies

(well below the SUSY threshold) SM particles would “feel” these sources of flavor

and C P violation through SUSY particles in loop diagrams. The magnitude of these

effects, of course, depends on the sparticle masses. There are experimental bounds

on lepton flavor violation and on C P violation that stringently restrict the size of

some of the off-diagonal terms as well as phases referred to in Section 8.1.1. For

instance, large off-diagonal contributions to slepton mass matrices would lead to

large decay rates for μ → eγ . Large off-diagonal terms in the squark mass matrices

are greatly restricted by K 0–K
0
, D–D, and B–B mixing, and by processes such as

b → sγ , b → s��̄ or K 0 → μ+μ− decays. Large off-diagonal terms in the trilinear

a and c matrices are similarly restricted. There are also strong constraints on C P-

violating parameters from measurements of the electron and neutron electric dipole

moments.

In the following, we will for simplicity set all SUSY sources of C P violation to

zero. In addition, we will also assume that squark and slepton matrices as well as

the a matrices are diagonal in the same basis that the fermion Yukawa couplings

are diagonal. Following common practice, we will set the c terms to zero. This

is because these terms are frequently small in many models. These simplifying

assumptions may well prove to be incorrect. It could turn out that experiments may

show that nature requires sources of flavor or C P violation beyond those present in

the SM. While there is scant evidence for this at the present time, things could be

different in the future. We should also stress that our predictions for even the simplest

properties (such as mass) of SUSY particles are sensitive to these assumptions. In

the interest of pedagogy, however, we will continue to work within the simplified

framework, and leave it to the reader to make the appropriate modifications in more

complicated frameworks.

Finally, since our main focus is on SUSY particles, we will keep track of only

the third generation Yukawa couplings, and neglect Yukawa interactions of the first

two generations. This is obviously unrealistic, but has little effect for most things

that we will study. In other words, we will approximate the Yukawa matrices in the

superpotential by,

fe ∼
⎛

⎝

0 0 0

0 0 0

0 0 fτ

⎞

⎠ , fu ∼
⎛

⎝

0 0 0

0 0 0

0 0 ft

⎞

⎠ , fd ∼
⎛

⎝

0 0 0

0 0 0

0 0 fb

⎞

⎠ .
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Frequently, the matrices ai j are written as Ai j fi j . Within our approximation, these

will then take the form,

ae ∼
⎛

⎝

0 0 0

0 0 0

0 0 fτ Aτ

⎞

⎠ , au ∼
⎛

⎝

0 0 0

0 0 0

0 0 ft At

⎞

⎠ , ad ∼
⎛

⎝

0 0 0

0 0 0

0 0 fb Ab

⎞

⎠ ,

with Aτ , At , and Ab being real parameters (the A-terms). The bilinear b term is,

likewise, written as b = Bμ, where B is taken to be real. The parametrization

of the a and b terms in terms of the corresponding superpotential interactions is

motivated by gravity-mediated models (to be discussed later). Indeed, within the

MSSM framework, the soft breaking scalar parameters are completely unrelated

to the parameters in the superpotential, i.e. a may be non-zero even if the Yukawa

couplings vanish and, further, c terms need not be small.

From this point onwards, unless explicitly stated, we will assume that we are

working within the simplified parameter space.

8.2 Electroweak symmetry breaking

The theory we have written down so far respects the gauge symmetry SU (3)C ×
SU (2)L × U (1)Y. Our next task is to ensure that the gauge symmetry of the MSSM

can be successfully broken down to observed SU (3)C × U (1)em, so that W and Z
bosons and fermions may receive mass as they do in the SM.

To investigate electroweak symmetry breaking, we must examine the minima of

the scalar potential in the MSSM. The tree-level scalar potential consists of three

parts

VMSSM = VF + VD + Vsoft, (8.13)

where

VF =
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S
, (8.14a)

VD = 1

2

∑

A

[
∑

i

S†
i gtASi

]2

and (8.14b)

Vsoft =
∑

i

m2
φi

|φi |2 − Bμ (Hd Hu + h.c.) + a-terms. (8.14c)

The sum over i is over all scalar fields in the model. Each real component of

each scalar field may be regarded as a separate direction in “field space”. Thus,

the scalar “field space” of the MSSM, with 14 real matter scalars per generation,

plus four complex Higgs scalars, is a 50-dimensional space. We look for parameter
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regions where this scalar potential develops a minimum along “directions” of the

Higgs scalars. If a deeper minimum develops along other scalar field directions,

then the ground state of the theory could develop such that electric charge, color

or lepton number symmetry is broken. In fact, these considerations can be used

to put constraints on the parameters of the theory. We will assume here that such

non-standard minima do not develop.

We can then restrict our attention to the scalar potential involving only the Higgs

scalar fields. We may use the SU (2)L gauge symmetry freedom to rotate the VEV

of Hu to its lower component which we have defined to be neutral. Minimization of

the potential with respect to the other component of Hu then requires that 〈h−
d 〉 = 0

as demonstrated in the following exercise. The MSSM Higgs potential, therefore,

allows only charge-conserving vacua.2

Exercise Verify that for the Higgs fields, VD can be written as,

V Higgs
D = g2 + g′2

8
(A2

u + A2
d) + g2 − g′2

4
AuAd − g2

2
|Aud |2,

where Au = |Hu|2, Ad = |Hd |2, and Aud = Hu Hd. The tree-level Higgs potential
to be minimized is,

V Higgs = (m2
Hu

+ μ2)Au + (m2
Hd

+ μ2)Ad − Bμ(Aud + A†
ud) + V Higgs

D .

We see that for fixed magnitudes of Hu and Hd, i.e. fixed values of Au and Ad , the
minimum of V Higgs is obtained by making |Aud | as large as possible. This means,
of course, that Hd and Hu are aligned, so that 〈h−

d 〉 = 0. Moreover, for real values
of Bμ the second last term in V Higgs is minimized when Aud is real and positive
(negative) if Bμ is positive (negative). Thus as long as the parameters of the Higgs
potential are real, no C P-violating phases are induced by the interactions of Higgs
bosons.

Notice that there is no loss of generality if we choose the VEVs of both fields to
have the same sign as long as the sign of Bμ can always be appropriately chosen.

We then only have to minimize the scalar potential for the “neutral fields” which

now reads,

Vscalar = (m2
Hu

+ μ2)|h0
u|2 + (m2

Hd
+ μ2)|h0

d |2

−Bμ(h0
uh0

d + h.c.) + 1

8
(g2 + g′2)

(|h0
u|2 − |h0

d |2
)2

. (8.15)

2 Of course, we still have to assume that the matter scalars do not develop VEVs.
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To find the minimum of the scalar potential, we set the first derivatives of this

potential with respect to the fields as well as to their conjugates to zero:

∂V

∂h0∗
u

= (m2
Hu

+ μ2)h0
u − Bμh0∗

d + 1

4
(g2 + g′2)h0

u(|h0
u|2 − |h0

d |2)

= 0, (8.16a)

∂V

∂h0∗
d

= (m2
Hd

+ μ2)h0
d − Bμh0∗

u − 1

4
(g2 + g′2)h0

d(|h0
u|2 − |h0

d |2)

= 0. (8.16b)

The point(s) in field space where these equations are satisfied is an extremum of the

(tree-level) potential. One possible solution is 〈h0
u〉 = 〈h0

d〉 = 0, i.e. no electroweak

symmetry breaking. To ensure that this does not occur, the origin must be a local

maximum of the potential. In other words, the determinant of the matrix of second

derivatives should be negative at the origin. Since we are interested in the evaluation

of the second derivatives at the origin of field space just the bilinear terms contribute,

and we must have,

(Bμ)2 > (m2
Hu

+ μ2)(m2
Hd

+ μ2). (8.17a)

We must also check that the scalar potential indeed has a stable minimum, and is not

unbounded from below. For most field values this is not an issue because the positive

definite quartic term dominates the scalar potential for large field values. However,

in the direction of field space where |h0
u| = |h0

d |, the quartic term vanishes. This is

a D-flat direction in field space, and in this direction we must require the scalar

potential to be positive. This leads to

m2
Hu

+ m2
Hd

+ 2μ2 > 2|Bμ|. (8.17b)

If these conditions are met, then the scalar potential should develop a well-

defined local minimum in which electroweak symmetry is spontaneously broken.

We write 〈h0
u〉 ≡ vu and 〈h0

d〉 ≡ vd with the VEVs as real numbers, and define a

parameter,

tan β ≡ vu

vd
(8.18)

that will play an important role in phenomenological studies of the MSSM. It is

simple to see that the potential minimization conditions can be written as:

Bμ = (m2
Hu

+ m2
Hd

+ 2μ2) sin 2β

2
and (8.19a)

μ2 = m2
Hd

− m2
Hu

tan2 β

(tan2 β − 1)
− M2

Z

2
. (8.19b)
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To obtain (8.19b), we have used the relation (to be derived shortly), M2
Z =

(g2+g′2)
2

(v2
u + v2

d). The first of these equations allows one to trade the parameter

Bμ for the more commonly used parameter tan β. Given the soft SUSY breaking

Higgs masses m2
Hu

and m2
Hd

, we use the second to fix the magnitude (but not the

sign) of μ to reproduce the observed value of MZ .

Up to now, we have focussed on the tree-level potential (8.15) for the electroweak

symmetry breaking sector of the MSSM. A characteristic feature of this potential

is that the quartic self-interactions of the Higgs fields are determined solely by the

SU (2) × U (1) gauge couplings. This implies that the Higgs sector of the MSSM

automatically satisfies perturbative unitarity constraints, in sharp contrast to the SM

where the Higgs self-coupling constant is an independent parameter. This important

feature of the MSSM can be traced to the fact that the μ term is the only possible

superpotential term bilinear in the Higgs superfields. Indeed, as we will see, the

structure of the self-couplings in the Higgs sector of the MSSM implies an upper
limit of MZ on the mass of the SM-like Higgs boson! This is a tree-level result, and

radiative corrections modify it in an important way. We will, however, postpone

any further discussion about this until we are ready to examine the spectrum of the

relics of the electroweak symmetry breaking sector of the MSSM.

8.3 Particle masses in the MSSM

8.3.1 Gauge bosons

Once we are assured of the correct pattern of electroweak symmetry breaking, we

can proceed to calculate the masses of the vector bosons. Since the vacuum does not

spontaneously break the U (1)em associated with electromagnetic gauge invariance,

we expect that the photon will remain massless, while the W ± and Z0 will acquire

a mass via the Higgs mechanism. As in the SM, these vector boson mass terms

arise from the kinetic energy terms of the Higgs fields:

L � |Dμ Hu|2 + |Dμ Hd |2, (8.20)

where

Dμ Hu = (∂μ + ig
τA

2
WAμ + i

g′

2
Bμ)Hu and

Dμ Hd = (∂μ + ig(−τ ∗
A

2
)WAμ − i

g′

2
Bμ)Hd .

The vector boson masses are obtained by making the replacement,

〈Hu〉 →
(

0

vu

)

and 〈Hd〉 →
(

0

vd

)

. (8.21)
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Identifying the charged fields,

W ±
μ = 1√

2
(W1μ ∓ iW2μ),

we find,

M2
W = g2

2
(v2

u + v2
d). (8.22a)

As in the SM, the neutral fields W3μ and Bμ mix, and the neutral mass matrix has

to be diagonalized. Diagonalizing this mass matrix yields the fields,

Aμ = (g′W3μ + gBμ)
√

g2 + g′2

Zμ = (−gW3μ + g′ Bμ)
√

g2 + g′2 .

Aμ is massless and identified as the photon field. The other field has a mass,

M2
Z = g2 + g′2

2
(v2

u + v2
d). (8.22b)

Defining the weak mixing angle by tan θW ≡ g′/g, we recover the SM relation

MW = MZ cos θW.

Instead of working with Hu and Hd , we could have equally well worked with

the linear combinations,

φ = sin β Hu + cos β H∗
d ,

φ′ = cos β Hu − sin β H∗
d .

The doublet φ acquires a VEV v ≡
√

v2
u + v2

d 
 174 GeV for its neutral component

and can be identified with the SM Higgs doublet. The field φ′ does not acquire a

VEV and is just an additional scalar field that has nothing to do with symmetry

breaking.

8.3.2 Matter fermions

Matter fermions acquire masses via Yukawa interactions in the superpotential.

Specifically, these masses arise from the terms

L � −1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Ŝi∂Ŝ j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j
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in our master formula. We will focus on the mass of the electron; the calculation of

other SM fermion masses follows along identical lines.

We first note that, since the superpotential contains the term f̂ � feêĥ0
d Êc, we

find

∂2 f̂

∂ ê∂ Êc

∣
∣
∣
∣
∣
Ŝ=S

= feĥ0
d

∣
∣
ĥ0

d=h0
d
= feh0

d,

so that

L � −1

2
ψ̄e

[

feh0
d

1 − γ5

2
+ feh0∗

d

1 + γ5

2

]

ψEc

−1

2
ψ̄Ec

[

feh0
d

1 − γ5

2
+ feh0∗

d

1 + γ5

2

]

ψe

= −
[

ψ̄Ec feh0
d

1 − γ5

2
ψe + ψ̄e feh0∗

d

1 + γ5

2
ψEc

]

,

where in the last step we have used the Majorana bilinear relations to combine

terms. Using the definition (8.3) of the Dirac electron field, and replacing the field

h0
d by its VEV, the reader can easily check that these terms reduce to a mass term

for the Dirac electron. Specifically,

L � − fevd ēe = −meēe, (8.23)

with me ≡ fevd . Thus, as in the SM, the electron acquires a mass via its coupling

to the Higgs field. This justifies our calling the superpotential coupling fe as the

electron Yukawa coupling. Note that in the MSSM the electron mass comes from

〈h0
d〉. The same is true for the other charged leptons and down-type quarks that

couple just to the doublet Hd via superpotential interactions. A similar calculation

for the masses of T3 = +1/2 fermions of the SM finds their masses proportional

to vu . The neutrino, of course, remains massless just as in the SM, since we have

not introduced a Yukawa coupling for it.

Exercise Verify that the fermion Yukawa couplings can be written as,

fi = gmi√
2MW

1/ sin β, if T3 f = 1

2
, (8.24a)

and

fi = gmi√
2MW

1/ cos β, if T3 f = −1

2
. (8.24b)
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Notice that these expressions for the MSSM Yukawa couplings fi in terms of the
fermion masses are different from the corresponding expressions for the SM Yukawa
couplings λi .

We remark that since the mass of the fermions arises from the superpotential,

it must be supersymmetric, i.e. the scalar superpartners will get an identical con-

tribution to the mass from the superpotential Yukawa couplings. This should not

be surprising since we have already seen that we cannot have soft SUSY breaking

masses for chiral fermions.

8.3.3 Higgs bosons

Before turning to the masses of the superpartners, let us examine the spectrum of

physical particles from the electroweak symmetry breaking sector. Within the SM

with just one complex doublet, we know that a single neutral spin zero particle –

the Higgs boson – is left in the spectrum as a relic of the spontaneous breakdown of

SU (2)L × U (1)Y → U (1)em. This is because the charged component of the doublet

and one of the neutral components are the three would-be Goldstone bosons that

become the longitudinal components of the W ± and Z0 after the Higgs mechanism.

Since the symmetry breaking pattern of the MSSM is the same as that of the SM,

we expect the same set of would-be Goldstone bosons: however, since we now start

with two sets of complex doublets, one charged and three neutral spin zero bosons

remain in the physical spectrum of the MSSM.

In order to identify these states and compute their masses , we must examine the

Higgs potential:

V Higgs = (m2
Hu

+ μ2)(|h0
u|2 + |h+

u |2) + (m2
Hd

+ μ2)(|h0
d |2 + |h−

d |2)

− Bμ(h+
u h−

d + h0
uh0

d + h.c.)

+ g2

8

{
(|h+

u |2 − |h0
u|2 + |h0

d |2 − |h−
d |2)2 + 4|h+

u |2|h0
u|2 + 4|h0

d |2|h−
d |2

− 4 (h+∗
u h−∗

d h0
uh0

d + h0∗
u h0∗

d h+
u h−

d )
}

+ g′2

8

[|h+
u |2 + |h0

u|2 − |h0
d |2 − |h−

d |2]2
. (8.25)

The neutral fields may be broken up into real and imaginary components h0
u =

h0
uR+ih0

uI√
2

and h0
d = h0

dR+ih0
dI√

2
, so that the scalar potential can be regarded as a function

V (h0
uR, h0

uI, h0
dR, h0

dI, h+
u , h+∗

u , h−
d , h−∗

d ) of eight independent fields. Since we are

interested in excitations of the vacuum, we expand the Higgs potential about its
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minimum as,

V Higgs = Vmin +
∑

hi

∂V

∂hi

∣
∣
∣
∣
hi =〈hi 〉

(hi − 〈hi 〉)

+ 1

2

∑

hi ,h j

∂2V

∂hi∂h j

∣
∣
∣
∣
hi, j =〈hi, j 〉

(hi − 〈hi 〉)(h j − 〈h j 〉) + · · · , (8.26)

where the hi are the eight arguments of V as listed above, and the only non-vanishing

VEVs are 〈h0
dR〉 = √

2vd and 〈h0
uR〉 = √

2vu . The coefficients of the linear terms

should all vanish, since the derivatives are evaluated at the minimum of the potential;

the quadratic terms will then be Higgs boson mass terms, and since in general there

will be mixing, these will form mass matrices. The conservation of electric charge

means that there can be no mixing between charged and neutral Higgs fields, so

that there is one mass matrix for the charged sector and a different one in the neutral

sector. Moreover, because of the (assumed) C P invariance of the Higgs sector, the

real and imaginary components of the neutral Higgs bosons do not mix either, so

that the 4 × 4 mass matrix in the neutral sector decomposes into two 2 × 2 blocks.

First, let us construct the mass matrices that contain the would-be Goldstone

bosons. These reside in the charged sector and in the C P-odd sector (i.e. the

imaginary components) of the neutral fields. The states orthogonal to the Goldstone

boson will automatically be the physical states in these sectors.

We begin with the charged fields. The Lagrangian will have the form

L � (
h+∗

u h−
d

)
M2

h±

(
h+

u

h−∗
d

)

, (8.27)

where

M2
h± =

⎛

⎝

∂2V
∂h+

u ∂h+∗
u

∣
∣
∣
hi →vi

∂2V
∂h+∗

u ∂h−∗
d

∣
∣
∣
hi →vi

∂2V
∂h+

u ∂h−
d

∣
∣
∣
hi →vi

∂2V
∂h−

d ∂h−∗
d

∣
∣
∣
hi →vi

⎞

⎠ .

The derivatives are simple to compute if we remember that we want to evaluate

these at the VEV of the Higgs fields; then we can drop terms that are proportional

to h+
u , h−

d , h0
uI or h0

dI (after the derivatives are taken) as these fields vanish in the

vacuum. For instance,

∂2V

∂h+
u ∂h+∗

u

∣
∣
∣
∣
hi →vi

= (m2
Hu

+ μ2) + g2

4

(
v2

u + v2
d

) + g′2

4
(v2

u − v2
d)

= Bμ cot β + g2

2
v2

d,
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where in the last step we have used the first of the minimization conditions (8.16a)

to eliminate m2
Hu

+ μ2 in favor of Bμ. The mass squared matrix in the charged

sector is found to be,

M2
h± =

(

Bμ cot β + g2

2
v2

d −Bμ − g2

2
vuvd

−Bμ − g2

2
vuvd Bμ tan β + g2

2
v2

u

)

, (8.28)

where we have used (8.16b) to eliminate m2
Hd

+ μ2 from the lower right entry of

the matrix. Its eigenvalues are given by

mG± = 0 and m2
H± = Bμ(cot β + tan β) + M2

W . (8.29)

The zero eigenvalue merely confirms that, but for the Higgs mechanism, G± would

have been the Goldstone boson. In the unitarity gauge, these do not appear in the

Lagrangian with massive W bosons. The other state, H±, remains in the spectrum.

The mixing matrix takes the form,

(
G+

H+

)

=
(

cos β sin β

− sin β cos β

) (
h−∗

d

h+
u

)

. (8.30)

Let us now turn to the neutral sector, focussing for the moment on the mass terms

for the imaginary components of the neutral fields. These may be written as,

L � 1

2

(
h0

uI h0
dI

)
M2

h0
iI

(
h0

uI

h0
dI

)

, (8.31)

with

M2
h0

iI
=

⎛

⎝

∂2V
∂h02

uI

∣
∣
∣
hi →vi

∂2V
∂h0

uI∂h0
dI

∣
∣
∣
hi →vi

∂2V
∂h0

uI∂h0
dI

∣
∣
∣
hi →vi

∂2V
∂h02

dI

∣
∣
∣
hi →vi

⎞

⎠ .

A computation similar to that for the charged sector gives,

M2
h0

iI
=

(
Bμ cot β Bμ

Bμ Bμ tan β

)

. (8.32)

The eigenvalues are,

mG0 = 0 and m2
A = Bμ(cot β + tan β). (8.33)

From the eigenvalue corresponding to m2
H± , we see that

m2
H± = m2

A + M2
W , (8.34)

so that, at least at tree level, m H± ≥ MW and m H± ≥ m A.
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Exercise We have already argued that the real and imaginary components of the
neutral fields cannot mix. Explicitly verify that this is indeed the case. Also, verify
the mass matrix is indeed given by (8.32). To obtain the diagonal entries, you will
once again have to use the minimization conditions.

Again, after a gauge transformation to the unitarity gauge, G0 disappears from the

Lagrangian which now includes a mass for the Z0 boson. The massive A particle

remains as a pseudoscalar Higgs boson, as will be seen when we calculate its

couplings to matter fermions.3 The mixing matrix for G0 and A is
(

G0

A

)

=
(

sin β − cos β

cos β sin β

) (
h0

uI

h0
dI

)

. (8.35)

Finally, let us turn to the mass matrix for the remaining neutral scalars involving

the h0
uR and h0

dR. The mass squared matrix of the real components of the neutral

Higgs scalars occurs in the Lagrangian as,

L � 1

2

(
h0

uR h0
dR

)
M2

h0
iR

(
h0

uR

h0
dR

)

, (8.36)

with

M2
h0

iR
=

⎛

⎝

∂2V
∂h02

uR

∣
∣
∣
hi →vi

∂2V
∂h0

uR∂h0
dR

∣
∣
∣
hi →vi

∂2V
∂h0

uR∂h0
dR

∣
∣
∣
hi →vi

∂2V
∂h02

dR

∣
∣
∣
hi →vi

⎞

⎠

=
(

m2
A cos2 β + M2

Z sin2 β −(m2
A + M2

Z ) sin β cos β

−(m2
A + M2

Z ) sin β cos β m2
A sin2 β + M2

Z cos2 β

)

, (8.37)

where to obtain the last step we have used manipulations very similar to those used

to obtain the other mass matrices above. The eigenvalues of this mass matrix are

m2
h,H = 1

2

[

(m2
A + M2

Z ) ∓
√

(m2
A + M2

Z )2 − 4m2
A M2

Z cos2 2β

]

, (8.38)

where h and H denote the lighter and heavier of the neutral scalar mass eigenstates.

Exercise The masses of h and H respect several important bounds. To see this,
recall that the expectation value of the matrix (8.37) – for any vector (cos θ, sin θ )T –
must lie between the eigenvalues m2

h and m2
H . Verify that setting θ = β yields,

mh ≤ m A| cos 2β| ≤ m H , (8.39a)

3 Because parity is not conserved in weak interactions, the attentive reader may wonder whether A remains an
eigenstate beyond tree level. However, C P is conserved and the C P-odd A is precluded from mixing with the
C P-even scalar Higgs bosons that we consider shortly.
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while setting θ = π/2 − β yields,

mh ≤ MZ | cos 2β| ≤ m H . (8.39b)

Notice that this implies that mh = 0 if tan β = 1.
Note that these bounds hold only at tree level. Radiative corrections that we

alluded to earlier allow h to be significantly heavier than MZ . This is fortunate since
otherwise the non-observation of h in experiments at LEP2 would have excluded
the MSSM!

Finally, we may write the physical Higgs scalars in terms of h0
uR and h0

dR as
(

h
H

)

=
(

cos α sin α

− sin α cos α

) (
h0

uR

h0
dR

)

, (8.40a)

with α the Higgs scalar mixing angle being given by

tan α =
(m2

A − M2
Z ) cos 2β +

√

(m2
A + M2

Z )2 − 4m2
A M2

Z cos2 2β

(m2
A + M2

Z ) sin 2β
. (8.40b)

Let us now turn to the mass spectrum of the superpartners. We first discuss masses

of gauge and Higgs fermions, and then turn to the partners of the matter fermions.

8.3.4 Gluinos

The gluino g̃, the gaugino partner of the gluon, is the only color octet fermion. Since

SU (3)C is not broken, the gluino cannot mix with any other fermion, and must be a

mass eigenstate. Its mass term then arises just from the soft supersymmetry breaking

gaugino mass term,4

L � −1

2
M3 ¯̃gg̃ (8.41)

so that its mass at tree level is simply mg̃ = |M3|. If the real parameter M3 is

negative, following the discussion in the Technical Aside of Chapter 7, we can

always redefine the gluino field g̃ → −iγ5g̃. The new gluino field then has positive

mass and retains its Majorana character. For later convenience, we will write this

redefinition as g̃ → (−iγ5)θg̃ g̃, where θg̃ = 0 (1) for M3 > 0 (M3 < 0).

Exercise Show that the transformation ψ → ψ ′ = −iγ5ψ changes the sign of the
mass term in the Lagrangian for a free Majorana fermion, but not the kinetic energy
term. Show also that if ψ is Majorana, then so is ψ ′.

4 Recall that we have already discussed how the C P-violating mass M ′
3 can be removed by field redefinition.
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8.3.5 Charginos and neutralinos

Spontaneous breakdown of SU (2)L × U (1)Y implies that states with the same elec-

tric charge, color, and spin will mix. This means that gauginos and higgsinos cannot

be the physical particles with definite mass. Rather, the neutral fermion fields ψh0
u
,

ψh0
d
, λ3 and λ0 mix to form neutral fermion mass eigenstates, the neutralinos, while

the negatively charged fields ψh+
u R, ψh−

d L, and the linear combination λ1+iλ2√
2

(this

is just the superpartner of the field W −
μ defined earlier) mix to form the negative

charginos.5

We first work out the form of the chargino and neutralino mass matrices, and then

diagonalize them to identify the physical charginos and neutralinos. These mass

matrices receive a supersymmetric contribution from the superpotential higgsino

mass term μ, a SUSY breaking one from gaugino masses, and finally a contribution

from electroweak symmetry breaking. This last contribution is also SUSY breaking

unless vu = vd because D-term contributions to the potential from the Higgs field

do not vanish in the vacuum.

The supersymmetric contribution, which arises from the superpotential terms,

f̂ � μ
(
ĥ0

uĥ0
d + ĥ+

u ĥ−
d

)
(8.42)

gives rise to fermion bilinear terms,

L � −1

2

∑

i, j

ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.,

which take the form,

Lmass � −μ

2

[

ψ̄h0
u
ψh0

d
+ ψ̄h0

d
ψh0

u

]

−μ

2

[

ψ̄h+
u
ψh−

d
+ ψ̄h−

d
ψh+

u

]

. (8.43)

Gaugino–higgsino bilinear terms coming from electroweak breaking arise from,

L � −
√

2
∑

i

gS†
i tAλ̄A PLψi + h.c., (8.44)

5 Recall that ψh+
u

is a Majorana spinor whose left-chiral component is positively charged while the right-chiral

component is negatively charged.
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when Si are the Higgs fields that develop VEVs. These contributions can be

written as,

L � −
√

2
(

h+†
u , h0†

u

) 1

2

[
gλ̄3 + g′λ̄0 gλ̄1 − igλ̄2

gλ̄1 + igλ̄2 −gλ̄3 + g′λ̄0

]

PL

(
ψh+

u

ψh0
u

)

−
√

2
(

h−†
d , h0†

d

) 1

2

[−gλ̄3 − g′λ̄0 −gλ̄1 − igλ̄2

−gλ̄1 + igλ̄2 gλ̄3 − g′λ̄0

]

PL

(
ψh−

d

ψh0
d

)

+ h.c. (8.45)

Electroweak symmetry breaking contributions to gaugino–higgsino masses arise

when the Higgs boson fields develop VEVs. The corresponding terms in (8.45)

involving charged higgsinos are,

−gvu√
2

ψ̄h+
u

PR(λ1 − iλ2) − gvd√
2

(−λ̄1 + iλ̄2)PLψh−
d

+ h.c.

= −gvu√
2

(λ̄1 − iλ̄2)PRψh+
u

+ gvd√
2

(λ̄1 − iλ̄2)PLψh−
d

+ h.c.,

where the first term in the first line comes from the Hermitian conjugate part of

(8.45), and in the second step we have used the Majorana bilinear identities to swap

the order of the spinors. This then leads us to define Dirac fields for the negatively

charged gaugino,

λ = λ1 + iλ2√
2

(8.46a)

and a negatively charged higgsino,

χ̃ = PLψh−
d

− PRψh+
u

(8.46b)

in terms of which the charged and neutral gaugino–higgsino mass terms in (8.45)

can then be written as,

Lmass = gvu λ̄
1 + γ5

2
χ̃ + gvd λ̄

1 − γ5

2
χ̃ + h.c.

+ gvu√
2

λ̄3ψh0
u
− g′vu√

2
λ̄0ψh0

u
− gvd√

2
λ̄3ψh0

d
+ g′vd√

2
λ̄0ψh0

d
. (8.47)

Exercise Verify that the charged higgsino mass term in the Lagrangian (8.43)
simply becomes +μ ¯̃χχ̃ .

Finally, the Lagrangian contribution from the soft SUSY breaking gaugino

masses is,

Lmass = −1

2
M1λ̄0λ0 − M2

1

2
λ̄3λ3 − M2λ̄λ. (8.48)
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The gaugino–higgsino mass terms (8.43), (8.47), and (8.48) can be written as

Lneutralino = −1

2

(
ψ̄h0

u
, ψ̄h0

d
, λ̄3, λ̄0

)
Mneutral

⎛

⎜
⎜
⎝

ψh0
u

ψh0
d

λ3

λ0

⎞

⎟
⎟
⎠

,

with

Mneutral =

⎛

⎜
⎜
⎜
⎜
⎝

0 μ − gvu√
2

g′vu√
2

μ 0 gvd√
2

− g′vd√
2

− gvu√
2

gvd√
2

M2 0
g′vu√

2
− g′vd√

2
0 M1

⎞

⎟
⎟
⎟
⎟
⎠

(8.49a)

and

Lchargino = − (
λ̄, ¯̃χ

) (

Mcharge PL + MT
charge PR

) (
λ

χ̃

)

,

with

Mcharge =
(

M2 −gvd

−gvu −μ

)

. (8.49b)

The physical charginos and neutralinos are eigenstates of these mass matrices.

The neutralino mass matrix is real and Hermitian, and so can be diagonalized by an

orthogonal transformation as usual. The chargino mass matrix is not symmetric, so

that the chargino mass terms are “γ5-dependent”. The diagonalization of charginos

is performed as described in the Technical Note of Chapter 7.

Diagonalization of neutralinos

The neutralino mass matrix Mneutral is guaranteed to have real eigenvalues since it

is Hermitian. It can be diagonalized by a unitary (in fact, real orthogonal) matrix

Vn such that,

V †
n MneutralVn = MD

where MD is the diagonal matrix of eigenvalues which, though real, are not neces-

sarily positive. The matrix Vn is the matrix whose columns are the eigenvectors of

Mneutral. The neutral higgsino and gaugino fields are related to the mass eigenstate
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fields by,

⎛

⎜
⎜
⎝

ψh0
u

ψh0
d

λ3

λ0

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

v
(1)
1 v

(2)
1 v

(3)
1 v

(4)
1

v
(1)
2 v

(2)
2 v

(3)
2 v

(4)
2

v
(1)
3 v

(2)
3 v

(3)
3 v

(4)
3

v
(1)
4 v

(2)
4 v

(3)
4 v

(4)
4

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

Z̃ ′
1

Z̃ ′
2

Z̃ ′
3

Z̃ ′
4

⎞

⎟
⎟
⎠

. (8.50)

It is customary to define mass eigenstate fields with positive eigenvalues. We thus

define mass eigenstates such that

Z̃i = (−iγ5)θi Z̃ ′
i , (8.51)

with θi equals 0 (1) if the eigenvalue corresponding to Z̃ ′
i is positive (negative). The

neutralinos are labeled according to increasing mass, with Z̃1 being the lightest

neutralino and Z̃4 the heaviest.

The neutralino mass matrix can be diagonalized analytically, but the resulting

formulae are lengthy and not particularly illuminating. Usually, the eigenvalues and

eigenvectors are calculated numerically.

Diagonalization of charginos

The chargino mass terms are γ5-dependent and, as discussed in the Technical Note

of Chapter 7, can be diagonalized by different unitary transformations of the left-

and right-handed components of the fields. We can write

PL

(
λ

χ̃

)

= U PL

(
W̃2

W̃1

)

; PR

(
λ

χ̃

)

= V PR

(
W̃2

W̃1

)

, (8.52)

with U and V being 2 × 2 unitary matrices. Then,

L � −
(

W̃ 2 W̃ 1

)

V †MchargeU PL

(
W̃2

W̃1

)

−
(

W̃ 2, W̃ 1

)

U †MT
chargeV PR

(
W̃2

W̃1

)

.

We construct matrices U and V so that these mass terms are diagonal, i.e.

V †MchargeU =
(

mW̃2
0

0 mW̃1

)

≡ MD and

U †MT
chargeV =

(
mW̃2

0

0 mW̃1

)

≡ M†
D, (8.53)

with mW̃1
and mW̃2

as real (but not necessarily positive) numbers. U is simply the

unitary matrix that diagonalizes the Hermitian matrix MT
chargeMcharge, while V is

the corresponding matrix that diagonalizes MchargeMT
charge. The eigenvalues of the
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matrix MT
chargeMcharge (which are the same as those of the matrix MchargeMT

charge)

are of course real and positive. Since

M†
DMD = U †

(

MT
chargeMcharge

)

U,

these eigenvalues are just m2
W̃2,1

, and are given by

m2
W̃1,2

= 1

2

[
(μ2 + M2

2 + 2M2
W ) ∓ ζ

]
, (8.54)

with

ζ 2 = (μ2 − M2
2 )2 + 4M2

W

[
M2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β

]
.

We define W̃1 to be the lighter chargino mass eigenstate, and W̃2 the heavier one.

It is easy to see that U , the matrix of eigenvectors of MT
chargeMcharge, is

U =
⎛

⎝

1√
1+x2

2

1√
1+x2

1
x2√
1+x2

2

x1√
1+x2

1

⎞

⎠ ,

where

x2/1 = μ2 − M2
2 + 2M2

W cos 2β ± ζ

2
√

2MW (−M2 cos β + μ sin β)
. (8.55)

Likewise, the matrix V , constructed from the eigenvectors of MchargeMT
charge, is

given by

V =
⎛

⎝

1√
1+y2

2

1√
1+y2

1
y2√
1+y2

2

y1√
1+y2

1

⎞

⎠ ,

with

y2/1 = μ2 − M2
2 − 2M2

W cos 2β ± ζ

2
√

2MW (−M2 sin β + μ cos β)
. (8.56)

It is straightforward to check that x1x2 = y1 y2 = −1, as expected from the orthog-

onality of the eigenvectors. Using this to eliminate x2 and y2, the U and V matrices

can be recast as,

U =
(

θx1
cos γL sin γL

−θx1
sin γL cos γL

)

(8.57a)

and

V =
(

θy cos γR sin γR

−θy sin γR cos γR

)

, (8.57b)
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with θx = sign(x1) and θy = sign(y1). The mixing angles γL and γR lie in the range

0 ≤ γL, γR ≤ 180◦, and are given by,

tan γL = 1/x1 and tan γR = 1/y1. (8.58)

From Eq. (8.53) we see that unsquared chargino masses are given by,

mW̃1
= sin γR

(

M2 sin γL −
√

2MW cos β cos γL

)

− cos γR

(√
2MW sin β sin γL + μ cos γL

)

(8.59a)

and

mW̃2
= θxθy

[

cos γR

(

M2 cos γL +
√

2MW cos β sin γL

)

+ sin γR

(√
2MW sin β cos γL − μ sin γL

)]

. (8.59b)

If either of the mW̃i
is negative, we replace W̃i → γ5W̃i , and work with fields with

positive mass eigenvalues.

In general, the chargino and neutralino mixing patterns are complex, and depend

on the parameters, μ, M1, M2, and tan β. However, if |μ| � |M1,2|, MW , then

W̃2 and Z̃3,4 are approximately higgsinos with squared masses of about μ2, while

the lighter chargino and the two lighter neutralinos are gaugino-like. If |M1,2| �
|μ|, MW , the situation is reversed, and the heavier chargino, and the two heavy

neutralinos are gaugino-like, while the lighter chargino and the lighter neutralinos

are approximately higgsino-like. These properties will be useful in understanding

sparticle decay patterns discussed in Chapter 13.

Exercise From the “squared mass” matrices of charginos and neutralinos, show
that,

m2
W̃1

+ m2
W̃2

− 2M2
W = μ2 + M2

2 ,

and

m2
Z̃1

+ m2
Z̃2

+ m2
Z̃3

+ m2
Z̃4

− 2M2
Z = 2μ2 + M2

1 + M2
2 .

These are, of course, tree-level relations.

Exercise If soft SUSY breaking gaugino masses are zero, show that the lightest
neutralino is a massless photino, γ̃ ≡ sin θWλ3 + cos θWλ0. In this case, show that
W̃1 and Z̃2 are lighter than MW and MZ , respectively.
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Although we note this in the context of the MSSM, this result is much more
general, in the sense that it does not depend on the details of the electroweak
symmetry breaking sector.

Incidently, note also that if M1 = M2 = M, the photino, defined above, is an
eigenstate of the neutralino mass matrix with mass M.

Exercise We have just seen that the lightest neutralino is a massless photino if
gaugino masses are zero. Show that it is a massless higgsino cos βψ̄h0

u
+ sin βψ̄h0

d

if, instead, μ vanishes.
Show that a massless neutralino can also occur if

μ + M2
W sin 2β

(
1

M2

+ tan2 θW

M1

)

= 0.

Find the appropriate eigenvector in this case.

8.3.6 Squarks and sleptons

Now we turn to squark and slepton masses. Unlike matter fermions whose masses

only arise from superpotential Yukawa interactions, squarks and sleptons (collec-

tively referred to as sfermions) have four distinct sources for these mass terms. For

definiteness, we will write these terms for top squarks, but it will be obvious how

to write the corresponding terms for other squarks as well as sleptons.

Superpotential terms

We expect that sfermions must get a mass contribution equal to the corresponding

fermion mass. The relevant part of the superpotential is,

f̂ � μĥ0
uĥ0

d + ft t̂ ĥ
0
u T̂ c.

Since L � − ∑

i

∣
∣∂ f̂ /∂Ŝi

∣
∣
2

Ŝ=S , we see that the squares of ∂ f̂ /∂ t̂ = ft ĥ0
u T̂ c and of

∂ f̂ /∂ T̂ c = ft t̂ ĥ0
u , upon the replacement h0

u → vu , give the anticipated terms,

L � −m2
t t̃†L t̃L − m2

t t̃†R t̃R. (8.60a)

This is, however, not the only t-squark bilinear that can come from the superpotential

because the cross terms from |∂ f̂ /∂ ĥ0
u|2, upon the replacement h0

d → vd , yield an

intra-generational mixing contribution to the t̃ mass,

L � − (μmt cot β)
(

t̃†L t̃R + t̃†R t̃L
)

. (8.60b)

Notice that both these contributions will vanish if the corresponding quark Yukawa

coupling is zero.
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Soft SUSY breaking scalar masses

These terms arise from

L � −Q̃†
i m2

Qi j Q̃ j − ũ†
Ri m

2
Ui j ũR j

� −m2
t̃L

t̃†L t̃L − m2
t̃R

t̃†R t̃R. (8.61)

Remember that there is just one soft SUSY breaking squark (slepton) mass for each

generation of left-squarks (left-sleptons); i.e.

mt̃L = mb̃L
= m Q3, mẽL

= m ν̃e = mL1, etc.

Clearly, these terms come from SUSY breaking and are present regardless of

whether or not electroweak symmetry is spontaneously broken.

Soft SUSY breaking trilinear terms

Soft SUSY breaking interactions of squarks with neutral Higgs bosons,

L � At ft t̃Lh0
u t̃†R + h.c.,

give rise to intra-generational squark mixing terms

L � −(−At mt )(t̃
†
L t̃R + t̃†R t̃L), (8.62)

when the Higgs field is replaced by its VEV. That these terms appear proportional

to mt is an artifact of writing at as At ft . Nevertheless, like the superpotential terms,

these terms are absent if the electroweak symmetry is unbroken.

D-term contributions

We write these terms which come from

L � −1

2

∑

A

|
∑

i

S†
i gαtαASi |2

� −1

2
g2|Q̃†T3Q Q̃ + H †

u

τ3

2
Hu + H †

d (−τ3

2
)Hd |2

−
(

g′

2

)2

|H †
u YHu Hu + H †

d YHd Hd + Q̃†YQ Q̃ + ũ†
Ri YU c ũRi + d̃†

Ri YDc d̃Ri |2,

for both top and bottom squarks. Squark mass contributions arise from cross terms

between squark and Higgs boson fields. The SU (2) D-term gives,

L � −1

2

[

2(
g

2
)2(v2

d − v2
u)(t̃†L t̃L − b̃†

Lb̃L)
]

= −M2
W cos 2βT3Qi Q̃†

Li Q̃Li , (8.63a)
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while the hypercharge D-term gives,

L � sin2 θW cos 2βM2
Z

(

t̃†L
YQ

2
t̃L + b̃†

L

YQ

2
b̃L + t̃†R

YU c

2
t̃R + b̃†

R

YDc

2
b̃R

)

. (8.63b)

Note that the hypercharges that appear in the terms involving right-handed fields

are those for the corresponding left-handed antiquark fields that appear in Table 8.1.

Eliminating the hypercharge in favor of the electric charge, the D-term contribution

to any MSSM sfermion squared mass can be written as,

m2
D-term = M2

Z cos 2β
(
T3 − Q sin2 θW

)
. (8.64)

We can now assemble the mass squared matrices for the sfermions. For top

squarks, we have

L � −
(

t̃†L, t̃†R

)

M2
t̃

(
t̃L
t̃R

)

,

where the matrix M2
t̃ is given by

(
m2

t̃L
+ m2

t + D(t̃L) mt (−At + μ cot β)

mt (−At + μ cot β) m2
t̃R

+ m2
t + D(t̃R)

)

, (8.65a)

and

D(t̃L) = M2
Z cos 2β(

1

2
− 2

3
sin2 θW),

D(t̃R) = M2
Z cos 2β(+2

3
sin2 θW),

are the hypercharge D-term contributions (8.64) to the squared masses of t̃L and

t̃R. The eigenvalues of this matrix are,

m2
t̃1,2

= 1

2

(
m2

t̃L
+ m2

t̃R

) + 1

4
M2

Z cos 2β + m2
t

∓
{[

1

2
(m2

t̃L
− m2

t̃R
) + M2

Z cos 2β(
1

4
− 2

3
xW )

]2

+ m2
t (μ cot β − At )

2

} 1
2

,

(8.65b)

with t̃1 the lighter top squark mass eigenstate, and t̃2 the heavier one, and xW ≡
sin2 θW. The top squark mixing matrix is defined by

(
t̃1
t̃2

)

=
(

cos θt − sin θt

sin θt cos θt

) (
t̃L
t̃R

)

, (8.65c)
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with the top squark mixing angle θt given by,

tan θt = m2
t̃L

+ m2
t + M2

Z cos 2β
(

1
2

− 2
3
xW

) − m2
t̃1

mt (−At + μ cot β)
. (8.65d)

For bottom squarks, we find the mass matrix M2
b̃

to be

(
m2

b̃L
+ m2

b + D(b̃L) mb(−Ab + μ tan β)

mb(−Ab + μ tan β) m2
b̃R

+ m2
b + D(b̃R)

)

, (8.66a)

with mb̃L
= mt̃L by SU (2) symmetry, and

D(b̃L) = M2
Z cos 2β(−1

2
+ 1

3
sin2 θW),

D(b̃R) = M2
Z cos 2β(−1

3
sin2 θW).

The corresponding eigenvalues are,

m2
b̃1,2

= 1

2

(

m2
b̃L

+ m2
b̃R

)

− 1

4
M2

Z cos 2β + m2
b

∓
{[

1

2
(m2

b̃L
− m2

b̃R
) − M2

Z cos 2β(
1

4
− 1

3
xW )

]2

+ m2
b(μ tan β − Ab)2

} 1
2

,

(8.66b)

and the bottom squark mixing angle (defined the same way as in Eq. (8.65c)) is

tan θb =
m2

b̃L
+ m2

b + M2
Z cos 2β

(− 1
2

+ 1
3
xW

) − m2
b̃1

mb (−Ab + μ tan β)
. (8.66c)

For tau sleptons we have,

(
m2

τ̃L
+ m2

τ + D(τ̃L) mτ (−Aτ + μ tan β)

mτ (−Aτ + μ tan β) m2
τ̃R

+ m2
τ + D(τ̃R)

)

, (8.67a)

with

D(τ̃L) = M2
Z cos 2β(−1

2
+ sin2 θW),

D(τ̃R) = M2
Z cos 2β

(− sin2 θW

)
,

and

m2
τ̃1,2

= 1

2

(
m2

τ̃L
+ m2

τ̃R

) − 1

4
M2

Z cos 2β + m2
τ
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∓
{[

1

2
(m2

τ̃L
− m2

τ̃R
) − M2

Z cos 2β(
1

4
− xW )

]2

+ m2
τ (μ tan β − Aτ )2

} 1
2

,

(8.67b)

and

tan θτ = m2
τ̃L

+ m2
τ + M2

Z cos 2β
(− 1

2
+ xW

) − m2
τ̃1

mτ (−Aτ + μ tan β)
. (8.67c)

Since we have ignored neutrino masses, the MSSM only contains the scalar

partner for the left-handed neutrino, one for each flavor. Also, because lepton flavor

has been assumed to be conserved, the three sneutrinos cannot mix with one another,

and hence, must be mass eigenstates. For the third generation, we thus have

m2
ν̃τ

= m2
L3 + 1

2
M2

Z cos 2β, (8.68)

where the first term is the soft SUSY breaking mass for the third generation scalar

lepton doublet, and the second term comes from the D-term contribution to the

sneutrino mass. Since there are only superpartners of left-handed neutrinos in the

MSSM, we will henceforth drop the subscript L on the sneutrinos.

The masses of the first and second generation squarks and sleptons can be ob-

tained in exactly the same fashion. However, since first and second generation

quark and lepton masses are small compared to the soft SUSY breaking masses,

intra-generation mixing effects can be neglected so that f̃L and f̃R are essentially

mass eigenstates. To a very good approximation, the masses of the first generation

of sfermions are given by

m2
ũL

= m2
Q1

+ m2
u + M2

Z cos 2β(
1

2
− 2

3
sin2 θW) (8.69a)

m2
d̃L

= m2
Q1

+ m2
d + M2

Z cos 2β(−1

2
+ 1

3
sin2 θW) (8.69b)

m2
ũR

= m2
U1

+ m2
u + M2

Z cos 2β(
2

3
sin2 θW) (8.69c)

m2
d̃R

= m2
D1

+ m2
d + M2

Z cos 2β(−1

3
sin2 θW) (8.69d)

m2
ẽL

= m2
L1

+ m2
e + M2

Z cos 2β(−1

2
+ sin2 θW) (8.69e)

m2
ν̃e

= m2
L1

+ M2
Z cos 2β(

1

2
) (8.69f)

m2
ẽR

= m2
E1

+ m2
e + M2

Z cos 2β(− sin2 θW), (8.69g)
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where the first terms on the right-hand side of these expressions are the soft SUSY

breaking masses for the first generation of sfermions. There are analogous expres-

sions for second generation masses. Notice that we are abusing notation here in

that sometimes we use mt̃L to denote the entire entry in the squark mass matrix

(as implied by these equations), while at other times we use it to denote just the

corresponding soft SUSY breaking mass. We trust that the meaning will be clear

from the context.

We remind the reader that in deriving these MSSM mass spectra, we have

ignored the possibility of c-terms. If such terms are present, like a-terms, they

will contribute to intra-generation sfermion mixing, and possibly also to flavor

physics.

Finally, we stress that (8.68) follows only from SU (2)L gauge symmetry, so that

its analogue for the first two generations of sleptons and squarks (whose Yukawa

couplings are negligible) gives a model independent relation between the physical

masses of the up and down components of the slepton/squark doublets. Most im-

portantly, it tells us that the mass gap between �̃L and the corresponding sneutrino

(� = e, μ), and likewise for the left-squarks, can never be too large. This is clearly

relevant for collider searches for SUSY.

Exercise The alert reader may wonder why the sfermion masses do not equal
the corresponding fermion mass even if we take the “SUSY limit” in the sfermion
mass squared matrix, and set the soft-masses and A-parameters to zero, and take
tan β = 1 so that the Higgs field D-terms vanish in the vacuum. The point is that
within the MSSM, electroweak symmetry is unbroken unless we introduce soft SUSY
breaking masses for the Higgs fields. Then, fermion and sfermion masses become
equal as both vanish!

There is, however, an interesting extension of the MSSM that leads to a SUSY
limit in which electroweak symmetry is spontaneously broken. We need to introduce
a SM “singlet Higgs” superfield N̂ , and choose the superpotential as,

f̂ = f̂ MSSM + λĤu Ĥd N̂ − K N̂ (8.70a)

where the parameter K > 0 has dimensions of mass squared, and appropriate
group contractions are implied. Show that the scalar potential is given by,

V = |λh0
d N + μh0

d |2 + |λh0
u N + μh0

u|2 + |λh0
uh0

d − K |2 + · · · , (8.70b)

where the ellipsis refers to terms involving charged Higgs boson or squark and
slepton fields. Again assuming that these do not develop any VEV, show that this
potential can have a minimum with vu = vd �= 0 and 〈N 〉 �= 0 with λ〈N 〉 + μ = 0.
Notice that because N condenses, there is effectively an additional contribution to
μ equal to λ〈N 〉. In other words, the total “effective μ term” vanishes!
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Work out the top squark mass squared matrix for this model. Show that the off-
diagonal terms vanish, while the diagonal terms are just m2

t . In the sfermion sector,
we thus have what looks like a SUSY limit of the MSSM but with non-vanishing
masses for the fermions and sfermions. This model with the extra gauge singlet
superfield is referred to as the Next to Minimal Supersymmetric Standard Model,
or the NMSSM.

8.4 Interactions in the MSSM

In order to work out the phenomenological implications of the MSSM, we must

first evaluate the interactions of the various superpartners, i.e. the mass eigenstates,

with SM particles. This is done in two steps. First, we write down the interactions

of the primitive fields of the MSSM (the fields with definite SU (3)C × SU (2)L ×
U (1)Y quantum numbers) using our master formula, and then transform these to

the interactions of the mass eigenstates by performing the “rotations” (and, in the

case of the Higgs sector, also a shift) of these fields discussed in the last section.

As in any gauge theory, before proceeding further we must fix a gauge. Since our

attention will be mainly on tree level processes, we will write these in the unitarity

gauge, where only physical fields are present. For many loop calculations, it is more

convenient to work in the renormalizable Rξ gauges, in which the propagator has

better high energy behavior. Then, additional couplings involving Dewitt–Fadeev–

Popov ghosts and unphysical Goldstone bosons must be included. We do not work

these couplings out in this book.

In the following, we first evaluate the interactions in supersymmetric QCD. Next,

we work out the interactions between matter fermions, sfermions, electroweak

gauge bosons and the charginos and neutralinos. We then list the couplings of the

MSSM Higgs bosons to other particles and sparticles. Finally, we list some “hybrid”

interactions of matter sfermions.

8.4.1 QCD interactions in the MSSM

We begin by showing that we can recover the SM QCD Lagrangian written in

Chapter 1 using our master formula. Clearly, the gluon field kinetic energy term

L = − 1
4

Fμν A Fμν

A in the master formula has the usual form, and leads to the three

and four gluon interactions listed in Eq. (1.7).

The kinetic energies and gauge couplings of quarks are contained in the terms,

L � i

2

∑

i

ψ̄i �Dψi ,
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of the master formula, where the ψi are the fermion components of the quark

superfields q̂ and Q̂c. Just as for the electron field in Eq. (8.4), manipulation of the

kinetic energy terms for ψq and ψQc leads to canonically normalized kinetic energy

terms for the Dirac quark field q defined by,

q = PLψq + PRψQc .

To obtain the coupling between quarks and gluons, we must examine the interaction

terms. Using (3.8c) and (3.8d) it is easy to see that

ψ̄q t∗
AG/A PRψq = −ψ̄q tAG/A PLψq,

so that

Lgqq̄ � −gsψ̄q tAG/A PLψq − gsψ̄Qc tAG/A PRψQc

= −gsq̄γμ

λA

2
G Aμq, (8.71)

which is just the interaction in Eq. (1.7).

The gauge invariant kinetic energy term for any flavor of left- or right-type squark

field is,

L � (Dμq̃)†(Dμq̃)

= (∂μq̃† − igsq̃
†tAGμ

A)(∂μq̃ + igstAG Aμq̃).

The cross terms lead to

Lgq̃ ¯̃q = −igs

(

q̃†λA

2
∂μq̃ − ∂μq̃†λA

2
q̃

)

Gμ

A, (8.72)

while the remaining interaction term yields,

Lggq̃ ¯̃q = g2
s q̃†λA

2

λB

2
q̃G AμGμ

B, (8.73)

where matrix multiplication is implied.

Exercise We have obtained the interactions of gluons with q̃L and q̃R. Show that
the interactions of the squark mass eigenstates q̃1 and q̃2 with gluons have the same
forms as in (8.72) and (8.73). This is just the familiar GIM (Glashow–Iliopoulos–
Maiani) mechanism in a different setting.

The gluino–quark–squark interaction comes from the Lagrangian term

L � −
√

2
∑

i,A

S†
i gtAλ̄A

1 − γ5

2
ψi + h.c.,
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with (Si , ψi ) = (q̃L, ψq) or (q̃†
R, ψQc ). For the contribution from the superfield Q̂c,

we write the term involving the right projector from the Hermitian conjugate part,

and then use the Majorana bilinear identities to get the interaction,

L � −
√

2q̃†
La

(
gλA

2

)

ab

λ̄A
1 − γ5

2
ψqb −

√
2q̃†

Ra

(

−gλA

2

)

ab

λ̄A
1 + γ5

2
ψQcb,

where q̃†
R is the field that annihilates the scalar partner of the weak singlet antiquark,

or creates the scalar partner of the right-handed quark. To obtain this form, we must

remember that the superfields q̂ and Q̂c belong to the 3 and 3∗ representations,

respectively, and write the generator tA accordingly. We can allow for the possibly

negative value of M3 by replacing the gaugino λA by (+iγ5)θg̃ g̃A (rather than just

g̃A). Making the additional replacements of PLψq = PLq and PRψQc = PRq to

write the interaction in terms of the Dirac quark field q leads to

Lg̃qq̃ = −
√

2gs(−i)θg̃ q̃†
L

¯̃gA
λA

2
PLq +

√
2gs(i)θg̃ q̃†

R
¯̃gA

λA

2
PRq + h.c. (8.74)

We can take into account intra-generation squark mixing by writing q̃L and q̃R in

terms of the squark mass eigenstates q̃1 and q̃2 defined as in (8.65c). The quark–

squark–gluino interaction then depends on the squark mixing angle, and we have

Lg̃qq̃i = −
√

2gsq̃
†
1

¯̃gA
λA

2

[
(−i)θg̃ cos θq PL + (i)θg̃ sin θq PR

]
q

−
√

2gsq̃
†
2

¯̃gA
λA

2

[
(−i)θg̃ sin θq PL − (i)θg̃ cos θq PR

]
q + h.c.

(8.75)

Although we have written this for generic squarks, in practice, mixing angle effects

are usually only important for the third generation.

We have a gluon–gluino–gluino interaction arising from the minimal coupling

of the color octet gluino,

L � i

2
λ̄A �DλA � −1

2
gs ¯̃gA(tadj

B G/B)AC g̃C,

which leads to

Lgg̃g̃ = i
gs

2
f ABC ¯̃gAγμg̃B Gμ

C. (8.76)

Notice that this interaction is not altered by the transformation, g̃A → (−iγ5)θg g̃A.

Finally, supersymmetry necessarily implies the existence of four squark inter-

actions. These arise from the D-terms on the third line of our master formula, and
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take the form,

L4q̃ = −g2
s

8

∑

A

(
∑

i

q̃†
LiλAq̃Li −

∑

i

q̃†
RiλAq̃Ri

)2

, (8.77)

where i denotes the flavor of the squark. Notice that the cross terms in the sum over

flavors and types imply vertices such as ũ†
RũRb̃†

Lb̃L, where the squark pairs could

have different flavors and/or types. Moreover, for the same reason as in the last

exercise, we see that writing this in terms of mass eigenstates (q̃1 and q̃2) does not

lead to “cross terms” (such as q̃†
1q̃2) in this coupling.

8.4.2 Electroweak interactions in the MSSM

Standard Model interactions

The triple and quartic vector boson gauge self-couplings arise from the squared

field strength term in the master formula Eq. (6.44) and so are exactly as given by

(1.19a) and (1.19b). Next, we turn to the SM electroweak interactions of quarks

and leptons from the master formula. We will first evaluate the couplings of the

up and down quarks to the gauge bosons W ±, Z0 and γ . The starting point in the

master formula is the term,

L � i

2

∑

i

ψ̄i �Dψi

where Dμ = ∂μ + ig(t · Vμ)PL − ig(t∗ · Vμ)PR and i = Q̂, Û c, and D̂c. We will

leave it to the reader to verify that the second and third terms of the covariant

derivative yield identical contributions to the Lagrangian. The SU (2)L and U (1)Y

gauge boson interactions take the form,

L � − g

2

(
ψ̄uL

ψ̄dL

)
( �W3 �W1 − i �W2

�W1 + i �W2 − �W3

) (
ψuL

ψdL

)

− 1

3

g′

2
ψ̄u � B PLψu − 1

3

g′

2
ψ̄d � B PLψd − 4

3

g′

2
ψ̄U c � B PRψU c

+ 2

3

g′

2
ψ̄Dc � B PRψDc .

To write these in terms of the Dirac quark fields u and d, we substitute PLψu =
PLu, PLψd = PLd, PRψU c = PRu, and PRψDc = PRd and, finally, we eliminate

the fields Wi and B in favor of the gauge boson mass eigenstates. The resulting

Lagrangian is,

LW ūd = − g√
2

ūγ μ PLdW +
μ + h.c. (8.78)
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for the charged gauge bosons, and

L = −e(+2

3
)ūγμu Aμ + eūγμ

[

(− 5

12
t + 1

4
c) + (−1

4
c − 1

4
t)γ5

]

u Z0μ (8.79)

for the electromagnetic and Z -boson interactions with u-quarks. Aside from inter-

generational mixing between the quarks, these results are in accord with the SM

interactions that we obtained in Chapter 1. The gauge interactions of other quarks

and leptons can be obtained in the same fashion. These interactions have all been

listed in Eq. (1.16a) and Eq. (1.16b), with coupling constants defined in Table 1.2.

Gauge boson couplings to matter scalars

The interactions of gauge bosons with sfermions originate in the gauge invariant

kinetic terms,

L � (
DμSi

)†
(DμSi ) ,

for the scalars. Notice that in addition to the coupling of a vector boson to a sfermion

pair, these terms also include a two-gauge boson–two-sfermion interaction.

Three-point couplings: W ± bosons do not couple to the SU (2) singlet sfermions

f̃ R. The coupling of W ± to doublet sfermions of the first generation takes the form,

L � − ig√
2

(

ũ†
L∂μd̃L − d̃L∂μũ†

L

)

W +μ − ig√
2

(
ν̃†

e∂μẽL − ẽL∂μν̃†
e

)
W +μ + h.c.

(8.80)

Except for intrageneration sfermion mixing, other sfermion generations couple to

W in exactly the same way. For third generation squarks and sleptons, mixing

effects can be important. These couplings can be readily obtained from Eq. (8.80)

via the replacement,

f̃ L = cos θ f f̃ 1 + sin θ f f̃ 2,

where f = t, b or τ . In addition to these three-point couplings the kinetic energy

term for sfermions also includes a two-gauge boson–two-sfermion interaction. We

will list these couplings shortly.

The interaction of a photon with a sfermion pair is given by,

L � −ieq f

(

f̃ †i ∂μ f̃ i − f̃ i∂μ f̃ †i

)

Aμ, (8.81)

where f̃ is any squark or slepton, q f is the electric charge of the sfermion (which

is, of course, the same as the charge of the corresponding fermion), and i = L or

R. Notice that the photon couples just to left- or to right-sfermion pairs, i.e. there

is no f̃ L f̃ Rγ interaction. Intra-generational (or for that matter, inter-generational)

mixing does not alter the form of (8.81).
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Exercise Show that the conservation of electric current for the coupling,

L = Jμ Aμ,

implies that the photon cannot couple two sfermions with different masses. This
explains why there is no f̃ 1 f̃ 2γ interaction.

The interactions of sfermions with a Z0 boson are given by,

L � ie
[(

α f − β f
)

f̃ †L∂μ f̃ L + (
α f + β f

)
f̃ †R∂μ f̃ R

]

Zμ + h.c., (8.82)

where again f̃ i is any squark or slepton of type i and α f and β f , which also

determine the couplings of Z0 to matter fermions, are given in Table 1.2. Like the

photon, Z0 interactions do not couple left- and right-type sfermions to each other.

This should not be surprising since gauge bosons do not couple left-handed and

right-handed fermions to each other. Supersymmetry then implies that they cannot

couple the respective superpartners to one another either.

Exercise In the presence of intra-generational mixing show that the couplings of
Z0 to sfermions are modified to,

L � ie
[(

α f − β f cos 2θ f
)

f̃ †1∂μ f̃ 1 + (
α f + β f cos 2θ f

)
f̃ †2∂μ f̃ 2

− β f sin 2θ f

(

f̃ †1∂μ f̃ 2 + f̃ †2∂μ f̃ 1

)]

Zμ + h.c. (8.83)

Notice that unlike the photon, Z0 does couple sfermions of different masses together.

Four-point Couplings: We now work out the two-vector boson–two-sfermion

couplings that are also contained in the gauge invariant kinetic energy terms. The

covariant derivative for squark fields can be written as,

DμũL = ∂μũL + i

(

equ Aμ − e(αu − βu)Zμ + gs
λA

2
G Aμ

)

ũL + ig√
2

W +
μ d̃L,

Dμd̃L = ∂μd̃L + i

(

eqd Aμ − e(αd − βd)Zμ + gs
λA

2
G Aμ

)

d̃L + ig√
2

W +
μ ũL,

DμũR = ∂μũR + i

(

equ Aμ − e(αu + βu)Zμ + gs
λA

2
G Aμ

)

ũR,

Dμd̃R = ∂μd̃R + i

(

eqd Aμ − e(αd + βd)Zμ + gs
λA

2
G Aμ

)

d̃R,

where q f , α f , and β f are defined in Table 1.2. Here, ũ and d̃ denote any up- or

down-type squark. Except for obvious replacements and the absence of the gluon
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field, �̃L, �̃R, and sneutrino covariant derivatives are identical to those for d̃L, d̃R

and ũL, respectively.6

The quartic interactions that we mentioned are now easy to work out. The inter-

actions with photons, Z0, and gluons can be written as

LV V f̃ f̃ = f̃ †L/R

(

eq f Aμ − e(α f ∓ β f )Zμ + ξ f gs
λA

2
G Aμ

)

×
(

eq f Aμ − e(α f ∓ β f )Zμ + ξ f gs
λB

2
Gμ

B

)

f̃ L/R, (8.84a)

where the minus sign in the terms involving Z0 is for f̃ L and the plus sign for f̃ R

and ξ f = 1 for squarks and ξ f = 0 for charged sleptons and sneutrinos. Notice that

in addition to just electroweak interactions, squarks also have QCD–electroweak

hybrid interactions. Quartic interactions involving W ± bosons can be written as

LW W f̃ f̃ = 1

2
g2 f̃ †L f̃ LW ±

μ W ∓μ (8.84b)

where f̃ L = ũL, d̃L, �̃L or ν̃. Finally, the interactions involving both neutral and

charged gauge bosons are,

LV W ũd̃ = g√
2

ũ†
L

(

e(qu + qd)Aμ − e(αu + αd)Zμ + gs
λA

2
G Aμ

)

W +μd̃L

+ g√
2
ν̃
†
L

(
eq� Aμ − e(α� + αν)Zμ

)
W +μ�̃L + h.c. (8.84c)

Left-type squark pairs have a contact interaction with the W -boson gluon pair.

In writing Eq. (8.84a)–(8.84c) we have ignored intragenerational mixing of

sfermions. This can be easily included by writing f̃ L and f̃ R in terms of the mass

eigenstates. Clearly, the four-point interactions involving just gluons and photons

will couple just f̃ 1 f̃ 1 and f̃ 2 f̃ 2 pairs, while the others will couple f̃ 1 f̃ 2 pairs as

well.

Chargino and neutralino couplings to matter

Because these are dimension four interactions, these interactions are unaffected

by the soft SUSY breaking terms. There are just two sources of these couplings.

First, the gaugino components of charginos and neutralinos couple to fermions and

sfermions via the term

L � −
√

2
∑

i,A

gS†
i tAλ̄A

1 − γ5

2
ψi + h.c.,

6 These covariant derivatives give an alternative way to write down the coupling of any gauge boson to a sfermion
pair.
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in Eq. (6.44). These couplings are completely determined by gauge interactions

and various sparticle mixing matrices. The higgsino components of the charginos

and neutralinos also contribute to these couplings via superpotential Yukawa inter-

actions contained in

L � −1

2
ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.

For most purposes, these couplings are only important for the third generation.

We begin by evaluating the neutralino–quark–squark couplings arising from

gaugino interactions. The relevant terms are contained in

L � − 1√
2

{
(

ũ†
L d̃†

L

)
(

gλ̄3 + g′
3
λ̄0 g(λ̄1 − iλ̄2)

g(λ̄1 + iλ̄2) −gλ̄3 + g′
3
λ̄0

)

PL

(
ψu

ψd

)

+ ũ†
Rg′

(

−4

3

)

λ̄0 PRψU c + d̃†
Rg′

(

+2

3

)

λ̄0 PRψDc

}

+ h.c., (8.85)

where, for convenience, we have written the Hermitian conjugate of the terms

involving the SU (2) singlet antiquarks. The interactions of charged sleptons and

sneutrinos can be obtained by replacing ũL → ν̃, d̃L → �̃, d̃R → �̃R, dropping the

term involving ũR, and replacing 2/3, the weak hypercharge of the SU (2) singlet d̄,

by 2, the hypercharge of the antilepton. We also need to replace the quark hyper-

charges that multiply λ̄0 by corresponding lepton or neutrino hypercharges, and also

appropriately replace the quark Majorana spinors by those of the lepton/neutrino.

We proceed, however, to extract the quark–squark–neutral gaugino interactions, and

eliminate the Majorana fields in favor of the Dirac quark fields using PLψu = PLu,

PLψd = PLd, PRψU c = PRu and PRψDc = PRd. Finally, using Eq. (8.50) and

(8.51), we substitute λ3 = ∑

i v
(i)
3 (iγ5)θi Z̃i , and λ0 = ∑

i v
(i)
4 (iγ5)θi Z̃i to write,

L f̃ f Z̃i
=

∑

f =u,d,�,ν

[

iA f
Z̃i

f̃ †L Z̃ i PL f + iB f
Z̃i

f̃ †R Z̃ i PR f + h.c.
]

, (8.86)

where

Au
Z̃i

= (−i)θi −1

√
2

[

gv
(i)
3 + g′

3
v

(i)
4

]

, (8.87a)

Ad
Z̃i

= (−i)θi −1

√
2

[

−gv
(i)
3 + g′

3
v

(i)
4

]

, (8.87b)

Bu
Z̃i

= 4

3
√

2
g′(i)θi −1v

(i)
4 and (8.87c)

Bd
Z̃i

= − 2

3
√

2
g′(i)θi −1v

(i)
4 . (8.87d)
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The couplings of leptons and sleptons to neutralinos have the same form as in

(8.86) above, but with couplings given by

A�

Z̃i
= − (−i)θi −1

√
2

[

gv
(i)
3 + g′v(i)

4

]

, (8.88a)

Aν

Z̃i
= (−i)θi −1

√
2

[

gv
(i)
3 − g′v(i)

4

]

, (8.88b)

B�

Z̃i
= −(i)θi −1

√
2g′v(i)

4 and (8.88c)

Bν

Z̃i
= 0. (8.88d)

Next, we turn to the contribution to fermion–sfermion–neutralino interactions

that arise from the superpotential terms,

L � −1

2
ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.,

with

f̂ � fuûĥ0
uÛ c + fd d̂ ĥ0

d D̂c + feêĥ0
d Êc + · · · ,

where the ellipsis denotes Yukawa couplings for the second and third generations.

For up- (down-)type (s)fermions, we have contributions when one of ψi , ψ j is ψh0
u

(ψh0
d
), with the other one being ψ f or ψFc . It is straightforward to check that these

contributions can be written as,

L � − f f v
(i)
a (−i)θi f̃ †R Z̃ i PL f − f f v

(i)
a (i)θi f̃ †L Z̃ i PR f,

with a = 1 for up-type (s)fermions, and a = 2 for down-type ones. Combining this

with the contributions (8.86) from the gaugino components of neutralinos, we have,

LZ̃i f f̃ � f̃ †L Z̃ i

(

iA f
Z̃i

PL − (i)θi f f v
(i)
a PR

)

f

+ f̃ †R Z̃ i

(

iB f
Z̃i

PR − (−i)θi f f v
(i)
a PL

)

f + h.c. (8.89)

Finally, eliminating f̃ L and f̃ R in favor of the sfermion mass eigenstates f̃ 1 and

f̃ 2, we arrive at

LZ̃i f f̃ = f̃ †j Z̃ i

[

α
f̃ j

Z̃i
PL + β

f̃ j

Z̃i
PR

]

f + h.c., (8.90)
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with

α
f̃ 1

Z̃i
= iA f

Z̃i
cos θ f + (−i)θi f f v

(i)
a sin θ f , (8.91a)

β
f̃ 1

Z̃i
= −iB f

Z̃i
sin θ f − (i)θi f f v

(i)
a cos θ f , (8.91b)

α
f̃ 2

Z̃i
= iA f

Z̃i
sin θ f − (−i)θi f f v

(i)
a cos θ f , (8.91c)

β
f̃ 2

Z̃i
= iB f

Z̃i
cos θ f − (i)θi f f v

(i)
a sin θ f . (8.91d)

Again, a = 1 if f is an up-type quark, and a = 2 if it is a down-type quark or

a charged lepton. Since we do not have a right-handed neutrino superfield, the

neutrino–sneutrino–neutralino coupling is given by (8.86).

The interactions of charginos with either squarks and quarks or sleptons and lep-

tons can be calculated in a similar fashion. For chargino–quark–squark interactions,

using (8.85) we find that

L � −gũ†
Lλ̄PLd − gd̃†

Lλc PLu + h.c.

Here, λc is the charge conjugate of the charged Dirac gaugino λ. Eliminating λ and

λc in favor of the chargino mass eigenstates, we find

L � iAd
W̃i

ũ†
LW̃ i PLd + iAu

W̃i
d̃†

LW̃ c
i PLu + h.c., (8.92)

where

Ad
W̃1

= i(−1)θW̃1 g sin γR, (8.93a)

Ad
W̃2

= i(−1)θW̃2 θyg cos γR, (8.93b)

Au
W̃1

= ig sin γL, (8.93c)

Au
W̃2

= iθx g cos γL. (8.93d)

These couplings, which originate in the gauge interactions, are generation indepen-

dent; i.e. u and d (ũL and d̃L) respectively refer to any up- and down-type quark

(squark). Moreover, the coupling of charginos to leptons and sleptons is identical,

with the identification u → ν and d → �.

There are also superpotential contributions to these chargino interactions that

can be worked out in the same way as for neutralinos. We will leave it to the reader

to work out that including these leads to the couplings,

LũdW̃i
= ũ†

1W̃ i

[

(iAd
W̃i

cos θu − BW̃i
sin θu)PL + B ′

W̃i
cos θu PR

]

d

+ ũ†
2W̃ i

[

(iAd
W̃i

sin θu + BW̃i
cos θu)PL + B ′

W̃i
sin θu PR

]

d + h.c.,

(8.94)
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where

BW̃1
= −(−1)θW̃1 fu cos γR, (8.95a)

BW̃2
= (−1)θW̃2 θy fu sin γR, (8.95b)

B ′
W̃1

= − fd cos γL, (8.95c)

B ′
W̃2

= fdθx sin γL. (8.95d)

For chargino–sbottom–top interactions, we have

Ld̃uW̃i
= d̃†

1W̃ c
i

[

(iAu
W̃i

cos θd − B ′
W̃i

sin θd)PL + BW̃i
cos θd PR

]

u

+ d̃†
2W̃ c

i

[

(iAu
W̃i

sin θd + B ′
W̃i

cos θd)PL + BW̃i
sin θd PR

]

u + h.c.

(8.96)

Finally, the chargino–slepton–neutrino and chargino–sneutrino–lepton interactions

can be obtained by replacing u → ν and d → � everywhere including in the defi-

nitions of the couplings in (8.95a)–(8.95d). We then have,

Lτ̃ ντ W̃i
= τ̃

†
1 W̃ c

i

[

(iAν

W̃i
cos θτ − B ′′

W̃i
sin θτ )PLντ

]

+ τ̃
†
2 W̃ c

i

[

(iAν

W̃i
sin θτ + B ′′

W̃i
cos θτ )PL

]

ντ

+ ν̃†
τ W̃ i

[

iAτ

W̃i
PL + B ′′

W̃i
PR

]

τ + h.c., (8.97)

with

Aν

W̃i
= Au

W̃i
, (8.98a)

Aτ

W̃i
= Ad

W̃i
, (8.98b)

B ′′
W̃1

= − fτ cos γL, (8.98c)

B ′′
W̃2

= fτ θx sin γL. (8.98d)

Gauge boson interactions with charginos and neutralinos

These interactions arise from two sources, both of which are supersymmetric. First,

there is the contribution from gaugino kinetic energy terms,

L � i

2
λ̄ �Dλ,

in the master formula, with the covariant derivative involving gauge group

generators in the adjoint representation: (�Dλ)A = ∂/ λA + ig(tadj
B �WB)ACλC, with
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[tadj
B ]AC = −iεAC B . The SU (2)L gauginos thus have a coupling of the form

L � −ig

2

(−λ̄1 �W3λ2 + λ̄1 �W2λ3 + λ̄2 �W3λ1 − λ̄2 �W1λ3

−λ̄3 �W2λ1 + λ̄3 �W1λ2

)
,

= g
[
λ̄ �W3λ − (λ̄ �W −λ3 + h.c.)

]
,

while there is no coupling to the hypercharge gaugino. To obtain the last step, we

have used λ̄3γμλc = −λ̄γμλ3, as the reader can readily verify.

There are also higgsino contributions

L � i

2

[
(
ψ̄h+

u
ψ̄h0

u

) i

2

[
g �W3 + g′ � B g �W1 − ig �W2

g �W1 + ig �W2 −g �W3 + g′ � B
]

PL

(
ψh+

u

ψh0
u

)

+ (
ψ̄h−

d
ψ̄h0

d

) i

2

[ −g �W3 − g′ � B −g �W1 − ig �W2

−g �W1 + ig �W2 g �W3 − g′ � B
]

PL

(
ψh−

d

ψh0
d

)]

+ h.c.

Exercise Verify that we can write the gaugino and higgsino contributions as:

L � g
{
λ̄ �W3λ − (λ̄ �W −λ3 + h.c.)

}

+ 1

2
¯̃χ

(
g �W3 + g′ � B)

χ̃

+ 1

4

√
g2 + g′2

(

ψ̄h0
u
γμγ5ψh0

u
− ψ̄h0

d
γμγ5ψh0

d

)

Zμ

− g√
2

( ¯̃χ �W − PRψh0
u
− ¯̃χ �W − PLψh0

d
+ h.c.).

Here, the first line clearly comes from the couplings of the gauginos to gauge
bosons, while the rest comes from the gauge interactions of higgsinos.

We can now write these in terms of the chargino and neutralino mass eigenstates

to obtain the following couplings to the photon and Z0 boson:

L = e
(

W̃ 1γμW̃1 + W̃ 2γμW̃2

)

Aμ

− e cot θWW̃ 1γμ(xc − ycγ5)W̃1 Zμ − e cot θWW̃ 2γμ(xs − ysγ5)W̃2 Zμ

+ (−1)(θW̃1
+θW̃2

) e

2
(cot θW + tan θW)

×
[

W̃ 1γμ(xγ5 − y)(γ5)(θW̃1
+θW̃2

)W̃2 Zμ + h.c.
]

,

(8.99)
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where

xc = 1 − 1

4
sec2 θW(cos2 γL + cos2 γR), (8.100a)

yc = 1

4
sec2 θW(cos2 γR − cos2 γL), (8.100b)

xs = 1 − 1

4
sec2 θW(sin2 γL + sin2 γR), (8.100c)

ys = 1

4
sec2 θW(sin2 γR − sin2 γL), (8.100d)

x = 1

2
(θx sin γL cos γL − θy sin γR cos γR), and (8.100e)

y = 1

2
(θx sin γL cos γL + θy sin γR cos γR). (8.100f)

Notice that the photon does not couple to the W̃ +
1 W̃ −

2 pair, as may be expected from

the conservation of electromagnetic current.

The couplings of Z0 with the neutralinos arise only via their higgsino compo-

nents, and are given by,

L = 1

4

√
g2 + g′2

∑

i, j

(−i)θi (i)θ j (v
(i)
1 v

( j)
1 − v

(i)
2 v

( j)
2 ) Z̃ iγμ(γ5)θi +θ j +1 Z̃ j Zμ

≡
∑

i j

Wi j Z̃ iγμ(γ5)θi +θ j +1 Z̃ j Zμ. (8.101)

In models where |μ| � (�)|M1,2|, the neutralinos Z̃1 and Z̃2 (Z̃3 and Z̃4) are mainly

gaugino-like so that their couplings to Z0 are strongly suppressed by mixing angles.

The couplings of neutralino pairs to gauge bosons are, therefore, very sensitive to

model parameters. This is not the case for charginos. Their couplings to the photon

are fixed by their electric charge. Moreover, chargino pairs couple to Z0 via both

their gaugino as well as their higgsino components, so that their couplings to vector

bosons are much more robust.

Exercise If tan β = 1 show that the higgsino 1√
2
(ψh0

u
+ ψh0

d
) has mass |μ| but that

Z0 does not couple to a pair of these higgsinos.

Finally for charged vector bosons, substituting in terms of the mass eigenstates,

we obtain,

L = −g(−i)θ j
∑

i, j

W̃ i

(

X j
i + Y j

i γ5

)

γμ Z̃ j W
μ + h.c., (8.102)
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with

X j
1 = 1

2

[

(−1)θW̃1
+θ j

(
cos γR√

2
v

( j)
1 + sin γRv

( j)
3

)

−cos γL√
2

v
( j)
2 + sin γLv

( j)
3

]

, (8.103a)

X j
2 = 1

2

[

(−1)θW̃2
+θ j θy

(− sin γR√
2

v
( j)
1 + cos γRv

( j)
3

)

+ θx

(
sin γL√

2
v

( j)
2 + cos γLv

( j)
3

)]

. (8.103b)

The Y j
1,2 can be obtained from the X j

1,2 by changing the sign of just the first term

inside the square brackets. We see that W bosons couple to the chargino–neutralino

system via both gaugino and higgsino components. In this sense, W W̃i Z̃ j couplings

should, like the couplings of Z0 to charginos, also be quite robust. Only if |M1| �
|M2| and |μ| (in which case the neutralino is dominantly a hypercharge gaugino)

is this coupling dynamically suppressed.

8.4.3 Interactions of MSSM Higgs bosons

Higgs boson couplings to SM fermions

The interactions of Higgs bosons with SM fermions arise directly from the terms,

L � −1

2

∑

i, j

ψ̄i
∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

PLψ j + h.c.,

in our master formula. We have already examined a portion of these terms when

we discussed masses for the SM fermions. Our present discussion proceeds along

the same lines. The superpotential contains

f̂ � fu(ûĥ0
u − d̂ ĥ+

u )Û c + fd(ûĥ−
d + d̂ ĥ0

d)D̂c + fe(ν̂τ ĥ−
d + êĥ0

d)Êc + · · ·
We can easily work out the coupling of Dirac fermions to the scalar components in

ĥu to obtain,

L � − fuū PLuh0
u − fuū PRuh0†

u

We can now eliminate h0
u in favor of the Higgs mass eigenstates using (8.35) and

(8.40a). Recalling that fu = gmu/
√

2MW sin β we find the required Lagrangian

density,

L � − gmu

2MW sin β
[cos αūuh − sin αūu H − i cos βūγ5u A] . (8.104)
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A similar calculation for the down-type quark and charged lepton Yukawa interac-

tions yields,

L � − gmd

2MW cos β

[
sin αd̄dh + cos αd̄d H − i sin βd̄γ5d A

]

− gme

2MW cos β
[sin αēeh + cos αēeH − i sin β ēγ5eA] . (8.105)

The interactions with charged Higgs bosons can be similarly obtained by eliminat-

ing h+
u and h−

d using (8.30):

L � g

2
√

2MW

H+ [(mu cot β + md tan β)ūd + (md tan β − mu cot β)ūγ5d

+ me tan βν̄e(1 + γ5)e] + h.c. (8.106)

Higgs boson couplings to vector bosons

As in any Yang–Mills theory, the coupling of vector bosons to Higgs boson pairs

is fixed by the minimal coupling prescription; i.e. these arise from cross terms in

the scalar field kinetic energy terms

L � (DμSi )
†(DμSi ),

where Si = Hu and Hd . Expanding these terms and substituting for the physical

vector boson and Higgs fields yields the expected photon coupling to the charged

Higgs boson pair,

L � ie
(
H+∂μ H− − H−∂μ H+)

Aμ. (8.107)

The Z0 boson couples to both charged as well as neutral Higgs fields, with

couplings given by,

L � i

2
(g′ sin θW − g cos θW)

(
H+∂μ H− − H−∂μ H+)

Z0μ, (8.108)

and

L � 1

2
(g′ sin θW + g cos θW)

[
cos(α + β)

(
h∂μ A − A∂μh

)

− sin(α + β)
(
H∂μ A − A∂μ H

)]
Z0μ. (8.109)

Notice that Z0 only couples the pseudoscalar boson to a scalar boson. Couplings

of Z0 to hh, h H , and H H pairs are forbidden by the assumed C P invariance of

the Higgs boson sector.
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The couplings of W bosons to pairs of Higgs bosons are given by,

L � i
g

2

[
cos(α + β)

(
h∂μ H− − H−∂μh

) − sin(α + β)
(
H∂μ H− − H−∂μ H

)

+ i
(

A∂μ H− − H−∂μ A
)]

W +μ + h.c. (8.110)

The gauge kinetic term for the Higgs fields also contains two-vector boson–two-

Higgs boson couplings. These are given by,

L � H+ H−
[

e2 Aμ Aμ + 1

4
(g′ sin θW − g cos θW)2 Z0μZ0

μ

+ e(g′ sin θW − g cos θW)AμZ0
μ + g2

2
W +μW −

μ

]

, (8.111a)

L �
(

g2

4
W +μW −

μ + 1

8
(g cos θW + g′ sin θW)2 Z0μZ0

μ

)
[
h2 + H 2 + A2

]
,

(8.111b)

and

L � 1

2
eg

(
Aμ + tan θW Z0μ

)
W −

μ H+

× [cos(α + β)h − sin(α + β)H − iA] + h.c. (8.111c)

Finally, a vector boson–vector boson–Higgs boson coupling can also arise from

the four-point interactions in the case when one of the neutral Higgs fields is replaced

by its vacuum expectation value. Instead of starting over, we can get these couplings

from the four-point couplings that we have just obtained in (8.111b) and (8.111c),

and simply set one of the neutral fields to their VEV using Eq. (8.40a):

〈h〉 =
√

2 (cos αvu + sin αvd) ,

〈H〉 =
√

2 (cos αvd − sin αvu) ,

〈A〉 = 0.

The resulting interaction is,

L � gMW

(

W +μW −
μ + Z0μZ0

μ

2 cos2 θW

)

[sin(α + β) h + cos(α + β) H ] . (8.112)

Notice that there is no Z0W − H+ coupling and, by electromagnetic gauge invari-

ance, also no γ W − H+ coupling.
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Higgs boson self-couplings

We have already remarked at the end of Section 8.2 that in the MSSM, quartic

interactions of Higgs fields arise only from D-terms, and so are completely de-

termined by gauge couplings. Since we have already worked out the complete

potential in (8.25), it is straightforward to write the quartic couplings in terms of

mass eigenstates. We find,

L � − 1

8

{
2g2 H+ H− [

cos2(β − α)h2 + sin2(β − α)H 2

+ sin 2(β − α)h H + cos2 2β A2
]

+ (g2 + g′2) cos2 2β(H+ H−)2 + 1

4
(g2 + g′2)

× [
cos 2α (h2 − H 2) − 2 sin 2α h H + cos 2β A2

]2

− (g2 − g′2) cos 2β H+ H− [
cos 2α(h2 − H 2) − 2 sin 2αh H + cos 2β A2

]}
.

(8.113)

We see that the Higgs quartic scalar self-couplings are all fixed by gauge inter-

actions. This is the origin of the tree-level bounds on mh in (8.39a) and (8.39b),

respectively. That these bounds are special to the MSSM is exemplified by the

following exercise.

Exercise Show that if the Higgs sector of the MSSM is extended by the inclusion
of an extra SU (3)C × SU (2)L × U (1)Y singlet (as in the exercise at the end of
Section 8.3), the quartic self interactions of Higgs bosons are no longer determined
by just the gauge couplings. Convince yourself that the tree-level bounds on mh are
not valid in this case.

The D-terms also result in trilinear couplings amongst the Higgs fields. As

before, we can obtain these by setting one of the neutral Higgs fields to their VEV.

The result is,

L � − 1

8

{
H+ H−[8gMW (sin(α + β)h + cos(α + β)H )

+ 4gMZ cos 2β

cos θW

(sin(β − α) h − cos(β − α) H )]

+ 2gMZ

cos θW

[sin(β − α) h − cos(β − α) H ]

× [
cos 2α h2 − cos 2α H 2 − 2 sin 2α h H + cos 2β A2

]}
. (8.114)
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Notice that although these are all dimension 3 operators, there are no explicit soft

SUSY breaking contributions to these interactions. This is because there is no

gauge-invariant combination of three Higgs field doublets.

Higgs boson couplings to charginos and neutralinos

Supersymmetry dictates that Higgs bosons must interact with charginos and

neutralinos. Since trilinear Higgs boson terms in the superpotential are forbidden

by gauge invariance, these interactions can arise only from the couplings of Higgs

bosons and higgsinos to SU (2) × U (1) gauginos. Letting Si = Hu and Hd in the

terms

L � −
√

2
∑

i,A

S†
i gtAλ̄A

1 − γ5

2
ψi + h.c.

in the master formula, and eliminating the original fields in favor of the mass

eigenstate fields leads to the required interactions. Since we have already done

several similar calculations, we will simply present the final results.

The couplings of the light Higgs scalar to charginos and neutralinos are given

by

L = g
√

2Sh
1 W̃ 1W̃1h + g

√
2Sh

2 W̃ 2W̃2h +
[

g√
2

W̃ 1(Sh + Phγ5)W̃2h + h.c.

]

+
∑

i, j

Xh
i j Z̃ i (−iγ5)θi +θ j Z̃ j h, (8.115)

where

Sh
1 = 1

2
(−1)θW̃1 [sin α sin γR cos γL + cos α sin γL cos γR], (8.116a)

Sh
2 = 1

2
(−1)θW̃2

+1
θxθy[sin α cos γR sin γL + cos α cos γL sin γR], (8.116b)

Sh = 1

2

[−(−1)θW̃1 θx sin γR sin γL sin α + (−1)θW̃1 θx cos γL cos γR cos α

− (−1)θW̃2 θy sin γL sin γR cos α + (−1)θW̃2 θy cos γL cos γR sin α
]
,

(8.116c)

and Ph is the same as Sh except that the signs of the first two terms are reversed.

Finally,

Xh
i j = −1

2
(−1)θi +θ j

(

v
(i)
2 sin α − v

(i)
1 cos α

) (

gv
( j)
3 − g′v( j)

4

)

. (8.117)
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The couplings of the heavy scalar H can be obtained from those of h by replacing

cos α → − sin α and sin α → cos α.

The corresponding couplings of the pseudoscalar A are given by

L � ig
√

2S A
1 W̃ 1γ5W̃1 A + ig

√
2S A

2 W̃ 2γ5W̃2 A

+
[−ig√

2
W̃ 1(S A + P Aγ5)W̃2 A + h.c.

]

+
∑

i, j

X A
i j Z̃ i (−iγ5)θi +θ j +1 Z̃ j A, (8.118)

where

S A
1 = 1

2
(−1)θW̃1 [sin γR cos γL sin β + sin γL cos γR cos β], (8.119a)

S A
2 = −1

2
(−1)θW̃2 θxθy[cos γR sin γL sin β + cos γL sin γR cos β], (8.119b)

S A = 1

2

[−(−1)θW̃1 θx sin γR sin γL sin β + (−1)θW̃1 θx cos γL cos γR cos β

+ (−1)θW̃2 θy sin γL sin γR cos β − (−1)θW̃2 θy cos γL cos γR sin β
]
,

(8.119c)

and P A is obtained by reversing the sign of the first two terms of the expression for

S A. The coupling of A to neutralinos is,

X A
i j = 1

2
(−1)θi +θ j

(

v
(i)
2 sin β − v

(i)
1 cos β

) (

gv
( j)
3 − g′v( j)

4

)

. (8.120)

Note that h and H couple to the scalar combination of W̃i W̃i or Z̃i Z̃i while A
couples to the pseudoscalar combination. It is for this reason that we refer to h and

H as scalars, and to A as a pseudoscalar.

Finally, the interactions of the charged Higgs bosons are given by,

L =
∑

k

(i)θk

[

cos β A(k)
1 θy(−1)θW̃2 Z̃ k PRW̃2 + cos β A(k)

2 (−1)θW̃1 Z̃ k PRW̃1

− sin β A(k)
3 θx (−1)θk Z̃ k PLW̃2 − sin β A(k)

4 (−1)θk Z̃ k PLW̃1

]

H+ + h.c.

(8.121)
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with

A(k)
1 = − 1√

2

(

gv
(k)
3 + g′v(k)

4

)

sin γR − gv
(k)
1 cos γR, (8.122a)

A(k)
2 = 1√

2

(

gv
(k)
3 + g′v(k)

4

)

cos γR − gv
(k)
1 sin γR, (8.122b)

A(k)
3 = − 1√

2

(

gv
(k)
3 + g′v(k)

4

)

sin γL + gv
(k)
2 cos γL, (8.122c)

A(k)
4 = 1√

2

(

gv
(k)
3 + g′v(k)

4

)

cos γL + gv
(k)
2 sin γL. (8.122d)

Higgs boson couplings to squarks and sleptons

In addition to the couplings that we have listed, there are several four scalar interac-

tions in the MSSM. Since these are dimension four operators, there are no explicit

soft-SUSY breaking contributions to these.

The D-term contributions from the term

L � −1

2

∑

A

∣
∣
∣
∣
∣

∑

i

S†
i gαtαASi

∣
∣
∣
∣
∣

2

in the master formula can be written as,

L � −1

2

{

g2

4

[

(h+†
u h0

u + h0†
u h+

u ) − (h−†
d h0

d + h0†
d h−

d )

+ (ν̃†
e ẽL + ẽ†Lν̃e) + (ũ†

Ld̃L + d̃†
LũL) + · · ·

]2

− g2

4

[

(h+†
u h0

u − h0†
u h+

u ) + (h−†
d h0

d − h0†
d h−

d )

+ (ν̃†
e ẽL − ẽ†Lν̃e) + (ũ†

Ld̃L − d̃†
LũL) + · · ·

]2

+ g2

4

[

(h+†
u h+

u − h0†
u h0

u) − (h−†
d h−

d − h0†
d h0

d)

+ (ν̃†
e ν̃e − ẽ†LẽL) + (ũ†

LũL − d̃†
Ld̃L) + · · ·

]2

+ g′2
[

H †
u Hu − H †

d Hd − L̃†
e L̃e + 1

3
Q̃†

1 Q̃1 + · · ·
2

+ ẽ†RẽR − 2

3
ũ†

RũR + 1

3
d̃†

Rd̃R + · · ·
]2

}

− g2
s

8

∑

A

(
∑

i

q̃†
LiλAq̃Li −

∑

i

q̃†
RiλAq̃Ri

)2

. (8.123)
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The ellipses denote sfermion terms from the second and third generations. In the

first term of the last square parenthesis, an SU (2) matrix product is implied; i.e.

h†
uhu ≡ h+†

u h+
u + h0†

u h0
u , etc. and L̃e and Q̃1 denote the first generation slepton

and squark doublets, respectively. The last term is just the squark D-terms from

supersymmetric QCD discussed previously.

We have already seen some of these terms before. For instance, terms involving

the squares of bilinears in just the Higgs fields lead to the quartic self-interactions

in (8.113). We see that there are several other quartic self-interactions that originate

in these D-terms:

1. The cross terms between the Higgs and scalar matter bilinears lead to four-point

vertices involving a pair of Higgs bosons and a pair of scalars (squarks or

sleptons). These Higgs boson couplings are fixed by gauge interactions and,

hence, are generation-independent. In the case where both the Higgs bosons are

neutral, a quick examination shows that there is no h Aq̃q̃ or H Aq̃q̃ coupling

or, for that matter, the corresponding slepton couplings.

2. The squares of the sfermion bilinears lead to several new quartic interactions

amongst squarks and sleptons. These include four squark interactions, four

slepton interactions, and also two squark two slepton contact interactions.

All these couplings are again fixed by gauge interactions. Notice that the

sfermions participating in these interactions may be of the same or different

type (L or R) and of the same or different flavor. Note also that although some

of the four squark couplings, for instance, the four ũR couplings from the

hypercharge D-term, superficially resemble that from the QCD interaction, the

color structure of these interactions is quite different.

Trilinear superpotential terms also yield four scalar interactions determined by

the Yukawa couplings. Clearly there are many such terms – even for just one

generation there are 7 + 4 = 11 terms corresponding to taking the derivative of

the superpotential with respect to any of the seven chiral matter fields (û, d̂, ê, ν̂,

Û c, D̂c, and Êc) or the four Higgs fields. We will leave it to the interested reader

to enumerate all the terms which are straightforward to list, but only illustrate the

form of the result with just one term arising from the derivative with respect to ĥ−
d .

This yields the interactions,

L = −
∣
∣
∣ fd ũLd̃†

R + feν̃ẽ†R + · · ·
∣
∣
∣
2

, (8.124)

where the ellipsis denotes contributions from the second and third generations. The

following features of the four-point interactions from D-terms and F-terms might

be worth noting.
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� The superpotential F-terms do not contribute to Higgs potential.
� Both D- and F-terms yield four scalar interactions as well as two sfermion two

Higgs boson couplings. However, unlike the generation-independent D-terms, the

superpotential couplings are important only for the third generation. In particular,

four scalar couplings from the superpotential that involve sfermions of different

generations are small.
� The bilinears that enter the D-terms always involve matter sfermions of the same

type (L or R). In contrast, the corresponding F-term bilinears always couple L

and R sfermions together. The form of the couplings in (8.123) and in (8.124) is,

therefore, quite different.

It is now straightforward to write the interactions in (8.123) and (8.124) in terms

of the mass eigenstate fields. However, since we will not have any occasion to use

these couplings in the remainder of this book, we have chosen not to list the lengthy

and cumbersome formulae that result upon doing so.

The quartic interactions of Higgs and sfermion fields also lead to H f̃ f̃ couplings

if one of the Higgs fields acquires a VEV. In addition, soft SUSY breaking scalar

trilinear couplings (A-terms) are an additional source of these interactions. The

process of obtaining the couplings of the physical Higgs fields to the left- and

right-squark fields is lengthy but straightforward. We present here the results for

a single generation of squarks. Of course, q̃L and q̃R need to be replaced by the

corresponding mass eigenstates to obtain the coupling to physical particles.

The couplings of squarks to charged Higgs bosons are given by,

LH+q̃q̃ � g

[

− MW√
2

sin 2β + m2
d tan β + m2

u cot β√
2MW

] (

ũ†
Ld̃L H+ + d̃†

LũL H−
)

+
[

gmumd(cot β + tan β)√
2MW

] (

ũ†
Rd̃R H+ + d̃†

RũR H−
)

+
[ −gmd√

2MW

(Ad tan β + μ)

] (

ũ†
Ld̃R H+ + d̃†

RũL H−
)

+
[ −gmu√

2MW

(Au cot β + μ)

] (

ũ†
Rd̃L H+ + d̃†

LũR H−
)

. (8.125a)

Here, and in the following, we have eliminated the Yukawa couplings in favor of

the corresponding quark mass.

The couplings to the lighter scalar h are,

Lhq̃q̃ � g

[

MW (T3ûL
− 1

2
YûL

tan2 θW) sin(β − α) − m2
u cos α

MW sin β

]

ũ†
LũLh

+ g

[

MW (T3d̂L
− 1

2
Yd̂L

tan2 θW) sin(β − α) − m2
d sin α

MW cos β

]

d̃†
Ld̃Lh
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+ g

[

MW (T3Û c − 1

2
YÛ c tan2 θW) sin(β − α) − m2

u cos α

MW sin β

]

ũ†
RũRh

+ g

[

MW (T3D̂c − 1

2
YD̂c tan2 θW) sin(β − α) − m2

d sin α

MW cos β

]

d̃†
Rd̃Rh

+ gmd

2MW cos β
(−μ cos α + Ad sin α)

(

d̃†
Ld̃R + d̃†

Rd̃L

)

h

+ gmu

2MW sin β
(−μ sin α + Au cos α)

(

ũ†
LũR + ũ†

RũL

)

h, (8.125b)

while the corresponding couplings to H are given by,

LHq̃q̃ � g

[

−MW (T3ûL
− 1

2
YûL

tan2 θW) cos(β − α) + m2
u sin α

MW sin β

]

ũ†
LũL H

+ g

[

−MW (T3d̂L
− 1

2
Yd̂L

tan2 θW) cos(β − α) − m2
d cos α

MW cos β

]

d̃†
Ld̃L H

+ g

[

−MW (T3Û c − 1

2
YÛ c tan2 θW) cos(β − α) + m2

u sin α

MW sin β

]

ũ†
RũR H

+ g

[

−MW (T3D̂c − 1

2
YD̂c tan2 θW) cos(β − α) − m2

d cos α

MW cos β

]

d̃†
Rd̃R H

+ gmd

2MW cos β
(μ sin α + Ad cos α)

(

d̃†
Ld̃R + d̃†

Rd̃L

)

H

+ gmu

2MW sin β
(−μ cos α − Au sin α)

(

ũ†
LũR + ũ†

RũL

)

H. (8.125c)

Note that the isospin and hypercharge values that appear in (8.125b) and (8.125c)

refer to the corresponding quantities for the MSSM fields in Table 8.1.

Finally, the couplings to the pseudoscalar neutral Higgs field are given by,

LAq̃q̃ � i
gmd

2MW
(μ + Ad tan β)

(

d̃†
Rd̃L − d̃†

Ld̃R

)

A

+ i
gmu

2MW
(μ + Au cot β)

(

ũ†
RũL − ũ†

LũR

)

A. (8.125d)

As already noted, especially for the third generation squarks and sleptons, mixing

effects must be included by substituting for the appropriate mass eigenstates.

The corresponding couplings to sleptons can be obtained by substituting md →
me, mu → 0, Ad → Ae, Au → 0, ũL → ν̃L, d̃L → �̃L, ũR → 0, and d̃R → �̃R, and

by making appropriate weak isospin and hypercharge assignments.
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8.5 Radiative corrections

Up to now, we have focussed our attention on the tree-level masses and couplings of

MSSM particles. Since MSSM couplings are all assumed to be in the perturbative

regime, this should be a good approximation to the true masses and couplings. There

are, however, some situations where radiative corrections are very important. The

best known of these is in the Higgs boson sector where the tree-level bound (8.39b),

if applicable, would already exclude the model! Clearly, such a correction cannot

be neglected. In this section we briefly discuss the radiative corrections that cannot

be neglected in phenomenological analyses of SUSY. This discussion is not meant

to be complete, but is included as a caution, and to provide the reader a flavor of the

issues involved. For a comprehensive discussion, we refer the reader to the original

literature.

8.5.1 Higgs boson masses

We have already mentioned that radiative corrections to Higgs boson masses can

be large, and are especially important for the lightest Higgs scalar h. The biggest

corrections arise from the top (quark and squark) Yukawa coupling to Higgs field

Hu . For large values of tan β b-Yukawa, and to a lesser degree τ -Yukawa, contri-

butions are also significant. Smaller corrections also arise from gauge interactions

of the Higgs bosons.

These radiative corrections can be included diagrammatically, by calculating

the relevant Higgs boson self-energy graphs, and by identifying the location of

the pole in the propagator. An alternative procedure involves analyzing the one-

loop corrected effective potential. The form of the one-loop correction to the scalar

potential can be written as

�V =
∑

i

(−1)2si

64π2
T r

(

(MiM†
i )2

[

log
MiM†

i

Q2
− 3

2

])

, (8.126)

where the sum over i runs over all fields that couple to Higgs fields, M2
i is the

Higgs field dependent mass squared matrix (defined as the second derivative of the

tree-level Lagrangian) of each of these fields, and the trace is over the internal as

well as any spin indices. The function �V depends on the Higgs fields through M,

and must be added to the tree-level potential. It is this corrected effective potential

that must be used to obtain the vacuum state as well as the masses and mixings

of the physical particles in the Higgs sector. Here, we illustrate how to obtain the

dominant corrections arising from top Yukawa couplings. To keep things simple,

we also ignore intra-generational mixing.
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Exercise Show that the neutral Higgs field dependent mass matrix for stops in the
(t̃L, t̃R) basis is given by,

(
m2

t̃L
+ f 2

t |h0
u|2 0

0 m2
t̃R

+ f 2
t |h0

u|2
)

,

while the corresponding top quark mass is given by ft h0∗
u where, for simplicity, we

have ignored any t̃L–t̃R mixing. Use these to show that the one-loop correction to
the effective Higgs potential due to top Yukawa couplings is given by,

�V 
 3

32π2

[

(m2
t̃L

+ f 2
t |h0

u|2)2 log(m2
t̃L

+ f 2
t |h0

u|2)

+ (m2
t̃R

+ f 2
t |h0

u|2)2 log(m2
t̃R

+ f 2
t |h0

u|2)

− 2 f 4
t |h0

u|4 log( f 2
t |h0

u|2) − 3

2

]

. (8.127)

To obtain this, we have to remember that in Eq. (8.126) the contribution from scalar
loops is written for real scalar fields. Since t̃L and t̃R are complex, their contribution
needs to be doubled. The factor 3 is a color factor.

Finally, we remark that to obtain the effective potential for the charged as well
as neutral Higgs fields, we must allow both top and bottom quarks and squarks in
the loops. Technically, this means that we have to construct a 4 × 4 field-dependent
mass matrix for the squarks, and 2 × 2 mass matrix for the fermions. Even for our
simplified calculation, these matrices are no longer diagonal. The trace can be
evaluated by evaluating the (field-dependent) eigenvalues of these squared mass
matrices, inserting these in place of Mi in (8.126) and summing. Carry out these
steps, and show that you obtain an SU (2) × U (1) invariant effective potential.

