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Preface to the second edition

The Standard Model is the basis of our understanding of the fundamental inter-
actions. At the present time, it remains in excellent agreement with experiment. It
is clear that any further progress in the field will need to build on a solid under-
standing of the Standard Model. Since the first edition was written in 1992 there
have been major discoveries in neutrino physics, in CP violation, the discoveries
of the top quark and the Higgs boson, and a dramatic increase in precision in both
electroweak physics and in QCD. We feel that the present is a good moment to
update our book, as the Standard Model seems largely complete.

The opportunity to revise our book at this time has also enabled us to survey the
progress since the first edition went to print. Besides the experimental discoveries
that have taken place during these two decades, we have been impressed by the
increase in theoretical sophistication. Many of the topics which were novel at the
time of the first edition have now been extensively developed. Perturbative treat-
ments have progressed to higher orders and new techniques have been developed.
To cover all of these completely would require the expansion of many chapters
into book-length treatments. Indeed, in many cases, entire new books dedicated to
specialized topics have been published.1 Our revision is meant as a coherent peda-
gogic introduction to these topics, providing the reader with the basic background
to pursue more detailed studies when appropriate.

There has also been great progress on the possible New Physics which could
emerge beyond the Standard Model – dark matter and dark energy, grand unifica-
tion, supersymmetry, extra dimensions, etc. We are at a moment where this physics
could emerge in the next round of experiments at the Large Hadron Collider (LHC)
as well as in precision measurements at the intensity frontier. We look forward with
great anticipation to the new discoveries of the next decade.

1 For example, see [BaP 99, Be 00, BiS 00, EISW 03, FuS 04, Gr 04, IoFL 10, La 10, Ma 04, MaW 07, Co 11]

xvii



xviii Preface to the second edition

We thank our colleagues and students for feedback about the first edition of this
book. A list of errata for the second edition will be maintained at the homepage
of John Donoghue at the University of Massachusetts, Amherst. We encourage
readers who find any mistakes in this edition to submit them to Professor Donoghue
at donoghue@physics.umass.edu.

From the preface to the first edition

The Standard Model lagrangian LSM embodies our knowledge of the strong and
electroweak interactions. It contains as fundamental degrees of freedom the spin
one-half quarks and leptons, the spin one gauge bosons, and the spin zero Higgs
fields. Symmetry plays the central role in determining its dynamical structure. The
lagrangian exhibits invariance under SU(3) gauge transformations for the strong
interactions and under SU(2) × U(1) gauge transformations for the electroweak
interactions. Despite the presence of (all too) many input parameters, it is a mathe-
matical construction of considerable predictive power.

There are books available which describe in detail the construction of LSM and
its quantization, and which deal with aspects of symmetry breaking. We felt the
need for a book describing the next steps, how LSM is connected to the observable
physics of the real world. There are a considerable variety of techniques, of differ-
ing rigor, which are used by particle physicists to accomplish this. We present here
those which have become indispensable tools. In addition, we attempt to convey
the insights and ‘conventional wisdom’ which have been developed throughout the
field. This book can only be an introduction to the riches contained in the subject,
hopefully providing a foundation and a motivation for further exploration by its
readers.

In writing the book, we have become all too painfully aware that each topic,
indeed each specific reaction, has an extensive literature and phenomenology, and
that there is a limitation to the depth that can be presented compactly. We empha-
size applications, not fundamentals, of quantum field theory. Proofs of formal top-
ics like renormalizability or the quantization of gauge fields are left to other books,
as is the topic of parton phenomenology. In addition, the study by computer of
lattice field theory is an extensive and rapidly changing discipline, which we do
not attempt to cover. Although it would be tempting to discuss some of the many
stimulating ideas, among them supersymmetry, grand unification, and string the-
ory, which attempt to describe physics beyond the Standard Model, limitations of
space prevent us from doing so.

Although this book begins gently, we do assume that the reader already has some
familiarity with quantum field theory. As an aid to those who lack familiarity with
path-integral methods, we include a presentation, in Appendix A, which treats this



Preface to the second edition xix

subject in an introductory manner. In addition, we assume a knowledge of the basic
phenomenology of particle physics.

We have constructed the material to be of use to a wide spectrum of readers
who are involved with the physics of elementary particles. Certainly it contains
material of interest to both theorist and experimentalist alike. Given the trend to
incorporate the Standard Model in the study of nuclei, we expect the book to be
of use to the nuclear physics community as well. Even the student being trained in
the mathematics of string theory would be well advised to learn the role that sigma
models play in particle theory.

This is a good place to stress some conventions employed in this book. Chap-
ters are identified with roman numerals. In cross-referencing equations, we include
the chapter number if the referenced equation is in a chapter different from the
point of citation. The Minkowski metric is gμν = diag {1,−1,−1,−1}. Through-
out, we use the natural units � = c = 1, and choose e > 0 so that the elec-
tron has electric charge −e. We employ rationalized Heaviside–Lorentz units, and
the fine-structure constant is related to the charge via α = e2/4π . The coupling-
constants for the SU(3)c× SU(2)L×U(1) gauge structure of the Standard Model
are denoted respectively as g3, g2, g1, and we employ coupling-constant phase
conventions analogous to electromagnetism for the other abelian and nonabelian
covariant derivatives of the Standard Model. The chiral projection operator for left-
handed massless spin one-half particles is (1+γ5)/2, and in analyzing systems in d
dimensions, we employ the parameter ε ≡ (4−d)/2. What is meant by the ‘Fermi
constant’ is discussed in Sect. V–2.

Amherst, MA, 2013





I

Inputs to the Standard Model

This book is about the Standard Model of elementary particle physics. If we set
the beginning of the modern era of particle physics in 1947, the year the pion was
discovered, then the ensuing years of research have revealed the existence of a con-
sistent, self-contained layer of reality. The energy range which defines this layer of
reality extends up to about 1 TeV or, in terms of length, down to distances of order
10−17 cm. The Standard Model is a field-theoretic description of strong and electro-
weak interactions at these energies. It requires the input of as many as 28 inde-
pendent parameters.1 These parameters are not explained by the Standard Model;
their presence implies the need for an understanding of Nature at an even deeper
level. Nonetheless, processes described by the Standard Model possess a remark-
able insulation from signals of such New Physics. Although the strong interactions
remain a calculational challenge, the Standard Model (generalized from its original
form to include neutrino mass) would appear to have sufficient content to describe
all existing data.2 Thus far, it is a theoretical structure which has worked splendidly.

I–1 Quarks and leptons

The Standard Model is an SU(3) × SU(2) × U(1) gauge theory which is spon-
taneously broken by the Higgs potential. Table I–1 displays mass determinations
[RPP 12] of the Z0 and W± gauge bosons, the Higgs boson H 0, and the existing
mass limit on the photon γ .

In the Standard Model, the fundamental fermionic constitutents of matter are the
quarks and the leptons. Quarks, but not leptons, engage in the strong interactions
as a consequence of their color charge. Each quark and lepton has spin one-half.

1 There are six lepton masses, six quark masses, three gauge coupling constants, three quark-mixing angles
and one complex phase, three neutrino-mixing angles and as many as three complex phases, a Higgs mass
and quartic coupling constant, and the QCD vacuum angle.

2 Admittedly, at this time the sources of dark matter and of dark energy are unknown.

1



2 Inputs to the Standard Model

Table I–1. Boson masses.

Particle Mass (GeV/c2)

γ < 1× 10−27

W± 80.385± 0.015
Z0 91.1876± 0.0021
H 0 126.0± 0.4

Collectively, they display conventional Fermi–Dirac statistics. No attempt is made
in the Standard Model either to explain the variety and number of quarks and lep-
tons or to compute any of their properties. That is, these particles are taken at this
level as truly elementary. This is not unreasonable. There is no experimental evi-
dence for quark or lepton compositeness, such as excited states or form factors
associated with intrinsic structure.

Quarks

There are six quarks, which fall into two classes according to their electrical charge
Q. The u, c, t quarks have Q= 2e/3 and the d, s, b quarks have Q= − e/3,
where e is the electric charge of the proton. The u, c, t and d, s, b quarks
are eigenstates of the hamiltonian (‘mass eigenstates’). However, because they are
believed to be permanently confined entities, some thought must go into properly
defining quark mass. Indeed, several distinct definitions are commonly used. We
defer a discussion of this issue and simply note that the values in Table I–2 provide

Table I–2. The quarks.

Flavor Massa (GeV/c2) Charge I3 S C B T

u (2.55+0.75
−1.05)× 10−3 2e/3 1/2 0 0 0 0

d (5.04+0.96
−1.54)× 10−3 −e/3 −1/2 0 0 0 0

s 0.105+0.025
−0.035 −e/3 0 −1 0 0 0

c 1.27+0.07
−0.11 2e/3 0 0 1 0 0

b 4.20+0.17
−0.07 −e/3 0 0 0 −1 0

t 173.4± 1.6 2e/3 0 0 0 0 1

aThe t-quark mass is inferred from top quark events. All others are determined in MS
renormalization (cf. Sect. II–1) at scales mu,d,s(2 GeV/c2), mc(mc) and mb(mb) respec-
tively.



I–1 Quarks and leptons 3

Table I–3. The leptons.

Flavor Mass (GeV/c2) Charge Le Lμ Lτ

νe < 0.2× 10−8 0 1 0 0
e 5.10998928(11)× 10−4 −e 1 0 0
νμ < 1.9× 10−4 0 0 1 0
μ 0.1056583715(35) −e 0 1 0
ντ < 0.0182 0 0 0 1
τ 1.77682(16) −e 0 0 1

an overview of the quark mass spectrum. A useful benchmark for quark masses is
the energy scale QCD(� several hundred MeV) associated with the confinement
phenomenon. Relative to QCD, the u, d, s quarks are light, the b, t quarks are
heavy, and the c quark has intermediate mass. The dynamical behavior of light
quarks is described by the chiral symmetry of massless particles (cf. Chap. VI)
whereas heavy quarks are constrained by the so-called Heavy Quark Effective
Theory (cf. Sect. XIII–3). Each quark is said to constitute a separate flavor, i.e.
six quark flavors exist in Nature. The s, c, b, t quarks carry respectively the
quantum numbers of strangeness (S), charm (C), bottomness (B), and topness (T ).
The u, d quarks obey an SU (2) symmetry (isospin) and are distinguished by the
three-component of isospin (I3). The flavor quantum numbers of each quark are
displayed in Table I–2.

Leptons

There are six leptons which fall into two categories according to their electrical
charge. The charged leptons e, μ, τ have Q= − e and the neutrinos νe, νμ, ντ
have Q= 0. Leptons are also classified in terms of three lepton types: electron
(νe, e), muon (νμ, μ), and tau (ντ , τ ). This follows from the structure of the charged
weak interactions (cf. Sect. II–3) in which these charged-lepton/neutrino pairs are
coupled to W± gauge bosons. Associated with each lepton type is a lepton number
Le, Lμ,Lτ . Table I–3 summarizes lepton properties.

At this time, there is only incomplete knowledge of neutrino masses. Information
on the mass parameters mνe,mνμ,mντ is obtained from their presence in various
weak transition amplitudes. For example, the single beta decay experiment 3H →
3He+e−+νe is sensitive to the massmνe . In like manner, one constrains the masses
mνμ and mντ in processes such as π+ → μ+ + νμ and τ− → 2π− + π+ + ντ

respectively. Existing bounds on these masses are displayed in Table I–3.
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It is known experimentally that upon creation the neutrinos {να} ≡ (νe.νμ, ντ )

will not propagate indefinitely but will instead mix with each other. This means that
the basis of states {να} cannot be eigenstates of the hamiltonian. Diagonalization
of the leptonic hamiltonian is carried out in Sect. VI–2 and yields the basis {νi} ≡
{ν1, ν2, ν3} of mass eigenstates. Information on the neutrino mass eigenvalues
m1,m2,m3 is obtained from neutrino oscillation experiments and cosmological
studies. Oscillation experiments (cf. Sects. VI–3,VI–4) are sensitive to squared-
mass differences.3 Throughout the book, we adhere to the following relations,

definition: �m2
ij ≡ m2

i −m2
j , convention: m2 > m1. (1.1)

From the compilation in [RPP 12], the squared-mass difference |�m2
32| deduced

from the study of atmospheric and accelerator neutrinos gives

|�m2
32| = 2.32+0.12

−0.08 × 10−3 eV2, (1.2a)

whereas data from solar and reactor neutrinos imply a squared-mass difference
roughly 31 times smaller,

�m2
21 = (7.50± 0.20)× 10−5 eV2. (1.2b)

Thus the neutrinos ν1 and ν2 form a quasi-doublet. One speaks of a normal or
inverted neutrino mass spectrum, respectively, for the cases4

normal: m3 > m1,2, inverted: m1,2 > m3. (1.2c)

Since the largest neutrino mass mlgst, be it m2 or m3, cannot be lighter than the
mass splitting of Eq. (1.2), we have the bound mlgst > 0.049 eV. Finally, a com-
bination of cosmological inputs can be employed to bound the neutrino mass sum∑3

i= 1 mi , the precise bound depending on the chosen input data set. In one exam-
ple [deP et al. 12], photometric redshifts measured from a large galaxy sample, cos-
mic microwave background (CMB) data and a recent determination of the Hubble
parameter are used to obtain the bound

m1 +m2 +m3 < 0.26 eV, (1.3a)

whereas data from the CMB combined with that from baryon acoustic oscillations
yields [Ad et al. (Planck collab.) 13]

m1 +m2 +m3 < 0.23 eV. (1.3b)

A further discussion of the neutrino mass spectrum appears in Sect. VI–4.

3 Only two of the mass differences can be independent, so �m2
12 +�m2

23 +�m2
31= 0.

4 There is also the possibility of a quasi-degenerate neutrino mass spectrum (m1 � m2 � m3), which can be
thought of as a limiting case of both the normal and inverted cases in which the individual masses are
sufficiently large to dwarf the |�m2

32| splitting.
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Quark and lepton numbers

Individual quark and lepton numbers are known to be not conserved, but for dif-
ferent reasons and with different levels of nonconservation. Individual quark num-
ber is not conserved in the Standard Model due to the charged weak interactions
(cf. Sect. II–3). Indeed, quark transitions of the type qi → qj + W± induce the
decays of most meson and baryon states and have led to the phenomenology of
Flavor Physics. Individual lepton number is not conserved, as evidenced by the
observed να ↔ νβ (α, β = e, μ, τ) oscillations. This source of this phenomenon is
associated with nonzero neutrino masses. There is currently no additional evidence
for the violation of individual lepton number despite increasingly sensitive limits
such as the branching fraction Bμ−→e−e−e+ < 1.0× 10−12.

Existing data are consistent with conservation of total quark and total lepton
number, e.g. the proton lifetime bound τp > 2.1×1029 yr [RPP 12] and the nuclear
half-life limit t0νββ1/2 [136Xe] > 1.6×1025 yr [Ac et al. (EXO-200 collab.) 11]. These
conservation laws are empirical. They are not required as a consequence of any
known dynamical principle and in fact are expected to be violated by certain non-
perturbative effects within the Standard Model (associated with quantum tunneling
between topologically inequivalent vacua – see Sect. III–6).

I–2 Chiral fermions

Consider a world in which quarks and leptons have no mass at all. At first, this
would appear to be a surprising supposition. To an experimentalist, mass is the
most palpable property a particle has. It is why, say, a muon behaves differently
from an electron in the laboratory. Nonetheless, the massless limit is where the
Standard Model begins.

The massless limit

Let ψ(x) be a solution to the Dirac equation for a massless particle,

i/∂ ψ = 0. (2.1)

We can multiply this equation from the left by γ5 and use the anticommutativity of
γ5 with γ μ to obtain another solution,

i/∂ γ5ψ = 0. (2.2)

We superpose these solutions to form the combinations

ψL = 1

2
(1+ γ5)ψ, ψR = 1

2
(1− γ5)ψ, (2.3)
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where ‘1’ represents the unit 4× 4 matrix. The quantities ψL and ψR are solutions
of definite chirality (i.e. handedness). For a massless particle moving with precise
momentum, these solutions correspond respectively to the spin being anti-aligned
(left-handed) and aligned (right-handed) relative to the momentum. In other words,
chirality coincides with helicity for zero-mass particles. The matrices �L

R
= (1 ±

γ5)/2 are chirality projection operators. They obey the usual projection operator
conditions under addition,

�L + �R = 1, (2.4)

and under multiplication,

�L�L = �L, �R�R = �R, �L�R = �R�L = 0. (2.5)

In the massless limit, a particle’s chirality is a Lorentz-invariant concept. For
example, a particle which is left-handed to one observer will appear left-handed to
all observers. Thus chirality is a natural label to use for massless fermions, and a
collection of such particles may be characterized according to the separate numbers
of left-handed and right-handed particles.

It is simple to incorporate chirality into a lagrangian formalism. The lagrangian
for a massless noninteracting fermion is

L = iψ /∂ ψ, (2.6)

or in terms of chiral fields,

L = LL + LR, (2.7)

where

LL,R = iψL,R/∂ ψL,R. (2.8)

The lagrangians LL,R are invariant under the global chiral phase transformations

ψL,R(x)→ exp(−iαL,R)ψL,R(x), (2.9)

where the phases αL,R are constant and real-valued but otherwise arbitrary. Antici-
pating the discussion of Noether’s theorem in Sect. I–4, we can associate conserved
particle-number current densities JμL,R,

J
μ

L,R = ψL,Rγ
μψL,R (∂μJ

μ

L,R = 0), (2.10)

with this invariance. From these chiral current densities, we can construct the vector
current V μ(x),

V μ = J
μ

L + JμR (2.11)

and the axial-vector current Aμ(x),
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Aμ = J
μ

L − JμR . (2.12)

Chiral charges QL,R are defined as spatial integrals of the chiral charge densities,

QL,R(t) =
∫
d3x J 0

L,R(x), (2.13)

and represent the number operators for the chiral fields ψL,R. They are time-
independent if the chiral currents are conserved. One can similarly define the vector
charge Q and the axial-vector charge Q5,

Q(t) =
∫
d3x V 0(x), Q5(t) =

∫
d3x A0(x). (2.14)

The vector charge Q is the total number operator,

Q = QR +QL, (2.15)

whereas the axial-vector charge is the number operator for the difference

Q5 = QL −QR. (2.16)

The vector charge Q and axial-vector charge Q5 simply count the sum and differ-
ence, respectively, of the left-handed and right-handed particles.

Parity, time reversal, and charge conjugation

The field transformations of Eq. (2.9) involve parameters αL,R which can take on
a continuum of values. In addition to such continuous field mappings, one often
encounters a variety of discrete transformations as well. Let us consider the oper-
ations of parity

x = (x0, x)→ xP = (x0,−x), (2.17)

and of time reversal

x = (x0, x)→ xT = (−x0, x), (2.18)

as defined by their effects on spacetime coordinates. The effect of discrete trans-
formations on a fermion field ψ(x) will be implemented by a unitary operator P
for parity and an antiunitary operator T for time reversal. In the representation of
Dirac matrices used in this book, we have

Pψ(x)P−1 = γ 0ψ(xP ), T ψ(x)T −1 = iγ 1γ 3ψ(xT ). (2.19)

An additional operation typically considered in conjunction with parity and time
reversal is that of charge conjugation, the mapping of matter into antimatter,

Cψ(x)C−1 = iγ 2γ 0ψ
T
(x), (2.20)
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Table I–4. Response of Dirac bilinears to
discrete mappings.

C P T

S(x) S(xP ) S(xT )
P (x) −P(xP ) −P(xT )
−Jμ(x) Jμ(xP ) Jμ(xT )

J
μ
5 (x) −J5μ(xP ) J5μ(xT )
−T μν(x) Tμν(xP ) −Tμν(xT )

where ψ
T

β ≡ ψ†
αγ

0
αβ (α, β = 1, . . . , 4). The spacetime coordinates of field ψ(x) are

unaffected by charge conjugation.
In the study of discrete transformations, the response of the normal-ordered

Dirac bilinears

S(x) = : ψ(x)ψ(x) : P(x) = : ψ(x)γ5ψ(x) :
Jμ(x) = : ψ(x)γ μψ(x) : J

μ

5 (x) = : ψ(x)γ μγ5ψ(x) :
T μν(x) = : ψ(x)σμνψ(x) :

(2.21)

is of special importance to physical applications. Their transformation properties
appear in Table I–4. Close attention should be paid there to the location of the
indices in these relations. Another example of a field’s response to these discrete
transformations is that of the photon Aμ(x),

C Aμ(x) C−1 c = −Aμ(x), P Aμ(x) P−1 = Aμ(xP ),

T Aμ(x) T −1 c = Aμ(xT ).
(2.22)

Beginning with the discussion of Noether’s theorem in Sect. 1–4, we shall explore
the topic of invariance throughout much of this book. It suffices to note here that
the Standard Model, being a theory whose dynamical content is expressed in terms
of hermitian, Lorentz-invariant lagrangians of local quantum fields, is guaranteed
to be invariant under the combined operation CPT . Interestingly, however, these
discrete transformations are individually symmetry operations only of the strong
and electromagnetic interactions, but not of the full electroweak sector. We see
already the possibility for such behavior in the occurrence of chiral fermions ψL,R,
since parity maps the fields ψL,R into each other,

ψL,R → P ψL,R(x) P
−1 = γ 0ψR,L(xP ). (2.23)
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Thus any effect, like the weak interaction, which treats left-handed and right-
handed fermions differently, will lead inevitably to parity-violating phenomena.

I–3 Fermion mass

Although the discussion of chiral fermions is cast in the limit of zero mass, fermions
in Nature do in fact have nonzero mass and we must account for this. In a lagran-
gian, a mass term will appear as a hermitian, Lorentz-invariant bilinear in the fields.
For fermion fields, these conditions allow realizations referred to as Dirac mass and
Majorana mass.5

Dirac mass

The Dirac mass term for fermion fieldsψL,R involves the bilinear coupling of fields
with opposite chirality

−LD = mD[ ψLψR + ψRψL ] = mD ψψ (3.1)

where ψ ≡ ψL + ψR and mD is the Dirac mass. The Dirac mass term is invari-
ant under the phase transformation ψ(x) → exp(−iα)ψ(x) and thus does not
upset conservation of the vector current V μ=ψγμψ and the corresponding num-
ber fermion operator Q of Eq. (2.15). All fields in the Standard Model, save pos-
sibly for the neutrinos, have Dirac masses obtained from their interaction with the
Higgs field (cf. Sects. II–3, II–4). Although right-handed neutrinos have no cou-
plings to the Standard Model gauge bosons, there is no principle prohibiting their
interaction with the Higgs field and thus generating neutrino Dirac masses in the
same manner as the other particles.

Majorana mass

A Majorana mass term is one which violates fermion number by coupling two
fermions (or two antifermions). In the Majorana construction, use is made of the
charge-conjugate fields,

ψc ≡ Cγ 0ψ∗, (ψL,R)
c = (�L,Rψ)

c, (3.2)

where C is the charge-conjugation operator, obeying

C = −C−1 = −C† = −CT . (3.3)

In the Dirac representation of gamma matrices (cf. App. C), one has C= iγ 2γ 0.
Some useful identities involving ψc include

5 We suppress spacetime dependence of the fields in this section.
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(ψc
i ) ψj = ψT

i C ψj , ψi ψ
c
j = −ψ∗Ti C ψ∗j ,(

(ψc
i ) ψj

)† = ψj ψ
c
i ,

(
ψT
i C ψj

)† = −ψ∗Tj C ψ∗i ,
(ψc

i ) ψ
c
j = ψj ψi, (ψc

i ) γ
μ ψc

j = −ψj γ μ ψi,
(ψc

R) ψL = 0, (ψc
R) γ

μ ψR = 0.

(3.4)

The two identities in the bottom line follow from �RC�L= 0.
The possibility of a Majorana mass term follows from the fact that a combination

of two fermion fields ψTCψ is an invariant under Lorentz transformations. Two
equivalent expressions for a Majorana mass term involving chiral fields ψL,R are6

−LM = mL,R

2

[
(ψL,R)c ψL,R + ψL,R (ψL,R)c

]
= mL,R

2

[
(ψL,R)

T CψL,R − (ψ∗L,R)T Cψ∗L,R
]
.

(3.5)

Because the cross combination (ψR)T CψL= 0, the Majorana mass terms involves
either two left-chiral fields or two right-chiral fields, and the left-chiral and right-
chiral masses are independent. Treating ψ and ψ∗ as independent variables, the
resulting equations of motion are

i/∂ ψR −mR ψ
c
R = 0, i/∂ ψc

R −mR ψR = 0, (3.6)

with a similar set of equations for ψL. Iteration of these coupled equations shows
that mR indeed behaves as a mass.

A Majorana mass term clearly does not conserve fermion number and mixes
the particle with its antiparticle. Indeed, a Majorana fermion can be identified with
its own antiparticle. This can be seen, using ψR as an example, by rewriting the
lagrangian in terms of the self-conjugate field

ψM = 1√
2

[
ψR + ψc

R

]
, (3.7)

which, given the equations of motion above, will clearly satisfy the Dirac equa-
tion. The total Majorana lagrangian can be simply rewritten in terms of this self-
conjugate field as

L(R)KE + L(R)M = ψRi/∂ ψR −
mR

2

[
(ψR)c ψR + ψR (ψR)c

]
= ψMi/∂ ψM −mRψM ψM

= ψT
MCi/∂ ψM −mRψ

T
MC ψM,

(3.8)

6 The factor of 1/2 with the Majorana mass parameters m(M)
L,R

compensates for a factor of 2 encountered in
taking the matrix element of the Majorana mass term.
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where again the identity �R C�L= 0 plays a role in this construction. To avoid
the possibility of nonconservation of charge, any Majorana mass term must be
restricted to a field with is neutral under the gauge charges. Thus, among the par-
ticles of the Standard Model, we will see that only right-handed neutrinos satisfy
this condition.

Finally, we note that a Dirac field can be written as two Majorana fields with
opposite masses via the construction

ψa = 1√
2

[
ψR + ψc

L

]
, ψb = 1√

2

[
ψL − ψc

R

]
, (3.9)

in which case we find

−LD = mD

[
ψL ψR + ψR ψL

]
= mD

2
(ψc

a) ψa −
mD

2
(ψb)c ψb + h.c.

(3.10)

The apparent violation of lepton number that looks like it would arise from this
framework does not actually occur, because the effects proportional to the mass
of these fields will cancel due to the minus sign between the two mass terms. To
make matters look even more puzzling, we can flip the sign on the mass term for
the second field, by the field redefinition ψb → i ψb in which case both masses
appear positive. However in this case, the weak current would pick up an unusual
factor of i, since the left-handed field would then become

ψL → 1√
2

[
i ψb + ψc

a

]
. (3.11)

In this case, potential lepton-number violating processes would cancel between the
two fields because of the occurrence of a factor of i2= − 1 from the application
of the weak currents. These algebraic gymnastics become more physically relevant
when we combine both Dirac and Majorana mass terms in Chap. VI.

I–4 Symmetries and near symmetries

A symmetry is said to arise in Nature whenever some change in the variables of
a system leaves the essential physics unchanged. In field theory, the dynamical
variables are the fields, and symmetries describe invariances under transformations
of the fields. For example, one associates with the spacetime translation xμ → xμ+
aμ a transformation of the field ψ(x) to ψ(x + a). In turn, the ‘essential physics’
is best described by an action, at least in classical physics. If the action is invariant,
the equations of motion, and hence the classical physics, will be unchanged. The
invariances of quantum physics are identified by consideration of matrix elements
or, equivalently, of the path integral. We begin the study of symmetries here by
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exploring several lagrangians which have invariances and by considering some of
the consequences of these symmetries.

Noether currents

The classical analysis of symmetry focusses on the lagrangian, which in general
is a Lorentz-scalar function of several fields, denoted by ϕi , and their first deriva-
tives ∂μϕi , i.e. L=L(ϕi, ∂μϕi). Noether’s theorem states that for any invariance of
the action under a continuous transformation of the fields, there exists a classical
charge Q which is time-independent (Q̇= 0) and is associated with a conserved
current, ∂μJμ= 0. This theorem covers both internal and spacetime symmetries.
For most7 internal symmetries, the lagrangian is itself invariant. Given a continu-
ous field transformation, one can always consider an infinitesimal transformation

ϕ′i(x) = ϕi(x)+ εfi(ϕ), (4.1)

where ε is an infinitesimal parameter and fi(ϕ) is a function of the fields in the
theory. The procedure for constructing the Noether current of an internal symmetry
is to temporarily let ε become a function of x and to define the quantity

ϕ̂i(x) = ϕi(x)+ ε(x)fi(ϕ), (4.2)

such that in the restriction back to constant ε, L becomes invariant and ϕ̂i(x) →
ϕ′i(x). For an internal symmetry, the Noether current is then defined by

Jμ(x) ≡ ∂

∂(∂με(x))
L(ϕ̂, ∂ϕ̂). (4.3)

Use of the equation of motion together with the invariance of the lagrangian
under the transformation in Eq. (4.1) yields ∂μJμ= ∂L/∂ε(x)= 0 as desired. The
Noether charge Q= ∫ d3x J0 is time-independent if the current vanishes suffi-
ciently rapidly at spatial infinity, i.e.

dQ

dt
=
∫
d3x ∂0J0= −

∫
d3x∇ · J= 0. (4.4)

We refer the reader to field theory textbooks for further discussion, including the
analogous procedure for constructing Noether currents of spacetime symmetries.

Identifying the current does not exhaust all the consequences of a symmetry but
is merely the first step towards the implementation of symmetry relations. Notice
that we have been careful to use the word ‘classical’ several times. This is because
the invariance of the action is not generally sufficient to identify symmetries of a
quantum theory. We shall return to this point.

7 An exception occurs for the so-called topological gauge symmetries.
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Examples of Noether currents

Let us now consider some explicit field theory models in order to get practice in
constructing Noether currents.

(i) Isospin symmetry: SU(2) isospin invariance of the nucleon–pion system pro-
vides a standard and uncomplicated means for studying symmetry currents. Con-
sider a doublet of nucleon fields

ψ =
(
p

n

)
, (4.5)

and a triplet of pion fields π ={πi} (i= 1, 2, 3) with lagrangian

L = ψ̄ (i/∂ −m) ψ + 1

2

[
∂μπ · ∂μπ −m2

ππ · π]+ igψ̄τ · πγ5ψ − λ

4
(π · π)2

(4.6)

where m is the nucleon mass matrix

m =
(
m 0
0 m

)
and τ ={τ i}(i= 1, 2, 3) are the three Pauli matrices. This lagrangian is invariant
under the global SU(2) rotation of the fields

ψ → ψ ′ = U ψ, U = exp (−iτ · α/2) (4.7)

for any αi , (i= 1, 2, 3) provided the pion fields are transformed as

τ · π → τ · π ′ = Uτ · πU †. (4.8)

In proving this, it is useful to employ the identity

π · π = 1

2
Tr (τ · πτ · π) , (4.9)

from which we easily see that πiπi is invariant under the transformation of
Eq. (4.8). The response of the individual pion components to an isospin transfor-
mation can be found from multiplying Eq. (4.8) by τ i and taking the trace,

π ′ i = Rij (α)πj , Rij (α) = 1

2
Tr
(
τ iUτ jU †

)
. (4.10)

To determine the isospin current, one considers the spacetime-dependent trans-
formation with α now infinitesimal,

ψ̂ = (1− iτ · α(x)/2) ψ, π̂ i = πi − εijkπjαk(x). (4.11)
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Performing this transformation on the lagrangian gives

L(ψ̂, π̂) = L(ψ, π)+ 1

2
ψ̄γ μτ · ∂μαψ − εijk(∂μπi)πj∂μαk, (4.12)

and applying our expression Eq. (4.3) for the current yields the triplet of currents
(one for each αi)

V i
μ = ψ̄γμ

τ i

2
ψ + εijkπj∂μπk. (4.13)

By use of the equations of motion for ψ and π , it is straightforward to verify that
this current is conserved.

(ii) The linear sigma model: With a few modifications the above example
becomes one of the most instructive of all field theory models, the sigma model
[GeL 60]. One adds to the lagrangian of Eq. (4.6) a scalar field σ with judiciously
chosen couplings, and removes the bare nucleon mass,

L = ψ̄i/∂ψ + 1

2
∂μπ · ∂μπ + 1

2
∂μσ∂

μσ

− gψ̄ (σ − iτ · πγ5) ψ + μ2

2

(
σ 2 + π2

)− λ

4

(
σ 2 + π2

)2
.

(4.14)

For μ2 > 0, the model exhibits the phenomenon of spontaneous symmetry break-
ing (cf. Sect. I–6). In describing the symmetries of this lagrangian, it is useful to
rewrite the mesons in terms of a matrix field

� ≡ σ + iτ · π , (4.15)

such that

σ 2 + π2 = 1

2
Tr
(
�†�

)
. (4.16)

Then we obtain

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR + 1

4
Tr
(
∂μ�∂

μ�†
)

+ 1

4
μ2 Tr

(
�†�

)− λ

16
Tr 2

(
�†�

)− g (ψ̄L�ψR + ψ̄R�†ψL
)
,

(4.17)

where ψL,R are chiral fields (cf. Eq. (2.3)). The left-handed and right-handed
fermion fields are coupled together only in the interaction with the � field. The
purely mesonic portion of the lagrangian is obviously invariant under rotations
among the σ,π fields. The full lagrangian has separate ‘left’ and ‘right’ invari-
ances, i.e. SU(2)L × SU(2)R,

ψL,R → ψ ′L,R = UL,RψL,R, �→ �′ = UL�U
†
R, (4.18)

with UL and UR being arbitrary SU(2) matrices,
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UL,R = exp (−iαL,R · τ/2). (4.19)

The fermion portions of the transformation clearly involve just the SU(2) isospin
rotations on the left-handed and right-handed fermions. However, the mesons
involve a combination of a pure isospin rotation among the π fields together with
a transformation between the σ and π fields

σ → σ ′ = 1

2
Tr
(
ULU

†
R

)
σ + i

2
Tr
(
ULτ

kU
†
R

)
πk

� σ + 1

2
(αL − αR) · π ,

πk → π ′k = − i
2

Tr
(
τ kULU

†
R

)
σ + 1

2
Tr
(
τ kULτ


U
†
R

)
π


� πk − 1

2

(
αkL − αkR

)
σ − 1

2
εk
mπ


(
αmL + αmR

)
, (4.20)

where the second form in each case is for infinitesimal αL, αR. For each invariance
there is a separate conserved current

J kLμ = ψ̄Lγμ
τ k

2
ψL − i

8
Tr
(
τ k
(
�∂μ�

† − ∂μ� �†
))

= ψ̄Lγμ
τ k

2
ψL − 1

2

(
σ∂μπ

k − πk∂μσ
)+ 1

2
εk
mπ
∂μπ

m,

J kRμ = ψ̄Rγμ
τ k

2
ψR + i

8
Tr
(
τ k
(
∂μ�

†� −�†∂μ�
))

= ψ̄Rγμ
τ k

2
ψR + 1

2

(
σ∂μπ

k − πk∂μσ
)+ 1

2
εk
mπ
∂μπ

m.

(4.21)

These can be formed into a conserved vector current

V k
μ = J kLμ + J kRμ = ψ̄γμ

τ k

2
ψ + εk
mπ
∂μπm, (4.22)

which is just the isospin current derived previously, and a conserved axial-vector
current

Akμ = J kLμ − J kRμ = ψ̄γμγ5
τ k

2
ψ + πk∂μσ − σ∂μπk. (4.23)

(iii) Scale invariance: Our third example illustrates the case of a spacetime trans-
formation in which the lagrangian changes by a total derivative. Consider classical
electrodynamics (cf. Sect. II–1) but with a massless electron,

L= − 1

4
FμνF

μν + ψ̄ i /Dψ, (4.24)

where ψ is the electron field, Dμψ = (∂μ + ieAμ)ψ is the covariant derivative of
ψ,Aμ is the photon field, and Fμν is the electromagnetic field strength. We shall
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describe the construction of both Dμψ and Fμν in the next section. Since there
are no dimensional parameters in this lagrangian, we are motivated to consider
the effect of a change in coordinate scale x → x ′ = λx together with the field
transformations

ψ(x)→ ψ ′(x) = λ3/2ψ(λx), Aμ(x)→ A′μ(x) = λAμ(λx). (4.25)

Although the lagrangian itself is not invariant,

L(x)→ L′(x) = λ4L(λx), (4.26)

with a change of variable the action is easily seen to be unchanged,

S =
∫
d4x L(x)→

∫
d4x λ4L(λx) =

∫
d4x ′ L(x ′) = S. (4.27)

There is nothing in this classical theory which depends on how length is scaled.
The Noether current associated with the change of scale is

J
μ

scale ≡ xνθ
μν, (4.28)

where θμν is the energy-momentum tensor of the theory,

θμν = −gμν
[
−1

4
FλσFλσ + ψ̄i /Dψ

]
− FμλF ν

λ + Aν∂λFμλ + i

2
ψ̄γ μ

↔
∂νψ.

(4.29)

Since the energy-momentum tensor is itself conserved, ∂μθμν = 0, the conservation
of scale current is equivalent to the vanishing of the trace of the energy-momentum
tensor,

∂μJ
μ

scale= θ μ
μ = 0. (4.30)

This trace property may be easily verified using the equations of motion.

Approximate symmetry

Thus far, we have been describing exact symmetries. Symmetry considerations
are equally useful in situations where there is ‘almost’ a symmetry. The very
phrase ‘approximate symmetry’ seems self-contradictory and needs explanation.
Quite often a lagrangian would have an invariance if certain of the parameters in it
were set equal to zero. In that limit the invariance would have a set of physical con-
sequences which, with the said parameters being nonzero, would no longer obtain.
Yet, if the parameters are in some sense ‘small’, the predicted consequences are
still approximately valid. In fact, when the interaction which breaks the symmetry
has a well-defined behavior under the symmetry transformation, its effect can gen-
erally be analyzed in terms of the basis of unperturbed particle states by using the
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Wigner–Eckart theorem. The precise sense in which the symmetry-breaking terms
can be deemed small depends on the problem under consideration. In practice, the
utility of an approximate symmetry is rarely known a priori, but is only evident
after its predictions have been checked experimentally.

If a symmetry is not exact, the associated currents and charges will no longer
be conserved. For example, in the linear sigma model, the symmetry is partially
broken if we add to the lagrangian a term of the form

L′ = a σ = a

2
Tr�, (4.31)

where � is the matrix defined in Eq. (4.15). With this addition, the vector isospin
SU(2) symmetry remains exact but the axial SU(2) transformation is no longer an
invariance. The axial-current divergence becomes

∂μAiμ = aπi, (4.32)

and the charge is time-dependent,

dQi
5

dt
= a

∫
d3x πi. (4.33)

In the linear sigma model, if the parameters g, λ are of order unity it is clear that
the perturbation is small provided 1 
 a/μ3, as μ is the only other mass scale in
the theory. However, if either g or λ happens to be anomalously large or small, the
condition appropriate for a ‘small’ perturbation is not a priori evident.

In our example (iii) of scale invariance in massless fermion electrodynamics, the
addition of an electron mass

Lmass = −mψ̄ψ (4.34)

would explicitly break the symmetry and the trace would no longer vanish,

θ μ
μ = mψ̄ψ �= 0. (4.35)

This is in fact what occurs in practice. Fermion mass is typically not a small param-
eter in QED and cannot be treated as a perturbation in most applications.

I–5 Gauge symmetry

In our discussion of chiral symmetry, we considered the effect of global phase
transformations, ψL,R(x)→ exp (−iαL,R)ψL,R(x). Global phase transformations
are those which are constant throughout all spacetime. Let us reconsider the system
of chiral fermions, but now insist that the phase transformations be local. Each
transformation is then labeled by a spacetime-dependent phase αL,R(x),

ψL,R(x)→ exp(−iαL,R(x)) ψL,R(x). (5.1)
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Such local mappings are referred to as gauge transformations. The free massless
lagrangian of Eq. (2.1) is not invariant under the gauge transformation

iψL,R(x)/∂ψL,R(x)→ iψL,R(x)/∂ ψL,R(x)+ ψL,R(x)γ
μψL,R(x) · ∂μαL,R(x),

(5.2)

because of the spacetime dependence of αL,R. In order for such a local transforma-
tion to be an invariance of the lagrangian, we need an extended kind of derivative
Dμ, such that

DμψL,R(x)→ exp(−iαL,R(x))DμψL,R(x) (5.3)

under the local transformation of Eq. (5.1). The quantity Dμ is a covariant deriva-
tive, so called because it responds covariantly, as in Eq. (5.3), to a gauge trans-
formation.

Abelian case

Before proceeding with the construction of a covariant derivative, we broaden the
context of our discussion. Let �(x) now represent a boson or fermion field of any
spin and arbitrary mass. We consider transformations

�→ U(α)� (5.4)

Dμ�→ U(α)Dμ�, (5.5)

with a spacetime-dependent parameter, α=α(x). Suppose these gauge transfor-
mations form an abelian group, e.g., as do the set of phase transformations of
Eq. (5.1).8 It is sufficient to consider transformations with just one parameter as
in Eqs. (5.4)–(5.5) since we can use direct products of these to construct arbitrary
abelian groups.

One can obtain a covariant derivative by introducing a vector field Aμ(x), called
a gauge field, by means of the relation

Dμ� = (∂μ + ifAμ)�, (5.6)

where f is a real-valued coupling constant whose numerical magnitude depends in
part on the field�. For example, in electrodynamics f becomes the electric charge
of �. The problem is then to determine how Aμ must transform under a gauge
transformation in order to give Eq. (5.5). This can be done by inspection, and we
find

Aμ → Aμ + i

f
∂μU(α) · U−1(α). (5.7)

8 An abelian group is one whose elements commute. A nonabelian group is one which is not abelian.
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The gauge field Aμ must itself have a kinetic contribution to the lagrangian. This
is written in terms of a field strength, Fμν , which is antisymmetric in its indices.
A general method for constructing such an antisymmetric second rank tensor is to
use the commutator of covariant derivatives,

[Dμ,Dν] � ≡ if Fμν�. (5.8)

By direct substitution we find

Fμν = ∂μAν − ∂νAμ. (5.9)

It follows from Eq. (5.7) and Eq. (5.9) that the field strength Fμν is invariant under
gauge transformations. A gauge-invariant lagrangian containing a complex scalar
field ϕ and a spin one-half field ψ , chiral or otherwise, has the form

L = −1

4
FμνF

μν + (Dμϕ)†Dμϕ + iψ /Dψ + · · · , (5.10)

where the ellipses stand for possible mass terms and nongauge field interactions.
There is no contribution corresponding to a gauge-boson mass. Such a term would
be proportional to AμAμ, which is not invariant under the gauge transformation,
Eq. (5.7).

Nonabelian case

The above reasoning can be generalized to nonabelian groups [YaM 54]. First, we
need a nonabelian group of gauge transformations and a set of fields which forms a
representation of the gauge group. Then, we must construct an appropriate covari-
ant derivative to act on the fields. This step involves introducing a set of gauge
bosons and specifying their behavior under the gauge transformations. Finally, the
gauge field strength is obtained from the commutator of covariant derivatives, at
which point we can write down a gauge-invariant lagrangian.

Consider fields �={�i} (i= 1, . . . , r), which form an r-dimensional represen-
tation of a nonabelian gauge group G. The �i can be boson or fermion fields of
any spin. In the following it will be helpful to think of � as an r-component col-
umn vector, and operations acting on � as r × r matrices. We take group G to
have a Lie algebra of dimension n, so that the numbers of group generators, group
parameters, gauge fields, and components of the gauge field strength are each n.
We write the spacetime-dependent group parameters as the n-dimensional vector
�α={αa(x)} (a= 1, . . . , n). A gauge transformation on � is

�′ = U(�α)�, (5.11)
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where the r × r matrix U is an element of group G. For those elements of G which
are connected continuously to the identity operator, we can write

U(�α) = exp(−iαaGa), (5.12)

where �G={Ga} (a= 1, . . . , n) are the generators of the group G expressed as
hermitian r × r matrices. The set of generators obeys the Lie algebra

[Ga,Gb] = icabcGc (a, b, c = 1, . . . , n), (5.13)

where {cabc} are the structure constants of the algebra. We construct the covariant
derivative Dμ� in terms of gauge fields �Bμ = {Ba

μ} (a= 1, . . . , n) as

Dμ� = (I∂μ + igBμ)�, (5.14)

where g is a coupling constant analogous to f in Eq. (5.6). In Eq. (5.14), I is the
r × r unit matrix, and

Bμ ≡ GaBa
μ. (5.15)

Realizing that the covariant derivative must transform as

(Dμ�)
′ = U(�α)(Dμ�), (5.16)

we infer from Eqs. (5.12)–(5.14) the response, in matrix form, of the gauge fields,

B′μ = U(�α)BμU−1(�α)+ i

g
∂μU(�α) · U−1(�α). (5.17)

The field strength matrix Fμν is found, as before, from the commutator of covariant
derivatives,

[Dμ,Dν]� ≡ igFμν�, (5.18)

implying

Fμν = ∂μBν − ∂νBμ + ig[Bμ,Bν]. (5.19)

Eqs. (5.17) and (5.19) provide the field strength transformation property,

F′μν = U(�α)FμνU−1(�α). (5.20)

Unlike its abelian counterpart, the nonabelian field strength is not gauge invariant.
Finally, we write down the gauge-invariant lagrangian

L = −1

2
Tr (FμνFμν)+ (Dμ�)∗Dμ�+ i� /D� + · · · , (5.21)

where � and � are distinct multiplets of scalar and spin one-half fields and the
ellipses represent possible mass terms and nongauge interactions. Analogously to
the abelian case, there is no gauge-boson mass term.
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The most convenient approach for demonstrating the theory’s formal gauge struc-
ture is the matrix notation. However, in specific calculations it is sometimes more
convenient to work with individual fields. To cast the matrix equations into compo-
nent form, we employ a normalization of group generators consistent with
Eq. (5.21),

Tr(GaGb) = 1

2
δab (a, b = 1, . . . , n). (5.22)

To obtain the ath component of the field strength �Fμν ={Fa
μν} (a= 1, . . . , n), we

matrix multiply Eq. (5.19) from the left by Ga and take the trace to find

Fa
μν = ∂μB

a
ν − ∂νBa

μ − gcabcBb
μB

c
ν (a, b, c= 1, . . . , n). (5.23)

The lagrangian Eq. (5.21) can likewise be rewritten in component form,

L = −1

4
FaμνF a

μν + (Dμ

kmϕm)
†(Dμ)knϕn + iψi(/D)ijψj + · · · , (5.24)

where a= 1, . . . , n and the remaining indices cover the dimensionalities of their
respective multiplets.

Mixed case

In the Standard Model, it is a combination of abelian and nonabelian gauge groups
which actually occurs. To deal with this circumstance, let us consider one abelian
gauge group G and one nonabelian gauge group G ′ having gauge fields Aμ and
�Bμ={Bμ

a } (a= 1, . . . , n), respectively. Further assume that G and G ′ commute
and that components of the generic matter field � transform as an r-dimensional
multiplet under G ′. The key construction involves the generalized covariant deriva-
tive, written as an r × r matrix,

Dμ� =
(
(∂μ + ifAμ)I+ ig �Bμ · �G

)
�, (5.25)

where I is the unit matrix and f, g are distinct real-valued constants. Given this,
much of the rest of the previous analysis goes through unchanged. The field
strengths associated with the abelian and nonabelian gauge fields have the forms
given earlier. So does the gauge-invariant lagrangian, except now the extended
covariant derivative of Eq. (5.25) appears, and both the abelian and nonabelian
field strengths must be included. For the theory with distinct multiplets of complex
scalar fields � and spin one-half fields �, the general form of the gauge-invariant
lagrangian is



22 Inputs to the Standard Model

L = −1

4
FμνFμν − 1

2
Tr (FμνFμν)+ i� /D� −�m�

+ (Dμ�)†Dμ�− V (|�|2)+ L(�,�), (5.26)

where m is the fermion mass matrix, V (|�|2) contains the � mass matrix and any
polynomial self-interaction terms, and L(�, �) describes the coupling between
the spin one-half and spin zero fields.

I–6 On the fate of symmetries

Depending on the dynamics of the theory, a given symmetry of the lagrangian can
be manifested physically in a variety of ways. Apparently all such realizations are
utilized by Nature. Here we list the various possibilities.

(1) The symmetry may remain exact. The electromagnetic gauge U(1) symmetry,
the SU(3) color symmetry of QCD, and the global ‘baryon-number minus
lepton-number’ (B − L) symmetry are examples in this class.

(2) The apparent symmetry may have an anomaly. In this case it is not really a true
symmetry. Within the Standard Model the global axial U(1) symmetry is thus
affected. Our discussion of anomalies is given in Sect. III–3.

(3) The symmetry may be explicitly broken by terms (perhaps small) in the
lagrangian which are not invariant under the symmetry. Isospin symmetry, bro-
ken by electromagnetism and light-quark mass difference, is an example.

(4) The symmetry may be ‘hidden’ in the sense that it is an invariance of the
lagrangian but not of the ground state, and thus one does not ‘see’ the sym-
metry in the spectrum of physical states. This can be produced by different
physical mechanisms.

(a) The acquiring of vacuum expectation values by one or more scalar fields in
the theory gives rise to a spontaneously broken symmetry, as in the breaking
of SU(2)L invariance by Higgs fields in the electroweak interactions.

(b) Even in the absence of scalar fields, quantum effects can lead to the dynam-
ical breaking of a symmetry. Such is the fate of chiral SU(2)L × SU(2)R
symmetry in the strong interactions.

The various forms of symmetry breaking in the above are quite different. In partic-
ular, the reader should be warned that the word ‘broken’ is used with very different
meanings in case (3) and the cases in (4). The meaning in (3) is literal – what would
have been a symmetry in the absence of the offending terms in the lagrangian is
not a symmetry of the lagrangian (nor of the physical world). Although the usage
in (4) is quite common, it is really a malapropism because the symmetry is not
actually broken. Rather, it is realized in a special way, one which turns out to have
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important consequences for a number of physical processes. The situation is some-
what subtle and requires more explanation, so we shall describe its presence in a
magnetic system and in the sigma model.

Hidden symmetry

The phenomenon of hidden symmetry occurs when the ground state of the theory
does not have the full symmetry of the lagrangian. Let Q be a symmetry charge as
inferred from Noether’s theorem, and consider a global symmetry transformation
of the vacuum state

|0〉 → eiαQ|0〉, (6.1)

where α is a continuous parameter. Invariance of the vacuum,

eiαQ|0〉 = |0〉 (all α), (6.2a)

implies that

Q|0〉 = 0. (6.2b)

In this circumstance, the vacuum is unique and the symmetry manifests itself in the
‘normal’ fashion of mass degeneracies and coupling constant identities. Such is the
case for the isospin symmetric model of nucleons and pions discussed in Sect. I–4,
where the lagrangian of Eq. (4.6) implies the relations

mn = mp, mπ+ = mπ0 = mπ−,

g(ppπ0) = −g(nnπ0) = g(pnπ+)/
√

2 = g(npπ−)/
√

2,
(6.3)

with π± = (π1 ∓ iπ2)/
√

2.
Alternatively, if new states |α〉 �= |0〉 are reached via the transformations of

Eq. (6.1), we must have

Q|0〉 �= 0. (6.4)

Since, by Noether’s theorem, the symmetry charge is time-independent,

Q̇ = i[H,Q] = 0, (6.5)

all of the new states |α〉 must have the same energy as |0〉. That is, if E0 is the
energy of the vacuum state, H |0〉 ≡ E0|0〉, then we have

H |α〉 = H eiαQ|0〉 = eiαQH |0〉 = E0|α〉. (6.6)

Because the symmetry transformation is continuous, there must occur a continuous
family of degenerate states.
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Can one visualize these new states in a physical setting? It is helpful to refer to a
ferromagnet, which consists of separate domains of aligned spins. Let us focus on
one such domain in its ground state. It is invariant only under rotations about the
direction of spin alignment, and hence does not share the full rotational invariance
of the hamiltonian. In this context, the degenerate states mentioned above are just
the different possible orientations available to the lattice spins in a domain. Since
space is rotationally invariant, there is no preferred direction along which a domain
must be oriented. By performing rotations, one transfers from one orientation to
another, each having the same energy.

Let us try to interpret, from the point of view of quantum field theory, the states
which are obtained from the vacuum by a continuous symmetry transformation and
which share the energy of the vacuum state. In a quantum field theory any excita-
tion about the ground state becomes quantized and is interpreted as a particle. The
minimum excitation energy is the particle’s mass. Thus the zero-energy excitations
generated from symmetry transformations must be described by massless particles
whose quantum numbers can be taken as those of the symmetry charge(s). Thus
we are led to Goldstone’s theorem [Go 61, GoSW 62] – if a theory has a contin-
uous symmetry of the lagrangian, which is not a symmetry of the vacuum, there
must exist one or more massless bosons (Goldstone bosons). That is, spontaneous
or dynamical breaking of a continuous symmetry will entail massless particles in
the spectrum.

This phenomenon can be seen in the magnet analogy, where the excitation is a
spin-wave quantum. When the wavelength becomes very large, the spin configura-
tion begins to resemble a uniform rotation of all the spins. This is one of the other
possible domain alignments discussed above, and to reach it does not cost any
energy. Thus, in the limit of infinite wavelength (λ → ∞), the excitation energy
vanishes (E→ 0), yielding a Goldstone boson.9

Spontaneous symmetry breaking in the sigma model

We proceed to a more quantitative analysis of hidden symmetry by returning to
the sigma model of Sect. I–4. Let us begin by inferring from the sigma model
lagrangian of Eq. (4.14) the potential energy

V (σ,π) = −μ
2

2

(
σ 2 + π2

)+ λ

4

(
σ 2 + π2

)2
. (6.7)

9 In the ferromagnet case, the spin waves actually have E ∝ p2 ∼ λ−2 for low momentum. In
Lorentz-invariant theories, the form E ∝ |p| is the only possible behavior for massless single particle states.
For a more complete discussion, see [An 84].
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With μ2 negative, minimization of V (σ,π) occurs for the unique configuration
σ =π = 0. Hidden symmetry occurs for μ2 positive, where minimization of
V (σ,π) reveals the set of degenerate ground states to be those with

σ 2 + π2 = μ2

λ
. (6.8)

Let us study the particular ground state,

〈σ 〉0 =
√
μ2

λ
≡ v, 〈π〉0 = 0. (6.9)

Other choices yield the same physics, but require a relabeling of the fields. For this
case, field fluctuations in the pionic direction do not require any energy, so that the
pions are the Goldstone bosons. Defining

σ̃ = σ − v, (6.10)

we then have for the full sigma model lagrangian

L = ψ̄ (i/∂ − gv)ψ + 1

2

[
∂μσ̃ ∂

μσ̃ − 2μ2σ̃ 2
]+ 1

2
∂μπ · ∂μπ

− gψ̄ (σ̃ − iτ · πγ5) ψ − λvσ̃
(
σ̃ 2 + π2

)− λ

4

[(
σ̃ 2 + π2

)2 − v4
]
. (6.11)

Observe that the pion is massless, while the σ̃ and nucleon fields are massive. Thus,
at least part of the original symmetry in the sigma model lagrangian of Eq. (4.14)
appears to have been lost. Certainly, the mass degeneracy mσ =mπ is no longer
present, although the normal pattern of isospin invariance survives. However, the
full set of original symmetry currents remain conserved. In particular, the axial
current of Eq. (4.23), which now appears as

Aiμ = ψ̄γμγ5
τ i

2
ψ − v∂μπi + πi∂μσ̃ − σ̃ ∂μπi, (6.12)

still has a vanishing divergence, ∂μAiμ= 0. We warn the reader that to demonstrate
this involves a complicated set of cancelations.

For a normal symmetry, particles fall into mass-degenerate multiplets and have
couplings which are related by the symmetry. The isospin relations in Eq. (6.3)
are an example of this. In a certain sense, a hidden symmetry likewise gives rise
to degenerate states whose couplings are related by the symmetry. The degeneracy
consists of a state taken alone or accompanied by an arbitrary number of Goldstone
bosons. For example, in the sigma model it can be a nucleon and the same nucleon
accompanied by a zero-energy massless pion, which are degenerate. Moreover,
the couplings of such configurations are restricted by the symmetry. Historically,
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predictions of chiral symmetry were originally formulated in terms of soft-pion
theorems (cf. App. B–3) relating the couplings of theN states to those of the degen-
erate πN states.

lim
qμ→0

〈πk(q)N ′|O|N〉 = − i

Fπ
〈N ′|[Qk

5,O]|N〉, (6.13)

where O is some local operator and N,N ′ are nucleons or other states. This cap-
tures intuitively the nature of symmetry predictions for a hidden symmetry. In this
book, we will explore such chiral relations using the more modern techniques of
effective lagrangians.

To summarize, if a symmetry of the theory exists but is not apparent in the single-
particle spectrum, it still can have a great deal of importance in restricting parti-
cle behavior. What happens is actually quite remarkable – in essence, symmetry
becomes dynamics. One obtains information about the excitation or annihilation
of particles from symmetry considerations. In this regard, hidden symmetries are
neither less ‘real’ nor less useful than normal symmetries – they simply yield a
different pattern of predictions.

Problems

(1) The Poincaré algebra
(a) Consider the spacetime (Poincaré) transformations, xμ → μ

νx
ν + aμ,

where μ
σ

σν = gμν . Associated with each coordinate transformation
(a,) is the unitary operator U(a,)= exp(iaμPμ− i

2εμνM
μν). For two

consecutive Poincaré transformations there is a closure property, U(a′,′)
U(a,)=U(. . .). Fill in the dots.

(b) Prove that U(a−1, 0)U(a′, 0)U(a, 0)=U(a′, 0), and by taking a′μ, aμ
infinitesimal, determine [Pμ, P ν].

(c) Demonstrate that (−1)λν =νλ, and then show that
U(0,−1)U(a′,′)U(0,)=U(−1a′,−1′).

(d) For infinitesimal transformations we write μ
λ � g

μ
λ + ε

μ
λ. Prove that

εσλ= −ελσ and henceMσλ= −Mλσ . Upon taking primed quantities in (c)
to be infinitesimal, prove U(0,−1)P μU(0,)=μ

νP
ν and U(0,−1)

MμνU(0,)=μ
α

ν
βM

αβ . Finally, letting unprimed quantities be infini-
tesimal as well, determine [Mαβ, Pμ] and [Mαβ,Mμν].

(2) The Meissner effect in gauge theory [Sh 81]
The lagrangian for the electrodynamics of a charged scalar field is

L0 = −1

4
FμνF

μν + (Dμϕ)
∗(Dμϕ)− V (ϕ)

with covariant derivative Dμ ≡ ∂μ + ieAμ and potential energy,
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V (ϕ) = m2

2
ϕ∗ϕ + λ

4
(ϕ∗ϕ)2 (λ > 0).

(a) Identify the electromagnetic current of the ϕ field.
(b) For m2 > 0, show that the ground state is ϕ= 0, Aμ= 0. In this case, the

theory is that of normal electrodynamics.
(c) For m2 < 0 (m2 → −μ2 with μ2 > 0), we enter a different phase of the

system. Show that the ground state is now ϕ= const. ≡ v, Aμ= 0. What
is the photon mass in this phase? Calculate the potential between two static
point charges each of valueQ. What sets the scale of the screening length?

(d) Let us now add an external field to the system,

L0 → L0 + 1

2
FμνF

μν
ext .

To see that Fμν
ext indeed acts like an applied field, show that if one disregards

the field ϕ the equations of motion require Fμν =Fμν
ext .

(e) Demonstrate that there are two simple solutions to the equations of motion
in the presence of a constant applied field,

ϕ =
{

0 (Fμν = F
μν
ext ),

v (Fμν = 0).

Again, these correspond to unscreened and screened phases of the electro-
magnetic field.

(f) Calculate the energy of the two phases if Fμν
ext describes a constant mag-

netic field. Show that the phase in part (e) with ϕ= 0 has the lower energy
for B > Bcritical whereas for B < Bcritical it is the phase with ϕ= v which
has the lower energy. Discuss the similarity of this result to the Meissner
effect.



II

Interactions of the Standard Model

A gauge theory involves two kinds of particles, those which carry ‘charge’ and
those which ‘mediate’ interactions between currents by coupling directly to charge.
In the former class are the fundamental fermions and nonabelian gauge bosons,
whereas the latter consists solely of gauge bosons, both abelian and nonabelian.
The physical nature of charge depends on the specific theory. Three such kinds of
charge, called color, weak isospin, and weak hypercharge, appear in the Standard
Model. The values of these charges are not predicted from the gauge symmetry, but
must rather be determined experimentally for each particle. The strength of cou-
pling between a gauge boson and a particle is determined by the particle’s charge,
e.g., the electron–photon coupling constant is −e, whereas the u-quark and pho-
ton couple with strength 2e/3. Because nonabelian gauge bosons are both charge
carriers and mediators, they undergo self-interactions. These produce substantial
nonlinearities and make the solution of nonabelian gauge theories a formidable
mathematical problem. Gauge symmetry does not generally determine particle
masses. Although gauge-boson mass would seem to be at odds with the principle of
gauge symmetry, the Weinberg–Salam model contains a dynamical procedure, the
Higgs mechanism, for generating mass for both gauge bosons and fermions alike.

II–1 Quantum Electrodynamics

Historically, the first of the gauge field theories was electrodynamics. Its modern
version, Quantum Electrodynamics (QED), is the most thoroughly verified phys-
ical theory yet constructed. QED represents the best introduction to the Standard
Model, which both incorporates and extends it.

U(1) gauge symmetry

Consider a spin one-half, positively charged fermion represented by field ψ . The
classical lagrangian which describes its electromagnetic properties is

28
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Lem = −1

4
F 2 + ψ (i /D −m) ψ. (1.1)

Here, the covariant derivative is Dμψ ≡ (∂μ + ieAμ)ψ , m and e are, respectively,
the mass and electric charge forψ ,Aμ is the gauge field for electromagnetism, Fμν

is the gauge-invariant field strength (cf. Eqs. (I–5.8), (I–5.9)), and F 2 ≡ FμνFμν .
This lagrangian is invariant under the local U(1) transformations

ψ(x)→ e−iα(x)ψ(x) , (1.2)

Aμ(x)→ Aμ(x)+ e−1∂μα(x). (1.3)

The associated equations of motion are the Dirac equation

(i /∂ −m− e /A )ψ = 0, (1.4)

and the Maxwell equation

∂μF
μν = eψγ νψ. (1.5)

It is worthwhile to consider in more detail the important subject of U(1) gauge
invariance, addressing both its extent and its limitations.

(i) Universality of electric charge: The deflection of atomic and molecular beams
by electric fields establishes that the fractional difference in the magnitude of elec-
tron and proton charge is no larger than O(10−20). Likewise, there is no evidence
of any difference between the electric charges of the leptons e, μ, τ . Whatever the
source of this charge universality may be, it is not the U(1) invariance of electro-
dynamics. For example assume that in addition to ψ , there exists a second charged
fermion field ψ ′ with charge parameter βe. It is easy to see that gauge invariance
alone does not imply β = 1. The electromagnetic lagrangian for the extended
system is

Lem = −1

4
F 2 + ψ (i /D −m) ψ + ψ ′ (i /D′ −m′) ψ ′, (1.6)

where D ′
μψ

′ ≡ (∂μ + iβeAμ(x))ψ
′. The above lagrangian is invariant under the

extended set of gauge transformations

ψ(x)→ e−iα(x)ψ(x), ψ ′(x)→ e−iβα(x)ψ ′(x),
Aμ(x)→ Aμ(x)+ e−1∂μα(x). (1.7)

This demonstration of gauge invariance is valid for arbitrary β, and thus says noth-
ing about its value. The U(1) symmetry is compatible with, but does not explain,
the observed equality between the magnitudes of the electron and proton charges.
We shall return to the issue of charge quantization in Sect. II–3 when we consider
how weak hypercharge is assigned in the Weinberg–Salam model.
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(ii) A candidate quantum lagrangian: The quantum version of Lem is in fact the
most general Lorentz-invariant, hermitian, and renormalizable lagrangian which is
U(1) invariant. Consider the seemingly more general structure

Lgen = −1

4
ZF 2 + iZRψR /DψR + iZLψL /DψL −MψRψL −M∗ψLψR, (1.8)

where Z, ZR,L are constants, /D is the covariant derivative of Eq. (1.1), and M
can be complex-valued. This lagrangian not only apparently differs from Lem,
but seemingly is CP-violating due to the complex mass term. However, under the
rescalings

A′μ = Z1/2Aμ, e′ = Z−1/2e, ψ ′
R,L = Z

1/2
R,LψR,L, (1.9)

we obtain

L ′
gen = −

1

4
F ′2 + iψ ′/D ′ψ ′ −M ′ψ ′

Rψ
′
L −M ′∗ψ ′

Lψ
′
R, (1.10)

where M ′ = (ZRZL)
−1/2M . A subsequent global chiral change of variable

ψ ′′
L,R = e−iαγ5ψ ′

L,R (α = constant) (1.11)

does not affect the covariant derivative term but modifies the mass terms,

L ′′
gen = −

1

4
F ′2 + iψ ′′/D′ψ ′′ −M ′e2iαψ

′′
R ψ

′′
L − (M ′e2iα)∗ψ ′′

L ψ
′′
R . (1.12)

Choosing the parameter α so that Im (M ′e2iα) = 0 and defining m ≡ Re(M ′e2iα),
we see that L′′gen reduces to Lem which appears in Eq. (1.1).

(iii) Renormalizability and U(1): Renormalizability plays a role in the preceding
discussion because U(1) symmetry by itself would admit a larger set of interaction
terms. In principle, U(1) invariant terms like ψσμνψFμν , ψψFμνFμν , ψγμγ ν

γ αγ βψFμνFαβ , etc. could appear in the QED lagrangian. However, they do not
because the condition of renormalizability admits only those contributions which
have dimension d ≤ 4. As discussed in App. C–3, the canonical dimension of
boson and fermion fields is d = 1, 3/2 respectively, and each derivative adds a unit
of dimension. Accordingly, the above candidate operators have d = 5, 7, 7 and
thus are ruled out. There remains an operator, FμνF̃ μν , which is gauge-invariant
and has dimension 4.1 A noteworthy aspect of this quantity is that, unlike the other
operators encountered thus far, it is odd under CP. This follows from writing it as
−4E · B and realizing that under CP, E → E and B → −B. However, a simple
exercise shows that we can identify this operator as a four-divergence FμνF̃ μν =
∂μK

μ, where Kμ ≡ 2εμναβAν∂αAβ . Thus, a contribution proportional to FμνF̃ μν

1 We define the tensor F̃ μν which is dual to Fμν as F̃ μν ≡ εμναβFαβ/2.
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can be of no physical consequence. Upon integration over spacetime, it becomes a
surface term evaluated at infinity. There is nothing in the structure of QED which
would cause such a surface term to be anything but zero.

QED to one loop

The perturbative expansion of QED is carried out about the free field limit, and is
interpreted in terms of Feynman diagrams. Two distinct phenomena are involved,
scattering and renormalization. The latter encompasses both an additive mass shift
for the fermion (but not for the photon) and rescalings of the charge parameter
and of the quantum fields. To carry out the calculational program requires a quan-
tum lagrangian LQED to establish the Feynman rules, a regularization procedure to
interpret divergent loop integrals, and a renormalization scheme.

One can develop QED using either canonical or path-integral methods. In either
case a proper treatment necessitates modification of the classical lagrangian. As
we have seen, the U(1) gauge symmetry implies a certain freedom in defining the
Aμ(x) field. Regardless of the quantization procedure adopted, this freedom can
cause problems. For canonical quantization, the procedure of selecting a complete
set of coordinates and their conjugate momenta is upset by the freedom to gauge
transform away a coordinate at any given time. For path integration, the integration
over gauge copies of specific field configurations gives rise to specious divergences
(cf. App. A–6). In either case, superfluous gauge degrees of freedom can be elim-
inated by introducing an auxiliary condition which constrains the gauge freedom.
There are a variety of ways to accomplish this. The one adopted here is to employ
the following gauge-fixed lagrangian,

LQED = −1

4
F 2 − 1

2ξ0
(∂ · A)2 + ψ (i/∂ − e0/A−m0)ψ, (1.13)

where e0 and m0 are, respectively, the fermion charge and mass parameters. The
quantity ξ0 is a real-valued, arbitrary constant appearing in the gauge-fixing term.
This term is Lorentz-invariant but not U(1)-invariant. One of its effects is to make
the photon propagator explicitly dependent on ξ0. The value ξ0 = 1 corresponds to
Feynman gauge, whereas the limit ξ0 → 0 defines the Landau gauge.

The zero subscripts on the mass, charge, and gauge-fixing parameters denote
that these bare quantities will be subject to renormalizations, as will the quantum
fields. This process is characterized in terms of quantities Zi and δm,

ψ = Z
1/2
2 ψr, Aμ = Z

1/2
3 Arμ ,

e0 = Z1Z
−1
2 Z

−1/2
3 e, m0 = m− δm,

ξ0 = Z3ξ, (1.14)
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where the superscript ‘r’ labels renormalized fields. The renormalization constants
Z1,Z2, andZ3 (associated respectively with the fermion–photon vertex, the fermion
wavefunction, and the photon wavefunction) and the fermion mass shift δm are
chosen order by order to cancel the divergences occurring in loop integrals. For
vanishing bare charge e0 = 0, they reduce to Z1,2,3 = 1, δm = 0.

The Feynman rules for QED are:

fermion–photon vertex:

−i e0 (γμ)αβ

μ

β α

(1.15)

fermion propagator iSαβ(p):

i (/p +m0)αβ

p2 −m2
0 + iε

p

β α

(1.16)

photon propagator iDμν(q):

i

q2 + iε
(
−gμν + (1− ξ0)

qμqν

q2 + iε
)

μν
q

(1.17)

In the above ε is an infinitesimal positive number.
The remainder of this section is devoted to a discussion of the one-loop radiative

correction experienced by the photon propagator.2 Throughout, we shall work in
Feynman gauge.

Let us define a proper or one-particle irreducible (1PI) Feynman graph such
that there is no point at which only a single internal line separates one part of
the diagram from another part. The proper contributions to photon and to fermion
propagators are called self-energies. The point of finding the photon self-energy
is that the full propagator iD′μν can be constructed via iteration as in Fig. II–1.
Performing a summation over self-energies, we obtain

Fig. II–1 The full photon propagator as an iteration.

2 We shall leave calculation of the fermion self-energy to Prob. II–3 and analysis of the photon-fermion vertex
to Sect. V–1.
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(a) (b) (c)

p-q
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p-q
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Fig. II–2 One-loop corrections to (a) photon propagator, (b) fermion-photon
vertex, and (c) fermion propagator.

iD′μν = iDμν + iDμα(i�
αβ) iDβν + · · ·

= −i
q2

[
1

1+�(q)
(
gμν − qμqν

q2

)
+ ξ0

qμqν

q2

]
, (1.18)

where the proper contribution

i�αβ(q) = (qαqβ − q2gαβ)i�(q) (1.19)

is called the vacuum polarization tensor. It is depicted in Fig. II–2(a) (along
with corrections to the photon-fermion vertex and fermion propagator in
Figs. II–2(b)–(c)), and is given to lowest order by

i�αβ(q) = −(−ie0)
2
∫

d4p

(2π)4
Tr

[
γ α

i

/p −m+ iε γ
β i

/p − /q −m+ iε
]
.

(1.20)

This integral is quadratically divergent due to singular high-momentum behavior.
To interpret it and other divergent integrals, we shall employ the method of dimen-
sional regularization [BoG 72, ’tHV 72, Le 75].

Accordingly, we consider �αβ(q) as the four-dimensional limit of a function
defined in d spacetime dimensions. Various mathematical operations, such as
summing over Lorentz indices or evaluating loop integrals, are carried out in d
dimensions and the results are continued back to d = 4, generally expressed as an
expansion in the variable3

ε ≡ 4− d
2

. (1.21a)

Formulae relevant to this procedure are collected in App. C–5. For all theories
described in this book, we shall define the process of dimensional regularization
such that all parameters of the theory (such as e2) retain the dimensionality they

3 We shall follow standard convention is using the symbol ε for both the infinitesimal employed in Feynman
integrals and the variable for continuation away from the dimension of physical spacetime.
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have for d = 4. In order to maintain correct units while dimensionally regularizing
Feynman integrals, we modify the integration measure over momentum to∫

d4p

(2π)4
→ μ2ε

∫
ddp

(2π)d
. (1.21b)

The parameter μ is an arbitrary auxiliary quantity having the dimension of a mass.
It appears in the intermediate parts of a calculation, but cannot ultimately influ-
ence relations between physical observables. Indeed, there exist in the literature a
number of variations of the extension to d �= 4 dimensions. These are able to yield
consistent results because one is ultimately interested in only the physical limit
of d = 4. Let us now return to the photon self-energy calculation to see how the
dimensional regularization is implemented.

The self-energy of Eq. (1.20), now expressed as an integral in d dimensions, is

�αβ(q) = 4ie2
0μ

2ε
∫

ddp

(2π)d
pα(p− q)β +pβ(p− q)α + gαβ(m2−p · (p− q))

[p2 −m2 + iε][(p − q)2 −m2 + iε] ,

(1.22)

where we retain the same notation �αβ(q) as for d = 4 and we have already com-
puted the trace. Upon introducing the Feynman parameterization, Dirac relations,
and integral identities of App. C–5, we can perform the integration over momentum
to obtain

�αβ(q) = (qαqβ − q2gαβ)
e2

0

2π2

�(ε)

(4π)−ε
με
∫ 1

0
dx

x(1− x)
(m2 − q2x(1− x))ε . (1.23)

We next expand�αβ(q) in powers of ε and then pass to the limit ε → 0 of physical
spacetime. In doing so, we use the familiar

aε = eln aε = eε ln a = 1+ ε ln a + · · · , (1.24)

and take note of the combination

�(ε)

(4π)−ε
= 1

ε
+ ln(4π)− γ +O(ε), (1.25)

where γ = 0.57221 . . . is the Euler constant. The presence of ε−1 makes it nec-
essary to expand all the other ε-dependent factors in Eq. (1.23) and to take care in
collecting quantities to a given order of ε. To order e2, the vacuum polarization in
Feynman gauge is then found to be
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�(q) = e2
0

12π2

[
1

ε
+ ln (4π)− γ

− 6
∫ 1

0
dx x(1− x) ln

(
m2 − q2x(1− x)

μ2

)
+O(ε)

]

= e2
0

12π2

⎧⎪⎪⎨⎪⎪⎩
1

ε
+ ln(4π)− γ + 5

3
− ln

−q2

μ2
+ · · · (|q2| 
 m2),

1

ε
+ ln(4π)− γ − ln

m2

μ2
+ q2

5m2
+ · · · (m2 
 |q2|).

(1.26)

The above expression is an example of the general property in dimensional reg-
ularization that divergences from loop integrals take the form of poles in ε. These
poles are absorbed by judiciously choosing the renormalization constants. Renor-
malization constants can also have finite parts whose specification depends on
the particular renormalization scheme employed. One generally adopts a scheme
which is tailored to facilitate comparison of theory with some set of physical ampli-
tudes. In the minimal subtraction (MS) renormalization, theZi subtract off only the
ε-poles, and thus have the very simple form,

Z
(MS)
i − 1 =

∞∑
n=1

ci,n

εn
(i = 1, 2, 3). (1.27)

Because the {Z(MS)
i − 1} have no finite parts, they are sensitive only to the ultravio-

let behavior of the loop integrals, and the ci,n are independent of mass. The simple
appearance of the MS scheme is somewhat deceptive since further (finite) renor-
malizations are required if the mass and coupling parameters of the theory are to be
asociated with physical masses and couplings. A related renormalization scheme
is the modified minimal subtraction (MS) in which renormalization constants are
chosen to subtract off not only the ε-poles but also the omnipresent term ln(4π)−γ
of Eq. (1.25). Minimal subtraction schemes are typically used in QCD where, due
to the confinement phenomenon (cf. Sect. II–2), there is no renormalization scale
that could naturally be associated with the mass of a freely propagating quark.
Yet another approach is the on-shell (o-s) renormalization, where the renormalized
mass and coupling parameters of the theory are arranged to coincide with their
physical counterparts.

On-shell renormalization of the electric charge

The renormalization scale for electric charge is set by experimental determina-
tions typically involving solid-state devices like Josephson junctions. These refer
to probes of the electromagnetic vertex −e�ν(p2, p1) of Fig. II–2(b) with on-shell
electrons (p2

2 = p2
1 = m 2

e ) and with q2 = (p1 − p2)
2 � 0. The value of the
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electromagnetic fine-structure constant α ≡ e2/4π obtained under such conditions
is given in rationalized units by

α−1 = 137.035999074(44). (1.28)

To interpret this in the context of the theoretical analysis performed thus far,
recall from Eq. (1.18) how the photon propagator is modified by radiative
corrections,

ie2
0Dμν = − i

q2
e2

0 gμν → ie2D′μν = −
i

q2

e2
0

1+�(q)gμν. (1.29)

We display only the gμν piece since, in view of current conservation, only it can
contribute to the full amplitude upon coupling the propagator to electromagnetic
vertices. The above suggests that we associate the physical, renormalized charge e
with the bare charge parameter e0 by

e2 = e2
0

1+�(0) � e2
0[1−�(0)]. (1.30)

In this on-shell renormalization prescription, the gμν part of the photon propagator
iD′μν(q) is seen to assume its unrenormalized form in the physical limit q2 → 0.
The appellation ‘on-shell’ means that the physical kinematic point q2 = 0 is
used to implement the renormalization condition, and, by absorbing the singular
vacuum polarization in the electric charge, one ensures that the photon has zero
mass. Likewise, in the on-shell renormalization approach fermion propagators have
poles at their physical masses.

Next, we show how to infer the form of the renormalization constant Z(o-s)
3 in the

on-shell scheme. There is a relation, called the Ward identity, that implies Z1 = Z2

as a consequence of the gauge symmetry of the theory. From Eq. (1.14), this gives

e =
√
Z
(o-s)
3 e0. (1.31)

Use of the relation e2 ≡ Z
(o-s)
3 e2

0 then specifies the on-shell renormalization con-
stant to be

Z
(o-s)
3 = 1− e2

12π2

[
1

ε
+ ln(4π)− γ − ln

(
m2

μ2

)
+O(ε)

]
. (1.32)

One can similarly absorb the ε-pole in either the MS or MS schemes by adopting

Z
(MS)
3 = 1− e2

12π2

1

ε
+O(e4),

Z
(MS)
3 = 1− e2

12π2

(
1

ε
− γ + ln(4π)

)
+O(e4). (1.33)
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Fig. II–3 Virtual pair production in the vicinity of a charge.

Eqs. (1.32), (1.33) display how the various renormalization constants differ by
finite amounts. The ε-poles in the fermion self-energy and the fermion-photon ver-
tex can be dealt with in the same manner and we find, e.g., in MS renormalization
(cf. Prob. II–3 and Sect. V–1),

Z
(MS)
1 = Z

(MS)
2 = 1− e2

16π2

1

ε
+O(e4), (1.34)

δm(MS) = 3e2

16π2
m

1

ε
+O(e4). (1.35)

Electric charge as a running coupling constant

The concept of electric charge as a ‘running’ coupling constant is motivated by the
following consideration. In the perturbative Feynman expansion for a given theory,
the hope is that corrections to the lowest-order amplitudes will be small. However,
potentially large corrections of the form ln q2/q2

0 can arise if the theory is renor-
malized at scale q2

0 but then applied at a very different scale q2. It is convenient
to deal with this problem by absorbing such logarithms into scale-dependent or
‘running’ renormalized coupling constants and masses.

To see why scale-dependent charge is not an unreasonable concept, consider the
vacuum polarization process of Fig. II–3, which depicts virtual production of a
fermion of charge Qie together with its antiparticle near a charge source. Due to
the source, each such vacuum fluctuation is polarized, and thus the source becomes
screened. All charged fermion species contribute to the screening, and the larger
the mass of the virtual pair, the closer they lie to the source. The effect is somewhat
akin to concentric onion skins, with each virtual pair forming a layer, resulting in
an effectively scale-dependent source charge.

Let us seek a method for specifying a running fine structure constant α(q) for
nonzero momentum transfers, with α(0) to be identified with the α of Eq. (1.28).
The interpretation of e2

0/(1 + Re �(q)) as a running charge is appealing since it
would maintain the simple −i/q2 structure of the lowest-order photon exchange
amplitude. The fact that �(q) is divergent (see Eq. (1.26)) can be circumvented by
subtracting off its value at q2 = 0 to define a finite quantity �(q) ≡ �(q)−�(0)
and defining
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e2(q) ≡ e2

1+ Re �(q)
� e2[1− Re �(q)], (1.36)

so that α(q) = e2(q)/4π . It is not difficult to deduce the behavior of �(q) from
the integral representation of Eq. (1.26), and we find

�(q) = α

3π

⎧⎪⎨⎪⎩
5

3
− ln

|q|2
m2

+ iπθ(q2)+ · · · (|q2| 
 m2),

q2

5m2
+ · · · (m2 
 q2).

(1.37)

Observe that the arbitrary energy scaleμ is absent from�(q), as would be expected
since �(q) is a physically measurable quantity.

The above formulae correspond to the loop correction of one fermion of mass
m. Generally, loops from all available fermions must be included, although contri-
butions of heavy (m2 
 q2) fermions are seen to be suppressed. Important modern
applications of the Standard Model engender phenomena at scales provided by the
gauge-boson masses MW,MZ. To obtain an estimate for α(M2

Z), we can apply
Eq. (1.37) to find

α−1(M2
Z) = α−1

[
1− α

3π

∑
i

Q2
i

(
ln
M2
Z

m2
i

− 5

3

)
+ · · ·

]
. (1.38)

If a sum over quark-loops (each being accompanied by the color factor Nc = 3)
and lepton-loops is performed, then the mass values in Tables I–2, I–3 yield the
approximate determination α−1(M2

Z) � 130. The main uncertainty in this approach
arises from quarks. It is possible to perform a more accurate evaluation of α(M2

Z)

(cf. Sect. XVI–6) which avoids this difficulty.
Let us return to the question of how to define a momentum-dependent coupling.

To emphasize the fact that a ‘running fine-structure constant’ is after all a matter
of definition, let us consider a somewhat different derivation (and definition) of
α(q2). One is able to renormalize the electric charge in a mass-independent scheme
[We 73] by calculating renormalization constants with m = 0. If we return to the
vacuum polarization diagram, but with m = 0, we find

�(q2) = e2
0

12π2

(
μ2

−q2

)ε [
1

ε
+ ln (4π)− γ + 5

3
+O(ε)

]

= e2
0

12π2

[
1

ε
+ ln (4π)− γ + 5

3
− ln

(−q2

μ2

)
+O(ε)

]
. (1.39)
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In order to apply the renormalization program, we must specify the value of the
coupling at some renormalization point,4 which we choose to be q2 = −μ2

R,
identifying

e2(μ2
R) =

e2
0

1+�(q2)
∣∣−q2=μ2

R

� e2
0

[
1− e2

0

12π2

(
1

ε
− ln

μ2
R

μ2
+ · · ·

)]
. (1.40)

However, if we had chosen a different renormalization point μ2
R

′
, we would have

obtained a different value,

e2(μ2
R

′
) = e2(μ2

R)+
e4

0

12π2
ln
μ2
R

′

μ2
R

. (1.41)

The functional dependence of the charge on the renormalization scale is embodied
in the so-called beta function of electrodynamics [GeL 54],

βQED(e) ≡ μR
∂e

∂μR
= e3

12π2
+O(e5). (1.42)

It can be shown [Po 74] that the leading and next-to-leading terms in a perturbative
expansion of βQED are independent of both renormalization and gauge choices.

The quantity e2(μ2
R) defined by integrating the beta function,

de

βQED(e)
= dμR

μR
, (1.43)

is not exactly the same quantity as the running coupling constant defined in
Eq. (1.36), differing by a (small) finite renormalization. For example, the electron
contribution to the running coupling in the range m2

e ≤ μ2
R ≤ M2

Z is

α−1(μ2
R)
∣∣
μ2
R=m2

e
− α−1(μ2

R)
∣∣
μ2
R=M2

Z

= 1

3π
ln
M2
Z

m2
e

, (1.44)

which contains the dominant logarithmic dependence, but differs from Eq. (1.38)
by a small additive term. However, complete calculations of all corrections to phys-
ical observables using the two schemes will yield the same answer. Since the run-
ning coupling constant is but a bookkeeping device, one’s choice is a matter of
taste or of convenience. Regardless of the specific definition employed for α(q2),
we see that as the energy scale is increased (or as distance is decreased), the run-
ning electric charge grows. This is anticipated from the screening of a test charge
due to vacuum polarization (recall our explanation of Fig. II–3). As the momentum
transfer of a photon probe is increased, the screening is penetrated and the effective
charge increases.

4 Note that the renormalization point μR and the scale factor μ in dimensional regularization need not be
identical. They are sometimes confused in the literature, and hence we use a different notation for the two
quantities.
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The use of a mass-independent scheme is convenient for identifying the high-
energy scaling behavior of gauge theories. One useful feature is in the calcula-
tion of the one-loop beta function. Dimensional analysis requires that the one-loop
charge renormalization be of the form,

g = g0

[
1− g2

0b

(
μ2

−q2

)ε (
1

2ε
+ finite terms

)
+O(g4

0)

]
, (1.45)

where g is the ‘charge’ associated with the gauge theory being considered. Choos-
ing the renormalization point as q2 = −μ2

R and forming the beta function as in
Eq. (1.42), we see that β = bg3. This allows the beta function to be simply identi-
fied with the coefficient of ε−1 to this order.

