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XV

Preface to the First Edition

As this is being written, particle physics stands on the threshold of a new era, with the
commissioning of the Large Hadron Collider (LHC) not even two years away. In writing
this book, I hope to help prepare graduate students and postdoctoral researchers for what
will hopefully be a period rich in new data and surprising phenomena.

The Standard Model has reigned triumphant for three decades. For just as long,
theorists and experimentalists have speculated about what might lie beyond. Many of these
speculations point to a particular energy scale, the teraelectronvolt (TeV) scale, which will
be probed for the first time at the LHC. The stimulus for these studies arises from the most
mysterious — and still missing — piece of the Standard Model: the Higgs boson. Precision
electroweak measurements strongly suggest that this particle is elementary (in that any
structure is likely to be far smaller than its Compton wavelength), and that it should be in a
mass range where it will be discovered at the LHC. But the existence of fundamental scalars
is puzzling in quantum field theory, and strongly suggests new physics at the TeV scale.
Among the most prominent proposals for this physics is a hypothetical new symmetry of
nature, supersymmetry, which is the focus of much of this text. Others, such as technicolor,
and large or warped extra dimensions, are also treated here.

Even as they await evidence for such new phenomena, physicists have become more
ambitious, attacking fundamental problems of quantum gravity and speculating on possible
final formulations of the laws of nature. This ambition has been fueled by string theory,
which seems to provide a complete framework for the quantum mechanics of gauge theory
and gravity. Such a structure is necessary to give a framework to many speculations
about Beyond the Standard Model physics. Most models of supersymmetry breaking and
theories of large extra dimensions or warped spaces cannot be discussed in a consistent
way otherwise.

It seems, then, quite likely that a twenty-first-century particle physicist will require
a working knowledge of supersymmetry and string theory, and in writing this text I
hope to provide this. The first part of the text is a review of the Standard Model. It
is meant to complement existing books, providing an introduction to perturbative and
phenomenological aspects of the theory, but with a lengthy introduction to non-perturbative
issues, especially in the strong interactions. The goal is to provide an understanding of
chiral symmetry breaking, anomalies and instantons that is suitable for thinking about
possible strong dynamics and about dynamical issues in supersymmetric theories. The first
part of the book also introduces grand unification and magnetic monopoles.

The second part of the book focuses on supersymmetry. In addition to global supersym-
metry in superspace, there is a study of the supersymmetry currents, which are important
for understanding dynamics and also for understanding the BPS conditions which play an
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important role in field theory and string theory dualities. The Minimal Supersymmetric
Standard Model (MSSM) is developed in detail, as well as the basics of supergravity and
supersymmetry breaking. Several chapters deal with supersymmetry dynamics, including
dynamical supersymmetry breaking, Seiberg dualities and Seiberg—Witten theory. The
goal is to introduce phenomenological issues (such as dynamical supersymmetry breaking
in hidden sectors and its possible consequences), and also to illustrate the control that
supersymmetry provides over dynamics.

I then turn to another critical element of Beyond the Standard Model physics: general
relativity, cosmology and astrophysics. The chapter on general relativity is meant as a
brief primer. The approach is more field theoretic than geometrical, and the uninitiated
reader will learn the basics of curvature, the Einstein Lagrangian, the stress tensor and the
equations of motion and will encounter the Schwarzschild solution and its features. The
subsequent two chapters introduce the basic features of the Friedmann—Robertson—Walker
(FRW) cosmology, and then very early universe cosmology: cosmic history, inflation,
structure formation, dark matter and dark energy. Supersymmetric dark matter and axion
dark matter, and mechanisms for baryogenesis, are all considered.

The third part of the book is an introduction to string theory. My hope, here, is to be
reasonably comprehensive while not being excessively technical. These chapters introduce
the various string theories, and quickly compute their spectra and basic features of their
interactions. Heavy use is made of light cone methods. The full machinery of conformal
and superconformal ghosts is described but not developed in detail, but conformal field
theory techniques are used in the discussion of string interactions. Heavy use is also made
of effective field theory techniques, both at weak and strong coupling. Here, the experience
in the first half of the text with supersymmetry is invaluable; again supersymmetry
provides a powerful tool to constrain and understand the underlying dynamics. Two
lengthy chapters deal with string compactifications; one is devoted to toroidal and orbifold
compactifications, which are described by essentially free strings; the other introduces the
basics of Calabi—Yau compactification. Four appendices make up the final part of this
book.

The emphasis in all of this discussion is on providing tools with which to consider
how string theory might be related to observed phenomena. The obstacles are made clear,
but promising directions are introduced and explored. I also attempt to stress how string
theory can be used as a testing ground for theoretical speculations. I have not attempted a
complete bibliography. The suggested reading in each chapter directs the reader to a sample
of reviews and texts.

What I know in field theory and string theory is the result of many wonderful colleagues.
It is impossible to name all of them, but Tom Appelquist, Nima Arkani-Hamed, Tom
Banks, Savas Dimopoulos, Willy Fischler, Michael Green, David Gross, Howard Haber,
Jeff Harvey, Shamit Kachru, Andre Linde, Lubos Motl, Ann Nelson, Yossi Nir, Michael
Peskin, Joe Polchinski, Pierre Ramond, Lisa Randall, John Schwarz, Nathan Seiberg,
Eva Silverstein, Bunji Sakita, Steve Shenker, Leonard Susskind, Scott Thomas, Steven
Weinberg, Frank Wilczek, Mark Wise and Edward Witten have all profoundly influenced
me, and this influence is reflected in this text. Several of them offered comments on the text
or provided specific advice and explanations, for which I am grateful. I particularly wish
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to thank Lubos Motl for reading the entire manuscript and correcting numerous errors.
Needless to say, none of them are responsible for the errors which have inevitably crept
into this book.

Some of the material, especially on anomalies and aspects of supersymmetry phe-
nomenology, has been adapted from lectures given at the Theoretical Advanced Study
Institute, held in Boulder, Colorado. I am grateful to K. T. Manahathapa for his help
during these schools, and to World Scientific for allowing me to publish these excerpts.
The lectures “Supersymmetry phenomenology with a broad brush” appeared in Fields,
Strings and Duality, eds. C. Efthimiou and B. Greene (Singapore: World Scientific, 1997),
“TASI lectures on M theory phenomenology” appeared in Strings, Branes and Duality,
eds. C. Efthimiou and B. Greene (Singapore: World Scientific, 2001) and “The strong
CP problem” in Flavor Physics for the Millennium: Proc. TASI 2000, ed. J. L. Rosner
(Singapore: World Scientific, 2000).