We can use this effective potential to construct corrected Higgs boson mass

matrices in the same way as before. We will now have additional contributions

from the top quark Yukawa coupling ft , and involving the top quark and top squark

masses. The result for the scalar Higgs bosons is simple to write down in this

approximation:

m2
h,H = 1

2

[
(m2

A + M2
Z + δ) ∓ ξ 1/2

]
(8.128)

where

ξ = [
(m2

A − M2
Z ) cos 2β + δ

]2 + sin2 2β(m2
A + M2

Z )2,
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and

δ = 3g2m4
t

16π2 M2
W sin2 β

log

[

(1 + m2
t̃L

m2
t

)(1 + m2
t̃R

m2
t

)

]

. (8.129)

In addition, the relation

m2
H± = m2

A + M2
W

is unaltered as long as bottom quark Yukawa couplings are neglected. Finally, the

Higgs scalar mixing angle α is modified to

tan α = (m2
A − M2

Z ) cos 2β + δ + ξ 1/2

sin 2β(m2
A + M2

Z )
. (8.130)

In these formulae, we have eliminated ft using (8.24a). Notice that the presence of

δ in the expression for mh allows h to exceed MZ as seems to be required by the

LEP data discussed earlier.

Although we have illustrated these corrections keeping only top quark Yukawa

couplings and neglecting intra-generation stop mixing, many phenomenological

analyses include mixing effects as well as the corrections due to b and τ Yukawa

couplings (these are important if tan β is large), and also gauge couplings. Much

effort has gone into making as precise predictions as possible for Higgs boson

masses, especially mh . At the present time, state-of-the-art calculations including

dominant two-loop effects indicate that the value of mh can be as high as about 130

GeV, well beyond the reach of the LEP2 e+e− collider at CERN, which ran at a

maximum energy of ∼ 208 GeV, and even larger if mt > 175 GeV.

Gluino mass

It has been noted by Martin and Vaughn that the tree-level gluino mass suffers

large corrections – up to 25% – due to loop corrections.7 In this case, one must

compute the gluino self-energy diagrams, and look for the pole position in the

gluino propagator. Including loop graphs with gluon exchange and quark–squark

loops, they find

mg̃ = M3(Q)
(

1 + αs

4π
[15 + 6 log(Q/M3) +

∑

Aq̃]
)

(8.131)

in the DR regularization scheme.8 Here,

Aq̃ =
∫ 1

0

dx x log[xm2
q̃/M2

3 + (1 − x)m2
q/M2

3 − x(1 − x)], (8.132)

7 S. Martin and M. Vaughn, Phys. Lett. B318, 331 (1993).
8 The calculation is performed in the DR renormalization scheme: see Chapter 9.
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where the sum is over the 12 different quark–squark multiplets, and squark mixing

has been neglected.

8.5.2 Squark mass

The dominant corrections to squark masses come from strong interactions, and so

are the same for q̃L and q̃R, and also independent of flavor. The radiatively corrected

squark mass is given by,

δm2
q̃ = m2

q̃ − m2
q̃(Q)

= 2αs(Q)

3π
mq̃(Q)2

{

1 + 3x + (x − 1)2 ln |x − 1| − x2 ln x + 2x ln
Q2

m2
q̃

}

.

(8.133)

If intra-generation squark mixing is not negligible, the form of the corrections is

more complicated, and we refer the reader to Pierce et al. for the complete result.9

8.5.3 Chargino and neutralino masses

By and large the corrections to these masses are not very large, but there are

regions of parameter space where they can be several percent. Nevertheless, there are

important circumstances where inclusion of these corrections could be important.

We will see later that the phenomenology is to a great extent determined by what

the lightest supersymmetric particle (LSP) is. This is largely because (as long as

R-parity is conserved) all sparticle decays terminate in the LSP. In many models,

the LSP is the lightest neutralino or the lighter stau, depending on the values of

model parameters. In the case where these sparticles are approximately degenerate

at tree level, the radiative corrections might prove to be crucial in identifying the

LSP.10

Another scenario where radiative corrections are crucial occurs when |M2| is

much smaller than other soft SUSY breaking parameters so that the SU (2) gauginos

are the lightest of the sparticles. It is then the radiative corrections that break the

degeneracy between the charged and neutral partners, making the latter slightly

lighter. A realization of such a scenario occurs in the so-called anomaly-mediated

SUSY breaking model discussed in Chapter 11.

9 See, D. Pierce et al., Nucl. Phys. B491, 3 (1997).
10 We have oversimplified the discussion here. In gauge-mediated SUSY breaking models that we will discuss in

Chapter 11 the LSP is a gravitino: since couplings of sparticles to the gravitino are extremely weak, all other
sparticles cascade decay to the next lightest super particle (NLSP) which then decays to the gravitino. It is very
important to correctly identify the NLSP to obtain the correct phenomenology.
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These radiative corrections have been analyzed in the literature. Complete for-

mulae can be found in Pierce et al., where details are provided.

8.5.4 Yukawa couplings and SM fermion masses

At tree level, the Yukawa couplings that enter the superpotential are simply related

to the corresponding SM fermion masses via (8.24a) and (8.24b). This is because

ĥ0
u (ĥ0

d) couple only to up-(down-)type fermions. At one-loop level, the field h0
u can

also couple to down-type quarks via its couplings to up- and down-type squarks.

Exercise Draw a Feynman diagram involving a gluino and down-type squark, or
a chargino and an up-type squark, in a loop to show that h0

u can couple to the down
quarks at the one-loop level.

Thus, beyond tree level, down-type quarks can obtain contributions to their

masses proportional to vu . Although these contributions are loop-suppressed, they

can be comparable to the tree-level contribution (proportional to vd) if tan β � 1.

Clearly, then the relation between Yukawa couplings and the corresponding quark

mass is considerably modified. We refer the interested reader to the paper by Pierce

et al. for details regarding these corrections.

8.6 Should the goldstino be part of the MSSM?

The MSSM is the simplest viable supersymmetric extension of the SM. Within

this framework, our ignorance of the underlying mechanism of SUSY breaking

is reflected in the 178 parameters discussed in Section 8.1.2. We should regard

the MSSM as an effective theory that will someday be obtained from a more

fundamental theory, once we understand the principles behind the physics of SUSY

breaking. Presumably, this will result in a dramatic reduction in the set of parameters

that one will regard as fundamental, in the sense that most soft SUSY breaking

parameters will be derived from more basic considerations.

Indeed despite the many suggestions for how SUSY breaking effects are felt by

the superpartners of SM particles, no compelling theory has as yet emerged. There

are two common themes to all models of SUSY breaking.

� First, it appears that the SUSY breaking occurs in a sector of the theory that

differs from that containing the SM particles and their superpartners. We are

forced into considering such theories because models where SUSY breaking

occurs in the SM sector run into phenomenological troubles with the sum rules

such as (7.35) that led to light scalars as discussed in Chapter 7. This then raises an
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additional question: even if we can dynamically break SUSY, how do we convey

this information to the observable sector of SM particles and their superpartners?

The answer to this question will be taken up in Chapter 11 where we discuss

various models.
� Second, supersymmetry is broken spontaneously rather than explicitly. Clearly,

this is the more appealing route, and also affords a rationale for why SUSY

breaking is soft in the MSSM: since SUSY breaking operators are proportional

to a VEV, dimensional analysis tells us that dimension four SUSY breaking

interactions are forbidden at least in a renormalizable theory.

The attentive reader will, however, be disturbed by the fact that spontaneous

breaking of SUSY should be accompanied by a massless Goldstone fermion in

the low energy spectrum. This should then be the LSP. Yet, our discussion of the

MSSM has made no mention of this. Indeed the MSSM (as we have formulated it

with explicit SUSY breaking terms) does not contain a goldstino.

The naive reason that we can get away with doing so is that in most models we

promote SUSY to a local supersymmetry. This, as we will discuss in Chapter 11, re-

sults in a theory that necessarily incorporates gravity, and requires the introduction

of the (spin 2) graviton and its superpartner, a spin 3/2 fermion, the gravitino. Then,

when SUSY is spontaneously broken, the would-be Goldstone fermion combines

with the (originally massless) gravitino to form a massive gravitino and disappears

from the physical spectrum, while the graviton (which is protected from acquir-

ing a mass by the unbroken reparametrization invariance) remains massless. This

phenomenon is analogous to what happens in spontaneously broken local gauge

theories: the would-be Goldstone bosons combine to form the longitudinal compo-

nents of a massive gauge field, and no massless spin zero excitations remain in the

spectrum.

In principle, if the gravitino is light enough we ought to include it as part of the

low energy theory. It is, generally speaking, not usual to do so for the same reason

that we do not include the graviton: like the graviton, the gravitino typically couples

too weakly to matter for particle physics.11 Thus the MSSM is a parametrization

of the effective low energy theory, but with some prejudices thrown in.

11 We will discuss an exception to this in Chapter 11 when we discuss gauge-mediated SUSY breaking. If the
SUSY breaking scale is low enough, we will see that the couplings of the longitudinal components of the
gravitino (i.e. the goldstino) play an important role for collider signals.
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Implications of the MSSM

In this chapter, we discuss various implications of the MSSM relevant to low energy

experiments in particle physics and to cosmology. We will postpone examination of

signals from direct production of sparticles at high energy colliders to later chapters.

In any theory (like the MSSM) with many scalar fields, there are potentially

new sources of flavor-changing neutral currents (FCNC). Experiment tells us that

such flavor-violating effects are strongly suppressed. Experimental constraints on

these restrict the form of soft SUSY breaking masses and couplings in the MSSM.

As we will discuss in more detail, viable models may be classified by the pattern

(universality, alignment or decoupling) of scalar mass matrices. We also discuss

constraints from potentially large C P-violating processes such as the electric dipole

moment of the electron and neutron.

We then proceed to study the effects of renormalization in the MSSM, which

differ from corresponding effects in the SM because of the presence of weak scale

superpartners. The prediction of gauge coupling unification in the MSSM – but not

in the SM – is the best known, and perhaps the most spectacular, of these differences.

It is possible to view the MSSM as a theory defined at the scale MSUSY ∼ Mweak,

but with > 100 additional parameters that have well-defined values at that scale.

However, since the MSSM is stable against radiative corrections, it may be valid

up to much larger energy scales, perhaps as high as those associated with grand

unification or string phenomena. New physics at these scales may provide an or-

ganizing principle that determines the multitude of weak scale SUSY parameters

in terms of a few more fundamental parameters. The renormalization group equa-

tions (RGEs) then provide a link between the parameters of the theory at these

ultra-high energy scales, and the weak scale, where superpartners are expected to

be observed. In particular, we show that the breakdown of electroweak symmetry

may be a derived consequence of the breakdown of supersymmetry, resulting from

the large top quark Yukawa coupling. This picture fits in neatly with the recent

discovery of the top quark with mt � 175 GeV. To avoid fine-tuning of SUSY

190
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Figure 9.1 A SM box diagram contributing to the KL–KS mass difference.

parameters associated with electroweak symmetry breaking, a “naturalness” con-

straint suggests that SUSY particles that couple directly to the Higgs sector ought

to have masses below ∼1 TeV, and hence ought to be accessible to collider search

experiments in the near future.

Having set up the framework, we proceed to quantify how various observations

restrict the values of the soft SUSY breaking masses in the MSSM. These include

measurements of the rare decays b → sγ and Bs → μ+μ−, the anomalous mag-

netic moment aμ = (g − 2)μ/2 of the muon, and determination of the amount of

relic neutralino “dark matter” left over from the Big Bang. If R-parity is indeed

conserved (as we assume in the MSSM), then the lightest supersymmetric particle

(LSP) should be absolutely stable, and LSPs produced in the early Universe should

pervade all space, and could form the bulk of the dark matter that is required to ex-

ist by astrophysical measurements. If these cosmological relics are gravitationally

clumped in our galactic halo, they may be detectable by both direct and indirect

dark matter search experiments.

9.1 Low energy constraints on the MSSM

9.1.1 The SUSY flavor problem

Flavor-changing neutral current processes are forbidden at tree level in the SM

due to the GIM mechanism. However, non-zero FCNC rates do occur in the SM

at the loop level. A famous example occurs in the neutral K -meson system, where

the KL − KS mass difference can be calculated from box diagrams such as the one

listed in Fig. 9.1. The contribution from the charm quark dominates, and the SM

contribution to �mK is approximately given by

�mK � G F√
2

α

6π

f 2
K mK

sin2 θW

cos2 θC sin2 θC
m2

c

M2
W

, (9.1)

where fK is the kaon decay constant, θC is the Cabibbo mixing angle, and mc is

the charm quark mass. The kaon mass difference was, in fact, used to predict the

charm quark mass shortly before the discovery of charm.
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Figure 9.2 An MSSM box diagram contributing to the KL–KS mass difference.

In the MSSM, additional contributions from box diagrams involving squarks

and gluinos are also present, such as the one shown in Fig. 9.2. (Other diagrams

involving chargino and neutralino loops also contribute.) The cross in Fig. 9.2

represents an off-diagonal entry in the squark mass squared matrix

Lsoft � d̃†
L(m2

Q)12s̃L,

which naively is expected to be comparable to the corresponding diagonal entry:

100–1000 GeV. In this case, SUSY contributions to �mK violate limits from ex-

periment, and the model is excluded. This is an example of what is referred to as

the SUSY flavor problem. It occurs because the transformation that diagonalizes the

quark mass matrices does not simultaneously diagonalize the corresponding squark

mass squared matrices. It is up to theorists to devise models that restrict soft SUSY

breaking mass matrices in such a way that bounds from FCNC processes are not

violated.

Diagonalization of scalar mass matrices is always possible, but the large off-

diagonal mass matrix elements will then lead to non-degenerate squarks that all
couple via the gluino to both s and d quarks. If U denotes the unitary matrix that

diagonalizes the quark mass matrix, and Ũ the unitary matrix that diagonalizes the

squark mass matrix, the g̃ − q̃ − q interaction (in the mass basis for quarks and

squarks) will be proportional to UŨ †. A calculation of the complete box diagram

shows that the contribution to �mK is proportional to

∑

α,β=d̃L,s̃L,b̃L

(UŨ †)iα(UŨ †)∗jα(UŨ †)iβ(UŨ †)∗jβ f (m2
α, m2

β), (9.2)

where i and j label the external quarks, α and β label the internal squarks, and f is

some function of the left-squark mass eigenvalues. A necessary condition for flavor-

changing processes is that there are large off-diagonal entries in the UŨ † matrix.

Exercise Convince yourself that if the left-squark mass matrix has degenerate
eigenvalues so that f (m2

α, m2
β) is independent of the squark indices, the gluino
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Figure 9.3 Feynman diagram contributing to μ → eγ decay via a SUSY loop.

Figure 9.4 An MSSM contribution to the down quark self-energy.

contribution to �mK vanishes. The same argument clearly holds for the neutralino
contribution. Work out the corresponding argument for chargino contributions.

Flavor violation is not confined to the kaons. A large off-diagonal entry (m2
Q)23

or (m2
D)23 (or worse, (ad)23, discussed below) would result in large flavor-violating

gluino vertices, and an unacceptable rate for b → sγ decays via diagrams involving

squark and gluino loops, analogous to those in Fig. 9.3 with (s)leptons replaced by

s(quarks) and the neutralino by the gluino, or in Fig. 9.4 with a photon attached to

the squark line.

Eq. (9.2) then suggests three distinct mechanisms to avoid large FCNCs in the

MSSM, and thus to solve the SUSY flavor problem. The first two suppress the off-

diagonal entries in (9.2) while the third suppresses loop effects by making sparticles

very heavy.

1. Arrange for degeneracy amongst the masses of squarks with the same quantum

numbers.

2. Arrange the SUSY breaking mechanism so that squark and quark mass matrices

are diagonalized by the same unitary transformation, so that the matrix UŨ † � 1.

Squarks can be non-degenerate. In this case, the quark and squark mass matrices

are said to be aligned.1 Such an alignment can be arranged in models which

include so-called horizontal symmetries, linking the various generations.

1 Y. Nir and N. Seiberg, Phys. Lett. B309, 337 (1993).
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3. The third method to suppress FCNCs is to simply assume that the masses of

the squarks circulating in the box diagrams are so heavy that the diagram is

suppressed. This solution to the SUSY flavor problem is known as decoupling.

Detailed computations of the KL–KS mass difference including QCD corrections

indicate that first and second generation squark masses should be larger than ∼
40 TeV to adequately suppress FCNCs. At first sight, this seemingly contradicts

naturalness constraints that imply superpartner masses should lie at or below

the TeV scale. We should note though that these apply most directly to sparticles

that have substantial couplings to the Higgs boson sector, i.e. to charginos and

neutralinos and third generation sfermions. The first two generations of sfermions

which couple to Higgs bosons only via tiny Yukawa couplings or indirectly at

the two-loop level may be considerably more massive.

Additional constraints on squark masses and mixing matrices come from mea-

surements of B-B and D-D mass differences, and from lepton sector FCNC pro-

cesses such as μ → eγ (an example is given in Fig. 9.3), τ → μγ , and τ → eγ .2

The constraints that can be extracted vary in their severity, but all can be fulfilled

by implementing one or a combination of the solutions of degeneracy, alignment

or decoupling.

Constraints from FCNCs also restrict the form of the soft SUSY breaking trilinear

terms (au)i j , (ad)i j , and (ae)i j . For instance, when a Higgs field develops a VEV,

then off-diagonal mass terms such as

(ad)12 Q̃a
1 Hdad̃†

R2 → (ad)12vd d̃Ls̃†R (9.3a)

or flavor-diagonal masses such as

(ad)11 Q̃a
1 Hdad̃†

R1 → (ad)11vd d̃Ld̃†
R (9.3b)

will be induced. The first of these will again be restricted by processes such as K –K
mixing, so that we must require the off-diagonal entries of the a matrix to be small.

The second of these terms can make (flavor-conserving) contributions to fermion
masses, such as the down quark via gluino–squark loops (see Fig. 9.4). Requiring

these contributions to fermion masses to be smaller (in order of magnitude) than the

fermion masses themselves leads to tight constraints on the magnitudes of terms

such as (au)i i and (ad)i i and (ae)i i , for generations i = 1 and 2.

2 For a general analysis of FCNC and C P-violating effects, see F. Gabbiani, E. Gabrielli, A. Masiero and L.
Silvestrini, Nucl. Phys. B477, 321 (1996).
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Figure 9.5 A supersymmetric contribution to the electric dipole moment of the electron.

9.1.2 The SUSY C P violation problem

Since, as discussed in Chapter 8, soft SUSY breaking parameters are in general com-

plex, one should expect TeV scale imaginary components to these, which would

correspond to the presence of large C P-violating phases. Many constraints on these

imaginary components can also be extracted from low energy data. For instance,

SUSY contributions to the parameter εK = 1
2

Im〈K |He f f |K 〉
Re〈K |He f f |K 〉 can be used to set bounds

on the imaginary part of squark mass squared matrix elements. The flavor-violating

contributions have been parametrized by Gabbiani et al. as complex “mass inser-

tions” (�m2)ab
i j (i, j label the flavor and a, b = L, R the squark type), and the con-

straints are expressed as bounds on dimensionless quantities δab
i j = (�m2)ab

i j /m̃2.

Measurements of �mK and εK put constraints on the δab
12 , but further assumptions

are needed to extract these. For instance, assuming that the real parts of the δs dom-

inate their imaginary parts, and further that the real part is at its upper bound, one

can obtain an upper limit on the imaginary part. As an example: for mq̃ ∼ mg̃ = m̃,

the general analysis from Gabbiani et al. shows that for the down squark sector,
√

Im(�m2)L L
12 ≤ 0.01m̃.

Limits on the imaginary parts of the soft SUSY breaking a terms can be obtained

from experimental upper limits on the electric dipole moments (EDMs) of both

the electron and the neutron. These contributions come from diagrams such as

those depicted in Fig. 9.5. For instance, the quantity
√|Im(ae)11vd | is restricted

to be less than 6 × 10−4mẽ. Likewise, the bound on the neutron electric dipole

moment restricts
√|Im(ad)11vd | to be less than ∼ 0.002md̃ . In the case of R-parity-

violating scenarios, phases of R-parity-violating couplings are also restricted by

similar considerations.

Finally, measurements of the C P-violating decays KL → ππ are related to the

C P-violating parameter ε′
K . These measurements further restrict

√|Im(ad)12vd | to

be smaller than ∼ 0.004md̃ .

Determining the physical principle behind why so many of the C P-violating

phases are so small is known as the SUSY C P problem. Motivated by the stringent

limits on the magnitude of C P-violating phases, an ad hoc but frequent assumption
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in the literature is to simply ignore them, and set all the imaginary parts of soft SUSY

breaking parameters as well as μ to zero. This is not meant to be taken literally. In

many analyses not involving C P violation (e.g. direct searches for sparticles), these

small phases make little difference. An alternative solution is to again assume the

SUSY particles circulating in the loops are so heavy – in the multi-TeV range – that

the C P-violating contributions are suppressed. SUSY model builders, however,

have to explain why SUSY contributions to C P violation are small, and perhaps

to make predictions for the patterns of C P violation for the third generation where

data are not yet in.

A common but stronger assumption which solves both the SUSY flavor and C P
problems is to assume universality and reality of soft SUSY breaking masses:

m2
Q = m2

Q1; m2
U = m2

U 1; m2
D = m2

D1; m2
L = m2

L1; m2
E = m2

E 1. (9.4)

In addition, the trilinear a terms are assumed proportional to their corresponding

Yukawa matrices:

au = Aufu; ad = Adfd ; ae = Aefe. (9.5)

In this case, almost all FCNC contributions will be well below experimental limits

(a super-GIM mechanism operates), and all C P-violating phases other than in the

usual CKM mixing matrix will be vanishing. The universality assumption, however,

goes beyond just fulfilling experimental constraints. In particular, it should be kept

in mind that restrictions on many of the soft SUSY breaking mass parameters are

very loose or even non-existent, and it remains for experimental measurements to

determine or limit these parameters.

9.1.3 Large C P-violating parameters in the MSSM?

As we have discussed, measurements of the EDM of the electron and the neutron

and, most recently, of atoms such as mercury have placed stringent constraints

on C P-violating phenomena in the MSSM. However, these constraints do not
guarantee that many of the C P-violating MSSM parameters are small. It could be

that flavor-blind C P-violating parameters (such as the gaugino masses M ′
i ) and

C P-violating phases associated with the first two generations are small, but those

associated with the third generation are large. Or, it could be that sparticle masses

are in the multi-TeV range so that SUSY loop contributions to the various EDMs are

suppressed even if the C P-violating parameters are relatively large. Finally, it could

be that individual phases/parameters are large, but that there exist cancellations

amongst the amplitudes which contribute to the various EDMs. Any theory of

SUSY breaking would then have to explain the origin of these cancellations if they
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are not to be attributed to mere accident. We caution the reader that there is no

clear consensus in the literature as to just how well these cancellation mechanisms

work. In part, this is because the conversion of the stringent experimental bound

on the EDM of mercury to limits on the EDM of quarks and electrons (or its

QCD analogue, the chromo electric dipole moment of quarks) that are predicted by

any high scale theory is not entirely straightforward. A careful assessment of the

associated subtleties is beyond the scope of this text, and we refer the interested

reader to the literature for a discussion of these issues.3

If indeed the C P-violating parameters are large, these can lead to observable

effects in the sparticle and Higgs boson sectors, even in non-C P-violating phenom-

ena. One simple example comes from the chargino mass matrix, exemplified in the

exercise at the end of this section. In Chapter 8, we noted that while one of the C P-

violating phases associated with gaugino masses (we chose the case of M ′
3) could

be rotated away, the remaining two could not. Thus, M ′
2 and also a complex phase

in the μ parameter (where μ = |μ|eiφμ) would enter the chargino mass matrix and

alter the corresponding physical chargino mass eigenvalues. The C P-violating pa-

rameters would also modify the chargino mixing matrices, and hence could modify

chargino production cross sections and branching fractions. Likewise, neutralino

mass eigenvalues, production rates, and decay rates can depend on M ′
1, M ′

2, and

φμ. Squark and slepton observables can depend on these parameters, as well as on

possibly large C P-violating phases in the a-parameters: within the mSUGRA-like

framework with a universal A-parameter introduced in Section 9.2.2, this effect

is most pronounced for the third generation sfermions. If SUSY sources of C P
violation are large, Higgs boson phenomenology may also be significantly altered:

in particular, as already alluded to in Section 8.3.3, neutral Higgs bosons would no

longer be mass eigenstates, and their phenomenology would be correspondingly

altered. These new sources of C P violation can also obviously lead to novel effects

in the physics of K and B mesons, since not all C P-violating effects would then be

described by the Kobayashi–Maskawa phase.4 These SUSY sources of C P viola-

tion may also have a significant impact on cosmology at early times, most notably

on baryogenesis.

3 The EDM of mercury was evaluated within the MSSM framework by T. Falk, K. Olive, M. Pospelov and
R. Roiban, Nucl. Phys. B560, 3 (1999). For an overview of the potential uncertainties in this evaluation, see
e.g. the reviews by Ibrahim and P. Nath, hep-ph/0210251 (2002) and D. Chung et al., hep-ph/0312378 (2003),
and references cited therein. An overview of how SUSY C P violation affects sparticle phenomenology is also
contained in these reviews. See also, J. Erler and M. Ramsey-Musolf, hep-ph/0404291 for a general discussion
of the evaluation of EDMs within extensions of the SM.

4 For instance, determination of the angles of the so-called unitarity triangles in different processes will not
yield consistent values for these. Especially topical at the time of this writing is the discrepancy in the decays
B → φKs vis-à-vis the decays B → ψ Ks , reported by the BELLE experiment. This discrepancy has, however,
not been seen by the BaBar experiment. For textbook discussions of these questions see G. Branco, L. Lavoura
and J. Silva, C P Violation, Oxford (1999); I. Bigi and A. Sanda, CP Violation, Cambridge University Press
(2000).
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We will for simplicity of discussion ignore the possibility of large C P-violating

parameters in the remainder of this book. We expect that the interested reader

will be able to carry out the necessary modifications to include their effects in the

discussion.

Exercise To illustrate the potential impact of C P-violating SUSY parameters on
sparticle masses and couplings, generalize the derivation of the chargino masses
and mixing patterns in Section 8.3.5 to the case where the C P-violating gaugino
mass term M ′

2 does not vanish, and the supersymmetric parameter μ is complex.
Working in the convention that the Higgs scalars have real VEVs (this may lead

to C P-violating phases in the interactions of Higgs bosons with other scalars)
show that the mass terms for the charginos can now be written as,

Lchargino = − (
λ̄, ¯̃χ

) (

Mcharge PL + M†
charge PR

) (
λ

χ̃

)

,

where now

Mcharge =
(

M2 − iM ′
2 −gvd

−gvu −μ

)

.

Many authors who use the two-component notation introduce instead a complex
mass M2 ≡ M2 − iM ′

2 and write M2 ≡ |M2|eiφ2 , and work with the real numbers
|M2| and φ2 instead of our M2 and M ′

2, as alluded to at the very end of Chapter 7.
Show that the squared chargino masses, the eigenvalues of the matrix

MchargeM†
charge, are now given by,

m2
W̃1,2

= 1

2

[
(|μ|2 + |M2|2 + 2M2

W ) ∓ ζ
]
,

with

ζ 2 = (|μ|2 − |M2|2)2 + 4M2
W

[
M2

W cos2 2β + |μ|2 + |M2|2
−2|μ||M2| sin 2β cos(φμ + φ2)

]
.

Notice that if |M2| =
√

M2
2 + M ′2

2 and/or |μ| are much larger than MW , once
again the two charginos are dominantly gauginos and higgsinos.

The matrices U and V that enter the chargino couplings via the diagonalization
of charginos (see Sec. 8.3.5) will now depend on these additional C P-violating
parameters, and potentially cause C P violation in processes involving charginos.

The effect of C P-violating gaugino masses and complex μ term on the neutralino
sector can be similarly worked out.
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9.2 Renormalization group equations

Since the MSSM is free of quadratic divergences, mass parameters of order the

weak scale remain stable under radiative corrections. In particular, if the MSSM is

embedded in a larger framework, such as a GUT or string model, parameters of order

the weak scale will remain that same order even after radiative corrections involving

the ultra-high energy scales associated with these models. This stabilization of

mass hierarchies allows the possibility of reliably extending the predictions of the

MSSM up to very high energy scales. Logarithmic divergences, however, remain,

and perturbative calculations involving energies Q ∼ MGUT will typically contain

powers of αi
4π

log(MGUT/MZ ), where αi is a gauge coupling. Fortunately, these

large logarithms which would invalidate the perturbative expansion in αi can be

summed by using renormalization group methods. The coupling constants and mass

parameters of the theory are replaced by running couplings and masses, with values

depending on the energy scale. The scale dependence of the parameters of the theory

is given by the renormalization group equations.

9.2.1 Gauge couplings and unification

In quantum field theory, perturbative calculations beyond tree level are usually

performed using renormalized perturbation theory (RPT), as opposed to bare per-

turbation theory. The bare fields, mass terms and coupling constants that occur in the

original Lagrangian are (perturbatively) divergent quantities. In RPT, these are re-

placed by finite, renormalized fields, masses and coupling constants, and divergent

quantities are formally shuffled into counterterms. The form of the counterterms

is determined by specifying renormalization conditions at some arbitrarily chosen

energy scale Q, referred to as the renormalization scale. While Green functions

of the bare theory are independent of the renormalization scale, Green functions

calculated in RPT are dependent on the renormalization scale. The dependence of

Green functions of RPT on shifts in the renormalization scale Q is governed by the

Callan–Symanzik equation. As the renormalization scale shifts, so too do the fields,

coupling constants and masses of the theory. The evolution of a coupling constant

g with renormalization scale, in particular, is governed by the Callan–Symanzik

beta function β(g), defined as

β(g) = Q
∂g

∂ Q
.

The procedure for evaluating β is to calculate the logarithmically divergent parts

of diagrams which contribute to the coupling constant renormalization, and then

take the logarithmic derivative with respect to the renormalization scale Q. For

non-supersymmetric non-Abelian gauge theories, the calculation of the one-loop
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β-function is performed in many texts.5 The result, generalized to include scalars

and left- and right-handed fermions in different representations, is

β(g) = − g3

16π2

[
11

3
C(G) − 2

3
nFS(RF) − 1

3
nHS(RH)

]

, (9.6)

where C(G) is the quadratic Casimir for the adjoint representation of the associated

Lie algebra, S(RF) is the Dynkin index for representation RF of the fermion fields,

S(RH) is the Dynkin index for representation RH of the scalar fields, nF is the number

of fermion species, and nH is the number of complex scalars. For an SU (N ) gauge

theory, for fermions or scalars in the fundamental N -dimensional representation,

S(R) = 1/2, while C(G) = N . For small values of nF, the β-function is negative,

resulting in the well-known phenomenon of asymptotic freedom.

For SU (3)C, with fermions uL, dL, uR and dR, nF = 4ng, where ng is the number

of generations. For SU (2)L, with three colors of left doublet quarks and a single left

doublet of leptons, nF is again 4ng. Finally, for U (1)Y, S(R) = 1, and we simply

sum over the squared hypercharges of a complete generation:
∑

(Y/2)2 = 10/3.

The final result for the SM, at one-loop, is

βi = g3
i

16π2
bi , (9.7)

where the bi (i = 1, 2, 3) are given by

⎛

⎝

b1

b2

b3

⎞

⎠ =
⎛

⎝

0

− 22
3

−11

⎞

⎠ + ng

⎛

⎜
⎝

4
3
4
3
4
3

⎞

⎟
⎠ + nH

⎛

⎝

1
10
1
6

0

⎞

⎠ , (9.8)

ng is the number of generations, and nH is the number of (complex) Higgs doublets

(nH = 1 in the SM). The expression for b1 holds for the evolution of the rescaled

charge g1 = √
5/3g′ appropriate for a GUT model.

In the MSSM, there will be additional loop contributions to the various counter-

terms involving gauginos, matter scalars, Higgs scalars and higgsinos. To calculate

the various loop diagrams, a suitable regularization scheme must be chosen. For

SM calculations, dimensional regularization (DREG) is most frequently chosen,

since it preserves gauge symmetry and hence the validity of Ward identities in loop

calculations. In models with supersymmetry, DREG is usually not the regulator

of choice, since it violates supersymmetry. The reason is that, by modifying the

dimensionality of spacetime, one introduces a mismatch between the number of de-

grees of freedom in vector fields versus their supersymmetric counterpart gauginos.

5 See, for instance, M. Peskin and D. V. Schroeder, Introduction to Quantum Field Theory, Chapter 16, Addison-
Wesley (1995).
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A modification of DREG known as dimensional reduction (DRED) also modifies

the dimensionality of spacetime, but maintains four-vectors as four-component ob-

jects.6 DRED thus preserves supersymmetry, at least for one-loop calculations.

Calculations using DRED versus DREG differ only in the finite parts of one-loop

diagrams, but differ even in the divergent parts of two-loop diagrams. Thus, the

RGEs calculated via DREG or via DRED will be equivalent to one-loop order.

In the MSSM, the β-functions are modified by superpartner contributions from

gauginos, higgsinos and matter scalars. These can be readily computed from (9.6).

Using S(R) = N for the adjoint representation in SU (N ), it is straightforward to

show that the one-loop β-functions for the MSSM take the form,

β(g) = − g3

16π2
[3C(G) − S(R)] , (9.9)

where the Dynkin index S(R) is summed over all the matter and Higgs fields, and

their superpartners, in the model. This then yields,

⎛

⎝

b1

b2

b3

⎞

⎠ =
⎛

⎝

0

−6

−9

⎞

⎠ + ng

⎛

⎝

2

2

2

⎞

⎠ + nH

⎛

⎜
⎝

3
10
1
2

0

⎞

⎟
⎠ . (9.10)

Exercise Using Eq. (9.6) to obtain the contributions of the superpartner gauginos,
higgsinos, and sfermions, verify that the gauge β-functions for the MSSM are indeed
as given by (9.9) and (9.10).

The RGEs for the gauge couplings can now be simply integrated. The constant

of integration can be fixed using the experimentally measured value of the gauge

coupling at some reference scale Q0. We then find,

1

gi (Q)2
− 1

gi (Q0)2
= − bi

8π2
ln

(
Q

Q0

)

. (9.11)

In Fig. 9.6, we show how the gauge couplings, given by Eq. (9.11), evolve with the

scale choice Q. It is customary to plot the inverse of αi = g2
i /4π , beginning with

the values of α1, α2, and α3 which are known to high precision at the value Q = MZ .

The evolution in the SM is shown in Fig. 9.6a. The three gauge coupling constants

evolve in a generally convergent direction towards higher energy scales, becoming

roughly the same at Q ∼ 1013–1017 GeV. In Fig. 9.6b, the case for the MSSM is

shown. Remarkably, the three gauge couplings unify with impressive precision at

Q � 2 × 1016 GeV! In this case, we have evolved the gauge couplings according to

6 W. Siegel, Phys. Lett. B84, 193 (1979).
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Figure 9.6 Evolution of the SU (3)C × SU (2)L × U (1)Y gauge coupling constants
from the weak scale to the GUT scale for the case of (a) the SM, (b) the MSSM
with two Higgs doublets, and (c) the MSSM with four Higgs doublets.

SM RGEs between Q = 102 and Q = 103 GeV, and switched to MSSM evolution

equations for higher Q values. The gauge coupling unification in the MSSM is

startling, and strongly suggests that the MSSM may be the remnant of some sort

of supersymmetric grand unified theory, with superpartners around the TeV scale.

In Fig. 9.6c, we show the same gauge coupling evolution, but this time we include

four Higgs doublets in the supersymmetric model. For this case, gauge coupling

unification is once again off the mark.
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The successful prediction of gauge coupling unification is viewed by many as

indirect evidence for weak scale supersymmetry. It motivates us to consider the

possibility that there may indeed be no new physics all the way up to a very

high scale, and that the weakly coupled MSSM is valid up to Q ∼ MGUT. This

is an assumption. Above Q = MGUT, there may be new physics: gauge coupling

unification suggests grand unification with a desert as the simplest possibility, but

this need not be the case.

It is possible that an examination of the parameters of the MSSM renormalized

at a very high scale (obtained from their measured values) might provide clues as

to what this new physics might be, in the same way that the unification of gauge

couplings points to grand unification. But such a bottom-up approach is clearly

not possible today since we do not know the weak scale values of the SUSY

parameters or even the superpotential Yukawa couplings. Instead, what is usually

done is to make simple ansätze about the values of these soft SUSY breaking

parameters at the high scale, and then evolve these down to the weak scale relevant

for phenomenology using renormalization group equations. These ansätze serve as

boundary conditions for the evolution.7 It should be stressed that the evolution does

not involve any new physics beyond the MSSM.

Typically, the simple boundary conditions can be expressed in terms of just a

handful of parameters, from which all the parameters of the MSSM may be com-

puted. In this sense, the MSSM augmented by the boundary conditions is a very pre-

dictive framework. As discussed in Chapter 7, we hope that an understanding of the

physics of supersymmetry breaking, and its mediation to the observable sector, will

yield the correct boundary conditions. In Chapter 11, we will discuss various models

for SUSY breaking, but for the present we will regard the specification of the bound-

ary values of the soft supersymmetry breaking parameters as an additional ansatz.

We have already studied the renormalization group equations for the gauge

couplings. The one-loop RGEs for third generation Yukawa couplings of the MSSM

are given by

d ft

dt
= ft

16π2

(

−
∑

i=1−3

ci g
2
i + 6 f 2

t + f 2
b

)

, (9.12a)

d fb

dt
= fb

16π2

(

−
∑

i=1−3

c′
i g

2
i + f 2

t + 6 f 2
b + f 2

τ

)

, (9.12b)

d fτ
dt

= fτ
16π2

(

−
∑

i=1−3

c′′
i g2

i + 3 f 2
b + 4 f 2

τ

)

, (9.12c)

7 Of course, care must be taken to ensure that these boundary conditions lead to weak scale parameters consistent
with all experimental constraints.
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where ci = (13/15, 3, 16/3), c′
i = (7/15, 3, 16/3), c′′

i = (9/5, 3, 0) and t =
log(Q). Effects of Yukawa couplings of the first two generations should be negli-

gible, and are usually neglected in calculations, unless one is attempting to match

the entire mass spectrum of SM fermions. To find the weak scale boundary condi-

tions on the Yukawa couplings, one starts with running fermion masses (evaluated

at the scale of the fermion mass) that are usually extracted in the M S (modified

minimal subtraction) scheme and then converts these to corresponding masses at a

scale MZ (or mt ) in the DR scheme (DR = modified minimal subtraction using

dimensional reduction). Once the running fermion masses are known at the weak

scale, they can be converted to running Yukawa couplings. If tan β is large, it is

important to include supersymmetric loop contributions to fermion masses for a

reliable extraction of weak scale Yukawa couplings, especially for fb. The Yukawa

couplings can then be evolved to any other scale where the MSSM is valid using

the RGEs given above. Notice that unlike the RGEs for gauge couplings that form

a closed system, a knowledge of gauge couplings (but not the sparticle spectrum)

is necessary to determine the Yukawa coupling evolution.

9.2.2 Evolution of soft SUSY breaking parameters

Like the gauge and Yukawa couplings, the various soft SUSY breaking parameters

as well as the superpotential Higgs mass μ, evolve with energy scale. The RGE for

the gaugino mass can be obtained from the generalization of the expression for the

gluino mass in Eq. (8.131). Taking the derivative with respect to t = log(Q) gives,

dMi

dt
= g2

i

16π2
Mi (−6C(G) + 2S(R)) . (9.13)

Exercise Noting that the β-function for the gaugino mass is proportional to the
β-function for the corresponding gauge coupling, show that

Mi (Q)

g2
i (Q)

= Ki , (9.14)

where the constant Ki is independent of the scale Q.

In models where the Ki defined in the last exercise are the same for each gauge

group factor, we would have the relation

α1

M1

= α2

M2

= α3

M3

. (9.15)

Such a relation is natural in many simple SUSY GUT theories. In this case, the

three couplings as well as the three gaugino masses must unify at Q = MGUT, and

the Ki ’s in Eq. (9.14) are independent of i . The relation (9.15) is therefore often
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referred to as the GUT relation for gaugino masses. We should remind the reader

that the coupling α1 is related to the conventionally normalized weak hypercharge

gauge coupling α′ by

α′ = 3

5
α1.

The one-loop RGEs for the soft SUSY breaking parameters and for μ can most

easily be worked out using the analysis of Falck, and are listed below.8 Two-loop

RGEs have also been worked out; for these, we refer the reader to the original

literature.9 In writing the RGEs, we neglect any inter-generation mixing. Also,

following our earlier discussion, we write the trilinear soft SUSY breaking coupling

ai as ai = fi Ai . Finally, we write the RGEs only for third generation sfermion

masses and A-parameters. The corresponding RGEs for the first two generations

may be obtained by self-evident replacement of the Yukawa couplings and “X”

parameters (defined below). With these assumptions, the RGEs are given by,

dMi

dt
= 2

16π2
bi g

2
i Mi , (9.16a)

dAt

dt
= 2

16π2

(

−
∑

i

ci g
2
i Mi + 6 f 2

t At + f 2
b Ab

)

, (9.16b)

dAb

dt
= 2

16π2

(

−
∑

i

c′
i g

2
i Mi + 6 f 2

b Ab + f 2
t At + f 2

τ Aτ

)

, (9.16c)

dAτ

dt
= 2

16π2

(

−
∑

i

c′′
i g2

i Mi + 3 f 2
b Ab + 4 f 2

τ Aτ

)

, (9.16d)

dB

dt
= 2

16π2

(

−3

5
g2

1 M1 − 3g2
2 M2 + 3 f 2

b Ab + 3 f 2
t At + f 2

τ Aτ

)

, (9.16e)

dμ

dt
= μ

16π2

(

−3

5
g2

1 − 3g2
2 + 3 f 2

t + 3 f 2
b + f 2

τ

)

, (9.16f)

dm2
Q3

dt
= 2

16π2

(

− 1

15
g2

1 M2
1 − 3g2

2 M2
2 − 16

3
g2

3 M2
3 + 1

10
g2

1 S + f 2
t Xt + f 2

b Xb

)

,

(9.16g)

dm2
t̃R

dt
= 2

16π2

(

−16

15
g2

1 M2
1 − 16

3
g2

3 M2
3 − 2

5
g2

1 S + 2 f 2
t Xt

)

, (9.16h)

dm2
b̃R

dt
= 2

16π2

(

− 4

15
g2

1 M2
1 − 16

3
g2

3 M2
3 + 1

5
g2

1 S + 2 f 2
b Xb

)

, (9.16i)

8 N. K. Falck, Z. Phys. C30, 247 (1986).
9 S. Martin and M. Vaughn, Phys. Rev. D50, 2282 (1994); Y. Yamada, Phys. Rev. D50, 3537 (1994); I. Jack and

D. R. T. Jones, Phys. Lett. B333, 372 (1994).
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dm2
L3

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 − 3

10
g2

1 S + f 2
τ Xτ

)

, (9.16j)

dm2
τ̃R

dt
= 2

16π2

(

−12

5
g2

1 M2
1 + 3

5
g2

1 S + 2 f 2
τ Xτ

)

, (9.16k)

dm2
Hd

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 − 3

10
g2

1 S + 3 f 2
b Xb + f 2

τ Xτ

)

, (9.16l)

dm2
Hu

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 + 3

10
g2

1 S + 3 f 2
t Xt

)

, (9.16m)

where m Q3
and mL3

denote the mass term for the third generation SU (2) squark

and slepton doublet respectively, and

Xt = m2
Q3

+ m2
t̃R

+ m2
Hu

+ A2
t , (9.17a)

Xb = m2
Q3

+ m2
b̃R

+ m2
Hd

+ A2
b, (9.17b)

Xτ = m2
L3

+ m2
τ̃R

+ m2
Hd

+ A2
τ , and (9.17c)

S = m2
Hu

− m2
Hd

+ T r
[
m2

Q − m2
L − 2m2

U + m2
D + m2

E

]
. (9.17d)

Here, the trace denotes a sum over generations. In many models (including the

model with “universal” mass parameters to be introduced shortly), S = 0.

Exercise Obtain the one-loop RGE for S and show that if S vanishes at one scale,
it vanishes at all scales. We therefore do not have to worry about the S-term in the
class of models where the boundary conditions ensure that S vanishes.

Notice that the RGE for μ is completely decoupled from the soft SUSY breaking

parameters, as is appropriate for a parameter occurring in the superpotential.

The complete set of 26 RGEs can be solved easily numerically as follows. Given

initial values of the gauge couplings, Yukawa couplings, soft breaking terms, and

μ parameter at some scale Q0, we can plug into the right-hand side of each of the

RGEs to calculate the slope, and then make a linear extrapolation along a small step

size �Q to find new values of each of these parameters. By iterating this approach,

the trajectories of each parameter can be found. In practice, more sophisticated

numerical methods such as Runge–Kutta integration are used.

As an example, inspired by the apparent gauge coupling unification at the grand

unified scale together with the constraints from FCNCs and electric dipole mo-

ments, we can adopt the universality hypothesis at the scale Q = MGUT � 2 ×
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1016 GeV:

g1 = g2 = g3 ≡ gGUT, (9.18a)

M1 = M2 = M3 ≡ m1/2, (9.18b)

m2
Qi

= m2
Ui

= m2
Di

= m2
Li

= m2
Ei

= m2
Hu

= m2
Hd

≡ m2
0, (9.18c)

At = Ab = Aτ ≡ A0, (9.18d)

where all off-diagonal soft SUSY breaking scalar masses and A parameters are set

to zero. Inter-generation mixing then occurs only via superpotential Yukawa cou-

plings. Many analyses not involving flavor physics can be simplified by ignoring

Yukawa interactions for the first two generations. Then, each generation number is

separately conserved, and off-diagonal sfermion masses or A-parameters will not be

generated by renormalization group evolution. Notice also that we use two notations

interchangeably: m E1
and mẽR

both denote the soft SUSY breaking mass for the

right-handed selectron, while mL1
= mẽL

= m ν̃eL
denotes the common soft SUSY

breaking mass parameter of the selectron, and the electron sneutrino, and simi-

larly for squarks. The assumption that the MSSM is valid between the weak scale

and GUT scale, and that the “boundary conditions” (9.18a)–(9.18d) hold is often

referred to as the mSUGRA, or the minimal supergravity model. We will see in Chap-

ter 11 that these boundary conditions are obtained in the simplest supergravity GUT

models, assuming that below Q = MGUT, the field content is that of the MSSM.10

An example of the evolution of soft SUSY breaking parameters is shown in

Fig. 9.7. We take m0 = 100 GeV, m1/2 = 200 GeV, A0 = 0, and tan β = 4. The

short dashed lines depict the running of the three gaugino masses from their common

GUT scale value. The value of M3 increases, since it has a negative β-function,

while M1 and M2 both decrease. In the mSUGRA model, we thus expect at the

weak scale the ratio of gaugino masses M1 : M2 : M3 ∼ 1 : 2 : ∼ 7, in accord with

the values of the weak scale gauge couplings. Thus, the gluino should be far heavier

than the lighter chargino or the two lighter neutralinos.

The evolution of first generation squark and slepton mass parameters is shown

by the solid lines. The evolution is solely due to their gauge interactions (Yukawa

couplings are neglected) which always increase these masses as we run from the

high scale down to the weak scale. Squark masses evolve the most because of strong

interaction loop contributions to their RGEs. The small intra-generational mass

splitting is due to differences in their electroweak interaction. Sleptons, because they

10 Many phenomenological analyses of weak scale supersymmetry have been performed within this framework.
Its popularity can be judged by the number of acronyms associated with it: MSSM, CMSSM, MGUM, MSGM,
SSC, . . . We will see in Chapter 11 that supergravity does not necessarily lead to high scale universality
as was originally thought. So, rather than associating SUGRA with supergravity, one may instead consider
that mSUGRA stands for minimal supersymmetric model with universality, gauge coupling unification, and
radiative electroweak symmetry breaking.
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Figure 9.7 Evolution of gaugino masses, Higgs boson mass parameters, and first
generation scalar mass parameters, versus energy scale in the mSUGRA model.

For the scalars, we actually plot sign (m2) ·
√

|m2|, so that the negative values on
the dashed Hu curve correspond to negative values of m2

Hu
. We use two-loop RGEs

for this figure.

have just electroweak interactions, evolve much less than squarks, with mẽR
evolving

less than mẽL
because the SU (2) gauge coupling is larger than the hypercharge gauge

coupling. We can see from the RGEs that the sfermion mass evolution depends on

the gaugino masses which, in turn, are all proportional to m1/2. Thus, if m0 � m1/2

most of the mass at the weak scale comes from m0, and the sfermions will be

approximately degenerate and much heavier than the gluino. If, on the other hand,

m1/2 � m0 as in our illustration, radiative corrections to the sfermion masses are

large, and sleptons will be much lighter than the squarks, with the right selectron

being the lightest of the first generation matter scalars. These important features of

the soft SUSY breaking masses of the first two sfermion generations are captured

by the following simple approximations to the soft terms:

m2
q̃ � m2

0 + (5 − 6)m2
1/2, (9.19a)

m2
ẽL

� m2
0 + 0.5m2

1/2, (9.19b)

m2
ẽR

� m2
0 + 0.15m2

1/2, (9.19c)

where D-term contributions given by (8.64) have been neglected for simplicity.

Notice that these relations (together with the relation between M3 and m1/2) imply



9.2 Renormalization group equations 209

that the first two generations of squarks can never be much lighter than the gluino.

The effect of Yukawa coupling contributions to the third generation scalar RGEs

can be seen by the dot-dashed lines for the top squark soft SUSY breaking mass

parameters. Yukawa interactions have an opposite effect compared to gauge inter-

actions: they reduce scalar masses as we run from a high scale down to the weak

scale. Indeed we see that the stop mass parameters are considerably smaller than the

corresponding first generation squark masses. Remember that by SU (2) invariance,

mb̃L
= mt̃L . For the low value of tan β used in Fig. 9.7, the bottom Yukawa coupling

is small, and we expect that mb̃R
� md̃R

> mb̃L
. Even though top scalars have an

additional contribution m2
t (see (8.65a)), generally speaking these will be lighter

than their first and second generation counterparts. In fact, care must be exercised

to ensure that these masses do not become negative, since then charge and color

breaking minima may occur in the scalar potential.

Finally, we note that because Hd and ẽL have the same gauge quantum numbers,

and if bottom quark Yukawa interactions are negligible, the evolution of m2
Hd

is vir-

tually identical to that of m2
ẽL

. The evolution of the Higgs mass parameter m2
Hu

is very

different and particularly noteworthy: it begins at the common GUT scale value but,

because it has large top quark Yukawa interactions, it evolves to negative values. At

first sight, something appears terribly wrong! However, as we will now see, this turns

out to be just what is needed for an appropriate breakdown of electroweak symmetry.

Exercise Notice from Fig. 9.7 that the Yukawa coupling contributions to the evo-
lution of m2

t̃R
, which reduce it relative to m2

ũR
, are larger than the corresponding

contributions that reduce m2
t̃L

. This is because the correction to m2
t̃R

can come from
either a tL or a bL (or the corresponding squarks) and, respectively, the neutral or
the charged component of the higgsino (scalar) component of ĥu, while the cor-
rection to mt̃L can come only from the singlet top quark (or squark) in the loop.
Since all the vertices are determined by just the superpotential top quark Yukawa
coupling, we expect that the Yukawa coupling correction to m2

t̃R
is twice that of m2

t̃L
.

Identify this factor of two in the RGEs. Now consider the diagrams that give rise to
Yukawa coupling corrections to m2

Hu
. Relative to the correction to the stop masses,

how big do you expect this correction to be? Identify the corresponding term in the
RGE, and check whether your answer is consistent with this.

9.2.3 Radiative breaking of electroweak symmetry

In the SM, electroweak symmetry is spontaneously broken if a scalar field that

transforms non-trivially under SU (2)L × U (1)Y acquires a VEV. The situation is

no different in the MSSM. If the scalar field potential, evaluated at the weak scale,
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has a minimum for non-zero field values of h0
u or h0

d with zero values for other

fields, we would have the desired symmetry breaking pattern. In the MSSM with

arbitrary values for each of the soft SUSY breaking parameters this can be trivially

arranged by choosing m2
Hu

or m2
Hd

to be negative. Of course, the conditions (8.17a)

requiring that the origin be a maximum of the potential, and (8.17b) requiring the

potential to be bounded from below need to be satisfied. The remarkable thing that

we have just seen is that even with universal mass parameters at the high scale,
renormalization group evolution can cause m2

Hu
to turn negative at the weak scale,

leaving squark and slepton squared masses to be positive. We stress that although

the scalar potential with parameters renormalized at a scale Q � Mweak has only

positive squared masses, this does not imply that its true minimum is at the origin

in field space. Radiative corrections can be substantial because of the large value of

log(Q/Mweak), and can qualitatively change this picture. Evolving the parameters

of this potential to the weak scale sums these large logs, and a more reliable picture

of the true potential is obtained.11 We will, therefore, refer to this mechanism,

wherein m2
Hu

turns negative due to its renormalization group evolution, as radiative

electroweak symmetry breaking (REWSB).

In Chapter 8 we minimized the tree-level scalar potential of the MSSM, and found

two conditions necessary for spontaneous breaking of electroweak symmetry:

B = (m2
Hu

+ m2
Hd

+ 2μ2) sin 2β

2μ
and (9.20a)

μ2 = m2
Hd

− m2
Hu

tan2 β

(tan2 β − 1)
− M2

Z

2
. (9.20b)

The first of these can be used to determine B (or equivalently B0) in terms of tan β,

μ, and the Higgs mass parameters. Since B never enters the RGEs for the other

parameters, its value is not needed for computing their evolution. The second of

these minimization conditions determines the value of μ2 in terms of the Higgs

mass parameters and tan β, possibly at the expense of some fine-tuning.

REWSB, which was discovered in the early 1980s,12 occurs over a wide range of

model parameters if the top quark Yukawa coupling is large enough, corresponding

to mt ∼ 100 − 200 GeV. The subsequent discovery of the top quark with mass

mt � 175 GeV lends credence to this mechanism. As mentioned above there are,

however, regions of parameter space where charge- and color-breaking minima

11 In practice, one usually also includes higher loop calculations and computes the minima using the effective
potential as discussed in the previous chapter.

12 L. E. Ibañez and G. G. Ross, Phys. Lett. B110, 215 (1982); K. Inoue et al., Prog. Theor. Phys. 68, 927 (1982) and
71, 413 (1984); L. Ibañez, Phys. Lett. B118, 73 (1982); J. Ellis, J. Hagelin, D. Nanopoulos and M. Tamvakis,
Phys. Lett. B125, 275 (1983); L. Alvarez-Gaumé, J. Polchinski and M. Wise, Nucl. Phys. B221, 495 (1983).
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may occur. Thus although it is fair to say that REWSB links electroweak symmetry

breaking with the breakdown of supersymmetry at some higher scale, it is premature

to conclude that the pattern of electroweak symmetry breaking is explained.

Since REWSB is driven by the top quark Yukawa coupling, we have m2
Hu

< m2
Hd

(assuming that we start with universal masses), which implies tan β > 1. Fur-

thermore, in order for REWSB to be driven by the top quark Yukawa cou-

pling, tan β has to be bounded above. This follows because ft > fb implies that

mt/mb = ftvu/ fbvd > tan β, where the Yukawa couplings, and hence the quark

mass parameters, are to be evaluated at the weak scale. The bound tan β <∼ 60 thus

obtained should be regarded as qualitative because it would be modified by radiative

corrections.

The evolution of the soft SUSY breaking masses from MGUT to the weak scale

now allows us to determine the weak scale values of the soft SUSY breaking masses

that are needed to determine all the sparticle masses as well as their couplings in

terms of just a handful of parameters. Note that the minimization condition for

REWSB specifies the value of μ2, but not the sign of μ. It is convenient to eliminate

the high scale parameter B0 in favor of tan β. The mSUGRA model is completely

specified by the parameter set:

m0, m1/2, A0, tan β, sign(μ). (9.21)

A selection of sparticle masses for the same mSUGRA model parameters used in

Fig. 9.7 is shown in Table 9.1.

9.2.4 Naturalness constraint on superparticle masses

It is often stated loosely that sparticles ought to have masses typically below∼ 1 TeV

so that the hierarchy between the SUSY breaking and weak scales can be maintained

without resorting to too much fine tuning. But how much fine tuning is too much

fine tuning?

To gain a better handle on how heavy sparticles can be, many groups have tried

to quantify a measure of fine tuning, in order to decide which values of SUSY

model parameters are natural. First, one has to decide on such a measure, and then

one must decide how much fine tuning is too much. Clearly, there is a good deal of

subjectivity built into constraints from naturalness. We should also keep in mind

that it is possible that what appears to be fine tuning from the vantage point of the

low energy theory could be the result of particular relationships in the (unknown)

high energy theory. Thus, while we would regard the fine tuning required by the

SM as indicative of new physics, we would not necessarily be alarmed by what

appears to be fine tuning at, for instance, a part per mille level.
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Table 9.1 Weak scale sparticle masses and parameters (GeV)
for the mSUGRA model with m0 = 100 GeV, m1/2 = 200 GeV,

A0 = 0, tan β = 4, and μ > 0. These results were obtained
from the computer program ISAJET version 7.69.

parameter value (GeV)

mg̃ 500.5
mũL

463.4
md̃R

451.7
mt̃1 324.7
mb̃1

426.9
m �̃L

176.0
m �̃R

131.0
m τ̃1

129.6
mW̃1

135.3
m Z̃2

136.5
m Z̃1

72.8
mh 104.4
m A 343.1
μ 292.5

A particularly simple measure of fine tuning can be extracted from the sec-

ond of the electroweak symmetry breaking relations (9.20b) listed in the previous

subsection. Naively, if |μ| � MZ , the term involving the Higgs mass parameters

must also be large so that these two terms may combine and largely cancel to give

MZ . It is possible to argue that models with |μ| � MZ would be fine tuned, and

the weak scale value of |μ| itself can be used as a measure of fine tuning. This

naive example may be too simplistic, and many authors would also argue that many

parameter choices leading to |μ| ∼ MZ are also fine tuned.

As an example of a more sophisticated measure of fine tuning, we can discuss

naturalness constraints in the mSUGRA model. The fundamental parameters asso-

ciated with SUSY breaking are,

ai = {
m0, m1/2, A0, B0, and μ0

}
. (9.22)

Quantities associated with the weak scale can be calculated in terms of these fun-

damental parameters. We have included the GUT scale superpotential μ parameter

in this list since we will regard the value of MZ (which is given by the second of the

electroweak symmetry breaking conditions (9.20b) mentioned above) as an output.

Of course, only certain sets of GUT scale input parameters {ai } will give the correct

value of MZ . For variations of the input parameters ai → ai + �ai , we can derive
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a corresponding value of M2
Z + �M2

Z . The fine-tuning requirement is that,

�M2
Z

M2
Z

< ci
�ai

ai
,

where ci is the fine-tuning parameter.13 It is up to the reader to decide what consti-

tutes an acceptable choice of ci . Typical values quoted in the literature range from

ci = 10–100. Thus, if a tiny change in input parameters ai leads to a big change in

the derived value of M2
Z (or some other weak scale observable), then the model is

said to be fine-tuned. In terms of derivatives, the fine-tuning requirement is written

as
∣
∣
∣
∣

∂ log M2
Z

∂ log ai

∣
∣
∣
∣ < ci . (9.23)

As an example, we show in Fig. 9.8 the m0 vs. m1/2 plane of the mSUGRA model,

taking A0 = 0, tan β = 10, μ > 0, and mt = 175 GeV. The gray region in the upper

left is excluded if we require that the lightest SUSY particle be electrically neutral

(to fulfill cosmological constraints). The gray regions on the far right are excluded

by a lack of appropriate REWSB (using the one-loop corrected scalar potential).

The dark gray region for low m1/2 is excluded in that the lightest chargino mass

falls below limits from LEP2 searches: mW̃1
< 100 GeV. For reference, we plot

also contours of mg̃ = 1000 and 2000 GeV, and mũL
= 1000 and 2000 GeV. To

illustrate how subjective fine-tuning considerations can be, we show examples of

fine-tuning bounds obtained using various criteria for fine-tuning limits from the

literature. First, we show a contour of the weak scale value of μ = 500 GeV. Taking

the value of μ as a fine-tuning parameter generally restricts the parameter plane

to values of m1/2 below about 400 GeV, unless m0 is very large, in which case

very large values of m1/2 can yield “natural” models. The trajectory of constant

μ is known as the hyperbolic branch (HB), and all parameter space points with

low |μ| may be regarded as natural.14 A second contour (labeled AC) was obtained

by Anderson and Castaño.15 These authors include the top Yukawa coupling ft

in the list of fundamental parameters, and use a weighted average of fine-tuning

parameters to obtain their contour. Their result clearly prefers low values of both

m0 and m1/2 to obtain natural models. Finally, a fine-tuning contour calculated

by Feng, Matchev and Moroi neglects the top Yukawa coupling on the basis that

it is associated with the flavor sector, and not the SUSY breaking sector.16 Their

contour (labeled FMM) excludes large m1/2 values, but does admit solutions with

13 R. Barbieri and G. Guidice, Nucl. Phys. B306, 63 (1988).
14 See K. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D58, 096004 (1998).
15 G. Anderson and D. Castaño, Phys. Rev. D53, 2403 (1996).
16 J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D61, 075005 (2000).
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Figure 9.8 A plot of mSUGRA parameter space in the m0 vs. m1/2 plane, for
A0 = 0, tan β = 10, and μ > 0. We show contours of gluino and squark mass
for 1000 and 2000 GeV. We also show sample fine-tuning contours i) μ = 500
GeV, plus contours extracted from ii) Anderson and Castaño (AC), and iii) Feng,
Matchev and Moroi (FMM). The proposed acceptable regions are below the fine-
tuning contours.

large m0. The large m0 solutions have been referred to as focus point supersymmetry

(FP), since (for m1/2 � m0) the value of m2
Hu

evolves to a fixed weak scale value

independent of its GUT scale value, i.e. it is focussed in its RG trajectory. The

focus point solutions offer the possibility of solving, at least partially, the SUSY

flavor and CP problems, since in this case all the squark and slepton masses can be

beyond 1 TeV while “maintaining naturalness”.

9.3 Constraints from b → sγ decay

We have already mentioned that the agreement between the observed rate for the

decay b → sγ and SM expectation yields significant constraints on off-diagonal

squark mass squared matrix elements and a parameters. This should not be
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surprising because, as we saw in the exercise at the end of Section 6.6, the radiative

decay of the b quark is a probe of the supersymmetry breaking sector.17 Even in the

mSUGRA model with universal GUT scalar masses and a universal A0-parameter,

significant constraints are obtained. Within this framework flavor violation, which

is the other essential ingredient for this decay to occur, occurs only via Yukawa

couplings. The flavor-violating matrix elements can then be calculated in terms

of known quark masses and Kobayashi–Maskawa (KM) matrix elements (see ex-

ercise below). The point is that we can always go to a quark basis (at the weak

scale) where the fields uR, dR, and dL are the same as in the mass basis, while

the field uL is related to the corresponding field in the mass basis by the KM ma-

trix. The Yukawa coupling matrices are known in this basis, and can be evolved

to the high scale where the mSUGRA boundary conditions are specified. At this

scale, if squarks with the same gauge quantum numbers have a common mass (the

mSUGRA framework, where all squarks have a universal mass is a special case),

we do not need to know the basis of squarks since all bases are equivalent. The

mSUGRA boundary conditions, together with the known Yukawa coupling ma-

trices thus specify the framework completely, and flavor-violating effects can be

unambiguously computed.

Exercise Unlike in the Standard Model, flavor physics is not always specified by
just the Kobayashi–Maskawa matrix. A general two doublet Higgs model serves
to illustrate this point. Let two SU (2) doublets (H+, H 0) and (K +, K 0) couple
the quark doublet to dR via “Yukawa coupling matrices” fH and fK, respectively
while the conjugate doublets (H 0∗, −H−) and (K 0∗, −K −) respectively couple the
quark doublet to uR with Yukawa coupling matrices f̃H and f̃K. Show that (1) the
couplings of H 0 and K 0 as well as those of H+ and K + to the quarks depend on
all four matrices VL(u), VL(d), VR(u), and VR(d) that connect the weak current
and mass bases for uL, dL, uR, and dR type quarks (the Kobayashi–Maskawa
matrix, which is determined by the couplings of quarks to W ± bosons, is just
VL(u)†VL(d)), and (2) the interactions of H 0 and K 0 do not conserve flavor. Verify
that for the “MSSM-like case” where fK and f̃H vanish, the charged boson couplings
are completely determined by the KM matrix and quark masses and, further, that
the flavor-violating couplings of H 0 and K 0 vanish.

For the case of the MSSM, some couplings involving squarks may also depend
on matrices that diagonalize the squarks. It is, therefore, noteworthy that in models

17 In practice, it is the inclusive decay B → Xsγ that is bounded by the experiment. The transition magnetic
dipole moment operator that we argued to be absent in the SUSY limit is the operator of lowest dimensionality
that could have a contribution to this decay. In principle, higher dimensional operators involving additional
gluons may contribute to the inclusive decay of B mesons through non-renormalizable terms in the Kähler
potential, but these contributions would be extremely suppressed, and quite likely smaller than the theoretical
uncertainty in the calculation.
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where squarks with the same quantum numbers have a common mass at some high
scale, flavor physics effects are fixed by just the KM matrix and quark masses.

In the SM the decay b → sγ proceeds at lowest order via a tW − loop. In super-

symmetric models, there are additional contributions from the t H− loop, as well as

sparticle loops containing ũi W̃ j , d̃ i g̃, and d̃ i Z̃ j . Since SM as well as SUSY contri-

butions both occur at the one-loop level, it is reasonable to expect that if sparticles

are at the weak scale, SUSY contributions to the decay amplitude will be compara-

ble to the SM contribution, so that the experimental determination of the branching

ratio will provide strong constraints on the parameters of supersymmetric models.

The b → sγ decay rate is usually calculated by evaluating lowest order matrix

elements of effective theory operators at a scale Q ∼ mb. The complete calculation

is complicated by the fact that QCD corrections are large. These are included via

renormalization group resummation of leading logs (LL) which arise due to a dis-

parity between the scale at which new physics enters the b → sγ loop corrections

(usually taken to be Q ∼ MW ), and the scale at which the b → sγ decay rate is

evaluated (Q ∼ mb). The resummation is most easily performed within the frame-

work of effective field theories. Above the scale Q = MW (all scales Q ∼ MW are

equivalent in LL perturbation theory), calculations are performed within the full

theory. Below Q = MW , particles heavier than MW are integrated out, leading to

an effective Hamiltonian,

Heff = −4G F√
2

VtbV ∗
ts

8∑

i=1

Ci (Q)Oi (Q). (9.24)

Matching the two theories at Q = MW yields the values of the so-called Wilson

coefficients Ci (Q = MW ). The Oi in Eq. (9.24) are a complete set of operators that

mix via QCD; their form can be found in the literature.18 The logs are summed by

solving the renormalization group equations (RGEs) for the Wilson coefficients

Q
d

dQ
Ci (Q) = γ j i C j (Q), (9.25)

where γ is the 8 × 8 anomalous dimension matrix. The matrix elements of the

operators Oi are finally calculated at a scale Q ∼ mb and multiplied by the ap-

propriately evolved Wilson coefficients to obtain the decay amplitude. The LL

QCD corrections just described yield enhancements in the b → sγ decay rate of

factors of 2–5. Variation of the scale choice between mb/2 < Q < 2mb yields

approximately a 25% uncertainty in the theoretical calculation. This is reduced

to about 9% by working at next-to-leading order. We also note that the SUSY

18 See e.g., G. Buchalla, A. Buras and M. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
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Figure 9.9 Contributions to the Wilson coefficient C7(MW ) versus tan β from
various loop contributions. We take m0 = 100 GeV, m1/2 = 200 GeV, A0 = 0,
and μ > 0. The dotted line shows the total contribution from sparticle loops.
Reprinted with permission from H. Baer, M. Brhlik, D. Castaño and X. Tata, Phys.
Rev. D58, 015007 (1998), copyright (1998) by the American Physical Society.

calculation has larger uncertainty, especially if tan β is large. Our discussion here

is to give the reader a flavor of the ingredients that go into such a calculation.

These calculations are sophisticated, and the reader who is actually interested in

performing the calculation is well advised to consult the original literature.

The most important of the above operators is the magnetic operator O7 ∼
sLσμνbR Fμν . In Fig. 9.9, we show the magnitude of the Wilson coefficient C7(MW )

versus tan β from various contributions involving tW , t H−, and W̃i q̃ j loops for one

choice of mSUGRA parameters. The total contribution from gluino and neutralino

loops is negligible. We see from the figure that large cancellations are possible

between the various contributions.

In Fig. 9.10, we show the b → sγ branching fraction contours in the m0 vs. m1/2

plane, for tan β = 10, A0 = 0, and a) μ < 0 and b) μ > 0. Data from the CLEO,

BELLE, and ALEPH experiments, roughly speaking, restrict 2 × 10−4 <∼ B(b →
sγ ) <∼ 5 × 10−4, if we conservatively factor in theoretical uncertainties. Clearly,

the mSUGRA model with μ < 0 is only consistent with data for large values of

m1/2 > 300 GeV. For μ > 0, virtually the entire plane is allowed. Qualitatively

similar results are obtained for even larger values of tan β.

9.4 Bs → μ+μ− decay

Within the framework of the Minimal Supersymmetric Standard Model (MSSM),

FCNC conservation is ensured (at tree level) by requiring that the matter multiplets
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Figure 9.10 Contours of constant branching fraction B(b → sγ ) in the m0 vs.
m1/2 plane for tan β = 10, A0 = 0. The number labeling each contour must be

multiplied by 10−4 to obtain the branching fraction. The region labeled EX is
excluded by the constraint mW̃1

> 100 GeV while the region marked TH is not
allowed for theoretical reasons.

with weak isospin T3 = 1/2 couple only to the Higgs superfield Ĥu , while those

with T3 = −1/2 couple just to the Higgs superfield Ĥd .

At the one-loop level, however, a coupling of Ĥu to down-type fermions is in-

duced. This induced coupling leads to a new contribution, proportional to vu , to

the down-type fermion mass matrix. Although this contribution is suppressed by

a loop factor relative to the tree-level contribution, this suppression is (partially)

compensated if tan β is sufficiently large. As a result, down-type Yukawa interac-

tions and down-type quark mass matrices are no longer diagonalized by the same

transformation, and flavor-violating couplings of neutral Higgs scalars h, H , and A
emerge. In the limit of large m A, the Higgs sector becomes equivalent to the Stan-

dard Model (SM) Higgs sector with a light Higgs boson h � HSM, and the effects

of flavor violation decouple from the low energy theory . The interesting feature

is that the flavor-violating couplings of h, H , and A do not decouple for large
superparticle mass parameters: being dimensionless, these couplings depend only

on ratios of these mass parameters, and so remain finite even for very large values

of SUSY mass parameters.19 This flavor-violating neutral Higgs boson coupling

results in a potentially observable branching fraction for the decay Bs → μ+μ−

19 These not only include sparticle masses, but also the superpotential parameter μ and also the soft SUSY
breaking A-parameters.
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Figure 9.11 Contours of B(Bs → μ+μ−) = 10−7 (solid) and B(Bd → τ+τ−) =
10−6 (dashed) in the m0 vs. m1/2 plane of the mSUGRA model for several values of
tan β and (a) μ > 0, and (b) μ < 0. In frame (a), the contours end where Z̃1 is no
longer the LSP. The region where this occurs for tan β = 35 is shaded. Reprinted
with permission from J. K. Mizukoshi, X. Tata, and Y. Wang, Phys. Rev D66,
115003 (2002), copyright (2002) by the American Physical Society.

mediated by the neutral Higgs bosons, h, H , and A, and possibly also the decay

Bd → τ+τ−.20 The former might be probed at the Tevatron (the CDF experiment

has already limited it to be < 5.8 × 10−7), while the latter might be detectable at

B-factories. Within the MSSM, this branching fraction – which depends sensitively

on tan β and m A and less sensitively on other sparticle masses – can be more than

1000 times its SM value.

In Fig. 9.11 we illustrate the branching fraction for these Higgs-mediated leptonic

decays of Bs and Bd mesons within the mSUGRA framework for a) μ > 0, and

b) μ < 0. The solid lines show contours of B(Bs → μ+μ−) = 10−7, a level that

Tevatron experiments should probe with an integrated luminosity ∼ 2 fb−1, for the

values of tan β shown on the contours. The dashed lines are contours of B(Bd →
τ+τ−) = 10−6. The contours in frame a) end where Z̃1 is no longer the LSP. If

20 See, e.g., K. S. Babu and C. Kolda, Phys. Rev. Lett. 84, 228 (2000).
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tan β is sufficiently large, Tevatron experiments will probe SUSY via Bs decays

for parameter ranges where signals from direct production studied in Chapter 15

are predicted to be below the detectable level. The sensitivity of B-factories to

B(Bd → τ+τ−) is not known.

9.5 Muon anomalous magnetic moment

Historically, the anomalous magnetic moment of the electron has been a harbinger

of new physics, from the advent of the Dirac theory of the electron to the formu-

lation of QED, and up to the present day. For contemporary new physics searches,

the anomalous magnetic moment of the muon (rather than the better measured

moment of the electron) turns out to have greater importance because for many ex-

tensions of the SM the new physics contributions to the lepton magnetic moment are

proportional to m2
�. The E821 experiment at Brookhaven National Laboratory has

measured aμ = (g − 2)μ/2 to eight significant figures, with a precision better than

a part per million.21 In the SM, QED corrections to the photon–muon–muon vertex

have been calculated to four loops (with an estimate for the fifth-loop contribution,

showing that its magnitude is small for the purpose of our analysis). Electroweak

corrections, which are significant, have also been calculated. The biggest theoretical

uncertainty comes from hadronic corrections. Although there is some controversy

about the magnitude of the theoretical uncertainty, it is comparable to or better than

the experimental uncertainty. If weak scale SUSY exists, then there will also be

SUSY contributions to aμ via the W̃i − ν̃μ and Z̃i − μ̃ j loops shown in Fig. 9.12.

The SUSY contribution gives

�aSUSY
μ ∝ m2

μμMi tan β

M4
SUSY

, (9.26)

where Mi (i = 1, 2) is a gaugino mass and MSUSY is a characteristic sparticle mass

circulating in the loop. The complete one-loop result is given, for instance, by

Moroi.22 We see that �aSUSY
μ grows with tan β and, for models with a positive

gaugino mass, has the same sign as the superpotential Higgs mass term μ. Depend-

ing on SUSY parameters, its magnitude may be comparable to that of the weak

contribution, so that the sensitivity of the E821 experiment is at a level where it can

probe these SUSY contributions.

21 See e.g. G. W. Bennett et al. (Muon g − 2 Collaboration), hep-ex/0401008.
22 T. Moroi, Phys. Rev. D53, 6565 (1996). That the SUSY contributions to aμ cancel the corresponding SM

contributions in the SUSY limit of the MSSM – this limit is discussed in the exercise at the end of Section 8.3.6 –
in accord with the general result demonstrated in the exercise at the end of Section 6.6 has been explicitly
demonstrated at the one-loop level by T. Ibrahim and P. Nath, Phys. Rev. D61, 095008 (2000).
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Figure 9.12 Supersymmetric contributions to g − 2 of the muon.

Figure 9.13 Contours of aμ × 1010 in the mSUGRA model for μ > 0. The Fer-
milab Tevatron (dashes) and CERN LHC (dot-dashed) reach contours are also
shown.

Contours of �aSUSY
μ × 1010 are shown in Fig. 9.13 for three tan β values in the

mSUGRA model, and μ > 0. Regions of parameter space where �aSUSY
μ

>∼ 60 ×
10−10 and �aSUSY

μ < 0 are currently disfavored. As the experimental error reduces,

and theoretical calculations improve, the results will more definitively point to

preferred and excluded regions of SUSY model parameter space.

9.6 Cosmological implications

Since R-parity is assumed to be conserved in the MSSM, the lightest SUSY particle

is absolutely stable. This has profound implications for cosmology and, in particular,

may imply that relic LSPs left over from the Big Bang could account for the bulk

of the matter in the Universe. Moreover, the requirement that the relic density
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of LSPs should be in accord with astrophysical measurements of the dark matter

density of the Universe leads to important constraints on supersymmetric model

parameters.

The central idea behind relic density calculations is that in the very early Uni-

verse, when temperatures were very hot (i.e. T � mLSP, where the Boltzmann

constant k = 1), neutralinos were being created and annihilated, but that they were

in a state of thermal equilibrium with the cosmic soup. As the Universe expanded,

and cooled, its temperature dropped below the level where LSPs could be pair-

produced, although they could still annihilate one with another. Ultimately, the

expansion rate of the Universe outstripped the LSP annihilation rate, and (except

for dilution due to the expansion of the Universe) the relic density of LSPs was

locked in. Thus, if the MSSM and the basic Big Bang picture are both correct,

a gas of LSPs should fill all space, and could account for much of the missing

matter of the Universe. Such a scenario immediately rules out almost all cases of

having a colored or electrically charged LSP, since otherwise such relics would

have become bound to nuclei and atoms, and would have been detected in search

experiments for anomalous nuclei and atoms: searches for anomalous isotopes are

sensitive to an isotope abundance ranging between 10−12–10−29 depending on the

isotope,23 to be compared with a theoretical expectation of 10−6–10−10 for an LSP

mass of 100–1000 GeV.24 Within the MSSM framework, this leaves a sneutrino or

the lightest neutralino as candidates for the LSP.

Many experiments have searched for such weakly interacting massive parti-

cles (WIMPs) as relic dark matter from the Big Bang. The basic idea is to detect

collisions of WIMPs with nuclei of detector material. If the WIMP is the light-

est neutralino with a mass ∼ 100 GeV, then a typical neutralino-nucleus elastic

scattering will involve energies of a few keV. To detect such tiny energy deposi-

tions, detector materials are frequently cooled to ultra-low temperatures, so that

phonons, ionization or superconducting phase transitions can be detected. If in-

stead the WIMP is a sneutrino heavier than about 25 GeV, then it should have

been seen already by such direct dark matter detection experiments. Sneutrinos

lighter than ∼ 25 GeV are excluded by measurements of the properties of the Z
boson at LEP (and also by the non-observation of energetic solar neutrinos in the

Kamiokande detector). Thus, cosmological considerations point to the lightest neu-

tralino, Z̃1, as being the LSP for the MSSM. It is satisfying that in most model cal-

culations (see Chapter 11) involving the MSSM, the lightest neutralino is in fact the

LSP.

23 See e.g. T. Hemmick et al., Phys. Rev. D41, 2074 (1990) and references therein.
24 S. Wolfram, Phys. Lett. B82, 65 (1979); C. B. Dover, T. Gaisser and G. Steigman, Phys. Rev. Lett. 42, 1117

(1979).
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Another possibility is that the LSP is the gravitino.25 In this case, gravitinos

could account for the cold dark matter (CDM) in the Universe, but direct or indirect

gravitino detection would likely be impossible.

9.6.1 Relic density of neutralinos

The total matter/energy density � = ρ/ρc of the Universe is usually written as a

fraction in terms of the critical closure density ρc = 3H 2
0 /8πGN � 1.88 × 10−29h2

g cm−3. Here, H0 � 71 km s−1 Mpc−1 is the value of the Hubble parameter today,

and GN is Newton’s gravitational constant. H0 is frequently parametrized as H0 ≡
100h km s−1 Mpc−1, where h is a dimensionless scaling constant.

The past decade has witnessed increasingly precise measurements of the

anisotropies of the cosmic microwave background (CMB) radiation left over from

the Big Bang. Recent results come from the Wilkinson Microwave Anisotropy

Probe (WMAP) satellite measurements. Astonishingly, an analysis of their results

pinpoints the age of the Universe to be 13.7 ± 0.2 Gyrs.26 In addition, the geom-

etry of the Universe is flat, consistent with simple inflationary models. The dark

energy content of the Universe is found to be about 73%, while the matter content is

about 27%. A best fit of WMAP and other data sets to cosmological parameters in

the �CDM cosmological model yields a determination of baryonic matter density

�bh2 = 0.0224 ± 0.0009, which is in excellent agreement with estimates from Big

Bang nucleosynthesis, a total matter density of �mh2 = 0.135+0.008
−0.009, and a very low

density of hot dark matter (relic neutrinos). From these values the cold dark matter

density of �CDMh2 = 0.1126+0.0161
−0.0181 (at 2σ ) can be inferred.

The discrepancy between baryonic and total matter density may come from

CDM particles (that is, non-relativistic matter that does not radiate light), while the

remaining energy density may come from a non-zero cosmological constant, as was

first suggested by measurements of type Ia supernovae at the highest red shifts, and

then strikingly confirmed by the CMB data. We will see that the lightest neutralino

of supersymmetry can be an excellent candidate for CDM in the Universe.

The relic density of neutralinos predicted by the MSSM can be found by solving

the Boltzmann equation as formulated for a Friedmann–Robertson–Walker (FRW)

Universe:

dn

dt
= −3Hn − 〈σvrel〉(n2 − n2

0). (9.27)

Here, n is the number density of neutralinos, t is time, n0 is the thermal equilibrium

number density, and 〈σvrel〉 is the thermally averaged neutralino annihilation cross

25 For a discussion of this possibility, see J. Feng, S. Su and F. Takayama, hep-ph/0404231, and references therein.
26 See e.g. D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 148, 175 (2003).
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section times relative velocity. (Remember that except for s-wave scattering, σvrel

depends on vrel, so that the thermal average depends on the temperature.) The first

term on the right represents a diminution of number density as the Universe expands,

while the second term represents the change due to annihilation of neutralinos into

SM particles.

Using conservation of entropy and the kinematics of a FRW Universe, it is

convenient to reparametrize the Boltzmann equation in terms of temperature rather

than time. In the radiation dominated era, the entropy density ∝ T 3, so that the

size of the Universe R ∝ 1/T , and t � 1/(2H ) =
√

45
16π3g∗GN

1
T 2 , where g∗ ∼ 80

counts the total number of relativistic degrees of freedom.27 Defining f = n/T 3

and rescaling the temperature in terms of particle mass, x = T/m, the Boltzmann

equation can be recast in the form

d f

dx
= m

√

45

4π3g∗GN

〈σvrel〉( f 2 − f 2
0 ). (9.28)

The Boltzmann equation can be solved in several steps.

1. At very early times the last term in (9.27) dominates, and n is close to its equi-

librium value, so that f � f0. For non-relativistic particles (including their rest

mass), E � m + p2/2m, and the equilibrium number density is given by

f0(x) = n0

T 3
= 1

T 3

g

(2π )3

∫

d3 pe−E/T

= 1

T 3

4πg

(2π )3
e−m/T

∫ ∞

0

p2dpe−p2/2mT

= g

2

√
1

2π3
(
m

T
)

3
2 e− m

T

= g

2

√
1

2π3
x− 3

2 e− 1
x , (9.29)

where g = 2 is the number of spin degrees of freedom for a neutralino.

2. As the Universe cools to temperatures below T = m, the number density of neu-

tralinos falls exponentially. However, if this would continue, neutralinos would

no longer be able to annihilate efficiently, and the first term on the right-hand

side of the Boltzmann equation would begin to dominate. In this regime, we

would have

1

n

dn

dt
= −3

1

R

dR

dt
,

27 E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley (1990).



9.6 Cosmological implications 225

so that n ∝ 1/R3: i.e. the number density of neutralinos would reduce only due

to the expansion of the Universe, and no longer drop exponentially. In other

words, the number of neutralinos would be much larger than expected from

thermal equilibrium. This is referred to as freeze out. The temperature at which

this occurs may be estimated by using the equilibrium f on the left-hand side

of (9.28) and setting f 2 − f 2
0 � f 2

0 on its right-hand side. This then gives the

freeze out temperature,

1/xF = log

[

m

2π3

√

45

2g∗GN

〈σvrel〉√xF

]

. (9.30)

This equation can be solved iteratively, and typically yields TF � m/20.

3. With the relic density locked in at a value much larger than its value in thermal

equilibrium, f 2 � f 2
0 , we can integrate the Boltzmann equation to obtain the

relic density today as,

n(T0) = 1

m

(
T0

Tγ

)3

(Tγ )3

√
4π3g∗GN

45

[∫ xF

0

〈σvrel〉dx

]−1

, (9.31)

where Tγ = 2.75 K is today’s cosmic microwave background temperature. We

see that the relic number density ∝ T 3 showing that it is indeed dropping only

due to the expansion of the Universe as discussed above. The reason for writing

the relic density in this form is that we do not know the neutralino temperature

T0: but for the fact that photons are reheated as species decouple, these two

temperatures would be the same. Since the reheating process is isentropic, and

s = gT 3, (Tγ /T0)3 can be obtained from the ratio of the number of degrees of

freedom at freeze out to the effective number of degrees of freedom today and

is approximately equal to 19.4.

The neutralino relic density can be recast in the form

�Z̃1
h2 = ρZ̃1

(T0)

8.1 × 10−47 GeV4
, (9.32)

with ρZ̃1
= mn(T0) given by,

ρZ̃1
(T0) � 1.66

MPl

(
T0

Tγ

)3

T 3
γ

√
g∗

1
∫ XF

0
〈σvrel〉dx

. (9.33)

Central to the calculation is the evaluation of the thermally averaged neutralino anni-

hilation cross section times velocity. This has been simplified to a one-dimensional
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integral by Gondolo and Gelmini:28

〈σvrel〉 =
∫

σvrele
−E1/T e−E2/T d3 p1d3 p2

∫
e−E1/T e−E2/T d3 p1d3 p2

= 1

4x K 2
2 ( 1

x )

∫ ∞

2

daσ (a)a2(a2 − 4)K1(
a

4
), (9.34)

where a = √
s/m Z̃1

and Ki are modified Bessel functions of order i . Evaluation

of the relic density thus requires the knowledge of all neutralino annihilation cross

sections Z̃1 Z̃1 → f1 f2, where f1 and f2 are SM particles. How to compute cross

sections, starting with the interactions derived in the last chapter, will be discussed

in Chapter 12.

If there are other sparticles with mass close to the LSP mass, these will also

be present in the thermal bath right up to the time that the LSP decouples. In this

case, it is necessary to take into account SUSY processes involving annihilation

of pairs of these sparticles as well as co-annihilation of these sparticles and the

LSP to accurately obtain the neutralino relic density. Although the number density

of the heavier sparticles is suppressed by the Boltzmann factor exp (−m/T ), this

may be compensated for by the fact that the cross sections for co-annihilation or

pair annihilation may be much larger than the LSP annihilation cross section. For

instance, if the τ̃1 is close in mass to a gaugino-like Z̃1, its annihilation rate may be

much larger than the annihilation rate for Z̃1 pairs. Alternatively, in models with

small values of μ, m Z̃1
∼ m Z̃2

∼ mW̃1
, and σZ̃1 Z̃2

or σW̃1W̃1
(which are not P-wave

suppressed at threshold) may be much larger than the annihilation cross section for

two Z̃1s.

The WMAP determination �CDMh2 = 0.1126+0.0161
−0.0181 implies an upper limit

�WIMPh2 < 0.129 (2σ ) on the relic density of any stable WIMP. Only if we fur-

ther assume that the cold dark matter consists solely of a single component can

we infer that the relic density of any particular WIMP (in our case �Z̃1
h2) will

saturate the WMAP value. In Fig. 9.14, we show regions of relic density �Z̃1
h2 in

the m0 vs. m1/2 plane for a) tan β = 10 and μ > 0 and (b) tan β = 45 for μ < 0,

where A0 = 0 and mt = 175 GeV. The very dark gray regions on the right and far

left are excluded by either not having a neutralino LSP, or not having the correct

EWSB pattern. The white regions for both tan β values have �Z̃1
h2 > 1, so that

the Universe would be younger than 10 billion years. The appropriately labeled

light gray region is where �Z̃1
h2 ≤ 0.1, and can be regarded as the theoretically

favored region. Four regions of parameter space emerge with �Z̃1
h2 < 0.129, as

determined by the WMAP analysis. In frame (a), we see:

28 P. Gondolo and G. Gelmini, Nucl. Phys. B360, 145 (1991). Formulae including co-annihilation effects can be
found in J. Edsjo and P. Gondolo, Phys. Rev. D56, 1879 (1997).
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Figure 9.14 Predictions for neutralino relic density �Z̃1
h2 in the m0–m1/2 plane

of the mSUGRA model for μ > 0 and two values of tan β. We thank A. Belyaev
for supplying this figure.

� the bulk annihilation region,
� the stau co-annihilation region, and
� the HB/FP region.

In addition, in frame (b), we see

� the A-annihilation funnel.

The bulk annihilation region occurs at low m0 and low m1/2 where neutralino

annihilation mainly occurs via Z̃1 Z̃1 → ��̄, via t-channel slepton exchange. As m0

increases, the slepton masses also increase, suppressing the neutralino annihilation

rate and increasing the relic density. The stau co-annihilation region is the narrow

corridor of favored relic density adjacent to the region where τ̃1 becomes the LSP;

this is where Z̃1τ̃1 and τ̃1 ¯̃τ1 co-annihilation can take place. The HB/FP region

occurs at large m0 along the lack of REWSB excluded region. In this area, since |μ|
is becoming small, the Z̃1 becomes increasingly higgsino-like, and annihilation into

W W , Z Z , and Zh states becomes large. Directly adjacent to the REWSB excluded

region, where μ → 0, co-annihilation of Z̃1 with W̃1 and Z̃2 is also important.

There is also a narrow strip of low relic density at m1/2 ∼ 160 GeV just beyond the

reach of LEP2 where neutralino annihilation via the narrow light Higgs h resonance

occurs: Z̃1 Z̃1 → h → bb̄, τ τ̄ .
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Frame (b) is qualitatively different from frame (a) in that there is a broad corridor

of very low relic density adjacent to the stau co-annihilation region. This occurs

when Z̃1 Z̃1 → A → bb̄, τ τ̄ annihilation is enhanced at large tan β. The annihila-

tion rate is enhanced in part because at large tan β, the value of m A can decrease to

the extent that resonance annihilation can take place. It is also enhanced because the

b- and τ -Yukawa couplings become large. Resonance annihilation also takes place

via the heavy Higgs H , but this is somewhat suppressed relative to annihilation

through A. Moreover, at these very large values of tan β, the Higgs bosons H and

A become very broad (�H,A ∼ 10–50 GeV), so that the resonance annihilation cor-

ridor becomes very broad, and in fact contributes to the annihilation cross section

across the entire plane.

9.6.2 Direct detection of neutralino dark matter

If SUSY dark matter exists, then a non-relativistic gas of LSPs fills all space.

Moreover, the LSPs are gravitationally clumped to form a galactic dark matter

halo. A number of direct WIMP detection experiments have been built or are under

construction to detect this halo. The general idea behind these experiments is that as

the earth moves through this halo, relic WIMPs, be they neutralinos or something

else, will scatter off the nuclei in some material, depositing typically tens of keV of

energy. The energy that is deposited could be detected via: (i) changes in resistance

due to a slight temperature increase (bolometry), (ii) a magnetic flux change due

to a superconducting granule phase transition, (iii) ionization, or (iv) phonons.29

Sneutrinos have a large scattering cross section, and it is the lack of a signal in

such experiments that disfavors the sneutrino as the LSP. Neutralino cross sections

are much smaller, and require higher sensitivity for their detection. Gravitinos are

essentially undetectable. The technical challenge is to build detectors that could pick

out the relatively rare, low energy neutralino scattering events from backgrounds

mainly due to cosmic rays and radioactivity in surrounding matter. Future detectors

are aiming to reach a sensitivity of 0.01–0.001 events kg−1 day−1. It is possible that

the first evidence for SUSY may come from direct neutralino detection rather than

from accelerator experiments, though identifying the SUSY origin of the signal

may require other analyses.

The first step involved in a neutralino–nucleus scattering calculation is to calcu-

late the effective four-particle neutralino–quark and neutralino–gluon interactions.

The neutralino–quark axial vector interaction leads, in the non-relativistic limit, to

a neutralino–nucleon spin-spin interaction, which involves the measured quark spin

content of the nucleon. To obtain the neutralino–nucleus scattering cross section, a

29 For a review, see G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267, 195 (1996).
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Figure 9.15 Regions of scalar neutralino–proton cross sections in the mSUGRA
model, in units of pb. The blank regions are excluded by theoretical and experi-
mental considerations. We thank J. O’Farrill for supplying this figure.

convolution with nuclear spin form factors must be performed. Neutralino–quark

and neutralino–gluon interactions (via loop diagrams) can also resolve into scalar

and tensor components. These interactions can then be converted into an effective

scalar neutralino–nucleon interaction involving quark and gluon parton distribu-

tion functions. The neutralino–nucleus scattering cross section can be obtained by

convoluting with suitable scalar nuclear form factors. The final neutralino detection

rate is obtained by multiplying by the local neutralino relic density (estimates are

obtained from galaxy formation modeling), and appropriate functions involving the

velocity distribution of relic neutralinos and the Earth’s velocity around the Sun

and around the galactic center. When the Earth’s velocity around the Sun is aligned

with the Sun’s galactic velocity, the scattering rate should increase, leading to a

seasonal modulation of these direct detection rates.

In Fig. 9.15, we show regions of scalar neutralino–nucleus cross section in the

mSUGRA model for tan β = 30, A0 = 0, and (a) μ < 0 or (b) μ > 0. The left-hand

side of the plots is excluded because τ̃1 becomes the LSP, and the lower right side of
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the plots is excluded due to a lack of REWSB. In frame a), there are regions at low

m0 and low m1/2 , and also along the HB/FP region, where direct detection cross

sections exceed 10−9 pb. These cross sections are large enough to allow possible

discovery of neutralino dark matter by Stage 3 dark matter detectors, such as Zeplin-

4, Cryoarray, and, XENON. There is also a region in frame (a) at m1/2 ∼ 0.3–

0.8 TeV and m0 ∼ 0.2–1.2 TeV, where there is a destructive interference in the

scattering cross section, and rates plunge below 10−12 pb. In frame (b), for μ > 0,

there are again sufficient rates for direct detection of dark matter at Stage 3 detectors

in the low m0 and low m1/2 region, and also in the HB/FP region. This time, however,

there is no destructive interference in the direct detection cross section.

9.6.3 Indirect detection of neutralinos

We have already noted that if dark matter neutralinos exist, then they should con-

dense to form a galactic halo. In addition, relic neutralinos may collect and become

gravitationally bound to the center of the Galaxy, the center of the Sun and the

center of the Earth. If this happens, then a variety of indirect dark matter detection

opportunities arise.

One possibility is that relic neutralinos may interact with nuclei in the Sun, scatter

to velocities below the escape velocity, and become gravitationally bound in the

solar core. The high density of neutralinos in the solar core may allow a high rate for

neutralino annihilation into SM particles. (Neutralinos may also collect in the core of

the Earth and experience enhanced annihilation, but rates are typically smaller than

from the Sun.) Most SM annihilation products will be immediately absorbed by the

solar material. However, high energy neutrinos arising from neutralino annihilation

may escape the Sun, and be detected by neutrino telescopes such as Antares (a

water Cherenkov device in the Mediterranean) or IceCube (an array of phototubes

deployed in the ice at the South Pole). Muon neutrinos would convert to muons in

the water or ice, and Cherenkov radiation from the muons could be detected. The

rate for neutralino annihilation in the solar core is given by

� = 1

2
C tanh2(

√
C At�), (9.35)

where C is the solar capture rate, A is the total annihilation rate times relative

velocity per unit volume, and t� is the present age of the Sun. For the Sun, the

age of the Solar System exceeds the equilibration time, so � ∼ C/2. Thus, highest

rates for neutrinos from solar core annihilations occur in parameter space regions

where the neutralino–nucleus scattering cross section is largest. From Fig. 9.15,

this would mean the bulk annihilation region or the HB/FP region. It is intriguing

that these regions also have low relic densities in accord with the WMAP analysis.
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Another possibility for indirect neutralino dark matter detection occurs if neu-

tralinos annihilate in the galactic core or halo to SM particles. High energy photons

can be produced as part of the annihilation products, and can be detected by gamma

ray observatories. In this case, the highest rates for gamma ray detection occur in

regions of parameter space where the neutralino annihilation cross section times

velocity is largest: i.e. in the bulk annihilation region, the HB/FP region or in the

A-annihilation funnel. Since the neutralino density is expected to be high around

the galactic core, a directional signal may be found emanating from this source.

Neutralinos may also annihilate via loop diagrams as Z̃1 Z̃1 → γ γ . In this case, the

rate would be quite low, but the signature spectacular, since the gamma ray energy

would be essentially equal to m Z̃1
.

Finally, neutralinos present in the galactic halo may also annihilate, leading to

positrons or antiprotons, which may be detected by cosmic ray detectors. In this

case, the e+s or p̄s would likely be non-directional, since their path of flight would

be bent by galactic magnetic fields. Again, the highest rates are to be expected

where the neutralino annihilation cross section is highest: in the bulk region, the

HB/FP region or the A-annihilation funnel. The rates for detection of the indirect

signals depend on assumptions regarding the density profile of neutralinos in the

galactic core and halo. Clearly, if clumping of dark matter occurs, then rates may

be higher than expected. Alternatively, if the galactic halo neutralino density profile

has been overestimated, then signal rates may be lower than expected.

In principle, the results of direct and indirect dark matter searches may pinpoint

the mechanism responsible for depletion of neutralinos in the early Universe so that

the current value of the relic density is consistent with WMAP results. The bulk

annihilation region at low m0 and low m1/2 may give rise to large signal rates in all
direct and indirect search experiments. However, this region is largely disallowed

due to large contributions to (g − 2)μ, B F(b → sγ ) and a value of mh lower than

bounds from LEP2. The stau co-annihilation region is likely to give no signals

for neutralino direct or indirect detection, while all signals for direct and indirect

neutralino detection may be possible in the HB/FP region. If neutralino annihilation

through the broad A and H resonances is the main sink for neutralinos in the early

Universe, then direct neutralino detection and also detection of neutrinos from

neutralino annihilation in the core of the Sun are unlikely. However, detection of

γ s, e+s, and p̄s from neutralino annihilation in the galactic core and halo may occur

at detectable rates.

9.7 Neutrino masses

Data from solar and atmospheric neutrino experiments provide unambiguous evi-

dence for neutrino oscillations, and strongly suggest an interpretation in terms of
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neutrino masses and mixings. These data are consistent with a hierarchical structure

of neutrino masses, with mνe � mνμ
� mντ

and mντ
∼ 0.05 eV and near-maximal

neutrino mixing, though other mass patterns are certainly possible. Cosmological

data also tell us that neutrinos are all lighter than a few eV.

We have seen, however, that like the SM, the MSSM (which after all is essentally

a direct supersymmetrization of the SM) does not allow for neutrino masses. As in

the SM, one can allow for lepton number conserving Dirac neutrino masses by intro-

ducing neutrino Yukawa couplings into the superpotential. This necessarily entails

the introduction of new right-handed neutrino (RHN) superfields. Since neutrinos

are electrically neutral, it is also possible to introduce lepton number violating Ma-

jorana mass terms for these. Within the SM, the well-known see-saw mechanism

provides an elegant way of obtaining the small values of neutrino masses indicated

by the data;30 in the supersymmetric context, this again requires the introduction

of RHN superfields. Within the supersymmetric framework, Majorana masses for

neutrinos are also obtained if the superpotential includes lepton number and R-

parity violating interactions, without the need for any new RHN superfields. This is

discussed in detail in Chapter 16. Here, we will confine our attention to the simplest

extension of the MSSM that accommodates the incorporation of neutrino masses

via the see-saw mechanism. This, of course, requires us to extend the superfield

content of the MSSM by the RHN superfields, one for each generation.

9.7.1 The MSSM plus right-handed neutrinos

In order to implement the see-saw mechanism for neutrino masses, we are led to

introduce three additional gauge singlet left-chiral scalar superfields N̂ c
i (i = 1–3

denotes the generation),

N̂ c
i = ν̃

†
Ri (x̂) + i

√
2θ̄ψN c

i L(x̂) + iθ̄ θLFN c
i
(x̂),

whose Majorana fermion component destroys left-handed SU (2) singlet anti-

neutrinos, or create the corresponding right-handed neutrinos (νRi ). These singlet

superfields are coupled to other MSSM superfields via the superpotential

f̂ = f̂MSSM + (fν)i jεab L̂a
i Ĥ b

u N̂ c
j + 1

2
MNi N̂ c

i N̂ c
i , (9.36)

30 The see-saw mechanism has an interesting history. To our knowledge, the see-saw formula for the neutrino
mass first appears in H. Fritzsch and P. Minkowski, Phys. Lett. B62, 72 (1976) and P. Minkowski, Phys. Lett.
B67, 421 (1977). The mechanism was independently invented and cast into its modern form by T. Yanagida,
KEK Report No. 79-18 (1979); M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, D. Freedman et
al., Editors, North-Holland, Amsterdam (1980); S. Glashow, in Quarks and Leptons, Cargèse 1979, M. Lévy
et al., Editors, Plenum (1980); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980). For a recent
review of the original idea and its variants, see e.g. R. Mohapatra, hep-ph/9910365.
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where summation over generation indices i and j as well as SU (2) indices a
and b is implied. Notice that the superpotential includes lepton number violating

Majorana mass parameters MNi for these right-handed neutrinos. In (9.36) we

have, without loss of generality, chosen a basis for the RHN superfields so that the

superpotential mass terms are diagonal. Since the mass terms for these gauge singlet

superfields are not forbidden by symmetry considerations (other than ad hoc global

symmetries such as lepton number conservation), these are naturally expected to be

large – ∼MPlanck in the present framework, or comparable to the SO(10) breaking

scale if the model is embedded into an SO(10) GUT, as discussed in Chapter 11.

Indeed, values of MNi well beyond the weak scale and ranging up to MGUT are

favored by SUSY GUT models which seek to explain neutrino oscillation data.

When electroweak symmetry is broken, Dirac neutrino mass entries (m D)i j are

also induced. The resulting 6 × 6 neutrino mass matrix must be diagonalized to

obtain the masses of the physical neutrinos. Assuming that (m D)i j � Mi for all i
and j , we know that there must be three nearly sterile, heavy Majorana neutrinos

with masses very close to Mi . Since these essentially saturate the trace, there must

be three light active Majorana neutrinos with masses that depend on the details of

the Dirac mass matrix, but whose values vary inversely as the Mi . In the limit where

we ignore the mixing of active neutrino flavors (not a good approximation to the

data), the formulae become simple and we have mνi � m2
Di/MNi as the mass of the

active neutrino of generation i . Though the neutrino masses would be different in

the case of mixed neutrinos, we would expect that this simple formula reproduces

their order of magnitude.

The soft SUSY breaking terms must now also be augmented to include

L � LMSSM − ν̃
†
Ri mν̃R

2
i j ν̃R j +

[

(aν)i jεab L̃a
i H̃ b

u ν̃
†
R j + 1

2
bνi j ν̃Ri ν̃R j + h.c.

]

,

(9.37)

where once again a summation over repeated indices is implied. The parameters

(mν̃R
)i j , (aν)i j , and bνi j are assumed to be of order the weak scale. Assuming that

Mi � MW , the right-handed sneutrinos have masses ∼ MNi and, like the νRi ’s,

decouple from the low energy theory. When considering the renormalization group

evolution of couplings and SSB parameters, one must remember that for energy

scales above Q = MNi , the effective theory is the MSSM augmented by the corre-

sponding right-handed neutrinos and sneutrinos, while at scales below the smallest

of the MNi , these are all integrated out, leaving the MSSM as the effective field

theory. Indeed, the RGEs of the MSSM must be augmented to include potentially

significant effects of the new neutrino Yukawa couplings.31

31 The RGEs for the MSSM augmented by a RHN are listed, for instance, in H. Baer et al., JHEP 04, 016 (2000).
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The inclusion of the new neutrino-sector superpotential and soft SUSY breaking

parameters can in general lead to lepton-flavor-violating processes (LFV).32 Even

in the case where one assumes mSUGRA-like conditions at Q = MGUT on the

new parameters, neutrino Yukawa coupling contributions to renormalization group

evolution between MGUT and MNi can induce off-diagonal slepton mass matrix

entries that lead to LFV processes like μ → eγ , μ → e conversion, τ → μγ or

μ− → e+e−e− at potentially observable rates. The stringent experimental limits on

these rare decays strongly constrain the neutrino sector parameters. In the future,

discovery of LFV processes may help pin down the parameters associated with the

right-handed neutrinos. Of course, LFV could also show up in the direct decays

of sparticles, for instance Z̃ j → �+
1 �−

2 Z̃i or �̃1 → �2 Z̃i , if these are produced at

future colliders. We should also mention that renormalization effects from neutrino

Yukawa couplings would cause small inter-generation splitting between the sneu-

trinos, in much the same way that the tau Yukawa interaction splits mẽL
from m τ̃L

.