II–2 Quantum Chromodynamics

Chromodynamics, the nonabelian gauge description of the strong interactions,
contains quarks and gluons instead of electrons and photons as its basic degrees
of freedom [FrG 72, Co 11]. A hallmark of Quantum Chromodynamics (QCD)
is asymptotic freedom [GrW 73a,b, Po 73], which reveals that only in the short-
distance limit can perturbative methods be legitimately employed. The necessity to
employ approaches alternative to perturbation theory for long-distance processes
motivates much of the analysis in this book.

SU(3) gauge symmetry

Chromodynamics is the SU(3) nonabelian gauge theory of color charge. The
fermions which carry color charge are the quarks, each with field ψ

(α)
j , where

α = u, d, s, . . . is the flavor label and j = 1, 2, 3 is the color index. The gauge
bosons, which also carry color, are the gluons, each with field Aaμ, a = 1, . . . , 8.5

Classical chromodynamics is defined by the lagrangian

Lcolor = −1

4
FaμνF a

μν +
∑
α

ψ
(α)

j (i /Djk −m(α)δjk)ψ
(α)
k , (2.1)

where the repeated color indices are summed over. The gauge field strength
tensor is

Fa
μν = ∂μA

a
ν − ∂νAaμ − g3f

abcAbμA
c
ν, (2.2a)

5 In this section, it will be particularly important to explicitly display color indices. We shall reserve indices
which begin the alphabet for gluon color indices (e.g., a, b, c = 1, . . . , 8), use mid-alphabetic letters for
quark color indices (e.g., j, k, l = 1, 2, 3), and employ greek symbols for flavor indices.



II–2 Quantum Chromodynamics 41

where g3 is the SU(3) gauge coupling parameter, and the quark covariant derivative
is

Dμψ =
(

I∂μ + ig3A
a
μ

λa

2

)
ψ. (2.2b)

The lagrangian of Eq. (2.1) is invariant under local SU(3) transformations of the
color degree of freedom, under which the quark and gluon fields transform as given
earlier in Eqs. (I–5.11), (I–5.17). Equations of motion for the quark and gluon fields
are

( i /D − m(α) )ψ(α) = 0,

DμF a
μν = g3

∑
α

ψ
(α) λa

2
γνψ

(α). (2.3)

In its quantum version, the g3 → 0 limit of Lcolor describes an exceedingly sim-
ple world. There exist only free massless spin one gluons and massive spin one-
half quarks. However, the full theory is quite formidable. In particular, accelerator
experiments reveal a particle spectrum which bears no resemblance to that of the
noninteracting theory.

The group SU(3) has an infinite number of irreducible representations R. The
first several are R = 1, 3, 3∗, 6, 6∗ 8, 10, 10∗, . . . , where we label an irreducible
representation in terms of its dimensionality. Quarks, antiquarks, and gluons are
assigned to the representations 3, 3∗, 8 respectively. We denote the group genera-
tors for representation R by {Fa(R)} (a = 1, . . . , 8). The quantities λ/2 are group
generators for the d = 3 fundamental representation, i.e., F(3) = λ/2. They have
the matrix representation

λ1 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ λ4 =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠ λ7 =
⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠

λ2 =
⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ λ5 =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠ λ8 =
⎛⎜⎝

1√
3

0 0

0 1√
3

0

0 0 −2√
3

⎞⎟⎠

λ3 =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠ λ6 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠ . (2.4)

As generators, they obey the commutation relations

[λa,λb] = 2ifabcλc (a, b, c = 1, . . . , 8) (2.5a)
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Table II–1. Nonvanishing f, d coefficients.

abc fabc abc dabc abc dabc

123 1 118 1/
√

3 355 1/2
147 1/2 146 1/2 366 −1/2
156 −1/2 157 1/2 377 −1/2
246 1/2 228 1/

√
3 448 −1/2

√
3

257 1/2 247 −1/2 558 −1/2
√

3
345 1/2 256 1/2 668 −1/2

√
3

367 −1/2 338 1/
√

3 778 −1/2
√

3
458

√
3/2 344 1/2 888 −1/

√
3

678
√

3/2

where the f-coefficients are totally antisymmetric structure constants of SU(3).
There exist corresponding anticommutation relations

{λa,λb} = 4

3
δab I+ 2dabcλc (a, b, c = 1, . . . , 8) (2.5b)

with d-coefficients which are totally symmetric. Values for fabc and dabc are given
in Table II–1.

Useful trace relations obeyed by the {λa} are

Tr λa = 0 (a = 1, . . . , 8) (2.6)

from Eq. (2.4) and

Tr λaλb = 2δab (a, b = 1, . . . , 8) (2.7)

from Eq. (2.5). The statement of completeness takes the form,

λaijλ
a
kl = −

2

3
δij δkl + 2δilδjk (i, j, k, l = 1, 2, 3), (2.8)

where a = 1, . . . , 8 is summed over. Useful labels for the irreducible represen-
tations of SU(3) are provided by the Casimir invariants. For any representation
R, the quadratic Casimir invariant C2(R) is defined by squaring and summing the
group generators {Fa(R)},

C2(R)I ≡
8∑

a=1

F2
a(R). (2.9)

There is also a third-order Casimir invariant,

C3(R)I ≡
8∑

a,b,c=1

dabcFa(R)Fb(R)Fc(R). (2.10)
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The quark and antiquark states form the bases for the smallest nontrivial irre-
ducible representations of SU(3). It is possible to use products of them, say p

factors of quarks and q factors of antiquarks, to construct all other irreducible ten-
sors in SU(3). Each irreducible representation R is then characterized by the pair
(p, q). For example, we have the correspondences 1 ∼ (0, 0), 3 ∼ (1, 0), 3∗ ∼
(0, 1), 8 ∼ (1, 1), 10 ∼ (3, 0), etc. The (p, q) labeling scheme provides useful
expressions for the dimension of a representation,

d(p, q) = (p + 1)(q + 1)(p + q + 2)/2, (2.11)

and of the two Casimir invariants,

C2(p, q) = (3p + 3q + p2 + pq + q2)/3,

C3(p, q) = (p − q)(2p + q + 3)(2q + p + 3)/18. (2.12)

From Eq. (2.12) we find C2(3) = C2(3∗) = 4/3 for the quark and antiquark
representations. Equivalently, upon setting j = k and summing in Eq. (2.8) we
obtain

λaijλ
a
jl =

16

3
δil = 4C2(3)δil . (2.13)

Generators for the d = 8 regular (or adjoint) representation are determined from
the structure constants themselves,

(F a(8))bc = −ifabc (a, b, c = 1, . . . , 8). (2.14)

It follows directly from Eq. (2.14) and from using Eq. (2.12) to compute C2(8) = 3
that

facdfbcd = C2(8) δab = 3 δab. (2.15)

This result, in turn, enables us to determine

fabcλbλc = 1

2
fabc[λb,λc] = ifabcfbcdλd = iC2(8)λa. (2.16)

As a final example involving SU(3), we evaluate the quantity

λbλaλb = 1

2

(
λb[λa,λb] − [λa,λb]λb + λbλbλa + λaλbλb

)
= 4C2(3)λa + ifabc[λb,λc] = 4

(
C2(3)− 1

2
C2(8)

)
λa. (2.17)

Shortly, we shall see how such combinations of color factors arise in various
radiative corrections.
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Including only gauge-invariant and renormalizable terms, we can write the most
general form for a chromodynamic lagrangian as

Lgen = −1

4
ZFμν

a F a
μν + ψα

LZ
αβ

L i /D ψ
β

L + ψα

RZ
αβ

R i /D ψ
β

R − ψα

LM
αβψ

β

R

− ψα

RM
†αβψ

β

L +
g2

3

64π2
θεμνλσF a

μνF
a
λσ , (2.18)

where the flavor matrices ZL,R are hermitian, color and flavor indices are as before,
except that for simplicity we suppress quark color notation. The final contribution
to Eq. (2.18) is called the θ-term. We can reduce Lgen to the form of Lcolor by first
rescaling,

A′aμ = Z1/2Aaμ, g′3 = Z−1/2g3, (2.19)

and then diagonalizing and rescaling with respect to quark flavors,

ψ ′L,R = UL,RψL,R, UL,RZL,RU
†
L,R = L,R, ψ ′′L,R = 

1/2
L,Rψ

′, (2.20)

where L,R are diagonal. Finally we diagonalize the mass terms

Lmass = −ψ ′′αL M ′αβψ ′′βR − ψ ′′αR M ′†αβψ ′′βL , (2.21)

where M ′ = 
−1/2
L ULMU

†
R

−1/2
R , by means of yet another set of unitary trans-

formations on the quark fields. Aside from the θ-term, this results in the canonical
expression for Lcolor of Eq. (2.1).

We shall demonstrate later in Sect. IX–4 that the above quark mass diagonaliza-
tion procedure induces a modification in the θ-parameter,

θ → θ = θ + arg det M ′. (2.22)

This does not imply θ = 0 because both θ and the original quark mass matrices are
arbitrary from the viewpoint of renormalizability and SU(3) gauge invariance. In
fact, the θ-term cannot be ruled out by any of the tenets which underlie the Standard
Model. Moreover, although the θ-term can be expressed as a four-divergence

Lθ = g2
3

32π2
θ ∂μK

μ, (2.23)

Kμ = εμνλσAaν

(
Fa
λσ +

g3

3
fabcA

b
λA

c
σ

)
, (2.24)

analysis demonstrates that Kμ is a singular operator and that its divergence cannot
be summarily discarded as was done in electrodynamics. This is a curious situation
because the θ-term is CP-violating. Thus, one is faced with the specter of large
CP-violating signals in the strong interactions. Yet such effects are not observed.
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Indeed, it has been estimated that the θ-term generates a nonzero value for the
neutron electric dipole moment de(n) � 5 × 10−16 θ e-cm, but to date no signal
has been observed experimentally, de(n) < 2.9 × 10−26 e-cm at C.L. 90% [RPP
12]. This provides the upper bound θ < 5.8 × 10−11. Perhaps Nature has dictated
θ ≡ 0, albeit for reasons not yet understood.

QCD to one loop

To develop Feynman rules for QCD, we must first obtain an effective lagrangian
which properly addresses the issue of SU(3) gauge freedom. For the U(1) gauge
invariance of QED, this was accomplished by adding a gauge-fixing term to the
classical lagrangian. The situation for SU(3) is analogous, but somewhat more
complicated due to its nonabelian structure. If we continue to use a Lorentz-
invariant gauge-fixing procedure, the effective QCD lagrangian (for simplicity,
consider just one quark flavor) can be expressed as

LQCD = −1

4
Fa
μνF

aμν + ψj(i /D−m0I)jkψk − 1

2ξ0
(∂μA

μ
a )

2

+ ∂μca∂μca + g3,0fabeA
μ
a (∂μcb)ce. (2.25)

Bare quantities carry the subscript ‘0’ and the field strengths and covariant deriva-
tive are defined as in Eqs. (2.2a), (2.2b). The quantities {ca(x)} (a = 1, . . . , 8) are
called ghost fields. As explained in App. A–5, they are anticommuting c-number
quantities (i.e., Grassmann variables) which couple only to gluons. Ghosts occur
only within loops, and never appear as asymptotic states. Each ghost-field loop
contribution must be accompanied by an extra minus sign, analogous to that of a
fermion–antifermion loop. Their presence is a consequence of the Lorentz-invariant
gauge-fixing procedure. In alternative schemes such as axial or temporal gauge,
ghost fields do not appear, but compensating unphysical singularities occur in
Feynman integrals instead.

The Feynman rules for QCD are

three-gluon vertex:

−g3,0fabc[gμν(p − q)λ + gνλ(q − r)μ
+gλμ(r − p)ν]

μ,a

λ,c

qp

r

ν,b

(2.26)
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quark–gluon vertex:

−ig3,0(γμ)αβ

(
λa

2

)
jk

μ,a

β,k α,j

(2.27)

four-gluon vertex:

−ig2
3,0

[
(fabefcde(gμλgνσ − gμσgνλ)

+facefbde(gμνgλσ − gμσgνλ)
+fadefcbe(gμλgνσ − gμνgλσ )

] λ,c

σ,d

μ,a

ν,b

(2.28)

ghost–gluon vertex:

−g3,0fabcrμ

μ,a

b c
r

(2.29)

quark propagator iSjkαβ(p):

iδjk (/p +m0)αβ

p2 −m2
0 + iε

α,jβ,k

p

(2.30)

gluon propagator iDab
μν(q):

iδab

q2 + iε
(
−gμν + (1− ξ0)

qμqν

q2 + iε
)

μ,aν,b

q

(2.31)

ghost propagator:

iδab
p2 + iε a

p
b

(2.32)
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The above rules involve a total of four distinct interaction vertices. Of these,
the three-gluon and four-gluon self-vertices, and the ghost–gluon coupling have no
counterpart in QED. That all four vertices are scaled by a single coupling strength
g3 is a consequence of gauge invariance. Also, chromodynamics exhibits a certain
coupling-constant universality, called flavor independence, in the quark–gluon sec-
tor. All fields which transform according to a given representation of the SU(3) of
color have the same interaction structure, e.g., all triplets couple alike, all octets
couple alike but differently from triplets, etc. Quarks are assigned solely to the
color triplet representation. Thus, the quark–gluon interaction is independent of
flavor.

The renormalization constants of QCD are

Aaμ = Z
1/2
3 (Aaμ)

r , g3,0 = Z1Z
−3/2
3 g3,

ψ = Z
1/2
2 ψr, = Z

1/2
4 Z−1

3 g3,

ca = Z
1/2
3 (ca)r , = Z1FZ

−1
2 Z

−1/2
3 g3,

ξ0 = Z3ξ, = Z1Z
−1
3 Z

−1/2
3 g3,

m0 = m− δm,

(2.33)

where the quantities Z1, Z1, Z1F , and Z4 are defined by the above coupling, con-
stant relations and can be determined from Z2, Z3, and Z3. In the following, work-
ing in ξ0 = 1 gauge we shall compute the one-loop contributions to the gluon
self-energy and to the quark–gluon vertex, and, by absorbing the ε-poles, thereby
obtain expressions for Z3 and Z1F to leading order. Determination of the remain-
ing renormalization constants, which can be computed from loop corrections to
the quark and ghost propagators and the three-gluon, four–gluon, and ghost–gluon
vertices will be left as exercises. However, it is clear from the definition of g3,0 in
Eq. (2.33) that the relations

Z4

Z1
= Z1

Z3
= Z1

Z3
(2.34)

must hold in any consistent renormalization scheme. These are the analogs of the
Ward identities in QED. Physically, they ensure that the coupling-constant relations
which appear in the QCD lagrangian (as a consequence of gauge invariance) are
maintained in the full theory.

The QCD one-loop contribution to the quark–antiquark vacuum polarization
amplitude of Fig. II–4(a),6

6 To avoid notational clutter, we shall not put subscripts on the bare coupling for the remainder of this
subsection.
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(b) (c)(a)

Fig. II–4 One-loop corrections to the gluon propagator: (a) quark–antiquark pair,
(b) gluon pair, and (c) ghosts.

i�ab
αβ(q)

∣∣
quark

= −
(−ig3

2

)2 ∫
d4p

(2π)4

× Tr

[
γα(λ

a)kj
i

/p −m+ iε γβ(λ
b)jk

i

/p − /q −m+ iε
]
, (2.35)

differs from the QED self-energy only by the group factor (λa)jk(λb)kj =
Tr (λaλb) = 2δab (cf. Eq. (2.7)). Comparing with Eq. (1.39), we obtain

i�ab
αβ(q)

∣∣
quark

= iδab(qαqβ − gαβq2)

(
μ2

−q2

)ε [
g2

3

24π2

1

ε
+ · · ·

]
. (2.36)

This must be multiplied by the number of quark flavors nf which contribute in the
vacuum polarization loops.

The contribution from the gluon–gluon intermediate state of Fig. II–4(b) can be
written

i�ab
αβ(q)

∣∣
gluon

= 1

2
(−i)2

∫
d4k

(2π)4
Nab
αβ

[k2 + iε][(q − k)2 + iε] (2.37)

with

Nab
αβ = g3f

bcd[−gβμ(q + k)ν + gμν(2k − q)β + gνβ(2q − k)μ]
× g3f

acd[gμα(q + k)ν + gμν(q − 2k)α + gνα(k − 2q)μ]. (2.38)

The prefactor 1/2 in Eq. (2.37) is a Feynman symmetry factor associated with the
identical intermediate-state gluons. To arrive at this expression, special care must
be exercised with momentum flow in the three-gluon vertices. Upon extending the
integration to d dimensions and using Eq. (2.15) to evaluate the color factor, we
obtain

i�ab
αβ(q)

∣∣
gluon

= −1

2
C2(8)δabg 2

3 μ
2ε
∫

ddk

(2π)d
Nαβ

[k2 + iε][(q − k)2 + iε] (2.39)

with

Nαβ = (−5q2 + 2q · k − 2k2)gαβ + (6− d)qαqβ
+ (2d − 3)(qαkβ + qβkα)+ (6− 4d)kαkβ. (2.40)
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Integration of Eq. (2.39) yields

i�ab
αβ(q)|gluon = −i g2

3

16π2
C2(8)δab

(
μ2

−q2

)ε [
11

3
qαqβ − 19

6
gαβq

2

]
1

2ε
+ · · · .

(2.41)

The final contribution to the gluon propagator is the ghost-loop amplitude of
Fig. II–4(c),

i�ab
αβ(q)

∣∣
ghost

= −
∫

d4k

(2π)4
i

(k − q)2 + iε
× [g3f

bdc(k − q)β] i

k2 + iε [g3f
acdkα]. (2.42)

The bracketed quantities arise from the gluon–ghost vertices, and the minus
prefactor must accompany any ghost loop. Following the standard steps to a
d-dimensional form, we arrive at

i�ab
αβ(q)

∣∣
ghost

= −g 2
3 C2(8)δab μ2ε

∫
ddk

(2π)d
kα(k − q)β

[(k − q)2 + iε][k2 + iε] , (2.43)

which becomes to leading order in ε,

i�ab
αβ(q)

∣∣
ghost

= iδab
g2

3

16π2
C2(8)

(
μ2

−q2

)ε [
1

3
qαqβ + 1

6
gαβq

2

]
1

2ε
. (2.44)

The sum of gluon and ghost contributions takes the gauge-invariant form

i�ab
αβ(q)

∣∣
gl+gh

= −iδab g
2
3

8π2
C2(8)

5

3

(
μ2

−q2

)ε [
qαqβ − gαβq2

] 1

2ε
+ · · · .

(2.45)

Finally, adding the quark contribution for nf flavors gives the total result

�ab
αβ(q) = iδab(qαqβ − gαβq2)

g2
3

8π2

(
μ2

−q2

)ε [
2nf

3
− 5

3
C2(8)

]
1

2ε
+ · · · .

(2.46)

Renormalizing at q2 = −μ2
R, we find7

Z3 = 1− g2
3

8π2

(
μ

μR

)2ε [2nf
3
− 5

3
C2(8)

]
1

2ε
+O(g4

3). (2.47)

Proceeding next to the quark–gluon vertex, written through first order as

−i g3

2
(�aν )ji(p2, p1) = −i g3

2
γν(λ

a)ji − ig3(
a
ν)ji(p2, p1)+ · · · , (2.48)

7 For notational simplicity, we discontinue displaying the superscript (MS) on renormalization constants.
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(a) (b)

αα

ββ
ν ν

Fig. II–5 One-loop corrections to the quark–gluon vertex.

we see from Fig. II–5 that there are radiative corrections from both quark and gluon
intermediate states. The quark contribution is

−ig3[a
ν(p2, p1)]j i

∣∣
quark =

(−ig3

2

)3 ∫
d4k

(2π)4
−igαβ
k2 + iε (λ

b)jnγα

× i

/p2 − /k −m+ iε
(λa)nlγν

i

/p1 − /k −m+ iε
(λb)liγβ. (2.49)

Aside from the replacement e → g3 and a color factor λbλaλb/8, which is eval-
uated in Eq. (2.17), the remaining expression is the QED vertex, which will be
analyzed in detail in Sect. V–1. Thus we anticipate from Eq. (V–1.19) that at
p1 = p2 = p and |p|2 
 m2,

[a
ν(p, p)]j i

∣∣
quark = (C2(3)− 1

2
C2(8))

g2
3

8π2

1

2ε

(
μ2

−p2

)ε
(λa/2)jiγν + · · · .

(2.50)

The two-gluon intermediate state, which has no counterpart in QED, has the form

− ig3(
a
ν(p2, p1))ji

∣∣
gluon = ifabc(λ

cλb)ji
g3

3

4

∫
d4k

(2π)4
γ β(/k +m)γ α

× gνβ(2p2 − k − p1)α + gβα(2k − p1 − p2)ν + gαν(2p1 − k − p2)β

[k2 −m2 + iε][(p1 − k)2 + iε]2[(p2 − k)2 + iε] . (2.51)

By a now-standard set of steps, it is not difficult to extract the ε-pole from the
extension of the above to d dimensions, and we find

(a
ν(p, p))ji

∣∣
gluon = (λa/2)jiγν

3

2
C2(8)

g2
3

8π2

(
μ2

−p2

)ε
1

2ε
+ · · · , (2.52)

implying a total vertex correction of the form,

(a
ν(p, p))ji

∣∣
tot = (λa/2)jiγν [C2(3)+ C2(8)] g

2
3

8π2

(
μ2

−p2

)ε
1

2ε
+ · · · .

(2.53)

We thus determine the renormalization constant for the quark–gluon vertex at p2
i =

−μ2
R to be
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Z1F = 1− [C2(3)+ C2(8)] g
2
3

8π2

(
μ

μR

)2ε 1

2ε
+ · · · . (2.54)

There remains the task of determining Z2. We shall leave this for an exercise
(cf. Prob. II–3) and simply quote the result

Z2 = 1− C2(3)
g2

3

8π2

(
μ

μR

)2ε 1

2ε
+ · · · . (2.55)

Asymptotic freedom and renormalization group

A striking property of QCD is asymptotic freedom [GrW 73a,b, Po 73]. This is the
statement that, unlike the electric charge, the coupling constant g3(μR) of color
decreases as the scale of renormalization μR is increased. To demonstrate this, we
first combine our results for Z1, Z2 and Z3 to obtain the coupling renormalization
constant Zg,

g3,0 = Z1FZ
−1
2 Z

−1/2
3 g3 ≡ Zgg3,

Zg = 1− αs

4π

(
11− 2nf

3

)(
μ

μR

)2ε 1

2ε
+ · · · , (2.56)

where αs ≡ g2
3/(4π). From the ε−1 coefficient of Zg, we learn that

μR
∂g3

∂μR
= −

[
11

3
C2(8)− nf

2
C2(3)

]
g3

3

16π2
+O(g5

3), (2.57a)

or equivalently,

βQCD = −
(

11− 2nf
3

)
g3

3

16π2
+O(g5

3) ≡ −β0
g3

3

16π2
+O(g5

3). (2.57b)

The sign of the leading term in βQCD is negative for the six-flavor world nf = 6,
becoming positive only if the number of quark flavors exceeds 16. As we have
already seen, the QED vacuum acts as a dielectric medium with dielectric con-
stant εQED > 1 because spontaneous creation of charged fermion–antifermion
pairs results in screening (i.e., vacuum polarization) of electric charge. The dielec-
tric property εQED > 1 means that the QED vacuum has magnetic susceptibility
μQED < 1, and thus is a diamagnetic medium. The QCD vacuum is the
recipient of similar effects from virtual quark–antiquark pairs, but these are over-
whelmed by contributions from virtual gluons. As a result, the QCD vacuum is
a paramagnetic medium (μQCD > 1) and antiscreens (εQCD < 1) color charge
[Hu 81].
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The effect of asymptotic freedom can be displayed most clearly by performing
a renormalization group (RG) analysis on the 1PI amplitudes of the theory. A
connected8 renormalized Green’s function is defined in coordinate space as

G(nF ,nB)({x}) = 〈0|T
(
ψ
r
(x1) . . . A

r(xn)
)
|0〉conn (2.58)

where the numbers of quark and gluon fields are nF , nB , respectively, and for
convenience we suppress color and Lorentz indices. We employ the same symbol
G(nF ,nB) for the momentum Green’s function

(2π)4δ4(p1 + · · · + pn)G(nF ,nB)({p}) =
∫ n∏

j=1

(d4xj e
−ipj ·xj ) G(nF ,nB)({x})

(2.59)

where n = nF + nB . The 1PI amplitudes �(nF ,nB) are obtained by removing the
external-leg propagators from G

(nF ,nB)
1PI ,

G
(nF ,nB)
1PI =

∏
i′
D(pi′)

∏
j ′
S(pj ′) �

(nF ,nB)({p})
∏
i

D(pi)
∏
j

S(pj ), (2.60)

where unprimed (primed) momenta represent initial (final) states. The relations of
Eq. (2.33) imply for any renormalization scheme, which we need not specify yet,
that

G(nF ,nB) = Z
−nF /2
2 Z

−nB/2
3 G

(nF ,nB)
0 ,

D = Z−1
3 D0, S = Z−1

2 S0, (2.61)

where the zero subscript denotes unrenormalized quantities. From this, we have

�(nF ,nB) = Z
nF /2
2 Z

nB/2
3 �

(nF ,nB)
0 , (2.62)

and the combination of terms

Z
−nF /2
2 (μR) Z

−nB/2
3 (μR) �

(nF ,nB)({p}, g3(μR),m(μR), ξ(μR);μR) (2.63)

is therefore independent of the renormalization scale μR.
Let us now ascertain the behavior of �(nF ,nB) in the deep Euclidean kinematic

limit where all momenta {p} are both spacelike (in order to avoid singularities) and
very large compared to any other mass scale in the theory. To keep the situation
as simple as possible, we omit the dependence of �(nF ,nB) on both the quark-mass
m(μR) and gauge ξ(μR) parameters.9 Then from Eq. (2.59) we find in response to
a scale transformation p→ λp that

8 All the fields participating in a connected Green’s function are affected by interactions; in a disconnected
Green’s function, one or more of the field quanta propagate freely.

9 We shall define a ‘running mass parameter’ later, in Chap. XIV.
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G(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2 G(nF ,nB)({p}, g3(μR);μR/λ). (2.64)

This behavior is almost that of a homogeneous function occurring in a scale-
invariant theory. Canonical dimensions of the fields appear in the exponent of the
scaling factor along with an additive factor of four arising from the four-momentum
delta function in Eq. (2.59). However, in G(nF ,nB), there is also an implicit depen-
dence on λ due to the presence of the renormalization scale μR. The corresponding
scaling property of the 1PI amplitude is found from Eqs. (2.63), (2.64) to be

�(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2�(nF ,nB)({p}, g3(μR);μR/λ) (2.65)

or

�(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2

(
Z3(λμR)

Z3(μR)

)−nB/2
×
(
Z2(λμR)

Z2(μR)

)−nF /2
�(nF ,nB)({p}, g3(λμR);μR). (2.66)

This functional relationship can be converted to a differential RG equation by tak-
ing the λ-derivative of both sides and then setting λ = 1,(

n∑
i

pi
∂

∂pi
+ nB(1+ γB)+ nF

(
3

2
+ γF

)
− 4− βQCD

∂

∂g3

)
�(nF ,nB) = 0,

(2.67)

where

γF = μR
∂

∂μR
lnZ1/2

2 , γB = μR
∂

∂μR
lnZ1/2

3 (2.68)

are called the anomalous dimensions of the respective fields and βQCD is as in
Eq. (2.57).

Let us now see how to obtain leading-order estimates for the above anomalous
dimensions. To this order, the result for βQCD is both gauge and renormalization
scheme-independent. To start, we can use the result of Eq. (2.55) to determine γF ,

γF = 1

2
μR

∂ lnZ2

∂μR
= g2

3

16π2
C2(3) + O(g4

3), (2.69)

and analogously for γB . To solve the RG equation, we employ the variable t = ln λ,
where λ is the scaling parameter appearing in Eqs. (2.64)–(2.66), and introduce the
running coupling constant g3(t),

∂g3

∂t
= β(g3), g3(0) = g3. (2.70)
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Then it is straightforward to verify that the solution to Eq. (2.67) is

�({etp}, g3(μR);μR) = et(4−nB−3nF /2)D(t)�({p}, g3(t);μR), (2.71)

where

D(t) = exp

(
−
∫ t

0
dt ′
[
nBγB

(
g3(t

′)
)+ nFγF (g3(t

′)
)] )

(2.72)

is the anomalous dimension factor. The scaling behavior of the 1PI amplitude
is seen to have field dimensions with anomalous contributions in addition to the
canonical values.

Despite naive expectations, the interaction strength at the scaled momentum is
not the constant g3, but rather the running coupling constant g3 whose magnitude
decreases as the momentum is increased. Employing the lowest-order contribution
for βQCD in Eq. (2.57b), we can integrate Eq. (2.70) over the interval t1 < t < t2 to
obtain

(g3(t2))
−2 − (g3(t1))

−2 = 2
(
11− 2nf /3

)
(t2 − t1)/16π2, (2.73)

where nf is the number of quark flavors having mass less than
√
t2. It is conven-

tional to express this relation in a somewhat different form. Defining a scale  at
which g3 diverges and letting αs(q2) ≡ g2

3(q
2)/4π , we have to lowest order,

αs(q
2) = 4π

(11− 2nf /3)

1

ln(q2/2)
+ · · · , (2.74)

where nf is the number of quark flavors with mass less than
√
q2. Higher order

contributions are discussed at the end of this section.
If αs(q2) continues to grow as q2 is lowered, any perturbative representation of

βQCD ultimately becomes a poor approximation, and we can no longer integrate
Eq. (2.70) with confidence. Although unproven, a popular working hypothesis
is that the QCD coupling indeed continues to grow as the energy is lowered,
leading to the phenomenon of quark confinement. In QED, the free parameter
α(q � 0) � 1/137 is quite small and expansions in powers of α converge rapidly.
However QCD behaves differently. In particular, it is clear from Eq. (2.74) that αs
is not really a free parameter, but is instead inexorably related to some mass scale,
e.g.,. This phenomenon, called dimensional transmutation, means that an energy
such as  can effectively serve to replace the dimensionless quantity αs in the for-
mulae of QCD. Specifying QCD operationally requires not only a lagrangian but
also a value for . For example, QCD perturbation theory is useful only if ‘large’
mass scales M (i.e. those with (/M)2 � 1) are probed. Because the complex-
ity of low-energy QCD has thus far prevented direct analytic solution of the theory,
there have been substantial efforts to develop alternative approaches. These include
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Table II–2. Determinations of αs(MZ).

Experiment q [GeV] αs(q
2) αs(MZ)

τ decays 1.777 0.330± 0.014 0.1197± 0.0016
DIS [F2] 2 → 15 −−− 0.1142± 0.0023
DIS [e + p → jets] 6 → 100 −−− 0.1198± 0.0032
QQ̄ states 7.5 0.1923± 0.0024 0.1183± 0.0008
ϒ decays 9.46 0.184+0.015

−0.014 0.1190+0.006
−0.005

e+e− jets & shapes 14 → 44 −−− 0.1172± 0.0051
e+e− [ew] 91.17 0.1193± 0.0028 0.1193± 0.0028
e+e− jets & shapes 91 → 208 −−− 0.1224± 0.0039

attempts to solve QCD numerically (lattice-gauge theory), phenomenological study
of various theoretical constructs (potential, bag, Skyrme models), exploitation of
the invariances contained in LQCD (notably chiral and flavor symmetries), and con-
sideration of the infinite color limit Nc → ∞ as a first approximation to QCD
(N−1

c expansion). The first of these topics is beyond the scope of this book (e.g. see
[GaL 10, DeD 10]), but the others will form the basis for much of our discussion.

Attempts to infer αs(q2) from experimental data are typically carried out under
kinematic conditions for which a perturbative analysis of QCD presumably makes
sense. Systems commonly used for this purpose include decays of the τ lepton,
deep-inelastic scattering (DIS) structure functions, ϒ decay, and hadronic event
shapes and jet production in e+e− annihilation. Suppose, as is generally the case,
a given process is computed to some order in QCD perturbation theory and reg-
ularized in the MS scheme. If such a theoretical expression is then used to fit the
data with a q-value characteristic of the given process employed, an expression
such as Eq. (2.74) can be used to determine  and αs(q2) can be evolved to dif-
ferent q. Since this operation depends on both the regularization procedure and
the number of quark flavors nf used in Eq. (2.74), a notation like 

(nf )

MS
would be

precise. Unfortunately there is no uniformity in the rate of convergence of QCD
perturbation theory from process to process. Thus, determinations of αs(q2) are
affected by both theoretical and experimental uncertainties, and a scatter of quoted
values results. Nonetheless, an impressive consistency now exists between determi-
nations carried out for a variety of conditions. Table II–2 lists values of αs(MZ) as
inferred from a diverse set of experimental inputs [Be 09], and Figure II–6, which
has attained the status of a QCD icon, displays the same. The current world average
at the Z-boson mass scale is [Be et al. 11]

αs(MZ) = 0.1184± 0.0007, (2.75)
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Fig. II–6 Energy dependence of αs(Q), from [RPP 12] (used with permission).

which implies the value (5)
MS
= 213 ± 8 MeV for the five-flavor sector of QCD.

Determinations of αs(q2) have been found to be qualitatively in accord consistent
with the predicted q2 dependence of QCD. Taken over the full range of available
data, values in the range 0.2 ≤ (GeV) ≤ 0.4 are not uncommon, e.g., (3)

MS
=

339± 10 MeV and (4)
MS
= 296± 10 MeV as cited in [Be et al. 11].

To conclude this section, we briefly comment on the status of higher-order con-
tributions to the running of the strong fine structure constant. To date, analytic
calculations on αs(μ) have been performed up to the four-loop level,

μ2 ∂

∂μ2
as = −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s + · · · , (2.76)

in which as ≡ αs/(4π) is the expansion parameter and exact expressions for the
coefficients β0, β1, β2 and β3 appear in [RiVL 97]. The following useful approxi-
mations are also provided,

β0 � 11− 0.66667nf

β1 � 102− 12.6667nf

β2 � 1428.50− 279.61nf + 6.01852n2
f

β3 � 29243.0− 6946.30nf + 405.089n2
f + 1.49931n3

f , (2.77)

where as usual nf denotes the number of active flavors. The four-loop running of
αs can then be expressed as [ChKS 98],
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αs(μ
2
R) �

4π

β0t

[
1− β1

β2
0

ln t

t
+ β2

1 (ln
2 t − ln t − 1)+ β0β2

β4t2

β3
1

(
ln3 t − 2.5 ln2 t − 2 ln t + 0.5

)+ 3β0β1β2 ln t − 0.5β2
0β3

β6
0 t

3

]
,

(2.78)

where t ≡ ln(μ2
R/

2). As an example, let us use this (taking nf = 5) to determine
αs(μ) at three mass scales involving respectively the b quark, the Z boson, and the
Higgs boson, i.e., μb = 4.18 GeV, μZ = 91.1876 GeV and μH = 125.5 GeV,

αs(mb) � 0.2266, αs(MZ) � 0.1184, αs(MH) � 0.1129. (2.79)

These values reflect the behavior expected from asymptotic freedom, as discussed
earlier.10 They will later be of use in discussing running quark mass (Chap. XIV)
and Higgs-boson phenomenology (Chap. XV).

II–3 Electroweak interactions

The Weinberg–Salam–Glashow model [Gl 61, We 67b, Sa 69] is a gauge theory of
the electroweak interactions whose input fermionic degrees of freedom are mass-
less spin one-half chiral particles. It has the group structure SU(2)L×U(1), where
the SU(2)L, U(1) represent weak isospin and weak hypercharge respectively. The
subscript ‘L’ on SU(2)L indicates that, among fermions, only left-handed states
transform nontrivially under weak isospin.

Weak isospin and weak hypercharge assignments

First, we shall discuss how the fermionic weak isospin (Tw, Tw3) and weak hyper-
charge (Yw) quantum numbers are assigned. The fermion generations are taken
to obey a ‘template’ pattern – we assume that each succeeding generation differs
from the first only in mass. Thus, it will suffice to consider just the lightest fermions
for the remainder of this section. The first-generation electroweak assignments are
displayed in Table II–3.

For weak isospin, experience gained from charged weak current interactions
such as nuclear beta decay dictates that left-handed fermions belong to weak iso-
doublets while right-handed fermions be placed in weak isosinglets, as in

10 Using the exact relations for β0, . . . , β4 yields the same results to the stated level of accuracy.
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Table II–3. SU(2)L × U(1) fermion assignments

Particle Tw Tw3 Yw

νe,L 1/2 1/2 −1
eL 1/2 −1/2 −1
νe,R 0 0 0
eR 0 0 −2
uL 1/2 1/2 1/3
dL 1/2 −1/2 1/3
uR 0 0 4/3
dR 0 0 −2/3

leptons : 
L ≡
(
νe

e

)
L

νe,R eR,

quarks : qL ≡
(
u

d

)
L

uR dR. (3.1)

In view of nonzero neutrino mass, we include a right-handed neutrino. Each of the
degrees of freedom displayed above must be assigned a weak hypercharge. There
are a priori six in all,11

Y (qL) ≡ Yq, Y (uR) ≡ Yu, Y (dR) ≡ Yd,

Y (
L) ≡ Y
, Y (eR) ≡ Ye , Y (νR) ≡ Yν. (3.2)

In the Standard Model one identifies the electromagnetic current, following spon-
taneous symmetry breaking in the electroweak sector, by its coupling to the linear
combination of neutral gauge bosons having zero mass. The electric charge Q car-
ried by a particle is thus linearly related to the SU(2)L×U(1)Y quantum numbers
Tw3 and Yw,

aQ = Tw3 + bYw, (3.3)

where a, b are constants. We can use the freedom in assigning the scale of the
electric charge Q to choose a = 1. At this point, let us not assume any knowl-
edge of the fermion electric charge values. Ultimately, however, the left-handed
and right-handed components of the charged chiral fermions must unite to form
the physical states themselves. Consistency demands that the electric charges of
the chiral components of each such charged fermion be the same, whatever value
that charge might have. Using Eq. (3.3), we find

11 The reason that weak hypercharge engenders so many free parameters in contrast to weak isospin lies in the
difference between an abelian gauge structure (like weak hypercharge) and one which is nonabelian (like
weak isospin). Thus all doublets have the same weak isospin properties irrespective of their other properties,
analogous to flavor independence in QCD. For the abelian group of weak hypercharge, the group structure by
itself provides no guidelines for assigning the weak hypercharge quantum number. Like the electric charge, it
is a priori an arbitrary quantity.
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Yq = Yu − 1

2b
= Yd + 1

2b
, Y
 = Ye + 1

2b
= Yν − 1

2b
. (3.4)

Additional information is contained in axial anomaly cancelation conditions, to be
discussed in detail in Sect. III–3 (see especially Eq. (III–3.60b) and subsequent
discussion). In particular, the cancelation requirement implies the conditions

TrF 2
3 Yw = 0, (3.5a)

Tr T 2
w3Yw = 0, (3.5b)

TrY 3
w = 0, (3.5c)

where ‘Tr’ represents a sum over fermions and in Eq. (3.5a) F3 is the third generator
of the octet of color charges. These constraints imply

2Yq − Yu − Yd = 0, (3.6a)

3Yq + Y
 = 0, (3.6b)

2(3Y 3
q + Y 3


 )− 3(Y 3
u + Y 3

d )− Y 3
e − Y 3

ν = 0, (3.6c)

where the factors of ‘3’ are color related and the minus signs arise from chirality
dependence of the anomalies. Then, insertion of Eq. (3.4) into Eqs. (3.6b), (3.6c)
yields (

bY
 + 1

2

)3

− Y 3
ν = 0. (3.7)

If neutrinos are Majorana particles (i.e. identical to their antiparticles), then they
cannot carry electric charge and by Eq. (3.3), one has Yν = 0. If so, Eq. (3.7)
implies bY
 = −1/2, which fixes the remaining Yi via Eq. (3.4). Thus, provided
neutrinos are Majorana particles, once the weak isospin is chosen as in Eqs. (3.1),
(3.2) and all possible chiral anomalies are arranged to cancel, one obtains a pre-
diction for the fermion electric charge. We also learn that any attempt to determine
weak hypercharge values from the known fermion electric charges is affected by
an arbitrariness associated with the value of ‘b’. This accounts for the variety of
conventions seen in the literature. For definiteness, we have taken b = 1/2
in Eq. (3.3) and thus the relationship among the various quantum numbers in
Table II–3 is

Yw = 2(Q− Tw3). (3.8)

On the other hand, if neutrinos are Dirac particles, it follows from Eq. (3.4) that
Eq. (3.7) becomes a trivality and we learn nothing of weak hypercharge assign-
ments from anomaly cancelation arguments. In this instance, one assigns the weak
hypercharge by inserting the observed fermion electric charges into Eq. (3.8). The
ability to predict {Qi} values has been lost.
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SU(2)L×U(1)Y gauge-invariant lagrangian

Having assigned quantum numbers, we turn next to the electroweak interactions.
The Weinberg–Salam lagrangian divides naturally into three additive parts, gauge
(G), fermion (F ), and Higgs (H ),

LWS = LG + LF + LH . (3.9)

Throughout this section we shall concentrate on establishing the general form of
the electroweak sector, referring at times to only a few tree-level amplitudes. We
shall return in Chap. V to the subject of electromagnetic radiative corrections, and
present the electroweak Feynman rules along with various radiative corrections in
Chap. XVI.

The gauge-boson fields, which couple to the weak isospin and weak hypercharge
are, respectively,

−→
Wμ = (W 1

μ, W
2
μ, W

3
μ) and Bμ. These contribute to the purely

gauge part of the lagrangian as

LG = −1

4
F
μν

i F i
μν −

1

4
BμνBμν, (3.10)

where F i
μν (i = 1,2,3) is the SU(2) field strength,

F i
μν = ∂μW

i
ν − ∂νWi

μ − g2ε
ijkWj

μW
k
ν , (3.11)

and Bμν is the U(1) field strength,

Bμν = ∂μBν − ∂νBμ. (3.12)

The fermionic sector of the lagrangian density includes both the left-handed and
right-handed chiralities. Summing over left-handed weak isodoubletsψL and right-
handed weak isosinglets ψR, we have

LF =
∑
ψL

ψL i /D ψL +
∑
ψR

ψR i /D ψR. (3.13)

Since a right-handed chiral fermion does not couple to weak isospin, its covariant
derivative has the simple form

DμψR = (∂μ + i g1

2
YwBμ)ψR. (3.14)

This expression serves to define the U(1) coupling g1. Its normalization is dictated
by our convention for weak hypercharge Yw. The corresponding covariant deriva-
tive for the SU(2)L doublet ψL is

DμψL =
(

I
(
∂μ + i g1

2
YwBμ

)
+ ig2

�τ
2
�Wμ

)
ψL, (3.15)

given in terms of the SU(2) gauge coupling constant g2 and the 2×2 matrices I, �τ .
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We shall not display the quark color degree of freedom in this section for reasons
of notational simplicity. However, it is understood that all situations in which quark
internal degrees of freedom are summed over, as in Eq. (3.13), must include a color
sum. Similarly, relations like Eq. (3.14) or Eq. (3.15) hold for each distinct internal
color state when applied to quark fields.

The above equations define a mathematically consistent gauge theory of weak
isospin and weak hypercharge. However, it is not a physically acceptable electro-
weak theory of Nature because the fermions and gauge bosons are massless.
A Higgs sector must be added to the above lagrangians to arrive at the full
Weinberg–Salam model. Thus, we introduce into the theory a complex doublet

� =
(
ϕ+

ϕ0

)
(3.16)

of spin-zero Higgs fields with electric charge assignments as indicated. The quanta
of these fields then each carry one unit of weak hypercharge. The Higgs lagrangian
LH is the sum of two kinds of terms, LHG and LHF , which contain the Higgs–
gauge and Higgs–fermion couplings respectively. The former is written as

LHG = (Dμ�)∗Dμ�− V (�), (3.17)

where

Dμ� =
(

I
[
∂μ + i g1

2
Bμ

]
+ ig2

�τ
2
· �Wμ

)
�, (3.18)

and V is the Higgs self-interaction,

V (�) = −μ2�†�+ λ(�†�)2. (3.19)

The parameters μ2 and λ are positive but otherwise arbitrary. For simplicity, we
write the Higgs–fermion interaction in this section for just the first generation of
fermions. Denoting the left-handed quark and lepton doublets respectively as qL
and 
L, we have

LHF = −guqL�̃uR − gdqL�dR − gν
L�̃νe,R − ge
L�eR + h.c., (3.20)

where the coupling constants gu, gd , ge and gν are arbitrary and we employ the
charge conjugate to �,

�̃ = iτ2�
∗. (3.21)

In a sense the Higgs potential V and Higgs–fermion coupling LHF lie outside
our guiding principle of gauge invariance because neither contains a gauge field.
However, there is no principle which forbids such contributions, and their presence
is phenomenologically required. Moreover, note that each is written in SU(2)L ×
U(1) invariant form.
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Spontaneous symmetry breaking

Mass generation for fermions and gauge bosons proceeds by means of spontaneous
breaking of the SU(2)L × U(1) symmetry. To begin, we obtain the ground-state
Higgs configuration by minimizing the potential V to give

�(−μ2 + 2λ�†�) = 0. (3.22)

We interpret this ground-state relation in terms of vacuum expectation values,
denoted by a zero subscript. Eq. (3.22) has two solutions, the trivial solution
〈�〉0= 0 and the nontrivial solution,

〈�†�〉0 = v2

2
, (3.23)

with

v ≡
√
μ2

λ
. (3.24)

Let us consider the latter alternative. A nontrivial vacuum Higgs configuration,
which obeys the constraint Eq. (3.23), respects conservation of electric charge,
and describes the spontaneous symmetry breaking of the original SU(2)L × U(1)
symmetry is

〈�〉0 =
(

0

v/
√

2

)
. (3.25)

In one interpretation, it is the order parameter for the Weinberg–Salam model, play-
ing a role analogous to the magnetization in a ferromagnet. Group theoretically, it
is seen to transform as a component of a weak isodoublet. The energy scale, v, of
the effect is not predicted by the model and must be inferred from experiment.

The fermion and gauge-boson masses are determined by employing Eq. (3.25)
for the Higgs field everywhere in the lagrangian LH . We first define charged
fields W±

μ ,

Wμ
± =

√
1

2
(W 1

μ ∓ iW 2
μ). (3.26)

corresponding to the gauge bosons W±. By substitution, we find for the mass
contribution to the lagrangian

Lmass =− v√
2
(guuu+ gddd + geee)+

(vg2

2

)2
W+
μ W

μ
−

+ v2

8
(W 3

μ Bμ)

(
g2

2 −g1g2

−g1g2 g2
1

)(
W

μ

3

Bμ

)
. (3.27)
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The fermion masses are given by

mf = v√
2
gf (f = u, d, e, . . .). (3.28)

Although the theory can accommodate fermions of any mass, it does not predict
the mass values. Instead, the measured fermion masses are used to fix the arbitrary
Higgs–fermion couplings. The charged W -boson masses can be read off directly
from Eq. (3.27),

MW = v

2
g2, (3.29)

but the symmetry breaking induces the neutral gauge bosons to undergo mixing.
Their mass matrix is not diagonal in the basis of W 3, B states. Diagonalization
occurs in the basis

Zμ = cos θw W
3
μ − sin θw Bμ,

Aμ = sin θw W
3
μ + cos θw Bμ, (3.30)

where the weak mixing angle (or Weinberg angle) θw is defined by

tan θw = g1

g2
. (3.31)

The neutral gauge-boson masses are found to be

Mγ = 0, MZ = v

2

√
g2

1 + g2
2, (3.32)

and the fieldsAμ andZμ correspond to the massless photon and massiveZ0-boson,
respectively. Observe that the W±-to-Z0 mass ratio is fixed by

MW

MZ

= cos θw. (3.33)

Electroweak currents

Now that we have determined the mass spectrum of the theory in terms of the input
parameters, we must next study the various gauge–fermion interactions. The tradi-
tional description of electromagnetic and low-energy charged weak interactions of
spin one-half particles is expressed as

Lint = −eAμJμem −
GF√

2
J
μ†
ch J

ch
μ , (3.34)

where Jμem is the electromagnetic current

Jμem = −eγ μe +
2

3
uγ μu− 1

3
dγ μd + · · · , (3.35)

J
μ

ch is the charged weak current (ignoring quark mixing)
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J
μ

ch = νeγ
μ(1+ γ5)e + uγ μ(1+ γ5)d + · · · , (3.36)

and GF � 1.166× 10−5 GeV−2 is the Fermi constant (cf. Sect. V–2).
Alternatively, we can use Eqs. (3.13)–(3.15) to obtain the charged and neutral

interactions in the SU(2)L × U(1)Y description,

L ′
int = −

g2√
8

(
W+
μ J

μ

ch +W−
μ J

μ†
ch

)
− g2W

3
μJ

μ

w3 − g1Bμ(J
μ
em − Jμw3), (3.37)

where Jμw3 is the third component of the weak isospin current,

�Jμw =
∑
ψL

ψLγ
μ �τ

2
ψL, (3.38)

summed over all left-handed fermion weak isodoublets. Substituting for Bμ and
W 3
μ in Eq. (3.37) in terms of Aμ and Zμ yields

L′int = −
g2√

8

(
W+
μ J

μ

ch +W−
μ J

μ†
ch

)
− g1cos θwAμJ

μ
em + Lntl−wk, (3.39)

where Jμch = 2Jμw,1+i2 is given in Eq. (3.36) and the neutral weak interaction Lntl−wk

for fermion f is12

L(f )ntl−wk = −
g2

2 cos θw
Zμ f̄ (g(f )v γμ + g(f )a γμγ5)f,

g(f )v ≡ T
(f )

w3 − 2 sin2 θw Q
(f )

el , g(f )a ≡ T
(f )

w3 . (3.40)

Specifically, we have for the vector and axial-vector couplings

g(e,μ,τ)v = −1

2
+ 2 sin2 θw, g(e,μ,τ)a = −1

2
,

g(u,c,t)v = 1

2
− 4

3
sin2 θw, g(u,c,t)a = 1

2
,

g(d,s,b)v = −1

2
+ 2

3
sin2 θw, g(d,s,b)a = −1

2
,

g
(νe,νμ,ντ )
v = 1

2
, g

(νe,νμ,ντ )
a = 1

2
.

(3.41)

Observe the structure of the neutral weak couplings g(f )v,a . If θw were to vanish, neu-
tral weak interactions would be given strictly in terms of Tw3, the third component
of weak isospin. However in the real world, phenomena like low-energy neutrino

12 One should be careful not to confuse Eq. (3.40) with the alternate form

L(f )ntl−wk = −eZμψ̄f (vf γμ + af γμγ5)ψf ,

vf =
T
(f )
w3 − 2 sin2 θw Q

(f )
el

2 sin θw cos θw
, af =

T
(f )
w3

2 sin θw cos θw
,

which also appears in the literature.
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interactions, MW/MZ, deep inelastic lepton scattering data, etc. all depend on the
value of θw. In addition, we note that because sin2 θw � 0.23, the leptonic vector
coupling constants g(e,μ,τ)v are substantially suppressed relative to the axial-vector
couplings.

Comparison of Eq. (3.34) with Eq. (3.39) yields

e = g1 cos θw = g2 sin θw. (3.42)

The Fermi interaction of Eq. (3.34) corresponds in the Weinberg–Salam model to
a second-order interaction mediated by W -exchange and evaluated in the limit of
small momentum transfer (1 
 q2/M2

W ),

GF√
2
= g2

2

8M2
W

. (3.43)

Together, these relations provide a tree-level expression for the W -boson mass,

M2
W =

1

sin2 θw

πα√
2GF

�
(

37.281 GeV

sin θw

)2

. (3.44)

Also, Eqs. (3.29), (3.43) imply

v = 2−1/4G
−1/2
F � 246.221(2) GeV. (3.45)

It is the quantity v which sets the scale of spontaneous symmetry breaking in the
SU(2)L × U(1) theory, and all masses in the Standard Model are proportional to
it, although with widely differing coefficients.

We shall resume in Chaps. XV, XVI discussion of a number of topics introduced
in this section, among them the Higgs scalar, the W± and Z0 gauge bosons, and
phenomenology of the neutral weak current. Also included will be a description of
quantization procedures for the electroweak sector, including the issue of radiative
corrections. First, however, in the intervening chapters we shall encounter a num-
ber of applications involving light fermions undergoing electroweak interactions
at very modest energies and momentum transfers. For these it will suffice to work
with just tree-level W± and/or Z0 exchange, and to consider only photonic or glu-
onic radiative corrections. We shall also neglect the gauge-dependent longitudinal
polarization contributions to the gauge-boson propagators (analogous to the qμqν

term in the photon propagator in Eq. (1.18)), as well as effects of the Higgs degrees
of freedom. For photon propagators, the qμqν terms do not contribute to physi-
cal amplitudes because of current conservation. Although current conservation is
generally not present for the weak interactions, both the qμqν propagator terms
and Higgs contributions are suppressed by powers of (mf /MW)

2 for an external
fermion of mass mf .



66 Interactions of the Standard Model

II–4 Fermion mixing

In our discussion of the Weinberg–Salam model, we limited the number of fermion
generations to one. We now lift that restriction and consider the implication of
having n generations. Although the existing experimental situation supports the
value n = 3, we shall take n arbitrary in our initial analysis.

Diagonalization of mass matrices

To begin, it is necessary to generalize the Higgs–fermion lagrangian LHF of
Eq. (3.20) to

−LHF = gαβu q̄ ′L,α�̃u
′
R,β + g

αβ

d q̄ ′L,α�d
′
R,β + gαβν 
̄ ′L,α�̃ν

′
R,β

+ gαβe 
̄ ′L,α�e
′
R,β + h.c., (4.1)

where we employ the summation convention α, β = 1, . . . , n, and adopt the
notation

�u ′ = (u ′, c ′, t ′, . . .),
�d ′ = (d ′, s ′, b ′, . . .),
�ν ′ = (νe, νμ, ντ , . . .),

�e ′ = (e ′, μ ′, τ ′, . . .),

�q ′ =
((

u ′

d ′

)
,

(
c ′

s ′

)
,

(
t ′

b ′

)
, . . .

)
,

�
 ′ =
((

νe

e ′

)
,

(
νμ

μ ′

)
,

(
ντ

τ ′

)
, . . .

)
. (4.2)

Observe that we denote the individual neutrino flavor eigenstates as νe, νμ, ντ , with
no primes. The states which appear in the original gauge-invariant lagrangian are
generally not the mass eigenstates. That is, there is no reason why the n × n gen-
erational coupling matrices gu, gd, gν, ge should be diagonal. Following sponta-
neous symmetry breaking, we obtain the generally nondiagonal n×nmass matrices
m ′
u, m ′

d , m ′
ν , m ′

e from the analog of Eq. (3.28),

m ′
f =

v√
2

gf (f = u, d, ν, e). (4.3)

Although not diagonal in the flavor basis, these matrices can be brought to diag-
onal form in the mass basis. The transformation from flavor eigenstates to mass
eigenstates is accomplished by means of the steps
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−LF, mass = �u ′L m ′
u �u ′R + �d ′L m ′

d
�d ′R + �ν ′L m ′

ν �ν ′R + �e ′L m ′
e �e ′R + h.c.,

= �u ′L SuLSu†
L m ′

uSuRSu†
R �u ′R + �d ′L SdLSd†

L m ′
dSdRSd†

R
�d ′R

+ �ν ′L SνLSν†
L m ′

νSνRSν†
R �ν ′R + �e ′L SeLSe†L m ′

e SeRSe†R �e ′R + h.c.

= �uL mu �uR + �dL md
�dR + �νL mν �νR + �eL me �eR + h.c.

= �u mu �u + �d md
�d + �ν mν �ν + �e me �e. (4.4)

The n× n unitary matrices SαL,R (α = u, d, ν, e) relate the basis states,

�u ′L = SuL �uL, �d ′L = SdL �dL, �ν ′L = SνL �νL, �e ′L = SeL �eL,
�u ′R = SuR �uR, �d ′R = SdR �dR, �ν ′R = SνR �νR, �e ′R = SeR �eR, (4.5)

and induce the biunitary diagonalizations

m′
α = SαL mα Sα†

R , (α = u, d, ν, e), (4.6)

thus yielding the diagonal quark mass matrices

mu =

⎛⎜⎜⎜⎝
mu 0 0 . . .

0 mc 0 . . .

0 0 mt . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , md =

⎛⎜⎜⎜⎝
md 0 0 . . .

0 ms 0 . . .

0 0 mb . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , (4.7a)

and the diagonal lepton mass matrices

mν =

⎛⎜⎜⎜⎝
m1 0 0 . . .

0 m2 0 . . .

0 0 m3 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , me =

⎛⎜⎜⎜⎝
me 0 0 . . .

0 mμ 0 . . .

0 0 mτ . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ . (4.7b)

Although the Weinberg–Salam model is first written down in terms of the flavor
basis states, actual calculations which confront theory with experiment are per-
formed using the mass basis states. We must then transform from one to the other.
This turns out to have no effect on the structure of the electromagnetic and neu-
tral weak currents. One simply omits writing the primes, which would otherwise
appear. The reason is that (aside from mass) each generation is a replica of the oth-
ers, and products of the unitary transformation matrices always give rise to the unit
matrix in flavor space. Thus, at the lagrangian level, there are no flavor-changing
neutral currents in the theory.
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As an example of this, consider the leptonic contribution to the electromagnetic
current,

Jμem(lept) = −ē ′αγ μe ′α = −ē ′L,αγ μe ′L,α − ē ′R,αγ
μe ′R,α

= −(ēLSe†L )αγ
μ(SeLeL)α − (ēRSe†R )αγ

μ(SeReR)α
= −ēL,αγ μeL,α − ēR,αγ μeR,α = −ēαγ μeα, (4.8)

where we sum over family index α = 1, . . . , n and invoke the unitarity of matrices
SeL,R. Note that there is no difficulty in passing the SeL,R through γ μ because the
former matrices act in flavor space whereas the latter matrix acts in spin space.

Quark mixing

Thus far, the distinction between flavor basis states and mass eigenstates has been
seen to have no apparent effect. However, mixing between generations does
manifest itself in the system of quark charged weak currents,

J
μ

ch(qk) = 2ū ′L,αγ
μd ′L,α = 2ūL,αγ

μVαβdL,β, (4.9)

where

V ≡ Su†
L SdL. (4.10)

The quark-mixing matrix V, being the product of two unitary matrices, is itself
unitary. The Standard Model does not predict the content of V. Rather, its matrix
elements must be phenomenologically extracted from data. For the two-generation
case, V is called the Cabibbo matrix [Ca 63]. For three generations, it has been
referred to as the Kobayashi–Maskawa (KM) matrix [KoM 73] after its originators,
but is now usually denoted by the abbreviation ‘CKM’. We shall analyze properties
of such mixing matrices for the remainder of this section.

An n× n unitary matrix is characterized by n2 real-valued parameters. Of these,
n(n− 1)/2 are angles and n(n+ 1)/2 are phases. Not all the phases have physical
significance, because 2n − 1 of them can be removed by quark rephasing. The
effect of quark rephasing

uL,α → eiθ
u
α uL,α, dL,α → eiθ

d
α dL,α (α = 1, . . . , n) (4.11)

on an element of the mixing matrix is

Vαβ → Vαβe
i(θdβ−θuα ) (α, β = 1, . . . , n). (4.12)

Since an overall common rephasing does not affect V, only the 2n − 1 remaining
transformations of the type in Eq. (4.11) are effective in removing complex phases.
This leaves V with (n − 1)(n − 2)/2 such phases. One must be careful to also



II–4 Fermion mixing 69

transform the right-chirality fields of a given flavor in like manner to keep masses
real. If so, all terms in the lagrangian other than V are unaffected by this procedure.

For two generations, there are no complex phases. The only parameter is com-
monly taken to be the Cabibbo angle θC and we write

V =
(

cos θC sin θC
− sin θC cos θC

)
. (4.13)

A common notation for the n = 2 mixed states is(
dC

sC

)
≡ V

(
d

s

)
. (4.14)

Within the two-generation approximation, weak interaction decay data imply the
numerical value, sin θC � 0.226.

The three-generation case involves the 3× 3 matrix

V =
⎛⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ , (4.15)

which is a form that emphasizes the physical significance of each matrix element.
The n = 3 mixing matrix can be expressed in terms of four parameters, of which
one is a complex phase. The presence of a complex phase is highly significant
because it signals the existence of CP violation in the theory. We shall return to
this point shortly. The KM representation employs three mixing angles θ12, θ13, θ23

and a complex phase δ. It can be viewed as the following Eulerian construction of
three matrices,

V =
⎛⎝1 0 0

0 c23 s23

0 −s23 c23

⎞⎠⎛⎝ c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

⎞⎠⎛⎝ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠ , (4.16)

where sαβ ≡ sin θαβ, cαβ ≡ cos θαβ (α, β = 1, 2, 3). In combined form this
becomes

V =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

⎞⎠ . (4.17)

By means of quark rephasing, it can be arranged that the angles {θαβ} all lie in the
first quadrant. In the limit θ23 = θ13 = 0, KM mixing reduces to Cabibbo mixing
with the identification θ12 = θC .

An alternative approach for describing the quark mixing matrix, the Wolfenstein
parameterization [Wo 83], expresses the mixing matrix as the unit 3 × 3 matrix
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together with a perturbative hierarchical structure organized by a smallness para-
meter λ. In the updated version, the Wolfenstein representation contains four para-
meters λ, A, ρ, η defined by

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3(ρ − iη). (4.18)

These definitions hold to all orders in λ. Since many phenomenological applica-
tions require accuracy to the level of order λ5, we write

V=

⎛⎜⎜⎜⎜⎜⎝
1− λ2

2
− λ4

4
λ λ3A(ρ − iη)

−λ+ A2λ5

2
(1− 2(ρ + iη)) 1− λ2

2
− λ4

8
(1+ 4A2) λ2A

λ3A(1− ρ̄ − iη̄) −λ2A+ Aλ4

2
(1− 2(ρ + iη)) 1− A2λ4

2

⎞⎟⎟⎟⎟⎟⎠.
(4.19)

Observe that the matrix element Vtd is expressed in terms of ρ̄ ≡ ρ(1 − λ2/2)
and η̄ ≡ η(1 − λ2/2). These quantities, which are useful in generalizing the so-
called unitarity triangle (cf. Sect. XIV–5) beyond leading order, are directly cited
in modern fits of the CKM matrix.

Attempts to theoretically predict the content of the CKM matrix have not borne
fruit. The CKM matrix elements have come to be thought of as basic quantities,
much like particle masses and interaction coupling constants. As such, each matrix
element must be determined experimentally (with several experiments per matrix
element). This endeavor, which has been a preoccupation of ‘Flavor Physics’ for
many years, has finally reached an acceptable level of sensitivity, particularly with
the operation of several B-factories (cf. Chap. XIV). Current values [RPP 12] for
the Wolfenstein parameters are

λ = 0.2257+0.0008
−0.0010, A = 0.814+0.021

−0.022,

ρ̄ = 0.135+0.031
−0.016, η̄ = 0.349+0.015

−0.017. (4.20a)

Alternatively, we have for the original parameter set,

s12 = 0.2257+0.0008
−0.0010, s23 = 0.0415+0.0014

−0.0015,

s13 = 0.0036+0.0004
−0.0003, δ = (68.9+3.0

−5.4

)o
. (4.20b)

Neutrino mixing

Flavor mixing affects not only the quarks, but also the leptons, in the form of
neutrino mixing. Just as the 3 × 3 quark mixing matrix V is associated with the
acronym ‘CKM’, there will be a 3 × 3 lepton mixing matrix U for neutrinos. Its
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standard acronym ‘PMNS’, acknowledges the early work of Pontecorvo [Po 68]
and of Maki, Nakagawa, and Sakata [MaNS 62]. As we will show in Sect. VI–2,
when we include the possibility of a Majorana nature of neutrino mass, lepton mix-
ing has a form very similar to quark mixing,

U = V(ν)Pν, (4.21)

where V(ν) has the same mathematical content as the quark mixing matrix V of
Eq. (4.17) except that the mixing angles {θij } and phase δ now pertain to the neu-
trino sector and

Pν =
⎛⎝1 0 0

0 eiα1/2 0
0 0 eiα2/2

⎞⎠ . (4.22)

Here, the {αi} are so-called Majorana phases. They are physical, i.e., observable,
if the Majorana neutrino option is chosen by Nature. Although not contributing to
neutrino oscillations, they will occur in the neutrinoless double beta decay
(cf. Sect. VI–5) of certain nuclei.

Thus far, information about the lepton mixing matrix has come from fits to neu-
trino oscillation data (although highly anticipated searches for neutrinoless double
beta decay are underway, cf. Sect. VI–5). There is no evidence at this time for CP
violation in the lepton sector, so one cannot yet distinguish between the Dirac and
Majorana cases described above. For either, the leptonic mixing angles are mea-
sured to be [RPP 12]13

sin2(2θ12) = 0.857± 0.024,

sin2(2θ23) ≥ 0.95 (at 90%C.L.),

sin2(2θ13) = 0.098± 0.013, (4.23)

which translates into angles (here we take the value for θ23 from Table 13.7 of
[RPP 12])

θ12 = (33.9± 1.0)o , θ23 =
(
40.4+4.6

−1.8

)o
, θ13 = (9.1± 0.6)o . (4.24)

These values are quite different from the quark mixing angles inferred from
Eq. (4.20b). Whereas the quark mixing matrix is a ‘zeroth-order’ unit 3× 3 matrix
modified by perturbative entries proportional to powers of the smallness parameter
λ, current data for lepton mixing are consistent with the ‘zeroth-order’ representa-
tion14

13 See also [FoTV 12] and [FoLMMPR 12].
14 This form, referred to as tri-bimaximal mixing [HaPS 02], is used here as simply a numerical convenience.
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V(ν)
0 =

⎛⎜⎝
2√
6

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

⎞⎟⎠ . (4.25)

Perturbative modifications of this can be introduced as

sin θ13 = r√
2
, sin θ12 = 1+ s√

3
, sin θ23 = 1+ a√

2
, (4.26)

where the r, s, a parameters are sensitive, in part, to reactor, solar, and atmospheric
data, yielding V(ν)

0 → V(ν), where [KiL 13]

V(ν) =

⎛⎜⎜⎜⎜⎜⎜⎝

2√
6

(
1− s

2

) 1√
3
(1+ s) r√

2
e−iδ

− 1√
6

(
1+ s − a + reiδ) 1√

3

(
1− s

2
− a − 1

2
reiδ
)

1√
2
(1+ a)

1√
6

(
1+ s + a − reiδ) − 1√

3

(
1+ s

2
+ a + r

2
eiδ
) 1√

2
(1− a)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(4.27)

In the above δ is the phase parameter which reflects the possibility of CP violation
in the lepton sector but for which there is, as of yet, no evidence. For the others,
the current limits

r = 0.22± 0.01, s = −0.03± 0.03, a = 0.10± 0.05, (4.28)

imply that we are not very far from this tri-bimaximal form.

Quark CP violation and rephasing invariants

There is no unique parameterization for three-generation quark mixing. Any
scheme which is convenient to the situation at hand may be employed as long as
it is used consistently and adheres to the underlying principles. There is, however,
a somewhat different logical position to adopt, that of working solely with rephas-
ing invariants. After all, only those functions of V which are invariant under the
rephasing operation in Eq. (4.18) can be observable. An obvious set of quadratic
invariants are the squared moduli �(2)

ij ≡ |V ij |2 where i, j = 1, 2, 3. The unitarity
conditions V†V = VV† = I constrain the number of independent squared-moduli
to four. They are of course all real-valued. In addition there are quartic functions
�
(4)
ab ≡ VijVklV

∗
il V

∗
kj , where we suspend the summation convention for repeated

indices and, to avoid redundant factors of squared-moduli, take a, i, k (b, j, l)
cyclic. There are yet higher-order invariants, but they are all expressible in terms of
the quadratic and quartic functions. The nine quantities �

(4)
ab are generally
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complex-valued. A unique measure of CP violations for three generations is pro-
vided by the rephasing invariant Im�(4)

ab ,

Im [VijVklV ∗il V ∗kj ] = J
∑
m,n

εikm εjln, (4.29)

where J is the so-called Jarlskog invariant [Ja 85],

J = c12c
2
13c23s12s13s23sδ = λ6A2η̄ +O(λ8) = (2.96+0.20

−0.16

)× 10−5. (4.30)

This combination of quark mixing parameters will always appear in calculations
of CP-violating phenomena. To have nonzero CP violating effects, the KM angles
must avoid the values θij = 0, π/2, and δ = 0, π . The CP-violating invariant J
achieves its maximum value for c13 = 2/

√
3, c12 = c23 = 1/

√
2, sδ = 1 at which

it equals 1/6
√

3. This set of circumstances is very unlike the real-world value in
Eq. (4.30).

The consideration of rephasing invariants need not involve just the mixing matrix
V, but can also be applied to the Q = 2/3, −1/3 nondiagonal mass matrices
m′
u, m′

d themselves. In particular, the determinant of their commutator is found to
provide an invariant measure of CP violations [Ja 85]. If, for simplicity, we work
in a basis where mu

′, m′
d are hermitian, it can be shown that Su,dL = Su,dR ≡ Su,d .

Thus we have

[m′
u,m′

d] = Su [mu,VmdV†] Su† = SuV [V†muV,md] V†Su†, (4.31)

from which it follows that

det [m′
u,m′

d] = det [mu,VmdV†] = det [V†muV,md]. (4.32)

The two commutators on the right-hand sides of this relation are skew-hermitian
and each of their matrix elements is multiplied by a Q = 2/3,−1/3 quark mass
difference, respectively. The determinant is thus proportional to the product of all
Q = 2/3, −1/3 quark mass differences, and explicit evaluation reveals

det [m′
u,m′

d] = 2i Im�(4)
∏
α>β

(mu,α −mu,β)(md,α −md,β). (4.33)

This provides a more extensive list of necessary conditions for CP violations to be
present. Not only are the mixing angles constrained as discussed above, but also
the quark masses within a given charge sector must not exhibit degeneracies.

Our discussion of the n = 2, 3 generation cases suggests how larger systems n =
4, . . . can be addressed, although the number of parameters becomes formidable,
e.g., four generations require six mixing angles and three complex phases. How-
ever, existing data indicate the existence of just three fermion generations, e.g.,
measurements from Z0-decay fail to see additional neutrinos, and there is no
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evidence from e+e− or pp collisions for additional quarks or leptons lighter than
roughly 50 GeV. Moreover, if there were more than three quark generations the
full quark-mixing matrix would be unitary, but one would expect to see violations
of unitarity in any submatrix. Yet to the present level of sensitivity, the 3 × 3 KM
mixing matrix obeys the unitarity constraint. The most accurate data occur in the
(V †V )11 = 1 sector. Here, the contribution from Vub is negligible and one finds
[Ma 11, HaT 10]

(V †V )11 = |Vud|2 + |Vus|2 + |Vub|2 = 0.9999(6). (4.34)

Problems

(1) SU(3)
(a) Starting from the general form λaijλ

a
kl = Aδij δkl + Bδilδjk + Cδikδjl (a =

1, . . . , 8 is summed), determine A,B,C by using the trace relations of
Eqs. (II–2.5a, 2.5b), etc.

(b) Determine Tr λaλbλc.
(c) Determine εijkεlmnλampλ

b
pkλ

a
niλ

b
lj .

(d) Consider the 8 × 8 matrices (Fa)bc = −ifabc, where the {fabc} are SU(3)
structure constants (a, b, c = 1, . . . , 8). Show that these matrices (the regu-
lar or adjoint representation) obey the Lie algebra of SU(3), and determine
TrFaFb.

(2) Gauge invariance and the QCD interaction vertices
(a) Define constants f, g such that the covariant derivative of quark q isDμq =

(∂μ + ifAμ)q and the QCD gauge transformations are Aμ → UAμU
−1 +

ig−1U∂μU
−1 and q → Uq, where Aμ are the gauge fields in matrix form

(cf. Eq. (I–5.15)). Show that q̄ /D q is invariant under a gauge transformation
only if f = g.

(b) Define a constant h such that the QCD field strength is Fμν = ∂μAν −
∂νAμ+ih[Aμ,Aν]. Let the gauge transformation forAμ be as in (a). Show
that Fμν transforms as Fμν → UFμνU

−1 only if h = g.

(3) Fermion self-energy in QED and QCD
(a) Express the fermion QED self-energy, −i�(p), of Fig. II–2(b) as a

Feynman integral and use dimensional regularization to verify the forms
of Z(MS)

2 , δm(MS) appearing in Eqs. (1.34), (1.35).
(b) Proceed analogously to determine Z2 for QCD and thus verify Eq. (2.55).

(4) Gravity as a gauge theory
The only force which remains outside of the present Standard Model is gravity.
General relativity is also a gauge theory, being invariant under local-coordinate
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transformations. The full theory is too complex for presentation here, but we
can study the weak field limit. In general relativity the metric tensor becomes
a function of spacetime, with the weak field limit being an expansion around
flat space, gμν(x) = gμν + hμν(x), with 1 
 hμν . Let us consider weak field
gravity coupled to a scalar field, with lagrangian L = Lgrav+Lmatter defined as

Lgrav = 1

64πGN

[
∂λhμν∂

λh̄μν − 2∂λh̄μλ∂σ h̄
μσ
]
,

Lmatter = 1

2

(
1− 1

2
hλλ

) [
(gμν + hμν)∂μϕ∂νϕ −m2ϕ2

]
,

where h̄μν ≡ hμν − gμνhλλ/2, all indices are raised and lowered with the flat
space metric gμν , and GN is the Cavendish constant.
(a) Show that the action is invariant under the action of an infinitesimal coor-

dinate translation, xμ → x ′μ = xμ + εμ(x) (1 
 εμ(x)), together with a
gauge change on hμν ,

ϕ(x)→ ϕ′(x ′) = ϕ(x),

hμν(x)→ h′μν(x ′) = hμν(x)+ ∂μεν(x)+ ∂νεμ(x).
Note: both εμ and hμν are infinitesimal and should be treated to first order
only.

(b) Obtain the equations of motion for ϕ and hμν . The source term for hμν is
T μν , the energy-momentum tensor for ϕ. Use the equation of motion for
hμν to show that T μν is conserved. Simplify the equations with the choice
of ‘harmonic gauge’, ∂νh̄μν = 0.

(c) Solve for hμν near a point mass at rest, corresponding to T 00 = Mδ(3)(x)

and T 0i = T ij = 0. Perform a nonrelativistic reduction for ϕ, i.e., ϕ(x, t) =
e−imt ϕ̃(x, t), in order to obtain a Schrödinger equation for ϕ̃ in the gravita-
tional field. Verify that Newtonian gravity is reproduced.
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Symmetries and anomalies

Application of the concept of symmetry leads to some of the most powerful tech-
niques in particle physics. The most familiar example is the use of gauge symmetry
to generate the lagrangian of the Standard Model. Symmetry methods are also valu-
able in extracting and organizing the physical predictions of the Standard Model.
Very often when dealing with hadronic physics, perturbation theory is not applic-
able to the calculation of quantities of physical interest. One turns in these cases
to symmetries and approximate symmetries. It is impressive how successful these
methods have been. Moreover, even if one could solve the theory exactly, symme-
try considerations would still be needed to organize the results and to make them
comprehensible. The identification of symmetries and near symmetries has been
considered in Chap. I. This chapter is devoted to their further study, both in general
and as applied to the Standard Model, with the intent of providing the foundation
for later applications.

III–1 Symmetries of the Standard Model

The treatment of symmetry in Sects. I–4, I–6 was carried out primarily in a general
context. In practice, however, we are most interested in the symmetries relevant
to the Standard Model. Let us briefly list these, reserving for some a much more
detailed study in later sections.

Gauge symmetries: As discussed in Chap. II, these are the SU(3)c × SU(2)L ×
U(1)Y gauge invariances. It is interesting to compare their differing realizations.
SU(3)c is unbroken but evidently confined, whereas SU(2)L × U(1)Y undergoes
spontaneous symmetry breaking, induced by the Higgs fields, leaving an unbroken
U(1)em gauge invariance.

Fermion-number symmetries: There exist global vector symmetries correspond-
ing to both lepton and quark number. These are of the form

76
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ψα → e−iQαθψα (1.1)

for fields of each chirality. The index α refers to either the set of all leptons or the
set of all quarks, and the conserved charges Qα are just the total number of quarks
minus antiquarks and the total number of leptons minus antileptons.1 Conservation
of baryon number B is violated due to an anomaly in the electroweak sector, but
B − L remains exact.

Global vectorial symmetries of QCD: If the quarks were all massless, there
would be a very high degree of symmetry associated with QCD. Even if m �= 0,
symmetries are possible if two or more quark masses are equal. Three of the quarks
(c, b, t) are heavy compared to the confinement scale QCD and widely spaced in
mass, so they cannot be accommodated into a global symmetry scheme.2 However,
the u, d, and s quarks are light enough that their associated symmetries are useful.
The best of these is the isospin invariance, which consists of field transformations

ψ =
(
u

d

)
→ ψ ′ = exp(−iτ · θ)ψ (1.2)

where {τ i} (i = 1, 2, 3) are SU(2) Pauli matrices and {θ i} are the components of
an arbitrary constant vector. Associated with the SU(2)-flavor invariance are the
three Noether currents

J (i)μ = ψ̄γμ
τ i

2
ψ. (1.3)

Isospin symmetry is broken by the up–down mass difference,

Lmass = −mu +md

2
(ūu+ d̄d)− mu −md

2
(ūu− d̄d) (1.4)

and by electromagnetic and weak interactions. Inclusion of the strange quark
extends isospin to SU(3)-flavor transformations

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = exp(−iθ · λ)ψ, (1.5)

where {λa} (a = 1, 2, . . . , 8) are the SU(3)Gell-Mann matrices. The SU(3)-flavor
symmetry is broken significantly by the strange quark mass, and to a lesser extent
by other effects. Predictions of isospin symmetry work at the 1% level, whereas
SU(3) predictions hold only to about 30%. It is occasionally convenient to employ

1 In Chap. VI, we return to the study of lepton-number violation through possible Majorana mass terms
2 See, however, the discussion of the dynamical heavy-quark symmetries in Chap. XII–3
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a particular SU(2) subgroup of SU(3), called U -spin, which corresponds to the
transformations (

d

s

)
→ exp(−iτ · θ)

(
d

s

)
. (1.6)

U spin is also a symmetry of the electromagnetic interaction, since its generators
commute with the electric-charge operator. The U -spin symmetry is broken by the
large d-quark, s-quark mass difference.

Approximate chiral symmetries of QCD: The vectorial symmetries are valid if
quark masses are equal. If the masses vanish, there are additional chiral sym-
metries, because in this limit the left-handed and right-handed components of the
fields are decoupled (cf. Sect. I–3),

LQCD

∣∣∣∣
m=0

= −1

4
Fa
μνF

aμν + ψ̄L/DψL + ψ̄R/DψR, (1.7)

i.e., the left-handed and right-handed fields have separate invariances. For massless
up-and-down chiral quarks, the symmetry operations are

ψL → exp(−iθL · τ )ψL ≡ LψL, ψR → exp(−iθR · τ )ψR ≡ RψR (1.8)

where ψL,R are chiral projections of the ψ doublet in Eq. (1.2). These can also be
expressed as vector and axial-vector isospin transformations,

ψ → exp(−iθV · τ )ψ, ψ → exp(−iθA · τγ5)ψ (1.9)

with θV = (θL + θR)/2, and θA = (θL − θR)/2. This invariance is variously
referred to as chiral-SU(2), SU(2)L × SU(2)R, or SU(2)V × SU(2)A. In QCD, it
is broken by quark mass terms,

Lmass = −muūu−mdd̄d = −mu(ūLuR + ūRuL)−md(d̄LdR + d̄RdL). (1.10)

Thus, if mu=md �= 0, separate left-handed and right-handed invariances no longer
exist, but rather only the vector isospin symmetry. The generalization to three mass-
less quarks defines chiral SU(3) (or SU(3)L × SU(3)R) and is a straightforward
extension of the above ideas.

Discrete symmetries: Since the Standard Model is a hermitian and Lorentz-
invariant local quantum field theory, it is invariant under the combined set of
transformations CPT. Both QCD (given the absence of the θ-term) and QED con-
serve P , C, and T separately. By contrast, the electroweak interactions have max-
imal violation of P and C in the charged-current sector. If a nonzero phase resides
in the quark-mixing matrix, there will exist a breaking of CP, or equivalently of T ,
invariance. Otherwise the weak interactions are invariant under the product CP.
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In addition to the above exact or approximate symmetries of the Standard Model,
there are some important ‘non-symmetries’ of QCD. By these we mean invariances
of the underlying lagrangian, which might naively be expected to appear as sym-
metries of Nature but which, for a variety of reasons, do not. These include the
following.

Axial U(1): The QCD lagrangian would have an axial U(1) invariance of the
form

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = e−iθγ5ψ, (1.11)

if the u, d, s quarks were massless. However, this turns out not to be even an
approximately valid symmetry, as it has an anomaly. We shall return to this point
in Sect. III–3.

Scale transformations: If quarks were massless, the QCD lagrangian would con-
tain no dimensional parameters. The lagrangian would therefore be invariant under
the scale transformations

ψ(x)→ λ3/2ψ(λx), Aaμ(x)→ λAaμ(λx), (1.12)

where ψ and Aaμ are respectively the quark and gluon fields. This invariance is also
destroyed by anomalies (see Sect. III–4).

‘Flavor symmetry’: Because the gluon couplings are independent of the quark
flavor, one often finds reference in the literature to a flavor symmetry of QCD.
Unless the specific application is reducible to one of the above true symmetries,
one should not be misled into thinking that such a symmetry exists. For example,
flavor symmetry is often used in this context to relate properties of the pseudoscalar
mesons η(549) and η′(960) (or analogous particles in other nonets). However, the
result is rarely a symmetry prediction. Rather, this approach typically pertains to
specific assumptions about the way quarks behave, and is dressed up by incorrectly
being called a symmetry. In group theoretic language, this may arise by assuming
that QCD has a U(3) symmetry rather than just that of SU(3).

III–2 Path integrals and symmetries

The transition from classical physics to quantum physics is in many ways most
transparent in the path-integral formalism. In this chapter we use these techniques
to provide a quantum description of symmetries, complementing the treatment at
the classical level of Sects. I–4, I–6. A brief pedagogical introduction to those
path-integral techniques which are important for the Standard Model is provided
in App. A.
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The generating functional

In order to implement a quantum description of currents and current matrix ele-
ments, one studies the generating functional, Z, of the theory. For a generic field
ϕ, we have

Z[j ] = eiW [j ] =
∫
[dϕ] exp i

∫
d4x (L(ϕ, ∂ϕ)− jϕ), (2.1)

where j (x) is an arbitrary classical source field whose presence allows us to probe
the theory by studying its response to the source. The symbol [dϕ] indicates that
at each point of spacetime one integrates over all possible values of the field ϕ(x).
All the matrix elements needed to describe physical processes in the theory can be
obtained from lnZ[j ] by functional derivations, i.e.,

〈
0
∣∣T (ϕ(xk) . . . ϕ(xp))∣∣ 0〉 = (i)n

δn lnZ[j ]
δj (xk) . . . δj (xp)

∣∣∣∣
j=0

, (2.2)

where n is the number of fields in the matrix element. If there is more than one
field, i.e., the set {ϕi}, a separate source is introduced for each field.

If one wants to study a given current Jμ (not to be confused with the source j )
associated with some classical symmetry, one simply adds an extra classical source
field vμ, which is coupled to that current,

Z[j, vμ] =
∫
[dϕ] exp i

∫
d4x

(
L− jϕ − vμJμ

)
. (2.3)

In this case all matrix elements involving Jμ can be obtained by functional deriva-
tion with respect to vμ,

J̄ μ(x) = i
δ lnZ

δvμ(x)

∣∣∣∣
vμ=0

, (2.4)

where the bar in J̄ μ indicates that it is a functional describing matrix elements of
the current Jμ. Specific matrix elements are obtained by further derivatives, as in

〈0 |T (Jμ(x)ϕ(x1)ϕ(x2))| 0〉 = (i)2
δ2

δj (x1)δj (x2)
J̄ μ(x)

∣∣∣∣
j=0

. (2.5)

This device allows one to discuss all possible matrix elements of the current Jμ.
As an example, consider the vector and axial-vector currents of QED. We define

Z[vμ, aμ] ≡
∫
[dψ][dψ̄][dAμ]ei

∫
d4x(LQED−vμψ̄γ μψ−aμψ̄γ μγ5ψ). (2.6)
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A three-current (connected) matrix element is obtained then as

Tμαβ(x, y, z)conn ≡
〈
0
∣∣T (ψ̄(x)γμγ5ψ(x) ψ̄(y)γαψ(y) ψ̄(z)γβψ(z)

)∣∣ 0〉
= (i)3

[
δ2

δvα(y)δvβ(z)

δ

δaμ(x)
lnZ

]
vμ=0
aμ=0

= (i)2
δ2

δvα(y)δvβ(z)
J̄5μ(x) (2.7)

where the axial-vector quantity J̄5μ is defined in analogy with Eq. (2.4).