I have used much of the material in this book as the basis for courses, and I am also
grateful to students and postdocs (especially Patrick Fox, Assaf Shomer, Sean Echols, Jeff
Jones, John Mason, Alex Morisse, Deva O’Neil and Zheng Sun) at Santa Cruz, who have
patiently suffered through much of this material as it was developed. They have made
important comments on the text and in the lectures, often filling in missing details. As
teachers, few of us have the luxury of devoting a full year to topics such as this. My
intention is that the separate supersymmetry or string parts are suitable for a one-quarter or
one-semester special topics course.

Finally, I wish to thank Aviva, Jeremy, Shifrah and Melanie for their love and support.
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Preface to the Second Edition

Much has happened since the appearance of Supersymmetry and String Theory: Beyond
the Standard Model in 2006. The LHC, after a somewhat bumpy start, has performed
spectacularly, discovering what is almost certainly the Higgs particle of the simplest
version of the Standard Model in 2012, reproducing and improving a broad range of other
Standard Model measurements and excluding significant swathes of the parameter space
of proposed ideas for Beyond the Standard Model (BSM) physics.

There have also been important observational and experimental developments in astro-
physics and cosmology. The Wilkinson Microwave Anisotropy Probe (WMAP), the Planck
satellite and a variety of other experiments have greatly improved our understanding of
the cosmic microwave radiation background. We have more reliable measures of the dark
matter and dark energy densities and a good measurement of the spectral index, n. It is
likely that we will soon have some information on, and possibly a measurement of, the
scale of inflation coming from studies of B-mode polarization. At the same time, direct
and indirect searches for weakly interacting massive particle (WIMP) dark matter have
significantly constrained the space of masses and couplings. However, there remain, as of
the time of writing, some intriguing anomalies. Furthermore, axion searches have made
significant progress and are probing significant parts of the plausible parameter space.

On the theoretical side there have been a number of developments. Within the study
of the Standard Model, there has been enormous progress in QCD computations; indeed,
these have played an important role in the Higgs discovery. Lattice gauge theorists have
continued to make strides in computation of quantum chromodynamics (QCD) quantities,
such as quark masses, while embarking on the study of theories relevant to issues in BSM
physics. Within supersymmetric models, metastable dynamical supersymmetry breaking
has emerged as both an interesting feature of supersymmetric dynamics and a possible
mechanism for supersymmetry realization in nature. Other important new ideas include
general gauge mediation.

But perhaps the most important theoretical development has been the response to the
Higgs discovery, as well as BSM (particularly supersymmetry) exclusions. The observed
Higgs mass is compatible with supersymmetry only if the superpartners are quite heavy
(tens of TeV) or under special circumstances. Many other BSM ideas face similar
challenges. This has sparked a search for alternatives and also a rethinking of notions of
naturalness. The big questions are:

1. Is there some form of new physics that accounts for the hierarchy between the weak
and other scales, which is perhaps difficult to see or which occurs at a scale somewhat
above the current LHC reach?
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. Are our ideas about naturalness somehow misguided? Would a more refined viewpoint

point to some energy scale slightly higher than a TeV, which might be accessible to
future LHC experiments or some higher-energy accelerator? This has focused renewed
attention on ideas such as little Higgs models and Randall-Sundrum models, as well as
the possibility that the scale of supersymmetry breaking is simply higher.

. The possibility that simple-minded notions of naturalness may not be correct has

increased interest in the landscape hypothesis.

In this present edition of this book I have attempted to incorporate these developments

and to provide some possible directions for investigations of BSM physics. Additions
include:

1.
2.
3.

~N N D A

10.

11.

to

new sections on the Higgs discovery;

discussion of developments in perturbative QCD computations;

expanded discussion of lattice gauge theory, with an emphasis on results of the

simulations for quantities such as quark masses;

. updated discussion of dark matter experiments;

. updated discussion of the neutrino mass matrix;

. updated discussion of inflation in light of WMAP, Planck and other experiments;

. more extensive discussion of solutions to the hierarchy problem outside supersymme-
try, especially the little Higgs and Randall-Sundrum models;

. sections on metastable dynamical supersymmetry breaking that include the Intriligator,
Shih and Seiberg models but treat the issue quite generally;

. an introduction to general gauge mediation;

more extensive discussion of the landscape, hypothesis and its connection to and

possible implications for notions of naturalness;

replacement of the previous “Coda” by a discussion of possible future directions in

light of the first four years of LHC, dark matter searches, cosmological observations

and theoretical developments.

I have also taken the opportunity to correct many errors in the first edition. I am grateful
the many readers who have pointed these out. I am sure that errors will remain, and |

have only myself to blame for these.

Michael Dine

Santa Cruz, California
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A note on the choice of metric

There are two popular choices for the metric of flat Minkowski space. One, often referred
to as the West Coast metric, is particularly convenient for particle physics applications.
Here

ds? = di* — di* = nypdxtdx’. (0.1)

This has the virtue that p> = E> — p? = m?. It is the metric of many standard texts in
quantum field theory. But it has the annoying feature that ordinary space-like intervals —
conventional lengths — acquire a minus sign. So, in most general relativity textbooks as
well as string theory textbooks, the East Coast metric is standard:

ds* = —df* + dx>. (0.2)

Many physicists, especially theorists, become so wedded to one form or another that they
resist — or even have difficulty — switching back and forth. This is a text, however, that is
intended to deal with particle physics, general relativity and string theory. So, in the first
half of the book, which deals mostly with particle physics and quantum field theory, we will
use the West Coast convention (0.1). In the second half, dealing principally with general
relativity and string theory, we will switch to the East Coast convention (0.2). For both
author and readers this may be somewhat disconcerting. While I have endeavored to avoid
errors from this somewhat schizophrenic approach, some will have surely slipped in. But I
believe that this freedom to move back and forth between the two conventions will be both
convenient and healthy. If nothing else, this may be the first textbook in physics in which
the author has deliberately used both conventions (many have done so inadvertently).

At a serious level, in computations the researcher must always be careful to be
consistent. It is particularly important to be careful when borrowing formulas from papers
and texts, and especially when downloading computer programs, to make sure that one has
adequate checks on such matters as signs. I will appreciate being informed of any such
inconsistencies, as well as of other errors both serious and minor, which have crept into
this text.