These splittings may provide a direct test of the see-saw mechanism if sneutrino

masses are precisely measured in the future.

Finally, we mention that the existence of long-lived, heavy right-handed Majo-

rana neutrinos and sneutrinos offers a novel solution of the baryogenesis problem via

leptogenesis, provided that neutrino Yukawa interactions also violate C P conser-

vation. This is possible in the same way that SM quark interactions do not conserve

C P . Assuming that C P is violated, there will be a difference in the rates for the

decay of νR into leptons and antileptons at the one-loop level, so that a leptonic

matter–antimatter asymmetry can be induced at temperature T <∼ MNi , below which

the right-handed neutrinos and sneutrinos fall out of thermal equilibrium. This lep-

ton asymmetry is then converted to a baryon asymmetry at lower temperatures via

sphaleron interactions, as discussed in Chapter 16.33

32 For an overview, see Y. Kuno and Y. Okada, Rev. Mod. Phys. 73, 151 (2001).
33 See M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
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Local supersymmetry

We know that the superpartners of SM particles must acquire SUSY breaking

masses, since otherwise they would have been produced in experiments via their

gauge interactions. This requires an understanding of the mechanism of super-

symmetry breaking. A variety of models for supersymmetry breaking have been

postulated in the literature. The general consensus seems to be that the SM su-

perpartners cannot acquire tree-level masses via spontaneous breaking of global
supersymmetry at the TeV scale: we have seen in Chapter 7 that this leads to phe-

nomenological problems with tree-level sum rules which imply that some sfermions

must be lighter than fermions. Within the framework of the MSSM our ignorance

of the SUSY breaking mechanism is parametrized by 178 soft SUSY breaking

parameters.

The MSSM is, therefore, regarded as a low energy effective theory to be derived

from a theory that incorporates supersymmetry breaking. In the next chapter, we

will discuss various models for the generation of soft SUSY breaking parameters

that have been suggested in the literature. These models circumvent the problems

with the sum rules in one of two different ways. Either the models are based on

local supersymmetry, or the soft SUSY breaking parameters are generated only

at the loop level. As preparation for a discussion of the first of these classes of

models, in this chapter we present a short discussion of locally supersymmetric

theories where the parameters of SUSY transformations depend on the spacetime

co-ordinates. Since supersymmetry is a spacetime symmetry, local supersymmetry

necessarily involves gravitation. Local supersymmetry is, therefore, also referred

to as supergravity. Supergravity is a large and complex subject in its own right,

and its elaboration is beyond the scope of this book. Our purpose here is only

to provide the reader with the basic ideas so as to facilitate the development of

particle physics models based on it. We begin by reviewing general relativity, the

classical theory of gravitation whose supersymmetric extension naturally leads to

supergravity.

235
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10.1 Review of General Relativity

Before proceeding to discuss supergravity, it will be useful to review the classi-

cal theory of gravitation, as embodied in Einstein’s General Relativity (GR). In

GR, physics is formulated on a curved four-dimensional spacetime manifold, and

gravitation is a manifestation of this curvature.

The principle of special relativity states that the laws of physics are the same

for all inertial observers. This is bothersome obviously because we can evidently

discern the laws of physics, even though we live on Earth in an accelerating frame.

Einstein generalized the principle of special relativity to include all observers,

including those in accelerating frames.

Einstein was deeply impressed by demonstrations such as the Eötvös experiment

that gravitational and inertial mass were equal to very high precision. He reasoned

that in a freely falling elevator, one would not be able to discern any effects of grav-

itation via any experiment confined to a sufficiently small region of measurement.

This led to the formulation of the principle of equivalence, which is one of the

cornerstones of GR. It states that in an arbitrary gravitational field one can always

transform co-ordinates to a freely falling (locally Lorentz) frame, where effects of

gravitation are locally eliminated. In this freely falling frame, the laws of physics

take their special relativistic form. Einstein described the equivalence principle as

“the happiest thought of my life”.

The effects of gravitation can be incorporated by starting with (local) equations

that we know to hold in the absence of gravitation, and generalizing these to be

form invariant under general co-ordinate transformations. This is so because the

equivalence principle tells us that we can always transform to a co-ordinate system

(the freely falling frame) in which the effects of gravity are locally absent. To make

the equations form-invariant, we will see that we are led to introduce new “fields”

(the affine connection introduced below) that incorporate the effects of gravitation.

The situation is quite analogous to that in local gauge theories where, to maintain

the invariance of the field equations under local gauge transformations, one is forced

to introduce the vector fields and the related field strength tensors.

10.1.1 General co-ordinate transformations

General relativity requires the laws of physics to be the same for any observer, be

they in a co-ordinate system which is rotating, accelerating, or whatever. Whether

we use a co-ordinate system xμ or x ′μ = x ′μ(x), we should arrive at the same

physical equations, except that the quantities would appear in a different co-ordinate

system. This means that the equations describing the laws of physics take the tensor
form.
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Denoting a general co-ordinate transformation (GCT) by

xμ → x ′μ = x ′μ(x) (GCT), (10.1)

the differential line element dxμ transforms under GCTs as

dxμ → dx ′μ = ∂x ′μ

∂xν
dxν. (10.2)

By the chain rule for differentiation, we note that ∂xμ/∂x ′ν is the inverse of the

transformation matrix ∂x ′ν/∂xρ that appears in the GCT of the line element in

(10.2). The differential volume element

d4x ′ = dx ′0dx ′1dx ′2dx ′3 = Jdx0dx1dx2dx3, (10.3)

where the Jacobian is the determinant of the transformation matrix J = |∂x ′μ/∂xν |.
An object is a contravariant vector under GCTs if its components transform as,

V μ → V ′μ = ∂x ′μ

∂xν
V ν. (10.4a)

The differential line element dxμ is thus a contravariant vector. Contravariant ten-

sors of rank n are objects with n indices whose components transform as,

Aμ1μ2...μn → A′μ1μ2...μn = ∂x ′μ1

∂xρ1

∂x ′μ2

∂xρ2
. . .

∂x ′μn

∂xρn
Aρ1ρ2...ρn , (10.4b)

while scalars transform as

φ → φ′ = φ. (10.4c)

A scalar may thus be thought of as a tensor of rank zero, and a vector as a tensor

of rank one.

The derivative of a scalar function φ(x), which under a GCT becomes φ′(x ′),
transforms as

∂φ

∂xμ
→ ∂φ′

∂x ′μ = ∂φ

∂x ′μ = ∂φ

∂xν

∂xν

∂x ′μ . (10.5a)

The transforming matrix is the inverse of the transformation matrix for contravariant

vectors. Objects which transform like ∂φ/∂xμ, i.e. as

Vμ → V ′
μ = ∂xν

∂x ′μ Vν (10.5b)

are known as covariant vectors. Covariant tensors of rank n are defined to be objects

with n indices whose components transform as,

Aμ1μ2...μn → A′
μ1μ2...μn

= ∂xρ1

∂x ′μ1

∂xρ2

∂x ′μ2
...

∂xρn

∂x ′μn
Aρ1ρ2...ρn . (10.5c)
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Notice that the indices corresponding to contravariant components are written as

superscripts, while those corresponding to covariant components are written as

subscripts. In this sense, it is convenient to write ∂φ/∂xμ as ∂μφ.

Mixed tensors with n contravariant and m covariant indices are analogously

defined.

Exercise If Aμ1μ2...μn and Bν1ν2...νm are contravariant components of tensors with
rank n and m, respectively, show that the entity S with n + m indices defined by
Sμ1μ2...μnν1ν2...νm = Aμ1μ2...μn Bν1ν2...νm transforms as a contravariant tensor of rank
n + m. An analogous result also holds for covariant as well as mixed tensors.

Exercise If Aμ1μ2...μn
ν1ν2...νm

is a mixed tensor with n contravariant and m covariant
indices, show that Aμ1μ2...μn

μ1ν2...νm
(where the index μ1 is summed over) is a mixed tensor

with n − 1 contravariant and m − 1 covariant indices.

Exercise Verify that if a tensor is zero in one frame, it is zero in all frames. Convince
yourself that this implies that tensor equations retain their form under GCTs. This
is why we required that the equations of GR should take the tensorial form.

Exercise Let Aμν...σ Bαβ...σ = T μν...
αβ... where A and T transform as tensors of the

appropriate rank. Show that B transforms as a tensor. We will use this result to
show that the “metric tensor” indeed transforms as a tensor.

10.1.2 Covariant differentiation, connection fields, and the Riemann
curvature tensor

We have just seen that the derivative of a scalar function gives us a vector function. It

is, therefore, reasonable to ask whether the derivative of a tensor function results in

a tensor with rank higher by one. To check this, we consider how the derivative of a

(first rank) tensor transforms under a GCT: ∂V μ/∂xν . Under a GCT, this transforms

as

∂V μ

∂xν
→ ∂V ′μ

∂x ′ν = ∂

∂x ′ν

(
∂x ′μ

∂xρ
V ρ

)

= ∂xσ

∂x ′ν
∂

∂xσ

(
∂x ′μ

∂xρ
V ρ

)

= ∂xσ

∂x ′ν
∂x ′μ

∂xρ

∂V ρ

∂xσ
+ ∂xσ

∂x ′ν
∂2x ′μ

∂xσ ∂xρ
V ρ. (10.6)
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The presence of the second term in the last line shows that ∂V μ/∂xν does not
transform as a tensor.1 The situation is reminiscent of that encountered in local

gauge theory. If the field transformed according to some representation of the

gauge group, the ordinary derivative of the field did not transform properly. In the

same spirit, we introduce a covariant derivative,

DνV μ ≡ ∂νV μ + 	μ
ρνV ρ, (10.7)

where 	μ
ρν(x) is a connection field,2 analogous to the vector potential in the covariant

derivative of gauge theories. We require that DνV μ transforms as a tensor under

GCT:

DνV μ → D′
νV ′μ = ∂xσ

∂x ′ν
∂x ′μ

∂xρ
Dσ V ρ.

This then implies that the connection must transform as

	′μ
ρν = ∂xσ

∂x ′ν
∂x ′μ

∂xτ

∂xλ

∂x ′ρ 	τ
λσ − ∂xσ

∂x ′ν
∂xτ

∂x ′ρ
∂2x ′μ

∂xσ ∂xτ
. (10.8)

Evidently the connection field does not transform as a tensor; its transformation

property is that of an affine connection. If we construct the symmetric and antisym-

metric parts of the affine connection under interchange of the lower indices,

	μ
ρν = 1

2

(
	μ

ρν + 	μ
νρ

) + 1

2

(
	μ

ρν − 	μ
νρ

) ≡ Sμ
ρν + Aμ

ρν, (10.9)

it is easy to see that the antisymmetric piece Aμ
ρν transforms as a tensor. This tensor

is known as the torsion tensor. The torsion tensor, usually taken to be zero in GR,

does not vanish in supergravity theories when gravitinos (see below) are present.

Since the gradient of a scalar field transforms as a vector, the covariant derivative

of a scalar is the same as its ordinary derivative: ∂μφ = Dμφ. If we require that the

covariant derivative satisfy the usual product rule, then

Dν

(
V μWμ

) = (DνV μ) Wμ + V μ
(
DνWμ

) = ∂ν

(
V μWμ

)
,

for any contravariant vector V μ and any covariant vector Wμ. This is only possible

if DνWμ = ∂νWμ − 	ρ
μνWρ , i.e. the connection field enters with a minus sign for

derivatives of covariant vectors. Covariant derivatives of higher rank tensors can be

made by simply introducing a connection field term for each index: e.g. Dμ Aρ
ν =

∂μ Aρ
ν + 	ρ

σμ Aσ
ν − 	σ

νμ Aρ
σ .

Unlike ordinary derivatives, covariant derivatives (except when they act on scalar

functions) do not commute. We had already noted this when we considered gauge

theories, where we had seen that the commutator of covariant derivatives yields the

1 Note that if the transformation x → x ′ is linear (as is the case for special relativity), this offending second term
would be absent.

2 Manifolds on which a continuous connection field can be defined are known as affine manifolds.
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field strength tensor Fμν A (see Eq. (6.46)). We can perform a similar exercise in

GR:

[
Dμ, Dν

]
V ρ = Rρ

τμνV τ + 2Aτ
μν Dτ V ρ, (10.10)

where

Rρ
τμν = ∂μ	ρ

τν − ∂ν	
ρ
τμ + 	ρ

σμ	σ
τν − 	ρ

σν	
σ
τμ (10.11)

defines the Riemann curvature tensor, and Aτ
μν is the torsion tensor.

Exercise This exercise illustrates the use of the equivalence principle described at
the beginning of this section.

In the absence of gravitation (and any other forces) the equation of motion for
a spinless particle is

d2xμ

dτ 2
= 0. (10.12a)

Even in the presence of gravitation, this equation still holds true in the freely falling
frame, according to the principle of equivalence. A GCT into any other (non-freely
falling) frame with co-ordinates x ′μ(x) implies that

d2xμ

dτ 2
→ ∂x ′μ

∂xν

d2xν

dτ 2
+ ∂2x ′μ

∂xλ∂xν

∂xν

∂τ

∂xλ

∂τ
.

Notice that the second term (whose presence tells us that d2xμ/dτ 2 is not a vector
under GCTs) is the same as the corresponding term in the transformation (10.8).
Hence deduce that the equation

d2x ′μ

dτ 2
+ 	′μ

ρν

dx ′ρ

dτ

dx ′ν

dτ
= 0 (10.12b)

is covariant under GCTs. Since 	′ vanishes in the frame in which there is no gravity,
this equation then reduces to (10.12a). Hence, the equivalence principle tells us
that (10.12b) describes the motion of a particle in an external gravitational field.

Note that torsion makes no contribution to the motion of the particle.

10.1.3 The metric tensor

In the previous section, we have made no mention of the metric tensor in our

discussion of the covariant derivative, the connection or even the curvature tensor.

Even the equation of motion for a particle in a gravitational field can be stated in

terms of just the connection fields. Indeed, there are non-metric theories of gravity,

e.g. theories with torsion, but these violate the equivalence principle as we will show.
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From now on, we will focus our attention on standard GR where it is assumed that

spacetime is a Riemannian manifold.

Riemannian manifolds, which are manifolds on which a metric (introduced be-

low) can be defined, form a natural setting for formulating GR. On any sufficiently

small patch of such a manifold, it is possible to find a Cartesian co-ordinate system

for which the separation between two points is given by a Pythagorean-type law.

On such a manifold, the differential line element is given by

ds2 = gμν(x)dxμdxν, (10.13a)

and accordingly the length squared of any four vector is given by

V 2 = gμν(x)V μV ν. (10.13b)

Since the left-hand side is a scalar and the line elements on the right-hand side are

vectors, by one of the previous exercises the quantity gμν transforms as a covariant

second rank tensor known as the metric tensor. The metric tensors gμν(x) and gμν(x)

can be used to raise and lower indices in GR.

We will assume a four-dimensional spacetime with one time-like direction. The

principle of equivalence then tells us that we can always transform to a freely falling

co-ordinate frame where the metric tensor is locally flat (Minkowski), i.e.

gμν(x) → ημν =

⎛

⎜
⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟
⎟
⎠

. (10.14)

In this frame, the derivative of the metric vanishes. This can be covariantly written

as:

Dμgνλ = ∂μgνλ − 	ρ
μνgλρ − 	

ρ
μλgνρ = 0. (10.15)

Using the transformation property of the metric tensor together with (10.8), it is

straightforward to check that

	τ
μλ − 1

2
gντ

(
∂μgνλ + ∂λgμν − ∂νgλμ

)
(10.16)

transforms as a tensor. The part of this tensor symmetric under μ ↔ λ vanishes in

the frame where the metric is locally Minkowskian, and hence must vanish in all

frames. We thus obtain,

	τ
μλ = 1

2
gντ

(
∂μgνλ + ∂λgμν − ∂νgλμ

)
, (10.17)

for the components of the connection that are symmetric under μ ↔ λ. The corre-

sponding antisymmetric components of the connection are not determined by the

metric, but depend on the torsion tensor introduced above.
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10.1.4 Einstein Lagrangian and field equations

To obtain the field equations of GR from an action principle, we can try to find an

appropriate Lagrangian density, and vary the corresponding action S = ∫
Ld4x . For

L, we can construct a scalar by performing successive contractions on the Riemann

tensor:

Rντ = Rρ
νρτ (Ricci tensor), and (10.18a)

R = gντ Rντ (Ricci scalar). (10.18b)

The Ricci scalar R is a candidate Lagrangian density, but we also know that the

measure d4x is not invariant under GCTs. However,
√−g d4x is invariant, where

g = det(gμν). Thus, L = √−gR is a candidate Lagrangian density for GR, and is

known as the Einstein Lagrangian. Since the Lagrangian density must have mass

dimension four, it must be multiplied by a constant with dimensions of M2. Hence,

we write the Lagrangian density for the gravitational field as,

LG = − 1

2κ2

√−gR (10.19)

where κ−2 has dimensions of mass squared.

Exercise Using the transformation properties of gμν and d4x, show that
√−g d4x

is invariant under GCTs.

Exercise Show that the Ricci tensor obtained by contracting the Riemann curvature
tensor is symmetric.

Variation of the Einstein action with respect to the fields gμν is a lengthy calcula-

tion, but can be made simpler using the Palatini formalism wherein the connection

fields 	τ
μν and their derivatives are regarded as independent fields along with gμν(x).

Either approach leads to Einstein’s field equations in a vacuum:

Rμν − 1

2
gμν R = 0. (10.20)

This equation is generally covariant, and contains at most the second derivative of

the metric. We could have included higher powers of R into the action but these

would have led to higher derivatives in the equations of motion.

We may also add the effects of matter and/or energy to the Einstein La-

grangian. For instance, including a real scalar field φ with Lagrangian LM =√−g(gμν∂
μφ∂νφ − m2φ2) into the action will bring a source term involving the

symmetric energy momentum tensor Tμν into the equations of motion. Although

we have illustrated this for coupling to scalar fields, the same is true for coupling
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to all matter fields. The constant κ that we introduced for dimensional relations

determines the gravitational coupling of matter. It must be chosen to obtain agree-

ment with Newtonian gravity in the non-relativistic, weak field limit. It turns

out that κ2 = 8πGN/c4, with GN being Newton’s constant. In natural units with

� = c = 1, the Planck mass MPl = G−1/2
N . The reduced Planck mass is defined by

MP = MPl/
√

8π so that κ = 1/MP, with MP � 2.4 × 1018 GeV. It is common to

use units in which MP is also set to unity.

Finally, we can also include the term L� =
√−g
κ2 � into the Lagrangian density

without bringing higher derivatives of the metric into the field equations. Here,

� is known as the cosmological constant. Indeed there is evidence for a small

but non-zero cosmological constant (� ∼ (3 meV)4 in natural units) in Einstein’s

equations, indicative of a dark energy that pervades the Universe. Including matter

as well as the cosmological constant, Einstein’s field equations become,

Rμν − 1

2
gμν R − gμν� = 8πGNTμν. (10.21)

Notice that both sides of this equation are symmetric under interchange of tensor

indices.

10.1.5 Spinor fields in General Relativity

The preceding formulation of GR can admit fields transforming as scalars, vectors,

and tensors. In supersymmetry, we must necessarily include spinor fields as well, but

there exists no generalization of spinorial Lorentz transformation rules to general

co-ordinate transformations: mathematically speaking, the group GL(4) has no

finite dimensional spinor representations. What is done instead is to define, for

every point on the curved spacetime, a tangent space with a flat Minkowski metric in

which the spinors may transform. Thus, the action we construct should be invariant

under GCTs xμ → x ′μ on the curved manifold, and invariant under local Lorentz

transformations (LLTs) on the flat tangent space:

ξ a → ξ ′a = �a
b(x)ξ b. (10.22)

For each spacetime point, ξ a(x) define a (locally inertial) co-ordinate system in

the flat tangent space. It is customary to take Greek indices μ = 0–3 for objects

transforming under GCTs, and Latin indices a = 0–3 for objects transforming under

LLTs. The transformation from local Lorentz co-ordinates to general co-ordinates

is given by

∂ξ a

∂xμ
≡ ea

μ, (10.23)
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where ea
μ is known as the vierbein.

The vierbein transforms under GCTs as

ea
μ(x) → e′a

μ (x ′) = ∂xν

∂x ′μ ea
ν (x), (10.24)

and under LLTs as

ea
μ → e′a

μ = �a
beb

μ(x). (10.25)

The vierbein allows us to connect one co-ordinate system with the other. Thus,

an object vμ which transforms as a vector under GCTs can be related to an object

V a which transforms as a vector under LLTs via

V a = ea
μvμ. (10.26)

In particular, the metric tensor in each space is related as

gμν(x) = ea
μeb

νηab, (10.27)

where ηab is the usual Minkowski metric. From the above relation, knowledge of the

vierbein completely determines the form of the metric tensor, and it is sometimes

convenient to think of the vierbein as a “square root” of the metric tensor. The

Minkowski metric tensor ηab (ηab) can be used to lower (raise) Latin indices, just

as gμν (gμν) can be used to lower (raise) Greek indices. Thus, we also have

gμν = eμ
a eν

b ηab. (10.28)

Taking the determinant of Eq. (10.27), we are able to replace the Jacobian factor√−g by e ≡ det(ea
μ).

Spinors transform under LLTs as

ψm(x) → ψ ′
m(x ′) = � 1

2
mnψn(x) (10.29)

where � 1
2

mn = [
e−iεrs (x)σrs

]

mn , and the spinor index m = 1–4, and σrs = i
2
[γr , γs].3

The Dirac matrices satisfy {γr , γs} = 2ηrs in local Lorentz space. They are related

to the curved space gamma matrices via γ μ = eμ
r γ r , and where

{γ μ(x), γ ν(x)} = 2gμν(x). (10.30)

The transformation parameter εrs is antisymmetric on rs and includes six parame-

ters: three rotations and three boosts.

In order to define a covariant derivative for spinor fields Dμψ such that

Dμψ → D′
μψ ′ = � 1

2

(
Dμψ

)
, (10.31)

3 We are economizing notation here by not writing the transformation matrix as D(�1/2)mn , as is the practice by
many authors.
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we introduce spin connection fields ωrs
μ such that

Dμψ = ∂μψ − i

4
ωrs

μ σrsψ, (10.32)

and, as usual, require these to transform so that (10.31) is satisfied. The covariant

derivative of the vierbein will involve both connection and spin connection fields:

Dμea
ν = ∂μea

ν − 	λ
μνea

λ + ωa
μbeb

ν . (10.33)

A field strength tensor can be computed from the spinor field covariant derivative,

just as from a vector field covariant derivative.

Exercise Evaluate the commutator of spinor covariant derivatives and show that
it can be written as

[Dμ, Dν]ψ = − i

4
σuv Ruv

μνψ (10.34a)

where

Ruv
μν = ∂μωuv

ν − ∂νω
uv
μ + ωu

μrω
rv
ν − ωv

μrω
ur
ν . (10.34b)

This quantity is related to the Riemann curvature tensor via

Ruv
μν = eu

ρ ev
σ Rρσ

μν . (10.34c)

Hint: Recall the generators Mab = σab/2 of the Lorentz group obey the algebra
(4.6).

We can again apply the principle of equivalence as we did to obtain Dμgνλ = 0,

but this time for the vierbein: Dμea
ν = 0. This gives 4 × 6 = 24 constraints, the

number of independent components of the spin connection, which can be eliminated

as an independent field. Indeed, the spin connection fields ωab
μ can be constructed

from knowledge of the vierbein via,

ωab
μ = 1

2
eaν(∂μeb

ν − ∂νeb
μ) + 1

4
eaρebσ (∂σ ec

ρ − ∂ρec
σ )ecμ − (a ↔ b) . (10.35)

10.2 Local supersymmetry implies (super)gravity

Our next goal is to examine what happens when we allow the parameters α that

characterize SUSY transformations to be spacetime dependent; i.e. when we allow

SUSY to be a local symmetry. Such local SUSY transformations are known as

supergravity transformations since, as we will see presently, a consistent imple-

mentation of local SUSY transformations necessarily brings a massless spin 2 field
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into the theory. Moreover, this spin 2 field couples to the energy-momentum tensor

for matter, just as in general relativity, and its quanta are identified with gravitons.

The spin 3
2

Rarita–Schwinger field is needed since SUSY requires that the gravitons

must have fermionic partners with spin differing by 1/2. Its quanta are referred to

as gravitinos.

An aside on the spin 3
2

Rarita–Schwinger field We briefly discuss the basics of
massive spin 3

2
fields, since after supersymmetry breaking the gravitinos acquire

a mass. A free massive gravitino may be described by a “vector-spinor” field
ψλ(x), each of whose Majorana spinor components (the spinor index is suppressed)
satisfies the Dirac equation,

(i∂/ − m)ψλ = 0, (10.36a)

and is subject to the subsidiary condition,

γ λψλ = 0. (10.36b)

Contracting (10.36a) with γ λ, it is easy to see that,

∂λψλ = 0. (10.36c)

To understand why ψλ describes a spin 3
2

particle, let us examine the plane
wave solutions ψλ(x) = uλ(k)e−ikx of (10.36a) in the rest frame of the particle.
Eq. (10.36a) then implies

γ 0uλ = uλ. (10.37a)

It is most convenient to do the analysis using the standard representation for the
gamma matrices. Exactly as for the case of a massive spin 1

2
particle in its rest frame,

we find that the lower two components of all four uλ must vanish. The subsidiary
condition (10.36b) implies that

u0 = 	γ · 	u, (10.37b)

where 	u has as its components the three four-spinors u1, u2, and u3, all of whose
lower components vanish, and whose three upper components are the three two-
spinors χ1, χ2, and χ3. Using the explicit form of the 	γ matrices, we see from
(10.37b) that,

u0 = 0

	σ · 	χ = 0. (10.37c)

The two constraints (10.37c) imply that just four of the six components of 	χ are
truly independent. Since the spinors ψλ are completely fixed by 	χ , we see that these
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are specified by four independent components, just the right number to describe a
massive spin 3

2
particle in its rest frame.

Exercise Show that the Lagrangian density

L = −1

2
εμνρσ ψ̄μγ 5γν∂ρψσ − 1

4
mψ̄μ[γ μ, γ ν]ψν (10.38)

yields the Dirac equation (10.36a) as well as the constraint conditions (10.36b)
and (10.36c), assuming m 
= 0. You may find the identity

γ 5γ ν = i

3!
ενρστ γργσγτ

useful.
Notice that the Lagrangian for the massless case is invariant under the trans-

formation ψμ → ψμ + ∂μα. For this case, the constraints do not follow from the
Lagrangian, but have to be imposed as gauge fixing conditions.

To obtain a locally supersymmetric theory, we will adopt the Noether pro-

cedure, which was used to derive the simplest supergravity Lagrangians. The

Noether procedure is a systematic technique for obtaining a theory invariant under

a local symmetry transformation, starting from a theory that is invariant under the

corresponding global transformation.

QED serves as an illustrative example. We may start with the simple Dirac

Lagrangian for an electron L = iψ̄∂/ ψ which is invariant under a global phase

transformation ψ → eiαψ , where α is a constant. If we make the transformation

local, so that α → α(x), then this Lagrangian is no longer invariant, changing

by an amount δL = −ψ̄γ μψ∂μα. Invariance can be restored by adding a gauge

field term to L given by L′ = −eψ̄γ μ Aμψ , where the gauge field transforms as

Aμ → Aμ − 1
e ∂μα, and e in this case is the magnitude of the electric charge. The

final QED Lagrangian is obtained by adding the gauge field kinetic term − 1
4

Fμν Fμν

and an electron mass term −mψ̄ψ , which are separately locally gauge invariant.

To illustrate why local supersymmetry necessarily implies gravity, we apply the

Noether procedure to the Wess–Zumino model introduced in Chapter 3. To simplify

our analysis, we will examine only the free, massless case with the fields “on shell”,

meaning that these satisfy their equations of motion. Then we do not have to worry

about the auxiliary fields which can be set to zero. Furthermore, from (3.7d) and

(3.7e), we see that the SUSY transforms of the auxiliary fields also vanish as long

as the fermion field satisfies its equation of motion, ∂/ ψ = 0.

The Lagrangian for this very simplified model takes the form,

L = Lkin = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ, (10.39)
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and is invariant under

δA = iᾱγ5ψ, (10.40a)

δB = −ᾱψ, (10.40b)

δψ = −i∂/ (−B + iγ5 A)α. (10.40c)

If we now let α → α(x), and define the local transformation so that the derivative

in (10.40c) acts only on the fields, a straightforward calculation shows that the

Lagrangian no longer transforms as a total derivative, but instead as,

δLkin = ∂μ

(
1

2
ᾱγμ∂/ (−B + iγ5 A)ψ

)

+ (∂μᾱ)
(
∂/ γμ(−B + iγ5 A)

)
ψ. (10.41)

The additional term can be cancelled by adding to the Lagrangian a term given by

L1 = −κψ̄μ∂ν(−B + iγ5 A)γ νγ μψ, (10.42)

where ψμ is a spin 3
2

field. It has mass dimensionality [ψμ] = 3
2
, so that a di-

mensional constant κ with [κ] = −1 must be included to give a dimension four

Lagrangian term. The field ψμ is effectively a gauge field for the local supersym-

metry transformation, just as Aμ was the gauge field for a local phase transformation

in the QED example. If ψμ transforms under local SUSY as ψ̄μ → ψ̄μ + 1
κ
∂μᾱ,

then the transformation term involving ∂μᾱ will cancel!

This of course does not mean that the action corresponding to the Lagrangian

density Lkin + L1 is supersymmetric because we must now apply the local SUSY

transformation laws to the additional Lagrangian termL1 as well. Clearly, the terms

resulting from this transformation areO(κ). Indeed a somewhat lengthy calculation

shows that,

δ(Lkin + L1) = −2iκψ̄μγνT μνα + · · · , (10.43a)

where the ellipsis denotes terms involving derivatives of α or total derivatives, and

T μν = (∂μ A)(∂ν A) + (∂μ B)(∂ν B) − 1

2
ημν

[
(∂ρ A)2 + (∂ρ B)2

] + i

2
ψ̄γ μ∂νψ,

(10.43b)

is the canonical energy–momentum tensor for the WZ model.

Exercise Verify the transformation (10.43a).
To obtain the T μν term on the right-hand side of (10.43a) which is written

up to derivatives of the parameter α, we need to consider only “global” SUSY
transformations when performing the variation. We need to Fierz transform the
fermion quartic term so that the transformation parameter α is contracted with the
gravitino spinor: only the vector and axial-vector combinations survive. Moreover,
since we write this variation only up to a total derivative, and for “on-shell fields”,
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many terms vanish due to (10.36a)–(10.36c). Finally, we note that the ημν terms
for the scalar field contributions to T μν vanish when the fields are on-shell.

This term can now be cancelled by adding another term,

L2 = −gμνT μν, (10.44)

to the Lagrangian density. We see that the Noether procedure forces us to introduce a

massless spin 2 field gμν that couples to the energy momentum tensor as in General

Relativity. The quanta of this field are the gravitons. We require this spin 2 field

gμν to transform as

δgμν = −iκᾱ(γνψμ + γμψν). (10.45)

We see that local supersymmetry implies gravity. The dimensionful coupling con-

stant κ that we have been forced to introduce can be related to Newton’s gravitational

constant.

The procedure we have outlined was for the simple case of the massless, non-

interacting on-shell WZ model. The locally supersymmetric couplings of the (on-

shell) scalar supermultiplet of the Wess–Zumino model can be found in Ferrara

et al., and includes many more terms.4 One must, of course, also include kinetic

terms for both the graviton and gravitino fields, and derivatives must be made

covariant with respect to general co-ordinate and local Lorentz transformations. A

complete derivation is beyond the scope of this text, and we will simply present the

answer. The relevant Lagrangian is given by a sum of a pure (supersymmetrized)

gravity piece together with a second piece that describes the supersymmetrized

gravitational couplings of matter:

L = LG + LM. (10.46)

Here, LG is given by a sum of the Einstein Lagrangian and the kinetic term (10.38)

for the massless Rarita–Schwinger field:

LG = − e
2κ2

R − 1

2
ελρμνψ̄λγ5γμ Dνψρ, (10.47)

where e, the determinant of the vierbein, is the Jacobian factor
√−g that appears

in the Einstein Lagrangian. A comparison with Eq. (10.19) shows that the constant

κ introduced in our discussion of local supersymmetry transformations indeed

coincides with the same constant that appears in our discussion of general relativity.

4 S. Ferrara, D. Freedman, P. van Nieuwenhuizen, P. Breitenlohner, F. Gliozzi and J. Scherk, Phys. Rev. D15,
1013 (1977).
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The (super)gravitational interactions of the matter supermultiplet take the form,

LM = egμν

(
1

2
∂μ A∂ν A + 1

2
∂μ B∂ν B

)

+ e
i

2
ψ̄ 
Dψ

− κ

2
e ψ̄μ∂ν(−B + iγ5 A)γ νγ μψ − κ2

16
e (ψ̄γ5γμψ) (ψ̄γ5γ

μψ)

− i
κ2

8
(B

↔
∂ σ A)

[
εμνρσ ψ̄μγνψρ − ie ψ̄γ5γ

σψ
]

+ κ2

16
ψ̄γ5γσψ

[
iεμνρσ ψ̄μγνψρ + e ψ̄μγ5γ

σψμ

]
, (10.48)

which includes relativistically covariant kinetic energy terms for scalar and spinor

fields together with interaction terms involving the gravitational coupling constant

κ . At low energies, these terms are suppressed by inverse powers of MP. The

covariant derivatives that appear in (10.47) and (10.48) are given by,


Dψ = γ μ(∂μ − i

4
ωrs

μ σrs)ψ and (10.49a)

Dνψρ = ∂νψρ − i

4
ωrs

ν σrsψρ − 	σ
ρνψσ . (10.49b)

Of course, the last term of Dνψρ makes no contribution to the kinetic energy of

the gravitino once the connection is written as a function of the metric (using the

equations of motion) so that it is symmetric in its lower indices.

The local SUSY transformation laws are given by

δA = iᾱγ5ψ, (10.50a)

δB = −ᾱψ, (10.50b)

δψ = −i∂/ (−B + iγ5 A)α + i
κ

2
(ψ̄μψ)γ μα + i

κ

2
(ψ̄μγ5ψ)γ μγ5α

+1

4
κ2 [ᾱ(−B + iγ5 A)γ5ψ] γ5ψ, (10.50c)

δea
μ = −iκᾱγ aψμ, and (10.50d)

δψμ = 2

κ
Dμα + i

2
κ(B

↔
∂ μ A)γ5α − κ2

4
[ᾱ(−B + iγ5 A)γ5ψ]γ5ψμ. (10.50e)

Notice that the transformation law for the vierbein reproduces the SUSY trans-

formation (10.45) for the metric that we had obtained above. We do not write the

transformation law for the connection fields as these are complicated, and are not

needed for our discussion. The gravitino and vierbein fields can be combined into

what is called the metric superfield. This is the gravitational analogue of the gauge

superfield and, hence, is a real superfield. Since the gravitino carries a vector index,

the metric superfield is a real vector superfield.
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The reader may have noticed that the supergravity Lagrangian contains non-

renormalizable terms. This was also true of the Lagrangian for Einsteinian gravity.

Such non-renormalizable terms enter because the gravitational coupling constant

κ has dimensions of inverse mass. The situation is analogous to Fermi’s theory

of β-decay which though non-renormalizable was practically useful, and which

has since been understood as the low energy limit of a more fundamental theory

(the Standard Model). In the same vein, we will regard the non-renormalizable

supergravity Lagrangian as the low energy limit of an as yet unformulated locally

supersymmetric fundamental theory (perhaps, superstring theory) to be discovered

in the future.

10.3 The supergravity Lagrangian

We have seen that the construction of locally supersymmetric field theories forces

us to consider non-renormalizable interactions. If we give up the restriction of

renormalizability the globally supersymmetric Lagrangian for gauge theories in

(6.47) can be generalized to,

L = −1

4

∫

d4θ K
(

Ŝ†e−2gtA�̂A , Ŝ
)

− 1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

−1

4

∫

d2θL f AB(Ŝ)Ŵ c
AŴB . (10.51)

In particular, the Kähler potential and the superpotential functions are no longer

restricted to be quadratic and cubic polynomials, though the latter is still required

to be an analytic function of the fields. Moreover, we have introduced the gauge
kinetic function f AB(Ŝ) which, like the superpotential f̂ (Ŝ), is an analytic function

of the chiral superfields Ŝi so that, like the superpotential term, the last term is also

an F-term of a chiral superfield (and hence supersymmetric). Renormalizability

(and gauge invariance) restricted f AB = δAB in (6.47), but now the more general

form is possible. To preserve gauge invariance, f AB must transform as the sym-

metric product of two adjoints of the gauge group. As before, choosing the Kähler

potential K (Ŝ†, Ŝ) and the superpotential f̂ (Ŝ) to be invariant under global gauge

transformations guarantees local gauge invariance of (10.51). Except for these re-

strictions from gauge invariance, the Kähler potential, the superpotential and the

gauge kinetic function are arbitrary functions of all chiral superfields.

Although it is possible in principle to obtain the complete Lagrangian for lo-

cally supersymmetric gauge theories by applying the Noether procedure to the

globally supersymmetric Lagrangian (10.51), in practice, more efficient techniques

involving tensor calculus of local supersymmetry have been developed to obtain the

complete result including all auxiliary fields. A discussion of these techniques is
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beyond the scope of this text. The final result, analogous to our master formula, but

for local supersymmetry, was first obtained in 1982 by Cremmer et al.5 We simply

present it here, in terms of component fields, after all auxiliary fields have been

eliminated. It is customary to factor out the Jacobian term e, and to write the result

in units with MP = 1. The reduced Planck mass can be re-inserted term-by-term

by requiring the dimensionality of each term be equal to four.

Although the Lagrangian for a general non-renormalizable supersymmetric the-

ory depends on three independent functions, K , f̂ , and f AB , the remarkable feature

of the supergravity Lagrangian is that it depends on the gauge kinetic function and

just one combination,

G(Ŝ†, Ŝ) = K (Ŝ†, Ŝ) + log | f̂ (Ŝ)|2, (10.52)

of the Kähler potential and superpotential. We will refer to G as the Kähler function,

not to be confused with the Kähler potential K .6 In what follows, derivatives of the

Kähler function with respect to chiral superfields are denoted by,

Gi = ∂G

∂Ŝi

∣
∣
∣
∣
Ŝ=S

and G j = ∂G

∂Ŝ j†

∣
∣
∣
∣
Ŝ=S

. (10.53a)

Also,

Gi
j = ∂2G

∂Ŝi∂Ŝ j†

∣
∣
∣
∣
Ŝ=S

(10.53b)

defines the Kähler metric.7 Higher derivatives of G are analogously defined. Finally,

we define the inverse of the metric by,

(G−1)i
j G

j
k = δi

k . (10.53c)

Exercise If the Lagrangian depends only on the combination G rather than sep-
arately on K and f̂ , the choice of the superpotential is not unique. Show that
(classically) the transformations,

K (Ŝ†, Ŝ) → K − [h(Ŝ)]† − h(Ŝ)

f̂ (Ŝ) → exp
(
h(Ŝ)

)

5 E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Nucl. Phys. B212, 413 (1983).
6 Some authors refer to G as the Kähler potential. Moreover, what we call K is sometimes denoted by d and, to

make matters worse, a different K is defined by d = −3 log(−K/3).
7 The use of j , the index labeling the adjoint of the j th field, as a superscript is merely conventional and should

not cause confusion. It allows for contraction of upper and lower indices according to “usual rules” of tensor
calculus. For notational clarity, we write the gauge generator matrix with only lower indices.



10.3 The supergravity Lagrangian 253

leave G (and hence the Lagrangian) invariant. This means that we can move all
the analytic terms in the Kähler potential to the superpotential if we wish or,
alternatively, that we may choose the superpotential to be a positive constant.

We are now in a position to write down the locally supersymmetric Lagrangian

for a Yang–Mills gauge theory coupled to gravity. We break up this Lagrangian into

purely bosonic terms LB , and terms with fermions LF . We further divide each of

these terms into two parts: one part (LC
B) independent of the gauge kinetic function,

and the other (LG
B ) containing all the dependence on f AB . The latter piece is, of

course, absent in a theory without gauge fields. The purely bosonic Lagrangian can

be written as,

LB = LC
B + LG

B (10.54)

with (in units where the coupling κ = 1)

e−1LC
B = − R

2
+ Gi

j DμSi DμS j∗ − eG
(
Gi (G

−1)i
j G

j − 3
)

(10.55a)

and

e−1LG
B = − 1

4
(Re f AB)FAμν Fμν

B − 1

4
(Im f AB)FAμν F̃μν

B

− g2

2
(Re f −1

AB )Gi tAi jS j G
ktBk�S�, (10.55b)

where F̃μν

B = 1
2
εμνρσ FBρσ . Here, LG

B has been written as though the gauge group

is simple: if the gauge group has several factors, a sum over each of these factors is

implied. The first term in LC
B is the Einstein Lagrangian (10.19). The second term

contains the kinetic energy terms for the scalar components of the chiral superfields

(hence the superscript C on this Lagrangian) while the last term in LC
B is the part

of the scalar potential that originates in the superpotential. Notice that, unlike the

scalar potential for globally supersymmetric theories, this term may be negative.

The kinetic terms for the gauge fields are contained in LG
B .

The part of the Lagrangian involving fermions is more complicated, and for

convenience of writing we further split it into terms which give the kinetic energy

terms LF,kin and other terms that only contain interactions, i.e.

LF = LF,kin + LF,Int. (10.56a)

As before, each of these is further split into pieces, depending on whether or not

there is dependence on the gauge kinetic function. We then have,

LF,kin = LC
F,kin + LG

F,kin, (10.56b)
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and

LF,Int = LC
F,Int + LG

F,Int. (10.56c)

The terms that appear in LF,kin are given by,

e−1LC
F,kin = −e−1

2
εμνρσ ψ̄μγ5γν Dρψσ +

(
i

2
Gi

j ψ̄iRγ μ Dμψ
j

R + h.c.

)

+
(

e−1

8
εμνρσ ψ̄μγνψρGi DσSi + h.c.

)

+
(

i

2
ψ̄iR 
DS jψ

k
R(−Gi j

k + 1

2
Gi

k G j )

+ i√
2

G j
i ψ̄μR 
DS i†γ μψ jL + h.c.

)

(10.57a)

and

e−1LG
F,kin =

[
1

2
Re( f AB)

(
i

2
λ̄A 
DλB + 1

4
λ̄Aγ μσ νρψμFBνρ

− i

2
Gi DμSi λ̄ALγμλBL

)

+ 1

8
Im ( f AB)e−1 Dμ(eλ̄Aγ5γ

μλB)

− 1

4
√

2

∂ f AB

∂Si
ψ̄iRσμν FAμνλBL

]

+ h.c. (10.57b)

The first two terms in (10.57a) contain the kinetic energies of the gravitino and the

chiral fermions, while the first term of (10.57b) contains the kinetic energy of the

gauginos. Finally, the pieces of LF,Int are given by

e−1LC
F,Int =

[
i

2
eG/2ψ̄μLσμνψνR + 1

2
gGi tAi jS j ψ̄μRγ μλAR

− g
√

2G j
i tA jkSk λ̄ALψ i

R

− 1

2
eG/2(−Gi j − Gi G j + Gi j

k (G−1)k
�G�)ψ̄iRψ jL

− 1√
2

eG/2Gi ψ̄μLγ μψiL

+ i

16
G j

i ψ̄iLγdψ jL

(
εabcdψ̄aγbψc − iψ̄aγ 5γ dψa

)

+
(

1

8
Gi j

kl − 1

8
Gi j

m (G−1)m
n Gn

kl − 1

16
Gi

k G j
l

)

ψ̄iRψ jLψ̄k
Lψ l

R

]

+ h.c. (10.58a)
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and

e−1LG
F,Int =

[
1

4
eG/2 ∂ f ∗

AB

∂S j∗ (G−1)
j
k Gk λ̄ALλBR

+ g

2
√

2
(Re f AB)−1 ∂ fBC

∂Sk
Gi tAi jS j ψ̄kRλCL

− 1

32
(G−1)k

l

∂ f AB

∂Sl

∂ f ∗
C D

∂Sk∗ λ̄ARλBLλ̄CLλDR

+ 3

32

[
Re ( f AB)λ̄ARγμλBR

]2 + i

16
Re ( f AB)λ̄Aγ μσρσψμψ̄ργσλB

+ i

4
√

2

∂ f AB

∂Si

(

ψ̄iRσμνλALψ̄νRγμλBR + i

2
ψ̄μLγ μψiLλ̄ARλBL

)

+ 1

16
ψ̄iRγ μψ

j
Rλ̄DLγμλCL

[

Gi
j Re ( fC D) + 1

2
Re

(

f −1
AB

∂ f AC

∂Si

∂ f ∗
B D

∂S j∗

)]

− 1

16
ψ̄iRψ jLλ̄CRλDL

×
(

−2Gi j
k (G−1)k

l

∂ fC D

∂Sl
+ 2

∂2 fC D

∂Si∂S j
− 1

2
Re f −1

AB

∂ f AC

∂Si

∂ fB D

∂S j

)

− 1

128
ψ̄iRσμνψ jLλ̄CRσμνλDLRe

(

f −1
AB

∂ f AC

∂Si

∂ fB D

∂Sj

)]

+ h.c.

(10.58b)

The transformation laws of local supersymmetry are given by,

δSi = −i
√

2ᾱψiL, (10.59a)

δψiL =
√

2 
DSiαR + i
√

2eG/2(G−1)
j
i G jαL

− i

2
√

2
αLλAλBR(G−1)

j
i

∂ f ∗
AB

∂S∗ j
+ · · · , (10.59b)

δea
μ = −iᾱγ aψμ, (10.59c)

δψμ = 2Dμα + ieG/2γμα + · · · , (10.59d)

δV μ

A = −iᾱγ μλA, (10.59e)

δλAR = i

2
σμν FAμναR − igRe ( f −1

AB )Gi (tB)i jS jαR + · · · (10.59f)

The ellipses represent additional terms that we will not need for our subsequent

discussion. These terms contain products of fermion fields, or, as in (10.59d),

contain derivatives of scalar fields.

Except for the restrictions from gauge invariance and analyticity already men-

tioned, there is no known principle for the choice of the Kähler potential, the super-

potential, and the gauge kinetic function in a general non-renormalizable theory.



256 Local supersymmetry

Supergravity couplings, however, depend only on the gauge kinetic function and the

Kähler function G. Choosing the Kähler potential and the gauge kinetic function

to be what they are in renormalizable theories,

K =
∑

i

Ŝ i†Ŝi (10.60a)

and

f AB(Ŝ) = δAB, (10.60b)

leads to canonical kinetic energy terms for “matter” (scalar and fermion) fields and

for gauginos, respectively. The theory that is obtained from the general supergravity

Lagrangian (10.54)–(10.58b) for this choice of the Kähler potential and the gauge

kinetic function is sometimes referred to as “minimal supergravity”.8

Exercise Verify that for any gauge-invariant superpotential f̂ (Ŝ),

∂ f̂

∂Ŝi

tAi j Ŝ j = 0.

Exercise (Recovering the Lagrangian for global SUSY) The locally supersym-
metric Lagrangian must reduce to the globally supersymmetric Lagrangian in our
master formula (6.44) if we take the limit MP → ∞.

(a) Identify the kinetic energy terms for all the fields.
(b) Convince yourself that the coupling of matter and gauge fields with gravitons

and gravitinos, as well as all contributions from non-minimal terms in K and
f AB, all result in non-renormalizable interactions suppressed by powers of the
reduced Planck mass. We can thus confine ourselves to the minimal supergravity
choice,

K =
∑

i

Ŝ i†Ŝi

M2
P

,

and

f AB = δAB

for these functions in the remainder of this exercise. Notice that we have in-
serted appropriate powers of the reduced Planck mass required to make K
dimensionless.

8 This should be distinguished from the minimal supergravity model discussed in the next chapter, where the
same Kähler potential and a related gauge kinetic function are used. The reader should also note that the
field-independent choice of the gauge kinetic function leaves gauginos massless at the tree level.
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(c) Verify that the last term of (10.55a) reduces to − ∑

i

∣
∣
∣

∂ f̂
∂Si

∣
∣
∣
2

, the part of the

scalar potential that originates in the superpotential on the third line of the
master formula. Using the result of the previous exercise, show that the last
term of (10.55b) reduces to the remainder of the scalar potential in our master
formula. Remember that we have written the supergravity Lagrangian in units
where κ = 1/MP = 1. You will have to reinsert this factor on the various terms
using dimensional analysis.

(d) Finally, convince yourself that the terms on the second and third lines of (10.58a)
reduce to the couplings of gauginos to the sfermion–fermion pair and to chiral
fermion superpotential Yukawa couplings, respectively.

10.4 Local supersymmetry breaking

In Chapter 7, we showed that in order for global SUSY to be broken, the variation

of a spinorial operator had to be non-zero. The same holds for models with local

supersymmetry, i.e. we may have either 〈0|δψi |0〉 
= 0, or 〈0|δλA|0〉 
= 0.

When we considered the spontaneous breaking of global supersymmetry with-

out also breaking the Poincaré symmetry, we were led to just two possibilities:

F-type SUSY breaking with 〈0|Fi |0〉 
= 0, or D-type breaking with 〈0|DA|0〉 
= 0.

For both cases, some auxiliary fields acquired a vacuum expectation value. For the

case of local supersymmetry, the same is true although we cannot see this because

we have written these supersymmetry transformations, (10.59a)–(10.59f), with the

auxiliary fields already eliminated. If we assume that fermion fields cannot acquire

vacuum expectation values, the condition for local SUSY breaking from (10.59b) is

〈0|eG/2(G−1)
j
i G j |0〉 
= 0 (10.61a)

or from (10.59f),

〈0|Re ( f AB)−1Gi tBi j S j |0〉 
= 0. (10.61b)

The terms denoted by ellipses in the supergravity transformations (10.59a)–

(10.59f) cannot acquire VEVs, and so are not relevant for this discussion. These

conditions are the generalization of the conditions for global supersymmetry

breaking that we found in Chapter 7.

These conditions take a simpler form for the minimal supergravity case in-

troduced earlier. Then (G−1)
j
i = δ

j
i , and Gi = Si + 1

f̂ ∗ ∂ f̂ ∗/∂S i∗, and the F-type

breaking condition reduces to,

∂ f̂

∂Si
+ S i∗ f̂

M2
P


= 0. (10.62)
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Clearly, this condition reduces to Eq. (7.3a) in the limit MP → ∞. It is easy to see

that (10.61b) is, similarly, a generalization of the D-term SUSY breaking condition

Eq. (7.3b).

Our discussion of local supersymmetry breaking up to now has omitted one

important possibility that was actually mentioned in Section 7.5. Supersymmetry

may also be broken if the last term in Eq. (10.59b) acquires a VEV. This is not

possible if gauge couplings remain perturbative. There may, however, be gauge

interactions (not contained in the MSSM) that become strong at a high scale, and

cause the associated gauginos to condense.9

It is also instructive to calculate the form of the scalar potential for minimal

supergravity. In this case, from the LB terms in the supergravity Lagrangian, we

obtain

V = e
Si†Si

M2
P

⎛

⎝− 3

M2
P

| f̂ |2 +
∣
∣
∣
∣
∣

∂ f̂

∂Si
+ S i† f̂

M2
P

∣
∣
∣
∣
∣

2
⎞

⎠ + g2

2
S i†tAi jS jSk†tAk�S�. (10.63)

The negative term above offers the possibility of a small or even zero cosmological

constant in supergravity theories (even if supersymmetry is broken), whereas in

global SUSY the scalar potential was always positive semi-definite. There is no

known reason though why the negative and positive terms should (almost) cancel,

and a small cosmological constant is only possible by severe fine-tuning.

10.4.1 Super-Higgs mechanism

Recall that Goldstone bosons are the relics of spontaneous breaking of global

symmetries: corresponding to every symmetry generator that does not annihilate the

ground state, there is a massless boson (with derivative couplings) in the physical

spectrum. If instead the spontaneously broken symmetry is local, the Goldstone

boson is “eaten by the gauge fields”, in that it becomes the longitudinal component of

a gauge field which then acquires a mass. This is the well-known Higgs mechanism.

The situation for supersymmetry is quite similar. We have already seen that when

global SUSY is spontaneously broken we obtain a massless Goldstone fermion, the

goldstino, in the spectrum. In supergravity theories, where we have invariance under

local SUSY transformations, the gravitino plays the same role that gauge fields

play in local gauge theories. If SUSY is spontaneously broken, it is then natural to

examine whether the goldstino degrees of freedom become the longitudinal degrees

of freedom of the gravitino, the gauge field of supergravity, thereby endowing it

9 In this context, we should mention that condensation of chiral fermions associated with new gauge interactions
is also a possibility. Indeed, if there are chiral fermions in the adjoint representation of the gauge group, hybrid
ψ̄λ condensates may also be possible. In these cases, the terms denoted by the ellipses in the supergravity
transformations may be relevant.
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with a mass. Although we do not analyze the details of the “supersymmetric Higgs

mechanism” here, we see from the first term of Eq. (10.58a) that the gravitino

becomes massive if the Kähler function G acquires a VEV:

i

2
e

G
2 ψ̄μσμνψν → i

2
e

G0
2 ψ̄μσμνψν, (10.64)

where G0 is the VEV of G. Thus the gravitino mass can be identified as

m2
3/2 = eG0 M2

P . (10.65)

The goldstino associated with either D- or F-type SUSY breaking is absorbed by

the gravitino, and does not appear in the physical spectrum, while the gravitino

becomes massive. Indeed, with an appropriate (field-dependent) choice of the local

SUSY transformation parameter (unitarity gauge choice), the goldstino field can

be completely eliminated from the Lagrangian.

We should also mention that the supertrace formula (7.35) that we obtained in

Chapter 7 is also modified if the supersymmetry is local. For the case of minimal

supergravity with N chiral supermultiplets, from Cremmer et al. we have

ST rM2 = 2
∑

A

DAT r (gtA) + (N − 1)(2m2
3/2 − DADA

M2
P

). (10.66)

The first term is the same as the case for global SUSY but the last term is new. This

term will play an important role in the next chapter where we consider realistic

supergravity models of particle physics.

Exercise For the flat Kähler metric show that the gravitino mass, assuming that
the cosmological constant vanishes, can be written as

m2
3/2 = 〈Fi Fi∗〉

3M2
P

, (10.67a)

where

Fi = e
G
2

(
G−1

) j

i
G j (10.67b)

is the auxiliary field whose VEV (10.61a) breaks supersymmetry.

An illustrative example: the Polonyi superpotential

A particularly simple illustration of the ideas that we have just discussed is obtained

for the minimal supergravity model with a single chiral scalar superfield coupled

via the Polonyi superpotential f̂ given by,

f̂ = m2
(
Ŝ + β

)
, (10.68)

where m2 and β are real constants.
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Figure 10.1 The scalar potential of the Polonyi model (in units of m4) versus

Re (S)/MP for the choice β = (2 − √
3)MP with ImS set to zero. Supersymmetry

is necessarily broken, and the cosmological constant is zero for this choice of
parameters.

It is straightforward to obtain the scalar potential which is given by,

V = m4eS
∗S

(∣
∣1 + S∗(S + β)

∣
∣2 − 3 |S + β|2

)

, (10.69a)

while the condition (10.62) for SUSY to remain unbroken becomes,

1 + S∗(S + β) = 0. (10.69b)

It is easy to see that SUSY is broken if β2 < 4 (in Planck units).

The scalar potential has several extrema. In the following, we confine ourselves

to those minima with V = 0, which implies
∣
∣1 + S∗(S + β)

∣
∣2 = 3 |S + β|2 .

We can see that S = (
√

3 − 1)MP is one such minimum if β = (2 − √
3)MP.10 The

shape of the scalar potential is shown in Fig. 10.1 for ImS = 0. In this minimum,

the gravitino mass is given by,

m3/2 = eG0/2 MP = e(2−√
3) m2

M2
P

MP. (10.70)

Thus, if the parameter m ∼ 1010 GeV, then m3/2 ∼ 100 GeV.

10 This is an incredible fine-tuning. For any other value of β the cosmological constant would be very large.
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Realistic supersymmetric models

It should be clear that, without further assumptions, the MSSM is not a tractable

framework for SUSY phenomenology: there are just too many free parameters.

This is not to say that we cannot do any phenomenology with the MSSM. First,

assuming only R-parity conservation, we know that all sparticles must decay into

other sparticles, until the decay chain terminates in the stable LSP. We have already

seen that cosmological considerations require that the LSP cannot have electromag-

netic or strong interactions. Since it couples to quarks and electrons only via weak
interactions, it behaves like a neutrino in that it escapes the experimental apparatus

undetected. As a result, the production of SUSY particles in high energy collisions

is generically signaled by events with apparent “missing energy and momentum”

(carried off by the undetected LSPs). With some mild assumptions of sparticle mass

ordering, other relatively robust inferences may also be possible. For instance, if we

assume that μ̃R is the only charged sparticle that is accessible at an e+e− collider,

and that the lightest neutralino is the LSP, we can conclude that

� smuons will be pair produced in e+e− collisions with cross sections that are fixed

in terms of mμ̃R
by known couplings to the photon and the Z -boson;

� both smuons will dominantly decay via μ̃R → μZ̃1.

Smuon pair production will thus be signaled by a calculable rate for missing energy

events with acolinear muon pairs. We will see later that this is the way that the

current bound on mμ̃R
is obtained from experiments at LEP2.

If instead W̃1 is the lightest charged sparticle, there are additional complica-

tions from the fact that it is a model-dependent mixture of charged gauginos and

higgsinos. The decays of other heavier sparticles are sensitively dependent on the

sparticle (and Higgs boson) mass ordering, as well as on the sparticle mixing

matrices discussed in Chapter 8. The size of the parameter space makes a gen-

eral analysis of heavy sparticle decay patterns quite intractable. The analysis of

261



262 Realistic supersymmetric models

SUSY loop-induced contributions to low energy processes is also complicated

for the same reason. Indeed, as we saw in Chapter 9, phenomenologically well-

motivated, but theoretically ad hoc, universality assumptions are invoked for these

analyses.

Clearly, the problem is that we do not have any theoretical principle for deter-

mining the soft SUSY breaking parameters of the MSSM. We speculate that the

MSSM is the low energy approximation to an underlying fundamental theory in

which SUSY is spontaneously broken by some as yet unknown dynamics. We hope

that experimental data on sparticle properties will guide us to this dynamics once

these are discovered. In the absence of such guidance, we adopt a “top-down” ap-

proach based on theoretical assumptions about how superpartners of SM particles

acquire masses, resulting in different models of supersymmetry.

The first attempts to construct supersymmetric theories of particle physics were

based on global supersymmetry, with the supersymmetry broken at the weak scale.

As we saw in Chapter 7 these attempts typically run into problems with the tree-level

mass sum rule (7.35). These problems can be avoided if

1. supersymmetry is promoted to a local symmetry, in which case the sum rule is

modified to (10.66); the term proportional to m3/2 on the right-hand side means

that the scalar masses can all be shifted up, thereby evading the phenomenolog-

ically unacceptable existence of scalars lighter than the fermions.

2. Alternatively, the tree-level sum rule of global supersymmetry can be evaded if

superpartners of SM particles get their masses only at the loop level.

Models that exploit both these alternatives have been constructed. A common

feature of all realistic supersymmetric models of particle physics is the necessity of

assuming a “hidden sector” whose dynamics somehow breaks supersymmetry. This

sector is dubbed hidden because it couples only indirectly (and very weakly) to the

“observable sector” of SM particles and their superpartners. The details of how su-

persymmetry is broken in this sector are, as we will see, unimportant for the physics

of the observable sector. What is important is “the agent” that couples the hidden and

observable sectors, and communicates the effects of SUSY breaking to the super-

partners of SM particles, which then acquire soft SUSY breaking masses and cou-

plings. The idea is that supersymmetry is broken at a scale F = M2
SUSY � M2

W in the

hidden sector where the goldstino resides. This sector is assumed to interact with the

observable sector only via the exchange of superheavy particles X . The couplings of

the goldstino to the observable particles are suppressed by (a power of) MSUSY/MX ,

and the effective mass gap in the observable sector is Meff ∼ M2
SUSY/MX (or, more

generally, Mn+1
SUSY/Mn

X , n = 1, 2, . . .). It is this gap that is required to be comparable
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to the weak scale, even though the fundamental SUSY breaking scale may be much

larger.1

The reason that this approach makes any sense at all is that the radiative correc-

tions in the observable sector correspond to the scale Meff. The effective potential

of the low energy theory (the observable sector) does not contain any terms of

O(M4
SUSY, M3

SUSY Meff, M2
SUSY M2

eff, MSUSY M3
eff) which would render the whole ap-

proach inconsistent. This was first analyzed by Polchinski and Susskind in a toy

model, and later by others in more realistic scenarios.2

Supersymmetric models are characterized by the agent that communicates super-

symmetry breaking effects in the hidden SUSY breaking sector to the observable

world. Since gravity couples universally to energy, gravitational interactions are

one obvious choice for mediating SUSY breaking effects. Indeed in a truly su-

persymmetric world, gravity mediation must be present. Whether its effects are

swamped by other things is the relevant issue. Of course, gravity-mediated SUSY

breaking requires that supersymmetry is local (as it must be if all interactions are

supersymmmetric), so that these models are based on supergravity. Supersymmetry

breaking effects may also be communicated by the usual SM gauge interactions. In

these so-called gauge-mediated supersymmetry breaking (GMSB) scenarios, new

“messenger fields” that couple directly to the hidden sector, but which also have

SM gauge couplings, act as mediators of SUSY breaking effects: MSSM gaugi-

nos and sfermions get supersymmetry breaking masses and couplings only at the

loop level, thereby evading the tree-level mass sum rule. We will see that both

supergravity models as well as GMSB models have the general structure of geo-

metric hierarchy models discussed above: since gravity is the mediator of SUSY

breaking in supergravity models, the scale MX is identified with the Planck scale,

and MSUSY ∼ 1010 GeV. In GMSB scenarios, MSUSY is identified with the mass

of messenger fields; if these are relatively light, the underlying SUSY breaking scale

can be much smaller than in gravity-mediated scenarios. More recently other me-

diation mechanisms, which could most naturally occur if the world had additional

(compactified) spatial dimensions, have also been considered.

In this chapter, we will introduce the physical ideas behind these various models,

focussing on the differences in their phenomenological implications. We emphasize

that each of these models is based on untested assumptions about physics at scales

well above the weak scale. It may be that these assumptions will prove to be

incorrect. The important thing, however, is that the models make characteristic

predictions which will be subject to test in experiments at high energy colliders. A

1 Indeed there were attempts to make realistic globally supersymmetric models based on this idea, with MX �
MW and n = 2. These models were dubbed geometric hierarchy models for obvious reasons.

2 J. Polchinski and L. Susskind, Phys. Rev. D26, 3661 (1982); L. Hall, J. Lykken and S. Weinberg, Phys. Rev.
D27, 2359 (1983), and references therein.
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common feature of all these scenarios is that sfermions with the same SU (3)C ×
SU (2)L × U (1)Y quantum numbers will turn out to have the same mass parameters

and the same A-parameters, renormalized at some high scale, so that unwanted

flavor-violating effects discussed in Chapter 9 are absent. The reader should keep

an eye open for how this comes about in each of these cases.

11.1 Gravity-mediated supersymmetry breaking

We begin our discussion of models by considering the case where gravitational

interactions mediate the effects of supersymmetry breaking in the hidden super-

symmetry breaking sector to the superpartners of SM particles. We will concentrate

on the form of the Lagrangian for the low energy theory that is obtained as a result

of coupling the hidden and SM sectors via supergravity, but will not write down

the most general formulae for the coefficients of the various terms in the resulting

low energy theory. These formulae are cumbersome and, in the absence of a com-

pelling high energy theory, not particularly useful for the abstraction of the low

energy phenomenology.

11.1.1 Hidden sector origin of soft supersymmetry breaking terms

We begin our construction of supergravity models by grouping the left-chiral su-

permultiplets of the model {Ŝi } into observable sector fields Ĉi (these include all

the MSSM fields) and the “hidden sector” fields ĥm . The ĥm fields are assumed

to be gauge singlets under the observable sector gauge symmetry group, which

may be taken to be GSM or a grand unifying group. The observable sector gauge

superfields are correspondingly chosen. The superpotential is chosen to be a sum

of two independent parts, with no “superpotential couplings” between them:3

f̂ (Ŝi ) = f̂ o(Ĉn) + f̂ h(ĥm). (11.1)

New gauge interactions (under which the SM particles are singlets), and the asso-

ciated degrees of freedom may also be present in the hidden sector.

The locally supersymmetric Lagrangian corresponding to these sets of fields

can be worked out using the general results of the previous chapter. With our as-

sumptions, (super)gravity is the only coupling between the hidden sector and the

observable sector. We assume that the dynamics of the hidden sector somehow

breaks supersymmetry. This could be by any of the mechanisms discussed in Chap-

ter 7. The goldstino degrees of freedom are absorbed by the gravitino which obtains

3 We may imagine that a symmetry forbids superpotential couplings between the hidden and observable sectors
if the superpotential is restricted to be polynomial in the fields. Since supergravity is not renormalizable, the
division into the two sectors appears to require an alternative explanation.
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a mass m3/2. The low energy effective field theory valid below the Planck scale is

obtained by taking the limit as MP → ∞, keeping m3/2 fixed. This will turn out to be

a renormalizable supersymmetric Yang–Mills theory based on the low energy gauge

group together with a slew of soft SUSY breaking (SSB) masses and couplings,

with magnitudes ∼ m3/2. It should be kept in mind that in this framework, higher di-

mensional, non-renormalizable operators (consistent with low energy symmetries)

suppressed by appropriate powers of MP will also be present. These operators are

referred to as “Planck slop” in the literature.

To illustrate this procedure, we will adopt a simple model wherein the ob-

servable sector consists of the fields of the MSSM, and the gauge symmetry is

SU (3)C × SU (2)L × U (1)Y. We take the hidden sector to consist of a single left-

chiral superfield ĥ whose dynamics breaks local supersymmetry. The hidden sector

superpotential f̂ h might be the Polonyi superpotential, although we will be some-

what more general than that.

We first work out the scalar potential for the case of the flat Kähler metric, with

K (Ŝ, Ŝ†) = ĥ†ĥ +
∑

n

Ĉ†nĈn.

We will return to the more general case later. This potential is given by,

V = e(S i∗Si )/M2
P

⎡

⎣

∣
∣
∣
∣
∣

∂ f̂

∂Si
+ S i∗ f̂

M2
P

∣
∣
∣
∣
∣

2

− 3

M2
P

| f̂ |2
⎤

⎦

= e(h∗h+Cn∗Cn)/M2
P

⎡

⎣

∣
∣
∣
∣
∣

∂ f̂ h

∂h
+ h∗ f̂

M2
P

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∂ f̂ o

∂Cn
+ Cn∗ f̂

M2
P

∣
∣
∣
∣
∣

2

− 3

M2
P

| f̂ |2
⎤

⎦ ,

(11.2)

where a sum over fields is implied. We assume that the F-component of the hidden

sector field ĥ develops a VEV ∼ m2 which breaks local SUSY and, further, that its

scalar component h develops a VEV of order MP as well. The VEVs of the scalar

components of the observable sector fields are assumed to be negligible compared

to MP. Accordingly, we parametrize these VEVs by,

〈h〉 = aMP, (11.3a)

and

〈 f̂ h〉 = bm2 MP and 〈∂ f̂ h

∂h
〉 = m2, (11.3b)

with a and b being dimensionless coefficients of order 1. For the specific

choice of the Polonyi model, a = √
3 − 1 and b = 1. The gravitino mass is
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given by,

m3/2 = bm2

MP

ea2/2. (11.3c)

The ratio m/MP is arbitrary at this point.

The next step in the calculation of the effective scalar potential of the “light”

observable sector fields valid at an energy scale Q 
 MP is to evaluate the scalar

potential with the “heavy” hidden sector field (whose quanta cannot be excited at

this low energy scale) set to its VEV. Finally, we take the flat space limit, MP → ∞
while keeping m3/2 fixed. The effective scalar potential reduces to,

Veff = m4ea2 [
(1 + ab)2 − 3b2

] +
∣
∣
∣
∣

∂ f̃ o

∂Cn

∣
∣
∣
∣

2

+ Vssb, (11.4a)

where f̃ o is the rescaled scalar superpotential f̃ o = ea2/2 f̂ o,

Vssb =
∑

n

[

1 +
(

a + 1

b

)2

− 3

]

m2
3/2|Cn|2

+ m3/2

∑

n

[
∂ f̃ o

∂Cn
Cn + A f̃ o + h.c.

]

, (11.4b)

and A = a
(

1
b + a

) − 3.

The first term of Veff in (11.4a) is the cosmological constant, which may be fine-

tuned to zero by adopting (1 + ab)2 = 3b2. The second term of Veff is the “usual”

superpotential contribution to the scalar potential, as in theories with global SUSY,

where f̃ o is now identified as the superpotential of the effective theory. The term Vssb

evidently contains various soft SUSY breaking terms. The first of these are mass

terms for the scalar components of the visible sector superfields: if the cosmological

constant is fine-tuned to zero, they are all given by mscalar = m3/2 in this simple case,

and the desired universality is obtained. We can choose m2 so that m3/2 ∼ Mweak,

the size required for low energy supersymmetry to stabilize the electroweak scale.

The smallness of the ratio m/MP still needs to be explained. The remaining terms

in Vssb correspond to bilinear and trilinear soft SUSY breaking terms, and are also

of order m3/2. These correspond to the b and a terms in (8.10) of Chapter 8. Notice

that the c terms discussed in Chapter 8 are absent; this is because of our simple

choice of the Kähler potential.

Before turning to the case of the general Kähler metric, we note that SUSY

breaking in the hidden sector may also lead to soft SUSY breaking gaugino masses

in the observable sector. This can clearly be seen from the first term in LG
F,Int in

(10.58b):

LG
F � 1

4
eG/2 ∂ f ∗

AB

∂S j∗ (G−1)
j
k Gk λ̄AλB . (11.5)
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In order to obtain non-zero gaugino masses, the gauge kinetic function must be

a non-trivial function of hidden sector fields, and SUSY must be broken; i.e.

〈Gk〉 �= 0. Since 〈Gk〉 ∼ m2, and ∂ f ∗
AB/∂S j∗ ∼ 1/MP, we expect that the resulting

gaugino mass m1/2 ∼ m2/MP ∼ m3/2, and is also of order the weak scale. Clearly,

without any assumptions about unification of gauge interactions, we will obtain

independent masses for SU (3)C, SU (2)L, and U (1)Y gauginos.

We should keep in mind that the soft SUSY breaking effective Lagrangian for the

low energy theory that we have just obtained will still obtain radiative corrections

from the interactions in this low energy theory. Although this low energy theory

may be weakly coupled, these radiative corrections would be expected to depend

on k = g2

8π2 ln(MP/m3/2), where g is a typical coupling in the low energy theory (it

could be one of the gauge couplings.) Since k is not small, it is important to sum

these logarithms. This is done by using “running parameters” obtained by solving

the renormalization group equations discussed in Chapter 9. In other words, the

parameters in the “low energy theory” should be regarded as renormalized at some

high scale ∼ MP.

The careful reader will have traced the reason for universal masses in (11.4b) to

our assumption of a flat Kähler metric. More general forms of the Kähler potential

lead to non-universal SSB masses and couplings as can be seen from the exercise

at the end of this section. This was first pointed out by Soni and Weldon.4 Rather

than list the rather complicated expressions for these parameters, we will just note

several important features:

1. Although universality is not a generic feature of supergravity models, the scale

of SSB masses and couplings is generally still set by m3/2.

2. The trilinear a terms, in general, are not proportional to the corresponding su-

perpotential Yukawa couplings.

3. Trilinear c terms are possible, but are suppressed by higher powers of MP.

Regarding the first point, we should mention that even if we do arrange for a model

with universal scalar masses at tree level (for instance, by the minimal choice for

the Kähler potential), loop corrections will in general spoil the degeneracy. Indeed,

assuming universal scalar masses is tantamount to assuming a U (n) symmetry

amongst the n observable sector superfields. However, this symmetry is explicitly

broken by superpotential Yukawa couplings in the observable sector. Moreover,

there is no theoretical argument for such a symmetry. Thus, while it might be possi-

ble to accommodate universality by making technical assumptions of the underlying

physics, it seems fair to say that universality is not a generic feature of supergravity

4 S. Soni and H. A. Weldon, Phys. Lett. 126B, 215 (1983). Convenient general expressions for the soft SUSY
breaking parameters are given by A. Brignole et al. in Perspectives on Supersymmetry, edited by G. Kane,
World Scientific (1998).
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models. This has provided motivation for the construction of alternative scenarios

where the scalar mass degeneracies needed for solving the SUSY flavor and C P
problems occur for different reasons.

Exercise (Non-universal scalar masses) Show that the low energy effective po-
tential leads to non-universal scalar mass terms if the Kähler potential has the
form,

K (Ŝ, Ŝ†) = ĥ†ĥ +
∑

n

K̃n

(

ĥĥ†

M2
P

)

Ĉ†nĈn,

where K̃n are dimensionless functions of the hidden sector field. Remember that
for this Kähler potential the kinetic energy terms of the scalar components of Ĉn

do not have the canonical form, so that these fields have to be rescaled to obtain
canonical kinetic energies. Notice that this redefinition implies that we would have
obtained universal mass terms if Kn had just been some constants rather than
field-dependent functions.

Check also the form of supersymmetry breaking trilinear interactions in the low
energy theory. Are the A terms universal?

Exercise We found that c-type trilinears were absent in the minimal model. Con-
vince yourself that this type of SUSY trilinears can arise if one allows trilinear terms
in the Kähler potential. Remember that these terms will always be suppressed by
powers of MP.

Although the details of the hidden sector are unimportant for low energy phe-

nomenology, it is gratifying to see such a hidden sector is present in many theoretical

frameworks. For instance, in heterotic string models, there is a natural, built-in hid-

den sector comprised of the dilaton field S, arising from the gravitational sector of

the theory, and the moduli fields Ti , which parametrize the size and shape of the

compactification. If the auxiliary fields of these multiplets provide the seeds for

SUSY breaking, then the resulting effective theory below the Planck scale may be

just a four-dimensional supersymmetric gauge theory with weak scale soft SUSY

breaking terms.

11.1.2 Why is the μ parameter small?

We have just seen that supergravity models provide a rationale for why the scale of

SUSY breaking parameters of the MSSM is much smaller than MP. On dimensional

grounds we would expect though that the supersymmetry conserving μ parameter
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to be of order MP rather than m3/2, which would destroy the mechanism for elec-

troweak symmetry breaking in SUSY models. This is known as the μ problem.

Supergravity models provide an elegant mechanism for generating the μ term

with the right magnitude, provided that we assume thatμ is forbidden by a symmetry

that is violated only by interactions with the hidden sector.5 Although it would then

be absent in the tree-level superpotential of the observable sector, an effective μ

term would develop via the gravitational interactions with the hidden sector. To see

this, we note that there is nothing to forbid a (non-renormalizable) term,

K (ĥ, Ĥu, Ĥd) � λĥ† Ĥu Ĥd

MP

, (11.6a)

in the Kähler potential, where ĥ is a hidden sector left-chiral superfield and Ĥu and

Ĥd the Higgs superfields of the MSSM. Since the F-component of ĥ develops a

VEV ∼ m2, the action of the low energy effective theory includes a term,
∫

d4xL � −1

4

∫

d4xd4θ K (ĥ, Ĥu, Ĥd) + h.c.

∼ m2λ

MP

∫

d4xd2θ Ĥu Ĥd + h.c. (11.6b)

The reader will recognize this as the superpotential μ term of the MSSM, with a

magnitude |μ| ∼ m3/2 as phenomenologically required.

11.1.3 Supergravity Grand Unification (SUGRA GUTs)

Minimal supergravity (mSUGRA) model

We have already encountered the minimal supergravity (mSUGRA) model in Chap-

ter 9 where we adopted the universality hypothesis for gaugino masses, scalar

masses and the various A-parameters at a high scale Q ∼ MGUT. This scenario

can be obtained within the framework with gravity mediated SUSY breaking.6

The choice of a flat Kähler metric leads to a common mass for all scalars of

m2
0 = m2

3/2 + V0/M2
P, where V0 is the minimum of the scalar potential. It is this

technical assumption of the “minimal” choice of the Kähler potential that the “min-

imal” in minimal supergravity refers to. In this case though universality is likely

to hold closer to Q ∼ MP. Common gaugino masses at Q = MGUT may arise be-

cause of grand unification of gauge interactions. But these may also be obtained

by assuming that the gauge kinetic function has the same field dependence on the

5 G. F. Giudice and A. Masiero, Phys. Lett. 206B, 480 (1988).
6 A. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49, 970 (1982); R. Barbieri, S. Ferrara and C. Savoy,

Phys. Lett. B 119, 343 (1982); N. Ohta, Prog. Theor. Phys. 70, 542 (1983); L. Hall, J. Lykken and S. Weinberg,
Phys. Rev. D27, 2359 (1983).
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hidden sector fields, for each factor of gauge symmetry: e.g. f a
AB = caδAB f (hm),

where a labels the different factors of the gauge group, and ca are real numbers.

The constants ca disappear from the mass term upon canonical normalization of

the gaugino kinetic energy terms.

The fundamental parameters of the model are the set (9.22). We have already

seen that radiative EWSB (discussed in Chapter 9) allows us to trade the bilinear

SSB parameter B (equivalently B0) in favor of tan β, and also to fix the value of

μ2 to reproduce the experimental value of MZ . Then, the parameter space of the

model is given by

m0, m1/2, A0, tan β, sign (μ). (11.7)

It is common to assume that the universality of SSB parameters holds at MGUT

rather than MP.

SU (5) supergravity GUT model

We will assume that the reader is familiar with the motivations for grand unification.

Grand unified theories are especially attractive when combined with supergravity.

The simplest model, based on SU (5) gauge symmetry,

� allows for unification of the gauge symmetries of the SM into a single Lie group,
� provides a group theoretic explanation for the ad hoc hypercharge assignments

of the SM or MSSM fields.

It is usually assumed that supersymmetric SU (5) grand unification is valid at mass

scales Q > MGUT 
 2 × 1016 GeV, extending at most to the reduced Planck scale

MP where gravitational effects become sizable. Below Q = MGUT, the SU (5) model

(with a minimal matter content) breaks down to the MSSM with the usual SU (3)C ×
SU (2)L × U (1)Y gauge symmetry.

In the SU (5) model, the D̂c and L̂ superfields are members of a 5̄ superfield

φ̂, while the Q̂, Û c, and Êc superfields occur in the 10 representation ψ̂ . There

is a replication of generations. The Higgs sector of the minimal SU (5) model

is comprised of three super-multiplets: 
̂(24) which is responsible for breaking

SU (5), together with Ĥ1(5) and Ĥ2(5) which contain the MSSM Higgs doublet

superfields Ĥd and Ĥu respectively.7 The superpotential is given by,

f̂ = μ
Tr
̂2 + 1

6
λ
Tr
̂3 + μHĤ1Ĥ2 + λĤ1
̂Ĥ2

+1

4
ftεi jklmψ̂ i j ψ̂klĤm

2 +
√

2 fbψ̂
i j φ̂iĤ1 j + · · · , (11.8a)

7 This is the primary reason why we assigned Ĥd to transform as the 2∗ representation of SU (2)L.



11.1 Gravity-mediated supersymmetry breaking 271

where we neglect the Yukawa couplings of the first two generations, and retain just

ft and fb, the top and bottom quark Yukawa couplings. The couplings λ and λ
 are

GUT Higgs sector self-couplings, and μ
 and μH are superpotential Higgs mass

terms. Note that in this model fb = fτ when the SU (5) symmetry is unbroken.

Proton decay is the smoking gun signature of grand unification. In non-

supersymmetric GUTs, this occurs via dimension 6 operators involving X and

Y gauge bosons. In supersymmetric GUTs, proton decay can also be mediated by

color-triplet higgsinos which, being fermions, lead to dimension 5 baryon-number-

violating operators which are potentially much more dangerous.8 Furthermore,

higgsino-mediated proton decay depends on Yukawa couplings. As a result, in

SUSY GUTs, the proton preferentially decays to kaons rather than to pions as in

standard GUTs.

Soft supersymmetry breaking terms are induced by hidden sector local SUSY

breaking, and are parametrized by:

Lsoft = −m2
H1

|H1|2 − m2
H2

|H2|2 − m2

Tr{
†
} − m2

5|φ|2 − m2
10Tr{ψ†ψ}

−1

2
M5λ̄αλα

+
[

B
μ
Tr
2 + 1

6
Aλ


λ
Tr
3 + BHμHH1H2 + AλλH1
H2

+ 1

4
At ftεi jklmψ i jψklHm

2 +
√

2Ab fbψ
i jφiH1 j + h.c.

]

. (11.8b)

The various SSB parameters and the gauge and Yukawa couplings evolve with

energy scale according to 15 renormalization group equations (the first two gener-

ations are degenerate). Assuming universality at MP, one imposes

m10 = m5 = mH1
= mH2

= m
 ≡ m0

At = Ab = Aλ = Aλ

≡ A0, (11.9a)

and evolves all the soft masses from MP to MGUT. Although there are no large

logarithms or couplings, there is substantial evolution due to large group theory

factors arising from the fact that the representations contain many particles. The

MSSM soft breaking masses at MGUT are specified via

m2
Q = m2

U = m2
E ≡ m2

10, m2
D = m2

L ≡ m2
5,

m2
Hd

= m2
H1

, m2
Hu

= m2
H2

. (11.10)

8 Indeed, if λ <∼ 0.7, triplet higgsinos are too light and one runs into trouble with constraints from proton decay.
Some authors have argued that these constraints, in fact, rule out minimal SUSY SU (5). It is clear, however, that
the proton decay rate depends on the unknown details of GUT scale physics, and can be altered by complicating
the GUT sector. For this reason, we will not consider such constraints here.
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Figure 11.1 Evolution of SSB masses for a typical case study in SUSY SU (5)
GUT model with tan β = 35, which allows for b-τ Yukawa unification. We choose
λ = 0.7 and λ
 = 0.1. Although not shown, At and Ab evolve to −88 GeV and
−78 GeV at Q = MGUT. Reprinted from H. Baer, M. Diáz, P. Quintana and X.
Tata, JHEP 04, 016 (2000).

The evolution of SSB masses in SUSY SU (5) is shown in Fig. 11.1. A striking

feature is the sizable GUT scale splitting between the Higgs and matter scalar mass

parameters, arising from the large λ Yukawa coupling contribution to the running

of Higgs boson mass parameters. The masses of the 10 and 5∗ multiplets evolve

differently, as do those of multiplets of the different generations. In particular, third

generation multiplet masses are somewhat suppressed compared to their counter-

parts of the first two generations owing to Yukawa coupling contributions to the

RGE running. Thus, even in an SU (5) SUGRA GUT model, we would expect non-

universality. However, scalar masses for multiplets in the first two generations are

still highly degenerate, so that FCNCs are suppressed. We have also checked that

even if we start with A0 = 0 at Q = MP, sizable values of At and Ab are generated

at Q = MGUT. This could have a significant effect on the phenomenology of third

generation sparticles.

Exercise Draw a Feynman diagram involving triplet higgsino exchange for the
baryon number violating process,

d̃ũ → s̄ν̄μ.

Notice that the squarks in the initial state can be obtained from u and d quarks by
exchanging a chargino. This “dressed” diagram mediates the process du → s̄ν̄μ
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which in turn can cause p → K +ν̄μ. Convince yourself that the amplitude for this
process is suppressed only by a single power of MGUT and, hence, is much larger
than that of the baryon number violating amplitude mediated by exchange of GUT
gauge bosons.

Non-universal gaugino masses

Since there is no reason to expect the gauge kinetic function to be field independent,

gaugino masses are a generic prediction of supergravity models (or for that mat-

ter any non-renormalizable theory with broken supersymmetry). Moreover, (11.5)

shows that the gaugino mass scale in the effective low energy theory is expected to

be ∼ m3/2. Gauge invariance dictates that the gauge kinetic function must transform

as the symmetric product of two adjoints under the gauge symmetry. If any of the

auxiliary fields that break supersymmetry transform non-trivially under the grand

unifying gauge group (but of course as an MSSM gauge singlet), non-universal

MSSM gaugino masses are obtained. These may then be parametrized by,

L ⊃ 〈Fh〉AB

MP

λAλB + · · · (11.11)

where the λA are the gaugino fields, and Fh is the auxiliary field component of ĥ
that acquires a SUSY, and possibly GUT symmetry, breaking VEV. It is only in the

special case where the fields Fh which break supersymmetry are GUT singlets that

universal gaugino masses are obtained.

In the context of SU (5) grand unification, Fh belongs to an SU (5) representation

which appears in the symmetric product of two adjoints:

(24×24)symmetric = 1 ⊕ 24 ⊕ 75 ⊕ 200 , (11.12)

where only 1 yields universal masses. If instead Fh transforms as any other irre-

ducible representation that appears in (11.12), the MSSM gaugino mass parameters

at Q = MGUT, though different, are related by group theory. The weak scale gaugino

masses are then obtained by renormalization group evolution, starting from these

non-universal values, as discussed in Chapter 9. The relative GUT scale SU (3),

SU (2), and U (1) gaugino masses M3, M2, and M1 are listed in Table 11.1 along

with the approximate masses after RGE evolution to Q ∼ MZ . These scenarios

represent the predictive subset of the more general (and less predictive) case of

an arbitrary superposition of these representations. The model parameters may be

chosen to be,

m0, M0
3 , A0, tan β, and sign (μ), (11.13)

where M0
i is the SU (i) gaugino mass at scale Q = MGUT. M0

2 and M0
1 can be

obtained in terms of M0
3 via Table 11.1. Notice that the nature of the neutralino LSP
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Table 11.1 Relative gaugino mass parameters at
Q = MGUT and their relative values evolved to Q = MZ in
the four possible Fh irreducible representations in SU (5)

SUSY GUTS.

MGUT MZ

Fh M3 M2 M1 M3 M2 M1

1 1 1 1 ∼6 ∼2 ∼1
24 2 −3 −1 ∼12 ∼ − 6 ∼ − 1
75 1 3 −5 ∼6 ∼6 ∼ − 5

200 1 2 10 ∼6 ∼4 ∼10

as well as the mass gap between the LSP and Z̃2 depend on the gauge transformation

properties of Fh: as a result, SUSY phenomenology changes significantly in the

different scenarios.9

SO(10) supergravity GUT models

We saw in Section 9.7 that it is necessary to introduce right-handed neutrino su-

perfields in order to give neutrinos a mass without spoiling the conservation of

R-parity. Within the MSSM, or within the SU (5) GUT framework just discussed,

these gauge singlet superfields had to be introduced ad hoc. The body of evidence

in support of neutrino mass, however, makes the grand unified group SO(10) espe-

cially appealing because the minimal SO(10) model contains three generations of

matter superfields, with each generation together with a singlet neutrino superfield

N̂ c included in the 16-dimensional spinorial representation ψ̂16. Thus, SO(10) al-

lows not only for gauge group unification, but also for unification of matter in each

generation into a single irreducible representation. Morover, singlet neutrinos es-

sential for the implementation of the see-saw mechanism occur automatically in this

framework. The Higgs bosons Ĥu and Ĥd lie within a 10-dimensional fundamental

representation φ̂10. The superpotential for the model includes the term

f̂ � f ψ̂16ψ̂16φ̂10 + · · · , (11.14)

responsible for quark and lepton masses, with f being the single Yukawa coupling

per generation in the GUT scale theory. The ellipsis represents terms including for

instance higher dimensional Higgs representations and interactions responsible for

the breaking of SO(10).

9 G. Anderson et al., Phys. Rev. D61, 095005 (2000).
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The unification of Yukawa couplings of each generation means that the third

generation neutrino Yukawa coupling fν is large: fν = ft . The third generation

neutrino Yukawa coupling fν splits τ̃L and ν̃τ masses from their first and second

generation cousins, in the same way that tau Yukawa couplings split the staus from

other slepton masses. In some models, this splitting is potentially measurable in

linear collider experiments.

The soft SUSY breaking terms will include a common mass m16 for all matter

scalars and a mass m10 for the Higgs scalars, along with a universal gaugino mass

m1/2, and common trilinear and bilinear SSB masses A0 and B. Motivated by

apparent gauge coupling unification in the MSSM, it is common to assume that

SO(10) breaks directly to the gauge group SU (3)C × SU (2)L × U (1)Y at Q =
MGUT = 2 × 1016 GeV, though SO(10) could well have broken to SU (5) at a yet

higher scale.

A novel feature arises because the rank of SO(10) (the rank is the largest number

of mutually commuting generators) is one higher than that of the MSSM gauge

group. This effectively means that SO(10) includes a (broken) U (1)X factor that is

not a low energy symmetry. Naively, one would suppose that if the U (1)X breaking

scale MX is sufficiently large, U (1)X would be negligible for TeV scale physics.

To see that this is not the case, let us consider a simple toy model, where U (1)X

is broken by VEVs of a pair of MSSM gauge singlet fields � and �̄ with U (1)X

charges +1 and −1, respectively. If we denote the scalar components of the MSSM

fields by Si and their U (1)X charges by xi , we can write the scalar potential that

determines 〈�〉 and 〈�̄〉 as,

V = Vsymm(�, �̄) + m2|�|2 + m2|�̄|2 + g2
X

2

[|�|2 − |�̄|2 + xi |Si |2
]2

. (11.15)

The term Vsymm comes from the superpotential for the heavy fields and is chosen

to be symmetric under � ↔ �̄. The next two terms are SSB masses for the heavy

fields � and �̄: they are of order of the weak scale, but otherwise unrelated. The

last term, which is the usual U (1)X D-term contribution to the potential, forces the

minimum to be along the nearly D-flat direction 〈�〉 ≈ 〈�̄〉. However, if m �= m,

the minimum of the potential deviates from the D-flat direction by,

〈�〉2 − 〈�̄〉2 
 m2 − m2

2g2
X

. (11.16)

The last term in (11.15) then shows that the MSSM scalars Si receive an additional

contribution to the mass proportional to their U (1)X charge,

�m2
i = xi

2
× (m2 − m2), (11.17)
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which by (11.16) is of order the weak scale. Thus U (1)X leaves its imprint on the

MSSM sfermion mass spectrum even if MX is very large.

Returning to the SO(10) model, the scalar field squared mass parameters at

Q = MGUT are then given by

m2
Q = m2

E = m2
U = m2

16 + M2
D

m2
D = m2

L = m2
16 − 3M2

D

m2
Hu,d

= m2
10 ∓ 2M2

D

m2
N = m2

16 + 5M2
D, (11.18)

where M2
D parametrizes the magnitude of the U (1)X D-terms just discussed, and

can, owing to our ignorance of the gauge symmetry breaking mechanism, be taken

as a free parameter of order of the weak scale, with either positive or negative

values. Thus, the model is characterized by the following free parameters

m16, m10, M2
D, m1/2, A0, sign (μ). (11.19)

Since

mt

mb
∼ ftvu

fbvd
,

solutions with unification of Yukawa couplings are possible only for large values

of tan β. This argument is only qualitative because radiative corrections to mb are

very important. In practice, the value of tan β is restricted by the requirement of

Yukawa coupling unification, and so is tightly constrained to a narrow range around

tan β ∼ 50–55.

Inverted hierarchy models

A phenomenologically interesting class of models referred to as inverted mass hi-
erarchy (IMH) models, have the matter sfermion mass order inverted from the

order of the corresponding fermions. Specifically, scalars of the first and second

generation are expected to have masses at the multi-TeV scale so that a decoupling

solution to the SUSY flavor and C P problems may be invoked. Because these spar-

ticles have very tiny couplings to the Higgs sector, they do not lead to unnaturally

large fine-tuning. On the other hand, third generation sfermions (which have large

couplings to the Higgs sector) are expected to be in the sub-TeV mass range to

accommodate constraints from naturalness.

One class of IMH models has the inverted mass hierarchy generated radiatively.

In this case, all the scalars begin with multi-TeV masses at the GUT scale, while

gaugino masses are in the sub-TeV range. In models with Yukawa unification and
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SO(10)-like GUT scale boundary conditions of

4A2
0 = 2m2

10 = m2
16, (11.20)

the large third generation Yukawa coupling acts to drive third generation and Higgs

scalars to sub-TeV values, while leaving multi-TeV first and second generation

scalars. A positive D-term contribution with MD ∼ m16/3 is needed for radiative

symmetry breaking.10 When fully implemented, including constraints from radia-

tive EWSB, it turns out that first and second generation scalars as heavy as 2–3 TeV

can be allowed. This is sufficient to suppress many C P-violating processes, but is

not enough to fully suppress FCNCs. Such a model might be viable if it is coupled

with a partial degeneracy solution for first and second generation scalars. Yukawa

coupling unification is also possible for first and second generation scalar masses

∼8–10 TeV, but third generation sfermions then have masses around 3–5 TeV.

A second class of IMH models arises if one assumes an IMH already in place at

the GUT scale. This may be possible in non-minimal gravity-mediated models. In

evaluating sparticle mass spectra from these GUT scale IMH models, it is crucial

to use two-loop RGEs. The form of the two-loop RGEs for SSB masses is given by

dm2
i

dt
= 1

16π2
β

(1)

m2
i
+ 1

(16π2)2
β

(2)

m2
i
, (11.21)

where t = ln Q, i = Q j , U j , D j , L j , and E j , and j = 1–3 is a generation index.

The one-loop β-function for the evolution of (the initially sub-TeV) third generation

scalar masses depends only on these scalar masses and the (also sub-TeV) gaugino

masses. Two-loop terms are formally suppressed relative to one-loop terms by the

square of a coupling constant as well as an additional loop factor of 16π2. However,

these two-loop terms include contributions from all scalars. Specifically, the two-

loop β functions include,

β
(2)

m2
i

� ai g
2
3σ3 + bi g

2
2σ2 + ci g

2
1σ1, (11.22)

where

σ1 = 1

5
g2

1

{
3(m2

Hu
+ m2

Hd
) + T r [m2

Q + 3m2
L + 8m2

U + 2m2
D + 6m2

E ]
}
,

σ2 = g2
2

{
m2

Hu
+ m2

Hd
+ T r [3m2

Q + m2
L ]

}
, and

σ3 = g2
3 T r [2m2

Q + m2
U + m2

D],

and the m2
i are squared mass matrices in generation space. The numerical coeffi-

cients ai , bi , and ci are related to the quantum numbers of the scalar fields, but are

10 Such a D-term reduces m2
Hu

relative to m2
Hd

, which facilitates EWSB. Indeed, slightly better Yukawa coupling

unification is obtained if the D-term splitting is applied to just the Higgs scalars rather than to all the sparticles,
but a qualitatively similar hierarchy is obtained.
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all positive quantities. Thus, incorporation of multi-TeV masses for the first and

second generation scalars leads to an overall positive, possibly dominant, contribu-

tion to the slope of SSB mass trajectories versus energy scale. Although formally a

two-loop effect, the smallness of the couplings is compensated by the much larger

values of masses of the first two generations of scalars. In running from MGUT to

Mweak, this results in an overall reduction of scalar masses, and is most important

for the sub-TeV third generation scalar masses which may be driven tachyonic.

That this not occur then constrains the size of the hierarchy. For values of SSB

masses which fall short of these constraints, a sort of see-saw effect amongst scalar

masses occurs: the higher the value of first and second generation scalar masses,

the larger will be the two-loop suppression of third generation and Higgs scalar

masses. In this class of models, first and second generation scalars with masses of

order 10–15 TeV may co-exist with sub-TeV third generation scalars, thus giving

a very large suppression to both FCNC and C P-violating processes.

11.2 Anomaly-mediated SUSY breaking

In supergravity models, MSSM soft SUSY breaking parameters are thought to

arise from tree-level gravitational interactions of observable sector superfields with

gauge singlet hidden sector fields that can acquire a Planck scale VEV. It was

subsequently recognized that there is an additional one-loop contribution to SSB

parameters that is always present when SUSY is broken.11 Usually this latter con-

tribution, which originates in the super-Weyl anomaly (and is, therefore, called the

anomaly-mediated supersymmetry breaking (AMSB) contribution), only makes a

loop suppressed correction to the leading tree-level SSB parameters, so that the pat-

tern of sparticle masses is qualitatively unchanged from what we have described in

the last section. However, in models without SM gauge singlet superfields that can

acquire a Planck scale VEV, the usual supergravity contribution to gaugino masses

is suppressed by an additional factor MSUSY/MP relative to m 3
2

= M2
SUSY/MP, and

the anomaly-mediated contribution can dominate. Extra dimensional theories po-

tentially offer an alternative way to suppress supergravity couplings between the

observable sector and the hidden sector (goldstino) field which lead to tree-level

MSSM SSB parameters ∼ m 3
2
: these supergravity contributions may be exponen-

tially suppressed if the SUSY breaking and visible sectors reside on different branes

that are “sufficiently separated” in a higher dimensional space.12 In this case, the

suppression is the result of geometry and not a symmetry, though then one has to

wonder about the dynamics that results in such a geometry. Moreover, it has been

11 L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999); G. Giudice et al., JHEP 12, 027 (1998).
12 The term brane means a lower dimensional spatial slice of the entire space.
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argued that while it is possible to find models where AMSB terms may dominate,

their construction appears to require more than just spatial separation between the

observable sector and SUSY breaking branes.13

A derivation of the AMSB contribution to SSB parameters would require tech-

niques beyond those that we have developed. We will, therefore, simply list the

relevant results and proceed to discuss their implications. Before doing so, we note

that these contributions are determined just by the super-conformal anomaly. Since

anomalies depend only on the low energy theory, the AMSB contributions to SSB

parameters are insensitive to (unknown) physics at the high scale. These contribu-

tions, which can be written in terms of the β-functions and anomalous dimensions

of the theory with unbroken supersymmetry, can be explicitly checked to be in-

variant under renormalization group evolution, consistent with their insensitivity

to ultra-violet physics.14

The AMSB contribution to the gaugino mass is given by,

Mi = βgi

gi
m 3

2
, (11.23)

where βgi is the corresponding beta function, defined by βgi ≡ dgi/d ln μ. The

gaugino masses are not universal, but given by the ratios of the respective β-

functions.

The anomaly-mediated contribution to the scalar mass parameter is given by,

m2
f̃ = −1

4

{
dγ

dg
βg + dγ

d f
β f

}

m2
3
2

, (11.24)

where β f is the β-function for the corresponding superpotential Yukawa coupling,

and γ = ∂ ln Z/∂ ln μ, with Z the wave function renormalization constant. Finally,

the anomaly-mediated contribution to the trilinear SUSY breaking scalar coupling

is given by,

A f = β f

f
m 3

2
. (11.25)

The following features of the AMSB contributions to the SSB parameters are

worth noting.

1. AMSB contributions to gaugino and sfermion masses as well as A-parameters

are all of the same scale, m3/2/16π2. Requiring this to be the weak scale puts

the gravitino mass in a cosmologically safe range.15

13 See A. Anisimov, M. Dine, M. Graesser and S. Thomas, Phys. Rev. D65, 105011 (2002).
14 Indeed the AMSB expressions for scalar masses and A-parameters were first obtained via this route. See I. Jack,

D.R.T. Jones and A. Pickering, Phys. Lett. B426, 73 (1998); L. Avdeev, D. Kazakov and I. Kondrashuk, Nucl.
Phys. B510, 289 (1998).

15 See e.g. S. Weinberg, The Quantum Theory of Fields, Vol. III, p 198, Cambridge University Press (2000).
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2. Since Yukawa interactions are negligible for the first two generations, the

anomaly-mediated contributions to the masses of the corresponding matter

scalars with the same gauge quantum numbers are essentially equal. This

solves the SUSY flavor problem if the AMSB contribution is dominant. In-

deed the ultra-violet insensitivity of the AMSB scenario guarantees that no fla-

vor violation results from high scale physics as long as AMSB contributions

dominate.

3. The anomaly contribution turns out to be negative for sleptons, necessitating

additional sources for the squared masses of scalars. Since the masses are in-

sensitive to high scale physics, we cannot ameliorate this within this framework

by adding new fields at the high scale. There are several proposals in the lit-

erature, but phenomenologically it suffices to add a universal contribution m2
0

(which, of course, preserves the desired degeneracy between the first two gen-

erations of scalars) to Eq. (11.24), and regard m0 as an additional parameter. It

is assumed that the ad hoc introduction of m2
0 in Eq. (11.24) does not affect the

other parameters. This is referred to as the minimal AMSB model which we now

examine.

11.2.1 The minimal AMSB (mAMSB) model

As we have just mentioned, the mAMSB model is defined by assuming that gaugino

masses and A-parameters are given by (11.23) and (11.25), respectively while the

expression for SSB scalar masses is amended by the addition of a (sufficiently

large) universal mass parameter m2
0 to make slepton masses positive. It is assumed

that the AMSB mass relations hold at Q = MGUT, and weak scale parameters are

obtained from these via RGE evolution.

At one-loop level, with the field content of the MSSM at low energy, gaugino

masses are given by,

M1 = 33

5

g2
1

16π2
m3/2, (11.26a)

M2 = g2
2

16π2
m3/2, and (11.26b)

M3 = −3
g2

3

16π2
m3/2. (11.26c)

Notice the differing sign on the gluino mass term. This has implications for the sign

of the SUSY contribution to the anomalous magnetic moment of the muon. Third
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generation scalar masses are given by

m2
U3

=
(

−88

25
g4

1 + 8g4
3 + 2 ft β̂ ft

)
m2

3/2

(16π2)2
+ m2

0, (11.27a)

m2
D3

=
(

−22

25
g4

1 + 8g4
3 + 2 fbβ̂ fb

)
m2

3/2

(16π2)2
+ m2

0, (11.27b)

m2
Q3

=
(

−11

50
g4

1 − 3

2
g4

2 + 8g4
3 + ft β̂ ft + fbβ̂ fb

)
m2

3/2

(16π2)2
+ m2

0, (11.27c)

m2
L3

=
(

−99

50
g4

1 − 3

2
g4

2 + fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0, (11.27d)

m2
E3

=
(

−198

25
g4

1 + 2 fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0, (11.27e)

m2
Hu

=
(

−99

50
g4

1 − 3

2
g4

2 + 3 ft β̂ ft

)
m2

3/2

(16π2)2
+ m2

0, (11.27f)

m2
Hd

=
(

−99

50
g4

1 − 3

2
g4

2 + 3 fbβ̂ fb + fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0. (11.27g)

The A-parameters are given by,

At = β̂ ft

ft

m3/2

16π2
, (11.28a)

Ab = β̂ fb

fb

m3/2

16π2
, and (11.28b)

Aτ = β̂ fτ

fτ

m3/2

16π2
. (11.28c)

The quantities β̂ fi that enter the expressions for scalar masses and A-parameters

are given by,

β̂ ft = 16π2βt = ft

(

−13

15
g2

1 − 3g2
2 − 16

3
g2

3 + 6 f 2
t + f 2

b

)

, (11.29a)

β̂ fb = 16π2βb

= fb

(

− 7

15
g2

1 − 3g2
2 − 16

3
g2

3 + f 2
t + 6 f 2

b + f 2
τ

)

, (11.29b)

β̂ fτ = 16π2βτ = fτ

(

−9

5
g2

1 − 3g2
2 + 3 f 2

b + 4 f 2
τ

)

. (11.29c)

The first two generations of squark and slepton masses are given by the correspond-

ing formulae above with the Yukawa couplings set to zero. Eq. (11.26a)–(11.28c)
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serve as RGE boundary conditions at Q = MGUT. We evolve the MSSM parameters

to the weak scale and, as usual obtain B and μ2 in accord with the constraint from

radiative electroweak symmetry breaking. The model is, therefore, characterized

by the parameter set,

m0, m3/2, tan β, and sign (μ). (11.30)

The most notable feature of this framework is the hierarchy of gaugino masses.