Noether’s theorem and path integrals

Returning to the general case, let us consider an infinitesimal transformation of a
set of fields {ϕi} (cf. Eq. (I–3.1))

ϕi → ϕ′i = ϕi + ε(x)fi(ϕ) (2.8)

such that the current under discussion is

Jμ(x) = ∂L′
∂(∂με)

. (2.9)

If this is a symmetry transformation, one has up to a total derivative,

L′ = L
(
ϕ′, ∂ϕ′

) = L (ϕ, ∂ϕ)+ Jμ∂με. (2.10)

If ε(x) is a constant, the lagrangian is invariant under the transformation. This is the
statement of the classical symmetry condition. In order to study the consequences
of this situation, we rewrite our previous definition of the current matrix elements

J̄ μ(x) = i
δ

δvμ(x)
lnZ[vν] (2.11)

in integral form by noting

δ lnZ[vμ] = lnZ[vμ + δvμ] − lnZ[vμ] ≡ −i
∫
d4x J̄ μ(x)δvμ(x), (2.12)

which is just the inverse of Eq. (2.11). Now choosing the particular form for δvμ,

δvμ(x) = −∂με(x), (2.13)

we have

δε lnZ[vμ] ≡ lnZ[vμ − ∂με] − lnZ[vμ]
= i

∫
d4x J̄ μ(x)∂με(x) = −i

∫
d4x ε(x)∂μJ̄

μ(x). (2.14)
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With this procedure we can isolate a divergence condition for J̄ μ. If Z[vμ−∂με] =
Z[vμ], then ∂μJ̄ μ(x) = 0. To check this, consider

Z[vμ − ∂με] =
∫
[dϕi] exp i

∫
d4x

(
L(ϕi, ∂ϕi)− (vμ − ∂με)Jμ

)
. (2.15)

If we can change integration variables so that∫
[dϕi] =

∫
[dϕ′i] (2.16)

with ϕ′i given by Eq. (2.8), then we obtain

Z[vμ − ∂με] =
∫
[dϕ′i] exp i

∫
d4x

(
L(ϕ′i , ∂ϕ′i )+ vμJμ

) = Z[vμ], (2.17)

and therefore

∂μJ̄
μ(x) = 0. (2.18)

This change of variables seems reasonable and in most cases is perfectly legitimate.
After all, the symbol [dϕi(x)]means that we integrate over all values of the field ϕi
separately at each point in spacetime. Shifting the origin of integration at point x by
a constant, ϕi(x) ≡ ϕ′i (x)−ε(x)fi , and then integrating over all values of ϕ′i should
amount to the original integration. Given this shift, we have obtained in Eq. (2.18)
by Noether’s theorem a quantum conservation law involving matrix elements. The
expression ∂μJ̄ μ(x) = 0 means that all matrix elements of Jμ, obtained via further
functional derivatives (as in Eq. (2.5)), satisfy a divergenceless condition, i.e., of
the current Jμ is conserved in all matrix elements.

It was Fujikawa who first pointed out the consequences if the change of vari-
ables, Eq. (2.16), is not a valid operation in a path integral [Fu 79]. Certainly,
many procedures involving path integrals need to be examined carefully in order
to see if they are well defined. We shall explicitly study some examples in which
the change of variable is nontrivial and can be calculated. In such cases one finds
∂μJ̄

μ(x) �= 0, which implies that the classical symmetry is not a quantum symme-
try. In these situations it is said that there exists an anomaly.

III–3 The U(1) axial anomaly

For massless quarks mu = md = ms = 0, the QCD lagrangian contains an invari-
ance LQCD → LQCD under the global U(1) axial transformations

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = e−iθγ5ψ. (3.1)
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In this limit, which we shall adopt until near the end of this chapter, Noether’s
theorem can be applied to identify the classically conserved axial current,

J
(0)
5μ = ūγμγ5u+ d̄γμγ5d + s̄γμγ5s, ∂μJ

(0)
5μ = 0, (3.2)

where the superscript on J (0)5μ denotes an SU(3) singlet current. We shall see that
this is not an approximate symmetry of the full quantum theory because the current
divergence has an anomaly. This can be demonstrated in various ways. For a direct
‘hands-on’ demonstration, the early discussion [Ad 69, BeJ 67, Ad 70] of Adler
and of Bell and Jackiw, which we recount below, has still not been improved upon.
However, for a deeper understanding, Fujikawa’s path-integral treatment [Fu 79],
also described below, seems to us to be the most illuminating. The effect of an
anomaly is simply stated, although one must go through some subtle calculations
to be convinced that the effect is inescapable. An anomaly is said to occur when a
symmetry of the classical action is not a true symmetry of the full quantum theory.
The Noether current is no longer divergenceless, but receives a contribution arising
from quantum corrections. It is this contribution which is often loosely referred
to as the anomaly. The Ward identities which relate matrix elements no longer
hold, but rather are replaced by a set of anomalous Ward identities, which take into
account the correct current divergence.

There are two applications of the axial anomaly which have proved to be of
particular importance to the Standard Model. One is in connection with the SU(3)
singlet axial current described above. Here the anomaly will end up telling us that
the current is not conserved in the chiral limit, but rather that

∂μJ
(0)
μ5 =

3αs
4π

Fa
μνF̃

aμν

(
F̃ a
μν ≡

1

2
εμναβF a

αβ

)
. (3.3)

This will serve to keep the ninth pseudoscalar meson, the η′, from being a pseudo-
Goldstone boson.

The other application is in the decay π0 → γ γ , which is historically the process
wherein the anomaly was discovered. The quantity of interest here is an isovector
axial current J (3)5μ which transforms as the third component of an SU(3)-flavor
octet,

J
(3)
5μ = ūγμγ5u− d̄γμγ5d. (3.4)

Without the anomaly, one would expect that the current J (3)5μ would be conserved
in the chiral SU(2) limit even in the presence of electromagnetism. This follows
from the apparently correct procedure
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∂μJ
(3)
5μ = ū

[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
u

− d̄
[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
d = 0.

(3.5)

However, explicit calculation shows that the current has an anomaly, such that

∂μJ
(3)
5μ = 2i

(
muūγ5u−mdd̄γ5d

)+ αNc

6π
FμνF̃

μν, (3.6)

where Fμν is the electromagnetic field strength. This will be important in predicting
the π0 → γ γ and η0 → γ γ rates and serves as a test for the number of quark
colors.

Diagrammatic analysis

To review the work of Adler and of Bell and Jackiw, we first consider the Ward
identities for the coupling of the U(1) axial current to two gluons. We define

T abμαβ(k, q) ≡ i

∫
d4x d4y eik·xeiq·y

〈
0
∣∣∣T (J (0)5μ (x)J

a
α (y)J

b
β (0)

)∣∣∣ 0〉 , (3.7)

where J aα is a flavor-singlet (color-octet) vector current coupled to gluons

J aα =
∑

q=u,d,s
qγα

λa

2
q. (3.8)

It is important to understand that the SU(3) matrices pertain here to the color
degree of freedom and should not be confused with analogous matrices which
operate in flavor space. The amplitude T abμαβ is related to the vacuum-to-digluon
matrix element by

〈Ga(λ1, q) G
b(λ2,−k − q)

∣∣J (0)5μ

∣∣0〉 = ig2
3ε

†α
1 ε

†β
2 T abμαβ(k, q). (3.9)

There are two Ward identities, representing the conservation of axial and vector
currents. The vector Ward identity, corresponding to color current conservation,
∂αJ aα = 0, is

qαT abμαβ(k, q) = 0. (3.10)

The axial Ward identity is derived in a similar fashion using the assumed conser-
vation of the U(1) axial current in the massless limit,

∂μJ
(0)
5μ (x) = 0, (3.11)

to yield

kμT abμαβ(k, q) = 0. (3.12)
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Fig. III–1 Triangle diagrams associated with the axial anomaly.

In order to reveal the anomalous behavior of this coupling, we calculate the
vertex in lowest-order perturbation theory via the triangle diagrams of Fig. III–1.
With the momenta as labeled in the figures, this produces the amplitude

T abμαβ = −3
∫

d4p

(2π)4

[
Tr

(
γμγ5

1

p/ + k/
γβ
λb

2

1

p/ − q/
γα
λa

2

1

p/

)
+ Tr

(
γμγ5

1

p/ + k/
γα
λa

2

1

p/ + k/ + q/
γβ
λb

2

1

p/

)]
, (3.13)

where the prefactor of 3 arises from the three massless quarks, each of which con-
tributes equally.

Observe that these integrals are linearly divergent, and so may not be well defined.
In particular, there exists an ambiguity corresponding to the different possible ways
to label the loop momentum. An example will prove instructive, so we consider the
integral

Iγ =
∫
d4p

[
pγ

p4
− (p − 
)γ
(p − 
)4

]
. (3.14)

This is evaluated by transforming to Euclidean space, where p0 = ip4 and p2 =
−p2

4 − p2 ≡ −p2
E . In order to perform the integration, one may note that for a

general function, F(p), whose four-dimensional integral is linearly divergent (i.e.,
one with p3F(p) �= 0, but p3F ′(p) = p3F ′′(p) = . . . = 0 for p→∞), one finds
by Taylor expanding and using Gauss’ theorem that

∫
d4pE [F(p)− F(p − 
)] =

∫
d4pE

[

μ∂μF (p)− 1

2

μ
ν∂μ∂νF (p)+ · · ·

]
= 
μ

∫
d3Sμ

[
F(p)− 1

2

ν∂νF (p)+ · · ·

]
p→∞

= 
μ
∫
d3Sμ F(p)

∣∣∣∣
p→∞

(3.15)
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where d3Sμ indicates integration over a three-dimensional surface at p → ∞.3

Applying this result to the case at hand, we obtain a surface integral

Iγ = i

∫
d4pE

(
pγ

p4
− (p − 
)γ
(p − 
)4

)
= i
μ

∫
d3Sμ

pγ

p4
= i
μ

∫
d3S

pμ

p

pγ

p4
.

(3.16)

Note that from euclidean covariance we can replace pμpγ by δμγ p
2/4, to yield

Iγ = i

γ

4

∫
d3S

1

p3
= i

π2
γ

2
, (3.17)

where the last step uses the surface area of a three-dimensional surface in four-
dimensional euclidean space, S4 = 2π2R3.

In the case of T abμαβ , consider the effect of shifting the integration variable of the
first term in Eq. (3.13) from p to p + b1q + b2(−k − q). In order to maintain
the Bose symmetry of T abμαβ (i.e., symmetry under the interchange α ↔ β at the
same time as q ↔ (−k − q)) we must shift the second integration from p to
p + b1(−k − q)+ b2q. Use of Eqs. (3.14)–(3.17) then yields the change in T abμαβ

�T abμαβ =
6iδab

(2π)4
εμαβγ [I γ (b1q + b2(−q − k))− I γ (b1(−q − k)+ b2q)]

= − 3δab

16π2
(b1 − b2)εμαβγ (2q + k)γ , (3.18)

induced by the shift of the original integration variable pμ. This is an indication
that there may be trouble in the calculation of this diagram, but it is not yet proof
of any violation of the Ward identities.

Let us now check the Ward identities. In both cases, use can be made of identities
similar to qα = pα − (pα − qα) in order to change the result into a difference of
integrals. We find for the vector Ward identity

qαT abμαβ(k, q)

= −3δab

2

∫
d4p

(2π)4
Tr

[
γμγ5

1

p/ + k/
γβ

1

p/ − q/
− γμγ5

1

p/ + q/ + k/
γβ

1

p/

]
= −6iδabεμβρσ

∫
d4p

(2π)4

[
(p + k)ρ(p − q)σ
(p + k)2(p − q)2 −

(p + k + q)ρpσ
(p + k + q)2p2

]
, (3.19)

3 Note that this is just the four-dimensional generalization of the one-dimensional formula∫ ∞
−∞

dx [f (x + y)− f (x)] =
∫ ∞
−∞

dx

[
yf ′(x)+ 1

2
y2f ′′(x)+ · · ·

]
= y [f (∞)− f (−∞)] ,

valid for f (±∞) �= 0 but f ′(±∞) = f ′′(±∞) = . . . = 0.
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while for the axial-vector case,

kμT abμαβ(k, q) =
3δab

2

∫
d4p

(2π)4
Tr

[
γ5γβ

1

p/ − q/
γα

1

p/
+ γ5

1

p/ + k/
γβ

1

p/ − q/
γα

+ γ5γα
1

p/ + k/ + q/
γβ

1

p/
+ γ5

1

p/ + k/
γα

1

p/ + k/ + q/
γβ

]
= −6iδabεαβρσ

∫
d4p

(2π)4

[
(p + k + q)ρpσ
(p + k + q)2p2

− (p + k)ρ(p − q)σ
(p + k)2(p − q)2

+ (p + k)ρ(p + k + q)σ
(p + k)2(p + k + q)2 −

(p − q)ρpσ
(p − q)2p2

]
. (3.20)

It is easy to see that if one could freely shift the integration variable, each expres-
sion would separately vanish. However, direct calculation using Eqs. (3.14)–(3.17)
yields

qαT abμαβ(k, q) = −
3δab

16π2
εμβρσ k

ρqσ and kμT abμαβ(k, q) =
3δab

8π2
εαβρσ k

ρqσ .

(3.21)

If, on the other hand, the original integration variable were shifted as in Eq. (3.18)
one would obtain

qαT abμαβ(k, q) = −
3δab

16π2
(1+ b1 − b2) εμβρσ k

ρqσ ,

kμT abμαβ(k, q) =
3δab

8π2
(1− b1 + b2) εαβρσ k

ρqσ .

(3.22)

Thus, either one of the original Ward identities may be regained by a particular
choice of b1 − b2, but both expressions cannot vanish simultaneously.

Our discussion of the manipulations of Feynman diagrams should not obscure
the main physical fact illustrated above, i.e., despite the claim of Noether’s theo-
rem that there are two sets of conserved currents (vector SU(3) of color and axial-
vector U(1)), one-loop calculations indicate that only one can in fact be conserved.
On physical grounds, we know that in Nature the vector current is conserved, as
its charge corresponds to QCD color charge. Thus, it must be the axial current
which is not conserved. This phenomenon is at first sight quite surprising and it
deserves the name ‘anomaly’ by which it has come to be called. Noether’s theo-
rem has misled us, and it is only by direct calculation of the quantum corrections
that the true symmetry structure of the theory has been exposed. Note that the sit-
uation is not the same as spontaneous symmetry breaking, where the symmetry
is hidden by dynamical effects. There the currents remain conserved, as demon-
strated in Sect. I–6. Here, current conservation has been violated. In particular,
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the calculation described above (with b1 − b2 = 1) is consistent through use of
Eq. (3.9) with the operator relation of Eq. (3.3),

∂μJ
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν. (3.23)

Both sides of this equation have the same two-gluon matrix elements. It is clear
from this that the apparent U(1) symmetry predicted by Noether’s theorem is not
a symmetry of the quantum theory after all.

Path-integral analysis

In a path-integral treatment [Fu 79], the symmetry of the theory can be tested by
considering the generating functional, as described in Sect. III–2. In particular, if
we consider a functional of the gluon field Abμ and an axial current source aμ,

Z
[
aμ,A

c
λ

] = ∫ [dψ][dψ̄] exp i
∫
d4x

(
LQCD(ψ, ψ̄, A

c
λ)− aμJ (0)μ5

)
(3.24)

then the steps leading to Eq. (2.14) produce

−i
∫
d4x β(x)∂μJ̄

(0)
5μ (x) = lnZ

[
aμ − ∂μβ,Abμ

]− lnZ
[
aμ,A

b
μ

]
, (3.25)

where J̄ (0)5μ (x) denotes the matrix elements of the current J (0)5 ,

J̄
(0)
5μ (x) = i

δ

δaμ(x)
lnZ

[
aν, A

b
λ

] ∣∣
aν=0. (3.26)

In particular, the two-gluon matrix described above is given by

T abμαβ(x, y, z) = (i)2

[
δ2

δAαa (y)δA
β

b (z)
J̄
(0)
5μ (x)

] ∣∣∣∣
Ac
λ
=0

aν=0

. (3.27)

In order to solve for ∂μJ̄ (0)5μ , we note that the ∂μβ term can be absorbed into a
redefinition of the fermion fields. This can be seen from the identity (for infinitesi-
mal β),

ψ̄i/∂ψ + ∂μβ ψ̄γ μγ5ψ = ψ̄ (1− iβγ5) i/∂ (1− iβγ5) ψ. (3.28)

The following quantities are invariant under this transformation:

ψ̄/Aaλaψ = ψ̄(1− iβγ5)/A
aλa(1− iβγ5)ψ,

Jμ = ψ̄γμψ = ψ̄(1− iβγ5)γμ(1− iβγ5)ψ.
(3.29)
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Mass terms would not be invariant, but we are presently working in the massless
limit. Therefore, if we define

ψ ′ = (1− iβγ5)ψ = e−iβγ5ψ +O(β2),

ψ̄ ′ = ψ̄(1− iβγ5) = ψ̄e−iβγ5 +O(β2),
(3.30)

we see that the lagrangian can be written in terms of ψ ′,

LQCD(ψ, ψ̄, A
a
μ)+ ∂μβ J (0)5μ = LQCD(ψ

′, ψ̄ ′, Aaμ). (3.31)

Furthermore, we would like to change from ψ to ψ ′ in the path integration. To be
general, we allow for the possibility of a jacobian J accompanying this change of
variables, viz., ∫

[dψ][dψ̄] ≡
∫
[dψ ′][dψ̄ ′]J . (3.32)

If, as will be shown later, the jacobian J is independent of ψ and ψ̄ , it can be taken
to the outside of the path integral, resulting in

Z
[
aμ − ∂μβ,Aaμ

] = ∫ [dψ ′][dψ̄ ′]J ei ∫ d4x(LQCD(ψ
′,ψ̄ ′,Aaμ)−aμJμ5 )

= J Z
[
aμ,A

a
μ

]
.

(3.33)

Thus, the test for the symmetry, Eq. (3.25), depends entirely on J ,

lnJ = −i
∫
d4x β(x)∂μJ̄

(0)
5μ (x). (3.34)

The lesson learned is that if the lagrangian and the path-integral measure are invari-
ant under theU(1) transformation, then there exists aU(1) symmetry in the theory,
with ∂μJ̄ (0)5μ = 0. However, if the lagrangian is invariant, as it is in this case, but the
path integral is not (i.e. J �= 1), then the U(1) transformation is not a symmetry
of the theory, i.e., ∂μJ (0)5μ �= 0.

We shall show below that the jacobian, when properly regularized, has the form

J = exp (−2i trβγ5) = exp

[
−i
∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν

]
, (3.35)

so that the current divergence has the form given in Eq. (3.3),

∂μJ̄
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν.

Functional differentiation using Eq. (3.27) yields the same result for qμT abμαβ as
obtained in ordinary perturbation theory. The nontrivial transformation of the
path-integral measure has prevented the axial U(1) transformation from being a
symmetry of the theory. We now turn to the calculation of the jacobian.
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The jacobian in fact diverges, and a regularization is needed in order to make
it finite. In Fujikawa’s original calculation the regularizer was introduced early
into the procedure, allowing each step to be well defined. We will be slightly less
rigorous by introducing the regularizer somewhat later. In order to calculate the
jacobian we need to review the properties of integration over Grassmann numbers
(which are described in more detail in App. A–5). The anticommuting nature of the
variables requires that any function constructed from them terminates after linear
order in each variable. Thus, a function of two Grassman numbers z1, z2 (z1z2 =
−z2z1, z

2
i = 0) becomes

f (z1, z2) = f0 + f1z1 + f2z2 + f12z1z2, (3.36)

where f0, f1, f2, f12 are real numbers. The primary property of an integral to be
transferred to Grassmann numbers is completeness, i.e.,∫

dz f (z) =
∫
dz f (z+ z′), (3.37)

where z′ is a constant Grassmann number. Expanding both sides we have∫
dz (f0 + f1z) =

∫
dz
(
f0 + f1z+ f1z

′) (3.38)

For this to be true, the condition ∫
dz = 0 (3.39)

is required. Now consider a change of variables

z1 = c11z
′
1 + c12z

′
2, z2 = c21z

′
1 + c22z

′
2, (3.40)

involving a matrix of coefficients C. The jacobian is defined by∫
dz1 dz2 f (z) = J

∫
dz′1 dz

′
2 f (Cz

′). (3.41)

Application of Eq. (3.36) leads to the consideration of only the f12 term,

f12

∫
dz1 dz2 z1z2 = J f12

∫
dz′1 dz

′
2 (c11z

′
1 + c12z

′
2)(c21z

′
1 + c22z

′
2)

= J f12(c11c22 − c12c21)

∫
dz′1 dz

′
2 z
′
1z
′
2, (3.42)

and hence the identification of the jacobian,

J = [det C]−1 . (3.43)
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Although derived in the simple 2×2 case, Eq. (3.43) generalizes to arbitrary dimen-
sion. Note that, due to the Grassmann nature of the variables, this result is the
inverse of what would be expected with normal commuting variables.

Turning now to the path integral, we temporarily consider ψ(x) as a finite num-
ber of Grassmann variables corresponding to four Dirac indices at each point of
spacetime (i.e., imagine that the spacetime label is discrete and finite). At each
point, the transformation is from ψ → ψ ′

ψ(x) = eiβ(x)γ5ψ ′(x), ψ̄(x) = ψ̄ ′(x) eiβ(x)γ5, (3.44)

so that the overall jacobian has the form

J = [det
(
eiβγ5

)]−1 [
det
(
eiβγ5

)]−1
(3.45)

with one factor from each of the ψ and ψ̄ variables. The determinant runs over the
4 × 4 Dirac indices, the three flavors, colors, and also the spacetime indices. This
is a rather formal object, but can be made more explicit by using

det C = e tr ln C, (3.46)

valid for finite matrices, to write

J = e−2i trβγ5 . (3.47)

The symbol tr denotes a trace acting over spacetime indices plus Dirac indices,
flavors, and colors,

trβγ5 = Tr ′
∫
d4x 〈x|βγ5|x〉 , (3.48)

with Tr ′ indicating the Dirac, color, and flavor trace. This will become clearer
through direct calculation below.

The jacobian still is not regulated. Fujikawa suggested the removal of
high-energy eigenmodes of the Dirac field in a gauge-invariant way. Consider, for
example, the simple extension

J = lim
M→∞ exp

[
−2i tr

(
βγ5 e

−(/D/M)2
)]
, (3.49)

where /D is the QCD covariant derivative. The insertion of a complete set of eigen-
functions of /D exponentially removes those with large eigenvalues. There has been
an extensive literature demonstrating that other regularization methods produce the
same results as Fujikawa’s, provided that the regulator preserves the vector gauge
invariance.
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In order to complete the calculation we employ the following identity:

/D /D = 1

2
{γμ, γν}DμDν + 1

2
[γμ, γν]DμDν

= DμD
μ + 1

4
[γμ, γν]

[
Dμ,Dν

]
= DμD

μ + g3λ
a

4
σμνF a

μν.

(3.50)

In this case the expression 〈
x| exp−(/D/M)2|x〉 (3.51)

has the same form as given in Eqs. (B–1.1), (B–1.9), (B–1.17–18) with the identi-
fications

dμ = Dμ, σ = g3

4
σμνλaF a

μν, τ = 1

M2
. (3.52)

Applying the calculation done there to our present situation yields

J = lim
M→∞

e−2i
∫
d4x Tr (β(x)γ5H(x,M

−2))

= lim
M→∞ e

1
8π2

∫
d4x Tr (β(x)γ5[M4a0+M2a1+a2+O(M−2)]).

(3.53)

The notation is defined in App. B–1. The first two traces vanish, leaving only the
factor with two σμν matrices in a2. From the result

Tr (γ5σ
μνσαβ) = −Tr γ5γ

μγ νγ αγ β = −4iεμναβ, (3.54)

it is easy to calculate

J = exp

(
1

16π2

∫
d4x β(x)Tr′

(
γ5
g2

3λ
aλb

16
σμνF a

μνσ
αβF b

αβ

))
= exp

( −1

16π2

∫
d4x β(x) 3 · 2δab · 4 iεμναβ g

2
3

16
Fa
μνF

b
αβ

)
= exp

(
−i
∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν

) (3.55)

where the trace Tr ′ has produced factors for three flavors, color, and the Dirac
trace.

Although the calculation of the jacobian has been somewhat involved, we have
succeeded in making sense out of what seemed to be a rather abstract object. The
fact that it is not unity is an indication that the U(1) transformation is not a sym-
metry of the theory. Applying Eq. (3.34) we see that

lnJ = −i
∫
d4x β(x)∂μJ̄

(0)
5μ (x) = −i

∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν, (3.56)
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or once again

∂μJ̄
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν. (3.57)

The choice of a regulator which preserves the vector SU(3) gauge symmetry is
important. Whereas in the Feynman diagram approach, we had the apparent free-
dom to shift the integration variable to preserve either the vector or axial-vector
symmetries, the corresponding freedom in the path-integral case is in the choice of
regularization.

If quark masses are included, the operator relation becomes

∂μJ
(0)
5μ (x) = 2i(muūγ5u+mdd̄γ5d +mss̄γ5s)+ 3αs

4π
Fa
μνF̃

aμν. (3.58)

Masses do not modify the coefficient of the anomaly, basically because it arises
from the ultraviolet divergent parts of the theory, which are insensitive to masses.

One does not have to go through these lengthy calculations for each new appli-
cation of the anomaly. The anomalous coupling for currents

V (b)
μ = ψ̄γμT

(b)
v ψ, A(b)μ = ψ̄γμγ5T

(b)
a ψ, (3.59)

where T (b)v , T (b)a are matrices in the space of quark flavors, is of the form

∂μA(b)μ = Dbcd

16π2
εμναβF c

μνF
d
αβ +mass terms, (3.60a)

Dbcd ≡ Nc

2
Tr
(
T (b)a

{
T (c)v , T (d)v

})
, (3.60b)

where Nc is the number of colors. In particular, for the electromagnetic coupling
to the isovector axial current we have

J
(3)
5μ = ūγμγ5u− d̄γμγ5d,

Dbcd = e2Nc Tr τ3Q
2 = Nc

3
e2,

(3.61)

leading to the result already quoted in Eq. (3.6).
The full content of the anomaly was given by Bardeen [Ba 69]. Consider a

fermion with η internal degrees of freedom (flavor or color) coupled to vector and
axial-vector currents vμ, aμ,

L = ψ (i/∂ − /v − /aγ5) ψ. (3.62)

These currents are in an η × η representation

vμ = v0
μI + vkμλk, aμ = a0

μI + akμλk. (3.63)
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Thus, the axial current is J (k)5μ = ψγμγ5λ
kψ , and the anomaly equation becomes

∂μJ
(k)
5μ =

1

4π2
εμναβ Tr

[
λk
(

1

4
vμνvαβ + 1

12
aμνaαβ

−2i

3
aμaνvαβ − 2i

3
vμνaαaβ − 2i

3
aμvναaβ − 8

3
aμaνaαaβ

)]
,

vμν = ∂μvν − ∂νvμ + i[vμ, vν] + i[aμ, aν],
aμν = ∂μaν − ∂νaμ + i[vμ, aν] − i[vν, aμ]. (3.64)

This may also be expressed in terms of the left-handed and right-handed field
tensors 
μν and rμν by using the identities,


μν ≡ ∂μ
ν − ∂ν
μ + i[
μ, 
ν] = vμν + aμν,
rμν ≡ ∂μrν − ∂νrμ + i[rμ, rν] = vμν − aμν,
1

4
vμνvαβ + 1

12
aμνaαβ = 1

12

(

μν


μν + rμνrμν
)+ 1

24

(

μνr

μν + rμν
μν
)
. (3.65)

In the language of Feynman diagrams, one encounters the anomaly contributions
not only in the triangle diagram, but also in square and pentagon diagrams (e.g.
from the aμaνaαaβ term). Our previous result, Eq. (3.57), is obtained for aμ= 0,
vμ = g3A

k
μλ

k/2, with three flavors and three colors of quarks.
We have seen that symmetries of the classical lagrangian are not always sym-

metries of the full quantum theory. This is the general situation when there are
anomalies. These appear in perturbation theory and are associated with divergent
Feynman diagrams. This sometimes gives the mistaken impression that the dynam-
ics has ‘broken’ the symmetry, and hence one might expect a massless particle
through the application of Goldstone’s theorem. In the path-integral framework the
impression is different. There the symmetry never exists in the first place, as the
calculation performed above is simply the path-integral test for a symmetry, gener-
alizing Noether’s theorem. Hence there is in general no expectation for a Goldstone
boson.

Can anomalies cause problems? When the anomaly occurs in a global symme-
try, such as the above U(1) example, the answer is, ‘no’. They just need to be
taken properly into account, e.g., as in Eq. (3.61). Given the specific form of the
anomaly operator relation, there exist ‘anomalous Ward identities’ which contain
terms attributable to the anomaly [Cr 78]. These anomalies can even be associated
with a variety of specific phenomena. For example, in Sect. VII–6 we shall see how
the decay π0 → γ γ is attributed to the axial anomaly.

The presence of anomalies in gauge theories is far more serious because they
destroy the gauge invariance of the theory and wreak havoc with renormalizability.
Thus, one attempts to employ only those gauge theories which have no anomalies.
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In some cases this can be arranged by ensuring, through the group or particle con-
tent of the theory, that the coefficient Dbcd of Eq. (3.60b) vanishes. For example,
in the Standard Model it must be checked that this occurs for all combinations of
the SU(3)c × SU(2)L × U(1)Y generators. These were already compiled in Eqs.
(II–3.5a–c) and were seen to lead to the quantized fermion charge values observed
in Nature.

III–4 Classical scale invariance and the trace anomaly

If the fermion masses were zero in either QED or QCD, these theories would con-
tain no dimensional parameters in the lagrangian, and they would exhibit a classical
scale invariance. The associated quark and gluon scale transformations would be
ψ(x) → λ3/2ψ(λx) and Aaμ(x) → λAaμ(λx) for arbitrary λ. We saw in Sect. I–4
that this leads to a traceless energy-momentum tensor, with conserved dilation
current Jμscale,

J
μ

scale = xνθ
μν, ∂μJ

μ

scale = θνν = 0, (4.1)

where θμν is the energy-momentum tensor. Such a situation would have drastic
consequences on the theory, since all single particle states would be massless.
This can be seen as follows. For any hadron H , the matrix element of the energy-
momentum tensor at zero-momentum transfer is

〈H(k) |θμν |H(k)〉 = 2kμkν, (4.2)

where the normalization of states is chosen in accordance with the conventions
defined in App. C–3. A vanishing trace would imply zero mass, i.e.,〈

H(k)
∣∣θμμ∣∣H(k)〉 = 0 = 2M2

H . (4.3)

This is most obviously a problem in QCD where the quark masses are small com-
pared to most composite particle masses.4 We would not expect the proton mass to
vanish if the quark masses were set equal to zero yet the scale-invariance argument
implies that it must.

A resolution is suggested by the method which is used to renormalize the
theory. In practice, renormalization prescriptions introduce dimensional scales into
the theory. Most commonly, there is the momentum scale at which one specifies
the running coupling constant to have a particular value, e.g., αs(91 GeV) � 0.12.
This in turn defines a scale  which enters the formula for the running coupling
constant, Eq. (II–2.74). Thus, to fully specify QCD one needs to specify not only
the lagrangian, but also a scale parameter, and the full quantum theory is not scale

4 As can be justified, we neglect here the existence of very heavy quarks, c, b, and t .
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invariant. Although this argument does not, at first sight, seem to nullify the reason-
ing based on Noether’s theorem, it turns out that the trace of the energy-momentum
tensor has an anomaly [Cr 72, ChE 72, CoDJ 77], and the specification of a scale
and the coefficient of the anomaly are in fact related.

In the following, let us start directly with the path-integral treatment [Fu 81],
again in the framework of QCD, concentrating on the effect of a single quark. We
can introduce an external source coupled to θμμ into the generating functional

Z[h,Aaμ] =
∫
dψ dψ̄ei

∫
d4x[LQCD(ψ,A

a
μ)+h(x)θμμ], (4.4)

where

θμν = i

2
ψ̄γ μ

↔
Dνψ. (4.5)

As in the case of the chiral anomaly, we can use this as a starting point to explore
the nature of the trace θμμ. The key is that if one makes the change of variables

ψ(x) = e−α(x)/2ψ ′(x), (4.6)

one obtains for infinitesimal α∫
d4x

[
LQCD

(
ψ,Aaμ(x)

)+ α(x)θμμ]
=
∫
d4x

[
LQCD

(
ψ ′, Aaμ

)+ α(x)mψ̄ ′ψ ′ + iψ̄ ′γμψ ′∂μα] . (4.7)

The last term vanishes after an integration by parts. The focus of our calculation
can thus be shifted to a jacobian J by a change of variable,

Z
[
h+ α,Aaμ

] = ∫ dψ dψ̄ ei
∫
d4x[LQCD(ψ,Aaμ)+(h+α)θμμ]

=
∫
dψ dψ̄ ei

∫
d4x[LQCD(ψ ′,Aaμ)+hθμμ+αmψ̄ ′ψ ′]

=
∫
dψ ′ dψ̄ ′ J ei

∫
d4x[LQCD(ψ ′,Aaμ)+hθμμ+αmψ̄ ′ψ ′].

(4.8)

Thus, we obtain the identity

i

∫
d4x θμμα(x) = lnJ + i

∫
d4x mψ̄ψ α(x). (4.9)

The form of the jacobian which follows from the work done in Sect. III–3 is

J = [det
(
e−α/2

)]−2 = lim
M→∞ e

Tr ′
∫
d4x 〈x|α exp−(D//M)2|x〉, (4.10)

where we have adopted the same regulator as used previously.
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The final result is easily obtained from the general heat-kernel calculation of
App. B–1, again using the identities of Eqs. (B–1.17), (B–1.18). After some algebra
this becomes

Tr ′
〈
x
∣∣exp −(/D/M)2

∣∣ x〉
= iM4

16π2
Tr ′
[

1− g2
3λ

aλb

32M4
σμνσαβF a

μνF
b
αβ +

[Dμ,Dν][Dμ,Dν]
12M4

+ · · ·
]

= 3iM4

4π2
+ ig2

3

48π2
Fa
μνF

μν
a + · · · . (4.11)

Here we have found both a term which is a divergent constant, and one which
involves two-gluon field strengths. The divergent constant corresponds to the infi-
nite zero-point energy of the vacuum. This can be seen by noting that if the zero-
point energy is defined by the vacuum matrix element

〈0|H(x)|0〉 = E0

V
= 〈0 ∣∣θ00(x)

∣∣ 0〉 , (4.12)

then Lorentz covariance requires a nonzero trace

〈0 |θμν(x)| 0〉 = E0

V
gμν =⇒ 〈

0
∣∣θμμ(x)∣∣ 0〉 = 4

E0

V
. (4.13)

Thus, a constant in the vacuum matrix element of the trace is just four times the
zero-point energy density. It is standard practice to subtract off this zero-point
energy, and we shall do so by dropping the constant term. This is similar to the
procedure of normal ordering the energy-momentum tensor.

If we now combine these results using Eq. (4.9), we obtain

i

∫
d4x θμμα(x) = i

∫
d4x

[
g2

3

48π2
Fa
μνF

aμν +mψ̄ψ
]
α(x), (4.14)

which is equivalent to the operator relation

θμμ =
αs

12π
Fa
μνF

aμν +mψ̄ψ. (4.15)

One may also derive the trace anomaly via the calculation of Feynman dia-
grams, the triangle diagrams of Fig. III–1, but with the axial current replaced
by the energy-momentum tensor. The trace anomaly is different from the chiral
anomaly in that it receives contributions also from gluons. In the Feynman diagram
approach, this arises from the replacement of quark lines by gluons, while in the
path-integral context it occurs when one considers scale transformations of the
gluon field. A full calculation yields

θμμ =
βQCD

2g3
Fa
μνF

aμν +muuu+mddd +msss + · · · , (4.16)
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where βQCD is the beta function of QCD (cf. Eq. (II–2.57b)). The result of our
previous calculation, Eq. (4.15), corresponds to the lowest order contribution of a
single quark to the beta function.

A feeling of why the beta function enters can be obtained from an extremely
simple, but heuristic, derivation of the trace anomaly. Let us rescale the gluon field
to A

a

μ ≡ g3A
a
μ, such that the massless action becomes

L = − 1

4g2
3

F̄ a
μνF̄

aμν + iψγ μD̄μψ. (4.17)

The coupling constant g3 now enters only as an overall factor in the first term.
However in renormalizing the coupling constant, we need to introduce a renormal-
ization scale. If we interpret this coupling as a running parameter, the action is no
longer invariant under scale transformations. Instead, taking λ = 1+ δλ, we find

δS

δλ
=
∫
d4x

∂

∂λ

(
− 1

4g2
3(λ)

)
F̄ a
μνF̄

aμν =
∫
d4x

βQCD(g3)

2g3
Fa
μνF

aμν, (4.18)

where we have changed back to the standard normalization of Aaμ in the final term.
By Noether’s theorem, the scale current is no longer conserved, and Eq. (4.16)
is reproduced. The need to specify a scale in defining the coupling constant has
removed the scale invariance of the theory.

The trace anomaly occupies a significant place in the phenomenology of hadrons
because it is the signal for the generation of hadronic masses. Returning to the
discussion of masses which began this section, we see that the mass of a state is
expressible as a matrix element of the energy-momentum trace. For example, we
find for the nucleon state that

mNū(p)u(p) = 〈N(p)|θμμ|N(p)〉
= 〈N(p)|βQCD

2g3
Fa
μνF

aμν +mss̄s +muūu+mdd̄d|N(p)〉. (4.19)

The terms containing the light quark masses mu,md are expected to be small, and
indeed the ‘σ -term’ determined in πN scattering (cf. Sect. III–3) implies that they
contribute about only 45 MeV. This leaves the bulk of the nucleon’s mass to the
gluon and s-quark terms in Eq. (4.19), of which the Fa

μνF
aμν part is expected to be

dominant. Although this presents a conceptual problem for the naive quark model
interpretation of the proton as a composite of three light quarks, it is nevertheless
a central result of QCD.

III–5 Chiral anomalies and vacuum structure

There is a fascinating connection between the axial anomaly described previously
in this chapter and the vacuum of QCD. This has important phenomenological
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consequences for both the η′ mass and the strong CP problem. Here we present an
introductory account of this topic [Pe 89].

The θ vacuum

One is used to considering the effect on gluon fields of ‘small’ gauge transforma-
tions, i.e., those which are connected to the identity operator in a continuous man-
ner. There also exist ‘large’ gauge transformations which change the color gauge
fields in a more drastic fashion. For example the gauge transformation [JaR 76]
generated by

1(x) ≡ x2 − d2

x2 + d2
+ 2idτ · x

x2 + d2
, (5.1)

where d is an arbitrary parameter and τ is an SU(2) Pauli matrix in any SU(2)
subgroup of SU(3), transforms the null potential A(x) = 0 into

A(1)
j (x) = −

i

g3

(∇j1(x)
)
−1

1 (x)

= − 2d

g3
(
x2 + d2

)2 [τ j (d2 − x2)+ 2xj (τ · x)− 2d(x× τ )j
]
. (5.2)

Here, we are using the matrix notation

Aμ ≡ Aaμ
λa

2
. (5.3)

This potential lies in an SU(2) subgroup of the full color SU(3) group, and is
‘large’ in the sense that it cannot be brought continuously into the identity. The
τ · x factor couples the internal color indices to the spatial position such that a path
in coordinate space implies a corresponding path in the SU(2) color subspace.
All gauge potentials Aμ carry a conserved topological charge called the winding
number,

n = ig3
3

24π2

∫
d3x Tr

(
Ai(x)Aj (x)Ak(x)

)
εijk. (5.4)

As can be demonstrated by direct substitution, the gauge field of Eq. (5.2) corre-
sponds to the value n = 1. Fields with any integer value of the winding number n
can be obtained by repeated applications of 1(x), viz.,

n(x) = [1(x)]n . (5.5)

All gauge potentials can be classified into disjoint sectors labeled by their winding
number.
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The existence of these distinct classes has interesting consequences. For exam-
ple, consider a configuration of the gluon field that starts off at t = −∞ as the zero
potential A(x) = 0, has some interpolating A(x, t) for intermediate times, and ends
up at t = +∞ lying in the gauge-equivalent configuration A(x) = A(1)(x).5 Then
the following integral can be shown to be nonvanishing:

g2
3

32π2

∫
d4x F a

μνF̃
aμν (F̃ aμν ≡ 1

2
εμναβF a

αβ). (5.6)

This is surprising because the integrand is a total divergence. As noted previously
in Eq. (II–2.23), FF̃ can be written as

Fa
μνF̃

aμν = ∂μK
μ, Kμ = εμνλσ [AaνF a

λσ +
1

3
g3fabcA

a
νA

b
λA

c
σ ], (5.7)

and thus the integral can be written as a surface integral at t = ±∞. For the field
configuration under consideration, this reduces to the winding-number integral

g2
3

32π2

∫
d4x F a

μνF̃
aμν = g2

3

32π2

∫
d4x ∂μK

μ

= g2
3

32π2

∫
d3x K0

∣∣∣∣t=∞
t=−∞

= g3
3

24π2
i

∫
d3x εijk Tr

(
A(1)
i (x)A

(1)
j (x)A

(1)
k (x)

)
= 1. (5.8)

More generally, the integral of FF̃ gives the change in the winding number

g2
3

32π2

∫
d4x F a

μνF̃
aμν = g2

3

32π2

∫
d3x K0

∣∣∣∣t=∞
t=−∞

= n+ − n− (5.9)

between asymptotic gauge-field configurations.
Thus, the vacuum state vector will be characterized by configurations of gluon

fields, which fall into classes labeled by the winding number. Moreover, there will
exist a corespondence between the gauge transformations {n} and unitary oper-
ators {Un}, which transform the state vectors. For example, a vacuum state domi-
nated by field configurations in the zero winding class (‘near’ to Aμ = 0) would be
transformed by U1 into configurations with a dominance of n = 1 configurations,
or more generally,

U1|n〉 = |n+ 1〉. (5.10)

5 Such configurations are known to exist [Co 85].
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This implies that a gauge-invariant vacuum state requires contributions from all
classes, such as the coherent superposition

|θ〉 =
∑
n

e−inθ |n〉, (5.11)

where θ is an arbitrary parameter. It follows from Eq. (5.10) that this θ-vacuum is
gauge-invariant up to an overall phase

U1|θ〉 = eiθ |θ〉. (5.12)

The QCD vacuum must contain contributions from all topological classes.

The θ term

Given this nontrivial vacuum structure, one requires three ingredients to completely
specify QCD: (1) the QCD lagrangian, (2) the coupling constant (i.e. QCD), and
(3) the vacuum label θ . How can we account for the different vacua corresponding
to different choices of θ? In a path-integral representation, the θ = 0 vacuum would
imply generic transition elements of the form

out〈θ = 0|X|θ = 0〉in =
∫
[dAμ][dψ] [dψ̄] XeiSQCD =

∑
n,m

out〈m|X|n〉in.

(5.13)

The presence of a nonzero θ leads to an extra phase,

out〈θ |X|θ〉in =
∑
n,m

ei(m−n)θ out〈m|X|n〉in. (5.14)

However, this phase can be accounted for in the path integral by the addition of a
new term to SQCD. In particular we have, through the use of Eq. (5.9),

out〈θ |X|θ〉in =
∫
[dAμ][dψ][dψ̄] X e

iSQCD+i g2
3

32π2 θ
∫
d4x FaμνF̃

aμν

=
∑
n,m

ei(m−n)θ out〈m|X|n〉in,
(5.15)

where X is some operator. We see that the quantity (m− n) given by the winding-
number difference of the fields contributing to the path integral is equivalent to a
new exponential factor containing Fa

μνF̃
aμν . Thus, a correct procedure for doing

calculations involving θ vacua is to follow the ordinary path-integral methods but
with a QCD lagrangian containing the new term

LQCD = L(θ=0)
QCD + θ g2

3

32π2
Fa
μνF̃

aμν. (5.16)
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The parameter θ is to be considered a coupling constant. Since the operator FF̃ is
P -odd and T -odd, a nonzero θ can induce measurable T violation. In Sect. IX–4,
we shall show how to connect θ to physical observables. There is an important dis-
tinction between the various θ vacua of QCD and the many possible vacuum states
of a spontaneously broken symmetry such as the Higgs sector of the electroweak
theory. In the latter case, the various possible vacuum expectation values of the
Higgs field label different states within the same theory. In contrast, each value of
θ corresponds to a different theory, just as each value of QCD would label a dif-
ferent theory. Specifying θ and QCD then specifies the content of the version of
QCD used by Nature.

Connection with chiral rotations

There is a connection between the axial anomaly and the presence of a θ vacuum
[’tH 76a,b]. It involves the matrix element of FF̃ as follows. Consider the limit of
Nf massless quarks. The U(1) axial current

J
(0)
5μ =

Nf∑
j=1

ψ̄jγμγ5ψj (5.17)

is not conserved due to the anomaly,

∂μJ
(0)
5μ =

Nfαs

4π
Fa
μνF̃

aμν. (5.18)

However, because of the fact that FF̃ is a total divergence, one can define a new
conserved current

J̃5μ = J
(0)
5μ −

Nfαs

4π
Kμ. (5.19)

While J̃5μ does form a conserved charge,

Q̃5 =
∫
d3x J̃5,0(x), (5.20)

neither Q̃5 nor J̃5μ is gauge-invariant. In fact, under the gauge transformation 1

of Eq. (5.1), it follows from Eq. (5.8) that the operator Q̃5 changes by a c-number
integer

U1Q̃5U
−1
1 = Q̃5 − 2Nf . (5.21)

This tells us that in the world of massless quarks, the different θ-vacua are related
by a chiral U(1) transformation,

U1 e
iαQ̃5 |θ〉 = U1e

iαQ̃5U−1
1 U1|θ〉 = ei(θ−2Nf α)eiαQ̃5 |θ〉, (5.22)
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or, from Eq. (5.12),

eiαQ̃5 |θ〉 = |θ − 2Nfα〉, (5.23)

where α is a constant. Therefore, in the limit of massless quarks, when Q̃5 is a
conserved quantity, all of the θ vacua are equivalent and one can transform away the
θ dependence by a chiral U(1) transformation. The same is not true if quarks have
mass, as the mass terms in LQCD are not invariant under a chiral transformation.
We shall return to this topic in Sect. IX–4.

To summarize, one finds that the existence of topologically nontrivial gauge
transformations, and of field configurations which make transitions between the
different topological sectors of the theory, leads to the existence of nonvanishing
effects from a new term in the QCD action. Chiral rotations can change the value
of θ , allowing it to be rotated away if any of the quarks are massless. However,
for massive quarks, the net effect is a measurable CP-violating term in the QCD
lagrangian.

III–6 Baryon- and lepton-number violation in the Standard Model

An even more dramatic effect arises from an anomaly in the current for the total
baryon plus lepton number (B + L). Baryon number appears to be a conserved
quantity when Noether’s theorem is applied to the lagrangian of the Standard
Model, as is total lepton number.6 The invariances are

q → eiϕBq, 
→ eiϕL
 (6.1)

for all quarks q and leptons 
. The corresponding currents involve the sum over all
quarks and leptons

J
μ

B =
1

3
(ūγ μu+ d̄γ μd + · · · )

J
μ

L = ēγ μe + ν̄eLγ μνeL + · · · ,
(6.2)

where the normalization of the baryon current is chosen to give a baryon a charge
of +1.

The baryon current is vectorial, and naively might not be expected to have an
anomaly. However, the coupling of the quarks to the SU(2)L and U(1)Y gauge
bosons violates parity, so that there are VVA triangle diagrams involving the
baryon current with two gauge currents. For example, the triangle diagram

6 If there are neutrino Majorana masses, lepton number will be violated. However, this is independent of the
anomaly effect discussed in this section. Majorana masses will be discussed in Chap. VI.
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involving the baryon current with the U(1)Y hypercharge current has a VVA tri-
angle involving the quantum number sum

Tr(B(YL + YR)(YL − YR)) = −2 (6.3)

where B = 1/3 for quarks and B = 0 for leptons. These diagrams then yield an
anomaly. Because the axial current of this triangle is a gauge current, any gauge-
invariant regularization of the triangle diagram will place the anomaly in global
baryon-number current even though it is vectorial (see the discussion surrounding
Eq. (3.22)). Similar anomalies occur in the lepton number current.7 The anomalies
cancel if we take the difference of the baryon and lepton currents, with the resulting
anomaly equations

∂μ(J
μ

B − JμL ) = 0

∂μ(J
μ

B + JμL ) =
3

32π2

(
g2

2F
i
μνF̃

μν

i − g2
1BμνB̃

μν
)
.

(6.4)

Here we see that, because of the anomaly, baryon number is in fact not conserved
in the Standard Model, although B − L is.

However, the baryon-number violation due to the anomaly is unmeasurably small
at low temperature. Any transition that would change baryon number is non-
perturbative in nature, as it is not seen in the usual perturbative Feynman rules.
In weakly coupled field theory, such nonperturbative phenomena are suppressed in
rate by a factor [’tH 76b]

[e−8π2/g2
2 ]2 ∼ 10−160, (6.5)

so that such transitions are unobservable.
At high temperatures the situation is different [KuRS 85]. The classical solu-

tion mediating a transition which changes baryon number, a sphaleron [KlM 84],
is known in the limit θw → 0 and the corrections due to a nonzero θw can be
estimated. The solution has an energy around Esph ∼ 10 TeV, taking into account
the measured Higgs-boson mass. At high temperature, thermal effects can cause
transitions with a Boltzmann factor e−Esph/T , and at very high temperatures all
suppressions disappear and the rate per unit volume scales with the temperature
�/V ∼ T 4.

This has an important consequence – at equilibrium in the early Universe an
initial excess of baryons can disappear. More precisely, the equilibrium value of
B + L is zero at high temperature. However, B − L is still conserved, so that an
initial excess of B − L will be preserved.

7 Because possible right-handed neutrinos have no gauge couplings, their presence would not modify the
anomaly.
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It is natural to ask if a sufficiently large baryon asymmetry in the Universe can
be generated by out-of-equilibrium processes near the electroweak phase transi-
tion, using only Standard Model interactions. The answer appears to be negative
[GaHOP 94], as the necessary CP violation within the Standard Model is too small
and the phase transition is not strong enough. New interactions near the weak scale
could provide the needed extra physics. Alternatively, the residual baryon asymme-
try may arise from a net B − L generated in the Universe before the electroweak
epoch. Within the context of the Standard Model interactions, the simplest such
possibility is leptogenesis involving heavy right-handed neutrinos with Majorana
masses. This mechanism will be discussed in Sect. VI–6.

Problems

(1) Currents and anomalies
(a) Verify that all currents coupled to gauge bosons in the Standard Model are

anomaly free.
(b) Find the relative strength of the anomaly coupling of the baryon number

current to the SU(2)L and U(1)R gauge bosons.
(2) Trace anomaly in QED

In d dimensions, the trace of the energy-momentum tensor does not vanish
classically, except at d = 4. For example, in massless QED the energy-
momentum tensor,

θμν = −Fμ
λ F

λν + 1

4
gμνF λσFλσ + i

2
ψ̄γ μ

↔
Dνψ,

has trace θμμ = d−4
4 FλσFλσ . In the renormalization of the operator FλσFλσ ,

one encounters a renormalization constant which diverges as d → 4. Use this
feature to calculate the QED trace anomaly using dimensional regularization.
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Introduction to effective field theory

The purpose of an effective field theory is to represent in a simple way the dynam-
ical content of a theory in the low-energy limit. One uses only those light degrees
of freedom that are active at low energy, and treats their interactions in a full
field-theoretic framework. The effective field theory is often technically non-
renormalizable, yet loop diagrams are included and renormalization of the physical
parameters is readily accomplished.

Effective field theory is used in all aspects of the Standard Model and beyond,
from QED to superstrings. Perhaps the best setting for learning about the topic is
that of chiral symmetry. Besides being historically important in the development of
effective field theory techniques, chiral symmetry is a rather subtle subject, which
can be used to illustrate all aspects of the method, viz., the low-energy expansion,
non-leading behavior, loops, renormalization and symmetry breaking. In addition,
the results can be tested directly by experiment since the chiral effective field theory
provides a framework for understanding the very low-energy limit of QCD.

In this chapter we introduce effective field theory by a study of the linear sigma
model, and discuss the generalization of these techniques to other settings.

IV–1 Effective lagrangians and the sigma model

The linear sigma model, introduced in Sects. I–4, I–6, provides a ‘user friendly’
introduction to effective field theory because all the relevant manipulations can be
explicitly demonstrated. The Goldstone boson fields, the pions, are present at all
stages of the calculation. It also introduces many concepts which are relevant for
the low enegy limit of QCD. However, low-energy QCD is far less transparent,
involving a transference from the quark and gluon degrees of freedom of the origi-
nal lagrangian to the pions of the physical spectrum. Nevertheless, the low-energy
properties of the two theories have many similarities.

106
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The first topic that we need to describe is that of an ‘effective lagrangian’. First,
let us illustrate this concept by simply quoting the result to be derived below. Recall
the sigma model of Eq. (I–4.14),

L = ψ̄i/∂ψ + 1

2
∂μπ · ∂μπ + 1

2
∂μσ∂

μσ

− gψ̄ (σ − iτ · πγ5) ψ + 1

2
μ2
(
σ 2 + π2

)− λ

4

(
σ 2 + π2

)2
. (1.1)

This is a renormalizable field theory of pions, and from it one can calculate any
desired pion amplitude. Alternatively, if one works at low-energy (E � μ), then
it turns out that all matrix elements of pions are contained in the rather different
looking ‘effective lagrangian’

Leff = F 2

4
Tr
(
∂μU∂

μU †
)
, U = exp iτ · π/F, (1.2)

where F = v = √μ2/λ at tree level (cf. Eq. (I–6.9)). This effective lagrangian is
to be used by expanding in powers of the pion field

Leff = 1

2
∂μπ · ∂μπ + 1

6F 2

[(
π · ∂μπ

)2 − π2
(
∂μπ · ∂μπ

)]+ · · · , (1.3)

and taking tree-level matrix elements. This procedure is a relatively simple way of
encoding all the low-energy predictions of the theory. Moreover, with this effective
lagrangian is the starting point of a full effective field theory treatment including
loops, which we will develop in Sect. IV–3.

Representations of the sigma model

In order to embark on the path to the effective field theory approach, let us rewrite
the sigma model lagrangian as

L = 1

4
Tr
(
∂μ�∂

μ�†
)+ μ2

4
Tr
(
�†�

)− λ

16

[
Tr�†�

]2
+ ψ̄Li/∂ψL + ψ̄Ri/∂ψR − g

(
ψ̄L�ψR + ψ̄R�†ψL

)
, (1.4)

with � = σ + iτ · π . The model is invariant under the SU(2)L × SU(2)R trans-
formations

ψL → LψL, ψR → RψR, �→ L�R† (1.5)

for L,R in SU(2). This is the linear representation.1

1 A number of distinct 2× 2 matrix notations, among them �, U , and M , are commonly employed in the
literature for either the linear or the nonlinear cases. It is always best to check the definition being employed
and to learn to be flexible.
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After symmetry breaking and the redefinition of the σ field,

σ = v + σ̃ , v =
√
μ2

λ
, (1.6)

the lagrangian reads2

L = 1

2

(
∂μσ̃ ∂

μσ̃ − 2μ2σ̃ 2
)+ 1

2
∂μπ · ∂μπ − λvσ̃

(
σ̃ 2 + π2

)
− λ

4

(
σ̃ 2 + π2

)2 + ψ̄ (i/∂ − gv)ψ − gψ̄ (σ̃ − iτ · πγ5) ψ, (1.7)

indicating massless pions and a nucleon of mass gv. All the interactions in the
model are simple nonderivative polynomial couplings.

There are other ways to display the content of the sigma model besides the above
linear representation. For example, instead of σ̃ and π one could define fields S
and ϕ,

S ≡
√
(σ̃ + v)2 + π2 − v = σ̃ + · · · , ϕ ≡ vπ√

(σ̃ + v)2 + π2

= π + · · · ,

(1.8)

where one expands in inverse powers of v. For lack of a better name, we can call
this the square-root representation. The lagrangian can be rewritten in terms of the
variables S and ϕ as

L = 1

2

[(
∂μS
)2 − 2μ2S2

]
+ 1

2

(
v + S
v

)2
[(
∂μϕ

)2 + (ϕ · ∂μϕ)2
v2 − ϕ2

]

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g

(
v + S
v

)
ψ̄
[(
v2 − ϕ2

)1/2 − iϕ · τγ5

]
ψ.

(1.9)

Although this looks a bit forbidding, no longer having simple polynomial interac-
tions, it is nothing more than a renaming of the fields. This form has several inter-
esting features. The pion-like fields, still massless, no longer occur in the potential
part of the lagrangian, but instead appear with derivative interactions. For vanishing
S, this is called the nonlinear sigma model.

Another nonlinear form, the exponential parameterization, will prove to be of
importance to us. Here the fields are written as

� = σ + iτ · π = (v + S)U, U = exp
(
iτ · π ′/v) (1.10)

such that π ′ = π + · · · . Using this form, we find

2 Here, and in subsequent expressions for L, we drop all additive constant terms.
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Fig. IV–1 Contributions to π+π0 elastic scattering.

L = 1

2

[(
∂μS
)2 − 2μ2S2

]
+ (v + S)2

4
Tr
(
∂μU∂

μU †
)

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g(v + S) (ψ̄LUψR + ψ̄RU †ψL

)
. (1.11)

The quantityU transforms under SU(2)L×SU(2)R in the same way as does�, i.e.,

U → LU R†. (1.12)

This lagrangian is reasonably compact and also has only derivative couplings for
pions.

Representation independence

We have introduced three sets of interactions with very different appearances. They
are all nonlinearly related. In each of these forms the free-particle sector, found by
looking at terms bilinear in the field variables, has the same masses and normal-
izations. To compare their dynamical content, let us calculate the scattering of the
Goldstone bosons of the theory, specifically π+π0 → π+π0. The diagrams that
enter at tree level are displayed in Fig. IV–1. The relevant terms in the lagrangians
and their tree-level scattering amplitudes are as follows.

(1) Linear form:

LI = −λ
4

(
π2
)2 − λvσ̃π2,

iMπ+π0→π+π0 = −2iλ+ (−2iλv)2
i

q2 −m2
σ

= −2iλ

[
1+ 2λv2

q2 − 2λv2

]
= iq2

v2
+ · · · , (1.13)

where q = p′+ − p+ = p0 − p′0 and the relation m2
σ = 2λv2 = 2μ2 has been

used. The contributions of Figs. IV–1(a), 1(b) are seen to cancel at q2 = 0.
Thus, to leading order, the amplitude is momentum-dependent even though
the interaction contains no derivatives. The vanishing of the amplitudes at zero
momentum is universal in the limit of exact chiral symmetry.
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(2) Square-root representation:

LI = 1

2

(
ϕ · ∂μϕ

)2(
v2 − ϕ2

) + S

v
∂μϕ · ∂μϕ. (1.14)

For this case, the contribution of Fig. IV–1(b) involves four factors of momen-
tum, two at each vertex, and so may be dropped at low-energy. For Fig. IV–1(a)
we find

LI = 1

2v2

(
ϕ0∂μϕ

0 + ϕ+∂μϕ− + ϕ−∂μϕ+
)2
,

iMϕ+ϕ0→ϕ+ϕ0 = i
(
p′+ − p+

)2
v2

= i q2

v2
+ · · · . (1.15)

(3) Exponential representation:

LI = (v + S)2
4

Tr
(
∂μU∂

μU †
)+ · · · . (1.16)

Again Fig. IV–1(b) has a higher-order (O(p4)) contribution, leaving only
Fig. IV–1(a),

LI = 1

6v2

[(
π ′ · ∂μπ ′

)2 − π ′2
(
∂μπ

′ · ∂μπ ′)] ,
iMπ+π0→π+π0 = i

(
p′+ − p+

)2
v2

+ · · · . (1.17)

The lesson to be learned is that all three representations give the same answer
despite very different forms and even different Feynman diagrams. A similar con-
clusion would follow for any other observable that one might wish to calculate.

The above analysis demonstrates a powerful field-theoretic theorem, proved first
by R. Haag [Ha 58, CoWZ 69, CaCWZ 69], on representation independence. It
states that if two fields are related nonlinearly, e.g., ϕ = χF(χ) with F(0) = 1,
then the same experimental observables result if one calculates with the field ϕ
using L (ϕ) or instead with χ using L (χF (χ)). The proof consists basically of
demonstrating that (i) two S-matrices are equivalent if they have the same single
particle singularities, and (ii) since F(0) = 1, ϕ and χ have the same free field
behavior and single-particle singularities. This result can be made plausible if we
think of the scattering in non-mathematical terms. If the free particles are isolated,
they have the same mass and charge and experiment cannot tell the ϕ particle from
the χ particle. At this level they are in fact the same particles, due to F(0) = 1.
The scattering experiment is then performed by colliding the particles. The results
cannot depend on whether a theorist has chosen to calculate the amplitude using
the ϕ or the χ names. That is, the physics cannot depend on a labeling convention.
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This result is quite useful as it lets us employ nonlinear representations in situ-
ations where they can simplify the calculation. The linear sigma model is a good
example. We have seen that the amplitudes of this theory are momentum-dependent.
Such behavior is obtained naturally when one uses the nonlinear representations,
whereas for the linear representation more complicated calculations involving
assorted cancelations of constant terms are required to produce the correct momen-
tum dependence. In addition, the nonlinear representations allow one to display the
low-energy results of the theory without explicitly including the massive σ̃ (or S)
and ψ fields.

IV–2 Integrating out heavy fields

When one is studying physics at some energy scaleE, one must explicitly take into
account all the particles which can be produced at that energy. What is the effect of
fields whose quanta are too heavy to be directly produced? They may still be felt
through virtual effects. When using an effective low-energy theory, one does not
include the heavy fields in the lagrangian, but their virtual effects are represented
by various couplings between light fields. The process of removing heavy fields
from the lagrangian is called integrating out the fields. Here, we shall explore this
process.

The decoupling theorem

There is a general result in field theory, called the decoupling theorem, which
describes how the heavy particles must enter into the low-energy theory [ApC 75,
OvS 80]. The theorem states that if the remaining low-energy theory is renormal-
izable, then all effects of the heavy-particle appear either as a renormalization
of the coupling constants in the theory or else are suppressed by powers of the
heavy-particle mass. We shall not display the formal proof. However, the result is
in accord with physical expectations. If the heavy particle’s mass becomes infinite,
one would indeed expect the influence of the particle to disappear. Any shift in
the coupling constants is not directly observable because the values of these cou-
plings are always determined from experiment. Inverse powers of heavy-particle
mass arise from propagators involving virtual exchange of the heavy particle.

In the Standard Model, the most obvious example of this is the role played in
low-energy physics by theW± and Z gauge bosons. For example, whileW±-loops
can contribute to the renormalization of the electric charge, the effect cannot be
isolated at low energies. Also, the residual form ofW±-exchange amplitudes is that
of a local product of two weak currents (Fermi interaction) with coupling strength
GF . Its effect is suppressed because GF ∝ M−2

W .
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However, in the Standard Model there is an example where the heavy-particle
effects do not decouple. For a heavy top quark, there are many loop diagrams which
do not vanish as mt → ∞, but instead behave as m2

t or ln(m2
t ). This can occur

because the electroweak theory with the t quark removed violates the SU(2)L
symmetry, as the full

(
t

b

)
doublet is no longer present. Without the constraint of

weak-isospin symmetry, the theory is not renormalizable and new divergences can
occur in flavor-changing processes. These would-be divergences are cut off in the
real theory by the mass mt . Note that at the same time as mt → ∞, the top quark
Yukawa coupling also goes to infinity, and hence induces strong coupling, which
can also lead to a violation of decoupling.

In the sigma model, all the low-energy couplings of the pions are proportional
to powers of 1/v2 ∝ 1/m2

σ , the simplest example being Eq. (1.9). Hence the effec-
tive renormalizable theory is in fact a free field theory, without interactions. The
interactions have been suppressed by powers of heavy-particle masses. We shall
use the energy expansion of the next section to organize the expansion in powers
of the inverse heavy mass.

Integrating out heavy fields at tree level

The name of this procedure comes from the path-integral formalism, where the
process of integrating out a heavy field H and leaving behind light fields 
i is
defined in terms of an effective action Weff[
i],

Z[
i] = eiWeff[
i ] ≡
∫

[dH ] ei
∫
d4xL(H(x),
i (x)). (2.1)

However, the procedure is equally familiar from perturbation theory, in which the
effect of the path integral is represented by a sum of Feynman diagrams.

Let us proceed with a path-integral example. Consider a linear coupling of H to
some combination of fields J , with the lagrangian

L = 1

2

(
∂μH∂

μH −m2
HH

2
)+ JH. (2.2)

One way to integrate out H is to ‘complete the square’, i.e., we write∫
d4x L(H, J ) =

∫
d4x

[
−1

2
HDH + JH

]
= −1

2

∫
d4x

[(
H −D−1J

)
D
(
H −D−1J

)− JD−1J
]

= −1

2

∫
d4x

[
H ′DH ′ − JD−1J

]
, (2.3)

where we have used the shorthand notations,
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D = +m2
H ,

D−1J = −
∫
d4y �F (x − y)J (y),(

x +m2
H

)
�F(x − y) = −δ4(x − y),

H ′(x) = H(x)+
∫
d4y �F (x − y)J (y),∫

d4x JD−1J = −
∫
d4x d4y J (x)�F (x − y)J (y), (2.4)

and have integrated by parts repeatedly. Since we integrate in the path integral
over all values of the field at each point of spacetime, we may change variables
[dH ] = [dH ′] so

Z[J ] = eiWeff[J ] =
∫
[dH ]ei

∫
d4xL(H,J )

=
∫
[dH ′]ei

∫
d4x
[
− 1

2H
′DH ′+ 1

2 JD−1J
]

= Z[0] e i2
∫
d4x JD−1J , (2.5)

where

Z[0] =
∫
[dH ′]ei

∫
d4x

[
− 1

2H
′DH ′

]
. (2.6)

Here, Z[0] is an overall constant that can be dropped from further consideration.
From this result we obtain the effective action

Weff[J ] = −1

2

∫
d4x d4y J (x)�F (x − y)J (y). (2.7a)

This action is nonlocal because it includes an integral over the propagator. How-
ever, the heavy-particle propagator is peaked at small distances, of order 1/m2

H .
This allows us to obtain a local lagrangian by Taylor expanding J (y) as

J (y) = J (x)+ (y − x)μ [∂μJ (y)]y=x + · · · . (2.7b)

Keeping the leading term and using∫
d4y �F (x − y) = − 1

m2
H

, (2.8)

we obtain

Weff[J ] =
∫
d4x

1

2m2
H

J (x) J (x)+ · · · , (2.9)
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where the ellipses denote terms suppressed by additional powers of mH . Outside
of the path-integral context, this result is familiar from W -exchange in the weak
interactions.

Matching the sigma model at tree level

We can apply this procedure to the lagrangian for the sigma model, where the scalar
field S is heavy with respect to the Goldstone bosons. Thus, considering the theory
in the low-energy limit, we may integrate out the field S. Referring to Eq. (1.11)
and neglecting the S2 interactions, it is clear that we should make the identifications
H → S and J → v Tr (∂μU∂μU †)/2. The effective lagrangian then takes the
form

Leff = v2

4
Tr
(
∂μU∂

μU †
)+ v2

8m2
S

[
Tr
(
∂μU∂

μU †
)]2 + · · · , (2.10)

where the second term in Eq. (2.10) is the result of integrating out the S-field and
gives rise to the diagram of Fig. IV–1(b). Additional tree-level diagrams are implied
by the sigma model when one includes the S3 and S4 interactions. Since these carry
more derivatives, the above result is the correct tree-level answer with up to four
derivatives.

This calculation is an illustration of the concept of ‘matching’, here applied at
tree level. We match the effective field theory to the full theory in order to reproduce
the correct matrix elements. From the starting point of Eq. (1.11), we expect that
there will be a low-energy effective lagrangian, which is written as an expansion
in powers of Tr (∂μU∂μU †), with coefficients that are initially unknown. In the
matching procedure, we choose the coefficients to be those appropriate for the full
theory.

In calculating transitions of pions, this is then used by expanding the U matrix
in terms of the pion fields and taking matrix elements. At the lowest energies,
only the lagrangian with two derivatives is required, justifying the result quoted
in Eq. (1.2).3 Interested readers may verify that the two terms in Eq. (2.10) repro-
duce the first two terms in the π+π0 scattering amplitude previously obtained in
Eq. (1.13). However, we have gained a great deal by using the effective lagrangian
framework, because now all matrix elements of pions can be calculated simply to
this order in the energy by simply expanding the effective lagrangian and reading
off the answer.

3 We will show that this term is not modified by loop effects, aside from the renomalization of the parameter v.
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IV–3 Loops and renormalization

The treatment above has left us with a nonlinear effective lagrangian of the form
that is called ‘non-renormalizable’. It is also incomplete because loop diagrams
have not yet been considered. One might worry that because the effective lagrangian
is non-renormalizeable, loops would cause trouble. However, that is not the case.
Indeed, this situation helps demonstrate the ‘effectiveness’ of effective field
theory – we will see that the important loop processes are reproduced in a sim-
pler manner using the effective field theory.

Continuing our treatment of the linear sigma model, let us display the precise
formal correspondence between the full theory and the effective theory. If we are
only considering matrix elements involving the light pions, we can write the path
integral defining the theory4 as

Z[j] = N

∫
[dπ(x)] [dσ(x)] exp

[
i

∫
d4x (L [π(x), σ (x)]+ j(x) · π(x))

]
.

(3.1)

When working at low energies, we can then integrate out the heavy field σ to
produce the effective theory

Z[j] = N

∫
[dπ(x)] exp

[
i

∫
d4x (Leff [π(x)]+ j(x) · π(x))

]
. (3.2)

Because the σ field is heavy, its influence will not propagate far and the resulting
effective lagrangian will be local. However, this correspondence emphasizes the
fact that one is still left with a full field theory. It is not only at tree level that the
effective lagrangian must be applied. Loop processes must also be considered, as
is the case in any field theory. The original theory involves both σ and π loops,
while the effective theory has only the π loop diagrams. We will demonstrate how
to match the effective theory to the full theory through an explicit calculation.

In order to accomplish the renormalization and matching procedure for the effec-
tive theory we will need a lagrangian similar to the tree level form, but with initially
unknown coefficients that will be chosen later, i.e.,

Leff = v2

4
Tr
(
∂μU∂

μU †
)

+ 
1[Tr
(
∂μU∂

μU †
)]2 + 
2 Tr

(
∂μU∂νU

†
)

Tr
(
∂μU∂νU †

)
. (3.3)

This is the most general form consistent with the symmetry U → LUR†, contain-
ing up to four derivatives. The first portion of this lagrangian, when expanded in
terms of the pion field, yields the usual pion propagator as well as the lowest-order
result for the ππ scattering amplitudes.

4 Recall that σ = S in some previous formulas.
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Fig. IV–2 A subset of one-loop diagrams contributing to π+π0 elastic scattering.

Let us again consider the process π+ + π0 → π+ + π0, this time to one loop.
The full linear sigma model is renormalizeable and will yield finite predictions
in terms of the (renormalized) parameters of the theory. The effective theory has
been constructed to have the same vertices at the lowest energies, but will have
quite different high-energy properties because it is missing the extra high-energy
degree of freedom. There will be new divergences present in perturbation theory.
However, the low-energy effects will be similar in both calculations.

For example, consider the set of diagrams depicted in Fig. IV–2. In the full
theory, all of these diagrams exist, and our previous result of Eq. (1.13) can be
used to write the combined amplitudes as

iMfull =
∫

d4k

(2π)4

[
−2iλ+ (−2iλv)2

i

(k + p+)2 −m2
σ

]
i

(k + p+ + p0)2

i

k2

×
[
−2iλ+ (−2iλv)2

i

(k + p′+)2 −m2
σ

]
. (3.4)

The result is a sum of bubble, triangle, and box diagrams. The box in particular
is a very complicated function of the kinematic invariants, involving di-logarithms
[’tHV 79, DeNS 91, ElZ 08]. The divergence from the bubble diagram goes into
the renormalization of the λϕ4 coupling of the original lagrangian. For the effective
theory, in contrast, one uses only pions and considers only the bubble diagram.
The low-energy limit of the vertex is employed. Again, drawing from our results
of Eq. (1.13), also visible by taking the leading approximation for the vertices in
Eq. (3.4), one finds

iMeff =
∫

d4k

(2π)4
i(k + p+)2

v2

i

(k + p+ + p0)2

i

k2

i(k + p′+)2
v2

. (3.5)

This diagram has a different divergence than the full theory. It is also much simpler
kinematically, and its dimensional regularized form is easily evaluated as
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iMeff = i

96π2v4
s(s − u)

[
2

4− d − γ + ln 4π − ln
−s − iε
μ2

]
+ i

288π2v4
[2s2 − 5su], (3.6)

using the usual variables s = (p+ + p0)
2, t = (p+ − p′+)2, u = (p0 − p′+)2.

There are various interesting features of this result. Note that the whole ampli-
tude is of order (energy)4, while the original scattering vertex of Eq. (1.13) was
of order (energy)2. Technically, this follows simply from noting that the loop has
factors of 1/v4 and that in dimensional regularization the only other dimensional
factors are the external energies. On a more profound level it is an example of the
energy expansion of the effective theory – loops produce results that are suppressed
by higher powers of the momenta at low-energy. Because of this kinematic depen-
dence, one can also readily see that the divergence cannot be absorbed into the
renormalization of the original O(E2) effective lagrangian. In fact we know that
this divergence is spurious. It was generated because the effective theory had the
wrong high-energy behavior compared to the full theory. This is to be expected in
an effective theory – it does not pretend to know the content of the theory at all
energies. However, the divergence will disappear in the matching of the two theo-
ries through the renormalization of a term in the O(E4) lagrangian – this will be
demonstrated below.

Even more interesting from the physics point of view is that the s(s − u) ln−s
behavior is exactly what is found by taking the low-energy limit of the compli-
cated result from the full theory and expanding it to this order in the momenta.
This occurs because the ln−s factor comes from the low-energy regions of the
loop momenta, of order k ∼ s, so that the logarithm represents long-distance prop-
agation.5 Indeed, the imaginary part of the amplitude arising from ln(−s − iε) =
ln(s)−iπ (for s > 0) comes from the on-shell intermediate state of two pions. This
logarithm could never be represented by a local effective lagrangian and is a dis-
tinctive feature of long-distance (low-energy) quantum loops. These features match
in the two calculations because when the loop momenta are small the effective
field theory approximation for the vertex is valid. Overall, the effective field
theory has an incorrect high-energy behavior but does capture the correct low-
energy dynamics.

The comparison of the full theory and the effective theory can be carried out
directly for this reaction. The dimensionally regularized result for the full theory
is given in [MaM 08], but is too complicated to be reproduced here. However the

5 Short distance pieces from higher values of k would be analytic functions able to be Taylor expanded around
s = 0.
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expansion of the full theory at low-energy in terms of renormalized parameters is
relatively simple [GaL 84]

Mfull = t

v2
+
[

1

m2
σ v

2
− 11

96π2v4

]
t2

− 1

144π2v4
[s(s − u)+ u(u− s)]

− 1

96π2v4

[
3t2 ln

−t
m2
σ

+ s(s − u) ln
−s
m2
σ

+ u(u− s) ln
−u
m2
σ

]
. (3.7)

The effective theory result [Le 72, GaL 84] has a very similar form but does not
know about the existence of the σ ,

Meff = t

v2
+
[

8
r1 + 2
r2 +
5

192π2

]
t2

v4

+
[

2
r2 +
7

576π2

]
[s(s − u)+ u(u− s)]/v4 (3.8)

− 1

96π2v4

[
3t2 ln

−t
μ2
+ s(s − u) ln

−s
μ2
+ u(u− s) ln

−u
μ2

]
,

where we have defined6


r1 = 
1 + 1

384π2

[
2

4− d − γ + ln 4π

]

r2 = 
2 + 1

192π2

[
2

4− d − γ + ln 4π

]
. (3.9)

At this stage we can match the two theories, providing identical scattering ampli-
tudes to this order, through the choice


r1 =
v2

8m2
σ

+ 1

192π2

[
ln
m2
σ

μ2
− 35

6

]

r2 =

1

384π2

[
ln
m2
σ

μ2
− 11

6

]
. (3.10)

The reader is invited to compare this result with the tree-level matching, Eq. (2.10).
We have not only obtained a more precise matching, we also have generated impor-
tant kinematic dependence, particularly the logarithms, in the scattering
amplitude.

We have seen that the predictions of the full theory can be reproduced even
when using only the light degrees of freedom, as long as one chooses the coeffi-
cient of the effective lagrangian appropriately. This holds for all observables. Once

6 Readers who compare with [GaL 84] should be aware that our normalization of the 
i coefficients differs by
a factor of four.
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the matching is done, other processes can be calculated using the effective theory
without the need to match again for each process.7 The total effect of the heavy
particle, both tree diagrams and loops, has been reduced to a few numbers in the
lagrangian which we have deduced from matching conditions to a given order in
an expansion in the energy.

In this example we match to a known calculable theory. In other realizations of
effective field theory, the full theory may be unknown (for example, in the case
of gravity [Do 94]) or very difficult to calculate (as we will discuss for QCD). In
cases where direct matching is not possible, the renormalized coefficients in the
lagrangian could be determined through measurement. Measuring the value of the
coefficients in one reaction would allow them to be used by the effective theory in
other processes.

IV–4 General features of effective field theory

After this explicit example, let us think more generally about effective field theo-
ries. In quantum mechanics and quantum field theory, we face what appears to
be an impossible situation. Intermediate states in perturbation theory and in loop
diagrams include all energies, even beyond those which have been probed experi-
mentally. Yet we expect more new particles and new interactions to be present
eventually at higher energies. How can we then reliably perform any calculation
without knowing the particles and interactions at all energies which enter in our
calculations?

The answer essentially comes from the uncertainty principle. Effects from high
energy appear local when viewed at low energy. This means that they are equivalent
to terms in a local lagrangian. Most often the coefficient of a particular term in a
lagrangian – a mass or a coupling constant – is something that we have to measure.
So the effects of physics from high energy is contained in the parameters that we
measure at low energy.

Effective field theory embraces this fact and uses it to perform calculations at
low energy. In theories where the high-energy limit is known, such as our linear
sigma model example above, the coefficients of the effective lagrangian can be
determined by matching. In theories where the high-energy physics is not known,
we still know that its effect is local, so that we parameterize it by the most general
local lagrangian.

The decoupling theorem tells us that the high-energy effect appears in renormal-
ized couplings or in terms suppressed by powers of the heavy scale. In this sense, all
of our theories can be viewed as effective field theories. The class of renormalizable

7 As part of our treatment of QCD, we show the universality of the renormalization in Appendix B–2.
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field theories is a subset of effective field theories in which the power-suppressed
lagrangians have not yet been needed.

Effective lagrangians and symmetries

What would happen if, instead of having a straightforward known theory like the
linear sigma model, we were dealing with an unknown or unsolvable theory with
the same SU(2)L × SU(2)R chiral symmetry? In this case there would exist some
set of pion interactions which, although not explicitly known, would be greatly
restricted by the SU(2) chiral symmetry. Once again we could choose to describe
the pion fields in terms of the exponential parameterization U , with a symmetry
transformation

U → LUR† (4.1)

for L,R in SU(2). Not having an explicit prescription, we would proceed to write
out the most general effective lagrangian consistent with the chiral symmetry. In
view of the infinite number of possible terms contained in such a description, this
would appear to be a daunting process. However, the energy expansion allows it to
be manageable.

It is not difficult to generate candidate interactions which are invariant under
chiral SU(2) transformations. For the purpose of illustration, we list the following
two-derivative, four-derivative, and six-derivative terms in the exponential param-
eterization,

Tr
(
∂μU∂

μU †
)
, Tr

(
∂μU∂νU

†
) · Tr

(
∂μU∂νU †

)
,

Tr
(
∂μU∂

μU †
) · Tr

(
∂νU ∂νU †

)
. (4.2)

There can be no derivative-free terms in a list such as this because Tr
(
U U †

) =
2 is a constant. It is clear that one can generate innumerable similar terms with
arbitrary numbers of derivatives. The general lagrangian can be organized by the
dimensionality of the operators,

L = L2 + L4 + L6 + L8 + · · ·
= F 2

4
Tr
(
∂μU∂

μU †
)+ 
1[Tr

(
∂μU∂

μU †
)]2

+ 
2 Tr
(
∂μU∂νU

†
) · Tr

(
∂μU∂νU †

)+ · · · . (4.3)

The important point is that, at sufficiently low energies, the matrix elements of
most of these terms are very small since each derivative becomes a factor of the
momentum q when matrix elements are taken. It follows from dimensional analy-
sis that the coefficient of an operator with n derivatives behaves as 1/Mn−4, where
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M is a mass scale which depends on the specific theory. Therefore, the effect of
an n-derivative vertex is of order En/Mn−4, and, at an energy small compared
to M , large-n terms have a very small effect. At the lowest energy, only a single
lagrangian, the one in Eq. (3.3) with two derivatives, is required. We shall call this
an ‘O(E2)’ contribution in subsequent discussions. The most important correc-
tions to this involve four derivatives, and are therefore ‘O(E4)’. In practice then,
the infinity of possible contributions is reduced to only a small number. The coef-
ficients of these terms are not generally known, and must thus be determined phe-
nomenologically. However, once fixed by experiment (or by matching to the full
theory if possible) they can be used to allow predictions to be made for a variety of
reactions.

Power counting and loops

It would appear that loop diagrams could upset the dimensional counting described
above. This might happen in the calculation of a given loop diagram if, for example,
two of the momentum factors from an O(E4) lagrangian are involved in the loop
and are thus proportional to the loop momentum. Integrating over the loop momen-
tum apparently leaves only two factors of the ‘low’ energy variable. It would there-
fore seem that for certain loop diagrams, an O(E4) lagrangian could behave as if it
were O(E2). If this happened, it would be a disaster because arbitrarily high order
lagrangians would contribute at O(E2) when loops were calculated. As we shall
show, this does not occur. In fact, the reverse happens. When O(E2) lagrangians
are used in loops, they contribute to O(E4) or higher.

Before we give the formal proof of this result, let us note that we saw this
effect in the linear sigma model calculation above. We started by using the order
E2 lagrangian in the loop diagram and the result was the renormalization of a
lagrangian at order E4. It is also straightforward to demonstrate why this occurs.
Consider a pion loop diagram, as in Fig. IV–2. From the explicit form displayed in
Eq. (3.5), we see that

M(loop)
π+π0→π+π0 ≡ 1

v4
I (p+, p0, p

′
+), (4.4)

where I is the loop integral with the factor v−4 extracted. Counting powers of
energy factors is most easily done in dimensional regularization. The loop integral
contains no dimensional factors other than p+, p0, and p′+. Since, in four dimen-
sions it has the overall energy unit E4, it must therefore be expressible as fourth
order in momentum. Despite the loop integration, the end result is expressed only
in terms of the external momenta. These momenta are small, and hence all the
energy factors involved in power counting are taken at low-energy. In dimensional
regularization, there can also be a dependence on the arbitrary scale μ,
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d4
→ μ4−d

∫
dd
, (4.5)

but in the limit d → 4 this occurs only in dimensionless logarithms such as
ln(E2/μ2). Thus, the order of momentum can be found by counting the factors
of 1/v2 which occur for every vertex from the lowest-order lagrangians. Each fac-
tor of 1/v2 must be accompanied by momenta in the numerator in order to produce
a dimensionless amplitude. Each vertex in a diagram contributes powers of 1/v2,
and higher-order loop diagrams require more vertices. Thus, every time a loop is
formed, the overall momentum power of the amplitude must increase rather than
decrease.

We have also seen that any divergences present can be handled in the usual way,
by renormalizations of the parameters in the theory. Again, the uncertainty prin-
ciple comes into play – the divergences come from the extreme high-energy part
of the calculation and thus they must look like some term in a local lagrangain.
If the original effective lagrangian which we have written down is indeed the
most general one consistent with the given symmetry, then it must have enough
parameters of the right form to encompass any divergences which occur. In par-
ticular, our power-counting argument tells us that when L2 is used in one-loop
diagrams, the divergences are of order E4 and should be capable of being absorbed
into the parameters of that order. Since the parameters are generally unknown and
are to be determined phenomenologically, the only difference this makes is to
cast physical results in terms of the renormalized parameters instead of the bare
ones.

Weinberg’s power-counting theorem

To prove this result [We 79b], consider some diagram with a total of NV vertices.
Then letting Nn be the number of vertices arising from the subset of effective
lagrangians which contain n derivatives (e.g. N4 is the number of vertices com-
ing from four-derivative lagrangians), we have NV = �nNn. The overall energy
dimensionality of the coupling constants is thus MNC with

NC =
∑
n

Nn(4− n), (4.6)

where M is a mass scale entering into the coefficients of the effective lagrangian
(e.g., the quantity v in the sigma model). Each pion field comes with a factor of
1/v, so that associated with NE external pions and NI internal pion lines is an
energy factor (1/M)2NI+NE . (Recall that two pions must be contracted to form an
internal line.) However, the number of internal lines can be eliminated in terms of
the number of vertices and loops (NL),
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NI = NL +NV − 1 = NL +
∑
n

Nn − 1. (4.7)

Any remaining dimensional factors must be made up of powers of the energy E
times a dimensionless factor of E/μ where μ is the scale employed for renormal-
izing the coupling constants. (When using dimensional regularization, these factors
of E/μ enter only in logarithms.) Thus the overall matrix element is composed of
energy factors

M ∼ (M)
∑

n Nn(n−4) 1

MNE+2NL+2
∑

n Nn−2
EDF(E/μ)

∼ (mass or energy)4−NE , (4.8)

where the second line is the overall dimension of an amplitude with NE external
bosons. The renormalization scale μ can be chosen of the order of E so no large
factors are present in F(E/μ). Overall the energy dimension is then

D = 2+
∑
n

Nn(n− 2)+ 2NL. (4.9)

A diagram containing NL loops contributes at a power E2NL higher than the tree
diagrams. This theorem is of great practical consequence. At low energy, it allows
one to work with only small numbers of loops. In particular, at O(E4) only one-
loop diagrams generated from L2 need to be considered.