Text website

Even as this book was going to press, there were important developments in a number of
these subjects. The website http://scipp.ucsc.edu/~dine/book/book.html contains updates,
errata, solutions of selected problems and additional selected reading.
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Before the Standard Model

Two of the most profound scientific discoveries of the early twentieth century were
special relativity and quantum mechanics. With special (and general) relativity came the
notion that physics should be local. Interactions should be carried by dynamical fields in
space—time. Quantum mechanics altered the questions which physicists ask about phe-
nomena; the rules governing microscopic (and some macroscopic) phenomena were not
those of classical mechanics. When these ideas were combined they took on their full
force, in the form of quantum field theory: particles themselves are localized, finite-energy,
excitations of fields. Otherwise mysterious phenomena, such as the connection of spin
and statistics, were immediate consequences of this marriage. But quantum field theory
posed serious challenges for its early practitioners. The Schrodinger equation seems to
single out time, making a manifestly relativistic description difficult. More seriously, but
closely related, in quantum field theory the number of degrees of freedom is infinite,
in contrast with the quantum mechanics of atomic systems. In the 1920s and 1930s,
physicists performed conventional perturbation theory calculations in the quantum theory
of electrodynamics, namely quantum electrodynamics (QED), and obtained expressions
which were neither Lorentz invariant nor finite. Until the late 1940s these problems stymied
any quantitative progress, and there was serious doubt whether quantum field theory was a
sensible framework for physics.

Despite these concerns, quantum field theory proved a valuable tool with which to
consider problems of fundamental interactions. Yukawa proposed a field theory of the
nuclear force in which the basic quanta were mesons. The corresponding particle was
discovered shortly after the Second World War. Fermi was aware of Yukawa’s theory and
proposed that weak interactions arose through the exchange of some massive particle —
essentially the W bosons, which were finally discovered in the 1980s. The large mass
of these particles accounted for both the short range and the strength of the weak force.
Because of its very short range, one could describe it in terms of four fields interacting at a
point. In the early days of the theory, these were the proton, neutron, electron and neutrino.
Viewed as a theory of four-fermion interactions Fermi’s theory was very successful,
accounting for all experimental weak interaction results until well into the 1970s. Yet
the theory raised even more severe conceptual problems than QED. At high energies the
amplitudes computed in the leading approximation violated unitarity, and the higher-order
terms in perturbation theory were very divergent.

The difficulties of QED were overcome in the late 1940s, by Bethe, Dyson, Feynman,
Schwinger, Tomanaga and others, as experiments in atomic physics demanded high-
precision QED calculations. As a result of their work, it was now possible to perform
perturbative calculations in a manifestly Lorentz-invariant fashion. Exploiting covariance
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the infinities could be controlled and, over time, their significance came to be understood.
Quantum electrodynamics achieved enormous successes, explaining the magnetic moment
of the electron to extraordinary precision as well as the Lamb shift in hydrogen and other
phenomena. One now, for the first time, had an example of a system of physical law that
was consistent both with Einstein’s principles of relativity and with quantum mechanics.

There were, however, many obstacles to extending this understanding to the strong and
weak interactions, and at times it seemed that some other framework might be required.
The difficulties came in various types. The infinities of Fermi’s theory of weak interactions
could not be controlled as in electrodynamics. Even postulating the existence of massive
particles to mediate the force did not solve the problems. But the most severe difficulties
came in the case of the strong interactions. The 1950s and 1960s witnessed the discovery
of hundreds of hadronic resonances. It was hard to imagine that each should be described
by still another fundamental field. Some theorists pronounced field theory dead and sought
alternative formulations (among the outgrowths explorations was string theory, which has
emerged as the most promising setting for a quantum theory of gravitation). But Gell-
Mann and Zweig realized that quarks could serve as an organizing principle. Originally,
there were only three, u, d and s, with baryon number 1/3 and charges 2/3, —1/3 and —1/3
(in units of the electric charge) respectively. All the known hadrons could be understood as
bound states of objects with these quantum numbers. Still, there remained difficulties. First,
quarks were strongly interacting and there were no successful ideas for treating strongly
interacting fields. Second, those searching for quarks came up empty handed.

In the late 1960s a dramatic series of experiments at SLAC, and a set of theoretical
ideas due to Feynman and Bjorken, changed the situation again. Feynman had argued that
one should take seriously the idea of quarks as dynamical entities (for a variety of reasons
he hesitated to call them quarks, referring to them as partons). He conjectured that these
partons would behave as nearly free particles in situations where momentum transfers were
large. He and Bjorken realized that this picture implied a scaling in deep inelastic scattering
phenomena. The experiments at SLAC exhibited just this phenomenon and showed that the
partons carried the electric charges of the u and d quarks.

But this situation was still puzzling. Known field theories did not behave in the fashion
conjectured by Feynman and Bjorken. The interactions of particles typically became
stronger as the energies and momentum transfers grew. This is the case, for example, in
quantum electrodynamics and a simple quantum mechanical argument, based on unitarity
and relativity, would seem to suggest it is true in general. But there turned out to be an
important class of theories with the opposite property.

In 1954 Yang and Mills wrote down a generalization of electrodynamics where the U(1)
symmetry group is enlarged to a non-Abelian group, with massless gauge bosons trans-
forming in the adjoint representation of the group. While mathematically quite beautiful,
these non-Abelian gauge theories remained oddities for some time. First, their possible
place in the scheme of things was not known (Yang and Mills themselves suggested
that perhaps their vector particles were the p mesons). Moreover, their quantization was
significantly more challenging than that of electrodynamics. It was not at all clear that
these theories really made sense at the quantum level, that is, that they respected the
principles of both Lorentz invariance and unitarity. The first serious effort to quantize
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Yang—Mills theories was probably due to Schwinger, who chose a non-covariant but
manifestly unitary gauge and carefully verified that the Poincaré algebra was satisfied. The
non-covariant gauge, however, was exceptionally awkward. Real progress in formulating
a covariant perturbation expansion was made by Feynman, who noted that naive Feynman
rules for these theories were not unitary but that this difficulty could be removed, at
least in low orders, by adding a set of fictitious fields (“ghosts”). A general formulation
was provided by Faddeev and Popov, who derived Feynman’s covariant rules in a path
integral formulation and showed their formal equivalence to Schwinger’s manifestly
unitary formulation. A convincing demonstration that these theories are unitary, covariant
and renormalizable was finally given in the early 1970s by ’t Hooft and Veltman, who
developed elegant and powerful techniques for performing real calculations as well as
formal proofs.