The gluino is (as in models with unified gaugino mass parameters) much heavier

than the electroweak gauginos, but the novel feature is that M1/M2 ∼ 3, so that the

wino is lighter than the bino. Ignoring gaugino–higgsino mixing, the charged and

neutral components of the SU (2) gauginos would be degenerate: it is important to

include radiative corrections to decide which of these is the LSP. Happily, these

make the neutralino lighter than the chargino (else the model would be in trouble

with cosmology). The near degeneracy of the chargino and the wino LSP have

implications for particle phenomenology as well as cosmology. In particular, for

the evaluation of the relic neutralino density, charginos and neutralinos coexist at the

neutralino decoupling temperature, and co-annihilation effects are very important.

In Table 11.2, we show sparticle masses in the minimal AMSB model for two

values of m0, with other parameters being the same. Note that the parameter m3/2

should be selected typically above 30–35 TeV to evade constraints from LEP ex-

periments. From the spectra in the table, we see that for the smaller value of m0,

sleptons can be very light, though for very large values of m0 they will be degener-

ate with squarks. We observe several characteristics of the AMSB spectrum. Most

notable is that the W̃1 and Z̃1 are nearly degenerate in mass, so that in addition to

the usual leptonic decay modes W̃1 → Z̃1�ν, the only other kinematically allowed

(and in these cases dominant) decay of the chargino is W̃ ±
1 → Z̃1π

±. The chargino

has a very small width, corresponding to a lifetime ∼1.5 × 10−9 s, so that it would

be expected to travel a significant fraction of a meter before decaying. We also

see that the �̃L and �̃R are nearly mass degenerate. This degeneracy, which seems

fortuitous, is much tighter than expected in the mSUGRA framework.

In the minimal AMSB framework, mW̃1
− m Z̃1

is typically bigger than 160 MeV,

so that W̃1 → Z̃1π is always allowed and the chargino decays within the detector.

The chargino would then manifest itself only as missing energy, unless the decay

length is a few tens of centimeters, so that the chargino track can be established in the

detector. The track would then seem to disappear since the presence of the soft pion

would be very difficult to detect. Some parameter regions with mW̃1
− m Z̃1

< mπ±

may be possible; in this case, the chargino would mainly decay via W̃1 → Z̃1eν
and its decay length (depending on the mass difference) may then be larger than

several meters. It would then show up via a search for long-lived charged exotics.



11.2 Anomaly-mediated SUSY breaking 283

Table 11.2 Model parameters and weak scale
sparticle masses in GeV for two minimal

anomaly-mediated SUSY breaking case studies.

parameter AMSB(200) AMSB(500)

m0 200 500
m3/2 35,000 35,000
tan β 5 5
μ > 0 > 0
mg̃ 804 818
mũL

775 894
mt̃1 542 611
mb̃1

683 774
m �̃L

149 481
m �̃R

136 477
m τ̃1

118 471
m τ̃2

160 484
mW̃1

109 110
m Z̃2

313 316
mW̃1

− m Z̃1
0.171 0.172

mh 114 113
m A 658 813
μ 634 643
θτ 0.96 0.98
θb 0.08 0.05

Exercise Verify by explicit computation that the one-loop expressions for the gaug-
ino masses and A-parameters are scale invariant. For the hypercharge gaugino
mass, for example, this means that

M1(Q) = 33

5

g1(Q)2

16π2
m3/2

is true at all scales, not just as a boundary condition. Thus you need to verify that,

Q
dM1

dQ
= 33

5

m3/2

16π2
Q

dg2
1

dQ
,

etc. are consistent with the RGEs of the MSSM listed in Section 9.2.2 together with
the RGEs for gauge and Yukawa couplings.

Verify also that the expressions (11.27a)–(11.27g) for scalar masses are similarly
scale invariant only if m2

0 = 0.
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11.2.2 D-term improved AMSB model

While the addition of a common term m2
0 to all scalar squared masses solves the

tachyonic slepton mass problem, it destroys the scale invariance of the soft parame-

ters with respect to renormalization group evolution, which renders the predictions

of AMSB models insensitive to high scale physics. Indeed a variety of ways have

been suggested to solve the tachyon mass problem, many of which do not main-

tain the scale invariance of the AMSB soft SUSY breaking parameters. Instead

of studying all these various alternatives, we will focus on a modification of the

AMSB relation that preserves this scale invariance.

The key observation is that additional contributions to soft SUSY breaking scalar

masses that arise from Fayet–Iliopoulos D-terms, introduced in Section 6.5.1,

automatically preserve this scale invariance property, as long as the charges of

the corresponding U (1) symmetries have no mixed anomalies with the MSSM

gauge group.16 In other words, as long as the extra contributions to scalar mass

squared parameters take the form,

δm2
i = m2

0

∑

a

kaYai ,

where Ya are the generators of (mixed anomaly-free) U (1) symmetries, and ka are

constants (one ka for each such U (1) factor), the scale invariance of AMSB scalar

masses is maintained.17 Moreover, since this invariance holds for arbitrarily small

values of the corresponding “gauge coupling”, it is not necessary for these U (1)s

to survive as gauge symmetries of the low energy theory for this mechanism to

work: i.e. global U (1) symmetries of the low energy superpotential are sufficient.

Notice that these D-term contributions to scalar mass parameters are the same for

all sparticles with the same gauge quantum numbers so that flavor-changing neutral

current constraints are satisfied.

The MSSM symmetries already include the hypercharge U (1). Unfortunately,

the corresponding D-term contributions cannot solve the slepton mass problem

since the superfields L̂ and Êc have opposite signs of hypercharge: the hypercharge

D-term can make only one of m2(�̃L) or m2(�̃R) positive, but not both. We need at

least one other D-term. Assuming that lepton flavor is not separately conserved by

the superpotential (i.e neutrinos mix), there are only two independent anomaly-free

U (1) symmetries in the MSSM. These are the usual hypercharge symmetry, and

U (1)B−L (or combinations thereof). Their D-term contributions to sparticle masses

(at the weak scale) can thus be parametrized in terms of two parameters, DY and

16 See I. Jack and D. R. T. Jones, Phys. Lett. B482, 167 (2000).
17 Another possibility that also preserves the scale invariance has been proposed by I. Jack and D. R. T. Jones,

Phys. Lett. B491, 151 (2000).
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DB−L , as18

δm2
U = −4

3
DY − 1

3
DB−L , (11.31a)

δm2
D = 2

3
DY − 1

3
DB−L , (11.31b)

δm2
Q = 1

3
DY + 1

3
DB−L , (11.31c)

δm2
E = 2DY + DB−L , (11.31d)

δm2
L = −DY − DB−L , (11.31e)

δm2
Hu

= DY , (11.31f)

δm2
Hd

= −DY . (11.31g)

The values of DY and DB−L must be of order of the weak scale squared. The value

of DB−L may possibly be the only imprint of the additional U (1) symmetry. A

necessary (but not sufficient) condition for a viable spectrum is,

0 < DY < −DB−L < 2DY .

To summarize, the negative slepton mass problem can be solved maintaining the

attractive ultra-violet insensitivity characteristic of the AMSB framework if there is

an additional source of SUSY breaking that results in non-vanishing D-terms of a

U (1) symmetry with charges that are free of any mixed anomalies with the MSSM

gauge group factors.19

11.3 Gauge-mediated SUSY breaking

As the name indicates, in gauge-mediated SUSY breaking (GMSB), SM gauge

interactions communicate the effects of SUSY breaking to the superpartners of

SM particles.20 In addition to the fields of the SUSY breaking and the observ-

able sectors that we have already discussed, there is a third set of fields that has

both SM gauge interactions, as well as couplings to the hidden sector: these cou-

plings may originate in the superpotential, or in new gauge interactions with the

hidden sector (under which SM particles are neutral). Through these couplings,

SUSY breaking effects are first felt by the fields in the new sector, and then

18 The reader can easily check that this parametrization is equivalent to that in the original paper of I. Jack and

D. R. T. Jones, with their parameters ζ1 and ζ2 given by ζ1 = 2DY + 8
11 DB−L and ζ2 = 1

11 DB−L .
19 For an explicit model that realizes this scenario, see N. Arkani-Hamed, D. E. Kaplan, H. Murayama and Y.

Nomura, JHEP 0102, 041 (2001).
20 Interest in this picture was rekindled by M. Dine and A. Nelson, Phys. Rev. D48, 1277 (1993) and M. Dine,

A. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D53, 2658 (1996); see also references therein.
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communicated to the observable sector by SM gauge interactions. The third sector

that links the SUSY breaking and observable fields is referred to as the “messenger

sector”.

At tree level, SUSY is unbroken in the MSSM sector. MSSM sparticles feel

SUSY breaking effects only via their couplings to messenger particles in loops, and

so evade the fatal tree-level mass sum rule. These loop effects, which involve the

usual SM gauge couplings, again lead to SSB masses of the geometric hierarchy

form,

mi ∝ g2
i

16π2

〈FS〉
M

where 〈FS〉 is the induced SUSY breaking VEV of some (elementary or composite)

gauge singlet superfield in the messenger sector, M is the messenger sector mass

scale, gi is the SM gauge coupling constant for the corresponding sparticle, and

16π2 is a loop factor.21 We thus conclude that colored superpartners are heavier

than their uncolored counterparts and, likewise, uncolored particles that have just

hypercharge gauge interactions are lighter than their cousins which also couple to

SU (2)L. Such a spectrum is the hallmark of the GMSB scenario.

The induced SUSY breaking scale in the messenger sector should be distin-

guished from the corresponding scale 〈F〉 in the SUSY breaking sector. If the

sectors are perturbatively coupled, we would expect 〈FS〉 < 〈F〉, while if they are

strongly coupled, 〈FS〉 ∼ 〈F〉. The gravitino mass, however, is determined by the

fundamental SUSY breaking scale 〈F〉, and by (10.67a) is,

m3/2 = 〈F〉√
3MP

.

We note that the SSB masses of MSSM superpartners are suppressed by just

the messenger mass scale M , and not MP as in gravity-mediated scenarios. If

M 
 MP, the underlying scale of SUSY breaking can be much lower in GMSB

models as compared to gravity-mediated scenarios.22 In this case of low energy

SUSY breaking the gravitino mass, which is suppressed relative to other sparticle

masses by a factor ∼ M/MP, may be very small. Indeed, the gravitino may be

the LSP. Since the lightest MSSM particle can now decay to the gravitino, the

phenomenological implications of such a scenario may differ dramatically from

corresponding expectations in mSUGRA.

21 If the sparticle has coupling to more than one factor of SU (3)C × SU (2)L × U (1)Y, there will be one such
contribution for each coupling.

22 If SUSY is local, there will be a gravity mediated contribution also, but this is negligible compared to the
corresponding gauge-mediated contribution.
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11.3.1 The minimal GMSB model

The messenger sector is assumed to consist of n5 vector-like multiplets of messenger

lepton and messenger quark superfields that carry the SU (3)C × SU (2)L × U (1)Y

quantum numbers,

�̂ ∼ (1, 2, 1) �̂′ ∼ (1, 2∗, −1)

q̂ ∼ (3, 1, −2

3
) q̂ ′ ∼ (3∗, 1,

2

3
), (11.32a)

coupled via the superpotential,

f̂ M = λ�Ŝ �̂′�̂ + λq Ŝq̂ ′q̂. (11.32b)

Here Ŝ is a gauge singlet field that also couples to the SUSY breaking sector.

We assume that this coupling induces a VEV for both its scalar and its auxiliary

component. Notice that the messenger sector forms complete vector multiplets of

SU (5). This ensures that the apparent unification of gauge couplings is not altered

by their inclusion.

It is straightforward to see that the messenger quarks (and likewise, messenger

leptons) combine to form a Dirac quark (SU (2) doublet lepton) with a mass mqM =
λq〈S〉 (m�M = λ�〈S〉) where 〈S〉 is the VEV of the scalar component of the singlet

field Ŝ. In addition to this supersymmetric mass contribution, the scalar partners of

the messenger quarks (leptons) acquire a SUSY breaking mass from the VEV 〈FS〉
of the auxiliary component of Ŝ that mix scalar components of q̂ and q̂ ′ (�̂ and �̂′).
Diagonalizing the messenger squark and slepton mass matrices, we find that these

acquire masses,

m2
�̃M

= |λ�〈S〉|2 ± |λ�〈FS〉|, (11.33a)

m2
q̃M

= |λq〈S〉|2 ± |λq〈FS〉|. (11.33b)

Notice that 〈FS〉/λi 〈S〉2 cannot be arbitrarily large – otherwise the messengers

will be too light or even tachyonic. We will denote the messenger mass scale

by M ≡ λ〈S〉, where λ 
 λ� 
 λq . If 〈FS〉 → 0, we recover a supersymmetric

spectrum in the messenger sector.

Exercise Using the master formula, compute the mass spectrum of the messenger
quarks. Note that the supersymmetry breaking contribution to messenger squark
masses comes from the F-term of the superpotential,

λq Ŝq̂q̂ ′∣∣
F

� (λq q̃q̃ ′ + h.c.)〈Fs〉.
Combine this with the supersymmetric contribution to messenger squark masses to
obtain their masses.
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Figure 11.2 Diagram leading to gluino and hypercharge gaugino masses in GMSB
models. A similar diagram with messenger leptons and messenger sleptons in the
loop will also contribute to the SU (2) gaugino mass. Messenger leptons and slep-
tons also contribute to the hypercharge gaugino mass. The dashed line denotes
messenger sfermions while the solid line denotes the messenger fermion. A con-
tribution arises only from the messenger fermion mass term indicated by the cross
on the fermion line. The cross on the sfermion line indicates the SSB mixing term
between the sfermions.

It is now possible to compute the SSB mass parameters induced in the vis-

ible sector via gauge interactions with messenger sector fields. Gauginos ob-

tain masses from one-loop diagrams including messenger fields as indicated in

Fig. 11.2. In the approximation 〈FS〉 
 λ〈S〉2 (i.e. the SUSY breaking scale is

smaller than the messenger mass scale), the gaugino for gauge group i gets a

mass

Mi = αi

4π
n5� (11.34)

where

� = 〈FS〉
〈S〉 . (11.35)

The factor n5 arises because each messenger generation makes the same contribu-

tion to the gaugino mass.

MSSM scalars do not couple directly to the messenger sector, so that their

squared masses are induced only via two-loop diagrams such as the ones depicted

in Fig. 11.3. Now, the squared mass scales with the number of messenger multiplets,

and in the same approximation as in (11.34) we obtain,

m2
i = 2n5�

2[Ci
1(

α1

4π
)2 + Ci

2(
α2

4π
)2 + Ci

3(
α3

4π
)2]. (11.36a)
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Figure 11.3 Examples of two-loop Feynman diagrams leading to scalar masses in
GMSB models.

Here, Ci are quadratic Casimirs given by,

Ci
1 = 3

5
Y 2

i ,

Ci
2 =

{
3/4 for doublets

0 for singlets
(11.36b)

Ci
3 =

{
4/3 for triplets

0 for singlets.

Note that the unknown messenger sector Yukawa couplings drop out from (11.34)

and (11.36a). These formulae are rather general, in that if the messengers can be

grouped into a 10 or 10∗ of SU (5), then n5 → n10 where n10 = 3 for each set of

10 and 10∗ messenger fields. The value of n5 (and hence n10) cannot be too large

since the gauge couplings will then diverge in their running from the weak to the

GUT scale, and perturbative unification will be spoiled. Typically, n5 ≤ 4 is a valid

choice, though if the messenger scale is large higher values of n5 are allowed. As

the parameter n5 increases, the gaugino masses increase at a greater rate than the

scalars, since Mi ∝ n5, while mi ∝ √
n5.

We note that these formulae for gaugino and scalar masses are simply modified

by multiplication by threshold functions if our approximation x ≡ 〈FS〉/λ〈S〉2 
 1

in which we have written them ceases to be valid.23 Our formulae for the gaugino

(scalar) masses are good approximations for x as large as 0.9 (0.5).

We see from (11.36a) that scalars with the same gauge quantum numbers will

receive identical masses. This gives a natural explanation for the scalar mass de-

generacy needed to solve the SUSY flavor problem, and provides strong motivation

for this class of models.24 We see also the characteristic pattern of sparticle masses

23 S. Martin, Phys. Rev. D55, 3177 (1997).
24 We remark, however, that since messenger field �̂ and Ĥu carry the same gauge quantum numbers, in any

Yukawa coupling involving hu , we can replace the Higgs field by a messenger slepton. This would lead to
flavor violation unless such couplings are forbidden by a global symmetry, or the messenger scale is sufficiently
large. Thus it is really the squark loop contributions to FCNC effects that are naturally suppressed in these
scenarios.
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noted earlier. Squark and gluino mass parameters are much larger than those for

sleptons and Higgs scalars, and �̃L are considerably heavier than �̃R. Notice also

that (11.34) leads to the one-loop GUT relation between gaugino masses, but for

very different reasons.

Exercise (The gravitino mass) Explore the range of the gravitino mass in this
framework. To do so, write

m3/2 = 〈F〉
λ〈FS〉 × �M√

3MP

≡ Cgrav

�M√
3MP

, (11.37)

where λ is the messenger sector Yukawa coupling, taken to be common for mes-
senger quarks and leptons. Since we want sparticles at the weak scale ∼ 100 GeV,
we must have � to be few tens of TeV. For given values of � and M, the grav-
itino is lightest when 〈FS〉 is close to the fundamental SUSY breaking scale and
when the messenger scale is not very different from �. Show that for reasonable
values of parameters the gravitino mass may be in the eV range. How heavy can
it be?

Like scalar masses, the a-terms only arise via two-loop diagrams. Remember,

however, that it is the squared scalar masses that arise at two loops, so that scalar

mass parameters have the same order of magnitude as gaugino masses. In compar-

ison to this, a-terms which are suppressed by an extra loop factor, are small. As an

approximation, they are frequently taken to be

au = ad = ae = 0. (11.38)

It should be remembered that the formulae (11.34), (11.36a), and (11.38) for the

MSSM parameters in GMSB models hold at the scale Q ∼ M where the heavy

messenger fields are integrated out. As for SUGRA models, these parameters must

be evolved to the weak scale for the extraction of phenomenology using the MSSM.

The bilinear b term is also generated at two loops and so is tiny. In principle, this

means that the requirement of radiative EWSB should fix tan β since the weak scale

Bμ is fixed by the condition b0 = 0. This is not what is usually done in practice.

The reason is that it is difficult to generate μ in these scenarios. The rationale then

is any modification to the model that allows for μ affects the Higgs sector and so

will presumably also affect the b term. In practice, therefore, μ and b are treated as

free weak scale parameters: as usual μ2 is fixed to reproduce M2
Z , and b0 is traded

in for tan β. There is one difference in the radiative symmetry breaking mecha-

nism from gravity-mediated models that seems worth mentioning. In mSUGRA,

m2
Hu

turns negative because of the large logarithm that arises due to the disparity
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between the GUT and weak scales. In the GMSB scenario m2
Hu

turns negative even

if the messenger scale is close to the weak scale because the colored squarks are

much heavier than Higgs scalars, i.e. large t-squark masses drive m2
Hu

to negative

values.

We have already noted that if the messenger scale M 
 MP, the gravitino may be

very light. But if gravitinos couple with gravitational strength, why do we care? The

point is that since gravitinos get masses via the super-Higgs mechanism the cou-

plings of their longitudinal components (essentially the goldstinos) are enhanced

by a factor E/m3/2 in exactly the same way that longitudinal W couplings are

enhanced by a factor of E/MW . In other words, “the effective dimensionless cou-

pling” of longitudinal gravitinos to a particle–sparticle pair is ∼ E/MP × E/m3/2,

where the first factor is the usual coupling of gravity to energy and the second fac-

tor the enhancement just discussed. It is easy to check that for E ∼ 100 GeV and

m3/2 ∼ 1 eV, this coupling is ∼ 10−6. Dimensional analysis gives the lifetime of a

100 GeV particle decaying via this coupling as ∼ 10−12 seconds! Thus interactions
of very light longitudinal gravitinos may be relevant for particle physics, and even
for collider phenomenology. We will return to this in later chapters.

If gravitinos are light, sparticles can decay via p̃ → pG̃ with a decay rate that

depends on the gravitino mass. It is more convenient to use Cgrav introduced in

(11.37) to parametrize this decay rate. Notice that, by construction, Cgrav ≥ 1. The

parameter space of GMSB models can thus be specified by,

�, M, n5, tan β, sign (μ), Cgrav. (11.39)

For a given number n5 of messenger multiplets, the mass scale of MSSM superpart-

ners is set by �. The second entry, M (M > �) is the mass scale associated with

the messenger fields, and specifies the scale at which the mass formulae (11.34)

and (11.36a) as well as a = 0, hold. The SSB parameters relevant for phenomenol-

ogy are then obtained by evolving these from M to the weak scale where radiative

EWSB determines the magnitude but not the sign of μ. MSSM sparticle masses

are, therefore, only logarithmically sensitive to M , and, of course, independent of

Cgrav. Increasing Cgrav only increases the lifetime of sparticles which decay mainly

to the gravitino, but does not affect MSSM sparticle masses.

An example of the renormalization group evolution that fixes the sparticle spec-

trum is shown in Fig. 11.4. While the gaugino masses are related as in mSUGRA,

sfermion masses are very different. In particular, we have mq̃ � mẽL
∼ mẽR

.

For GMSB models, the parameter � should be ∼ 10–150 TeV in order for

sparticles to obtain masses of order of the weak scale. The messenger scale M ≥
�. If the SUSY breaking scale is small so that the gravitino is the LSP, GMSB

phenomenology may differ dramatically from phenomenology of models with a

weak scale gravitino and a neutralino LSP. If the gravitino is the LSP and other
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Figure 11.4 Renormalization group trajectories for the soft SUSY breaking masses
versus renormalization scale Q from the messenger scale (M = 500 TeV) to the
weak scale. In this example, we take � = 40 TeV, n5 = 1, tan β = 2, μ < 0, and
mt = 175 GeV. We will see later that this scenario is excluded by lower bounds on
both the selectron as well as h masses. The point of this figure is only to illustrate
the RG evolution, for which the LEP exclusion is not relevant. Reprinted with
permission from H. Baer, M. Brhlik, C.-H. Chen and X. Tata, Phys. Rev D55,
4463 (1997), copyright (1997) by the American Physical Society.

sparticles can decay to it in a lifetime short compared to the age of the Universe,

then the cosmological considerations that require the lightest MSSM sparticle to

be only weakly interacting no longer apply, and this next-to-lightest SUSY particle

(NLSP) may be charged. Typically, the NLSP is the lightest neutralino or the lighter

stau (which would be very close in mass to ẽR and μ̃R for small to moderate values

of tan β).

In the case of a neutralino NLSP, collider phenomenology is most different

when the gravitino is very light, so that the NLSP decays inside the experimental
apparatus.25 The main decay modes for a neutralino NLSP are Z̃1 → γ G̃, ZG̃
or hG̃. For a stau NLSP, the decay mode would be τ̃1 → τ G̃. Heavier sparticles

cascade decay to the NLSP which subsequently decays into the gravitino LSP, and

SUSY event topologies are very sensitive to the nature of the NLSP.

Since sparticle masses are only weakly dependent on the messenger scale M ,

the � − tan β plane provides a convenient panorama for displaying the various

phenomenological possibilities. These are illustrated in Fig. 11.5 where we show

25 Of course, heavier sparticles can then also decay into gravitinos but, as we will see in Chapter 13, the branching
fractions for these decays are negligible.
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this plane for values of n5 ranging from 1–4. The gray region is excluded because

electroweak symmetry is not correctly broken, while the various shaded regions

are excluded by constraints from LEP experiments. In the region labeled 1, the

neutralino is the NLSP and decays into the gravitino. In region 2, m τ̃1
< m Z̃1

, with all

other sleptons heavier than Z̃1, so that cascade decays terminate in τ̃1 (which decays

via τ̃1 → τ G̃), except very close to the boundary between regions 1 and 2 where

Z̃1 → τ̃1τ is forbidden. In regions 3 and 4, in addition to Z̃1 → τ̃1τ , the decays

Z̃1 → �̃R� (� = e, μ) are also allowed. In region 3, however, m �̃1
< m τ̃1

+ mτ ,

while just the opposite is the case in region 4. We will discuss the implications of

this in Chapter 13.

The lifetimes for NLSP decay depend on Cgrav and range from essentially instan-

taneous to very long. NLSPs produced in collider detectors may have a long lifetime,

and decay with a displaced vertex, or possibly even decay outside the detector. In

the latter case, a neutralino NLSP would escape undetected as in gravity-mediated

models. A stau (or charged slepton) NLSP would behave as a stable charged par-

ticle in the apparatus, and leave an ionizing track which may be detectable. NLSP

decays will be considered in more detail in Chapter 13.

11.3.2 Non-minimal GMSB models

While the minimal GMSB framework leads to strong correlations between various

sparticle masses, it is possible to conceive of extensions where the correlations are

relaxed. Examples of things that have been considered include:

� Additional interactions needed to generate μ and b parameters may split the SSB

mass parameters of the Higgs and lepton doublets at Q = M , even though these

have the same gauge quantum numbers.
� Allowing incomplete messenger representations can effectively result in different

numbers of messengers n5i for each factor of the low energy gauge group.
� If the hypercharge D-term has a non-vanishing VEV in the messenger sector, there

would be additional contributions to the scalar masses that may be parametrized

by δm2
f̃
= Y f̃ KY, where KY is the D-term VEV with the gauge coupling absorbed

into it.

We mention these variations to make the reader aware that although the minimal

GMSB framework is well motivated and constrained, the implications that we have

drawn from it are based on a number of unstated assumptions about physics at the

messenger scale and beyond.
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Figure 11.5 The four regions of the � − tan β parameter plane of the mGMSB
model discussed in the text. The heavy solid lines denote the boundaries between
these regions. The gray region is excluded because electroweak symmetry is not
correctly broken. The shaded regions are excluded by various constraints from
LEP experiments: m τ̃ > 76 GeV (vertical shading), m Z̃1

> 95 GeV (horizontal
shading), and mh > 110 GeV (diagonal shading). The dot-dashed contours are
where the chargino mass is 100, 200 or 350 GeV, while the dotted line is the
contour of mẽR

= 100 GeV. We thank Dr. Yili Wang for supplying this figure
which appears in her doctoral dissertation.

11.4 Gaugino-mediated SUSY breaking

Gaugino-mediated SUSY breaking is a model based on extra dimensions that pro-

vides a novel solution to the SUSY flavor problem.26 Within this framework, chiral

supermultiplets of the observable sector reside on one brane whereas the SUSY

breaking sector is confined to a different, spatially separated brane. Gravity and

gauge superfields, which propagate in the bulk, directly couple to fields on both

the branes. As a result of their direct coupling to the SUSY breaking sector, gaug-

inos acquire a mass. Direct couplings between the observable and SUSY breaking

26 D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D62, 035010 (2000); Z. Chacko et al., JHEP 01, 003
(2000); M. Schmaltz and W. Skiba, Phys. Rev. D62, 095004 (2000) and D62, 095005 (2000).
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sectors are exponentially suppressed, and MSSM scalars dominantly acquire SUSY

breaking masses via their interactions with gauginos (or gravity) which directly feel

the effects of SUSY breaking. As a result, scalar SSB mass parameters are sup-

pressed relative to gaugino masses, and may be neglected in the first approximation.

The same is true for the A- and B-parameters.

In a specific realization, to preserve the success of the unification of gauge

couplings, it is assumed that there is grand unification (either SU (5) or SO(10)) and,

further, that the compactification scale Mc, below which there are no Kaluza–Klein

excitations, is larger than MGUT. Furthermore, since the construction ensures flavor-

blind interactions for just light bulk fields, we require that the scale Mc
<∼ MPlanck/10

in order to sufficiently suppress other flavor-violating scalar couplings from heavy

bulk fields that would be generically present. Based on the discussion in the last

paragraph, the boundary conditions for the soft SUSY breaking parameters of the

MSSM are taken to be m0 = A0 = B0 = 0 at the scale Mc. The condition B0 = 0

fixes tan β. In both SU (5) and SO(10) models, this value of tan β is found to be too

small to be compatible with the unification of bottom and tau Yukawa couplings

in the MSSM, which requires tan β ≥ 30. For this reason, and because the value

of B0μ0 may also depend on how the μ problem is solved, we will ignore the

B0 = 0 constraint and, as usual, choose tan β instead of B0 as a free parameter.27

The MSSM parameters can then be obtained from the parameter set,

m1/2, Mc, tan β, and sign (μ) (11.40)

where it is the grand unification assumption that leads to a universal gaugino mass

above Q = MGUT, and |μ| is fixed assuming radiative EWSB. The gravitino can be

made heavier than gauginos and, as in the mSUGRA framework, is irrelevant for

collider phenomenology. The LSP may be the stau or the lightest neutralino, though

cosmological considerations exclude the former (unless R-parity is not conserved).

For illustration we choose the GUT group to be SU (5). This model is then a

special case of our earlier discussion of SU (5), except that the SSB parameters

now “unify” at the scale Mc (rather than MP) where they take on values specific to

the model. The unification of the τ and b Yukawa couplings constrain tan β ∼ 30–

50. In Fig. 11.6, we show the evolution of the various SSB parameters of the MSSM,

starting with the inoMSB boundary conditions. Here, the unified gaugino mass is

taken to be 300 GeV at Q = MGUT. The compactification scale is taken to be

Mc = 1018 GeV. We see that although these start from zero, RG evolution results in

GUT scale scalar masses and A-parameters that are not negligible compared to m1/2:

although there is no large logarithm, large group theory coefficients are the cause

27 It is also possible that Higgs fields reside in the bulk, in which case they would directly feel SUSY breaking
effects, resulting in a non-vanishing value for B0 as well as other SSB parameters in the Higgs sector. Such
scenarios are, of course, less predictive than the minimal one that we consider here.
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Figure 11.6 Renormalization group evolution of soft SUSY breaking SU (5)
masses versus scale in the minimal gaugino mediation model. We take tan β = 35
and μ < 0 to achieve b − τ Yukawa coupling unification. Reprinted from H. Baer,
M. Diáz, P. Quintana and X. Tata, JHEP 04, 016 (2000).

of this sizable renormalization group evolution. While the inter-generation splitting

is small, the splittings between the 5 and the 10 dimensional matter multiplets, as

well as between these and the Higgs multiplets, is substantial.

In Table 11.3 we show a sample spectrum for this model. We choose m1/2 =
300 GeV, tan β = 35, and other parameters as in Fig. 11.6. The spectrum is not

unlike that in the mSUGRA framework with small m0, so that sleptons are relatively

light and squarks are lighter than the gluino.

11.5 An afterword

The reader will have noticed that we have not constructed a complete supersymmet-

ric model in the sense of the SM. Instead, we have assumed that SUSY is broken

in some sector, and discussed several mechanisms for how this is communicated

to MSSM superpartners. As mentioned at the start of this chapter, MSSM phe-

nomenology depends more upon this messenger mechanism and not so much upon

the dynamics of SUSY breaking.

This is not to say that the question of SUSY breaking is not important. Indeed, a

complete model must address the μ problem, and at the same time generate b ≡ Bμ

and other SSB parameters so that (8.19b), with radiative corrections included, yields

the correct value of MZ , and a sparticle spectrum consistent with experimental

constraints. The value of tan β as given by (8.19a) would then be a prediction.

We stress that these EWSB conditions (8.19a) and (8.19b) only depend on our

assumption of the MSSM field content of the low energy theory, and therefore
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Table 11.3 Input and output parameters for
the Minimal Gaugino Mediation model
case study described in the text. Mass

parameters are in GeV units.

parameter scale value

m0 Mc 0
A0 Mc 0
m1/2 MGUT 300
g5 MGUT 0.717
ft MGUT 0.534
fb = fτ MGUT 0.271
λ MGUT 1
λ′ MGUT 0.1
tan β Mweak 35
μ Mweak < 0

mg̃ Mweak 737.2
mũL

Mweak 668.5
md̃R

Mweak 633.1
mt̃1 Mweak 482.8
mb̃1

Mweak 541.5
m �̃L

Mweak 258.6
m �̃R

Mweak 210.0
m τ̃1

Mweak 143.3
mW̃1

Mweak 240.2
m Z̃2

Mweak 240.0
m Z̃1

Mweak 124.8
mh Mweak 115.6
m A Mweak 311.2
μ Mweak -411.5

should be valid as long as the underlying fundamental theory reduces to the MSSM

at low energy. This is not to say that every high energy theory will necessarily

lead to an acceptable model. For instance, while there is an elegant mechanism

for generating μ in gravity-mediated SUSY breaking scenarios (where the SUSY

breaking scale is large), it is not straightforward (see Section 11.3.2) to generate

acceptable values for both μ and b in GMSB scenarios with a low SUSY breaking

scale. We circumvent the complications associated with the underlying mechanism

of SUSY breaking and the associated μ problem because whatever the underlying

physics is, it must be consistent with the EWSB conditions (8.19a) and (8.19b) as

long as the low energy theory is the MSSM. Fortunately, TeV scale phenomenology

depends more on how SUSY breaking is felt by weak scale superpartners and not

so much on the underlying dynamics of SUSY breaking.
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Sparticle production at colliders

The interaction Lagrangian for the physical particles of the MSSM presented in

Chapter 8 can be used to compute the S-matrix elements for any physical process,

and production cross sections and decay rates can then be obtained. In this chapter,

we focus on the evaluation of tree-level superparticle production cross sections in

high energy collisions, and present sparticle production rates at currently operating

colliders, as well as at colliding beam facilities under construction, or those being

considered for construction in the future. We first examine production reactions

at hadron colliders such as the Fermilab Tevatron p p̄ collider, which is currently

operating at a center of mass (CM) energy
√

s � 2 TeV. Negative results of SUSY

searches at the Tevatron have been interpreted by the CDF and DØ collaborations

as a lower limit mg̃ ≥ 195 GeV (mg̃ ≥ 260–300 GeV if squarks are degenerate and

have a mass equal to mg̃) on the gluino mass. We also show example cross sections

for the CERN Large Hadron Collider (LHC), a pp collider, which is scheduled

to operate at a CM energy around 14 TeV. The CERN LHC will have sufficient

energy to either establish or rule out many models of weak scale supersymmetry.

The evaluation of sparticle production rates by hadronic collisions is complicated

by the fact that hadrons are not elementary, but composed of quarks and gluons.

In the second section of this chapter, we discuss sparticle production reactions

at e+e− colliders. Since electrons, unlike protons, are elementary particles, the

production processes are much simpler. Searches for supersymmetric matter at the

CERN LEP2 e+e− collider, which concluded operation in November 2000, have

provided significant lower limits on several sparticle masses. The clean environ-

ment of e+e− scattering events, together with the well-defined energy of the initial

state, make these machines ideal for precision measurements of sparticle properties.

Designs for linear e+e− colliders operating at
√

s � 0.5–1.5 TeV and beyond usu-

ally include the possibility of longitudinal electron beam polarization and possibly

even positron beam polarization. Beam polarization can be a valuable tool, both

for eliminating SM backgrounds, as well as for separating signals from different

298
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SUSY reactions. We will, therefore, consider sparticle production from polarized

initial beams: results for unpolarized (or partially polarized) beams can be obtained

by suitable averaging over polarization.

Leading order formulae for cross sections for sparticle pair production are col-

lected in Appendix A.

12.1 Sparticle production at hadron colliders

Since superpartners are assumed to be heavy, sparticle pair production is a high

Q2 process, and at hadron colliders occurs predominantly via collisions between

the constituents of hadrons: the quarks, antiquarks, and gluons. Production cross

sections are calculated within the framework of the parton model.1 Suppose parton

a is a constituent of hadron A, and parton b is a constituent of hadron B. Parton

a carries fractional longitudinal momentum xa of hadron A, and parton b carries

fractional longitudinal momentum xb of hadron B. We let fa/A(xa, Q2) denote the

probability density of finding parton a with fractional momentum xa in hadron A,

where Q2 is the squared four-momentum transfer of the underlying elementary

process. Its magnitude is the typical energy scale of this reaction. fa/A(xa, Q2) is

the parton distribution function (PDF). For a hadronic reaction,

A + B → c + d + X,

where c and d are superpartners and X represents assorted hadronic debris, we have

an associated subprocess reaction

a + b → c + d,

whose cross section can be computed using the Lagrangian for the MSSM. To obtain

the final cross section, we must convolute the appropriate subprocess production

cross section dσ̂ with the parton distribution functions:

dσ (AB → cd X ) =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb fa/A(xa, Q2) fb/B(xb, Q2) dσ̂ (ab → cd),

(12.1)

where the sum extends over all initial partons a, b whose collisions produce the

final state c + d.

Notice that the longitudinal momentum pa + pb of the initial state is not known.

It is for this reason that complete kinematic reconstruction is usually not possi-

ble at hadron colliders. The initial partons, however, have negligible transverse

1 See, e.g., V. Barger and R. J. N. Phillips, Collider Physics, Addison-Wesley (1987).
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momentum. Constraints from transverse momentum balance, therefore, play a cen-

tral role in hadron collider physics.

Once the interactions of sparticles are known, the computation of the hard scatter-

ing cross section for any sparticle production process is straightforward. One way is

to develop the Feynman rules for the MSSM and use these to obtain the production

amplitudes and then the cross section.2 The presence of Majorana neutralinos is

an additional complication that leads to somewhat unusual Feynman rules. Instead

of following this route, we will describe a procedure for evaluating the invariant

matrix element starting from the interaction Lagrangian. In effect, this procedure

involves doing exactly what one would do to derive the Feynman rules, and so is

not new. We find it convenient to use because all particles are treated uniformly, the

relative signs between various amplitudes are automatically obtained, and no new

rules have to be committed to memory.

The invariant amplitude M that enters the computation of the cross section for

the process i → f , where i and f denote the initial and final states, respectively,

arises from the non-trivial part of the S-matrix element

〈 f |S|i〉 = 〈 f |T
(

exp[−i

∫

d4xHint]

)

|i〉, (12.2a)

where

S = 1 + i(2π )4δ4(Pf − Pi )M. (12.2b)

We assume that the reader is familiar with the evaluation of M using covariant

perturbation theory and, in particular, with how various numerical factors coming

from different ways of Wick contracting to obtain the same Feynman diagram

usually cancel (or sometimes give the so-called combinatorial factor). Once the

matrix element M has been computed, the cross section for the hard scattering

process can be readily obtained using,

dσ̂ = 1

2ŝ

1

(2π )2

∫
d3 pc

2Ec

d3 pd

2Ed
δ4(pa + pb − pc − pd) · Fcolor Fspin

∑

|M|2,
(12.2c)

where Fcolor and Fspin are factors arising from averaging over the colors and spins in

the initial state (assuming it to be unpolarized) and the sum extends over the colors

and spins of the initial and final states.

2 See, e.g., M. E. Peskin and D. V. Schroeder, Introduction to Quantum Field Theory, Chapter 4, Perseus Press
(1995).
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Figure 12.1 Feynman diagrams for chargino–neutralino pair production from
quark–antiquark annihilation at hadron colliders.

12.1.1 Chargino–neutralino production

Cross section for dū → W̃ −
i Z̃ j : a worked example

As an illustration of the method we will work out the cross section for chargino–

neutralino production which dominantly occurs by annihilation of quarks and an-

tiquarks at hadron colliders: dū → W̃ −
i Z̃ j . Subdominant contributions from other

flavors can be analogously included. In the next chapter, we will see that the sub-

sequent decays of the chargino and the neutralino can lead to a final state with

three hard (high pT), isolated leptons (e’s or μ’s) plus large missing transverse

momentum carried off by the LSPs. This may be one of the best discovery modes

for gravity-mediated SUSY breaking models at the Fermilab Tevatron.

The subprocess dū → W̃ −
i Z̃ j takes place at second order in the perturbation

expansion via the three Feynman diagrams listed in Fig. 12.1. The relevant vertices

can be obtained from the interaction terms,

LW ūd = − g√
2

ūγμ

1 − γ5

2
dW +μ + h.c.

LW W̃i Z̃ j
= −g(−i)θ j W̃ i [X j

i + Y j
i γ5]γμ Z̃ j W

−μ + h.c.

Lqq̃W̃i
= iAd

W̃i
ũ†

LW̃ i
1 − γ5

2
d + iAu

W̃i
d̃†

LW̃ c
i

1 − γ5

2
u + h.c.

and

Lqq̃ Z̃ j
= iAq

Z̃ j
q̃†

L Z̃ j
1 − γ5

2
q + h.c.,

listed in Chapter 8.
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The amplitude M1 corresponding to the first of the diagrams in Fig. 12.1 obvi-

ously depends on the matrix element,

〈W̃i Z̃ j |T
[(

−g(−i)θ j W̃ i [X j
i + Y j

i γ5]γμ Z̃ j W
−μ(x)

)

×
(

− g√
2

ūγν

1 − γ5

2
dW +ν(y)

)]

|dū〉,

where the two interactions occur at different spacetime points x and y whose

coordinates are ultimately integrated over. We then proceed as follows:

1. The particles in the initial (final) state are then “reduced” in any chosen or-

der (which we take to be d, ū, Z̃ j , W̃i ) using the annihilation (creation) pieces

of the corresponding fermion operators. To carry out this reduction, the cor-

responding field operator must be moved next to the state in question. Since

fermion fields anticommute with other fermion fields, this process can lead to

minus signs. In the present case, the reduction of the quarks in the prescribed

order does not lead to any sign, but to reduce the neutralino in the final state

one has to anticommute the Z̃ j (x) past W̃ i (x), giving an additional minus sign

for this amplitude. The reduction of the Dirac quarks [antiquarks] in the initial

state and the chargino in the final state, as usual, leaves wave function factors

u(pd)exp(−ipd · y) [v̄(pū)exp(−ipū · y)], and ū(pW̃ j
)exp(ipW̃ j

· x). Notice that

because the neutralino is Majorana, it can be reduced by the operator Z̃ j (x) (as

opposed to its Dirac conjugate) even though it is in the final state. In other words,

the neutralino is treated as an anti-particle, and the associated wave function fac-

tor is, v(pZ̃ j
)exp(ipZ̃ j

· x). This is also the reason for the reversed direction of

the arrow (which denotes the flow of fermion number) on the neutralino line in

diagram (1) of Fig. 12.1.

2. Once the external particles are all reduced, aside from c-number wave function

and coupling constant factors, we are left with

〈0|T (W −μ(x)W +ν(y))|0〉
which is of course the propagator for the W -boson between the spacetime points

x and y. For the final step, it is convenient to write this propagator (in the unitary

gauge) in terms of its momentum space expansion with the four-momentum

variable qW as

〈0|T (
W −μ(x)W +ν(y)

) |0〉 = i

∫
d4qW

(2π )4

−gμν + qμ
W qν

W

M2
W

q2
W − M2

W + iMW �W
e−iqW ·(x−y).

3. Finally, integration over x and y leads to four-momentum conservation at each

vertex (so that the propagator momentum qW = pd + pū), leaving us with an
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overall four-momentum conserving δ function as in the last term of (12.2b).

Neglecting quark masses, the qμ

W qν
W term in the propagator cannot contribute

because

p/du(pd) = v̄(pū)p/ū = 0,

by the Dirac equation. All factors of (2π ) cancel and there is no combinatorial

factor. We are left with3

M1 = g2

√
2

(−i)θ j DW (ŝ)ū(W̃i )[X j
i + Y j

i γ5]γ μv(Z̃ j ) v̄(ū)γμ

1 − γ5

2
u(d). (12.3a)

Here particle labels denote the corresponding four-momenta, ŝ = (d + ū)2, and

DW (ŝ) = (ŝ − M2
W + iMW �W )−1.

The amplitude for the d̃L exchange diagram (2) in Fig. 12.1 depends on the

matrix element,

〈W̃i Z̃ j |T
[(

iAd
Z̃ j

d̃†
L Z̃ j

1 − γ5

2
d

) (

−iAu∗
W̃i

d̃Lū
1 + γ5

2
W̃ c

i

)]

|dū〉.

The reduction of the d and ū quarks in the initial state gives the usual Dirac wave

functions for these. This time, the neutralino is reduced by the operator Z̃ j (so

that it is treated as a particle rather than as an antiparticle as in the evaluation

of M1). Finally, the chargino is reduced by the creation part of the W̃ c
i operator

(which destroys a positive chargino or creates a negative chargino), and by the

expansion analogous to (3.33) we obtain the wave function v(W̃i )exp(iW̃i · x) for

the chargino. Notice that the directions of the arrows on the chargino and neutralino

lines in diagram (2) of Fig. 12.1 are in accord with this assignment. The scalar

field operators contract together to form the d̃L propagator, and the corresponding

amplitude can be written as,

M2 = −Ad
Z̃ j

Au∗
W̃i

ū(Z̃ j )
1 − γ5

2
u(d)

1

(W̃i − ū)2 − m2
d̃L

v̄(ū)
1 + γ5

2
v(W̃i ), (12.3b)

where, once again, there is an additional minus sign from anticommuting fermion

field operators. We will leave it to the reader to work out that the amplitude for the

3 In writing (12.3a) we have left out a factor (i)3 where two powers of i come from the fact that we are doing
second order perturbation theory, and the third power of i comes from the propagator. Since all three diagrams
come from second order perturbation theory, and each of these contains one propagator, this amounts to leaving
out an irrelevant phase in the overall amplitude from the way it is conventionally written. Moreover, from
(12.2b) we see that what we have evaluated is really iM1 rather than M1; again, this only changes the overall
phase. We will omit these irrelevant phase factors in the rest of this book. We warn the reader that one should
be careful in doing so. In calculations where the amplitude comes from contributions with different numbers
of propagators, or from different orders of expansion (although with the same powers of couplings, of course)
of the time evolution operator, these phases must be retained.
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ũL exchange diagram (3) that depends on the matrix element

〈W̃i Z̃ j |T
[(

−iAu∗
Z̃ j

ū
1 + γ5

2
Z̃ j ũL

) (

iAd
W̃i

ũ†
LW̃i

1 − γ5

2
d

)]

|dū〉,

takes the form.

M3 = Ad
W̃i

Au∗
Z̃ j

v̄(ū)
1 + γ5

2
v(Z̃ j )

1

(Z̃ j − ū)2 − m2
ũL

ū(W̃i )
1 − γ5

2
u(d). (12.3c)

Note that constructing the amplitudes in this fashion allows us to keep track of the

relative signs between them.

The amplitudes M1, M2, and M3 can now be squared and summed over initial

and final spin states using standard trace techniques. We find,

∑

spins

|M1|2 = 8g4|DW (ŝ)|2
{

[X j2
i + Y j2

i ](Z̃ j · dW̃i · ū + Z̃ j · ūW̃i · d)

+ 2(X j
i Y j

i )(Z̃ j · dW̃i · ū − Z̃ j · ūW̃i · d)

+ [X j2
i − Y j2

i ]mW̃i
m Z̃ j

d · ū
}

, (12.4a)

∑

spins

|M2|2 =
4|Au

W̃i
|2|Ad

Z̃ j
|2

[(W̃i − ū)2 − m2
d̃L

]2
d · Z̃ j W̃i · ū (12.4b)

and

∑

spins

|M3|2 =
4|Ad

W̃i
|2|Au

Z̃ j
|2

[(Z̃ j − ū)2 − m2
ũL

]2
ū · Z̃ j W̃i · d. (12.4c)

Next, we turn to the interference terms between these amplitudes. Here we will

often find a “mismatch” of spinors. For instance, in computing
∑

spins(M1M†
2), we

find

∑

spins

M1M†
2 = −(−i)θ j

g2

√
2

DW (ŝ)
1

(W̃i − ū)2 − m2
d̃L

Ad∗
Z̃ j

Au
W̃i

× ū(W̃i )(X j
i + Y j

i γ5)γ μv(Z̃ j ) · v̄(ū)γμ

1 − γ5

2
u(d)

× ū(d)
1 + γ5

2
u(Z̃ j ) · v̄(W̃i )

1 − γ5

2
v(ū),

so that the chargino and neutralino spinors are not in the proper format for us to

evaluate the spin sums using as usual
∑

spins

u(p)ū(p) = p/ + m,
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etc. In order to do the spin sums using the spinor completeness relations, we may

use the relations u = C v̄T and v = CūT to write,

ū(W̃i )(X j
i + Y j

i γ5)γ μv(Z̃ j ) = vT (W̃i )C(X j
i + Y j

i γ5)γ μCūT (Z̃ j )

= vT (W̃i )(X j
i + Y j

i γ5)T γ μT ūT (Z̃ j )

= ū(Z̃ j )γ
μ(X j

i + Y j
i γ5)v(W̃i ).

Now we may apply the spinor completeness relations and follow the usual trace

techniques to obtain,

∑

spins

(M1M∗
2 + c.c.) =

−√
2g2Re[Ad∗

Z̃ j
Au

W̃i
(−i)θ j ](ŝ − M2

W )|DW (ŝ)|2

(W̃i − ū)2 − m2
d̃L

×
{

8(X j
i + Y j

i )Z̃ j · dū · W̃i + 4(X j
i − Y j

i )mW̃i
m Z̃ j

d · ū
}

.

(12.4d)

Similarly, we find that

∑

spins

(M1M∗
3 + c.c.) =

√
2g2Re[Ad∗

W̃i
Au

Z̃ j
(−i)θ j ](ŝ − M2

W )|DW (ŝ)|2

(Z̃ j − ū)2 − m2
ũL

×
{

8(X j
i − Y j

i )Z̃ j · ūd · W̃i + 4(X j
i + Y j

i )mW̃i
m Z̃ j

d · ū
}

,

(12.4e)

and

∑

spins

(M2M∗
3 + c.c.) = −

4Re[Ad
Z̃ j

Au∗
W̃i

Ad∗
W̃i

Au
Z̃ j

]mW̃i
m Z̃ j

d · ū

[(W̃i − ū)2 − m2
d̃L

][(Z̃ j − ū)2 − m2
ũL

]
. (12.4f)

The hard subprocess cross section is obtained using,

dσ̂ = 1

2ŝ

1

(2π )2

∫
d3 pW̃i

2EW̃i

d3 pZ̃ j

2EZ̃ j

δ4(ū + d − W̃i − Z̃ j ) · 1

3

1

4

∑

spins

|M|2,

(12.5a)

or

dσ̂

d cos θ
= pW̃i

16π ŝ3/2

1

12

∑

spins

|M|2, (12.5b)

where

pW̃i
= pZ̃ j

= λ1/2(ŝ, m2
W̃i

, m2
Z̃ j

)/2
√

ŝ, (12.6a)
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with

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (12.6b)

The factor 1/3 (1/4) in (12.5a) comes from averaging over color (spin) in the initial

state. A sum over colors in the initial and (when applicable) final states is implied.

Since the squared matrix element given by the sum of (12.4a)–(12.4f) is Lorentz

invariant, we can evaluate it in any frame. It is convenient to evaluate it in the CM

frame of the colliding partons. There is no loss of generality if we choose their

directions to be along the ±z-axis, and take the chargino and neutralino to lie in

the xz plane. Their four vectors can thus be written as:

d =
√

ŝ

2
(1, 0, 0, 1), (12.7a)

ū =
√

ŝ

2
(1, 0, 0, −1), (12.7b)

W̃i = (EW̃i
, pW̃i

sin θ, 0, pW̃i
cos θ ), (12.7c)

Z̃ j = (EZ̃ j
, −pZ̃ j

sin θ, 0, −pZ̃ j
cos θ ). (12.7d)

We can now evaluate all the scalar products that appear in the squared matrix

element in terms of the scattering angle θ in the parton CM frame, and obtain our

result for the differential scattering cross section for the hard process dū → W̃i Z̃ j

in terms of z = cos θ as,

dσ̂

dz
(dū → W̃i Z̃ j ) = pW̃i

16π ŝ3/2

1

12
(M1 + M2 + M3 + M12 + M13 + M23) ,

(12.8)

where

M1 = g4|DW (ŝ)|2
{

(X j2
i + Y j2

i )
[

ŝ2 − (m2
W̃i

− m2
Z̃ j

)2 + 4ŝ p2
W̃i

z2
]

+ 8X j
i Y j

i ŝ3/2 pz + 4(X j2
i − Y j2

i )ŝmW̃i
m Z̃ j

}

(12.9a)

M2 = 1

4
|Ad

Z̃ j
|2|Au

W̃i
|2 G(m Z̃ j

, mW̃i
, md̃L

, −z) (12.9b)

M3 = 1

4
|Ad

W̃i
|2|Au

Z̃ j
|2 G(mW̃i

, m Z̃ j
, mũL

, z) (12.9c)

M12 =
g2√

2
Re[(−i)θ j Au

W̃i
Ad∗

Z̃ j
](ŝ − M2

W )|DW (ŝ)|2

[ 1
2
(ŝ − m2

Z̃ j
− m2

W̃i
) + √

ŝ pz + m2
d̃L

]

{

(X j
i + Y j

i )

[ŝ2 − (m2
W̃i

− m2
Z̃ j

)2 + 4ŝ3/2 pz + 4ŝ p2z2] + 4(X j
i − Y j

i )ŝmW̃i
m Z̃ j

}

(12.9d)
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M13 =
− g2√

2
Re[(−i)θ j Au

Z̃ j
Ad∗

W̃i
](ŝ − M2

W )|DW (ŝ)|2

[ 1
2
(ŝ − m2

Z̃ j
− m2

W̃i
) − √

ŝ pz + m2
ũL

]

{

(X j
i − Y j

i )

[ŝ2 − (m2
W̃i

− m2
Z̃ j

)2 − 4ŝ3/2 pz + 4ŝ p2z2] + 4(X j
i + Y j

i )ŝmW̃i
m Z̃ j

}

(12.9e)

M23 =
−2Re[Ad

Z̃ j
Au∗

W̃i
Ad∗

W̃i
Au

Z̃ j
]ŝmW̃i

m Z̃ j

[ 1
2
(ŝ − m2

Z̃ j
− m2

W̃i
) − √

ŝ pz + m2
ũL

][ 1
2
(ŝ − m2

Z̃ j
− m2

W̃i
) + √

ŝ pz + m2
d̃L

]
,

(12.9f)

where

G(m1, m2, M, z) = ŝ2 − (m2
1 − m2

2)2 − 4ŝ3/2 pz + 4ŝ p2z2

[ 1
2
(ŝ − m2

1 − m2
2) − √

ŝ pz + M2]2
. (12.10)

It is not difficult to integrate the subprocess cross section over scattering angles

to obtain the total cross section. For the purposes of event generation at hadron

colliders, discussed in Chapter 14, this is not especially useful and, although ex-

pressions for these total cross sections are available, we do not reproduce these here.

In any event, to obtain the total cross section at a hadron collider, we must convo-

lute this subprocess cross section with appropriate PDFs. This is done numerically.

Throughout this book, we use CTEQ5L PDFs.4 Here, we take the renormaliza-

tion and factorization scales equal, and equal to Q2 = ŝ. As an example, various

chargino–neutralino production cross sections are shown in Fig. 12.2 versus mg̃ for

the CERN LHC pp collider. We have assumed that all flavors of q̃L that enter via

the t-channel propagators have a common mass.5 In this figure, we have taken the

superpotential parameter μ = mg̃ = mq̃ and tan β = 5. We also assume the gaug-

ino mass unification condition that relates weak scale gaugino mass parameters

according to

M1

α1

= M2

α2

= M3

α3

,

where αi = g2
i /4π for i = 1, 2, 3 and g1 = √

5/3g′, g2 = g, and g3 = gs . The

region to the left of the vertical line is excluded by experiments at LEP2, since they

require mW̃1

>∼ 100 GeV.

By far the dominant cross section in this class of models occurs for W̃1 Z̃2 pro-

duction. Gaugino mass unification implies roughly M1 : M2 : M3 � 1 : 2 : 7. Since

4 H. L. Lai et al. (CTEQ Collaboration), Eur. Phys. J. C12, 375 (2000).
5 For the purpose of illustrating the various cross sections, in this chapter, we will take all 12 flavors of squarks

to be degenerate.
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Figure 12.2 Cross sections for chargino plus neutralino production at the CERN
LHC pp collider for tan β = 5, and assuming gaugino mass unification at MGUT.
The vertical line corresponds to mW̃1

= 100 GeV.

μ � M2, M1, the Z̃1 will be mainly bino-like (i.e. Z̃1 � λ0), while Z̃2 and W̃1 will

be wino-like. Electroweak gauge symmetry implies that the W boson cannot couple

to the bino, so that Z̃1 couples to W only via its small wino and higgsino compo-

nents. The wino-like Z̃2 and W̃1, on the other hand, have large SU (2)L gaugino

components, and so have large couplings to the W as well as to the quark–squark

system. The states Z̃3, Z̃4, and W̃2 are mainly higgsino-like and so have smaller

isodoublet (rather than the larger isotriplet) coupling to W ; this, as well as kine-

matics, suppresses their production compared to their gaugino-like cousins. This

explains why W̃1 Z̃2 production has the largest cross section in Fig. 12.2. Even for

values of mg̃ as high as 2000 GeV, over 1000 W̃1 Z̃2 events are expected at the

CERN LHC, assuming 100 fb−1 of integrated luminosity. At the Fermilab Teva-

tron collider, W̃1 Z̃2 production could be the dominant SUSY production reaction

because production of colored particles is kinematically suppressed in many mod-

els. If the branching ratios for the decays W̃1 → �ν̄� Z̃1 and Z̃2 → ��̄Z̃1 are large

enough then, as already noted, isolated trilepton plus missing energy events may

provide a distinctive signature for the discovery of SUSY at the Fermilab Tevatron.

12.1.2 Chargino pair production

At leading order, chargino pair production occurs by dd̄ annihilation via the dia-

grams shown in Fig. 12.3; there are corresponding contributions from annihilation
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Figure 12.3 Feynman diagrams for leading order chargino pair production via dd̄
annihilation at hadron colliders. There are analogous diagrams from the annihila-
tion of other quark flavors.

Figure 12.4 Cross sections for chargino pair production at the CERN LHC pp
collider for tan β = 5, and assuming gaugino mass unification at MGUT.

of other quark flavors. The possible final states consist of W̃1W̃ 1, W̃2W̃ 2, and

W̃1W̃ 2 + W̃ 1W̃2. The first two of these occur via γ or Z exchange in the s-channel

and t-channel squark exchange, while W̃1W̃ 2 + W̃ 1W̃2 production occurs only via

Z exchange in the s-channel and t-channel squark exchange. This is because conser-

vation of the electromagnetic current forbids the coupling of the photon to particles

of unequal mass. The relevant couplings are listed in Chapter 8, and can be used

to construct the production amplitudes as in the previous section. These can be

squared using the same techniques described in the last sub-section. The resulting

subprocess cross sections are listed in (A.1)–(A.2) of Appendix A. As before, we

convolute with CTEQ5L PDFs, and illustrate the total production cross sections for

chargino pair production at the LHC in Fig. 12.4. We see that W̃1W̃ 1 production is

the largest of this set, and is comparable in magnitude to the cross section for W̃1 Z̃2

pair production shown in Fig. 12.2.
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Figure 12.5 Feynman diagrams for leading order neutralino pair production pro-
cesses at hadron colliders.

12.1.3 Neutralino pair production

Production of neutralino pairs occurs via the diagrams shown in Fig. 12.5. The four

t-channel amplitudes are straightforward to calculate, but there is a small subtlety

in the evaluation of the s-channel amplitude represented by the first diagram in the

figure coming from the Majorana nature of the neutralino (see the exercise below).

The differential cross section for the ten possible Z̃i Z̃ j combinations (corre-

sponding to i, j = 1–4) is given by (A.3) of Appendix A. When integrating these

to obtain the total cross section, we must be careful to distinguish between i �= j
and i = j . In the former case, scattering by angle θ and by angle π − θ correspond

to different final states since one can distinguish the neutralinos by their mass (or, if

there is an accidental degeneracy, by their coupling). Since the total cross section is

obtained by summing over all possible final states, we obtain this by integrating the

differential cross section over the entire phase space: i.e. over 0 ≤ θ ≤ π . However,

for i = j , all one can say is that there is one neutralino at an angle θ (with respect

to the quark beam) and a second neutralino at an angle π − θ , but there is no way to

tell, even in principle, which of the two neutralinos is at θ . In other words, the state
with scattering angle θ is the same state as the one with scattering angle π − θ ,

and so, to obtain the total cross section we should integrate over just half the phase

space (since otherwise we would double count the final states). We can write the

total neutralino cross section as,

σtot(qq̄ → Z̃i Z̃ j ) = 
i j

∫ 1

−1

dσ

dz
(qq̄ → Z̃i Z̃ j )dz (12.11a)

with


i j = 1 − 1

2
δi j . (12.11b)

Neutralino pair production rates (particularly for the gaugino-like neutralinos)

are more sensitive to model parameters than corresponding rates for W̃i Z̃ j and

W̃ −
i W̃ +

j production. This is because they couple to Z only via their small higgsino

components (so that the s-channel amplitude is suppressed) while the t-channel

amplitude is obviously sensitive to the squark mass. This is in sharp contrast

to W̃1 Z̃2 production for which we saw that (as long as |μ| � M2 � 2M1) the
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Figure 12.6 Cross sections for neutralino pair production at the CERN LHC pp
collider for tan β = 5, and assuming gaugino mass unification at MGUT.

W amplitude is always large. The s-channel contributions are also always siz-

able for the case of W̃ −
1 W̃ +

1 production: the chargino obviously always couples

to the photon, and the Z has large weak-isovector couplings to the gaugino-like

chargino.

Sample cross sections for the CERN LHC are shown in Fig. 12.6. For the param-

eters in this figure, the gaugino-like neutralino states, Z̃2 and Z̃1, are most strongly

produced. In models with a Z̃1 LSP and R-parity conservation, the Z̃1 is absolutely

stable, and will escape detection at collider detectors. Thus, the Z̃1 Z̃1 reaction

would be invisible, aside from any initial state QCD radiation into instrumented

regions of the detector. Many of these reactions occur at low rates and do not lead

to distinctive signatures at hadron colliders.

Exercise The amplitude for the first diagram in Fig. 12.5 depends on the matrix
element

〈Z̃ j Z̃i |eq̄γμ(αq + βqγ5)q Zμ
∑

ab

Wab Z̃aγν(γ5)θa+θb+1 Z̃b Z ν |qq̄〉.

The matrix element is non-zero only when either a = i with b = j or a = j with
b = i . Both these contributions must be included to correctly obtain the ampli-
tude. Evaluate these contributions and, using Wi j = (−1)θ j −θi W ji together with
the charge conjugation properties u = C v̄T and v = CūT of the solutions to the
Dirac equation, show that the two contributions are equal.
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Figure 12.7 Feynman diagrams for leading order slepton pair production at hadron
colliders.

Figure 12.8 Feynman diagram for slepton–sneutrino associated production at
hadron colliders.

12.1.4 Slepton and sneutrino pair production

At leading order, charged sleptons and sneutrinos may be produced in pairs via

the diagrams in Fig. 12.7, or charged sleptons can be produced in association with

their sneutrino partner via the W exchange diagram shown in Fig. 12.8. The former

correspond to the supersymmetric analogue of the Drell–Yan process, whereas the

latter is the analogue of the classic process via which the W boson was discovered

at the CERN p p̄ collider. Only like-type (L or R) slepton pairs can be produced for

the first two generations of charged sleptons though intrageneration mixing also

allows τ̃1 ¯̃τ2 + ¯̃τ1τ̃2 production via Z exchange. Since W couples only to left-handed

leptons and their superpartners, �̃Rν̃L production is forbidden. Both τ̃1 and τ̃2 can

be produced in association with ν̃τ ; the state with the large admixture of τ̃L (τ̃2 in

many models) has the bigger coupling to W .

The computation of the various amplitudes differs from what we have al-

ready seen only because of the derivative coupling of sleptons to gauge bosons.

To illustrate how these are handled, we write the amplitude for the associated
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slepton–sneutrino production process in Fig. 12.8. We need to evaluate the matrix

element,

〈�̃ν̃L

∣
∣
∣
∣T

[(

− g√
2

ūγ μ 1 − γ5

2
dW −

μ

) (

− ig√
2

(�̃
†
L∂νν̃L − ν̃L∂ν�̃

†
L)W +

ν

)]∣
∣
∣
∣ dū〉.

In reducing the sleptons in the final state, we get the derivative of the sneutrino

(charged slepton) wave function exp(iν̃ · x) (exp(i�̃L · x)) which gives an i times

the momentum factors in the amplitude. The contraction of the W fields gives us

the W propagator and, as before, integration over the spacetime points where the

interactions occur give us momentum conservation at each vertex. We are then left

with the matrix element

M = −1

2
g2v̄(ū)γ μ 1 − γ5

2
u(d)DW (ŝ)(ẽL − ν̃L)μ, (12.12)

which is now straightforward to square to obtain the differential cross section

listed in (A.14).6 The cross sections for the charged slepton (including stau) and

sneutrino pair production processes can be similarly obtained and are given in

(A.15a)–(A.15b). Note that the cross sections for the production of the first two

generations of charged sleptons and sneutrinos are completely determined by their

masses, and so are model-independent. For staus, model dependence enters via the

stau mixing angle.

In Fig. 12.9, we show slepton pair production cross sections as a function of

slepton mass for the Fermilab Tevatron and for the CERN LHC.7 These results

include next-to-leading order corrections (mentioned below) in the limit of very

heavy squark masses. The negative results of slepton searches at LEP2 require mẽ

(mμ̃) to be greater than about 100 (85) GeV. In the region m �̃ � 100–200 GeV, the

cross sections for the Fermilab Tevatron are always below 100 fb, and simulation

studies indicate that sleptons beyond the reach of LEP2 would be very difficult to

detect.8 Detection of slepton pairs via their direct production seems possible at the

CERN LHC if slepton masses are below ∼ 300–400 GeV.

6 Instead of writing this as a differential cross section dσ/dz as before, we have written it as a differential cross
section over the Mandelstam variable t̂ = (d − �̃)2 using

dσ

dt̂
= 1

16π ŝ2

1

12
|M|2,

where the factor 1/12 comes from color and spin averaging over the initial state.
7 Sometimes in the subsequent discussion of sparticle pair production, we will for convenience use �̃ to collectively

denote both sleptons and antisleptons, or q̃ to denote both squarks and antisquarks. It should be clear from the
context when this occurs.

8 H. Baer et al., Phys. Rev. D49, 3283 (1994).
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Figure 12.9 Cross sections for production of slepton pairs at the Tevatron and the
CERN LHC.

12.1.5 Production of gluinos and squarks

Gluino and squark production at hadron colliders occurs dominantly via strong

interactions. Thus, their production rate may be expected to be considerably larger

than that for sparticles with just electroweak interactions whose production we

have been considering up to now. This is tempered by the fact that in many models

colored sparticles are expected to be the heaviest of all the superparticles, so that

their production may be kinematically suppressed.

Gluino production at hadron colliders mainly occurs via the diagrams listed in

Fig. 12.10. Since the gluon luminosity in hadron collisions falls off rapidly with ŝ,

gluino production from the gg initial state is usually dominant for lower values of

mg̃, while qq̄ annihilation dominates if mg̃ is large. The differential cross sections

for gluino pair production by gg scattering and by qq̄ scattering is given by (A.5a)

and (A.5b), respectively.9 Gluino pair production leads to a large rate for multi-

jet events with apparent Emiss
T carried off by the daughter LSPs from the decay

of the gluinos. Other distinctive gluino signatures will be discussed in subsequent

chapters.

9 The derivative coupling at the three gluon vertex can be handled as explained in the previous subsection. In the
present case, the derivative may also act on the gluon propagator but this can be dealt with exactly as before.
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Figure 12.10 Feynman diagrams for leading order gluino pair production pro-
cesses at hadron colliders.

Figure 12.11 Feynman diagrams for squark pair production via gluon scattering
at hadron colliders.

Pair production of squarks via gg scattering takes place via the diagrams listed in

Fig. 12.11. These scattering reactions lead to particle–antiparticle pairs of the same

flavor and type, e.g. ũL ¯̃uL, ũR ¯̃uR, etc. This is also true for t-squark pair production:

only t̃i ¯̃ti (i = 1, 2) pairs can be produced because gluons do not couple to t̃1¯̃t2 pairs.

In addition, as shown in Fig. 12.12, squark pairs can also be produced via quark–

quark or quark–antiquark scattering. These contributions are important only for

those flavors with significant luminosity in the colliding hadron beams. Not only

do different Feynman diagrams contribute to the production of different flavors and

types of squarks, as we will see in the next chapter these different squarks have their

distinct decay patterns. Thus the cross section magnitudes, angular distributions,

and the final decay products all depend on which pair of squarks is being produced.

For simulations of superparticle production at colliders it is, therefore, important

to separate out the production of different types of squark pairs. The component
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Figure 12.12 Feynman diagrams for squark pair production via quark scattering
at hadron colliders.

reactions are

q1q̄2 → q̃1L ¯̃q2R and q1q̄2 → q̃1R ¯̃q2L, (12.13a)

q1q̄2 → q̃1L ¯̃q2L and q1q̄2 → q̃1R ¯̃q2R, (12.13b)

q1q2 → q̃1Lq̃2R and q1q2 → q̃1Rq̃2L, (12.13c)

q1q2 → q̃1Lq̃2L and q1q2 → q̃1Rq̃2R, (12.13d)

qq̄ → q̃L ¯̃qR and qq̄ → q̃R ¯̃qL, (12.13e)

qq̄ → q̃L ¯̃qL and qq̄ → q̃R ¯̃qR, (12.13f)

qq̄ → q̃ ′
L

¯̃q ′
L and qq̄ → q̃ ′

R
¯̃q ′

R, (12.13g)

qq → q̃Lq̃L and qq → q̃Rq̃R, (12.13h)

qq̄ → q̃L ¯̃qR and qq̄ → q̃R ¯̃qL. (12.13i)

The differential cross sections for these various squark pair production reactions

are listed in (A.7a)–(A.7j) of Appendix A. While most of the necessary amplitudes

can be straightforwardly calculated using techniques that we have already described,

in the evaluation of the amplitude for the processes q1q2 → q̃1Lq̃2R which occur via

gluino exchanges in the t-channel, and also u-channel if q1 = q2, (see Fig. 12.12)

we encounter a new complication. The relevant amplitude depends on the matrix

element

〈q̃1Lcq̃2Rd | − 2g2
s T

[(

q̃†
L

¯̃gAλA

2

1 − γ5

2
q

)

(x)

(

q̃†
R

¯̃gBλB

2

1 + γ5

2
q

)

(y)

]

|q1aq2b〉,
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Figure 12.13 Feynman diagrams for leading order gluino–squark associated pro-
duction at hadron colliders.

where a–d are color indices. Reducing the particles in the external states leaves us

with,

−2g2
s 〈0|T

[(

eiq̃1L·x (
¯̃gA(x)λA

2
)ca

1 − γ5

2
u(q1)e−iq1·x

)

×
(

eiq̃2R·y(
¯̃gB(y)λB

2
)db

1 + γ5

2
u(q2)e−iq2·y

)]

|0〉. (12.14a)

We now see that because we have two Dirac-conjugated gluino fields, the vacuum

expectation value of their time-ordered product is not the Feynman propagator for

the gluino. To bring it to this form, we recall that the Majorana nature of the gluino

means that the spinor g̃ ≡ λAg̃A/2 is a Majorana spinor so that,

¯̃g(x)
1 − γ5

2
u(q1) = g̃(x)T C

1 − γ5

2
C v̄(q1)T = −v̄(q1)

1 − γ5

2
g̃(x).

If we substitute this into (12.14a), we see that the matrix element contains the

gluino propagator as expected, but that we obtain a v-spinor for the wave function

of the quark q1.10 As usual, we can now write the gluino propagator as a Fourier

integral over the four-momentum pg̃; also, integration over the co-ordinates x and

y gives four-momentum conservation at each vertex, and the matrix element for

q1q2 → q̃1Lq̃2R reduces to,

M = 2g2
s v̄(q1)

1 − γ5

2
(
λA

2
)ca

1

(p/g̃ − mg̃)
(
λA

2
)db

1 + γ5

2
u(q2), (12.14b)

which can be now squared using usual trace techniques.

Finally, gluinos and squarks may also be produced in association with each other

via gluon–quark scattering, as shown in Fig. 12.13. The corresponding cross section

is given by (A.6).

10 This is equivalent to saying that we write the Lagrangian at point x in terms of the anti-quark field, i.e. a field
ψq̄ that destroys an antiquark in the initial state or creates a quark in the final state, and the “anti-gluino”
field. The reader may also recall that we encountered a similar manipulation in Chapter 3, when we examined
the quadratic divergences in the corrections to the two-point function of the field A. See also Eq. (3.37a) and
(3.37b).
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Figure 12.14 Cross sections for squark and gluino production at the CERN LHC
pp collider for mq̃ = mg̃ (solid) and for mq̃ = 2mg̃ (dashes).

It is worth emphasizing that because there are no third generation partons in

the initial state, squark and gluino production rates are fixed by SUSY QCD in

terms of just the squark and gluino masses, and do not depend upon the details of

any model. In Fig. 12.14, we show sample cross sections for gluino and squark

pair production at the CERN LHC, assuming six flavors of mass degenerate left-

and right-squarks. In this example, we take mq̃ = mg̃ (solid lines) and mq̃ = 2mg̃

(dashed lines). The renormalization and factorization scale is chosen to be half

the average mass of the sparticles produced, which yields results in accord with

next-to-leading order predictions. For the case of mq̃ = mg̃, g̃q̃ associated pro-

duction dominates over most of the range of mg̃, until q̃q̃ pair production dom-

inates at the highest values of mg̃. This behavior is in part a reflection of the

PDFs, where production via gluons is dominant for small x values, but produc-

tion via valence quark scattering dominates for large x values and large sparticle

masses. In the case of mq̃ = 2mg̃, g̃g̃ production is dominant, since these are the

lightest mass pairs of sparticles. We see that even for gluinos as heavy as 1 TeV,

O(103–104) gluino and squark events are expected at the LHC for an integrated

luminosity of just 10 fb−1. It is in this sense that the LHC will be a sparticle

factory.
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Figure 12.15 Feynman diagrams for leading order squark–neutralino associated
production at hadron colliders.

Figure 12.16 Feynman diagrams for leading order squark–chargino associated
production at hadron colliders.

Exercise The reader will have noticed that gluinos can be produced only from gg
and qq̄ initial states, but not from the qq initial state. Argue that this must be the
case by color symmetry. Use the reduction of SU (3) tensor products,

3 ⊗ 3 = 3∗ ⊕ 6,

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10∗ ⊕ 27,

to make the argument.

12.1.6 Gluino or squark production in association with charginos
or neutralinos

Gluinos and squarks may also be produced in association with charginos and neu-

tralinos in a semi-strong reaction. Diagrams leading to squark production in asso-

ciation with neutralinos (charginos) are shown in Fig. 12.15 (Fig. 12.16). These

reactions occur by quark–gluon scattering via u- and s-channel graphs, with cross

sections given by (A.8)–(A.10). Sample reaction rates for the CERN LHC are shown

in Fig. 12.17 versus mg̃ for μ = mg̃ = mq̃ , tan β = 5, and assuming gaugino mass

unification and degenerate squarks.

Feynman diagrams for gluino production in association with neutralinos

(charginos) are shown in Fig. 12.18 (Fig. 12.19). In this case, production occurs

via quark–antiquark scattering via t- and u-channel squark exchange. The relevant

cross sections are given by (A.11)–(A.12). Example cross sections for the LHC are

shown in Fig. 12.20 for the same parameters as in Fig. 12.17.
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Figure 12.17 Cross sections for chargino or neutralino production in association
with squarks at the CERN LHC pp collider for tan β = 5, and assuming gaugino
mass unification at MGUT and degenerate squarks.

Figure 12.18 Feynman diagrams leading to gluino plus neutralino production at
hadron colliders.

Figure 12.19 Feynman diagrams leading to gluino plus chargino production at
hadron colliders.

Generally, the rates for all semi-strong associated production reactions are

smaller than rates for direct pair production of gluinos and squarks at the LHC,

or to chargino and neutralino pair production at the Fermilab Tevatron. The signa-

tures are not especially distinctive from those arising from cascade decays of gluino

and squark pair production, so that these processes appear to be less important for

the search for supersymmetry.
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Figure 12.20 Cross sections for chargino or neutralino production in association
with gluinos at the CERN LHC pp collider for tan β = 5, and assuming gaugino
mass unification at MGUT.

12.1.7 Higher order corrections

Next-to-leading order (NLO) QCD corrections to scattering cross sections are nec-

essary to improve the accuracy of numerical predictions, and such calculations

have been carried out for all the sparticle production mechanisms discussed above.

The accuracy of leading order (LO) predictions can be ascertained by varying the

renormalization and factorization scales inherent in the cross section calculations.

For simplicity, we set these two scales equal to each other, and denote them by

Q. In Fig. 12.21a, we show the variation of LO and NLO calculations of W̃1 Z̃2

production at the CERN LHC with respect to variation in the scale choice, ex-

pressed as a ratio with the average mass of the produced sparticles. The uncertainty

of the LO result is ∼ 30%, while the scale variation of the NLO result is min-

imal. Typically, for this reaction, the NLO result represents an enhancement of

20%–50%.

In Fig. 12.21b, the cross section variation versus scale choice is shown for gluino

pair production. In this case, the LO cross section varies by a factor of ∼ 3, while

the NLO result varies only by about 30%. As noted above, for strongly produced

SUSY particles a scale choice of 0.3–0.5 times the average sparticle mass will yield

LO cross section predictions in accord with NLO results.11

11 NLO sparticle pair production cross sections can be generated by the computer program PROSPINO: see W.
Beenakker, R. Höpker and M. Spira, hep-ph/9611232.
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Figure 12.21 Cross sections for (a) chargino plus neutralino production for the
mSUGRA framework with m0 = 100 GeV, m1/2 = 150 GeV, A0 = 300 GeV,
tan β = 4, and μ > 0; the figure is adapted from W. Beenakker et al., Phys. Rev.
Lett. 83, 3780 (1999). In (b), gluino pair production versus variation in renormal-
ization/factorization scale is shown at the CERN LHC pp collider; this figure is
adapted from W. Beenaker et al., Nucl. Phys. B492, 51 (1997).

12.1.8 Sparticle production at the Tevatron and LHC

In Fig. 12.22, we show total cross sections for production of supersymmetric

particles at the Fermilab Tevatron, for p p̄ collisions at
√

s = 2 TeV, as a function

of the physical gluino mass, assuming the squarks are all degenerate. In frame

(a), for mq̃ = mg̃, we see that chargino and neutralino production is the dominant

production mechanism over the entire range of mg̃ values shown. Strong production

of gluinos and squarks never dominates, mainly because in this case the gluino and

squark masses are so heavy compared to the charginos and neutralinos.12 In frame

(b), we show the corresponding cross sections for mq̃ = 2mg̃. In this case, strong

production cross sections are even more suppressed due to large squark masses,

and production of charginos and neutralinos is dominant. We see that W̃ +
1 W̃ −

1 and

W̃ ±
1 Z̃2 production processes dominate sparticle production at the Tevatron.

Figure 12.23 illustrates sparticle production rates at the CERN LHC. In frame

(a) for μ = mg̃ = mq̃ , gluino and squark production dominates unless gluinos and

squarks are heavier than 1.7 TeV, in which case chargino and neutralino production

has the largest rate. For the heavy squark case in frame (b), gluino and squark

production is dominant for mg̃
<∼ 800 GeV. Associated production is never dominant.

12.2 Sparticle production at e+e− colliders

Since superpartners were not discovered at the CERN LEP2 e+e− collider, oper-

ating at
√

s � 200 GeV, it seems likely that if weak scale supersymmetry exists

12 This is not the case for μ = −mg̃ for which charginos and neutralinos tend to be heavier. Then strong production
is dominant if mg̃

<∼ 300 GeV (200 GeV) for mq̃ = mg̃ (mq̃ = 2mg̃).
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Figure 12.22 Cross sections for the production of gluinos, squarks, charginos,
and neutralinos at the Fermilab Tevatron p p̄ collider. We assume gaugino mass
unification at Q = MGUT, and also that all squarks have the same mass. To the left
of the vertical line, the chargino is lighter than 100 GeV.

in nature, its discovery will take place at a hadron machine. Nevertheless, there is

considerable interest in the construction of a linear e+e− collider to operate in the

energy regime of
√

s ∼ 0.5–1.5 TeV. Despite the lower energy, the advantages of

such a machine (over hadron colliders) for the elucidation of weak scale supersym-

metry are numerous:

� Unlike at hadron colliders where the energy available for the production of new

particles is limited to that of the colliding partons, essentially all of the available

center of mass energy may go into creating new states at an e+e− collider. This

is because, unlike hadrons, electrons and positrons are elementary particles.
� For the same reason, the e+e− initial state has a well-defined energy and momen-

tum, and allows detailed kinematic reconstruction of scattering events, facilitating

precision measurements. Again for this same reason, e+e− scattering events are

very clean because the hard scattering event is free of contamination from spec-

tator jets and initial state QCD radiation that are necessarily present in hadron
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Figure 12.23 Cross sections for gluinos, squarks, charginos and neutralinos at the
CERN LHC pp collider. As in Fig. 12.22, we assume gaugino mass unification
and the degeneracy of squarks. The chargino is lighter than 100 GeV to the left of
the vertical line.

scattering. The clean environment together with the simplicity of the initial state

allows final states to be reconstructed with greater precision.
� Aside from kinematic suppression, all particles with non-trivial SU (2)L × U (1)Y

quantum numbers are produced at comparable rates so that signal to background

is never very small.
� The availability of a longitudinally polarized electron, and possibly also a positron,

beam is a novel feature of electron–positron colliders. Since SUSY signals and

SM backgrounds are both sensitive to beam polarization, polarized beams can be

a very valuable tool, both for reducing SM backgrounds and for separating SUSY

reactions from one another.
� The beam energy is tunable. Together with beam polarization capability, this will

allow experimentalists to isolate particular SUSY processes, further facilitating

determination of sparticle properties.

The biggest physics advantages of hadron colliders are (a) the higher beam

energy, which makes them an ideal facility for a broad band search for new physics,
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and (b) the sizable cross section for SUSY processes which results in observable

signal rates for luminosity and energy which is supposed to be well within the realm

of current technology. In contrast, both signal and background cross sections tend

to be small at high energy e+e− colliders, so that very high beam intensities are

essential for physics. Thus, while sparticles may be discovered at a hadron collider,

and many of their properties determined there, a TeV scale e+e− collider operating

with polarizable beams will allow a systematic program of precision studies of all

the superparticles with significant production cross sections.

12.2.1 Production of sleptons, sneutrinos, and squarks

Pair production of smuons, staus, and their corresponding sneutrinos takes place

via the same Feynman diagrams as in Fig. 12.7, with qq̄ replaced by e−e+. Squark

pairs are also produced via the same Feynman diagrams as for charged slepton

production, with the sleptons replaced by squarks. The relevant matrix elements

can be evaluated as before. The one new element is that, for reasons explained at the

start of this chapter, we present the cross sections for polarized electron/positron

beams. This simply entails inserting corresponding chiral projectors PL/R = 1∓γ5

2

to select out the desired polarization in front of the initial state electron/positron

spinor wave functions when evaluating the various amplitudes.13 The cross sections

for squark pair production, as well as for charged sleptons and sneutrinos of the first

two generations, are given by (A.21a)–(A.21c). The cross section for unpolarized

beams, or for partially polarized beams, can be obtained from these using (A.28).

We note that for the first two generations of squarks as well as for smuon and

sneutrino production, the cross sections are determined by just the sfermion mass

(together with known SM parameters), and so are model-independent.

In Fig. 12.24, we show the cross section for smuon and sneutrino (ν̃μ or ν̃τ ) pair

production from unpolarized beams as a function of the sparticle mass, for an e+e−

collider operating at
√

s = 1 TeV. The stau cross section depends on the stau mixing

angle but typically has a similar magnitude. Linear colliders are currently being

designed, and the projected luminosity for such a machine might be 10–50 fb−1 per

year, or larger. The Technical Design Report of the TESLA collider being considered

for construction quotes a luminosity of 3.4 × 1034 cm−2s−1 at
√

s = 500 GeV,

corresponding to a projected design luminosity in excess of 300 fb−1/yr, assuming

the machine runs about a third of the time. Depending on the luminosity that is

ultimately attained, several hundred to several thousand smuon pair events might

be expected annually for smuon masses heavy enough to be within 80% of the

kinematic limit.

13 At the energies of interest it is safe to neglect the electron mass so that there is no difference between chirality
and helicity.
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Figure 12.24 Cross sections for production of smuons and associated sneutrinos
at a

√
s = 1 TeV e+e− collider with unpolarized beams.

Figure 12.25 Cross sections for left-smuon pair production versus
√

s for various
smuon masses at an e+e− collider with unpolarized beams.

The variation of this cross section versus collider
√

s is shown in Fig. 12.25,

for various smuon masses. Slightly above threshold, the cross section attains a

maximum, falling off as the energy escalates. The rapid rise of the cross section

close to the kinematic end-point is characteristic of theβ3 p-wave threshold behavior

evident in (A.21a).

The cross sections for various squark pair production processes as a function of

squark mass are shown in Fig. 12.26 for a 1 TeV e+e− collider with unpolarized

beams. For third generation squarks, as for staus, the cross sections will be modified
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Figure 12.26 Cross sections for various types of squark pairs at a 1 TeV e+e−
collider with unpolarized beams, versus mq̃ .

Figure 12.27 Cross sections for producing left- and right-selectron and electron
sneutrinos at a

√
s = 1 TeV e+e− collider with unpolarized beams, versus the

corresponding selectron or sneutrino mass for the parameters listed in the text.
The solid (dashed) lines correspond to positive (negative) values of μ.

by mixing angle factors. Production of left-squarks is the largest of these cross

sections. We note that these cross sections are much smaller than the corresponding

cross sections at the LHC.

The mechanisms for the production of first generation sleptons and sneutrinos

are more complicated. In addition to the first of the Feynman graphs of Fig. 12.7,
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left- and right-selectron pairs may also be produced via the exchange of any of

the neutralinos in the t-channel. Thus σ (ẽLẽL) and σ (ẽRẽR) depend on parameters

entering the neutralino mass matrix. Moreover, ẽL ¯̃eR and ¯̃eLẽR pairs can also be

produced but only via these neutralino exchange graphs. Finally, electron sneu-

trinos may be pair produced either via the s-channel Z exchange diagram shown

in Fig. 12.7 that is common to all sneutrinos, or by chargino exchange in the

t-channel.

Production cross sections for selectron and sneutrino pair production are illus-

trated in Fig. 12.27 versus selectron or sneutrino mass, for a
√

s = 1 TeV e+e−

collider. We take μ = ±2m �̃ (solid/dashes), tan β = 5 and M2 = m �̃, and assume

gaugino mass unification. The most striking feature of this figure is that the selec-

tron (sneutrino) pair production cross sections are about 10 (50) times larger than

the corresponding cross sections for second generation sleptons. This is because of

the t-channel contributions to their production. Notice also that for the first gen-

eration, aside from possible differences in kinematic factors, electron sneutrinos

usually have the largest production cross section. We will see in the next chapter

that sneutrinos may decay visibly, so that sneutrino production can be an important

discovery mode. Also, the cross section for ẽLẽL + ẽRẽR production is almost an

order of magnitude larger than that for ẽLẽR production. Nevertheless, even for a

modest integrated luminosity of 20 fb−1, O(1000) ẽLẽR events should be expected

at a linear collider. This is important because in models where ẽL and ẽR have very

different masses (e.g. GMSB models), ẽLẽR production may be the only reaction

which gives access to the heavier selectron.

Exercise Evaluate the cross section for selectron pair production by electron–
electron collisions which takes place via neutralino exchanges in the t- and u-
channels. To obtain the matrix element you will have to perform manipulations
similar to those that we performed when we evaluated the cross section for the
process q1q2 → q̃1Lq̃2R in the previous section.

Notice that the cross section that you evaluate has a different threshold behavior
from that for selectron production in e+e− collisions. This, together with the fact that
lepton number conservation implies that we have no SM backgrounds from W −W −

production, suggests that the selectron mass can be more precisely measured via
this process than at e+e− colliders.

12.2.2 Production of charginos and neutralinos

Production of W̃1W̃ 1 and W̃2W̃ 2 pairs proceeds via the Feynman diagrams of

Fig. 12.3, by replacing dd̄ with e−e+, and ũL by ν̃eL. The s-channel Z exchange
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Figure 12.28 Cross sections for chargino pair production at a 1 TeV e+e− collider
with unpolarized beams, versus mW̃1

, for tan β = 5.

and t-channel sneutrino exchange graphs also lead to the production of W̃2W̃ 1 and

W̃1W̃ 2 pairs. The differential cross sections for these various chargino production

processes are given by (A.27a)–(A.27d). In many models, |μ| � M2, so that the

lighter (heavier) chargino is gaugino-like (higgsino-like). Typically σ (W̃ +
1 W̃ −

1 ) is

large because of the enhanced isotriplet coupling of the charginos to Z0. However,

this cross section can be sensitive to the sneutrino mass because of the interfer-

ence between the s- and t-channel amplitudes which reduces the cross section if√
s > MZ .

In Fig. 12.28 we illustrate the cross sections versus the lighter chargino mass

for various chargino production processes at a
√

s = 1 TeV e+e− collider. We take

M2 = m ν̃e = 0.5μ, tan β = 5. For M2 = 0.5μ � MW , mW̃2
∼ 2mW̃1

and produc-

tion of heavier chargino pairs is kinematically (as well as dynamically) suppressed

relative to that of lighter chargino pairs, and cuts off at the kinematic limit which

is close to 2mW̃1
∼ mW̃2

= 500 GeV. The mixed process W̃2W̃ 1 + W̃1W̃ 2 always

occurs at a lower rate. Note, however, that for an integrated luminosity of 100 fb−1

there should be several hundred W̃ ±
1 W̃ ∓

2 events beyond the kinematic limit for

W̃ +
2 W̃ −

2 production.

In many supersymmetric models, W̃1 is the lightest of visibly decaying SUSY

particles. If charginos are kinematically accessible, they should be produced at

observable rates in e+e− collisions because of their unambiguous couplings to the

photon and to the Z . As shown in Fig 12.29, this rate may be significantly smaller

than its typical expectation if the sneutrino happens to be relatively light, but should

nonetheless be observable.
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Figure 12.29 Cross sections for chargino pair production processes at a 1 TeV
e+e− collider with unpolarized beams, versus m ν̃e , for M2 = 0.5μ = 200 and
tan β = 5.

Figure 12.30 Cross sections for neutralino pair production at a 1 TeV e+e− collider
with unpolarized beams, versus mW̃1

, for tan β = 5 and M2 = mẽ = 0.5μ.

Neutralino pair production occurs at e+e− colliders via the diagrams of Fig.

12.5 with qq̄ replaced by e−e+ and q̃L,R replaced by ẽL,R. The corresponding

differential cross section is given by (A.26). Sample neutralino production cross

sections are shown in Fig. 12.30, for the same parameters as in Fig. 12.28 but with

m ν̃e replaced by mẽL
= mẽR

. For the parameters selected, Z̃1 � B̃ and Z̃2 � W̃ , so

that by SU (2)L × U (1)Y gauge symmetry, these neutralinos have small couplings
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to Z bosons,14 but couple to the eẽL,R system via the corresponding gauge coupling
(since the wino component does not couple to ẽR, the eẽR Z̃2 coupling is small). Since

selectrons have been assumed to be relatively light, in this illustration, t-channel

amplitudes are large: Z̃1 Z̃1 pair production is large because of the large hypercharge

of ẽR. Z̃1 Z̃2 production mainly occurs via ẽL exchange because ẽL couples to both

the bino and the wino; however, this rate is smaller than that for Z̃1 Z̃1 because of

the smaller hypercharge of ẽL (in addition to kinematic suppression). For the same

reason, Z̃2 Z̃2 production mainly occurs via ẽL exchange. The neutralinos Z̃3 and

Z̃4 are mainly higgsino-like, with the magnitude of each higgsino component being

close to 1√
2
. Cross sections for Z̃3 Z̃3 and Z̃4 Z̃4 pair production are, however, very

small because the Z Z̃3(4) Z̃3(4) coupling in (8.101) is clearly strongly supressed, and

the corresponding amplitudes for t-channel exchanges are supressed for dynamical

reasons. The rate for Z̃3 Z̃4 production, which mainly occurs via unsuppressed

couplings to the Z boson is large, and dominates the kinematically favored (but

dynamically suppressed) production of “light–heavy” neutralino pairs.

In R-parity conserving models with Z̃1 as the LSP, the Z̃1 Z̃1 final state will be

invisible, except for initial state photon radiation. However, as in this example, in

mSUGRA and mGMSB models with m Z̃2
� mW̃1

� 2m Z̃1
, Z̃1 Z̃2 production may

be observable even if chargino pairs are not kinematically accessible. We should

stress though that unlike chargino cross sections that are relatively robust, neutralino

production cross sections are very sensitive to model parameters. In particular, if

selectrons are very heavy and |μ| � |M1,2| (as is possible in many models), Z̃1 Z̃1,

Z̃1 Z̃2, and Z̃2 Z̃2 production mainly occurs via Z exchange through the suppressed

higgsino components of the neutralinos: in this case, these production cross sections

can be very small even if neutralino production is kinematically unsuppressed.

12.2.3 Effect of beam polarization

We have already mentioned that the availability of longitudinally polarized beams

at a linear e+e− collider serves as a powerful additional tool for signal analysis at

these facilities. The degree of longitudinal beam polarization can be parametrized

as

PL(e−) = fL − fR, where (12.15a)

fL = nL

nL + nR

= 1 + PL

2
, and (12.15b)

fR = nR

nL + nR

= 1 − PL

2
. (12.15c)

14 After all, this is the SUSY analogue of the three neutral vector boson coupling which is forbidden by gauge
invariance.
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Here, nL,R is the number of left-(right-)polarized electrons in the beam, and fL,R is

the corresponding fraction. Thus, a 90% right-polarized beam would correspond to

PL(e−) = −0.8, and a completely unpolarized beam corresponds to PL(e−) = 0.

In Appendix A we have collected the various SM and SUSY cross sections

for polarized electron and positron beams. In practice, however, beams are always

partially polarized, and the relevant cross sections can be obtained using

σ = fL(e−) fL(e+)σLL + fL(e−) fR(e+)σLR

+ fR(e−) fL(e+)σRL + fR(e−) fR(e+)σRR, (12.16)

where fL and fR are defined above, and σi j (i, j = L, R) is the cross section from

e−
i e+

j annihilation.

In Fig. 12.31, we show the production cross sections for various SM particle pair

production processes at an e+e− collider operating at
√

s = 500 GeV, versus the

electron beam polarization parameter PL(e−), taking the positrons to be unpolarized.

The most striking feature is the strong dependence of the W boson pair production

cross section on PL(e−). This is important because W +W − production, which is

the SM process with the largest cross section (for unpolarized beams), can lead to

events with “missing energy” and “missing momentum” carried off by neutrinos

from leptonic decays of W , and so is an important background to the SUSY signal.

Fortunately, this rate can be reduced to tiny values by using an increasingly right-

handed electron beam (see the exercise below). The other SM processes have a less

severe dependence on beam polarization, but generally have the largest rates for

left-polarized beams.

The polarization dependence of SUSY particle production cross sections is il-

lustrated in Fig. 12.32, for the mSUGRA model with parameters shown in the

figure. We see that the production of first generation sleptons, W̃1 pairs and some

neutralino pairs is strongly sensitive to PL(e−). By adjusting the polarization of the

electron beam, we see that it is possible to select out event samples that are rich in

ẽL or ẽR (in addition to other sparticles). In addition to the fact that polarization can

be used to reduce SM background, this intra-generational separation can also be

important for detailed studies of these sparticles. Indeed we will see that electron

beam polarization is a very useful tool when engaging in precision studies of the

properties of SUSY particles.

While the degree of beam polarization that will be attained at future linear

colliders is still uncertain, it is thought that 80%, or higher, polarization for the

electron beam will certainly be possible. The situation for positron beams is less

clear, but positron beam polarization of about 60% seems to be the target.
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Figure 12.31 Cross sections for various SM pair production processes versus the
electron beam polarization parameter PL(e−), for e+e− collisions at

√
s = 500

GeV. We take the positrons to be unpolarized. Reprinted with permission from H.
Baer, R. Munroe, and X. Tata, Phys. Rev. D54, 6735 (1996), copyright (1996) by
the American Physical Society.

Exercise We saw in Fig. 12.31 that the W W cross section showed a very strong
dependence on the electron beam polarization. In view of the importance of
eliminating this background, it is worthwhile to understand the smallness of the
cross section for PL(e−) = −1.

(a) Draw the Feynman diagrams by which this process occurs. Since W ’s couple
only to left-handed electrons, it is straightforward to see that the amplitude
for the neutrino exchange diagram vanishes if PL(e−) = −1. Remember that
electron masses are negligible at the energy that we are considering. For a
purely right-handed electron beam, this leaves us with just the Z and photon
exchange amplitudes.

(b) To analyze these s-channel amplitudes, it is convenient to work in terms of the
original hypercharge and SU (2)L gauge bosons rather than in terms of the
photon and the Z. Since right-handed electrons have no coupling to the SU (2)L

gauge boson, the internal vector boson line in the s-channel Feynman diagram
must start off as a hypercharge gauge boson at the electron positron vertex.
Gauge invariance precludes any coupling between this boson and the W +W −

pair. Thus, this amplitude would vanish but for mixing between the hypercharge
and SU (2) gauge bosons. This mixing originates in the gauge-covariant kinetic
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Figure 12.32 Cross sections for production of various sparticle pairs in the
mSUGRA model versus the electron beam polarization parameter, for e+e− colli-
sions at

√
s = 500 GeV. The positron beam is taken to be unpolarized. Reprinted

with permission from H. Baer, C. Balázs, J. K. Mizukoshi and X. Tata, Phys. Rev
D63, 055011 (2001), copyright (2001) by the American Physical Society.

energy,

|Dμφ|2 �∼ gg′〈φ〉2W3μ Bμ,

of the field φ defined below (8.22b). Use this to show that the s-channel ampli-
tude must be proportional to M2

Z . For dimensional reasons it must, therefore,
depend on M2

Z/s and so becomes very small at high energy for right-handed
electron beams.
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Exercise Explain the polarization dependence of the slepton and sneutrino pair
production cross sections in Fig. 12.32. In particular, explain clearly why stau and
tau sneutrino pair production is much less sensitive to PL(e−) compared to first
generation sleptons.

12.2.4 Bremsstrahlung and beamstrahlung

Up to now, we have focussed on particle production cross sections at e+e− colliders

where the full beam energy goes into the hard scattering. However, to properly

describe signals and backgrounds to sparticle production at e+e− colliders operating

in the TeV range, one must allow for forward initial state radiation of high energy

photons or bremsstrahlung. An additional complication comes from energy loss

due to beam–beam interactions, the so-called beamstrahlung effect. The photons

from both these effects are lost down the beam pipe resulting in an unmeasurable

loss in the energy of the beam. This reduces the CM energy of the colliding beams,

and results in an (unknown) longitudinal momentum for the hard scattering initial

state. It is essential to incorporate bremsstrahlung and beamstrahlung losses for

precision studies that are possible at linear colliders.

The bremsstrahlung effect can be included by convoluting e+e− cross sec-

tions with an effective electron structure function. A simple parametrization is

the Kuraev–Fadin distribution, given by15

Dbrem
e (x, Q2) = 1

2
β(1 − x)

β

2
−1(1 + 3

8
β) − 1

4
β(1 + x), (12.17a)

where

β ≡ 2α

π
(ln

Q2

m2
e

− 1), (12.17b)

x is the electron fractional momentum, and Q is the scale of hard scattering. The

bremsstrahlung distribution is shown by the dashed curve in Fig. 12.33.

In addition, for the very dense, compact electron and positron beams that are

essential to obtain the high luminosity needed for high energy linear colliders,

one must account for beamstrahlung. In effect, the electron or positron beams are

so compact that energy loss can occur due to beam interactions before the hard

scattering. This energy loss can be calculated semi-classically, and gives rise to

a beamstrahlung distribution function, Dbeam
e (x). A parametrization of the beam-

strahlung distribution function is too complicated to present here, but it does de-

pend on machine characteristics and beam profile. Stipulating a beamstrahlung

15 E. Kuraev and V. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).
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Figure 12.33 Distribution of electrons in the electron, due to bremsstrahlung,
beamstrahlung and their convolution. Reprinted from H. Baer, T. Krupovnickas
and X. Tata, JHEP 06, 061 (2004).

parameter ϒ along with σz related to the bunch length is sufficient to determine

the beamstrahlung distribution as characterized in calculations by P. Chen.16 The

beamstrahlung distribution for a collider with ϒ = 0.1072 and beam size σz = 0.12

mm is also shown by the dot-dashed curve in Fig. 12.33, for beam energy Ee = 250

GeV. To account for both bremsstrahlung and beamstrahlung, a convolution,

De(x) =
∫ 1

x
dzDbrem

e

( x

z
, Q2

)

Dbeam
e (z)/z, (12.18)

of the two distribution functions must be performed. The resulting beam energy

distribution with both beamstrahlung and bremsstrahlung effects included is shown

by the solid curve in Fig. 12.33. As can be seen, the highest probability is that elec-

trons or positrons with x ∼ 1 will interact. But there is a significant probability that

energy loss can result from beamstrahlung and bremsstrahlung, so that the energy

in the hard scattering process is considerably smaller. This is especially important

when examining the reconstruction of SUSY processes with high precision, be-

cause the energy loss due to beamstrahlung/bremsstrahlung photons distorts final

state distributions as well as the missing energy spectrum that is one of the key

elements of sparticle production reactions.

As an example, we show the distribution in dimuon invariant mass in Fig. 12.34

for e+e− → μ+μ−, at
√

s = 500 GeV, using the beamstrahlung parameters of

16 See P. Chen, Phys. Rev. D46, 1186 (1992).
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Figure 12.34 Differential cross section for muon pair production at a 500 GeV
e+e− collider, as a function of dimuon mass. The Z and γ peaks are clearly
evident, due to bremsstrahlung and beamstrahlung. The two-photon background
discussed in the text is not included in this figure.

Fig. 12.33. A large fraction of events is produced with invariant mass m(μ+μ−) ∼
500 GeV, as might be expected. However, the γ and Z poles in the production

process lead to even larger dimuon rates at m(μ+μ−) ∼ 0 and MZ .17 In addition,

there are non-vanishing cross section contributions in the intermediate invariant

mass regions.

We should also mention that for very low values of m(μ+μ−) the cross section

will actually be dominated by the higher order process e+e− → e+e−μ+μ−, where

the muons are mainly produced by collision of almost on-shell photons radiated by

the electron and positron beams. These “two-photon processes” are a very important

background if the observable final state is a pair of charged particles with low

momentum and low invariant mass and the final state electrons and positrons escape

undetected down the beam pipe. Within the context of supersymmetry, this occurs

when the pair-produced charged sparticle is approximately degenerate with the

LSP.

17 This means that these machines are “self-scanning” for resonances that couple to e+e− pairs.



13

Sparticle decays

Once sparticles are produced, they will typically decay into another sparticle to-

gether with SM particles via many different channels. The daughter sparticles sub-

sequently decay to yet lighter sparticles until the decay cascade terminates in the

stable LSP. In this discussion we have implicitly assumed that R-parity is con-

served: otherwise, sparticles may also decay into just SM particles, and the final

state would be comprised of only SM particles. However, whether or not R-parity is

conserved, sparticle production at colliders typically leads to a variety of final state

topologies via which to search for SUSY. Signal rates into any particular topology

are determined by sparticle production cross sections studied in the last chapter,

and by the branching fractions for various decays of sparticles.