The end result is a very simple rule for counting the order of the energy expan-
sion. The lowest-order (E2) behavior is given by the two-derivative lagrangians
treated at tree level. There are two sources at the next order (E4): (i) the O(E2)

one-loop amplitudes, and (ii) the tree-level O(E4) amplitudes. When the coeffi-
cients of the E4 lagrangians are renormalized, finite predictions result. Other effec-
tive field theories will have power-counting rules analogous to this one appropriate
for chiral theories.

The limits of an effective field theory

The effective field theory of the linear sigma model is valid for energies well below
the mass of the scalar particle in the theory, the σ or S. Once there is enough energy
to directly excite the S particle, it is clear that the effective theory is inadequate.
This energy scale is visible even within the effective theory itself. Scattering matrix
elements are an expansion in the energy, with a schematic form

M ∼ q2

v2

[
1+ q2

m2
σ

+ · · ·
]

(4.10)

and the scale of the energy dependence is determined largely by the scalar mass. As
the energy increases the corrections to the lowest-order result grow and eventually
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all terms in the energy expansion become equally important and the effective theory
breaks down. Thus, the effective theory reveals its own limits.

In more general effective field theories, there is always a separation of the heavy
degrees of freedom, which are integrated out from the theory, and the light degrees
of freedom, which are treated dynamically. In many instances, the natural sepa-
ration scale is set by a particle’s mass, as in the linear sigma model. We will see
that in the case of QCD, the meson resonances such as the ρ(770) do not appear
explicitly in the low-energy effective theory. Therefore, these have been integrated
out and help define the limits of the effective field theory. In other cases, we could
integrate some of the high-momentum modes of certain fields, while still keeping
the low-momentum modes of these same fields as active dynamical participants in
the low-energy theory. This is done for the effective hamiltonian for weak decays,
where we integrate out the high-energy modes of the gluonic fields. In these cases,
the scale that we have used to separate high and low energy defines the limit of
validity of the effective field theory.

Let us also address a rather subtle point concerning the energy scale of the effec-
tive theory. While we regularly use this idea of an energy scale defining the limit
of validity of the effective theory, there are times that we do not apply this sepa-
ration fully. In loop diagrams, if we wanted to only include loop effects below a
certain energy scale, we would need to employ a cut-off in the loop integral. This
is often inconvenient and if done carelessly could upset some of the symmetries of
the theory. Moreover, the presence of an additional dimensional factor in loop dia-
grams would upset some of the power-counting arguments described above. Most
often, practical calculations are performed using dimensional regularization. This
regulator has no knowledge of the energy scale of the theory and thus loop dia-
grams will in general include effects from energies where the effective theory is
not valid. However, again the uncertainty principle comes to our rescue. Even if
these spurious high-energy contributions are not correct, we know that their effect
is equivalent to a local term in the effective lagrangian. Any mistakes made in the
loop can be corrected by modifying the coefficients of the terms in the effective
lagrangian. Careful application of the procedures for matching or measuring the
parameters will return the the same physical predictions independent of the choice
of regularization scheme.

IV–5 Symmetry breaking

Effective lagrangians can be used not only in the limit of exact symmetry but also
to analyze the effect of small symmetry breaking. Let us first return to the sigma
model for an illustration of the method, and then consider the general technique.
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The SU(2)L × SU(2)R symmetry of the sigma model is explicitly broken if
the potential V (σ,π) is made slightly asymmetric, e.g., by the addition of the
term

Lbreaking = aσ = a

4
Tr
(
� +�+) (5.1)

to the basic lagrangian of Eq. (1.4). To first order in the quantity a, this shifts the
minimum of the potential to

v =
√
μ2

λ
+ a

2μ2
, (5.2)

and produces a pion mass

m2
π =

a

v
. (5.3)

Although the latter result can be found by using the linear representation and
expanding the fields about their vacuum expectation values, it is easier to use the
exponential representation,

Lbreaking = a

4
(v + S)Tr (U + U †) = a

4
(v + S)Tr

(
2−

(τ · π
v

)2 + · · ·
)

= a(v + S)− a

2v
π · π + · · · = a(v + S)− m2

π

2
π · π + · · · . (5.4)

The chiral SU(2) symmetry is seen to be slightly broken, but the vectorial SU(2)
isospin symmetry remains exact.

As we have seen, the O(E2) lagrangian is obtained by setting S = 0,

L2 = v2

4
Tr
(
∂μU∂

μU †
)+ m2

π

4
v2 Tr

(
U + U †

)
. (5.5)

Higher-order terms will contain products like[
m2
π Tr

(
U + U †

)]2
, m2

π Tr
(
U + U †

) · Tr
(
∂μU∂

μU †
)
, . . . , (5.6)

and can be obtained by integrating out the field S as was done in Sect. IV–2. It
is important to realize that the symmetry-breaking sector also has a low-energy
expansion, with each factor of m2

π being equivalent to two derivatives. If m2
π is

small, the expansion is a dual expansion in both the energy and the mass.
If we encounter a theory more general than the sigma model, the effect of a small

pion mass can be similarly expressed in low orders by,

Lbreaking = a1m
2
π Tr

(
U + U †

)+ a2
[
m2
π Tr

(
U + U †

)]2
+ a3m

2
π Tr

(
U + U †

)
Tr
(
∂μU∂

μU †
)+ a4m

2
π Tr

[
(U + U †)∂μU∂

μU †
]
,

(5.7)
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with coefficients that are generally not known. An important consideration is the
symmetry-transformation property of the perturbation. The symmetry-breaking
term of Eq. (5.1) is not invariant under separate left-handed and right-handed trans-
formations but only under those with L = R. All the terms in Eq. (5.7) have this
property.

Other symmetry breakings can be analyzed in a manner analogous to the treat-
ment just given of the mass term. One identifies the symmetry-transformation prop-
erty of the perturbing effect and writes the most general effective lagrangian with
that property. Most often the perturbation is treated to only first order, but higher-
order behavior can also be studied.

IV–6 Matrix elements of currents

There is an elegant technique which allows one, at a minimal increase in com-
plexity, to calculate matrix elements of currents from a chiral effective lagrangian
[GaL 84, 85a]. The idea is to add to the lagrangian terms containing external
sources coupled to the currents in question. Construction of the effective lagran-
gian, including source terms, then allows the current matrix elements to be easily
identified. We shall explain this technique here, and use it extensively in our dis-
cussion of QCD in subsequent chapters.

First, consider how current matrix elements are identified in a path-integral
framework. We have seen in Chap. III (see also App. A) that by adding a source
coupled to the desired current, matrix elements can be obtained from differentia-
tion of the path integral, e.g., Eqs. (III–2.2), (III–2.4). For example, we can modify
three-flavor QCD by adding sources to obtain

L = −1

4
Fa
μνF

μν
a + ψ̄i /Dψ − ψ̄γμ 1+ γ5

2

μψ − ψ̄γμ 1− γ5

2
rμψ

− ψ̄L(s + ip)ψR − ψ̄R(s − ip)ψL, (6.1)

where 
μ, rμ, s, p are 3× 3 matrix source functions expressible as


μ = 
0
μ + 
aμλa, rμ = r0

μ + raμλa, s = s0 + saλa, p = p0 + paλa, (6.2)

with a = 1, . . . , 8. The lagrangian in Eq. (6.1) reduces to the usual QCD lagrangian
in the limit 
μ = rμ = p = 0, s = m, where m is the 3×3 quark mass matrix. The
electromagnetic coupling can be obtained with the choice 
μ = rμ = eQAμ, where
Aμ is the photon field and Q is the electric charge operator defined in units of e.
Various currents can be read off from the lagrangian, such as the left-handed current
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J kLμ(x) = −
∂L

∂

μ

k (x)
= ψ̄(x)γμ

1+ γ5

2
λkψ(x) (6.3)

or the scalar density

ψ̄(x)ψ(x) = − ∂L
∂s0(x)

. (6.4)

Moreover, matrix elements of these currents can be formed from the path integral
by taking functional derivatives. The simplest example is

〈0 ∣∣ψ̄(x)ψ(x)∣∣ 0〉 = i
δ lnZ

δs0(x)

∣∣∣∣

=r=p=0
s=m

, (6.5)

while other examples appear in Sect. III–2.

Matrix elements and the effective action

A low-energy effective action for the Goldstone bosons of QCD will be a functional
of the external sources. One way to define the connection of the effective action
with QCD is to consider the effect of the sources,

eiW(
μ,rμ,s,p) =
∫

[dψ]
[
dψ
] [
dAaμ

]
ei
∫
d4x LQCD(ψ,ψ,A

a
μ,
μ,rμ,s,p). (6.6)

At low-energy, all heavy degrees of freedom can be integrated out and absorbed
into coefficients in the effective action W . However, the Goldstone bosons propa-
gate at low-energy, and they must be explicitly taken into account. One then writes
a representation of the form

eiW(
μ,rμ,s,p) =
∫
[dU ] ei

∫
d4x Leff(U,
μ,rμ,s,p), (6.7)

where as usual U contains the Goldstone fields. This form then allows inclusion of
all low-energy effects while maintaining the symmetries of QCD.

The lagrangian of Eq. (6.1) has an exact local chiral SU(3) invariance if we
have the external fields transform in the same way as gauge fields. In particular, the
transformations

ψL → L(x)ψL, ψR → R(x)ψR,


μ → L(x)
μL
†(x)+ i∂μL(x)L†(x),

rμ → R(x)rμR
†(x)+ i∂μR(x)R†(x), (6.8)

(s + ip)→ L(x)(s + ip)R†(x)

provide an invariance for any L(x), R(x) in SU(3).
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In constructing the effective action, these invariances must be included. This is
easy to do if 
μ and rμ enter in the same way as gauge fields. In particular, upon
defining a covariant derivative

DμU = ∂μU + i
μU − iUrμ, (6.9)

and field-strength tensors

Lμν = ∂μ
ν − ∂ν
μ + i[
μ, 
ν],
Rμν = ∂μrν − ∂νrμ + i[rμ, rν], (6.10)

we obtain the following covariant responses to local transformations:

U → L(x)UR†(x),

Lμν→ L(x)LμνL
†(x),

DμU→ L(x)DμUR
†(x),

Rμν → R(x)RμνR
†(x).

(6.11)

The effective action is then expressed in terms of these quantities. At order E2,
there are only two terms in the effective lagrangian,

L2 = F 2
π

4
Tr
(
DμUD

μU †
)+ F 2

π

4
Tr
(
χU † + Uχ†

)
, (6.12)

where

χ ≡ 2B0(s + ip) (6.13)

and B0 is a constant with the dimension of mass. In the limit 
μ = rμ = p = 0,
s = m, this is the same effective lagrangian with which we have been dealing in
the SU(2) examples, with the identification m2

π = (mu + md)B0. Note that this
usage requires B0 to be positive.

Having constructed the effective action, we can obtain a number of interesting
matrix elements. For example, use of Eq. (6.5) provides the identification of the
vacuum scalar-density matrix element as

〈0 ∣∣ψ̄iψj ∣∣ 0〉 = −F 2
πB0δij (6.14)

to this order in the effective lagrangian. Similarly, use of Eq. (6.3) reveals the left-
handed current to be

Lkμ = −i
F 2
π

2
Tr
(
λkU∂μU

†
)
. (6.15)

One other advantage of the source method is to allow the use of the equations of
motion. The standard Noether procedure for identifying currents does not work if
the equations of motion are employed in the lagrangian. To become convinced of



IV–7 Effective field theory of regions of a single field 129

this, one can consider the following exercise. We examine the response of the two
trial lagrangians,

L1 = ϕ∗ ϕ, L2 = −m2ϕ∗ϕ (6.16)

to a phase transformation ϕ → eiαϕ. The first contributes to the Noether current
while the second does not. However, these two forms are identical on-shell if ϕ
satisfies the Klein–Gordon equation. In an effective lagrangian which is meant to
be used always on-shell it is often convenient to drop terms which vanish by virtue
of the equations of motion. The use of source fields as described above avoids this
problem.

IV–7 Effective field theory of regions of a single field

In our presentation earlier in this chapter, the construction of an effective field
theory was described by the integrating out of heavy particles, while leaving the
light particles as dynamical degrees of freedom. However, often one can make an
effective field theory from a single particle. In this case, certain energy regions of
the field are treated as heavy and others are light, and one retains the light regions
in the effective field theory. Indeed, sometimes there are multiple regions that are
‘light’ in some sense, and one splits the original single field into multiple fields.
This section provides some of the background for such decompositions.

The simplest example of the division of a single field into ‘heavy’ and ‘light’ is
in the nonrelativistic reduction. When the energy is small, the antiparticle degrees
of freedom are heavy and can be removed from the theory, leaving a nonrelativistic
particle description. For example, if one redefines a four-component Dirac field ψ
into upper and lower two-component fields, ψu and ψ
 by factoring out the leading
energy dependence at low-energy via

ψ(x, t) = e−imt
(
ψu(x, t)

ψ
(x, t)

)
, (7.1)

ψu will behave as a nonrelativistic field and ψ
 will account for the two heavy
degrees of freedom. The free Dirac lagrangian shows this separation,

L = ψ̄(i/∂ −m)ψ
= ψ∗u i∂tψu + ψ∗
 [i∂t + 2m]ψ
 + ψ∗u iσ · ∇ψ
 + ψ∗
 iσ · ∇ψu. (7.2)

While no approximation has yet been made by this redefinition, the nonrelativistic
limit is taken by assuming that the residual energy dependence is small compared
to the mass (i.e., one neglects ∂t compared to 2m). One can then integrate out the
lower component through its equation of motion,
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(i∂t + 2m)ψ
 ≈ 2m ψ
 = iσ · ∇ψu, (7.3)

leaving the upper component as the active non-relativistic degree of freedom.

L = ψ∗u i∂tψu −
(∇ψ∗u) · ∇ψu

2m
. (7.4)

With inclusion of the interactions, this can lead to a full nontrivial effective field
theory. A well-developed example of this is the Non-Relativistic QCD (NRQCD)
effective field theory [CaL 86]. We will also return to this procedure in more gen-
erality in the discussion of Heavy Quark Effective Theory (HQET) in Chap. XIII.

A second common way of splitting up a single field is to integrate out the high
momentum portions of a field. This logic is often called Wilsonian [Wi 69]. Imag-
ine splitting the momenta in a problem into those above an energy scale  and
those below this scale. By first performing the calculation of the high-energy por-
tion, one is left with an effective field theory. The operators defining that theory
will carry factors, the Wilson coefficients, that depend on the scale . This means
that one obtains a set of new operators On in the lagrangian

L = · · · +
∑
n

Cn()On, (7.5)

where Cn() are the Wilson coefficients and the series is infinite. The operators
are local because they capture high-energy physics, and their matrix elements will
depend on the separation scale, 〈On〉 = 〈On()〉. One regularly uses the renor-
malization group to describe the running of the Wilson coefficients with changes
of scale. The low-energy theory remains a full field theory and one must cal-
culate the full quantum effects in the matrix elements of On up to the scale .
When the high-energy physics in Cn and the low-energy physics in the matrix ele-
ments of On are properly matched, in the end the separation scale  will disap-
pear from the description. Nevertheless, this separation is often useful. For exam-
ple, in QCD the high-energy behavior may be reliably calculated in perturbation
theory, while the low-energy behavior may be best accomplished with lattice cal-
culations. Examples appearing in this book include the Wilson coefficients of the
non-leptonic weak hamiltionian, cf. Sect. VIII–3, and those used in QCD sum rules,
cf. Sect. XI–5.

In practice, however, we most often do not use a Wilsonian separation scale ,
but instead employ dimensional regularization. Dimensional regularized loop inte-
grals do not carry information about any particular scale, and therefore extend over
all energies. The extension to d < 4 damps the high-energy divergences in a scale-
independent way. Nonetheless, this procedure works for logarithmically running
Wilson coefficients. Aside from the momenta, the only scale in a dimensionally
regularized integral is the μ2ε inserted in front of the loop integral. This ends up
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p p′
k

Fig. IV–3 The scalar vertex diagram analysed in the text.

appearing in the final answer as lnμ2 when expanded close to d = 4. The fact that
cut-off regularization and dimensional regularization have the equivalence

ln2 ⇔ 1

ε
+ lnμ2 (7.6)

allows the scaleμ to be a proxy for the separation scale. However, the correspon-
dence of μ with a Wilsonian separation scale does not hold for Wilson coefficients
with power-law running [CiDG 00].

For a yet more subtle example, consider the interaction of a high-energy massless
particle in the vertex diagram of Fig. IV–3. For the purposes of this example, let us
consider these as scalars and the current vertex as J = ϕ2/2. We can analyse the
resultant scalar vertex integral,

I = μ4−d
∫

ddk

(2π)d
1

(p + k)2
1

k2

1

(p′ + k)2 , (7.7)

in the limit where p2 ∼ p′2 � Q2 = (p − p′)2. The only scales in this problem
are Q2, which is treated as a large scale, and p2 ∼ p′2, which is the small scale.
The relative size is labeled λ2 ∼ p2/Q2 ∼ p′2/Q2.

This integral can be analyzed by the method of regions [BeS 98, Sm 02].8 In this
technique, one identifies all the important momentum regions of the loop integral,
and makes appropriate approximations within each region. A portion of the integral
will have all the components of the loop momenta of order Q and higher. This
will be called the hard region. A region labeled soft has all the components much
smaller than Q. In addition, there will be regions where the momentum is of order
Q in the direction of p or p′. In these collinear regions, some invariant products
can be smaller than Q2.

In order to quantify this one takes light-like reference four-vectors

nμ = (1, 0, 0, 1), n̄μ = (1, 0, 0,−1), n2 = n̄2 = 0, n · n̄ = 2. (7.8)

For an arbitrary four-vector expressed using these and a transverse component,

V μ = n · V n̄
μ

2
+ n̄ · V n

μ

2
+ V μ

⊥ ≡ V+
n̄μ

2
+ V−n

μ

2
+ V μ

⊥ , (7.9)

the invariant product is

8 This example and the treatment of it follows the lectures of [Be 10].
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V 2 = (n · V )(n̄ · V )+ V 2
⊥ = V+V− + V 2

⊥.

AμB
μ = 1

2
(A+B− + A−B+)+ A⊥ · B⊥ (7.10)

These are useful because we can choose a frame with p along n and with p′ along
n̄, and we can refer to the n direction as ‘right’ and the n̄ direction as ‘left’. This
allows us to classify the different regions. Of the original momenta, we have

(V+, V−, V⊥)
p ∼(λ2, 1, 0) Q

p′ ∼(1, λ2, 0) Q. (7.11)

Q ∼(1, 1, 0) Q

Q is a hard momentum because it takes a hard interaction to change an energetic
right-moving particle into one moving left. Using this decomposition, one can iden-
tify the regions of the loop momentum

(k+, k−, k⊥)
k ∼(1, 1, 1) Q hard

k ∼(λ2, 1, λ) Q collinear R. (7.12)

k ∼(1, λ2, λ) Q collinear L

k ∼(λ2, λ2, λ2) Q soft

In each region, one can drop small momentum components in terms of large
ones. For example, when k is in the hard region, one can drop p2, p′2, k−p+,
k+p′−, which are all of order λ2, in order to obtain9

Ihard = μ4−d
∫

ddk

(2π)d
1

(k2 + iε)(k2 + k−p+ + iε)(k2 + k+p′− + iε)
= i�(1+ ε)
(4π)d/2Q2

[
1

ε2
+ 1

ε
ln

μ2

−Q2
+ 1

2
ln2 μ2

−Q2
− π2

6

]
. (7.13)

Similarly, in the right collinear region, one can expand (k+p′)2 = k−p′+ +O(λ2),
such that

Icol−R = μ4−d
∫

ddk

(2π)d
1

(k2 + iε)((k + p)2 + iε)(k−p′+ + iε)
= i�(1+ ε)
(4π)d/2Q2

[
− 1

ε2
− 1

ε
ln

μ2

−p′2 +
1

2
ln2 μ2

−p′2 +
π2

6

]
. (7.14)

An observation that will be relevant for the eventual construction of an effective
theory is that when the exchanged propagator carrying momentum k is in the right

9 The integrals of this section are displayed in the useful appendix of [Sm 02]. See also [Sm 12].
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collinear region, the other propagator on the p side is also collinear, but the third
propagator on the p′ side is hard. A similar result is obviously found when k is in
the left collinear region, obtained by replacing p by p′. Finally, in the soft region,
one keeps only terms of order λ2, finding

Isoft = μ4−d
∫

ddk

(2π)d
1(

k2 + iε) (k−p+ + p2 + iε) (k+p′− + p′2 + iε)
= i� (1+ ε)
(4π)d/2 Q2

[
1

ε2
+ 1

ε
ln

μ2 Q2

−p2 p′2
+ 1

2
ln2 μ2 Q2

−p2 p′2
+ π2

6

]
. (7.15)

If one tries to identify other regions besides these and makes the correspond-
ing simplifications of the loop integral, one ends up with a scale-less integral
which vanishes within dimensional regularization. For example, if one considers
the region where k scales as k ∼ (λ2, λ2, λ)10, one would use k2 ∼ k2

⊥ and keep
terms of order λ2 in each propagator

I ′ =
∫

ddk

(2π)d
1(

k2
⊥ + iε

) (
k−p+ + p2 + k2

⊥ + iε
) (
k+p′− + p′2 + k2

⊥ + iε
)

= 1

p+p′−

∫
ddk′

(2π)d
1(

k2
⊥ + iε

) (
k′− + iε

) (
k′+ + iε

)
= 0, (7.16)

where in the second line we have defined shifted variables k′− = k−+(p2+k2
⊥)/p+

and k′+ = k+ + (p′2 + k2
⊥)/p′−, with the result being an integral without any scale.

Such integrals are set to zero within dimensional regularization.
The sum of the four subregions yields the correct total integral,

I = i

16π2Q2

[
ln
Q2

p2
ln
Q2

p′2
+ π2

3

]
, (7.17)

up to terms suppressed by powers of λ. As expected, this result is finite, even
though the integrals from the individual regions are not. The approximations that
we made lead to infrared divergences in the hard integral, and ultraviolet diver-
gences in the others. However, these cancel when added together.

The other interesting feature of this procedure is that we have not restricted the
integration ranges when calculating the integrals for the different regions. The full
integration range is used in each case. The reason that this does not amount to
double counting within dimensional regularization is that if there is a single unique
scale within the integral, as has been deliberately constructed in each region, the
integral is determined by momenta around that scale. This is the key observation

10 This region is referred to as the Glauber region. The treatment of the integral given in the text appears
adequate for this example, although the understanding of the Glauber region is still evolving [BaLO 11].



134 Introduction to effective field theory

that allows the method of regions to work. By constructing approximations that
scale in unique fashions, one can isolate the physics of that region alone.11 That
this actually happens in these integrals can be seen from the above integral where
the factors of Q2, p2, and p2p′2/Q2 all signal the dominant scale in the respective
diagrams, showing that the effects come from different regions of the momentum
integration.

One can convert the analysis of the method of regions into an effective field
theory whose applicability extends beyond this particular example. The initial field
can be divided up into new effective fields for each of the important regions. The
goal is to choose these fields and their interactions to yield the same results as
the method of regions analysis outlined above. The hard-momentum region can
be integrated out completely and replaced by effective operators of the light fields.
These operators will come with Wilson coefficients to ensure the matching with the
full calculation. However, the dynamical light fields need to come in three varieties
for the different light-momentum regions. Thus, the original scalar field ϕ(x) now
comes in three varieties, ϕ(x) = ϕcR(x)+ ϕcL(x)+ ϕs(x). The interactions of the
light fields among themselves is relatively simple to construct. If the interaction
vertex of the original theory was a simple ϕ3 vertex, we expand that to include the
possible interaction between the light fields,

−L = g

3
ϕ3 → g

3
ϕ3
cR +

g

3
ϕ3
cL +

g

3
ϕ3
s + gϕ2

cRϕs + gϕ2
cLϕs. (7.18)

Vertices not listed above, such as ϕcRϕ2
s , are ones which cannot occur due to

momentum conservation (e.g., a collinear particle cannot split into two soft par-
ticles).

It is somewhat more subtle to choose the other effective operators and their
Wilson coefficients. For the scalar example shown above, the ‘current’ carrying the
momentum Q in the full theory is J = ϕ2/2. Since it transfers this large momen-
tum it can connect ϕcR to ϕcL such that we expect a vertex J ∼ ϕcRϕcL. However,
in addition we need to recall that we have integrated out the hard scalars. This leads
to additional vertices. For example, in the diagram of Fig. IV–4(a) the propagator
is hard because it carries the momenta of both left-moving and right-moving fields,
which couple to it at the lower vertex. When the other fields are light, this propa-
gator shrinks to a point vertex as in Fig. IV–4(b). This, then, is a new contribution
to the current operator, and we expect that the current has the form

J = C2ϕcRϕcL + C3ϕ
2
cRϕcL + C ′3ϕcRϕ2

cL + · · · , (7.19)

11 In cases where regions are defined which have overlapping contributions there are also methods for cleanly
separating the regions [MaS 07].
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p p′k

(a)

p p ′k

(b)

Fig. IV–4 (a) An interaction of collinear particles through a hard propagator; (b)
the effective local vertex representing this interaction at low-energy.

where C2 and C3 are the Wilson coefficients. Calculation from the original theory
shows that to this order

C2 = 1+ g2Ihard, C3 = 2g

k−p′+ − iε
, C ′3 =

2g

k+p− − iε , (7.20)

where Ihard refers back to Eq. (7.13).
At this stage, we can reproduce the original vertex calculation using the effective

theory by the calculation of the diagrams of Fig. IV–5. The diagrams of Fig. IV–5
(a),(b),(c) refer to the new vertices given in Eq. (7.20), while Fig. IV–5 (d) refers to
the soft contribution of Eq. (7.15). By construction, one can see how all four of the
regions of the original diagram are reproduced. We note how the hard propagators
that occur when k is in one of the collinear regions have been accounted for by a
new local vertex in the current operator, with the Wilson coefficient describing the
effect of the hard propagator.

The reader may object that the construction of the effective theory was more
trouble than evaluating the original diagram. However, once we have developed
the effective theory, we can apply it in multiple new contexts. The example above
is analogous to the Soft Collinear Effective Theory (SCET) of QCD [BaFPS 01].
Similar techniques are used in the various realizations of NRQCD [CaL 86, PiS
98, BrPSV 05]. Outside of the Standard Model, related methods are applied in
the classical effective field theory of General Relativity [GoR 06], which has been
used to systematize the classical treatment of gravitational radiation from binary
systems [PoRR 11]. Further development of the method of regions and threshold
expansions can be found in [BeS 98, Sm 02].

p p′ p ′ p′ p′

(a)

C2

p
k

(b)

C3

p
k

(c)

C ′3

pp
ks

(d)

Fig. IV–5 The diagrams involving the light fields reconstructing the scalar vertex.
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Fig. IV–6 Photon amplitudes containing a single fermion loop.

IV–8 Effective lagrangians in QED

We have explored in some detail the structure of effective field theory by using
chiral symmetry as an example. However, this is not meant to imply that effective
lagrangians are useful only in that one context. In fact, they can be applied to a
wide variety of situations. Here, we apply the technique to QED.

Consider situations in which the photon’s four-momentum is small compared to
the electron mass. In such cases, the electron and other fermions cannot be pro-
duced directly, but instead influence the physics of photons only through virtual
processes. The lowest-order diagrams, i.e., those which contain a single electron
loop, with increasing numbers of external photon legs, are shown in Fig. IV–6.
Note that the one-loop diagram containing three photons, or indeed any odd num-
ber of photons, vanishes by virtue of charge-conjugation invariance. This is true
to all orders in the coupling e, and is refered to as Furry’s theorem. Diagrams like
those in Fig. IV–6 have effects at low-energy which are typically calculated in per-
turbation theory. The associated amplitudes have coefficients which scale as some
power of the inverse electron mass. They can be generated by means of an effective
lagrangian, as we shall now discuss.

Let us seek a description which eliminates the electron degrees of freedom. That
is, we wish to write a lagrangian which involves only photons, but nevertheless
includes effects like the ones in Fig. IV–6. The result must of course be gauge-
invariant. The procedure may be defined by the path-integral relation∫ [

dAμ
]

exp

[
i

∫
d4x Leff(Aμ)

]
≡
∫ [
dAμ

]
[dψ] [dψ̄] exp

[
i
∫
d4x LQED(Aμ,ψ, ψ̄)

]∫
[dψ]

[
dψ̄
]

exp
[
i
∫
d4x L0(ψ, ψ̄)

] , (8.1)

where LQED is the full QED lagrangian, and L0 is the free fermion lagrangian.
Thus Leff has precisely the same matrix elements for photons as does the full
QED theory. Specifically, it includes the virtual effects of electrons. The techniques
described in App. A–5 enable us to formally express the content of Eq. (8.1) as
[Sc 51]
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d4x Leff(Aμ) = −1

4

∫
d4x FμνF

μν − i Tr ln

[
i/D −m
i/∂ −m

]
. (8.2)

This form, although formally correct, does not readily lend itself to physical inter-
pretation. However, we can determine various interesting effects directly from per-
turbation theory. For example, the vacuum polarization of Fig. IV–6(a) modifies
the photon propagator, i.e., the two-point function. From Eqs. (II–1.26), (II–1.29),
we determine the result for a photon of momentum q to be

i�̂μν(q) = i
α

15π

(
qμqν − gμνq2

) q2

m2
+ · · · . (8.3)

The essence of the effective lagrangian approach is to represent such information
as the matrix element of a local lagrangian. In the present example, we find that the
term in Eq. (8.3) corresponds to the interaction

Leff = α

60πm2
Fμν Fμν, (8.4)

where ≡ ∂μ∂
μ.

The calculation of Fig. IV–6(b) is a somewhat more difficult, but still straightfor-
ward, exercise in perturbation theory. We shall lead the reader through a calculation
using path integrals in a problem at the end of this chapter. It too can be represented
as a local lagrangian, and is usually named after Euler and Heisenberg [ItZ 80]. One
finds the full result to one-loop order to be

Leff(Aμ) = −1

4
FμνF

μν + α

60πm2
Fμν Fμν

+ α2

90m4

[(
FμνF

μν
)2 + 7

4

(
FμνF̃

μν
)2
]
+ · · · , (8.5)

where F̃μν ≡ 1
2εμναβF

αβ . Corrections to this effective lagrangian can be of two
forms: (i) even at one loop there are additional terms of higher dimension

Fμν

2

m4
Fμν, Fμν

m6
FμνFαβF

αβ,
1

m8

(
FμνF

μν
)3
, . . . , (8.6)

involving either more fields or more derivatives; or (ii) the coefficients of these
operators can receive corrections of higher order in α through multi-loop diagrams.
We see here an example of the energy expansion, which we have discussed at
length earlier in this chapter. In this case it is an expansion in powers of q2/m2.
The effective lagrangian of Eq. (8.5) can be used to compute aspects of low-energy
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photon physics such as the low-energy contribution of the vacuum polarization
process or the matrix element for photon–photon scattering.

IV–9 Effective lagrangians as probes of New Physics

One of the most common and important uses of effective lagrangians is to param-
eterize how new physics at high energy may influence low-energy observables.
The general procedure can be abstracted from our earlier discussion. Remember
that one is trying to represent the low-energy effects from a ‘heavy’ sector of the
theory. This is accomplished by employing an effective lagrangian

Leff =
∑
n

Cn On, (9.1)

where the {On} are local operators having the symmetries of the theory and are
constructed from fields that describe physics at low-energy. There need be no
restriction to renormalizable combinations of fields. Most often the operators can
be organized by dimension. The lagrangian itself has mass dimension 4, so that if
an operator has dimension di the coefficient must have mass dimension

Cn ∼ M4−dn . (9.2)

The mass scale M is associated with the heavy sector of the theory. It is clear that
operators of high dimension will be suppressed by powers of the heavy mass. To
leading order, this allows one to keep a small set of operators.

Some applications will involve phenomena for which the dynamics is well under-
stood. If so, the coefficients of the effective lagrangian can be determined through
direct calculation as in the preceding sections. Other examples occur in the the-
ory of weak nonleptonic interactions (cf. Sect. VIII–3) and in the interactions of
W -bosons (cf. Sect. XVI–3). Even more generally, effective lagrangians can also
be used to describe the effects of new types of interactions. In these cases, dimen-
sional analysis supplies an estimate for the magnitude of the energy scales of pos-
sible New Physics. We shall conclude this section by using effective lagrangians
to characterize the size of possible violations of some of the symmetries of the
Standard Model.

Given certain input parameters, the Standard Model is a closed, self-consistent
description of physics up to at least the mass of the Z0, and is described by the
most general renormalizable lagrangian consistent with the underlying gauge sym-
metries. What would happen if there were new interactions having an intrinsic
energy scale of several TeV or beyond? In general, such new theories would be
expected to modify predictions of the Standard Model. The modifications would
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be described by non-renormalizable interactions, organized by dimension in an
effective lagrangian description as

Leff = LSM + 1


L5 + 1

2
L6 + · · · , (9.3)

where Ln has mass dimension n and  is the energy scale of the new interaction.
There is a single operator of dimension 5 which will be displayed in the neu-

trino chapter. At dimension 6, there are 80 distinct operators consistent with the
gauge symmetries of the Standard Model [BuW 86]. These can generate a variety
of effects which deviate from the Standard Model. For example, the operator

L6
(
c′
) ≡ c′

2
(�†�)Wμν ·Wμν, (9.4)

containing the Higgs field � and the field tensor Wμν of SU(2) gauge bosons,
produces a deviation from unity in the rho-parameter,12

ρ ≡ M2
W

M2
Z cos2 θw

= 1− c′ v
2

2
+ · · · . (9.5)

The current level of precision, |ρ − 1| ≤ 0.0029 (at 2σ ), requires  > 4.5 TeV for
c′ = 1. Yet another possibility concerns the violation of flavor symmetries in the
Standard Model. The operator,

L6(c
′′) ≡ c′′

2
ēγμ(1+ γ5)μ s̄γ

μ(1+ γ5)d + h.c., (9.6)

conserves generational or family number, but violates the separate lepton-number
symmetries. It leads to the transition KL → e−μ+ such that

�K0
L→μ+e−

�K+→μ+νμ
=
(

c′′

VusGF2

)2

. (9.7)

The present bound, BrK0
L→μe < 4.7 × 10−12 at 90% confidence level, requires

 > 1700 TeV for c′′ � 1. In a similar manner, constraints on other physical
processes imply bounds on their corresponding energy scales , generally in the
range 5 → 5000 TeV.

Dimension-six contact interactions also are searched for at the highest energies
of the Large Hadron Collider (LHC). The effect of the contact interaction becomes
relatively more pronounced at high energy when competing with background pro-
cesses which fall off due to propagator effects. For example, an operator leading to
qq̄ → μ+μ−,

L6(g) ≡ g2

22
q̄LγνqLμ̄Lγ

νμL, (9.8)

12 More precisely the comparison is with a form of the rho-parameter after radiative corrections.
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becomes increasingly visible over the Drell–Yan process at high energy. Early LHC
results [Aa et al. (ATLAS collab.) 11] bound this interaction with  > 4.5 TeV
at 95% confidence for g2/4π = 1; such limits will clearly improve in the future.
Interestingly, some operators are better bounded by low-energy precision experi-
ments and others are better probed at high energy [Bh et al. 12], demonstrating the
value of both lines of research.

Of course, if there is new physics in the TeV energy range, it need not generate
all 80 possible effective interactions. The ones actually appearing would depend
on the couplings and symmetries of the new theory. In addition, the coefficients
of contributing operators could contain small coupling constants or mixing angles,
diminishing their effects at low-energy. However, the effective lagrangian analysis
indicates that the continued success of the Standard Model is quite nontrivial and
places meaningful bounds on possible new dynamical structures occurring at TeV,
and even higher, energy scales.

Problems

(1) U(1) effective lagrangian
Consider a theory with a complex scalar field ϕ with a U(1) global symmetry
ϕ→ ϕ′ = exp (iθ) ϕ. The lagrangian will be

L = ∂μϕ
∗∂μϕ + μ2ϕ∗ϕ − λ(ϕ∗ϕ)2.

(a) Minimize the potential to find the ground state and write out the lagrangian
in the basis

ϕ = 1√
2
(v + ϕ1(x)+ iϕ2(x))

Show that ϕ2 is the Goldstone boson.
(b) Use this lagrangian to calculate the low-energy scattering of ϕ2 + ϕ2 →

ϕ2+ϕ2. Show that despite the nonderivative interactions of the lagrangian,
cancelations occur such that leading scattering amplitude starts at order p4.

(c) Instead of the basis above, express the lagrangian using an exponential
basis,

ϕ = 1√
2
(v +�(x))eiχ(x)/v.

Show that in this basis a ‘shift symmetry’ χ → χ + c is manifest.
(d) Calculate the same scattering amplitude using this basis and show that the

results agree. Note that the fact that the amplitude is of order p4 is more
readily apparent in this basis.
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(2) Path integrals and the Fermi effective lagrangian
Consider the path integral ZW =

∫ [
dW+] [dW−] exp

[
i
∫
d4xLW(x)

]
, where

LW is the W±-boson lagrangian LW = L(free)
W + L(int)

W , with

L(free)
W = −1

2
F+μνF

μν
− +M2

WW
+
μ W

μ
− , L(int)

W = − g2√
8

(
W+
μ J

μ

ch + h.c.
)
.

Integrating out the heavy W± fields in ZW leads to an effective interaction
between charged weak currents called the Fermi model.
(a) Show that, upon discarding a total derivative term, one can write the free

field contribution in ZW as∫
d4x L(free)

W =
∫
d4x d4y W+

μ αK
μν(x, y)W−

ν (y),

where Kμν(x, y) ≡ δ(4)(x − y) [gμν (∂2 +M2
W

)− ∂μ∂ν].
(b) Further steps allow the path integral to be expressed as

ZW = exp

[
−i g

2
2

8

∫
d4x d4y J

μ†
ch (x)�μν(x, y)J

ν
ch(y)

]
,

where �μν(x, y) is the Fourier transform of the W± propagator �μν(k) =
− (gμν − kμkν/M2

W

)
. Upon expanding this form of ZW in powers of M−2

W ,
show that to lowest order,

L(eff)
W (x) = −GF√

2
J
μ†
ch (x)J

ch
μ (x) (Fermi model),

where the Fermi constant obeys GF/
√

2 ≡ g2
2/(8M

2
W).

(3) The Euler–Heisenberg lagrangian: constant magnetic field
Consider a charged scalar field ϕ interacting with a constant external magnetic
field B = Bk̂. The corresponding Klein–Gordon equation is (D2+m2)ϕ(x) =
0, where Dμ = ∂μ + ieAμ is the covariant derivative, and the effective action
is then given by

eiSeff(B) =
∫ [dϕ(x)][dϕ∗(x)]ei ∫ d4x ϕ∗(x)(D2+m2)ϕ(x)∫ [dϕ(x)][dϕ∗(x)]ei ∫ d4x ϕ∗(x)( 2+m2)ϕ(x)

= det( 2 +m2)/det(D2 +m2),

Seff(B) = i Tr ln
D2 +m2

+m2
.

The operation ‘Tr ln’ applied to a differential operator is not a trivial one and
the purpose of this problem is to evaluate this quantity for the case at hand.



142 Introduction to effective field theory

(a) Demonstrate that

Seff(B) = i Tr
∫ ∞

0
e−m

2s
(
e− s − e−D2s

)
.

(b) In order to evaluate the trace we require a complete set of solutions to the
equations

D2ϕ̄n(x, y, z, t) = λnϕ̄n(x, y, z, t),

ϕn(x, y, z, t) = κnϕn(x, y, z, t),

so that we may write

Seff(B) = i
∑
n

∫ ∞

0

ds

s
e−m

2s
(
e−κns − e−λns) .

(c) With the gauge choice Aμ = (0, Bx ĵ ) show that the eigenstates are

ϕ(x, y, z, t) = ei(kxx+kyy+kzz−kt t),
ϕ̄(x, y, z, t) = ei(kzz+kyy−kt t)ψn(x−ky/eB),

where ψn(x) is an eigenstate of the harmonic-oscillator hamiltonian, and
the eigenvalues are κn = −k2

t +k2
x+k2

y+k2
z , λn = −k2

t +k2
z + eB(2n+1).

(d) Rotate to euclidean space and evaluate the trace using box quantization.
Taking a box with sides L1, L2, L3 and a time interval T , we have

κ :
∑
n

→ L1L2L3T

∫ ∞

−∞
d4k

(2π)4
,

λ :
∑
n

→ L2L3T

∫ eBL1

0
dky

∫ ∞

−∞
dk0dkz

(2π)2

∞∑
n=0

,

where the integration on ky is over all values with x ′ = x−ky/eB positive.
(e) Evaluate the effective action

Seff(B) = L1L2L3T

∫ ∞

0

ds

s

∫ ∞

−∞
dk0dkz

(2π)2
e−(m

2+k2
0+k2

z )s

×
[
eB

2π

∞∑
n=0

e−eB(2n+1)s −
∫ ∞

−∞
dkxdky

(2π)2
e−(k

2
x+k2

y)s

]
and show that

Seff(B) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eBs

sinh eBs
− 1

)
.

Expand this in powers of B, finding the (divergent) wavefunction renor-
malization and the B4 piece of the Euler–Heisenberg lagrangian.
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(f) Show that the corresponding result of a constant electric field can be found
by the substitution B → iE so that

Seff(E) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eEs

sin eEs
− 1

)
.

(g) Demonstrate that, although Im Seff(B) = 0, one nonetheless obtains

Im Seff(E) = L1L2L3T
e2E2

16π3

∞∑
n=1

(−)n
n2

e−nπm
2/eE,

and discuss the meaning of this result [Sc 51, Sc 54].



V

Charged leptons

From the viewpoint of probing the basic structure of the Standard Model, the
charged leptons constitute an attractive starting point. Since effects of the strong
interaction are generally either absent or else play a secondary role, the theoretical
analysis is relatively clean. Moreover, a great deal of high-quality data has been
amassed involving these particles. Thus, charged leptons serve as an ideal system
for defining our renormalization prescription, and for investigating the effects of
various radiative corrections.

V–1 The electron

Some of the most precise tests of the Standard Model (or more exactly of QED)
occur within the elementary electron–proton system. The renormalization program
for the theory has been introduced in Sect. II–1, where it was shown how ultraviolet
divergent contributions to such calculations can be removed by means of subtrac-
tion from a finite number of suitably constructed counterterms. Here we examine
the finite pieces which remain after such subtractions and compare theory with
experiment.

Breit–Fermi interaction

The electromagnetic properties of the electron are studied by use of a photon probe.
To lowest order, the eeγ vertex has the structure

〈e(p′e, λ′e)|Jμem|e(pe, λe)〉 = −e u(p′e, λ′e)γ μu(pe, λe), (1.1)

and the interaction between two charged particles is governed by the exchange of
a single virtual photon. An important example is the electron–proton interaction,
which has the invariant amplitude1

1 We work temporarily with an ‘ideal’ proton – a point particle having no anomalous magnetic moment.
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MeP = e2u(p′e, λ
′
e)γ

μu(pe, λe)
1

q2
u(p′p, λ

′
p)γμu(pp, λp), (1.2)

where pe, p′e and pp, p′p are respectively electron and proton momenta and q =
pe − p′e is the four-momentum transfer. In the following, we shall demonstrate
how the above single-photon exchange amplitude is associated with well-known
contributions in atomic physics. Denoting proton two-spinors with tildes, we begin
by reducing the amplitude of Eq. (1.2) in the small-momentum limit to

MeP � − e
2

q2

[
1− p2

e + p′2e
8m2

e

][
1− p2

p + p′2p
8m2

p

]

×
[
χ̃ ′†
[

1+ p′p · pp + iσ · p′p × pp
4m2

p

]
χ̃ χ ′†

[
1+ p′e · pe + iσ · p′e × pe

4m2
e

]
χ

− χ̃ ′† pp + p′p − iσ × (pp − p′p)
2mp

χ̃ · χ ′† pe + p′e − iσ × (pe − p′e)
2me

χ

]
, (1.3)

where me,mp are, respectively, the electron and proton masses. The various terms
in the above expression can be interpreted physically by recalling that in Born
approximation the transition amplitude and interaction potential are Fourier trans-
forms of each other,

VeP (r) =
∫

d3q

(2π)3
e−iq·rMeP , (1.4)

where r = re − rp. From the relation∫
d3q

(2π)3
e−iq·r

1

q2
= 1

4πr
, (1.5)

we recognize the leading (velocity-independent) term,

VCoul = − e2

4πr
χ̃ ′†χ̃ χ ′†χ, (1.6)

as the Coulomb interaction between electron and proton. The identity

−
∫

d3q

(2π)3
e2

q2

iσ · p′e × pe
4m2

e

e−iq·r = e2

4m2
e

σ · r× pe
4πr3

(1.7)

allows us to recognize an additional piece of Eq. (1.3) as the spin–orbit potential,
which is often expressed as

Vs−o = 1

2m2
e

1

r

dV0

dr
χ̃ ′†χ̃ χ ′†

σ

2
· r× pe χ, (1.8)
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but evaluated in this instance with V0 = −e2/4πr . Combining the remaining
O(p2/m2

e) terms in Eq. (1.3), we can cancel the q2 term in the denominator to
obtain the so-called Darwin potential,

VD = e2

8m2
e

δ(3)(r) χ̃ ′†χ̃ χ ′†χ. (1.9)

This term has its origin in the electric interaction between the particles, and by
employing the Gauss’ law relation,

∇ · ECoul = eδ(3)(r), (1.10)

it can be re-expressed in the equivalent form

VD = e

8m2
e

∇ · ECoul χ̃
′†χ̃ χ ′†χ. (1.11)

The spin–orbit and Darwin potentials, together with the O(p2/m2
e) relativistic cor-

rections to the electron kinetic energy, give rise to atomic fine structure energy
effects.

The remaining terms in the photon exchange interaction of Eq. (1.3) are effects
produced by electron and proton current densities, the terms (pe + p′e)/2me and
−iσ × (pe − p′e)/2me representing convection and magnetization contributions,
respectively. In particular, the interaction between magnetization densities is equiv-
alent to the dipole–dipole potential

Vdple−dple = − e

me

χ ′†
σ

2
χ ·∇ ×

(
e

mp

χ̃ ′†
σ

2
χ̃ ×∇ 1

4πr

)
. (1.12)

Recognizing that the magnetic field produced by the magnetic dipole moment of a
(point) proton is

Bproton = ∇ ×
(
e

mp

χ̃ ′†
σ

2
χ̃ ×∇ 1

4πr

)
, (1.13)

we can interpret the hyperfine energy as the interaction between the electron mag-
netic moment and the spin-induced proton magnetic field. Upon dropping the pro-
ton and electron spinors and using the identity

∇i∇j 1

r
= 3

xixj

r5
− δij

[
1

r3
+ 4π

3
δ(3)(r)

]
, (1.14)

the dipole–dipole interaction may be written as a sum of hyperfine and tensor
terms,
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Table V–1. Precision tests of QED.

Experiment Theory

νbhyp 1420.405 751 767(1) 1420.403(1)
aae 1159.65218076(27) 1159.65218178(77)

aaμ 1165.92089(54)(33) 1165.91802(2)(42)(26)

�E
(Lamb)b
n=2 1057845.0(9.0) 1057844.4(1.8)

a × 10−6

bIn units of kHz.

Vdple−dple = Vhyp + Vtensor,

Vhyp = 8πα

3memp

se · spδ(3)(r), (1.15)

Vtensor = α

mempr3

[
3(se · r̂)(sp · r̂)− se · sp

]
.

Denoting the total electron–proton spin as stot = se+ sp, it follows that the hyper-
fine interaction splits the hydrogen atom ground state into components with stot = 1
and stot = 0. The frequency associated with this splitting is one of the most pre-
cisely measured constants in physics and is the source of the famous 21-cm radi-
ation of radioastronomy. As seen in Table V–1, the experimental determination is
about six orders of magnitude more precise than the theoretical value. Precision in
the latter is limited by the nuclear force contribution (about 3 parts in 105).

Let us gather all the terms discussed thus far. In addition, we treat the proton
and electron on an equal footing, since it will prove instructive when we discuss
models of quark interactions in Chaps. XI–XIII. We then obtain the full one-photon
exchange potential (Breit–Fermi interaction) for the electron–proton system,

Vone−photon = −α
r
+ 8πα

3memp

δ(3)(r)se · sp + πα

2
δ(3)(r)

[
1

m2
e

+ 1

m2
p

]
+ α

mempr3

[
3(se · r̂)(sp · r̂)− se · sp

]
+ α

r3

[
se · r× pe

2m2
e

− sp · r× pp
2m2

p

+ sp · r× pe − se · r× pp
memp

]
+ α

2mempr

[
pe · pp + r̂(r̂ · pe) · pp

]
, (1.16)

where we recall r ≡ re− rp and note that a spin-independent orbit–orbit interac-
tion has been included as the final term. The single-photon exchange interaction is
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seen to include a remarkable range of effects, all of which are necessary to under-
stand details of atomic spectra.

QED corrections

Also important in precision tests of atomic systems are the higher order QED
corrections. We have just demonstrated how the simple q2 piece of the photon
propagator leads to the Breit–Fermi interaction between electron and proton. The
vacuum polarization correction discussed in Sect. II–1 produces an additional com-
ponent of the e−P interaction called the Uehling potential. From Eq. (II–1.37), we
recall that in the on-shell renormalization scheme the subtracted vacuum polariza-
tion � behaves in the small-momentum limit m2

e 
 q2 as

�(q) = e2

60π2

q2

m2
e

+O
(
q4

m4
e

)
.

By the process of Fig. II–3, this yields the contribution

VUehling(r) =
∫

d3q

(2π)3
e−iq·r

e2

q2
× e2

60π2

q2

m2
e

= 4

15

α2

m2
e

δ(3)(r). (1.17)

The presence of the delta function implies that S-wave states of the hydrogen atom
are shifted by this potential while other partial waves are not. Contributions from
the Uehling potential have been observed in scattering experiments despite its O(α)
suppression relative to the dominant Coulomb scattering [Ve et al. 89].

The photon-electron vertex is also affected by radiative corrections. Let us write
the proper (1PI) electron–photon vertex through first order in α as

ie�ν(p
′
e, pe) = ieγν + ieν(p

′
e, pe)+ · · · , (1.18)

where, referring to Fig. II–2(b), we have in Feynman gauge

ieν(p
′
e, pe) = (ie)3

∫
d4k

(2π)4
−igαβ

k2 − λ2 + iε
× γα i

/p′e − /k −me + iε γν
i

/pe − /k −me + iε γβ. (1.19)

Note that a small photon mass λ has been inserted to act as a cut-off in the small-
momentum domain, and we take both incoming and outgoing electrons to obey
p2
e = p′2e = m2

e . With a modest effort, the integral in Eq. (1.19) can be continued
to d spacetime dimensions,
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ieν

(
p′e, pe

) = (ie)3iμ2ε
∫ 1

0
dx

∫
ddk

(2π)d

× (2ε − 2)�kγν�k + 4�k
(
pe + p′e

)
ν
− 4mekν − 4

(
pe + p′e

) · kγν + 4pe · p′eγν[
k2 − λ2 + iε] [(k − px)2 − p2

x + iε
]2 ,

(1.20)

where px ≡ xpe+ (1− x)p′e, and the result of performing the k-integration can be
expressed as

ieν(p
′
e, pe) = (I1)ν + (I2)ν, (1.21)

where (I1)ν is singular in the ε → 0 limit,

(I1)ν = iγν
e3

(4π)2
�(ε)

(4π)−ε
(2ε − 2)2μ2ε

2

∫ 1

0
dx

∫ 1

0
dy

y[
y2p2

x + λ2(1− y)]ε ,
(1.22)

and (I2)ν is not,

(I2)ν = i
e3

(4π)2
μ2ε�(1+ ε)
(4π)−ε

∫ 1

0
dx

∫ 1

0
dy

Nν[
y2p2

x + λ2(1− y)]ε+1

Nν = y3(2ε − 2)�pxγν�px + 4y2
[
(pe + p′e)ν�px −me(px)ν − (pe + p′e) · pxγν

]
+ 4ype · p′eγν. (1.23)

The singular term (I1)ν , which arises from the �kγν�k term in Eq. (1.20), is infrared-
finite, and thus the photon mass λ can be dropped from it. Upon expanding (I1)ν in
powers of ε and performing the y-integral, we obtain

(I1)ν = ieγν
e2

16π2

[
1

ε
+ ln(4π)− γ − 1−

∫ 1

0
dx ln

(
p2
x

μ2

)
+O(ε)

]
. (1.24)

Because (I2)ν is not multiplied by any quantity which is singular in ε, we can
immediately take the ε → 0 limit to cast it in the form

(I2)ν = −i e3

16π2

∫ 1

0
dx

∫ 1

0
dy

Nν

y2p2
x + λ2(1− y),

Nν = −2y3
�pxγν�px + 4ype · p′eγν (1.25)

+ 4y2
[(
pe + p′e

)
ν �px −me(px)ν −

(
pe + p′e

) · pxγν] .
The photon mass λ can be dropped from the terms in Nν proportional to y2 and y3

since they are nonsingular even if λ = 0. Performing the y-integration then yields
the result,
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(I2)ν = −i e3

16π2

∫ 1

0
dx p−2

x

(−�pxγν�px + 2pe · p′eγν ln(p2
x/λ

2)

+ 4
[
(pe + p′e)ν�px −me(px)ν − (pe + p′e) · pxγν

])
. (1.26)

The identities

�pxγν�px = 2me(px)ν − p2
xγν , (pe + p′e) · px = 2m2

e − q2/2, (1.27)

p2
x = m2

e − q2x(1− x)
allow (I2)ν to be expressed in terms of q2 = (pe − p′e)2, and the dependence of p2

x

on the symmetric combination x(1− x) implies∫ 1

0
dx (px)νf (p

2
x) =

1

2

(
pe + p′e

)
ν

∫ 1

0
dx f (p2

x). (1.28)

These steps, plus use of the Gordon decomposition of Eq. (C–2.8) finally lead to
the expression

ie�ν(p
′
e, pe) = ieγν

[
1+ e2

4π2

{
1

4ε
− 2+ γ − ln(4π)

4

− 1

4

∫ 1

0
dx ln

(
m2
e − q2x(1− x)

μ2

)
+ 1

2

∫ 1

0
dx

3m2
e − q2

m2
e − q2x(1− x)

− 2m2
e − q2

4

∫ 1

0
dx

1

m2
e − q2x(1− x) ln

(
m2
e − q2x(1− x)

λ2

)}]
− ie

[
− iσνβq

β

2me

e2

8π2

∫ 1

0
dx

m2
e

m2
e − q2x(1− x)

]
. (1.29)

In the on-shell renormalization program, the electron–photon vertex

ie�(o−s)ν (p′e, pe) ≡ ieZ
(o−s)
1 �ν(p

′
e, pe) (1.30)

is constrained to obey

lim
q→0

ie�(o−s)ν (p′e, pe) = ieγν, (1.31)

so that

Z
(o−s)
1 = 1− e2

4π2

[
1

4ε
+ 1− γ − ln(4π)

4
− 1

4
ln

(
m2
e

μ2

)
− 1

2
ln

(
m2
e

λ2

)]
= Z

(MS)
1 − e2

4π2

[
1− γ − ln(4π)

4
− 1

4
ln

(
m2
e

μ2

)
− 1

2
ln

(
m2
e

λ2

)]
. (1.32)

The on-shell renormalized vertex is thus given by

ie�(o−s)ν

(
p′e, pe

) = ie

(
γνF1

(
q2
)− iσνβq

β

2me

F2
(
q2
))
, (1.33)
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where F1(q
2) is given by a complicated expression which we do not reproduce

here, and

F2
(
q2
) = e2

8π2

∫ 1

0
dx

m2
e

m2
e − q2x(1− x) . (1.34)

In addition to its original spin structure γν , the electromagnetic vertex is seen in
Eq. (1.33) to have picked up a contribution proportional to σνβqβ . The γν and σνβqβ

contributions are called the Dirac and Pauli terms respectively, and F1(q
2) and

F2(q
2) are the Dirac and Pauli form factors of the electron. The vertex correction

turns out to have several important experimental consequences.
Consider the interaction of an electron with a classical electromagnetic field for

very small q2. Using Eq. (1.33) and the Gordon identity, we have

Hint = eAν(x)〈e(p′e)|J νem(x)|e(pe)〉
= −eAν(x)u(p′e)

[
γ ν − iσ νβqβ

2me

e2

8π2

]
u(pe)e−iq·x +O

(
q2
)

= −eAν(x)u(p′e)
[(
pe + p′e

)ν
2me

− iσ νβqβ

2me

(
1+ e2

8π2

)]
u(pe)e−iq·x +O

(
q2
)
.

(1.35)

Precision tests of QED

Some of the most severe tests of the Standard Model have come from comparing
theory and experiment in ever more precise determinations of electromagnetic par-
ticle properties [MoNT 12]. Among these, the topic of lepton magnetic moments
has achieved a deserved prominence, and we turn to this now by continuing the
discussion of the previous section.

The first term in Eq. (1.35) describes the coupling of the photon to the convective
current of electron, but it is the second term which interests us here. Ignoring the
convective term and integrating by parts, we obtain to lowest order in q,

eAν(x)〈p′e|J νem(x)|pe〉 = −eu
(
p′e
) σβν∂βAν(x)

2me

(
1+ e2

8π2

)
u(pe)e

−iq·x

= −eu (p′e) σβνFβν(x)4me

(
1+ e2

8π2

)
u(pe)e

−iq·x. (1.36)

Noting that in the nonrelativistic limit σβνFβν/2 →−σ · B, we see that this is the
coupling of a magnetic field to the electron magnetic moment. The result is usually
expressed in terms of the gyromagnetic ratio gel, where μe ≡ −egelse/2me, and to
order e2 we have
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ae ≡ gel − 2

2
= α

2π
+O

(
α2

π2

)
� 0.00116 . . . . (1.37)

Clearly, the radiative corrections have modified the Dirac equation value, g(Dirac)
el =

2. The factor α/2π , which arises from the Pauli term, is but the first of the anoma-
lous QED contributions.

For definiteness, let us now focus on theoretical corrections to the muon mag-
netic moment.2 The QED component, whose first nontrivial term is shown in
Eq. (1.37), encompasses Feynman diagrams with multiple photon exchanges as
well as charged lepton loops. It is expressible as a series in powers of α/π ,

a(QED)
μ = α

2π
+ 0.765857410(27)

(α
π

)2 + · · · . (1.38a)

Contributions through (α/π)5 have, in fact, been calculated.
There is a smaller electroweak (EW) sector with diagrams comprising virtual

W±, Z0 and Higgs-boson exchanges. The leading order term is given by

a(EW)
μ = Gμm

2
μ

8
√

2π2

[
5

3
+ 1

3

(
1− 4 sin2 θw

)2 +O
(
m2
μ

M2
W

)
+O

(
m2
μ

M2
H

)
+ · · ·

]
,

(1.38b)

whereGμ and θw are respectively the muon decay constant and the Weinberg angle.
We will discuss each of these later, Gμ in Sect. V–2 and θw in Sect. XVI–2.

Finally, there are important corrections from the strong interactions. It can be
shown that these are largely influenced by effects of relatively low-energy hadronic
physics. For example, at the QCD level the lowest order correction amounts to a
quark–antiquark vacuum polarization, expressible in terms of either e+e− cross
sections or vector spectral functions from τ decay (see Sect. V–3),

a(Had)
μ [LO] × 1011 = 6 923(42)(3) [σ(e+e− → hadrons]

= 7 015(42)(19)(3) [τ decay].
Upon using the e+e− cross-section data, one finds for the total,

a(SM)
μ = a(QED)

μ + a(EW)
μ + a(Had)

μ

= [116 584 718.09(0.15)+ 154.(1)(2)+ 6 923(42)(3)]× 10−11

= 116591802(2)(42)(26)× 10−11. (1.39a)

This amounts to a difference between experiment and theory of

�aμ ≡ a(expt)
μ − a(thy)

μ = 287(63)(49)× 10−11 (1.39b)

2 We follow the treatment of Hoecker and Marciano [RPP 12], which lists many references.
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or 3.6 times the corresponding one-sigma error. If instead tau decay data are used,
the discrepancy between experiment and theory is 2.4σ .

The theoretical values [AoHKN 12] of the magnetic moments ae and aμ for
both electron and muon are displayed in Table V–1. There is at present no consen-
sus about whether the theoretical predictions are in accord with the experimental
determinations, and work continues on this subject. At any rate, these represent an
even more stringent test of QED than the hyperfine frequency in hydrogen because
theory is far less influenced by hadronic effects, and is thus about a factor of 104

more precise.
Radiative corrections also modify the form of the Dirac coupling. One effect of

this vertex correction is to contribute to the Lamb shift which lifts the degeneracy
between the 2S1/2 and 2P1/2 states of the hydrogen atom. Recall that the fine-
structure corrections, computed as perturbations of the atomic hamiltonian, give a
total energy contribution

(�E)fine str = (�E)Darwin + (�E)spin−orbit + (�E)rel kin en

= −7.245× 10−4eV

n3

(
1

j + 1/2
− 3

4n

)
, (1.40)

which depends only upon the quantum numbers n and j . Thus, the 2S1/2 and 2P1/2

atomic levels are degenerate to this order, and in fact to all orders. However, the
vertex radiative correction breaks the degeneracy, lowering the 2P1/2 level with
respect to the 2S1/2 level by 1010 MHz. When the anomalous magnetic moment
coupling (+68 MHz), the Uehling vacuum polarization potential (−27 MHz), and
effects of higher order in α/π are added to this, the result agrees with the experi-
mental value (cf. Table V–1). Since the entire Lamb shift arises from field-theoretic
radiative corrections, one must regard the agreement with experiment as strong
confirmation for the validity of QED and of the renormalization prescription.

The infrared problem

Viewed collectively, the results of this section point to a remarkable success for
QED. Yet there remains an apparent blemish – the theory still contains an infinity.
When the photon ‘mass’ λ is set equal to zero, the vertex modification of Eq. (1.29)
diverges logarithmically due to the presence of terms logarithmic in λ2. The resolu-
tion of this difficulty lies in realizing that any electromagnetic scattering process is
unavoidably accompanied by a background of events containing one or more soft
photons whose energy is too small to be detected. For example, consider Coulomb
scattering of electrons from a heavy point source of charge Ze. The spin-averaged
cross section for the scattering of unpolarized electrons in the absence of electro-
magnetic corrections is
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dσ (0)

d�
= Z2α2

4
· 1− β2 sin2 θ

2

|pe|2β2 sin4 θ
2

, (1.41)

where β = |pe|/E is the electron speed. Radiative corrections modify this result.
Using the on-shell subtraction prescription and neglecting the anomalous magnetic-
moment contribution, one has in the limit m2

e 
 q2,

dσ

d�
= dσ (0)

d�

[
1+ 2α

3π

q2

m2
e

(
ln
(me

λ

)
− 3

8

)
+ · · ·

]
(1.42)

from the QED vertex correction. This diverges if we attempt to take λ→ 0.
However, we must also consider the bremsstrahlung process, in which the scat-

tering amplitude is accompanied by emission of a soft photon of infinitesimal mass
λ and four-momentum kμ. For k0 sufficiently small, the inelastic bremsstrahlung
process cannot be experimentally distinguished from the radiatively corrected elas-
tic scattering of Eq. (1.42). To lowest order in the photon momentum k the invariant
amplitude MB for bremsstrahlung is3

MB = Ze

q2
u(p′e)

[
(−ie�ε)

i

�p
′
e + �k −me

(−ieγ0)

]
u(pe)

+ u(p′e)
[
(−ieγ0)

i

�pe − �k −me

(−ie�ε)
]
u(pe)

=M(0) × e
(
p′e · ε
p′e · k

− pe · ε
pe · k

)
, (1.43)

and has the corresponding cross section

dσγ = dσ (0) e2
∫ ′ d3k

(2π)3
1

2k0

∑
pol

(
p′e · ε
p′e · k

− pe · ε
pe · k

)2

. (1.44)

The prime on the integral sign denotes limiting the range of photon energy, λ ≤
k0 ≤ �E, where �E is the detector energy resolution. The polarization sum in
Eq. (1.44) is performed with the aid of the completeness relation for massive spin-
one photons ∑

pol

εμ(k)εν(k) = −gμν + kμkν

λ2
, (1.45)

to yield

dσγ

d�
= dσ (0)

d�
e2
∫ ′ d3k

(2π)3
1

2k0

(
2pe · p′e

p′e · k pe · k
− m2

e

(pe · k)2 −
m2
e

(p′e · k)2
)
. (1.46)

3 For simplicity, we shall take the photon as massless in this amplitude, and at the end indicate the effect of this
omission.
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Performing the angular integration in Eq. (1.46) with the aid of∫
d�

m2
e

(p · k)2 =
4π

k2
0

+O(λ2),∫
d�

2pe · p′e
p′e · k pe · k

=
∫ 1

0
dx

∫
d�

2pe · p′e
(k · px)2 +O(λ2) (1.47)

= 4π

k2
0

(
2− q2

m2
e

)∫ 1

0
dx

(
1− q2

m2
e

x(1− x)
)−1

+O(λ2),

we find

dσγ

d�
= −dσ

(0)

d�

[
2α

3π

q2

m2
e

(
ln

(
2(�E)

λ

)
− 1

)
+O

(
q4

m4
e

)]
. (1.48)

Adding this to the nonradiative cross section of Eq. (1.42), we obtain the finite
result,

dσ

d�
+ dσγ

d�
= dσ (0)

d�

[
1+ 2α

3π

q2

m2
e

(
ln

(
me

2(�E)

)
+ 5

8

)]
. (1.49)

Thus, the net effect of soft-photon emission is to replace the photon mass λ by the
detector resolution 2�E, leaving a finite result.4

V–2 The muon

The analysis just presented for the electron can just as well be repeated for the
muon. However, the muon has the additional property of being an unstable particle,
and in the following we shall focus entirely on this aspect. The subject of muon
decay is important because it provides a direct test of the spin structure of the
charged weak current. It is also important to be familiar with the calculation of
photonic corrections to muon decay, as they are part of the process whereby the
Fermi constant Gμ is determined from experiment.

Muon decay at tree level

Muon decay does not proceed like the 2p→ 1s+ γ transition in atomic hydrogen
because the radiative processμ→ e+γ would conserve neither muon nor electron
number and is predicted to be highly suppressed in the Standard Model. Indeed
the current bound [Ad et al. (MEG collab.) 13] for this mode is extremely tiny,
Brμ→e+γ < 5.7× 10−13 at 90% confidence level.5

4 As anticipated, the result quoted in Eq. (1.49) is not quite correct, since although we have given the photon
an effective mass λ we have not consistently included it, as in Eq. (1.43). In a more careful evaluation the
constant 5

8 is replaced by the value 11
24 .

5 See Problem V–1 for a further discussion of μ→ e + γ .
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In fact, it is the weak transition μ(p1, s) → νμ(p2) + e(p3) + νe(p4) which is
the dominant decay mode of the muon. In the Standard Model, this process occurs
through W -boson exchange between the leptons. However, since the momentum
transfer is small compared to the W -boson mass, it is possible to express muon
decay in terms of the local Fermi interaction,

LFermi = −Gμ√
2
ψ
(νμ)

γ α(1+ γ5)ψ
(μ) ψ

(e)
γα(1+ γ5)ψ

(νe) (2.1)

= −Gμ√
2
ψ(e)γ

α(1+ γ5)ψ(μ) ψ(νμ)
γα(1+ γ5)ψ(νe), (2.2)

where the coupling constant Gμ is to be considered a phenomenological quantity
determined from the muon lifetime. At tree level, Gμ is related to basic Standard
Model parameters as in Eq. (II–3.43). The orderings in Eqs. (2.1)–(2.2) are called,
respectively, the charge-exchange and charge-retention forms of the interaction,
and are related by the Fierz transformation of Eq. (C–2.11).

Let us consider the decay of a polarized muon, with rest-frame spin vector ŝ,
into final states in which spin is not detected. For simplicity, we set the electron
mass to zero. The muon decay width is given in terms of a three-body phase space
integral by

�μ→eνμν̄e =
1

(2π)5
1

2E1

∫ 4∏
j=2

d3pj

2Ej
δ(4)(p1 − p2 − p3 − p4)

∑
s2,s3,s4

|M|2, (2.3)

where in charge-exchange form,

M = Gμ√
2
u(p2, s2)γ

α(1+ γ5)u(p1, s1) u(p3, s3)γα(1+ γ5)v(p4, s4). (2.4)

The muon polarization is described by a four-vector sμ, which equals (0, ŝ) in the
muon rest frame. In computing the squared matrix element, we employ

uβ(p1, s1)uα(p1, s1) = 1

2

[
(mμ +�p1)(1− γ5�s)

]
βα

(2.5)

to obtain ∑
s2,s3,s4

|M|2 = 64G2
μ (p1 · p4 p2 · p3 −mμp4 · s p2 · p3). (2.6)

The neutrino phase space integral is easily found to be∫
d3p2

2E2

d3p4

2E4
δ(4) (Q− p2 − p4) p

α
2 p

β

4 = π

24

(
gαβQ2 + 2QαQβ

)
, (2.7)

where Q = p1 − p3. For the electron phase space, it is convenient to define a
reduced electron energy x = Ee/W , where W = mμ/2 is the maximum electron



V–2 The muon 157

energy in the limit of zero electron mass. The standard notation for the electron
spectum involves the so-called Michel parameters ρ, δ, ξ whose values depend on
the tensorial nature of the beta decay interaction,

d2�μ→eνμν̄e =
G2
μm

5
μ

192π3

[
6(1− x)+ 4ρ

(
4x

3
− 1

)
−2ξ cos θ

(
1− x + 2δ

(
4x

3
− 1

))]
x2dx sin θdθ. (2.8)

For the V−A chiral structure of the Fermi model, we predict

ρ = δ = 0.75, ξ = 1.0, (2.9a)

in good agreement with the current experimental values [RPP 12],

ρ = 0.74979± 0.00026, δ = 0.75047± 0.00034, ξPμδ/ρ = 1.0018+0.0016
−0.0007

(2.9b)

where Pμ is the longitudinal muon polarization from pion decay (Pμ=Pν/Eν = 1
in V − A theory). In making comparisons between Eq. (2.9a) and Eq. (2.9b), one
shoud first subtract from the data corrections due to radiative effects. Upon integra-
tion over the electron phase space, Eq. (2.8) gives rise to the well-known formula,

�μ→eνμν̄e =
1

τμ→eνμν̄e

= G2
μm

5
μ

192π3
. (2.10)

This relation has been used to provide an order-of-magnitude estimate for decay
rates of heavy leptons and quarks.

Precise determination of Gμ

Thus far, we have worked to lowest order in the local Fermi interaction and have
assumed massless final state particles. This is not sufficient to describe results from
modern experiments, e.g., the recent measurement of τμ→eνμν̄e by Webber et al.
[We et al. (MuLan collab.) 11] is 15 times as precise as any previous determination
and provides a value of Gμ with an uncertainty of only 0.6 ppm.

Including corrections to Eq. (2.10) yields

�μ→eνμν̄e =
G2
μm

5
μ

192π3
f (x)rγ

(
α̂(mμ), x

)
rW (yμ), (2.11a)

where f (x) is a phase space factor, with x ≡ m2
e/m

2
μ,

f (x) = 1− 8x + 8x3 − x4 − 12x2 ln x � 0.999812961, (2.11b)
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Table V–2. Determinations of Fermi-model couplings.

Factor Determination

Gμ Muon decay
G
(
)
τ Tau decay into lepton 


Gβ Gμ plus QED theory

GβVud

{
Nuclear beta decay
π
3

GβVus

{
Hyperon beta decay
K
3

GβVudFπ Pion beta decay (π
2)
GβVusFK Kaon beta decay (K
2)

and rW (yμ) = 1 + 3yμ/5 + · · · is a W -boson propagator correction, with yμ ≡
m2
μ/M

2
W .6 The quantity rγ (α̂(mμ), x) provides a perturbative expression of the

photonic radiative corrections,

rγ (α̂, x) = H1(x)
α̂(mμ)

π
+H2(x)

α̂2(mμ)

π2
+ · · · , (2.11c)

where α̂(mμ) refers to the MS subtracted quantity

α̂(mμ)
−1 = α−1 + 1

3π
ln x + · · · � 135.901. (2.11d)

The functions H1(x),H2(x) appear, together with references to original work, in
Chap. 10 of [RPP 12]. In the subsection to follow, we will calculate the leading-
order contribution to rγ . The above theoretical relations lead to the determination

Gμ = 1.1663787(6)× 10−5 GeV−2. (2.12)

The above analysis serves to define the Fermi constant in the context of muon
decay. Fermi couplings G(
)

τ for the weak leptonic transitions τ−→ e− + ν̄e+ ντ
and τ− → μ− + ν̄μ + ντ can likewise be defined and compared with Gμ (see
Sect. V–3). However, for weak semileptonic transitions of hadrons (e.g. nuclear
beta decay) the photonic corrections are not identical to those in muon decay
because quark charges differ from lepton charges. Such processes define instead
a quantity called Gβ , and we shall present in Sect. VII–1 a calculation of Gβ

for the case of pion decay (cf. Eq. (VII–1.31)). As seen in Table V–2, determi-
nations involvingGβ generally contain quark mixing factors and also meson decay

6 It is possible to study muon decay corrections either within just the Fermi effective theory or with the full
Standard Model, For the former choice rW (yμ) is omitted in Eq. (2.11a), whereas for the latter it is included.
Which choice is made affects details of higher-order corrections. We have opted to follow the first edition of
this book by including rW (yμ). In fact, its effect is numerically tiny, affecting only the final decimal place in
the value of Gμ given in Eq. (2.12).
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(a) (b) (c) (d) (e)

Fig. V–1 Contributions to muon decay from (a) vertex, (b)–(c) wavefunction
renormalization, and (d)–(e) bremsstrahlung amplitudes.

constants. Marciano [Ma 11] has used, among other processes, semileptonic decays
(nuclear, kaon and B-meson) and CKM unitarity to determine the Fermi constant
without recourse to muon decay. He finds G(CKM)

F = 1.166309(350)× 10−5 GeV2,
which is the second most accurate determination after the muon decay value of
Eq. (2.12), but relatively far less accurate.

Leading-order photonic correction

Computation of the lowest order electron andW -boson mass corrections appearing
in Eq. (2.10) is not difficult, and is left to Prob. V–2. However, the QED radiative
correction is rather more formidable, and it is to that which we now turn our atten-
tion. Rather than attempt a detailed presentation, we summarize the analysis of
[GuPR 80]. We shall work in Feynman gauge, and employ the charge-retention
ordering for the Fermi interaction. There is an advantage to performing the cal-
culation as if the muon existed in a spacetime of arbitrary dimension d. Working
in d = 4 dimensions entails factors which are logarithmic in the electron mass
and which would forbid the simplifying assumption me = 0. Dimensional regu-
larization frees one from this restriction, and such potential singularities become
displayed as poles in the variable ε = (4 − d)/2. Although there would appear to
be difficulty in extending the Dirac matrix γ5 to arbitrary spacetime dimensions,
this turns out not to be a problem here. The set of radiative corrections consists of
three parts, which are displayed in Fig. V–1, (i) vertex (Fig. V–1(a)), (ii) self-energy
(Fig. V–1(b)–(c)), and (iii) bremsstrahlung (Fig. V–1(d)–(e)). We shall begin with
the bremsstrahlung part of the calculation and then proceed to the vertex and self-
energy contributions.

The amplitude for the bremsstrahlung (B) process μ(p1) → νμ(p2) + e(p3) +
νe(p4)+ γ (p5) is given by

MB = eGμ√
2
u(p2)γ

α(1+ γ5)v(p4)

× u(p3)

[
γα(1+ γ5)

1

�p1 −�p5 −mμ
�ε + �ε

1

�p3 +�p5 −me

γα(1+ γ5)

]
u(p1),

(2.13)
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where ε is the photon polarization vector. The spin-averaged bremsstrahlung tran-
sition rate for d spacetime dimensions in the muon rest frame is then given by7

�B = 1

2mμ

∫ 5∏
j=2

(
dd−1pj

2Ej(2π)d−1

)
(2π)dδ(d)

(
Q′ − p2 − p4

) 1

2

∑
spins

|MB |2,

(2.14)

where Q′ ≡ Q− p5 = p1 − p3 − p5. A lengthy analysis yields a result which can
be expanded in powers of ε = (4− d)/2 to read

�B =
G2
μm

5
μ

192π3

3α

4

(
m3
μ

32π3/2

)−2ε
�(2− ε)

�
(

3
2 − ε

)
�( 5

2 − ε)� (5− 3ε)

×
(

6

ε2
− 5− 6γ

ε
− 5γ + 3γ 2 − 7π2

2
+ 215

6
+O(ε)

)
. (2.15)

Observe that singularities are encountered as ε → 0.
The radiative correction (R) contribution to the muon transition rate is given by

�R = 1

2mμ

∫ 4∏
j=2

(
dd−1pj

2Ej(2π)d−1

)
(2π)dδ(d) (Q− p2 − p4)

1

2

∑
spins

|M|2int,

(2.16)

where |M|2int is the interference term between the Fermi-model amplitudes, which
are, respectively, zeroth order (M(0)) and first order (M(1)) in e2,

|M|2int =M(0)∗M(1) +M(1)∗M(0). (2.17)

The first-order amplitude can be written as a product of neutrino factors and a term
(MR) containing radiative corrections of the charged leptons,

M(1) = e2Gμ√
2
u(p2)γα(1+ γ5)v(p4)Mα

R. (2.18)

The quantity Mα
R is itself expressible as the sum of vertex (V ) and self-energy

(SE) contributions,

Mα
R = u(p3)

(
Mα

V +Mα
SE

)
u(p1). (2.19)

The vertex modification of Fig. V–1(c)

Mα
V =

1

i

∫
d4k

(2π)4
γ μ
(
�p3 − �k

)
γ α (1+ γ5)

(
�p1 − �k +mμ

)
γμ

k2 (p3 − k)2
[
(p1 − k)2 −m2

μ

] , (2.20)

7 Since the result that we seek is finite and scale independent, in this section we shall suppress the scale
parameter μ introduced in Eq. (II–1.21b).
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has the same form as the electromagnetic vertex correction for the electron dis-
cussed previously (cf. Eq. (1.19)) except that it contains the weak vertex γ α(1+γ5).
Upon employing the Feynman parameterization in Eq. (2.20) and using the muon
equation of motion, the extension of the vertex amplitude to d dimensions can ulti-
mately be expressed in terms of hypergeometric functions,

Mα
V = 4�

(
3− d

2

)
m−(4−d)μ

(4π)d/2

[
γ α (1+ γ5) A1 + (1− γ5)

pα1B + pα3C
mμ

]
,

(2.21)

where

A1 = F
(
3− d

2 , 1; d2 ; ξ
)

(d − 3)(d − 2)
− (d − 3)F

(
2− d

2 , 1; d2 ; ξ
)

(d − 4)(d − 2)

− (1− ξ)F (3− d
2 , 1; d2 − 1, ξ

)
(d − 4)2(d − 3)

, (2.22)

B = F
(
3− d

2 , 1; d2 + 1; ξ)
d

,

C = 2F
(
3− d

2 , 2; d2 + 1; ξ)
d(d − 2)

− 2F
(
3− d

2 , 1; d2 ; ξ
)

(d − 2)(d − 3)
.

For the muon self-energy amplitude of Fig. (V–1(d)), we write

�(p) = −i
∫

ddq

(2π)d
γ λ(�p −�q +mμ)γλ

q2
(
q2 − 2p · q + p2 −m2

μ

) , (2.23)

remembering that a factor of e2 has already been extracted in Eq. (2.18). Imple-
menting the Feynman parameterization and integrating over the virtual momentum
yields an expression,

�(p) = �
(
2− d

2

)
(4π)d/2

1

m4−d
μ

∫ 1

0
dx
[
mμd + x(2− d)�p

] (1− x)(4−d)/2(
1− x p2

m2

)(4−d)/2 , (2.24)

which with the aid of Eq. (C–5.5) in App. C can be written in terms of hyper-
geometric functions,

�(p) = �(2− d
2 )

(4π)d/2
1

m4−d
μ

[
mμ

2d

d − 2
F

(
4− d

2
, 1; d

2
; p

2

m2
μ

)

−�p
4

d
F

(
4− d

2
, 2; d + 2

2
; p

2

m2
μ

)]
. (2.25)

When the self-energy is expanded in powers of �p−mμ, the leading term is just the
mass shift, which is removed by mass renormalization. We require the �p-derivative
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of �(p) evaluated at �p = mμ. Being careful while carrying out the differentiation
to interpret p2 factors as �p�p, we find

∂�

∂�p

∣∣∣∣
�p=mμ

= �
(
2− d

2

)
(4π)d/2

1

m4−d
μ

1− d
d − 3

. (2.26)

It is this quantity multiplied by the vertex γ α(1 + γ5) which ultimately gives rise
to Mα

SE . However, in addition to mass renormalization there is also wavefunction
renormalization, whose effect is to reduce the above quantity by a factor of 2,
yielding

Mα
SE =

�
(
3− d

2

)
(4π)d/2

1

m4−d
μ

1− d
4(4− d)(d − 3)

γ α(1+ γ5). (2.27)

In principle, there also exists the electron self-energy contribution. As can be veri-
fied by direct calculation, this vanishes because the electron is taken as massless.
Thus, we conclude that

Mα
SE = 4�

(
3− d

2

)
md−4
μ

(4π)d/2
A2γ

α(1+ γ5),

A2 = −1

4

d − 1

(4− d)(d − 3)
. (2.28)

The net effect of the self-energy contribution is to replace A1 in the vertex ampli-
tude of Eq. (2.21) by A = A1 + A2.

Insertion of the radiatively corrected amplitudes into Eq. (2.16) leads to a tran-
sition rate �R, which expanded to lowest order in ε = (4− d)/2, has the form

�R =
G2
μm

5
μ

192π3

3α

4

(
m3
μ

32π3/2

)−2ε
� (2− ε)

�
(

3
2 − ε

)
�
(

5
2 − ε

)
�(5− 3ε)

×
(
− 6

ε2
+ 5− 6γ

ε
+ 5γ − 3γ 2 − 5π2

2
+ 5

3
+O(ε)

)
. (2.29)

Like the bremsstrahlung contribution, the radiatively corrected decay rate is found
to be singular in the ε → 0 limit. However, the final result which is obtained by
adding the radiative correction of Eq. (2.29) to that of the bremsstrahlung expres-
sion of Eq. (2.15) is found to be free of divergences,

δ�(QED)
muon = �R + �B = −

G2
μm

5
μ

192π3

α(mμ)

2π

(
π2 − 25

4

)
, (2.30)

which is the leading-order contribution to the function rγ of Eq. (2.11c).
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V–3 The τ lepton

The heaviest known lepton is τ(1777), having been discovered in e+e− collisions
in 1975. There exists also an associated neutrino ντ with current mass limit mντ <

18.2 MeV. Like the muon, the τ can decay via purely leptonic modes,

τ− →
⎡⎢⎣μ

− + ν̄μ + ντ
e− + ν̄e + ντ

...

. (3.1)

However, a new element exists in τ decay, for numerous semileptonic modes are
also present,

τ− →
⎡⎢⎣ π− + ντ
π− + π0 + ντ

...

. (3.2)

Experiment has revealed the semileptonic sector to be an important component
of tau decay, e.g., [Am et al. (Heavy Flavor Averaging Group collab.) 12],

Rτ ≡ �semileptonic

�τ→eν̄eντ

∣∣∣∣
expt

= 1− Brτ→eν̄eντ − Brτ→μν̄μντ

Brτ→eν̄eντ

= 3.6280± 0.0094, (3.3)

where Br denotes branching ratio. It is possible to obtain a simple but naive esti-
mate of Rτ as follows. Because the τ is lighter than any charmed hadron, semi-
leptonic decay amplitudes must involve the quark charged weak current

J
μ

ch = Vud d̄γ
μ(1+ γ5)u+ Vus s̄γ

μ(1+ γ5)u, (3.4)

where Vud and Vus are CKM mixing elements. Neglect of all final state masses and
of effects associated with quark hadronization (an assumption only approximately
valid at this relatively low energy) implies the estimates

R(naive)
τ � Nc

[|Vud|2 + |Vus|2
] � Nc −→

Nc=3
3.0,

Br(naive)
τ→eν̄eντ

� Br(naive)
τ→μν̄μντ

� 1

2+Nc

−→
Nc=3

0.2, (3.5)

where Nc is the number of quark color degrees of freedom. The above analysis
although rough, nonetheless yields estimates for Rτ , τ → eν̄eντ and τ → μν̄μντ

in approximate accord with the corresponding experimental values. Also, it is not
inconsistent with our belief that Nc = 3. However, we can and will improve upon
this state of affairs (cf. Eq. (3.27b)) and as a bonus will obtain a determination of
the strong coupling αs(mτ ).
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Exclusive leptonic decays

The momentum spectra of the electron and muon modes also probe the nature of τ
decay. The Michel parameter ρ of Eq. (2.8) should equal 0.75 for the usual V −A
currents, zero for the combination V + A and 0.375 for V or A separately. The
observed value ρ = 0.745± 0.008 is in accord with the V − A structure.