In the original Yang—Mills theories the vector bosons were massless and their possible
connections to known phenomena were obscure. However, Carl R. Hagen, Francois
Englert, Gerald S. Guralnik, Peter W. Higgs, Robert Brout, and T. W. B. Kibble discovered
a mechanism by which these particles could become massive. In 1967, Weinberg and
Salam wrote down a Yang—Mills theory of weak interactions based on what has come
to be referred to as the “Higgs mechanism”. This finally realized Fermi’s idea that weak
interactions arise from the exchange of a very massive particle. To a large degree this work
was ignored until ’t Hooft and Veltman proved the unitarity and renormalizability of these
theories. At this point the race to find precisely the correct theory and study its experimental
consequences was on; Weinberg’s and Salam’s first guess turned out to be correct.

The possible role of Yang—Mills fields in strong interactions was, at first sight, even
more obscure. To complete the story required another important fact of hadronic physics.
While the quark model was very successful, it was also puzzling. The quarks were spin-1/2
particles, yet models of the hadrons seemed to require that the hadronic wave functions
were symmetric under the interchange of quark quantum numbers. A possible resolution,
suggested by Greenberg, was that the quarks carried an additional quantum number, called
color, coming in three possible types. The statistics puzzle was solved if the hadron
wave functions were totally antisymmetric in color. This hypothesis required that the
color symmetry, unlike, say, isospin, should be exact and thus special. While seemingly
contrived, it explained two other facts: the width of the 7% meson and the value of the
e~ cross section to hadrons, each of which was otherwise was too large by a factor
three.

To a number of researchers the exactness of this color symmetry suggested a possible
role for Yang-Mills theory. So, in retrospect there was an obvious question: could it be
that an SU(3) Yang—Mills theory, describing the interactions of quarks, would exhibit the
property required to explain Bjorken scaling, i.e. that the interactions become weak at
short distances? Of course, things were not quite so obvious at the time.The requisite
calculation had already been done by ’t Hooft but the result seems not to have been
widely known nor its significance appreciated. David Gross and his student Frank Wilczek
set out to prove that no field theory had the required scaling property, while Sidney
Coleman, apparently without any particular prejudice, assigned the problem to his graduate
student David Politzer. All soon realized that Yang—Mills theories do have the property of

e
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asymptotic freedom: the interactions become weak at high momentum transfers or at short
distances.

Experiment and theory now entered a period of remarkable convergence. Alternatives
to the Weinberg—Salam theory were quickly ruled out. The predictions of quantum
chromodynamics (QCD) were difficult, at first, to verify in detail. The theory predicted
small violations of Bjorken scaling, depending logarithmically on energy, and it took
many years to measure them convincingly. But there was another critical experimental
development which clinched the picture. The existence of a heavy quark beyond the u, d
and s had been predicted by Glashow, Iliopoulos and Maiani and was a crucial part of the
developing Standard Model. The mass of this charm quark had been estimated by Gaillard
and Lee. Appelquist and Politzer predicted, almost immediately after the discovery of
asymptotic freedom, that heavy quarks would be bound in narrow vector resonances. In
1974 a narrow resonance was discovered in eTe™ annihilation, the J/1 particle, which
was quickly identified as a bound state of a charm quark and its antiparticle.

Over the next 25 years, this Standard Model was subjected to more and more refined
tests. One feature absent from the original Standard Model was CP(T) violation. Kobiyashi
and Maskawa pointed out that if there were a third generation of quarks and leptons, then
the theory could accommodate the observed CP violation in the K meson system. Two more
quarks and a lepton were discovered, and their interactions and behavior were as expected
within the Standard Model. Jets of particles which could be associated with gluons were
seen in the late 1970s. The W and Z particles were produced in accelerators in the early
1980s. At CERN and SLAC, precision measurements of the Z mass and width provided
stringent tests of the weak-interaction part of the theory. Detailed measurements in deep
inelastic scattering and in jets provided precise confirmation of the logarithmic scaling
violations predicted by QCD. The Standard Model passed every test.

At the time at which the first edition of this book went to press, the Standard Model
had triumphed in almost every realm. The low-energy weak interactions were completely
described by the Weinberg—Salam theory with corrections from the strong interactions,
many well understood. At high energies the W and Z particles had been produced in
great numbers in accelerators, and their properties — i.e. production rates and decays —
compared with the theory, including the effects of QCD, at the one part per mil level.
The Tevatron had performed precise studies of jet production in excellent agreement with
QCD and lattice gauge theory had witnessed an enormous leap in reliability and precision,
reproducing features of the hadron spectrum and yielding quantities of importance for the
study of the weak decays of B mesons, for example. The only missing piece was the
Higgs particle, or whatever entity was responsible for the breaking of the electroweak
symmetry. In 2012, that changed. The 50 discovery of a scalar particle was announced at
CERN on July 4. By the end of the first run of the LHC at the end of the year, a good
deal of circumstantial evidence had accumulated that this particle was indeed the Higgs
scalar of the simplest Standard Model. ’t Hooft and Veltman had received the Nobel Prize
for their work on non-Abelian gauge theories in 1999. During the first 14 years of the
new millennium, these successes have been recognized by several Nobel Prizes: Gross,
Politzer and Wilczek for the understanding of strong interactions (2004); Nambu for his
work on spontaneous symmetry breaking; Kobayashi and Maskawa for the mechanism of
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CP violation in the Standard Model (2008); and Englert and Higgs for the proposal of the
Higgs particle (2013). Since the publication of the first edition of this book, a Nobel Prize
has been awarded for the discovery of dark energy (Perlmutter, Reiss and Schmidt, 2011).