In this chapter, we examine sparticle decays in the context of the R-parity con-

serving MSSM. As just mentioned, R-parity conservation implies that any sparticle

decay chain will end in a stable LSP which may be a neutralino, a sneutrino, or,

in models with local supersymmetry, also a gravitino. We have already seen in

Chapter 9 that a sneutrino LSP is disfavored. A weak scale gravitino is essentially

decoupled as far as collider physics considerations go. Hence, for most of this chap-

ter, we will assume the gravitino is unimportant for sparticle decay calculations.

However, as we saw in Section 11.3.1, an important exception to this occurs if the

scale of SUSY breaking is low so that gravitinos are very light. To cover this pos-

sibility, we address sparticle decays to gravitinos in the last section of this chapter.

Before proceeding with the detailed examination of the decay rates and vari-

ous branching fractions for individual sparticle decays, we pause to estimate the

expected lifetimes for unstable sparticles. The lifetimes of sparticles are relevant

when considering collider signatures for SUSY.

� Sparticles with lifetimes much longer than the time they take to traverse the

detector will appear to be stable for the purposes of collider physics. If these

are color and electrically neutral, they escape the detector unseen and manifest

338
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themselves as apparent missing energy and momentum in SUSY events. If such

sparticles are electrically charged, they would cause ionization (the extent of

which would depend on their velocity) and leave tracks in the detector, and would

reveal themselves in experiments searching for heavy charged exotics. If these are

electrically neutral but have strong interactions their experimental signatures may

be quite complicated.1 A particularly striking possibility is that such a particle

may intermittently change into its charged partner by charged pion exchanges

with nucleons in the experimental apparatus, and then back to neutral!
� Neutral sparticles with lifetimes somewhat shorter than their traversal time in

the experimental apparatus would result in displaced vertices. Such a sparticle

would be produced at the primary vertex, but would travel a macroscopic distance

before decaying at a secondary vertex, which may, depending on the lifetime, be

quite distant from the primary interaction point. Experimentalists searching for

new physics should keep this possibility in mind, and not discard such an exotic

signal as due to background from secondary (cosmic ray) interactions or other

noise. If the sparticle lifetime is comparable to B meson lifetimes, SUSY events

would contain displaced vertices (with tracks not pointing back to the primary

interaction point) that would be identified in specialized microvertex detectors

that are an integral part of most contemporary general purpose detectors.
� Finally, sparticles with lifetimes too short to yield displaced vertices that can

be resolved by the microvertex detectors would appear to decay promptly at the

primary vertex. A familiar SM example of such a situation is the production

and decay of the W or Z bosons. In this case, we can get a handle on sparticle

properties only by studying their decay products.

The partial decay rate for a particle decaying via A → a1 + a2 + · · · + an is

given in the rest frame of A by,

�n = (2π )4−3n 1

2MA

∫
d3 pa1

2Ea1

· · · d3 pan

2Ean

|M(A → a1a2 · · · an)|2

× δ4(PA − Pa1
− Pa2

· · · − Pan ), (13.1a)

where, for any sparticle A, the spin and color summed and averaged squared matrix

element |M|2 for the decay is evaluated using the matrix element obtained using

the sparticle interactions listed in Chapter 8. The total decay rate is then obtained

by summing the partial decay rates for all possible decay modes of A. The lifetime

of A is the inverse of this total decay rate,

τA = 1
∑

n
�n

. (13.1b)

1 The elementary sparticle may well be charged and colored, but may bind with SM quarks to produce an
unconfined strongly interacting, electrically neutral “meson” that traverses the apparatus.
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The mass dimension of the matrix element M that appears in (13.1a) can read-

ily be checked to be [M] = 3 − n. The matrix element for two-body decays has

dimensions of mass, that for three-body decays is dimensionless, etc.

Before proceeding to evaluate the partial widths for the various decays of indi-

vidual sparticles, let us estimate their order of magnitude. For two-body decays of

unpolarized particles, Lorentz invariance implies that the squared matrix element,

summed over final state spins, must be independent of final state momenta: i.e. it

is constant.2 This constant must generically be ∼ k2 × m2
A where k is the coupling

constant in the interaction responsible for the decay A → a1a2.3 Using

∫

δ4(PA − Pa1
− Pa2

)
d3 pa1

2Ea1

d3 pa2

2Ea2

= πλ1/2(m2
A, m2

a1
, m2

a2
)

2m2
A

, (13.2a)

it is easy to check that the partial width for the decay,

�(A → a1a2) ∼ f

4m A

k2

4π
λ1/2(m2

A, m2
a1

, m2
a2

)

� f
k2

4π

m A

4
, (13.2b)

where f includes spin and color factors, and in the last step we have ignored any

phase space suppression for the decay. The point of this calculation is to show

that if the coupling k is comparable to the electromagnetic coupling or larger, the

typical width of a 100 GeV particle undergoing two-body decays is >∼ 200 MeV for

a single channel, corresponding to a lifetime <∼ 10−23 seconds: frequently, the total

decay rate is considerably larger because of color factors and also because there

are several channels. Clearly, such lifetimes are orders of magnitude too short to

be detectable by even the best vertex detectors. As shown in the exercise below,

the same conclusion obtains if sparticles dominantly decay via three-body decays

mediated by gauge interactions.

In the subsequent sections, we will see that essentially all MSSM sparticles

can decay (at tree level) via two- or three-body decays mediated by SM gauge

interactions. We conclude that, except in very special cases where there is severe

phase space suppression, sparticles decay promptly in the experimental apparatus.

Important exceptions may occur in GMSB models where the NLSP decays into a

(longitudinal) gravitino via suppressed couplings as discussed in Section 11.3.1,

or for the case of R-parity violating models where the lightest dominantly R-odd

2 The matrix element can be a function of scalar products of various momenta which, by momentum conservation
can be written in terms of particle masses.

3 We assume that the interaction does not have any special features that forbids the appearance of the parent’s
mass in the matrix element. An example where this is forbidden is the matrix element for charged pion decay
which, because of chiral symmetry, has to be proportional to the final state fermion mass rather than mπ .
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particle decays via very small R-parity violating couplings. These special situations

will be treated separately.

In the rest of this chapter we will focus on the decay patterns of various sparticles

since these determine the event topologies via which to search for supersymmetry

at high energy colliders. We illustrate the calculation of partial decay widths by

evaluating the width for three-body decays of the gluino. In Appendix B, we list

formulae for widths of all tree-level two-body sparticle decay modes along with

formulae for the important three-body decay widths.

Exercise Estimate the order of magnitude of the partial width for a three-body
decay of A and show that if this decay is mediated by gauge couplings, we should
not expect a discernible secondary vertex in the experimental apparatus. Proceed
by the following steps.

(a) Although the matrix element for three-body decays is not a constant but depends
on the final state momenta, we may estimate its order of magnitude. If the decay is
mediated by a virtual bosonic sparticle, the amplitude will contain a propagator
of this heavy bosonic particle. Convince yourself that the order of magnitude of
the matrix element (which we saw must be dimensionless) is given by,

|M|2 ∼ k2
1k2

2

(
m2

A

m2
H

)2

,

where k1 and k2 are the dimensionless couplings at each of the two vertices
involving the virtual heavy particle of mass m H . Here, m2

H in the denominator
comes from the propagator, and the m2

A is inserted to make the matrix element
dimensionless.

(b) Neglecting any masses for the final state particles, show that the partial width
for the three-body decay is then given by,

�(A → a1a2a3) ∼ f

32π

(
k1k2

4π

)2 m5
A

m4
H

,

where f again contains spin and color factors.
(c) Assuming that the mass of the virtual sparticle is no more than an order of

magnitude larger than that of the decaying parent, estimate the partial width for
this decay, taking the couplings k1 and k2 to be comparable to gauge couplings.

(d) Frequently, each sparticle has several three-body decay modes, so that the total
decay rate is enhanced by color and multiplicity factors. Convince yourself
that the lifetime of a 100 GeV sparticle decaying via SM gauge interactions is
typically smaller than ∼ 10−16 seconds.
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Note that if the virtual sparticle is a fermion, the matrix element may have just
one power of m H in the denominator, in which case the expected lifetime would be
even smaller.

13.1 Decay of the gluino

If the gluino is heavy enough, it can decay via the strong interaction to quark plus

squark. Neglecting intergenerational mixing, the possible two-body decays are:

g̃ → u ¯̃uL, ūũL, u ¯̃uR, ūũR, (13.3a)

→ d ¯̃dL, d̄d̃L, d ¯̃dR, d̄d̃R, (13.3b)

→ s ¯̃sL, s̄ s̃L, s ¯̃sR, s̄ s̃R, (13.3c)

→ c ¯̃cL, c̄c̃L, c ¯̃cR, c̄c̃R, (13.3d)

→ b ¯̃b1, b̄b̃1, b ¯̃b2, b̄b̃2, and (13.3e)

→ t ¯̃t1, t̄ t̃1, t ¯̃t2, t̄ t̃2. (13.3f)

Each flavor combination must be separately calculated, since the different squark

types will have different decay modes, and each decay chain can give rise to distinct

final states and ensuing signatures. Unless they are kinematically suppressed these

two-body decays generally dominate other decays. Their partial widths are given

by (B.1a) and (B.1b) of Appendix B.

Since the gluino has only strong interactions, if these two-body decays to squarks

are kinematically forbidden, then the gluino would dominantly decay to charginos

and neutralinos via three-body decays mediated by virtual squarks. Again neglecting

inter-generational mixing, the possible decays are,

g̃ → uū Z̃i , dd̄ Z̃i , ss̄ Z̃i , cc̄ Z̃i , bb̄Z̃i , t t̄ Z̃i , (13.4a)

→ ud̄W̃ −
j , ūdW̃ +

j , cs̄W̃ −
j , c̄sW̃ +

j , t b̄W̃ −
j , t̄bW̃ +

j , (13.4b)

where i = 1–4 and j = 1, 2. Note that in all models with a neutralino LSP, the

decays g̃ → qq̄ Z̃1 are kinematically allowed (q = u, d, s, c). As an example cal-

culation, we will illustrate gluino three-body decay to a pair of light quarks plus a

chargino.

13.1.1 g̃ → ud̄W̃ j : a worked example

At leading order, the g̃ → ud̄W̃ j decay occurs via the Feynman diagrams shown

in Fig. 13.1. The decay amplitude for diagram (1) is constructed from

〈uad̄bW̃ j |T
[(

−
√

2gs(i)θg̃ ũLū PR

λB

2
g̃B(x)

)

·
(

iAd
W̃ j

ũ†
LW̃ i PLd(y)

)]

|g̃A〉,
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Figure 13.1 Feynman diagrams contributing to the decay g̃ → ud̄W̃ j .

where a, b, and A denote the color indices of the final state quarks and the decaying

gluino. The matrix element can be evaluated as described in the last chapter. The

external particles can be reduced using the creation/annihilation operators; again

the exponential wave function factors lead to momentum conservation at each

vertex. Finally, the ũL and ũ†
L fields contract together to yield a ũL propagator

factor DF (ũL) = 1
(g̃−u)2−m2

ũL

. Following the steps detailed in Chapter 12, we omit

irrelevant factors of i, and find that the matrix element is given by,

M1 = −i(i)θg̃
√

2gs Ad
W̃ j

λAab

2
ū(u)PRu(g̃) · DF (ũL) · ū(W̃ j )PLv(d̄). (13.5a)

The sum and average over color indices yields a factor

1

8

∑

A

λAab

2

λ∗
Aab

2
= 1

8
Tr

λA

2

λA

2
= 1

8

1

2
δAA = 1

2
,

where in the second step we have used the Hermiticity of the SU (3) generators.

Using usual trace techniques, the sum and average over colors and spins then yields

the squared matrix element,

1

2

1

8

∑

|M1|2 = 2g2
s |Ad

W̃ j
|2 g̃ · u W̃ j · d̄

[(g̃ − u)2 − m2
ũL

]2
. (13.5b)

A similar calculation for diagram (2) yields the matrix element,

M2 = −i(−i)θg̃
√

2gs Au∗
W̃ j

λAab

2
v̄(g̃)PLv(d̄) · DF (d̃L) · ū(u)PRv(W̃ j ), (13.6a)

where the chargino is treated as an antiparticle since its interaction with the down

squark is written in terms of the field W̃ c
j . This explains the direction of the arrow

on the chargino line in diagram (2) of Fig. 13.1; we will leave it to the reader to

check the reason for the reversal of the corresponding arrow on the gluino line. We
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then obtain the spin and color averaged squared matrix element,

1

2

1

8

∑

|M2|2 = 2g2
s |Au

W̃ j
|2 g̃ · d̄ W̃ j · u

[(g̃ − d̄)2 − m2
d̃L

]2
. (13.6b)

Finally, we turn to the interference term,

M1M†
2 = (−1)θg̃ 2g2

s Ad
W̃ j

Au
W̃ j

(
λA

2
)ab(

λ∗
A

2
)ab DF (ũL)DF (d̃L)

× ū(u)PRu(g̃) · v̄(d̄)PRv(g̃) · ū(W̃ j )PLv(d̄) · v̄(W̃ j )PLu(u).

Just as in the evaluation of the interference term following (12.4c), we find a

mismatch between spinors involving the g̃ and also the W̃ j . As before, this can

be rectified using the relations u = C v̄T and v = CūT , which yield:

v̄(d̄)PRv(g̃) = uT (d̄)C PRCūT (g̃) = −ū(g̃)PRu(d̄), and

ū(W̃ j )PLv(d̄) = vT (W̃ j )C PLCūT (d̄) = −ū(d̄)PLv(W̃ j ).

Then the spin and color summed and averaged interference term becomes,

1

8

1

2

∑

(M1M†
2 + c.c.) = −

2g2
s (−1)θg̃ mg̃mW̃ j

Re(Ad
W̃ j

Au
W̃ j

)u · d̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]
. (13.6c)

The width for the decay g̃ → ud̄W̃ j can now be obtained using (13.1a) and

integrating over the entire phase space. To integrate
∑ |M1|2, we first re-write the

dot product W̃ j · d̄ = (Q2 − m2
W̃ j

− m2
d)/2, with Q = W̃ j + d̄ = g̃ − u, so that the

integrand is independent of W̃ j and d̄. The integration over the momenta of W̃ j

and d̄ can be easily performed using the invariant scalar integral (13.2a) leaving

just the integral over the three momentum of the u quark to be performed. It is

most convenient to write the integrand in the rest frame of the gluino. The measure

d3u/2Eu = 2π |	pu|dEu so that the contribution to the partial width from |M1|2 is

�11 =
αs |Ad

W̃ j
|2

16π2
ψ(mg̃, mũL

, mW̃ j
), (13.7a)

where

ψ(mg̃, mq̃, m) =
∫

dE
E2(m2

g̃ − 2mg̃ E − m2)2

(m2
g̃ − 2mg̃ E − m2

q̃)2(m2
g̃ − 2mg̃ E)

, (13.7b)

and where the limits of integration (neglecting the u quark mass) range from Emin =
0 to Emax = (m2

g̃ − m2)/2mg̃. Similarly, integrating
∑ |M2|2 over the phase space
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gives,

�22 =
αs |Au

W̃ j
|2

16π2
ψ(mg̃, md̃L

, mW̃ j
). (13.7c)

Finally, we must integrate over the interference term. Since this term involves

g̃ · u and g̃ · d̄ dot products in the propagator denominators, we cannot use covariant

scalar, vector or tensor integrals in its evaluation. Instead, we will evaluate the three-

body phase space integral directly. Toward this end, we write

d3W̃ j

2EW̃ j

= d4W̃ jθ (W̃ 0
j )δ(W̃ 2

j − m2
W̃ j

),

and use the energy–momentum conserving δ-function to integrate over the chargino

four-momentum. Since W̃ j = g̃ − u − d̄, the step function θ (W̃ 0
j ) is just one (be-

cause of limits on the particle energies obtained below). The remaining integrand

can then be written in the rest frame of the gluino with the u quark direction chosen

as the z-axis. The δ-function that specifies the chargino to be on its mass shell can

be then written as,

δ
[

(g̃ − u − d̄)2 − m2
W̃ j

]

= 1

2Eu Ed̄
δ

[

1 − cos θ +
m2

g̃ − m2
W̃ j

− 2mg̃(Eu + Ed̄)

2Eu Ed̄

]

,

where θ is the angle between the up and down quark momenta. Neglecting quark

masses, it is now straightforward to see that

∫
u · d̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]
δ4(g̃ − W̃ j − u − d̄)

d3u

2Eu

d3d̄

2Ed̄

d3W̃ j

2EW̃ j

= π2

∫
u · d̄ dEudEd̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]

= −π2

2

∫
dEu

(m2
g̃ − 2mg̃ Eu − m2

ũL
)

∫

dEd̄

(

1 +
m2

d̃L
− m2

W̃ j
− 2mg̃ Eu

m2
g̃ − 2mg̃ Ed̄ − m2

d̃L

)

.

The integration over dEd̄ is simple, once the limits of integration are determined

(see the exercise below). We then find that the contribution to the width from the

interference term takes the form,

�12 =
−αs(−1)θg̃ Re(Au

W̃ j
Ad

W̃ j
)

8π2
φ(mg̃, mũL

, md̃L
, mW̃ j

), (13.8a)
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where

φ(mg̃, mũL
, md̃L

, m)

= m

2

∫
dEu

m2
g̃ − m2

ũL
− 2mg̃ Eu

[
−Eu(m2

g̃ − m2 − 2mg̃ Eu)

mg̃(mg̃ − 2Eu)

−
2mg̃ Eu − m2

d̃L
+ m2

2mg̃
log

m2
d̃L

(mg̃ − 2Eu) − mg̃m2

(mg̃ − 2Eu)(m2
d̃L

− 2mg̃ Eu − m2)

]

, (13.8b)

with the range of integration from 0 to (m2
g̃ − m2)/2mg̃. The partial decay width is

then given by

�(g̃ → ud̄W̃ j ) = �11 + �22 + �12. (13.9)

By C P invariance, �(g̃ → ud̄W̃ −
j ) = �(g̃ → dūW̃ +

j ). This will lead to an

important signature for gluinos. Moreover, these partial widths are generation-

independent as long as quark Yukawa interactions can be neglected. For decays to

third generation quarks the calculation is considerably more complicated mainly

because the higgsino components of the charginos also couple via Yukawa inter-

actions. Moreover, intra-generational squark mixing and final state quark masses

also need to be taken into account. The formula for this partial width is given in

Section B.1.4 of Appendix B.

Exercise The requirement that | cos θ | ≤ 1 determines the limits on the energy of
the down quark. Using the value of cos θ given by the chargino mass shell δ-function,
show that

Ed̄(min) = (m2
g̃ − m2

W̃ j
− 2mg̃ Eu)/2mg̃,

Ed̄(max) = (m2
g̃ − m2

W̃ j
− 2mg̃ Eu)/2(mg̃ − 2Eu).

The limits on the up quark energy are even easier to determine. In the gluino rest
frame, if u is produced at rest, then Eu(min) = 0, while if d̄ is produced at rest,
then Eu(max) = (m2

g̃ − m2
W̃ j

)/2mg̃.

Work out how these limits are modified if quarks have non-zero masses. This is
relevant for the decay g̃ → t b̄W̃ j .

13.1.2 Other gluino decays

We have already mentioned that the decays g̃ → cs̄W̃ −
j and g̃ → t b̄W̃ −

j (along

with the corresponding C P conjugate decays) may also occur. If the latter decay is

kinematically unsuppressed, its partial width may be considerably larger than that
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Figure 13.2 Feynman diagrams contributing to the decay g̃ → uū Z̃i . Decays to
other flavors of squarks occur via similar diagrams.

Figure 13.3 Feynman diagrams contributing to the decay g̃ → gZ̃i . Since the
gluino and the neutralino are Majorana particles, these same diagrams but with
reversed arrows also contribute to the amplitude. This corresponds to distinct
contractions in the evaluation of the decay matrix element.

for three-body decays to light squarks. This occurs in part because the top (and

for large tan β, bottom) quark Yukawa couplings are large, and also because in all

models where squark mass parameters are (roughly) equal at some high scale, the

physical masses of light bottom and top squarks are significantly smaller than first

and second generation squark masses.

Gluinos can also decay via three-body mode to neutralinos. The diagrams con-

tributing to g̃ → uū Z̃i are shown in Fig. 13.2. The calculation of the decay width

is very similar to the one illustrated for g̃ → ud̄W̃ j . For decays to massless quarks,

the chiral structure of the interaction ensures that there is no interference term

between diagrams involving left- and right-squark exchange. The corresponding

partial width is given by Eq. (B.4). The decays g̃ → bb̄Z̃i and g̃ → t t̄ Z̃i may also

occur. Once again, the evaluation of these partial widths is complicated because

Yukawa couplings, squark mixing, and quark masses have all to be included. The

relevant formulae can be found in Section B.1.3 of Appendix B.

It is also possible for the gluino to decay via loop diagrams as g̃ → gZ̃i , as shown

in Fig. 13.3. Each diagram is separately divergent but the summed amplitude is finite
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Figure 13.4 Branching fractions for g̃ decay to qq̄ Z̃i , qq̄ ′W̃ j , and qq̃ final states
as a function of mg̃ for MSSM model parameters shown.

as it must be in a renormalizable theory. Since the amplitude has an additional factor

of the strong coupling relative to the amplitudes for tree-level three-body decays as

well as a loop suppression factor, the partial width for this decay is usually smaller

than that for three-body tree-level decays. However, in some regions of MSSM

parameter space, this decay mode can be significant, since it can be enhanced by

third generation Yukawa couplings, and suffers less kinematic suppression. We do

not list the formula for this decay here but refer the reader to the literature.4

In Fig. 13.4, we show gluino branching ratios to charginos and neutralinos as a

function of mg̃, for degenerate soft SUSY breaking squark masses of mq̃ = 1 TeV,

with μ = 200 GeV, and tan β = 5, in the MSSM with gaugino mass unification.

Values of mg̃
<∼ 550 GeV are excluded by the LEP constraint on the chargino mass.

However, we should understand that this figure is for illustrative purposes only. Two-

body gluino decays are kinematically forbidden over most of the range of mg̃ in the

figure. For low values of mg̃, Z̃1, Z̃2, and W̃1 are all extremely light, and the gluino

decays mainly via three-body modes into qq̄ ′W̃1, qq̄ Z̃1, and qq̄ Z̃2. Moreover, we

see that the branching fraction to the kinematically favored qq̄ Z̃1 mode is smaller

than that for gluino decays to the heavier neutralino Z̃2 or to the chargino. The reason

is that for low values of mg̃, 2M1 � M2 � mg̃/3 � μ, so that the lightest neutralino

is dominantly a bino while Z̃2 and W̃1 are dominantly winos. Since the SU (2)L gauge

coupling is larger than the hypercharge gauge coupling, decays to the bino-like LSP

are dynamically suppressed. The partial width for the decay to a chargino is almost

4 See e.g., H. Baer, X. Tata and J. Woodside, Phys. Rev. D42, 1568 (1990).
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Figure 13.5 Branching fractions of the g̃ to final states involving third generation
quarks versus tan β in the mSUGRA model. Also shown is the total branching
fraction for decays to quarks of the first two generations.

twice that to Z̃2; this is reasonable because there are two charged wino states and

just one neutral wino state. Decays to heavy neutralinos and the heavier chargino

(which are mainly higgsino-like) are kinematically and dynamically suppressed. As

mg̃ increases, decays to states including heavier charginos and neutralinos become

possible. Ultimately, these dominate the branching fractions. This is because for

fixed μ, M1 and M2 increase with mg̃ so that for very heavy gluinos, it is the

heavier chargino W̃2 and the heavier neutralinos Z̃3 and Z̃4 that are mainly gaugino-

like and so have large couplings to the quark–squark system: decays to the more

higgsino-like W̃1, Z̃1, and Z̃2, though kinematically favored are suppressed by

mixing angles. That heavy gluinos decay to heavy charginos and neutralinos which

subsequently decay to lighter charginos and neutralinos is quite a general feature

of SUSY models. Of course, as we can see, if mg̃ > (mq + mq̃), then the two-body

decays to quark plus squark become kinematically accessible and rapidly dominate

the branching fraction. Since these occur via only strong interactions which are

flavor independent, aside from mass effects, every flavor and type of squark will be

democratically produced.

In Fig. 13.5, we show the g̃ branching fractions to states including third gen-

eration quarks, as a function of tan β, in the mSUGRA model for m0 = 600

GeV, m1/2 = 250 GeV, A0 = 0, and μ > 0. For small values of tan β just the

top quark Yukawa coupling is important, but decays to t quarks are somewhat

suppressed by phase space. As tan β increases, the magnitude of the bottom (and

also tau) Yukawa coupling increases; as a result, mb̃1
is decreased both because of
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renormalization group evolution as well as left-right mixing. Thus as tan β in-

creases, gluino decays to bottom quarks become increasingly important both due

to direct Yukawa couplings at the chargino and neutralino vertices, as well as to

propagator enhancement. As can be seen from the figure, gluino production events

at hadron colliders should be rich in b-quark jets if the parameter tan β is large.

Moreover, the primary b-quark jets should be very hard, and events with hard b-jets

and large Emiss
T may give a striking signature at the LHC.5 If tan β is large enough

(tan β >∼ 42 in our illustration), the decays g̃ → b ¯̃b1 and b̄b̃1 become kinematically

accessible, and rapidly dominate the gluino decay rate. In some cases, the momen-

tum distribution of the b-jets from the decay of the gluino and the b̃1 squark can

even provide information about their masses.

13.2 Squark decays

Squarks dominantly decay via two-body modes. The decay q̃i → q Z̃1 is kine-

matically accessible by assumption as long as the mass of the daughter quark is

negligible. For the first generation, Yukawa couplings can be neglected and possible

decay modes include,

ũL → u Z̃i , dW̃ +
j , ug̃, (13.10a)

d̃L → d Z̃i , uW̃ −
j , dg̃, (13.10b)

ũR → u Z̃i , ug̃, (13.10c)

d̃R → d Z̃i , dg̃. (13.10d)

Notice that right-squarks have no coupling to charginos, and so can only decay

to g̃ or Z̃i . The decay modes for c̃L, c̃R, s̃L and s̃R are similar. Unless they are

kinematically suppressed, decays to gluinos dominate. Partial widths for two-

body decays of squarks to gluinos, charginos, and neutralinos may be found in

Appendix B.2.

For third generation squarks, squark mixing effects as well as non-negligible

Yukawa couplings lead to more complicated decay patterns. Bottom squarks may

decay via the following modes, if these are kinematically accessible:

b̃1,2 → bg̃, bZ̃i , t W̃ j , W t̃1,2, H− t̃1,2 and (13.11a)

b̃2 → Zb̃1, hb̃1, Hb̃1, Ab̃1. (13.11b)

Unlike squarks of the first two generations, both light and heavy bottom squarks can

potentially decay to charginos and W bosons, since they are mixtures of left- and

5 For yet larger values of m1/2 gluino decays to t-quarks are kinematically unsuppressed, and these serve as an
additional source of b-jets.
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right-squarks. Likewise, top squarks can decay via

t̃1,2 → t g̃, t Z̃i , bW̃ j , W b̃1,2, H+b̃1,2 and (13.12a)

t̃2 → Zt̃1, ht̃1, Ht̃1, At̃1. (13.12b)

If top squarks are relatively light, they dominantly decay via t̃1 → bW̃1, and

possibly also via t̃1 → t Z̃1. If both these modes are kinematically forbidden, then

the t̃1 can decay via usually suppressed modes

t̃1 → cZ̃1, bν
̃L, b
ν̃L, bW Z̃1, or b f f̄ ′ Z̃1, (13.13)

where f and f̄ ′ are light SM fermions that couple to the W boson. The first of these

decay modes can take place via the off-diagonal terms in the SUSY Lagrangian that

give rise to flavor-violating interactions. Even if tree-level flavor-violating interac-

tions are absent in the Lagrangian renormalized at high energy scales, radiative

corrections can induce these at the weak scale, giving rise to the flavor-violating

decay mode. We assume here that the decay t̃1 → cg̃ (which would be similarly

induced) is kinematically forbidden. In models with universal squark masses at

the high scale, it has been shown that the decay t̃1 → cZ̃1 frequently dominates

the four-body decay for rather light top squarks.6 There are, however, regions of

parameter space where the three- and even four-body decay modes can compete

with, or even dominate, the t̃1 → cZ̃1 decay.

In Fig. 13.6, we show the branching fractions for ũL in the MSSM, for fixed

values of μ = 200 GeV, mg̃ = 1000 GeV, and tan β = 5, versus mũL
. Gaugino mass

unification is also assumed. At a very low value of mũL
, only the decay ũL → u Z̃1

is open, and hence dominates the branching fraction. As mũL
increases, new decay

modes become accessible. In particular, when ũL → dW̃1 becomes accessible, it

soon becomes dominant.7 As mũL
increases even further, decays to the heavier

charginos and neutralinos become kinematically accessible. Ultimately, decays to

the SU (2)L gaugino-like W̃2 and Z̃4 dominate while decays to the higgsino-like Z̃3

are dynamically suppressed. The heavy charginos and neutralinos will subsequently

decay as described below so that heavy squarks, like heavy gluinos, will decay via

a multi-step cascade that terminates in the LSP. Finally, at very high values of mũL
,

the decay to ug̃ becomes possible, and soon dominates the electroweak decays to

charginos and neutralinos. Branching fractions for d̃L decays shown in Fig. 13.7 are

qualitatively similar, except that the d̃L → d Z̃1 decay is not as rapidly suppressed

when other channels open up. Indeed the extremely rapid suppression of ũL → u Z̃1

6 K. Hikasa and M. Kobayashi, Phys. Rev. D36, 724 (1987).
7 To understand the branching fractions we note that, in this case, the neutralinos are fairly mixed with Z̃1

dominantly bino-like, Z̃2 equally mixed in all four components, Z̃3 being essentially a higgsino, and Z̃4

dominantly wino-like. The two charginos are substantial mixtures of gauginos and higgsinos, with W̃2 being
the more gaugino-like because M2 > μ.
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Figure 13.6 Branching fractions of the ũL versus mũL
in the MSSM, assuming

gaugino mass unification.

Figure 13.7 Branching fractions of the d̃L versus md̃L
in the MSSM, assuming

gaugino mass unification.
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decays in Fig. 13.6 may be attributed to a somewhat accidental cancellation in the

corresponding coupling.

In Fig. 13.8 and Fig. 13.9, we show branching fractions of the ũR and d̃R squarks

in the MSSM model versus the corresponding squark mass, for the same pa-

rameters as in Fig. 13.6. Since right-handed squarks are SU (2)L singlets, these

can only decay to neutralinos, and (neglecting Yukawa couplings) only via their

hypercharge gaugino components. The partial widths are, therefore, in the ra-

tio of the corresponding |v(i)
4 |2 for both types of squarks. Finally, for very high

masses, the decay mode q̃R → qg̃ opens up, and soon dominates the branching

fractions.

Exercise Notice that the form of three boson couplings in Chapter 8 implies that the
decays t̃2 → t̃1 Z, t̃2 → b̃1W, and also t̃i → b̃ j H+ (and the corresponding sbottom
decays) may occur via gauge interactions. This would suggest that these decays
may be relevant also for the first two generations of squarks. Verify that if Yukawa
couplings can be ignored, the relevant coupling to Z vanishes, and further, that
the decays of d̃L to W and H± bosons are kinematically forbidden assuming that
mũL

+ md̃L
> MW . Convince yourself that two-body decays to h, H, and A can only

occur via Yukawa couplings.

13.3 Slepton decays

First generation sleptons may decay via the following two-body modes, if kinemat-

ically allowed:

ẽL → eZ̃i , νeW̃ −
j , (13.14a)

ν̃e → νe Z̃i , eW̃ +
j , (13.14b)

ẽR → eZ̃i . (13.14c)

Decays to W , Z and Higgs bosons are not possible for the same reasons as for first

generation squarks. Smuons and muon sneutrinos have identical decay patterns and

branching fractions as their first generation cousins. The partial widths for these

decays are given by (B.53a)–(B.54b) of Appendix B.

We illustrate the branching fractions of the left-selectron, the right-selectron, and

the sneutrino in Fig. 13.10, Fig. 13.11, and Fig. 13.12, respectively, as a function

of the corresponding sparticle mass for the same MSSM parameters as Fig. 13.6.

Except for the fact that these sleptons and sneutrinos never have two-body decays

to gluinos, the decay patterns are qualitatively very similar to those of the corre-

sponding squarks that we examined in the last section. In particular, while very

light SU (2)L doublet sleptons ẽL and ν̃e can only decay to the LSP, the branching
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Figure 13.8 Branching fractions of the ũR versus mũR
in the MSSM, assuming

gaugino mass unification.

Figure 13.9 Branching fractions of the d̃R versus md̃R
in the MSSM, assuming

gaugino mass unification.

fractions for their decays to heavier charginos and neutralinos become dominant

if these decays are not kinematically suppressed.8 Thus a sneutrino heavier than

the chargino is expected to have a significant branching fraction for visible decays.

8 The strong suppression of the ν̃e → Z̃2ν decay is accidental.
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Figure 13.10 Branching fractions of the ẽL versus mẽL
in the MSSM, assuming

gaugino mass unification.

Figure 13.11 Branching fractions of the ẽR versus mẽR
in the MSSM, assuming

gaugino mass unification.

The right-selectron, like its squark cousin d̃R, can only decay to neutralinos via the

hypercharge gauge coupling: since Z̃1 has the largest bino component, this decay

always dominates. As a result, 
̃R pair production leads to events with opposite

sign/same flavor dilepton pairs plus large missing energy.

Just as with third generation squarks, the decay possibilities of third generation

sleptons are more complicated due to Yukawa coupling and mixing effects. The
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Figure 13.12 Branching fractions of the ν̃eL versus m ν̃eL
in the MSSM, assuming

gaugino mass unification.

decay possibilities, not all of which may be kinematically allowed, include

τ̃1 → τ Z̃i , ντ W̃ j , (13.15a)

τ̃2 → τ Z̃i , ντ W̃ j , W ν̃τ , H−ν̃τ , (13.15b)

τ̃2 → Z τ̃1, hτ̃1, H τ̃1, Aτ̃1, (13.15c)

ν̃τ → ντ Z̃i , τ W̃ j , W τ̃1,2 and H+τ̃1,2. (13.15d)

The partial widths for these decays may be found in Appendix B.3.

In gauge-mediated SUSY breaking models with a low scale of SUSY breaking

and a light gravitino, the τ̃1 slepton may be the next-to-lightest SUSY particle

(NLSP), while the gravitino G̃ is the LSP. In this case, Z̃1 may be heavier than

some of the sleptons. The right-handed sleptons of the first two generations (these

would be much lighter than their left-handed sisters) would then dominantly decay

via


̃R → τ̃−
1 τ+
 and 
̃R → τ̃+

1 τ−
 (13.16a)

mediated by neutralino exchange (recall that these couple to charginos only via tiny

Yukawa couplings) which usually dominates the two-body decay 
̃R → 
G̃ (even

for Cgrav = 1) as long as these are not strongly suppressed by kinematics. For the

case of the “co-NLSP” scenario where the sleptons of all three generations are al-

most degenerate, and m 
̃1
− m τ̃1

< mτ , the decay 
̃1 → 
G̃ dominates if Cgrav = 1;
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for larger values of Cgrav, the decay

μ̃1 → τ̃1ν̄τ νμ (13.16b)

mediated by muon Yukawa couplings to a virtual chargino can potentially compete

with the decay to the gravitino. In this case, the lifetimes of the NLSP may be large,

and there may be displaced vertices or detectable charged sparticle tracks in the

experimental apparatus.9

13.4 Chargino decays

Charginos decay only via electroweak interactions. They would dominantly decay

via the following two-body modes if these are kinematically unsuppressed:

W̃ j → W Z̃i , H− Z̃i , (13.17a)

→ ũLd̄, ¯̃dLu, c̃Ls̄, ¯̃sLc, t̃1,2b̄, b̃1,2t, (13.17b)

→ ν̃eē, ¯̃eLνe, ν̃μμ̄, ¯̃μLνμ, ν̃τ τ̄ , ¯̃τ1,2ντ , and (13.17c)

W̃2 → Z W̃1, hW̃1, H W̃1, and AW̃1. (13.17d)

Partial widths for these decays are listed in Appendix B.5.1.

If all these modes are suppressed or forbidden (as may be the case for charginos

in the mass range accessible to Tevatron searches), then three-body modes mediated

by virtual bosons will dominate. Charginos may decay to a lighter neutralino via

W̃ j → Z̃i + f f̄ ′, (13.18a)

where f and f̄ ′ are light SM fermions that couple to the W boson. For the lighter

chargino, usually only the three-body decays to the Z̃1 are relevant. The heavy

chargino may also decay via

W̃2 → W̃1 f f̄ (13.18b)

as well.

Feynman diagrams for leading order contributions to W̃1 → eν̄e Z̃1 decay are

shown in Fig. 13.13. Three-body decays to other leptons or to quarks occur via

analogous diagrams. For decays to the first two generations of fermions, Yukawa

couplings, and hence also intragenerational sfermion mixings, are small; thus ẽR and

H+ exchange diagrams make negligible contributions. However, for W̃1 → τ ν̄τ Z̃1

decay, these contributions can be important if tan β is large. The partial width for

the decay W̃1 → τ ν̃τ Z̃1 is given in Appendix B.5.2. The corresponding widths for

9 For a discussion of three-body decays of sleptons, see S. Ambrosanio, G. Kribs and S. Martin, Nucl. Phys.
B516, 55 (1998) and H. Baer, P. Mercadante, X. Tata and Y. Wang, Phys. Rev. D60, 055001 (1999).
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Figure 13.13 Feynman diagrams contributing to the decay W̃1 → eν̄e Z̃1.

Figure 13.14 Branching fractions for decays of W̃1 versus mW̃1
in the mSUGRA

model. Below the threshold for W̃1 → W Z̃1 decay, decays to other leptons families

have essentially the same branching ratio as that for W̃1eν. The rest of the time
the chargino decays hadronically with these decays distributed essentially equally
between the first two generations.

other decays can be obtained from this by setting the Yukawa coupling and the tau

lepton mass to zero, and including appropriate color factors as spelled out there.

We illustrate the W̃1 decay branching ratio in Fig. 13.14 versus mW̃1
for the

mSUGRA model with parameters m0 = m1/2, tan β = 5, A0 = 0, and μ > 0. In

this case, squarks are much heavier than MW and, except for the lowest values

of the chargino mass, so are sleptons and sneutrinos. For mW̃1
< MW + m Z̃1

the

amplitude for the decay is dominated by the virtual W boson exchange, resulting in

a branching ratio B(W̃1 → Z̃1 f f̄ ′) � B(W → f f̄ ′), which is close to 11% for the

decay W̃1 → Z̃1eν ; the small increase in this branching for very low mW̃1
values

is due to contributions from slepton and sneutrino exchanges. Here, it is worth

recalling the relative robustness of the W W̃1 Z̃1 coupling that we mentioned below
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Figure 13.15 Branching fractions of the W̃1 versus tan β in the mSUGRA model
with parameters as shown in the figure.

(8.103b): since this coupling is usually unsuppressed, the W exchange contribution

tends to dominate chargino three-body decays if sfermions are heavy and tan β is

not very large, so that chargino branching fractions to Z̃1 f f̄ ′ are frequently close

to those for W → f f̄ ′ decays. As mW̃1
increases, the two-body mode W̃1 → W Z̃1

opens up, and quickly dominates the branching fraction. The final state particles of

the W̃1 decay (and the branching ratios) are the same as for low mW̃1
values, but

now the W boson is real instead of virtual.

The tan β dependence of the branching fractions of W̃1 is illustrated in Fig. 13.15

for the same mSUGRA model parameters as in the previous figure, but with m0 =
m1/2 = 200 GeV. For low values of tan β, the chargino dominantly decays via

W̃1 → f f̄ ′ Z̃1 with branching fractions equal to those for W → f f̄ ′ as for the

case of Fig. 13.14. As tan β increases, the τ Yukawa coupling grows, and the τ̃1

mass decreases due to Yukawa coupling contributions to RGE running, and due to

non-negligible mixing effects. For tan β ∼ 15, the two branching fractions begin to

separate and decays to τ s become increasingly important; for large values of tan β,

contributions from the higgsino component of the chargino may also be relevant.

The decay amplitude from the virtual τ̃1 Feynman diagram becomes comparable to

and even larger than the virtual W contribution. For very large values of tan β, the

τ̃1 becomes so light that W̃1 → τ̃1ντ becomes accessible, and quickly dominates

the branching fraction even though τ̃1 is dominantly τ̃R.

Heavy charginos usually decay via two-body modes. Their decay patterns are

highly model and parameter-space dependent. The decay products of W̃2 frequently

include W , Z , and Higgs bosons, and sometimes also sleptons. Indeed if W̃2s are
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produced via cascade decays of heavy sparticles, very rich phenomenology results.

We refer the reader to the literature for a discussion and illustrative examples of the

branching ratios of W̃2.10

13.4.1 A chargino degenerate with the LSP

Within the MSSM, it is possible that mW̃1
� m Z̃1

if either |M1|, |M2| 
 |μ|, MW

or |M1|, |μ| 
 |M2|, |MW |. In the first case, the light chargino and the lightest two

neutralinos are higgsino-like with masses close to |μ|. Any splitting between the

chargino and the Z̃1 mass has to be an SU (2)L breaking effect, i.e. it has to come

from mixing between the gauginos and higgsinos. It is not difficult to show (see

exercise below) that the splitting is O(M2
W /�), where � ∼ |M1| or |M2| is the

large scale in the chargino and neutralino mass matrices. For an SU (2)L gaugino

mass an order of magnitude larger than MW , a mass splitting of O(10) GeV may be

expected. This small mass gap implies that the visible products from chargino decay

will be rather soft compared to expectations in mSUGRA or mGMSB models, but

the decay patterns of the charginos are qualitatively similar to those we have just

discussed.11

In the second case where |M1|, |μ| 
 |M2|, MW , the SU (2)L gaugino would be

lighter than the higgsinos or the hypercharge gauginos and in the absence of any

gaugino–higgsino mixing we would expect that Z̃1 and W̃ ±
1 form a weak isotriplet

with a mass |M2|. The degeneracy again should not be surprising because any mass

splitting between the charged and neutral winos has to be an SU (2)L breaking effect

and, at tree level, gaugino–higgsino mixing is the only source of SU (2)L breaking.

It is tedious but straightforward to show that in this case the tree-level mass splitting

between the chargino and neutralino is O(M4
W /�3) where � ∼ |M1| or |μ| is the

large scale in the mass matrices. For an order of magnitude hierarchy between MW

and �, this corresponds to a sub-GeV mass gap. Then, the contribution to the mass

splitting from radiative corrections can potentially be comparable to or even much

larger than the tree-level splitting. These corrections have been evaluated,12 and it

has been shown that radiative corrections make the dominant contribution to the

mass gap within the minimal anomaly-mediated SUSY breaking (AMSB) model

which provides an example of just such a chargino–neutralino spectrum. Detailed

calculation shows that the chargino–neutralino mass gap is typically 160–250 MeV.

Fortunately, mW̃1
> m Z̃1

so that the LSP is still neutral.

10 See, e.g., H. Baer, A. Bartl, D. Karatas, W. Majerotto and X. Tata, Int. J. Mod. Phys. A4, 4111 (1989).
11 Although |μ| is generically large within the mSUGRA framework, the recent determination of the relic dark

matter density by the WMAP collaboration prefers selected regions of mSUGRA parameter space: in one of
these regions, dubbed the hyperbolic branch region, |μ| may be much smaller than the gaugino masses.

12 See e.g. D. Pierce and A. Papadopoulos, Nucl. Phys. B430, 278 (1994).
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For such a small splitting, chargino decays are qualitatively altered from our

discussion above. If mW̃1
− m Z̃1

< mπ , hadronic decays of the chargino are kine-

matically forbidden, and the chargino would dominantly decay via W̃ −
1 → eν Z̃1,

the mode with the largest phase space. The chargino could be rather long lived

and could traverse a considerable distance before decaying, so there would be a

charged particle track with a kink in the detector. If the decay W̃ −
1 → π− Z̃1 is al-

lowed, the chargino decay length would be only a few centimeters, and the chargino

track would then be more difficult to identify. For yet larger mass gaps, multi-pion

decays would become possible and the lifetime would be even shorter.13

Exercise For the case where the magnitude of the gaugino masses is much larger
than |μ| or MW , show that the eigenvalues of the neutralino mass matrix shift by:

μ → μ + 1

2
M2

W (1 − sin 2β)

[
1

M2

+ tan2 θW

M1

]

, (13.19a)

−μ → −μ + 1

2
M2

W (1 + sin 2β)

[
1

M2

+ tan2 θW

M1

]

, (13.19b)

while the chargino mass (for μ > 0) is given by,

mW̃1
= μ + M2

W

M2

sin 2β. (13.19c)

Hint: To find the shift of the neutralino eigenvalues, write the neutralino mass
matrix in the basis where the higgsino sub-matrix is diagonal, and then treat the
off-diagonal entries of the neutralino mass matrix in the new basis using standard
second order perturbation theory. The chargino mass may be obtained using (8.54).

13.5 Neutralino decays

Like charginos, neutralinos dominantly decay via the following two-body modes

if these are kinematically accessible:

Z̃i → W W̃ j , H+W̃ j , Z Z̃i ′, h Z̃i ′, H Z̃i ′, AZ̃i ′ (13.20a)

→ q̃L,Rq̄, q̃L,Rq, 
̃L,R
̄, 
̃L,R
, ν̃
ν̄
, ¯̃ν
ν
. (13.20b)

Here, i, i ′ = 1–4 with i > i ′, and q and 
 denote all possible quark and lepton

flavors. The partial widths for these decays are listed in Appendix B.4.1.

13 Formulae for W̃1 decay for a tiny mW̃1
− m Z̃1

mass difference can be found in C. H. Chen, M. Drees and J. F.

Gunion, Phys. Rev. D55, 330 (1997), (erratum-ibid. 60, 039901,1999).
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Figure 13.16 Feynman diagrams contributing to the decay Z̃2 → eē Z̃1.

If all these two-body modes are suppressed or kinematically forbidden, then the

neutralino usually decays via

Z̃i → Z̃i ′ + f f̄ (13.21a)

where f is a SM quark or lepton. The leading Feynman diagrams contributing

to Z̃2 → eē Z̃1 decay at leading order are shown in Fig. 13.16, where ẽ1 and ẽ2

are selectron mass eigenstates (that essentially coincide with ẽR and ẽL). Decays to

other fermion flavors in (13.21a) as well as of other neutralinos occur via analogous

diagrams. For decays to the first two generations, the three diagrams involving the

Higgs bosons make a negligible contribution. The partial width for this decay is

given in B.4.2. In addition, the three-body mode

Z̃i → W̃ j + f f̄ ′, (13.21b)

which occurs via diagrams analogous to those in Fig. 13.13 may also be relevant.

Its partial width is given by Eq. (B.106) of Appendix B.

Neutralinos can also decay via

Z̃i → γ Z̃i ′ (13.22)

at the one-loop level via diagrams involving charged sfermions/fermions and

charginos/W or charged Higgs bosons in the loop. The branching fraction for this

decay is usually small. However, it can be important if the widths of three-body

modes are somehow suppressed. This suppression may occur either if one of the

neutralinos is photino-like and the other higgsino-like since the photino (higgsino)

does not couple to the Z boson (sfermion), or if both neutralinos are very close

in mass because the strong three-body phase space suppression favors two-body

decays. We do not list the partial width for this decay but will refer the interested

reader to the original literature for this computation.14

14 H. E. Haber and D. Wyler, Nucl. Phys. B323, 267 (1989); see also H. Baer and T. Krupovnickas, JHEP 0209,
038 (2002).
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Figure 13.17 Branching fractions of the Z̃2 versus m Z̃2
in the mSUGRA model.

The branching ratios are almost generation independent for this low value of tan β.
The hadronic decays are summed over all quark flavors. Invisible decays make up
the remainder of the branching fraction at low values of m Z̃1

.

Since Z̃2 is likely to be the most accessible visibly decaying neutralino, we

show the branching fractions for its various decays in Fig. 13.17, assuming the

mSUGRA model framework, and for the same model parameters as in Fig. 13.14.

For low values of m Z̃2
, the two-body decay modes are all inaccessible, and Z̃2

mainly decays via three-body modes. If we compare these branching fractions to

those for chargino decay in Fig. 13.14, we are immediately struck by the fact that

while the branching fractions for chargino three-body decays were close to those for

the W boson, the branching fractions for the neutralino decay Z̃2 → Z̃1 f f̄ differ

considerably from those of Z → f f̄ : i.e. even for sfermions considerably heavier

than MZ , the Z exchange graph does not dominate. This is because the couplings of

Z to neutralinos are very sensitive to model parameters and, as we have discussed

below (8.101), can be considerably suppressed. When this occurs, slepton exchange

amplitudes remain important even for slepton masses of several hundred GeV. Over

considerable regions of the MSSM parameter space, the leptonic three-body decays

of Z̃2 can be either enhanced or suppressed due to interference between scalar and Z
boson exchange graphs, and neutralino branching fractions are quite different from

those of the Z boson.15 Neutralino decay patterns (and resulting signatures) are,

therefore, much more sensitive to model parameters than those for chargino decays.

15 For more details, see H. Baer and X. Tata, Phys. Rev. D47, 2739 (1993).
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Figure 13.18 Branching fractions of the Z̃2 versus tan β in the mSUGRA model.
Here q = u, d, s, c.

In Fig. 13.17, as m Z̃2
increases, ultimately the two-body mode Z̃2 → Z Z̃1 becomes

accessible, and dominant. At even higher values of m Z̃2
, the decay mode Z̃2 → h Z̃1

becomes accessible, and in this case quickly dominates. In SUSY particle cascade

decays, we may expect an assortment of Higgs and vector bosons to be present.

In Fig. 13.18, we again show Z̃2 decay branching fractions in the mSUGRA

model, but this time versus tan β and for the same parameters as in Fig. 13.15. At

very low tan β, Z̃2 decays via three-body modes with a large branching fraction

into charged leptons. Decays into first, second, and third generation charged leptons

occur at nearly the same rate. As tan β increases, the leptonic branching fraction

drops and decays to quarks become increasingly dominant. The branching fraction

into tau pairs begins diverging from that to electron (and muon) pairs around tan β ∼
5. The decays to bottom quarks become more important relative to other hadronic

decays but, in this example, decay to τ τ̄ Z̃1 becomes dominant for tan β ∼ 30, due

to the enhanced tau lepton Yukawa coupling, and the gradual suppression of m τ̃1
.

Finally, around tan β >∼ 42, two-body decays to τ̃1τ̄ and ¯̃τ1τ turn on, and quickly

dominate the branching fraction.

13.6 Decays of the Higgs bosons

Both the neutral and charged physical spin zero particles associated with the elec-

troweak symmetry breaking sector dominantly decay via two-body modes into SM

particles or, if they are heavy enough, also into lighter SUSY particles. The partial

widths for the dominant tree level decays of Higgs bosons are listed in Appendix C.
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13.6.1 Light scalar h

At tree level, the light scalar Higgs boson h can decay via the two-body modes,

h → uū, dd̄, ss̄, cc̄, bb̄, eē, μμ̄, τ τ̄ , (13.23a)

h → Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.23b)

h → AA (13.23c)

where i, i ′ = 1–4 and j, j ′ = 1, 2. Since mh is expected to be smaller than about

135 GeV within the MSSM framework with perturbative gauge couplings up to the

GUT scale, its decays to t t̄ , W +W −, and Z Z are kinematically forbidden. Its decays

to SUSY particles, possibly other than Z̃1 Z̃1, are also expected to be suppressed.

Over much of the parameter space, h → bb̄ decays dominate. For small to moderate

values of tan β, the bottom Yukawa coupling is small, and the h is narrow. In this

case, especially the first of the three-body modes

h → W f f̄ ′/Z f f̄ (13.24)

may also be significant, particularly at the upper end of the mh range. Since the

h couples to mass, it dominantly decays to bb̄ with a branching fraction of about

85%, and to τ τ̄ pairs. The ratio of their branching ratios is fixed at tree level, but

may be significantly affected by SUSY radiative corrections to the relation between

the fermion mass and the corresponding Yukawa coupling. If neutralinos are light

enough, h may also decay invisibly to Z̃1 Z̃1. This decay, which occurs via gauge in-

teractions, can potentially have a large branching fraction, although this is unlikely

within constrained frameworks such as mSUGRA because of experimental limits

on m Z̃1
.

Finally, h can also decay via

h → gg, γ γ, Zγ, (13.25)

through loops of gauge/Higgs sector fields and SM fermions, as well as their SUSY

counterparts. Although the branching fractions for these decays are always sup-

pressed by coupling and loop factors, the h → γ γ decay is an important search

mode for LHC experiments which have excellent electromagnetic resolution. The

h → γ γ branching fraction, which is O(10−3) for a SM-like h in the 100–120 GeV

range, is enhanced for some ranges of SUSY parameters.16

16 The h, H, and A can all decay via loop diagrams to γ γ as well as to gg pairs. Formulae for these partial widths
may be found in J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison-Wesley
(1990); M. Bisset, U. of Hawaii thesis, UH-511-813-94 (1994).
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13.6.2 Heavy scalar H

The heavy scalar Higgs boson H decays via the two-body modes

H → uū, dd̄, ss̄, cc̄, bb̄, t t̄, eē, μμ̄, τ τ̄ , (13.26a)

→ W W, Z Z (13.26b)

→ Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.26c)

→ hh, AA, H+ H−, AZ , (13.26d)

→ gg, γ γ, Zγ, (13.26e)

as well as to (usually strongly suppressed) three-body modes, as does the h. If

m A
>∼ 200 GeV, h is essentially a SM Higgs boson, and decays of H to vector

bosons are suppressed by a factor cos2(α + β) (see the exercise below). Hence, the

heavy scalar usually decays to t t̄ , bb̄, hh or SUSY particles. As tan β increases,

decays to bb̄ and τ τ̄ are enhanced relative to decays to t t̄ . SUSY decay modes of

interest include the invisible H → Z̃1 Z̃1 channel, H → W̃1W̃1, and H → Z̃2 Z̃2.

This last decay results in gold-plated four isolated lepton events with missing energy

if both neutralinos decay via Z̃2 → 

̄Z̃1.

Exercise Starting from Eq. (8.40b) verify that tan α → cot β as m A → ∞, so that
cos(α + β) → 0 in the same limit.

13.6.3 Pseudoscalar A

The pseudoscalar Higgs boson A can decay via

A → uū, dd̄, ss̄, cc̄, bb̄, t t̄, eē, μμ̄, τ τ̄ , (13.27a)

→ Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.27b)

→ h Z , (13.27c)

→ gg, γ γ. (13.27d)

Since A does not couple to vector boson pairs at tree level, its dominant decays are

to t t̄ or bb̄ and τ τ̄ , unless its decays to h Z or SUSY particles are accessible: if this

is the case, these latter decays usually dominate.

We remark that if C P is violated in the Higgs sector, A would mix with h and

H , and its decay patterns would be qualitatively altered.
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13.6.4 Charged scalar H±

The charged Higgs H+ dominantly decays via

H+ → ud̄, cs̄, t b̄, νeē, νμμ̄, ντ τ̄ , (13.28a)

→ Z̃i W̃
+
j , f̃ ¯̃f ′, (13.28b)

→ hW. (13.28c)

Notice that, within the MSSM, the decay H+ → W +Z0 is absent at tree level.

Thus, it dominantly decays to t b̄, unless decays to hW or SUSY particles are open.

If H+ → t b̄ decay is also kinematically forbidden, H+ preferentially decays via

H+ → τ+ντ . In this case, the daughter tau dominantly has the opposite helicity

from taus produced in W boson decays.

13.7 Top quark decays to SUSY particles

The top quark may be heavy enough for it to be able to decay to SUSY particles.

However, branching fractions for its SUSY decays cannot be too large, as this would

lead to inconsistencies between experimental measurements that agree well with

SM predictions of top quark production and decay properties. In addition to its SM

decay mode,

t → bW +, (13.29a)

the decays

t → bH+, (13.29b)

→ t̃1,2 Z̃i , b̃1,2W̃ j (13.29c)

are also possible within the MSSM framework. The decay mode t → bH+ would

then usually be followed by H+ → ντ τ̄ , so an enhanced production of τ leptons

would occur in top quark production events. If t → t̃1 Z̃1, followed by t̃1 → bW̃1 →
b f f̄ ′ Z̃1, then the visible top quark decay products might be the same as in the SM,

but with reduced energies, since some energy is taken by the mass of Z̃1. Such a

decay chain may be almost excluded if we assume gaugino mass unification, but may

be allowed if |M1| � |M2|. Alternatively, if t → t̃1 Z̃1 is followed by t̃1 → cZ̃1, then

a top quark decay would lead to a charm jet with an energy sensitively dependent

upon m Z̃1
and mt̃1 .
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13.8 Decays to the gravitino/goldstino

If the gravitino is the LSP, sparticles can decay to it. If these decays proceed only via

the usual gravitational coupling (as do the decays to gravitinos with helicities ± 3
2
),

they would be completely irrelevant for the purposes of collider physics. In our

discussion of the GMSB model we saw, however, that the amplitudes for decays to

the longitudinal components of the gravitino with helicities ± 1
2

are enhanced by a

factor E/m3/2 which is very large if the gravitino is superlight. In this case, sparticle

decays to the longitudinal components of the gravitino, which is essentially the

goldstino, may be relevant. The NLSP, of course, can only decay into the gravitino.

The considerations of this section most directly apply to the GMSB model with a

low SUSY breaking scale.

13.8.1 Interactions

The couplings of the gravitino to the fermion–sfermion and to the gauge boson–

gaugino system are given by the last term of (10.57a) and the second term of

(10.57b), respectively. With Gi
j = δi

j + · · · and f AB = δAB + · · · (the ellipsis de-

notes possible non-minimal terms in these), we find that these couplings can be

written as,

L � i√
2MP

ψ̄μ �DS i†γ μψiL + 1

8MP

λ̄Aγ ρσμνψρ FAμν + h.c., (13.30a)

where we have inserted the appropriate factors of MP.

In principle, these couplings allow us to evaluate rates for sparticle decays to

gravitinos. However, because of the unfamiliarity with manipulating the vector–

spinor wave functions of spin 3
2

particles, it is convenient to work only with the

familiar spin 1
2

goldstino that has been dynamically rearranged by the super-Higgs

mechanism, and now forms the helicity ± 1
2

components of the gravitino. Then, just

as W and Z interactions at high energies can be approximated by the interactions

of their longitudinal components (the Goldstone bosons), so too can gravitino in-

teractions be approximated by the interactions of the goldstino fields which they

have absorbed by the super-Higgs mechanism.17 But, we have already obtained the

coupling of the goldstino to the chiral supermultiplet. Comparing the first term of

(13.30a) with the goldstino coupling in (7.28), we see that the gravitino field can,

in the high energy limit, be well approximated by

ψμ →
√

2

3

1

m3/2

∂μG̃, (13.30b)

17 The goldstino–gravitino equivalence, which was formally established by R. Casalbuoni et al., Phys. Lett. B215,
313 (1988), ought to be an excellent approximation for decays of 100 GeV sparticles into eV, keV or even GeV
scale gravitinos.
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where we have used (10.67a) to eliminate the auxiliary field VEV in favor of the

gravitino mass, and denoted the goldstino field (previously denoted by ψg) by G̃.18

With this substitution, the interaction Lagrangian (13.30a) becomes

L �
√

2

3

1

MPm3/2

[
1

8
λ̄Aγ ρσμν

(
∂ρG̃

)
FAμν − i√

2
ψ̄iLγ μ �DS∂μG̃

]

+ h.c.

(13.30c)

The first term in (13.30c) clearly contains the coupling of the goldstino (or

equivalently, helicity ± 1
2

gravitinos in the high energy limit) to gauginos and gauge

bosons, while the second contains the corresponding couplings to the sfermion–

fermion or the Higgs boson–higgsino pairs. Note, however, that when the Higgs

fields are set equal to their VEV, even the second term contains (via the gauge

covariant derivative) couplings of the goldstino to the vector boson–higgsino pair.19

These couplings can be used to obtain the interactions that are dominantly re-

sponsible for the decays Z̃i → γ G̃ (from the first term alone) or Z̃i → ZG̃, as

well as the interactions that lead to the decay W̃i → W G̃. The second term yields

interactions that lead to the decay of a neutralino (chargino) into a neutral (charged)

Higgs boson and a gravitino, as well as to sfermion decays, f̃ 1,2 → f G̃. Usually

the branching fraction for these gravitino decay modes is significant only for the

decay of the NLSP, with the gravitino being the LSP, as is the case in GMSB models

with a low SUSY breaking scale.

To evaluate the couplings responsible for Z̃i → γ G̃, we write out the first term

in (13.30c) for the neutral U (1)Y and neutral SU (2)L gauge and gaugino fields:

L �
√

2

3

1

8MPm3/2

[
λ̄0γ

ρσμν∂ρG̃(∂μ Bν − ∂ν Bμ)

+ λ̄3γ
ρσμν∂ρG̃(∂μW3ν − ∂νW3μ)

] + h.c.,

and substitute Bμ = sin θW Zμ + cos θW Aμ, W3μ = sin θW Aμ − cos θW Zμ, λ0 =
∑

i v
(i)
4 (iγ5)θi Z̃1, and λ3 = ∑

i v
(i)
3 (iγ5)θi Z̃i to obtain

LZ̃i γ G̃ =
√

2

3

1

4MPm3/2

(v
(i)
4 cos θW + v

(i)
3 sin θW)Z̃ i (iγ5)θi γ ρσμν∂ρG̃(

↔
∂ μ Aν).

(13.31a)

In arriving at this we have used the fact that the Majorana properties of the goldstino

and neutralinos imply that the Hermitian conjugate term is identical to the original

term, accounting for a factor 2. For the Z̃i Z G̃ interaction, both terms in Eq. (13.30c)

18 This was first pointed out by P. Fayet, Phys. Lett. B70, 461 (1977).
19 We will leave it to the reader to check that this contribution vanishes for the photon as it must since the VEVs

leave the electromagnetic gauge invariance unbroken.
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contribute, and the coupling is given by

LZ̃i Z G̃ =
√

2

3

1

4MPm3/2

[

(v
(i)
4 sin θW − v

(i)
3 cos θW)Z̃ i (iγ5)θi γ ρσμν∂ρG̃

↔
∂ μ Zν

+ 2MZ (i)θi (sin βv
(i)
1 − cos βv

(i)
2 )Z̃ i�γ μγ ν∂μG̃ Zν

]

, (13.31b)

where � = 1 (γ5) for θi = 0 (1).

The couplings of neutralinos to the goldstino and neutral Higgs bosons can be

worked out from the second term in (13.30c) by substituting the higgsinos and

the Higgs fields with definite hypercharges in terms of the corresponding mass

eigenstate fields. We then find the neutralino–Higgs boson–goldstino interactions:

LZ̃i φG̃ = κφ Z̃ i
1 + γ5

2
γ μγ ν∂μG̃∂νφ + h.c., (13.32a)

where φ = h, H, and A, and

κh = − (i)θi +1

√
6MPm3/2

[v
(i)
1 cos α + v

(i)
2 sin α], (13.32b)

κH = − (i)θi +1

√
6MPm3/2

[−v
(i)
1 sin α + v

(i)
2 cos α], and (13.32c)

κA = − (i)θi +2

√
6MPm3/2

[v
(i)
1 cos β + v

(i)
2 sin β]. (13.32d)

Exercise Using the Majorana properties of the neutralino and goldstino fields,
verify that these couplings can be rewritten as,

LZ̃i φG̃ = Z̃ i

[
κφ + κ∗

φ

2
+ κφ − κ∗

φ

2
γ5

]

∂μG̃∂νφ. (13.33)

Notice that because κφ is either real or imaginary, the interaction is either scalar or
pseudoscalar. This form of the coupling is, therefore, more convenient for evaluating
the partial widths for the decays Z̃i → φG̃.

Finally, the last term in (13.30c) also gives the couplings of the goldstino to

fermion–sfermion pairs. These can be written as

L f f̃ G̃ = − i√
3

1

MPm3/2

[

ψ̄ f
1 + γ5

2
γ μγ ν∂ν f̃ L + ψ̄Fc

1 + γ5

2
γ μγ ν∂ν f̃ †R

]

∂μG̃

+ h.c.,

where ψ f (ψFc ) are, as usual, Majorana spinors whose left-handed components

annihilate the left-handed SU (2)L doublet fermion, (left-handed SU (2)L singlet
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antifermion) and the SM Dirac fermion is given by

f = 1 − γ5

2
ψ f + 1 + γ5

2
ψFc .

Writing this Lagrangian with the Hermitian conjugate of the second term, and once

again using the Majorana nature of the spinors we find that,

L f f̃ G̃ = − i√
3

1

MPm3/2

[

f̄
1 + γ5

2
γ μγ ν∂ν f̃ L − f̄

1 − γ5

2
γ μγ ν∂ν f̃ R

]

∂μG̃

+ h.c. (13.34a)

Using this, we can readily obtain the goldstino interactions with the sfermion mass

eigenstates,

L f f̃ i G̃ = − i√
3MPm3/2

[
f̄ (cos θ f PR + sin θ f PL)γ μγ ν∂μG̃∂ν f̃ 1

+ f̄ (sin θ f PR − cos θ f PL)γ μγ ν∂μG̃∂ν f̃ 2

] + h.c. (13.34b)

The goldstino–tau–stau coupling leads to the dominant decay of the lighter stau in

mGMSB models with the gravitino as the LSP and τ̃1 as the NLSP.

13.8.2 NLSP decay to a gravitino within the mGMSB model

Within the mGMSB framework, as we saw in Fig. 11.5 for the number of messenger

generations n5 = 1 and tan β not too large, the lightest neutralino tends to be the

NLSP. Since gaugino masses scale with n5 while scalar masses scale with
√

n5, the

lighter stau becomes the NLSP for larger values of n5. If tan β is small to moderate,

the tau Yukawa coupling is small and ẽR and μ̃R are roughly degenerate with τ̃1,

and we have the so-called co-NLSP scenario (region 3 of this figure).

The NLSP dominantly decays into a gravitino and a SM particle. It is straightfor-

ward to work out the partial widths for these two-body decays using the interactions

presented in the last section. For a neutralino NLSP lighter than h or the Z boson,

Z̃1 → γ G̃ is the only allowed two-body decay.

Exercise Starting with the interaction in (13.31a), show that the width for the
decay Z̃i → γ G̃ is given by,

�(Z̃i → γ G̃) =
(v

(i)
4 cos θW + v

(i)
3 sin θW)2m5

Z̃i

48πm2
3/2 M2

P

. (13.35)

Here, we have neglected the gravitino mass (except in the goldstino coupling, of
course).
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You may find it helpful to use the identity,

γ ρσμν = 2i(gρμγ ν − gρνγ μ) + σμνγ ρ

and use G̃μγ μu(G̃) = 0 for the massless on-shell goldstino.

If m Z̃1
is large enough, its decays to Z as well as Higgs bosons may also be

accessible. The partial widths for these two-body decays of the neutralino are

listed in (B.67)–(B.69a) of Appendix B. Since this NLSP is mainly bino-like

within the mGMSB model, it has large couplings to the hypercharge gauge bo-

son, and as a result the decay Z̃1 → γ G̃ dominates the decay Z̃1 → ZG̃ for both

dynamical as well as kinematic reasons. Decays to Higgs bosons are strongly sup-

pressed. In non-minimal scenarios, the decays Z̃1 → hG̃ or Z̃1 → ZG̃ may be

dominant.20

The Z̃1 → γ G̃ decay rate depends on m3/2, which is independent of other spar-

ticle masses. Recall that in the mGMSB framework, the gravitino mass, and hence

the NLSP decay rate, is controlled by the parameter Cgrav. If m3/2 is large enough,

then the Z̃1 can be very long-lived. The mean decay length for a Z̃1 with fractional

velocity βZ̃1
is given by

d(cm) = βZ̃1
γZ̃1

cτZ̃1

= 10−2

(v
(i)
4 cos θW + v

(i)
3 sin θW)2

(E2/m2
Z̃1

− 1)1/2

(
100 GeV

m Z̃1

)5( √〈F〉
100 TeV

)4

.

(13.36)

Remember that 〈F〉 is the true SUSY breaking scale (not the corresponding scale

〈FS〉 in the messenger sector). For m Z̃1
∼ 100 GeV, the decay length mainly varies

with the SUSY breaking scale 〈F〉 and can range from microns to kilometers and

beyond, depending on 〈F〉. In a collider detector, the NLSP may have a decay vertex

displaced from the interaction region, or may even decay outside of the detector.

Thus, one of the signatures considered for GMSB models is the presence of hard

isolated photons plus missing energy in collider events, where the photon induced

EM shower may not point back to the interaction vertex. Indeed, a determination

of the lifetime of the NLSP from its decay length distribution would yield the

fundamental underlying SUSY scale. For this purpose, the higher order Z̃1 →
e+e−G̃ decay may be more suitable for experimental reasons.

Finally, if the stau is the NLSP in the GMSB model, it would decay via,

τ̃1 → τ G̃ (13.37)

20 See, e.g., K. Matchev and S. Thomas, Phys. Rev. D62, 077702 (2000).
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with a rate given by (B.60). If other flavors of sleptons are also only marginally

lighter than the stau NLSP (region 3 of Fig. 11.5 where m 
̃1
− m τ̃1

< mτ ), the decays

(13.16a) are kinematically forbidden, and 
̃1 → 
G̃ or via (13.16b), depending

on the value of Cgrav. The rates for stau decays to gravitinos are comparable to

the corresponding decay rate of a neutralino NLSP of the same mass. Hence, the

charged NLSP might again be sufficiently long-lived, and (depending on its β) a

highly ionizing track, terminating in a kink or a jet, may provide a characteristic

signature.
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Supersymmetric event generation

It is possible that the first indication of physics beyond the SM will come from

indirect searches. These include direct or indirect detection of dark matter, (g − 2)μ,

branching ratios (or event shapes) for various rare decays such as B → Xsγ , B →
Xs�

+�−, Bs → �+�− (� = μ, τ ) or μ → eγ , or measurements of the electric dipole

moment of the electron or the neutron. However, any such signal will likely be

explainable by several new physics hypotheses, and not just supersymmetry. Thus,

it is usually accepted that an unambiguous discovery of weak scale supersymmetry

will have to occur at colliding beam experiments, where supersymmetric matter

can be directly created, and the resultant scattering events can be scrutinized.

As we saw in Chapter 12 and Chapter 13, supersymmetric models can be used

to predict various sparticle production rates and their subsequent decay patterns

into final states containing quarks, leptons, photons, gluons (and LSPs in R-parity

conserving models). However, quarks and gluons are never directly detected in any

collider detector. Instead, detectors measure tracks of quasi-stable charged particles

and their momenta as they bend in a magnetic field. They also measure energy

deposited in calorimeter cells by hadrons, charged leptons, and photons. There is

thus a gap between the predictions of supersymmetric models in terms of final states

involving quarks, gluons, leptons and photons, and what is actually detected in the

experimental apparatus. This gap is bridged by supersymmetric event generator

computer programs. Once a collider type and supersymmetric model are specified,

the event generator program can produce a complete simulation of the sorts of

scattering events that are to be expected. The final state of any scattering event is

composed entirely of electrons, muons, photons, and the long-lived hadrons (pions,

kaons, nucleons, etc.) and their associated four-vectors that may be measured in a

collider experiment.

The underlying idea of SUSY event generator programs is that for a specified

collider type (e+e−, pp, p p̄, . . .) and center of mass energy, the event generator

will, for any set of MSSM parameters, generate various sparticle pair production

374
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events in the ratio of their production cross sections, and with distributions as given

by their differential cross sections discussed in Chapter 12. Moreover, the produced

sparticles will undergo a (possibly multi-step cascade) decay into a partonic final

state, according to branching ratios as fixed by the model.1 Finally, this partonic

final state is converted to one that is comprised of particles that are detected in

an experimental apparatus. By generating a large number of “SUSY events” using

these computer codes, the user can statistically simulate the various final states

that are expected to be produced within the framework of any particular model.

Although we have been focussing upon supersymmetry, we should mention that

these programs also allow the user to simulate SM processes. This is essential for

assessing SM backgrounds to new physics.

Several event generator programs that incorporate SUSY are currently available,

including ISAJET, PYTHIA, HERWIG, and SUSYGEN. These include the 2 → 2

leading order SUSY production processes discussed in Chapter 12. In addition,

specific 2 → n (n ≤ 6) SUSY reactions may be generated by such programs as

CompHEP, Madgraph-II, and GRACE. The output of these latter programs must

then be interfaced with one of the event generator programs to yield complete

scattering event simulations. Ideally, event generator programs should be flexi-

ble enough to enable simulation of SUSY events from a variety of models such

as mSUGRA, GMSB, etc. In other words, the user should be able to use the in-

put parameters of these specific models (instead of the MSSM parameters) and

generate the corresponding scattering events at any collider. In this way, differ-

ent hypotheses about how MSSM superpartners obtain their masses may be di-

rectly tested by experiments at colliding beam facilities. In this connection, we

also note that publicly available programs such as ISAJET, SPheno, SuSpect, and

SOFTSUSY can be used to evaluate weak scale MSSM parameters and spar-

ticle masses for several of the models that we have discussed in Chapter 11.

Other than ISAJET, these programs do not generate sparticle production events,

although the program SPheno will generate a table of sparticle decay branching

fractions.

The simulation of hadron collider scattering events may be broken up into several

steps, as illustrated in Fig. 14.1. The steps include:

� the perturbative calculation of the hard scattering subprocess in the parton model,

and convolution with parton distribution functions (PDFs), as encapsulated by

(12.1);
� inclusion of sparticle cascade decays;

1 The user usually has the option to generate only a subset of SUSY production reactions or decays. This is
useful if one wants to focus on a signal in a particular channel.
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Figure 14.1 Steps in any event generation procedure.

� implementation of perturbative parton showers for initial and final state colored

particles, and for other colored particles which may be produced as decay products

of heavier objects;
� implementation of a hadronization model which describes the formation of

mesons and baryons from quarks and gluons. Also, unstable particles must be de-

cayed to the (quasi-)stable daughters that are ultimately detected in the apparatus,

with rates and distributions in accord with their measured or predicted values.
� Finally, the debris from the colored remnants of the initial beams must be modeled

to obtain a valid description of physics in the forward regions of the collider

detector.
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Some of these steps are absent for simulations of electron–positron collisions

which, as we saw in Chapter 12, are intrinsically simpler. However, for e+e− collider

simulations, we have to allow for polarized initial beams.

In this chapter, we first briefly describe the physics involved in each of these

steps. We then outline how this has been incorporated into some of the available

event generator programs. Special attention is paid to the program ISAJET, since we

have been involved with its development for describing supersymmetric processes.

14.1 Event generation

14.1.1 Hard scattering

The hard scattering and convolution with parton distributions forms the central

calculation of event generator programs. The calculations are usually performed at

lowest order in perturbation theory, so that the hard scattering is either a 2 → 2 or

2 → 1 scattering process.

For supersymmetric particle production at a high energy hadron collider such

as the LHC, a large number of hard scattering subprocesses are likely to be kine-

matically accessible. Each subprocess reaction must be convoluted with parton

distribution functions so that a total cross section for each reaction may be deter-

mined. The Q2-dependent PDFs commonly used are constructed to be solutions of

the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) QCD evolution equa-

tions, which account for multiple collinear emissions of quarks and gluons from

the initial state in the leading log approximation. As Q2 increases, more gluons are

radiated, so that the distributions soften for large values of x , and correspondingly

increase at small x values. Use of a running QCD coupling constant makes the

entire calculation valid at leading log level.

Once the total cross sections are evaluated for all the allowed subprocesses,

then reactions may be selected probabilistically (with an assigned weight) using a

random number generator. This will yield sparticle events in the ratio predicted by

the particular model being simulated.

For sparticle production at e+e− colliders, it may also be necessary to convolute

with PDFs to incorporate bremsstrahlung and beamstrahlung effects as described

in Chapter 12. In addition, if beam polarization is used, then each subprocess cross

section will depend on beam polarization parameters as well.

14.1.2 Parton showers

For reactions occurring at both hadron and lepton colliders, to obtain a realistic

portrait of supersymmetric (or Standard Model) events, it is necessary to account

for multiple non-collinear QCD radiation effects. The evaluation of the cross section
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using matrix elements for multi-parton final states is prohibitively difficult. Instead,

these multiple emissions are approximately included in an event simulation via a

parton shower (PS) algorithm.2 They give rise to effects such as jet broadening,

radiation in the forward regions and energy flow into detector regions that are not

described by calculations with only a limited number of final state partons.

In leading log approximation (LLA), the cross section for single gluon emission

from a quark line is given by

dσ = σ0

αs

2π

dt

t
Pqq(z)dz, (14.1)

where σ0 is the overall hard scattering cross section, t is the intermediate state

virtual quark mass, and Pqq(z) = 4
3

(
1+z2

1−z

)

coincides with the Altarelli–Parisi

splitting function for q ′ → qg for the fractional momentum of the final quark

z ≡ |�pq |/|�pq ′ | < 1. Interference between various multiple gluon emission Feyn-

man graphs, where the gluons are ordered differently, is a subleading effect which

can be ignored. Thus, Eq. (14.1) can be applied successively, and gives a factor-

ized probability for each gluon emission. The idea behind the PS algorithm is then

to use these approximate emission probabilities (which are exact in the collinear

limit), along with exact (non-collinear) kinematics to construct a program which

describes multiple non-collinear parton emissions. Notice, however, that the cross

section (14.1) is singular as t → 0 and as z → 1, i.e. in the regime of collinear

and also soft gluon emission. These singularities can be regulated by introducing

physically appropriate cut-offs. A cut-off on the value of |t | of order |tc| ∼ 1 GeV

corresponds to the scale below which QCD perturbation theory is no longer valid.

A cut-off on z is also necessary, and physically corresponds to the limit beyond

which the gluon is too soft to be resolved.

The PS algorithms available vary in their degree of sophistication. The simplest

algorithm was created by Fox and Wolfram in 1979. Their method was improved

to account for interference effects in the angle-ordered algorithm of Marchesini

and Webber. In addition, parton emission from heavy particles results in a dead-

cone effect, where emissions in the direction of the heavy particle are suppressed.

Furthermore, it is possible to include spin correlations in the PS algorithm.

PS algorithms are also applied to the initial state partons. In this case, a back-

wards shower algorithm is most efficient, which develops the emissions from the

hard scattering backwards in time towards the initial state. The backward shower

algorithm developed by Sjöstrand makes use of the PDFs evaluated at different

energy scales to calculate the initial state parton emission probabilities.

2 For more detailed discussions beyond the scope of this text, see e.g. Collider Physics, V. Barger and
R. J. N. Phillips, Addison-Wesley (1987), Chapter 9.
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14.1.3 Cascade decays

We have already seen that not only are there many reactions available via which

SUSY particles may be produced at colliders but, once produced, there exist many

ways in which superparticles may decay. For the next-to-lightest SUSY particle

(NLSP), there may be only one or at most a few ways to decay to the LSP. Thus, for a

collider such as LEP or even the Fermilab Tevatron, where only the lightest sparticles

will have significant production rates, we might expect that their associated decay

patterns will be relatively simple. However, the number of possible final states

increases rapidly if squarks and gluinos that can decay into the heavier charginos and

neutralinos are accessible, and the book-keeping becomes correspondingly more

complicated. Indeed, at the CERN LHC, where the massive strongly interacting

sparticles such as gluinos and squarks are expected to be produced at large rates,

sparticle cascade decay patterns can be very complex.3 As an example, the many

possible decay paths of a gluino in the mSUGRA model are shown in Fig. 14.2.

Branching fractions to a variety of final states resulting from the cascade decay are

also listed in the figure.

Monte Carlo event generators immensely facilitate the analysis of signals from

such complex cascade decays, especially in the case where no single decay chain

dominates. An event generator can select different cascade decay branches by

generating a random number which picks out a particular decay choice, with a

weight proportional to the corresponding branching fraction, at each step of the

cascade decay. Quarks and gluons produced as the end products of cascade decays

will shower off still more quarks and gluons, with probabilities determined by the

PS algorithm.

The procedure that we have just described is exact for cascade decays of spin-

less particles into two other spinless particles at each step in the cascade. This is

because the squared matrix element is just a constant, and there are no spin correla-

tions possible. This is not true in general and in some cases it can be very important

to include the decay matrix element and/or spin correlations in the calculation of

cascade decays of sparticles. For instance, it has been suggested that the end point of

the dilepton mass distribution from W̃1 Z̃2 → qq̄ ′ Z̃1 + ��̄Z̃1 production at hadron

colliders yields a good measure of m Z̃2
− m Z̃1

. Frequently, interference between Z
and slepton mediated amplitudes for Z̃2 decays suppresses this mass distribution

near the kinematic end point, leading to greater uncertainties in its determination

relative to the expectation with a constant matrix element. As an extreme example

of the distortion due to effects from the decay matrix element, in Fig. 14.3 we show

this distribution for W̃1 Z̃2 events at the Fermilab Tevatron collider for the choice of

mSUGRA parameters (m0, m1/2, A0, tan β, sign(μ)) shown on the figure. For this

3 H. Baer, V. Barger, D. Karatas and X. Tata, Phys. Rev. D36, 96 (1987).
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Figure 14.2 An illustration of the branching fraction for various cascade decays
of the gluino within the mSUGRA model with parameters m0 = 400 GeV, m1/2 =
900 GeV, tan β = 35, A0 = 0, and μ > 0. The masses of various sparticles are also
shown. This figure is adapted from S. Abdullin and D. Denegri, hep-ph/9905510.
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Figure 14.3 Distribution of opposite sign, same flavor dileptons from W̃1 Z̃2 pro-
duction at the Fermilab Tevatron. The solid histogram shows the distribution in-
cluding the exact matrix element, while the dashed histogram is the same distribu-
tion assuming that the decay matrix element is constant. Reprinted with permission
from H. Baer, M. Drees, F. Paige, P. Quintana and X. Tata, Phys. Rev. D61, 095007
(2000), copyright (2000) by the American Physical Society.

parameter space point, m Z̃2
= 173 GeV and m Z̃1

= 86 GeV so one expects a dilep-

ton mass distribution cut-off at mW̃1
− m Z̃1

= 87 GeV. The dilepton mass distribu-

tion including decay matrix element energy effects is denoted by the solid histogram,

and is highly distorted by the pole of the virtual Z boson in the decay diagrams rel-

ative to the distribution using just phase space for the Z̃2 decay (dashed histogram).

Spin correlation effects are especially important for precision measurements at

e+e− linear colliders. While retaining spin correlations may be less crucial in many

situations at a hadron collider, this is not always the case. For instance, relativistic τ−

leptons produced from W decay are always left-handed, while those produced from

a charged Higgs decay are always right-handed. Likewise, the polarization of the

taus from τ̃1 decays depends on the stau mixing angle. Since the undetectable energy

carried off by ντ from tau decay depends sensitively on the parent tau helicity, it is

necessary to include effects of tau polarization in any consideration involving the

energy of “tau jets”.4 By evaluating the mean polarization of taus in any particular

4 These effects are crucial for assessing the efficiency for identifying hadronically decaying taus at a hadron
collider.
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process, these effects can be incorporated, at least on average, into event generator

programs. Of course, such a procedure would not include correlations between

decay products of two taus produced in the same reaction.

14.1.4 Models of hadronization

Once sparticles have been produced and have decayed through their cascades, and

parton showers have been evolved up to the point where the partons have virtu-

ality smaller than ∼ 1 GeV2, we have to convert these to hadrons. This is a non-

perturbative process, and we have to appeal to phenomenological models for its

description. The independent hadronization (IH) model of Field and Feynman is the

simplest such model to implement. In this picture, a new quark–antiquark pair q1q̄1

can be created in the color field of the parent quark q0. Then the q0q̄1 pair can turn

into a meson with a longitudinal momentum fraction described by a phenomenolog-

ical function, with the remainder of the longitudinal momentum carried by the quark

q1. This process is repeated by the creation of a q2q̄2 pair in the color field of q1, and

so on down the line to qnq̄n . A host of mesons are thus produced, and decayed to the

quasi-stable π , K , . . . mesons according to their experimental properties. The final

residual quark qn will have very little energy, and can be discarded without signif-

icantly affecting jet physics. Finally, a small transverse momentum can be added

according to a pre-assigned Gaussian probability distribution to obtain a better de-

scription of the data. Quark fragmentation into baryons is also possible by creation

of diquark pairs in its color field, and can be incorporated. The IH scheme will thus

describe the bulk features of hadronization needed for event simulation programs.

The string model of hadronization developed at Lund is a more sophisticated

model than IH, which treats hadron production as a universal process independent

of the environment of the fragmenting quark. In the string model, a produced

quark–antiquark pair is assumed to be connected by a color flux tube or string.

As the quark–antiquark pair moves apart, more and more energy is stored in the

string until it is energetically favorable for the string to break, creating a new quark–

antiquark pair. Gluons are regarded as kinks in the string. The string model correctly

accounts for color flow in the hadronization process, as opposed to the IH model.

In e+e− → qq̄g (3-jet) events, the string model predicts fewer produced hadrons

in the regions between jets than the IH model, in accord with observation.

A third scheme for hadronization is known as the cluster hadronization model. In

this case, color flow is still accounted for, but quarks and antiquarks that are nearby

in phase space will form a cluster, and will hadronize according to preassigned

probabilities. This model avoids non-locality problems associated with the string

hadronization model, where quarks and antiquarks separated by spacelike distances

can affect the hadronization process.
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14.1.5 Beam remnants

Finally, at a hadron collider the colored remnants of the nucleon that did not par-

ticipate in the hard scattering must be accounted for. These beam remnant effects

produce additional energy flow, especially in the far forward regions of the detector.

A variety of approaches are available to describe these non-perturbative processes,

including models involving Pomeron exchange and multiple scatterings. In addi-

tion, the beam remnants must be hadronized as well, and appear to require a different

parametrization from “minimum bias” events where there are only beam jets but

no hard scattering.

14.2 Event generator programs

Publicly available event generators for SUSY processes include

� ISAJET: (H. Baer, F. Paige, S. Protopopescu and X. Tata),

http://www.phy.bnl.gov/˜isajet/
� PYTHIA: (T. Sjöstrand, L. Lönnblad and S. Mrenna),

http://www.thep.lu.se/˜torbjorn/Pythia.html
� HERWIG: (G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri,

P. Richardson, M. Seymour and B. R. Webber),

http://hepwww.rl.ac.uk/theory/seymour/herwig/
� SUSYGEN: (N. Ghodbane, S. Katsanevas, P. Morawitz and E. Perez),

http://lyoinfo.in2p3.fr/susygen/susygen3.html

The event generator program ISAJET was originally developed in the late 1970s

to describe scattering events at the ill-fated ISABELLE pp collider at Brookhaven

National Laboratory. It was developed by F. Paige and S. Protopopescu to generate

SM and beyond scattering events at hadron colliders and, to a lesser extent, e+e−

colliders. ISAJET was the first event generator program developed to give a realistic

portrayal of SUSY scattering events. ISAJET uses the IH model for hadronization,

and the original Fox–Wolfram (Sjöstrand) PS shower algorithm for final state (initial

state) parton showers. It includes an n-cut Pomeron model to describe beam-jet

evolution.

The event generator PYTHIA was developed mainly by T. Sjöstrand in the

early 1980s to implement the Lund string model for event generation. S. Mrenna

contributed the inclusion of SUSY processes in PYTHIA.

The event generator HERWIG was developed in the mid-1980s to describe scat-

tering events with angle-ordered parton showers, which accounted for interference

effects neglected in the Fox–Wolfram shower approach. HERWIG implements
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a cluster hadronization model. Supersymmetric processes are now available in

HERWIG.

The program SUSYGEN was developed by S. Katsanevas and others to gen-

erate e+e− → SUSY events for the LEP experiments. SUSYGEN interfaces with

PYTHIA for hadronization and showering. SUSYGEN has since been upgraded to

also generate events for hadron colliders.

A description of these codes, or a comparison of their relative virtues and short-

comings, is beyond the scope of this text. Moreover, any such discussion would

rapidly become out of date as these programs are continually being upgraded. We

refer the interested reader to the webpages cited above, both for how to use these

codes, and also for a description of the physics underlying these event generators.

We have already noted that in addition to these event generator codes, there

are several specialized codes (SPheno, SuSpect, SOFTSUSY) for the evaluation of

sparticle spectra. In addition, there are publicly available codes for a careful eval-

uation (including loop effects) of the mass spectrum (FeynHiggs, FeynHiggsFast)

and decay rates (HDECAY) of MSSM Higgs bosons. A careful evaluation of these

is especially useful because, as we saw in Chapter 8, mh is bounded above in a wide

class of models, and experiments searching for a signal for h have already excluded

significant portions of its allowed range.5 Finally, we note that 2 → n (with n ≤ 6)

hard scattering processes including SUSY particles may be generated by programs

such as CompHEP (E. Boos et al.), Madgraph-II (T. Stelzer and W. F. Long), and

GRACE (Minami–Tateya Collaboration, M. Jimbo et al.). These codes need to be

interfaced with one of the event generators, and are especially useful if specific

reactions need to be generated including, for instance, effects of spin correlations.

14.3 Simulating SUSY with ISAJET

In this section, we illustrate the use of SUSY event generators using ISAJET (with

which we are most familiar) as an example. The interested reader can follow similar

procedures for any of the other event generator codes.

14.3.1 Program set-up

ISAJET is a publicly available code, and can be obtained from the website

http://www.phy.bnl.gov/˜isajet/. ISAJET is written in Fortran 77,

and the code is maintained by the Patchy code management system, which

is included in the CERNLIB library of subroutines. The files available are

5 We stress that one should interpret the excluded region with care, since it is sensitive to underlying assumptions.
For instance, if MSSM parameters are complex, the excluded mass range may be significantly smaller.
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isajet.car and a UnixMakefile. TheMakefile program must be edited to

suit the user’s particular machine. Running the Makefile on isajet.car cre-

ates a number of programs, including isasugra.x, isasusy.x, isajet.x,

and isajet.tex. The last is a LaTex file of the ISAJET manual.6

The program isasusy.x requires a weak scale MSSM parameter set as

its input, and produces an output file with the corresponding physical sparticle

masses along with (s)particle decay rates and branching fractions. The program

isasugra.x accepts as an input parameters from the various SUSY breaking

models described in Chapter 11, including SUGRA models with universal or non-

universal SSB terms, GMSB models and AMSB models, and models including

right-handed neutrinos νR. The program then uses the RGEs discussed in Chapter 9

to evolve these parameters, which are typically specified at some high scale, down

to the weak scale relevant for phenomenology. These weak scale parameters are

then used to evaluate the sparticle masses, decay rates and decay branching fractions

which are written to a user-readable output file. The outputs of either isasusy.x
or isasugra.x serve as input parameters for the program isajet.x which

actually generates SUSY events corresponding to the particular model under study.

14.3.2 Models for SUSY in ISAJET

MSSM

The program isasusy.x calculates weak scale sparticle masses and their associ-

ated branching fractions in terms of a subset of weak scale MSSM input parameters.

The relevant input parameters include:

mt (14.2a)

mg̃, μ, m A, tan β (14.2b)

m Q11
, m D11

, mU11
, mL11

, m E11
(14.2c)

m Q33
, m D33

, mU33
, mL33

, m E33
, (Au)33, (Ad)33, (Aτ )33 (14.2d)

plus optional inputs of

m Q22
, m D22

, mU22
, mL22

, m E22
(14.2e)

M1, M2 (14.2f)

m3/2. (14.2g)

ISAJET currently takes the soft-SUSY breaking sfermion mass squared matri-

ces to be real and diagonal; also, only third generation diagonal trilinear A terms

6 The ISAJET manual is also available on the hep-ph archive as H. Baer, F. Paige, S. Protopopescu and X. Tata,
hep-ph/0001086.
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are allowed. This corresponds to the simplified parameter space discussed in Sec-

tion 8.1.2. If the optional second generation masses are not specified, then their

values are set equal to the corresponding first generation masses. Also, the U (1)Y

and SU (2)L gaugino masses are fixed by the gaugino mass unification relation

M1

α1

= M2

α2

= M3

α3

(14.3)

unless the optional independent gaugino masses are specified. Finally, if the value

of m3/2 is not specified, it is assumed that the gravitino is heavy enough so that it

effectively decouples from particle phenomenology.

The Higgs boson masses are computed using the RG improved one-loop effective

potential evaluated at an optimized scale choice Q = √
mt̃Lmt̃R: using this high scale

effectively accounts for some of the larger two-loop effects.

mSUGRA

For the mSUGRA model included in isasugra.x, the model inputs are

m0, m1/2, A0, tan β, sign(μ), and mt . (14.4)

Then ISAJET calculates the gauge and third generation Yukawa couplings at the

weak scale in the DR scheme, and evolves the set of six gauge and Yukawa couplings

via two-loop RGEs up to the GUT scale, which is defined as the Q value at which

g1 = g2. At the scale MGUT, all SSB scalar masses are set to m0, all gaugino masses

are set to m1/2 and all third generation diagonal trilinear A terms are set to A0.

Then the set of 26 MSSM couplings and parameters are evolved via two-loop

RGEs to the weak scale. More precisely, each SSB term is frozen out at the scale

equal to its absolute value, except for Higgs sector parameters, which are frozen

at Q = √
mt̃Lmt̃R . One-loop corrections are added to the scalar potential, which

is then minimized to obtain the value of μ2 and B(Q), consistent with radiative

breaking of electroweak symmetry with the correct value of MZ . SUSY threshold

corrections to mt , mb, and mτ , which considerably modify the relation between

SM fermion masses and the corresponding Yukawa couplings if tan β is large, are

computed at this stage. The set of couplings and mass parameters are then evolved

iteratively between MGUT and Mweak until the solution to the RGEs converges to

within a specified tolerance.

Non-universal SUGRA

To facilitate simulation of models with non-universal gaugino masses, or models

with non-universal scalar masses (e.g. models with additional D-term contributions,

or gaugino-mediated SUSY breaking models), ISAJET includes the “Non-universal
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SUGRA” option which allows the user to set arbitrary values of the SSB parameters

M1, M2, M3 (14.5a)

At , Ab, Aτ (14.5b)

m Hd , m Hu (14.5c)

m Q11
, m D11

, mU11
, mL11

, m E11
(14.5d)

m Q33
, m D33

, mU33
, mL33

, m E33
(14.5e)

at Q = MGUT, in place of the universal scalar mass and the universal A-parameter of

the mSUGRA model. First and second generation SSB scalar masses are assumed

equal. As in mSUGRA, these serve as boundary conditions for the RGEs which are

again used to evaluate the weak scale values of MSSM SSB parameters from which

sparticle masses, couplings, and decay branching fractions are obtained. The user

also has the option to specify the scale Q at which the boundary conditions are to

be implemented, allowing more accurate simulation of string-based scenarios.

GMSB models

ISAJET also allows for event generation in a variety of GMSB models. The set

(11.39) of parameters of the mGMSB model


, M, n5, tan β, sign(μ), Cgrav (14.6a)

can directly be used as an input to ISAJET. As in mSUGRA, the gauge and Yukawa

couplings at the weak scale are first evolved up in energy to Q = M , the messenger

scale, where the calculated GMSB SSB mass parameters are used as boundary

conditions for the RGEs. All parameters are then evolved back down to the weak

scale, where the scalar potential is minimized and REWSB is imposed as usual.

ISAJET also allows event generation of many non-minimal GMSB models, by

allowing several additional input parameters:

	 R, δm2
Hd

, δm2
Hu

, DY(M), n5(1), n5(2), n5(3). (14.6b)

In this set, 	 R is a gaugino mass multiplier that decouples gaugino and scalar mass

parameters at the messenger scale. This can occur if the scale for a U (1)R symmetry

breaking differs from the SUSY breaking scale. For the minimal model, 	 R = 1.

The parameters δm2
Hd

and δm2
Hu

are additional contributions to the Higgs SSB

masses at the messenger scale which may arise from additional interactions that

generate the dimensional B and μ parameters. These additional contributions are

zero in the mGMSB model. In (14.6b), DY(M) is the VEV of the hypercharge D-

term in the messenger sector, and can lead to additional contributions δm2(M) =
g′Y DY(M) to scalar mass parameters at Q = M . Finally, allowing incomplete
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messenger representations can effectively yield differing numbers of messengers

(n51
, n52

, n53
) for each factor of the gauge group.

AMSB models

ISAJET also has the minimal anomaly-mediated SUSY breaking model hardwired.

It accepts the mAMSB parameter set

m0, m3/2, tan β, sign(μ), (14.7)

as an input, and then evolves gauge and Yukawa couplings to MGUT, where the

mAMSB SSB masses are imposed as boundary conditions for the RGEs. The

complete set of SSB masses and couplings are evolved to the weak scale where

REWSB is imposed as usual.

Models with right-handed neutrinos

ISAJET allows the simulation of models with right-handed neutrino (RHN) su-

perfields that are so topical today. In addition to other parameters, the user has to

specify (see (9.37)),

M(ν3), MN , Aν, m ν̃R
, (14.8)

where M(ν3) is the third generation neutrino mass, MN is the heavy mass in the

neutrino see-saw, Aν is the new third generation neutrino trilinear A-parameter and

m ν̃R
the SSB mass of the RHNs. The parameter Bν in (9.37) only affects the mass

of the very heavy right-handed sneutrinos, and so is irrelevant for our purposes. As

for other fermions, the masses and Yukawa couplings of the first two generations of

neutrinos are neglected. Typically, we expect that MN ∼ MGUT, while Aν and m ν̃R

are comparable to the weak scale. If one inputs a value of M(ν3) = 0, then ISAJET

computes the third generation neutrino Yukawa coupling fν by imposing fν = ft

at MGUT, as expected in SO(10) SUSYGUT models.

14.3.3 Generating events with ISAJET

The programsisasusy andisasugra are useful for examining sparticle masses

and branching fractions expected in different models. For generating collider events,

isajet must be used. isajet takes its input from an input parameter file such

as the file sugra.par as shown below. This file implements sparticle production

events for the Fermilab Tevatron p p̄ collider at
√

s = 2 TeV.

TEST SUGRA JOB
2000,5000,0,0/
SUPERSYM
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BEAMS
’P’,’AP’/
SEED
9998871/
NTRIES
5000/
SUGRA
100,200,0,3,1/
TMASS
175,-1,-1/
JETTYPE1
’ALL’/
JETTYPE2
’ALL’/
PT
10,250,10,250/
END
STOP

The first line is a comment line, containing the job title. The second line is the

collider CM energy, the number of events to be generated, the number of events

to print out, and the number of events to skip between printing. The third line

gives the class of reactions: in this case, supersymmetric ones. The fourth and fifth

lines denote the beam types: here proton and antiproton. The fifth and sixth lines

specify a random seed for event generation; by altering the seed, an independent

set of events can be generated. NTRIES on the next two lines limits the number

of tries (in this case, 5000) that the program makes to find a good event. The tenth

line denotes the SUGRA model inputs (m0, m1/2, A0, tan β, sign (μ)) specified

on the next line. Lines 12–13 show the top quark mass input, while lines 14-15

specify the types of sparticles to be produced in the 2 → 2 subprocess: in this

case, all allowed reactions will occur. By limiting JETTYPE1 and JETTYPE2 to

be specific sparticle(s), particular (sets of) SUSY reactions can be studied. Lines

18–19 show the pT range of the final state particles in the 2 → 2 hard scattering

process. Finally, the last two lines indicate the end of the file.

For generating scattering events at an e+e− linear collider, the input might look

like this:

TEST SUGRA JOB FOR A LC WITH BEAM POLARIZATION
AND BEAMSTRAHLUNG

500,5000,0,0/
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E+E-
SEED
9998871/
NTRIES
5000/
SUGRA
2375,300,0,30,1/
EPOL
0.9,0/
EBEAM
400,500,.1072,.12/
TMASS
175,-1,-1/
JETTYPE1
’ALL’/
JETTYPE2
’ALL’/
END
STOP

In the above file, e+e− events are stipulated by the E+E- reaction card on line

3. Since the SUGRA model is stipulated, isajet will generate SUSY events.

On lines 10–11, a left-polarized electron beam with PL(e−) = 0.9 is stipulated

to scatter from an unpolarized positron beam. In lines 12–13, beamstrahlung is

enabled, and the reaction subprocess energy is restricted to lie between 400–500

GeV. The beamstrahlung parameters ϒ = 0.1072 and σz = 0.12 mm (as defined in

Section 12.2.4) must also be given.

There are several ISAJET output files. One will include various masses, and the

sum total of all cross sections generated. Another will include the actual scattering

events, which consists of dumping out various ISAJET common blocks, including

PARTCL, which contains all final state particles, their identities, sources, and four-

vectors. This output is in a form suitable for analysis, or for interface with detector

simulation programs. Further details along with program updates can be found in

the ISAJET manual, isajet.tex.

As an example of a supersymmetric scattering event, we show in Fig. 14.4 a

pp → g̃ũL X event generated within the mSUGRA framework for the CMS detec-

tor at the CERN LHC collider with
√

s = 14 TeV. The response of various detector

elements to the passage of particles through them was simulated by the program

GEANT. The mSUGRA model parameters are also shown in the figure, along with

several sparticle masses and the sparticle cascade decay chains. Six high ET jets,



14.3 Simulating SUSY with ISAJET 391

Figure 14.4 GEANT simulation of an ISAJET mSUGRA event for the CMS de-
tector at the CERN LHC. Notice the large multiplicity of b-jets. Adapted from a
figure, courtesy of Salavat Abdullin.
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Figure 14.5 Simulated chargino pair production event using ISAJET, within the
framework of the mSUGRA model with parameters m0 = 2375 GeV, m1/2 = 300
GeV, A0 = 0, tan β = 30, and μ > 0. The parameter space point is in the focus
point region, and gives 
Z̃1

h2 = 0.11, consistent with WMAP measurements.

The simulated reaction is e+e− → W̃ +
1 W̃ −

1 → ud̄ Z̃1 + eν̄e Z̃1 at a
√

s = 500 GeV
linear collider. Figure courtesy of Norman Graf.

the hardest with ET = 1196 GeV and the softest with ET = 79 GeV, result from

these cascade decays. Moreover, four of the produced jets contain displaced vertices

from B hadrons, though not all of these would be tagged in a real detector. Two of

the four b-jets result from the decay of the Higgs boson h produced in the cascade

decay of the ũL squark. In such an event, it may be possible to reconstruct the h
mass, but with large errors compared to the mass reconstruction from the h → γ γ

signal. This event also contains 380 GeV of Emiss
T from the undetected neutralinos

and neutrinos produced in the cascade decays. We also remark that there are two
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on-shell W bosons and an on-shell Z0 boson in this event. Had the vector bosons

decayed leptonically, they would have given rise to readily detectable hard elec-

trons and muons that constitute the characteristic multilepton plus jet signature for

SUSY.

A sample sparticle production event for a
√

s = 500 GeV linear e+e− collider

is shown in Fig. 14.5. The event shown has e+e− → W̃ +
1 W̃ −

1 , where W̃ +
1 → ud̄ Z̃1

while W̃ −
1 → eν̄e Z̃1. The electron track can be seen in the lower-right quadrant,

where it deposits its energy in the EM calorimeter. The two quark jets are evident

in the upper half plane. The event was generated in the mSUGRA model with

parameters shown in the caption. The parameters are from the HB/FP region of

mSUGRA parameter space (as discussed in Chapter 9), and give rise to a relic

density 
Z̃1
h2 = 0.11, in accord with WMAP measurements.
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The search for supersymmetry at colliders

While the first clear hints of deviation from the SM may well come from any of

a large variety of experiments, establishing precisely what the new physics is will

be possible only by observations at energy scales close to, or beyond, the threshold

for the new phenomena. Direct examination of the properties of any new states of

matter associated with the new physics is probably the best way to study the new

phenomena, if these degrees of freedom are kinematically accessible. If the new

physics is supersymmetry, then the new states of matter will be the superpartners,

and it is only by determining their quantum numbers and couplings that we can un-

ambiguously establish that the new physics is actually supersymmetry. Of course,

any new states of matter may be quite different from superpartners. For instance,

if extra spatial dimensions exist which are accessible at the weak scale, the new

degrees of freedom will be Kaluza–Klein excitations of SM particles. It is even pos-

sible that no new degrees of freedom are directly accessible, but that SM interactions

acquire form factors that point to what the new physics might be. Our point here is

that elucidation of new physics will only be possible at colliding beam facilities.