The τ leptonic decays afford an opportunity to test the principle of lepton univer-
sality, i.e., the premise that the only physical difference among the charged leptons
is that of mass. In particular, all the charged leptons are expected to have identical
charged current weak couplings, cf. Eqs. (II–3.36),(II–3.37),

g2e = g2μ = g2τ ≡ g2 (universality condition). (3.6)

This has been tested in [Am et al. (Heavy Flavor Averaging Group collab.) 12],
using the following Standard Model description for the leptonic decay mode of a
heavy lepton L,

�L→νL
ν̄
 =
GLG
m

5
L

192π3
f (x)rγ (mL)rW(yL),

G
 = g2
2


4
√

2M2
W

, rγ (mL) = 1+ α(mL)

2π

(
25

4
− π2

)
, (3.7)

where f (x) is as in Eq. (2.11b) and rW (yL) = 1 + 3m2
L/(5M

2
W + · · · . They find

[Am et al. (Heavy Flavor Averaging Group collab.) 12],

g2τ

g2μ
= 1.0006± 0.0021,

g2τ

g2e
= 1.0024± 0.0021,

g2μ

g2e
= 1.0018± 0.0014,

(3.8)

consistent with the universality condition of Eq. (3.6).
There are other ways to study the universality principle. Looking forward to

Chap. XVI, we shall exhibit in Eq. (XVI–2.6) the result of testing lepton uni-
versality with the decays Z0 → 

̄ (
 = e, μ, τ ). Unlike the above example in
Eq. (3.8), the Z0 decay widths are functions of neutral weak coupling constants.
Yet another approach, which uses charged current couplings, is to compare leptonic
and semileptonic decays, like H → μν̄μ (where H can be a pion, kaon, etc.) with
τ → Hντ .

Exclusive semileptonic decays

Matters are somewhat more complex for the hadronic final states, due in part to the
large number of modes. Still, for many of these we can make detailed confrontation
of theoretical predictions with experimental results. We begin by noting that the
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semileptonic decay amplitude factorizes into purely leptonic and hadronic matrix
elements of the weak current,

Msemilept = Gμ√
2
Lμ Hμ,

Lμ = 〈ντ (p′)|Jμlept|τ(p)〉 = ντ (p′)�
μ

Lτ(p),

Hμ =
〈
hadron

∣∣∣(J qk
μ

)†∣∣∣ 0〉 = 〈hadron|V ∗ud d̄�
L
μu+ V ∗us s̄�

L
μu |0〉, (3.9)

where �Lμ ≡ γμ(1 + γ5). In the following, we analyze some modes containing a
single meson,

τ− → meson+ ντ
(
meson = π−, K−, ρ−(770), K∗−(892)

)
. (3.10)

Weak-current matrix elements which connect the vacuum with spin-parity JP =
0−, 1+ hadrons are sensitive to only the axial-vector current, whereas JP = 0+, 1−

states arise from the vector current. In each case, the vacuum-to-meson matrix
element has a form dictated up to a constant by Lorentz invariance,

〈π−(q) ∣∣[d̄γμγ5u
]
(0)
∣∣ 0〉 ≡ −i√2Fπqμ, (3.11a)

〈K−(q)
∣∣[s̄γμγ5u

]
(0)
∣∣ 0〉 ≡ −i√2FKqμ, (3.11b)

〈ρ−(q, λ) ∣∣[d̄γμu] (0)∣∣ 0〉 ≡ √2gρε
∗
μ(q, λ), (3.11c)

〈K∗−(q, λ)
∣∣[s̄γμu] (0)∣∣ 0〉 ≡ √2gK∗ε

∗
μ(q, λ), (3.11d)

where the quantities gρ and gK∗ are the vector meson decay constants. These quan-
tities contribute to the transition rates for pseudoscalar (p) and vector (v) emission,
and we find from straightforward calculations

�τ→pντ = ηKMG
2
μm

3
τ

F 2
p

8π

(
1− m2

p

m2
τ

)2

,

�τ→vντ = ηKM
G2
μ

8π

(
gv

m2
v

)2

m3
τm

2
v

(
1− m2

v

m2
τ

)2 (
1+ 2

m2
v

m2
τ

)
, (3.12)

where mp,mv are the meson masses, η = |Vud|2 for �S = 0 decay and η = |Vus|2
for �S = 1 decay.

It is possible to use the above formulae to extract constants such as Fπ, . . . , gK∗
from tau decay data. However, such quantities are obtained more precisely from
other processes and, in practice, one employs them in tau decay to make branching-
ratio predictions. Although QCD-lattice studies have steadily improved on their
predictions of such constants, we shall focus instead on phenomenological deter-
minations. In Chap. VII, we shall show how the values Fπ = 92.21 MeV and
FK/Fπ = 1.197 are found from a careful analysis of pion and kaon leptonic weak



166 Charged leptons

Table V–3. Some hadronic modes in tau decay.

Mode Hadronic input Br [thy]a Br [expt]a
τ− → π− + ντ c1Fπ 11.4 10.83± 0.06
τ− → K− + ντ c3s1FK 0.8 0.70± 0.01
τ− → ρ− + ντ c1gρ 23.4± 0.8 25.52± 0.9
τ− → K∗− + ντ c3s1gK∗ 1.1± 0.1 1.33± 0.13
τ− → π−π−π+π0ντ σ (e+e− → hadr) 4.9 4.76± 0.06
τ− → π−π0π0π0ντ σ (e+e− → hadr) 0.98 1.05± 0.07

aBranching ratios are given in percent.

decay. Interestingly, the hadronic matrix elements which contribute there are just
the conjugates of those appearing in Eqs. (3.11a), (3.11b). By contrast, the quantity
gρ is obtained not from weak decay data, but rather from an electromagnetic decay
such as ρ0 → eē. That the same quantity gρ should occur in both weak and electro-
magnetic transitions is a consequence of the isospin structure of quark currents.
That is, the electromagnetic current operator is expressed in terms of octet vector
current operators by J em

μ = V 3
μ + 1√

3
V 8
μ . Since the latter component is an isotopic

scalar whereas the ρ meson carries isospin one, it follows from the Wigner–Eckart
theorem that

〈0|J em
μ |ρ0(p)〉 = 〈0|V 3

μ |ρ0(p)〉 = 1√
2
〈0|V 1+i2

μ |ρ−(p)〉 = gρεμ(p). (3.13)

The transition rate for the electromagnetic decay ρ0 → eē is given, with final state
masses neglected, by

�ρ0→eē = 4πα2

3

(
gρ

m2
ρ

)2

mρ, (3.14)

from which we find gρ/m2
ρ = 0.198± 0.009. The K∗−ντ mode can be estimated

by using the flavor-SU(3) relation gK∗ = gρ . The predictions for single-hadron
branching ratios are collected in Table V–3, and are seen to be in satisfactory agree-
ment with the observed values.

A somewhat different approach can be used to obtain predictions for strangeness-
conserving modes with JP = 1−. Since matrix elements of the vector-charged
current can be obtained through an isospin rotation from the isovector part of the
eē annihilation cross section into hadrons, we can write for a given neutral I = 1
hadronic final state f 0,

σ
(I=1)
eē→f 0 = 8π2α2

q2
�0
f

(
q2
)
, (3.15)
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where we have defined∑
f 0

(2π)3δ(4)(q − pf 0)〈f 0|J (3)μ |0〉〈f 0|J (3)ν |0〉∗ ≡ �0
f (q

2)
(−q2gμν + qμqν

)
.

(3.16)

The τ− transition into the isotopically related charged state f −,

|f −〉 ≡ 1√
2
(I1 − iI2)|f 0〉, (3.17)

is governed by the same function �f (q
2) of hadronic final states as occurs in

Eq. (3.15). Including the lepton current and relevant constants, and performing
the integration over ντ phase space yields a decay rate

�τ→f ντ =
G2
μ|Vud|2SEW

32π2m3
τ

∫ m2
τ

0
dq2

(
m2
τ − q2

)2 (
m2
τ + 2q2

)
�−f
(
q2
)
, (3.18)

where SEW is given in Eq. (3.25c). The content of Eq. (3.18) is often expressed as
a ratio,

�τ→f ντ

�τ→eντ ν̄e

= 3|Vud|2SEW

2πα2m8
τ

∫ m2
τ

0
ds
(
m2
τ − s

)2 (
m2
τ + 2s

)
s σ

(I=1)
e+e−→f 0(s) . (3.19)

Thus, we find, e.g., for 4π final states, the results listed in Table V–3.
There exist numerous additional hadronic decay modes of the τ lepton. Exam-

ples include final hadronic states containing KK̄,KK̄π , etc., and it is possible
to analyze each of these with various degrees of theoretical confidence. Another
interesting use of the τ semileptonic decay has been to confirm by inference the
fundamental structure of the weak quark current from the absence of the mode
τ− → π−ηντ . This mode, proceeding through the vector current, would violate
G-parity invariance. Here G-parity refers to the product of charge conjugation and
a rotation by π radians about the 2-axis in isospin space,

G ≡ Ce−iπI2 . (3.20)

A weak current which could induce a �G �= 0 transition is referred to as a
second-class current. Such currents do not occur naturally within the quark model.
The π−ηντ mode has not been detected, with an existing sensitivity [RPP 12] of
Brτ→πηντ < 9.9 × 10−5. This result, consistent with the absence of second-class
currents, fits securely within the framework of the Standard Model.

Inclusive semileptonic decays

The inclusive semileptonic decay of the tau is denoted as τ → ντ + X, where X
represents the sum over all kinematically allowed hadronic states. Let us restrict
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our attention to the Cabibbo-allowed component, i.e., decay into an even or odd
number of pions. The decay rate at invariant squared-energy s is

d�
[
τ → ντ

( even
odd

)]
ds

= G2
μV

2
ud

8πm3
τ

(
m2
τ − s

)2 [
(m2

τ + 2s)

(
ρV (s)

ρA(s)

)
+m2

τ

(
0

ρ
(0)
A

)]
, (3.21)

as expressed in terms of the so-called vector and axial-vector spectral functions,
spin-one ρV (s), ρA(s) and spin-zero ρ(0)A (s).

We can gain some physical understanding of the spectral functions by first study-
ing the propagator i�(x) for a free, scalar field ϕ(x) (cf. Eq. (C–2.12)). Its Fourier
transform,

�(q2) = 1

μ2 − q2 − iε with Im�(q2) = πδ
(
q2 − μ2

)
, (3.22)

reveals that the free field ϕ(x) excites the vacuum to just the single state with q2 =
μ2. For the V − A currents which induce the inclusive tau decay, the momentum
space propagators are written

i

∫
d4x eiq·x 〈0|T (V μ

3 (x)V
ν

3 (0)− Aμ3 (x)Aν3(0)
) |0〉

= (qμqν − q2gμν
) (
�
(1)
V ,3 −�(1)

A,3

)
(q2)− qμqν�(0)

A,3(q
2), (3.23)

where�(1)
V ,3,�

(1)
A,3 and�(0)

A,3 are respectively the spin-one and spin-zero correlators.
The spectral functions are proportional to the imaginary parts of the corresponding
correlators,

Im �
(1)
V/A,3(s) = πρV/A,3(s) Im �

(0)
A,3(s) = πρ

(0)
A,3(s). (3.24)

They encode how the isospin vector and axial-vector currents excite various n-pion
states at invariant energy s < m2

τ . Figure V–2 displays the V −A spectral function8(
ρV,3 − ρA,3

)
(s) as measured in tau decay from the ALEPH collaboration. The first

peak is from the ρ meson, followed by the negative a1 peak and then the four-pion
component, etc.

Some applications of τ decays

Studies of τ decays have also proved valuable in providing a measure of αs(mτ ).
Such a determination is significant because the tau lepton mass is one of the lowest
energy scales (the charm quark mass is another) at which this is possible. The
procedure essentially amounts to performing a more careful evaluation of Rτ than

8 Here and henceforth we abbreviate ρV,3 → ρV and ρA,3 → ρA.
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Fig. V–2 Authors’ representation of ALEPH data for the V −A spectral functions
from tau decay.

the naive reasoning leading to the result in Eq. (3.5). Recall that we have previously
displayed in Eq. (3.3) the measured value of Rτ . If we restrict ourselves to the
Cabibbo-allowed decays (notationally, Rτ → Rud

τ ) by subtracting off the Cabibbo
suppressed transitions, then experiment gives [Pi 13]

Rud
τ = 3.4771± 0.0084. (3.25a)

On the theory side, a careful analysis of tau decays yields

Rud
τ = NC |Vud|2SEW [1+ δNP + δP] , (3.25b)

where SEW is an electroweak correction,

SEW = 1+ 2α(mτ )

π
ln

(
MZ

mτ

)
+ · · · = 1.0201± 0.0003 (3.25c)

and δNP � −0.0059 ± 0.0014 represents the nonperturbative QCD corrections.
These two are insignificant compared to δP, the perturbative QCD correction, whose
numerical value is inferred by comparing the above experimental and theoretical
relations,

δP = 0.2030± 0.0033, (3.25d)

amounting to a 20% effect. To derive a theoretical expression for δP, one first
expresses Rud

τ as the contour integral [BrNP 92]

Rud
τ = 6πi

∮
|s|=m2

τ

ds

m2
τ

(
1− s

m2
τ

)2

×
[(

1+ 2
s

m2
τ

)
�(1+0)(s)− 2

s

m2
τ

�(0)(s)

]
, (3.26)
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where the presence of �(1+0) in the above is associated with requiring singularity-
free behavior in the complex-q2 plane upon passing to the chiral limit. We shall not
detail the next steps, which involve use of the operator-product expansion (OPE)
for �(1+0)(s) on the circle |s| = m2

τ . However, the physical picture which emerges
is akin to that of the quark–antiquark loop in electromagnetic vacuum polarization
(cf. Fig. II–2(a)), except now the currents are the weak currents, and the photon-
exchange perturbations of the EM case become instead gluon exchanges. The result
of this is expressed as the series

δP =
∑
n=1

KnA
(n)(αs) (3.27a)

where K1 = 1, K2 = 1.63982, etc., and

A(n)(αs) = 1

2πi

∮
|s|=m2

τ

ds

s

(
αs(−s)
π

)n (
1− 2

s

m2
τ

+ 2
s3

m6
τ

− s4

m8
τ

)
. (3.27b)

The αs(−s) dependence is expressible in terms of αs(mτ ), which finally can be
determined in terms of the experimentally measured Rud

τ . Depending on details of
the analysis, some scatter occurs in the value found for αs(m2

τ ). The averaging in
[Pi 13] (see also [Bo et al. 12]) arrives at

αs(m
2
τ ) = 0.334± 0.014, (3.28)

having about 4% uncertainty. Renormalization group running of this result up to
theZ-boson mass gives αs(MZ) = 0.1204± 0.0016, in accord with the 2011 world
average value αs(MZ) = 0.1183± 0.0010.

A rather different bit of τ -related physics involves a set of sum rules which
contain the ρV,A spectral functions [We 67a; Das et al. 67],∫ ∞

m2
π

ds
ρV (s)− ρA(s)

s
= −4Lr

10(μ)+
1

16π2
ln

(
m2
π

μ2

)
, (3.29a)

where Lr10(μ) is a chiral coefficient to be defined in Sect. VII–2 and quantified in
Table VII–1, and μ is an arbitrary energy scale which cancels between the two
terms on the right-hand side,∫ ∞

m2
π

ds (ρV (s)− ρA(s)) = F 2
π , (3.29b)

∫ ∞

0
ds s (ρV (s)− ρA(s)) = 0, (3.29c)

∫ ∞

0
ds s 
n

( s

2

)
(ρV (s)− ρA(s)) = −16π2F 2

π

3e2

(
m2
π± −m2

π0

)
, (3.29d)
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where  is an energy scale which is arbitrary by virtue of Eq. (3.29c). Although
the sum rules of Eqs. (3.29a,b) hold in the physical world, those of Eqs. (3.29c,d)
are derived in the chiral limit of massless u, d quarks, so the quantities Fπ and
mπ± are understood to have slightly different numerical values from their physical
counterparts. Like the extraction of αs(mτ ) from τ decay, these sum rules have
been the subject of much study over time. Their convergence is sensitive to the
spectral functions in the large s limit. This is known in the mu = md limit to be(
ρV,3 − ρA,3

)
(s) ∼ s−3, which suffices to provide convergence.

Another, perhaps surprising, application of the spectral functions ρV,3 and ρA,3
involves CP violation in the kaon system. This is presented in Sect. IX–3, where
the association of these spectral functions with ε′/ε (a measure of direct to indirect
CP violation) is described.

Problems

(1) Effective lagrangian for μ → e + γ

In describing the decay μ→ e+ γ , one may try to use an effective lagrangian
L3,4 which contains terms of dimensions 3 and 4,

L3,4 = a3 (ēμ+ μ̄e)+ ia4 (ē /Dμ+ μ̄ /De) ,
where Dμ ≡ ∂μ + ieQelAμ and a3, a4 are constants.
(a) Show by direct calculation that L3,4 does not lead to μ→ e + γ .
(b) If L3,4 is added to the QED lagrangian for muons and electrons, show that

one can define new fields μ′ and e′ to yield a lagrangian which is diago-
nal in flavor. Thus, even in the presence of L3,4, there are two conserved
fermion numbers.

(c) At dimension 5, μ→ e+γ can be described by a gauge-invariant effective
lagrangian containing constants c, d,

L5 = ēσ αβ(c + dγ5)μFαβ + h.c.

Obtain bounds on c, d from the present limit for μ→ e + γ .
(2) Muon decay

(a) Obtain the leading O(m2
e/m

2
μ) correction to the Fermi-model expression

Eq. (2.10) for the muon decay width.
(b) Do the same for the leading O(m2

μ/M
2
W) correction.

(3) Vacuum polarization and dispersion relations
The vacuum polarization �(q2) associated with a loop containing a spin one-
half fermion–antifermion pair, each of mass m, can be written as the sum of a
term containing an ultraviolet cut-off  and a finite contribution �̂f (q

2),
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�(q2) = α

π

[
1

3
ln
2

m2
− 2

∫ 1

0
dx x(1− x) ln

(
1− q2

m2
x(1− x)

)]
≡ α

3π
ln
2

m2
+ �̂f

(
q2
)
.

(a) Show that �̂f (q
2) is an analytic function of q2 with branch point at q2 =

4m2 and with Im �̂f (q
2) = αRf (q

2)/3, where

Rf (q
2) ≡

√
q2 − 4m2

q2

2m2 + q2

q2

is related to the rate for radiative pair creation via∑
f

(2π)3δ(4)(q − pf )〈f |J νem|0〉∗〈f |Jμem|0〉 = (−q2gμν + qμqν)Rf (q
2)

3
.

(b) Use Cauchy’s theorem and the result of (a) to express

�̂f

(
q2
) = αq2

3π

∫ ∞

4m2
ds

Rf (s)

s
(
s − q2 − iε) .

(c) The form of �̂f (q
2) given in part (a) can be re-expressed in a dispersion

representation. First change variables in (a) to y = 1− 2x and integrate by
parts to obtain

�̂f (q
2) = − α

2π

∫ 1

0
dy ln

[
1− q2(1− y2)

4m2 − iε
]
d

dy

(
y − 1

3
y3

)
= α

2π

∫ 1

0
dy 2y

(
y − y3

3

)
q2

4m2 − q2(1− y2)− iε .

Then, change variables again to s = 4m2/(1 − y2) and demonstrate that
the dispersion result of (b) obtains.
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Neutrinos

When the Standard Model first emerged, there was no evidence of neutrino mass.
Since only left-chiral neutrino fields are coupled to the gauge bosons, the simplest
way to accommodate the lack of a neutrino mass was to omit any right-handed
counterparts to the neutrino field, in which case masslessness is automatic. Because
of the degeneracy of the three massless neutrinos, the charged weak leptonic cur-
rent can be made diagonal and there exists no lepton analog to the CKM matrix.

In light of evidence for neutrino mass, the most conservative response is to pos-
tulate the existence of right-handed neutrinos, similar to the right-handed partners
of the other fields. Because the right-handed neutrino carries no gauge charge, its
mass may be Dirac or Majorana (or both), and it may be heavy or light. Whether
one considers this modification to be an extension beyond the Standard Model
or not is largely a matter of semantics. In this chapter, we will describe the rich
physics induced by the inclusion of a right-handed neutrino. We note in passing
that all fermion fields appearing here will be described as four-component spinors.

VI–1 Neutrino mass

A right-handed neutrino νR has no couplings to any of the gauge fields because its
Standard Model charges are zero.1 Nonetheless, it can enter the lagrangian in two
ways: there can be a Yukawa coupling to lepton doublet 
L plus a Higgs and there
can be a Majorana mass term involving νR. Considering only one generation for
the moment, these possibilities are2

LνR = −gν
L�̃νR −
mM

2
(νR)c νR + h.c. (1.1)

1 νR is electrically neutral (Q = 0) and like all RH particles in the Standard Model is a weak isosinglet
(Tw3 = 0), so by Eq. (II–3.8) it has zero weak hypercharge, Yw = 0.

2 In neutrino physics, a sterile neutrino is defined as one which has no interactions whatsoever with Standard
Model particles. The right-handed neutrino discussed here is not sterile if gν �= 0 because it can then couple
to the Higgs field as in Eq. (1.1).

173
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Recall that the left-handed neutrino field is part of an SU(2)L doublet and so
can have no Majorana mass term because the combination (νL)c νL is not gauge-
invariant. The right-handed Majorana mass could be set equal to zero by the
imposition of a discrete symmetry (e.g. lepton number) but this is an additional
assumption beyond the Standard Model gauge symmetries.

When the Higgs field picks up a vacuum expectation value, this leads to a mass
matrix of the form

−2 LD+M =
(
νL (νR)c

)( 0 mD

mD mM

)(
νcL

νR

)
+ h.c., (1.2)

where the Dirac mass is mD = gνv/
√

2 and where we have used the fact that
(ψi)cψ

c
j = (ψj )ψi . The above matrix can be diagonalized by defining fields

νa = cos θ νR + sin θ νcL , νb = cos θ νL − sin θ νcR, (1.3)

with tan 2θ = 2mD/mM . The mass terms then become

−LD+M = ma

2

[
(νa)cνa + (νa)νca

]
+ mb

2

[
(νb)cνb + (νb)νcb

]
, (1.4)

with

ma = mM cos2 θ +mD sin 2θ , mb = mM sin2 θ −mD sin 2θ. (1.5)

The mass matrix of Eq. (1.2) has one negative eigenvalue, and given the mixing
angle this can be seen to be mb. As discussed earlier in Sect. I–3, this is kine-
matically equivalent to a positive mass, and the eigenvalue can be made positive
by the phase change νb → iνb. However, we shall leave the phase unchanged as
it would induce an unusual phase in the weak mixing matrix. Finally, inverting
Eq. (1.3) yields the following relation between the neutrino field νL and the mass
eigenstates νca and νb,

νL = cos θ νb + sin θ νca. (1.6)

It is this combination of the mass eigenstates which constitutes the neutrino com-
ponent of charged and neutral weak currents first encountered in Sect. II–3.

There are two obvious limiting cases for the mass matrix of Eq. (1.2). In one
limit, the Majorana mass term vanishes, mM = 0, with the result that the neutrino
is a Dirac fermion with mass mD. Here, both particle and antiparticle can have
positive helicity (right-handed) or negative helicity (left-handed), so there are four
degrees of freedom. As noted in Sect. I–3, despite appearances, Eq. (1.4) reduces to
the standard Dirac lagrangian in this limit (with θ = π/4 and ma = −mb = mD).
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The other case is that of a very large Majorana mass mM . Here, one eigenvalue
becomes large and the other small,

ma = mM , mb = −m
2
D

mM

. (1.7)

The mixing angle in this case becomes tiny, θ = mD/mM � 1, so that eigenfunc-
tions are just νa = νR, νb = νL up to corrections of order mD/mM. Both of these
eigenstates are Majorana fields.3 There are still four degrees of freedom present,
viz. left-handed and right-handed helicity states for each of the two self-conjugate
neutrinos. This is the famous seesaw mechanism [GeRS 79], which has the poten-
tial to explain the fact that the neutrinos are much lighter than the quarks and other
leptons. As an example, given the mass constraints cited in Chap. I, at least one
neutrino must have rest-energy in excess of 0.05 eV, and if we use mτ for the cor-
responding Dirac mass, this would be compatible withmM ∼ 6×1010 GeV. We see
that the light field in this case is a Majorana field of the left-handed neutrino. Even
though the direct left-handed Majorana mass term was forbidden by gauge symme-
try, after symmetry breaking the left-handed field assumes a Majorana nature. We
can understand this feature more directly using effective lagrangian techniques, to
which we now turn.

Equivalence of heavy Majorana mass to a dimension-five operator

We have explained in Chap. IV how a heavy field may be integrated out from a
theory. Here, we consider a process that involves two applications of the first term
in Eq. (1.1), gν
L�̃νR, in which the right-handed neutrino is a (self-conjugate!)
Majorana fermion. If the Majorana mass is large, νR becomes heavy and can
accordingly be removed. We then find the following residual interaction [We 79a]
involving just the light fields,

L5 = − 1

M


L�̃�̃

c
L + h.c., (1.8)

where 1/M ≡ g2
ν/(2mM). This interaction is invariant under SU(2)L gauge

interactions because the lepton doublet and the Higgs doublet both transform in
the same way. The fields in L5 carry a total mass dimension of five. Hence, this
operator must have a coupling constant with the dimensions of an inverse mass,
and so the operator cannot be part of a renormalizable lagrangian. However, in
effective field theory, this operator is an allowed addition to the lagrangian of the
light Standard Model fields, and it is suppressed by a single power of the heavy
scale mM .
3 In the general case, where the mass parameters ma,mb are allowed to have arbitrary values, both neutrinos

are Majorana. In fact, a Dirac neutrino can itself be interpreted as a pair of degenerate Majorana neutrinos.
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Once the Higgs field picks up its vacuum expectation value, this lagrangian turns
into a Majorana lagrangian for the left-handed neutrino,

L5 →− v2

2M

νLν
c
L + h.c., (1.9)

reproducing the mass eigenvalue and eigenfunction calculated above via diago-
nalization. So we see that a left-handed Majorana mass term is allowed after the
electroweak symmetry breaking if we include operators of dimension five. Indeed,
although we have just found the above operator by integrating out a particular
heavy field, its existence can be more general than this particular calculation. There
could be other theories beyond the Standard Model which might generate this
operator.

The properties of neutrino mass are suggestive of physics beyond the Standard
Model, although they are not conclusive proof of that. We have seen that there is
no conflict between the idea of neutrino mass and the symmetries of the Standard
Model. Once one allows the possibility of right-handed neutrino fields, both Dirac
and Majorana mass terms will occur unless one makes an additional symmetry
assumption of lepton-number conservation, which would set the Majorana mass
equal to zero. Even if this extra discrete symmetry were imposed, Dirac masses
could still account for observations. However, the small magnitude of the observed
neutrino masses is puzzling in one way or another. If the Majorana masses are
small or zero such that Dirac masses are dominant, one would require the Yukawa
couplings to be remarkably small – roughly a billion times smaller than the
Yukawas for the charged leptons. On the other hand, if the Majorana mass is large,
the neutrino masses are naturally small via the seesaw mechanism, but then one has
to understand the large value of the Majorana scale. A Majorana mass in the range
106 → 1014 GeV would not match any of the scales of the Standard Model (nor
does it match estimates of Grand Unification scales). While the present structure
is consistent with the interactions of the Standard Model, we hope that future New
Physics will explain the puzzles of the quark and lepton mass scales, which are
most dramatic in the case of neutrino masses.

VI–2 Lepton mixing

In the previous section we considered mass diagonalization for a single species
of neutrino. In the Standard Model, there are, however, three generations of lep-
tons. This means that both the Dirac and Majorana mass terms will involve 3 × 3
matrices, mD and mM . The Dirac mass matrix is, in general, complex but not Her-
mitian, while the Majorana mass matrix will be complex symmetric. The overall
mass matrix must be diagonalized, and there will be a resultant weak mixing matrix
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for the charged weak current. We shall consider lepton mixing in the two limiting
cases discussed above, first for a pure Dirac neutrino mass and then in the seesaw
limit.

Dirac mass: The biunitary diagonalization of the lepton mass matrices has
already been carried out in Eqs. (II–4.1)–(II–4.7b) for the case of a pure Dirac
mass. The results for leptons proceed analogously to those for quarks. Mixing
between generations occurs in the leptonic charged weak current (recall that the
lepton mass eigenstates are �νL = {ν1, ν2, ν3}L and �eL = {e, μ, τ }L),

J
μ

ch(lept) = 2�ν ′Lγ μ�e ′L = 2�νLSν†
L SeLγ

μ�eL ≡ 2�νLV(ν)γ μ�eL, (2.1)

where

V(ν) ≡ Sν†
L SeL (2.2)

is the Dirac lepton mixing matrix. As an example, the electron’s contribution to the
charged weak current is given by

J
μ

ch(e) = 2[ν̄L,1V(ν)
1e + ν̄L,2V(ν)

2e + ν̄L,3V(ν)
3e ]γ μeL ≡ 2νL,eγ

μeL, (2.3)

which shows the neutrino νL,e created in this process to be a linear combination
of the three neutrino mass eigenstates. The lepton mixing matrix V(ν) of Eq. (2.2)
will have the same structure as the quark mixing matrix of Eq. (II–4.17) with three
mixing angles {θij } and one CP-violating phase δ.

Majorana mass: If the right-handed Majorana mass is very large, or if we invoke
the dimension-five operator of the previous section, we see that the light eigenstate
is a left-handed Majorana particle with mass

mL = −mD

1

mM

mT
D. (2.4)

Here, the factors are themselves 3× 3 matrices and we have been careful with the
ordering of the elements.

The matrix mL is nondiagonal, as are the individual elements mD and mM . The
Dirac part is diagonalized as

m(diag)
D = Sν†

L mDSνR. (2.5)

Inserting the diagonalized Dirac part into the full mass matrix yields

mL = SνL C SνTL , (2.6)

where the central matrix C is defined as

C ≡ m(diag)
D Sν†

R

1

mM

Sν∗R m(diag)
D . (2.7)
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The symmetric (but generally complex-valued) central matrix C can be diagonal-
ized with a unitary matrix F ,

C = F mν FT = F

⎛⎝m1 0 0
0 m2 0
0 0 m3

⎞⎠FT . (2.8)

The masses in the diagonal matrix mν are the physical neutrino masses.
The PMNS matrix involves the rotations that diagonalize the mass matrices of

the charged leptons and the neutrinos [Po 68, MaNS 62]. This also includes the
rotation that diagonalizes the central matrix. Therefore, in terms of the quantities
defined above, the PMNS matrix becomes

U = F†Sν†
L SeL. (2.9)

Like the n×n Dirac mixing matrix for quarks and leptons, the Majorana mixing
matrix has n2 real-valued parameters, of which n(n−1)/2 are angles and n(n+1)/2
are phases. However, whereas field redefinitions remove 2n−1 phases for the Dirac
case, only n such phases can be removed (via redefinitions of the charged lepton
fields) for the Majorana mixing matrix. The reason is that Majorana fields are self-
conjugate (cf. Sect. I–3) and thus not subject to phase redefinitions.4 Thus, the
number of remaining phases in the Majorana mixing matrix is n(n − 1)/2. For
n = 3 there are three phases, of which one is identified as the phase δ in the Dirac
mixing matrix and two others, α1, α2, are commonly called Majorana phases. It
can be shown that

U = V(ν)Pν with Pν =
⎛⎝1 0 0

0 eiα1/2 0
0 0 eiα2/2

⎞⎠ , (2.10)

where the {αi} are the Majorana phases. For convenience, we give the neutrino
mixing matrix V(ν),

V(ν) =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

⎞⎠ , (2.11)

where sαβ ≡ sin θαβ, cαβ ≡ cos θαβ (α, β = 1, 2, 3).

4 If ψ → eiθψ , then (ψ)c → e−iθ (ψ)c . Maintaining the Majorana condition ψ = ψc occurs only for
θn = nπ , so θ cannot be arbitrary.
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VI–3 Theory of neutrino oscillations

Our current information on neutrino mass and mixing comes via the phenomenon
of neutrino oscillations. We review the foundation of this subject in the present
section.

Oscillations in vacuum

Suppose that at time t = 0 an electron neutrino is produced by a weak process
induced by the charged current Jμch(e) of Eq. (2.3) and thereafter propagates as an
eigenstate of momentum p,

|νe(0)〉 → |νe(t)〉 = U ∗e1|ν1〉e−iE1t + U ∗e2|ν2〉e−iE2t + U ∗e3|ν3〉e−iE3t , (3.1)

where Ei = (p2 +m2
i )

1/2. In this relation, the mixing matrix elements {Uek} (k =
1, 2, 3) appear as complex conjugates because the neutrino field in the charged
current is in the form of a Hermitian conjugate νe. Actually, as written Eq. (3.1)
is theoretically tainted because the superposition cannot be a simultaneous eigen-
state of both momentum and energy since m1 �= m2 �= m3. However, since this
simplified description leads to the correct oscillation phase under rather general
conditions, we continue to use it here.5

To proceed, we take p 
 mi , implying that Ei � p+m2
i /(2p) � p+m2

i /(2E).
Upon replacing the time by the distance traveled, t � L, we obtain from Eq. (3.1),

|νe(L)〉 � e−iE1L

(
U ∗e1|ν1〉 + U ∗e2|ν2〉 exp

[
−i m

2
2 −m2

1

2E
L

]
+U ∗e3|ν3〉 exp

[
−i m

2
3 −m2

1

2E
L

])
. (3.2)

Let us now truncate the description to just two neutrino flavors by working in the
small θ13 limit, evidently a reasonable approximation given that |Ue3/Ue1| � 0.16.

Then, the amplitude Aνeνe (L) and probability Pνeνe (L) for remaining in the orig-
inal weak eigenstate νe(0) at distance L become

Aνeνe (L) = 〈νe(0)|νe(L)〉 = e−iE1L

(
|Ue1|2 + |Ue2|2 exp

[
−i m

2
2 −m2

1

2E
L

])
Pνeνe (L) = |Aνeνe (L)|2 = c4

12 + s4
12 + 2c2

12s
2
12 cos

[
�m2

21

2E
L

]
. (3.3)

5 Two recent discussions of this point appear in [KaKRV 10] and [CoGL 09], but many others have contributed
to the topic. See references cited in [GiK 07] and [RPP 12].
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With a bit of algebra, we then obtain for the survival and transition probabilities
Pνeνe (L) and Pνeνμ(L),

Pνeνe (L) = 1− sin2 2θ12 sin2

[
�m2

21L

4E

]
,

Pνeνμ(L) = sin2 2θ12 sin2

[
�m2

21L

4E

]
. (3.4a)

Let us comment on aspects of these important relations. The amplitude of the
oscillation factor is sin2 2θ12. The oscillation phase �21 ≡ �m2

21L/(4E) informs
about the squared mass-difference �m2

21, given that the energy (E) and distance
(L) are dictated by constraints of Nature and/or by experimental design.6 An expres-
sion useful for numerical work is

�21 � 1.267
�m2

21[eV2] L[m]
E[MeV] . (3.4b)

Another involves defining an oscillation length L(21)
osc ,

sin2 �21 = 1

2

(
1− cos

[
2πL/L(21)

osc

])
,

L(21)
osc ≡

4πE

�m2
21

, L(21)
osc [m] � 2.48

E[MeV]
�m2

21[eV2] , (3.4c)

which is the length for obtaining a half-cycle of oscillation. If conditions are such
that 2πL � L(21)

osc , oscillations will not have had a chance to occur because the
oscillation phase is too small. Finally, we stress that Eq. (3.4a) is a result of the two-
flavor restriction. Although ‘three-flavor’ phenomenology was already advocated
shortly after the discovery of the τ lepton [DeLMPP 80] and is currently used
in precise analyses of neutrino data, e.g., [FoTV 12], it can happen that the two-
flavor approach is a valid approximation in certain circumstances (see Prob. 2 at
the end of this chapter). For example, it is often used to describe both solar mixing
(θ12 → θ�,�m2

21 → �m2�) and atmospheric mixing (θ23 → θA, |�m2
32| →

|�m2
A|).

We have been considering the vacuum propagation of neutrinos. The vacuum
evolution equation for the relativistic energy eigenstates ν1 and ν2 as expressed in
the energy basis is idνE/dx = HEνE , where

νE ≡
(
ν1

ν2

)
and HE =

(
E1 0
0 E2

)
→

(
m2

1
2E 0

0
m2

2
2E

)
. (3.5)

6 As will be discussed in Sect. VI–4, the predicted oscillation pattern of Eq. (3.4a) was first observed in 2002
(for electron antineutrinos) by the KamLAND collaboration.
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The right-most matrix form in Eq. (3.5) has been obtained by expanding the energy
in powers of the momentum, followed by the phase transformation νE →
exp(−ipx)νE . Proceeding to the weak basis νW ,

νW ≡
(
νe

νμ

)
= UνE and U =

(
cos θ12 sin θ12

− sin θ12 cos θ12

)
, (3.6a)

the evolution equation can be written idνW/dx = HWνW , where

HW = UHEU−1 =
⎛⎝−�m2

21
4E cos 2θ12

�m2
21

4E sin 2θ12

�m2
21

4E sin 2θ12
�m2

21
4E cos 2θ12

⎞⎠ . (3.6b)

As shown earlier in this section, the evolution in Eq. (3.6b) describes νe ↔ νμ

vacuum oscillations. Using the current PDG value for θ12 (see Eq. (II–4.24)), we
have from Eq. (3.6a) the numerical expressions

|ν1〉 = 0.83|νe〉 − 0.56|νμ〉, |ν2〉 = 0.56|νe〉 + 0.83|νμ〉. (3.6c)

The dominant component of |ν2〉 resides in |νμ〉, a fact we will refer to in the next
section.

Oscillations in matter: MSW effect

Neutrino propagation in matter is a problem of intrinsic theoretical interest. It is
also of practical importance because many past and present experiments involve,
in part, neutrinos traveling in the interiors of the Sun and of the Earth. In the fol-
lowing, we consider a neutrino moving radially with position coordinate r and
continue to employ the two-flavor description.

For neutrino propagation in matter, a key difference with the vacuum descrip-
tion is that the neutrinos will undergo W± and Z0 exchange scattering from atomic
electrons and quarks confined within protons and neutrons. Only elastic scattering
in the forward direction maintains the coherence of the initial mixed νe–νμ state. In
particular, the quark contributions cancel and it is W± exchange in the νe–e inter-
action which produces a potential difference between electron and muon neutrinos,

�V ≡ V (νe)− V (νμ) =
√

2GFNe(r), (3.7)

where Ne(r) is the electron number density at distance r from the origin. That
neutrinos in matter experience this potential energy was first pointed out by
Wolfenstein [Wo 78], who cited a well-known analogous effect in K0–K̄0 mixing
as neutral kaons move through nuclear matter. To properly account for the
Wolfenstein effect, we must alter the diagonal matrix elements in Eq. (3.6b) to
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H(M)(r) ≡
⎛⎜⎝
√

1
2GFNe(r)− �m2

21

4E
cos 2θ12

�m2
12

4E
sin 2θ12

�m2
12

4E
sin 2θ12

−
√

1
2GFNe(r)+ �m2

21

4E
cos 2θ12

⎞⎟⎠ ,
(3.8)

where the superscript in H(M) refers to ‘matter’. Since the electron number
density is generally spatially dependent, the above matrix H(M) will have spatially
dependent eigenvalues E±(r),

E±(r) = ±1

4

[(
4H(M)

11 (r)
)2 +

(
�m2

21

E
sin 2θ12

)2
]1/2

. (3.9)

In the discussion to follow, we shall consider neutrino propagation in the Sun.
At the solar core r = 0, the potential energy of Eq. (3.7) becomes �V (core) �
7.6 × 10−12 eV upon taking

√
2GF � 7.63 × 10−14eV-cm3/NA and N(core)

e �
100NA cm−3 � 6.0× 1025 cm−3. Let us next make two working hypotheses:

(1) We assume that the electron number density N(core)
e is sufficiently large to

ensure that H(M)

11 (0) > 0 at the core. Using the value of N(core)
e just given

above and adopting the current PDG values for �m2
21 and θ12, this will be

valid for neutrinos with energy above E ∼ 2 MeV. This energy is, however,
not precisely fixed since the core is a region and not just a point.

If indeed H(M)

11 is positive at the solar core, it becomes negative before reach-
ing the surface (since Ne vanishes at the surface) and vice versa for H(M)

22 . The
matrix elements H(M)

11 and H(M)

22 thus cross at the point where each vanishes.
In the limit of neglecting the off-diagonals of H(M), the diagonals become
the eigenvalues and we have the phenomenon of level crossing, familiar from
atomic and nuclear physics. In reality, the off-diagonals do not vanish and so
the level crossing is avoided.

(2) We assume that propagation of an electron neutrino in the solar matter is
adiabatic, i.e. the fractional change in the electron density of the matter is
small per neutrino oscillation cycle. If so, a neutrino that starts in one of the
energy eigenstates will not experience a transition as it passes through the solar
medium. This is akin to a particle in an eigenstate of the one-dimensional infi-
nite well maintaining its quantum state as the wall separation changes suffi-
ciently slowly.

Let us now follow the behavior of E±(r) from the solar core at r = 0 to the solar
surface at r = R�. As we move outward from the core, Ne(r) will decrease7 until
a point r = rres is reached at which H(M)

11 (rres) = H(M)

22 (rres) = 0, with

7 A popular model for the number density profile is Ne(r) = Ne(0)e−r/r0 with r0 � R�/10.
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Table VI–1. Evolution of |νM
2 (r)〉.

r θ(r) |νM
2 (r)〉

0 π/2 |νe〉
rres π/4

(|νe〉 + |νμ〉) /√2
R� θ12 sin θ12|νe〉 + cos θ12|νμ〉

N(res)
e ≡ �m2

12 cos 2θ12

2
√

2GFE
, (3.10)

after which E+(r) grows until the surface is reached. Similarly, E− will increase
from r = 0 to r = rres and decrease thereafter. The label res used here stands for
‘resonance’, as will be explained shortly.

The eigenstates |νM(r)〉 of the matrix H(M) are likewise spatially dependent,

|νM
1 (r)〉 = cos θ(r)|νe〉 + sin θ(r)|νμ〉,
|νM

2 (r)〉 = − sin θ(r)|νe〉 + cos θ(r)|νμ〉, (3.11)

as is also the associated mixing angle θ(r)which, after some algebra, can be written
as

sin 2θ(r) = sin 2θ12[(
Ne(r)/N

(res)
e − 1

)2
cos2 2θ12 + sin2 2θ12

]1/2 . (3.12)

The square of this relation has the profile of a Lorentzian distribution, indicating
the presence of a resonance [MiS 85].

Suppose an electron neutrino νe is created at the solar core r = 0 under the
assumption Ne(0) 
 N(res)

e . Its evolution to the solar surface r = R� is briefly
summarized in Table VI–1 and explained as follows. The conditionNe(0)
 N(res)

e

implies from Eq. (3.12) that θ(0) � π/2, and so from Eq. (3.11) that |νM
2 〉 � |νe〉

at the core. Thus, a newly created electron neutrino will reside in the energy eigen-
state |νM

2 〉 as it begins its journey to the solar surface. If the matter eigenstates
undergo adiabatic flow through the resonance, then |νM

2 〉 suffers no transitions.
As the surface is eventually approached, the electron number density decreases to
zero, Ne(R�) = 0 and so, from Eq. (3.12), θ(r)→ θ(R�) � θ12, the vacuum mix-
ing angle. What is new and exciting is that electron neutrinos of sufficiently high
energies, which are created by nuclear reactions at the solar core, have an appre-
ciable probability for conversion to muon neutrinos by the time the solar surface is
reached. This is, in essence, the phenomenon known as the Mikheyev–Smirnov–
Wolfenstein (MSW) effect [Wo 78, MiS 85]. The mixing between electron and
muon type neutrinos has occurred within the Sun and since |ν2〉 is an energy
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eigenstate, no further mixing occurs en route to Earth. Measurement at a detec-
tor on Earth will yield either νe or νμ according to the quantum state |ν2〉 of
Eq. (3.6c).

Not all neutrinos created in the solar core will experience MSW mixing. As
shown earlier, it may be that the neutrino energy is too small (roughly Eνe <

2 MeV) for level crossing to take place. Or the neutrino flow to the solar surface
may not be adiabatic. The quantitative condition for adiabaticity is most stringent
at the resonant point r = rres,

sin2 2θ12

cos 2θ12

�m2
21

2E

∣∣∣∣ N(res)
e

N ′e(rres)

∣∣∣∣
 1, (3.13)

where N ′e(rres) is the density gradient, N ′e ≡ dNe/dr , evaluated at the resonant
point. Thus, adiabaticity will occur provided the solar electron number density
does not change too rapidly with position. The relation in Eq. (3.13) amounts to
demanding that the splitting between the energy eigenvalues E±(r) of H(M) (cf.
Eq. (3.9)), which is minimal at the resonant point, nonetheless be much larger
than the off-diagonal matrix elements of H(M) (which would produce transitions
between the energy eigenstates). We return to this subject in Sect. VI–4, where we
further discuss solar neutrinos.

CP violation

The CP-violating phase in the PMNS matrix has physical implications in neutrino
oscillations, relating the oscillations of neutrinos to those of antineutrinos. It is
reasonably straightforward to use the general form of the oscillation formula to
calculate the difference of the oscillation probabilities,

Aij ≡ Pνi→νj − Pν̄i→ν̄j = 4
∑
k>


Im(UikU
∗
jkUjlU

∗
il) sin

(
�m2

klL

2E

)
. (3.14)

It is less straightforward to measure this. We note that Aij vanishes unless all three
flavors of neutrinos are involved. This can be found from direct calculation but is
easy to understand on general principles, as the CP-violating phase can be removed
from any 2× 2 submatrix by redefining the fields. Moreover, the numerator in this
asymmetry is the same for any i �= j ,

Aij = sin δ cos θ13 sin 2θ13 sin 2θ23 sin 2θ12

×
[

sin

(
�m2

21L

2E

)
+ sin

(
�m2

13L

2E

)
+ sin

(
�m2

32L

2E

)]
, (3.15)

where we have used �m2
13 = −�m2

31. We see that two independent mass dif-
ferences, e.g., �m2

21 and �m2
13, contribute. In addition, the asymmetry will pro-

duce small corrections to the oscillations with the largest amplitudes and will
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be most visible for oscillations where the CP-even transitions are the smallest,
such as νe ↔ νμ. Although uncovering CP violation in oscillations will be an
experimental challenge, the rewards of such a measurement will be considerable.
For example, lepton CP violation is a necessary ingredient for leptogenesis (cf.
Sect. VI–6).

VI–4 Neutrino phenomenology

Determination of the set of mixing parameters {θij } and {�m2
ij } has taken years of

careful experimentation. This has involved a variety of neutrino sources, including
our Sun, the Earth’s atmosphere, nuclear reactors and particle accelerators. Many
references and detailed accounts exist in the literature.8

Solar and reactor neutrinos: θ12 and 
m2
21

Solar neutrinos: The current evaluations [RPP 12] of the parameters sin2 2θ12 and
�m2

21 from a three-neutrino fit give

sin2 2θ12 = 0.857± 0.024 �m2
21 = (7.50± 0.20)× 10−5 eV2. (4.1)

This represents an uncertainty of under 3%, which is one indication of how suc-
cessful the search for these basic parameters has turned out. The earliest progress
in this area involved the detection of solar neutrinos. It was Davis [Da 64] who used
a chlorine detector to probe solar neutrinos and Bahcall [Ba 64] who provided the
theoretical basis for such an ambitious undertaking. An important conceptual con-
tribution came from Pontecorvo, who suggested testing whether leptonic charge
was conserved, and who wrote ‘From the point of view of detection possibilities,
an ideal object is the Sun’ [Po 68].

The initial intent of the chlorine experiment was actually to test physics at the
core of the Sun. A significant achievement of solar neutrino studies has been to
demonstrate that stars are, indeed, powered by nuclear fusion reactions. Energy
produced by the Sun arises from thermonuclear reactions in the solar core and the
underlying theoretical description is called the Standard Solar Model (SSM). Solar
burning utilizes all three types of Standard Model reactions – strong, weak, and
electromagnetic – as well as using gravity to provide the required high density.
The primary ingredients of the SSM are:

(1) The Sun evolves in hydrostatic equilibrium, balancing the gravitational force
and the pressure gradient. The equation of state is specified as a function of
temperature, density, and solar composition.

8 Some recent examples include [AnMPS 12], [Ba 90], [BaH 13], [FoTV 12], [FoLMMPR 12], [GiK 07],
[GoMSS 12], [HaRS 12], [KiL 13], [MoA et al. 07], and Chap. XIII in [RPP 12] by Nakamura and Petkov.
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(2) Energy proceeds through the solar medium by radiation and convection. While
the solar envelope is convective, radiative transport dominates the core region
where the thermonuclear reactions take place.

(3) The primary thermonuclear chain involves the conversion 4p → 4He+2e++
2νe. This pp chain produces 26.7 MeV per cycle, and the associated neutrino
production rate is firmly tied to the amount of energy production. The core
temperature and electron number density of the Sun are respectively Tc ∼
1.5× 107 K and Ne ∼ 6× 1025 cm−3.

(4) The model is constrained to produce the observed solar radius, mass and lumi-
nosity. The initial 4He/H ratio is adjusted to reproduce the luminosity at the
Sun’s current 4.57 Giga-year age.

The dominant process is the ‘pp chain’, occurring in stages I→ IV:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Stage Nuclear reaction Br (%)
I p + p → 2H+ e+ + νe 99.75

p + e + p → 2H+ νe 0.25
II 2H+ p → 3He+ γ 100.00
III 3He+ 3He → 4He+ 2p 86.00

or 3He+4 He → 7Be+ γ 14.00
IV 7Be+ e− → 7Li+ νe 99.89

7Li+ p → 4He+4 He
or 7Be+ p → 8B+ γ 0.11

8B → 8Be∗ + e+ + νe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let us isolate those processes which produce neutrinos and order them according
to increasing maximum neutrino energy:

Label Reaction Eν
max(MeV)

pp p + p → 2H+ e+ + νe 0.42
7Be 7Be+ e− → 7Li+ νe 0.86
pep p + e + p → 2H+ νe 1.44
8B 8B → 8Be∗ + e+ + νe 14.06
hep 3He+ p → 4H+ e+ + νe 18.47

The energy spectra of the pp, 8B and hep neutrinos are continuous whereas the
pep and 7Be neutrinos are monoenergetic. Within this general framework, there
is, however, still a degree of theoretical uncertainty and work continues to this
day on solar modeling. Table VI–2 (taken from [HaRS 12] and [AnMPS 12]) lists
SSN flux predictions according to two sets, labelled GS98 and AGSS09, and taken
respectively from [GrS 98] and [AsBFS 09]. Note the marked decrease in flux with
increasing neutrino energy.
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Table VI–2. Neutrino fluxa in the pp chain.

Label GS98 AGSS09 Solar data

pp 5.98(1± 0.006)× 10−1 6.03(1± 0.006)× 10−1 6.05(1+0.003
−0.011)

7Be 5.00(1± 0.07)× 10−1 4.561(1± 0.07)× 10−1 4.82(1+0.05
−0.04)× 10−1

pep 1.44(1± 0.012)× 10−1 1.47(1± 0.012)× 10−1 1.46(1+0.010
−0.014)× 10−2

8B 5.58(1± 0.13)× 10−1 4.59(1± 0.13)× 10−1 5.25(1± 0.038)× 10−4

hep 8.04(1± 0.30)× 10−1 8.31(1± 0.30)× 10−1 —

aExpressed in units of 1010cm−2s−1.

On the basis of such flux predictions, results from various solar neutrino exper-
iments could be compared with the SSM. The following compilation, taken from
[AnMPS 12], summarizes early results for the ratio of observed-to-predicted elec-
tron neutrino flux,

Homestake 0.34± 0.03, Super-K 0.46± 0.02,
SAGE 0.59± 0.06, Gallex,GNO 0.58± 0.05.

We now know that this spread of values arises from the interplay between the range
of neutrino energies and the influence of the MSW effect. At the time, however, it
was unclear whether the SSM itself was at fault. The issue was resolved by a series
of experiments which probed flavor mixing of solar neutrinos while simultaneously
testing the SSN prediction for the total solar flux. This was carried out by the SNO
collaboration; for a summary see [Ah et al. (SNO collab.) 11]. Since the SNO
detector employed heavy water, there was sensitivity to the three reactions:

charged current (CC): νe + d → p + p + e−
neutral current (NC): νx + d → p + n+ νx (x = e, μ, τ)

elastic scattering (ES): νx + e− → νx + e− (x = e, μ, τ). (4.2)

In the Standard Model, only νe contributes to the CC reaction, but all neutrino
flavors contribute, with equal rates, to the the NC reactions (and also to the ES,
but with νe having about six times the rate of νμ and ντ ). Early CC measurements
found f (CC)

νe
= (1.76± 0.11)× 106 cm−2 s−1, much less than the (then) predicted

total flux f tot
νe
= (5.05± 0.91)× 106 cm−2 s−1. Then, NC measurements obtained

f (NC)
νe

= (5.09± 0.62)× 106 cm−2 s−1, consistent with the f tot
νe

prediction. Within
errors, the only reasonable explanation is that the conversion of νe → νμ, ντ must
be occurring. A more recent determination of the total flux from the 8B reaction
reduces the uncertainty,

�
(tot)
8B = (5.25± 0.16 (stat) +0.11

−0.13 (syst)
)× 106 cm−2 s−1, (4.3)
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consistent with but having smaller uncertainty than the SSN predictions of
Table VI–2.

In summary, the versatility of solar neutrino experiments is that they are sensitive
to various nuclear reactions in the Sun through the measurement of different energy
neutrinos. The survival probability for electron neutrinos to reach the Earth will
depend on the neutrino energy E and will in part be affected by the solar MSW
effect. The survival probability in the two-flavor description can be expressed as
[Pa 86]

Pνe→νe =
1

2
+
(

1

2
− Pnon-adbtc

)
cos 2θ(0) cos 2θ12. (4.4a)

In the above, θ(0) represents the matter mixing angle at the point of neutrino pro-
duction (taken here at r = 0), averaging of oscillatory behavior has been carried
out, and Pnon-adbtc describes the nonadiabatic mixing (which is sensitive to the elec-
tron number density Ne(r)) as in Eq. (3.13).

Let us explore Eq. (4.4a) in the limits of low-energy and high-energy neutrino
energy, while assuming just adiabatic transitions (Pnon-adbtc = 0). For very low-
energy neutrinos, as explained previously, there is no MSW resonance and the the
situation reduces to simple vacuum mixing,

Pνe→νe = 1− 1

2
sin2 2θ12 � 0.57, (4.4b)

whereas for very energetic neutrinos, we have θ(0) � π/2 and so

Pνe→νe = sin2 2θ12 � 0.31. (4.4c)

For intermediate neutrino energy, the average survival probability interpolates
smoothly between these two limits. The overall pattern is as depicted in Fig. VI–1.
The recent experiment [Be et al. (Borexino collab.) 12a] on pep neutrinos, whose
energyE = 1.44 MeV is at the low end of the spectrum, finds a survival probability
Pνe→νe = 0.62± 0.17, which is in accord with the above analysis.

The relations in Eqs. (4.4a–c) pertain to neutrino propagation directly from the
Sun to the Earth. This is referred to as ‘daytime’ detection, sometimes denoted by

P (D)
νe→νe

. The ‘nighttime’ probability P (N)
νe→νe

would be sensitive to matter effects
from passage through the Earth. Letting RD and RN represent the day and night
counting rates, the ‘day–night’ asymmetry,

AD−N ≡ 2
RN − RD

RN + RD
, (4.5)
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Fig. VI–1 Average survival probability of solar neutrinos vs. neutrino energy.
Data points represent (from left to right) pp, 7Be, pep, and 8B neutrinos.

is an observable which isolates the effect of Earth matter on neutrino propagation.
This is in distinction to the MSW effect in the Sun, which cannot be turned off.
Several experiments, the SNO and Super-K experiments (with 8B) and Borexino
(with 7Be) have studied the day–night effect. For example, the results [Be et al.
(Borexino collab.) 12b],

AD−N = − (0.1± 1.2± 0.7)% [Borexino]

= − (4.0± 1.3± 0.8)% [Super-K], (4.6)

are consistent with the theory predictions |AD−N| ≤ 0.1% (Borexino) and AD−N �
−3% (Super-K), although the latter is also 2.6σ from zero.

Reactor antineutrinos: The KamLAND experiment was able to observe oscilla-
tions of ν̄e antineutrinos under laboratory conditions. The ν̄e beam originates from
nuclear beta decays from several nuclear reactors and detection is obtained via the
inverse beta-decay process

ν̄e + p→ e+ + n. (4.7)

In the KamLAND experiment, the average baseline between sources and detec-
tor is L0 ∼ 180 km and the antineutrino energy spectrum covers the approximate
range 1 ≤ Eν̄e ≤ 7 MeV. The ν̄e survival formula, as in Eq. (3.4), suggests plotting
the data as a function of L0/Eν̄e . The result, shown in Fig. VI–2, clearly exhibits
the oscillation pattern. This important observation yielded the most accurate deter-
mination of �m2

21 at the time and continues to be a significant contributor to the
current database.9

9 Since properties of electron antineutrinos are being studied, it is necessary to assume the validity of CPT
invariance to compare the KamLAND results with those from solar neutrino studies (and any other
experiment using neutrinos and not antineutrinos).
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Fig. VI–2 Authors’ representation of the KamLAND observation of neutrino
oscillations. The curve represents a fit to the oscillation hypothesis.

Atmospheric and accelerator neutrinos: θ23 and |
m2
32|

Since 1996, the Super-Kamiokande experiment has utilized a 50-kiloton Cherenkov
detector to study oscillations of so-called ‘atmospheric’ muon neutrinos. When
high-energy cosmic rays strike the Earth’s atmosphere a multitude of secondary
particles are produced, most of which travel at nearly the speed of light in the same
direction as the incident cosmic ray. Many of the secondaries are pions and kaons,
which decay into electrons, muons, and their neutrinos. Using known cross sec-
tions and decay rates, one expects about twice as many muon neutrinos as electron
neutrinos from the cosmic-ray events. For example, a π+ decays predominantly as

π+ → μ+ + νμ → e+ + νe + ν̄μ + νμ,
i.e., two muon-type neutrinos are produced but only one that is electron-type.
Detection of these atmospheric neutrinos yielded evidence for oscillations, to wit,
a deficit of muon-type neutrinos, but no such deficit for the electron neutrinos.
This has since been augmented with data containing dependence on the azimuthal
angle (and hence distance from the source) and on the neutrino energy. Because the
deficit is of just muon neutrinos, the hypothesis is that these oscillations involve the
conversion νμ → ντ . Any ντ thus generated is not energetic enough to react via
the charged current to produce a τ .

Accelerator-based efforts to probe the same oscillation parameters include the
K2K and MINOS experiments. In particular, since 2005 MINOS has studied muon
neutrinos originating from Fermilab and traveling 735 km through the Earth to
a detector at the Soudan mine in the state of Minnesota. At Fermilab, an injector
beam of protons strikes a target, producing copious numbers of pions, whose decay
is the source of muon neutrinos.
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Data from both the Super-Kamiokande and MINOS experiments support the
νμ → ντ scenario with mixing angle and mass difference given by [RPP 12]:

sin2 2θ23 > 0.95 |�m2
32| = 0.00232+0.0012

−00008 eV2. (4.8)

Moreover, each experiment has also studied muon antineutrino oscillations,
finding mixing parameters consistent with these values, although less precisely
determined.

Finally, the T2K collaboration announcement in 2012 of the first evidence for
νe appearance in a νμ beam has been confirmed in a recent update [Ab et al. (T2K
collab.) 13]. The νe appearance probability at oscillation maximum is

Pνμ→νe � 4c2
13s

2
13s

2
23

[
1+ 2a

�m2
31

]
− 8c2

13c12c23s12s13s23�21 sin δ, (4.9)

where �21 ≡ �m2
21L/(4E) and a ≡ 2

√
2GFneE. In particular, the value of

sin2(2θ13) inferred from the data depends on whether a normal or inverted neu-
trino mass hierarchy is assumed. This can, in turn, be compared to reactor values
for sin2(2θ13). Thus, the importance of this type of experiment lies in its sensitiv-
ity both to the hierarchy issue and to detection of a CP-violating signal (δ �= 0).
Future data from the T2K and NOνA experiments have the potential for significant
progress in our understanding of neutrino physics.

Short-baseline studies: θ13

The last of the neutrino oscillation angles to be determined with precision is θ13.
Initial fits to mixing data indicated their smallness. This led to the concern that
signals of neutrino CP violation, i.e., determination of the CP-violating phase δ,
might be experimentally inaccessible. For example, recall from Eq. (3.15) that the
CP-violating asymmetry Aij is linear in both sin δ and sin θ13. Hence, the attempt
to measure θ13 took on a certain urgency.

Following a growing number of indications that indeed θ13 �= 0, it was sev-
eral reactor short-baseline experiments which provided the needed precision. A
key point is that in ν̄e disappearance experiments, with a relatively short baseline
of roughly 1 km, the influence of sin2(2θ12) and �m2

21 on the survival probabil-
ity P (surv)

ν̄e
for electron antineutrinos can safely be neglected. We then have (see

Prob. VI–2),

P (surv)
ν̄e

� 1− 2|U13|2
(
1− |U13|2

) (
1− cos

[
�m2

31

2E
L

])
= 1− sin2(2θ13) sin2

(
1.267�m2

31L/E
)
. (4.10)
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Based on data from the collaborations Daya Bay [An et al. 12], RENO [Ahn et al.
12] and Double Chooz [Abe et al. 12], the current RPP listing gives [RPP 12]

sin2 2θ13 = 0.098± 0.013. (4.11)

Finally, the future of short-baseline experiments has the potential for additional
interesting findings. In particular, the inverse relation between L and �m2 in the
neutrino oscillation relations implies that a very short-baseline study (say, withL ∼
5 → 50 m) would be sensitive to much larger values of squared mass difference
(say, having order of magnitude �m2 ∼ 1 eV2) than those observed for �m2

21

and �m2
32. Such a large neutrino mass difference evidently occurred in the LSND

experiment [Ag et al. 01 (LSND collab.)], which found evidence at 3.5σ for ν̄μ →
ν̄e oscillations with �m2 > 0.2 eV2. We shall not discuss this experiment further,
except to note that, if validated, it would represent effects (e.g., one or more sterile
neutrinos) beyond the Standard Model.

VI–5 Testing for the Majorana nature of neutrinos

In order to determine if the neutrino mass has a Majorana component, one can
use the fact that Majorana masses violate lepton-number conservation. A sensitive
measure occurs in the process of neutrinoless double beta decay. There are many
situations in Nature where one has a nucleus which is kinematically forbidden to
decay via ordinary beta decay,

ZA /→ Z−1A+ e− + ν̄e, (5.1)

but which is allowed to decay via emission of two lepton pairs (2νββ),

ZA → Z−2A+ e− + e− + ν̄e + ν̄e. (5.2)

This 2νββ process is attributable to the pairing force in nuclei and occurs only
for even–even nuclei. It is produced at order G2

F through the exchange of two W
bosons. When 2νββ can occur, it is also kinematically possible to have a neutrino-
less double beta decay (0νββ),

ZA → Z−2A+ e− + e−. (5.3)

However, this latter process violates lepton-number conservation by two units and
would be forbidden if the neutrino possessed a standard Dirac mass. We will see
that this becomes a sensitive test of the Majorana nature of neutrino mass.

First, consider 2νββ decay. Because this involves five-body phase space as well
as two factors of the weak coupling constant GF this process is very rare, with
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Table VI–3. Half-lives of some two-neutrino
double beta emitters.

Nucleus T 2ν
1/2(yr)

96Zr (2.0± 0.3± 0.2)× 1019

76Ge (1.7± 0.2)× 1021

136Xe (2.23± 0.017± 0.22)× 1021

76Ge (1.7± 0.2)× 1021

lifetimes of order 1020 years. Even so, it has been observed in many nuclei, and
some examples are cited in Table VI–3. The rate for such processes is

�2ν ∼ m11
e F2 (Q/me)

∣∣g2
aMGT − g2

vMF

∣∣2 · F(Z)
Ei − 〈En〉 − 1

2E0
, (5.4)

where F(Z) is a Fermi function, F2 (Q/me) is a kinematic factor,

F2(x) = x7

(
1+ x

2
+ x2

9
+ x3

90
+ x4

1980

)
, (5.5)

and MF , MGT are, respectively, the Fermi and Gamow–Teller matrix elements,

MF = 〈f |1
2

∑
ij

τ+i τ
−
j |i〉, MGT = 〈f |1

2

∑
ij

τ+i τ
−
j σ i · σ j |i〉. (5.6)

In Eq. (5.4), the closure approximation has been made to represent a sum over inter-
mediate states via an average excitation energy 〈En〉. The experimental 2νββ decay
rates then determine these matrix elements, which unfortunately are extremely dif-
ficult to determine theoretically.

If the neutrino has a Majorana mass component, then neutrinoless double beta
decay is possible. The basic weak process underlying 0νββ decay involves the tran-
sitionW−W− → e−e− through the Feynman diagram of Fig. VI–3. Let us initially
treat this process by considering only one generation and invoking the mass diagon-
alization framework of Sect. VI–2. Because the charged weak current couples to

d
u

u

W

W

e−

e−

d

n

Fig. VI–3 The basic weak process underlying 0νββ decay.
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the combination (cf. Eqs. (1.3), (1.6)) νL = cos θ νb + sin θ νca , the exchange of
the two neutrino eigenstates leads to a matrix element which is proportional to

sin2 θ ma

Q2 −m2
a

+ cos2 θ mb

Q2 −m2
b

, (5.7)

noting that the /q portion of the propagator numerator vanishes due to the chiral
relation �L/q�L = 0. If the Majorana mass term is vanishingly small compared
to the Dirac mass, this reaction also vanishes since in this case θ = π/4 (so that
sin θ = cos θ) and ma = −mb = mD. Despite the apparent existence of two
Majorana fields, the fermion-number violating transition vanishes because the two
contributions are equal and opposite.10

However, if the Majorana mass term does not vanish, the transition can occur.
Let us consider the case of the seesaw mechanism, in which ma � mM 
 MW and
θ � mD/mM � 1. Then the contribution of the first propagator becomes tiny, and
a nonvanishing transition occurs due to the second propagator. The process is now
directly proportional to the light Majorana massmb. The momentum flowing in this
propagator is of order the electron mass, so we can neglect the mass dependence
m2
b in the denominator. This leaves the transition proportional to mb/Q

2. In this
scenario the light neutrino acts like a pure Majorana fermion.

When all three generations of neutrinos can contribute the result depends also on
the lepton mixing matrix. If one is dealing with Majorana neutrinos, and neglects
the neutrino mass in the denominator of the neutrino propagator, then the figure of
merit is the averaged Majorana mass 〈mν〉 obtained by summing over all neutrino
species,

〈mν〉 ≡
3∑
i=1

U 2
iemi . (5.8)

Note that it is the squareUU of the PMNS matrix, not the usual combinationU †U ,
that enters the reaction. This is because both weak currents lead to e− emission in
the final state. It is this feature which allows the Majorana phases α1,2 to contribute
to 〈mν〉. The decay rate for such a neutrinoless decay has a form analogous to that
in Eq. (5.4),

�0ν ∼ m7
eF0(Q/me)|gaM̃GT − g2

vM̃F |2 〈mν〉2
m2
e

, (5.9)

10 If one had chosen to redefine mb to be positive via a phase redefinition, as described in Sect. VI–1, there
would be an extra phase in the weak current of νb such that the cancelation would still occur due to a factor
of i2 = −1 in the double beta decay matrix element.
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except now with the phase space factor F0(x),

F0(x) = x

(
1+ 2x + 4x2

3
+ x3

3
+ x4

30

)
, (5.10)

and nuclear matrix elements

M̃F = 〈f |1
2

∑
ij

τ+i τ
−
j

1

rij
|i〉, M̃GT = 〈f |1

2

∑
ij

τ+i τ
−
j σi · σj

1

rij
|i〉. (5.11)

The factor of 1/rij in Eq. (5.11) comes from spatial dependence associated with the
neutrino propagator in the limit that one neglects the neutrino mass in the denomi-
nator of Eq. (5.7).

Neutrinoless double beta decay, 0νββ, is a topic of considerable theoretical
importance and is currently under investigation experimentally. As of yet no such
mode has been observed. Present limits are 〈mν〉 < 140 → 380 meV [Ac et al.
(EXO-200 collab.) 11] and 〈mν〉 < 260 → 540 meV [Ga et al. (KamLAND–ZEN
collab.) 12]. There are a number of planned experiments which aim to lower these
bounds.

VI–6 Leptogenesis

The material Universe is mostly comprised of matter – protons, neutrons and
electrons – rather than their antiparticles. The net baryon asymmetry is described
by the ratio

ηB = NB −NB̄

Nγ

∼ 6× 10−10. (6.1)

Because baryon number and other symmetries are violated in the Standard Model
and in most of its extensions, it is plausible that this asymmetry was generated
dynamically in the early Universe. Such a dynamical mechanism requires a process
which is out of thermal equilibrium and which violates both baryon number and
CP conservation [Sa 67].

If heavy right-handed Majorana neutrinos exist, as allowed by the general mass
analysis of the Standard Model, they can generate the net baryon asymmetry. The
basic point is that the heavy Majorana particles can decay differently to leptons
and antileptons as they fall out of equilibrium in the early Universe through the CP
violation that is present in the PMNS matrix, and this lepton number asymmetry
can be reprocessed into a baryon-number asymmetry through the B + L anomaly
of the Standard Model.

The decay of Majorana particles need not conserve lepton number, as the Majo-
rana mass itself violates this quantity. However, to violate CP symmetry requires a
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Fig. VI–4 Violating CP symmetry in the lepton sector.

specific dynamical mechanism. There can be an interference between the phases of
the PMNS matrix and phases generated by unitarity effects for a given final state.
To see this, consider the decay diagrams depicted in Fig. VI–4. The tree-level dia-
grams are proportional to the Yukawa couplings, which are in general complex.
However, this is not enough, as an overall phase leads to an unobservable effect
when calculating decay rates. But loop diagrams with on-shell intermediate states,
like those in Fig. VI–4, pick up extra imaginary parts from on-shell rescattering.
Computationally, this comes from the iε in Feynman propagators. In addition, loop
amplitudes have different PMNS phases because they sum over all the particles in
the loop. Schematically, this is manifest in decay amplitudes as

ANi→Hfj = gij +
∑
k,m

|Lkm|eiδkmgikg∗kmgmj ,

ANi→H̄ f̄j
= g∗ij +

∑
k,m

|Lkm|eiδkmg∗ikgkmg∗mj , (6.2)

where the loop diagram is represented by |Lkm|eiδkm with a rescattering phase due
to on-shell intermediate states δkm. The weak phases in the Yukawa couplings gij
change sign under the change from particle to antiparticle, but the rescattering
phase does not. We see that a differential rate develops |AN→Hjfi |2 − |AN→H̄ f̄i

|2
�= 0 through the interference of tree and loop processes and between the different
components of the loop diagram.

Producing a net lepton asymmetry would not be sufficient to explain the observed
matter asymmetry unless some of the leptons could be transformed to baryons. This
can be accomplished through the baryon anomaly described earlier in Chap. III.
In the early Universe, with temperatures above the weak scale, processes which
change baryon number, but conserve B−L, can occur rapidly. This transfers some
of the initial lepton excess into a net number of baryons.

The detailed prediction of the amount of baryon production depends on the size
of the CP-violating phases, as well as the masses of the heavy Majorana particles.
While a unique set of parameters is not available, in general one needs heavy par-
ticles of at least 109 GeV in order to reproduce the observed asymmetry. This fits
well with the observed size of the light neutrino masses, as described earlier in
Sect. VI–1.
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VI–7 Number of light neutrino species

It might seem that the subject of this section, the number of light neutrino species,
is a non-issue. After all, the very structure of the Standard Model has each charged
fermion paired with its own neutrino in a weak isospin doublet. Since three charged
fermions are known to exist, so there must be three neutrinos. Let us, however, view
this purely as an issue of experimental physics. In particular, data from Z0-decay
[Sc et al. 06] and the cosmic microwave background (CMB) [Hi et al. (WMAP
collab.) 13] have been used to obtain independent determinations of the number of
‘light’ neutrino species Nν . We discuss these two approaches in turn.

Studies at the Z0 peak

Since final-state neutrinos are the only Standard Model particles not detected in Z0

decay, they contribute to the so-called invisible width �inv. In the Standard Model,
this is predicted to be

�inv = �Z −
(
�had + �ee + �μμ + �ττ

) = (497.4± 2.5) MeV, (7.1)

where �Z is the totalZ0 width and�had, �ee, �μμ, �ττ are the hadronic and leptonic
widths. But is this what is actually found experimentally?

Several approaches have been explored using the invisible width to determine
Nν , but the one cited here has the advantage of minimizing experimental uncer-
tainties. The trick is to work with the ratio of measured quantities �inv/�

̄,

�inv

�

̄
= Nν

(
�νν̄

�

̄

)
SM

. (7.2)

The interpretation of this relation is clear, that the measured invisible width is the
product of the number of light neutrino species Nν and the decay width into a
single neutrino–antineutrino pair. Using data collected from the collection of LEP
and SLD experiments,11 one finds [Sc et al. 06]

Nν = 2.984± 0.008, (7.3)

which is consistent with the Standard Model value of Nν = 3.

Astrophysical data

Astrophysics supplies an independent determination of Nν which, although cur-
rently much less precise, is nonetheless of value. The issue of interest to us is

11 Certain assumptions are made, among them that lepton universality is valid, and that the top-quark and Higgs
masses are respectively mt = 178.0 GeV and MH = 150 GeV. See [Sc et al. 06] for additional discussion.
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that the CMB has sensitivity, in part, to the neutrino number. Some insight can be
gained by considering the thermal content of an expanding Universe. We take the
radiation energy density ρr as

ρr = ργ + ρν, (7.4)

referring respectively to photons (ργ ) and relativistic neutrinos (ρν). The photon
and neutrino components obey the well-known thermal relations,

ργ = π2

15
T 4
γ , ρν = π2

15
T 4
ν ·

7

8
Nν. (7.5)

For a temperature somewhat in excess of 10 MeV, the Universe is pervaded by
an e±, ν, γ plasma in thermal equilibrium via the electroweak interactions (so that
Tν = Tγ ). As the temperature drops to about 10 MeV, the expansion rate of the Uni-
verse starts to exceed the rate of weak interactions, causing the neutrinos to begin
decoupling from the plasma. Still later, the process of e± annihilation releases
entropy to the photons, increasing their temperature relative to the neutrinos. In
fact, Tν = Tγ · (4/11)1/3 provided the neutrino decoupling is complete by the anni-
hilation era. Since this is not quite true and to account for any hypothetical ‘extra
radiation species’ (er), one introduces the effective number of relativistic species
Neff and writes instead

ρν + ρer ≡ π2

15
T 4
ν ·

7

8
Neff. (7.6)

Altogether, the radiation density can be written as

ρr = ργ

[
1+ 7

8

(
4

11

)4/3

Neff

]
. (7.7)

Finally, modern experiments have probed with increasing precision the CMB radi-
ation density, which reveals conditions at the epoch of photon decoupling (redshift
z � 1090). Because of its contribution to ρr , Neff affects various properties of
the CMB [Hi et al. (WMAP collab.) 13], among them the peak locations of the
baryon acoustic oscillations (BAO). The current fit with minimum uncertainty is
found from combining data from BAO and CMB measurements [Ad et al. (Planck
collab.) 13],

Neff = 3.30± 0.27, (7.8)

consistent with the Standard Model determination Neff = 3.046 [MaMPPPS 05].
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Problems

(1) Three-generation neutrino mixing
In three-generation mixing, the flavor (α = e, ν, τ ) and energy (j = 1, 2, 3)
eigenstates are related by |να〉 = U ∗αj |νj 〉 = U

†
jα|νj 〉, as in Eq. (3.1).

(a) Show that the amplitude connecting initial and final flavor states |να〉 and
|νβ〉 is Aαβ = UβjDjU

†
jα, given that D is a phase factor (temporarily

unspecified) describing the neutrino’s propagation.
(b) Show that the transition probability is Pαβ = |Aαβ |2 is expressible as

Pαβ =
3∑

j=1

|Uβj |2|Uαj |2 + 2
∑
j>k

UβjU
∗
βkUαkU

∗
αjDjD∗k .

Hint: Partition the double sum as
∑3

j,k=1 =
∑3

j=1+2
∑

j>k .

(c) Determine
∑3

β=1 Pαβ .
(d) Assume that the neutrino propagation factor can be expressed as DjD∗k =

e
−i�m2

kjL/2E , where L is the source-detector separation, E is the (relativis-
tic) neutrino energy and, as in the text, �m2

kj ≡ m2
k −m2

j . Then show

Pαβ =
3∑

j=1

|Uβj |2|Uαj |2 + 2
∑
j>k

cos

[
�m2

kj

2E
L− ϕβ,α;j,k

]
|UβjU ∗βkUαkU ∗αj |,

where ϕβ,α;j,k is the (CP-violating phase) of the Ujk factors.
(2) Two-generation 1 ↔ 3 neutrino mixing

The aim is to obtain a simple expression for the survival probability Pee(L)

for 1 ↔ 3 oscillations starting from the general relation derived above. We
shall ignore CP-violating effects (and thus set ϕβ,α;j,k = 0) and use |�m2

21| �
|�m2

31| � |�m2
32|, which is already known from the text. Because we wish to

observe 1 ↔ 3 oscillations, we take |�m2
31|L/2E ≥ 1 (i.e. 2πL/L(31)

osc ≥ 1).
We also take �m2

21L/2E � 1 (i.e. 2πL/L(21)
osc � 1) to suppress 1 ↔ 2

oscillations. Then show that the survival probability Pee(L) can be written as

Pee(L) = 1− 2|Ue3|2
(
1− |Ue3|2

) (
1− cos(2πL/L(31)

osc )
)
.

Hint: You will want to make use of the unitarity property of the mixing
matrix U .
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Effective field theory for low-energy QCD

At the lowest possible energies, the Standard Model involves only photons, elec-
trons, muons, and pions, as these are the lightest particles in the spectrum. As
we increase the energy slightly, kaons and etas become active. The light pseudo-
scalar hadrons would be massless Goldstone bosons in the limit that the u, d, s
quark masses vanished. We give a separate discussion of this portion of the theory
because it is an important illustration of effective field theory and because it can be
treated with a higher level of rigor than most other topics.

VII–1 QCD at low energies

The SU(2) chiral transformations,

ψL,R ≡
(
u

d

)
L,R

→ exp (−iθL,R · τ )ψL,R, (1.1)

almost give rise to an invariance of the QCD lagrangian for small mu,md , but
do not appear to induce a left–right symmetry of the particle spectrum. This is
because the axial symmetry is dynamically broken (i.e. hidden) with the pion being
the (approximate) Goldstone boson. Vectorial isospin symmetry, i.e., simultaneous
SU(2) transformations of ψL and ψR, remains as an approximate symmetry of the
spectrum.

Isospin symmetry is seen from the near equality of masses in the multiplets
(π±, π0), (K+,K0), (p, n), etc. In the language of group theory, we say that
SU(2)L × SU(2)R has been dynamically broken to SU(2)V . What is the evidence
that such a scenario is correct? Ultimately it comes from the predictions which
result, such as those which we detail in the remainder of this chapter.

The effective lagrangian for pions at very low-energy has already been developed
in Chap. IV. In particular we recall the formalism of Sect. IV–6 which includes

200
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couplings to left-handed (right-handed) currents 
μ(x) (rμ(x)), and scalar and
pseudoscalar densities s(x) and p(x), with the resulting O(E2) lagrangian,

L2 = F 2
π

4
Tr
(
DμUD

μU †
)+ F 2

π

4
Tr
(
χU † + Uχ†

)
,

U = exp(iτ · π/Fπ), χ = 2B0(s + ip), (1.2)

where DμU ≡ ∂μU + i
μU − iUrμ and B0 is a constant. QCD in the absence of
sources is recovered with 
μ = rμ = p = 0 and s = m, where m is the quark mass
matrix.

Vacuum expectation values and masses

With a dynamically broken symmetry, the lagrangian is invariant but the vacuum
state does not share this symmetry. A useful measure of this noninvariance in QCD
is the vacuum expectation value of a scalar bilinear,

〈0 ∣∣ψ̄ψ∣∣ 0〉 = 〈0 ∣∣ψ̄LψR∣∣ 0〉 + 〈0 ∣∣ψ̄RψL∣∣ 0〉. (1.3)

Up to small corrections, isospin symmetry implies

〈0 |ūu| 0〉 = 〈0 ∣∣d̄d∣∣ 0〉. (1.4)

Such matrix elements, if nonzero, cannot be invariant under separate left-handed
or right-handed SU(2) transformations. Indeed, it is evident from Eq. (1.3) that
the vacuum expectation value couples together the left-handed and right-handed
sectors.

One way that the vacuum expectation values of Eq. (1.4) affect phenomenology
is through the pion mass. If the u and d quarks were massless, the pion would
be a true Goldstone boson with mπ = 0. The part of the QCD lagrangian which
explicitly violates chiral symmetry is the collection of quark mass terms,

Hmass = −Lmass = muūu+mdd̄d. (1.5)

To first order in the symmetry breaking, the pion mass is generated by the expec-
tation value of this hamiltonian,

m2
π = 〈π

∣∣muūu+mdd̄d
∣∣π〉. (1.6)

This quantity can be related to the vacuum expectation value by using the chiral
lagrangian. Taking both the pion and vacuum matrix elements of Eq. (1.2) and
using the notation of Sect. IV–6, we have

m2
π = (mu +md)B0 , 〈0 |q̄q| 0〉 = − ∂L

∂s0
= −F 2

πB0 = − F 2
πm

2
π

mu +md

. (1.7)
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Thus since both B0 and the quark masses are required to be positive, consistency
requires that 〈0|q̄q|0〉 be nonzero and negative. However, without a separate deter-
mination of the quark masses (the origin of which must lie outside chiral symmetry)
we do not know either 〈0|q̄q|0〉 or mu +md independently.

As an aside, we note that for Goldstone bosons there is a clear answer to the
perennial question of whether one should treat symmetry breaking in terms of a
linear or quadratic formula in the meson mass. For states of appreciable mass, the
two procedures are equivalent to first order in the symmetry breaking since

δ(m2) ≡ (m0 + δm)2 −m2
0 = 2m0 δm+ · · · . (1.8)

However, when the symmetry expansion is about a massless limit, the m vs m2

distinction becomes important. Because pions are bosonic fields we require their
effective lagrangian to have the properly normalized form,

L = 1

2

(
∂μπ · ∂μπ −m2

ππ · π)+ · · · . (1.9)

The prediction for the pion mass must then have the form,

m2
π = (mu +md)B0 + (mu +md)

2C0 + (mu −md)
2D0 + · · · . (1.10)

In principle, Nature could decide in favor of either m2
π ∝ mq or m2

π ∝ m2
q depend-

ing on whether the renormalized parameterB0 vanishes or not. However, the choice
B0 = 0 is not ‘natural’ in that there is no symmetry constraint to force this value.
Since one generally expects a nonzero value for B0, the squared pion mass is linear
in the symmetry-breaking parameter mq . There is every indication that B0 �= 0 in
QCD.

Quark mass ratios

The addition of an extra quark adds to the number of possible hadrons. If the
strange quark mass is not too large, there are additional low-mass particles associ-
ated with the breaking of chiral symmetry. Including the quark mass terms,

Lmass = ψ̄LmψR + ψ̄RmψL , m =

⎛⎜⎜⎝
mu 0 0

0 md 0

0 0 ms

⎞⎟⎟⎠ , (1.11)

the QCD lagrangian has an approximate SU(3)L × SU(3)R global symmetry. If
the u, d, s quarks were massless, the dynamical breaking of SU(3)L × SU(3)R to
vector SU(3) would produce eight Goldstone bosons, one for each generator of
SU(3). These would be the three pions π±, π0, four kaons K±, K0, K̄0, and one
neutral particle η8 with the quantum numbers of the eighth component of the octet.
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Due to nonzero quark masses, these mesons are not actually massless, but should
be light if the quark masses are not ‘too large’.

What should the K , η8 masses be? Unfortunately, QCD is unable to answer
this question, even if we were able to solve the theory precisely. This is because
the quark masses are free parameters in QCD, and thus must be determined from
experiment. This means that the π , K , and η8 masses can be used to determine the
quark masses rather than vice versa. The discussion is somewhat more subtle than
this simple statement would indicate. Quark masses need to be renormalized, and
hence to specify their values one has to specify the renormalization prescription and
the scale at which they are renormalized. Under changes of scale, the mass values
change, i.e., they ‘run.’ However, quark mass ratios are rather simpler. The QCD
renormalization is flavor-independent, at least to lowest order in the masses. In this
situation, mass ratios are independent of the renormalization. There can be some
residual scheme dependence through higher-order dependence of the renormaliza-
tion constants on the quark masses. However, to first order, we can be confident
that the mass ratio determined by the π , K , η8 masses is the same ratio as found
from the mass parameters of the QCD lagrangian.