So the question which I raised in 2006, Why write a book about Beyond the Standard
Model physics?, is all the sharper now. It is still true that, for all its simplicity and success in
reproducing the interactions of elementary particles, the Standard Model cannot represent
a complete description of nature. In the first few chapters of this book we will review the
Standard Model and its successes, including the recent discovery of the Higgs particle,
which is a triumph not only for our understanding of the electroweak theory but of QCD
as well. Then we will discuss some of the Standard Model’s limitations. These include the
hierarchy problem, which, at its most primitive level, represents a failure of dimensional
analysis; the presence of a large number of parameters; the strong CP problem, i.e. the
presence of a very small dimensionless number which violates CP. We will confront
the incompatibility of quantum mechanics with Einstein’s theory of general relativity,
the inability of the Standard Model to account for the small but non-zero value of the
cosmological constant (an even more colossal failure of dimensional analysis) and its
failure to account for basic features of our universe, the excess of baryons over antibaryons,
dark matter and structure. Then we will set out on an exploration of possible phenomena
which might address these questions. These include: supersymmetry, technicolor and
large or warped extra dimensions as possible solutions to the hierarchy problem; grand
unification as a partial solution to the overabundance of parameters; and the axion for the
strong CP problem. Still more ambitious is superstring theory, as a possible solution to the
problem of quantizing gravity, which incorporates many features of these other proposals.
We will consider the experimental constraints on new physics, which have become more
severe with the first LHC run, and discuss the prospects for the future at the LHC and
beyond. Finally, we will acknowledge the possibility that the resolution of some of these
puzzles might involve a landscape or multiverse.

Suggested reading
|

A complete bibliography of the Standard Model would require a book by itself. A good
deal of the history of special relativity, quantum mechanics and quantum field theory can
be found in Inward Bound, by Abraham Pais (1986), which also includes an extensive
bibliography. The development of the Standard Model is also documented in this very
readable book. As a minor historical note I would add that the earliest reference in which I
came across the observation that a Yang—Mills theory might underlie the strong interactions
is due to Feynman, in about 1963 (Roger Dashen, personal communication, 1981), who
pointed out that in an SU(3) Yang-Mills theory three quarks would be bound together, as
would quark—antiquark pairs.
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The interactions of the Standard Model give rise to the phenomena of our day to day
experience. They explain virtually all the particles and interactions which have been
observed in accelerators. Yet the underlying laws can be summarized in a few lines. In this
chapter we describe the ingredients of this theory and some of its important features. Many
dynamical questions will be studied in subsequent chapters. For detailed comparisons of
theory and experiment there are a number of excellent texts, described in the suggested
reading at the end of the chapter.

2.1 Yang-Mills theory

By the early 1950s physicists were familiar with approximate global symmetries such
as isospin. Yang and Mills argued that the lesson of Einstein’s general theory was that
symmetries, if exact, should be local. In ordinary electrodynamics the gauge symmetry is a
local Abelian symmetry. Yang and Mills explained how to generalize this to a non-Abelian
symmetry group. Let’s first review the case of electrodynamics. The electron field ¥ (x)
transforms under a gauge transformation as follows:

Y (x) = DY (x) = g ()Y (x). (2.1)

We can think of g, (x) = €™ as a group element in the group U(1). The group is Abelian:
8u88 = £B8w = Sua+p- Quantities such as Y are gauge invariant, but derivative terms
such as iy §, are not. In order to write down the derivative terms in an action or equation
of motion, one needs to introduce a gauge field 4, transforming under the symmetry
transformation as

Ay — Ay + 00
=4, +ig(x)d,g " (x). (2.2)

This second form allows more immediate generalization to the non-Abelian case. Given
A,, and its transformation properties, we can define a covariant derivative,

Dy = (8, —id ). (2.3)
This derivative has the property that it transforms like v itself under the gauge symmetry:
D,y — g(x)D, . (2.4)
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We can also form a gauge-invariant object from the gauge fields 4, themselves. A simple
way to do this is to construct the commutator of two covariant derivatives,

Fuy =iD;,Dy] = 0,4, — 9,4,. 2.5

This form of the gauge transformations may be somewhat unfamiliar. Note in particular
that the charge of the electron, e (the gauge coupling) does not appear in the transfor-
mation laws. Instead, the gauge coupling appears when we write down a gauge-invariant
Lagrangian:

_ - 1
L=iY Py —myy — = F, (2.6)

where the “slash” notation is defined by ¢ = a’y,. The more familiar formulation is
obtained if we make the replacement

A, — ed,. 2.7
In terms of this new field the gauge transformation law is
Ay — Ay + é(’iua (2.8)
and the covariant derivative is
Dy = (0, — ied, ). (2.9)

We can generalize this to a non-Abelian group, G, by taking v to be a field (fermion or
boson) in some representation of the group; g(x) is then a matrix which describes a group
transformation acting in this representation. Formally, the transformation law is the same
as before,

v — gy ), (2.10)
but the group composition law is more complicated:

8agB 7 &B8a- (2.11)

The gauge field 4,, is now a matrix-valued field, transforming in the adjoint representation
of the gauge group:

Ay — gdug™ +ig)dug ). (2.12)
Formally, the covariant derivative also looks exactly as before:
Dy = 0y —id)V, Dupyr — gx)Dyir. (2.13)

Like A,,, the field strength is a matrix-valued field:
Fuy=ilDy,Dy] = 0,4, — 0,4, — 1[4, 4] (2.14)
Note that 7, is not gauge invariant but, rather, covariant:
Fuy — gFung ', (2.15)

i.e. it transforms like a field in the adjoint representation, with no inhomogeneous term.
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The gauge-invariant action £ is formally almost identical to that of the U(1) theory:
- - 1
L=iy pw—mww—?TrFfw. (2.16)

Here we have changed the letter we use to denote the coupling constant: we will usually
reserve e for the electron charge and use g for a generic gauge coupling. Note also that it
is necessary to take the trace of 2 to obtain a gauge-invariant expression.

The matrix form for the fields may be unfamiliar, but it is very powerful. One can recover
expressions in terms of more conventional fields by defining

Ay = AZTaa (2.17)

where 7, are the group generators in the representation appropriate to v. Then, for SU(N),
for example, if the 7,;s are in the fundamental representation, we have

1 o
To(TaTy) = 58w, [T.T°1 = if T, (2.18)

where %€ are the structure constants of the group and
Ay =2Te(T,A"),  Fp, = 0,4y — ), +fabcAZA€. (2.19)

While they are formally almost identical, there are great differences between the Abelian
and non-Abelian theories. Perhaps the most striking is that the equations of motion for
the A,s are non-linear in non-Abelian theories. This behavior means that, unlike the
case of Abelian gauge fields, a theory of non-Abelian fields without matter is a non-
trivial, interacting, theory with interesting properties. With and without matter fields,
this will lead to much richer behavior even classically. For example, we will see that
non-Abelian theories sometimes contain solitons, localized finite-energy solutions of the
classical equations. The most interesting of these are the magnetic monopoles. At the
quantum level these non-linearities lead to properties such as asymptotic freedom and
confinement.