The purpose of this chapter is to examine what may be learned from a study of

high energy collisions assuming that nature is supersymmetric at the weak scale. To

start with, we review various searches for supersymmetry in previous collider and

fixed target experiments. Up to now, no direct evidence for SUSY has been found.

The negative searches have been interpreted as lower limits on sparticle masses, and

as exclusion of regions of the parameter space of various specific models for MSSM

sparticle masses. Next, we project the SUSY reach of the luminosity upgrade of the

Fermilab Tevatron p p̄ collider with
√

s = 2 TeV that has already begun operation,

as well as of the CERN Large Hadron Collider (LHC), a 14 TeV p p̄ collider

scheduled to commence operation in 2007. We also discuss the capability of a high

energy e+e− linear collider (LC) operating at
√

s = 0.5–1 TeV for SUSY studies;

such a machine is being considered for construction in the not-too-distant future. In

the latter part of the chapter we discuss how a determination of sparticle properties at

394
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the LHC and at a LC may be used to establish that the new physics is supersymmetry

and, further, to zero in on the mechanism by which MSSM superpartners acquire

SUSY breaking masses and couplings. Our discussion follows a “bottom-up” vision

of a program for high energy physics over the next two decades that includes the

following general steps:

� Establish the discovery of new physics.
� Figure out what the new physics is – here, we take it to be weak scale supersym-

metry.
� From the experimentally determined values of sparticle masses and couplings,

figure out the organizing principle(s) that lead to the observed supersymmetry

breaking parameters.

Interpretation of negative results of searches for supersymmetric particles

depends heavily on the assumptions made about the underlying supersymmetric

model. Many sparticle search experiments try to be as model independent as pos-

sible, in which case limits can be placed on sparticle masses. But sometimes de-

pendence on a model for a particular analysis is unavoidable. In these cases, null

search results are often presented as limits on model parameter space in one or

two-parameter space dimensions. Other model parameters can be scanned over, so

that results apply for a wide range of model parameters. Alternatively, results can

be presented for “typical” choices of other model parameters, such as tan β. Finally,

bounds can be presented as a function of the model parameter which gives the most

conservative estimate of the reach into parameter space.

15.1 Early searches for supersymmetry

Experiments at the energy frontier have been searching for supersymmetry since

the early 1980s when it was recognized that weak scale supersymmetry could

protect the large hierarchy between the weak and GUT (or Planck) scales from

large radiative corrections.

15.1.1 e+e− collisions

Searches for supersymmetry were performed in the early 1980s at the PEP e+e−

collider at SLAC (
√

s � 29 GeV) by the MAC and MARK 2 collaborations and

at the PETRA e+e− collider at DESY (
√

s <∼ 47 GeV) by the MARK J, CELLO,

TASSO, and JADE collaborations. The center of mass energy was extended in the

mid to late 1980s by the TOPAZ, VENUS, and AMY experiments at the Tristan

e+e− collider operating at KEK at
√

s <∼ 60 GeV.
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Typically, the searches focussed on signals from the lightest charged sparticles

since these could be produced with relatively large cross sections. It was assumed

that any sparticles which were produced would promptly decay to the LSP (which

was assumed to be photino-like). The relevant processes searched for were:

e+e− → �̃+�̃− → �+�− Z̃1 Z̃1, (15.1a)

e+e− → q̃ ¯̃q → qq̄ Z̃1 Z̃1, (15.1b)

and

e+e− → W̃1W̃ 1 → fi f̄ ′
i Z̃1 + f j f̄ ′

j Z̃1, (15.2)

where f and f ′ are the upper and lower members of a weak SU (2) doublet, and

the subscripts i and j denote the fermion type. Since the neutralino LSPs would

escape undetected in the experimental apparatus, the experimental signature for

slepton (squark) production was taken to be a pair of acolinear leptons (jets) bal-

anced by missing energy and missing transverse momentum carried off by the LSPs.

Chargino pair production can lead to missing energy events with multiple jets, jets

and a charged lepton, or a charged lepton pair, depending on how the charginos

decay. Within the SM, missing energy can only arise if neutrinos are produced in

the reaction in addition to the charged leptons and/or jets. The SM cross section for

events with hard jets and/or leptons together with large missing energy is very small,

and the non-observation of an excess of signal events above expected background

levels is interpreted as a lower limit on m �̃, mq̃ , and mW̃1
. In addition, there are non-

physics backgrounds from experimental mismeasurements that can fake missing

energy events. These backgrounds depend on the energy resolution of the experi-

mental apparatus, and also on other details such as uninstrumented regions of this

detector, etc. and so are detector-dependent. By selecting events to lie in a kinematic

region with large Emiss
T , these backgrounds can be greatly suppressed. The residual

background is usually evaluated using event simulation programs discussed in the

previous chapter, interfaced with programs to simulate the response of the experi-

mental apparatus. Because the background rate is small, the non-observation of a

signal translates into a lower limit only a little below the beam energy. Mass limits

on selectrons (whose cross section is enhanced by t-channel Z̃1 exchange) and

charginos (whose cross section has an s-wave threshold compared to the p-wave

threshold for sfermion production) were somewhat stronger than the limits placed

on the other sfermions.

Assuming that the Z̃1 (ν̃e) is very light and escapes detection, the MAC, ASP,

and AMY collaborations were able to obtain lower limits on mẽ (mW̃1
) beyond

the kinematic limit for selectron (chargino) pair production by searching for single
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photon events coming from

e+e− → Z̃1 Z̃1γ or ν̃e ¯̃νeγ, (15.3)

where the first of these takes place via selectron exchange and the second via

chargino exchange. The SM background from e+e− → νν̄γ production is very

small. Non-observation of these single photon events has also been re-interpreted

as excluding portions of the selectron–goldstino mass plane. This search is also

relevant in models with a very light gravitino.

15.1.2 Searches at the CERN Sp p̄S collider

Shortly after the inauguration in 1982 of the CERN Sp p̄S collider at
√

s = 546

GeV and the discovery of the W and Z bosons, a variety of anomalous collider

events were reported by the UA1 and UA2 collaborations: these included events

containing one or more jets plus missing transverse energy at UA1 and, at UA2,

events containing a hard electron plus jets plus Emiss
T . The UA1 events were exactly

the sort of events expected from pair production of gluinos or squarks with m ∼ 40–

50 GeV, depending on which is the lighter: the produced sparticles were assumed

to decay directly to the LSP either via g̃ → qq̄ Z̃1, or via q̃ → q Z̃1. The excitement

was short-lived as it was soon realized that SM processes such as qq̄ → Z + g or

qq̄ ′ → W + g followed by Z → νν̄ or W → τντ could give rise to these jet(s)

+Emiss
T events at the observed rates.

Subsequently, the collider energy was raised to
√

s = 630 GeV and SM back-

grounds to the Emiss
T data sample were carefully estimated. UA1 was able to place

limits of mg̃ > 53 GeV and mq̃ > 45 GeV, assuming degenerate squark masses and

a neutralino with mass less than 20 GeV. Their results could not exclude gluinos

with mass less than 4 GeV, leaving open a window for a light gluino. The UA2 exper-

iment, ultimately taking more data than UA1, was able to raise the lower bounds to

mq̃ > 74 GeV and mg̃ > 79 GeV, but the light gluino window still remained open.

15.1.3 A light gluino window?

Gluinos with lifetimes long compared to the hadronization time will bind with a

gluon or with qq̄ pairs to form neutral or charged R-parity odd hadrons before

decaying to the LSP. The lightest of these R-odd hadrons is expected to be neutral,

and is denoted by R0. R-hadrons in the mass range 1.5–7.5 GeV can be produced

by strong interactions via collisions of protons on nuclear targets. During the late

1970s, several fixed target experiments obtained upper limits on the cross sections of

a neutral hadron decaying into a final state containing a charged hadron, excluding

various ranges of mg̃ depending on its lifetime.
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Gluinos were searched for but not found in neutrino beam dump experiments by

looking for the re-interaction of the LSP produced via g̃ → qq̄ Z̃1 by the WA-66,

E-613 and CHARM collaborations. These searches, which exclude portions of the

mg̃ − τg̃ plane, become ineffective for large squark masses (long gluino lifetimes)

because the neutralino interaction cross section falls as 1/m4
q̃ . Light gluinos were

also searched for by the WA-75 collaboration in π meson beam dumps onto emul-

sions, again with a negative result.

Light gluinos were also searched for in ϒ → ηg̃γ decays by the CUSB ex-

periment, where ηg̃ is the pseudoscalar g̃g̃ bound state. The non-observation of

monoenergetic photons excludes 1.5 ≤ mg̃ ≤ 3 GeV, independent of the gluino

lifetime. The ARGUS experiment searched for gluinos via χb → g̃g̃g decays, with

one of the R-hadrons decaying away from the interaction point, and excluded the

mass range 1–4.5 GeV for an appropriate lifetime range.

Despite these efforts, a window for light gluinos still remained, where the R0

hadron was expected to have a mass of 1–3 GeV and a lifetime of 10−10–10−5 s. The

R0 was expected to decay mainly via R0 → ρ Z̃1 → π+π− Z̃1 and at smaller rates

into the C-violating mode R0 → π0 Z̃1. In the late 1990s, the KTeV collaboration

at Fermilab reported a null result from searches for the spontaneous appearance of

π+π− pairs, or a single π0 consistent with the decay of a long-lived neutral particle

produced by 800 GeV protons on a beryllium target. They excluded the interesting

range m R0 ∼ 1–3 GeV for a lifetime between 3 × 10−10 and 10−3 s.

These experimental results leave little if any room for light gluinos with mass

less than 5–10 GeV. When combined with limits from UA1 and UA2, it seems clear

that mg̃
>∼ 79 GeV.

15.2 Search for SUSY at LEP and LEP2

In 1989, the CERN Large Electron Positron collider (LEP) began operating at and

around the Z pole,
√

s � 91 GeV. Data was collected at the Z pole by the four

experiments ALEPH, DELPHI, L3 and OPAL through 1995. At that point, each

experiment had accumulated over 4 million Z boson events, corresponding to an

integrated luminosity of over 150 pb−1. In 1995, the center of mass collider energy

was raised to 136 GeV, and over subsequent years it was raised beyond W W and

Z Z thresholds until a maximum energy of
√

s � 208 GeV was reached in the year

2000, in an effort to flush out the Higgs boson.

15.2.1 SUSY searches at the Z pole

The four LEP experiments together accumulated a sample of about 17M Z0 events

allowing very precise determination of the Z0 line-shape. In particular, �
Z as

well as �
inv, the non-SM contributions to the total and “invisible” widths of the
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Z0, are constrained to be smaller than a few MeV. The former leads to lower limits

only slightly below MZ/2 on masses of MSSM sparticles ( f̃ , W̃i ) with significant

couplings to Z0. This limit is independent of the decay properties of the sparticles.

The limit �
inv < 2 MeV strongly constrains the partial width for Z decays to Z̃1

pairs, but does not lead to a model-independent lower limit on m Z̃1
because of the

strong parameter dependence of the Z Z̃1 Z̃1 coupling. The invisible width puts a

bound very close to MZ/2 on (quasi-)stable or invisibly decaying sneutrinos.

The large number of Z0 boson events also gave lower limits essentially equal to

MZ/2 on mW̃1
, mq̃L,R

, and m �̃L,R
. These limits, which come from searches for final

state configurations with low SM backgrounds, depend on how the sparticles decay,

and so are somewhat model-dependent. These limits would be evaded if the parent

sparticle had a mass close to the daughter LSP so that the visible decay products

are very soft. Alternatively, limits on t̃1 or b̃1 masses could be evaded for values of

the squark mixing angle such that the corresponding Z partial width is very small.

Searches for Z0 → Z̃1 Z̃2 → Z̃1 + f f̄ Z̃1 are of special interest because this

reaction, which leads to distinctive events with acolinear leptons or jets and large

missing transverse energy, may be kinematically accessible even if Z → W̃ +
1 W̃ −

1 is

not. Unfortunately, the Z Z̃i Z̃ j coupling is very parameter-dependent, and vanishes

if either neutralino is a gaugino. Even so the LEP experiments, which are able to

exclude branching fractions for Z → Z̃1 Z̃2 larger than (2 − 20) × 10−6 (depending

on the values of the neutralino masses), are able to exclude regions of parameter

space that would otherwise not be accessible.

15.2.2 SUSY searches at LEP2

All four LEP experiments collected data for several center of mass energies ranging

from
√

s = MZ up to
√

s = 203–208 GeV, where each experiment accumulated

over 210 pb−1 of integrated luminosity. Non-observation of any signal in a large

number of final states was interpreted as lower limits on many sparticle masses.

The precise limits are somewhat model-dependent but, because of the clean exper-

imental environment, are frequently close to the kinematic limit. We summarize

these limits in Table 15.1.

Charged sleptons are searched for assuming that these decay via �̃ → �Z̃1, and

that the neutralino LSP escapes detection. Since the cross section for selectron

pair production is considerably larger than that for smuon or stau production, the

limits on mẽR
are somewhat stronger. The limit on m τ̃1

also depends on θτ . Since

third generation squarks are expected to be lighter than squarks of other genera-

tions, LEP2 experiments focussed on searches for t̃1 and b̃1 squarks. The limits

obtained depend on the corresponding mixing angle as well as on their assumed

decay patterns. Experiments at LEP2 have also searched for charginos produced via
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Table 15.1 Limits on various sparticle masses from the non-observation
of any signal in experiments at LEP2. The limits on mt̃1 (mb̃1

) are shown
for two cases of squark mixing angle: no mixing, and mixing such that
the coupling to Z0 vanishes. The limit on the chargino mass for small

mass gaps is obtained from a combination of results including searches
for soft events with radiated photons from the initial state, for long-lived

particles that manifest themselves by tracks with kinks or impact
parameter off-sets, or for quasi-stable heavy charged particles.

sparticle mass bound (GeV) comment

ẽR 99 ẽR → eZ̃1, �m > 10 GeV

μ̃R 94 μ̃R → μZ̃1, �m > 10 GeV

τ̃1 85 τ̃R → τ Z̃1, �m > 10 GeV

t̃1 98 (94) t̃1 → cZ̃1, �m > 10 GeV, θt = 0(56◦)
t̃1 99 (95) t̃1 → b�ν̃L, �m > 10 GeV, θt = 0(56◦)

b̃1 99 (95) b̃1 → bZ̃1, �m > 10 GeV, θb = 0(68◦)

W̃1 103.5 m ν̃e > 300 GeV,
�m > 10 GeV, gaugino mass unification

W̃1 91.9 m ν̃e ∼ 500 GeV

e+e− → W̃1W̃ 1, followed by W̃1 → f f̄ ′ Z̃1, where f and f ′ are quarks or leptons.

The signature channels include: (i) four-jet +Emiss events, (ii) lepton + two-jets

+Emiss events, and (iii) lepton–antilepton +Emiss events, where Emiss denotes the

apparent missing energy in the event. Since the production cross section is not sup-

pressed by the p-wave β3 factor as for scalar pair production, the experimental limit

is usually very close to the phase space boundary. Exceptions occur either when

mW̃1
− m Z̃1

is very small so that the energy of the visible decay products and the mo-

mentum carried off by the LSP are both small, or when the sneutrino is rather light

and the contribution of the t-channel sneutrino exchange to the production ampli-

tude (which interferes destructively with the s-channel contributions) is significant.

Neutralino pair production was also searched for in the e+e− → Z̃1 Z̃2, Z̃2 Z̃2 chan-

nels, where Z̃2 → Z̃1 + f f̄ . The production cross sections and decay branching

fractions are very parameter dependent, and no model-independent limit on neu-

tralino masses can be extracted. Nonetheless, upper limits on the cross section for

various event topologies restrict the parameter space of various models of MSSM

sparticle masses.

Searches within mSUGRA

Many SUSY searches have been carried out within the mSUGRA framework, or

the MSSM with additional assumptions about degeneracy of sfermions. The limits
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in Table 15.1 for �m > 10 GeV are essentially those that would be obtained in

mSUGRA. However, because this framework is very constrained, the limits on the

chargino mass together with those on neutralino production cross sections imply a

limit m Z̃1
> 50 GeV on the neutralino LSP for any set of mSUGRA parameters. This

serves as an example of the interplay between collider experiments and searches

for relic dark matter.

Searches within the mGMSB model

We have seen that SUSY signals may differ from those in the MSSM if the LSP

is an ultra-light gravitino as may be the case within the mGMSB framework. In

this case, searches would naturally focus on the next-to-lightest SUSY particle

(NLSP) which, depending on n5, is either τ̃1 or the neutralino. The search strategy

depends on the lifetime of the NLSP which, as we have seen, can vary over a

wide range, depending on the gravitino mass. For the stau NLSP scenario, the

negative result of the search for acoplanar tau pairs without any displaced vertices

implies m τ̃1
> 87 GeV. If the stau is very long-lived so that it decays outside the

detector, searches for heavy stable charged particles imply m τ̃1
> 97 GeV, while

for intermediate lifetimes, searches for tracks with large impact parameters or

tracks with kinks lead to a mass bound somewhere in between. For the co-NLSP

case, corresponding searches imply mμ̃R
> 96 GeV, independent of the smuon

lifetime.

For the case of a neutralino LSP decaying outside the detector, sparticle masses

are bounded as in Table 15.1. Stronger bounds can be obtained if the neutralino

decays via Z̃1 → γ G̃ within the detector. Since the neutralino pair production

cross section depends on the selectron mass, the limit obtained depends on n5.1

For mẽR
= 1.1m Z̃1

(2m Z̃1
) (this covers the range n5 = 1–4) the negative results of a

search for acolinear photon pairs at LEP2 implies that m Z̃1

>∼ 92(96) GeV.

Searches within the AMSB model

In AMSB models, the chargino W̃1 and neutralino Z̃1 are expected to be nearly

mass degenerate and, as discussed in Section 13.4.1, the visible decay products

from chargino decay are very soft. In this case, the bound mW̃1
> 91.9 GeV in the

last row of Table 15.1 applies since the sneutrino is typically quite heavy in this

scenario.

15.2.3 SUSY Higgs searches at LEP2

The search for neutral Higgs scalars is especially interesting in the SUSY context

because mh
<∼ 130 GeV within the MSSM, and a Higgs boson in this mass range is

1 Recall though that Z̃1 is typically the NLSP only for n5 = 1.
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what is expected from a global fit of LEP and other electroweak data to the SM.2

A lighter Higgs boson h, within the kinematic reach of LEP2, could have been

produced via

e+e− → Zh or Ah (15.4)

processes, both of which occur via s-channel Z0 exchange. Moreover, the two

reactions are complementary in the sense that the Z Zh and the Z Ah coupling

cannot both simultaneously vanish (at tree level). The first of these reactions is also

the usual process for searching for the SM Higgs boson. While h and A are expected

to dominantly decay into bb̄ pairs, a variety of final states is possible, including the

one with an “invisible h” if the decay h → Z̃1 Z̃1 is allowed.

Shortly before the termination of the LEP2 collider, an excess of events in the

four-jet sample with displaced vertices and a “bb̄ mass” ∼ 114 GeV caused some

excitement. However, a final dedicated run of LEP around
√

s = 208 GeV did not

unearth any signal and a limit,

m HSM
> 114.3 GeV, (15.5)

was obtained on the SM Higgs boson mass. Assuming C P is conserved in the Higgs

sector, the same bound also applies to mh for large values of m A. However, the

LEP collaborations also performed dedicated analyses to search for MSSM Higgs

bosons in several channels, but found no signal. Since the masses and couplings of

the Higgs bosons to SM particles are determined at tree level by tan β together with

any one of the physical particle masses (taken to be m A in Chapter 8), the results

of these searches can be conveniently displayed in the m A − tan β plane as shown

in Fig. 15.1. Once radiative corrections are included, the Higgs sector depends also

on other SUSY parameters: the excluded region shown is conservative in the sense

that SUSY parameters are chosen to maximize mh for a given value of tan β.

15.3 Supersymmetry searches at the Tevatron

The Collider Detector at Fermilab (CDF) and DØ are the major general purpose

experiments at the Fermilab Tevatron p p̄ collider. During Run 1, when each of these

experiments accumulated an integrated luminosity of ∼ 100 pb−1 at
√

s = 1.8 TeV,

the top quark was discovered and its mass determined to be mt = 174.3 ± 5.1 GeV.

The experiments also searched for new physics, albeit with null results. Run 2 of the

Tevatron began in 2001 at
√

s � 2 TeV, featuring the Tevatron Main Injector along

with upgraded detectors designed to handle the large increase in beam luminosity.

2 If we assume that all couplings remain perturbative out to a very high energy scale, we obtain a model-
independent bound mh

<∼ 160 GeV as long as SUSY is broken at the weak scale, to be compared with the
corresponding bound of about 200 GeV on the SM Higgs boson mass.
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Figure 15.1 The shaded region shows the portion of the m A − tan β plane excluded
by the null results of the searches for MSSM Higgs bosons at LEP2. Here, M2 =
−μ = 200 GeV, mg̃ = 800 GeV, all soft SUSY breaking sfermion masses set to
1 TeV and the top squark mixing adjusted to maximize mh for a given value of tan β.
The LEP excluded region is sensitive to the value of the top quark mass which is
taken to be 179.3 GeV. For this scenario, the LEP data exclude 0.9 ≤ tan β ≤ 1.5;
this range is also sensitive to the choice of mt . The dashed lines mark the boundaries
of the region that would be expected to be excluded on the basis of Monte Carlo
simulations, assuming no signal events. Throughout the analysis, it is assumed
that there are no SUSY sources of C P violation. For details of the analysis, see
LHWG-Note 2004-01. We thank P. Igo-Kemenes for supplying this figure.

Run 2 is expected to continue at least until 2007 when the CERN LHC pp collider

is expected to commence operation. During this run, each experiment is currently

expected to accumulate an integrated luminosity of 5–10 fb−1, though higher values

were initially anticipated.

15.3.1 Supersymmetry searches at run 1

Searches for gluinos and squarks

The CDF and DØ collaborations have continued the search for squarks and gluinos

begun at CERN. The first searches focussed on the multijet +Emiss
T signature from

g̃g̃, g̃q̃, and q̃q̃ production, followed by the direct decays of squarks and gluinos

to Z̃1. It was subsequently realized that, as we saw in Chapter 13, heavier squarks

and gluinos are more likely to decay via cascades than to decay directly to the LSP,

so that the momentum of the LSPs, and hence the Emiss
T , is somewhat degraded.

The cascade decay patterns are model-dependent, and the mSUGRA model began
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1

Figure 15.2 The region of the mg̃ − mq̃ plane excluded by various searches for
squark and gluino production at the Fermilab Tevatron. The solid contour labeled
Emiss

T shows the boundary of the regions excluded by different searches in multijet

+Emiss
T channels, while the dashed (dashed-dotted) contours labeled SS (OS) mark

the boundaries of the regions excluded by the CDF (DØ) search in the SS dilepton
(OS dielectron) channel. We caution that these searches have been performed in
somewhat different models, and refer the reader interested in details to the original
papers. We note that the dot-dashed contour is our transcription of the original con-
tour that was presented in the m0 − m1/2 plane of the mSUGRA model. Finally, the
region marked LEP2 is excluded by searches for squark pair production at LEP2.

to be adopted for many phenomenological analyses. Within this framework, as we

have already seen, squarks can never be much lighter than gluinos. The Tevatron

collaborations, quite rightly, disregard this model-dependent restriction, and also

perform a search for squark production, assuming that the gluino is heavy. For this

purpose, they adopt the MSSM with gaugino mass unification, assuming a mass

degeneracy for the three generations of squarks.

The analysis of the Emiss
T signal is complicated. To enhance the signal over

backgrounds from SM events with neutrinos, or from mismeasurements of jets,

carefully designed selection cuts are applied to the data.3 Moreover, these cuts

are optimized, depending on the mass of squarks and gluinos being searched for.

The CDF and DØ collaborations have already performed several analyses, using

different sets of cuts, but have found no evidence for any excess of events above

SM expectations. The region of the mg̃ − mq̃ plane excluded by these searches

is summarized by the solid contour labeled Emiss
T in Fig. 15.2. This contour is a

composite from several Tevatron searches with different selection cuts. In the upper

3 These backgrounds mainly come from W and Z production, vector boson pair production (W W , W Z , and
Z Z ) and heavy flavor production (cc̄, bb̄, and t t̄).
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portion of the plane, the analysis is performed within the mSUGRA framework,

but for the lower portion (where squarks much lighter than gluinos are not allowed

in the mSUGRA model) the MSSM with gaugino mass unification, and ten flavors

of degenerate squarks is used. Since different analyses are used for mSUGRA and

the MSSM, the excluded region does not match up when mq̃ = mg̃. The reason that

the range of mq̃ excluded by the Emiss
T search cuts off for large values of mg̃ is that

the LSP mass increases with mg̃, and the transverse momentum carried off by the

LSPs is correspondingly reduced. We see from the figure that within the mSUGRA

framework, gluinos lighter than 195 GeV are excluded (95% CL) for any value of

mq̃ while, if mg̃ � mq̃ , the mass limit extends to as much as 300 GeV, depending

on the analysis.

Although cascade decays degrade the reach of CDF and DØ Emiss
T searches

because they soften the Emiss
T spectrum, they also lead to novel signatures for

gluino and squark production. If daughters W̃1 and Z̃2 decay leptonically, gluino

and squark production leads to events with several jets together with n hard, isolated

leptons and Emiss
T . Within the SM there is a substantial background from high pT

W → �ν production if n = 1 but, for n ≥ 2, SM backgrounds are rather small.

One important background comes from high pT Z0 → �+�− events which contain

opposite sign lepton pairs with the same flavor. These can be easily vetoed by

requiring that the dilepton mass not reconstruct to MZ within some error. Especially

interesting are events with same sign dileptons from gluino pair production that we

had mentioned in our discussion just below Eq. (13.9) (these may also come from

g̃q̃ or q̃q̃ production), or events with n ≥ 3 leptons because SM backgrounds to

these event topologies are very small. The cross section for multilepton topologies is

suppressed by branching fractions for leptonic decays of charginos and neutralinos

and so requires data samples with significant integrated luminosities to obtain a

handful of signal events. The dashed contour labeled SS in Fig. 15.2 shows the

region excluded by a CDF search in the same sign dilepton channel, while the

dot-dashed contour labeled OS shows the corresponding region from the dielectron

analysis by the DØ collaboration. These analyses of course depend on the cascade

decay patterns which are somewhat model-dependent. For instance, the OS contour,

which was obtained within the mSUGRA model framework, terminates at the

boundary of parameter space when m0 = 0, while the wedge in it occurs because

cascade decay patterns are altered when sleptons and/or sneutrinos become light

enough to be produced as decay products of charginos and neutralinos. Our main

point, however, is that these leptonic searches, even with an integrated luminosity

of just 100 pb−1, are already competitive with the Emiss
T search. With the much

larger data sample anticipated in Run 2, it may be the case that the rate limited but

cleaner same sign dilepton and trilepton event channels will lead to a better reach

than the Emiss
T channel.
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Search for charginos and neutralinos

Charginos and neutralinos are produced via electroweak interactions and so have

cross sections comparable to those for pair production of W and Z0 bosons. Signals

from their hadronic decays are buried under QCD backgrounds, so that searches are

forced to focus on events containing isolated leptons. Signals from W̃1 Z̃1 produc-

tion where W̃1 → �ν Z̃1 are buried under background from the resonantly produced

W → �ν decays. Indeed the most promising signal for chargino and neutralino pro-

duction comes from hadronically quiet (except for jet activity from QCD radiation)

isolated trilepton events expected from (W̃1 → �ν� Z̃1) + (Z̃2 → ��̄Z̃1) production.

We have already seen in Fig. 12.22 that for models with gaugino mass unification,

W̃1 Z̃2 production may be the dominant production mechanism for SUSY particle

production at the Tevatron, and also that if sleptons are sufficiently light, then the

Z̃2 leptonic branching fraction may be significantly enhanced. Since leptons from

Z0 → �+�− can be readily identified, the most serious SM background comes

from W (→ �ν�) + Z (→ τ τ̄ ) followed by leptonic τ decays, and from W (∗)γ ∗ and

W (∗) Z (∗) production, where the off-shell vector bosons “decay” leptonically.

Searches for isolated trilepton events from SUSY have been performed by both

CDF and DØ for the Run 1 data sample. If the leptonic branching fractions for

chargino and neutralino decays are similar to those of the W and Z0 boson, the

chargino mass bound obtained is well below the corresponding LEP2 limit, but

exceeds it if leptonic chargino and neutralino decays are enhanced by the presence

of light sleptons. These searches are, however, a proof of principle and will yield

interesting results when the integrated luminosity levels associated with Run 2 are

achieved.4

Search for top and bottom squarks

Since third generation squarks are expected to be lighter than other squarks, ded-

icated searches for these have been performed at the Tevatron by both the CDF

and DØ collaborations. If t̃1¯̃t1 production occurs at a large rate at the Tevatron,

and mt̃1 < mb + mW̃1
, then t̃1 is likely to decay dominantly via t̃1 → cZ̃1, result-

ing in a cc̄ + Emiss
T final state. For m Z̃1

<∼ 50 GeV, the CDF search excludes mt̃1

up to ∼ 110 GeV, extending beyond the reach of LEP2.5 Searches have also been

performed for the case when t̃1 → bW̃1. In this case, a reach beyond the current

LEP2 bound is obtained only if the leptonic branching fraction of W̃1 is large.

Assuming that W̃1 → �ν̃, the combined result of the two collaborations implies

that mt̃1
>∼ 125–140 GeV for m ν̃ = 60–85 GeV and mW̃1

beyond the LEP2 bound.

4 We should also emphasize that chargino and neutralino searches are independent of gluino searches via Emiss
T

events, and in models without gaugino mass unification yield completely independent information.
5 Since σ (t̃1 t̃1) is completely determined by mt̃1 , this excluded region is completely determined by mt̃1 and m Z̃1

,
and is independent of other model parameters.
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Searches have also been performed for t t̄ production where t → t̃1 Z̃1 decay as-

suming t̃1 → bW̃1 → b�ν̃, but significant bounds on mt̃1 are obtained only if the

branching fraction for the SUSY decay of t is in excess of ∼ 45%.

Both the DØ and CDF collaborations have also searched for p p̄ → b̃1
¯̃b1 X pro-

duction assuming b̃1 → bZ̃1. The absence of a signal has been interpreted as an

exclusion of a portion of the mb̃1
vs. m Z̃1

plane. Values of mb̃1

<∼ 130 GeV are ex-

cluded if mb̃1
− m Z̃1

>∼ 50–60 GeV, and mb̃1
as large as 145 GeV is excluded for low

values of m Z̃1
.

Searches for SUSY in GMSB models

In GMSB models with a neutralino that decays via Z̃1 → γ G̃ as the NLSP,

we would expect sparticle production to lead to γ γ + jets + leptons + Emiss
T

events. The DØ collaboration found no excess above SM expectation in their

inclusive γ γ + Emiss
T sample and set a limit m Z̃1

> 77 GeV, corresponding to

mW̃1
> 150 GeV at the 95% CL. From the null result of a search for gravitino

pair production tagged by a high ET jet from the initial state, the CDF collabora-

tion concluded that the gravitino mass must be heavier than about 1.1 × 10−5 eV

corresponding to the SUSY breaking scale
√

F ≥ 215 GeV.6 They also concluded

that there was no signal in the � + γ + Emiss
T as well as the b-jet + Emiss

T channels,

although there was a small excess in the first of these channels.

15.3.2 Prospects for future SUSY searches

Run 2 of the Fermilab Tevatron began in 2001. Current expectation is that an

integrated luminosity of 5–10 fb−1 will be expected before the LHC begins to

operate, down from 15–25 fb−1 that had been originally anticipated. It is interesting

to project the SUSY reach of Tevatron experiments for this vastly larger data sample.

The Emiss
T channel

The current limits on charginos from LEP2, that mW̃1
> 103 GeV given a reasonable

mass gap between W̃1 and Z̃1, imply that mg̃
>∼ 330–400 GeV (depending on the

sign of μ) in models with gaugino mass unification, if tan β >∼ 1.5 as suggested

by Fig. 15.1. As already mentioned, in addition to the Emiss
T signal, multilepton

signals are also potentially important. The size of these signals is sensitive to which

sparticles are dominantly produced, and on how they decay, and so are model-

dependent. The Emiss
T signal is somewhat more robust.

In Fig. 15.3, we show regions of mSUGRA parameter space where the somewhat

more robust Emiss
T + jets signal ought to be visible above SM backgrounds at at least

6 Recall from our discussion of goldstino interactions that this cross section is fixed by the gravitino mass.
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Figure 15.3 A plot of points accessible at 5σ level at Tevatron Run 2 for 2 fb−1

(gray squares) and 25 fb−1 (white squares) of data in searches for mSUGRA via
Emiss

T + multijet events. Points with a × symbol are inaccessible at Run 2 via

the Emiss
T + jets signal. Reprinted with permission from H. Baer, C. H. Chen, M.

Drees, F. Paige and X. Tata, Phys. Rev. D58, 075008 (1998), copyright (1998) by
the American Physical Society.

the 5σ level. The bricked areas are disallowed by a lack of radiative EWSB (low

m1/2 region) or a charged (slepton) LSP (low m0 region). The hatched region is

excluded by LEP2 searches. The gray squares denote model points where a 5σ

signal is expected with 2 fb−1 of data, while points denoted by open squares are

accessible only for an integrated luminosity of 25 fb−1. We stress that, although it

appears that the LEP limit on the chargino excludes much of the parameter plane

accessible to experiment, this Emiss
T search is still important because it can probe

squark and gluino masses without any assumption about gaugino mass unification.

Multilepton channels

Tevatron experiments have already shown that searches via multilepton + Emiss
T

events are competitive with the traditional Emiss
T search. The signals can naturally

be sorted according to the number of isolated leptons contained in each event:

Emiss
T + jets, 1� + Emiss

T + jets, opposite sign (OS) or same sign (SS) dileptons +
Emiss

T + jets and 3� + Emiss
T + jets. We will focus our attention on the trilepton signal

which, for large data samples, yields the largest reach in models with gaugino mass

unification. Here, we focus on this signal within the mSUGRA framework, but it

should be kept in mind that both OS and SS dilepton signals may also be observable.
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Within the mSUGRA framework, LEP bounds imply that W̃1 Z̃2 and W̃1W̃1

production have the largest sparticle production cross sections at the Tevatron if

SUSY is accessible at all. It makes sense to focus on the trilepton signals arising from

the former reaction since these have rather low SM backgrounds. The background

size can be gauged from the fact that the inclusion of backgrounds from W (∗)γ ∗

and W (∗) Z∗ sources of trileptons is important.

It might seem that the signal appears as trilepton events free from jet activity.

Detailed studies, however, show that the largest reach is obtained in the inclusive

trilepton channel after suitable cuts, since the production of heavy sparticles is fre-

quently associated with jets from initial state QCD radiation. Moreover, gluino and

squark production, which leads to jetty trilepton events, also makes a subdominant

contribution to this signal.

For small to intermediate values of tan β, the leptons from chargino and neu-

tralino decays are relatively hard and readily detectable. We have seen in Chapter 13

that if tan β is large, decays to third generation leptons and neutrinos are enhanced

at the expense of those to the experimentally detectable e and μ. For large tan β, the

leptons in the ���′ signal (�, �′ = e, μ) arise as secondary daughters from τ decay,

and so tend to be soft. It was shown, however, that using a special set of soft lepton

cuts, the trilepton signal should be detectable above backgrounds over a wide range

of tan β.7

The region of the m0 vs. m1/2 plane where the trilepton signal is observable at the

Tevatron is illustrated in Fig. 15.4 for a moderate and a high value of tan β. The dark

shaded region on the left is excluded because the stau is the LSP, while the right-

hand side is excluded because electroweak symmetry is improperly broken, since

μ2 < 0. Just to the left of this latter boundary, μ2 is small, and mW̃1
∼ m Z̃1

∼ |μ|.
For small m1/2, this is the so-called focus point (FP) region, while for larger m1/2

values this has been referred to as the hyperbolic branch (HB).

The light-shaded region is excluded by constraints from LEP2. Below the band,

mh < 114.1 GeV. Below the solid (dashed) contours, Tevatron experiments should

be able to see the trilepton signal at the 5σ (3σ ) level with an integrated luminosity

of 10 (25) fb−1. For the tan β = 10 case, we see a large signal at low values of m0

for which charginos and neutralinos decay into real sleptons, so that their leptonic

branching ratio is nearly 100%. In this case, the reach extends to m1/2 as high as 240–

260 GeV. As m0 increases, these decays are no longer kinematically accessible, and

the reach drops sharply. For m0 ∼ 200 GeV, B(Z̃2 → ��̄Z̃1) is very small because

of the negative interference between the Z and slepton-mediated amplitudes for

Z̃2 decay and there is no reach via this channel. As m0 is increased further, the

7 See, e.g., S. Abel et al., Report of the SUGRA Working Group at the Physics at Run II: SUSY and Higgs
Workshop, hep-ph/0003154, and references cited therein.
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Figure 15.4 The region of the m0 − m1/2 plane where the inclusive trilepton sig-
nal with soft leptons is detectable at Tevatron Run 2. The dark-shaded region is
excluded by theoretical constraints discussed in the text, while the light-shaded
region is excluded by experimental constraints from LEP2. Below the thick light
gray line, mh < 114.1 GeV. Reprinted from H. Baer, T. Krupovnickas and X. Tata,
JHEP 07, 020 (2003).
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slepton-mediated amplitudes become unimportant, and the leptonic branching ratio

of Z̃2 becomes equal to that of the Z0 boson, and the contours level off. Finally,

for very large values of m0, we enter the HB/FP region and the chargino becomes

increasingly higgsino-like and light, and the contours extend to larger values of

m1/2. It is important to note that the signal becomes difficult to see because the

mass gap between W̃1 or Z̃2 and the LSP becomes small, and the visible decay

products become too soft to pass the experimental cuts. A signal might escape

detection even if charginos and neutralinos are well within the kinematic reach of

the Tevatron. For larger values of tan β, the small m0 region where the trilepton

signal is observable shrinks because the chargino preferentially decays to staus,

until this region completely disappears as illustrated for tan β = 52 in the second

frame of Fig. 15.4. Once again the contours rise in the HB/FP region where the

chargino becomes relatively light.

The trilepton signal is important from another point of view. Since the like flavor,

opposite sign lepton pair in an �+�−�
′± event arises from Z̃2 → �+�− Z̃1 decay, the

m(�+�−) distribution must kinematically be bounded by m Z̃2
− m Z̃1

. If the trilepton

signal is sufficiently large, it will be possible to determine this dilepton edge which

would then serve as a starting point for reconstructing SUSY particle masses.

Top and bottom squarks

Bottom squark pair production can be searched for at CDF and DØ via the p p̄ →
b̃1

¯̃b1 X → bb̄ + Emiss
T reaction. Values of mb̃1

∼ 210 (245) GeV can be probed with

2 (25) fb−1 of data, assuming b̃1 → bZ̃1, and a large mb̃1
− m Z̃1

mass gap. If

b̃ → bZ̃2 also occurs at a significant rate, then the reach will be reduced, but this

degradation is typically smaller than 30–40 GeV.

The reaction p p̄ → t̃1¯̃t1 X followed by t̃1 → bW̃1 can be searched for at Run 2

in the bb̄�ν�qq̄ ′ final state, which also occurs in direct t t̄ production. This search

was not possible at Run 1 due to low cross sections and large backgrounds. Mass

values of mt̃1 ∼ 160 –190 GeV can be probed with 2–20 fb−1 of data.

If instead t̃1 → cZ̃1 is the dominant decay mode, then the Run 1 search for

cc̄ + Emiss
T final states can be extended. It is estimated that mt̃1

>∼ 200 GeV may

be probed in 20 fb−1. Alternatively, if t̃1 → b�ν̃� dominates, then mt̃1 as large as

240 GeV can be explored if m ν̃ is as low as 45 GeV.

Search for SUSY Higgs bosons

One of the most intriguing predictions in the MSSM is that the scalar h is lighter than

about 135 GeV. This is in the range favored by analyses of electroweak radiative

corrections, and possibly within range of discovery at CDF and DØ. Indeed the lack

of any excess of p p̄ → φbb̄ → bb̄bb̄ events (φ = h, H or A) in their data sample

has already allowed the CDF collaboration to exclude a portion of the m A − tan β
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Figure 15.5 Projections for the integrated luminosity required per experiment after
combining the data from the CDF and DØ experiments to detect/exclude a SM-like
Higgs boson via the channels discussed in the text for a Higgs mass smaller than
130 GeV. For heavier Higgs bosons, not relevant to our discussion, other channels
are used. This figure appears in M. Carena et al., Report of the Tevatron Higgs
Working Group, FERMILAB-CONF-00-279-T.

plane in Fig. 15.1 with tan β ≥ 50–100 for values of m A not excluded at LEP2. The

most important reaction for searching for h at the Tevatron is

p p̄ → W h X, W → �ν�, and h → bb̄. (15.6)

The signal is an isolated lepton together with two b-jets and Emiss
T , where the b-jets

are tagged by displaced vertices owing to the long B meson lifetime. The major SM

backgrounds come from W bb̄ and t t̄ production. The signal is not large, but can

be enhanced relative to background because the jet–jet mass is expected to cluster

around mh . Its statistical significance is sensitive to the efficiency for b-tagging and

the jet–jet mass resolution that will be attained. This significance can be further

enhanced by including signals in other event topologies from Zh, t t̄h, and bb̄h
production. The results of a detailed analysis (including neural net improvement)

of the integrated luminosity required per experiment, after combining the signals

in the �bb̄ + Emiss
T , bb̄ + Emiss

T , and bb̄�+�− channels, is shown in Fig. 15.5 for a

SM Higgs boson.8

One striking implication of Fig. 15.5 is that given an integrated luminosity of

30–40 fb−1, Tevatron experiments would have an excellent chance of discovering h,

or apparently ruling out the MSSM. We should, however, be careful before jumping

to such a strong conclusion. First, the upper bound on mh depends on assumptions

about how large third generation squark masses and A-parameters might be. Second,

8 See M. Carena et al., Report of the Tevatron Higgs Working Group, Physics at Run II: Supersymmetry/Higgs
Workshop, hep-ph/0010338.
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the reach shown in these plots depends on projections for jet–jet mass resolutions

and b-tagging efficiencies during Run 2. In addition, recent projections indicate

that Tevatron experiments will accumulate an integrated luminosity of 5–10 fb−1,

in which case the reach is considerably smaller. In this case, tantalizing 3σ effects

may be observable if mh
<∼ 125 GeV.

It is worth noting that other neutral Higgs bosons may be accessible to Tevatron

searches if tan β is very large. Because the bottom Yukawa coupling increases with

tan β, the reactions

p p̄ → Abb̄X, Hbb̄X (15.7)

may probe m A as large as 160–200 GeV, with 25 fb−1 of data. Charged Higgs

bosons are generally more difficult to detect.

GMSB models

If an ultra-light gravitino is the LSP, SUSY signals at colliders are sensitive to the

identity of the NLSP, which is either the neutralino or the lighter stau (possibly with

other sleptons essentially degenerate with the stau) within the mGMSB framework.

The decay of the NLSP leads to isolated photons, leptons, or even Z0 and Higgs

bosons, as we saw in Section 13.8.2, in addition to jets, leptons, and Emiss
T expected

within the MSSM. Moreover, the NLSP decay may be either prompt or delayed:

the latter leads to a variety of novel handles for enhancing the SUSY signal. These

include: displaced vertices, tracks with kinks, and tracks corresponding to charged

quasi-stable heavy exotics, in addition to the visible daughters from NLSP decays.

In order to assess the Tevatron reach for GMSB models, it is expedient to analyze

various “model lines” characterized by the decay properties of the NLSP. For each

of these model lines, the reach is evaluated in terms of � (which can then be

translated to the mass of any sparticle, for instance, the gluino), assuming that the

NLSP decays promptly. This is a conservative assumption since delayed decays

would serve to enhance the reach. All the model lines have M = 3� and Cgrav = 1,

and are characterized by:

� A. A bino-like NLSP that mainly decays via Z̃1 → γ G̃, for model parameters

n5 = 1, tan β = 2.5, and μ > 0. SUSY events typically contain two isolated

photons in addition to jets, leptons, and Emiss
T .

� B. A stau NLSP in models with n5 = 2, tan β = 15, and μ > 0. In this case,

sparticles cascade decay to τ̃1, which then decays via τ̃1 → τ G̃.
� C. A stau–selectron–smuon co-NLSP for model parameters n5 = 3, tan β = 3,

and μ > 0. SUSY events are then expected to be rich in relatively easily detectable

leptons from the decay of the NLSPs in this scenario.
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� D. A higgsino-like NLSP model line where the NLSP mainly decays via

Z̃1 → hG̃ as long as it is not kinematically suppressed. This does not occur

in the mGMSB model where the NLSP tends to be bino-like. However, since the

signals are so sensitively dependent on the decay of the NLSP, it is worthwhile

to explore this non-canonical scenario and study just how the reach of Tevatron

experiments is affected.9 The model line examined has n5 = 2, tan β = 3 with

μ = − 3
4

M1 to obtain a light higgsino. The Higgs boson yields SUSY events rich in

b-jets.
� E. A higgsino-like NLSP which dominantly decays via Z̃1 → Z0G̃ as long as

the decay is not kinematically suppressed. It has the same parameters as model

line D, except that μ = + 3
4

M1.

The reach of the Fermilab Tevatron for an integrated luminosity of 25 fb−1 is

summarized in Table 15.2 where, in addition to the reach in �, we have shown the

corresponding value of mg̃ to compare with the reach in other models. We have

also listed the event topology that yields the largest reach. We stress again that the

reach shown is conservative in that if the NLSP has a long lifetime, the reach may

be significantly larger. For instance, by searching for highly ionizing tracks from

τ̃1 in model line B, or tracks with displaced kinks if τ̃1 decays within the detector

but far from the production point, � values as high as ∼ 85 TeV can be probed for

30 fb−1 of data.

15.4 Supersymmetry searches at supercolliders

The CERN LHC pp collider is scheduled to begin operation in 2007, at
√

s � 14

TeV. Initial runs are expected to accumulate 10 fb−1 of integrated luminosity, while

several hundred fb−1 of data are ultimately expected to be recorded. For gluino

and squark masses smaller than ∼ 1 TeV, we can see from Fig. 12.14 that several

hundred thousand SUSY events would be expected in this data sample!

There is a developing consensus in the high energy physics community that the

next big accelerator project should be an electron–positron linear collider operating

at a center of mass energy
√

s = 500 GeV which would be upgradeable to
√

s =
0.8–1 TeV in the second stage. At the start of Section 12.2 we have already discussed

the special advantages of these machines for studying new physics, and also the

sense in which these could complement the data from the LHC.

In a discussion of supersymmetry at supercolliders, we need to address two

conceptually distinct issues.

9 It is worth noting that additional interactions needed to generate μ and Bμ in this framework could alter the
relation between μ and the gaugino masses making such a scenario more plausible.



15.4 Supersymmetry searches at supercolliders 415

Table 15.2 A comparison of the SUSY reach of the Tevatron luminosity
upgrade and the LHC for the various model lines of the GMSB

framework that were introduced in the text, with the reach in the
mSUGRA and AMSB models. For the GMSB model lines, we also show

the dominant decay of the NLSP together with the channel that yields the
largest reach. For the mSUGRA model, a significantly higher reach in mg̃

is possible, both at the Tevatron as well as at the LHC, if m0 � m1/2. For
the mAMSB model, the corresponding reach is also larger when m0 is
smaller than in the case that is shown. Studies of the Tevatron reach

within the AMSB model are not available.

Model NLSP Tevatron LHC
line (25 fb−1) (10 fb−1)

A Z̃1 ∼ B̃ � ∼= 115 TeV, � ∼= 400 TeV
Z̃1 → γ G̃ mg̃/q̃ ∼ 0.87 TeV, mg̃/q̃ ∼ 2.8 TeV,

llγ γ + Emiss
T γ γ + Emiss

T

B τ̃1 � ∼= 53 TeV, � ∼= 150 TeV
mg̃/q̃ ∼ 0.82 TeV, mg̃/q̃ ∼ 2.0 TeV,

Clean channels 3l + Emiss
T

3l + 1τ2l + 1τ3l
+2τ1l + 3τ2l

C τ̃1, ẽR, μ̃R � ∼= 60 TeV, � ∼= 155 TeV
mg̃/q̃ ∼ 1.3 TeV, mg̃/q̃ ∼ 3.0 TeV,

≥ 4l + Emiss
T 4l + Emiss

T

D Z̃1 ∼ h̃ � ∼= 105 TeV, � ∼= 140 TeV
Z̃1 → hG̃ mg̃/q̃ ∼ 1.5 TeV, mg̃/q̃ ∼ 2.0 TeV,

≥ 3b-jets + Emiss
T ≥ 2b-jets + Emiss

T

E Z̃1 ∼ h̃ � ∼= 120 TeV, � ∼= 140 TeV
Z̃1 → ZG̃ mg̃/q̃ ∼ 1.3 TeV, mg̃/q̃ ∼ 2.0 TeV,

γ γ + Emiss
T 1l + Emiss

T
Increase to 2.2 TeV

via Zγ + Emiss
T

if excellent jet-γ
rejection

is available.

m̃g̃ ∼ 0.35 − 0.4 TeV ∼ 1.6 TeV (mq̃ � mg̃)
Reach in mSUGRA Emiss

T � + Emiss
T∼ 2.2 TeV (mq̃ ∼ mg̃)

� + Emiss
T

∼ 1.4 TeV (mq̃ � mg̃)
Reach in mAMSB Emiss

T∼ 2 TeV (mq̃ ∼ mg̃)
�+�− + Emiss

T
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� The first concerns the reach of these machines for the different sparticles. The

LHC is a broad band machine, where everything possible will be produced, though

cross sections for the production of various sparticles will be very different. At

LCs, all sparticles with non-vanishing SU (2)L × U (1)Y quantum numbers will

be produced with comparable cross sections, and the reach will essentially be

determined by the mass of the lightest visible sparticle. While it would be best

to have a program of SUSY searches that is as model-independent as possible,

it is also interesting to map out the reach of supercollider experiments for var-

ious SUSY models discussed in Chapter 11, and examine this in light of other

constraints on the model parameter space.
� The second issue concerns how we would proceed if new physics is indeed

discovered at the LHC. As discussed above, we would need to establish that the

new physics is indeed softly broken supersymmetry. In this connection, we would

embark upon a program of precision measurements of sparticle masses and other

properties to unravel the mechanism by which sparticles obtain their masses, and

ultimately determine the underlying physics and its associated parameters. We

will postpone our discussion of this to the next section, while initially focussing

upon the question of the SUSY reach.

15.4.1 Reach of the CERN LHC

We have seen that, in order to obtain an accurate representation of SUSY events

for sparticles in the range of masses accessible at the LHC, it is essential to in-

corporate cascade decays. This is difficult to do within the MSSM because of the

large number of free parameters. Instead, we use the various models introduced

in Chapter 11 as a guide to our projections for the reach of the LHC. The other

advantage of this procedure is that, because a large number of sparticles are ex-

pected to be simultaneously produced, contributions from all sparticle reactions to

any particular event topology can be included in our exploration of the reach in that

topology.

mSUGRA model

As we saw in Chapter 12, g̃g̃, g̃q̃, and q̃q̃ production processes are expected to

be the dominant sparticle production mechanisms at the LHC. The cascade decay

signatures will generally be very complex and give rise to events with jets, isolated

leptons, and possibly isolated photons or Z0 bosons (re-constructed via their lep-

tonic decays) together with Emiss
T . Jets from primary decay of the squark or gluino

can be very hard, reflecting the parent sparticle mass. Leptons (as well as other jets)

that originate further down the cascade chain are typically softer than the primary

jets in these events.
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The reach of the CERN LHC in the mSUGRA model has been evaluated by

several groups.10 The event topologies can be classified as before by the number of

identified isolated leptons in the events:

1. Emiss
T channel: an inclusive channel requiring large Emiss

T plus ≥ 2 jets plus any

number of identified leptons,

2. 0� channel: a subset of the Emiss
T channel which in addition vetoes any isolated

leptons,

3. 1� channel: a subset of Emiss
T containing a single isolated lepton,

4. O S channel: a subset of Emiss
T containing two opposite-sign isolated leptons,

5. SS channel: a subset of Emiss
T containing two same-sign isolated leptons,

6. 3� channel: a subset of Emiss
T containing three isolated leptons.

Larger lepton multiplicities can also occur, but at lower rates.

The SUSY reach of the LHC within the framework of the mSUGRA model is

illustrated in Fig. 15.6 in the m0 − m1/2 plane, with A0 = 0, tan β = 30, and μ > 0.

As before, the dark (light) shaded regions are excluded by theoretical (experimental)

constraints. Also shown are contours where mg̃ or mũL
is 2 TeV. In the figure, many

sets of cuts were examined. For each point in the plane, the cuts were chosen to

optimize the signal relative to the background. The region below the various curves

is where LHC experiments should be able to see a signal at the 5σ level with a

minimum of ten signal events in the event topology shown on the contour, assuming

an integrated luminosity of 100 fb−1. The cumulative reach in all the channels is

shown by the solid contour labelled Emiss
T . We see that LHC experiments should be

able to explore m1/2 values up to 1400 (700) GeV for small (very large) values of

m0, corresponding to mg̃ = 3(1.8) TeV. Moreover, if mg̃
<∼ 1.5–2 TeV, there should

be an observable signal in several channels if the observed signal is to be attributed

to SUSY as realized in this framework. The reach results are qualitatively similar

for other values of tan β or the opposite sign of μ.

It is also worth mentioning that the trilepton signal from W̃1 Z̃2 production may

also be observable above backgrounds at the LHC provided m1/2 is not too large.11

For large values of m1/2 the two-body decay Z̃2 → Z̃1h or Z̃2 → Z̃1 Z becomes

accessible and quickly dominates the Z̃2 decay rate unless sleptons are also light

so that Z̃2 → �̃L,R� decays are also accessible. Direct production of sleptons leads

to an observable signal (above W +W − and t t̄ backgrounds) in the �+�− + Emiss
T

channel if sleptons are lighter than 250 GeV (300 GeV if soft jets can be efficiently

vetoed).12

10 H. Baer et al., Phys. Rev. D52, 2746 (1995), Phys. Rev. D53, 6241 (1996) and Phys. Rev. D59, 055014 (1999); S.
Abdullin and F. Charles, Nucl. Phys. B547, 60 (1999); S. Abdullin et al. (CMS Collaboration), hep-ph/9806366
(1998); B. Allanach et al., JHEP 08, 017 (2000); H. Baer et al., JHEP 0306, 054 (2003).

11 H. Baer et al., Phys. Rev. D50, 4508 (1994); I. Iashvili and A. Kharchilava, Nucl. Phys. B526, 153 (1998).
12 H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D49, 3283 (1994); D. Denegri, W. Majerotto and L.

Rurua, Phys. Rev. D58, 095010 (1998).
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Figure 15.6 The 5σ reach of the CERN LHC in the m0 − m1/2 plane of the

mSUGRA model for an integrated luminosity of 100 fb−1. The shaded regions
are excluded by theoretical and experimental constraints discussed in the text. Be-
low each of the labelled contours, there should be an observable signal at the LHC
in the corresponding channel. Reprinted from H. Baer, C. Balázs, A. Belyaev, T.
Krupovnickas and X. Tata, JHEP 06, 054 (2003).

In Fig. 15.7, we illustrate the interplay between various measurements within

a constrained framework, using mSUGRA with the same parameters as in the

previous figure as an example. The dark shaded regions are excluded by theoretical

considerations as shown on the figure, while the light shaded region (labelled LEP2)

is excluded by the chargino constraint from LEP2 experiments. Below the unlabeled

contour starting around m1/2 = 270 GeV, mh < 114 GeV. The jagged circular con-

tours labeled 2 and 3 are contours above which B(B → Xsγ ) > 2(3) × 10−4, the

region favored by experiment. The slanted lines labeled 1, 2, 5, . . . 40 are contours

of the SUSY contribution to aμ, the anomalous magnetic moment of the muon. Be-

tween the dotted/dashed contours along the boundaries of the theoretically excluded

regions, the neutralino relic density agrees with its determination by the WMAP

collaboration, while the corresponding solid line is the contour of �Z̃1
h2 = 1. The
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Figure 15.7 The SUSY reach of the CERN LHC within the mSUGRA model,
together with contours of B(B → Xsγ ), aSUSY

μ , and the neutralino relic density.
In the lighter-shaded lower part of the theoretically excluded wedge region on
the left, the stau mass squared is negative. Reprinted from H. Baer, C. Balázs, A.
Belyaev, T. Krupovnickas and X. Tata, JHEP 06, 054 (2003).

WMAP experiment requires us to lie in the narrow slivers between the theoretically

excluded region, and the dashed line, where neutralinos can annihilate efficiently

either due to co-annihilation with staus (left side WMAP region) or due to a signif-

icant higgsino admixture of the Z̃1 in the HB/FP region at large m0. The contour

labeled Emiss
T shows the cumulative reach of LHC experiments as we have just dis-

cussed. We see that essentially the entire stau co-annihilation region can be probed

at the LHC. The HB/FP region, however, continues indefinitely, and new strategies

may be needed to extend the reach in this region.13 An unambiguous observation of

a deviation from SM expectation of the muon anomalous magnetic moment or of

non-standard flavor-violating decays of B or Bs mesons will preclude nature from

being in the part of the HB/FP region that is beyond the reach of the LHC. If such a

deviation is to be attributed to the mSUGRA realization of SUSY, then there must

be observable signals at the LHC.

13 For very large values of tan β there is another WMAP allowed region where neutralinos can annihilate efficiently
via H and A exchange in the s-channel. Again, LHC experiments can probe most, but not all, of this region.
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GMSB models

The SUSY reach at the LHC within the GMSB framework has also been com-

puted, using the same model lines as for the Tevatron. The results are summarized

in Table 15.2 where the channel via which the reach is obtained is also shown

assuming an integrated luminosity of 10 fb−1.14 We see that the reach is at least as

good as in the mSUGRA framework, but that for model line A (C) the presence of

additional photons (leptons) serves to reduce the background resulting in a signif-

icantly increased reach. We mention that for model line C, LHC experiments will

be able to search for direct production of �̃R pairs if m �̃R

<∼ 280 GeV.

mAMSB model

In the mAMSB model, the LSP is the Z̃1, but it is wino-like, and typically just

∼ 160–200 MeV lighter than the chargino. Charginos which are produced directly

or in cascade decays decay to a soft charged pion plus the escaping Z̃1 so that it is

nearly invisible in the experimental apparatus. Although these charginos typically

fly just a few centimeters before decaying, some may leave a terminating track, or

a track with a kink in the apparatus. Whether these distinctive signatures of SUSY

events (which would have to be triggered by some other means) will be observable

depends on details of the detector.15

It is interesting to explore the LHC reach using the general search strategies for

SUSY. It is expedient to present our results for the reach via various multijet +

multilepton + Emiss
T channels in the m0 − m3/2 plane. Sample results are shown in

Fig. 15.8 for tan β = 35 and μ > 0. In this framework, q̃R mainly decays to the bino-

like Z̃2 (if this decay is kinematically allowed); the subsequent Z̃2 decays give rise

to isolated leptons. In contrast, q̃L decays to Z̃1 or W̃1, and gives jets + Emiss
T . The

situation with cascades is just the opposite of models with gaugino mass unification

where it is q̃L that cascade decays while q̃R mostly decays directly to the LSP. In the

low m0 large m3/2 region, g̃ → t̃1t , which gives rise to leptons from top and stop

decay. The best reach is in the OS dilepton channel where values of mg̃
>∼ 2 TeV can

be probed in 10 fb−1 of data. At high m0, g̃ → qq̄ Z̃1 or qq̄ ′W̃1, and the best reach

14 H. Baer et al., Phys. Rev. D62, 095007 (2000).
15 In a typical collider experiment, it is not possible to record every event because the collision rate is too large

for the data acquisition system to handle. Most of these events are small angle elastic or quasi-elastic collisions
and not of any interest. In order to ensure that potentially interesting events are all recorded without the data
acquisition system being completely swamped, experimentalists set up loose criteria that events must satisfy in
order to be recorded. These criteria, referred to as trigger requirements, could for instance require the presence
of high ET jets, isolated hard leptons or photons, or large amounts of Emiss

T to reduce event rates to manageable
levels. The challenge is to arrive at a decision as to whether or not to record an event in a short time, since
collisions are continually occuring in the apparatus. The development of triggers is a complicated but essential
issue for all collider experiments, but especially so at the hadron colliders where the total cross section is very
large.
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Figure 15.8 The reach of the CERN LHC for mAMSB for tan β = 35, μ > 0, and
10 fb−1 of integrated luminosity. Reprinted with permission from H. Baer, J. K.
Mizukoshi and X. Tata, Phys. Lett. B488, 367 (2000).

occurs in the 0� + jets + Emiss
T channel, where values of mg̃ ∼ 1350 GeV may be

probed with just 10 fb−1 of data.

LHC reach for SUSY Higgs bosons

The experiments at LEP2 have already placed stringent bounds on Higgs boson

masses in the MSSM, and Tevatron experiments may well find evidence for the

light scalar h before LHC turns on. Nevertheless, it will be an important task for the

CMS and ATLAS experiments to establish the Higgs boson content of the MSSM,

and to determine as much as possible about their properties.

The Higgs boson search is complicated and will have to be performed using

many channels. For h produced in the s-channel via gg fusion, SM backgrounds

preclude the possibility of seeing a signal from its dominant decays h → bb̄ or

h → τ+τ−; the rare decay

pp → h X ; h → γ γ

appears to be viable, but will require several years of LHC operation to establish a

signal. Excellent electromagnetic calorimetry is essential to see the h → γ γ mass

bump above the enormous qq̄, gg → γ γ continuum background. This will yield an

accurate determination of mh . If squarks and gluinos are not too heavy, the SUSY
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event sample at the LHC may also include a small number of events with clearly

identified h → γ γ decays, thus establishing h production in SUSY cascade decay

events.

For moderate to large values of tan β, s-channel H and A production may be

visible via the decay modes H, A → μμ̄, τ τ̄ . For smaller values of tan β, H, A →
t t̄ , H → Z Z (∗) → 4�, A → Zh → �+�−bb̄, and H → hh → bb̄γ γ may also be

observable.

Higgs bosons can also be produced at large rates in association with heavy quarks.

The reactions

pp → t t̄h, bb̄h, bb̄A, and bb̄H

may all be visible, where the Higgs bosons generally decay to bb̄ or γ γ final

states. Higgs bosons can also be produced in association with vector bosons, and

their detection via pp → W h → �ν�γ γ is possible in some part of the plane.

The charged Higgs boson may be visible as well at LHC if it can be produced in

t → bH+ decays.

The results of many detailed studies of the capability of LHC experiments are

summarized in Fig. 15.9, where it is assumed that Higgs bosons cannot decay to

sparticles. It appears that over essentially the entire m A − tan β parameter space,

LHC experiments should be able to discover at least one Higgs boson. The search for

SUSY Higgs bosons in many of these channels is difficult, and very large integrated

luminosities and excellent detector performance will be necessary. Even so, a small

region around m A ∼ 150 GeV and tan β ∼ 5−10 seems difficult, and requires

further improvement in the resolution of bb̄ dijet invariant masses. Fortunately,

Higgs bosons in this “hole” should be easy to study at a 500 GeV e+e− collider.

It is also gratifying to see that over significant portions of the plane there is an

observable signal from more than one Higgs boson: this may serve to distinguish

the MSSM Higgs sector from that of the SM.

If SUSY particles are accessible in LHC experiments, it is quite possible that the

lightest Higgs scalar h will be discovered first in the SUSY particle event sample

as a h → bb̄ mass bump. The parameter space “hole” mentioned above might be

explored in this way. Moreover, if some sparticles are light, then Higgs bosons will

have significant branching fractions for decays to SUSY particles. Higgs boson

decays to SUSY particles will in general diminish the SM decay modes, and may

make the search modes listed in Fig. 15.9 more difficult. Decays of neutral Higgs

bosons to Z̃1 Z̃1 states would yield “invisible” Higgs bosons. It is also possible that

Higgs boson decays to SUSY particles will open up new, sometimes spectacular,

search channels. As an example, H may decay via H → Z̃2 Z̃2 → ��̄�′�̄′ + Emiss
T .

The 4� final state will have an invariant mass ≤ (m H − 2m Z̃1
), and can be visible

over restricted regions of MSSM parameter space.
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Figure 15.9 The reach of the CERN LHC for SUSY Higgs bosons in the case
of heavy sparticles. The signal is detectable on the side of the contour where
the shading appears. This figure is reprinted from the ATLAS Technical Design
Report.

15.4.2 SUSY reach of e+e− colliders

Since mh
<∼ 130–135 GeV in the MSSM, an e+e− collider operating at

√
s ≥

500 GeV is sure to access the lightest SUSY Higgs scalar h. If the couplings

of h are nearly those of the SM Higgs boson (as it is over much of mSUGRA

parameter space) the cross section for the “Higgstrahlung” process

e+e− → Zh (15.8a)

is large and offers a good channel for h detection above SM backgrounds. The Z Zh
coupling can become rather small if m A is light; in this case, the Zh A coupling is

necessarily large so that h would be produced via

e+e− → Ah, (15.8b)
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and would also not escape detection. Indeed, not seeing any signal for h would

exclude the MSSM as the low energy theory valid up to the GUT scale. Over parts

of the parameter space, H and H± may also be accessible via the processes

e+e− → Z H, or H+ H−. (15.8c)

Unequivocal identification of Higgs bosons produced via either (15.8b) or (15.8c)

will signal a non-minimal Higgs boson sector, though not necessarily supersym-

metry.

The reach of a LC for visibly decaying superpartners is limited mainly by the

beam energy. For the mSUGRA model, candidates for the lightest of these visible

supersymmetric particles (LVSP) include the W̃1 or Z̃2, one of the sleptons (usually

the lightest stau τ̃1) and sometimes the lightest of the third generation squarks.

Apart from the Z̃2, whose production can be strongly suppressed, the other LVSP

candidates are expected to be produced with cross sections (aside from kinematic

suppression) typical of electroweak processes: ∼(10 − 100) fb/
√

s, with
√

s in TeV

units. Since sparticle production is readily distinguishable from SM processes, it

should be possible to detect these at LCs with an integrated luminosity of several

tens of fb−1.

If
√

s > 2mW̃1
, then chargino pair production ought to be visible above SM

backgrounds. The background would consist mainly of W +W − production. In

� + 2-jets or 4-jet events, this background can be rejected by requiring cuts on

missing mass 
m defined as 
m =
√


E2 − p/2. For SUSY, 
m > 2m Z̃1
, while for W W

background, 
m = 0 for perfect energy and momentum measurements. Another

discriminator in � + 2-jet events is the distribution in E j j , the energy of all jets:

for W W production, E j j = EW = √
s/2, while for W̃ +

1 W̃ −
1 production with three-

body W̃ ±
1 decays, there is a continuum of values. In the HB/FP region where

|μ| <∼ |M2|, the chargino and neutralino become close in mass and the visible energy

is small. In this case, specialized cuts are needed to select the signal over the various

SM backgrounds that, in this case, include 2 → 3 and 2 → 4 processes.16

If instead τ̃1 is the LVSP, or several sleptons are co-LVSPs, then the signature is

e+e− → �̃+�̃− → �+�−+ 
E . (15.9)

The presence of acoplanar OS dilepton pairs in excess of expectations from W W and

Z Z production would signal the production of sleptons. The scalar pair production

reactions are suppressed by the usual β3 factor near threshold. In addition, in

mSUGRA it is possible to have nearly degenerate �̃ and Z̃1, in which case the

visible energy from slepton decay will be small, and detection efficiency will be

reduced.

16 H. Baer et al., JHEP 02, 007 (2004).
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Figure 15.10 The SUSY reach of an e+e− LC with
√

s = 500 and 1000 GeV
within the mSUGRA model with A0 = 0, tan β = 30, and μ > 0, assuming an
integrated luminosity of 100 fb−1. The darkest (lightest) shaded regions are ex-
cluded by theoretical (experimental) constraints. Below the gray arc in the bottom
left corner, mh < 114 GeV. The medium gray shaded regions of the plane run
along the boundary of the theoretically excluded wedge at small values of m0, and
in the HB/FP region close to the boundary of the theoretically excluded region on
the right: in these regions, the predicted neutralino relic density is consistent with
the results of the WMAP collaboration. Finally, contours showing the reaches
of Fermilab Tevatron upgrades assuming an integrated luminosity of 25 fb−1,
and the CERN LHC with 100 fb−1 of integrated luminosity, are also shown for
comparison. Reprinted from H. Baer, A. Belyaev, T. Krupovnickas and X. Tata,
JHEP 02, 007 (2004).

Our projection for the reach of an e+e− LC with
√

s = 500 or 1000 GeV is shown

in Fig. 15.10, assuming an integrated luminosity of 100 fb−1. We work within the

mSUGRA framework and, as in Fig. 15.6, show the reach in the m0 − m1/2 plane,

and fix A0 = 0, tan β = 30 and μ > 0. The darkest region is excluded by theoretical

constraints that we have already discussed, while the medium gray region at low

values of m1/2 is excluded by experimental constraints from LEP experiments. The

contours labeled “LC 500” and “LC 1000” are the envelope of the regions below

which experiments at a LC operating at
√

s = 500 or 1000 GeV should be able



426 The search for supersymmetry at colliders

to detect a signal for sparticle production above SM backgrounds. These contours

are a composite of the contours below which slepton pair production (the falling

part of the contour at small m0) or chargino pair production (the flat portion of the

contour, rising to large values of m1/2 close to the excluded region on the right)

should be detectable. The kinematic reach of a LC for τ̃1 ¯̃τ1 pairs is denoted by the

dashed contours. For very large values of m0 in the HB/FP region, the chargino is

light and higgsino-like and becomes increasingly mass degenerate with Z̃1. In this

case, the visible energy from W̃ +
1 W̃ −

1 production followed by W̃1 → Z̃1 f f̄ ′
decay

becomes very small, and the signal must be extracted using a specialized analysis.

Finally, the bulge in the contours near m0 ∼ 300–1000 GeV shows the additional

region where the signal from

e+e− → Z̃1 + Z̃2 → Z̃1 + Z̃1h → Z̃1 + Z̃1bb̄

production is observable. Also shown for comparison are contours corresponding

to the reach of Tevatron upgrades and the reach of the LHC, assuming an integrated

luminosity of 100 fb−1, taken from Fig. 15.6. The lightest gray regions are where

the cosmological neutralino relic density �Z̃1
h2 < 0.129 as required by its deter-

mination by the WMAP collaboration. As mentioned in Section 15.4.1, the HB/FP

region is one of the regions of the mSUGRA parameter space consistent with the

WMAP relic density determination. We see from Fig. 15.10 that experiments at

linear colliders will be able to probe beyond the LHC reach in this favored part of

mSUGRA parameter space.

In GMSB models with a low SUSY breaking scale, the gravitino is the LSP.

Generally speaking, the presence of additional photons or leptons from NLSP

decays should make the detection of any sparticle signal easier. Moreover, if Z̃1 is

the NLSP, then

e+e− → Z̃1 Z̃1 → γ γ + Emiss
T (15.10)

should also be observable as long as Z̃1 decays inside the detector, though in the

case of delayed decays this would require the identification of photons that are very

displaced from the primary vertex. As long as this is possible, the reach should be

close to the kinematic limit since t-channel neutralino production is not particularly

suppressed. If instead a slepton is the NLSP, and decays promptly via �̃ → �G̃, then

e+e− → �̃+�̃− → �+�− + Emiss
T (15.11)

should have a similar reach as for the case where the slepton is the LVSP in the

mSUGRA framework. If the slepton decay is delayed, the reaction can still be

detected via searches for tracks with kinks or from searches for quasi-stable slow

moving massive exotics that may reveal themselves through highly ionizing tracks.
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In the AMSB model, the SU (2) gaugino-like chargino is the LVSP. However,

signals from chargino pair production will be difficult to detect because the tiny

W̃1 − Z̃1 mass gap implies that the visible decay products of the chargino carry very

little energy. In this case, the process e+e− → W̃ +
1 W̃ −

1 γ offers the best hope for

detection. If W̃1 dominantly decays via W̃1 → Z̃1π , and the pion (whose energy is

several hundred MeV) is detectable, its presence serves to reduce background from

e+e− → γ νν̄ events in the SM. The background from e+e− → e+e−γ events can

be controlled as long as there is some instrumentation in the beam direction.

15.5 Beyond SUSY discovery

If new physics is discovered at the LHC in one or more of the several channels

that we have discussed above, it will mark the start of the program to establish

that it is softly broken SUSY (or something else) and to determine the mechanism

by which SUSY is broken. The discovery of several superpartners (with expected

spins and gauge quantum numbers), either via their direct production or more

likely via a reconstruction of cascade decay chains at the LHC, will make a strong

case for SUSY. That the new physics is SUSY can be conclusively established

by experiments showing that couplings of superpartners are related to those of

their SM partners: this should be possible via precision measurements that are

possible at LCs. The determination of the sparticle masses as well as cross sections

and branching ratios (these provide information about their couplings) will be

the first step to elucidating the mechanism of SUSY breaking, since these will

provide information about the underlying SSB parameters. Such measurements,

which should be possible at the LHC as well as LCs, will also serve to rule in or

rule out various models that we have considered in Chapter 11, and in the former

case also provide information about the underlying parameters.

15.5.1 Precision SUSY measurements at the LHC

Once a sufficient number of SUSY scattering events is accumulated, the task will

turn to scrutinization of the events to try to make precision measurements of spar-

ticle masses, branching fractions, spin and other quantum numbers, marking the

start of sparticle spectroscopy. As discussed at the start of Section 12.2, the environ-

ment of hadron collisions poses formidable difficulties for precision measurements.

Nevertheless, experience at the CERN Sp p̄S and Fermilab Tevatron, where MW

has been determined very precisely in spite of the undetected neutrino in these

events, has taught us that precision measurements are indeed possible. We should,

therefore, maintain a positive outlook, and critically examine how well SUSY par-

ticle properties can be determined at the LHC.
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Figure 15.11 Distribution in Meff for SUSY events in the mSUGRA model with
m0 = 100 GeV, m1/2 = 300 GeV, tan β = 2.1, A0 = 300 GeV, and μ > 0 (open
circles) and for the SM background (histogram) from t t̄ production (solid cir-
cles), W + jets (upright triangles), Z + jets (upside down triangles), and QCD jets
(squares). Reprinted from the ATLAS Technical Design Report.

Since gluino and squark pair production cross sections are expected to be the

dominant SUSY cross sections at the LHC, a first estimate of the SUSY particle

mass scale will be obtained from the magnitudes of the momenta of jets and Emiss
T

in these events: heavier sparticles lead to harder jets and Emiss
T . In Fig. 15.11, we

show the distribution of the effective mass

Meff = Emiss
T + ET(jet 1) + ET(jet 2) + ET(jet 3) + ET(jet 4) (15.12)

for SUSY events in the mSUGRA model with m0 = 100 GeV, m1/2 = 300 GeV,

tan β = 2.1, A0 = 300 GeV, and μ > 0, for which mg̃ � 767 GeV and mq̃ �
680 GeV.17 Also shown is the same distribution for SM events. Clearly, for large val-

ues of Meff, the signal emerges from the falling background distribution. It has been

shown that the peak of the SUSY Meff distribution correlates surprisingly well with

MSUSY = min(mg̃, mq̃), and yields a good first guess as to the SUSY particle mass

scale.

17 It is unimportant for the present discussion that this model, which was examined for ATLAS feasibility studies,
is now excluded both by the bound on mh as well as by WMAP constraints.
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Detailed determination of sparticle masses is complicated by the fact that every

event has two undetected particles. Even so, as discussed below, the determination

of kinematic “mass edges” constrains particular combinations of masses in SUSY

events. If enough such kinematic “end points” can be measured, it may be possible

to determine individual sparticle masses. Frequently though, it may be possible to

directly determine only mass differences.

The simplest example of a measurable mass edge in SUSY events is the upper

limit on the invariant mass of dileptons from Z̃2 → ��̄Z̃1 decays:

m(��̄) ≤ m Z̃2
− m Z̃1

(15.13a)

regardless of whether the Z̃2 is produced directly or in cascade decays. Even al-

lowing for experimental resolution, the end point of this distribution can be well

determined as long as the leptonic branching fraction for Z̃2 decays is not strongly

suppressed. The end point (15.13a) is attained when the two leptons recoil against

one another with Z̃1 stationary in the rest frame of Z̃2. This end point is not kine-

matically accessible if Z̃2 → �̃�̄ → �Z̃1�̄ with the intermediate slepton on its mass

shell because kinematic constraints do not allow Z̃1 to be at rest. In this case, ex-

cept for slepton width effects and tiny contributions from off-shell sleptons, the

kinematic end point shifts to

m(��̄) < m Z̃2

√
√
√
√1 − m2

�̃

m2
Z̃2

√
√
√
√1 −

m2
Z̃1

m2
�̃

≤ m Z̃2
− m Z̃1

. (15.13b)

Once the overall SUSY mass scale is established using the Meff variable, then

attention can be focussed on reconstructing particular decay chains.18 Although

many studies have been performed to examine how this might be done, we use the

mSUGRA model with parameters in Fig. 15.11 as an illustration of how one might

proceed. The decay Z̃2 → ��̄Z̃1 just discussed serves as an important starting point.

The distribution of opposite sign, same flavor dilepton masses in events with jets

plus Emiss
T events is shown in Fig. 15.12. Some care must be exercised in extracting

information from this measured end point because one does not a priori know the

decay pattern of Z̃2, though the large number of dileptons may hint at its decay

via a real slepton. Indeed, we see a distinct mass edge above SM backgrounds and

SUSY contamination close to its expected location, m(��̄)exp = 108.6 GeV. The

large event rate implies that this dilepton mass edge can be measured to a precision

of well below a GeV.

18 These studies were pioneered by I. Hinchliffe et al., Phys. Rev. D55, 5520 (1997) and Phys. Rev. D60, 095002
(1999); H. Bachacou, I. Hinchliffe, and F. Paige, Phys. Rev. D62, 015009 (2000); Atlas Collaboration, Atlas
Physics and Detector Performance Technical Design Report, LHCC 99-14/15.
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background (dashes) for the mSUGRA point with the same model parameters as
in Fig. 15.11. Reprinted from the ATLAS Technical Design Report.

The next step in reconstructing the cascade decay

q̃L → q Z̃2 → q �̃±�∓ → q�±�∓ Z̃1, (15.14)

which has a large branching fraction, is to combine the dilepton invariant mass with

one of the high pT jets in the event. Typically there are two or more high pT jets

in each SUSY event. One may construct the m(��̄q) invariant mass for each of the

highest pT jets, and plot the smaller of the two combinations. This distribution is

shown in Fig. 15.13, which is plotted for the lepton combinations e+e− + μ+μ− −
e±μ∓ to statistically remove the contamination from squark decays to chargino

pairs. Even for the assumed decay chain, the formula for the kinematic end point

depends on the various masses (see exercise below), but an a-posteriori justification

of any choice is possible if sparticle masses can be extracted from the data. For our

choice of masses, assuming that the combination with the lower mass is the one

from the decay of a single squark, we have

m(��̄q) < mq̃

√
√
√
√1 −

m2
Z̃2

m2
q̃

√
√
√
√1 −

m2
Z̃1

m2
Z̃2

= 552.4 GeV. (15.15)
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Figure 15.13 Distribution in m(��̄q) for the smaller of the two �+�−q invariant
mass combinations for the mSUGRA model of the previous figure. The contam-
ination from squark decays to charginos is statistically removed by plotting the
distribution for e+e− + μ+μ− pairs minus the same for e±μ∓ pairs. Reprinted
from the ATLAS Technical Design Report.

Exercise Consider a chain of two-body decays, A → bB → bcC → bcd D, where
b, c, d are massless particles. Show that the kinematic end point of the invariant
mass m(bcd) is given by,

m(bcd)2 ≤ max

[
(m2

A − m2
B)(m2

B − m2
C )

m2
B

,
(m2

A − m2
C )(m2

C − m2
D)

m2
C

,

(m2
Am2

C − m2
Bm2

D)(m2
B − m2

C )

m2
Bm2

C

]

,

except for mass ranges where the absolute end point

m(bcd) = m A − m D

can be saturated.
This is in contrast to the case of the three-body decay of A → bB → bcC where

the saturation of the end point m A − mC is possible only if m2
B = m AmC .
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To further facilitate pairing of jets with dileptons consistent with the decay chain

(15.14), we focus on events with one �+�−q invariant mass pairing above 600 GeV

and the other below 600 GeV. There are two possible pairings of the jet with the

leptons. If we define �1 to be the lepton that emerges promptly from decay of Z̃2,

and �2 the one from the decay of the slepton, we have

m(�1q) < mq̃

√
√
√
√1 −

m2
Z̃2

m2
q̃

√
√
√
√1 − m2

�̃

m2
Z̃2

= 479.3 GeV, (15.16a)

and

m(�2q) < mq̃

√
√
√
√1 −

m2
Z̃2

m2
q̃

√
√
√
√1 −

m2
Z̃1

m2
�̃

= 407.4 GeV. (15.16b)

The problem, of course, is even if the jet can be perfectly associated with the

leptons, there is an ambiguity about which of the two leptons in an event is �1.

The distribution of the larger of the two m(�q) values for each event (using the jet

which gives the lowest m(�+�−q) value) is plotted in Fig. 15.14. For our case, this

is bounded by (15.16a). The upper edge is not very sharp, but fits to the endpoint

come within a few percent of its value. The other mass edge (15.16b) is buried

under this distribution.

The three mass edges in the figures constrain, but do not determine, the four

masses. To pin these down, we need a fourth mass edge. Unfortunately, except for

effects of cuts, the lower edges of these distributions start at m = 0 and so provide

no information. However, by focussing on events with a minimum value of m(�1�2),

we preclude the configuration with m(q�1�2) = 0, and the m(q�1�2) distribution

starts at a mass value depending on our choice of m(�1�2)min. The corresponding

m(��q) distribution for events with

m(�+�−) > m(�+�−)max/
√

2

is shown in Fig. 15.15, where the larger of the two m(�+�−q) values is plotted.

A lower edge is clearly visible. The expression for this lower edge in terms of

the sparticle masses and m(�+�−)min is complicated and will not be reproduced

here. For the present case, the theoretical edge is expected to be at 271.8 GeV, and

appears to be smeared to lower values, perhaps because of energy lost to QCD

radiation. The main point of this discussion is that at least for the case of a chain of

two-body decays considered here, it is possible to extract the four mass values in a

model-independent manner. Explicit fits to these quantities give sparticle masses to
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Figure 15.14 Distribution in m(�q) for the smaller of the two �+�−q invariant mass
combinations for the mSUGRA point under study. Once again, the contamination
from squark decays to chargino are removed by using the flavor weighted com-
bination e+e− + μ+μ− − e±μ∓. Reprinted from the ATLAS Technical Design
Report.

3–12%.19 It is not surprising that m Z̃1
has the largest error, since it is much smaller

than the squark mass, and enters only (quadratically) via kinematics.

For the mSUGRA point used in the above example, the decay Z̃2 → h Z̃1 occurs

with a branching fraction of about 50%. We would thus expect that a data sample

consisting mainly of SUSY events would contain a significant fraction of events

that contain a high pT Higgs boson h from cascade decays. Since h mostly decays

via h → bb̄, such events would contain at least two b-quark jets whose presence is

signaled by displaced vertices from B-meson decay, and which have a bump in their

invariant mass distribution around the value of mh; this is illustrated in Fig. 15.16.

In general, if h is produced at significant rates in SUSY cascade decay events, it may

well first be discovered as a bb̄ mass bump in the SUSY event sample! Detection

of the h → γ γ mode, which may take several years of LHC operation to establish,

19 If all four sparticle masses can indeed be fit, the ambiguities in the formulae for the end points that we had
referred to earlier would automatically be resolved.
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Figure 15.15 Distribution in m(�+�−q) for the larger of the two �+�−q invariant
mass combinations for the mSUGRA model parameters in Fig. 15.11, but with

the additional requirement that m(�+�−) > m(�+�−)max/
√

2. Reprinted from the
ATLAS Technical Design Report.

is nonetheless very important because the location of the peak in the two-photon

distribution yields a very accurate measurement of mh .

These events may also allow the reconstruction of the decay chain

q̃L → q Z̃2 → qh Z̃1 → qbb̄Z̃1.

Since gluinos are heavier than squarks, q̃L comes from either direct production, or

from the decay of a gluino. A relatively clean sample may be obtained by focussing

on events with just two hard jets (which most likely come from squark decay) and

a pair of b-jets. The m(bb̄ j) mass distribution from this chain must have both upper

and lower end points that can be fixed in terms of mq̃L
, m Z̃2

, m Z̃1
, and mh .

Exercise Show that the end points of the bb̄ j mass distribution from the cascade
decay chain q̃L → q Z̃2 → qh Z̃1 → qbb̄Z̃1 are given by,

m2(bb̄ j)max
min = m2

q̃ + m2
Z̃1

− 2Eq̃ EZ̃1
± 2pq̃ pZ̃1

,
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Figure 15.16 Distribution in m(bb̄) for signal (solid) and SM (dots) and SUSY
background (dashes) for the mSUGRA model with parameters as in Fig. 15.11, as-
suming an integrated luminosity of 30 fb−1. Reprinted from the ATLAS Technical
Design Report.

where

Eq̃ =
m2

q̃ + m2
Z̃2

2m Z̃2

and EZ̃1
=

m2
Z̃2

+ m2
Z̃1

− m2
h

2m Z̃2

are the energies of the squark and Z̃1 in the rest frame of Z̃2, pq̃ =
√

E2
q̃ − m2

q̃ , and

pZ̃1
=

√

E2
Z̃1

− m2
Z̃1

.

Show that the ideal m(bb̄ j) spectrum for the mSUGRA model that we have
been examining (where mq̃ = 688 GeV, m Z̃2

= 233 GeV, m Z̃1
= 122 GeV, and

mh = 93 GeV) extends from 338 GeV to 524 GeV. Compare this with the m(bb̄ j)

distributions in the ATLAS Technical Design Report, where effects of detector reso-
lution and jet misidentification have been included. Although the distributions are
smeared particularly at the lower end point, it may be possible to make corrections
to compensate energy losses in b-jets due to escaping neutrinos or losses outside
the cone once LHC data are available. Moreover, a more thorough analysis may
better isolate events with Higgs bosons.
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Once sparticle mass spectra have been extracted from the various reconstructed

mass edges, it is natural to check whether these are consistent with any of the

models that we have considered in Chapter 11. If a good fit is obtained, it would be

possible to extract the underlying parameters. Indeed, for the model that we have

been examining, it has been claimed in the ATLAS Technical Design Report that

m0, m1/2, and tan β can be extracted with a precision of 2–5% with an integrated

luminosity of just 30 fb−1.

Our discussion of mass measurements is only to give the reader a flavor of what

might be possible, and is not intended to be either comprehensive or complete.

In fact, examination of the prospects for precision measurements at the LHC has

only recently begun, and much work remains to be done in this direction. Here, we

highlight a few more interesting results, and refer the reader to the literature for

more details.

� We saw how it might be possible to check for consistency of the data with the

mSUGRA model, and to extract some of the underlying parameters. It may be

that the universality assumption is violated. It would be possible to distinguish

some classes of models with non-universal SSB parameters from mSUGRA.
� If tan β is large so that decays of charginos and neutralinos to tau leptons become

dominant, it may still be possible to reconstruct various mass edges, though with

somewhat degraded precision.
� In GMSB models with prompt decay of a bino-like NLSP, the decay chain

Z̃2 → �̃±�∓ → �+�− Z̃1 → �+�−γ G̃ has the same number of steps as the decay

chain from q̃L decays for the mSUGRA case discussed above, and so can be

similarly analyzed. An important difference is that at least for the case study in

the ATLAS Technical Design Report, both the m(�1γ ) as well as the m(�2γ )

edges can be clearly distinguished in the m(�γ ) distribution. The invariant mass

edges of �+�−, �1γ , �2γ , and �+�−γ distributions are sufficient to determine

m Z̃2
, m �̃, and m Z̃1

to high accuracy. Squark and gluino mass reconstruction is also

possible. These measurements allow determination of some of the underlying

model parameters: � can be determined at the couple of percent level, and, for

the case examined, even the messenger scale can be extracted within ±40%. If

instead, the Z̃1 decay is long lived and decays outside the detector, the analysis

will be similar to those described above for the mSUGRA model.
� The intermediate possibility that the Z̃1 NLSP decays with a decay length of 10 cm

to 20 m allows other interesting measurements. If the photon from Z̃1 converts

to an electron pair, its momentum and point of origin can be well determined,

and reconstruction of the entire event appears to be possible.20 Of course, it is

only in a fraction of events that the photon converts. These authors have claimed

20 See K. Kawagoe, T. Kobayashi, M. Nojiri and A. Ochi, Phys. Rev. D69, 035003 (2004).
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that reconstruction is also possible even in events where the photon does not

convert: the degradation of the precision is partially compensated by the larger

number of these events. Finally, in such scenarios, the lifetime of the NLSP can be

determined to within a few percent. This is a very important measurement because

the NLSP lifetime is simply related to the fundamental SUSY breaking scale.
� The GMSB case with a slepton co-NLSP has also been examined in the

ATLAS Technical Design Report.21 If �̃R is quasi-stable and has a distinct track,

neutralinos decaying via Z̃i → ��̃R show up as clear mass peaks in appropriate

distributions. The decays �̃L → �Z̃1 can be used to reconstruct m �̃L
. For the case

of prompt NLSP decays �̃R → �G̃, it has been shown that a variety of mass

edges involving dileptons and jets can be reconstructed, giving good fits to model

parameters. Once again, the underlying model parameters can be extracted.

The precision that can be attained is significantly better if the slepton NLSP is

quasi-stable. In this case, a determination of the fundamental SUSY breaking

scale (via the slepton lifetime) with a precision of tens of percent is possible if

the slepton decay length is between ∼0.5 m and 1 km.

15.5.2 Precision measurements at an LC

If the discovery of new physics is established, the next step will be to figure out

what it is. Taking this new physics to be supersymmetry, this may come about

by the discovery of several superpartners. At the LHC, the discovery of several

superpartners might occur if signals for new physics in many different channels can

be interpreted as different cascade decay chains from superparticle pair production,

or via the identification of several “kinematic edges” in appropriate distributions

as we have just discussed. Logically, of course, such an observation would only

establish the discovery of several new particles. The magnitude of the signal cross

sections would tell us whether or not the new particles exhibit strong interactions,

and maybe even indicate some of their other gauge quantum numbers.

If superpartners are accessible at linear colliders, the cleanliness of the initial and

final states frequently allows their properties to be straightforwardly determined.22

Since SUSY predicts the existence of superpartners with spins differing by one half,

we will first outline how the spin of any new particle may be determined. We will

then discuss how sparticle masses may be determined, since these encode the in-

formation about the all-important (and as yet completely unknown) mechanism by

21 See also S. Ambrosanio et al., JHEP 01, 014 (2001) and hep-ph/0012192 (2000).
22 Studies of the capabilities of linear colliders for SUSY measurements were pioneered by T. Tsukamoto et al.,

Phys. Rev. D51, 3153 (1995). H. Baer et al., Phys. Rev. D54, 6735 (1996) included the effects of cascade decays
in the analysis of SUSY mass measurements, and M. Nojiri et al., Phys. Rev. D54, 6756 (1996) discussed the
determination of the properties of third generation sleptons.
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which superpartners of SM particles obtain their masses: within specific models,

information about the sparticle spectrum may allow us to infer some of the under-

lying model parameters. If the Higgs bosons A, H or H± are also kinematically

accessible, we will see that LC experiments will allow further tests of the MSSM

framework, and may also yield further information about underlying parameters

that may be more difficult to get at otherwise. However, to unambiguously establish

(in a model-independent manner) that any new physics is softly broken supersym-

metry, we have to show that the dimensionless couplings of the new particles are

(aside from radiative corrections) equal to the corresponding SM couplings. We

will illustrate the extent to which such a determination is possible in experiments

at an e+e− LC.

Spin determination

If sparticle production dominantly occurs via the exchange of vector bosons in the

s-channel, it is easy to see from Appendix A.2 that the sparticle angular distribution

is given by

sin2 θ

for spin 0 particles, and by

E2(1 + cos2 θ ) + m2 sin2 θ

for equal mass spin 1
2

particles. If the sparticles are produced with a sufficient boost,

the angular distribution of their daughters will be strongly correlated with that of the

parent sparticles; the differences between the angular distributions should suffice to

readily distinguish between the spin zero and spin 1
2

cases. An integrated luminosity

of several tens of fb−1 should suffice to establish the spin 0 nature of smuons at a

500 GeV LC.

We mention in passing that angular distributions may also contain dynami-

cal information. For instance, in e+e− → ẽL(R)ẽL(R) processes, selectrons (anti-

selectrons) will preferentially be produced along the electron (positron) beam di-

rection if t-channel neutralino exchanges are important, resulting in an angular

asymmetry in the distribution of the daughter electron.

Exercise Consider the reaction e+e− → μ̃R ¯̃μR → μ+μ− Z̃1 Z̃1 at a LC, where
μ̃R → μZ̃1. We will see in the next subsection that it is possible to extract μ̃R and Z̃1

masses from this process. Using the fact that the smuon is a narrow state, show that
it is then possible to completely reconstruct (up to a quadratic ambiguity) the smuon
momenta from the observable momenta of the final state muons and the missing
three-momentum vector, even though each event contains two escaping neutralinos.
In this sense, the angular distribution of smuons can be experimentally constructed.
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Mass determination

If sparticles are discovered, determination of their masses will be one of the highest

priorities. Measurements at the LHC will, as we have seen, provide some infor-

mation but at LCs it will be possible to have a systematic program for sparticle

spectroscopy. In the approach, initiated by the Japanese Linear Collider group, the

idea is to exploit the kinematics of the decays to infer the masses. This is not straight-

forward since every SUSY event contains two LSPs that escape detection so that

a reconstruction of “mass bumps” is not possible.23 For the production of spinless

particles p1 and p2 via e+e− → p1 + p2, followed by the decay p2 → p3 + p4, it

is straightforward to check that the energy spectrum of the particle p3 is flat and

kinematically restricted to be between

γ (E∗
3 − βp∗

3) ≤ E3 ≤ γ (E∗
3 + βp∗

3), (15.17)

where E∗
3 = (m2

2 + m2
3 − m2

4)/2m2, p∗
3 =

√

E∗2
3 − m2

3, γ = E2/m2,

β =
√

1 − 1/γ 2, and E2 = (s + m2
2 − m2

1)/2
√

s, up to corrections from en-

ergy mis-measurements, particle losses and bremsstrahlung and beamstrahlung

effects.

These considerations can be directly applied to slepton pair production, since

sleptons decay via two-body modes. In the case that the sleptons can only decay

via �̃ → �Z̃1, the end points of the energy distribution of the final state lepton

depend only on the values of m �̃ and m Z̃1
via kinematics. Since sharp end points

can be determined rather precisely, it is possible to infer the slepton and neutralino

masses.

To illustrate this, we show the muon energy distribution from e+e− → μ̃R ¯̃μR →
μ+μ− Z̃1 Z̃1 production in Fig. 15.17a, which is taken from the simulation by

Tsukamoto et al. In this study, the right-handed charged slepton is the NLSP with

m �̃R
= 141.9 GeV, and decays to the neutralino which has a mass m Z̃1

= 117.8 GeV.

Charginos have a mass mW̃1
= 219.3 GeV and so cannot be produced at the assumed

center of mass energy of 350 GeV. By choosing the electron beam to be mainly

right-handed, the dominant W W background to the acolinear muon pair signal

is greatly diminished, while the right-slepton pair production cross section is en-

hanced. The data points correspond to a Monte Carlo expectation for an integrated

luminosity of just 20 fb−1, while the solid curve is the “best fit” to these data.

The corresponding error contours are shown in 15.17b. We see that mμ̃R
and m Z̃1

can both be determined to about 1%. These sparticle masses serve as inputs for

determining the smuon spin, as discussed above. In addition, by varying the beam

23 It may be possible to reconstruct mass bumps in R-parity violating scenarios, depending on how the LSP
decays.
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Figure 15.17 (a) The energy distribution of final state muons from e+e− →
μ̃+

R μ̃−
R → μ+μ− Z̃1 Z̃1 at

√
s = 350 GeV with PL(e−) = −0.9, within the

mSUGRA framework with m0 = 70 GeV, M2 = 250 GeV, μ = 400 GeV, A0 = 0,
and tan β = 2. The data points are from Monte Carlo while the smooth curve is
from a fit. In (b) are shown error contours from a two-parameter fit to mμ̃R

and
m Z̃1

. Reprinted with permission from T. Tsukamoto, K. Fujii, H. Murayama, M.
Yamaguchi and Y. Okada, Phys. Rev. D51, 3153 (1995), copyright (1995) by the
American Physical Society.

polarization and comparing to the cross section, the smuon weak isospin and hy-

percharge can be extracted, verifying that it is the right-superpartner of the muon.

The μ̃L mass and other quantum numbers should be measurable in a similar manner

once threshold is passed for μ̃L ¯̃μL production.

The ẽR mass can be similarly measured to even better precision since it has a

larger cross section because of t-channel neutralino exchange contributions whose

presence, as we have noted, will also be reflected in the angular distribution. For

selectrons, ẽR ¯̃eL, ¯̃eRẽL, and ẽL ¯̃eL may also be accessible, each with unique energy

edges in the electron or positron energy distributions. Variable beam polarization

will be a key tool in discriminating the different reactions. If we assume that the LSP

is dominantly a hypercharge gaugino and that gaugino masses satisfy the unification

condition, it should be possible to roughly project the chargino threshold even before

charginos are discovered.

Although Tsukamoto et al. had confined their analysis to cases where sparticles

directly decay to the LSP, it was shown shortly after that cascade decays do not

degrade the precision with which sparticle masses can be determined.24 On the con-

trary, these decays provide new opportunities: for instance, if the decay ν̃e → eW̃1

has a significant branching ratio, a determination of the end points of the electron

24 H. Baer et al., Phys. Rev. D54, 6735 (1996).
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energy spectrum from e+e− → ν̃e + ν̃e → eW̃1 + eW̃1 → eμνμ Z̃1 + ej j Z̃1

yields information about electron sneutrino and chargino masses, with a preci-

sion at about the percent level. In this case, of course, chargino pair production is

also kinematically accessible and, as discussed below, will probably be how the

chargino mass will first be determined. Obtaining this same value for mW̃1
in ν̃eν̃e

events will be direct evidence for chargino production in SUSY decay cascades.

Masses of muon and tau sneutrinos are more difficult to extract since these are

produced only via s-channel Z exchange, and so have smaller production cross

sections (see Fig. 12.32). We will revisit this later.

The end-point technique that we have just been describing has also been applied

to the lighter stau, assuming τ̃1 → τ Z̃1.25 In this case, the situation is complicated

by the fact that a part of the tau energy is carried off by the tau neutrino, so that

the end points of the tau energy spectrum are smeared. Nonetheless, from the

spectrum of visible energy of taus decaying via τ → ρν, it is possible to obtain

m τ̃1
with a precision of ∼ 2%, assuming an integrated luminosity of ∼ 100 fb−1.

Including tau decays to π and a1 would improve the precision by about a factor

of two.

Tau sleptons differ from other sleptons in that they are expected to have signifi-

cant mixing between left- and right-states: τ̃1 = τ̃L cos θτ − τ̃R sin θτ . The stau pair

production cross section is sensitive to the mixing angle. In Fig. 15.18, we show

the result of a simulation to illustrate that the stau mass and mixing angle can be

determined to a few percent at a LC. While the fact that taus are unstable was an

undesirable complication for stau mass determination, it is now a boon because the

energy spectrum of the daughter tau neutrino (and hence of the visible hadronic

decay products) is sensitive to the polarization of the tau. Since the tau polarization

depends on the stau mixing angle, a study of stau production provides information

not accessible in selectron or smuon production (because polarizations of final state

electrons and muons are not measured). The tau polarization can be sensitive to the

parameter tan β, especially in the case where the Z̃1 contains a significant higgsino

component. In this case, the Z̃1 coupling to the tau–stau system also depends on the

tau Yukawa coupling. Then, by simultaneously studying selectron pair production

(to constrain neutralino mixings) and stau pair production, it may be possible to

determine tan β.

If charginos are the lightest charged sparticles, it is likely that they will be

discovered before sleptons. If the chargino decays via the two-body mode, W̃1 →
W Z̃1 and both W s decay hadronically, it is straightforward to reconstruct each

W from the invariant mass of the jets. Aside from spin correlation effects, the

chargino and LSP mass can then be obtained via two-body kinematics from the

25 M. Nojiri et al., Phys. Rev. D54, 6756 (1996).
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Figure 15.18 Error ellipses from a two-parameter fit to the stau mass and mixing
angle. In this illustration, 5000 stau pairs were simulated at

√
s = 500 GeV, as-

suming that the stau of mass 150 GeV decays exclusively to a 100 GeV neutralino.
The stau mixing angle is taken to be given by sin θτ = 0.7526. A SM background
corresponding to an integrated luminosity of 100 fb−1 is also included. For more
details, we refer the reader to M. Nojiri, K. Fujii and T. Tsukamoto, Phys. Rev.
D54, 6756 (1996), copyright (1996) by the American Society, from which this
figure is reprinted with permission.

energy distribution of the W , as in the case of the slepton. An mSUGRA case study

by Tsukamoto et al. showed that the mass of a chargino as heavy as 220 GeV could

be extracted to within a few percent at a 500 GeV LC, assuming an integrated

luminosity of 50 fb−1.

What if the chargino decays via three-body decays? In this case, we can force

quasi-two-body kinematics by dividing the sample of e+e− → W̃ +
1 W̃ −

1 → j j Z̃1 +
�ν Z̃1 events, enriched in signal via suitable cuts, into several narrow bins in m j j .

26

For each m j j bin, the E j j distribution follows the form for W̃1 → Z̃1W ∗ decays,

with MW ∗ close to the central value of the chosen bin. The result of such an analysis is

shown in Fig. 15.19 for an mSUGRA model with m0 = 300 GeV, m1/2 = 150 GeV,

A0 = −600 GeV, tan β = 2, and μ > 0. The upper frame shows the error ellipse

obtained by combining the analyses of the E j j distributions for four different m j j

26 For details, see H. Baer, R. Munroe and X. Tata, Phys. Rev. D54, 6735 (1996) where this technique is discussed.
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Figure 15.19 The upper frame shows the error ellipses obtained from an anal-
ysis of j j� + Emiss

T events from chargino pair production with forced two-body
kinematics, after combining the analysis from four different m j j bins, as dis-
cussed in the text. The lower frame shows the EW ∗ = E j j distribution for MW ∗ =
30 ± 2 GeV. Reprinted with permission from H. Baer, R. Munroe and X. Tata,
Phys. Rev. D54, 6735 (1996), copyright (1996) by the American Physical Society.

bins, while the lower frame shows one of these E j j distributions. The result includes

SM backgrounds and contamination to the �j j + Emiss
T signal from other SUSY

sources. Once again, we see that a few percent determination of the chargino and

LSP mass should be possible at a LC. The precision obtained here is comparable

to that obtained by Tsukamoto et al. by fitting the shape of the E j j distribution for

charginos decaying via three-body decays. It is worth mentioning that for model

parameters in the HB/FP region (which yields a favorable value for the neutralino

relic density), this technique will be applicable.

In the event that e+e− → Z̃1 Z̃2 is the only SUSY reaction accessible, mass

measurements may still be possible, as illustrated in Fig. 15.20. In this case, Z̃2 →
Z̃1h, h → bb̄, and the missing mass distribution in bb̄ + 
E events allows m Z̃2

and

m Z̃1
to be determined to a few percent, provided mh has previously been determined.