The content of chiral SU(3) is contained in an effective lagrangian expressed in
terms of U = exp[i(λ · ϕ)/F ] and having the same form as Eq. (1.2). The matrix
field λ · ϕ contained in U has the explicit representation,

1√
2

8∑
a=1

λaϕa =

⎛⎜⎜⎜⎝
1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8

⎞⎟⎟⎟⎠ , (1.12)

as expressed in terms of the pseudoscalar meson fields. If we choose the parameters
in Eq. (1.2) to correspond to QCD without external sources, viz.,

s = m , p = 0 , DμU = ∂μU, (1.13)

the meson masses obtained by expanding to order ϕ2 are

m2
π = B0(mu +md) , m2

K± = B0(ms +mu),

m2
K0 = B0(ms +md) , m2

η8
= 1

3
B0(4ms +mu +md). (1.14)

Defining m2
K = 1

2(m
2
K± +m2

K0), we obtain from Eq. (1.14) the mass relations,

m̂

ms

= m2
π

2m2
K −m2

π

� 1

26
, (1.15a)

m2
η8
= 1

3

(
4m2

K −m2
π

)
, (1.15b)
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where m̂ ≡ (mu + md)/2. Eq. (1.15a) demonstrates the extreme lightness of the
u, d quark masses. Most estimates of the strange quark mass place it at around
ms(2 GeV) ∼ 100 MeV [RPP 12], so that m̂ ∼ 4 MeV, i.e., significantly smaller
than the scale of QCD, QCD. Of course, the existence of very light quarks in
the Standard Model is no more (or less) a mystery than is the existence of very
heavy quarks. Both are determined by the Yukawa couplings of fermions to the
Higgs boson, which are unconstrained (and not understood) input parameters of
the theory. In any case, the small values of the u, d masses are responsible in QCD
for the light pion, and for the usefulness of chiral symmetry techniques.

The mass relation of Eq. (1.15b) is the Gell-Mann–Okubo formula as applied
to the octet of Goldstone bosons [GeOR 68]. It predicts mη8 = 566 MeV, not
far from the mass of the η(549). The small difference between these mass values
can be accounted for by second-order effects in the mass expansion. In particular,
mixing of the η8 with an SU(3) singlet pseudoscalar produces a mass shift of order
(ms − m̂)2. The difference between the predicted and physical masses is then an
estimate of accuracy of the lowest-order predictions.

The use of the full pseudoscalar octet allows us to be sensitive to isospin break-
ing due to quark mass differences in a way not possible using only pions. This is
because, to first order, the �I = 2 mass difference mπ± − mπ0 is independent of
the �I = 1 mass difference md − mu. In contrast, the kaons experience a mass
splitting of first order in md −mu. In particular, the quark mass contribution to the
kaon mass difference is(

m2
K0 −m2

K+
)

qk-mass = (md −mu)B0 =
[
md −mu

ms − m̂
] (
m2
K −m2

π

)
. (1.16)

In addition, there are electromagnetic contributions of the form(
m2
K0 −m2

K+
)

em = m2
π0 −m2

π+ . (1.17)

This result, called Dashen’s theorem [Da 69], follows in an effective lagrangian
framework from (i) the vanishing of the electromagnetic self-energies of neutral
mesons at lowest order in the energy expansion, and (ii) the fact that K+ and π+

fall in the same U -spin multiplet and hence are treated identically by the elec-
tromagnetic interaction, itself a U -spin singlet.1 By isolating the quark mass and
electromagnetic contributions to the kaon mass difference, we can write a sum rule,[

md −mu

ms − m̂
] (
m2
K −m2

π

) = [md −mu

md +mu

]
m2
π

= (m2
K0 −m2

K+
)− (m2

π0 −m2
π+
)
, (1.18)

1 Recall that U -spin is the SU(2) subgroup of SU(3) under which the d and s quarks are transformed.
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which yields

md −mu

ms − m̂ = 0.023,
md −mu

md +mu

= 0.29. (1.19)

The u quark is seen to be lighter than the d quark, with mu/md � 0.55. The
reason why this large deviation from unity does not play a major role in low-energy
physics is that both mu and md are small compared to the confinement scale of
QCD. This is, in fact, the origin of isospin symmetry, which in terms of quark
mass is simply the statement that neither mu nor md plays a major physical role,
aside from the crucial fact that mπ �= 0. Why these two masses lie so close to zero
is a question which the Standard Model does not answer.

Pion leptonic decay, radiative corrections, and Fπ

Throughout our previous discussion of chiral lagrangians, the pion decay constant
Fπ has played an important role. It is defined by the relation〈

0
∣∣Ajμ(0)∣∣πk(p)〉 = iFπpμδ

jk, (1.20)

where the axial-vector current Ajμ is expressible in terms of the quark fields

ψ ≡
(
u

d

)
as

Ajμ = ψ̄γμγ5
τ j

2
ψ. (1.21)

This amplitude gives us the opportunity to display the way that the electroweak
interactions are matched on to the low-energy strong interactions, and so we treat
this topic in some detail.

The pion matrix element is probed experimentally in the decays π → ēνe and
π → μ̄νμ, which are induced by the weak hamiltonian,

Hw = GF√
2
Vudψ̄dγλ(1+ γ5)ψu

[
ψ̄νeγ

λ(1+ γ5)ψe + ψ̄νμγ λ(1+ γ5)ψμ
]
. (1.22)

The decay π+ → μ+νμ has invariant amplitude,

Mπ+→μ+νμ =
GF√

2
Vud

√
2Fπpλūνγ

λ(1+ γ5)vμ

= −GFVudFπmμūν(1− γ5)vμ, (1.23)

where the Dirac equation has been used to obtain the second line. An analogous
expression holds for π+ → e+νe. We see here the well-known helicity suppression
phenomenon. That is, the weak interaction current contains the left-handed chiral
projection operator (1+γ5), which in the massless limit produces only left-handed
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particles and right-handed antiparticles. However, such a configuration is forbidden
in the decay of a spin-zero particle to massless μ̄νμ or ēνe because the leptons
would be required to have combined angular momentum Jz = 1 along the decay
axis. Thus the amplitudes for π → μ̄νμ, ēνe must vanish in the limit mμ =
me = 0. Since the neutrino is always left-handed, the μ+, e+ in pion decay must
have right-handed helicity to conserve angular momentum. It is helicity flip which
introduces the factors of mμ,me. The decay rate is found to be

�π+→μ+νμ =
G2
F

4π
F 2
πm

2
μmπ |Vud|2

(
1− m2

μ

m2
π

)2

. (1.24)

However, before using this expression to extract the pion decay constant, one
must include radiative corrections. We shall do this in some detail because it illus-
trates the way to match electroweak loops onto hadronic calculations. Since a com-
plete analysis would be overly lengthy, we present a simplified argument which
stresses the underlying physics.

In Chap. V we found that the radiative correction to the muon lifetime is ultravi-
olet finite even in the approximation of a strictly local weak interaction. However,
this is not the case for semileptonic transitions, as can be easily demonstrated.
Consider the photon loop diagrams shown in Fig. VII–1. We divide the photon
integration into hard and soft components. The former, which determine the ultra-
violet properties of the diagrams, have short wavelengths λ � R, where R is a
typical hadronic size, and are sensitive to the weak interaction at the quark level.
In Landau gauge (i.e. ξ=0), the ultraviolet divergences arising from the wavefunc-
tion renormalization and vertex renormalization diagrams depicted in Fig. VII–1
vanish. For example, the vertex term is

I
(u.v.)
vertex ∼ iGF√

2
e2Q4Q3

∫
d4k

(2π)4
1

k2

(
−gμν + kμkν

k2

)
× ū4γ

μ /k

k2
γλ(1+ γ5)

/k

k2
γ νu3ū2γ

λ(1+ γ5)u1

∼ iGF√
2
e2Q4Q3

∫
d4k

(2π)4
ū4

[
2/kγλ/k

k6
+ γλ

k4

]
(1+ γ5)u3ū2γ

λ(1+ γ5)u1,

(1.25)

where Qie is the electric charge of the i th particle. Using∫
d4k

(2π)4
kμkν

k6
= gμν

4

∫
d4k

(2π)4
1

k4
∼ igμν

32π2
ln, (1.26)

we find that I (u.v.)vertex = 0 as claimed. It is clear, employing a Fierz transforma-
tion, that photon exchange between particles 4,1 and 2,3 is also ultraviolet-finite.
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2 4 2 4

1 31 3

+ +

Fig. VII–1 Photonic radiative corrections to the weak quark–quark interaction.

This result simply represents the nonrenormalization of the vertex of a conserved
current found in Chap. V. The only ultraviolet divergences then arise from final-
state and initial-state interactions, i.e., photon exchange between particles 2,4, and
1,3, for which

I
(u.v.)
fsi ∼ −iGF√

2
e2Q4Q2

∫
d4k

(2π)4
1

k2

(
−gμν + kμkν

k2

)
× ū4γ

μ /k

k2
γ λ(1+ γ5)u3ū2γ

ν /k

k2
γλ(1+ γ5)u3 + (2, 4 → 1, 3)

∼ −GF√
2

e2

32π2
Q4Q2 ln[ū4γμγαγλ(1+ γ5)u3ū2γ

μγ αγ λ(1+ γ5)u1

− 4ū4γλ(1+ γ5)u3ū2γ
λ(1+ γ5)u1] + (2, 4 → 1, 3). (1.27)

Using the identity in Eq. (C–2.5) for reducing the product of three gamma matrices,
Eq. (1.27) becomes

I
(u.v.)
fsi = −M(0) × 3α

2π
(Q4Q2 +Q3Q1) ln(/μL), (1.28)

where M(0) is the lowest-order vertex. However, the full calculation of the radiative
corrections must include the propagator for the W boson as well. When the contact
weak interaction is replaced by the W -exchange diagram and is added to that with
the photon-exchange replaced by Z-exchange, one obtains a finite result at the
ultraviolet end with  = mZ. The integral is cut off at the lower end at some point
μL ∼ m
 below which the full hadronic structure must be considered. In the case
of muon decay we have

QeQνμ +QνeQμ = 0. (1.29)

Thus, as found in Chap. V, there is no divergence. On the other hand, for beta decay
we obtain

QeQu +QνeQd,s = −2

3
. (1.30)
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We observe that there exists an important difference between the beta-decay effec-
tive weak coupling (Gβ) and the muon-decay coupling (Gμ)

Gβ = Gμ

(
1+ α

π
ln
MZ

μL

)
. (1.31)

This hard-photon correction must be added to the soft-photon component, which
can be found be evaluating the radiative corrections to a structureless (‘point’) pion
with a high-energy cut-off μH . These were calculated long ago with the result
[Be 58, KiS 59],

�π+→μ+νμ

�
(0)
π+→μ+νμ

= 1+ α

2π

(
B(x)+ 3 ln

μH

mπ

− 6 ln
μH

mμ

)
, (1.32)

where

B(x) = 4

[
x2 + 1

x2 − 1
ln x − 1

] [
ln(x2 − 1)− 2 ln x − 3

4

]
+ 4

x2 + 1

x2 − 1
L(1− x−2)− ln x − 3

4
+ 10x2 − 7

(x2 − 1)2
ln x + 15x2 − 21

4(x2 − 1)
,

(1.33)

with L(z) = ∫ z0 dt
t

ln(1 − t) being the Spence function and x = mπ/mμ. Adding
the hard- and soft-photon contributions with μH = μL � mρ , we find the full
radiative correction,

�π+→μ+νμ � �(0)
[

1+ α

2π

(
B(x)+ 3 ln

MZ

mπ

+ ln
MZ

mρ

− 6 ln
mρ

mμ

)]
. (1.34)

Taking Vud from Sect. XII–4 and �(expt)
π+→μ+νμ = 3.841× 107 s−1, we find

Fπ = 92.2± 0.2 MeV, (1.35)

where we have appended an uncertainty associated with possible radiative effects
O(α/2π) that are not included in Eq. (1.34). For chiral symmetry applications in
this book we shall generally employ the value

Fπ � 92 MeV. (1.36)

A clear indication of the importance of radiative corrections can be seen in the
ratio

R = �π+→e+νe
�π+→μ+νμ

, (1.37)
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which is strongly suppressed by the helicity mechanism discussed earlier. Appli-
cation of the lowest-order formula given in Eq. (1.24) leads to a prediction

R(0) = m2
e

m2
μ

(
m2
π −m2

e

m2
π −m2

μ

)2

= 1.283× 10−4, (1.38)

in disagreement with the measured value

Rexpt = (1.230± 0.004)× 10−4. (1.39)

However, when the full radiative correction given in Eq. (1.34) is employed, the
theoretical prediction is modified to become

Rthy = R(0)

(
1− 3

α

π
ln
mμ

me

+ · · ·
)
= (1.2353± 0.0001)× 10−4, (1.40)

which is consistent with the experimental value.

VII–2 Chiral perturbation theory to one loop

Let us summarize the development thus far. Interactions of the Goldstone bosons
can be expressed in terms of an effective lagrangian having the correct symme-
try properties. To lowest order in the energy expansion, i.e., to order E2, it suf-
fices to use the minimal lagrangian of Eq. (1.2) at tree level. In the SU(2) theory,
this involves just the known constants Fπ and mπ . At the next order, one encoun-
ters both the general O(E4) lagrangian, given below, and also one-loop diagrams
[ApB 81, GaL 84, 85a]. The O(E4) lagrangian introduces new parameters, which
must be determined from experiment. It is also necessary to give a prescription
which allows one to handle the loop calculations. The general method is described
in this section.

The program is called chiral perturbation theory. If one works to order E4 in the
energy expansion, there are typically three ingredients:

(1) the general lagrangian L2 (of order E2) which is to be used both in loop
diagrams and at tree level,

(2) the general lagrangian L4 (of order E4) which is to be used only at tree level,

(3) the renormalization program which describes how to make physical predic-
tions at one-loop level.

The general O(E2) lagrangian has already been given in Eq. (1.2). Now we shall
turn to the construction of the chiral SU(n) lagrangian to order E4.
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The order E4 lagrangian

The O(E4) lagrangian can involve either four-derivative operators or two-derivative
operators together with one factor of the quark mass term, χ ∼ 2mqB0 (which
itself is of order m2

π or m2
K ) or products of two quark mass factors. There are four

possible chiral-invariant terms with four separate derivatives,

Tr
(
DμUD

μU †DνUD
νU †

)
, Tr

(
DμUDνU

†DμUDνU †
)
,

Tr
(
DμUDνU

†
) · Tr

(
DμUDνU †

)
, [Tr

(
DμUD

μU †
)]2. (2.1)

Other structures, such as[
Tr
(
λaU †DμU

)
Tr
(
λaU †DμU

)]2
, (2.2)

can be expressed in terms of these by using SU(n) matrix identities.
For the case of SU(3), the operators in Eq. (2.1) are not linearly independent.

The identities quoted in Eq. (II–2.17) can be used to show that

Tr
(
DμUDνU

†DμUDνU †
) = 1

2

[
Tr
(
DμUD

μU †
) ]2

+ Tr
(
DμUDνU

†
) · Tr

(
DμUDνU †

)− 2 Tr
(
DμUD

μU †DνUD
νU †

)
,

(2.3)

leaving only three independent operators in this class. In SU(2), a further identity,

2 Tr
(
DμUD

μU †DνUD
νU †

) = [Tr
(
DμUD

μU †
) ]2

, (2.4)

leaves us with only two independent O(E4) terms.
Another conceivable class of operators could have at least two derivatives acting

on a single chiral matrix, such as

Tr
(
DμUD

μU †
) · Tr

(
U †DνD

νU
)
. (2.5)

However, since the E4 lagrangian is to be used only at tree level, all states to which
it is applied obey the equation of motion,

Dμ
(
U †DμU

)+ 1

2

(
χ†U − U †χ

) = 0. (2.6)

This can be used to eliminate all the double-derivative operators in favor of those
involving four single derivatives or with factors of χ .
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The remaining operators are reasonably straightforward to determine, and the
most general O(E4) SU(3) chiral lagrangian is,2

L4 =
10∑
i=1

LiOi

= L1
[

Tr
(
DμUD

μU †
)]2 + L2 Tr

(
DμUDνU

†
) · Tr

(
DμUDνU †

)
+ L3 Tr

(
DμUD

μU †DνUD
νU †

)
+ L4 Tr

(
DμUD

μU †
)

Tr
(
χU † + Uχ†

)
+ L5 Tr

(
DμUD

μU †
(
χU † + Uχ†

))+ L6
[

Tr
(
χU † + Uχ†

)]2
+ L7

[
Tr
(
χ†U − Uχ†

)]2 + L8 Tr
(
χU †χU † + Uχ†Uχ†

)
+ iL9 Tr

(
LμνD

μUDνU † + RμνDμU †DνU
)+ L10 Tr

(
LμνUR

μνU †
)
,

(2.7)

where Lμν, Rμν are the field-strength tensors of external sources given in Eq. (IV–
6.10). This is a central result of the effective lagrangian approach to the study of
low-energy strong interactions. Much of the discussion in the chapters to follow
will concern the above operators and involve a phenomenological determination of
the {Li}. In chiral SU(2), three operators become redundant.

For completeness, we note that there may also exist two combinations of the
external fields,

Lext = β1 Tr
(
LμνL

μν + RμνRμν
)+ β2 Tr

(
χ†χ

)
,

which are chirally invariant without involving the matrix U . These do not generate
any couplings to the Goldstone bosons and hence are not of great phenomenolog-
ical interest. However, if one were to use the effective lagrangian to describe cor-
relation functions of the external sources, these two operators can generate contact
terms.

Finally, we summarize in Table VII–1 a set of values for the low-energy con-
stants {Li} as obtained phenomenologically via a global fit to a range of low-energy
data [BiJ 12]. (In this extraction certain assumptions are made also about the size
of O(p6) chiral coefficients, since they also contribute to observables.) These con-
stants provide a characterization of the low-energy dynamics of QCD.

The renormalization program

The renormalization procedure is as follows. The lagrangian, L2, when expanded
in terms of the meson fields, specifies a set of interaction vertices. These can be

2 We are using the operator basis and notation first set down by Gasser and Leutwyler [GaL 85a].
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Table VII–1. Renormalized coefficients in the chiral
lagrangian L4 given in units of 10−3 and evaluated at

renormalization point μ = mρ [BiJ 12].

Coefficient Value Origin

Lr1 1.12± 0.20 ππ scattering

Lr2 2.23± 0.40 and

Lr3 −3.98± 0.50 K
4 decay

Lr4 1.50± 1.01 FK/Fπ

Lr5 1.21± 0.08 FK/Fπ

Lr6 1.17± 0.95 FK/Fπ

Lr7 −0.36± 0.18 Meson masses

Lr8 0.62± 0.16 FK/Fπ

Lr9 7.0± 0.2 Rare pion

Lr10 −5.6± 0.2 decays

used to calculate tree-level and one-loop diagrams for any transition of interest.
This result is added to the contribution which comes from the vertices contained
in the O(E4) lagrangian L4, treated at tree level only. At this stage, the result con-
tains both bare parameters and divergent loop integrals. One needs to determine the
parameters from experiment. The first step involves mass and wavefunction renor-
malization, as well as renormalization of Fπ . In addition, the parameters entering
from L4 need to be determined from data. If the lagrangian is indeed the most gen-
eral one possible, relations between observables will be finite when expressed in
terms of physical quantities. All the divergences will be absorbed into defining a
set of renormalized parameters. This fundamental result is demonstrated explicitly
in App. B–2.

There exists always an ambiguity of what finite constants should be absorbed
into the renormalized parameters Lri . This ambiguity does not affect the relation-
ship between observables, but only influences the numerical values quoted for the
low-energy constants. Similarly, the regularization procedure for handling diver-
gent integrals is arbitrary.3 We use dimensional regularization and the renormal-
ization prescription,

Lri = Li − γi

32π2

[
2

d − 4
− ln(4π)+ γ − 1

]
, (2.8)

3 Care must be taken that the regularization procedure does not destroy the chiral symmetry. Dimensional
regularization does not cause any problems. When using other regularization schemes, one sometimes needs
to append an extra contact interaction to maintain chiral invariance [GeJLW 71]. The problem arises due to
the presence of derivative couplings, which imply that the interaction Hamiltonian is not simply the negative
of the interaction lagrangian. The contact interaction vanishes in dimensional regularization.
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where the constants γi are numbers given in Table B–1. When working to O(E4)

the following procedure is applied. One first computes the relevant vertices from
L2 and L4. There are too many possible vertices to make a table of Feynman rules
practical. In practice, the needed amplitudes are calculated for each application.
The vertices from L2 are then used in loop diagrams, including mass and wave-
function renormalizations. The results may be expressed in terms of the renor-
malized parameters of Eq. (2.8). If these low-energy constants can be determined
from other processes, one has obtained a well-defined result. Including loops does
add important physics to the result. The low-energy portion of the loop integrals
describes the propagation and rescattering of low-energy Goldstone bosons, as
required by the unitarity of the S matrix. One-loop diagrams add the unitarity cor-
rections to the lowest-order amplitudes and in addition contain mass contributions
and other effects from low energy.

The effective lagrangian may be used in the context either of chiral SU(2)
or of chiral SU(3). Because SU(2) is a subgroup of SU(3), the general SU(3)
lagrangian of Eq. (2.7) is also valid for chiral SU(2). However, the SU(2) version
has fewer low-energy constants, so that only certain combinations of the Lri will
appear in pionic processes. If one is dealing with reactions involving only pions at
low energy, the kaons and the eta are heavy particles and may be integrated out,
such that only pionic effects need to be explicitly considered. This procedure pro-
duces a shift in the values of the low-energy renormalized constants Lri such that
the Lri of a purely SU(2) chiral lagrangian and an SU(3) one will differ by a finite
calculable amount. In this book, we shall use the SU(3) values as our basic param-
eter set. The SU(2) coefficients can be found by first performing calculations in
the SU(3) limit and then treating m2

K,m
2
η as large. Equivalently, all may be calcu-

lated at the same time using the background field method [GaL 85a]. The results
are

2L(2)r1 + L(2)r3 = 2Lr1 + Lr3 −
1

4

K, L

(2)r
2 = Lr2 −

1

4

K,

2L(2)r4 + L(2)r5 = 2Lr4 + Lr5 −
3

2

K, L

(2)r
9 = Lr9 − 
K,

2L(2)r6 + L(2)r8 = 2Lr6 + Lr8 −
3

4

K − 1

12

η, L

(2)r
10 = Lr10 + 
K,

L
(2)r
4 − L(2)r6 − 9L(2)r7 − 3L(2)r8 = Lr4 − Lr6 − 9Lr7 − 3Lr8 +

3

2

k

+ F 2
π

24m2
η

+ 5

1152π2
ln
m2
η

μ2
, (2.9)

where we use the superscript (2) to indicate constants in the SU(2) theory and
define 
i ≡

[
ln(m2

i /μ
2)+ 1

]
/384π2. In practice, these shifts are much smaller
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than the magnitude of the low-energy constants, so that we always simply quote
the SU(3) value.

Let us now calculate the mass and wavefunction renormalization constants to
O(E4) in chiral SU(2). Setting χ = (mu+md)B0 ≡ m2

0, we may expand the basic
lagrangian as

L2 = 1

2

[
∂μϕ · ∂μϕ −m2

0ϕ · ϕ
]+ m2

0

24F 2
0

(ϕ · ϕ)2

+ 1

6F 2
0

[
(ϕ · ∂μϕ) (ϕ · ∂μϕ)− (ϕ · ϕ) (∂μϕ · ∂μϕ)]+O(ϕ6), (2.10)

L4 = m2
0

F 2
0

[
16L(2)4 + 8L(2)5

] 1

2
∂μϕ · ∂μϕ

− m2
0

F 2
0

[
32L(2)6 + 16(2)8

] 1

2
m2

0ϕ · ϕ +O(ϕ4),

where F0 denotes the value of Fπ prior to loop corrections. When this lagrangian is
used in the calculation of the propagator, the terms of O(ϕ4) in L2 will contribute to
the self-energy via one-loop diagrams, which involve the following d-dimensional
integrals,

δjkI (m
2) = i�Fjk(0) = 〈0|T ϕj (x)ϕk(x)|0〉,

I (m2) = μ4−d
∫

ddk

(2π)d
i

k2 −m2
= μ4−d

(4π)d/2
�

(
1− d

2

) (
m2
) d

2−1
,

δjkIμν(m
2) = −∂μ∂νi�Fjk(0) = 〈0|T ∂μϕj (x)∂νϕk(x)|0〉,

Iμν(m
2) = μ4−d

∫
ddk

(2π)d
kμkν

i

k2 −m2
= gμν

m2

d
I (m2). (2.11)

These contributions can be read off from L2 by considering all possible contrac-
tions among the O(ϕ4) terms, and result in the quadratic effective lagrangian,

Leff = 1

2
∂μϕ · ∂μϕ − 1

2
m2

0ϕ · ϕ +
5m2

π

12F 2
π

I (m2
π)ϕ · ϕ

+ 1

6F 2
π

(
δikδjl − δij δkl

)
I (m2

π)
(
δij ∂

μϕk∂μϕl + δk
m2
πϕiϕj

)
+ 1

2
∂μϕ · ∂μϕm

2
π

F 2
π

[
16L(2)4 + 8L(2)5

]
− 1

2
m2
πϕ · ϕm

2
π

F 2
π

[
32L(2)6 + 16L(2)8

]
= 1

2
∂μϕ · ∂μϕ

[
1+

(
16L(2)4 + 8L(2)5

) m2
π

F 2
π

− 2

3F 2
π

I (m2
π)

]
− 1

2
m2

0ϕ · ϕ
[

1+
(

32L(2)6 + 16L(2)8

) m2
π

F 2
π

− 1

6F 2
π

I (m2
π)

]
. (2.12)



VII–3 The nature of chiral predictions 215

To one-loop order, there are no other contributions to the self energy. Observe
that we have changed m0, F0 into mπ, Fπ in all of the O(E4) corrections, as the
difference between the two is of yet higher order in the energy expansion. If we
expand in powers of d − 4 and define the renormalized pion field as ϕr = Z−1/2

π ϕ

with

Zπ = 1− 8m2
π

F 2
π

(
2L(2)4 + L(2)5

)
+ m2

π

24π2F 2
π

[
2

d − 4
+ γ − 1− ln 4π + ln

m2
π

μ2

]
,

(2.13)

then the lagrangian assumes the canonical form

Leff = 1

2
∂μϕr · ∂μϕr −

1

2
m2
πϕr · ϕr . (2.14)

Note that, using the definitions of the renormalized parameters, the physical pion
mass is identified as

m2
π = m2

0

[
1− 8m2

π

F 2
π

[
2L(2)r4 + L(2)r5 − 4L(2)r6 − 2L(2)r8

]
+ m2

π

32π2F 2
π

ln
m2
π

μ2

]
.

(2.15)

The quantity Leff in Eq. (2.14) is the quadratic portion of the one-loop effective
lagrangian. Since loop effects have already been accounted for, it is to be used
at tree level. This is a simple application of the background field renormalization
discussed in App. B–2.

VII–3 The nature of chiral predictions

In order to understand how predictions are made in effective field theory as well
as the range of validity of the energy expansion, let us work out several examples.
At first, these will seem to be rather obscure processes, but they are the simplest
hadronic reactions of QCD. As the bosonic interactions of the Goldstone bosons of
the theory, they are the cleanest processes for demonstrating the dynamical content
of the symmetries and anomalies of QCD.

The pion form factor

The electromagnetic form factor of charged pions is required by Lorentz invariance
and gauge invariance to have the form4

〈π+(p2)
∣∣Jμem

∣∣π+(p1)〉 = Gπ(q
2) (p1 + p2)

μ , (3.1)

4 The neutral pion form factor is required to vanish by charge conjugation invariance.
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(a)

π

π
π π

πππ
γ

γ

(b)

Fig. VII–2 Radiative corrections to the pion form factor.

where qμ = (p1 − p2)
μ and Gπ(0) = 1. The electromagnetic current may be

identified from the effective lagrangian of Eq. (1.2) by setting 
μ = rμ = eQAμ,
χ = 2B0m, where Q is the quark charge matrix and m is the quark mass matrix.
To O(E4), we then find

Jμem = −
∂L

∂(eAμ)
= (ϕ × ∂μϕ)3

[
1− 1

3F 2
ϕ · ϕ +O(ϕ4)

]
+ (ϕ × ∂μϕ)3

[
16L(2)4 + 8L(2)5

] m2
π

F 2
+ 4L(2)9

F 2
∂ν (∂μϕ × ∂νϕ)3 + · · · .

(3.2)

The renormalization of this current involves the Feynman diagrams in
Fig. VII–2. That of Fig. VII–2(a) is simply found using the integral previously
defined in Eq. (2.11),

Jμem

∣∣∣∣
(2a)

= − 5

3F 2
π

(ϕ × ∂μϕ)3 I (m2
π). (3.3)

Evaluation of Fig. VII–2(b) is somewhat more complicated. Using the elastic π+π−

scattering amplitude given by L2,

〈π+(k1)π
−(k2)|π+(p1)π

−(p2)〉
= i

3F 2
0

(
2m2

0 + p2
1 + p2

2 + k2
1 + k2

2 − 3 (p1 − k1)
2
)
, (3.4)

we compute the vertex amplitude to be

〈Jμem〉(2b) = −
i

3F 2
π

∫
d4k

(2π)4
1(

k + 1
2q
)2 −m2

π + iε
1(

k − 1
2q
)2 −m2

π + iε

×
[

4m2
π +

(
k + q

2

)2 +
(
k − q

2

)2 − 3

(
k + (p1 + p2)

2

)2
]

2kμ.

(3.5)

Upon integration, most terms drop out because of antisymmetry under kμ →−kμ,
and we find
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〈Jμem〉(2b) =
2i

F 2
π

∫
d4k

(2π)4
kμk · (p1 + p2)((

k + 1
2q
)2 −m2

π

) ((
k − 1

2q
)2 −m2

π

) . (3.6)

We can evaluate this integral using dimensional regularization,

〈Jμem〉(2b) = −
2

F 2
π

μ4−d

(4π)d/2

∫
dx

[
−1

2

(p1 + p2)
μ �
(
1− d

2

)(
m2
π − q2x (1− x))1−d/2

+ qμq · (p1 + p2)

(
x + 1

2

)2

�

(
2− d

2

) (
m2
π − q2x (1− x))d/2−2

]
,

(3.7)

where as usual μ is an arbitrary scale introduced in order to maintain the proper
dimensions. On-shell, we can disregard the term in qμ since q · (p1 + p2) = m2

π −
m2
π = 0. For the remaining piece, we expand about d = 4 to obtain

〈Jμem〉(2b) =
1

(4πFπ)
2 (p1 + p2)

μ

∫ 1

0
dx
(
m2
π − q2x(1− x))

×
[(

2

d − 4
+ γ − 1− ln 4π

)
+ ln

m2
π − q2x(1− x)

μ2

]
, (3.8)

and the x-integration then yields

〈Jμem〉(2b) =
1

(4πFπ)
2 (p1 + p2)

μ

{(
m2
π −

1

6
q2

)[
2

d − 4
+ γ − 1− ln 4π

+ ln
m2
π

μ2

]
+ 1

6

(
q2 − 4m2

π

)
H

(
q2

m2
π

)
− 1

18
q2

}
, (3.9)

where

H(a) ≡ −
∫ 1

0
dx ln (1− ax(1− x))

=

⎧⎪⎪⎨⎪⎪⎩
2− 2

√
4
a
− 1 ctn−1

√
4
a
− 1 (0 < a < 4)

2+
√

1− 4
a

[
ln
√

1− 4
a
−1√

1− 4
a
+1
+ iπθ(a − 4)

]
(otherwise).

(3.10)

Now we add everything together. The tree-level amplitude is modified by wave-
function renormalization,

ZπG
(tree)
π (q2) =

[
1− 8m2

π

F 2
π

(2L(2)4 + L(2)5 )

+ m2
π

24π2F 2
π

{
2

d − 4
+ γ − 1− ln 4π + ln

m2
π

μ2

}]
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×
[

1+ 8m2
π

F 2
π

(
2L(2)4 + L(2)5

)
+ 2q2L

(2)
9

F 2
π

]

=
[

1+ m2
π

24π2F 2
π

(
2

d − 4
+ γ − 1− ln 4π + ln

m2
π

μ2

)
+ 2L(2)9

F 2
π

q2

]
,

(3.11)

while Figs. VII–2(a,b) contribute as

Gπ(q
2)

∣∣∣∣
(2a)

= − 5m2
π

48π2F 2
π

{
2

d − 4
+ γ − 1− ln 4π + ln

m2
π

μ2

}
,

Gπ(q
2)

∣∣∣∣
(2b)

= 1

16π2F 2
π

{(
m2
π −

1

6
q2

)[
2

d − 4
+ γ − 1− ln 4π + ln

m2
π

μ2

]
+1

6

(
q2 − 4m2

π

)
H

(
q2

m2
π

)
− 1

18
q2

}
, (3.12)

respectively. Summing Eqs. (3.11), (3.12) we see that all terms independent of q2

cancel, L(2)9 becomes L(2)r9 and the final result is

Gπ(q
2) = 1+ 2L(2)r9

F 2
π

q2 + 1

96π2F 2
π

[(
q2 − 4m2

π

)
H

(
q2

m2
π

)
− q2 ln

m2
π

μ2
− q2

3

]
.

(3.13)

The divergences have been absorbed in L(2)r9 , while the imaginary part required by
unitarity is contained in H(q2/m2

π). Note that the loops also induce a non-power-
law behavior in Gπ(q

2). However, numerically this turns out to be small and is
unobservable in practice. A simple linear approximation,

Gπ(q
2) = 1+ q2

[
2L(2)r9

F 2
π

− 1

96π2F 2
π

(
ln
m2
π

μ2
+ 1

)]
+ · · · , (3.14)

is obtained by Taylor expanding about q2 = 0. The corresponding result for chiral
SU(3) is

Gπ(q
2) = 1+ q2

[
2Lr9
F 2
π

− 1

96π2F 2
π

(
ln
m2
π

μ2
+ 1

2
ln
m2
K

μ2
+ 3

2

)]
+ · · · . (3.15)

The pion form factor is generally parameterized in terms of a charge radius,

Gπ(q
2) = 1+ 1

6
〈r2
π 〉q2 + · · · . (3.16)

Thus, for any given value of the energy scaleμ, the parameterLr9 can be determined
from the experimental charge radius. From the present experimental value 〈r2

π 〉 =
(0.45± 0.01) fm2, we obtain Lr9(μ = mρ) = (7.0± 0.2)× 10−3.
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The scale μ enters the calculation in such a way that, had we used a different
scale μ′ but kept the physical result invariant, we would have had

Lr9(μ
′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lr9(μ)−

1

192π2
ln

(
μ′2

μ2

)
(SU(2))

Lr9(μ)−
1

128π2
ln

(
μ′2

μ2

)
(SU(3)).

(3.17)

In fact, if we look back to the origin of lnμ in the transition from Eq. (3.7) to
Eq. (3.8) using

μ4−d 2

d − 4
= 2

d − 4
− lnμ2 +O(d − 4), (3.18)

we see that the scale dependence is always tied to the coefficient of the divergence.5

The general result is then

Lri (μ
′) = Lri (μ)−

γi

32π2
ln

(
μ′2

μ2

)
, (3.19)

where {γi} are the constants of Table B–1 of App. B, used in the renormalization
condition of Eq. (2.8).

This calculation also nicely illustrates the range of validity of the energy expan-
sion. The pion form factor is well described by a monopole form,

Gπ(q
2) � 1

1− q2/m2
= 1+ q2

m2
+ · · · , (3.20)

with m � mρ(770). The energy expansion is then in powers of q2/m2. At the other
extreme, the pion form factor can also be treated in QCD when q2 is very large
[BrL 80].

Rare processes

The calculation above is clearly non-predictive as it contains a free parameter,
Lr9, which must be determined phenomenologically. However, predictions do arise
when more reactions are considered because relations exist between amplitudes as
a consequence of the underlying chiral symmetry. In particular, there exists a set of
reactions which are described in terms of two low-energy constants. These pionic
reactions are shown in Table VII–2. With the additional input of FK/Fπ , the kaonic
reactions shown there are also predicted. Each case contains hadronic form factors

5 We have chosen to keep the low-energy constants {Li } dimensionless in the extension to d dimensions. In
[GaL 85a], the constants have dimension μd−4. However, the resulting physics is identical in the limit
d → 4.



220 Effective field theory for low-energy QCD

Table VII–2. The radiative complex of pion and
kaon transitions.

Pions Kaons

γ → π+π− γ → K−K+
γπ+ → γπ+ γK+ → γK+
π+ → e+νeγ K+ → e+νeγ
π+ → π0e+νe K → πe+νe
π+ → e+νee+e− K+ → e+νee+e−

K+ → π0e+νeγ

which need to be calculated. This section briefly describes the procedure for relat-
ing such reactions in chiral perturbation theory. All calculations follow the pattern
described above, so that we shall only quote the results [GaL 85a, DonH 89].

In the processes involving photons (π+ → e+νeγ , π+ → e+νee+e− and γπ+ →
γπ+), there are always Born diagrams where the photon couples to hadrons through
the known ππγ coupling. These are shown in Fig. VII–3. In addition, there can
be direct contact interactions associated with the structure of the pions. These
introduce new form factors. For the decays π+ → e+νeγ , e+νee+e−, the matrix
elements are

Mπ+→e+νeγ = −
eGF√

2
cos θ1Mμν(p, q)ε

μ∗(q)ū(pν)γ ν(1+ γ5)v(pe),

Mπ+→e+νee+e− =
e2GF√

2
cos θ1Mμν(p, q)

1

q2

× ū(p2)γ
μv(p1)ū(pν)γ

ν(1+ γ5)v(pe), (3.21)

where the hadronic part of the quantity Mμν has the general structure

Mμν(p, q) =
∫
d4x eiq·x〈0 ∣∣T (J em

μ (x)J 1−i2
ν (0)

)∣∣π+(p)〉
= −√2Fπ

(p − q)ν
(p − q)2 −m2

π

〈π+(p− q)
∣∣J em
μ

∣∣π+(p)〉 + √2Fπgμν

− hA
(
(p − q)μqν − gμνq · (p − q)

)− rA(qμqν − gμνq2)

+ ihV εμναβqαpβ. (3.22)

The first line represents the tree diagram and in subsequent lines the subscripts V
and A indicate whether the vector or axial-vector portions of the weak currents are
involved. The form factor rA in Eq. (3.22) can only contribute with virtual photons,
i.e., as in π+ → e+νee+e−.

The γπ+ → γπ+ reaction is analyzed in terms of the pion’s electric and mag-
netic polarizabilities, αE and βM , which describe the response of the pion to electric
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(a) (b) (c)

π+ π+ π π π π π

γγ γ γ γ
w+ e+

ν

Fig. VII–3 Tree diagrams for (a) π+ → e+νeγ , π+ → e+νee+e−, and (b)–(c)
γπ+ → γπ+.

and magnetic fields. In the static limit, electromagnetic fields induce the electric
and magnetic dipole moments,

pE = 4παEE, μM = 4πβMH, (3.23)

which correspond to an interaction energy

V = −2π
(
αEE2 + βMH2

)
. (3.24)

These forms emerge in the non-relativistic limit of the general Compton amplitude

−iTμν(p, p′, q1) = −i
∫
d4x eiq1·x〈π+(p′) ∣∣T (J em

μ (x)J em
ν (0)

)∣∣π+(p)〉
=
(
2p′ + q2

)
ν
(2p − q1)μ

(p − q1)
2 −m2

π

+
(
2p′ + q1

)
μ
(2p − q2)ν

(p − q2)
2 −m2

π

− 2gμν

+ σ (q2μq1ν − gμνq1 · q2
)+ · · · , (3.25)

where σ is a coefficient proportional to the polarizability and qμ1 , q
μ

2 are the photon
momenta, taken as outgoing, with p = p′ + q1 + q2. The first three pieces are
the Born and seagull diagrams. The last contains the extra term which emerges
from higher-order chiral lagrangians, and the ellipses indicate the presence of other
possible gauge-invariant structures, which we shall not need.

The chiral predictions are obtained in the same manner as used for the pion form
factor. The results at q2 � 0 are

hV = Nc

12
√

2π2Fπ

∣∣∣∣
Nc=3

= 0.027m−1
π ,

hA

hV
= 32π2

(
L
(2)r
9 + L(2)r10

)
,

rA

hV
= 32π2

[
L
(2)r
9 − 1

192π2

(
ln
m2
π

μ2
+ 1

)]
, αE + βM = 0,

αE = α

2mπ

σ = 4α

mπF 2
π

[
L
(2)r
9 + L(2)r10

]
− α

mπ

1

16π2F 2
π

(
1+ F(t/m2

π)
)
, (3.26)

where t = (q1 + q2)
2 and

F(x) ≡ −4

x
sinh2

(√
x/2
) −→

1
x
−1− x

12
+ · · · . (3.27)
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Table VII–3. Chiral predictions and data in the radiative complex of transitions.

Reaction Quantity Theory Experiment

γ → π+π− 〈r2
π 〉 (fm2) 0.45a 0.45± 0.01

γ → K+K− 〈r2
K 〉 (fm2) 0.45 0.31± 0.03

π+ → e+νeγ hV (m
−1
π ) 0.027 0.0254± 0.0017

hA/hV 0.441a 0.441± 0.004
K+ → e+νeγ (hV + hA)(m−1

K ) 0.136 0.133± 0.008
π+ → e+νee+e− rA/hV 2.6 2.2± 0.3
γπ+ → γπ+ (αE + βM)(10−4 fm) 0 0.17± 0.02

(αE − βM) (10−4 fm) 5.6 13.6± 2.8
K → πe+νe ξ = f−(0)/f+(0) −0.13 −0.17± 0.02

λ+ (fm2) 0.067 0.0605± 0.001
λ0 (fm2) 0.040 0.0400± 0.002

aUsed as input.

The prediction for hV is especially interesting since hV is related by an isospin
rotation to the amplitude for π0 → γ γ (cf. Prob. VII–2). As we will show in
Sect. VII–6, this is absolutely predicted from the axial anomaly. The presence of
Lr10 implies that one of the above measurements must be used to determine it. We
use the precisely known value for hA/hV to yield

Lr10(μ = mρ) = −(5.6± 0.2)× 10−3 . (3.28)

The results are compared with experiment in Table VII–3.
We see that, with one exception, the chiral predictions are in agreement with

experiment. That exception, the electric polarizability in γπ+ → γπ+, comes
from two difficult experiments. One uses a pion beam on a heavy Z atom
[An et al. 85] and the coulomb exchange in π+A → γπ+A is used to pro-
vide the extra photon (this is called the Primakoff effect). The tree diagram must
be carefully subtracted off. The second experiment involves the use of a high-
energy photon beam and the p(γ, γ π+)n reaction and extrapolation to the virtual
pion pole [Ah et al. 05]. In this case there exist a large number of background
processes which must be subtracted. We note however that a recent experiment
[Fr 12] using the Primakoff effect, not yet included in the averages above, obtains
αE −βM = 3.8± 1.4± 1.6. Before being concerned with the possible discrepancy
with the chiral prediction, it would be preferable to have the experimental situation
clarified. We have also listed the known results on kaonic processes predicted by
the same constants. The analyses for γ → K+K− and K → e+νeγ are identical
to the above results.
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Pion–pion scattering

The elastic scattering of two Goldstone bosons is the purest manifestation of the
chiral effective field theory of QCD. It is a classic topic with a long history. We use
it here as an example of the convergence of the perturbative effective field theory
expansion.

The scattering of pions can be classified as S-wave, P -wave, D-wave, etc., with
low partial waves dominating at low-energy. The amplitudes also can be decom-
posed in overall isospin, I = 0, 1, 2. Because the pions are spinless bosons, Bose
symmetry requires that the even partial waves carry I = 0, 2 and odd angular
momentum requires I = 1. At low energies, the partial wave amplitude can be
expanded in terms of a scattering length aI
 and slope bI
 , defined by

Re T I
 =
(
q2

m2
π

)
 (
aI
 + bI


q2

m2
π

+ · · ·
)
, (3.29)

where q2 ≡ (s − 4m2
π

)
/4. Since the chiral expansion is similarly a power series

in the energy, aI
 and bI
 provide a useful set of quantities to study. In practice,
they are extracted from data by using dispersion relations and crossing symmetry
to extrapolate some of the higher-energy data down to threshold. The only accurate
very low-energy data are those from K → ππeν̄e. The experimental values are
given in Table VII–4.

At lowest order in the energy expansion, the amplitude for ππ scattering
[We 66] can be obtained from L2 with the result

A(s, t, u) = s −m2
π

F 2
π

. (3.30)

Table VII–4. The pion scattering lengths and slopes.

Experimental Lowest ordera First two ordersa

a0
0 0.220± 0.005 0.16 0.20

b0
0 0.25± 0.03 0.18 0.26

a2
0 −0.044± 0.001 −0.045 −0.041

b2
2 −0.082± 0.008 −0.089 −0.070

a1
1 0.038± 0.002 0.030 0.036

b1
1 — 0 0.043

a0
2 (17± 3)× 10−4 0 20× 10−4

a2
2 (1.3± 3)× 10−4 0 3.5× 10−4

aPredictions of chiral symmetry.
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This produces the scattering lengths and slopes

a0
0 =

7m2
π

32πF 2
π

, a2
0 = −

m2
π

16πF 2
π

, a1
1 =

m2
π

24πF 2
π

,

b0
0 =

m2
π

4πF 2
π

, b2
0 = −

m2
π

8πF 2
π

, (3.31)

with the numerical values shown in the table. It is remarkable that the lowest-
energy form of a scattering process may be determined entirely from symmetry
considerations. At next order in the expansion, one considers loop diagrams and
the E4 lagrangian. The convergence towards the experimental values can be seen
in the table. Also shown are the best theoretical results which combine dispersive
constraints with chiral perturbation theory [CoGL 01].

The nature of the chiral expansion also becomes evident within this process.
The lowest-order predictions are real and grow monotonically. As such, they must
eventually violate the unitarity constraint at some point. The worst case is the I =

 = 0 amplitude

T 0
0 =

1

32πF 2
π

(2s −m2
π), (3.32)

which violates the simplest consequence of unitarity,

s − 4m2
π

s

∣∣T I
 ∣∣2 < 1, (3.33)

below
√
s = 700 MeV. In addition, there are no imaginary terms, which must be

present due to the unitarity constraint,

Im T I
 =
(
s − 4m2

π

s

)1/2 ∣∣T I
 ∣∣2 . (3.34)

These drawbacks are remedied order by order in the energy expansion. Note that
since

∣∣T I
 ∣∣ starts at order E2, Im T I
 starts at order E4. When one works to order
E4, loop diagrams generate an imaginary piece given by Eq. (3.34) with the lowest-
order predictions for T I
 inserted on the right-hand side. This process proceeds
order by order in the energy expansion.

We have displayed in Table VII–4 how the O(E4) predictions modify the scatter-
ing lengths. Aside from the renormalization of mπ and Fπ , the corrections depend
only on the low-energy constants

(
2Lr1 + Lr3

)
and Lr2. Let us also give a pictorial

representation of the result. One may see the order E4 improvement and the nature
of the chiral expansion by considering the I = 1, 
 = 1 channel, where some of
the higher-energy data are shown in Fig. VII–4. The resonance structure visible is
the ρ(770). The chiral prediction is
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Fig. VII–4 Scattering in the I = 1, 
 = 1 channel.

T 1
1 =

s − 4m2

96π2F 2

[
1+ 4

(
L
(2)r
2 − 2L(2)r1 − L(2)r3

) s

F 2

]
, (3.35)

with loops having a negligible effect. The lowest-order result is given by the dashed
line. It clearly does not reflect the presence of the ρ(770) resonance. The solid line
represents the result at order E4 and starts to reproduce the low-energy tail of the
ρ(770). It is, of course, impossible to represent a full Breit–Wigner shape by two
terms in an energy expansion; all orders are required. The chiral predictions at
O(E4) may reproduce the first two terms, with the resulting expansion being in
powers of q2/m2

ρ .

VII–4 The physics behind the QCD chiral lagrangian

For the most part, we have been using chiral lagrangians as our primary tool for
making predictions based on the symmetry structure of QCD. In this section, we
pause to examine which features of QCD are important in determining the structure
of chiral lagrangians. The general strategy can perhaps be appreciated by a com-
parison of low-energy and high-energy QCD methodology. At high energies, due
to the asymptotic freedom of QCD, hard scattering processes can be calculated in
a power-series expansion in the strong coupling constant. However, some depen-
dence on ‘soft’ physics remains in the form of structure functions, fragmentation
functions, etc. These are not calculable perturbatively and must be determined phe-
nomenologically from the data. At high energy, then, the predictions of QCD are
relations among amplitudes parameterized in terms of various phenomenological
structure functions and the strong coupling constant. At very low energies, because
of the symmetries of QCD, low-energy scatterings and decays can be calculated
in a power series expansion in the energy. However, some dependence on ‘harder’
physics remains in the form of the constants {Lri }. These are not calculable from
the symmetry structure and must be determined phenomenologically from the data.
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At low energy, then, the predictions of QCD take the form of relations among
amplitudes whose structure is based on symmetry constraints but which are para-
meterized in terms of empirical constants. Nevertheless, QCD should in princi-
ple also predict the very structure functions and low-energy constants which are
employed by these techniques. The trouble at present is that we do not have tech-
niques of comparable rigor with which to calculate these quantities. Nevertheless,
by using models plus phenomenological insight we can learn a bit about the physics
which leads to the chiral lagrangian.

The low-energy constants Fπ and mπ which occur at order E2 do not reveal
much about the structure of the theory. All theories with a slightly broken chi-
ral SU(2) symmetry will have an identical structure at order E2. The pion decay
constant Fπ will be sensitive to the mass scale of the underlying theory, while the
pion mass mπ will be determined by the amount of symmetry breaking. However,
approached phenomenologically, these are basically free parameters and do not
differentiate between competing theories.

The situation is different at order E4. Here, the chiral lagrangian contains many
terms, and the pattern of coefficients is a signature of the underlying theory. The
linear sigma model without fermions provides us with an example of how one can
compare a theory with the real world. In Sects. IV–2,4 we calculated the tree-level
terms in L4 which would be present in the linear sigma model, and obtained a result
expressible as

2L1 + L3 = 2L4 + L5 = 8L6 + 4L8 = F 2
π

4m2
S

= 1

8λ
, L2,7,9,10 = 0. (4.1)

This pattern is quite different from the structure obtained phenomenologically.
It appears that the linear sigma model is not a good representation of the real
world.

Unfortunately, it is harder to theoretically infer the {Li} directly from QCD.
However, a look at phenomenology indicates that we should consider the effects
of vector mesons, in particular the ρ(770). This is the most clear in the pion form
factor that shows a dramatic ρ resonance in the timelike region. Indeed, the whole
form factor can be well understood in a simple model as being a Breit–Wigner
shape due to the ρ resonance

Gπ(q
2) = − m2

ρ

q2 −m2
ρ + imρ�ρ(q)θ(q2 − 4m2

π)
, (4.2)

where the normalization is chosen to enforce the condition Gπ(0) = 1. This
works even in the timelike region. Comparison with the chiral lagrangian approach
implies that this model would predict
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L9 = F 2
π

2m2
ρ

= 7.2× 10−3, (4.3)

in good agreement with the value obtained earlier, L9 = (7.0± 0.2)× 10−3.
This analysis can be extended to L10. This enters into theW+π+γ vertex, which

occurs in π+ → e+νeγ . Here, both vector and axial-vector mesons can generate
corrections to the basic couplings. Explicit calculation yields [EcGPR 89]

L10 =
F 2
a1

4m2
a1

− F 2
ρ

4m2
ρ

= −5.8× 10−3. (4.4)

Here, a1 refers to the lightest axial-vector meson a1(1260) (cf. Sect. V–3), and
Fa1 and Fρ are the couplings of a1 and ρ to the W+ and the photons respectively.
Again, the result is close to the empirical value cited in Table VII–1, viz. Lr10 =
(−5.6± 0.2)× 10−3.

The phenomenological low-energy constants are scale-dependent, and their
analysis includes loop effects, while those in Eqs. (4.3), (4.4) are constants, to be
used at tree level. Nevertheless, there is some sense in comparing them. The effect
of loops in processes involving L9, L10 is small, and the scale dependence only
makes a minor change, Lr9(μ = 300 MeV) = 7.7 × 10−3 vs. Lr9(μ = 1 GeV) =
6.5 × 10−3. Presumably the appropriate scale is near μ = mρ(770). The ρ(770)
provides a much more important effect here than any other input.

Finally, it also turns out that the use of vector meson exchange leads to a good
description of ππ scattering [DoRV 89, EcGPR 89]. This is not too surprising in
light of the need for the chiral lagrangians to reproduce the tail of the ρ(770), as
described in Sect. VII–3. As a consequence of crossing symmetry, the ρ(770)must
also influence the other scattering channels. To a large extent, the chiral coefficients
L1, L2, L3 are dominated by the effect of ρ(770) exchange. We see from these
examples that phenomenology indicates that the exchange of light vector particles
is the most important physics effect behind the chiral coefficients which we have
been discussing.

The idea that vector mesons play an important dynamical role is not new. It pre-
dates the Standard Model, originating with Sakurai [Sa 69], in a form called vector
dominance. The vector dominance idea has never been derived from the Standard
Model, but nevertheless enjoys considerable phenomenological support. Put most
broadly, vector dominance states that the main dynamical effect at energies less
than about 1 GeV is associated with the exchange of vector mesons. The use of a
chiral lagrangian with parameters described by ρ-exchange is compatible with this
idea and puts it on a firmer footing. These considerations suggest that for chiral
lagrangians the prime ingredient of QCD is the spectrum of the theory. The lin-
ear sigma model has a quite different spectrum, with a light scalar and no ρ, and
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hence does not agree with the data. QCD, however, seems to predict that devia-
tions from the lowest-order chiral relation must be in such a form as to reproduce
the low-energy tails of the light resonances, in particular the ρ. At present, we
cannot rigorously prove this connection. However, it remains a useful picture in
estimating various effects of chiral lagrangians.

VII–5 The Wess–Zumino–Witten anomaly action

At this stage one must also include the effect of the axial anomaly. The anomaly
influences not only processes involving photons, such as π0 → γ γ , but also purely
hadronic processes. For example the reaction KK̄ → π+π−π0, allowed by QCD,
is not present in any of the chiral lagrangians appearing in previous sections. Its
absence is easy to understand because the hadronic part of the lagrangian, with
external fields set equal to zero, has the discrete symmetry ϕi → −ϕi (i.e. U ↔
U †) which forbids the transition of an even number of mesons to an odd number.
However this is not a symmetry of QCD. More importantly, there are a set of low-
energy relations, the Wess–Zumino consistency conditions [WeZ 71], which must
be satisfied in the presence of the anomaly and which involve hadronic reactions.
The effect of the anomaly was first analyzed by Wess and Zumino who noted that
the result could not be expressed as a single local effective lagrangian, and gave
a Taylor expansion representation for it.6 Witten [Wi 83a] subsequently gave an
elegant representation of the Wess–Zumino contribution as an integral over a five-
dimensional space whose boundary is physical four-dimensional spacetime.

Since the considerations leading to the Wess–Zumino–Witten action can be
rather formal, it is best to adopt a direct calculational approach. Fortunately, we
are able to employ the familiar sigma model (with fermions) because it contains
the same anomaly structure as QCD. That is, it is the presence of fermions having
the same quantum numbers as quarks which ensures that the anomaly will occur.
The absence of gluons in the sigma model is not a problem since, according to the
Adler–Bardeen theorem [AdB 69], the inclusion of gluons would not modify the
result. Since the sigma model involves coupling between mesons and fermions,
we can also observe directly the influence of the anomaly on the Goldstone bosons.
Although somewhat technically difficult, our approach will clearly illustrate the
connection with treatments of the anomaly based on perturbative calculations.

Consider as a starting point the lagrangian, Eq. (IV–1.11), of the linear sigma
model

L = ψ̄i/∂ψ − gv (ψ̄LUψR + ψ̄RU †ψL
)+ · · · . (5.1)

6 For a textbook treatment, see [Ge 84].
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We have displayed neither the term containing Tr (∂μU∂μU †) nor any term con-
taining the scalar field S. Such contributions are not essential to our study of the
anomaly and will be dropped hereafter. In order to simulate the light quarks of
QCD, we shall endow each fermion with a color quantum number (letting the num-
ber Nc of colors be arbitrary) and assume there are three fermion flavors, each of
constituent mass M = gv. Although the original linear sigma model has a flavor-
SU(2) chiral symmetry, Eq. (5.1) is equally well defined for flavor SU(3).

Our analysis begins by imposing on Eq. (5.1) the change of variable

ψ ′′L ≡ ξ †ψL, ψ ′′R ≡ ξψR , ξξ = U, (5.2)

like that described in App. B–4. This yields

L = ψ̄ ′′(i /D −M)ψ ′′, Dμ ≡ ∂μ + iV μ + iAμγ5,

V μ = − i
2

(
ξ †∂μξ + ξ∂μξ †

)
, Aμ = − i

2

(
ξ †∂μξ − ξ∂μξ †

)
. (5.3)

For this change of variable the jacobian is not unity, and thus we must write the
effective action as

ei�(U) =
∫
[dψ][dψ̄] ei

∫
d4x
(
ψ̄i /∂ψ−M(ψ̄LUψR+ψ̄RU†ψL)

)

=
∫
[dψ ′′ ][dψ̄ ′′ ]J ei

∫
d4x ψ̄ ′′(iD/−M)ψ ′′

= elnJ e tr ln(iD/−M). (5.4)

For large M , it can be shown that the tr ln(i /D −M) factor does not produce any
terms at order E4 that contain the εμναβ dependence characteristic of the anomaly.7

Hence, the effect of the anomaly must lie in the jacobian J , and it is this we must
calculate.

It is possible to determine the jacobian by integrating a sequence of infinitesimal
transformations. Thus we introduce the extension ξ → ξτ ,

ξτ ≡ e
i
τ �λ·�ϕ
2Fπ ≡ exp iτϕ, (5.5)

where τ is a continuous parameter and ξ = ξτ=1. Transformations induced by the
infinitesimal parameter δτ will give rise to the infinitesimal quantities ξδτ and δJ ,

7 This can be verified by expanding as

tr ln(i /D −M) = tr ln(−M(1− i /D/M)) = tr ln(−M)− tr (i /D)2/2M2 + · · · .

The first term can be regularized as in the text and directly calculated using the techniques described in
App. B. The remaining terms vanish for large M .
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ψ = ψL + ψR → ψ ′ =
[
ξ

†
δτ

1+ γ5

2
+ ξδτ 1− γ5

2

]
ψ,∫

[dψ][dψ̄] =
∫
[dψ ′][dψ̄ ′] eln δJ . (5.6)

From Eqs. (III–3.44), (III–3.47), we find δJ to be

δJ = e−2iδτ tr (ϕγ5), (5.7)

or

d lnJ
dτ

∣∣∣∣
τ=0

= −2i tr (ϕ γ5) . (5.8)

This result should be familiar from our discussion of the axial anomaly in
Sect. III–3. There remain two steps, first to calculate the regularized representa-
tion of tr (ϕ γ5), and then to integrate with respect to τ .

To regularize the trace, we employ the limiting procedure

tr (ϕγ5) = lim
ε→0

tr (ϕγ5 exp [−ε /Dτ /Dτ ]) (Dμ
τ ≡ ∂μ + iV μ

τ + iAμτ γ5), (5.9)

with A
μ

τ and V
μ

τ as in Eq. (5.3), except now constructed from ξτ and ξ †
τ . For

arbitrary τ , we make use of the identities

V
μν

τ = ∂μV
ν

τ − ∂νV μ

τ + i
[
V
μ

τ , V
ν

τ

]
+ i
[
A
μ

τ ,A
ν

τ

]
= 0,

A
μν

τ = ∂μA
ν

τ − ∂νAμτ + i
[
V
μ

τ , A
ν

τ

]
+ i
[
A
μ

τ , V
ν

τ

]
= 0, (5.10)

to express /Dτ /Dτ in the form

/Dτ /Dτ = dμd
μ + σ,

dμ = ∂μ + iV τμ + σμνAντγ5 = ∂μ + �τμ,
σ = −2AτμA

μ

τ + i
[(
∂μ + iV τμ

)
, A

μ

τ

]
γ5. (5.11)

From the heat-kernel expansion of App. B, we have8

tr (ϕγ5) ≡ lim
ε→0

i

∫
d4x Tr

(
ϕγ5

(4πε)2
∑
n

εnan

)

= i

16π2
lim
ε→0

∫
d4x Tr

(
ϕγ5

[a1

ε
+ a2 + · · ·

])
. (5.12)

Carrying out the ‘Tr’ operation, which involves some application of Dirac algebra,
yields

8 Note the distinction between ‘tr’ and ‘Tr’, as in Eq. (III–3.48).
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Tr (γ5ϕa2) = 2iNc Tr

(
8

3
εμναβϕA

μ

τ A
ν

τA
α

τ A
β

τ

)
+ · · · , (5.13)

where the ellipses denote contributions not involving εμναβ and the factorNc comes
from the sum over each fermion color. Combining the above ingredients, we have
for the regulated action

� (ϕ) = −i lnJ + · · ·
= Nc

4π2

∫ 1

0
dτ

∫
d4x Tr

(
8ϕ

3
εμναβA

μ

τ A
ν

τA
α

τ A
β

τ

)
+ · · · , (5.14)

where we recall that ϕ ≡ �λ · �ϕ/(2Fπ). This result expresses the effect of the
anomaly on the Goldstone bosons.

Unfortunately, there is no simple way to integrate the entire expression of
Eq. (5.14) in closed form. In principle, we could represent each of the axial-vector
currents therein (e.g. A

μ

τ ) as a Taylor series expanded about τ = 0 and perform the
integrations to obtain a series of local lagrangians. Alternatively, however, one can
simply express Eq. (5.14) as an integral over a five-dimensional space provided we
identify τ with a fifth-coordinate x5 (defined to be timelike). In this case, we use

ξτA
μ
τ ξ

†
τ = −

i

2
Uτ∂

μU †
τ ≡ −

i

2
Lμ,

ϕ = 1

2
Uτ

∂

∂τ
U †
τ ≡

i

2
L5, (5.15)

plus the cyclic property of the trace to write

�WZW(U) = iNc

240π2

∫
d5x εijklm tr

(
LiLjLkLlLm

)
, (5.16)

where i, . . . , m = 5, 0, 1, 2, 3 with ε50123 = +1. This is Witten’s form for the
Wess–Zumino anomaly function. The τ = 1 boundary is our physical space-
time, and the fifth coordinate is just an integration variable. Since each term in the
Taylor expansion can be integrated, the result depends only on the remaining four
spacetime variables. Observe that �WZW(U) vanishes for U in SU(2) due to the
properties of Pauli matrices. For chiral SU(3), the process K+K− → π+π−π0 is
the simplest one described by this action and after expanding �WZW , it is given by
the lagrangian,

L = Nc

240π2F 5
π

εμναβ Tr (ϕ∂μϕ∂νϕ∂αϕ∂βϕ), (5.17)

with ϕ ≡ λ · ϕ.
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The above discussion has concerned the impact of the anomaly on the Goldstone
modes. We must also determine its proper form in the presence of photons or W±

fields. For this purpose, we can obtain the maximal information by generalizing the
fermion couplings to include arbitrary left-handed or right-handed currents 
μ, rμ,

L = ψ̄i /Dψ −M (ψ̄LUψR + ψ̄RU †ψL
)
,

Dμ = ∂μ + i
μ 1+ γ5

2
+ irμ 1− γ5

2
. (5.18)

The calculation of the jacobian then involves the operator

Dμ = ∂μ + i
μ 1+ γ5

2
+ irμ 1− γ5

2
,


μ = ξ †
τ 
μξτ − iξ †

τ ∂μξτ , rμ = ξτ rμξ
†
τ − iξτ ∂μξ †

τ , (5.19)

which generalizes Eq. (5.3). It is somewhat painful to work out the full answer
directly, but fortunately we may invoke Bardeen’s result of Eq. (III–3.64) for the
general anomaly. Using the identities


μν = ξ †
τ 
μνξτ ,

rμν = ξτ rμνξ
†
τ ,

vμν = ξ †
τ 
μνξτ + ξτ rμνξ †

τ ,

aμ =
(

μ − rμ

)
/2,

(5.20)

where 
μν, rμν are given in Eq. (III–3.65), we obtain

�WZW = − Nc

4π2

∫ 1

0
dτ

∫
d4x εμναβ Tr

[
ϕ

(
−8

3
aμaνaαaβ

+ 1

12
(
μν
αβ + rμνrαβ)+ 1

24
(
μνrαβ + rμν
αβ)

− 2i

3
(aμaνvαβ + aμvναaβ + vμνaαaβ)

)]
. (5.21)

Note that the first term corresponds to our previous calculation of Eq. (5.14).
The WZW anomaly action contains the full influence of the anomalous low energy
couplings of mesons to themselves and to gauge fields. By construction, it is gauge
invariant. The τ integration can be explicitly performed for all terms but the first in
Eq. (5.21). However, in the general nonabelian case the result is extremely lengthy
[PaR 85]. For the simpler but still interesting example of coupling to a photon field
Aμ, the result is
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�WZW
(
U,Aμ

) = �WZW(U)

+ Nc

48π2
εμναβ

∫
d4x

[
eAμ Tr

(
Q
(
RνRαRβ + LνLαLβ

))
− ie2FμνAα Tr

(
Q2
(
Lβ + Rβ

)+ 1

2

(
QU †QURβ +QU QU †Lβ

))]
,

(5.22)

where Rμ ≡ (∂μU
†)U , Lμ ≡ U∂μU

†.9

We have seen here that whereas the anomalous divergence of the axial cur-
rent represents the response to an infinitesimal anomaly transformation, the WZW
lagrangian represents the integration of a series of infinitesimal transformations. In
our analysis of the sigma model, the anomaly has forced the occurrence of certain
couplings, among them π0 → γ γ , γ → 3π and KK̄ → 3π . As noted earlier,
although these results are based on an instructional model, the result has the same
anomaly structure as QCD because the answer must depend on symmetry proper-
ties alone. Indeed, such conclusions were originally deduced from anomalous Ward
identities [WeZ 71] without any reference to an underlying model. We regard such
predictions as among the most profound consequences of the Standard Model.

VII–6 The axial anomaly and π0 → γ γ

The description of pions and photons presented thus far does not include the decay
π0 → γ γ . This process is important in QCD, because to understand it one must
include the anomaly in the axial current. The π0 → γ γ amplitude has the general
structure

Mπ0→γ γ = −iAγγ εμναβε∗μkνε′∗α k′β, (6.1)

as required by Lorentz invariance, parity conservation, and gauge invariance, and
leads to the decay rate

�π0→γ γ =
m3
π0

64π

∣∣Aγγ ∣∣2 . (6.2)

From the experimental value, � = 7.74± 0.37 eV, we find

Aγγ = 0.0252± 0.0006 GeV−1.

We can obtain the lagrangian for π0 → γ γ from the WZW action of the previ-
ous section, restricting the chiral matrices to SU(2).

9 Witten’s original result did not conserve parity, and this was subsequently corrected [PaR 85, KaRS 84].
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LA = Nc

48π2
εμναβ

[
eAμ Tr

(
QLνLαLβ +QRνRαRβ

)− ie2FμνAαTβ
]
, (6.3)

with

Lμ ≡ U∂μ U
†, Rμ ≡ ∂μU

† U,

Tβ = Tr

(
Q2Lβ +Q2Rβ + 1

2
QUQU †Lβ + 1

2
QU †QURβ

)
, (6.4)

where Aα is the photon field, Fμν is the photon field strength, and Nc = 3 is the
number of colors. A crucial aspect of this expression is that it has a known coeffi-
cient. In this respect, it is unlike other terms in the effective lagrangian, which have
free parameters that need to be determined phenomenologically. This is because it
is a prediction of the anomaly structure of QCD. A corollary of this is that LA must
not be renormalized by radiative corrections. This was proven at the quark–gluon
level by Adler and Bardeen [AdB 69].

The π0 → γ γ amplitude is found by expanding LA to first order in the pion
field, yielding

LA = e2Nc

48π2Fπ
3 Tr

(
Q2τ3

)
εμναβFμνAα∂βπ

0 = αNc

24πFπ
εμναβFμνFαβπ

0, (6.5)

where we have integrated by parts in the second line. This produces a π0 → γ γ

matrix element of the form

Aγγ = αNc

3πFπ
−→
Nc=3

0.0251 GeV−1, (6.6)

in excellent agreement with the experimental value. This is widely recognized as
an important test of QCD, both as a measurement of the number of colors and also
as a reflection of the symmetries and anomalies of the theory. It is a remarkable
result.

What would have happened if the axial anomaly were not present? The decay
π0 → γ γ could still occur, but it would be suppressed. The π0 → γ γ transition
must be at least of order E4, as it must involve the dimension-four operator FF̃ .
The anomaly occurs at this order. However, non-anomalous lagrangians leading
to this transition can be constructed at order E6. This result was first derived by
Sutherland and Veltman using a soft-pion technique [Su 67, Ve 67].

At what level would we expect corrections to the anomaly prediction for π0 →
γ γ ? It has been checked that m2

π lnm2
π corrections, which in principle can occur

when meson loops are present, do not in fact modify the lowest-order result when
it is expressed in terms of the physical decay constant Fπ . However, there are still
corrections of order m2

π/
2, where  is the scale in the energy expansion, which

amount to modifications of order 2% [GoBH 02].
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Problems

(1) Radiative corrections and π�2 decay
To bring �π→eνe/�π→μνμ into agreement with experiment requires a radiative
correction whose dominant contribution is the so-called seagull component
(
√

2Fπgμν) of Mμν (cf. Eq. (3.22)).
(a) Verify that gauge invariance requires

iqμMμν(p, q) = 〈0|A1−i2
ν |π+(p)〉,

and show that the seagull term is required in this regard to cancel the pion
pole contribution.

(b) Use the seagull term in Feynman gauge to calculate the radiative correction
to π
2 decay. Introduce a photon cut-off via

1

k2
→ 1

k2

−2

k2 −2

so that

Mrad = ie2GF√
2
Vud

∫
d4k

(2π)4
1

k2

−2

k2 −2

√
2Fπg

μλ

× ū(pν)γλ(1+ γ5)
1

−/pe + /k −me

γμv(pe),

and show that

M(0) →M(0)

(
1− 3α

2π
ln


m


)
,

where

M(0) = i
GF√

2
Vud

√
2Fπpλū(pν)γλ(1+ γ5)v(pe)

= −i GF√
2
Vud

√
2Fπm
ū(pν)(1− γ5)v(pe)

is the lowest order amplitude for the π
2 process. This then is the origin of
the lepton-mass-dependent radiative correction.

(2) Radiative pion decay and the anomaly
Writing the π0 decay amplitude as

Mπ0→γ γ = −ie2ε
μ∗
1 εν∗2

∫
d4xeiq1·x〈0|T (V em

μ (x)V em
ν (0))|π0(p)〉

≡ −iεμ∗1 εν∗2 εμναβq
α
1 p

βAγγ ,
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and the vector current amplitude in radiative π+ decay as

M(V )

π+→
+ν
γ = −ieε
μ∗
1

∫
d4xeiq1·x〈0|T (V em

μ (x)V 1−i2
ν (0))|π+(p)〉

≡ −ieεμ∗1 εν2εμναβq
α
1 p

βhV ,

demonstrate that isotopic spin invariance requires
√

2hV = Aγγ .
(3) Unitarity and the pion form factor

(a) Verify that the pion form factor given in Eq. (3.13) obeys the strictures of
unitarity, i.e.,

2 Im Gπ(q
2)(p1 − p2)μ =

∫
d3q1d

3q2

(2π)62q0
1 2q0

2

× (2π)4δ4(p1 + p2 − q1 − q2)(q1 − q2)μ〈π+(q1)π
−(q2)|π+(p1)π

−(22)〉
where the matrix element is the two-derivative (tree-level) pion–pion scat-
tering amplitude given in Eq. (3.4).

(b) How does this result change if the K+K− intermediate state is added to
π+π−?

(4) Other worlds
Describe changes in the macroscopic world if the quark masses were slightly
different in the following ways:
(a) mu = md = 0,
(b) mu > md ,
(c) mu = 0, md = ms .
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Weak interactions of kaons

The kaon is the lightest hadron having a nonzero strangeness quantum number. It
is unstable and decays weakly into states with zero strangeness, containing pions,
photons, and/or leptons. We shall consider decays in the leptonic, semileptonic,
and hadronic sectors to illustrate aspects of both weak and strong interactions.

VIII–1 Leptonic and semileptonic processes

Leptonic decay

The simplest weak decay of the charged kaon, denoted by the symbol K
2, is into
purely leptonic channels K+ → μ+νμ, K+ → e+νe. Such decays are character-
ized by the constant FK ,

〈0 ∣∣s̄γμγ5u
∣∣K+(k)〉 = i

√
2FKkμ. (1.1)

As discussed previously, because of SU(3) breaking FK is about 20% larger than
the corresponding pion decay constant Fπ . As with the pion, but even more so
because of the larger kaon mass, helicity arguments require strong suppression of
the electron mode relative to that of the muon. The ratio of e+νe to μ+νμ decay
rates, as in pion decay, provides a test of lepton universality [RPP 12],

�∗
K+→e+νe

�K+→μ+νμ

∣∣∣∣
expt

= (2.488± 0.012)× 10−5, (1.2)

in good agreement with the suppression predicted theoretically [CiR 07],

�′
K+→e+νe

�K+→μ+νμ
= m2

e

m2
μ

[
1−m2

e/m
2
K

1−m2
μ/m

2
K

]2

(1+ δ) = (2.477± 0.001)× 10−5, (1.3)

237
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where δ = −0.04 is the electromagnetic radiative correction including the
bremsstrahlung component.1 The notation �′ indicates that the experimenters have
subtracted off the large structure-dependent components of K+ → 
+ν
γ but
have included the small bremsstrahlung component.

Kaon beta decay and Vus

The kaon beta decay reactions K+ → π0
+ν
 and K0 → π−
+ν
, called K+

3

and K0

3 respectively, also are important in Standard Model physics. They are each

parameterized by two form factors,

〈π−(p) ∣∣s̄γμu∣∣K0(k)〉 = f K
0π−

+ (q2) (k + p)μ + f K0π−
− (q2) (k − p)μ ,

〈π0(p)
∣∣s̄γμu∣∣K+(k)〉 =

[
f K

+π0

+ (q2)√
2

(k + p)μ +
f K

+π0

− (q2)√
2

(k − p)μ
]
. (1.4)

Isospin invariance implies f K
0π−± = f K

+π0

± ≡ f±. SU(3) symmetry can be invoked
to relate these matrix elements to the strangeness-conserving transition π+ →
π0
+ν
, resulting in f+(0) = −1 and f−(0) = 0. The deviation of f+(0) from
unity is predicted to be second order in SU(3) symmetry breaking, i.e., of order(
ms − m̂

)2
. This result, the Ademollo–Gatto [AdG 64] theorem, is proved by con-

sidering the commutation of quark vector charges,[
Qūs,Qs̄u

] = Qūu−s̄s , (1.5)

where

Qīj ≡
∫
d3x q̄i(x)γ0q

j (x). (1.6)

Taking matrix elements and inserting a complete set of intermediate states
gives

1 =
∑
n

(∣∣〈n ∣∣Qs̄u
∣∣K0〉∣∣2 − ∣∣〈n ∣∣Qūs

∣∣K0〉∣∣2) . (1.7)

Finally, we isolate the single π− state from the sum and note that in the SU(3)
limit the charge operator can only connect the kaon to another state within the
same SU(3) multiplet. This implies2

〈n �= π−
∣∣Qūs

∣∣K0〉 = O(ε), (1.8)

1 The dominant term here is the simple contact contribution −3(α/π) ln(mμ/me) discussed in Sect. VII–1.
2 This is easiest to obtain in the limit pK →∞.
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where ε is a measure of SU(3) breaking, and we thus conclude that

1−
[
f K

0π−
+ (0)

]2 = O(ε2), (1.9)

which is the result we were seeking.
It is interesting that the SU(2) mass difference mu �= md can modify f K

+π0

+ (0)
in first order despite the Ademollo–Gatto theorem. This can be seen by consid-
ering a K+ in the formulae of Eq. (1.7). Now there exist two intermediate states
in the same octet as the kaon, i.e. π0 and η0, and it is their sum which obeys the
Ademollo–Gatto theorem,

1

4

∣∣∣f K+π0

+ (0)
∣∣∣2 + 3

4

∣∣∣f K+η0

+ (0)
∣∣∣2 = 1+O(ε2). (1.10)

In the isospin limit, each term must separately obey the theorem because of the
isospin relation f K

+π0

+ = f K
0π−+ . However, when mu �= md each form factor in

Eq. (1.10) can separately deviate from unity to first order in mu − md as long
as the first order effect cancels in the sum. Indeed this is what happens, yielding
(cf. Prob. VIII.1)

f K
+π0

+ (0)

f K
0π−+ (0)

= 1+ 3

4

(
md −mu

ms − m̂
)
+ 
Kπ � 1.021, (1.11)

where 
Kπ = 0.004 arises from chiral corrections at O(E4) [GaL 85b 85b]. This
number can also be easily extracted from experiment by using the ratio of K+ and
K0 beta decay rates, with the result [CiR 07],

f K
+π0

+ (0)

f K
0π−+ (0)

= 1.027± 0.004, (1.12)

in agreement with the prediction.
The prime importance of the K
3 process is that it provides the best determi-

nation of the weak mixing element Vus. Because of the Ademollo-Gatto theorem,
the reaction is protected from large symmetry breaking corrections. In addition,
the use of chiral perturbation theory allows a reliable treatment of the reaction. The
above study of the form factors indicates that the theory is under control within the
limits of experimental precision. The value [LeR 84]

Vus = 0.2253± 0.0013 (1.13)

follows from an analysis of the K0 and K+ decay rates.
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VIII–2 The nonleptonic weak interaction

For leptonic and semileptonic processes, at most one hadronic current is involved.
There exist also nonleptonic interactions, in which two hadronic charged weak
currents are coupled by the exchange of W± gauge bosons,

Hnl = g2
2

8

∫
d4x D

μν

F (x,MW)T
(
J †had
μ (x/2) J had

ν (−x/2)) ,
J had
μ = (ū c̄ t̄)Vγμ (1+ γ5)

⎛⎜⎝ds
b

⎞⎟⎠ , (2.1)

with V being the CKM matrix, given in Eq. (II–4.17). Such interactions are diffi-
cult to analyze theoretically because the product of two hadronic currents is a com-
plicated operator. If one imagines inserting a complete set of intermediate states
between the currents, all states from zero energy to MW are important, and the
product is singular at short distances. Thus, one needs to have theoretical control
over the physics of low-, intermediate-, and high-energy scales in order to make
reliable predictions. Because this is not the case at present, our predictive power is
substantially limited.

Let us first consider the particular case of �S = 1 nonleptonic decays. These
are governed by the products of currents

d̄�μu ū�μs, d̄�μc c̄�μs, d̄�μt t̄�μs, (2.2)

where �μ ≡ γμ(1 + γ5) and color labels are suppressed. The first of these would
naively be expected to be the most important, because kaons and pions predomi-
nantly contain u, d, s quarks. However, the others also contribute through virtual
effects. Some properties of the �S = 1 nonleptonic interactions can be read off
from these currents. The first product contains two flavor-SU(3) octet currents, one
carrying I = 1/2 and one carrying I = 1,

SU(3) : (8⊗ 8)symm = 8⊕ 27, (2.3a)

isospin : 1⊗ 1
2
= 1

2
⊕ 3

2
, (2.3b)

where the symmetric product is taken because the two currents are members of the
same octet. The singlet SU(3) representation is excluded from Eq. (2.3a) because a
�S = 1 interaction changes the SU(3) quantum numbers and hence cannot be an
SU(3) singlet. The other two products in Eq. (2.2) are purely SU(3) octet and
isospin one-half operators. The currents are also purely left-handed. Thus, the non-
leptonic hamiltonian transforms under separate left-handed and right-handed chiral
rotations as (8L, 1R) and (27L, 1R). These symmetry properties, valid regardless of
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the dynamical difficulties occurring in nonleptonic decay, allow one to write down
effective chiral lagrangians for the nonleptonic kaon decays. The hamiltonian is a
Lorentz scalar, charge neutral, �S = 1 operator, and has the above specified chiral
properties.

At order E2, there exist two possible effective lagrangians for the octet part, viz.,
Loctet = L8 + L8, where in the notation of Sect. IV–6,

L8 = g8 Tr
(
λ6DμUD

μU †
)
, L8 = ḡ8 Tr

(
λ6χU

†
)+ h.c. (2.4)

It can easily be checked that both L8 and L8 are singlets under right-handed trans-
formations, but transform as members of an octet for the left-handed transforma-
tions. The barred lagrangian in Eq. (2.4) can in fact be removed, so that it does not
contribute to physical processes. This is seen in two ways. At the simplest level,
direct calculation of K → 2π and K → 3π amplitudes using L8, including all
diagrams, yields a vanishing contribution. Alternatively, this can be understood by
noting that in QCD the quantity χ appearing in Eq. (2.4) is proportional to the
quark mass matrix, χ = 2B0mq . Thus, the effect of L8 is equivalent to a modifica-
tion of the mass matrix,

mq → m′q = mq + ḡ8λ6mq. (2.5)

This new mass matrix can be diagonalized by a chiral rotation

Tr
(
m′qU

)→ Tr
(
Rm′qLU

) ≡ Tr (mDU) , (2.6)

with mD diagonal. The transformed theory clearly has conserved quantum num-
bers, as it is flavor diagonal. This means that the original theory also has conserved
quantum numbers, one of which can be called strangeness. When particles are
mass eigenstates, even in the presence of L8, the kaon state does not decay. Hence,
this L8 can be discarded from considerations, leaving only L8 as responsible for
octet K decays [Cr 67]. This octet operator is necessarily �I = 1/2 in character.
Another allowed operator, transforming as (27L, 1R), contains both �I = 1/2 and
�I = 3/2 portions,

L27 = L(1/2)27 + L(3/2)27 , (2.7)

where

L(1/2)27 = g
(1/2)
27 C

1/2
ab Tr

(
λa∂μU U †λb∂μU U †

)+ h.c., (2.8a)

L(3/2)27 = g
(3/2)
27 C

3/2
ab Tr

(
λa∂μU U †λb∂μU U †

)+ h.c. (2.8b)
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The coefficients are given by

C
1/2
6+i7/2, 3 = 1, C

1/2
4+i5/2, 1−i2/2 = −

√
2, C

1/2
6+i7/2, 8 = −

3
√

3

2
,

C
3/2
6+i7/2, 3 = 1, C

3/2
4+i5/2, 1−i2/2 =

1√
2
. (2.9)

The complete classification at order E4 is difficult, but has been obtained
[KaMW 90]. We shall apply these lagrangians to the data in Sects. VIII–4, XII–6.
There we shall see that g8 
 gi27, whereas naive expectations would have octet
and 27-plet amplitudes being of comparable strength. This is part of the puzzle of
the �I = 1/2 rule. The reliable theoretical calculation of the nonleptonic decay
amplitudes, which is tantamount to predicting the quantities g8, g

(1/2)
27 and g(3/2)27 ,

is one of the difficult problems mentioned earlier. It has not yet been convincingly
accomplished. The best we can do is to describe the theoretical framework of the
short distance expansion, to which we now turn.

VIII–3 Matching to QCD at short distance

At short distances, the asymptotic freedom property of QCD allows a perturba-
tive treatment of the product of currents. The philosophy is to use perturbative
QCD to treat the strong interactions for energies MW ≥ E ≥ μ. The result is
an effective lagrangian which depends on the scale μ. Ultimately matrix elements
must be taken which include the strong interaction below energy scale μ and the
final result should be independent of μ. The subject provides a classic example of
the techniques of perturbative matching to effective lagrangians and the use of the
renormalization group.

Short-distance operator basis

As introduced in Sect. IV–7, the outcome of the short-distance calculation can be
expressed as an effective nonleptonic hamiltonian expanded in a set of local oper-
ators with scale-dependent coefficients (Wilson coefficients) [Wi 69],

H�S=1
nl = GF

2
√

2
V ∗udVus

∑
i

Ci(μ)Oi . (3.1)

As in any effective lagrangian, those operators of lowest dimension should be
dominant. If the operator Oi has dimension d, its Wilson coefficient obeys the
scaling property Ci ∼ M6−d

W . Let us first see how this hamiltonian is generated in
perturbation theory. We can later use the renormalization group to sum the
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(b) (c)

Q Q
G

W

W

W

GG

u,c,t

uus
s d

s dddu

u,c,t

(a)

Fig. VIII–1 QCD Radiative corrections to the �S = 1 nonleptonic hamiltonian.

leading logarithmic contributions. The lowest-order diagrams renormalizing the
current product appear in Fig. VIII–1.

The process in Fig. VIII–1(a) corresponds to a left-handed, gauge-invariant
operator of dimension 4,

O(d=4) = d̄ /D(1+ γ5)s. (3.2)

This operator can be removed from consideration by a redefinition of the quark
fields (cf. Prob. IV–1). The remaining operators are of dimension 6. Simple W
exchange with no gluonic corrections gives rise in the short-distance expansion to
the local operator

OA ≡ d̄γμ (1+ γ5) uūγ
μ (1+ γ5) s, (3.3)

with a coefficient CA = 2 in the normalization of Eq. (3.1). The gluonic correction
of Fig. VIII–1(b) generates an operator of the form

d̄γμ (1+ γ5) λ
au ūγ μ (1+ γ5) λ

as, (3.4)

where the {λa} are color SU(3) matrices. However, use of the Fierz rearrangement
property (see App. C) and the completeness property Eq. (II–2.8) of SU(3) matri-
ces allow this to be rewritten in color-singlet form

d̄γμ (1+ γ5) λ
au ūγ μ (1+ γ5) λ

as = −2

3
OA + 2OB,

where

OB ≡ ūγμ (1+ γ5) ud̄γ
μ (1+ γ5) s. (3.5)

The strong radiative correction is seen to generate a new operator OB .