Using the form in which we have written the action, the matter fields i can appear in any
representation of the group; one just needs to choose appropriate matrices 7¢. We can also
consider scalars, as well as fermions. For a scalar field ¢, we define the covariant derivative
D,,¢ as before and add to the action a term |DM¢>|2 for a complex field or (Du¢)2 /2 for a
real field.

2.2 Realizations of symmetry in quantum field theory
I —

The most primitive exercise we can do with the Yang—Mills Lagrangian is to set g = 0 and
examine the equations of motion for the fields A*. If we choose the gauge 3, 4"* = 0, all
the gauge fields obey

9244 = 0. (2.20)



n

2.2 Realizations of symmetry in quantum field theory

So, like the photon, all the gauge fields 4), of the Yang-Mills theory are massless. At first
sight there is no obvious place for these fields in either the strong or the weak interactions.
But it turns out that in non-Abelian theories the possible ways in which the symmetry
may be realized are quite rich. First, the symmetry can be realized in terms of massless
gauge bosons; this is known as the Coulomb phase. This possibility is not relevant to the
Standard Model but will appear in some of our more theoretical considerations later. A
second way is known as the Higgs phase. In this phase, the gauge bosons are massive. In
the third, the confinement phase, there are no physical states with the quantum numbers
of isolated quarks (particles in the fundamental representation), and the gauge bosons are
also massive. The second phase is relevant to the weak interactions; the third, confinement,
phase to the strong interactions.

2.2.1 The Goldstone phenomenon

Before introducing the Higgs phase it is useful to discuss global symmetries. While we will
frequently argue, like Yang and Mills, that global symmetries are less fundamental than
local ones, they are important in nature. Examples are isospin, the chiral symmetries of the
strong interactions and baryon number. We can represent the action of such a symmetry
much as we represented the symmetry action in Yang—Mills theory:

d — g4, (2:21)

where @ is some set of fields and g is now a constant matrix, independent of spatial
position. Such symmetries are typically accidents of the low-energy theory. Isospin, for
example, as we will see arises because the masses of the u and d quarks are small compared
with other scales of quantum chromodynamics. Then g is the matrix

gg = e@/? (2.22)

acting on the u and d quark doublet. Note that & is not a function of space but a continuous
parameter, so we will refer to such symmetries as continuous global symmetries. In the
case of isospin it is also important that the electromagnetic and weak interactions, which
violate this symmetry, are small perturbations on the strong interactions.

The simplest model of a continuous global symmetry is provided by a complex field ¢
transforming under a U(1) symmetry,

» — €%¢. (2.23)
We can take for the Lagrangian for this system

L= 3,¢* —m*|p|* — %wr‘. (2.24)

If m?> > 0and A is small, this is simply a theory of a weakly interacting, complex scalar. The
states of the theory can be organized as states of definite U(1) charge. This is the unbroken

! The differences between the confinement and Higgs phases are subtle, as was first stressed by Fradkin, Shenker
and 't Hooft. But we now know that the Standard Model is well described by a weakly coupled field theory in
the Higgs phase.
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Scalar potential with negative mass-squared. The stable minimum leads to broken symmetry.

phase. However, m? is just a parameter and we can ask what happens if m> = —u? < 0.
In this case the potential,

Vg) = —12lgl” + 1l I, (2.25)
looks as in Fig. 2.1. There is a set of degenerate minima,
K i
= —€“%. 2.26
(D)o i) (2.26)

These ground states are obtained from one another by symmetry transformations; in
somewhat more mathematical language, we say that there is a manifold of vacuum states.
Quantum mechanically it is necessary to choose a particular value of «. As will be
explained in the next section, if one chooses « then no local operator, e.g. no small
perturbation, will take the system into a state of different . To simplify the writing, take
o = 0. Then we can parameterize the complex field ¢ in terms of real fields o and 7:

1 - 1
= —[+o®]E™Y x —[v+ o) +irX)]. 2.27
¢ G () 7 () () (2.27)
Here v = 1/+/A is known as the vacuum expectation value (vev) of the field ¢. In terms
of o and 7, the Lagrangian takes the form

L= %[(a,m)2 +(@um)? = 210% + O(0, 7)), (2.28)

So we see that ¢ is an ordinary real, scalar field of mass-squared 2u2, while the 7 field is
massless. The fact that it is massless is not a surprise: the mass represents the energy cost
of turning on a zero-momentum excitation of 7, but such an excitation is just a symmetry
transformation v — ve™© of ¢. So there is no energy cost.

The appearance of massless particles when a symmetry is broken is quite general and is
known as the Nambu—Goldstone phenomenon; 7 is called a Nambu—Goldstone boson. In
any theory with scalars, the choice of a minimum may break some symmetry. This means
that there is a manifold of vacuum states. The broken-symmetry generators are those which
transform the system from one point on this manifold to another. Because there is no energy
cost associated with such a transformation, there is a massless particle associated with each
broken-symmetry generator. This result is very general. Symmetries can be broken not only
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by the expectation values of scalar fields but also by the expectation values of composite
operators, and the theorem holds. A proof of this result is provided in Appendix B. In nature
there are a number of excitations which can be identified as Goldstone or almost-Goldstone
(“pseudo-Goldstone™) bosons. These include spin waves in solids and the pi mesons. We
will have much more to say about pions later.

2.2.2 Aside: choosing a vacuum

In quantum mechanics there is no notion of a spontaneously broken symmetry. If one
has a set of degenerate classical configurations, the ground state will invariably involve
a superposition of these configurations. If we took o and 7 in Eq. (2.27) to be functions
only of the time ¢ then the o—x system would just be an ordinary quantum mechanical
system with two degrees of freedom. Here o would correspond to an anharmonic oscillator
of frequency @ = +/2u. Placing this particle in its ground state, one would be left
with the coordinate 7. Note that , in Eq. (2.27), is an angle, like the azimuthal angle,
in ordinary quantum mechanics. We could call its conjugate variable L,. The lowest
lying state would be the zero-angular-momentum state, a uniform superposition of all
values of 7. In field theory at finite volume, the situation is similar. The zero-momentum
mode of m is again an angular variable, and the ground state is invariant under the
symmetry. At infinite volume, however, the situation is different. One is forced to choose
a value of 7.