The missing mass distribution is better suited than the Ebb distribution for this
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Figure 15.20 Error ellipses and missing mass distributions for bb̄ + 
E events in

a simulation including Z̃1 Z̃2 production. Reprinted with permission H. Baer, R.
Munroe and X. Tata, Phys. Rev. D54, 6735 (1996), copyright (1996) by the Amer-
ican Physical Society.

measurement because in the determination of missing mass, mismeasurement and

losses from undetected neutrinos partially cancel out.

Squark pairs may also be produced in e+e− collisions. In many models, the

lightest top squark is expected to be the lightest of all squarks, and hence the most

likely to be accessible to linear collider searches. Linear collider event genera-

tion studies have been performed for an mSUGRA point with mt̃1 = 180 GeV.

The signal from t̃1¯̃t1 pair production with t̃1 → bW̃1 decay can be almost com-

pletely separated from SM backgrounds by requiring ≥ 5 jet events including at

least two b-jets. The b-jet energy distribution depends on mt̃1 and mW̃1
, and a

two-parameter fit gives a measure of these masses to about 5%, as can be seen from

Fig. 15.21. By making full use of beam polarization and other capabilities of the LC,

it appears that it is possible to also determine the top squark mixing angle to a few

percent.27

27 R. Keranen, A. Sopczak, H. Nowak and M. Berggren, Eur. Phys. J. C7, 1 (2000).
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Figure 15.21 Error ellipses for a two-parameter fit to mt̃1 and mW̃1
for two nearby

parameter space points where t̃1 pair production is accessible. The corresponding
b-jet energy distributions are also shown. Reprinted with permission from H. Baer,
R. Munroe and X. Tata, Phys. Rev. D54, 6735 (1996), copyright (1996) by the
American Physical Society.

If pair production of heavier squarks is also kinematically accessible, an LC

would be ideal for performing squark spectroscopy. Aside from kinematic deter-

minations of the type that we have been describing, we can see from (A.21a) that

by adjusting the polarization of the electron beam, it is also possible to alternate

between signals from q̃R ¯̃qR or q̃L ¯̃qL pairs, depending on beam polarization.28

It has been suggested that an energy scan of the sparticle production cross sec-

tion near the production threshold offers a more precise determination of sparticle

masses than the “kinematic” measurements described above. The idea is very sim-

ple. The shape of the cross section for sparticle pair production close to threshold

is a simple function of just the sparticle mass, so that by determining this shape it

should be possible to extract the mass very precisely. Indeed, it has been claimed

that determining the cross section for ten values of energy each spaced apart by

∼1 GeV leads to a precision better than a part per mille (a percent) for the masses of

28 See J. Feng and D. Finnel, Phys. Rev. D49, 2369 (1994).
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Table 15.3 A summary of the projections for tau
sneutrino mass measurements (90% CL) for two

mSUGRA model cases, assuming a 95%
longitudinally polarized electron beam. The first
row shows the projection with backgrounds and
SUSY contamination included, while the second

shows the corresponding projection if these
backgrounds can be effectively eliminated without
loss of signal. For ν̃e, both SM background as well

as SUSY contamination are insignificant.

Case I Case II

m ν̃τ
(500 fb−1) 153+12.5

−24 GeV 174.9+7.1
−15.4 GeV

153+11.5
−24 GeV 175.4+5.6

−10.9 GeV

m ν̃e (120 fb−1) 157.8+0.8
−1.2 GeV 178.0+0.5

−0.8 GeV

m ν̃e (500 fb−1) 158.1+0.4
−0.5 GeV 178.2+0.2

−0.4 GeV

ν̃e, ẽ, and W̃1 (m ν̃τ
, m τ̃2

), assuming an integrated luminosity of just 10 fb−1 for each

energy scan. The problem is that in order to obtain a relatively background free sam-

ple of signal events which is essential for studying the threshold shape, one is forced

to focus on particular final states. Not only does this lead to a reduction in the signal

but, even more importantly, it also introduces an unknown branching fraction on

which the cross section depends so that now both the mass as well as the branching

fraction have to be extracted from the same counting experiment. This, in turn, leads

to a significant degradation in the precision with which sparticle masses may be

extracted.

The issue is not simply an academic one because precise determinations of

(especially third generation) sparticle masses can provide important information

about the underlying physics via which MSSM sparticles obtain their masses. An

independent analysis by Mizukoshi et al.29 concludes that the optimal way to make

such a mass measurement is to divide the available luminosity between three or

four energy points, one of which is chosen at the highest possible energy (this

constrains the branching fraction), one close to the threshold and one somewhere in

between.30 The result of their analysis of the precision that is possible for sneutrino

mass measurements in two different mSUGRA models is summarized in Table 15.3.

29 J. K. Mizukoshi et al., Phys. Rev. D64, 115017 (2001).
30 Since it is not practical to perform a detailed scan of the energy threshold for every sparticle, this is a welcome

conclusion. Indeed, running at intermediate values of energy may prove useful for many purposes.
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We see that while a precision approaching a part per mille may be possible for m ν̃e ,

and perhaps also for mẽ and mW̃1
, an integrated luminosity of 500 fb−1 is required.

For third generation sneutrinos, the precision is at best several percent.31 It seems,

therefore, that the precision from threshold scans and the kinematic measurements

discussed previously is quite comparable.

The Higgs boson sector

The LC is an ideal facility for a study of the Higgs sector, especially if the energy

is high enough to access states other than h. The MSSM Higgs boson sector is

extremely constrained theoretically, so that precision measurements can serve to

experimentally distinguish it from that of the SM, or perhaps exclude it altogether.

Direct observation of the heavier Higgs bosons of the MSSM not only establishes

that there is physics beyond the SM, but provides new opportunities. For instance,

combining the measurements of 4b production from e+e− → bb̄A, bb̄H, and H A
production processes, together with charged Higgs boson measurements, can lead

to a determination of tan β to a high precision.32 While a study of chargino and

neutralino processes may also lead to a determination of tan β if it happens to be

small, Higgs boson processes (and to some extent, precise determination of stau

properties) offer the best hope for determining tan β when it is large.33 If tan β

is very large, it may also be possible to determine it from the measurements of

the widths of the heavy Higgs bosons of the MSSM. Strictly speaking, what is

determined are the Yukawa couplings. Although the Yukawa coupling is simply

related to tan β at tree level, for large values of tan β one must be careful to include

important radiative corrections to reliably extract its value.

If the heavier Higgs bosons are not directly accessible, a precise measurement of

the branching ratios of h may still make it possible to exclude the SM, depending on

the values of other parameters. For a discussion of these, as well as of many other

important measurements possible in the Higgs sector (including a determination of

their quantum numbers, couplings to gauge bosons, and their self-couplings), we

refer the reader to the literature.

Establishing supersymmetry

The discovery of a few sparticle states will probably convince enthusiasts that

nature is supersymmetric. To unambiguously establish that the new physics is in-

deed (softly broken) supersymmetry, it is necessary to show that the dimensionless

couplings of the new particles are equal to the corresponding SM couplings. This

31 We may expect that a determination of m τ̃2 will have the same difficulties as that for m ν̃τ .
32 See J. Gunion, T. Han, J. Jiang and A. Sopczak, Phys. Lett. B565, 42 (2003); see also V. Barger, T. Han and

J. Jiang, Phys. Rev. D63, 075002 (2001).
33 Recall that tan β enters via the mass matrices which really depend on sin β and cos β, so that its determination

becomes difficult if tan β is large.
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2

Figure 15.22 The �χ2 = 1 contour to illustrate the precision with which the bino–
selectron–electron coupling may be extracted in experiments at a linear collider
from a study of selectron pair production. This study was performed within the
framework of a SUSY model with mẽR

= 200 GeV, M1 = 99.6 GeV, μ = 200 GeV,
and tan β = 2, and an integrated luminosity of 100 fb−1 was assumed. We see that
the ratio of couplings is determined to be unity at about the percent level. This
figure is adapted from M. Nojiri, K. Fujii and T. Tsukamoto, Phys. Rev. D54,
6756 (1996), where more details about this analysis can be found. Reprinted with
permission, copyright (1996) by the American Physical Society.

equality is a direct consequence of supersymmetry, and is independent of any un-

derlying model. Radiative corrections from SUSY breaking effects result in small

deviations from exact equality which, as we will see, encode information about

sparticle masses. The situation is identical to that in spontaneously broken gauge

theories in that (tree-level) relationships between dimensionless couplings implied

by the symmetry continue to be preserved, while the corresponding relationships

between masses may be badly violated.

Experiments at LCs provide a unique opportunity to test such relations if either

sleptons or charginos are kinematically accessible.34 For instance, at tree level,

the coupling gB̃ẽRe of the electron to the selectron–bino system is simply the SM

hypercharge gauge coupling, aside from a symmetry coefficient of
√

2. Establishing

this equality is complicated by the fact that the bino is not a mass eigenstate, so that

mixing effects need to be disentangled. Nevertheless, by a careful analysis of ẽR ¯̃eR

34 J. L. Feng et al., Phys. Rev. D52, 1418 (1995).
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pair production, it is possible to test this relationship in experiments at the LC at

the ∼ 1 − 2% level, as illustrated in Fig. 15.22. If squarks are much heavier than

sleptons, radiative corrections cause a significant splitting δg′ = gB̃ẽRe/
√

2 − g′

between these couplings: for instance, if squarks are an order of magnitude heavier

than sleptons, this difference would be about 2%. A measurement of δg′ could

thus provide an upper bound on the squark mass scale, even though the squark

production threshold may be far beyond the available center of mass energy.35

A similar test of supersymmetry that may be possible if charginos are light

instead is the subject of the following exercise. The message of this discussion is

that LC experiments offer a unique opportunity for these direct tests of SUSY and,

further, that these entail a study of just the lightest charged sparticles.

Exercise Show that supersymmetry implies that the sum of squares of the off-
diagonal entries in the MSSM chargino mass matrix is completely determined by
M2

W . This follows from the fact that the coupling of the Higgs scalar fields to the
charged higgsino–charged gaugino system is determined by the gauge interaction.
If charginos are light and have substantial mixing with higgsinos (as is the case,
for instance, in the HB/FP region) it is possible to extract the required off-diagonal
mixing elements from the chargino mass and production properties.

If instead charginos are gaugino-like, a test analogous to our discussion in the
text may be possible. The point is that it may be possible to extract the gaugino–
sneutrino–electron coupling from chargino production data, allowing a test of the
SUSY relationship between it and the SU (2) gauge coupling.

Other measurements

Many other measurements are possible at linear colliders, but the details depend

on which sparticle states are kinematically accessible, and also on the details of the

SUSY model. For instance, if both W̃1 and W̃2 are kinematically accessible, and their

masses as well as production cross sections with longitudinally polarized beams

can be measured, a complete reconstruction of the chargino mass matrix would be

possible.36 On a different note, within the GMSB framework, the determination of

the lifetime of a charged NLSP with a decay length as small as a millimeter may be

possible in experiments at a LC, depending upon capabilities of the detector, though

determinations of sparticle decay lengths exceeding ∼ 50 m will be difficult.37 The

corresponding determination also appears possible for the case of a neutralino

35 M. Nojiri, D. Pierce and Y. Yamada, Phys. Rev. D57, 1539 (1998); H-C. Cheng, J. Feng and N. Polonsky, Phys.
Rev. D57, 152 (1998).

36 S. Y. Choi et al., Eur. Phys. J. C14, 535 (2000).
37 P. Mercadante, J. K. Mizukoshi and H. Yamamoto, Phys. Rev. D64, 015005 (2001).
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NLSP, as long as its decay length is in a similar range.38 We remind the reader

that in these models the NLSP lifetime yields a measure of the fundamental SUSY

breaking scale.

Finally, we note that in the initial phase of the LC only the lowest lying states

will be accessible. Except for the LSP, these will be the easiest to detect and study

in detail, since they are free of contamination from other SUSY reactions, have

relatively simple decays, and the SM backgrounds to their signals will be well

known. In contrast, at the LHC, or when much higher energies are attained at a LC,

many SUSY reactions will be occurring simultaneously, and the heavy sparticle

decays will be very complex. Knowledge of the lower lying states will prove very

useful for disentangling the complicated cascade decay chains expected at the LHC

as well as for a study of the more massive sparticles that may be accessible at an

energy upgrade of a future LC. For this reason, it would be useful to archive the

LHC data in a form suitable for reanalysis once data from a LC becomes available.

15.5.3 Models of sparticle masses: a bottom-up approach

Although the mechanism by which superpartners of SM particles obtain their

masses is not known, we saw in Chapter 11 several models of sparticle masses

have been proposed. These models differ from one another in that they rely on

different assumptions about how the effects of SUSY breaking are communicated

from the supersymmetry breaking sector to the MSSM sparticles. Although these

models are simple in that sparticle masses and couplings are all determined by just

a small set of parameters, it should be remembered that these models are all based

on untested assumptions and may turn out to be wrong. Fortunately, if sparticles are

discovered, and their properties determined at future colliders, it will be possible

to subject these models to experimental tests, and perhaps even determine some of

the underlying parameters.

The basic idea is very simple. Any model with a fixed number of adjustable

parameters is tested if the number of independent observables exceeds the number

of parameters. This is so because the values of parameters that reproduce some

of the observables will not automatically also yield the observed values for all of

them. In practice, of course, things are more complicated because both experi-

mental measurements as well as theoretical predictions are subject to error, and,

further, the sensitivity of observables to the different parameters is not the same.

The usual approach for testing any particular framework is to perform a global

fit to all relevant experimental data – in addition to sparticle masses, event rates

and distributions (possibly, with polarized beams) for various signals, this includes

38 S. Ambrosanio and G. Blair, Eur. Phys. J. C12, 287 (2000).
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low energy measurements such as branching fractions for rare decays, anomalous

electric and magnetic moments of leptons or the neutron, as well as cosmological

data such as the determination of cold dark matter relic density – and perform sta-

tistical tests for the goodness of fit. If a good fit is obtained (some of) the underlying

parameters can be extracted; otherwise, a particular framework is excluded.

We have already seen the start of such a program in our discussion of the “al-

lowed” and “excluded” regions of the parameter space of the mSUGRA model. It

is straightforward to carry out similar studies for other scenarios. Of course, once

direct information about sparticle properties becomes available, such studies will

rapidly exclude many scenarios, perhaps even all the simple ones that we discussed

in Chapter 11. In this case, we hope that these data will suggest how to proceed, and

allow us to synthesize the mechanism by which superpartners acquire their masses.

Several groups have also examined how well experiments at the LHC or the

LC will be able to extract the underlying model parameters. These studies have

typically been carried out within the mSUGRA as well as GMSB frameworks.

What is done is to use Monte Carlo methods to construct a synthetic data sample

(within say the mSUGRA model) which is then “analyzed” to see how well the

underlying parameters can be reconstructed from the various observables. It is not

our purpose to discuss this in detail, and we will refer the reader to the studies

in Technical Design Reports (TDRs) of ATLAS and TESLA, as well as to other

studies in the literature.

Not surprisingly, the precision with which the underlying parameters can be

extracted is sensitive to where one is in parameter space. For the mSUGRA model,

m0 and m1/2 set the scale of squark and gluino/gaugino masses and can, in favorable

cases, be extracted to better than 5–10% at the LHC, though the errors are somewhat

larger if tan β is large. In fortuitous circumstances where isolation of a particular

decay chain allows m Z̃2
− m Z̃1

to be very precisely determined from a dilepton mass

edge, m1/2 can be determined to within a percent. A more precise determination of

m0 may be possible if the mass edges from Z̃2 → �̃R� → ��Z̃1 can be constructed.

Determination of tan β and A0 is more difficult.39

If sleptons (charginos) are accessible at a LC, the determination of their masses

will yield m0 and m1/2 at the percent level or better depending on the integrated

luminosity. The TESLA TDR quotes a precision better than a part per mille on this.

Also, for the case study in the TESLA TDR where both τ̃1 and τ̃2 are kinemati-

cally accessible, it is claimed that tan β = 3 ± 0.02, and A0 = 0 ± 6 GeV. While

the sensitivity to these parameters will depend on the precision with which third

generation masses are ultimately determined (see our comments in Section 15.5.2),

39 In several of the ATLAS studies, it appears that tan β is determined. Notice, however, that this is because mh
in these studies is relatively light (below the bounds from LEP2); mh becomes increasingly less sensitive to
tan β if it is close to its theoretical upper limit.
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experiments at LCs will certainly provide new information. If sleptons are acces-

sible, their masses will pin down m0 more precisely than experiments at the LHC,

and if stau or stop mixing angles can be determined we will obtain information

about the other parameters.

At the LHC, the optimal strategy for the extraction of MSSM masses and other

weak scale parameters depends sensitively on the model, as well as where we are

in parameter space, so that it is not possible to map out how to proceed ahead of

time. However, we may say with some confidence that, with some guidance from

the data, it will likely be clear how to proceed, and that it is also likely that we will

glean more information than is currently thought possible. Experiments at a LC,

in contrast, allow a beautiful and systematic program for these measurements that

will truly complement the capabilities of the LHC. Here, we have only been able

to touch upon some of the exciting capabilities of these machines. Exploration of

what might be possible at both these facilities has only just begun, and is an active

and fruitful area of research.

15.6 Photon, muon, and very large hadron colliders

Some possibilities for other future colliders include photon–photon and electron–

photon colliders operating at a center of mass energy just below that of an available

electron–positron collider, muon colliders operating in the TeV region, and also a

very large hadron collider (VLHC) which might operate at
√

s = 40–200 TeV to

succeed the LHC.

High energy photons can be produced by back scattering laser photons from a

high energy electron beam. The maximum photon energy is typically about 80% of

the electron beam energy. Moreover, the scattered photons are (partially) polarized if

the initial electron and the laser photons are polarized. Since an electron Compton

back scatters multiple times as it passes through the laser pulse, a high energy

e−e− collider can be converted to a γ γ collider with comparable luminosity, but

with a distribution of collision energies and photon polarizations. While there is

no particular advantage of this as far as sparticle searches go, the availability of

polarized photon beams is especially useful for a study of MSSM Higgs bosons.

First, the rate for single Higgs boson production depends on all charged sparticle

states that dominantly acquire their mass via a coupling to the Higgs, so that from this

rate we can “count” all these new states. For supersymmetry aficionados, it is more

interesting that the amplitude for the production of C P-odd and C P-even Higgs

scalars by photon–photon collisions depends differently on the polarizations of the

initial photons.40 If C P is not conserved, a study of any Higgs boson resonance for

40 This should not be surprising, since parity arguments would tell us that the leading order matrix element must
be proportional to ε1 · ε2 (ε1 × ε2 · p̂Higgs) if the C P of the Higgs boson is even (odd), where ε1 and ε2 are the
polarization vectors of the two photons.
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different photon polarizations would yield information about its C P content. It may

also be possible to run the collider in the eγ mode, in which case processes such

as eγ → ẽL(R) Z̃1 may allow us to access selectrons beyond the kinematic reach of

an electron–positron collider with corresponding energy.

A muon beam has the advantage of low energy losses due to synchrotron ra-

diation, so that a circular collider operating in the TeV region and with a much

more precisely tuned beam energy relative to an electron–positron collider can be

envisioned. The challenge, of course, is that the muons in the beam are unstable,

so that storage, acceleration, and collisions must occur before these decay away.

In addition, there are significant background problems from decays of muons in

the beams. The large muon Yukawa coupling relative to that of the electron pro-

vides a unique capability: at a muon collider it is possible to produce neutral Higgs

bosons in the s-channel at a large rate, allowing for detailed Higgs boson studies

in much the same way that LEP has studied the Z boson. This is especially true

for the more massive states such as H and A in the MSSM. Otherwise, capabilities

for SUSY particle production are qualitatively similar to those of an e+e− collider

operating in the same energy regime, except that at a muon collider, smuon pair

production would occur at large rates due to t-channel graphs, whereas selectron

pair production would only occur via s-channel graphs.

A very large hadron collider (VLHC) is a broad band machine that would search

for new physics up to the 10–20 TeV scale, depending on the center of mass energy.

While it is reasonable to see what LHC data tell us about new physics, it is worth

mentioning that there can be many scenarios where the VLHC may prove essential.

These include, for instance, models with additional Z bosons or with (multi-TeV

scale) extra spatial dimensions. In the case of weak scale supersymmetry, a VLHC

would be useful in the event that SUSY particle masses are in the TeV or multi-TeV

region. In the case of GMSB models, it might also be possible at a VLHC to search

for the messenger states, along with the superpartners. We note that TeV scale

sparticle masses may be realized in the HB/FP region of the mSUGRA model, or

in inverted hierarchy models, where just first and second generation squarks and

sleptons are in the multi-TeV region. To date, few detailed studies exist for such

very high energy hadron colliders.
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R-parity violation

We have already seen that, unlike the SM, the field content of the MSSM allows

gauge-invariant, renormalizable interactions (8.8a) and (8.8b) that violate the con-

servation of lepton and baryon number, respectively. Within the MSSM these were

forbidden by imposing an additional global symmetry that leads to the conservation

of a multiplicative quantum number, R-parity, given by,1

R = (−1)3(B−L)−2s . (16.1)

Here B is baryon number, L is lepton number, and s is the spin of the component

field. All the SM particles have R = +1, while all superpartners have R = −1.

Imposing the conservation of R-parity has several phenomenological implications:

most importantly, superpartners must ultimately decay to the lightest R-odd particle

(the LSP), which must be absolutely stable. Since upper limits on the abundance of

exotic isotopes exclude stable electrically charged or colored particles at the weak

scale, it follows that LSPs produced in SUSY events would escape detection in

collider experiments. The resulting Emiss
T signals are the hallmark of all models that

we have considered up to now. There is, however, no good theoretical argument

for excluding renormalizable R-parity-violating operators from the superpotential.

However, once excluded, these will not be generated by radiative corrections. If

R-parity is not a good quantum number, the arguments that led us to a weakly

interacting LSP no longer apply, and the phenomenology may be radically different:

except when the effects of R-parity violation are small, even the distinction between

1 Continuous R-symmetries (which are symmetries under which the various components of a superfield do not
transform the same way because θ also transforms non-trivially) were introduced by A. Salam and J. Strathdee,
Nucl. Phys. B87, 85 (1975) and P. Fayet, Nucl. Phys. B90, 104 (1975) to accommodate conservation of lepton
number in supersymmetric models. However, these R-symmetries cannot be exact, because they are broken
both by gaugino mass terms, as well as by the bilinear μ term in the superpotential. The usually defined R-
parity is a linear combination of a discrete parity subgroup of this continuous R-symmetry and other discrete
symmetries of the model. To our knowledge, the formula (16.1) was first given by G. Farrar and P. Fayet, Phys.
Lett. B76, 575 (1978).
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a particle and a sparticle disappears. An examination of this interesting possibility

forms the subject of this chapter.

We begin by rewriting the R-parity-violating superpotential that we introduced in

Chapter 8. For later convenience, we reorganize it in terms of trilinear and bilinear

terms (rather than baryon- and lepton-number-violating pieces) in the R-parity-

violating part of the superpotential, and write it as,

f̂ �R = f̂TRV + f̂BRV, (16.2a)

with

f̂TRV =
∑

i, j,k

[
λi jkεab L̂a

i L̂b
j Ê c

k + λ′
i jkεab L̂a

i Q̂b
j D̂c

k + λ′′
i jkεlmnÛ cl

i D̂cm
j D̂cn

k

]
,

(16.2b)

and

f̂BRV =
∑

i

μ′
iεab L̂a

i Ĥ b
u . (16.2c)

Here, i, j , and k are generation indices running from 1–3, a, b are SU (2)L indices,

while l, m, and n are color indices. The first two terms in (16.2b) lead to lepton-

number-violating interactions, while the last term leads to baryon-number-violating

interactions. Collectively, these terms give rise to explicit trilinear R-parity viola-

tion (TRV) in the superpotential. Likewise, the operators in (16.2c) violate lepton

number conservation and lead to bilinear R-parity violation (BRV).2 We will see

later that these provide a parametrization of spontaneous R-parity-violating mod-

els. Note that the SU (2)L and SU (3)C gauge symmetries require that the couplings

λi jk (λ′′
i jk) are antisymmetric in the indices i and j ( j and k), so that there are

9 + 27 + 9 = 45 new dimensionless complex parameters and three new dimen-

sionful complex parameters in the general R-parity-violating superpotential. In

addition, there are also corresponding soft SUSY breaking parameters in the most

general parametrization of the model.

The bilinear term in the superpotential can be rotated away by working with the

linear combination,

Ĥ ′
da = μĤda + ∑

i εbaμ
′
i L̂b

i
√

μ2 + μ
′2
1 + μ

′2
2 + μ

′2
3

,

2 It is worth noting that in GUT theories based on higher symmetries (where U (1)B−L is part of the gauge
symmetry), e.g. SO(10), some or all of R-parity-violating couplings may not be allowed. As long as the fields
that break the gauge symmetry are inert under (−1)3(B−L), R-parity will remain unbroken. Thus, depending
on how the larger gauge symmetry is broken, none, some, or all of the R-parity-violating operators in (16.2b)
and (16.2c) above would appear in the weak scale SUSY Lagrangian.
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together with three other orthogonal combinations L̂ ′
i . Eliminating Ĥda in fa-

vor of Ĥ ′
da and L̂ ′

i in the R-parity-conserving part of the superpotential results

in trilinear R-parity-violating superpotential operators. This field redefinition,

which was chosen to eliminate the bilinear Ĥu L̂i terms from the superpoten-

tial, does not simultaneously get rid of the corresponding soft SUSY breaking

terms,

Lsoft �
∑

i

biεab L̃
′a
i H b

u + h.c. (16.3)

which must be retained in a general analysis. Their existence implies that, in

general, the “sneutrinos” will develop VEVs along with the neutral component

of Hu .

Our discussion shows that one must be careful when deriving and interpreting

limits on R-parity-violating parameters, since these would depend upon the basis

that we are working in. We must either carefully and completely specify the basis,3

or work with “basis-independent” quantities when performing a general analysis.4

In practice, it is traditional to assume that just one of the many R-parity-violating

operators dominates (in a chosen basis), and to examine its effect upon the phe-

nomenology. It is then convenient to consider separately the phenomenological

analysis of models with trilinear R-parity violation and bilinear R-parity viola-

tion since trilinear and bilinear superpotential terms may well have very different

theoretical origins.

Exercise Consider the MSSM but for a single matter generation. Assume that
R-parity conservation is violated only by a bilinear term in the superpotential.
Redefine the fields so that R-parity violation in the superpotential appears only
as trilinear operators. You will find that the up quark and lepton superpotential
Yukawa couplings are basis-independent, while the down quark superpotential
Yukawa coupling is altered by the field redefinition. Verify that the down quark
mass is basis-independent, as it must be.

Since there is now no distinction between particles and sparticles, the lep-
ton, the charged gaugino and the charged higgsino can all mix. Work out the
charged fermion mass matrix. Check that, though one of the mass eigenvalues
is proportional to the lepton Yukawa coupling, the ratio of this eigenvalue to
the lepton Yukawa coupling depends on SUSY parameters. In other words, the
usual tree-level relation between the fermion mass and its Yukawa coupling is
altered.

3 M. Bisset, O. Kong, C. Macesanu and L. Orr, Phys. Rev. D62, 035001 (2000).
4 S. Davidson, Phys. Lett. B439, 63 (1998), and references therein.
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16.1 Explicit (trilinear) R-parity violation

Here we consider that R-parity is explicitly broken only by dimensionless couplings

in the superpotential. We assume, in addition, that there are no soft SUSY breaking

bilinears so that we may consistently take all sneutrino VEVs to be zero. The

scenario is thus parametrized by 45 additional complex superpotential couplings,

together with corresponding trilinear soft SUSY breaking parameters that do not

enter our discussion below.

16.1.1 The TRV Lagrangian

Before we can proceed to explore phenomenological implications of the TRV terms

in the superpotential, we must first extract the corresponding interactions from f̂TRV.

From the master formula (6.44), two sets of terms come from the superpotential:

L � −
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S
− 1

2

∑

i, j

[(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
ψ̄i

1 − γ5

2
ψ j + h.c.

]

. (16.4)

The first of these leads to new quartic scalar interactions which, while interesting,

are not likely to lead to readily observable effects, at least when the scalar fields

have no VEVs. We focus, therefore, on the R-parity-violating interactions of matter

fermions, starting with the first term of (16.2b):

f̂ � λi jk
(
ν̂i ê j − êi ν̂ j

)
Êc

k . (16.5)

Although the two terms in (16.5) above are identical, for later convenience we will

write the contributions from each of these separately. The first of these yields,

L � −1

2
· 2 ·

[

ẽ†Rkψ̄νi PLψe j + ẽL j ψ̄νi PLψEc
k
+ ν̃i ψ̄ej PLψEc

k

]

+ h.c., (16.6)

where we remind the reader that the ψs are all Majorana spinors, whose chiral

components make up the Dirac spinor for the massive fermions, as in (8.3). Using

this, together with

ec = PLψEc + PRψe,

and the corresponding equations for the Dirac conjugates, it is straightforward to

work out the resulting contributions to the Lagrangian. We find,

Lλ = −λi jk

[

ẽ†Rk ν̄
c
i PLe j + ẽL j ēk PLνi + ν̃i ēk PLe j − ẽ†Rk ēc

i PLν j

− ẽLi ēk PLν j − ν̃ j ēk PLei
] + h.c., (16.7a)

where the last three terms arise from the second term in (16.5). We will leave it as

an exercise for the reader to check that the contribution of these last three terms of
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Figure 16.1 R-parity-violating interactions arising from the λi jk coupling in the
superpotential. The arrows denote lepton number flow.

Figure 16.2 R-parity-violating interactions arising from λ′
i jk term in the superpo-

tential. The arrows denote flow of B and L number.

Lλ is exactly the same as that of the first three. The new L-violating vertices are

shown in Fig. 16.1.

We see that the conjugate fields νc
i and ec

i appear in the R-parity-violating La-

grangian. We have already encountered this complication before, for instance in

our evaluation of the amplitude (12.3b) for the process dū → W̃i Z̃ j , so that their

presence does not pose a new problem. We use the field expansion (3.33) for the

conjugate fields in our calculation of any matrix elements that we need for the

exploration of the phenomenological implications of these new interactions.

An exactly similar calculation to the one above gives rise to the R-parity-violating

Lagrangian from the second term of (16.2b). We find that this second set of lepton-

number-violating interactions is given by,

Lλ′ = −λ′
i jk

[

d̃†
Rk ν̄

c
i PLd j + d̃L j d̄k PLνi + ν̃i d̄k PLd j − d̃†

Rk ēc
i PLu j

−ẽLi d̄k PLu j − ũL j d̄k PLei

]

+ h.c. (16.7b)

The corresponding vertices are shown in Fig. 16.2.
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Figure 16.3 R-parity-violating interactions arising from λ′′
i jk term in the superpo-

tential. The arrows denote flow of B number.

Figure 16.4 R-parity-violating decay of the proton via the λ′
11k and λ′′

11k couplings.

Finally, the B-violating superpotential couplings in the third term of (16.2b) give

the interactions,

Lλ′′ = −λ′′
i jk

[

d̃†
Rk ūi PLdc

j + d̃†
R j ūi PLdc

k + ũ†
Ri d̄ j PLdc

k

]

+ h.c. (16.8)

The corresponding vertices are shown in Fig. 16.3.

16.1.2 Experimental constraints

Low energy bounds

The new B- and L-violating interactions can lead to non-standard contributions to

a wide variety of physical phenomena. Since the R-violation arises from superpo-

tential Yukawa couplings, we expect strong constraints on various couplings from

flavor-violating processes. If both λ′ as well as λ′′ type couplings are present, these

interactions can mediate proton decay via the diagrams depicted in Fig. 16.4.

A naive estimate of the proton decay rate gives,

	(p → π0e+) ∼ σ (ud → ūe+)|ψ(0)|2 ∼ |λ′
11k |2|λ′′

11k |2
m4

d̃k

m2
p

128π

1

πa3
, (16.9)

where k = 2 or 3. Here, we have taken the squared wave function factor, which

is a measure that the two quarks come together to annihilate by the baryon and

lepton number-violating process, to be given by 1/πa3, where a ∼ 1 fm is the size
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Table 16.1 Sample upper limits on products of R-parity-violating couplings for
MSUSY = 100 GeV, assuming that just one such product is not zero. Except for

those from proton decay, these limits all scale inversely as M2
SUSY.

Combinations Limits Sources Combinations Limits Sources

λ′
11kλ

′′
11k 10−26 Proton decay λ′

i jkλ
′′
lmn 10−11 Proton decay

λ1 j1λ1 j2 7 × 10−7 μ → 3e λ231λ131 7 × 10−7 μ → 3e
λ′

i1kλ
′
j2k 5 × 10−5 K + → π+νν λ′

i12λ
′
i21 1 × 10−9 �mK

λ′
i13λ

′
i31 8 × 10−8 �m B λ′

1k1λ
′
2k2 8 × 10−7 KL → μe

λ′
1k1λ

′
2k1 5 × 10−8 μTi → eTi λ′

11 jλ
′
21 j 8.5 × 10−8 μTi → eTi

of the proton. The Super-Kamiokande bound τ (p → πe+) > 5 × 1033 years then

implies that,

|λ′
11kλ

′′
11k | <∼ 8 × 10−27 ×

( md̃k

100 GeV

)2

. (16.10)

We see that unconstrained R-parity violation leads to catastrophic p-decay rates.

This extremely severe bound on the product of couplings strongly suggests that

one or the other (or both) of these couplings is zero. It should be remembered that

not all combinations of B- and L-violating interactions are as tightly constrained,5

and, further, that the limit depends on the basis in which the couplings are written.

Nevertheless, it is usually assumed that even if R-parity is not a good quantum

number, one of B or L is conserved, which is sufficient to prevent proton decay.

Non-observation of n − n̄ oscillations or�B = 2 “double nucleon decay” of atomic

nuclei leads to limits on baryon number violating couplings that do not depend on

concomitant lepton number violation.6 It is clear that if R-violating couplings exist,

then they must only occur in a restricted set of all the possible new interactions. As

we have already noted, it is often assumed that just one of the 45 new couplings

is dominant. This allows for tractable phenomenological analyses, and usually

leads to the most conservative limits on the couplings. A summary of some of the

most important restrictions on products of R-violating couplings, along with their

sources, is shown in Table 16.1.7 Here, and in subsequent tables, we have assumed

that the couplings are all real. If the couplings are complex, yet new limits may be

possible. For instance, the determination of εK restricts I m λ′
i12λ

′∗
i21 < 8 × 10−12

for MSUSY = 100 GeV. Upper limits on the electric dipole moments of the electron

5 See C. Carlson, P. Roy and M. Sher, Phys. Lett. B357, 99 (1995).
6 See J. L. Goity and M. Sher, Phys. Lett. B346, 69 (1995); ibid B385, 500 (1996) (erratum).
7 These and the following restrictions on R-violating couplings have been adapted from G. Bhattacharyya, hep-

ph/9709395 and B. Allanach et al., hep-ph/9906224, where the sources for these limits, as well as others not
listed here, can be found.
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Table 16.2 Upper limits (2σ ) on the λi jk couplings of R-violating
supersymmetry.

i jk λi jk Sources

121 0.049 × (mẽR
/100 GeV) CC universality in μ-decay

122 0.049 × (mμ̃R
/100 GeV) CC universality in μ-decay

123 0.049 × (m τ̃R
/100 GeV) CC universality in μ-decay

131 0.062 × (mẽR
/100 GeV) 	(τ → eνν̄)/	(τ → μνν̄)

132 0.062 × (mμ̃R
/100 GeV) 	(τ → eνν̄)/	(τ → μνν̄)

133 0.006 × √
m τ̃ /100 GeV νe mass

231 0.070 × (mẽR
/100 GeV) 	(τ → μνν̄)/	(μ → eνν̄)

232 0.070 × (mμ̃R
/100 GeV) 	(τ → μνν̄)/	(μ → eνν̄)

233 0.070 × (m τ̃R
/100 GeV) 	(τ → μνν̄)/	(μ → eνν̄)

Figure 16.5 An example of an R-parity-violating contribution to β decay of the muon.

and the neutron also constrain the imaginary part of some other products at the

10−4 level.

In addition to these constraints, there is a variety of limits on individual R-parity-

violating couplings. For example, the coupling λ121 leads to a new contribution

to the standard decay of the muon, as shown in Fig. 16.5. Such contributions

are strongly constrained by the observed universality of the charged current weak

interactions.8 Comparing muon decay with the β decay of quarks, one finds the limit

λ121 < 0.049 × (mẽR
/100 GeV). This limit, together with corresponding limits on

the λi jk couplings, along with their sources, is summarized in Table 16.2.

Constraints on the λ′
i jk couplings along with their sources are summarized in

Table 16.3. While the limits on first generation λ′s are rather strict, the correspond-

ing bounds for third generation couplings are generally less severe. Also shown

in parentheses are limits that result if we require perturbativity of the R-parity-

violating couplings up to the GUT scale: if the couplings exceed these bounds at

the weak scale, then they will diverge under renormalization group evolution before

8 See V. Barger, G. F. Giudice and T. Han, Phys. Rev. D40, 2987 (1989).
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Table 16.3 Upper limits (2σ ) on λ′
i jk couplings for R-violating SUSY. Bounds

from requiring perturbativity up to the GUT scale are shown in parentheses.

i jk λ′
i jk Sources

111 5.2 × 10−4 × (mẽ/100 GeV)2(m Z̃1
/100 GeV)1/2 (ββ)0ν

112 0.021 × ms̃R
/100 GeV CC univ.

113 0.021 × mb̃R
/100 GeV CC univ.

121 0.043 × md̃R
/100 GeV CC univ.

122 0.043 × ms̃R
/100 GeV CC univ.

123 0.043 × mb̃R
/100 GeV CC univ.

131 0.019 × mt̃L/100 GeV APV
132 0.28 × mt̃L/100 GeV (1.04) AF B

133 1.4 × 10−3
√

mb̃/100 GeV νe-mass
211 0.059 × md̃R

/100 GeV 	(π → eν)/	(π → μν)
212 0.059 × ms̃R

/100 GeV 	(π → eν)/	(π → μν)
213 0.021 × mb̃R

/100 GeV 	(π → eν)/	(π → μν)
221 0.18 × ms̃R

/100 GeV (1.12) νμ DIS
222 0.21 × ms̃R

/100 GeV (1.12) D → K�ν
223 0.21 × mb̃R

/100 GeV (1.12) D → K�ν
231 0.18 × mb̃L

/100 GeV (1.12) νμ DIS
232 0.56 (1.04) 	(Z → hadrons)/	(Z → ��̄)

233 0.15
√

mb̃/100 GeV νμ-mass
311 0.11 × md̃R

/100 GeV (1.12) 	(τ → πντ )/	(π → μν)
312 0.11 × ms̃R

/100 GeV (1.12) 	(τ → πντ )/	(π → μν)
313 0.11 × mb̃R

/100 GeV (1.12) 	(τ → πντ )/	(π → μν)
321 0.52 × md̃R

/100 GeV (1.12) 	(Ds → τντ )/	(Ds → μνμ)
322 0.52 × ms̃R

/100 GeV (1.12) 	(Ds → τντ )/	(Ds → μνμ)
323 0.52 × mb̃R

/100 GeV (1.12) 	(Ds → τντ )/	(Ds → μνμ)
331 0.45 (1.04) 	(Z → hadrons)/	(Z → ��̄)
332 0.45 (1.04) 	(Z → hadrons)/	(Z → ��̄)
333 0.45 (1.04) 	(Z → hadrons)/	(Z → ��̄)

the GUT scale is reached. If these couplings really become large before Q = MGUT,

they would be expected to make a substantial modification to the renormalization

group flow, and to the successful prediction of the unification of gauge couplings.

Of course, these latter limits are model dependent, since they are obtained assuming

a desert between MSUSY and MGUT.

Finally, the limits of the B-violating couplings λ′′
i jk are summarized in

Table 16.4. Note that the bound on the first line is obtained under the assumption

that the lifetime for the “double nucleon decay” 16O →14 C + K +K + exceeds 1030

years.9 While the bounds on first generation couplings can again be quite severe if

9 This decay could presumably be detected in the Super-Kamiokande experiment which has obtained a limit
exceeding 1.9 × 1033 on the decay p → K +ν.
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Table 16.4 Upper limits (2σ ) on the λ′′
i jk couplings in R-violating

SUSY. The quantity � in the first line is some hadronic scale
∼ 300 MeV. Most of the direct bounds listed are for

MSUSY = 100 GeV. Bounds from requiring perturbativity up to
MGUT are shown in parentheses.

i jk λ′′
i jk Sources

112 10−15 × (MSUSY/�)5/2 Double nucleon decay
113 10−4 n − n̄ oscillation
123 (1.23) Perturbativity
212 (1.25) Perturbativity
213 (1.23) Perturbativity
223 (1.23) Perturbativity
312 0.50 (1.00) 	(Z → hadrons)/	(Z → ��̄)
313 0.50 (1.00) 	(Z → hadrons)/	(Z → ��̄)
323 0.50 (1.00) 	(Z → hadrons)/	(Z → ��̄)

squarks are light, most of the second and third generation couplings have no real

restriction other than from the requirement of perturbativity up to Q = MGUT.

Cosmological bounds

A very interesting bound on R-parity-violating couplings follows from consider-

ations of GUT scale baryogenesis in the Big Bang cosmology. This bound arises

from the requirement that any GUT scale matter–antimatter asymmetry that can

develop in these models not be wiped out by R-parity-violating interactions.

It is known that within the SM there are non-perturbative effects from the so-

called electroweak sphaleron interactions which violate separate B and L conser-

vation but conserve B − L . Sphaleron effects will, therefore, tend to restore the

matter–antimatter symmetry as the Universe cools to T ∼ Mweak. However, any

B − L component of the matter–antimatter asymmetry that may have been gener-

ated at the high scale cannot be wiped out by these effects, and so will persist to

the low scale.

Note that the R-parity-violating couplings in (16.2b) do not conserve B − L ,

so that if these remain in thermal equilibrium down to the weak scale, they would

wash out any B − L component of the matter–antimatter asymmetry. Together with

sphaleron interactions that wash out the B + L component, any matter–antimatter

asymmetry that may have been generated at a high scale will be washed away,

unless the R-parity-violating couplings are small enough so that these interactions

fall out of equilibrium before the Universe cools to T = Mweak. This leads to a
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generic upper limit on all TRV couplings:

λi jk, λ′
i jk, λ′′

i jk < 5 × 10−7 (MSUSY/1 TeV)1/2 . (16.11)

We will see in Section 16.1.4 that this limit implies that the LSP will be quasi-

stable in that it essentially always decays outside any collider detector. Unless this

LSP happens to be charged or colored, it would escape experimental detection

exactly as in models where R is a good quantum number. Also, as discussed below,

R-violating contributions to sparticle production and decay of heavier sparticles

would be negligible, so that R-parity-violating couplings satisfying the bounds

(16.11) would be irrelevant to any consideration of SUSY signals at colliders.

The bounds (16.11) clearly do not apply if baryogenesis occurs at the electroweak

scale, instead of at the GUT or some intermediate scale. One suggestion (that has

not been examined in detail) is that complex λ′′ couplings generate the baryon

asymmetry below the scale MSUSY ∼ Mweak. Electroweak scale baryogenesis is also

possible within the MSSM, though this requires that mh
<∼ 115–120 GeV, and mt̃R <

mt . It should, therefore, be possible to probe this scenario in collider experiments. If

the particle content of the MSSM is extended by a singlet Higgs field and the gauge

symmetry by an extra (anomaly free) U (1), it appears possible to accommodate

electroweak scale baryogenesis even if the top squark is heavy.

The observation that sphaleron interactions actually conserve B/3 − Li for each

lepton flavor points out another loophole to the general argument that led to the

stringent bounds on the TRV couplings, even if the matter–antimatter asymmetry

is generated at T 	 Mweak.10 The conserved quantum numbers may equivalently

be chosen to be B − L and the two independent combinations of Li − L j . If a

matter–antimatter asymmetry arises asymmetrically between the three lepton fla-

vors, it will clearly be preserved by sphaleron and λ′′ interactions even if these are

in thermal equilibrium up to the electroweak scale. The surviving lepton number

will be converted partially back into a baryon asymmetry at temperatures below the

electroweak scale and, as long as L-violating couplings are negligible, the bounds

on the λ′′ couplings are essentially eliminated. Alternatively, if R-parity-violating

couplings conserve baryon number, we can still maintain a GUT scale matter–

antimatter asymmetry as long as the set of lepton number violating couplings that

violate conservation of one of the lepton flavors falls out of thermal equilibrium

sufficiently early – i.e. satisfies the bound (16.11), even if other L-violating cou-

plings are large. In the case of R-parity violation via �L �= 0 couplings, the exact

bounds depend on the details of the lepton flavor-violating couplings.

10 See B. Campbell et al., Phys. Lett. B297, 118 (1992), and H. Dreiner and G. Ross, Nucl. Phys. B410, 183
(1993) for further details.
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The upshot of this discussion is that it is possible to construct scenarios consis-

tent with high scale baryogenesis, and where R-parity-violating couplings have an

important impact on collider signatures of supersymmetry.

16.1.3 s-channel sparticle production

If R-parity-violating couplings exist, then a novel feature of SUSY models is the

possibility of resonance production of sparticles.11 By examining the interactions

in Figs. 16.1–16.3, it is easy to see the following processes can occur:

e+e− → ν̃L j (LEP2, NLC), (16.12a)

e−u j → d̃Rk (HERA), (16.12b)

e−d̄k → ¯̃uL j (HERA), (16.12c)

ū j dk → ẽLi (Tevatron, LHC), (16.12d)

d j d̄k → ν̃Li (Tevatron, LHC), (16.12e)

ūi d̄j → d̃Rk (Tevatron, LHC), (16.12f)

d̄j d̄k → ũRi (Tevatron, LHC). (16.12g)

At LEP2 or at an e+e− linear collider, it is thus possible to produce the ν̃μ or ν̃τ in

the s-channel via the λ121 or λ131 couplings, respectively. Neglecting the sneutrino

width, the production cross section is given by

σ (e+e− → ν̃ j ) =
π |λ1 j1|2sδ(s − m2

ν̃ j
)

4m2
ν̃ j

, (16.13)

where s = 4E2
beam. Although the reaction rate may be suppressed by the magnitude

of the R-violating Yukawa coupling, it is greatly enhanced compared to sneutrino

pair production, provided the energy spread of the beam is smaller than the width of

the sneutrino. Once the sneutrino is produced, it may decay via gauge couplings as

ν̃ j → � j W̃1 or ν j Z̃i , or via the R-violating coupling back into e+e−, if the coupling

is large enough. Such reactions have been searched for at LEP2, where limits are

usually placed in the m ν̃ j vs. λ1 j1 plane, and depend on the assumed decay modes.

The R-violating couplings λ122, λ123, λ132, λ133, and λ231 can also be probed at

LEP2 and the NLC via the reactions

γ e± → �±
k ν̃ j , and (16.14a)

γ e± → �̃±
j νk, (16.14b)

11 The alert reader will object that the concept of sparticle is ill-defined when R-parity is not conserved because
odd and even R states can now mix to form the mass eigenstates. By “sparticles” we are, in this chapter,
referring to those mass eigenstates whose content is dominantly R-odd.
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Figure 16.6 An example of resonance production of a top squark via R-parity-
violating couplings at hadron colliders.

where the photon comes either from initial state radiation or from beamstrahlung.

In this case, the production cross section has to be convoluted with a distribution

function such as (12.18) that describes the density of photons in the electron or

positron. Finally, a sparticle may be produced in association with a SM particle in

e+e− collisions via t-channel exchange graphs; the resulting cross sections for these

2 → 2 processes are quite low because R-parity-violating couplings are typically

smaller than gauge couplings.

The HERA ep collider at DESY is unique in that it allows for s-channel squark

production via the λ′
1 j1 and λ′

11k couplings. If the R-violating couplings are large

enough, and the produced squarks decay back into e and a jet, the analysis be-

comes very similar to the one for spin-0 leptoquark production. If the produced

squarks decay instead into SUSY particles, then the signatures can be very dif-

ferent. Searches have been performed by the H1 and ZEUS collaborations. These

searches exclude production of first generation squarks up to 240 GeV assuming

that λ′ >∼
√

4παem, although of course the limit depends strongly on the magnitude

of this coupling. Note that for MSUSY = 240 GeV, couplings of this size appear to

be already excluded by the low energy constraints listed in Table 16.3.

Single squark production is also possible at the Tevatron and LHC colliders,

mediated by the λ′′
i jk couplings: see Fig. 16.6. These couplings are relatively un-

constrained for production of second and third generation squarks. An analysis

of single top squark production at the Fermilab Tevatron via s̄d̄ → t̃1 followed

by t̃1 → bW̃1 decay indicates mt̃1
<∼ 200–300 GeV can be probed with 2 fb−1 of

integrated luminosity, if λ′′
3 jk > 0.02–0.06.12

16.1.4 � R decay of the LSP

If R-parity-violating couplings are small compared to gauge couplings, these do not

alter sparticle mass patterns in any significant manner and the lightest neutralino

12 E. Berger, B. W. Harris and Z. Sullivan, Phys. Rev. D83, 4472 (1999).
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Figure 16.7 R-parity-violating decay of the lightest neutralino.

remains as the LSP in many models. However, these couplings render the LSP

unstable. In this case, the LSP need not be electrically or color neutral, since if

it is unstable, then cosmological bounds on stable relics from the Big Bang no

longer apply. Thus, the g̃, W̃1, q̃, �̃ or ν̃ states are viable LSP candidates, as long

as these decay quickly enough so as not to disrupt nucleosynthesis in the early

Universe.

In models such as mSUGRA, the Z̃1 is usually the LSP over most of parameter

space, just as a consequence of the mSUGRA boundary conditions, and the RGEs.

In this case, it is possible that R-violating couplings are so small that they do

not affect sparticle production or decay reactions, except for the decay of the LSP,

henceforth taken to be Z̃1. An example of Z̃1 → eud̄ decay via ẽL exchange is shown

in Fig. 16.7; two other diagrams involving d̃R and ũL exchange also contribute. In

addition, the λ′
111 term will also mediate the decay Z̃1 → νedd̄.

We make an order of magnitude estimate of the decay length of Z̃1, assuming

that it is a pure photino. In this case, the decay rate simplifies to

	(Z̃1 → eud̄) ∼ 3αλ′2
111

128π2

m5
Z̃1

M4
SUSY

. (16.15)

Roughly speaking, the decay takes place in the detector if cγ τ (Z̃1) <∼ 1 m, where γ

is the Lorentz boost factor γ = EZ̃1
/m Z̃1

. This implies that

λ′
111 > 1.4 × 10−6√γ

(
MSUSY

200 GeV

)2 (
100 GeV

m Z̃1

)5/2

. (16.16)

A similar calculation applies to decays mediated by other λi jk , λ′
i jk or λ′′

i jk couplings.

If the λs are much smaller than this limit, then the Z̃1 will generally escape the

detector, leading to missing energy as in the MSSM with R-parity conservation.

For λ values comparable to the bound in Eq. (16.16), there may exist substantial

decay gaps in collider detectors. If the LSP is not Z̃1 but a charged sparticle, its

production will be signalled by highly ionizing tracks in the detector, followed by
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B- or L-violating decays provided the R-parity-violating coupling responsible for

the decay is large enough.

For a neutralino decaying via one of the λi jk couplings, the decay modes are

Z̃1 → ν̄i ē j ek and νi e j ēk . (16.17)

Since the λi jk are antisymmetric in i j , the i ↔ j modes must be included as well.

For instance, assuming λ121 is dominant, the decays Z̃1 → ν̄eμ̄e, νeμē, ν̄μēe,

and νμeē would each occur with a ∼ 25% branching fraction provided that all the

relevant sleptons have the same mass.

If instead the Z̃1 decays via the λ′
i jk coupling, then the decays are

Z̃1 → ei u j d̄k and ēi ū j dk, as well as (16.18a)

Z̃1 → d jνi d̄k and d̄j ν̄i dk . (16.18b)

The relative branching ratios between the modes containing charged leptons and

those containing neutrinos are model dependent. Note that there are several possible

R-violating Z̃1 decay modes for each λ′
i jk coupling. For instance, if λ′

112 is dominant,

then Z̃1 → eus̄, ēūs with a branching fraction B, and Z̃1 → dνes̄, d̄ ν̄es with a

branching fraction 1 − B.

Finally, if Z̃1 decays via λ′′
i jk couplings, the decay modes are

Z̃1 → ui d j dk and ūi d̄j d̄k . (16.19)

There are nine possibilities, since λ′′
i jk is antisymmetric on the jk indices. For

example, if λ′′
121 is dominant, then Z̃1 → uds or ūd̄ s̄, each with a branching fraction

of 50%.

Exercise We have focussed on the case that the LSP is a neutralino. Assume instead
that the LSP is one of the staus that decays to a pair of SM fermions via one of the
λ or λ′ couplings. Evaluate its decay rate and estimate the range of the R-violating
coupling for which the stau may be detectable as an ionizing track in a collider
detector. For what values of this coupling will the stau decay inside the detector?
List its possible decay modes and calculate the corresponding branching fractions,
assuming that just one of the couplings dominates the decay.

16.1.5 Collider signatures

If R-parity-violating couplings are much smaller than the gauge couplings, the

dominant sparticle pair production mechanisms will be the same as those discussed

in Chapter 12: i.e. sparticle pair production rates will essentially be the same as in the
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MSSM.13 Moreover, heavier sparticles will dominantly decay to lighter sparticles

via their gauge and MSSM superpotential couplings, so that their decay patterns

will also be the same as in the MSSM. The difference is that the lightest sparticle

will decay as discussed in the last section.

The decay of the LSP inside the experimental apparatus has very important

implications for supersymmetric collider signatures.

� The Emiss
T signal that we have been considering as the hallmark of sparticle pro-

duction may be greatly diminished. Except for gravitinos, which are relevant

only in some special scenarios, neutrinos from the decay of the LSP or from other

stages of SUSY cascades will be the only physics source of Emiss
T events. In the

case that the LSP dominantly decays via Z̃1 → cds + c̄d̄ s̄, we may expect that the

observability of SUSY signals at hadron colliders will be considerably degraded,

mostly due to the reduced Emiss
T , but also because the excess hadronic activity

from LSP decays would also make it more difficult for any leptons produced in

SUSY cascade decays to remain isolated.
� If the LSP dominantly decays leptonically into e or μ via λ-type couplings,

then the rates for multilepton events from sparticle production would be greatly

increased, and the SUSY reach at hadron colliders would be considerably larger

than the projections in the last chapter.
� An unstable LSP that decays inside the detector will make it easier to completely

reconstruct SUSY events, especially at an e+e− collider.
� If the LSP is relatively long-lived, it will decay with a displaced vertex which

would serve as an additional handle for selecting the SUSY signal over SM

background. Indeed, it may then be possible to determine the lifetime of the LSP,

and directly obtain information about R-parity-violating couplings.
� If the LSP is charged and long-lived, it can be searched for by looking for heavily

ionizing tracks of relatively slow-moving particles. If it is colored, it would bind

with a quark or gluon to make a charged or neutral strongly interacting particle. A

number of handles, some of which are quite spectacular, may be possible, but the

signals are somewhat dependent on how this particle loses energy in traversing

the material of the detector.14

In the difficult case where the LSP decays hadronically and without any displaced

vertex, simulations within the mSUGRA framework extended by R-parity violation

have shown that experiments at the Fermilab Tevatron may have no observable

signal if gluinos are heavier than about 200 GeV and mq̃ 	 mg̃.15 On the other hand,

13 We will, of course, have the “resonant 2 → 1” s-channel production mechanisms occuring with a rate that is
directly dependent on the corresponding R-parity-violating coupling.

14 See e.g. M. Drees and X. Tata, Phys. Lett. B252, 695 (1990).
15 H. Baer, C. Kao and X. Tata, Phys. Rev. D51, 2180 (1995).
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if the LSP decays dominantly via Z̃1 → ��ν (� = e, μ), there will be observable

signals in the ≥ 4� channel even if mg̃ exceeds 800 GeV with 10 fb−1 of integrated

luminosity.

It is interesting to ask whether sparticles can remain hidden at the LHC in the

case that Z̃1 → cds + cd̄s̄. A detailed study, again within the mSUGRA model

extended to include the λ′′
212 coupling, has shown that the reach in the Emiss

T channel

is indeed greatly degraded relative to that in the mSUGRA model.16 Fortunately,

the reach via multijet plus various n� ≥ 1 lepton channels introduced in the last

chapter, where the leptons come from cascade decays, remains robust for squarks

or gluinos up to just over 1 TeV.

At electron–positron colliders, we do not expect the decays of a neutralino LSP to

significantly alter the mass reach for charged sparticles since this frequently extends

most of the way to the kinematic limit. For the case of an unstable LSP it may in fact

be easier to reconstruct SUSY events as we have already noted. R-parity-violating

couplings may, however, greatly expand the model parameter space for which there

is an observable signal at an e+e− collider because then e+e− → Z̃1 Z̃1 also leads

to detectable signals.17

16.2 Spontaneous (bilinear) R-parity violation

Instead of adding TRV couplings to the superpotential, some authors have suggested

that R-parity may be a symmetry of the Lagrangian, but not a symmetry of the

ground state: i.e. R-parity conservation is broken spontaneously.

A model to exhibit the spontaneous violation of R-parity can be constructed

by adding several new gauge singlet superfields (�̂, ν̂c
i , Ŝi ) which carry lepton

number (0, −1, 1), respectively, but no baryon number (i is a generation index) to

the MSSM.18 The superpotential of the model is given by,

f̂ =
∑

i, j=1,2,3

[

(fu)i jεab Q̂a
i Ĥ b

u Û c
j + (fd)i j Q̂a

i Ĥda D̂c
j + (fe)i j L̂a

i Ĥda Êc
j

+ (fν)i jεab L̂a
i Ĥ b

u ν̂c
j + (f)i j�̂Ŝi ν̂

c
j

]

+ ( f0 Ĥu Ĥd − ε2)�̂. (16.20)

This superpotential which trivially conserves B, also conserves L , and hence also

R-parity. Upon minimization, the corresponding scalar potential develops VEVs in

the directions φ = ν̃iR, S̃i , �̃, h0
u, h0

d and ν̃iL. To illustrate the general idea, it is

sufficient to only consider just one generation. The resulting Lagrangian, written

16 H. Baer, C. Chen and X. Tata, Phys. Rev. D55, 1466 (1997).
17 For a discussion of branching fractions and relative rates into various event topologies at an e+e− collider, see

R. Godbole, P. Roy and X. Tata, Nucl. Phys. B401, 67 (1992).
18 A. Masiero and J. W. F. Valle, Phys. Lett. B251, 273 (1990); for a review, see J. W. F. Valle, hep-ph/9603307

(1996).
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in terms of the shifted fields, appears to violate lepton number, and hence R-parity

conservation, but preserves B so that the proton is safe from decay. Since U (1)L

is spontaneously broken, there is a dominantly gauge singlet, massless Goldstone

boson J , the Majoron, with very weak couplings to the Z boson. The Majoron may

be eliminated by the Higgs mechanism if this model is embedded into one with a

higher gauge symmetry.

Many of the phenomenological effects of spontaneous R-parity violation can be

incorporated into the MSSM by adding just the bilinear terms,

f̂ �
∑

i

μ′
iεab L̂a

i Ĥ b
u (16.21a)

to the superpotential along with the corresponding soft SUSY breaking terms,

Lsoft �
∑

i

biεab L̃a
i H̃ b

u + h.c., (16.21b)

but no TRV couplings. As we have already discussed, it is possible to go to a basis

where the superpotential bilinear R-violating (BRV) interactions are rotated away,

resulting in trilinear couplings in the superpotential, with “sneutrinos” of this basis

developing VEVs.

The BRV model as defined by (16.21a) and (16.21b) leads to several interesting

consequences.19 In the basis where lepton number is violated only by bilinear terms,

there are many new sources of mixing that need to be included to deduce the phe-

nomenological implications. This happens because in the absence of conservation

of the lepton numbers Li , there is no distinction between the three matter doublet

superfields L̂ i and the doublet superfields Ĥd and Ĥu .

� The neutralino fields now mix with the neutrino fields, leading to a 7 × 7 neu-

tralino/neutrino mass matrix. One linear combination of neutrino fields develops

a Majorana mass via tree-level mixing with Higgsinos, while the other combi-

nations acquire masses upon including one-loop corrections if the corresponding

lepton number is also not conserved. While it is possible to accommodate small

neutrino masses, this evidently requires that the parameters be carefully adjusted

to ensure that the tree-level neutrino masses are at the sub-eV level or smaller

as required by phenomenology. It is, perhaps, worth emphasizing that neutrinos

generically acquire Majorana masses in all R-parity-violating models where the

corresponding lepton number is not conserved because there is no symmetry that

precludes these masses from being radiatively generated. Indeed, it is exactly this

19 Although we used the model with spontaneous R-violation as motivation for the BRV model, the two models
are different. In the BRV model, L and R-parity are explicitly broken so that there is no Majoron. Many aspects
of the phenomenology are similar because the Majoron is weakly coupled, and so is mainly relevant for neutrino
physics since it allows for neutrino decays.
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that leads to the bound on λ133 and λ′
133 in Tables 16.2 and 16.3, respectively.

What is unique to the BRV model is that one of the neutrinos acquires an (albeit

too large) mass even at the tree level.
� Likewise, charged gauginos and charged Higgsinos can now mix with the charged

leptons, leading to a 5 × 5 mass matrix for charged fermions. As noted in the

exercise at the start of this chapter, the SM relation between the Yukawa coupling

and the corresponding “fermion mass” is modified.
� In the bosonic sector, the C P-even Higgs fields mix with the real components

of the sneutrino fields, leading to a 5 × 5 mass matrix. The lightest Higgs scalar

always has mass less than the corresponding lightest scalar in the MSSM.
� The imaginary components of the sneutrino fields mix with the C P-odd scalars,

leading to a 5 × 5 mass matrix that includes the massless (would-be) neutral

Goldstone boson which is subsequently eaten up by the Higgs mechanism.
� The fields h±

u and h±
d mix with the charged sleptons; including �̃L − �̃R mixing

effects, an 8 × 8 mass matrix is obtained that includes the (would-be) charged

Goldstone boson.

In addition to low energy effects, e.g. in neutrinoless ββ decay, a variety of

R-violating signals are possible at colliders. In particular, the LSP is unstable, and

can decay for example into Z̃1 → τW (∗) or ντ Z (∗), where the W and Z can be real

or virtual. Decay gaps in Z̃1 decay are likely, and the LSP may appear to be quasi-

stable in a collider detector. In models with a Majoron J , the lightest neutralino

may also decay via Z̃1 → ν J .

The BRV model may also be embedded in the mSUGRA model framework.

In this case, one assumes the MSSM augmented by the bilinear terms (16.21a)

and (16.21b) is valid up to Q = MGUT where, in addition to the usual mSUGRA

boundary conditions (9.18b)–(9.18d), we assume that the three μ′
i unify to μ′

0, and

the B ′
i ≡ bi/μ

′
i unify with the usual Higgs sector B parameter. Compared to the

mSUGRA model, there is then just one more GUT scale parameter in the the-

ory. The RGEs of the MSSM must be supplemented with corresponding RGEs

for the B ′
i s and the μ′

i s.20 The weak scale scalar potential of the model can now

be minimized, exactly as we did in the mSUGRA model, although because there

are now three additional field directions Re(ν̃iL) that can potentially acquire VEVs

the details are more complicated. The five minimization conditions for the po-

tential fix these VEVs in terms of the potential parameters. Then, exactly as in

the mSUGRA framework, one of the GUT scale parameters is fixed by the ex-

perimental value of MZ , so that it would appear that the unified BRV model con-

tains one more parameter than the mSUGRA framework. We should remember

20 Renormalization group evolution does not generate trilinear superpotential couplings or soft parameters if these
have been set to zero.
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however, that the mass of the heaviest neutrino (the other neutrinos are massless at

tree level) must be in accord with atmospheric neutrino data, given its successful

interpretation in terms of neutrino oscillations.21 This would then mean that the

model does not contain any additional free parameters. It has been argued that

if the neutrino mass is constrained to be <∼ 1 eV, many R-parity-violating effects

are also suppressed within this constrained framework.22 Even so, the “TRV” cou-

plings in the superpotential induced upon rotating away the bilinear terms may be

as big as ∼ 10−4 (depending on other parameters) of the original (R-conserving)

superpotential coupling, in which case neutralino LSPs would still decay inside the

detector.

21 The charged fermion masses are all fixed by the corresponding Yukawa couplings exactly as in mSUGRA,
and so do not enter our parameter counting. The neutrino which acquires a Majorana mass via mixing with the
Higgsino, however, has no Yukawa couplings, so that its mass serves as a constraint on the other parameters,
which must be fine-tuned to mν in the sub-eV range.

22 See J. Ferrandis, Phys. Rev. D60, 095012 (1999).
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Epilogue

Almost no one doubts that the Standard Model is only an effective theory that has

to be incorporated into a larger framework. What this framework will ultimately

look like, we do not know. Empirical facts that we cannot account for in the Stan-

dard Model, such as neutrino masses, dark matter, and dark energy, provide some

guidance. Aesthetic considerations such as the desire for unification of interactions

and for an understanding of the patterns of matter fermion masses and mixing

angles also guide our thinking. Although this seems rather removed from particle

physics today, we also hope that one day we will have a framework that consistently

incorporates gravity.

It was, however, efforts to resolve the fine-tuning problem of the Standard Model

that led us to arrive at the exciting conclusion that there must be new physics

at the TeV scale that can be probed at high energy colliders such as the LHC

or a TeV electron–positron linear collider. Weak scale supersymmetry provides

an attractive resolution of this problem, and continues to hold promise also for

several other reasons, detailed at the end of Chapter 2. Indeed, many of these

positive aspects of supersymmetric models have become evident only in the last

10–15 years – many years after the discovery of supersymmetry, and well after the

effort to explore its phenomenological implications had begun in earnest. We be-

lieve that the motivations for seriously examining supersymmetry remain as strong

as ever.

These promising features notwithstanding, SUSY is not a panacea. By itself,

it has nothing to say about the choice of gauge group or particle multiplets, the

replication of generations, or the patterns of matter fermion masses and mixing

angles (though specific SUSY models that incorporate these patterns have been

constructed). In fact, generic SUSY models lead to new problems not present in

the Standard Model.

474
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1. Why do baryon and lepton numbers appear to be conserved when we can write

down renormalizable SU (3)C × SU (2)L × U (1)Y invariant interactions that

violate their conservation?

2. What is the origin of SUSY breaking, and what makes the SUSY breaking scale

required to avoid fine tuning so much smaller than the Planck or GUT scales?

3. Why is the supersymmetric parameter μ so much smaller than the Planck scale?

4. What makes the flavor-violating interactions of scalar quarks and leptons

so small when we can write gauge invariant renormalizable flavor-violating

couplings for these?

5. What makes the potentially large C P-violating effects in supersymmetry so

small?

We stress that these are problems only of a generic SUSY theory, that can with

suitable (but seemingly ad hoc) assumptions be overcome in specific models. In-

deed, we have studied such models in the text. The point, however, is that while

none of these were issues in the Standard Model, they appear to be so in the su-

persymmetric context. We speculate that once the mechanism of supersymmetry

breaking is understood, the answers to these questions will appear evident; in the

meantime, these should serve to guide our thinking about how supersymmetry is

broken.

If nature turns out to be supersymmetric, it will change the physicist’s view

of the Universe. Indeed, the wide range of issues that might be addressed by the

inclusion of supersymmetry in particle physics has led many physicists to expect

that supersymmetry is realized in nature. While we know that supersymmetry –

if it exists – must be broken, the scale of supersymmetry breaking is not known.

However, if supersymmetry is the new physics that stabilizes the scalar electroweak

symmetry breaking sector, supersymmetric matter will ultimately be revealed at or

near the weak scale. With the LHC set to begin operation in 2007, and with the

high energy physics community seriously considering the possibility of a TeV scale

e+e− linear collider, this is an exciting prospect.

Only experiments can tell whether weak scale supersymmetry is realized in na-

ture. The important thing is that the idea of weak scale supersymmetry can be

directly tested in experiments at various collider and non-accelerator facilities.

The fact that supersymmetric theories can sensibly be extrapolated to much higher

energy scales suggests that if superpartners are discovered and their properties mea-

sured, we may be able to learn about physics at energy scales not directly accessible

to experiment. Whether or not supersymmetric particles are discovered soon, it is

clear that the exploration of the TeV scale will provide clues for unravelling the

nature of electroweak symmetry breaking interactions. We must look to see what

we find.



Appendix A

Sparticle production cross sections

In this appendix, we list all 2 → 2 sparticle production subprocess cross sections,

first for hadron colliders, and then for e+e− colliders.

A.1 Sparticle production at hadron colliders

A.1.1 Chargino and neutralino production

The production subprocess cross section for dū → W̃i Z̃ j has already been pre-

sented in Chapter 12, so will not be repeated here.

For dd̄ → W̃1W̃ 1, we find (here, W̃1 ≡ W̃ −
1 and W̃ 1 ≡ W̃ +

1 )

dσ

dz
(dd̄ → W̃1W̃ 1) = pW̃1

192π ŝ3/2

[
Mγ + MZ + Mũ + Mγ Z + Mγ ũ + MZũ

]
,

(A.1)

where

Mγ = 16e4 Q2
d

ŝ

[

E2(1 + z2) + m2
W̃1

(1 − z2)
]

,

MZ = 16e4 cot2 θWŝ|DZ (ŝ)|2
{

(x2
c + y2

c )(α2
d + β2

d )[E2(1 + z2) + m2
W̃1

(1 − z2)]

− 2y2
c (α2

d + β2
d )m2

W̃1
− 8xc ycαdβd Epz

}

,

Mũ = e4 sin4 γRŝ

sin4 θW[E2 + p2 − 2Epz + m2
ũL

]2
(E − pz)2,

Mγ Z = 32e4 Qd cot θW(ŝ − M2
Z )|DZ (ŝ)|2

×
{

αd xc[E2(1 + z2) + m2
W̃1

(1 − z2)] − 2βd yc Epz
}

,

Mγ ũ = 4e4 Qd sin2 γR

sin2 θW

[(E − pz)2 + m2
W̃1

]

[E2 + p2 − 2Epz + m2
ũL

]
, and

476
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MZũ = 4e4 cot θW sin2 γR

sin2 θW

(ŝ − M2
Z )(αd − βd)ŝ|DZ (ŝ)|2

×
{

(xc − yc)[(E − pz)2 + m2
W̃1

] + 2ycm2
W̃1

E2 + p2 − 2Epz + m2
ũL

}

.

The corresponding expression for uū → W̃1W̃ 1 is obtained from the one above by

making several changes. Of course, the contribution from ũ exchange is replaced

by that from d̃ exchange. To obtain the chargino production cross section from

uū collisions, replace, (i) αd → αu , βd → βu , Qd → Qu , ũL → d̃L, and γR → γL

everywhere, (ii) z → −z in just Md̃ , Mγ d̃ , and MZd̃ , (iii) change the sign of Mγ d̃

and MZd̃ , and finally, (iv) change yc → −yc, in just MZd̃ . The corresponding cross

sections for W̃2W̃ 2 production can be obtained from those for W̃1W̃ 1 production by

replacing mW̃1
→ mW̃2

, sin γR → cos γR, sin γL → cos γL, and (xc, yc) → (xs, ys).

The cross section for dd̄ → W̃1W̃ 2 is given by

dσ̂

dz
(dd̄ → W̃1W̃ 2) = e4 p

192π ŝ1/2
(MZ + Mũ + MZũ) , (A.2)

where

MZ = 4(cot θW + tan θW)2|DZ (ŝ)|2 × [
(x2 + y2)(α2

d + β2
d )(E2 + p2z2

−�2 − ξmW̃1
mW̃2

) + 2x2ξ (α2
d + β2

d )mW̃1
mW̃2

− 8xyαdβd Epz
]
,

Mũ = sin2 γR cos2 γR

sin4 θW

[(E − pz)2 − �2]

[2E(E − �) − 2Epz + m2
ũL

− m2
W̃1

]2
,

MZũ = −2θy(cot θW + tan θW) sin γR cos γR(ŝ − M2
Z )(αd − βd)|DZ (ŝ)|2

sin2 θW

× (x − y)[(E − pz)2 − �2 − ξmW̃1
mW̃2

] + 2xξmW̃1
mW̃2

[2E(E − �) − 2Epz + m2
ũL

− m2
W̃1

]
,

where � = m2
W̃2

−m2
W̃1

4E and ξ = (−1)θW̃1
+θW̃2

+1. The corresponding expression for

uū → W̃1W̃ 2 is obtained from the one above by replacing, (i) αd → αu , βd → βu ,

ũL → d̃L, and γR → γL, everywhere, (ii) z → −z in Md̃ and MZd̃ , and finally,

(iii) just in MZd̃ , θy → θx , ξ → −ξ , (x − y) → (x + y) (in the first term) and

x → y (in the second term containing mW̃1
mW̃2

).

The cross section for neutralino pair production is given by,

dσ

dz
(qq̄ → Z̃i Z̃ j ) = p

48π ŝ3/2

{

|Aq
Z̃i

|2|Aq
Z̃ j

|2Gt (m Z̃i
, m Z̃ j

, mq̃L
, z)
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+|Bq
Z̃i

|2|Bq
Z̃ j

|2Gt (m Z̃i
, m Z̃ j

, mq̃R
, z) + 4e2|Wi j |2(α2

q + β2
q )|DZ (ŝ)|2

×
[

ŝ2 − (m2
Z̃i

− m2
Z̃ j

)2 + 4(−1)θi +θ j +1ŝm Z̃i
m Z̃ j

+ 4ŝ p2z2
]

−1

2
e(αq − βq)(ŝ − M2

Z )|DZ (ŝ)|2
[

Re(Wi j Aq∗
Z̃i

Aq
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mq̃L
, z)

+ (−1)θi +θ j Re(Wi j Aq
Z̃i

Aq∗
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mq̃L
, −z)

]

− 1

2
e(−1)θi +θ j +1

×(αq + βq)(ŝ − M2
Z )|DZ (ŝ)|2

[

Re(Wi j Bq∗
Z̃i

Bq
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mq̃R
, z)

+ (−1)θi +θ j Re(Wi j Bq
Z̃i

Bq∗
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mq̃R
, −z)

]}

, (A.3)

where

p =
λ1/2(ŝ, m2

Z̃i
, m2

Z̃ j
)

2
√

ŝ
, (A.4a)

Gt (m Z̃i
, m Z̃ j

, mq̃, z)

= 1

16

⎧
⎨

⎩

⎡

⎣
ŝ2 − (m2

Z̃i
− m2

Z̃ j
)2 − 4pŝ3/2z + 4p2ŝz2

[ 1
2
(ŝ − m2

Z̃i
− m2

Z̃ j
) − √

ŝ pz + m2
q̃]2

+
ŝ2 − (m2

Z̃i
− m2

Z̃ j
)2 + 4pŝ3/2z + 4p2ŝz2

[ 1
2
(ŝ − m2

Z̃i
− m2

Z̃ j
) + √

ŝ pz + m2
q̃]2

⎤

⎦

− 8(−1)θi +θ j m Z̃i
m Z̃ j

ŝ

[ 1
2
(ŝ − m2

Z̃i
− m2

Z̃ j
) + √

ŝ pz + m2
q̃][ 1

2
(ŝ − m2

Z̃i
− m2

Z̃ j
) − √

ŝ pz + m2
q̃]

⎫
⎬

⎭
,

(A.4b)

and

Gst (m Z̃i
, m Z̃ j

, mq̃, z)

=
ŝ2 − (m2

Z̃i
− m2

Z̃ j
)2 − 4ŝ3/2 pz + 4ŝ p2z2 + 4(−1)θi +θ j +1ŝm Z̃i

m Z̃ j

1
2
(ŝ − m2

Z̃i
− m2

Z̃ j
) − √

ŝ pz + m2
q̃

.

(A.4c)

A.1.2 Gluino and squark production

Next, we turn to production of strongly interacting sparticles. Gluino pair production

takes place via either gluon–gluon annihilation, or via quark–antiquark annihilation.

The subprocess cross sections are usually presented as differential distributions in
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the Mandelstam variable t̂ :

dσ

dt̂
(gg → g̃g̃)

= 9πα2
s

4ŝ2

{
2(m2

g̃ − t̂)(m2
g̃ − û)

ŝ2
+ (m2

g̃ − t̂)(m2
g̃ − û) − 2m2

g̃(m2
g̃ + t̂)

(m2
g̃ − t̂)2

+ (m2
g̃ − t̂)(m2

g̃ − û) − 2m2
g̃(m2

g̃ + û)

(m2
g̃ − û)2

+ m2
g̃(ŝ − 4m2

g̃)

(m2
g̃ − t̂)(m2

g̃ − û)

− (m2
g̃ − t̂)(m2

g̃ − û) + m2
g̃(û − t̂)

ŝ(m2
g̃ − t̂)

− (m2
g̃ − t̂)(m2

g̃ − û) + m2
g̃(t̂ − û)

ŝ(m2
g̃ − û)

}

,

(A.5a)

and

dσ

dt̂
(qq̄ → g̃g̃)

= 8πα2
s

9ŝ2

⎧
⎨

⎩

4

3

(
m2

g̃ − t̂

m2
q̃ − t̂

)2

+ 4

3

(
m2

g̃ − û

m2
q̃ − û

)2

+ 3

ŝ2

[
(m2

g̃ − t̂)2 + (m2
g̃ − û)2 + 2m2

g̃ ŝ
] − 3

[
(m2

g̃ − t̂)2 + m2
g̃ ŝ

]

ŝ(m2
q̃ − t̂)

− 3

[
(m2

g̃ − û)2 + m2
g̃ ŝ

]

ŝ(m2
q̃ − û)

+ 1

3

m2
g̃ ŝ

(m2
q̃ − t̂)(m2

q̃ − û)

⎫
⎬

⎭
. (A.5b)

Gluinos can also be produced in association with squarks. The subprocess cross

section is independent of whether the squark is the right- or the left-type:

dσ

dt̂
(gq → g̃q̃) = πα2

s

24ŝ2

[
16
3

(ŝ2 + (m2
q̃ − û)2) + 4

3
ŝ(m2

q̃ − û)
]

ŝ(m2
g̃ − t̂)(m2

q̃ − û)2

×
(

(m2
g̃ − û)2 + (m2

q̃ − m2
g̃)2 + 2ŝm2

g̃(m2
q̃ − m2

g̃)

(m2
g̃ − t̂)

)

. (A.6)

There are many different subprocesses for production of squark pairs. Since left-

and right-squarks generally have different masses and different decay patterns,

we present the differential cross section for each subprocess separately. (In early

literature, these subprocesses were usually summed over squark types.) The results
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are:

dσ

dt̂
(gg → q̃i ¯̃qi ) = πα2

s

4ŝ2

⎧
⎨

⎩

1

3

(
m2

q̃ + t̂

m2
q̃ − t̂

)2

+ 1

3

(
m2

q̃ + û

m2
q̃ − û

)2

+ 3

32ŝ2

(
8ŝ(4m2

q̃ − ŝ) + 4(û − t̂)2
) + 7

12

− 1

48

(4m2
q̃ − ŝ)2

(m2
q̃ − t̂)(m2

q̃ − û)

+ 3

32

[
(t̂ − û)(4m2

q̃ + 4t̂ − ŝ) − 2(m2
q̃ − û)(6m2

q̃ + 2t̂ − ŝ)
]

ŝ(m2
q̃ − t̂)

+ 3

32

[
(û − t̂)(4m2

q̃ + 4û − ŝ) − 2(m2
q̃ − t̂)(6m2

q̃ + 2û − ŝ)
]

ŝ(m2
q̃ − û)

+ 7

96

[
4m2

q̃ + 4t̂ − ŝ
]

m2
q̃ − t̂

+ 7

96

[
4m2

q̃ + 4û − ŝ
]

m2
q̃ − û

⎫
⎬

⎭
, (A.7a)

dσ

dt̂
(q1q̄2 → q̃1L ¯̃q2R) = dσ

dt
(q1q̄2 → q̃1R ¯̃q2L)

= 2πα2
s

9ŝ2

m2
g̃ ŝ

(t̂ − m2
g̃)2

, (A.7b)

dσ

dt̂
(q1q̄2 → q̃1L(R) ¯̃q2L(R)) = 2πα2

s

9ŝ2

−ŝ t̂ − (t̂ − m2
q̃L(R)

)2

(t̂ − m2
g̃)2

, (A.7c)

dσ

dt̂
(q1q2 → q̃1Lq̃2R) = dσ

dt̂
(q1q2 → q̃1Rq̃2L)

= 2πα2
s

9ŝ2

−ŝ t̂ − (t̂ − m2
q̃L

)(t̂ − m2
q̃R

)

(t̂ − m2
g̃)2

, (A.7d)

dσ

dt̂
(q1q2 → q̃1L(R)q̃2L(R)) = 2πα2

s

9ŝ2

m2
g̃ ŝ

(t̂ − m2
g̃)2

, (A.7e)

dσ

dt̂
(qq̄ → q̃L ¯̃qR) = dσ

dt̂
(qq̄ → q̃R ¯̃qL) = 2πα2

s

9ŝ2

m2
g̃ ŝ

(t̂ − m2
g̃)2

, (A.7f)

dσ

dt̂
(qq̄ → q̃L(R) ¯̃qL(R)) = 2πα2

s

9ŝ2

{

1

(t̂ − m2
g̃)2

+ 2

ŝ2
− 2/3

ŝ(t̂ − m2
g̃)

}

×
[

−ŝ t̂ − (t̂ − m2
q̃L(R)

)2
]

, (A.7g)
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dσ

dt̂
(qq̄ → q̃ ′

L(R)
¯̃q ′

L(R)) = 4πα2
s

9ŝ4

[

−ŝ t̂ − (t̂ − m2
q̃ ′

L(R)
)2

]

, (A.7h)

dσ

dt̂
(qq → q̃Lq̃L) = dσ

dt̂
(qq → q̃Rq̃R)

= πα2
s

9ŝ2
m2

g̃ ŝ

{

1

(t̂ − m2
g̃)2

+ 1

(û − m2
g̃)2

− 2/3

(t̂ − m2
g̃)(û − m2

g̃)

}

, (A.7i)

and

dσ

dt̂
(qq → q̃Lq̃R)

= 2πα2
s

9ŝ2

{
[−ŝ t̂ − (t̂ − m2

q̃L
)(t̂ − m2

q̃R
)]

(t̂ − m2
g̃)2

+ [−ŝû − (û − m2
q̃L

)(û − m2
q̃R

)]

(û − m2
g̃)2

}

.

(A.7j)

Because there are essentially no third generation quarks in the proton, these cross

sections for gluino and squark production are fixed by SUSY QCD, and depend only

on the masses of the squarks and gluinos: in particular, cross sections for producing

third generation squarks do not depend on the intra-generational mixing. In this

case, the squark type should be read as 1 or 2 instead of L or R. Refer back to the

exercise in Section 8.4.1 in this connection.

A.1.3 Gluino and squark associated production

Gluinos and squarks may also be produced in association with charginos and neu-

tralinos. Here, the subprocess cross sections are given by:

dσ

dt̂
(ūg → W̃i

¯̃dL) = αs

24ŝ2
|Au

W̃i
|2ψ(md̃L

, mW̃i
, t̂), (A.8)

dσ

dt̂
(dg → W̃i ũL) = αs

24ŝ2
|Ad

W̃i
|2ψ(mũL

, mW̃i
, t̂), (A.9)

dσ

dt̂
(qg → Z̃i q̃) = αs

24ŝ2

(

|Aq
Z̃i

|2 + |Bq
Z̃i

|2
)

ψ(mq̃, m Z̃i
, t̂), (A.10)

dσ

dt̂
(qq̄ → Z̃i g̃) = αs

18ŝ2

(

|Aq
Z̃i

|2 + |Bq
Z̃i

|2
)

[
(m2

Z̃i
− t̂)(m2

g̃ − t̂)

(m2
q̃ − t̂)2

+
(m2

Z̃i
− û)(m2

g̃ − û)

(m2
q̃ − û)2

− 2(−1)θi +θg̃ mg̃m Z̃i
ŝ

(m2
q̃ − t̂)(m2

q̃ − û)

]

, (A.11)



482 Appendix A. Sparticle production cross sections

and

dσ

dt̂
(ūd → W̃i g̃) = αs

18ŝ2

[

|Au
W̃i

|2
(m2

W̃i
− t̂)(m2

g̃ − t̂)

(m2
d̃L

− t̂)2

+|Ad
W̃i

|2
(m2

W̃i
− û)(m2

g̃ − û)

(m2
ũL

− û)2

+
2(−1)θg̃ Re(Au

W̃i
Ad

W̃i
)mg̃mW̃i

ŝ

(m2
d̃L

− t̂)(m2
ũL

− û)

]

, (A.12)

where

ψ(m1, m2, t) = s + t − m2
1

2s
− m2

1(m2
2 − t)

(m2
1 − t)2

+ t(m2
2 − m2

1) + m2
2(s − m2

2 + m2
1)

s(m2
1 − t)

.

(A.13)

A.1.4 Slepton and sneutrino production

The subprocess cross section for �̃L ¯̃νL production is given by

dσ

dt̂
(dū → �̃L ¯̃νL) = g4|DW (ŝ)|2

192π ŝ2

(

t̂ û − m2
�̃L

m2
ν̃L

)

. (A.14)

The production of τ̃1 ¯̃ντ is given as above, replacing m �̃L
→ m τ̃1

, m ν̃L
→ m ν̃τ

, and

multiplying by an overall factor of cos2 θτ . Similar substitutions hold for τ̃2 ¯̃ντ

production, except the overall factor is sin2 θτ .

The subprocess cross section for �̃L
¯̃�L production is given by

dσ

dt̂
(qq̄ → �̃L

¯̃�L)

= e4

24π ŝ2

(

t̂ û − m4
�̃L

)
{

q2
� q2

q

ŝ2
+ (α� − β�)2(α2

q + β2
q )|DZ (ŝ)|2

+ 2q�qqαq(α� − β�)(ŝ − M2
Z )

ŝ
|DZ (ŝ)|2

}

. (A.15a)

The cross section for sneutrino production is given by the same formula, but with

α�, β�, q�, and m �̃L
replaced by αν , βν , 0, and m ν̃L

, respectively. The cross section

for τ̃1 ¯̃τ1 production is obtained by replacing m �̃L
→ m τ̃1

and β� → β� cos 2θτ . The

cross section for �̃R
¯̃�R production is given by substituting α� − β� → α� + β� and

m �̃L
→ m �̃R

in (A.15a). The cross section for τ̃2 ¯̃τ2 production is obtained from the

formula for �̃R
¯̃�R production by replacing m �̃R

→ m τ̃2
and β� → β� cos 2θτ . Finally,
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the cross section for τ̃1 ¯̃τ2 production is given by

dσ

dt̂
(qq̄ → τ̃1 ¯̃τ2) = dσ

dt̂
(qq̄ → ¯̃τ1τ̃2)

= e4

24π ŝ2
(α2

q + β2
q )β2

� sin2 2θτ |DZ (ŝ)|2(ût̂ − m2
τ̃1

m2
τ̃2

).

(A.15b)

A.2 Sparticle production at e+e− colliders

The degree of longitudinal beam polarization has been parametrized as

PL(e−) = fL − fR, where (A.16a)

fL = nL

nL + nR

= 1 + PL

2
and (A.16b)

fR = nR

nL + nR

= 1 − PL

2
. (A.16c)

Here, nL,R are the number of left-(right-)polarized electrons in the beam, and fL,R

is the corresponding fraction. Thus, a 90% right-polarized beam would correspond

to PL(e−) = −0.8, and a completely unpolarized beam corresponds to PL(e−) = 0.

We present in this section relevant 2 → 2 SM and SUSY cross sections, retaining

information on the polarization of the incoming beams. The calculations can be

performed using usual techniques, but in addition inserting projection operators

PL = 1−γ5

2
and PR = 1+γ5

2
to select the desired left- or right-polarized initial state

particles.1

We begin by listing lowest order Standard Model cross sections for right- or

left-polarized incoming electrons and positrons. For SM fermion pair production,

we have:

dσ

dz
(eR/LēL/R → f f̄ ) = N f

4π

p

E
� f R/L(z) (A.17a)

where z = cos θ (θ is the angle between the final state particle and the electron), E
is the beam energy, and p is the magnitude of the momentum of the final state SM

fermions, f = μ, τ, νμ, ντ , and q, and:

� f R/L(z) = e4

[
q2

f

s2

(
E2(1 + z2) + m2

f (1 − z2)
) + (αe ± βe)2

(s − M2
Z )2 + M2

Z�2
Z

× ([
(α2

f + β2
f )(E2 + p2z2) ± 4α f β f Epz + (α2

f − β2
f )m2

f

])

1 We assume that we are at high energy E � me so that the difference between chirality and helicity can be
safely ignored.
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− 2(αe ± βe)(s − M2
Z )q f

s[(s − M2
Z )2 + M2

Z�2
Z ]

(
α f

[
E2(1 + z2) + m2

f (1 − z2)
]

± 2β f Epz
)
]

. (A.17b)

The upper (lower) signs are for � f R (� f L). For electron pair production t-channel

photon exchange contributions must be included. For Z pair production, we have

dσ

dz
(eR/LēL/R → Z Z )

= e4(αe ± βe)4 p

4πs
√

s

[
u(z)

t(z)
+ t(z)

u(z)
+ 4M2

Z s

u(z)t(z)
− M4

Z

(
1

t2(z)
+ 1

u2(z)

)]

,

(A.18)

where s, t(z), and u(z) are the Mandelstam variables. For W +W − production we

have,

dσ

dz
(eR/LēL/R → W +W −) = e4 p

16πs
√

s sin4 θW

�W W R/L(z), (A.19a)

where

�W W R(z) = 4(αe + βe)2 tan2 θW|DZ |2
s2

[
UT (z)(p2s + 3M4

W ) + 4M2
W p2s2

]
,

(A.19b)

and

�W W L(z) = UT (z)

s2

[
3 + 2(αe − βe) tan θW(s − 6M2

W )Re(DZ )

+ 4(αe − βe)2 tan2 θW(p2s + 3M4
W )|DZ |2] + UT (z)

t2(z)

+ 8(αe − βe) tan θW M2
W Re(DZ ) + 16(αe − βe)2 tan2 θW M2

W p2|DZ |2

+ 2
[
1 − 2(αe − βe) tan θW M2

W Re(DZ )
]
[

UT (z)

st(z)
− 2M2

W

t(z)

]

, (A.19c)

with UT (z) = u(z)t(z) − M4
W , and DZ = (s − M2

Z + iMZ�Z )−1.

The reader will have noticed that we have not listed cross sections from the

eL/RēL/R initial states. This is because these cross sections vanish in the chiral limit,

i.e. when the electron mass is neglected. The reason is that gauge interactions couple

members of the electroweak doublets (singlets) to one another, but never a doublet

to a singlet. The same reasoning, therefore, applies to SUSY processes that involve

only s-channel photon and Z exchange. The reader should understand that these

unlisted cross sections also vanish.
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For lowest order MSSM Higgs boson production, we have

dσ

dz
(eR/LēL/R → Zh) = p

16π
√

s

e4 sin2(α + β)

sin2 θW cos2 θW

× (αe ± βe)2

(s − M2
Z )2 + M2

Z�2
Z

(M2
Z + E2

Z − p2z2). (A.20a)

To obtain the corresponding cross section for Z H production, replace sin2(α + β)

with cos2(α + β). The angular distribution for the production of h (or H ) bosons

in association with A is given by,

dσ

dz
(eR/LēL/R → h A)

= p3

16π
√

s

e4 cos2(α + β)

sin2 θW cos2 θW

(αe ± βe)2

(s − M2
Z )2 + M2

Z�2
Z

(1 − z2); (A.20b)

for H A production, replace cos2(α + β) with sin2(α + β). Finally, the differential

cross section for H+ H− production is given by,

dσ

dz
(eR/LēL/R → H+ H−) = e4

4π

p3

√
s

(1 − z2)

×
[

1

s2
+

(
2 sin2 θW − 1

2 cos θW sin θW

)2
(αe ± βe)2

(s − M2
Z )2 + M2

Z�2
Z

+ 1

s

(
2 sin2 θW − 1

cos θW sin θW

)
(αe ± βe)(s − M2

Z )

(s − M2
Z )2 + M2

Z�2
Z

]

.

(A.20c)

For sfermion pair production ( f̃i
¯̃
if , with f = μ, νμ, ντ , u, d, c, s, and i = L

or R), we find:

dσ

dz
(eR/LēL/R → f̃i

¯̃
if ) = N f

256π

p3

E3
� f̃i R/L(z), (A.21a)

where

� f̃i R/L(z) = e4(1 − z2)×
[

8q2
f

s
+ 2A2

fi
(αe ± βe)2s − 8(αe ± βe)q f A fi (s − M2

Z )

(s − M2
Z )2 + M2

Z�2
Z

]

, (A.21b)

and A fL,R
= 2(α f ∓ β f ). The cross sections for producing f̃ L f̃ R pairs are zero

since both the photon and the Z boson only couple to pairs of like type (LL or RR)

sfermions. In the corresponding expressions for third generation sfermions, we need
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to include intragenerational mixing. For the case of t̃1¯̃t1 production, we have At1 =
2(αt − βt ) cos2 θt + 2(αt + βt ) sin2 θt ; for t̃2¯̃t2 production, simply switch cos2 θt

with sin2 θt . Since Z couples to t̃1 t̃2 pairs we also have,

dσ

dz
(eR/LēL/R → t̃1¯̃t2) = 48πα2

√
s

(αe ± βe)2β2
t cos2 θt sin2 θt

[(s − M2
Z )2 + M2

Z�2
Z ]

p3(1 − z2).

(A.21c)

The differential cross sections for stau and sbottom pair production are given by

analogous formulae.

For selectron pair production, we find

dσ

dz
(eR/LēL/R → ẽL ¯̃eL) = 1

256π

p3

E3
�ẽLR/L(z), (A.22a)

where

�ẽLR(z) = �μ̃LR(z), (A.22b)

and

�ẽLL(z) = �μ̃LL(z) +
4∑

i=1

2|Ae
Z̃i

|4s(1 − z2)

[2E(E − pz) − m2
ẽL

+ m2
Z̃i

]2

− 8e2(1 − z2)
4∑

i=1

|Ae
Z̃i

|2
[2E(E − pz) − m2

ẽL
+ m2

Z̃i
]

×
[

1 + (αe − βe)2s(s − M2
Z )

(s − M2
Z )2 + M2

Z�2
Z

]

+
4∑

i< j=1

4|Ae
Z̃i

|2|Ae
Z̃ j

|2s(1 − z2)

[2E(E − pz) − m2
ẽL

+ m2
Z̃i

][2E(E − pz) − m2
ẽL

+ m2
Z̃ j

]
.

(A.22c)

Similarly,

dσ

dz
(eR/LēL/R → ẽR ¯̃eR) = 1

256π

p3

E3
�ẽRR/L(z), (A.23a)

where

�ẽRL(z) = �μ̃RL(z), (A.23b)

and

�ẽRR(z) = �ẽLL(z) but with the substitutions,
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Ae
Z̃i

→ Be
Z̃i

, mẽL
→ mẽR

, and (αe − βe) → (αe + βe). (A.23c)

For ẽLẽR production, we have,2

dσ

dz
(eRēL → ẽL ¯̃eR) = dσ

dz
(eLēR → ẽR ¯̃eL) = 0, (A.24a)

while

dσ

dz
(eLēL → ẽL ¯̃eR) = 1

32πs

p

E

[
4∑

i=1

|Ae
Z̃i

|2|Be
Z̃i

|2m2
Z̃i

[EẽL
− pz + aZ̃i

]2

+
4∑

i< j=1

2m Z̃i
m Z̃ j

Re(Ae
Z̃i

Ae∗
Z̃ j

Be∗
Z̃i

Be
Z̃ j

)

[EẽL
− pz + aZ̃i

][EẽL
− pz + aZ̃ j

]

]

, (A.24b)

where aZ̃i
= m2

Z̃i
−m2

ẽL

2E , and

dσ

dz
(eRēR → ẽR ¯̃eL) = 1

32πs

p

E

[
4∑

i=1

|Ae
Z̃i

|2|Be
Z̃i

|2m2
Z̃i

[EẽR
− pz + aZ̃i

]2

+
4∑

i< j=1

2m Z̃i
m Z̃ j

Re(Ae
Z̃i

Ae∗
Z̃ j

Be∗
Z̃i

Be
Z̃ j

)

[EẽR
− pz + aZ̃i

][EẽR
− pz + aZ̃ j

]

]

, (A.24c)

where now aZ̃i
= m2

Z̃i
−m2

ẽR

2E .

For ν̃e pair production, we find

dσ

dz
(eRēL → ν̃e ¯̃νe) = dσ

dz
(eRēL → ν̃μ

¯̃νμ), (A.25a)

while
dσ

dz
(eLēR → ν̃e ¯̃eν )

= p3 E

8π
(1 − z2)

[

4e4(αν − βν)2(αe − βe)2

(s − M2
Z )2 + M2

Z�2
Z

+ g4 sin4 γR

[2E(E − pz) + m2
W̃1

− m2
ν̃e

]2
+ g4 cos4 γR

[2E(E − pz) + m2
W̃2

− m2
ν̃e

]2

− 4e2g2(αν − βν)(αe − βe)(s − M2
Z ) sin2 γR

[(s − M2
Z )2 + M2

Z�2
Z ][2E(E − pz) + m2

W̃1
− m2

ν̃e
]

2 As long as we neglect electron Yukawa couplings, neutralinos couple doublets (singlets) to doublets (singlets).
Thus ẽL ¯̃eR production occurs only from the eL/RēL/R initial state via t-channel neutralino exchange, in sharp
contrast to other SUSY processes that we have seen. We will leave it to the reader to work out in advance
those polarizations of the initial electron and positron beams that contribute to chargino and neutralino pair
production processes which, we recall, have both s- and t-channel contributions.
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− 4e2g2(αν − βν)(αe − βe)(s − M2
Z ) cos2 γR

[(s − M2
Z )2 + M2

Z�2
Z ][2E(E − pz) + m2

W̃2
− m2

ν̃e
]

+ 2g4 sin2 γR cos2 γR

[2E(E − pz) + m2
W̃1

− m2
ν̃e

][2E(E − pz) + m2
W̃2

− m2
ν̃e

]

]

. (A.25b)

The differential cross sections for neutralino pair production are given by,

dσ

dz
(eR/LēL/R → Z̃i Z̃ j ) = p

8πs
√

s

(
MẽẽR/L + MZ ZR/L + MZẽR/L

)
, (A.26)

with

MẽẽR = 2|Be
Z̃i

|2|Be
Z̃ j

|2Gt (m Z̃i
, m Z̃ j

, mẽR
, z),

MẽẽL = 2|Ae
Z̃i

|2|Ae
Z̃ j

|2Gt (m Z̃i
, m Z̃ j

, mẽL
, z),

MZ ZR/L =

4e2|Wi j |2(αe ± βe)2

(s − M2
Z )2 + M2

Z�2
Z

[

s2 − (m2
Z̃i

− m2
Z̃ j

)2 − 4(−1)θi +θ j sm Z̃i
m Z̃ j

+ 4sp2z2
]

,

MZẽR = −e(−1)(θi +θ j +1)(αe + βe)(s − M2
Z )

2[(s − M2
Z )2 + M2

Z�2
Z ]

×
[

Re(Wi j Be∗
Z̃i

Be
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mẽR
, z)

+(−1)(θi +θ j )Re(Wi j Be
Z̃i

Be∗
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mẽR
, −z)

]

,

and

MZẽL = −e(αe − βe)(s − M2
Z )

2[(s − M2
Z )2 + M2

Z�2
Z ]

×
[

Re(Wi j Ae∗
Z̃i

Ae
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mẽL
, z)

+(−1)θi +θ j Re(Wi j Ae
Z̃i

Ae∗
Z̃ j

)Gst (m Z̃i
, m Z̃ j

, mẽL
, −z)

]

.

The functions Gt and Gst are defined in (A.4b) and (A.4c), respectively.

For chargino pair production we have,

dσ

dz
(eLēR → W̃1W̃ 1) = 1

64πs

p

E

(
Mγ γ L + MZ ZL + Mγ ZL

+ Mν̃ν̃L + Mγ ν̃L + MZ ν̃L

)
, (A.27a)
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and

dσ

dz
(eRēL → W̃1W̃ 1) = 1

64πs

p

E

(
Mγ γ R + MZ ZR + Mγ ZR

)
, (A.27b)

with

Mγ γ L = Mγ γ R = 16e4

s

[

E2(1 + z2) + m2
W̃1

(1 − z2)
]

,

MZ ZR/L = 16e4 cot2 θWs

(s − M2
Z )2 + M2

Z�2
Z

[
(x2

c + y2
c )(αe ± βe)2×

[E2(1 + z2) + m2
W̃1

(1 − z2)] − 2y2
c (αe ± βe)2m2

W̃1
∓ 4xc yc(αe ± βe)2 Epz

]

,

Mγ ZR/L =

−32e4(αe ± βe) cot θW(s − M2
Z )

(s − M2
Z )2 + M2

Z�2
Z

{

xc[E2(1 + z2) + m2
W̃1

(1 − z2)] ∓ 2yc Epz
}

,

Mν̃ν̃L = 2e4 sin4 γR

sin4 θW

s(E − pz)2

[E2 + p2 − 2Epz + m2
ν̃]2

,

Mγ ν̃L = −8e4 sin2 γR

sin2 θW

[(E − pz)2 + m2
W̃1

]

[E2 + p2 − 2Epz + m2
ν̃]

,

and

MZ ν̃L = 8e4(αe − βe) cot θW sin2 γR

sin2 θW

s(s − M2
Z )

(s − M2
Z )2 + M2

Z�2
Z

×
[

(xc − yc)[(E − pz)2 + m2
W̃1

] + 2ycm2
W̃1

E2 + p2 − 2Epz + m2
ν̃

]

.

To obtain the differential cross section for W̃2W̃ 2 production, we simply replace

xc with xs , yc with ys , sin γR with cos γR, and mW̃1
with mW̃2

in the corresponding

expression for W̃1W̃ 1 production. Finally for W̃1W̃ 2 production we have,

dσ

dz
(eLēR → W̃1W̃ 2) = e4

64π

p

E
[MZ ZL + Mν̃ν̃L + MZ ν̃L] , (A.27c)

and

dσ

dz
(eRēL → W̃1W̃ 2) = e4

64π

p

E
MZ ZR, (A.27d)
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where

MZ ZR/L = 4(αe ± βe)2(cot θW + tan θW)2

(s − M2
Z )2 + M2

Z�2
Z

[
(x2 + y2)(E2 + p2z2

−�2 − ξmW̃1
mW̃2

) + 2x2ξmW̃1
mW̃2

∓ 4xyEpz
]

Mν̃ν̃L = 2 sin2 γR cos2 γR

sin4 θW

[(E − pz)2 − �2]

[2E(E − �) − 2Epz + m2
ν̃ − m2

W̃1
]2

,

and

MZ ν̃L = −4θy(αe − βe)(cot θW + tan θW) sin γR cos γR(s − M2
Z )

sin2 θW[(s − M2
Z )2 + M2

Z�2
Z ]

× (x − y)[(E − pz)2 − �2 − ξmW̃1
mW̃2

] + 2xξmW̃1
mW̃2

[2E(E − �) − 2Epz + m2
ν̃ − m2

W̃1
]

,

with

� =
(m2

W̃2
− m2

W̃1
)

4E
and ξ = (−1)θW̃1

+θW̃2
+1

.

The cross sections for unpolarized or partially polarized beams can be obtained

using,

σ = fL(e−) fL(e+)σLL + fL(e−) fR(e+)σLR

+ fR(e−) fL(e+)σRL + fR(e−) fR(e+)σRR, (A.28)

where fL and fR have been defined at the start of this subsection, and σi j (i, j =
L, R) refers to the cross section from e−

i e+
j annihilation.



Appendix B

Sparticle decay widths

In this appendix, we list formulae for the partial widths for the 1 → 2 and 1 → 3

tree-level decays of sparticles that are relevant to SUSY searches at colliders.