Perturbative analysis

Consider now the one-loop renormalizations of the four-fermion interaction
Fig. VIII–1(b). In calculating Feynman diagrams we typically encounter integrals
such as (neglecting quark masses)
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I (μ) =
∫

d4k

(2π)4
1

k4

1

k2 −M2
W

= − i

16π2M2
W

ln
κ2

κ2 +M2
W

∣∣∣∣∞
μ

, (3.6)

where we evaluate the integral at the lower end using a scale μ. Clearly, MW

presents a natural cut-off in the sense that

I (μ) � −i
8π2M2

W

{
0 (μ ∼ MW),

lnμ/MW (μ� MW).
(3.7)

The modification of the matrix element to first order in QCD is then

OA → OA − g2
3

16π2
ln

(
M2
W

μ2

)
(3OB −OA) , (3.8)

where g3 is the quark–gluon coupling strength. The gluonic correction to OB must
also be examined, and a similar analysis yields

OB → OB − g2
3

16π2
ln

(
M2
W

μ2

)
(3OA −OB) . (3.9)

We observe that the operators,

O± = 1

2
(OA ±OB) , (3.10)

are form-invariant, O± → C±O±, with coefficients C±,

C± = 1+ d± g2
3

16π2
ln
M2
W

μ2
, (3.11)

where d+ = −2 and d− = +4. The isospin content of the various operators can be
determined in various ways. Perhaps the easiest method involves the use of raising
and lowering operators [Ca 66],

I+d = u, I+ū = −d̄, I−u = d, I−d̄ = −ū, (3.12)

to show that I+O− = 0, implying that O− is the Iz = 1/2 member of an isospin
doublet. With repeated use of raising and lowering operators, one can demonstrate
that O− is purely �I = 1/2 whereas O+ is a combination of �I = 1/2 and
�I = 3/2 operators.

From Eq. (3.11), we see that under one-loop corrections the operator O− is
enhanced by the factor

C− = 1+ 4
g2

3

16π2
ln
M2
W

μ2
� 2.1, (3.13)
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where we use αs(μ) � 0.4 (QCD � 0.2 GeV) at μ � 1 GeV. Similarly O+ is
accompanied by the suppression factor

C+ = 1− 2
g2

3

16π2
ln
M2
W

μ2
� 0.4. (3.14)

Renormalization-group analysis

Choosing an even smaller value of μ would lead to an even larger correction.
However, maintaining just the lowest-order perturbation in the QCD interaction
would then be unjustified. It is possible to do better than the lowest-order pertur-
bative estimate by using the renormalization group to sum the logarithmic factors
[GaL 74, AlM 74]. In a renormalizable theory physically measurable quantities can
be written as functions of couplings which are renormalized at a renormalization
scale μR. Physical quantities calculated in the theory must be independent of μR.
Denoting an arbitrary physical quantity by Q, this may be written

Q = f (g3(μR), μR) , (3.15)

where f is some function of μR and g3 is the strong coupling constant of QCD.
Differentiating with respect to μR, we have

μR
d

dμR
f (g3(μR), μR) = 0, (3.16)

which is the renormalization-group equation. It represents the feature that a change
in the renormalization scale must be compensated by a modification of the cou-
pling constants, leaving physical quantities invariant. In order to see how this pro-
gram can be carried out for the effective weak hamiltonian, consider the following
irreducible vertex function which represents a typical weak nonleptonic matrix
element,〈

0
∣∣∣T (J had†

λ (x)J λhad(0)q1(p1)q2(p2)q̄3(p3)q̄4(p4)
)∣∣∣ 0〉irr

ren

=
(√

Z2

)4 〈
0
∣∣∣T (J had†

λ (x)J λhad(0)q1(p1)q2(p2)q̄3(p3)q̄4(p4)
)∣∣∣ 0〉irr

unren
, (3.17)

where the {qi} are quark fields carrying momenta {pi}. Z2 is the quark wavefunc-
tion renormalization constant for the fermion field, and subscripts ‘ren’, ‘unren’
denote renormalized and unrenormalized quantities.

Choosing the subtraction point p2
i = −μ2

R, we require that unrenormalized
quantities be independent of μR,

μR
d

dμR

〈
0
∣∣∣T (J †

λ J
λq1q2q̄3q̄4

)∣∣∣ 0〉irr
unren

= 0. (3.18)
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This implies(
μR

∂

∂μR
+ βQCD ∂

∂g3r
− 4γF

) 〈
0
∣∣∣T (J †

λ J
λq1q2q̄3q̄4

)∣∣∣ 0〉irr
ren
= 0,

where g3r is the renormalized strong coupling constant, βQCD is the QCD beta
function of Eq. (II–2.57(b)) and γF is the quark field anomalous dimension of
Eq. (II–2.69). As we have seen, QCD radiative corrections generally mix the local
operators appearing in the short-distance expansion,

〈0 |T (Onq1q2q̄3q̄4)| 0〉irrren =
∑
n′

Xnn′ 〈0 |T (On′q1q2q̄3q̄4)| 0〉irrunren, (3.19)

and the mixing matrix can be diagonalized to obtain a set of multiplicatively renor-
malized operators

〈0 |T (Okq1q2q̄3q̄4)| 0〉irrren = Zk〈0 |T (Okq1q2q̄3q̄4)| 0〉irrunren. (3.20)

If operator Ok has anomalous dimension γk, we can write

Zk ∼ 1+ γk lnμR + · · · , (3.21)

and so the coefficient functions Ck(μRx) satisfy(
μR

∂

∂μR
+ βQCD ∂

∂g3r
+ γk − 4γF

)
Ck(μRx) = 0. (3.22)

From the above, we have for the operators O±

γ± − 4γF → g2
3

16π2
d±. (3.23)

We can solve Eq. (3.22) with methods analogous to those employed in Sect. II–2.
That is, because QCD is asymptotically free and we are working at large momen-
tum scales, we can use the perturbative result (cf. Eq. (II–2.57(b))),

βQCD(g3r ) = μR
∂g3r

∂μR
= − g3

3r

16π2
b + · · · , (3.24)

where b = 11 − 2
3nf , nf being the number of quark flavors. Upon inserting the

leading term in the perturbative expression for αs (cf. Eq. (II–2.74)),

αs(μR) = 12π

(33− 2nf ) lnμ2
R/

2
, (3.25)
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one can verify that the solution to Eq. (3.22) is given by

C±(μR)
C±(MW)

=
(

1+ g2
3

16π2
b ln

M2
W

μ2
R

)d±/b
. (3.26)

Note that in the perturbative regime where αs � 1, we have

C±(μR)
C±(MW)

= 1+ d± g2
3

16π2
ln
M2
W

μ2
R

, (3.27)

which agrees with our previous result, Eq. (3.11). It is the renormalization group
which has allowed us to sum all the ‘leading logs’. Of course, at scale MW one
must be able to reproduce the original weak hamiltonian, implying C+(MW) =
C−(MW) = 1. Taking μR � 1 GeV and αs = 0.4 as before, we find

H�S=1
nl (μR) ∝ C+(μR)O+ + C−(μR)O−, (3.28)

with

C−(μR) � 1.5, C+(μR) � 0.8. (3.29)

We observe then a �I = 1/2 enhancement of a factor of two or so, which is
encouraging but still considerably smaller than the experimental value of A0/A2 ∼
22 discussed in the next section.

Two additions to the above analysis must now be addressed. One is the proper
treatment of heavy-quark thresholds. In reducing the energy scale from MW down
to μR, one passes through regions where there are successively six, five, four, or
three light quarks, the word ‘light’ meaning relative to the energy scale μR. The
beta function changes slightly from region to region. A proper treatment must apply
the renormalization group scheme in each sector separately. This is a straightfor-
ward generalization of the procedures described above.

The other addition is the inclusion of penguin diagrams of Fig. VIII–1(c)
[ShVZ 77, ShVZ 79b, BiW 84], whimsically named because of a rough resem-
blance to this antarctic creature. The gluonic penguin is noteworthy because it is
purely �I = 1/2, thus helping to build a larger �I = 1/2 amplitude, and because
it is the main source of CP violation in the �S = 1 hamiltonian. The electroweak
penguin, wherein the gluon is replaced by a photon or a Z0 boson, also enters
the theory of CP violation. The CP-conserving portion of the penguin diagrams
involves a GIM cancelation between the c, u quarks and hence enters significantly
at scales below the charmed quark mass. On the other hand, in the CP violating
component, the GIM cancelation is between the t, c quarks and thus this piece is
short-distance dominated. At lowest order, before renormalization-group enhance-
ment, one obtains the following Hamiltonians for the penguin and electroweak
penguin interactions (cf. Fig. VIII–2),



248 Weak interactions of kaons
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Fig. VIII–2 Penguin diagram.

H(peng)
w = − GFαs

12π
√

2

[
V ∗udVus ln

m2
c

μ2
R

+ V ∗tdVts ln
m2
t

m2
c

]
d̄γμ(1+ γ5)λ

asq̄γ μλaq,

H(ewp)
w = −2GFα

9π
√

2

[
V ∗udVus ln

m2
c

μ2
R

+ V ∗tdVts ln
m2
t

m2
c

]
d̄γμ(1+ γ5)dq̄γ

μQqq.

(3.30)

We have used a scale μR instead of the up quark mass and have quoted only the
logarithmic mt dependence. The quarks q = u, d, s are summed over and Qq

is the charge of quark q. Note that since the vector current can be written as a
sum of left-handed and right-handed currents, this is the only place where right-
handed currents enter Hw. The gluonic penguin contains the right-handed current
in an SU(3) singlet, hence retaining the (8L, 1R) property of Hw. However, the
electroweak penguin introduces a small (8L, 8R) component.

The full result can be described with the four-quark �S = 1 operators,

O1 = HA −HB, O4 = HA +HB −HC,

O2 = HA +HB + 2HC + 2HD, O5 = d̄γμ(1+ γ5)λ
as q̄γμ(1− γ5)λ

aq,

O3 = HA +HB + 2HC − 3HD, O6 = d̄γμ(1+ γ5)s q̄γμ(1− γ5)q,

O7 = 3

2
s̄γμ(1+ γ5)d q̄γ

μ(1− γ5)Qqq, (3.31)

O8 = −3

2
s̄iγμ(1+ γ5)dj q̄j γ

μ(1− γ5)Qqqi,

where q = u, d, s are summed over in O5,6,7,8, i and j are color labels, Qq is the
charge of quark q and

HA = d̄γμ(1+ γ5)u ūγ
μ(1+ γ5)s, HC = d̄γμ(1+ γ5)s d̄γ

μ(1+ γ5)d,

HB = d̄γμ(1+ γ5)s ūγ
μ(1+ γ5)u, HD = d̄γμ(1+ γ5)s s̄γ

μ(1+ γ5)s.

(3.32)

The operators are arranged such that O1,2,5,6 have octet and �I = 1/2 quantum
numbers, O3(O4) are in the 27-plet with �I = 1/2(�I = 3/2), while O7,8 arise
only from the electroweak penguin diagram. The full hamiltonian is



VIII–4 The �I = 1/2 rule 249

H�S=1
eff = GF

2
√

2
V ∗udVus

8∑
i=1

CiOi. (3.33)

A renormalization-group analysis of the coefficients [BuBH 90] yields

C1 = 1.90− 0.62τ,

C2 = 0.14− 0.020τ,

C3 = C4/5,

C4 = 0.49− 0.005τ,

C5 = −0.011− 0.079τ,

C6 = −0.001− 0.029τ,

C7 = −0.009− (0.010− 0.004τ)α,

C8 = (0.002+ 0.160τ)α,

(3.34)

with  � 0.2 GeV, μR � 1 GeV, mt = 150 GeV, and τ = −V ∗tdVts/V
∗

udVus.
The number multiplying τ has a dependence on mt whereas (within the leading
logarithm approximation) the remainder does not if mt > MW . The τ depen-
dence in C4 arises only because of the electroweak penguin diagram. This hamilto-
nian summarizes the QCD short-distance analysis and is the basis for estimates of
weak amplitudes. For a treatment of corrections beyond those of leading order, see
[BuBL 96].

VIII–4 The 
I = 1/2 rule

Phenomenology

In the decaysK → ππ , the S-wave two-pion final state has a total isospin of either
0 or 2 as a consequence of Bose symmetry. Thus, such decays can be parameterized
(ignoring the tiny effect of CP violation) as

AK0→π+π− = A0 e
iδ0 + A2√

2
eiδ2,

AK0→π0π0 = A0 e
iδ0 −√2A2e

iδ2,

AK+→π+π0 = 3

2
A′2 e

iδ2, (4.1)

where the subscripts 0, 2 denote the total ππ isospin and the strong interaction
S-wave ππ phase shifts δI enter as prescribed by Watson’s theorem (cf.
Eq. (C–3.15)). There are, in principle, two distinct I = 2 amplitudes A2 and A′2.
These are equal if there are no �I = 5/2 components in the weak transition, as is
the case in the Standard Model if electromagnetic corrections are neglected. Includ-
ing electromagnetism leads to a small difference between A2 and A′2 [CiENPP 12],
but we will neglect this possibility from now on, and employ just the two isospin
amplitudes A0 and A2. The experimental decay rates themselves imply



250 Weak interactions of kaons

|AK0→π+π−| = (2.772± 0.0013)× 10−7 GeV,

|AK0→π0π0 | = (2.592± 0.0022)× 10−7 GeV,

|AK+→π+π0 | = (0.1811± 0.0004)× 10−7 GeV. (4.2a)

The ππ phase difference δ0 − δ2 can be obtained via

cos(δ0 − δ2) =
√

3

2
√

2
· |A+−|2 − |A00|2 + 2|A+0|2/3
|A+0|

[
2|A+−|2 + |A00|2 − 4|A+0|2/3

]1/2 ,
δ0 − δ2 = (44.55± 1.04)0. (4.2b)

This is consistent with the phase difference which emerges from the analysis of
ππ scattering. The magnitude of the isospin amplitudes can be found to be

|A0| = (2.711± 0.0011)× 10−7 GeV,

|A2| = (1.207± 0.0026)× 10−8 GeV. (4.3)

The ratio of magnitudes,

|A2/A0| = 0.0445± 0.0001 � 1/22.47, (4.4)

indicates a striking dominance of the �I = 1/2 amplitude (which contributes to
A0) over the �I = 3/2 amplitude (which contributes only to A2). This enhance-
ment of A0 over A2, together with related manifestations to be discussed later, is
called the �I = 1/2 rule. As we have seen in previous sections, a naive estimate
(and even determinations which are less naive!) do not suggest this much of an
enhancement. However, the factor 22.5 dominance of �I = 1/2 effects over those
with �I = 3/2 is common to both kaon and hyperon decay.3

A similar enhancement of �I = 1/2 is found in the K → πππ channel. In
this case, it is customary to expand the transition amplitude about the center of the
Dalitz plot. For the decay amplitude K(k) → π(p1) π(p2) π(p3), the relevant
variables are

si = (k − pi)2
∣∣∣∣
i=1,2,3

, s0 = 1

3
(s1 + s2 + s3) = m2

K

3
+m2

π ,

x̄ = s1 − s2

s0
, ȳ = s3 − s0

s0
,

(4.5)

where s3 labels the ‘odd’ pion, i.e. the third pion in each of the final states π+π−π0,

π0π0π+, π+π+π−. The large�I = 1/2 amplitudes are considered up to quadratic

3 Although our discussion stresses the relative magnitudes of the �I = 1/2, 3/2 amplitudes, the relative
phases of these amplitudes turns out to place important restrictions on the structure of the |�S| = 1
nonleptonic hamiltonian [GoH 75].
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order in these variables while the �I = 3/2 amplitudes contain only constant plus
linear terms,

√
2AK0→π+π−π0 = a1 − 2a3 + (b1 − 2b3)ȳe

iδM1 − 2

3
b23x̄e

iδ21

+ c
(
ȳ2 + 1

3
x̄2

)
+ d

(
ȳ2 − 1

3
x̄2

)
eiδM1,

√
2AK0→π0π0π0 = 3(a1 − 2a3)+ 3c

(
ȳ2 + 1

3
x̄2

)
,

AK+→π+π+π− = 2(a1 + a3)− (b1 + b3)ȳe
iδM1 + b23ȳe

iδ21

+ 2c

(
ȳ2 + 1

3
x̄2

)
+ d

(
ȳ2 − 1

3
x̄2

)
eiδM1,

AK+→π0π0π+ = a1 + a3 + (b1 + b3)ȳe
iδM1 + b23ȳe

iδ21

+ c
(
ȳ2 + 1

3
x̄2

)
+ d

(
ȳ2 − 1

3
x̄2

)
eiδM1, (4.6)

where a1, b1, c, d are �I = 1/2 amplitudes, a3, b3, b2 3 are �I = 3/2 amplitudes,
and the phases {δI } in δM1 (≡ δM − δ1) and δ21 (≡ δ2− δ1) refer to final-state phase
shifts in the I = 1, 2 and mixed symmetry I = 1 states respectively. Because of
the relatively small Q value for such decays (Qπππ = mK − 3mπ � 75 MeV),
such phases are presumably small and are often omitted. Also, this representation
in terms of simple energy-independent phase factors is clearly idealistic. Analysis
of the available data [BiBD 03] yields (in units of 10−7)

a1 = 9.32± 0.04, a3 = 0.34± 0.03,

b1 = 14.2± 0.2, b3 = −0.6± 0.1, b23 = 2.7± 0.3,

c = −1.1± 0.5, d = −5.0± 0.8.

(4.7)

Dominance of the �I = 1/2 signal is again clear in magnitude and in slope terms,
e.g., we find at the center of the Dalitz plot,

|a3/a1| � 1/27. (4.8)

In SU(3) language, the dominance of �I = 1/2 effects over �I = 3/2 implies
the dominance of octet transitions over those involving the 27-plet. This is a conse-
quence, within the Standard Model, of the fact that the �I = 1/2 27-plet operator
contributes relative to the �I = 3/2 27-plet operator with a fixed strength given
by the scale-independent ratio of coefficients C3/C4 � 1/5 (viz. Eq. (3.34)). The
27-plet operator then gives only a small contribution to the �I = 1/2 amplitudes,
with the major portion coming from the octet operators. We shall therefore ignore
the �I = 1/2 27-plet contribution henceforth.
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Chiral lagrangian analysis

The left-handed chiral property of the Standard Model may be directly tested by
the use of chiral symmetry to relate the amplitudes in K → πππ to those in
K → ππ . We have already constructed the effective lagrangians for (8L, 1R) and
(27L, 1R) transitions. Dropping g(1/2)27 , the nonleptonic decays are described by the
two parameters g8 and g(3/2)27 at O(E2). Let us see how well this parameterization
works, and afterwards add O(E4) corrections. The two free parameters may be
determined from A0 and A2 in K → ππ decays. From the chiral lagrangians of
Eqs. (2.4), (2.8b), we find

A0 =
√

2 g8

F 3
π

(
m2
K −m2

π

)
, A2 = 2 g(3/2)27

F 3
π

(
m2
K −m2

π

)
, (4.9)

which yields upon comparison with Eq. (4.3),

g8 � 7.8× 10−8F 2
π , g

(3/2)
27 � 0.25× 10−8F 2

π . (4.10)

The K → πππ amplitude may be predicted from these. Because there are only
two factors of the energy, no quadratic terms are present in the predictions,

A
(1/2)
K0

L→π+π−π0 =
√

2A0m
2
K

6Fπ(m2
K −m2

π)

[
1+ m2

K + 3m2
π

m2
K

ȳ

]
,

A
(3/2)
K0

L→π+π−π0 = −
A2m

2
K

3Fπ(m2
K −m2

π)

[
1− 5

4

m2
K + 3m2

π

m2
K

ȳ

]
,

A
(3/2)
K+→π+π+π− =

A2m
2
K

3Fπ(m2
K −m2

π)

[
1+ 4

m2
K + 3m2

π

m2
K

ȳ

]
, (4.11a)

which correspond to the numerical values (again in units of 10−7),

A
(1/2)
K0

L→π+π−π0 = 7.5+ 9.1 ȳ,

A
(3/2)
K0

L→π+π−π0 = −0.47+ 0.74 ȳ,

A
(3/2)
K+→π+π+π− = 0.47+ 2.3 ȳ. (4.11b)

These are to be compared to the experimental results,

A
(1/2)
K0

L→π+π−π0 = 9.32+ 14.2 ȳ − 6.1 ȳ2 + 1.3 x̄2,

A
(3/2)
K0

L→π+π−π0 = −0.68+ 1.2 ȳ,

A
(3/2)
K+→π+π+π− = 0.68+ 3.3 ȳ. (4.12)

This comparison can be seen in Fig. VIII–3, where a slice across the Dalitz plot is
given. Also shown are the extrapolations outside the physical region to the ‘soft-
pion point’ where either pμ+ → 0 or pμ0 → 0. Predictions at these locations are
obtained by using the soft-pion theorem (see Prob. VIII–2).
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Fig. VIII–3 Dalitz plot.

The chiral relations clearly capture the main features of the amplitude and
demonstrate that the K → 3π �I = 1/2 enhancement is not independent of
that observed in K → 2π decay. However, for the �I = 1/2 transitions we may
do somewhat better. The kinematic dependence of x̄2 or ȳ2 can come only from a
chiral lagrangian with four factors of the momentum, and only two combinations
are possible:

quad = γ1k · p0p+ · p− + γ2 (k · k+p0 · p− + k · p−p0 · p+) . (4.13)

Such behavior can be generated from a variety of chiral lagrangians,

Lquad = g′8 Tr
(
λ6∂μU∂

μU †∂νU∂
νU †

)
+ g′′8 Tr

(
λ6∂μU∂νU

†∂μU∂νU †
)+ · · · . (4.14)

However the predictions in terms of γi are unique. Fitting the quadratic terms to
determine γ1, γ2 yields the full amplitude,
√

2A(1/2)
K0→π+π−π0 = (9.5± 0.7)+ (16.0± 0.5) ȳ − 4.85 ȳ + 0.88 x̄2, (4.15)

which provides an excellent representation of the data. Final-state interaction
effects also provide an important contribution and must be included in a complete
analysis [KaMW 90]. Note that in the process of determining the quadratic coeffi-
cients, the constant and linear terms have also become improved. This process can-
not be repeated for �I = 3/2 amplitudes due to a lack of data on quadratic terms.

Vacuum saturation

Direct calculations of nonleptonic amplitudes have proven very difficult to per-
form. On the whole, no single analytical or numerical method for overcoming the
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general problem yet exists. In the following, we describe the simplest analytical
approach, called vacuum saturation, which often serves as a convenient bench-
mark with which to compare the theory. For convenience we consider only O1 (the
largest �I = 1/2 operator) and O4 (the �I = 3/2 operator),

HW � GF

2
√

2
V ∗udVus(C1O1 + C4O4), (4.16)

with C1 � 1.9 and C4 � 0.5. The vacuum saturation approximation consists of
inserting the vacuum intermediate state between the two currents in all possible
ways, e.g.,

〈π+(p+)π−(p−)
∣∣d̄γ μ (1+ γ5) uūγ

μ (1+ γ5) s
∣∣ K̄0(k)〉

= 〈π−(p−)
∣∣d̄γ μγ5u

∣∣ 0〉〈π+(p+) |ūγ μs| K̄0(k)〉
+ 〈π+(p+)π−(p−)

∣∣ūβγ μuα∣∣ 0〉〈0 ∣∣d̄αγ μγ5sβ
∣∣ K̄0(k)〉

= −i√2Fπf+p
μ
− (k + p+)μ −

i

3

√
2FKf+kμ (p− − p+)μ . (4.17)

In obtaining this result the Fierz rearrangement property

d̄αγ
μ (1+ γ5) uαūβγ

μ (1+ γ5) sβ = d̄αγ
μ (1+ γ5) sβūβγ

μ (1+ γ5) uα

has been used, where α, β are color indices which are summed over. In addition,
the color singlet property of currents is employed,

〈0 ∣∣d̄αγμγ5sβ
∣∣ K̄0(k)〉 = i

√
2FKkμ

δαβ

3
. (4.18)

Within the vacuum saturation approximation, we see that the amplitudes are
expressed in terms of known semileptonic decay matrix elements. Putting in all
of the constants, we find that

A0 = GF

3
V ∗udVusFπ

(
m2
K −m2

π

)
C1 � 0.34× 10−7 GeV,

A2 = 2
√

2GF

3
V ∗udVusFπ

(
m2
K −m2

π

)
C4 � 2.5× 10−8 GeV. (4.19)

The above estimate of A2 is seen to work reasonably well, but that of A0 falls
considerably short of the observed �I = 1/2 amplitude. This demonstrates that
vacuum saturation is not a realistic approximation. However, it does serve to indi-
cate how much additional �I = 1/2 enhancement is required to explain the data.

Nonleptonic lattice matrix elements

While historically there have been many attempts to improve on the naive vacuum
saturation method, the present state of the art is to rely on lattice calculations.
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However, nonleptonic matrix elements have been a particular challenge for lattice
methods. The transition from a kaon to two pions requires three external sources to
create the mesons involved, as well as a singular four-quark operator for the weak
hamiltonian. In addition, there are diagrams where quarks in the hamiltonian form
disconnected loops not connected to external states. Recent advances have allowed
the extraction of the A2 amplitude with reasonable precision [Bl et al. 12]

|A2| = (1.381± 0.046stat ± 0.258syst)× 10−8 GeV (4.20)

consistent with the experimental result of Eq. (4.3). However, the isospin-zero final
state inA0 implies the existence of disconnected diagrams, which make the numer-
ical evaluation difficult, and we do not yet have a reliable lattice calculation of A0

[Bl et al. 11].

VIII–5 Rare kaon decays

Thus far, we have discussed the dominant decay modes of the kaon. There are, how-
ever, many additional modes which, despite tiny branching ratios, have been the
subject of intense experimental and theoretical activity. We can divide this activity
into three main categories.

(1) Forbidden decays – These include tests of the flavor conservation laws of
the Standard Model such as KL → e+μ−. Positive signals would represent
evidence for physics beyond our present theory.

(2) Rare decays within the Standard Model – These include decays which occur
only at one-loop order. Such processes can be viewed as tests of chiral dynam-
ics as developed in this and preceding chapters (e.g., radiative kaon decays)
or as particularly sensitive to short-distance effects, which probe the particle
content of the theory.

(3) CP-violation studies – There is now confirmation of CP-violating processes
involving kaons and B mesons (and searches of the same for D mesons). Also,
the observed baryon–antibaryon asymmetry of the Universe requires the exis-
tence of CP violation within the standard cosmological model. There remain,
however, interesting opportunities for further studies of CP violation within
the subfield of rare kaon decays.

Any of these have the potential to yield exciting physics. We shall content ourselves
with discussing only a small sample of the many possibilities. Surveys of rare kaon
modes appear in [CiENPP 12] and also in [RPP 12].

Consider first the rare decay K+ → π+νν̄, where the neutrino flavor ν =
νe, νμ, ντ is summed over. This mode is often called ‘K+ to π+ plus nothing’,
in reference to its unique experimental signature. This process can take place only
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Fig. VIII–4 The decay K+ → π+ν
ν̄
.

through loop diagrams, such as the ones in Fig. VIII–4. We content ourselves here
to show just the effective hamiltonian for the dominant t-quark loop at leading
order in QCD, [InL 81, HaL 89]

Heff = GF√
2
· α

2π sin2 θw
V ∗tsVtdX0(xt )

∑



ν̄
γ
μ(1+ γ5)ν
 s̄γμ(1+ γ5)d, (5.1)

where xt ≡ m2
t /m

2
W and

X0(xt ) = xt

8

(
xt + 2

xt − 1
+ 3xt − 6

(1− xt )2
)
. (5.2)

The overall factor of m2
t /m

2
W in X0(xt ) is associated with the GIM effect; the

c-quark and u-quark amplitudes, were they included, would contain analogous
mass factors such that in the limit mu = mc = mt the total amplitude would
vanish via GIM cancelation. Although the calculation of many hadronic processes
in this book are hindered by QCD uncertainties, such is not the case here. The
quark matrix element is related by isospin to the known charged current amplitude

〈π+(p) ∣∣s̄γμd∣∣K+(k)〉 = √2 〈π0(p)
∣∣s̄γμu∣∣K+(k)〉 = f+(q2) (k + p)μ (5.3)

with f+(0) = −1. This makes the K+ → π+ν
ν̄
 example a theoretically ‘clean’
process and is responsible in large part for all the attention this transition has
attracted. Our discussion is relatively brief, and a more careful analysis would
include effects like QCD perturbative corrections, the c-quark loop contribution
(roughly 30%), etc. A recent prediction, [BrGS 11], along with the current experi-
mental result [RPP 12], reads

Br(theo)
K+→π+ν
ν̄
 = (7.8± 0.8)× 10−11, Br(expt)

K+→π+ν
ν̄
 = (1.7± 1.1)× 10−10.

(5.4)

The experimental result, still consistent with zero, is reaching the sensitivity needed
to probe the theory prediction and further advances are anticipated. The main
source of uncertainty in the theory prediction is from CKM factors and quark mass
values, which presumably can and will be improved upon.
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Fig. VIII–5 Long-distance contributions to radiative kaon decays.

A different class of rare decays consists of the radiative processes KS → γ γ

and KL → π0γ γ . These transitions provide interesting tests of chiral perturbation
theory at one-loop order. In this case, the long-distance process, Fig. VIII–5, is
dominant. An important feature is that there is no tree-level contribution at order
E2 or E4 from any of the strong or weak chiral lagrangians because all of the
hadrons involved are neutral. Thus, the decays can only come from loop diagrams,
or from lagrangians at O(E6). There is also an interesting corollary of this result
concerning the renormalization behavior of the loops. Since there are no tree-level
counterterms at O(E4) with which to absorb divergences from the loop diagrams,
and recalling that we have proven all divergences can be handled in this fashion, it
follows that the sum of the loop diagrams must be finite. This is in fact borne out
by direct calculation.

ForKS → γ γ , the prediction of chiral [D’AE 86, Go 86] loops is given in terms
of known quantities such as

�KS→γ γ = α2m2
Kg

2
8F

2
π

16π3

(
1− m2

π

m2
K

)2 ∣∣∣∣F (m2
K

m2
π

)∣∣∣∣2 ,
F (z) = 1− z [π2 − ln2 Q(z)− 2πi lnQ(z)

]
,

Q(z) = 1−√1− 4z

1+√1− 4z
, (5.5)

where g8 is the nonleptonic coupling defined previously in Eq. (2.4). Comparison
of the theoretical one-loop branching ratio and the experimental result,

Br(theo)
KS→γ γ = 2.0× 10−6, Br(expt)

KS→γ γ = (2.63± 0.17)× 10−6, (5.6)

shows reasonable agreement but implies the need to consider O(E6) corrections.
In particular, the ‘unitarity correction’ KS → π+π− → γ γ has been shown to
provide an improved theoretical prediction [KaH 94].

The case of KL → π0γ γ is also instructive. Again, one-loop contributions are
finite and unambiguous [EcPR 88]. Indeed, we know thatKL → π0γ γ andKL →
γ γ are related by the soft-pion theorem in the limit pμπ → 0, yielding
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d�KL→π0γ γ

dz
= α2m5

K

(4π)5
g2

8

[
λ

(
z,
m2
π

m2
K

)]1/2

×
∣∣∣∣(z− m2

π

m2
K

)
F(z

m2
K

m2
π

)+
(

1− z+ m2
π

m2
K

)
F(z)

∣∣∣∣2 , (5.7)

where z = m2
γ γ /m

2
K and

λ(a, b) ≡ 1+ a2 + b2 − 2(a + b + ab). (5.8)

If we compare the theoretical branching ratio based on the above description with
the experimental value, we find

Br(loop)
KL→π0γ γ

= 0.68× 10−6, BrK0
L→π0γ γ = (1.273± 0.033)× 10−6. (5.9)

This indicates the need for an O(E6) correction. Indeed, the most recent data input,
from [Ab et al. (KTeV collab.) 08], provides evidence for a vector exchange contri-
bution. It is easy to take this into account, viz. the diagram of Fig. VIII–5(c) shows
the effect of ρ-exchange.

Problems

(1) K�3 decay
The ratio f K

+π0

+ (0)/f K
0π−+ (0) of semileptonic form factors is a measure of

isospin violation. Part of this quantity arises from π0-η0
8 mixing.

(a) By diagonalizing the pseudoscalar meson mass matrix, show thatmd �= mu

induces the mixing |π0〉 = cos ε |ϕ3〉+sin ε |ϕ8〉where ε � √3(md−mu)/

[4(ms − m̂)] and m̂ ≡ (mu +md)/2.
(b) Demonstrate that this leads to the result (cf. Eq. (1.11))

f K
+π0

+ (0)

f K
0π−+ (0)

= cos εf K
+ϕ3

+ (0)+ sin εf K
+ϕ8

+ (0)

f K
0π−+ (0)

� 1+√3 sin ε.

(2) Soft pions and K → 3π decay
The results derived in Sect. VIII–4 with effective lagrangians can also be
obtained by means of soft pion methods (see App. B–3).
(a) Using the soft pion theorem, show that the soft-pion limit of the K → 3π

transition amplitude is given by

lim
qa→0

〈πaqaπbqbπcqc |Hw(0)|Kn
k 〉 =

−i
Fπ
〈πbqbπcqc |[Qa

5,Hw(0)]|Kn
k 〉,

where Qa
5 =

∫
d3x Aa0(x, t) is the axial charge.
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(b) Demonstrate that this may be also written as

lim
qa→0

〈πaqaπbqbπcqc |Hw(0)|Kn
k 〉 =

−i
Fπ
〈πbqbπcqc |[Qa,Hw(0)]|Kn

k 〉,
where Qa is an isotopic spin operator, and hence that

lim
q0→0

〈π+q+π−q−π0
q0
|HI

w(0)|K0
k 〉 =

−i
2Fπ

AI
K0→π+π−,

lim
q+→0

〈π+q+π−q−π0
q0
|HI

w(0)|K0
k 〉 =

−i
Fπ
(AI

K0→π0π0 − AIK0→π+π−),

lim
q−→0

〈π+q+π−q−π0
q0
|HI

w(0)|Kn
0 〉 =

i

Fπ
(AI

K0→π0π0,

− AI
K0→π+π− +

1√
2
AI
K+→π+π0),

where I = 1/2, 3/2 signifies the isospin component of the quantities in
question.

(c) Use a linear expansion of the K → 3π transition amplitude, (i.e. Eq. (4.6)
with c = d = 0) to reproduce the results of Eq. (4.11), up to corrections of
order m2

π .



IX

Mass mixing and CP violation

Aside from a concluding section on the strong CP problem, this chapter is about
the CP violation of kaons. We set up the general framework for meson–antimeson
mixing, which is also used in the weak interactions of heavy quarks, treated later
in Chap. XIV. In this chapter we apply the formalism to K0–K̄0 mixing and CP-
violating processes involving kaons.

IX–1 K0–K̄
0

mixing

It is clear that K0 and K̄0 should mix with each other. In addition to less obvious
mechanisms discussed later, the most easily seen source of mixing occurs through
their common ππ decays, i.e., K0 ↔ ππ ↔ K̄0. We can use second-order per-
turbation theory to study the phenomenon of mixing. Writing the wavefunctions in
two-component form

|ψ(t)〉 =
(
a(t)

b(t)

)
≡ a(t)|K0〉 + b(t)|K̄0〉, (1.1)

we have the time development

i
d

dt
|ψ(t)〉 =

(
M − i

2
�

)
|ψ(t)〉, (1.2)

where, to second order in perturbation theory, the quantity in parentheses is called
the mass matrix and is given by1

1 The factors 1/2mK are required by the normalization convention of Eq. (C–3.7) for state vectors.
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M − i

2
�

]
ij

≡ 〈K
0
i |Heff|K0

j 〉
2mK

= m
(0)
K δij +

〈K0
i |Hw|K0

j 〉
2mK

+ 1

2mK

∑
n

〈K0
i |Hw|n〉〈n|Hw|K0

j 〉
m
(0)
K − En + iε

.

(1.3)

Here, the absorptive piece � arises from use of the identity

1

ω − En + iε = P

(
1

ω − En
)
− iπ δ(En − ω), (1.4)

and hence involves only physical intermediate states

�ij = 1

2mK

∑
n

〈K0
i |Hw|n〉〈n|Hw|K0

j 〉2πδ (En −mK). (1.5)

Because M and � are hermitian, we have M21=M∗
12 and �21=�∗12. The diagonal

elements of the mass matrix are required to be equal by CPT invariance, leading to
a general form

M − i

2
� =

(
A p2

q2 A

)
, (1.6)

where A, p2, and q2 can be complex. The states K̄0 and K0 are related by the
unitary CP operation,

CP|K0〉 = ξK |K̄0〉 (1.7)

with |ξK |2= 1. Our convention will be to choose ξK = − 1. The assumption of CP
invariance would relate the off-diagonal elements in the mass matrix so as to imply
p= q,

〈K0|Heff|K̄0〉 = 〈K0
∣∣(CP )−1CP Heff (CP )−1CP

∣∣ K̄0〉 = 〈K̄0 |Heff|K0〉, (1.8)

where 〈K̄0 |Heff|K0〉 is defined in Eq. (1.3). Combined with the hermiticity of M
and �, this would imply that M12 and �12 are real. In the actual CP-noninvariant
world, this is not the case and we have instead for the eigenstates of the mass
matrix,

|KL
S
〉 = 1√|p|2 + |q|2 [p|K0〉 ± q|K̄0〉] , (1.9)

where, from the above discussion,

p

q
=
√
M12 − i

2�12

M∗
12 − i

2�
∗
12

, M12 − i

2
�12 =

〈
K0 |H| K̄0

〉
. (1.10)
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The difference in eigenvalues is given by

2qp = (mL −mS)− i

2
(�L − �S)

= 2

(
M12 − i

2
�12

)1/2 (
M∗

12 −
i

2
�∗12

)1/2

� 2ReM12 − iRe�12, (1.11)

where the final relation is an approximation valid if CP violation is small (1 

ImM12/ReM12). The subscripts in KL and KS , standing for ‘long’ and ‘short’,
refer to their respective lifetimes, whose ratio is substantial, τL/τS � 571. To
understand this large difference, we note that if CP were conserved (p= q), these
states would become CP eigenstatesK0± (not to be confused with the charged kaons
K±!),

|KS〉 −→
p=q |K

0+〉,
|K0±〉 ≡ 1√

2

[|K0〉 ∓ |K̄0〉] , |KL〉 −→
p=q |K

0−〉,
CP|K0±〉 = ±|K0±〉.

(1.12)

In this limit, which well approximates reality, KS would decay only to CP-even
final states like ππ , whereas KL would decay only to CP-odd final states, e.g., 3π .
Since the phase space for the former considerably exceeds that of the latter at the
rather low energy of the kaon mass, KS has much the shorter lifetime. The states
KS,L, expanded in terms of CP eigenstates, are∣∣KL

S

〉 = 1√
1+ |ε̄|2

[|K0
∓〉 + ε̄|K0

±〉
]
,

p

q
= 1+ ε̄

1− ε̄ ,

ε̄ = p − q
p + q �

i

2

ImM12 − iIm�12/2

ReM12 − iRe�12/2
� 1

2

M12 −M21 − i
2(�12 − �21)

mL −mS − i
2(�L − �S)

. (1.13)

K0–K̄0 mixing can be observed experimentally from the time development of a
state which is produced via a strong interaction process, and therefore starts out at
t = 0 as either a pure K0 or K̄0,

|K0(t)〉 = g+(t)|K0〉 + q

p
g−(t)|K̄0〉,

|K̄0(t)〉 = p

q
g−(t)|K0〉 + g+(t)|K̄0〉,

g±(t) = 1

2
e−�Lt/2e−imLt

[
1± e−��t/2ei�mt] , (1.14)

where �� ≡ �S −�L and �m ≡ mL−mS , each defined to be a positive quantity.
From such experiments, the very precise value

�mexpt = (3.484± 0.006)× 10−12 MeV (1.15)

has been obtained.
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Fig. IX–1 Box (a),(b) and other contributions to CP violation.

CP-conserving mixing

There are two main classes of contributions, associated respectively with the short-
distance box diagrams of Fig. IX–1(a),(b) and the long-distance contributions like
those in Fig. IX–2,

�mtheory = (�m)SD
theory + (�m)LD

theory . (1.16a)

We shall consider the first of these here, the short distance component

(�m)SD
theory = 2Re

〈
K0
∣∣Hbox

w

∣∣ K̄0
〉
. (1.16b)

Determining (�m)SD
theory has long been, and continues to be, a significant topic in

kaon physics. It involves almost all the field theory tools we describe in this book.
Our discussion will of necessity include some advanced features in order to present
a realistic picture of the current state of the art.

The construction of Hbox
w follows a standard procedure: to a given order of QCD

perturbation theory, first specify the Wilson coefficient at the scale μ=MW , then
use the renormalization group (RG) to evolve down to a hadronic scale μ < mc

and finally match onto the effective three-quark (i.e. u, d, s) theory. The result of
this is

Hbox
w = C(μ)O�S=2, (1.17)

where O�S=2 is the local four-quark operator

O�S=2 = d̄γμ(1+ γ5)s d̄γ
μ(1+ γ5)s, (1.18)

and C(μ) is the corresponding Wilson coefficient,

K0 K0

(a)

Hw

X X X X
K0 K0π0,η,η′

Hw Hw

π

π
Hw

(b)

Fig. IX–2 Long-distance contributions to K0 − K̄0 mixing.
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C(μ) = G2
F

16π2

[
ξ 2
c H(xc)m

2
cηcc + ξ 2

t H (xt )m
2
t ηtt + 2ξcξt Ḡ(xc, xt )m

2
cηct

]
b(μ) ,

(1.19)

with ξi ≡ V ∗idVis (i= c, t) and xi ≡m2
i /M

2
W . The above expression for C(μ) is

more complicated than the C±(μ) encountered in our earlier �S= 1 discussion
(cf. Eq. (VIII–3.11)) because the box amplitude for �S= 2 has loop contribu-
tions from all the u, c, t quarks. Actually, Eq. (1.19) has already been simplified
in that CKM unitarity has allowed removal of ξu and the tiny mass of the u quark
has been neglected with respect to the heavy-quark masses mc,mt . The quanti-
ties H(xt),H(xc) and Ḡ(xc, xt ) in Eq. (1.19) are so-called Inami–Lim functions
[InL 81] that describe the quark-level loop amplitudes of Fig. IX–1(a),(b) in the
no-QCD limit,

H(x) =
[

1

4
+ 9

4

1

1− x −
3

2

1

(1− x)2
]
− 3

2

x2

(1− x)3 ln x,

Ḡ(x, y) = y

[
− 1

y − x
(

1

4
+ 3

2

1

1− x −
3

4

1

(1− x)2
)

ln x

+ (y ↔ x)− 3

4

1

(1− x)(1− y)
]
. (1.20)

This leaves in Eq. (1.19) the factors ηcc, ηtt , ηct , and b(μ). These arise from
calculating perturbative corrections to Hbox

w .2 Such corrections will contain depen-
dence on both the scale (μ) and renormalization scheme (say, the NDR approach,
described in App. C–5). These cannot be present in the full amplitude and must be
cancelled by analogous dependence in the matrix element 〈K0

∣∣O�S= 2
∣∣ K̄0〉. For

convenience, the scale and scheme dependence present in the Wilson coefficient
C(μ) is placed into the factor b(μ), which for K0–K̄0 mixing has the perturbative
form

b(μ) = αs(μ)
−2/9

∞∑
n=0

J (n)
αs(μ)

4π

n

= αs(μ)
−2/9

[
1+ αs(μ)

4π
J (1) + · · ·

]
.

(1.21)

Scheme dependence first appears in J (1) via the anomalous dimension γ (1) of oper-
ator O�S= 2,

2 It is customary to classify corrections according to the order of QCD perturbation theory used to determine
them, e.g. ’leading’ (LO), ’next-to-leading’ (NLO), ’next-to-next-to leading’ (NNLO) and so on. It is
disturbing that ηNNLO

cc � 1.87 is about 36% larger than ηNLO
cc � 1.38. This is an unexpectedly large result,

one which warrants further study.
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J (1) = γ (0)β(1)

2β2
0

− γ (1)

2β(0)
= 12 · 153− 19nf

(33− 2nf )2
− 1

6
· 4nf − 63

33− 2nf
, (1.22)

shown here for nf flavors and in NDR renormalization. The above expression for
b(μ) serves at the same time to define the perturbative factors ηcc, ηtt , and ηct . For
completeness, we display the most recent determinations [BrG 12] of the {ηi} (with
perturbative order shown as well),

ηNNLO
cc = 1.87(76) ηNLO

t t = 0.5765(65) ηNNLO
ct = 0.496(47). (1.23)

The determination of 〈K0
∣∣O�S= 2(μ)

∣∣ K̄0〉 at a hadronic scale μ < mc involves
nonperturbative physics, so its evaluation by analytical means is problematic. It has
become standard to express this quantity relative to its vacuum saturation value and
introduce a parameter BK as

〈
K0
∣∣O�S=2(μ)

∣∣ K̄0
〉 = 16

3
F 2
Km

2
K BK(μ), (1.24)

with FK = 110.4±0.6 MeV.3 There has been substantial progress in the calculation
of nonperturbative quantities such as BK using lattice QCD methods. The scale-
and scheme-independent version is defined as

B̂K = b(μ)BK(μ) (1.25)

and the value used in [BrG 12] is

B̂K = 0.737± 0.020. (1.26)

Finally, given present values for the CKM elements and the t-quark mass, the
most important contribution to the real part of Hbox

w is found to be from the c
quark. In view of this, and noting that H(xc) � 1 (cf. Eq. (1.20)), we then have

Re Hbox
w � G2

F

16π2
m2
c Re

(
V ∗cdVcs

)2
ηNNLO
cc b(μ) O�S=2. (1.27)

At this point, we have the ingredients for determining (�m)SD
theory and one obtains

[BrG 12]

(�m)SD
theory = (3.1± 1.2)× 10−15 GeV, (1.28)

which is consistent with the value cited for �mexpt in Eq. (1.15) within the quoted
uncertainty.

3 The reader should be wary of occasional notational confusion between FK and fK =
√

2FK .
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Fig. IX–3 Mechanisms for CP violation.

IX–2 The phenomenology of kaon CP violation

The ππ final state of kaon decay is even under CP provided the strong interactions
are invariant under this symmetry. For the π0π0 system, this is clear since π0 is
itself a CP eigenstate, CP|π0〉= − |π0〉, and the two pions must be in an S-wave
(
= 0) state,

CP|π0π0〉 = (−1)2(−1)
|π0π0〉 = +|π0π0〉. (2.1)

The corresponding result for charged pions reflects the fact that π+ and π− are CP-
conjugate partners, CP|π±〉= − |π∓〉. We have seen that if CP were conserved,
the two neutral kaons would organize themselves into CP eigenstates, with only
KS decaying into ππ . Alternatively, KL decays primarily into the πππ final state,
which is CP-odd if the pions are in relative S waves. The observation of both
neutral kaons decaying into ππ is then a signal of CP violation.

There can be two sources of CP violation in KL → ππ decay. We have already
seen that K0−K̄0 mixing can generate a mixture of the CP eigenstates in phys-
ical kaons due to CP violation in the mass matrix. There also exists the possi-
bility of direct CP violation in the weak decay amplitude, such that the CP-odd
kaon eigenstate |K0−〉 makes a transition to ππ . These two mechanisms are pic-
tured in Fig. IX–3. The Kππ decay amplitudes have already been written down
in Eq. (VIII–4.1) in terms of real-valued moduli A0, A2, and pion–pion scatter-
ing phases δ0, δ2. This decomposition is a consequence of Watson’s theorem, and
relies in part upon the assumption of time-reversal invariance. However, if direct
CP violation occurs, A0 and A2 can themselves become complex-valued,

A0 ≡ |A0|eiξ0, A2 ≡ |A2|eiξ2, (2.2)

with CP violation in the decay amplitude being characterized by the phases ξ0 and
ξ2. Consequently, the K0 → ππ and K̄0 → ππ decay amplitudes assume the
modified form

AK0→π+π− = |A0|eiξ0eiδ0 + |A2|√
2
eiξ2eiδ2,

AK̄0→π+π− = −|A0|e−iξ0eiδ0 − |A2|√
2
e−iξ2eiδ2 . (2.3)
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Using the definitions of KL and KS in Eq. (1.13), a straightforward calculation
leads to the following measures of CP violation:〈

π+π−|Hw|KL

〉
〈π+π− |Hw|KS〉 ≡ η+− ≡ ε + ε′,

〈
π0π0|Hw|KL

〉〈
π0π0|Hw|KS

〉 ≡ η00 ≡ ε − 2ε′, (2.4)

where

ε = ε̄ + iξ0,

ε′ = iei(δ2−δ0)

√
2

∣∣∣∣A2

A0

∣∣∣∣ (ξ2 − ξ0) = iei(δ2−δ0)

√
2

∣∣∣∣A2

A0

∣∣∣∣ ( Im A2

Re A2
− Im A0

Re A0

)
. (2.5)

The expression for ε can be simplified by approximating the numerical value
�m/��= 0.475± 0.001 by�m/��� 1/2. This yields the approximate relation,

i

�m+ i

2
��

� eiπ/4√
2

1

�m
, (2.6)

which we shall use repeatedly in the analysis to follow. In addition, since the rate
for K → ππ is much larger than that for K → πππ , and K0 → ππ is in turn
dominated by the I = 0 final state because of the �I = 1/2 rule, we have

Im �12 � ξ0�S � 2ξ0�m. (2.7)

The above relations allow us to write

ε = ε̄ + iξ0 � ei
π
4√
2

(
Im M12

�m
− iξ0

)
+ iξ0

= ei
π
4√
2

(
Im M12

�m
+ ξ0

)
= ei

π
4√
2

(
Im M12

2Re M12
+ Im A0

Re A0

)
,

ε′ = iω√
2
ei(δ2−δ0)(ξ2 − ξ0) = iωei(δ2−δ0)

√
2

(
ImA2

ReA2
− ImA0

ReA0

)
, (2.8)

where ω ≡ ReA2/ReA0 � 1/22. All CP-violating observables must involve an
interference of two amplitudes. In Eq. (2.8), the quantity ε expresses the interfer-
ence of K0 → ππ with K0 → K̄0 → ππ , while ε′ involves interference of the
I = 0 and I = 2 final states.

The formulae for ε and ε′ exhibit an important theoretical property. Since the
choice of phase convention for any meson M is arbitrary, its state vector may be
modified by the global strangeness transformation |M〉 → eiλS |M〉. For the K̄0

and K0 states, this becomes

|K0〉 → eiλ|K0〉, |K̄0〉 → e−iλ|K̄0〉, (2.9)

which has the effect,
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Im AI

Re AI
→ Im AI

Re AI
+ λ, Im M12

Re M12
→ Im M12

Re M12
− 2λ. (2.10)

We see that the values of ε and ε′ are left unchanged. Various phase conventions
appear in the literature. In the Wu–Yang convention, λ is chosen so that the A0

amplitude is real-valued. This is always possible to achieve by properly choosing
the phase of the kaon state. However, it is inconvenient for the Standard Model,
where theA0 amplitude naturally picks up a CP-violating phase. We shall therefore
employ the convention in which no such additional phases occur in the definitions
of the kaon states.

It was in the K → ππ system that CP violation was first observed. The current
status of measurements is

|ε| = (2.228± 0.011)× 10−3,

Re

(
ε′

ε

)
= (1.66± 0.26)× 10−3,

ϕ+− ≡ phase(η+−) = (43.51± 0.05)◦

ϕ00 ≡ phase(η00) = (43.52± 0.05)◦. (2.11)

A violation of CP symmetry has also been observed in the semileptonic decays
of KL and KS . These are related to matrix elements of the weak hadronic currents.
Since K0 must always decay into e+νeπ− while K̄0 goes to e−ν̄eπ+, we have

AKL→π−e+νe =
1+ ε̄√

2
AK0→π−e+νe ,

AKL→π+e−ν̄e =
1− ε̄√

2
AK̄0→π+e−ν̄e . (2.12)

If the semileptonic decays proceed as in the Standard Model, there is no direct CP
violation in the transition amplitude, so that

�KL→π−e+νe
�KL→π+e−ν̄e

= 1+ 2Re ε̄

1− 2Re ε̄
� 1+ 4Re ε̄. (2.13)

Since Re ε̄=Re ε, the above asymmetry is sensitive to the same parameter as
appears in the KL → ππ studies. Here, measurement gives

Re ε = (1.596± 0.013)× 10−3 = |ε| cos(44.3± 0.8)◦, (2.14)

which is consistent with the experimental values from K → ππ .
Finally, precision experiments also probe the CPT transformation. For example,

two such predictions, involving kaon masses (mK0 =mK̄0 ) and phases (ϕ+− =ϕ00

up to very small corrections from ε′), are seen to be consistent with existing data,
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s s dww d

u,c,t u,c,t
γ, Ζ0
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G

Fig. IX–4 (a) Penguin and (b) electroweak-penguin contributions to CP violation
in �S= 1 transitions.

|mK0 −mK̄0 |
mK0

≤ 8× 10−19,

ϕ00 − ϕ+− = (0.2± 0.4)◦. (2.15)

Further study of CPT invariance is left to Prob. IX–2.

IX–3 Kaon CP violation in the Standard Model

After diagonalization, there can remain a single phase in the CKM matrix. This
phase generates the imaginary parts of amplitudes, which are required for CP vio-
lation. It is a physical requirement that results be invariant under rephasing of the
quark fields. As a consequence, all observables must be proportional to

Im �(4)=A2λ6η= c1c2c3s
2
1s2s3sδ, (3.1)

written in the notation of Sect. II–4. This shows that all CP-violating signals must
vanish if any of the CKM angles vanish. We shall now study the path whereby this
phase is transferred from the lagrangian to experimental observables. For kaons,
we have seen that the relevant amplitudes are those for K0–K̄0 mixing (�S= 2)
and for K → ππ decays (�S= 1). Tree-level amplitudes in kaon decay can never
be sensitive to the full rephasing invariant, so that one must consider loops. Typical
diagrams are displayed in Fig. IX–4.

Experiment can help in simplifying the theoretical analysis. Note that ε′ is sensi-
tive to �S= 1 physics through the penguin diagram [GiW 79], while ε is sensitive
to�S= 2 mass-matrix physics as well as to�S= 1 effects. However, since exper-
iment tells us that |ε| 
 |ε′|, it follows that the �S= 1 contributions to ε must be
small. Likewise, the long-distance contributions of Fig. IX–2 and the contribution
of Fig. IX–1(d) must both be small because each also involves the �S= 1 interac-
tion. This leaves the box diagrams of Fig. IX–1(a),(b) as the dominant component
of ε. Moreover, since the CKM phase δ is associated with the heavy-quark cou-
plings, only the heavy-quark parts of the box diagrams are needed. Hence ε is very
clearly short-distance dominated.



270 Mass mixing and CP violation

Analysis of |ε|
The evaluation of ε follows directly from Eq. (2.8). To begin, we shall ignore the
tiny ImA0/ReA0 ∼ O(10−5) dependence therein.4 This leaves us with the issue
of calculating Im M12. From the discussion of the ‘box’ hamiltonian Hbox

w given in
Sect. IX–1, we have

Im M12 = G2
F

3π2
F 2
KmKB̂KA

2λ6η̄

× [ηccm2
cH(xc)− ηttm2

t H (xt )A
2λ4(1− ρ̄)− ηctm2

cḠ(xc, xt )
]
. (3.2)

Some CKM-related relations and definitions useful in obtaining the above form are

Re ξc = −λ
(

1− λ2

2

)
, Re ξt = −λ

(
1− λ2

2

)
A2λ4 (1− ρ̄) ,

Im ξc = −Im ξt = −ηA2λ5,

ρ̄ ≡ ρ

(
1− λ2

2

)
, η̄ ≡ η

(
1− λ2

2

)
.

From Eq. (2.8) and Eq. (3.2), we obtain the Standard Model prediction,

|ε|SM = G2
F

3
√

2π2

F 2
KmKB̂KA

2λ6η̄

�mK

× [ηccm2
c − ηttm2

t H (xt )A
2λ4(1− ρ̄)− ηctm2

cḠ(xc, xt )
]
, (3.3)

roughly in accord with the experimental value, given the uncertainties in several of
the above factors, when lattice determinations of the B̂K parameter are used.

Analysis of |ε′|
The importance of ε′ lies in the fact that it proves that CP violation also occurs
in the direct �S= 1 weak transition, which is a hallmark of the Standard Model’s
pattern of CP breaking. For this process, the CP-violating phases from the CKM
elements can occur only in loop diagrams, and these appear in the penguin diagram
and in the electroweak penguin process in which the gluon is replaced by a photon
or a Z0 boson, as shown in Fig. IX–4. At first sight, it appears surprising that the
electroweak penguin plays any significant role, as it is suppressed by a power of α
compared to the gluonic penguin. However, recall from Eq. (2.8), that ε′ measures
the relative phase difference of the K → ππ amplitudes A0 and A2

|ε′| = ω√
2

∣∣∣∣ ImA2

ReA2
− ImA0

ReA0

∣∣∣∣ � 0.032

∣∣∣∣ ImA2

ReA2
− ImA0

ReA0

∣∣∣∣ . (3.4)

4 Besides, the combination ImA0/ReA0 also contributes to ε′ (as seen in Eq. (2.8)) and since |ε′| � |ε|, the
contribution of this ratio to ε is presumably ignorable.
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The gluonic penguin only contributes an imaginary part to A0 because its effect
is purely �I = 1/2. The electroweak penguin involves an extra factor of the elec-
tric charge Q= 1

2λ3 + 1
2
√

3
λ8, which means that the corresponding operator has

both �I = 1/2, 3/2 components and can contribute an imaginary part to A2.
Because the real part of A2 is much smaller than that of A0, by a factor of ω ≡
ReA2/ReA0 ∼ 1/22, the effect of the electroweak penguin is enhanced by the
small denominator. However, while both diagrams make important contributions,
it does appear that the gluonic penguin is the larger effect.

The ingredients to ε′ can be expressed numerically [CiFMRS 95] at the scale
μ= 2 GeV in the MS–NDR scheme as

ε′

ε
= 2 · 10−3

(
Im (V ∗tdVts)

1.3× 10−3

) [
2.0 GeV−3〈(ππ)I=0 |O6|K0〉2 GeV(1−�IB)

− 0.5 GeV−3〈(ππ)I=2 |O8|K0〉2 GeV − 0.06
]
. (3.5)

Here, we see the primary dependence of the gluonic penquin effect in the matrix
elements of the penguin operator O6, while the electroweak-penguin (EWP here-
after) operator isO8. These operators refer back to the decomposition of Eq. (VIII–
3.31). The factor �IB describes isospin breaking.

As we mentioned in Sect. VIII–4, present lattice methods are able to calcu-
late the A2 amplitude with reasonable precision, while the isospin-zero final-state
amplitude A0 remains uncalculable. This means that the EWP contribution can be
obtained, with the result [Bl et al. 12]

Re

(
ε′

ε

)
EWP

= −(6.25± 0.44stat ± 1.19syst)× 10−4, (3.6)

which has the opposite sign from the experimental result and is about one third
the magnitude. A chiral analysis that we will describe shortly agrees with this.
This implies that the phase due to the gluonic penguin ImA0/ReA0 must be the
larger effect and must have the same sign as the experimental determination. This
seems reasonable in estimates which have been made, as discussed in [CiENPP 12].
However, it means that we do not yet have a precise prediction for ε′ within the
Standard Model.

Chiral analysis of (ε′/ε)EWP

The chiral symmetry approach to low-energy hadron dynamics emphasized earlier
in this book can be used to analyze the electroweak-penguin contribution to ε′/ε in
the chiral limit.
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lim
p=0

〈(ππ)I=2 |O8|K0〉μ = − 2

F
(0)
π

[
1

3
〈0|Q1|0〉μ + 1

2
〈0|Q8|0〉μ

]
� − 1

F
(0)
π

〈0|Q8|0〉μ (3.7a)

where Q8 is the four-quark operator

Q8 ≡ q̄γ μλa
τ3

2
qq̄γμλ

a τ3

2
q − q̄γ μγ5λ

a τ3

2
qq̄γμγ5λ

a τ3

2
q, (3.7b)

and, for notational simplicity, we have suppressed dependence on a second four-
quark operator 〈0|Q1|0〉μ since 〈0|Q8|0〉μ 
 〈0|Q1|0〉μ [CiDGM 01].5 This rela-
tion can be found either by constructing effective lagrangians or by use of the
soft-pion theorem of App. B–3.

Thus, a chiral estimate of the EWP part of ε′/ε amounts to determining the
vacuum matrix element of Q8. It turns out that such information is obtainable from
the large Q2 behavior of V − A correlators measured in τ decay (cf. Sect. V–3),

��(Q2) ≡ (�V,3 −�A,3
)
(Q2). (3.8)

The operator-product expansion (OPE) reveals that ��(Q2) obeys the asymptotic
behavior

��(Q2) ∼ 1

Q6

[
a6(μ)+ b6(μ) ln

Q2

μ2

]
+O(Q−8), (3.9a)

where, from a two-loop study [CiDGM 01], we have

a6(μ) = 2π〈0|αsQ8|0〉μ + 25

4
〈0|α2

sQ8|0〉μ + · · · ,
b6(μ) = −〈0|α2

sQ8|0〉μ + · · · , (3.9b)

where the ellipses represent higher-order terms in the OPE. Thus, the needed infor-
mation (i.e. 〈0|Q8|0〉μ) is contained in the large energy component of��(Q2), but
how can we access it? This problem has been solved in two different papers, which
use two alternative approaches. In the first of these [CiDGM 01], one employs sum
rules like

〈0|Q8|0〉μ =
∫ ∞

0
ds s2 μ2

s + μ2
�ρ(s)+ · · · , (3.10)

where the ellipses denote contributions from d > 6 terms in the OPE. This approach
yields a determination

[
ε′/ε

](0)
EWP = (−22± 7)× 10−4, having a 32% uncertainty.

The superscript indicates working in the chiral limit of massless u, d, s quarks. A
second method [CiGM 03], which analyzes tau decay spectral functions by using a
finite-energy sum rule (FESR), leads to

[
ε′/ε

](0)
EWP = (−15.0± 2.7)×10−4, having

5 The effect of 〈0|Q1|0〉μ is, of course, included in the full analysis of [CiDGM 01].
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an 18% percent uncertainty. Upon including chiral corrections, the physical result[
ε′/ε

]
EWP = (−11.0± 3.6) × 10−4 is obtained. Together with the lattice evalua-

tion quoted in Eq. (3.6), these evaluations firmly imply that
[
ε′/ε

]
EWP < 0 and

that the QCD penguin effect must be large and positive in order to reproduce the
experimental value for ε′/ε of Eq. (2.11).

IX–4 The strong CP problem

The possibility of a θ term in the QCD lagrangian raises potential problems (see
Sect. III–5). For θ �= 0, QCD will in general violate parity and, even worse, time-
reversal invariance. The strength of T violation (and hence, by the CPT theorem,
CP violation) is known to be small, even by the standards of the weak interaction.
This knowledge comes from both the observed KL → 2π decay and bounds on
electric dipole moments. From these it becomes clear that QCD must be T invari-
ant to a very high degree. However, there is nothing within the Standard Model
which would force the θ parameter to be small; indeed, it is a free parameter lying
in the range 0 ≤ θ ≤ 2π . The puzzle of why θ � 0 in Nature is called the strong
CP problem.

One is tempted to resolve the issue with an easy remedy first. If QCD were the
only ingredient in our theory, we could remove the strong CP problem by impos-
ing an additional discrete symmetry on theQCD lagrangian, the discrete symmetry
being CP itself. This wouldn’t really explain anything but would at least reduce a
continuous problem to a discrete choice. In reality, this will not work for the full
Standard Model since, as we have seen, the electroweak sector inherently violates
CP. It would thus be improper to impose CP invariance upon the full lagrangian.
Moreover, even if one could set θbare= 0 inQCD, electroweak radiative corrections
would generate a nonzero value. These turn out to occur only at high orders of per-
turbation theory, and are expected to be divergent by power-counting arguments,
although they have not been explicitly calculated. This divergence is not a funda-
mental problem because one could simply absorb θbare plus the divergence into a
definition of a renormalized parameter θren, which could be inferred from experi-
ment. However, we are then back to an arbitrary value of θren and to the problem of
why θren is small.

The parameter θ̄

The situation is actually worse than this in the full Standard Model, as the quark
mass matrix can itself shift the value of θ by an unknown amount. Recall that
CP violation in the Standard Model arises from the Yukawa couplings between
the Higgs doublet and the fermions. When the Higgs field picks up a vacuum
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expectation value, these couplings produce mass matrices for the quarks, which
are neither diagonal nor CP-invariant. The mass matrices are diagonalized by sep-
arate left-handed and right-handed transformations, and CP violation is shifted to
the weak mixing matrix. However, because different left-handed and right-handed
rotations are generally required, one encounters an axial U(1) rotation in this
transformation to the quark mass eigenstates and, as discussed in Sect. III–5, this
produces a shift in the value of θ . Let us determine the magnitude of this shift.
Denoting by primes the original quark basis, one has the transformation to mass
eigenstates given by (cf. Eqs. II–4.5,4.6)

m = S
†
Lm′SR, ψL = S

†
Lψ

′
L, ψR = S

†
Rψ

′
R. (4.1)

Here, we have combined the u and d mass matrices into a single mass matrix.
Expressing SL,R as products of U(1) and SU(N) factors,

SL = eiϕLSL, SR = eiϕRSR, (4.2)

with SL, SR in SU(N), one obtains an axial U(1) transformation angle of ϕR −
ϕL. From the discussion of Sect. III–5, this is seen to lead to a change in the θ
parameter,

θ → θ = θ + 2Nf (ϕL − ϕR) , (4.3)

where Nf = 6 for the three-generation Standard Model. However, noting that the
final mass matrix m is purely real, we have

arg(det m) = 0 = arg
(

det S†
L det m′ det SR

)
= arg

(
det S†

L

)
+ arg

(
det m′)+ arg (det SR)

= 2N (ϕR − ϕL)+ arg
(
det m′) , (4.4)

where we have used the SU(N) property, det SR = det SL= 1. The resultant θ
parameter is then

θ = θ + arg
(
det m′) , (4.5)

with m′ being the original nondiagonal mass matrix. The real strong CP problem
is to understand why θ is small.

One possible solution to the strong CP problem occurs if one of the quark masses
vanishes. In this case, the ability to shift θ by an axial transformation would allow
one to remove the effect of θ by performing an axial phase transformation on the
massless quark. Equivalently stated, any effect of θ must vanish if any quark mass
vanishes. Unfortunately, phenomenology does not favor this solution. The u quark
is the lightest, but a value mu �= 0 is favored.
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Connections with the neutron electric dipole moment

The θ term is not the source of the observed CP violation in K decays. This can
be seen because it occurs in a �S= 0 operator, and while this may ultimately
generate effects in �S= 1 processes, its influence is stronger in the �S= 0 sector.
In particular, it generates an electric dipole moment de for the neutron. Since no
such dipole moment has been detected, one can obtain a bound on the magnitude
of θ .

To determine the effect of θ̄ , it is most convenient to use a chiral rotation to shift
the θ dependence back into the quark mass matrix. A small axial transformation
produces the modified mass matrix

Lmass = ψ̄

⎛⎝mu

md

ms

⎞⎠ψ + iηψ̄T γ5ψ ≡ ψ̄LM̃ψR + ψ̄RM̃†ψL, (4.6)

where η is a small parameter proportional to θ having units of mass, and T is
a 3 × 3 hermitian matrix. Consistency requires T to be proportional to the unit
matrix. If this were not the case, and instead we wrote T ≡ 1+λiTi/2, the effective
lagrangian would start out with a term linear in the meson fields,

Leff ∼ iη Tr
(
T U † − UT †

) = 2
η

Fπ
(T3π0 + T8η8 + · · · ) , (4.7)

rather than the usual quadratic dependence. The vacuum would then be unstable
because it could lower its energy by producing nonzero values of, say, the π0

field. Thus, to incorporate θ-dependence without disturbing vacuum stability, one
chooses T = 1. The act of rotating away any dependence on θ produces a nonzero
value of arg(det M̃), and also determines η,

θ = arg(det M̃) = arg [(mu + iη) (md + iη) (ms + iη)] ,
η � θ

mumdms

mumd +mums +mdms

(for small η), (4.8)

such that the mass terms become

Lmass = muūu+mdd̄d +mss̄s

+ iθ mdmdms

mumd +mums +mdms

(
ūγ5u+ d̄γ5d + s̄γ5s

)
. (4.9)

The last term is the CP-violating operator of the QCD sector. Note that, as
expected, θ vanishes if any quark is massless.
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A nonzero neutron electric dipole moment de requires both the action of the
above CP-odd operator and that of the electromagnetic current,

deū(p′)σμνqνγ5u(p ) =
∑
I

〈n(p′) ∣∣LCP-odd
mass

∣∣ I 〉 1

En − EI 〈I
∣∣J em
μ

∣∣ n(p )〉, (4.10)

where q =p′ − p and we have inserted a complete set of intermediate states {I } in
the neutron-to-neutron matrix element. For intermediate baryon states, the matrix
elements of ψ̄γ5ψ are dimensionless numbers of order unity and magnetic moment
effects are of order the nucleon magneton, μn. Thus, we find for de,

de � θ
mumdms

mumd +mums +mdms

eμn

�M
, (4.11)

where �M is some typical energy denominator. Using �M = 300 MeV, we obtain

de ∼ θ × 10−15 e-cm. (4.12)

Far more sophisticated methods have been used to calculate this, with results that
have a spread of values [EnRV 13]. Our simple estimate is near the average. In
explicit calculations, some subtlety is required because one must be sure that the
evaluation correctly represents the U(1)A behavior of the theory. However, the
precise value is not too important; the significant fact is that bounds on de<∼3 ×
10−26 e-cm require θ to be tiny, θ <∼10−11.

The strong CP problem does not have a good resolution within the Standard
Model. It would appear that the abnormally small value of θ , and of the cosmo-
logical constant as well, are indications that more physics is required beyond that
contained in the Standard Model.

Problems

(1) Strangeness gauge invariance
(a) Physics must be invariant under a global strangeness transformation |M〉 →

exp(iλS)|M〉, where λ is arbitrary. Explain why this is the case.
(b) Demonstrate that such a transformation has the effect

ImAI

ReAI
→ ImAI

ReAI
+ λ, ImM12

ReM12
→ ImM12

ReM12
− 2λ,

as claimed in Eq. (2.10), and that, while unphysical quantities such as ε̄, ξ0

are affected by such a change, physical parameters such as ε, ε′ are not.
(2) Neutral kaon mass matrices and CPT invariance

Some of the ideas discussed in this chapter can be addressed in terms of simple
models of the neutral kaon mass matrix M which appears in Eq. (1.2).
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(a) Consider the following CP-conserving parameterization as defined in the
(K0, K̄0) basis:

M0 =
(
m0 �

� m0

)
,

where � is real-valued. Determine the basis states (K−,K+) in which
M0 → M± becomes diagonal and obtain numerical values for m0, �.

(b) Working in the (K−,K+) basis, extend the model of (a) to allow for CP
violation by introducing a real-valued parameter δ,

M± =
(
m− 0
0 m+

)
→ M±′ =

(
m− −iδ
iδ m+

)
,

and assume there is no direct CP violation. This mass matrix corresponds
to the superweak (SW ) model. By expressing M±′ in the (K0, K̄0) basis,
use the analysis of Sects. IX–1,2 to predict ϕ(SW)

ε ≡ phase ε and determine
δ from the measured value of |ε|.

(c) Finally, extend the model in (b) to

M±′′ =
(
m− χ

χ∗ m+

)
,

where Re χ is a T -conserving, CP-violating, and CPT-violating parameter.
Show that the states which diagonalize M±′′ are

|KS〉 � |K+〉 − χ

D |K−〉,

|KL〉 � |K−〉 + χ∗

D |K+〉,
where D ≡ (mL−mS)/2+ i�S/4. Then evaluate η+− and η00, allowing for
the presence of direct CP violation (i.e. ε′ �= 0), and derive the following
relation between phases,

|χ |
(

2

3
ϕ+− + 1

3
ϕ00 − ϕ(SW)

ε

)
= 1

2mK0
· |mK

0 −mK0 |
mL −mS

sinϕ(SW)
ε .

The result |m
K

0−mK0 |/mK0 < 5×10−18, which follows from this relation,
is the best existing limit on CPT invariance.
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The N−1
c expansion

The N−1
c expansion is an attempt to create a perturbative framework for QCD

where none exists otherwise. One extrapolates from the physical value for the
number of colors, Nc = 3, to the limit Nc → ∞ while scaling the QCD cou-
pling constant so that g2

3Nc is kept fixed [’tH 74]. The amplitudes in the theory are
then analyzed in powers of N−1

c . The hope is that the Nc → ∞ world bears suffi-
cient resemblance to the real world to yield significant dynamical insights. There
is no magical process which makes the Nc → ∞ theory analytically trivial; non-
linearities of the nonabelian gauge interactions are present, and the theory is still
not solvable. However any consistent approximation scheme for QCD is welcome,
and the large Nc expansion is especially useful for organizing one’s thoughts in the
analysis of hadronic processes.

X–1 The nature of the large Nc limit

In passing from SU(3) to SU(Nc), the quark and gluon representations, originally
3 and 8, become Nc and N2

c − 1 respectively. The analysis of Feynman graphs at
large Nc is simplified by modifying the notation used to describe gluons. As usual,
quarks carry a color label j , with j = 1, 2, . . . , Nc. Gluons can be described by
two such labels, i.e.

A a
μ → A k

μj (A
j

μj = 0), (1.1)

where a = 1, . . . , N2
c − 1 and j, k = 1, . . . , Nc. In doing so, no approximation

is being made. The new notation is simply an embodiment of the group product
Nc × Nc → (N2

c − 1)⊕ 1. The quark–gluon coupling is then written

g3ψ̄
jγ μψkA

k
μj , (1.2)

278
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(a) (b) (c)

(d) (e)

Fig. X–1 Double-line notation: (a) quark and (b) gluon propagators, (c) quark–
gluon, (d) three-gluon, and (e) four-gluon vertices.

and the gluon propagator is∫
d4x eiq·x〈0 ∣∣T (A i

μj (x)A
k
νl(0)

)∣∣ 0〉 = (δil δkj −N−1
c δij δ

k
l

)
iDμν(q). (1.3)

The term proportional to N−1
c must be present to ensure that the color singlet com-

bination vanishes, A j

μj = 0. However, as long as we avoid the color-singlet chan-
nel, this term will be suppressed in the large Nc limit and may be dropped when
working to leading order.

Using this new notation, the Feynman diagrams for propagators and vertices are
displayed in Fig. X–1. A solid line is drawn for each color index, and each gluon
is treated as if it were a quark–antiquark pair (as far as color is concerned). In this
double-line notation, certain rules which are obeyed by amplitudes to leading order
in 1/Nc emerge in an obvious manner. Although general topological arguments
exist, we shall review these rules by examining the behavior of specific graphs. The
power of Feynman diagrams to build intuition is rather compelling in this case.

We consider first the familiar quark and gluon propagators. The quark propaga-
tor, unadorned by higher-order corrections, is O(1) in theNc →∞ limit. Fig. X–2
depicts two radiative corrections. Fig. X–2(a), the one-gluon loop, is O(1) in pow-
ers of Nc because the suppression from the squared coupling g2

3 is compensated
for by the single closed loop, which corresponds to a sum over a free color index
and thus contributes a factor of Nc. The graph then is of order g2

3Nc, which is taken
to be constant. The graph Fig. X–2(b) with overlapping gluon loops is O(N−2

c )

because, with no free color loops, it is of order g4
3 =

(
g2

3Nc

)2
N−2
c ∼ N−2

c . The
terms planar and nonplanar are used, respectively, to describe Figs. X–2(a),(b),
because the latter cannot be drawn in the plane without at least some internal lines
crossing each other.

Four distinct contributions to the gluon propagator are exhibited in Fig. X–3.
Figs. X–3(a),(b) depict in double line notation the quark–antiquark and two-gluon

(a) (b)

Fig. X–2 Radiative corrections to the quark propagator: (a) planar, (b) nonplanar.
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(a) (b) (c) (d)

Fig. X–3 Various radiative corrections to the gluon propagator.

loop contributions. It should be obvious from the above discussion that these are
respectively O(N−1

c ) and O(1). A new diagram, involving the three-gluon cou-
pling, appears in Fig. X–3(c). With three color loops and six vertices, it is of order(
g2

3Nc

)3 = O(1). Figure X–3(d) is a nonplanar process with six vertices and one
color sum, and is thus O(N−2

c ).
The discussion of the gluon propagator indicates why we constrain g2

3Nc to be
fixed when taking the large Nc limit. The beta function of QCD is determined to
leading order by Figs. X–3(a),(b). If g2

3 were held fixed, the beta function would
become infinite in the large Nc limit, leading to the immediate onset of asymptotic
freedom. The choice g2

3Nc ∼ constant leads to a running coupling constant and is
compatible with the behavior for the realistic case of Nc = 3.

To summarize, there are several rules which can be abstracted from examples
such as these: (i) the leading-order contributions are planar diagrams containing
the minimum number of quark loops; (ii) each internal quark loop is suppressed
by a factor of N−1

c ; and (iii) nonplanar diagrams are suppressed by factors of N−2
c .

The suppressions in rules (ii), (iii) are combinatorial in origin. Quark loops and
nonplanarities each limit the number of color-bearing intermediate states, and con-
sequently cost factors of N−1

c .

X–2 Spectroscopy in the large Nc limit

In order for the large Nc limit to be relevant to the real world, it must be assumed
that confinement of color-singlet states continues to hold. In this case, we expect
the particle spectrum to continue to be divided into mesons and baryons. Let us
treat the mesons first.

One can form color-singlet meson contributions fromQQ̄ pairs. To form a color
singlet, one must sum over the quark colors. In order to produce a properly nor-
malized QQ̄ state one must therefore include a normalization factor of N−1/2

c into
each QQ̄ meson wavefunction, such that∣∣Q(α)Q̄(β)〉 color

singlet
∼ 1√

Nc

b
(α)†
i d

(β)†
i |0〉, (2.1)

where α, β are flavor labels, i = 1, . . . , Nc is the color label, and b† (d†) are
the quark (antiquark) creation operators. Meson propagators, as represented in
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M M

(a) (b)

M MXXXX

Fig. X–4 Mesons in the double line notation.

Fig. X–4(a), are then O(1) in Nc since the factors of (N−1/2
c )2 from the normaliza-

tion of the wavefunction are compensated by a factor of Nc from the quark loop.
This leads to the prediction that meson masses are of O(1) in the large Nc limit,
i.e., they remain close to their physical values. Multiquark intermediate states, as in
Fig. X–4(b), are suppressed by 1/Nc, indicating a suppression of mixing between
QQ̄ and Q2Q̄2 sectors. That is, large Nc plus confinement implies the existence of
QQ̄ mesons which contain an arbitrary amount of glue in their wavefunction, but
which do not mix with Q2Q̄2 states.

The quark content of a given hadron remains an issue of some theoretical and
phenomenological interest. Several examples are given in Sect. XIII–4 of hadron
states which are thought to be ‘nonconventional’. One such is the σ hadron, which
is the lightest resonance found in ππ scattering. Analysis has yielded insight as to
the Nc dependence of the σ mass (cf. Eq. (XIII–4.7)). We reserve further comment
on this interesting topic to Chap. XIII.

What about the decay widths of QQ̄ mesons? The decay amplitude is pictured
in Fig. X–5 (other possibilities involve the suppressed quark loops). This diagram
contains three meson wavefunctions and one quark loop and hence is of order
(N

−1/2
c )3Nc = N

−1/2
c in amplitude or N−1

c in rate. The large Nc limit thus involves
narrow resonances, i.e., �/M → 0, where � is the meson decay width and M is
the meson mass. This is reasonably similar to the real world, where most of the
observed resonances have �/M ∼ 0.1–0.2 [RPP 12].

Color-singlet gluonic states, called glueballs, may also exist. The normalization
of a glueball state can be fixed by means of the following argument. Suppose, as
will be defined in a gauge-invariant manner in Sect. XIII–4, that a neutral meson
can be created from two gluons. Then in normalizing this configuration, one must
sum over the N2

c gluon color labels. As a consequence, a normalization factor N−1
c

is associated with each glueball state. Glueball propagators also emerge as being
O(1). There is no physical distinction between two-gluon states, three-gluon states,

M1

M2

M3X

X

X

Fig. X–5 Strong interaction decay of a QQ̄ meson.
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M1

M3

M2 M1
M3

M4

(b)

M2M4

XX

X X X

X

X

X

(a)

Fig. X–6 Meson–meson scattering.

etc., because all are mixed with each other by the strong interaction. As a result,
there need not be any simple association between a specific physical state and
gluon number, and thus the concept of a ‘constituent gluon’ need not be inferred.
In glueball decays, however, one must distinguish between glueballs decaying to
other glueballs, and those decaying to QQ̄ mesons. Where kinematically allowed,
the decay of glueballs to glueballs is O(1), while that to QQ̄ states is O (1/Nc).
The lowest-lying glueball(s) will then be narrow, while those above the threshold
for decay into two glueballs will be of standard, nonsuppressed width.

Meson–meson scattering amplitudes are also restricted by large Nc counting
rules. Consider the diagrams of Fig. X–6. That of Fig. X–6(a) is of order (N−1/2

c )4

Nc ∼ N−1
c , whereas Fig. X–6(b) is O(N−2

c ) because of the extra quark loop. The
scattering amplitudes thus vanish in the large Nc limit, and the leading contribu-
tions are connected, planar diagrams.

The large Nc limit also predicts that neutral mesons (i.e., Q(α)Q̄(β) composites
with α = β) do not mix with each other. The possible mixing diagram is given
in Fig. X–7, and includes any number of gluons. However, because of the extra
quark loop, it is of order N−1

c , and thus vanishes in the infinite color limit. This
means that uū states do not mix with dd̄ or s̄s, nor do the latter two mix. The large
Nc spectrum thus displays a nonet structure with the uū and dd̄ states degenerate
(to the extent that electromagnetism and the mass difference between the u and d
quarks are neglected) and the ss̄ states somewhat heavier. This pattern is reflected
in Nature, except that the uu and dd configurations now appear as states of definite
isospin, uu ± dd. For example, let us consider the JPC = 1−−, 2++ mesons.
For the former, ρ(770) and ω(783) are interpreted as uū, dd̄ isospin I = 1 and
I = 0 combinations, while ϕ(1020) is the ss̄ member of the nonet. Including the
K∗(892) doublet as the ūs, d̄s combinations, a simple additivity in the quark mass
would imply

M MXX

Fig. X–7 Meson–meson mixing.
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mϕ(1020) −mρ(770) = 2
(
mK∗(892) −mρ(770)

)
, (2.2)

which works well. A similar treatment of the 2++ mesons, identifying a2(1320)
and f2(1270) as the corresponding uū, dd̄ states and f ′2(1525) as an ss̄ composite,
predicts

mf ′2(1525) −ma2(1320) = 2
(
mK∗2 (1430) −ma2(1320)

)
, (2.3)

which is also approximately satisfied. The fact that ρ(770), ω(783), f2(1270) and
a2(1320) decay primarily to pions, and ϕ(1020) and f ′2(1525) decay primarily to
kaons, reinforces this interpretation.

The world of baryons in the large Nc limit is quite different from that of mesons
and glueballs [DaJM 94, Je 98]. In order to form a color singlet, one needs to
combine not three quarks but rather Nc quarks in a totally color-antisymmetric
fashion. This forces the baryon mass to grow asNc, i.e., to become infinitely heavy
in the Nc → ∞ limit. In an attempt to model this behavior, it has been suggested
that baryons can be associated with the soliton solution, called the Skyrmion, of a
certain chiral lagrangian [Sk 61, Wi 83b]. We shall discuss this idea in Sect. XI–4
in the context of a model with SU(2)L × SU(2)R symmetry.

X–3 Goldstone bosons and the axial anomaly

As stated in the previous section, it must be assumed that color confinement con-
tinues to hold in the large Nc limit. Given this behavior, it can be proven under
reasonable conditions that chiral symmetry is spontaneously broken [CoW 80]. In
this circumstance, the large Nc limit turns out to imply a fascinating unity between
the η′(960) meson and the octet of Goldstone bosons in massless QCD [Wi 79].
The Nc = ∞ analog of η′(960) is also a Goldstone boson if quarks are massless.