This issue is most easily understood by considering a different problem: rotational
invariance in a magnet. Consider Fig. 2.2, which shows a ferromagnet with spins aligned
at an angle 6. We can ask: what is the overlap of two states, one with & = 0, one at 0, i.e.
what is (0|0)? For a single site the overlap between the state |[+) with & = 0 and the rotated
state is

(4 |72 +) = cos(6/2). (2.29)

S0 S
S0 S
S0 S

In a ferromagnet the spins are aligned but their direction is arbitrary.
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If there are N such sites, the overlap behaves as follows:
(610) ~ [cos(8/2)1", (2.30)

i.e. it vanishes exponentially rapidly with the “volume”, N.

For a continuum field theory, states with differing values of the order parameter v also
have no overlap in the infinite-volume limit. This is illustrated by the theory of a scalar
field ¢ with Lagrangian

1
L= 5(3,@)2. (2.31)

For this system there is no potential, so the expectation value ¢ = v is not fixed. The
Lagrangian has a symmetry, ¢ — ¢ + §, for which the charge is just

0= / AxT1(¥) (2.32)
where IT is the canonical momentum. So we want to study
(v/0) = (0]¢°10). (2.33)

‘We must be careful how we take the infinite-volume limit. We will insist that this be done
in a smooth fashion, so we will define

0= /d3x % (d)e_;cz/Vm)

3 1/3\3 . - .
= %g (%) VP @y — ot (1. (2.34)

Now one can evaluate the matrix element, using

oA+B _ A B ,—l4,B1/2

(provided that the commutator is a c-number), obtaining
(01¢'2]0) = e~V (2.35)

where ¢ is a numerical constant. So the overlap vanishes with the volume. You can convince
yourself that the same holds for matrix elements of local operators. This result does not
hold in 0+1 and 141 dimensions, because of the severe infrared behavior of theories in low
dimensions. This is known to particle physicists as Coleman’s theorem, and to condensed
matter theorists as the Mermin—Wagner theorem. This theorem will make an intriguing
appearance in string theory, where it is the origin of energy—momentum conservation.

2.2.3 The Higgs mechanism

Suppose that the U(1) symmetry of the previous section is local. In that case, even a
spatially varying m(x) represents a symmetry transformation and, by a suitable gauge
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choice, it can be eliminated. In other words, by a gauge transformation we can bring the
field ¢ to the form

¢ = %[v + 0o ()] (2.36)

In this gauge, the gauge-invariant kinetic term for ¢ takes the form
1 1
2 2 2.2
[Duo|” = E(E)Mo) + EAMV +e (2.37)

The second term is a mass term for the gauge field 4,,. To determine the actual value of the
mass, we need to examine the kinetic term for the gauge fields,

1 2
_@(%AV) R (2.38)

So the gauge field must have mass mi = gh2.

This phenomenon, that the gauge boson becomes massive when the gauge symmetry
is spontaneously broken, is known as the Higgs mechanism. While formally quite similar
to the Goldstone phenomenon, it is also quite different. The fact that there is no massless
particle associated with motion along the manifold of ground states is not surprising — these
states are all physically equivalent. Symmetry breaking, in fact, is a paradoxical notion in
gauge theories, since gauge transformations describe entirely equivalent physics (gauge
symmetry is often referred to as a redundancy in the description of a system). Perhaps the
most important lesson here is that gauge invariance does not necessarily mean, as it does
in electrodynamics, that the gauge bosons are massless.

2.2.4 Goldstone and Higgs phenomena for non-Abelian symmetries

Both the Goldstone and Higgs phenomena generalize to non-Abelian symmetries. In the
case of global symmetries, for every generator of a broken global symmetry there is a
massless particle. For local symmetries, each broken generator gives rise to a massive
gauge boson.

As an example, relevant both to the strong and the weak interactions, consider a theory
with a symmetry SU(2)p. x SU(2)Rr. Take M to be a Hermitian matrix field,

M=ocl+it 0. (2.39)
Under the above symmetry, which we first take to be global, M transforms as follows:
M — g Mgr (2.40)
with g and gr SU(2) matrices. We can take the Lagrangian to be
L= Tr(d,M "My — V(Tr(M M)). (2.41)

This Lagrangian respects the symmetry. If the curvature of the potential at the origin is
negative, M will acquire an expectation value. If we take:

(M) = (o)1 (2.42)
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then some of the symmetry is broken. However, the expectation value of M is invariant
under the subgroup of the full symmetry group with g = g]z. In other words, the unbroken
symmetry is SU(2). Under this symmetry, the fields 7 transform as a vector. In the case of
the strong interactions, this unbroken symmetry can be identified with isospin. In the case
of the weak interactions, there is an approximate global symmetry reflected in the masses
of the W and Z particles, as we will discuss later.

2.2.5 Confinement

There is still another possible realization of gauge symmetry: confinement. This is crucial
to our understanding of strong interactions. As we will see, Yang—Mills theories, in the
case where there is not too much matter, become weak at short distances and strong at
large distances. This is just what is required to understand the qualitative features of the
strong interactions: free-quark and free-gluon behavior at very large momentum transfers,
but strong forces at larger distances so that there are in fact no free quarks or gluons.
As is the case for the Higgs mechanism, there are no massless particles in the spectrum
of hadrons: QCD is said to have a “mass gap.” These features of strong interactions are
supported by extensive numerical calculations, but they are hard to understand through
simple analytical or qualitative arguments (indeed, if you can offer such an argument, you
could win a Clay prize of $1 million). We will have more to say about the phenomenon of
confinement when we discuss lattice gauge theories.

One might wonder: what is the difference between the Higgs mechanism and confine-
ment? This question was first raised by Fradkin and Shenker and by ’t Hooft, who also
gave an answer: there is often no qualitative difference. The qualitative features of a theory
without massless gauge fields as a result of the Higgs phenomenon can be reproduced by
a confined strongly interacting theory. However, the detailed predictions of the weakly
interacting Weinberg—Salaam theory are in close agreement with experiment but those of
the strongly interacting theory are not.