B.1 Gluino decay widths

B.1.1 Two-body decays

The decay width for g̃ → q̄q̃i (i = L or R), is given by

�(g̃ → q̄q̃i ) = αs

8
mg̃λ

1/2(1,
m2

q

m2
g̃

,
m2

q̃i

m2
g̃

)

(

1 + m2
q

m2
g̃

− m2
q̃i

m2
g̃

)

. (B.1a)

If intra-generation squark mixing and quark mass effects are included, the formula

is slightly more complicated:

�(g̃ → q̄q̃1,2) = αs

8
mg̃λ

1/2(1,
m2

q

m2
g̃

,
m2

q̃1,2

m2
g̃

)

×
(

1 + m2
q

m2
g̃

− m2
q̃1,2

m2
g̃

± 2(−1)θg̃ sin 2θq
mq

mg̃

)

, (B.1b)

where the upper (lower) sign is for the decay to q̃1 (q̃2).

In models with a very light gravitino, the gluino decay to gluon and a gravitino

may be relevant:

�(g̃ → G̃g) = m5
g̃

48π (m3/2 MP)2
, (B.2)

where MP is the reduced Planck mass, MP � 2.4 × 1018 GeV, and we have ignored

the gravitino mass in the phase space.
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B.1.2 Three-body decays to light quarks

If two-body gluino decays are kinematically suppressed, then three-body decays

can be important. The three-body decay g̃ → W̃i ud̄ width is given by

�(g̃ → W̃i ud̄) = αs

16π2

[

|Ad
W̃i

|2ψ(mg̃, mũL
, mW̃i

) + |Au
W̃i

|2ψ(mg̃, md̃L
, mW̃i

)

−2(−1)θg̃ Re(Au
W̃i

Ad
W̃i

)φ(mg̃, mũL
, md̃L

, mW̃i
)
]

, (B.3)

where

ψ(mg̃, mq̃, m) =
∫

dq
q2(m2

g̃ − 2mg̃q − m2)2

(m2
g̃ − 2mg̃q − m2

q̃)2(m2
g̃ − 2mg̃q)

and

φ(mg̃, mq̃1
, mq̃2

, m) = m

2

∫
dq

m2
g̃ − m2

q̃1
− 2mg̃q

[
−q(m2

g̃ − m2 − 2mg̃q)

mg̃(mg̃ − 2q)

− 2mg̃q − m2
q̃2

+ m2

2mg̃
log

m2
q̃2

(mg̃ − 2q) − mg̃m2

(mg̃ − 2q)(m2
q̃2

− 2mg̃q − m2)

]

,

and where the range of integration on ψ and φ ranges from 0 to (m2
g̃ − m2)/2mg̃.

The decay rate for g̃ → Z̃i qq̄ is given by

�(g̃ → Z̃i qq̄) = αs

8π2

[

|Aq
Z̃i

|2 (
ψ(mg̃, mq̃L

, m Z̃i
)

−(−1)θi +θg̃−1φ(mg̃, mq̃L
, mq̃L

, m Z̃i
)
) + |Bq

Z̃i
|2 (

ψ(mg̃, mq̃R
, m Z̃i

)

− (−1)θi +θg̃−1φ(mg̃, mq̃R
, mq̃R

, m Z̃i
)
) ]

. (B.4)

The formulae for gluino decay to third generation particles are more complicated.

They involve Yukawa coupling contributions, squark mixing effects and all final

state fermion masses are non-negligible.

B.1.3 g̃ → Z̃i t t̄ and g̃ → Z̃i bb̄

The partial width for g̃ → t t̄ Z̃i can be written as

�(g̃ → t t̄ Z̃i ) = αs

8π4mg̃

[
�t̃1 + �t̃2 + �t̃1 t̃2

]
, (B.5)

with,

�t̃1 = �LL(t̃1) cos2 θt + �RR(t̃1) sin2 θt

− sin θt cos θt
{
�L1R1

+ �L1R2
+ �L2R1

+ �L2R2

}
(t̃1), (B.6a)
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�t̃2 = �LL(t̃2) sin2 θt + �RR(t̃2) cos2 θt

+ sin θt cos θt
{
�L1R1

+ �L1R2
+ �L2R1

+ �L2R2

}
(t̃2), (B.6b)

and

�t̃1 t̃2 = (�LL(t̃1, t̃2) + �RR(t̃1, t̃2)) sin θt cos θt

+�LR(t̃1, t̃2) cos2 θt + �RL(t̃1, t̃2) sin2 θt . (B.6c)

The �i j contributions to the partial width are all written in terms of one-

dimensional integrals. The various �i j (t̃1) that enter the expression (B.6a) for �t̃1

are:

�LL(t̃1)

= (α2
1 + β2

1 )ψ(mg̃, mt̃1, m Z̃i
) − 4mt m Z̃i

(−1)θi α1β1χ (mg̃, mt̃1, m Z̃i
)

+ (−1)θg̃ mg̃

[

(−1)θi m Z̃i

(
α2

1

mg̃m Z̃i

φ(mg̃, mt̃1, m Z̃i
) + β2

1 m2
t ρ(mg̃, mt̃1, m Z̃i

)

)

− α1β1mt

(

ξ (mg̃, mt̃1, mt̃1, m Z̃i
) − m2

Z̃i
ρ(mg̃, mt̃1, m Z̃i

)
) ]

, (B.7)

where

α1 = Ãt
Z̃i

cos θt − ftv
(i)
1 sin θt and (B.8a)

β1 = ftv
(i)
1 cos θt + B̃t

Z̃i
sin θt , (B.8b)

and

Ãt
Z̃i

= g√
2
v

(i)
3 + g′

3
√

2
v

(i)
4 , (B.9a)

Ãb
Z̃i

= − g√
2
v

(i)
3 + g′

3
√

2
v

(i)
4 , (B.9b)

B̃t
Z̃i

= 4

3

g′
√

2
v

(i)
4 , and (B.9c)

B̃b
Z̃i

= −2

3

g′
√

2
v

(i)
4 . (B.9d)

Also,

�RR(t̃1) = �LL(t̃1), (B.10)
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but with α1 → α2 and β1 → β2, where

α2 = B̃t
Z̃i

sin θt + ftv
(i)
1 cos θt and (B.11a)

β2 = − ftv
(i)
1 sin θt + Ãt

Z̃i
cos θt . (B.11b)

Furthermore,

�L1R1
(t̃1) = 2mg̃mt (−1)θg̃

[
(α1α2 + β1β2)(−1)θi mt m Z̃i

ζ (mg̃, mt̃1, mt̃1, m Z̃i
)

− (α2β1 + α1β2)X (mg̃, mt̃1, mt̃1, m Z̃i
)
]
, (B.12)

with

�L2R2
(t̃1) = �L1R1

(t̃1). (B.13)

Finally,

�L1R2
(t̃1) = β1β2Y (mg̃, mt̃1, mt̃1, m Z̃i

) + α1α2m2
t ξ (mg̃, mt̃1, mt̃1, m Z̃i

)

−mt m Z̃i
(−1)θi (α1β2 + α2β1)χ ′(mg̃, mt̃1, mt̃1, m Z̃i

) (B.14)

with

�L2R1
(t̃1) = �L1R2

(t̃1). (B.15)

Turning to �t̃2 , we have

�LL(t̃2) = �LL(t̃1), (B.16)

but with the replacements

mt̃1 → mt̃2, (B.17a)

α1 → Ãt
Z̃i

sin θt + ftv
(i)
1 cos θt , (B.17b)

β1 → ftv
(i)
1 sin θt − B̃t

Z̃i
cos θt , (B.17c)

and

�RR(t̃2) = �RR(t̃1), (B.18)

with

mt̃1 → mt̃2, (B.19a)

α2 → −B̃t
Z̃i

cos θt + ftv
(i)
1 sin θt , and (B.19b)

β2 → ftv
(i)
1 cos θt + Ãt

Z̃i
sin θt . (B.19c)
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Also,

�L1R1
(t̃2) = �L2R2

(t̃2), and (B.20a)

�L1R2
(t̃2) = �L2R1

(t̃2), (B.20b)

where these expressions can be obtained from the previous �Li R j formulae by

replacing mt̃1 → mt̃2 and using the revised α1, α2, β1 and β2 values.

The expression for �t̃1 t̃2 contains,

�LL(t̃1, t̃2) = 2(α1α2 + β1β2)ψ̃(mg̃, mt̃1, mt̃2, m Z̃i
)

− (−1)θi 4mt m Z̃i
(α1β2 + α2β1)χ̃ (mg̃, mt̃1, mt̃2, m Z̃i

)

− (−1)θg̃ mg̃
{
2m Z̃i

(−1)θi −1[
α1α2

mg̃m Z̃i

φ̃(mg̃, mt̃1, mt̃2, m Z̃i
)

+ β1β2m2
t ρ̃(mg̃, mt̃1, mt̃2, m Z̃i

)]

+ (α1β2 + α2β1)mt [ξ (mg̃, mt̃1, mt̃2, m Z̃i
)

− m2
Z̃i

ρ̃(mg̃, mt̃1, mt̃2, m Z̃i
)]
}
, (B.21)

where

α1 = Ãt
Z̃i

cos θt − ftv
(i)
1 sin θt , (B.22a)

α2 = Ãt
Z̃i

sin θt + ftv
(i)
1 cos θt , (B.22b)

β1 = ftv
(i)
1 cos θt + B̃t

Z̃i
sin θt , and (B.22c)

β2 = ftv
(i)
1 sin θt − B̃t

Z̃i
cos θt . (B.22d)

Also,

�RR(t̃1, t̃2) = −2(α1α2 + β1β2)ψ̃(mg̃, mt̃1, mt̃2, m Z̃i
)

− (−1)θi 4mt m Z̃i
(α1β2 + α2β1)χ̃ (mg̃, mt̃1, mt̃2, m Z̃i

)

+ (−1)θg̃ mg̃
{
2m Z̃i

(−1)θi −1[
α1α2

mg̃m Z̃i

φ̃(mg̃, mt̃1, mt̃2, m Z̃i
)

+ β1β2m2
t ρ̃(mg̃, mt̃1, mt̃2, m Z̃i

)]

− (α1β2 + α2β1)mt [ξ (mg̃, mt̃1, mt̃2, m Z̃i
)

− m2
Z̃i

ρ̃(mg̃, mt̃1, mt̃2, m Z̃i
)]
}
, (B.23)
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where

α1 = −B̃t
Z̃i

sin θt − ftv
(i)
1 cos θt , (B.24a)

α2 = B̃t
Z̃i

cos θt − ftv
(i)
1 sin θt , (B.24b)

β1 = − ftv
(i)
1 sin θt + Ãt

Z̃i
cos θt , and (B.24c)

β2 = ftv
(i)
1 cos θt + Ãt

Z̃i
sin θt . (B.24d)

Next,

�LR(t̃1, t̃2)

= 4mg̃mt (−1)θg̃{(−1)θi (−α1α2 + β1β2)mt m Z̃i
ζ (mg̃, mt̃1, mt̃2, m Z̃i

)

+(α2β1 − α1β2)X (mg̃, mt̃1, mt̃2, m Z̃i
)} + 2β1β2Y (mg̃, mt̃1, mt̃2, m Z̃i

)

+2mt m Z̃i
(−1)θi (β1α2 − α1β2)χ ′(mg̃, mt̃1, mt̃2, m Z̃i

)

−2α1α2m2
t ξ (mg̃, mt̃1, mt̃2, m Z̃i

), (B.25)

where

α1 = Ãt
Z̃i

cos θt − ftv
(i)
1 sin θt , (B.26a)

α2 = B̃t
Z̃i

cos θt − ftv
(i)
1 sin θt , (B.26b)

β1 = ftv
(i)
1 cos θt + B̃t

Z̃i
sin θt , and (B.26c)

β2 = ftv
(i)
1 cos θt + Ãt

Z̃i
sin θt . (B.26d)

Finally,

�RL(t̃1, t̃2) = −�LR(t̃1, t̃2) (B.27)

but using

α1 = Ãt
Z̃i

sin θt + ftv
(i)
1 cos θt , (B.28a)

α2 = −B̃t
Z̃i

sin θt − ftv
(i)
1 cos θt , (B.28b)

β1 = ftv
(i)
1 sin θt − B̃t

Z̃i
cos θt , and (B.28c)

β2 = − ftv
(i)
1 sin θt + Ãt

Z̃i
cos θt , (B.28d)

and interchanging mt̃1 ↔ mt̃2 in the arguments of the functions ζ , X , Y ; and χ ′ (the

first three of which are automatically symmetric).
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The functions appearing above are defined as,

ψ̃(mg̃, mt̃1, mt̃2, m Z̃ ) = π2mg̃

∫

dEt pt Et

λ1/2(m2
g̃ + m2

t − 2mg̃ Et , m2
Z̃
, m2

t )

m2
g̃ + m2

t − 2mg̃ Et

× m2
g̃ − m2

Z̃
− 2mg̃ Et

(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

)(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃2

)
, (B.29a)

φ̃(mg̃, mt̃1, mt̃2, m Z̃ ) = 1

2
π2mg̃m Z̃

∫
dEt

m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

×
[

−[Et̄ (max) − Et̄ (min)] − m2
Z̃

− m2
t + 2mg̃ Et − m2

t̃2

2mg̃
log Z (mt̃2 )

]

,

(B.29b)

χ̃ (mg̃, mt̃1, mt̃2, m Z̃ ) = π2mg̃

∫

dEt pt Et

λ1/2(m2
g̃ + m2

t − 2mg̃ Et , m2
Z̃
, m2

t )

m2
g̃ + m2

t − 2mg̃ Et

× 1

(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

)(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃2

)
, (B.29c)

ξ (mg̃, mt̃1, mt̃2, m Z̃ ) = 1

2
π2

∫
dEt

m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

×
[

[Et̄ (max) − Et̄ (min)] − m2
g̃ − m2

t − 2mg̃ Et + m2
t̃2

2mg̃
log Z (mt̃2 )

]

,

(B.29d)

ρ̃(mg̃, mt̃1, mt̃2, m Z̃ ) = − π2

2mg̃

∫
dEt

m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

log Z (mt̃2 ),

(B.29e)

ζ (mg̃, mt̃1, mt̃2, m Z̃ )

= π2

∫
dEt [Et̄ (max) − Et̄ (min)]

(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

)(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃2

)
,(B.29f)

X (mg̃, mt̃1, mt̃2, m Z̃ ) = π2

2

∫

dEt pt

m2
g̃ − m2

Z̃
− 2mg̃ Et

m2
g̃ + m2

t − 2mg̃ Et

× λ1/2(m2
g̃ + m2

t − 2mg̃ Et , m2
Z̃
, m2

t )

(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

)(m2
g̃ + m2

t − 2mg̃ Et − m2
t̃2

)
, (B.29g)
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Y (mg̃, mt̃1, mt̃2, m Z̃ ) = π2

2

∫
dEt

m2
g̃ + m2

t − 2mg̃ Et − m2
t̃1

×[
[Et̄ (max) − Et̄ (min)](m2

g̃ + m2
t − 2mg̃ Et )

+ 1

2mg̃
(m2

g̃m2
Z̃

− m2
g̃m2

t̃2
+ m4

t + 2mg̃ Et m
2
t̃2

− m2
t̃2

m2
t ) log Z (mt̃2 )

]
, (B.29h)

χ ′(mg̃, mt̃1, mt̃2, m Z̃ ) = −π2

2

∫
dEt Et

m2
g̃ + m2

t − 2mg̃ Et − m2
t̃2

log Z (mt̃1 ). (B.29i)

The functions with three arguments ψ , χ , φ and ρ that appear in various expressions

for �i j (t̃1) and �i j (t̃2) are simply the corresponding functions ψ̃ , χ̃ , φ̃ and ρ̃, but

with the two top squark mass arguments being the same, i.e.

ψ(mg̃, mt̃1, m Z̃i
) = ψ̃(mg̃, mt̃1, mt̃1, m Z̃i

), etc.

The limits of integration on Et range from mt to (m2
g̃ − 2mt m Z̃ − m2

Z̃
)/2mg̃, and

Z (m) = m2
g̃ + m2

t − 2mg̃ Et̄ (max) − m2

m2
g̃ + m2

t − 2mg̃ Et̄ (min) − m2
(B.30)

and

Et̄ (
max

min
) = ζ (mg̃ − Et ) ± [p2

t ζ
2 − 4p2

t m2
t (m2

g̃ + m2
t − 2mg̃ Et )]

1/2

2(m2
g̃ + m2

t − 2mg̃ Et )
, (B.31)

where ζ = 2m2
t + m2

g̃ − m2
Z̃

− 2mg̃ Et .

The partial width �(g̃ → bb̄Z̃i ) can be obtained from the formula for �(g̃ →
t t̄ Z̃i ) by making the following substitutions:

mt̃i → mb̃i
, (B.32a)

Ãt
Z̃i

→ Ãb
Z̃i

, (B.32b)

B̃t
Z̃i

→ B̃b
Z̃i

, (B.32c)

ft → fb, (B.32d)

v
(i)
1 → v

(i)
2 , (B.32e)

θt → θb, (B.32f)

mt → mb, (B.32g)

where,

Ãb
Z̃i

= − g√
2
v

(i)
3 + g′

3
√

2
v

(i)
4 , (B.33a)

B̃b
Z̃i

= −2

3

g′
√

2
v

(i)
4 . (B.33b)
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B.1.4 g̃ → W̃i t b̄ decays

These decays proceed through the exchange of each of the four top and bottom

squark mass eigenstates. The formula given below includes effects from t and b
Yukawa couplings as well as from intra-generation squark mixing, but with mb

ignored in the squared matrix element (though not in the phase space).

The partial width for the decay g̃ → t b̄W̃ −
i can be written as

�(g̃ → t b̄W̃ −
i ) = αs

16π2mg̃

(

�t̃1 + �t̃2 + �t̃1 t̃2 + �b̃1
+ �b̃2

+
2∑

k,l=1

�t̃k b̃l

)

.

(B.34)

Note that in the limit mb → 0 the two sbottom exchange diagrams do not interfere

with each other. The individual terms in Eq. (B.34) are given by:

�t̃k =
[(

α
t̃k
W̃i

)2

+
(

β
t̃k
W̃i

)2
]

[
G1(mg̃, mt̃k , mW̃i

)

− (−1)k sin(2θt )G8(mg̃, mt̃k , mt̃k , mW̃i
)
]
, (B.35a)

�t̃1 t̃2 = −2
(

α
t̃1
W̃i

α
t̃2
W̃i

+ β
t̃1
W̃i

β
t̃2
W̃i

)

cos(2θt )G8(mg̃, mt̃1, mt̃2, mW̃i
), (B.35b)

�b̃k
=

[(

α
b̃k

W̃i

)2

+
(

β
b̃k

W̃i

)2
]

G2(mg̃, mb̃k
, mW̃i

)

−α
b̃k

W̃i
β

b̃k

W̃i
G3(mg̃, mb̃k

, mW̃i
), (B.35c)

�t̃1b̃1
=

(

cos θt sin θbα
b̃1

W̃i
β

t̃1
W̃i

+ sin θt cos θbβ
b̃1

W̃i
α

t̃1
W̃i

)

G6(mg̃, mt̃1, mb̃1
, mW̃i

)

−
(

cos θt cos θbα
b̃1

W̃i
α

t̃1
W̃i

+ sin θt sin θbβ
b̃1

W̃i
β

t̃1
W̃i

)

G4(mg̃, mt̃1, mb̃1
, mW̃i

)

+
(

cos θt cos θbβ
b̃1

W̃i
α

t̃1
W̃i

+ sin θt sin θbα
b̃1

W̃i
β

t̃1
W̃i

)

G5(mg̃, mt̃1, mb̃1
, mW̃i

)

−
(

cos θt sin θbβ
b̃1

W̃i
β

t̃1
W̃i

+ sin θt cos θbα
b̃1

W̃i
α

t̃1
W̃i

)

G7(mg̃, mt̃1, mb̃1
, mW̃i

).

(B.35d)

The couplings α
t̃ j

W̃i
and β

t̃ j

W̃i
are given by,

α
t̃1
W̃1

= −g sin γR cos θt + ft cos γR sin θt , (B.36a)

β
t̃1
W̃1

= − fb cos γL cos θt , (B.36b)

α
b̃1

W̃1
= −g sin γL cos θb + fb cos γL sin θb, (B.36c)

β
b̃1

W̃1
= − ft cos γR cos θb. (B.36d)
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The corresponding couplings for heavy sfermions f̃ 2 ( f = t, b) can be ob-

tained from those above by replacing cos θ f → sin θ f and sin θ f → − cos θ f .

The couplings for heavy charginos W̃2 can be obtained from those above by re-

placing cos γL,R → −θx,y sin γL,R and sin γL,R → θx,y cos γL,R. Finally, the other

stop–sbottom interference terms can be obtained from (B.35d) by substituting ap-

propriate couplings, squark masses, and squark mixing angle factors.

The eight functions that enter Eq. (B.35a)–(B.35d) are given by,

G1(mg̃, mt̃ , mW̃ ) = mg̃

∫
dEt pt Et

(
m2

g̃ + m2
t − 2Et mg̃ − m2

W̃

)2

(
m2

g̃ + m2
t − 2Et mg̃ − m2

t̃

)2 (
m2

g̃ + m2
t − 2Et mg̃

) ,

(B.37a)

G2(mg̃, mb̃, mW̃ ) = mg̃

∫

dEb̄ E2
b̄λ

1/2(m2
g̃ + m2

b − 2Eb̄mg̃, m2
W̃

, m2
t )

× m2
g̃ + m2

b − m2
t − 2Eb̄mg̃ − m2

W̃
(
m2

g̃ + m2
b − 2Eb̄mg̃ − m2

b̃

)2 (
m2

g̃ + m2
b − 2Eb̄mg̃

) , (B.37b)

G3(mg̃, mb̃, mW̃ ) = (−1)θW̃

∫

dEb̄ E2
b̄λ

1/2(m2
g̃ + m2

b − 2Eb̄mg̃, m2
W̃

, m2
t )

× 4mg̃mW̃ mt
(
m2

g̃ + m2
b − 2Eb̄mg̃ − m2

b̃

)2 (
m2

g̃ + m2
b − 2Eb̄mg̃

) , (B.37c)

G4(mg̃, mt̃ , mb̃, mW̃ ) = (−1)θg̃+θW̃ mg̃mW̃

∫
dEt

m2
g̃ + m2

t − 2Et mg̃ − m2
t̃

×
[

Eb̄(max) − Eb̄(min) − m2
b̃
+ m2

t − 2Et mg̃ − m2
W̃

2mg̃
log X

]

,

(B.37d)

G5(mg̃, mt̃ , mb̃, mW̃ ) = (−1)θg̃
mt

2

∫

d Et

m2
g̃ + m2

t − 2Et mg̃ − m2
W̃

m2
g̃ + m2

t − 2Et mg̃ − m2
t̃

log X,

(B.37e)

G6(mg̃, mt̃ , mb̃, mW̃ )

= 1

2

∫
dEt

m2
g̃ + m2

t − 2Et mg̃ − m2
t̃

{[

mg̃
(
m2

g̃ + m2
t − 2Et mg̃ − m2

W̃

)

− m2
b̃
− m2

g̃

mg̃

(
2Et mg̃ − m2

t − m2
g̃

)
]

log X

+ 2
(
2Et mg̃ − m2

t − m2
g̃

)
[Eb̄(max) − Eb̄(min)]

}

, (B.37f)
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G7(mg̃, mt̃ , mb̃, mW̃ ) = (−1)θW̃
1

2
mW̃ mt

∫
dEt

m2
g̃ + m2

t − 2Et mg̃ − m2
t̃

×
{

2 [Eb̄(max) − Eb̄(min)] − m2
b̃
− m2

g̃

mg̃
log X

}

, (B.37g)

G8(mg̃, mt̃1, mt̃2, mW̃ )

= (−1)θg̃ mt mg̃

∫

dEt

(
m2

g̃ + m2
t − 2Et mg̃ − m2

W̃

)
[Eb̄(max) − Eb̄(min)]

(
m2

g̃ + m2
t − 2Et mg̃ − m2

t̃1

)(
m2

g̃ + m2
t − 2Et mg̃ − m2

t̃2

) .

(B.37h)

The quantities Eb̄(min, max), pt and X in the functions for Gi are given by,

(m2
g̃ + m2

t −2mg̃ Et + m2
b−m2

W̃
)(mg̃−Et ) ∓ ptλ

1/2(m2
g̃ + m2

t −2mg̃ Et , m2
b, m2

W̃
)

2
(
m2

g̃ + m2
t − 2Et mg̃

) ,

pt =
√

E2
t − m2

t , and

X = m2
b̃
+ 2Eb̄(max)mg̃ − m2

g̃

m2
b̃
+ 2Eb̄(min)mg̃ − m2

g̃

.

Finally, the limits of integration over Et in Eq. (B.37a)–(B.37h) range from mt to
(
m2

g̃ + m2
t − (mW̃ + mb)2

)
/2mg̃, while the integration over Eb̄ ranges from mb to

[m2
g̃ − (mt + mW̃ )2]/2mg̃.

B.2 Squark decay widths

The general expression for the rate for squarks to decay to gluinos, including quark

masses and intra-generation mixing is given by,

�(q̃1,2 → qg̃) = 2αs

3
mq̃1,2

λ1/2(1,
m2

g̃

m2
q̃1,2

,
m2

q

m2
q̃1,2

)

×
(

1 − m2
g̃

m2
q̃1,2

− m2
q

m2
q̃1,2

∓ 2(−1)θg̃ sin(2θq)
mqmg̃

m2
q̃1,2

)

. (B.38a)

For the first two generations, the quark Yukawa coupling and the concomitant

intra-generation mixing can be neglected, and this reduces to

�(q̃i → qg̃) = 2αs

3
mq̃i

(

1 − m2
g̃

m2
q̃i

− m2
q

m2
q̃i

)

λ1/2(1,
m2

g̃

m2
q̃i

,
m2

q

m2
q̃i

), (B.38b)

where i = L, R.
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The partial width for up-type squarks to decay to neutralinos including effects

of Yukawa couplings and intra-generational mixing is given by,

�(t̃1 → t Z̃i ) = mt̃1

8π
λ1/2

(

1,
m2

Z̃i

m2
t̃1

,
m2

t

m2
t̃1

)

×
{

|a|2
[

1 − (
mt

mt̃1

+ m Z̃i

mt̃1

)2

]

+ |b|2
[

1 −
(

mt

mt̃1

− m Z̃i

mt̃1

)2
]}

,

(B.39)

where

a = 1

2

{
[iAt

Z̃i
− (i)θi ftv

(i)
1 ] cos θt − [iBt

Z̃i
− (−i)θi ftv

(i)
1 ] sin θt

}
, (B.40a)

b = 1

2

{
[−iAt

Z̃i
− (i)θi ftv

(i)
1 ] cos θt − [iBt

Z̃i
+ (−i)θi ftv

(i)
1 ] sin θt

}
. (B.40b)

The formula for �(t̃2 → t Z̃i ) is the same, except that we must replace mt̃1 → mt̃2 ,

and cos θt → sin θt and sin θt → − cos θt in the corresponding expressions for a
and b.

The widths for the decays b̃i → bZ̃i can be obtained from these by the substi-

tutions,

mt̃i → mb̃i
, (B.41a)

Ãt
Z̃i

→ Ãb
Z̃i

, (B.41b)

B̃t
Z̃i

→ B̃b
Z̃i

, (B.41c)

ft → fb, (B.41d)

v
(i)
1 → v

(i)
2 , (B.41e)

θt → θb, (B.41f)

mt → mb. (B.41g)

If quark Yukawa coupling effects are neglected (but quark masses retained), the

partial widths for squark decays to neutralinos simplify to,

�(ũL → u Z̃i ) =
|Au

Z̃i
|2

16π
mũL

(

1 −
m2

Z̃i

m2
ũL

− m2
u

m2
ũL

)

λ1/2(1,
m2

Z̃i

m2
ũL

,
m2

u

m2
ũL

),

(B.42a)

�(ũR → u Z̃i ) =
|Bu

Z̃i
|2

16π
mũR

(

1 −
m2

Z̃i

m2
ũR

− m2
u

m2
ũR

)

λ1/2(1,
m2

Z̃i

m2
ũR

,
m2

u

m2
ũR

),

(B.42b)
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�(d̃L → d Z̃i ) =
|Ad

Z̃i
|2

16π
md̃L

(

1 −
m2

Z̃i

m2
d̃L

− m2
d

m2
d̃L

)

λ1/2(1,
m2

Z̃i

m2
d̃L

,
m2

d

m2
d̃L

),

(B.42c)

�(d̃R → d Z̃i ) =
|Bd

Z̃i
|2

16π
md̃R

(

1 −
m2

Z̃i

m2
d̃R

− m2
d

m2
d̃R

)

λ1/2(1,
m2

Z̃i

m2
d̃R

,
m2

d

m2
d̃R

).

(B.42d)

The rate for third generation squarks to decay to charginos, including Yukawa

coupling effects is given by,

�(t̃1 → bW̃ +
i ) = mt̃1

16π
λ1/2(1,

m2
W̃i

m2
t̃1

,
m2

b

m2
t̃1

)

×
[

[(iAd
W̃i

cos θt − BW̃i
sin θt )

2 + B
′2
W̃i

cos2 θt ]

(

1 −
m2

W̃i

m2
t̃1

− m2
b

m2
t̃1

)

− 4
mW̃i

mb

m2
t̃1

(iAd
W̃i

cos θt − BW̃i
sin θt )B ′

W̃i
cos θt

]

(B.43a)

for the lighter top squark, and

�(b̃1 → t W̃ −
i ) = mb̃1

16π
λ1/2(1,

m2
W̃i

m2
b̃1

,
m2

t

m2
b̃1

)

×
[

[(iAu
W̃1

cos θb − B ′
W̃i

sin θb)2 + B2
W̃i

cos2 θb](1 −
m2

W̃i

m2
b̃1

− m2
t

m2
b̃1

)

− 4
mW̃i

mt

m2
b̃1

(iAu
W̃i

cos θb − B ′
W̃i

sin θb)BW̃i
cos θb

]

, (B.43b)

for bottom type squarks. The widths for the corresponding decays of t̃2 and b̃2 can

be obtained from those for the lighter squarks by simply replacing,

mq̃1
→ mq̃2

, cos θq → sin θq, and sin θq → − cos θq . (B.43c)

The various couplings A f
W̃i

, B f
W̃i

, BW̃i
, and B ′

W̃i
as well as those involving neutralino

decays are as defined in Section 8.4.2.
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Neglecting the couplings of the higgsino components as well as intra-

generational mixing, we obtain simplified formulae for the widths:

�(ũL → dW̃ +
1 ) = g2 sin2 γR

16π
mũL

(

1 −
m2

W̃1

m2
ũL

− m2
d

m2
ũL

)

λ
1
2 (1,

m2
W̃1

m2
ũL

,
m2

d

m2
ũL

),

(B.44a)

and

�(d̃L → uW̃ −
1 ) = g2 sin2 γL

16π
md̃L

(

1 −
m2

W̃1

m2
d̃L

− m2
d

m2
d̃L

)

λ
1
2 (1,

m2
W̃1

m2
d̃L

,
m2

u

m2
d̃L

).

(B.44b)

The rates for ũL → dW̃ +
2 and d̃L → uW̃ −

2 decays are the same, except that we must

replace mW̃1
→ mW̃2

, sin2 γR → cos2 γR, and sin2 γL → cos2 γL.

For third generation squarks (for which we have included intragenerational mix-

ing effects) additional two-body decays to W ±, Z or the various charged and neutral

Higgs bosons may be possible. We write the partial widths for decays t̃i → b̃ j W +

or b̃i → t̃ j W − as,

�(q̃i → q̃ f W ) = g2

32π

1

m3
q̃i

1

M2
W

λ
3
2 (m2

q̃i
, m2

q̃ f
, M2

W )�i� f , (B.45)

where �i and � f take into account intra-generational mixing for the initial and

final squarks, q̃i and q̃ f , respectively. These factors are given by �i = cos2 θt/b

(�i = sin2 θt/b) if the parent squark is a lighter (heavier) stop/sbottom, and likewise

for � f . For instance, for the decay t̃2 → b̃1W +, �i = sin2 θt and � f = cos2 θb,

etc.

The partial width for the decays q̃2 → q̃1 Z can be written as,

�(q̃2 → q̃1 Z ) = g2

64π

1

cos2 θW

1

m3
q̃2

M2
Z

λ
3
2 (m2

q̃2
, m2

q̃1
, M2

Z ) cos2 θq sin2 θq . (B.46)

Turning to the rates for squarks to decay to charged Higgs bosons we find,

�(t̃i → b̃ j H+) = 1

16π

|Ai j |2
m3

t̃i

λ
1
2 (m2

t̃i
, m2

b̃ j
, m2

H±), (B.47a)

with

A11 = g√
2MW

{
mt mb(cot β + tan β) sin θt sin θb

+mt (μ + At cot β) sin θt cos θb + mb(μ + Ab tan β) sin θb cos θt

+ [
(m2

b tan β + m2
t cot β) − M2

W sin 2β
]

cos θt cos θb
}
, (B.47b)
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and

A12 = A11(cos θb → sin θb, sin θb → − cos θb). (B.47c)

The couplings A2 j that enter the partial widths for t̃2 → H+b̃ j decays can be

obtained by replacing cos θt → sin θt and sin θt → − cos θt in the coefficients A1 j

listed above. Also,

�(b̃i → H− t̃ j ) = 1

16π

|A ji |2
m3

b̃i

λ
1
2 (m2

b̃i
, m2

t̃ j
, m2

H±). (B.48)

The partial widths for the decays q̃2 → q̃1φ (φ = h, H, or A) are given by,1

�(t̃2 → t̃1φ) = 1

16π

|Aφ|2
m3

t̃2

λ
1
2 (m2

t̃2
, m2

t̃1
, m2

φ), (B.49a)

�(b̃2 → b̃1φ) = 1

16π

|Bφ|2
m3

b̃2

λ
1
2 (m2

b̃2
, m2

b̃1
, m2

φ), (B.49b)

where

Ah = gMW

4
sin(β − α)

(

1 − 5

3
tan2 θW

)

sin 2θt

+ gmt

2MW sin β
cos 2θt (At cos α − μ sin α) , (B.50a)

AH = −gMW

4
cos(β − α)

(

1 − 5

3
tan2 θW

)

sin 2θt

+ gmt

2MW sin β
cos 2θt (At sin α + μ cos α) , (B.50b)

AA = −i
gmt

2MW
(At cot β + μ) , (B.50c)

and

Bh = gMW

4
sin(β − α)

(

−1 + 1

3
tan2 θW

)

sin 2θb

+ gmb

2MW cos β
cos 2θb (Ab sin α − μ cos α) , (B.51a)

BH = −gMW

4
cos(β − α)

(

−1 + 1

3
tan2 θW

)

sin 2θb

+ gmb

2MW cos β
cos 2θb (Ab cos α + μ sin α) , (B.51b)

1 Although we write these for the third generation, it should be clear that these formulae also apply (with obvious
changes) to the first two generations. Notice that in the absence of intra-generation mixing, these decays occur
only via superpotential Yukawa interactions as pointed out in the exercise at the end of Section 13.2.
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and

BA = −i
gmb

2MW
(Ab tan β + μ) . (B.51c)

Finally, if the decay to a gravitino is allowed, we find that (assuming that the grav-

itino is much lighter than the squark so that the decay rate can be well approximated

by that to goldstinos, as discussed in the last section of Chapter 13)

�(q̃i → qG̃) = (m2
q̃ − m2

q)4

48πm3
q̃i

(MPm3/2)2
, (B.52)

where MP is the reduced Planck mass. Notice that there is no dependence on the

squark mixing angle.

B.3 Slepton decay widths

We begin by listing the partial widths for various two-body decays of the first

two generations of sleptons and sneutrinos for which intrageneration mixing is

negligible. For left-slepton decay to neutralinos, we have (� = e or μ),

�(�̃L → �Z̃i ) =
|A�

Z̃i
|2

16π
m �̃L

(

1 −
m2

Z̃i

m2
�̃L

− m2
�

m2
�̃L

)

λ1/2(1,
m2

Z̃i

m2
�̃L

,
m2

�

m2
�̃L

), (B.53a)

while for right-slepton decay to neutralinos, we have

�(�̃R → �Z̃i ) =
|B�

Z̃i
|2

16π
m �̃R

(

1 −
m2

Z̃i

m2
�̃R

− m2
�

m2
�̃R

)

λ1/2(1,
m2

Z̃i

m2
�̃R

,
m2

�

m2
�̃R

). (B.53b)

The partial width for sneutrino decay to a neutralino is,

�(ν̃� → ν� Z̃i ) =
|Aν

Z̃i
|2

16π
m ν̃�

(

1 −
m2

Z̃i

m2
ν̃�

)2

. (B.53c)

For slepton decay to charginos, we have

�(�̃L → ν�W̃ −
i ) = g2 sin2 γL

16π
m �̃L

(

1 −
m2

W̃i

m2
�̃L

)2

, (B.54a)

while for sneutrino decay, we have

�(ν̃� → �W̃ +
i ) = g2 sin2 γR

16π
m ν̃�

(

1 −
m2

W̃i

m2
ν̃�

− m2
�

m2
ν̃�

)

λ1/2(1,
m2

W̃1

m ν̃2
�

,
m2

�

m2
ν̃�

).

(B.54b)
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Yukawa coupling effects can be important for decays of third generation sleptons

and sneutrinos. For τ̃1 → τ Z̃i , we have

�(τ̃1 → τ Z̃i ) = m τ̃1

8π
λ1/2(1,

m2
Z̃i

m2
τ̃1

,
m2

τ

m2
τ̃1

)

×
{

|a|2
[

1 − (
mτ

m τ̃1

+ m Z̃i

m τ̃1

)2

]

+ |b|2
[

1 − (
mτ

m τ̃1

− m Z̃i

m τ̃1

)2

]}

,

(B.55a)

with

a = 1

2

{

[iAτ

Z̃i
− (i)θi fτ v

(i)
2 ] cos θτ − [iBτ

Z̃i
− (−i)θi fτ v

(i)
2 ] sin θτ

}

,

b = 1

2

{

[−iAτ

Z̃i
− (i)θi fτ v

(i)
2 ] cos θτ − [iBτ

Z̃i
+ (−i)θi fτ v

(i)
2 ] sin θτ

}

.

The formula for τ̃2 → τ Z̃i is the same, except that we must replace m τ̃1
→ m τ̃2

,

cos θτ → sin θτ and sin θτ → − cos θτ .

For stau decays to charginos, we have

�(τ̃1 → ντ W̃ −
i ) =

|iAν

W̃i
cos θτ − B ′′

W̃i
sin θτ |2

16π
m τ̃1

(

1 −
m2

W̃i

m2
τ̃1

)2

, (B.55b)

where B ′′
W̃1

= − fτ cos γL and B ′′
W̃2

= fτ θx sin γL. Also,

�(τ̃2 → ντ W̃ −
i ) =

|iAν

W̃i
sin θτ + B ′′

W̃i
cos θτ |2

16π
m τ̃2

(

1 −
m2

W̃i

m2
τ̃2

)2

. (B.55c)

Finally,

�(ν̃τ → τ W̃ +
i ) = m ν̃τ

16π
λ1/2(1,

m2
W̃i

m2
ν̃τ

,
m2

τ

m2
ν̃τ

)

{
[

|Aτ

W̃i
|2 + B

′′2
W̃i

]

× (1 −
m2

W̃i

m2
ν̃τ

− m2
τ

m2
ν̃τ

) − 4
mW̃i

mτ

m2
ν̃τ

B ′′
W̃i

(iAτ

W̃i
)

}

.

(B.55d)

Turning to the decays to gauge bosons, we have

�(τ̃2 → ν̃τ W ) = g2 sin2 θτ

32πm3
τ̃2

M2
W

λ3/2(m2
τ̃2
, m2

ν̃τ
, M2

W ), (B.56a)
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�(ν̃τ → τ̃1W ) = g2 cos2 θτ

32πm3
ν̃τ

M2
W

λ3/2(m2
ν̃τ

, m2
τ̃1
, M2

W ), (B.56b)

�(ν̃τ → τ̃2W ) = g2 sin2 θτ

32πm3
ν̃τ

M2
W

λ3/2(m2
ν̃τ

, m2
τ̃2
, M2

W ), (B.56c)

and

�(τ̃2 → τ̃1 Z ) = g2 cos2 θτ sin2 θτ

64π cos2 θWm3
τ̃2

M2
Z

λ3/2(m2
τ̃2
, m2

τ̃1
, M2

Z ). (B.56d)

Third generation sleptons may also decay with significant rates to Higgs bosons.

The partial widths for decays to charged Higgs bosons are given by,

�(ν̃τ → τ̃i H+) = |A|2
16πm3

ν̃τ

λ1/2(m2
ν̃τ

, m2
τ̃i
, m2

H+), (B.57a)

with

A(ν̃τ → τ̃1 H+) = g√
2MW

{[
m2

τ tan β − M2
W sin 2β

]
cos θτ

+ mτ [μ + Aτ tan β] sin θτ

}
(B.57b)

and

A(ν̃τ → τ̃2 H+) = g√
2MW

{[
m2

τ tan β − M2
W sin 2β

]
sin θτ

− mτ [μ + Aτ tan β] cos θτ

}
. (B.57c)

Finally,

�(τ̃i → ν̃τ H−) = |A|2
16πm3

τ̃i

λ1/2(m2
τ̃i
, m2

ν̃τ
, m2

H−), (B.58a)

with

A(τ̃i → ν̃τ H−) = A(ν̃τ → τ̃i H+). (B.58b)

For stau decays to neutral Higgs bosons φ = h, H, A , we find

�(τ̃2 → τ̃1φ) = |Aφ|2
16πm3

τ̃2

λ1/2(m2
τ̃2
, m2

τ̃1
, m2

φ), (B.59a)

with

Ah = gMW

4
sin(β − α) sin 2θτ [−1 + 3 tan2 θW]

+ gmτ

2MW cos β
cos 2θτ [−μ cos α + Aτ sin α], (B.59b)
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AH = −gMW

4
cos(β − α) sin 2θτ [−1 + 3 tan2 θW]

+ gmτ

2MW cos β
cos 2θτ [μ sin α + Aτ cos α], (B.59c)

and

AA = −igmτ

2MW
(μ + Aτ tan β). (B.59d)

Finally, if the decay to a gravitino is allowed, we find that

�(�̃ → �G̃) = (m2
�̃
− m2

�)4

48πm3
�̃
(MPm3/2)2

, (B.60)

again assuming that the goldstino approximation used for q̃i → qG̃ decays is valid.

Here, �̃ denotes any of the sleptons or sneutrinos. Notice that there is no dependence

on the slepton mixing angle.

B.4 Neutralino decay widths

B.4.1 Two-body decays

We list the partial widths for two-body decays of the neutralino, beginning with

their decays to gauge bosons.

�(Z̃i → W̃ −
j W +) = g2

16πm3
Z̃i

λ1/2(m2
Z̃i

, m2
W̃ j

, M2
W )

×
[

(Xi2
j + Y i2

j )

(

m2
Z̃i

+ m2
W̃ j

− M2
W +

(m2
Z̃i

− m2
W̃ j

)2 − M4
W

M2
W

)

− 6m Z̃i
mW̃ j

(Xi2
j − Y i2

j )

]

, (B.61a)

where the couplings Xi
j and Y i

j are given in Eq. (8.103a) and (8.103b). Also,

�(Z̃i → Z̃ j Z ) = |Wi j |2
4πm3

Z̃i

λ
1
2 (m2

Z̃i
, m2

Z̃ j
, M2

Z )

×
[

(m2
Z̃i

+ m2
Z̃ j

− M2
Z ) +

(m2
Z̃i

− m2
Z̃ j

)2 − M4
Z

M2
Z

+ 6(−1)θi (−1)θ j m Z̃i
m Z̃ j

]

,

(B.61b)

with Wi j as defined in (8.101).
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Turning to neutralino decays to Higgs bosons, we have

�(Z̃i → W̃ −
j H+) = �(Z̃i → W̃ +

j H−) =
λ1/2(m2

Z̃i
, m2

W̃ j
, m2

H+)

16πm3
Z̃i

×
[

(a2
j + b2

j )(m
2
Z̃i

+ m2
W̃ j

− m2
H+) + 2(a2

j − b2
j )m Z̃i

mW̃ j

]

, (B.62)

where

a1 = 1

2

(

(−1)θW̃1 cos β A(i)
2 − (−1)θi sin β A(i)

4

)

, (B.63a)

and

b1 = 1

2

(

(−1)θW̃1 cos β A(i)
2 + (−1)θi sin β A(i)

4

)

. (B.63b)

To obtain a2 and b2, replace A(i)
2 → θy A(i)

1 and A(i)
4 → θx A(i)

3 in the expressions for

a1 and b1. The coefficients A(i)
j are given in Eq. (8.122a)–(8.122d).

For the partial width of the decay Z̃i → Z̃ j h, we have

�(Z̃i → Z̃ j h) = (Xh
i j + Xh

ji )
2

16πm3
Z̃i

λ
1
2 (m2

Z̃i
, m2

Z̃ j
, m2

h)

×
[

(m2
Z̃i

+ m2
Z̃ j

− m2
h) + 2(−1)θi +θ j m Z̃i

m Z̃ j

]

, (B.64)

with the couplings Xh
i j as given in Eq. (8.117). The same formula with the re-

placements mh → m H and Xh
i j → X H

i j yields �(Z̃i → Z̃ j H ). This formula also

applies to Z̃i → Z̃ j A if mh → m A, Xh
i j → X A

i j and the sign of the second term

(proportional to the product of the neutralino masses) in the square brackets is

flipped.

For Z̃i decays to fermion–sfermion pairs, we have, including effects of Yukawa

couplings and intra-generational mixing,

�(Z̃i → f ¯̃f k) = Nc

λ1/2(m2
Z̃i

, m2
f̃ k

, m2
f )

16πm3
Z̃i

(

|a|2
[

(m Z̃i
+ m f )2 − m2

f̃ k

]

+ |b|2
[

(m Z̃i
− m f )2 − m2

f̃ k

])

, (B.65)

where k = 1, 2 and the color factor Nc = 3 if f = q, and Nc = 1 if f = � or ν. The

coefficients a and b are exactly the same as those that enter the decays f̃ k → f Z̃i ,

and may be found in Eq. (B.40a)–(B.41g) for squarks, or directly below (B.55a)
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for sleptons. If intra-generational mixing can be neglected, these reduce to,

�(Z̃i → ¯̃fL) = �(Z̃i → f̄ f̃L)

=
Nc|A f

Z̃i
|2

32πm3
Z̃i

λ
1
2 (m2

Z̃i
, m2

f̃ L
, m2

f )
(

m2
Z̃i

+ m2
f − m2

f̃ L

)

. (B.66)

The corresponding widths for decays to f̃ R may be obtained from this by replacing

A f
Z̃i

→ B f
Z̃i

, and m f̃ L
→ m f̃ R

.

The widths for two-body decay to longitudinal gravitinos, which are essentially

goldstinos in the limit that m3/2 is much smaller than the mass of the decaying

sparticle, are given by

�(Z̃i → G̃γ ) = (v
(i)
4 cos θW + v

(i)
3 sin θW)2

48πm2
3/2 M2

P

m5
Z̃i

, (B.67)

�(Z̃i → G̃ Z )

= 2(v
(i)
4 sin θW − v

(i)
3 cos θW)2 + (v

(i)
1 sin β − v

(i)
2 cos β)2

96πm2
3/2 M2

Pm3
Z̃i

(m2
Z̃i

− M2
Z )4,

(B.68)

and

�(Z̃i → G̃φ) = |κφ|2
16πm3

Z̃i

(

m2
Z̃i

− m2
φ

)4

, (B.69a)

where φ = h, H or A, and

κh = − (i)θi +1

√
6MPm3/2

[v
(i)
1 cos α + v

(i)
2 sin α], (B.69b)

κH = − (i)θi +1

√
6MPm3/2

[−v
(i)
1 sin α + v

(i)
2 cos α], and (B.69c)

κA = − (i)θi +2

√
6MPm3/2

[v
(i)
1 cos β + v

(i)
2 sin β], (B.69d)

as in Chapter 13 of the text. In deriving the decay rates to gravitinos, we have

neglected the gravitino mass, except of course in the coupling of the goldstino.

B.4.2 Z̃i → Z̃ j f f̄ decays

Here we present the partial width for neutralino three-body decays Z̃i → Z̃ j f f̄ ,

where f is a SM fermion. We neglect SM fermion masses in the evaluation of final
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state spin sums that have to be performed after squaring the matrix element, but

retain these in the kinematics. This would be a poor approximation for Z̃i → t t̄ Z̃ j .

However, when this decay is kinematically accessible, so are the two-body decay

modes Z̃i → Z̃ j Z and Z̃i → Z̃ j h: these two-body decays dominate the branching

fraction of the neutralino, and the inapplicability of our approximation becomes

essentially irrelevant.

This decay proceeds via the exchange of the two sfermion mass eigenstates f̃1,2

or their antiparticles, via the exchange of a Z boson, or via the exchange of one of

the three neutral Higgs bosons of the MSSM. The partial width can therefore be

written as

�(Z̃i → Z̃ j f f̄ ) = 1

2
Nc( f )

1

(2π )5

1

2m Z̃ j

× (
� f̃ + �Z + �h,H + �A + �Z f̃ + �φ f̃

)
, (B.70)

where the color factor Nc( f ) = 3 (1) for f = b (τ ). The Higgs and Z exchange

diagrams do not interfere with each other in the approximation that the spin sums

are evaluated with m f = 0. For decays to the first two generations of fermions, the

Higgs exchange contributions are also negligible.

The pure sfermion exchange contribution is given by

� f̃ = � f̃1
+ � f̃2

+ � f̃ 1,2
, (B.71)

where

� f̃k
= �

f̃k

LL + �
f̃k

RR + �
f̃k

LR (k = 1, 2), (B.72a)

� f̃1,2
= �

f̃1

L �
f̃2

L + �
f̃1

L �
f̃2

R + �
f̃1

R �
f̃2

L + �
f̃1

R �
f̃2

R . (B.72b)

Here, the subscripts L and R refer to the chirality of the SM fermion coupling to

the heavier neutralino Z̃ j . The quantities appearing in Eq. (B.72a) and (B.72b) are:

�
f̃k

LL = 4
(

α
f̃k

Z̃i

)2
{[(

α
f̃k

Z̃ j

)2

+
(

β
f̃k

Z̃ j

)2
]

ψ(m Z̃i
, m f̃k

, m Z̃ j
)

+ (−1)θi +θ j

(

α
f̃k

Z̃ j

)2

φ(m Z̃i
, m f̃k

, m Z̃ j
)

}

; (B.73a)

�
f̃k

RR = 4
(

β
f̃k

Z̃i

)2
{[(

α
f̃k

Z̃ j

)2

+
(

β
f̃k

Z̃ j

)2
]

ψ(m Z̃i
, m f̃k

, m Z̃ j
)

+ (−1)θi +θ j

(

β
f̃k

Z̃ j

)2

φ(m Z̃i
, m f̃k

, m Z̃ j
)

}

; (B.73b)
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�
f̃k

LR = −8α
f̃k

Z̃ j
β

f̃k

Z̃ j
α

f̃k

Z̃i
β

f̃k

Z̃i
Y (m Z̃i

, m f̃k
, m f̃k

, m Z̃ j
); (B.73c)

�
f̃1

L �
f̃2

L = 8α
f̃1

Z̃i
α

f̃2

Z̃i

{[

α
f̃1

Z̃ j
α

f̃2

Z̃ j
+ β

f̃1

Z̃ j
β

f̃2

Z̃ j

]

ψ̃(m Z̃i
, m f̃1

, m f̃2
, m Z̃ j

)

+ (−1)θi +θ j α
f̃1

Z̃ j
α

f̃2

Z̃ j
φ̃(m Z̃i

, m f̃1
, m f̃2

, m Z̃ j
)
}

; (B.73d)

�
f̃1

R �
f̃2

R = 8β
f̃1

Z̃i
β

f̃2

Z̃i

{[

α
f̃1

Z̃ j
α

f̃2

Z̃ j
+ β

f̃1

Z̃ j
β

f̃2

Z̃ j

]

ψ̃(m Z̃i
, m f̃1

, m f̃2
, m Z̃ j

)

+ (−1)θi +θ j β
f̃1

Z̃ j
β

f̃2

Z̃ j
φ̃(m Z̃i

, m f̃1
, m f̃2

, m Z̃ j
)
}

; (B.73e)

�
f̃1

L �
f̃2

R = −8α
f̃1

Z̃i
β

f̃2

Z̃i
α

f̃2

Z̃ j
β

f̃1

Z̃ j
Y (m Z̃i

, m f̃1
, m f̃2

, m Z̃ j
); (B.73f)

�
f̃2

L �
f̃1

R = −8α
f̃2

Z̃i
β

f̃1

Z̃i
α

f̃1

Z̃ j
β

f̃2

Z̃ j
Y (m Z̃i

, m f̃1
, m f̃2

, m Z̃ j
). (B.73g)

We have already encountered the kinematic functions ψ̃ , φ̃, Y , ψ , and φ, that

appear in the expressions above, in our discussion of the decay g̃ → f f̄ Z̃i ; see

Eq. (B.29a)–(B.29i), and the discussion immediately following these. The real

couplings α
f̃k

Z̃i
and β

f̃k

Z̃i
that enter (B.73a)–(B.73g) are given by,2

α
f̃1

Z̃i
= Ã f

Z̃i
cos θ f − f f v

(i)
a sin θ f , (B.74a)

β
f̃1

Z̃i
= B̃ f

Z̃i
sin θ f + f f v

(i)
a cos θ f , (B.74b)

where a = 1 if T3 f = 1/2 and a = 2 if T3 f = −1/2. The corresponding couplings

for the heavy sfermions (k = 2) are obtained via the replacements,

cos θ f → sin θ f , sin θ f → − cos θ f .

The couplings Ã f
Z̃i

and B̃ f
Z̃i

are listed in (B.9a)–(B.9d) for f = q. For leptons, these

are given by,

Ã�

Z̃i
= −gv

(i)
3√
2

− g′v(i)
4√
2

, (B.75a)

B̃�

Z̃i
= −

√
2g′v(i)

4 , (B.75b)

Ãν

Z̃i
= gv

(i)
3√
2

− g′v(i)
4√
2

, (B.75c)

B̃ν

Z̃i
= 0. (B.75d)

2 We caution the reader that these differ from these same couplings defined in Eq. (8.91a)–(8.91d) of Chapter 8
by phases that we have removed, purely for convenience. We trust that our abuse of notation in using the same
symbol to denote different, though closely related, quantities will not cause a problem. These real couplings
are only used in the formulae in this Appendix.
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The squared Z exchange contribution, which is not affected by sfermion mixing,

is given by

�Z = 64e2|Wi j |2
(
α2

f + β2
f

)
m Z̃i

π2

×
∫ Emax

m Z̃ j

dE
B f

√

E2 − m2
Z̃ j

(

m2
Z̃i

+ m2
Z̃ j

− M2
Z − 2Em Z̃i

)2

×
{

E
[

m2
Z̃i

+ m2
Z̃ j

− (−1)θi +θ j 2m Z̃i
m Z̃ j

]

− m Z̃i

(

E2 + m2
Z̃ j

+ B f

3
(E2 − m2

Z̃ j
)

)

+ (−1)θi +θ j m Z̃ j

(

m2
Z̃i

+ m2
Z̃ j

− 2m2
f

)}

. (B.76)

Here, α f and β f are the vector and axial vector couplings of Z to SM fermions,

Wi j is the Z Z̃i Z̃ j coupling given by (8.101), with

B f =
√
√
√
√1 − 4m2

f

m2
Z̃i

+ m2
Z̃ j

− 2Em Z̃ j

, (B.77a)

and the upper integration limit

Emax =
m2

Z̃i
+ m2

Z̃ j
− 4m2

f

2m2
Z̃i

. (B.77b)

The squared scalar Higgs exchange contributions can also be written as a single

integral:

�h,H = 2π2

(
gm f

MW cos β

)2

m Z̃i

∫ Emax

m Z̃ j

dE B f

√

E2 − m2
Z̃ j

×
(

m2
Z̃i

+ m2
Z̃ j

− 2m Z̃i
E − 2m2

f

) [

E + (−1)θi +θ j m Z̃ j

]

×
⎡

⎣
sin α

(

Xh
i j + Xh

ji

)

m2
Z̃i

+ m2
Z̃ j

− 2m Z̃i
E − m2

h

+
cos α

(

X H
i j + X H

ji

)

m2
Z̃i

+ m2
Z̃ j

− 2m Z̃i
E − m2

H

⎤

⎦

2

.

(B.78a)

The couplings Xh,H
i j are given by (8.117), and the upper limit of integration by

(B.77b).



B.4 Neutralino decay widths 515

The squared pseudoscalar Higgs exchange contribution can be cast in a similar

form:

�A = 2π2

[
gm f tan β

MW

(
X A

i j + X A
ji

)
]2

m Z̃i

∫ Emax

m Z̃ j

dE B f

√

E2 − m2
Z̃ j

×
(

m2
Z̃i

+ m2
Z̃ j

− 2m Z̃i
E − 2m2

f

) [

E − (−1)θi +θ j m Z̃ j

]

(

m2
Z̃i

+ m2
Z̃ j

− 2m Z̃i
E − m2

A

)2
,

(B.78b)

where the coupling X A
i j is given in (8.120).

We now turn to the various interference terms. The Z–sfermion interference

contributions can be written as

�Z f̃ = �Z f̃1
+ �Z f̃2

, (B.79a)

with

�Z f̃k
= 32eW̃i j

[

α
f̃k

Z̃i
α

f̃k

Z̃ j

(
α f − β f

) − β
f̃k

Z̃i
β

f̃k

Z̃ j

(
α f + β f

)] π2

2m Z̃i

×
∫ (m Z̃i

−m Z̃ j
)2

4m2
f

ds

s − M2
Z

{

−1

2
Q′

(

m Z̃i
EQ + m2

f̃k
− m2

Z̃i
− s − m2

f

)

− 1

4m Z̃i

[(

m2
f̃k

− m2
Z̃ j

− m2
f

) (

m2
f̃k

− m2
Z̃i

− m2
f

)

+ (−1)θi +θ j m Z̃i
m Z̃ j

(s − 2m2
f )

]

log
m Z̃i

(
EQ + Q′) − μ2

m Z̃i

(
EQ − Q′) − μ2

}

. (B.79b)

Here we have introduced the quantities

μ2 = s + m2
f̃k

− m2
Z̃ j

− m2
f , EQ =

s + m2
Z̃i

− m2
Z̃ j

2m Z̃i

, (B.80a)

and

Q =
√

E2
Q − s, Q′ = Q

√

1 − 4m2
f

s
. (B.80b)

The real coupling W̃i j is defined to be,

W̃i j = (−i)θi +θ j (−1)θ j Wi j . (B.81)

Finally, the Higgs boson–sfermion interference contributions can be written as,

�φ f̃ = �h f̃1
+ �h f̃2

+ �H f̃1
+ �H f̃2

+ �A f̃1
+ �A f̃2

, (B.82a)
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with

�h f̃k
= 2π2

m Z̃i

gm f sin α

MW cos β

(
Xh

ji + Xh
i j

) [

α
f̃k

Z̃i
β

f̃k

Z̃ j
+ α

f̃k

Z̃ j
β

f̃k

Z̃i

]

×(−1)θi +θ j J (m Z̃i
, m f̃k

, mh, m Z̃ j
, θi + θ j ), (B.82b)

�H f̃k
= 2π2

m Z̃i

gm f cos α

MW cos β

(
X H

ji + X H
i j

) [

α
f̃k

Z̃i
β

f̃k

Z̃ j
+ α

f̃k

Z̃ j
β

f̃k

Z̃i

]

×(−1)θi +θ j J (m Z̃i
, m f̃k

, m H , m Z̃ j
, θi + θ j ), (B.82c)

�A f̃k
= 2π2

m Z̃i

gm f tan β

MW

(
X A

ji + X A
i j

) [

α
f̃k

Z̃i
β

f̃k

Z̃ j
+ α

f̃k

Z̃ j
β

f̃k

Z̃i

]

×(−1)1+θi +θ j J (m Z̃i
, m f̃k

, m A, m Z̃ j
, 1 + θi + θ j ). (B.82d)

The function J is defined as

J (m Z̃i
, m f̃ , m H , m Z̃ j

, θ ) =
∫ (m Z̃i

−m Z̃ j
)2

4m2
f

ds

s − m2
H

×
[

1

2
s Q′ +

sm2
f̃
− m2

f (m2
Z̃i

+ m2
Z̃ j

) + (−1)θm Z̃i
m Z̃ j

(s − 2m2
f )

4m Z̃ j

× log
m Z̃i

(
EQ + Q′) − μ2

m Z̃i

(
EQ − Q′) − μ2

]

, (B.83)

where μ2, EQ , Q, and Q′ have been defined previously.

B.4.3 Z̃ j → W̃ +
i τ−ντ decays

The partial width for the decay Z̃ j → W̃ +
i τ−ντ is related to that for the decay

W̃ −
i → Z̃ jτ

−ντ , as in (B.106) of the next section. These neutralino decays are

usually not very important because they are either phase space suppressed, or are

dwarfed by other two-body decays of the parent neutralino.

B.5 Chargino decay widths

B.5.1 Two-body decays

We list the tree-level partial widths for all two-body decays of the charginos. The

partial width for a mode and its charge conjugate are the same. Also, in the following,

whether W̃1 refers to positive or negative chargino should be clear from the context.
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Starting with decays to gauge bosons, we find that

�(W̃i → Z̃ j W ) = g2

16πm3
W̃i

λ
1
2 (m2

W̃i
, m2

Z̃ j
, M2

W )

×
[

(X j2
i + Y j2

i )

(

m2
W̃i

+ m2
Z̃ j

− M2
W +

(m2
W̃i

− m2
Z̃ j

)2 − M4
W

M2
W

)

− 6(X j2
i − Y j2

i )mW̃i
m Z̃ j

]

, (B.84)

where X j
i and Y j

i are given in Eq. (8.103a) and (8.103b), and

�(W̃2 → W̃1 Z ) = e2

64πm3
W̃2

(cot θW + tan θW)2λ
1
2 (m2

W̃2
, m2

W̃1
, M2

Z )

×
[

(x2 + y2)

(

m2
W̃2

+ m2
W̃1

− M2
Z + (mW̃2

− mW̃1
)2 − M4

Z

M2
Z

)

+ 6(x2 − y2)(−1)θW̃1 (−1)θW̃2 mW̃1
mW̃2

]

, (B.85)

where x and y are given in Eq. (8.100e) and (8.100f).

Turning to decays to various Higgs bosons, we find,

�(W̃i → Z̃ j H−) = 1

16πm3
W̃i

λ
1
2 (m2

W̃i
, m2

Z̃ j
, m2

H−)

×
[

(a2 + b2)(m2
W̃i

+ m2
Z̃ j

− m2
H−) + 2(a2 − b2)mW̃i

m Z̃ j

]

,

(B.86)

where the coefficients a and b are exactly the same as those that enter the decay

Z̃ j → W̃ −
i H+; these are given in (B.63a) and (B.63b), and in the discussion follow-

ing for the decay Z̃i → W̃ −
j H+ (so that the reader must remember to interchange

i and j). Charginos may also decay to neutral Higgs bosons φ = h, H or A with

partial widths given by,

�(W̃2 → W̃1φ) = g2

32πm3
W̃2

λ
1
2 (m2

W̃2
, m2

W̃1
, m2

φ)

×
[

(Sφ2 + Pφ2)(m2
W̃2

+ m2
W̃1

− m2
φ) + 2(Sφ2 − Pφ2)mW̃1

mW̃2

]

,

(B.87)
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where Sh(H ) and Ph(H ) are given in (8.116c), and the corresponding couplings to

A given in (8.119c).

Charginos may also decay via W̃i → f̃j f ′ if these decays are kinematically

accessible. We write the partial widths for decays to the third generation, but these

can be used with obvious modifications for the first two generations. For W̃i decay

to squark plus quark, we find

�(W̃ +
i → t̃1b̄) = 3mW̃i

32π
λ1/2(1,

m2
b

m2
W̃i

,
m2

t̃1

m2
W̃i

)

{

[|A|2 + B ′2
W̃i

cos2 θt ]

× (1 + m2
b

m2
W̃i

− m2
t̃1

m2
W̃i

) + 4AB ′
W̃i

cos θt
mb

mW̃i

}

, (B.88a)

whereA ≡ iAd
W̃i

cos θt − BW̃i
sin θt is real. The width for W̃i → t̃2b̄ can be obtained

from this by replacing mt̃1 → mt̃2 , cos θt → sin θt , and sin θt → − cos θt . For W̃i →
¯̃b1t decay, we find

�(W̃i → b̃1 t̄) = 3mW̃i

32π
λ1/2(1,

m2
t

m2
W̃i

,
m2

b̃1

m2
W̃i

)

{

[|A|2 + B2
W̃i

cos2 θb]

× (1 + m2
t

m2
W̃i

−
m2

b̃1

m2
W̃i

) + 4ABW̃i
cos θb

mt

mW̃i

}

, (B.88b)

where this timeA = iAu
W̃i

cos θb − B ′
W̃i

sin θb. Again, the replacements mb̃1
→ mb̃2

,

cos θb → sin θb, and sin θb → − cos θb, yield the width for the decay W̃i → b̃2 t̄ .
These formulae simplify considerably if we ignore couplings to the higgsino

components and intra-generation mixing. The decay rate for W̃ +
i → ũLd̄ can then

be obtained from �(W̃ +
i → t̃1b̄) by replacing mb → md , mt̃1 → mũL

and setting

cos θt → 1, sin θt → 0 and setting the Yukawa couplings in BW̃i
and B ′

W̃i
to zero.

Similarly, the decay W̃i → d̃Lū can be obtained from the formula for W̃i → b̃1 t̄
by replacing mt → mu , mb̃1

→ md̃L
and setting cos θb → 1, sin θb → 0 and again

setting the Yukawa couplings in BW̃i
and B ′

W̃i
to zero. Of course, charginos do not

decay into q̃R in this limit.

Finally, the partial widths to leptons and sleptons are given by

�(W̃i → ν̃τ τ̄ ) = mW̃i

32π
λ1/2(1,

m2
τ

m2
W̃i

,
m2

ν̃τ

m2
W̃i

)

×
{

[

|Aτ

W̃i
|2 + B

′′2
W̃i

]
(

1 + m2
τ

m2
W̃i

− m2
ν̃τ

m2
W̃i

)

+ 4(iAτ

W̃i
)B ′′

W̃i

mτ

mW̃i

}

,

(B.89a)
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(notice that iAτ

W̃i
is real) and

�(W̃i → τ̃1ν̄τ ) = |A|2
32π

mW̃i

(

1 − m2
τ̃1

m2
W̃i

)2

, (B.89b)

where the real coefficient A = iAν

W̃i
cos θτ − B ′′

W̃i
sin θτ . The couplings Aτ

W̃i
, Aν

W̃i
,

and B ′′
W̃i

are given in (8.98a)–(8.98d). The decay width to τ̃2 is obtained via the

replacements, cos θτ → sin θτ , sin θτ → − cos θτ , and m τ̃1
→ m τ̃2

in the formula

for �(W̃i → τ̃1ντ ) and the corresponding coefficient A. How these formulae sim-

plify if coupling via higgsino components and �̃L–�̃R mixing are neglected should

be evident.

B.5.2 Three-body decay: W̃i → Z̃ jτ ν̄τ

We present a formula for the partial width for the decay W̃i → Z̃ jτντ . We will see

later that partial widths for other relevant three-body decays of the chargino can be

readily obtained from this. This decay proceeds via the exchange of a W boson, a

charged or neutral third generation slepton, and a charged Higgs boson. The partial

width can be written as

�(W̃i → Z̃ jτ
−ν̄τ )

= 1

2

1

(2π )5

1

2mW̃i

(�W + �ν̃ + �τ̃ + �H + �W ν̃ + �W τ̃ + �ν̃τ̃ + �H ν̃ + �H τ̃ ) .

(B.90)

The Higgs and W exchange contributions do not interfere, since we neglect terms

∝ mτ when doing the Dirac algebra.

The squared W exchange contribution is given by

�W = 4g4 π2

3

∫ Emax

m Z̃ j

dE

√

E2 − m2
Z̃ j

(

m2
W̃i

+ m2
Z̃ j

− 2mW̃i
E − M2

W

)2

×
{(∣

∣
∣X j

i

∣
∣
∣
2

+
∣
∣
∣Y

j
i

∣
∣
∣
2
) [

3
(

m2
W̃i

+ m2
Z̃ j

)

mW̃i
E − 2m2

W̃i

(

2E2 + m2
Z̃ j

)]

− 3

(∣
∣
∣X j

i

∣
∣
∣
2

−
∣
∣
∣Y

j
i

∣
∣
∣
2
)

mW̃i
m Z̃ j

(

m2
W̃i

+ m2
Z̃ j

− 2EmW̃i

)}

. (B.91)

Here X j
i and Y j

i are the W W̃i Z̃ j couplings given in (8.103a) and (8.103b), and the

upper integration limit Emax = (m2
W̃i

+ m2
Z̃ j

)/2mW̃i
.
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The squared sneutrino exchange contribution is given by

�ν̃ = 2
(

Ãν

Z̃ j

)2
[(

Ãτ

W̃i

)2

+
(

B ′′
W̃i

)2
]2

ψ(mW̃i
, m ν̃τ

, m Z̃ j
), (B.92)

where Ãν

Z̃ j
has been defined in (B.75d) and

Ãτ

W̃1
= −g sin γR. (B.93a)

The pure scalar tau exchange terms can be written as

�τ̃ = �τ̃1
+ �τ̃2

+ �τ̃1τ̃2
, (B.94)

where

�τ̃k = 2
(

α
τ̃k

W̃i

)2
[(

α
τ̃k

Z̃ j

)2

+
(

β
τ̃k

Z̃ j

)2
]

ψ(mW̃i
, m τ̃k , m Z̃ j

), (B.95a)

�τ̃1τ̃2
= 4α

τ̃1

W̃i
α

τ̃2

W̃i

[

α
τ̃1

Z̃ j
α

τ̃2

Z̃ j
+ β

τ̃1

Z̃ j
β

τ̃2

Z̃ j

]

ψ̃(mW̃i
, m τ̃1

, m τ̃2
, m Z̃ j

), (B.95b)

and where

α
τ̃1

W̃1
= −g sin γL cos θτ + fτ cos γL sin θτ , (B.96a)

α
τ̃2

W̃1
= −g sin γL sin θτ − fτ cos γL cos θτ , (B.96b)

α
τ̃1

W̃2
= (−g cos γL cos θτ − fτ sin γL sin θτ )θx , (B.96c)

α
τ̃2

W̃2
= (−g cos γL sin θτ + fτ sin γL cos θτ )θx . (B.96d)

The squared charged Higgs boson exchange contribution is

�H = π2mW̃i

(
gmτ tan β

MW

)2 ∫ Emax

m Z̃ j

dE
√

E2 − m2
Z̃ j

(

m2
W̃i

+ m2
Z̃ j

− 2EmW̃i

)

×

{

E

[(

α
( j)

W̃i

)2

+
(

β
( j)

W̃i

)2
]

+ 2(−1)θW̃i
+θ j m Z̃ j

α
( j)

W̃i
β

( j)

W̃i

}

(

m2
W̃i

+ m2
Z̃ j

− 2EmW̃i
− m2

H+

)2
. (B.97)

Here, Emax is as defined just after (B.91), and

α
( j)

W̃1
= cos β A( j)

2 , (B.98a)

β
( j)

W̃1
= − sin β A( j)

4 , (B.98b)

α
( j)

W̃2
= cos β A( j)

1 θy, (B.98c)

β
( j)

W̃2
= − sin β A( j)

3 θx , (B.98d)

with the coefficients A( j)
i as defined in (8.122a)–(8.122d).



B.5 Chargino decay widths 521

The W –sneutrino interference contribution is not affected by τ̃L–τ̃R mixing and

contributions ∝ fτ ; it can be written as

�W ν̃ = −4
√

2g2(−1)θW̃i
+θ j Ãτ

W̃i
Ãν

Z̃ j

×
[(

X j
i − Y j

i

)

I1(mW̃i
, m ν̃τ

, m Z̃ j
) −

(

X j
i + Y j

i

)

I2(mW̃i
, m ν̃τ

, m Z̃ j
)
]

,

(B.99)

where we have introduced the functions

I1(mW̃ , m f̃ , m Z̃ ) = π2

2mW̃

∫
ds

s − M2
W

⎡

⎣ − 1

2
Q

(

mW̃ EQ + m2
f̃ − m2

W̃
− s

)

−
(

m2
f̃
− m2

Z̃

) (

m2
f̃
− m2

W̃

)

4mW̃

log
mW̃

(
EQ + Q

) − μ2

mW̃

(
EQ − Q

) − μ2

⎤

⎦ ,

(B.100a)

I2(mW̃ , m f̃ , m Z̃ ) = π2

8mW̃

∫
ds

s − M2
W

m Z̃ s log
mW̃

(
EQ + Q

) − μ2

mW̃

(
EQ − Q

) − μ2
, (B.100b)

and the limits of integration on I1 and I2 run from zero to (mW̃ − m Z̃ )2. The quan-

tities μ2, EQ , and Q are defined in (B.80a) and (B.80b) but with m Z̃i
→ mW̃ ,

m Z̃ j
→ m Z̃ , and m f̃k

→ m f̃ .

The same functions also appear in the W –scalar tau interference contributions:

�W τ̃ = �W τ̃1
+ �W τ̃2

, (B.101a)

where

�W τ̃k = 4
√

2g2α
τ̃k

W̃i
α

τ̃k

Z̃ j

[(

X j
i + Y j

i

)

I1(mW̃i
, m τ̃k , m Z̃ j

)

−
(

X j
i − Y j

i

)

I2(mW̃i
, m τ̃k , m Z̃ j

)
]

. (B.101b)

The sneutrino–scalar tau interference terms can be written as

�ν̃τ̃ = �ν̃τ̃1
+ �ν̃τ̃2

, (B.102a)

where

�ν̃τ̃k = −4 Ãν

Z̃ j
α

τ̃k

W̃i

[

B ′′
W̃i

β
τ̃k

Z̃ j
Y (mW̃i

, m ν̃τ
, m τ̃k , m Z̃ j

)

−(−1)θi +θ j Ãτ

W̃i
α

τ̃k

Z̃ j
φ̃(mW̃i

, m ν̃τ
, m τ̃k , m Z̃ j

)
]

. (B.102b)

The functions Y and φ̃ have already been defined in (B.29a) and (B.29i), respec-

tively.
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The charged Higgs–sneutrino interference term is given by

�H ν̃ = 2
√

2 Ãν

Z̃ j
B ′′

W̃i

gmτ tan β

mW
IH (mW̃i

, m H+, m ν̃τ
, m Z̃ j

), (B.103)

where we have introduced the function

IH (mW̃i
, m H , m f̃ , m Z̃ j

) = π2

2mW̃i

∫ (mW̃i
−m Z̃ j

)2

0

ds

s − m2
H

(B.104)

×
{

1

2
s Qβ

( j)

W̃i
+ 1

4mW̃i

[

β
( j)

W̃i
sm2

f̃ + (−1)θW̃i
+θ j α

( j)

W̃i
mW̃i

m Z̃ j
s
]

× log
mW̃i

(EQ + Q) − μ2

mW̃i
(EQ − Q) − μ2

}

. (B.104)

The coupling Ãν

Z̃ j
is as defined in (B.75d), and the quantities μ2, EQ , and Q are

as defined below (B.100b).

The same function also appears in the charged Higgs–scalar tau interference

contributions:

�H τ̃ = �H τ̃1
+ �H τ̃2

, (B.105a)

where

�H τ̃k = 2
√

2α
τ̃k

W̃i
β

τ̃k

Z̃ j

gmτ tan β

MW
IH (mW̃i

, m H+, m τ̃k , m Z̃ j
). (B.105b)

The partial widths for the analogous neutralino to chargino decays are given by

crossing. The partial width for the neutralino to chargino decay can be obtained

from the formula for the corresponding width for the chargino decay by simply

interchanging the masses. In other words,

�(Z̃ j → W̃ +
i τ−ν̄τ ) = �(W̃ −

i → Z̃ jτ
−ν̄τ )(mW̃i

↔ m Z̃ j
). (B.106)

Note that Z̃ j can also decay into W̃ −
i τ+ντ final states, with equal probability.

However, these neutralino decays are usually not very important, since they are

either phase space suppressed, or have to compete with two-body decays of the

heavy neutralinos.

Our formula for �(W̃i → Z̃ jτ
−ν̄τ ) decay can be readily adapted to three-body

chargino decays into fermion–antifermion pairs of the first two generations. Ignor-

ing Yukawa couplings and intra-generation mixing, we have just three contribu-

tions to this amplitude: W exchange, and the exchanges of the “left-handed” up and

down type sfermions. We retain only the W , τ̃1, and sneutrino exchange contribu-

tions and set cos θτ = 1 to obtain the partial width for the decays W̃i → �ν̄� Z̃ j .

The replacements ν̃� → ũL, �̃L → d̃L in the formula for �(W̃i → Z̃ j�ν̄�) will



B.6 Top quark decay to SUSY particles 523

yield �(W̃i → Z̃ j dū) if we remember to include the color factor of 3. The de-

cay W̃i → bt̄ Z̃ j always has a small branching fraction, since two-body decays

W̃i → W Z̃ j are also accessible whenever the three-body decay to top is.

B.6 Top quark decay to SUSY particles

If charged Higgs bosons or sparticles are light enough, new two-body decays of

the top quark may be allowed. These include, t → bH+, t → t̃1 Z̃i , and t → b̃1W̃i .

The partial width for the decay t → f S, where f is a spin 1
2

fermion and S a spin

zero particle, is given by,

�(t → f S) = mt

16π
λ

1
2 (1,

m2
f

m2
t
,

m2
S

m2
t

)

×
[

(|α|2 + |β|2)(1 + m2
f

m2
t

− m2
S

m2
t

) + 2(|α|2 − |β|2)
m f

mt

]

,

(B.107)

where α and β are the scalar and pseudoscalar couplings of S to the t– f system.

For the decay t → bH+, f = b and S = H+ and we have,

α = g

2
√

2MW

(mb tan β + mt cot β),

β = g

2
√

2MW

(mb tan β − mt cot β). (B.108a)

For the decay t → t̃1 Z̃i , f = Z̃i , S = t̃1, and

α = 1

2

{[

iAt
Z̃i

− (i)θi ftv
(i)
1

]

cos θt −
[

iBt
Z̃i

− (−i)θi ftv
(i)
1

]

sin θt

}

and

β = 1

2

{[

−iAt
Z̃i

− (i)θi ftv
(i)
1

]

cos θt −
[

iBt
Z̃i

+ (−i)θi ftv
(i)
1

]

sin θt

}

.

(B.108b)

Finally, for the decay t → b̃1W̃i , f = W̃i , S = b̃1, and

α = 1

2

[

iAt
W̃i

cos θb − B ′
W̃i

sin θb + BW̃i
cos θb

]

,

β = 1

2

[

−iAt
W̃i

cos θb + B ′
W̃i

sin θb + BW̃i
cos θb

]

. (B.108c)



Appendix C

Higgs boson decay Widths

Here, we list the partial widths of all possible tree-level two-body decays of the

various Higgs bosons of the MSSM.

C.1 Decays to SM fermions

The partial widths for the decays of MSSM Higgs bosons to SM fermions are given

by:

�(h → uū) = g2

32π
Nc

cos2 α

sin2 β

(
mu

MW

)2

mh

(

1 − 4m2
u

m2
h

) 3
2

, (C.1a)

�(h → dd̄) = g2

32π
Nc

sin2 α

cos2 β

(
md

MW

)2

mh

(

1 − 4m2
d

m2
h

) 3
2

, (C.1b)

�(h → �+�−) = g2

32π

sin2 α

cos2 β

(
m�

MW

)2

mh

(

1 − 4m2
�

m2
h

) 3
2

, (C.1c)

�(H → uū) = g2

32π
Nc

sin2 α

sin2 β

(
mu

MW

)2

m H

(

1 − 4m2
u

m2
H

) 3
2

, (C.2a)

�(H → dd̄) = g2

32π
Nc

cos2 α

cos2 β

(
md

MW

)2

m H

(

1 − 4m2
d

m2
H

) 3
2

, (C.2b)

�(H → �+�−) = g2

32π

cos2 α

cos2 β

(
m�

MW

)2

m H

(

1 − 4m2
�

m2
H

) 3
2

, (C.2c)

and

�(A → uū) = g2

32π
Nc cot2 β

(
mu

MW

)2

m A

(

1 − 4m2
u

m2
A

) 1
2

, (C.3a)
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�(A → dd̄) = g2

32π
Nc tan2 β

(
md

MW

)2

m A

(

1 − 4m2
d

m2
A

) 1
2

, (C.3b)

�(A → �+�−) = g2

32π
tan2 β

(
m�

MW

)2

m A

(

1 − 4m2
�

m2
A

) 1
2

, (C.3c)

where the color factor Nc = 3 for decays to quarks.

For charged Higgs boson decays, we find

�(H+ → ud̄) = �(H− → dū) = g2

32π M2
W m H+

Ncλ
1
2

(

1,
m2

u

m2
H+

,
m2

d

m2
H+

)

× [
(m2

d tan2 β + m2
u cot2 β)(m2

H+ − m2
u − m2

d) − 4m2
um2

d

]
.

(C.4)

To get �(H+ → ν��̄) simply replace md → m�, mu → 0, and Nc = 1 in (C.4).

The dominant radiative corrections can be included by replacing the fermion

masses that enter the prefactors of these formulae via the corresponding Yukawa

couplings by running masses evaluated at the scale Q = mh,H,A.

C.2 Decays to gauge bosons

The heavy scalar H may decay to Z Z or W W with partial widths given by

�(H → Z0 Z0) = g2 cos2(α + β)M2
W

32π cos4 θWm H

[

3 − m2
H

M2
Z

+ m4
H

4M4
Z

]

λ
1
2

(

1,
M2

Z

m2
H

,
M2

Z

m2
H

)

(C.5a)

and

�(H → W +W −)

= g2 cos2(α + β)M2
W

16πm H

[

3 − m2
H

M2
W

+ m4
H

4M4
W

]

λ
1
2

(

1,
M2

W

m2
H

,
M2

W

m2
H

)

. (C.5b)

The A has no tree-level couplings to vector boson pairs, but a coupling can be

induced at the one-loop level. The h is too light to decay to electroweak vector

boson pairs. Note, however, that the branching fractions for the three-body decays

of h or H to W W ∗ or Z Z∗ may be large, since these have only to compete with

two-body decays mediated by bottom Yukawa couplings; formulae for these partial

widths in the SM are given by Keung and Marciano.1 It is simple to modify these

by inserting the appropriate factor that arises in the hV V or H V V (V = W, Z )

coupling in the MSSM.

1 W. Y. Keung and W. Marciano, Phys. Rev. D30, 248 (1984).
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In the MSSM, charged Higgs bosons cannot decay via H± → W ±Z0 at the tree

level.

C.3 Decays to sfermions

The partial widths for scalar neutral Higgs boson decays to a pair of squarks or

sleptons are given by,

�(h, H → f̃ i
¯̃f j ) =

|Ah,H

f̃ i
¯̃f j
|2

16πmh,H
Nc( f )λ

1
2

(

1,
m2

f̃ 1

m2
h,H

,
m2

f̃ 2

m2
h,H

)

(C.6)

where i, j = 1, 2 and Nc( f ) = 3 (1) for squarks (sleptons). The relevant couplings

are given by

Ah,H

f̃ 1
¯̃f 1

= A f̃ L
¯̃f L

cos2 θ f + A f̃ R
¯̃f R

sin2 θ f − 2A f̃ L
¯̃f R

cos θ f sin θ f , (C.7a)

Ah,H

f̃ 2
¯̃f 2

= A f̃ L
¯̃f L

sin2 θ f + A f̃ R
¯̃f R

cos2 θ f + 2A f̃ L
¯̃f R

cos θ f sin θ f , (C.7b)

Ah,H

f̃ 1
¯̃f 2

= A f̃ L
¯̃f L

cos θ f sin θ f − A f̃ R
¯̃f R

cos θ f sin θ f + A f̃ L
¯̃f R

cos 2θ f ,(C.7c)

and Ah,H

f̃ 2
¯̃f 1

= Ah,H

f̃ 1
¯̃f 2

.

The couplings Ah,H
q̃Lq̃L

, Ah,H
q̃Rq̃R

and Ah,H
q̃Lq̃R

are given by,

Ah
ũL ¯̃uL

= g

[

MW (
1

2
− 1

6
tan2 θW) sin(β − α) − m2

u cos α

MW sin β

]

, (C.8a)

Ah
d̃L

¯̃dL

= g

[

MW (−1

2
− 1

6
tan2 θW) sin(β − α) − m2

d sin α

MW cos β

]

, (C.8b)

Ah
ũR ¯̃uR

= g

[
2

3
MW tan2 θW sin(β − α) − m2

u cos α

MW sin β

]

, (C.8c)

Ah
d̃R

¯̃dR

= g

[

−1

3
MW tan2 θW sin(β − α) − m2

d sin α

MW cos β

]

, (C.8d)

and

AH
ũL ¯̃uL

= g

[

−MW (
1

2
− 1

6
tan2 θW) cos(β − α) + m2

u sin α

MW sin β

]

, (C.9a)

AH
d̃L

¯̃dL
= g

[

MW (
1

2
+ 1

6
tan2 θW) cos(β − α) − m2

d cos α

MW cos β

]

, (C.9b)

AH
ũR ¯̃uR

= g

[

−2

3
MW tan2 θW cos(β − α) + m2

u sin α

MW sin β

]

, (C.9c)

AH
d̃R

¯̃dR
= g

[
1

3
MW tan2 θW cos(β − α) − m2

d cos α

MW cos β

]

. (C.9d)
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Furthermore,

Ah
ũL ¯̃uR

= gmu

2MW sin β
(−μ sin α + Au cos α), (C.10a)

Ah
d̃L

¯̃dR

= gmd

2MW cos β
(−μ cos α + Ad sin α), (C.10b)

and

AH
ũL ¯̃uR

= gmu

2MW cos β
(−μ cos α − Au sin α), (C.11a)

AH
d̃L

¯̃dR
= gmd

2MW cos β
(μ sin α + Ad cos α). (C.11b)

The pseudoscalar A cannot decay into f̃ i
¯̃f i pairs because of C P conservation.

It may, however, decay into unlike sfermion–antisfermion pairs with a width,

�(A → f̃ 1
¯̃f 2) = �(A → f̃ 2

¯̃f 1) =
|AA

f̃ L
¯̃f R

|2
16πm A

Nc( f )λ
1
2

(

1,
m2

f̃ 1

m2
A

,
m2

f̃ 2

m2
A

)

, (C.12)

where the relevant couplings for decays to squarks are given by,

AA
ũL ¯̃uR

= gmu

2MW
(μ + Au cot β), (C.13a)

AA
d̃L

¯̃dR
= gmd

2MW
(μ + Ad tan β). (C.13b)

Notice that this decay rate does not depend on the sfermion mixing angle.

The couplings for decays of h, H or A decays to sleptons can be obtained from

those for their decays to squarks via the substitutions listed below Eq. (8.125d).

The partial width for the decay of the charged Higgs boson to squarks is given by,

�(H+ → q̃i ¯̃q ′
j ) = �(H− → q̃ ′

j
¯̃qi ) =

C2
q̃i ¯̃q ′

j

16πm H+
Ncλ

1
2

(

1,
m2

q̃i

m2
H+

,
m2

q̃ ′
j

m2
H+

)

,

(C.14)

where

Cũ1
¯̃d1

= CũL
¯̃dL

cos θu cos θd + CũR
¯̃dR

sin θu sin θd

− CũL
¯̃dR

cos θu sin θd − CũR
¯̃dL

sin θu cos θd, (C.15a)

Cũ2
¯̃d2

= CũL
¯̃dL

sin θu sin θd + CũR
¯̃dR

cos θu cos θd

+ CũL
¯̃dR

sin θu cos θd + CũR
¯̃dL

cos θu sin θd, (C.15b)

Cũ1
¯̃d2

= CũL
¯̃dL

cos θu sin θd − CũR
¯̃dR

sin θu cos θd

+ CũL
¯̃dR

cos θu cos θd − CũR
¯̃dL

sin θu sin θd, (C.15c)
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Cũ2
¯̃d1

= CũL
¯̃dL

sin θu cos θd − CũR
¯̃dR

cos θu sin θd

− CũL
¯̃dR

sin θu sin θd + CũR
¯̃dL

cos θu cos θd, (C.15d)

with

CũL
¯̃dL

= g√
2

[

−MW sin 2β + m2
d tan β + m2

u cot β

MW

]

, (C.16a)

CũR
¯̃dR

=
[

gmumd(cot β + tan β)√
2MW

]

, (C.16b)

CũL
¯̃dR

=
[ −gmd√

2MW

(Ad tan β + μ)

]

, (C.16c)

CũR
¯̃dL

=
[ −gmu√

2MW

(Au cot β + μ)

]

. (C.16d)

For H+ → ν̃L
¯̃�1,2 decay, replace Cq̃i ¯̃q ′

j
→ C

ν̃L
¯̃�1,2

, mq̃i → m ν̃L
, mq̃ j → m �̃1,2

, Nc = 1

and use

C
ν̃L

¯̃�1
= C

ν̃L
¯̃�L

cos θ� − C
ν̃L

¯̃�R
sin θ�, (C.17a)

C
ν̃L

¯̃�2
= C

ν̃L
¯̃�L

sin θ� + C
ν̃L

¯̃�R
cos θ�, (C.17b)

with

C
ν̃L

¯̃�L
= g√

2

[

−MW sin 2β + m2
� tan β

MW

]

, and (C.18a)

C
ν̃L

¯̃�R
=

[ −gm�√
2MW

(A� tan β + μ)

]

. (C.18b)

C.4 Decays to charginos and neutralinos

The partial width for the decays of neutral Higgs bosons, φ = h, H or A, to chargino

pairs is given by,

�(φ → W̃ +
i W̃ −

i ) = g2

4π
|Sφ

i |2mφ

(

1 − 4
mW̃i

2

mφ
2

)δφ

, (C.19)

where δh,H = 3/2 and δA = 1/2, and

�(φ → W̃ +
1 W̃ −

2 ) = λ
1
2

(

1,
m2

W̃1

m2
φ

,
m2

W̃2

m2
φ

)

g2

16πmφ

{|Sφ|2 [
m2

φ − (mW̃2
+ mW̃1

)2
]

+ |Pφ|2 [
m2

φ − (mW̃2
− mW̃1

)2
]}

, (C.20)

with �(h, H, A → W̃ +
1 W̃ −

2 ) = �(h, H, A → W̃ +
2 W̃ −

1 ) by C P invariance. The

various couplings Sφ

i , Pφ

i , Sφ , and Pφ have been listed in Eq. (8.116a)–(8.116c)
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and in the accompanying discussion for φ = h, H , and in (8.119a)–(8.119c) for

φ = A.

The neutral Higgs bosons can also decay into neutralino pairs with partial widths

given by,

�(φ → Z̃i Z̃ j ) = �i j

8πmφ

(

Xφ

i j + Xφ

j i

)2 [

m2
φ − (m Z̃i

+ (−1)θi +θ j +θφ m Z̃ j
)2

]

×λ
1
2

(

1,
m2

Z̃i

m2
φ

,
m2

Z̃ j

m2
φ

)

, (C.21)

where θφ = 0 if φ = h, H and θφ = 1 if φ = A, �i j = 1
2

(1) for i = j (i �= j), and

where Xh,H,A
i j are given in Eq. (8.117) and (8.120).

Finally, the partial width for a charged Higgs boson to decay into a chargino and

a neutralino is given by

�(H+ → W̃ +
i Z̃ j ) = �(H− → W̃ −

i Z̃ j ) = 1

8πm H+
λ

1
2

(

1,
m2

W̃i

m2
H+

,
m2

Z̃ j

m2
H+

)

×
[

(R2
i j+S2

i j )(m
2
H+−m2

W̃i
− m2

Z̃ j
) − 2(R2

i j − S2
i j )mW̃i

m Z̃ j
)
]

,

(C.22)

where

R1 j = 1

2

[

(−1)θW̃1 A j
2 cos β − (−1)θ j A j

4 sin β
]

, (C.23a)

R2 j = 1

2

[

(−1)θW̃2 θy A j
1 cos β − (−1)θ j θx A j

3 sin β
]

, (C.23b)

and

S1 j = 1

2

[

(−1)θW̃1 A j
2 cos β + (−1)θ j A j

4 sin β
]

, (C.24a)

S2 j = 1

2

[

(−1)θW̃2 θy A j
1 cos β + (−1)θ j θx A j

3 sin β
]

, (C.24b)

with A j
1–A j

4 as given in (8.122a)–(8.122d).

C.5 Decays to Higgs bosons

Finally, we list Higgs boson decay widths to other Higgs bosons, including decays

to Higgs boson–gauge boson final states:

�(H → hh) = ξ 2
Hhh

8πm H

(

1 − 4m2
h

m2
H

) 1
2

, (C.25a)
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where

ξHhh = gMZ

4 cos θW

[cos 2α cos(β − α) + 2 sin 2α sin(β − α)] ; (C.25b)

�(H → AA) = ξ 2
H AA

8πm H

(

1 − 4m2
A

m2
H

) 1
2

, (C.26a)

where

ξH AA = − gMZ

4 cos θW

cos(β − α) cos 2β; (C.26b)

�(H → H+ H−) = ξ 2
H+−

16πm H

(

1 − 4m2
H+

m2
H

) 1
2

, (C.27a)

where

ξH+− = gMW

[

cos(β + α) − cos(β − α) cos 2β

2 cos2 θW

]

; (C.27b)

�(h → AA) = ξ 2
h AA

8πmh

(

1 − 4m2
A

m2
h

) 1
2

, (C.28a)

where

ξh AA =
(

gMZ

4 cos θW

)

sin(β − α) cos 2β. (C.28b)

Higgs bosons may also decay into gauge bosons and a lighter Higgs boson. The

partial widths for these decays are given by,

�(H → Z0 A) = (g cos θW + g′ sin θW)2 sin2(α + β)m3
H

64πm2
Z

λ
3
2

(

1,
m2

A

m2
H

,
M2

Z

m2
H

)

,

(C.29a)

�(A → Z0h) = (g cos θW + g′ sin θW)2 cos2(α + β)m3
A

64πm2
Z

λ
3
2

(

1,
m2

h

m2
A

,
M2

Z

m2
A

)

,

(C.29b)

and

�(H± → W ±h) = g2 cos2(α + β)m3
H+

64π M2
W

λ
3
2

(

1,
M2

W

m2
H+

,
m2

h

m2
H+

)

. (C.29c)

The decays H± → W ± A and W ± H are kinematically forbidden in the MSSM,

assuming tree-level formulae for their masses.
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and Lagrangians for gauge theories with global supersymmetry.

21. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton (1992). A concise
exposition of supersymmetry and supergravity.

22. P. Nath, R. Arnowitt and A. Chamseddine, Applied N=1 Supergravity, ICTP Series in
Theoretical Physics, V1, World Scientific (1984). An early introduction to the theory
and phenomenology of supergravity grand unified theories by pioneers of the subject.

23. N. Polonsky, Supersymmetry: Structure and Phenomena: Extensions of the Standard
Model, Lecture Notes in Physics, Monograph M68, Springer-Verlag (2001). An
informal introduction to supersymmetry and supersymmetry phenomenology.

24. P. West, Introduction to Supersymmetry and Supergravity, World Scientific (1989). A
somewhat formal overview of supersymmetry, supergravity and some material on
superstrings.

25. P. P. Srivastava, Supersymmetry, Superfields and Supergravity: an Introduction, Adam
Hilger (1986). An exposition of superfield formalism with a short chapter on
supergravity.



Index

Bs → μ+μ− decay, 217–220
D-term, 69
F-term, 69
KL − KS mass difference, 191
γ γ collider, 452
γ5-dependent fermion mass matrices, 124
μ → eγ , 194
μ → eγ , 103
μ problem, 269
tan β determination, 447
θ -identities, 56

bilinear, 57
quartic, 58
trilinear, 57

b → sγ decay, 103, 214–217
eγ collider, 452

aesthetics, 19
AMSB models, 278–285

D-term improved AMSB model, 284
minimal, 280

anomalous dimension matrix, 216
anomalous isotopes, 222
anomalous magnetic moment, 103, 220
anomaly-mediated SUSY breaking, 278–285

D-term improved AMSB model, 284
mAMSB model, 280

auxiliary field, 72, 95, 99

Baker–Campbell–Hausdorff formula, 86
baryogenesis constraints on R-violating couplings,

463
beam polarization, 298, 331–335
beamstrahlung, 335–337
beta function, 199

MSSM gauge couplings, 201
MSSM Yukawa couplings, 203
SM gauge couplings, 200

Big Bang model, 221
Big Bang nucleosynthesis, 223
Boltzmann equation, 223
branes, 278
bremsstrahlung, 335–337

Callan–Symanzik equation, 199
canonical quantization, 32
cascade decays, 379
Casimir operator, 41
CERN LHC, 414

precision measurements, 427
reach, 416–422
reach within mSUGRA, 420

charge conjugation matrix, 24
chargino pair production, 308
chargino–neutralino production, 301
charginos

couplings to W ±, 173
couplings to Z0, γ , 173
couplings to matter, 170
decays, 357–361, 516–523
mass, 149

chiral superfield, 29, 61–63, 82
co-annihilation, 227
cold dark matter, 21
Coleman–Mandula theorem, 45
compactification scale, 295
connection field, 239
cosmic microwave background, 223
cosmological constant, 223, 243, 258
cosmological implications, 221–231
cosmology, 221
covariant derivative, 65, 100, 239, 244, 245
CP problem, 195–198
CP violation, 195–198
curl superfield, 64, 71

D-term, 69
D-term scalar mass splitting, 275
dark matter, 222, 228
dark matter detection, 222
dimensional reduction, 201
dimensional regularization, 200
Dirac field, 32
Dirac spinor, 44, 128
direct detection

seasonal modulation, 229
direct test of SUSY, 447

533



534 Index

direct WIMP detection, 228
DRED, 201
DREG, 200

E821 experiment, 220
effective mass, 428
Einstein Lagrangian, 242
electroweak model, 6
endpoints, 439
equivalence principle, 236, 240
event generation, 374–393

beam remnants, 383
cascade decays, 379
hadronization, 382
hard scattering, 377
parton showers, 377

event generators, 383
extra dimensions, 17, 278, 294

F-term, 69
Fayet–Iliopoulos D-term, 98, 284
FCNC, 191–194
Fermilab Tevatron, 322, 402
Fierz re-arrangement, 30, 57
Fierz transformation, 30
fine tuning, 211

cosmological constant, 258
fine-tuning parameter, 213
fine-tuning problem, 16, 104
flat direction, 108, 140
flavor-changing neutral currents, 190
flavor problem, 191–194

alignment solution, 193
decoupling solution, 194
degeneracy solution, 193

focus point, 214, 227, 409
Friedmann–Robertson–Walker universe,

223

gauge-coupling unification, 199–203
gauge invariance, 1
gauge kinetic function, 116, 251
gauge-mediated SUSY breaking, 285–293

minimal GMSB model, 287
non-minimal GMSB models, 293

gauge transformation, 80, 84
gauge transformations

Abelian, 84
non-Abelian, 86–89

gaugino, 95
gaugino condensation, 116
gaugino-mediated SUSY breaking,

294
Gauss’ theorem, 25
general co-ordinate transformations,

236
general relativity, 236–245

field equations, 242
Lagrangian, 242
spinors, 243
tensors, 237

gluino decay, 342–350, 491–501
gluino mass, 148
gluino QCD interaction, 163
GMSB models, 285–293

determining the SUSY breaking scale, 437,
450

LHC searches, 420
Tevatron searches, 407

goldstino, 111, 115, 189
composite, 115
coupling of, 117
decays to, 368–373, 491, 506, 509,

511
interactions, 368–371

Goldstone’s theorem, 111
graded Lie algebra, 31, 46
Grassmann numbers, 50

differentiation, 55
integration, 76

gravitinos, 189, 246
as LSPs, 286, 291
decays to, 291, 368–373, 491, 506, 509,

511
interactions, 368
mass, 259

gravitons, 189, 246
gravity-mediated SUSY breaking,

264–278
gaugino mass, 267
scalar interactions, 266
scalar mass, 266

GUTs, 270

Haag–Lopuszanski–Sohnius theorem, 47
hadronization

cluster, 382
independent, 382
string, 382

HB/FP region, 409, 419, 424, 426
HERWIG, 383
hidden sector, 264
Higgs boson, SM, 8

mass limits, 21
Higgs bosons, MSSM, 144–148

couplings, 174
decays, 364–367, 524–530
production, 485
searches, 411, 421, 423

Higgs mechanism, 4, 141
Hubble parameter, 223
hyperbolic branch, 213, 227, 409

IMH model, 276
initial state radiation in e+e− collisions,

335
inoMSB, 294
inverted mass hierarchy, 276
ISAJET, 383

event generation, 388
set-up, 384
SUSY models in, 385



Index 535

Jacobi identity, 30, 53, 55

Kähler function, 252
Kähler metric, 252
Kähler potential, 69, 70

gauge theory, 82
non-renormalizable theory, 251
renormalizable theory, 70

Kaluza–Klein, 295
Kobayashi–Maskawa, 9
Kuraev–Fadin distribution, 335

LEP, 398
LEP2, 322

SUSY searches, 399–402
leptogenesis, 234
lepton flavor violation, 233
Lie algebra, 41, 53, 80

adjoint representation, 91
conjugate representation, 97
representations of, 53

lifetime, 339
lifetimes of sparticles, 338
linear e+e− collider, 323, 437–450
Little Higgs models, 18
local gauge transformations, 79
local Lorentz transformations, 243
local supersymmetry, 245–260

sum rule, 259
supersymmetry breaking, 257
transformations, 250, 255

Lorentz group, 42
LSP lifetime in RPV models, 467

Majorana field, 32
two-point function, 33, 317

Majorana mass
C P-violating, 134

Majorana spinor identities, 26
Majorana spinors, 24, 44, 128

bilinears, 26
Majoron, 471
mAMSB model

LHC searches, 420
mass insertions, 195
mass sum rule, 118, 120
Master Lagrangian

gauge theories, 99
non-gauge theories, 75

matter parity, 132
metric tensor, 241
minimal coupling, 3
minimal supergravity model, 207, 269–270
Minimal Supersymmetric Standard Model, see

MSSM 127
motivations for supersymmetry, 19
MSSM, 127–189

beta functions, 201
construction, 127
EWSB, 138–141
field content, 128

gauge symmetry, 127
interactions, 161–183

electroweak, 164
Higgs bosons, 174–183
QCD, 161

masses
charginos, 149–154
gauge bosons, 141
gluinos, 148
Higgs bosons, 144–148
matter fermions, 142
neutralinos, 149–152
sleptons, 155–160
squarks, 155–160

parameter space, 134–138
radiative corrections, 184–188
soft SUSY breaking terms, 134
superpotential, 130

mSUGRA model, 207, 211, 269
mu problem, 269
muon anomalous magnetic moment, 220–

221
muon collider, 452

naturalness, 211–214
neutralino relic density, 223–228
neutralinos

couplings to W ±, 173
couplings to Z0, 173
couplings to matter, 168, 169
dark matter, 223

direct detection, 228
indirect detection, 230

decays, 361–364, 509–516
mass, 149

neutrino mass, 231–234, 471
new physics

motivations for, 11
next-to-lightest SUSY particle (NLSP),

292
decay length, 372

NMSSM, 161, 177
Noether procedure, 247
Noether’s theorem, 27
non-renormalization theorem, 104
non-universal

gaugino masses, 273
scalar masses, 267, 268

O’Raifeartaigh model, 107

Palatini formalism, 242
partial decay rate, 339
parton distribution function, 299, 307
parton model, 299
Planck mass, 243
Planck slop, 265
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