2.3 The quantization of Yang—Mills theories
|

In this book we will encounter a number of interesting classical phenomena in Yang—Mills
theory but, in most of the situations in nature on which we are focusing, we will
be concerned with the quantum behavior of the weak and strong interactions. Abelian
theories such as QED already present considerable challenges. One can perform canonical
quantization in a gauge, such as the Coulomb gauge or a light cone gauge, in which
unitarity is manifest — all the states have positive norm. But, in such a gauge the covariance
of the theory is hard to see. Or one can choose a gauge where Lorentz invariance is
manifest, but not unitarity. In QED it is not too difficult to show, at the level of Feynman
diagrams, that these gauge choices are equivalent. In non-Abelian theories, canonical
quantization is still more challenging. Path integral methods provide a much more powerful
approach to the quantization of these theories than the canonical methods mentioned above.
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A brief review of path integration appears in Appendix C. Here we discuss gauge fixing
and derive the Feynman rules. We start with the gauge fields alone; adding the matter
fields — scalars or fermions — is not difficult. The basic path integral is

f [dA, e (2.43)

The problem is that this integral includes a huge redundancy: the gauge transformations.
To deal with this, we need to make a gauge choice, for example

Ga(AZ) = 9,4"* = 0. (2.44)

We insert unity in the form
1= / [dg]8 (G (4%)) AlAl. (2.45)

Here we have reverted to our matrix notation: G is a general gauge-fixing condition; A;ﬁ
denotes the gauge transform of 4,, by g. The quantity A is a functional determinant known
as the Faddeev—Popov determinant. Note that A is gauge invariant: A[A"] = A[A]. This
follows from the definition

/ [dg15(G(4"¢)) = / [dg15(G(4)), (2.46)

where, in the last step, we have made the change of variables g — h~!g. We can write a
more explicit expression for A as a determinant. To do this, we first need an expression
for the variation of the 4s under an infinitesimal gauge transformation.Writing g = 1 4 iw,
and using the matrix form for the gauge field, we have

84, = du0 + ilw,4,,]. (2.47)

This can be written elegantly as a covariant derivative of w, where w can be thought of as
a field in the adjoint representation:

84, = Dyo. (2.48)

If we make the specific choice G = 0, 4" then to evaluate A we need to expand G about
the field 4,, for which G = 0:

GA +84) = 8,D"w = 3*w + i[A,,, ), 0] (2.49)
or, in index form,
G(4%) = (376° +£*°4" Py,) 0. (2.50)
So
A[A] = det(9%89 + fbeqi by, =12, (2.51)

We will discuss strategies to evaluate this determinant shortly.
At this stage, we have reduced the path integral to

Z= / [dA,,18(G(A)) A[A]e" (2.52)
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and we can write down the Feynman rules. The §-function remains rather awkward to deal
with, though, and this expression can be simplified through the following trick. Introduce
a function @ (not to be confused with the w of Eq. (2.48)) and average over o with a
Gaussian weight factor:

Z= /[@]dff*x(wz/g) Z/[dAM](S(G(A) — w)A[A]€S. (2.53)

We can do the integral over the §-function. The quadratic terms in the exponent are now
given by

1
/d4x Ak [—azn,w + 9,0, (1 — g)} Av. (2.54)
We can invert this to find the propagator. In momentum space,

_n;w + (¢ — 1)k//,kv/k2
K2+ ie '

Dy = (2.55)

To write down explicit Feynman rules, we need also to deal with the Faddeev—Popov
determinant. Feynman long ago guessed that the unitarity problems of Yang—Mills theories
could be dealt with by introducing fictitious scalar fields with the wrong statistics. Our
expression for A can be reproduced by a functional integral for such particles:

A= f [dc®1[dc® Texp (i / d*x[c*T (9789 4 fabe g CBM)ch]) . (2.56)

From this we can read off the Feynman rules for Yang—Mills theories, including matter
fields. They are summarized in Fig. 2.3.

2.3.1 Gauge fixing in theories with broken gauge symmetry

Gauge fixing in theories with broken gauge symmetries raises some new issues. We con-
sider first a U(1) gauge theory with a single charged scalar field ¢. We suppose that the
potential is such that (¢) = v/~/2. We call e the gauge coupling and take the conventional
scaling for the gauge kinetic terms. We can, again, parameterize the field ¢ as

1 .

¢ =—=v+o@@le™". (2.57)
V2

Then we can again choose a gauge in which 7 (x) = 0. This gauge is known as the unitary

gauge since, as we have seen, in this gauge we have exactly the degrees of freedom we

expect physically: a massive gauge boson and a single real scalar. But this gauge is not

convenient for calculations. The gauge boson propagator in this gauge is

i kky
(Audy) = ———— (n,w - "—) ) (2.58)
K2 — M} M?

Because of the momentum factors in the second term, individual Feynman diagrams have
a bad high-energy behavior. A more convenient set of gauges, known as Rg gauges,
avoids this difficulty at the price of keeping the 7 field (sometimes misleadingly called the
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Feynman rules for Yang—Mills theory.

Goldstone particle) in the Feynman rules. We take, in the path integral, the gauge-fixing
function

1
VE
The extra term has been judiciously chosen so that when we exponentiate the gauge
condition, as in Eq. (2.53), the 4" 9,7 terms in the action cancel. Explicitly, we have

1 1
L= — S [n“”zaz — (1 — g) MY — (ezvz)n’“’j|Av
1 2 1 2 1 2 §
+ 5(8MU) — Emga + 5(811«71) — 5
If we choose & = 1 (corresponding to the ’t Hooft-Feynman gauge), the propagator for the
gauge boson is then simply

G= [0,4"E — evr (X)]. (2.59)

2 (ev)’n? + O@>). (2.60)

Upds) = 2.61)

i
o™
with M I% = &%V, but we have also the field 7 explicitly in the Lagrangian, and it has the
propagator

i

—_—. 2.62
s (2.62)

() =

The mass here is just the mass of the vector boson (for other choices of &, this is not true).
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This gauge choice is readily extended to non-Abelian theories with similar results:
the gauge bosons have simple propagators, like those of massive scalars but multiplied
by 7,v. The Goldstone bosons appear explicitly in perturbation theory, with propagators
appropriate to massive fields. The Faddeev—Popov ghosts have couplings to the scalar
fields.

2.4 The particles and fields of the Standard Model: gauge bosons

and fermions
|

We are now in a position to write down the Standard Model. It is amazing that, at a
microscopic level, almost everything we know