In order to see this, let us first consider the pseudoscalar decay constants. Because
the axial-current matrix elements〈

Pj(q)
∣∣Aμk (0)∣∣ 0〉 = −iFjqμδjk (3.1)

involve one meson normalization factor and one quark loop, they are of order
(N

−1/2
c )Nc ∼ N

1/2
c , which then implies Fj = O(N1/2

c ). Now consider the cur-
rent divergence in the limit of massless quarks. In general, we have〈

Pj(q)
∣∣∂μAμk (0)∣∣ 0〉 = Fjm

2
j δjk. (3.2)

For the octet of currents, the divergence vanishes for zero quark mass, and as usual
leads to the identification of π ,K , η8 as Goldstone bosons. However, for the singlet
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current the anomaly is present. Even in the limit of vanishing quark mass, the
current divergence has nonzero matrix elements, in particular,〈

η0(q)
∣∣∂μAμ0 (0)∣∣ 0〉 = Fη0m2

η0 =
〈
η0(q)

∣∣∣∣ 3g2
3

32π2
Fa
μνF̃

aμν

∣∣∣∣ 0〉 . (3.3)

If one repeats the calculation of the anomalous triangle diagram as in Sect. III–3 but
now allows Nc to be arbitrary, one sees that it is proportional to Tr

(
λaλb

) = 2δab

and is therefore independent of Nc. However, by using large Nc-counting rules, the
matrix element in Eq. (3.3) is seen to be of order g2

3N
1/2
c ∼N−1/2

c .1 This implies
that the gluonic contribution to the axial anomaly vanishes in the large Nc limit.
When we take into account the behavior of Fη′ , we conclude that m2

η′ ∼ 1/Nc→ 0.
The η′ is thus massless in the large Nc limit, and we end up with a nonet of
Goldstone bosons.

To illustrate what happens when the number of colors is treated perturbatively,
let us consider the 1/Nc corrections to the meson spectrum together with the effects
of quark masses. If we first add quark masses, we have, in analogy with the results
of Sect. VII–1, the mass matrix

m2
ij =

〈
Pi
∣∣m̂(ūu+ d̄d)+mss̄s

∣∣Pj 〉 , (3.4)

where we have taken mu = md = m̂. This leads to a squared-mass matrix

m2 = B0

⎛⎜⎜⎜⎜⎜⎝
2m̂ 0 0 0

0 ms + m̂ 0 0

0 0 2
3(2ms + m̂) 2

√
2

3 (m̂−ms)

0 0 2
√

2
3 (m̂−ms)

2
3(ms + 2m̂)

⎞⎟⎟⎟⎟⎟⎠ (3.5)

in the basis (π,K, η8, η0). If this were diagonalized, one would find an isoscalar
state degenerate with the pion. This is a manifestation of the U(1) problem, which
arises when there is no anomaly. However, at the next order in large Nc, the matrix
picks up an extra contribution in the SU(3)-singlet channel due to the anomaly,
yielding

m2 = B0

⎛⎜⎜⎜⎜⎜⎜⎝
2m̂ 0 0 0

0 ms + m̂ 0 0

0 0 2
3(2ms + m̂) 2

√
2

3 (m̂−ms)

0 0 2
√

2
3 (m̂−ms)

2
3(ms + 2m̂)+ ε

NcB0

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.6)

1 This result depends on the assumption that topologically nontrivial aspects of vacuum structure are smooth in
the Nc →∞ limit.



X–4 The OZI rule 285

where ε = O(N0
c ). This mass matrix yields an interesting prediction. The quanti-

ties B0m̂ and B0ms are fixed as usual by using the π and K masses. Also the trace
of the full matrix must yieldm2

π+m2
K+m2

η+m2
η′ , which fixes ε = 2.16 GeV2. The

remaining diagonalization then predicts mη′ = 0.98 GeV, mη = 0.50 GeV with a
mixing angle of 18◦. This is a remarkably accurate representation of the situation
in the real world. Although ε/Nc is suppressed in a technical sense, note how large
it actually is. One is hard pressed to imagine any sense in which the physical η′

mass can be taken as a small parameter.

X–4 The OZI rule

In the 1960s, an empirical property, called the Okubo–Zweig–Iizuka (OZI) rule
[Ok 63, Zw 65, Ii 66], was developed for mesonic coupling constants. Its usual
statement is that flavor-disconnected processes are suppressed compared to those
in which quark lines are connected. In the language which we are using here, fla-
vor disconnected processes are those with an extra quark loop. Unfortunately, the
phenomenological and theoretical status of this so-called rule is ambiguous. We
briefly describe it here because it is part of the common lore of particle physics.

The empirical motivation for the OZI rule is best formulated in the decays of
mesons. Let us accept that ϕ(1020) and f ′2(1525) are primarily states with content
s̄s whereas ω(783) and f2(1270) have content

(
ūu+ d̄d) /√2. Mixing between

the s̄s and nonstrange components can take place with a small mixing angle, such
that

Amp (s̄s)

Amp
(
[ūu+ d̄d]/√2

) ≡ tan θ, (4.1)

with θ = θV for the vector mesons and θ = θT for the tensor mesons. In both
cases, θ is small. Experimentally, the ϕ and f ′2 decay dominantly into strange par-
ticles even though phase space (abbreviated as ‘p.s.’ below) considerations would
strongly favor nonstrange modes,

�ϕ→3π+ρπ
�ϕ→KK̄

� 0.18,
�ϕ→3π+ρπ
�ω→3π

� 0.09,

�f ′2→ππ

�f ′2→KK̄

= 0.012± 0.002
�f ′2→ππ

�f2→ππ

= 0.004± 0.001

� 0.003× p.s., � 0.002× p.s.

(4.2)

This suggests the hypothesis ‘s̄s states do not decay into final states not containing
strange quarks’. Diagrammatically this leads to a pictorial representation of the
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Fig. X–8 OZI (a) allowed, (b) forbidden amplitudes.

OZI rule, viz., the dominance of Fig. X–8(a) over Fig. X–8(b). Some scattering
processes also show such a suppression. For example, we have

σπ−p→ϕn

σπ−p→ωn

� 0.03, (4.3)

which can be interpreted as an OZI suppression. A stronger version of the OZI
rule would have the ϕ/ω and f ′2/f2 ratios equal to a universal factor of tan2 θ

(cf. Eq. (4.1)) once kinematic phase space factors are extracted.
The narrow widths of the J/ψ and ϒ states are also cited as evidence for the

OZI rule, since these hadronic decays involve the annihilation of the cc̄ or bb̄ con-
stituents. This can be correct almost as a matter of definition, but it is not very
enlightening. Indeed, the small widths of heavy-quark states can be understood
within the framework of perturbative QCD without invoking any extra dynamical
assumptions. However, perturbative QCD certainly cannot explain the OZI rule in
light mesons. It must have a different explanation for these states.

There actually exist several empirical indications counter to the OZI rule [Li 84,
ElGK 89, RPP 12]. Among the more dramatic examples of OZI-forbidden reac-
tions, expressed as ratios, are

�J/ψ→ϕπ+π−

�J/ψ→ϕK+K−
= 1.2± 0.5,

σγp→pϕπ+π−

σγp→pωK+K−
= 2.0± 0.7,

σπ−p→f ′2n

σπ−p→f2 n

= 0.23+0.14
−0.13,

σγp→pϕπ+π−

σγp→pϕK+K−
≥ 5 (90% C.L.).

(4.4)

The universal-mixing model is incorrect more often than not, with counterexamples
being

�J/ψ→ϕπ+π−

�J/ψ→ωπ+π−
= 0.11± 0.02,

σγp→pϕπ+π−

σγp→pωπ+π−
= 0.10± 0.02,

σp̄p→f ′2π+π−

σp̄p→f2π
+π−

= 0.029+0.011
−0.007,

(4.5)

instead of the values 0.03, 0.03, and 0.006 expected from the previous ratios. The
empirical η–η′ mixing angle θη−η′ � −20◦ also violates the OZI rule, which would
require a mixing angle of −35◦.
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There is also an intrinsic logical flaw with the simplest formulation of the OZI
rule. This is because OZI-forbidden processes can take place as the product of
two OZI-allowed processes. For example, each of the following transitions is OZI-
allowed:

f ′2 → KK̄, KK̄ → ππ,

f ′2 → ηη, ηη→ ππ.
(4.6)

Hence the OZI-forbidden reaction f ′2 → ππ can take place by the chains

f ′2 → KK̄ → ππ, f ′2 → ηη→ ππ. (4.7)

These two-step processes are in fact required by unitarity to the extent that the
individual scattering amplitudes are nonzero.

The large Nc limit provides the only known dynamical explanation of the OZI
rule at low energies. Although the gluonic coupling constant is not small at these
scales and suppressed diagrams have ample energy to proceed, they are predicted
to be of order 1/N2

c in rate because of the extra quark loop. Yet large Nc arguments
need not suggest a universal suppression factor of tan2 θ , because there is no need
for the 1/Nc corrections to be universal. Note that the large Nc framework also
forbids the mixing of η and η′ and, more generally, the scattering of mesons.

Thus, the OZI rule in light-meson systems remains somewhat heuristic. It has
a partial justification in large Nc counting rules, but it also has known violations.
It is not possible to predict with certainty whether it will work in any given new
application.

X–5 Chiral lagrangians

The large Nc limit places restrictions on the structure of chiral lagrangians
[GaL 85a]. To describe these, we must first allow for an enlarged number Nf > 3
of quark flavors. The three-flavor O(E4) lagrangian is expanded as

L4 =
10∑
i=1

LiOi, (5.1)

where the {Oi} can be read off from Eq. (VII–2.7). Recall that in constructing L4,
we removed the O(E4) operator

O0 ≡ Tr
(
DμUDνU

†DμUDνU †
)
, (5.2)

because for Nf = 3 it is expressible (cf. Eq. (VII–2.3)) as a linear combination of
O1,2,3. However, if the number of flavors exceeds three, one must append O0 to the
lagrangian of Eq. (5.1),
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L4 =
10∑
i=1

LiOi −→
Nf>3

3∑
i=0

BiOi +
10∑
i=4

LiOi. (5.3)

In view of the linear dependence of O0 on O1,2,3, note that we have needed to
modify the coefficients L1,2,3 → B1,2,3. Upon returning to three flavors, we regain
the original coefficients,

L1 = B0

2
+ B1, L2 = B0 + B2, L3 = −2B0 + B3. (5.4)

We can now study the largeNc behavior of the extended O(E4) chiral lagrangian.
The distinguishing feature is the number of traces in a given O(E4) operator. Each
such trace is taken over flavor indices and amounts to a sum over the quark flavors,
which in turn can arise only in a quark loop. In particular, those operators with two
flavor traces (O1,2,4,6,7) will require at least two quark loops, while those with one
flavor trace need only one quark loop. However, our study of the large Nc limit
has taught us that every quark loop leads to a 1/Nc suppression. Thus, the O(E4)

chiral contributions having two traces will be suppressed relative to those with one
trace by a power of 1/Nc, and provided B3 �= 0 we can write2

B1

B3
= B2

B3
= L4

L3
= L6

B3
−→
Nc→∞

0. (5.5a)

Alternatively, this Nc-counting rule implies (provided B0/B3 �= 1/2) for the {Bi}
coefficients of flavor SU(3),

2L1 − L2

L3
= L4

L3
= L6

L3
= O(N−1

c ). (5.5b)

The overall power of Nc for the remaining terms can be found by noting that the
ππ scattering amplitude should be of order N−1

c , implying L1,2,3 = O(Nc).
The only exception to the above counting behavior is the operator with coef-

ficient L7. This exception occurs because the operator can be generated by an η′

pole, and the η′ mass-squared is O (1/Nc). In particular, the coefficient of this term
is absolutely predicted in the largeNc limit. This follows if we include the largeNc

result for mixing between η and η′ shown in Eq. (3.6) as a chiral lagrangian

Lηη′ = Fπ

2
√

6
η0 Tr

(
χ†U − U †χ

)
, (5.6)

which when expanded to order η0η8 will yield the off-diagonal term in the mass
mixing matrix of Eq. (3.6). Integrating out the η0 ∼ η′ leads to the effective
lagrangian

2 The operator O7 presents a special case and is discussed below.
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Leff = − 1

48

F 2
π

m2
η′

[
Tr
(
χ†U − U †χ

)]2
. (5.7)

It is the factor of m−2
η′ which overcomes the counting rules. Although the dou-

ble trace suggests that this operator is suppressed in the large Nc limit, we have
m−2
η′ ∝ Nc. Thus, at least formally, an extra enhancement would be predicted.
The large Nc limit then predicts the following ordering of the chiral coefficients

in L4:

L7 = O(N2
c ),

L1, L2, L3, L5, L8, L9, L10 = O(Nc),

2L1 − L2, L4, L6 = O (1) . (5.8)

An existing empirical test involves the occurrence of 2L1 − L2 in K → ππeν̄e

decays [Bi 90, RiGDH 91], and the prediction works quite well. The large Nc

enhancement of L7 is probably just a curiosity in that the physical value of the η′

mass is not small compared to other masses in the theory, and hence the technical
advantage of m2

η′ ∝ N−1
c is probably not useful phenomenologically.

Problems

(1) The large Nc weak hamiltonian

Retrace the calculation of the QCD renormalization of the weak nonleptonic
hamiltonian described in Sect. VIII–3, but now in the limit Nc → ∞ with
g2

3Nc fixed. Show that the penguin operators do not enter and that all short-
distance effects are of orderN−1

c , with the operator-product coefficients c1= 1,
c2 = 1/5, c3 = 2/15, c4 = 2/3, c5 = c6 = 0.

(2) The strong CP problem in the large Nc limit

In the large Nc limit, the η0 can be united with the Goldstone octet in the
effective lagrangian. Generalizing the chiral matrix to nine fields we write
L = L0 + LN−1

c
, where

L0 = F 2

4
Tr
(
∂μŨ∂

μŨ †
)
+ F 2

4
B0 Tr

(
m(Ũ + Ũ †)

)
,

LN−1
c
= ε

Nc

F 2

24

[
Tr (ln Ũ − ln Ũ †)

]2
,

Ũ = exp (iλ · ϕ/F ) exp

(
i

√
2

3

ϕ0

F

)
.
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(a) Confirm that this reproduces the mixing matrix of Eq. (3.6).
(b) Another way to obtain this result is to employ an auxiliary pseudoscalar

field q(x) (with no kinetic energy term) to rewrite LN−1
c

as

LN−1
c
= Nc

4ε
q2(x)+ i F

2
√

6
q(x)Tr (ln Ũ − ln Ũ †).

Identify the SU(3)-singlet axial current and calculate its divergence to
show that q(x) plays the same role as FF̃ , i.e., q(x) ∼ αF F̃ /8π .
Integrate out q(x) to show that this is equivalent to the form of part (a).

(c) Several authors [RoST 80, DiV 80] suggest adding the θ term through

L = L0 + LN−1
c
− θq(x).

From this starting point, integrate out q(x) and show that a chiral rotation
can transfer θ to arg(det m). However, in the sense described in
Sect. IX–4, this theory is unstable about Ũ = 1. The stable vacuum corre-
sponds to Ũjk = δjk exp(iβj ). For small θ , solve for βj in terms of θ .

(d) Using Ũ = eiβ/2Ueiβ/2, define the fields about the correct vacuum to find
the CP-violating terms of the form

LCP = iθ
[
a Tr (U − U †)+ b Tr (lnU − lnU †)

]
,

identifying a and b and showing they vanish if any quark mass vanishes.
Calculate the CP-violating amplitude for η→ π+π−.



XI

Phenomenological models

QCD has turned out to be a theory of such subtlety and difficulty that a concerted
effort over an extended period has not yielded a practical procedure for obtaining
analytic solutions. At the same time, vast amounts of hadronic data which require
theoretical analysis and interpretation have been collected. This has spurred the
development of accessible phenomenological methods. We devote this chapter to
a discussion of three dynamical models (potential, bag, and Skyrme) along with a
methodology based on sum rules. Although the dynamical models are constructed
to mimic aspects of QCD, none of them is QCD. That is, none contains a rigor-
ous program of successive approximations which, for arbitrary quark mass, can be
carried out to arbitrary accuracy. Therefore, our treatment will emphasize issues
of basic structure rather than details of numerical fits. By using all of these meth-
ods, one hopes to gain physical insight into the nature of hadron dynamics. Despite
its inherent limitations the program of model building, fortified by the use of sum
rules, has been generally successful, and there is now a reasonable understanding
of many aspects of hadron spectroscopy.

XI–1 Quantum numbers of QQ and Q3 states

Among the states conjectured to lie in the spectrum of the QCD hamiltonian are
mesons, baryons, glueballs, hybrids, dibaryons, etc. However, since practically all
currently known hadrons can be classified as either QQ states (mesons) or Q3

states (baryons), it makes sense to focus on just these systems. We shall begin by
determining the quark model construction of the light-hadron ground states. Much
of the material will be valid for heavy-quark systems as well.

Hadronic flavor–spin state vectors

In many respects, the language of quantum field theory provides a simple and
flexible format for implementing the quark model. Let us assume that for any given
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dynamical model, it is possible to solve the field equations of motion and obtain
a complete set of spatial wavefunctions, {ψα(x)} for quarks and {ψα(x)} for anti-
quarks, where the labels α and α refer to a complete set of observables. A quark
field operator can then be expanded in terms of these wavefunctions,

ψ(x) =
∑
α

[
ψα(x)e

−iωαtb(α)+ ψα(x)eiωαtd†(α)
]
, (1.1)

where ωα, ωα are the energy eigenvalues, b(α) destroys a quark and d†(α) creates
the corresponding antiquark. The quark creation and annihilation operators obey{

b(α), b†(α′)
} = δαα′,

{
d(α), d†(α′)

} = δᾱᾱ′,{
b(α), b(α′)

} = 0,
{
d(α), d(α′)

} = 0,{
b(α), d†(α′)

} = 0, (1.2)

which are the usual anticommutation relations for fermions.
In all practical quark models, an assumption is made which greatly simplifies

subsequent steps in the analysis, that the spatial, spin, and color degrees of freedom
factorize, at least in lowest-order approximation. This is true provided the zeroth-
order hamiltonian is spin-independent and color-independent. Spin-dependent inter-
actions are then taken into account as perturbations. This assumption allows us to
write the sets {α} and {α} in terms of the spatial (n), spin (s, ms), flavor (q), and
color (k) degrees of freedom respectively, i.e., α= (n, s,ms, q, k). If we are con-
cerned with just the ground state, we can suppress the quantum number n, and for
simplicity replace the symbols b, d†, etc., for annihilation and creation operators
with the flavor symbol q (q = u, d, s for the light hadrons),

b†(n = 0, q,ms, k)→ q
†
k,ms

,

d†(n = 0, q,ms, k)→ q
†
k,ms

. (1.3)

Hadrons are constructed in the Fock space defined by the creation operators
for quarks and antiquarks. Light hadrons are labeled by the spin (S2, S3), isospin
(T2, T3), and hypercharge (Y ) operators as well as by the baryon number (B).
Other observables like the electric chargeQel and strangeness S are related to these,

Qel = T3 + Y/2, S = Y − B. (1.4)

Since quarks have spin one-half, the baryon (Q3) and meson (QQ) configurations
can carry the spin quantum numbers S= 1/2, 3/2 and S= 0, 1, respectively. If we
neglect the mass difference between strange and nonstrange quarks, then flavor
SU(3) is a symmetry of the theory, and both quarks and hadrons occupy SU(3)
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Y
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Fig. XI–1 Some SU(3)-flavor representations.

multiplets. The quarks are assigned to the triplet representation 3 and the antiquarks
to 3∗. The QQ and Q3 constructions then involve the group products

3× 3∗ = 8⊕ 1,

(3× 3)× 3 = (6⊕ 3∗)× 3 = 10⊕ 8⊕ 8⊕ 1, (1.5)

so that baryons appear as decuplets, octets, and singlets whereas mesons appear
as octets and singlets. The SU(3)-flavor representations 3, 3∗, 8, 10 are depicted
in Y vs. T3 plots in Fig. XI–1. The circle around the origin for the eight-dimensional
representation denotes the presence of two states with identical Y, I3 values. Finally,
quarks and antiquarks transform as triplets and antitriplets of the color SU(3)
gauge group, and all baryons and mesons are color singlets.

Two simple states to construct are the ρ+1 meson and the �++3/2 baryon,

|ρ+1 〉 =
1√
3
u

†
i↑d

†
i↑|0〉, |�++3/2〉 =

1

6
εijku

†
i↑u

†
j↑u

†
k↑|0〉, (1.6)

where the superscript and subscript on the hadrons denote electric charge and
spin component, and a summation over color indices for the creation operators is
implied. The normalization constants are fixed by requiring that the hadrons {Hn}
form an orthonormal set, 〈Hm|Hn〉= δmn. The other ground-state hadrons can be
reached from those in Eq. (1.6) by means of ladder operations in the spin and fla-
vor variables. In this manner, one can construct the flavor–spin–color state vec-
tors of the 0− octet and singlet mesons and the 1

2
+

octet baryons displayed in
Tables XI–1 and XI–2.

A convenient notation for fields which transform as SU(3) octets involves the
use of a cartesian basis rather than the ‘spherical’ basis of Tables XI–1,2. In fact,
we have already encountered this description in Sect. VII–1 during our discussion
of SU(3) Goldstone bosons where the quantity U = exp(iϕ · λ) played a central
role. The eight cartesian fields {ϕa} are related to the usual pseudoscalar fields by
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Table XI–1. State vectors of the pseudoscalar octet and
singlet mesons.

|π+〉 = 1√
6
[u†
i↑d

†
i↓ − u†

i↓d
†
i↑] |0〉

|π−〉 = 1√
6
[d†
i↑u

†
i↓ − d†

i↓u
†
i↑] |0〉

|π0〉 = 1√
12
[−u†

i↑u
†
i↓ + u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑] |0〉

|K+〉 = 1√
6
[u†
i↑s

†
i↓ − u†

i↓s
†
i↑] |0〉

|K0〉 = 1√
6
[s†
i↑d

†
i↓ − s†

i↓d
†
i↑] |0〉

|K0〉 = 1√
6
[s†
i↑u

†
i↓ − s†

i↓u
†
i↑] |0〉

|K−〉 = 1√
6
[d†
i↑s

†
i↓ − d†

i↓s
†
i↑] |0〉

|η8〉 = 1√
36
[u†
i↑u

†
i↓ − u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑ − 2s†

i↑s
†
i↓ + 2s†

i↓s
†
i↑] |0〉

|η1〉 = 1√
18
[u†
i↑u

†
i↓ − u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑ + s†

i↑s
†
i↓ − s†

i↓s
†
i↑] |0〉

π± = 1√
2
(ϕ1 ∓ iϕ2), π0 = ϕ3, η8 = ϕ8,

K± = 1√
2
(ϕ4 ∓ iϕ5),

K0 = 1√
2
(ϕ6 − iϕ7), K

0 = 1√
2
(ϕ6 + iϕ7), (1.7)

which is an alternative way of stating the content of Eq. (VIII–1.12). The physical
spin one-half baryons p, n, . . . can likewise be expressed in terms of an octet of
states {Bi} (i= 1, . . . , 8) in cartesian basis as

�± = 1√
2
(B1 ∓ iB2), �0 = B3,  = B8,

p = 1√
2
(B4 − iB5), n = 1√

2
(B6 − iB7),

!0 = 1√
2
(B6 + iB7), !− = 1√

2
(B4 + iB5). (1.8)

In the quark model, hadron observables have simple interpretations, e.g., the
baryon number is simply one-third the difference in the number of quarks and
antiquarks, etc. Thus, writing quark and antiquark number operators as N(q) and
N(q̄) for a quark flavor q, we have

B = [N(u)+N(d)+N(s)−N(u)−N(d)−N(s)]/3,
T3 = [N(u)−N(d)−N(u)+N(d)]/2,
Y = [N(u)+N(d)− 2N(s)−N(u)−N(d)+ 2N(s)]/3,

Qel = [2N(u)−N(d)−N(s)− 2N(u)+N(d)+N(s)]/3, (1.9)
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Table XI–2. State vectors of baryon
spin-one-half octet.

|p↑〉 =
εijk√

18
[u†
i↓d

†
j↑ − u†

i↑d
†
j↓] u†

k↑ |0〉
|n↑〉 =

εijk√
18
[d†
i↑u

†
j↓ − d†

i↓u
†
j↑] d†

k↑ |0〉
|↑〉 =

εijk√
12
[u†
i↑d

†
j↓ − u†

i↓d
†
j↑] s†

k↑ |0〉
|�+↑ 〉 =

εijk√
18
[s†
i↓u

†
j↑ − s†

i↑u
†
j↓] u†

k↑ |0〉
|�0↑〉 =

εijk
6 [s†

i↑d
†
j↓u

†
k↑ + s†

i↑d
†
j↑u

†
k↓-2s†

i↓d
†
j↑u

†
k↑] |0〉

|�−↑ 〉 =
εijk√

18
[s†
i↑d

†
j↓ − s†

i↓d
†
j↑] d†

k↑ |0〉
|!0↑〉 =

εijk√
18
[s†
i↓u

†
j↑ − s†

i↑u
†
j↓] s†

k↑ |0〉
|!−↑ 〉 =

εijk√
18
[s†
i↑d

†
j↓ − s†

i↓d
†
j↑] s†

k↑ |0〉

and the hadronic spin operator is

S =
∑
q

q
†
i,m′s

(σ )m′sms
2

qi,ms . (1.10)

Quark spatial wavefunctions

Many applications of the quark model require the knowledge of the quark spatial
wavefunctions within hadrons. It is here that the greatest variation in the differ-
ent models can occur, but several general features still remain. Indeed, in many
instances it is the general features that are primarily tested.

For example, the ground state in all models is a spatially symmetric S state in
which the wavefunction peaks at r = 0. The normalization condition of the quark
spatial wavefunction, ∫

d3x ψ†(x)ψ(x) = 1, (1.11)

ensures that the magnitude of ψ will be similar in those models having wavefunc-
tions of comparable spatial extent. This accounts for the agreement which can be
found among diverse quark models in specific applications. How does one fix the
spatial extent? One approach is to use an observable like the hadronic electromag-
netic charge radius, e.g.,

〈r2〉1/2proton = 0.87± 0.02 fm, 〈r2〉1/2pion = 0.66± 0.02 fm. (1.12)
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Fig. XI–2 Quark probability density in the bag and oscillator models.

Viewed this way, the bound states are seen to define a scale of order 1 fm. For exam-
ple, we display two models in Fig. XI–2, the oscillator result with α2= 0.17 GeV2

and the bag profile, which are each obtained by fitting to ground-state baryon
observables like the charge radius. Not surprisingly, their behaviors are quite simi-
lar. Also shown in Fig. XI–2 is an oscillator model wavefunction whose parameter
(α2= 0.049 GeV2) was determined by using data from decays of excited hadrons.
The difference is rather striking, and serves to demonstrate that the most impor-
tant general feature in setting the scale in quark model predictions of dimensional
matrix elements is the spatial extent of the wavefunction.1

Another aspect of quark wavefunctions involves the issue of relativistic motion.
A relativistic quark moving in a spin-independent central potential has a ground-
state wavefunction of the form

ψgnd(x) =
(
i u(r)χ


(r)σ · r̂χ
)
e−iEt , (1.13)

where u, 
 signify ‘upper’ and ‘lower’ components. As we shall see, in the bag
model these radial wavefunctions are just spherical Bessel functions. The above
form also appears in some relativized harmonic-oscillator models, which use a cen-
tral potential. If we allow for relativistic motion, then the major remaining differ-
ence in the quark wavefunctions concerns the lower two components of the Dirac
wavefunction. Nonrelativistic models automatically set these equal to zero, while
relativistic models can have sizeable lower components. Which description is the

1 We could obtain a bag result which behaves similarly by employing a charge radius of 0.5 fm rather than the
1 fm value shown.
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correct one? Quark motion in light hadrons must be at least somewhat relativistic
since quarks confined to a region of radiusR have a momentum given by the uncer-
tainty principle,2

p ≥ √3R−1 � 342 MeV (for R � 1 fm). (1.14)

Since this momentum is comparable to or larger than all the light-quark masses,
relativistic effects are unavoidable. A more direct indication of the relativistic
nature of quark motion comes from the hadron spectrum. Nonrelativistic systems
are characterized by excitation energies which are small compared to the con-
stituent masses. In the hadron spectrum, typical excitation energies lie in the range
300–500 MeV, again comparable to or larger than light-quark masses. Such con-
siderations have motivated relativistic formulations of the quark model.

Interpolating fields

In the LSZ procedure (App. B–3) for analyzing scattering amplitudes the central
role is played by interpolating fields. These are the quantities which experience the
dynamics of the theory in the course of evolving between the asymptotic in-states
and out-states. They turn out to be also useful as a kind of bookkeeping device. That
is, one way to characterize the spectrum of observed states is to use operators made
of appropriate combinations of quark fields ψ(x). For example, corresponding to
the meson sector of QQ states, one could employ a sequence of quark bilinears,
the simplest of which are

ψψ, ψγ5ψ, ψγμψ, ψγμγ5ψ, ψσμνψ, . . . . (1.15)

Any of these operators acting on the vacuum creates states with its own quantum
numbers. The lightest states in the quark spectrum will be associated with those
operators which remain nonzero for static quarks, i.e., with creation operators and
Dirac spinors of the form

ψ ∼
(

0

χm

)
d

†
m, ψ ∼

(
χm

0

)
b†
m. (1.16)

Only the pseudoscalar operators ψγ5ψ,ψγ0γ5ψ and the vector operators ψγiψ,
ψσ0iψ are nonvanishing in this limit. All the other operators have a nonrelativ-
istic reduction proportional to spatial momentum, indicating the need for a unit of
orbital angular momentum in forming a state.

The interpolating-field approach is particularly useful in situations where the
imposition of gauge invariance determines whether a given field configuration can
occur in the physical spectrum. We shall return to this point in Sect. XIII–4 in the

2 The
√

3 factor is associated with the fact that there are three dimensions.
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course of discussing glueball states. We now turn to a summary, carried throughout
the next three sections, of various attempts to model the dynamics of light-hadronic
states.

XI–2 Potential model

The potential model posits that there is a relatively simple effective theory in which
the quarks move nonrelativistically within hadrons. In the light of our previous
comments on relativistic motion, this would seem to be acceptable only for truly
massive quarks like the b quark and certainly questionable for the light quarks
u, d, s. However, in the potential model it is assumed that QCD interactions dress
each quark with a cloud of virtual gluons and quark–antiquark pairs, and that the
resulting dynamical mass contribution is so large that quarks move nonrelativistic-
ally. These ‘dressed’ degrees of freedom are called constituent quarks, and their
masses are called ‘constituent masses’. Constituent masses are not to be directly
identified with the mass parameters occurring in the QCD lagrangian.3 Energy lev-
els and wavefunctions are then obtained by solving the nonrelativistic Schrödinger
equation in terms of the constituent masses and some assumed potential energy
function.

The potential model is not without flaws. For light-quark dynamics, it is far
from clear that a static potential can adequately describe the QCD interaction.
Even with the use of constituent masses, one finds from fits to the mass spectrum
and/or the charge radius that quark velocity is nevertheless near the speed of light
(cf. Prob. XI–1). Also, although it is possible [LeOPR 85] to make a connection
between the lightest pseudoscalar mesons as Goldstone bosons on the one hand and
QQ̄ composites on the other, this is not ordinarily done. Such criticisms notwith-
standing, the nonrelativistic quark model does provide a framework for describing
both ground and excited hadronic states, and brings a measure of order to a spec-
trum containing hundreds of observed levels. Besides, virtually all physicists are
familiar with the Schrödinger equation, and find the potential model to be an under-
standable and intuitive language.

Basic ingredients

One begins by expressing the mass Mα of a hadronic state α as

Mα =
∑
i

Mi + Eα, (2.1)

3 We shall continue to denote the QCD mass parameter of quark qi as mi , and shall write the corresponding
constituent mass as Mi .
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where the sum is over the constituent quarks and antiquarks in α. The internal
energy Eα is an eigenvalue of the Schrödinger equation

Hψα = Eαψα, (2.2)

with hamiltonian

H =
∑
i

1

2Mi

p 2
i +

∑
i<j

Vcolor(rij ), (2.3)

where rij ≡ ri − rj , and the subscript ‘color’ on the potential energy indicates
that the dynamics of quarks necessarily involves the color degree of freedom in
some manner. It is standard to assume that the potential energy is a sum of two-
body interactions. Although there exists no unique specification of the interquark
potential Vcolor from QCD, the following features are often adopted:

(1) a spin-and flavor-independent long-range confining potential,

(2) a spin-and flavor-dependent short-range potential,

(3) basis mixing in the baryon and meson sectors, and

(4) relativistic corrections.

We shall discuss specific models of the potential energy function in Sect. XIII–1.
They all have in common the color dependence in which the two-particle potential
is twice as strong in mesons as it is in baryons,

Vcolor(rij ) =
{
V (rij ) (mesons),

1
2 V (rij ) (baryons).

(2.4)

We shall describe a simple empirical test for such behavior at the end of this
section. To appreciate its theoretical basis, note that the quark–antiquark pair in
a meson must occur in the 1 representation of color, whereas any two quarks in a
baryon must be in a 3∗ representation (in order that the three-quark composite be a
color singlet),

Vcolor ∝
{
F(3) · F(3∗) (mesons),

F (3) · F(3) (baryons),

∝
{
(F 2(1)− F 2(3)− F 2(3∗))/2 = −4/3 (mesons),

(F 2(3∗)− 2F 2(3))/2 = −2/3 (baryons),
(2.5)

where Fa(R) is a color generator for SU(3) representation R. Thus, the color
dependence in Eq. (2.4) is that which one would naturally associate with the inter-
action between two quarks or a quark–antiquark pair.
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Table XI–3. Quantum numbers of
QQ̄ composites.

L Singlet Triplet

0 1S0(0−+) 3S1(1−−)
1 1P1(1+−) 3P0,1,2(0++, 1++, 2++)
2 1D2(2−+) 3D1,2,3(1−−, 2−−, 3−−)
3 1F3(3+−) 3F2,3,4(2++, 3++, 4++)

Mesons

For the two-particleQQ̄ system, it is straightforward to remove the center-of-mass
dependence. In the center-of-mass frame the Schrödinger equation becomes(

p2

2M
+ V (r)

)
ψα(r) = Eαψα(r), (2.6)

where r= rQ − rQ̄ and M−1=M−1
Q +M−1

Q̄
is the inverse reduced mass. The LS

coupling scheme is typically employed to classify the eigenfunctions of this prob-
lem. One constructs the total QQ̄ spin, S= sQ + sQ̄, and adds the orbital angular
momentum L to form the total angular momentum J=S + L. There is an infinite
tower of eigenstates, each labeled by the radial quantum number n and the angular
momentum quantum numbers J, Jz, L, S.

The QQ̄ states are sometimes described in terms of spectroscopic notation
2S+1LJ (J

PC), where P is the parity and C is the charge conjugation,

P = (−)L+1, C = (−)L+S. (2.7)

Strictly speaking, although only electrically neutral particles like π0 can be eigen-
states of the charge conjugation operation, C is often employed as a label for
an entire isomultiplet, like π = (π+, π0, π−). The lowest QQ̄ orbital configu-
rations, expressed in 2S+1LJ (J

PC) notation, are displayed in Table XI–3. The
0+, 1−, 2+, . . . series of JP states is called natural, and has the same quantum
numbers as would occur for two spinless mesons of a common intrinsic parity. The
alternate sequence, 0−, 1+, 2−, . . . is referred to as unnatural. There are a num-
ber of JPC configurations, called exotic states, which cannot be accommodated
within the QQ̄ construction. For example, the 0−− state is exotic because any state
with J = 0 must have L= S, and according to the QQ̄ constraint of Eq. (2.7) must
therefore carry C=+. Likewise, the CP= − 1 sequence 0+−, 1−+, 2+−, . . . is
forbidden because theQQ̄model requires CP= (−)S+1, implying S= 0 and hence
J =L. Thus, one would obtain P = (−)J+1 in the QQ̄ model and not
P = (−)J .
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Baryons

Most applications of the quark model for Q3 baryons involve the light quarks. If,
for simplicity, we assume degenerate constituent mass M , the Schrödinger equa-
tion is

H0 = 1

2M

3∑
i=1

p2
i +

1

2

∑
i<j

V (rij ), (2.8)

where the prefactor of 1/2 in the potential energy term follows from Eq. (2.4). It is
convenient to define a center-of-mass coordinate R and internal coordinates λ and
ρ by

R = (r1 + r2 + r3)/3,

ρ = (r1 − r2)/
√

2,

λ = (r1 + r2 − 2r3)/
√

6. (2.9)

Because it is not possible to remove the three-particle center-of-mass dependence
for an arbitrary potential, the following approach is often followed [IsK 78]. The
potential V (rij ) is rewritten as

V (rij ) = Vosc(rij )+ U(rij ), (2.10)

where

Vosc = k

2
r2
ij , U ≡ V − Vosc. (2.11)

The Schrödinger equation is solved in terms of the oscillator potential and U is
evaluated perturbatively in the oscillator basis. Having removed the center-of-mass
coordinate, we are left with the following hamiltonian for the internal energy:

Hint =
(

p2
ρ

2m
+ 3k

2
ρ2

)
+
(

p2
λ

2m
+ 3k

2
λ2

)
, (2.12)

which is just that of two independent quantum oscillators each with spring con-
stant 3k. For later purposes, we write the number of excitation quanta for the two
oscillators as Nρ and Nλ (Nρ,λ= 0, 1, 2, . . . ) and let N ≡ Nρ + Nλ. The angular
momentum for the three-quark system is found in a similar manner as for the QQ̄
mesons, J=L + S. The total quark spin is S= ∑ si , the orbital angular momen-
tum is given by L=Lρ + Lλ, and the parity is P = (−)
ρ+
λ . The ground-state
wavefunction has the form

ψgnd(r1, r2, r3) =
(
α2

π

)3/2

eiP.Re−α
2(�2+λ2)/2, (2.13)
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where α2= (3km)1/2. A cautionary remark is in order. One should not misinterpret
the use of an oscillator potential – it is not the intent to model the observed baryon
spectrum as that of a system of quantum oscillators because such a picture would
fail. For example, the oscillator spectrum has EN ∼ N , whereas the baryon spec-
trum obeys the law of linear Regge trajectories (cf. Sect. XIII–2), E2

N ∼ N . The
oscillator potential provides a convenient basis for structuring the calculation and
nothing more.

Color dependence of the interquark potential

Short of doing a complete spectroscopic analysis, we can find experimental support
in the following simple example for the assertion that the two-particle interquark
potential is twice as strong in mesons as it is in baryons.

A potential model description for the meson and baryon mass splittings ρ(770)−
π(138) and�(1232)−N(939) is given by a QCD hyperfine interaction,Hhyp, akin
to the delta function contribution in the QED hyperfine potential of Eq. (V–1.16),

Hhyp = kα
∑
i<j

H̄ij si · sj δ(3)(r) (α = M,B), (2.14)

where the {H̄ij } are constants and, assuming the color dependence is that given by
Eqs. (2.4), (2.5), kM = 1 for mesons and kB = 1/2 for baryons. We shall discuss in
Sect. XIII–2 how this effect could arise from gluon exchange. Although there is
ordinarily dependence on quark mass in the {H̄ij }, it suffices to treat the {H̄ij } as
an overall constant since the hadrons in this example contain only light nonstrange
quarks. The point is then to see whether the condition kM = 2kB is in accord with
phenomenology. Noting that for mesons the spin factors yield

s1 · s2 = 2S2 − 3

4
=
{

1/4 (S = 1),

−3/4 (S = 0),
(2.15a)

whereas for baryons one has∑
i<j

si · sj = 4S2 − 9

8
=
{

3/4 (S = 3/2),

−3/4 (S = 1/2),
(2.15b)

we find after taking expectation values that

mρ −mπ

m� −mN

= 2kM
3kB

|ψM(0)|2
|ψB(0)|2 �

2kM
3kB

(Volume)B
(Volume)M

� 2kM
3kB

[ 〈r2〉B
〈r2〉M

]3/2

. (2.16)

The measured values (cf. Eq. (1.13)) of the proton and pion charge radii imply that
kM/kB � 2. This example, along with others, lends credence to the assumed color
dependence of Eq. (2.4).
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At this point we shall temporarily leave our discussion of the potential model to
consider other descriptions of hadronic structure. We shall return to the potential
model for the discussion of hadron spectroscopy in Chaps. XII–XIII.

XI–3 Bag model

A superconductor has an ordered quantum mechanical ground state which does
not support a magnetic field (Meissner effect) and which is brought about by a
condensation of dynamically paired electrons (Cooper pairs). An order parameter
for this medium is provided by the Landau–Ginzburg wavefunction of a Cooper
pair. Even at zero temperature, a sufficiently strong magnetic field, Bcr, can induce
a transition from the superconducting phase to the normal phase. For example,
in tin the critical field is Bcr(tin)� 3.06 × 10−2 tesla, and the energy density of
superconducting pairing (condensation energy ) is Usuper/V � 373 J/m3.

Chromodynamics exhibits similar behavior, and this is the basis for the bag
model [ChJJTW 74]. The QCD ground state evidently does not support a chromo-
electric field, and is thus analogous to the superconducting state, although a com-
pelling description of the QCD pairing mechanism has not yet been provided. In the
bag model, the analog of the normal conducting ground state is called the pertur-
bative vacuum. The vacuum expectation value of the quark bilinear q̄q(q = u, d, s)
plays the role of an order parameter by distinguishing between the two
vacua,

QCD〈0|q̄q|0〉QCD < 0, pert〈0|q̄q|0〉pert = 0. (3.1)

Hadrons are represented as color-singlet ‘bags’ of perturbative vacuum occupied
by quarks and gluons. The bag model employs as its starting point the lagrange
density [Jo 78]

Lbag = (LQCD − B) θ(q̄q), (3.2)

where the θ function (which vanishes for negative argument) defines the spatial vol-
ume encompassed by the perturbative vacuum. B is called the bag constant, and
is often expressed in units of (MeV)4. Physically, it represents the difference in
energy density between the QCD and perturbative vacua. Phenomenological deter-
minations of B yield B1/4 � 150 MeV, which translates to a QCD condensation
energy of UQCD/V � 1.0 × 1034 J m−3. Although huge on the scale of the con-
densation energy for superconductivity, this value appears less remarkable in more
natural units, B � 66 MeV fm−3.



304 Phenomenological models

Static cavity

To obtain the equations of motion and boundary conditions for the bag model, we
must minimize the action functional of the theory. We shall consider at first a sim-
plified model consisting of a bag which contains only quarks of a given flavor q and
mass m. The equations of motion that follow from the lagrangian of Eq. (3.2) are

(i/∂ −m)q = 0, (3.3)

within the bag volume V and

inμγμq = q, (3.4a)

nμ∂
μ(q̄q) = 2B (3.4b)

on the bag surface S, where nμ is the covariant inward normal to S. Eq. (3.3)
describes a Dirac particle of mass m moving freely within the cavity defined by
volume V . Since the order parameter q̄q vanishes at the surface of the bag, the
linear boundary condition in Eq. (3.4a) amounts to requiring that the normal com-
ponent of the quark vector current also vanish at the surface. Thus, quarks are
confined within the bag. The nonlinear boundary condition represents a balance
between the outward pressure of the quark field and the inward pressure of B.

Spherical-cavity approximation

In principle, the bag surface should be determined dynamically. However, the only
manageable approximation for light-quark dynamics is one in which the shape of
the bag is taken as spherical with some radius R. For such a static configuration,
the nonlinear boundary condition becomes equivalent to requiring that the energy
be minimized as a function of R. The static-cavity hamiltonian is

H =
∫
V

d3x
[
q†(−iα ·∇)q + q†βmq + B] . (3.5)

Observe that B plays the role of a constant energy density at all points within the
bag. As in Eq. (1.1), the normal modes of the cavity-confined quarks and antiquarks
provide a basis for expanding quantum fields. They are determined by solving the
Dirac equation Eq. (3.3) in a spherical cavity. We characterize each mode in terms
of a radial quantum number n, an orbital angular momentum quantum number 
 (as
would appear in the nonrelativistic limit), and a total angular momentum, j . Only
j = 1/2 modes are consistent with the nonlinear boundary condition since the rigid
spherical cavity cannot accommodate the angular variation of j > 1/2 modes.
Such nonspherical orbitals can be treated only approximately, by implementing the
nonlinear boundary condition as an angular average or by minimizing the solution
with respect to the energy. In addition, since neither p1/2 modes nor radially excited
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s1/2 modes are orthogonal to a translation of the ground state, they must be admixed
with some of the j = 3/2 modes to construct physically acceptable excitations. For
these reasons, the bag model has been most widely applied in modeling properties
of the ground-state hadrons rather than their excited states.

Let us consider the s1/2 case in some detail. Even with the restriction to a single
spin-parity state, there are still an infinity of eigenfrequencies ωn. Each ωn is fixed
by the linear boundary condition, expressible as the transcendental equation

tan pn = − pn

ωn +mR − 1
(n = 1, 2, . . . ), (3.6)

where pn ≡
√
ω2
n −m2R2. For zero quark mass, the lowest eigenfrequencies are

ω= 2.043, 4.611, . . . . For light-quark mass (mR ≤ 1) the lowest mode frequency
is approximated by ω1 � 2.043+ 0.493mR, and in the limit of heavy-quark mass
(mR 
 1) becomes ω1 →

√
m2R2 + π2. The spatial wavefunction which accom-

panies destruction of an s1/2 quark with spin alignment λ and mode n is

ψn(x) = 1√
4π

(
ij0(pnr/R)χλ

−εj1(pnr/R)σ · r̂χλ
)
, (3.7)

while for creation of an s1/2 antiquark we have

ψn̄(x) = 1√
4π

(−iεj1(pnr/R)σ · r̂ χ̄λ
j0(pnr/R)χ̄λ

)
, (3.8)

where ε ≡ ((ωn − mR)/(ωn + mR))1/2, χλ is a two-component spinor, and χ̄λ ≡
iσ2χλ. The full quark field q(x), expanded in terms of the s1/2 modes, is given by

q(x) =
∑
n

N(ωn)
[
ψn(x)e−iωnt/Rb(n)+ ψn̄(x)eiωnt/Rd†(n̄)

]
, (3.9)

where

N(ωn) =
(

p4
n

R3(2ω2
n − 2ωn +mR) sin2 pn

)1/2

(3.10)

is a normalization factor which is fixed by demanding that the number operator
Nq =

∫
bag d

3x q†(x)q(x) for quark flavor q have integer eigenvalues.
By computing the expectation value of the hamiltonian in a state of N quarks

and/or antiquarks of a given flavor, one obtains

〈H 〉 = Nω/R + 4πBR3/3− Z0/R. (3.11)

In the final term, Z0 is a phenomenological constant that has been used in the
literature to summarize effects having a 1/R dimension, most notably the effect
of zero-point energies, which for an infinite-volume system would be unobserv-
able. However, just as the Casimir effect is present for a finite-volume system
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(a) (b)

Fig. XI–3 Quarks in a bag.

with fixed boundaries, such a term must be present in the static cavity bag model
[DeJJK 75]. Unfortunately, a precise calculation of this effect has proven to be
rather formidable, and so one treats Z0 as a phenomenological parameter.

Upon solving the condition ∂〈H 〉/∂R= 0, we obtain expressions for the bag
radius

R4 = 1

4πB
(Nω − Z0), (3.12)

and the bag energy

E = 4

3
(4πB)1/4(Nω − Z0)

3/4. (3.13)

The bag energy E is not precisely the hadron mass. Although the bag surface
remains fixed in the cavity approximation, the quarks within move freely as inde-
pendent particles. Thus, at one instant, the configuration of quarks might appear
as in Fig. XI–3(a), whereas at another time, the quarks occupy the positions of
Fig. XI–3(b). As a result, there are unavoidable fluctuations in the bag center-of-
mass position. The bag energy is thus E=〈√p2 +M2〉, where M is the hadron
mass and p represents the instantaneous hadron momentum. Although the average
momentum vanishes (〈p〉= 0), the fluctuations do not, (〈p2〉 �= 0). For all hadrons
but the pion, it is reasonable to expand the bag energy in inverse powers of the
hadron mass,

E = M + 〈p2〉/2M + · · · . (3.14)

For the pion, one should instead expand as

E = 〈|p|〉 +M2
π 〈|p|−1〉/2+ · · · . (3.15)

One can employ the method of wave packets, to be explained in Sect. XII–1, to esti-
mate that 〈|p|〉 � 2.3R−1, 〈|p|−1〉 � 0.7R for the pion bag, and 〈p2〉 � Nω2

1R
−2

for a bag containing N quarks and/or antiquarks in the s1/2 mode.
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Gluons in a bag

Any detailed phenomenological fit of the bag model to hadrons must include the
spin–spin interaction between quarks. One way to incorporate this effect is to posit
that gluons, as well as quarks, can exist within a bag. With only gluons present, the
lagrangian is taken to be [Jo 78]

Lgluon
bag =

[
−1

4
Fa
μνF

aμν − B
]
θ
(−Fa

μνF
aμν/4− B) , (3.16)

and the Euler–Lagrange equations are

∂μF a
μν = 0 (3.17)

in the bag volume V , and

nμF a
μν = 0 (3.18a)

Fa
μνF

aμν = −4B (3.18b)

on the bag surface S. In the limit of zero coupling, the gluon field strength becomes
Fa
μν = ∂μAaν − ∂νA

a
μ. The field equations in V are sourceless Maxwell equations

with boundary conditions x · Ea = 0 and x × Ba = 0 on S, where Ea and Ba are
the color electric and magnetic fields, respectively. It is convenient to work directly
with the gluon field Aa(x), and with a gauge choice to restrict the dynamic degrees
of freedom to the spatial components. In mode n, these obey[∇2 + (kn/R)2

]
Aa
n = 0, (3.19)

and

∇ · Aa
n = 0 (3.20)

within the bag. The gluon eigenfrequencies kn are determined by the linear bound-
ary condition

r× (∇ × Aa
n

) = 0. (3.21)

Restricting our attention to modes of positive parity, we have for the gluon field
operator

Aa(x) =
∑
n,σ

NG(kn)
(
j1(knr/R)X1σ (�)a

a
n,σ + h.c.

)
, (3.22)

where X1σ is a vector spherical harmonic. The gluon normalization factor is obtained,
analogously to N(ωn) for quarks, by constraining the gluon number operator to be
integer-valued and we find

[NG(kn)]
−2 = [3(1− sin(2kn)/2kn)− 2(1+ k2

n) sin2(kn)
]
R2. (3.23)
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The quark–gluon interaction

In the following, we shall work with the lowest positive parity mode, for which
k1= 2.744. The quark hyperfine interaction in hadron H can be computed from
the second-order perturbation theory formula,

Ehyp = 〈H |Hq−g(E0 −H0 + iε)−1Hq−g|H 〉, (3.24)

where the unperturbed hamiltonian H0 is given in Eq. (3.5) and Hq−g is the quark-
gluon interaction

Hq−g = −g3

∫
V

d3x Ja(x) · Aa(x), (3.25)

defined in terms of the quark color current density

Ja(x) = 1

2
q̄i(x)γλ

a
ij qj (x). (3.26)

Implicit in Eq. (3.24) is an infinite sum over all intermediate states. In practice, the
sum can be well approximated by the lowest-energy intermediate state, and we find
for hadron H

Ehyp = 〈H |Hhyp|H 〉 = αshHR
−1, (3.27)

where

hH = −0.177〈H |
∑
i<j

σ i · σ j Fi · Fj |H 〉. (3.28)

The numerical factor arises from an overlap integral of quark and gluon spatial
wavefunctions, and Fi , σ i are, respectively, the color and spin operators for quark
i. It is straightforward to demonstrate that hπ = 0.708, hN = − h�=hπ/2, and
hρ = − hπ/3.

We have described the primary ingredients of the bag model. Fits to the masses
of the ground-state hadrons can be accomplished within this framework, for exam-
ple in [DeJJK 75, DoJ 80]. These reproduce many of the features of these particles,
and we return to baryon properties in the next chapter.

XI–4 Skyrme model

In Chap. X, we explored the Nc → ∞ limit of QCD. In some respects the world
thus defined is not unlike our own. Mesons and glueballs exist with masses which
are O(1) as Nc → ∞. To lowest order, these particles are noninteracting because
their coupling strength is O(N−1

c ). What becomes of baryons in this world? It
takes Nc quarks to form a totally antisymmetric color-singlet composite, so baryon
mass is expected to be O(Nc). Note the inverse correlation between interparticle
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coupling O(N−1
c ) and baryon mass O(Nc). This is reminiscent of soliton behavior

in theories with nonlinear dynamics.

Sine–Gordon soliton

An example is afforded by the Sine–Gordon model, defined in one space and one
time dimension by the lagrangian,

LSG = 1

2
(∂μϕ)

2 − α

β2
(1− cos βϕ), (4.1)

where α and β are constants. For small-amplitude field excitations, an expansion
in powers of ϕ,

LSG = 1

2
(∂μϕ)

2 − α

2
ϕ2 + αβ2

4! ϕ
4 +O

(
β4ϕ6

)
, (4.2)

identifies the parameter α as the boson squared mass and β as a coupling strength.
For β → 0 we recover the free field theory. The Sine–Gordon lagrangian has also
a nonperturbative static solution,

ϕ0(x) = 4

β
tan−1

(
exp
(√
αx
))
, (4.3a)

with energy

E0 = 8
√
α/β2. (4.3b)

This solution is a Sine–Gordon soliton. The natural unit of length for the soli-
ton is α−1/2, and the energy E0 diverges as the coupling is turned off (β → 0).
The potential energy in this theory has an infinity of equally spaced minima, with
ϕ(n)= 2πn/β (n= 0,±1,±2, . . . ). As the coordinate x is varied continuously
from−∞ to+∞, the soliton amplitude ϕ0(x), starting from the minimum ϕ(0)= 0,
moves to the adjoining minimum ϕ(1)= 2π/β. An index�N , the winding number,
counts the number of minima shifted. It can be expressed as the charge associated
with a current density,

Jμ = β

2π
εμν ∂νϕ, (4.4)

such that

�N =
∫ ∞

−∞
dx J 0(x) = β

2π
[ϕ(+∞)− ϕ(−∞)] . (4.5)

For ϕ=ϕ0 as in Eq. (4.3a) we see that �N = 1. The current density is conserved,
∂μJ

μ= 0. Thus its charge, the winding number �N , does not change with time.
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This is an example of a topological conservation law, whose origin lies in the non-
trivial boundary conditions (viz. Eq. (4.5)) which a given field configuration is
constrained to obey.

Chiral SU(2) soliton

Let us now seek a soliton solution for an SU(2)L × SU(2)R invariant theory in a
spacetime of dimension four. It is natural to consider first the lowest-order chiral
lagrangian L2,

L2 = F 2
π

4
Tr
(
∂μU∂

μU †
)
, (4.6)

where U is an SU(2) matrix which transforms as U → LUR−1 under a chiral
transformation for L ∈ SU(2)L and R ∈ SU(2)R. Unfortunately, L2 cannot sup-
port an acceptable soliton, as the soliton would have zero size and zero energy.
To see why, recall that the Sine–Gordon soliton has a natural unit of length α−1/2.
Suppose there is an analogous quantity, R, for the chiral soliton. Then we can write
the radial variable as r = r̃R, where r̃ is dimensionless. For a static solution, the
energy becomes

E =
∫
d3x H = −

∫
d3x L = F 2

π

4

∫
d3x Tr

(∇U ·∇U †
)
. (4.7)

Upon expressing the integral in terms of the dimensionless variable r̃ , we find
E= aR, where a is a nonnegative number. The energy is minimized at R= 0 to
the value E= 0. This trivial solution is unacceptable, and thus the model must be
extended.

The Skyrme model [Sk 61] employs, in addition to L2, a quartic interaction of a
certain structure,

L = F 2
π

4
Tr
(
∂μU∂

μU †
)+ 1

32e2
Tr
[
∂μU U †, ∂νU U †

]2
, (4.8)

where e (not to be confused with the electric charge!) is a dimensionless real-
valued parameter. The above chiral lagrangian should look familiar, since it is
part of the general fourth-order chiral lagrangian used in Chap. VII. In particu-
lar, Eq. (4.8) is reproduced if 2Lr1+2Lr2+Lr3= 0, in which case (32e2)−1= (Lr2−
2Lr1 − Lr3)/4. The comparison with the phenomenology of Chap. VII is not com-
pletely straightforward, as the pion physics was treated to one-loop order while the
Skyrme lagrangian is used at tree level. We note, however, that the coefficients in
Table VII–1 give

2Lr1 + 2Lr2 + Lr3
Lr2 − 2Lr1 − Lr3

= 0.685, Lr2 − 2Lr1 − Lr3 = 0.0040. (4.9)
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The latter combination, which is independent of renormalization scale, numerically
gives e � 5.6. In the following development, we shall follow standard practice by
taking the parameter e as arbitrary.

We seek a static solution of the Skyrme model. Our strategy shall be to first
determine the energy functional of the theory, and then minimize it. Following the
procedure leading to Eq. (4.7), we can write the energy as

E =
∫
d3x Tr

[
F 2
π

4
XiX

†
i +

1

16e2
(εijkXiXj )(εabkXaXb)

†

]
, (4.10)

where Xμ ≡ U∂μU
† and Xμ= − X†

μ. It is necessary that Xi → 0 as |x| → ∞
in order that the energy be finite. Thus, U must approach a constant element of
SU(2), which we are free to choose as the identity I . For the mesonic sector of
the theory, the vacuum state corresponds to U(x)= I for all x. In this state, both
the field variable Xi and the energy E vanish. The form U � I + iπ · τ/Fπ , used
extensively in earlier chapters, corresponds to small-amplitude pionic excitations
of the vacuum.

To see that the Skyrme model does support a nontrivial soliton, we cast the
energy integrals of Eq. (4.10) in terms of a natural length scale R and find

E = aR + bR−1, (4.11)

where a, b are nonnegative. For a, b �= 0, the energy is minimized at nonzero R
and nonzero E. Thus, the quartic term of Eq. (4.8) is seen to have the desired effect
of inducing soliton stability. Moreover, for arbitraryU a lower bound on the energy
is provided by applying the Schwartz inequality to Eq. (4.10),

E ≥ Fπ

4e

∫
d3x|Tr εijkXiXjXk|. (4.12)

It is not hard to show that the integrand of Eq. (4.12) is proportional to the zeroth
component of a four-vector current,

Bμ = εμναβ

24π2
Tr XνXαXβ, (4.13)

which is divergenceless, ∂μBμ = 0, and thus has conserved charge

B =
∫
d3x B0(x). (4.14)

It turns out that the current Bμ can be identified as the baryon current density and
B is the baryon number of the theory. Note that this is consistent with our prescrip-
tion U(x)= I for the meson vacuum, where we see from Eq. (4.13) that B = 0.
Interestingly, B turns out to have an additional significance. It is the topological
winding number for the Skyrme model, analogous to �N for the Sine–Gordon
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model. The point is, by having associated spatial infinity with a group element of
SU(2) to ensure that the field energy is finite, we have placed the elements of phys-
ical space into a correspondence with the elements of the compact group SU(2).
The parameter space of each set is S3, the unit sphere in four dimensions, and it is
precisely the field U which implements the mapping. The mappings from S3 to S3

are known to fall into classes, each labeled by an integer-valued winding number.
In this context, B serves to measure the number of times that the set of space points
covers the group parameters of SU(2) for some solution U of the theory.

The Skyrme soliton

The Skyrme ansatz for a chiral soliton (skyrmion) has the functional form [BaNRS
83, AdNW 83]

U0(x) = exp
[
iF (r)τ · x̂]. (4.15)

The unknown quantity is the skyrmion profile function F(r). To specify it, we first
determine the energy functional by substituting U0 into Eq. (4.10),

E[F ] = 4π
∫ ∞

0
dr r2

[
F 2
π

2

(
F ′2 + 2

sin2 F

r2

)
+ 1

2e2

sin2 F

r2

(
sin2 F

r2
+ 2F ′2

)]
, (4.16)

where a prime signifies differentiation with respect to the argument. For a static
solution, the minimization of the energy generates an extremum of the action, and
is hence equivalent to the equations of motion. The variation δE/δF = 0 generates
a differential equation for F ,(

r̃2

4
+ 2 sin2 F

)
F ′′ + r̃

2
F ′ + F ′2 sin 2F − sin 2F

4
− sin2 F sin 2F

r̃2
= 0, (4.17)

as expressed in terms of a dimensionless variable r̃ = r/R, with R−1 ≡ 2eFπ .
This nonlinear equation must be solved numerically, subject to certain boundary
conditions. The condition U = I at spatial infinity implies F(∞)= 0. The bound-
ary condition at r = 0 is fixed by requiring that the soliton corresponds to baryon
number 1. For the Skyrme ansatz, the baryon-number charge density is

B0(r) = − 1

2π2

F ′ sin2 F

r2
, (4.18)

and corresponds to a baryon number
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Fig. XI–4 Radial profile of the skyrmion.

B = 1

2π
[2F(0)− 2F(∞)− sin 2F(0)+ sin 2F(∞)]. (4.19)

This leads to the choice F(0)=π . Although the profile F(r) cannot be determined
analytically over its entire range, it is straightforward to show that

F(r) ∼
{
π − const. r (r → 0),

const. r−2 (r →∞).
(4.20)

We display F(r) in Fig. XI–4. Insertion of the solution to Eq. (4.17) into the
energy functional E[F ] yields the mass M of the skyrmion, and from a numeri-
cal integration we obtain M � 73 Fπ/e. There is an important point to be realized
about the skyrmion – it represents a use of chiral lagrangians outside the region
of validity of the energy expansion. Recall that the full chiral lagrangian is writ-
ten as a power series, L=L2 + L4 + · · · in the number of derivatives. When
matrix elements of pions are taken, terms with n derivatives produce n powers
of the energy. Hence, at low energy, one may consistently ignore operators with
large n, as their contributions to matrix elements are highly suppressed. However,
in forming the skyrmion one employs only L2 and a subset of L4. The relative
effects of the two are balanced in the minimization of the energy functional, and
as a result both contribute equally. In an extended model containing L6, one would
expect the import of L6 to be analogously comparable to L4, etc. Higher-derivative
lagrangians thus will contribute to skyrmion matrix elements, and the result cannot
be considered a controlled approximation. However, this is not sufficient cause for
abandoning the skyrmion approach. It simply becomes a phenomenological model
rather than a rigorous method, and thus has a status similar to potential or bag
models.
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Quantization and wavefunctions

The analysis done thus far is at the classical level, and merely shows that the chiral
soliton satisfies the equations of motion. To determine the quantum version of the
theory, we shall follow a canonical procedure. An analogy with quantization of the
rigid rotator may help in understanding the process. A classical solution consists of
the rotator being at any fixed angular configuration {θ, ϕ}. To obtain the quantum
theory, one allows the rotator to move among these solutions, and describes its
motion in terms of the angular coordinates and their conjugate momenta {pθ, pϕ}.
The quantum states are those with definite angular momentum quantum numbers
{
,m}, and have wavefunctions given by the spherical harmonics,

〈θ, ϕ|
,m〉 = Y
,m(θ, ϕ). (4.21)

The classical skyrmion solutions consist not only of U0 (cf. Eq. (4.15)), but also
of any constant SU(2) rotation thereof, U ′0=AU0A

−1 with AεSU(2). A particu-
larly simple approach to quantization is then to allow the soliton to rotate rigidly in
the space of these solutions,

U = A(t)U0A
−1(t), (4.22)

where now A(t) is an arbitrary time-dependent SU(2) matrix. One proceeds to
define a set of coordinates {ak}, their conjugate momenta {πk ≡ ∂L/∂ak}, and a
hamiltonian constructed via Legendre transformation

H = πkȧk − L. (4.23)

We shall presently describe how to choose quantum numbers and determine the
associated wavefunctions. Note that this approach is approximate in that it neglects
the possibility of spacetime-dependent excitations such as pion emission. As such,
it would be most appropriate for a weakly coupled theory (as occurs for Nc →∞)
where the soliton rotates slowly, but is only approximate in the real world.

In general, an SU(2)matrix likeA can be written in terms of three unconstrained
parameters {θk} as

A(t) = exp(iτ · θ) = I cos θ + iτ · θ̂ sin θ. (4.24)

However, we can equivalently employ the four constrained parameters,

a0 = cos θ, a = θ̂ sin θ, (4.25a)

where
3∑
k=0

a2
k = 1. (4.25b)
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Substitution of the rotated quantity U into Eq. (4.7) and evaluation of the spatial
integration yields

L = −M + λTr (∂0A
†∂0A) = −M + 2λ

3∑
k=0

ȧ2
k , (4.26)

where λ=π/3e3Fπ , with

 =
∫
dr̃ r̃2 sin2 F

[
1+ 4

(
F ′2 + sin2 F/r̃2

)] � 50.9. (4.27)

As written in terms of the conjugate momenta πk = 4λȧk, the hamiltonian is

H = M + 1

8λ

3∑
k=0

π2
k . (4.28)

Adopting the canonical quantization conditions

[ak, πl] = iδkl, (4.29)

we see that the canonical momenta can be expressed as differential operators,
πk = − i∂/∂ak. Thus, the hamiltonian has the form

H = M − 1

8λ
∇2

4, (4.30)

where ∇2
4 is the four-dimensional laplacian restricted to act on the three-sphere by

the constraint of Eq. (4.25b).
We can determine the eigenvalues and eigenvectors of H by working in analogy

with the more familiar three-dimensional laplacian,

∇2
3 =

∂2

∂r2
+ 2

r

∂

∂r
− 1

r2
L2. (4.31)

If constrained to the unit two-sphere by the condition
∑3

k= 1 x
2
k = r2= 1, the three-

dimensional laplacian ∇2
3 reduces to−L2. As is well known, the three components

of L are operators L1, L2, L3 which satisfy

[Lj, Lk] = iεjklLl, (4.32)

and generate rotations in the 2–3, 3–1, 1–2 planes respectively. The underlying
symmetry group is SO(3), and the eigenfunctions are the spherical harmonics.

The four-dimensional problem is treated by analogy. Upon adding an extra dimen-
sion labeled by the index 0, we encounter the additional operators K1,K2,K3,
which generate rotations in the 0–1, 0–2, 0–3 planes. The full set of six rotational
generators can be represented as

Lk = εijkaiπj , Kk = a0πk − akπ0. (4.33)
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The extended symmetry group is SO(4) and the commutator algebra of the rotation
generators is[

Lj, Lk
] = iεjklLl,

[
Lj, Kk

] = iεjklKl,
[
Kj, Kk

] = iεjklLl. (4.34)

The mathematics of this algebra is well known, underlying, for example the sym-
metry of the Coulomb hamiltonian in nonrelativistic quantum mechanics. By the
substitutions

T = (L−K)/2, J = (L+K)/2, (4.35)

we arrive at operators T and J, which generate commuting SU(2) algebras. We
associate T with the isospin and J with the angular momentum. The explicit oper-
ator representations,

Tk = i(−εijkai∂j + a0∂k − ak∂0),

Jk = i(−εijkai∂j − a0∂k + ak∂0), (4.36)

follow immediately from Eq. (4.33), and the Skyrme hamiltonian becomes

H = M + (T2 + J2
)
/4λ. (4.37)

It follows from the commutator algebra of Eq. (4.34) that T2= J2. Thus, the quan-
tum spectrum consists of states with equal isospin and angular momentum quantum
numbers, T = J . This is no surprise. After all, in the Skyrme ansatz of Eq. (4.15),
the isospin and spatial coordinates appear symmetrically, and we expect the quan-
tum spectrum to respect this reciprocity. Our final form for the hamiltonian,

H = M + J2/2λ, (4.38)

has the eigenvalue spectrum

E = M + J (J + 1)/2λ, (4.39)

where in general J = 0, 1/2, 1, 3/2, . . . .
By analogy with the usual spherical harmonics, the eigenfunctions ofH are seen

to be traceless symmetric polynomials in the {ak}. However, both {ak} and {−ak}
describe the same solution U (cf. Eq. (4.22)). In the quantum theory, eigenfunc-
tions thus fall into either of two classes, ψ({−ak})= ± ψ({ak}). Since fermions
correspond to the antisymmetric choice, we select only the half-integer values in
Eq. (4.39). In the Skyrme model, the N and � baryons will have wavefunctions
which are respectively linear and cubic in the {ak}. To construct such states, it is
convenient to employ the differential representations of Eq. (4.36) to prove

L3(a1 ± ia2) = ±(a1 ± ia2),

K3(a0 ± ia3) = ±(a0 ± ia3),

L3a0,3 = 0,
K3a1,2 = 0.

(4.40)
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From these and Eq. (4.36), the T3= J3= 1/2 eigenstate of a proton with spin up is
found to be

〈A| p↑〉 = 1

π
(a1 + ia2). (4.41)

The normalization of this state is obtained from the angular integral over the three-
sphere

1 = 〈p↑| p↑〉 =
∫
d�3 〈p↑|A〉〈A| p↑〉 = 1

π2

∫
d�3

(
a2

1 + a2
2

)
, (4.42)

where the angular measure is∫
d�3 =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ π

0
dχ sin2 χ, (4.43)

and spherical coordinates in four dimensions are defined by

a1 = sinχ sin θ cosϕ,
a3 = sinχ cos θ,

a2 = sinχ sin θ sinϕ,
a0 = cosχ.

(4.44)

The remaining nucleon states can be found by application of the spin and isospin
lowering sperators

J− = [(a1 − ia2)∂3 − (a3 + ia0)∂1 + (−a0 + ia3)∂2 + (a2 + ia1)∂0]/2,
T− = [(a1 − ia2)∂3 + (−a3 + ia0)∂1 + (a0 + ia3)∂2 − (a2 + ia1)∂0]/2, (4.45)

where ∂k ≡ ∂/∂ak. The T = J = 3/2 � states are formed by employing analogous
ladder operations on

〈A| �++3/2〉 =
i
√

2

π
(a1 + ia2)

3. (4.46)

It is remarkable that fermions can be constructed from a chiral lagrangian which
contains nominally bosonic degrees of freedom. However, the presence of a nonzero
fermion quantum number can be easily verified by direct calculation.

The wavefunctions for the eigenstates (the equivalents of Y
,m(θ, ϕ) for the rigid
rotator) are given by SU(2) rotation matrices with half-integer values. These are
defined by the transformation properties of states under an SU(2) rotation A,

|T , T ′3〉 =
∑
T3

D(T )

T ′3T3
(A)|T , T3〉. (4.47)

The simplest case is then just the T = 1/2 representation, which we know is rotated
by the matrix A,

D(1/2)
ij (A) = Aij =

(
(a0 + ia3) i(a1 − ia2)

i(a1 + ia2) (a0 − ia3)

)
ij

. (4.48)
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Comparison with Eq. (4.41) and with the results of Eq. (4.47) shows that the prop-
erly normalized nucleon wavefunctions are

〈A| NT3,S3〉 =
1

π
(−)T3+1/2 D(1/2)

−T3,S3
(A). (4.49)

The general case for a nonstrange baryon B of isospin T and spin S (S= T ) is
given by

〈A| BT,T3,S3〉 =
[

2T + 1

2π2

]1/2

(−)T+T3 D(T )
−T3,S3

(A), (4.50)

of which the � states are specific examples.
Finally, the N and � masses are

MN = M + 3/8λ = 73Fπ/e + e3Fπ/45.2π,

M� = M + 15/8λ = 73Fπ/e + 5e3Fπ/45.2π. (4.51)

If the measured N,� masses are used as input, one obtains e= 5.44 and
Fπ = 65 MeV. Alternatively, from the empirical value for Fπ and the determination
e � 5.6 from pion–pion scattering data, the model impliesMN � 1.27 GeV,M� �
1.80 GeV. In either case, agreement between theory and experiment is at about the
30% level. The next state in the spectrum would have quantum numbers
T = J = 5/2 and is predicted by the first of the above fitting procedures to have
mass M5/2=M + 35/8λ � 1.72 GeV. There is no experimental evidence for such
a baryon.

Although the development of the skyrmion and its quantization have been moti-
vated by large-Nc ideas, we know of no proof that requires the skyrmion to come
arbitrarily close to the baryons of QCD in theNc →∞ limit. An oft-cited counter-
example is the existence of a one-flavor version of QCD. Such a theory still con-
tains baryons, such as the�++. However, it makes no sense to speak of a one-flavor
Skyrme model, as an SU(2) group is required for the underlying soliton U0. The
Skyrme model remains an interesting picture for nucleon structure because it is in
many ways orthogonal to the quark model, and thus offers opportunities for new
insights.

XI–5 QCD sum rules

Low-energy QCD involves a regime where the degrees of freedom are hadrons,
and where it is futile to attempt perturbative calculations of hadronic masses and
decay widths. Contrasted with this is the short-distance asymptotically free limit
in which quarks and gluons are the appropriate degrees of freedom, and in which
perturbative calculations make sense. The method of QCD sum rules represents an
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attempt to bridge the gap between the perturbative and nonperturbative sectors by
employing the language of dispersion relations [ShVZ 79a].

The existence of sum rules in QCD is quite general, and some might dispute
the classification on these sum rules as a phenomenological method. However, in
practice, to utilize the sum rules involves the introduction of various approxima-
tions and heuristic procedures. Like quark model methods, these are motivated
by physical intuition but are not always rigorous consequences of QCD. As a
result, there remains a certain degree of uncontrollable approximation in their use.
Nonetheless, they have been employed in a large number of applications; some
early reviews are [ReRY 85, Na 89] and for somewhat more recent entries see
[Ra 98, CoK 00, Sh 10].

Correlators

It is convenient to approach the subject by considering the relatively simple two-
point functions. Thus, we consider the quark bilinear,

J�(x) = q1(x)�q2(x), (5.1)

where � is a Dirac matrix, and analyze the correlator,

i

∫
d4x eiq·x〈0|T (J�(x)J †

�(0))|0〉. (5.2)

Such quantities can be expressed in terms of invariant functions ��(q
2) and atten-

dant kinematical factors, e.g., as for the correlators of pseudoscalar currents (JP )
and of conserved vector currents (JV ),

�P(q
2) = i

∫
d4x eiq·x〈0|T (JP (x)JP (0)) |0〉, (5.3a)

(qμqν − q2gμν)�V (q
2) = i

∫
d4x eiq·x〈0|T (JμV (x)J νV (0)) |0〉. (5.3b)

Analogous structures occur for other currents.
There are several means for analyzing a quantity like ��(q

2). One is to write
a dispersion relation based on its singularity structure in the complex q2 plane.
The singularities are just those imposed by unitarity. For example, by inserting
a complete set of intermediate states into Eq. (5.3a) for the pseudoscalar function
�P(q

2) and invoking the constraints of Lorentz invariance and positivity of energy,
we obtain

�P(q
2) =

∫ ∞

s0

ds
ρP (s)

s − q2 − iε ,

θ(q0)ρP (q
2) = (2π)3

∑
n

δ4(pn − q)|〈0|JP (0)|n〉|2, (5.4)
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where s0 is the threshold for the physical intermediate states. Such considerations,
together with the application of Cauchy’s theorem in the complex q2 plane, imply
a dispersion relation for ��(q

2),

��(q
2) = (q2)N

π

∫ ∞

s0

ds
Im ��(s)

sN(s − q2 − iε) +
N−1∑
n=0

(q2)nan, (5.5)

where the {an} are N subtraction constants.4 One attempts to introduce a phe-
nomenological component to the dispersion relation by expressing Im ��(s) in
terms of measureable quantities, e.g., with cross section-data as in the case of the
charm contribution cγ μc to the vector current,

Im �
(chm)
V = 1

12πe2
c

σe+e−→ charm

σe+e−→ μ+μ−
= 9s

64π2α2
σe+e−→ charm, (5.6)

where ec is the c-quark electric charge and s is the squared center-of-mass energy. If
such data are not available, another means must be found for expressing Im ��(s)

in the range s0 ≤ s <∞.
To approximate the low-s part of Im ��(s), one usually employs one or more

single-particle states. As an illustration, let us determine the contribution to�P(q
2)

of a flavored pseudoscalar meson M , which is a bound state or a narrow-width res-
onance of the quark–antiquark pair q1q2. In this instance, we take the pseudoscalar
current in the form of an axial-vector divergence, JP → ∂μA

μ
−, with

∂μA
μ
− = i(m1 +m2)q1γ5q2,

〈0|∂μAμ−(0)|M〉 =
√

2FMm
2
M, (5.7)

wheremM and FM are the meson’s mass and decay constant. Then Eq. (5.4) implies

θ(q0)ρp(q
2) = (2π)3

∫
d3p

(2π)32ωp
2F 2

Mm
4
Mδ

4(p − q)
= 2F 2

Mm
4
Mδ(q

2 −m2
M)θ(q0), (5.8)

which yields ρp(q
2) = 2F 2

Mm
4
Mδ(q

2 −m2
M) for the spectral function or

Im �p|meson= 2F 2
Mm

4
Mπδ(s −m2

M) (5.9)

for the dispersion kernel. Thus, bound-state or narrow-resonance contributions give
rise to delta-function contributions. It is not difficult to take resonant finite-width
effects into account if desired. One or more of these single-particle contributions
are then used to represent the low-s part of the dispersion integral.

4 The number of subtraction constants needed depends on the behavior of Im ��(s) in the s →∞ limit, with
��(q

2) ∼ q2N ln q2 requiring N subtractions.
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Table XI–4. Local operators of low dimension.

d: 0 4 4 6 6 6

On: 1 mqqq Ga
μνG

μν
a q�qq�q mqσμν

λa

2 qG
μν
a fabcG

a
μνG

νλ
b G

μc
λ

Proceeding to higher s values in the dispersion integral, one enters the continuum
region, where multiparticle intermediate states become significant and the bound-
state (or resonance) approximation breaks down. Although, as described below, one
ordinarily attempts to suppress the large-s part of Im ��(s) by taking moments
or transforms of the dispersion integral, it has been common to add to the low-s
contribution a ‘QCD continuum’ approximation,

Im ��(s) −→
large-s

θ(s − sc)Im �cont(s), (5.10)

taken from discontinuities of QCD loop amplitudes and their O(αs) corrections. In
Eq. (5.10), sc parameterizes the point where the continuum description begins and
the form of Im �cont depends on the specific correlator. Experience has shown
that this ‘parton’ description can yield reasonable agreement of scattering data
even down into the resonance region, provided the resonances are averaged over
(duality).

Operator-product expansion

A representation for correlators which is distinct from the above phenomenologi-
cal approach can be obtained by employing an operator-product expansion for the
product of currents,

i

∫
d4x eiq·x T

(
J�(x)J

†
�(0)

)
=
∑
n

C�n (q2)On. (5.11)

The {On} are local operators and the {C�n (q2)} are the associated Wilson coeffi-
cients. As usual, the {On} are organized according to their dimension and, aside
from the unit operator I , are constructed from quark and gluon fields. Table XI–4
exhibits the operators up to dimension six which might contribute to the correlator
of Eq. (5.2).

Although one may naively expect all the operators but the identity to have van-
ishing vacuum expectation values (as is the case for normal-ordered local operators
in perturbation theory), nonperturbative long-distance effects like those discussed
in Sect. III–5 generally lead to nonzero values. Most often, the operator-product
approach contains vacuum expectation values like 〈αs

π
Ga
μνG

μν
a 〉0 ≡ 〈αs

π
G2〉0 and
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(a)

X X X X X X X X

(b)

g

g g

(c) (d)

Fig. XI–5 Contributions to coefficient functions.

〈mqqq〉0 as universal parameters, ‘universal’ in the sense that the same few parame-
ters appear repeatedly in applications. Calculation reveals that the quantity 〈αs

π
G2〉0

is divergent in perturbation theory, so the perturbative infinities must be subtracted
off if one is working beyond tree-level. In principle, all the vacuum expectation
values should be computable from lattice gauge theory once the renormalization
prescriptions are specified. At present, the only theoretically determined combina-
tions are the products

〈m̂(uu+ dd)〉0 � −2F 2
πm

2
π , 〈msss〉0 � −F 2

πm
2
K, (5.12)

which follow from the lowest-order chiral analysis in Chap. VII. We caution that
only the product mψψ is renormalization-group invariant (the gluon condensate
〈αs
π
G2〉0 does not, however, depend on scale). It is difficult to separate out the quark

masses uniquely, and values for input parameters like quark masses and conden-
sates tend to vary throughout the literature.

Use of the short-distance expansion must be justified. We have seen in previous
chapters how a given hadronic system is characterized in terms of the energy scales
of confinement () and quark mass ({mq}). Given these, it is indeed often possible
to choose the momentum q such that short-distance, asymptotically free kinematics
obtain. Two situations which have received the most attention are the heavy-quark
limit (m2

q 
 2, q2) and the light-quark limit (q2 
 2 
 m2
q). Once in the

asymptotically free domain, it is legitimate to apply QCD perturbation theory to
the C�n (q2), with the expansion being carried out to one or more powers of αs ,

C�n
(
q2
) = A�n

(
q2
)+ B�

n

(
q2
)
αs + · · · . (5.13)

Rather extensive lists of Wilson coefficients already appear in the literature.
Fig. XI–5 depicts contributions to a few of the Wilson coefficients. Denoting there
the action of a current by the symbol ‘×’, we display in (a)–(b) the lowest-order
and an O(αs) correction to operator I and in (c)–(d), the lowest-order contributions
to 〈αs

π
G2〉0 and to 〈mqq〉0, respectively.

Finally, as seen in Eq. (5.13), besides the vacuum expectation values, additional
parameters which generally occur in the operator-product representation are the
quark mass mq and the strong coupling αs . Since these quantities will depend on
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the momentum q, one must interpret them as running quantities whose renormal-
ization is to be specified. Due to asymptotic freedom, they too can be treated per-
turbatively, e.g., as in the familiar expression Eq. (II–2.78) for the running coupling
αs or Eq. (XIV–1.9) for the running mass m.

Master equation

The essence of the QCD sum rule approach is to equate the dispersion and the
operator-product expressions to obtain a ‘master equation’,

(q2)N

π

∫ ∞

s0

ds
Im ��(s)

sN
(
s − q2 − iε) + · · · =∑

n

C�
n

(
q2
) 〈On〉0. (5.14)

It is important to restrict use of this equation to a range of q2 for which both the
short-distance expansion and also any ‘resonance + continuum’ approximation to
Im �� are jointly valid. To satisfy these twin constraints, it is common practice
not to analyze Eq. (5.14) directly, but rather first to perform certain differential
operations leading to either moment or transform representations. The nth moment
M�
n (Q

2
0) is defined as

M�
n

(
Q2

0

) ≡ 1

n!
(
− d

dQ2

)n
��

(
Q2
) ∣∣∣∣
Q2=Q2

0

= 1

π

∫ ∞

s0

ds
Im ��(s)(
s +Q2

0

)n+1 , (5.15)

where, in the spacelike region q2 < 0, one usually works with the variable
Q2= −q2. By taking sufficiently many derivatives, one can remove unknown sub-
traction constants from the analysis and at the same time, enhance the contribution
of a single-particle state at low s in the dispersion integral.

Alternatively, one can express the dispersion integral as a kind of transform. The
Borel transform is constructed from the moment M�

n (Q
2) as

n Q2nM�
n

(
Q2
) −→
n,Q2→∞

1

πτ

∫ ∞

s0

ds e−s/τ Im ��(s), (5.16)

where Q2/n ≡ τ remains fixed in the limiting process and defines the transform
variable τ . To obtain the factor e−s/τ in the above dispersion integral, we note

n Q2n(
s +Q2

)n+1 =
n

s +Q2

(
1+ s/Q2

)−n −→
n,Q2→∞

e−s/τ

τ
. (5.17)

A slightly different version of exponential transform which has appeared in the
literature is defined analogously,
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Q2(n+1)M�
n

(
Q2
) −→
n,Q2→∞

1

π

∫ ∞

s0

ds e−sσ Im ��(s), (5.18)

where the transform variable is now σ = n/Q2. The transform method serves to
remove the subtraction constants and to suppress the contributions from operators
of higher dimension in the operator-product expansion.

Examples

Applications of the QCD sum rule approach generally proceed according to the
following steps.

(1) Choose the currents and write a dispersion relation for the correlator.
(2) Model the dispersion integrals with phenomenological input, usually some

combination of single-particle states and continuum.
(3) Employ the operator-product expansion, including all appropriate operators up

to some dimension at which one truncates the series.
(4) Obtain the Wilson coefficients as an expansion in αs .
(5) Use the moment or transform technique to extract information from the master

equation.
(6) Vary the underlying parameters until stability of output is achieved.

Let us consider several examples, keeping the treatment on an elementary footing
to better emphasize the kinds of relationships which QCD sum rules entail. In fact,
modern calculations can be quite technical, involving issues such as optimizing
the organization of input data, inclusion of ever higher orders of both perturbation
theory and vacuum condensates.

(i) Rho meson decay constant fρ : This was among the first applications of the QCD
sum rule approach [ShVZ 79a]. The ρ isovector current J (ρ)μ and decay constant
fρ are

J (ρ)μ = ūγμu− d̄γμd
2

, 〈ρ0(p, λ)|J (ρ)μ |0〉 = ε†
μ(p, λ)

fρmρ√
2
. (5.19a)

The sum rule which gives fρ is [CoK 00]

f 2
ρ =

em
2
ρτ

τ

[
1

4π2

(
1− e−s0τ ) (1+ αs(τ

−1)

π

)
+ (mu +md)τ

2〈q̄q〉 + · · ·
]
, (5.19b)

where τ is the Borel parameter, s0 is threshold above which�ρ(s) is to be approx-
imated via perturbation theory and ellipses represent additional condensate contri-
butions. The variation of fρ vs. 1/τ turns out to display little variation in fρ for, say,
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0.6 ≤ τ−2(GeV2) ≤ 1.3; this is the Borel window of stability. The range of values
fρ ∼ 208 → 218 MeV which occur within the stability window is in accord with
the experimental determination cited in Eq. (V–3.14) for the equivalent quantity
gρ = fρmρ/

√
2.

(ii) Mass of the charm quark: We consider the correlator for the charm-quark vector
current J (chm)

μ = cγμc,(
qμqν − q2gμν

)
�
(chm)
V

(
q2
) = i

∫
d4x eiq·x〈0|T (J (chm)

μ (x)J (chm)
ν (0)

) |0〉,
(5.20a)

and the corresponding dispersion relation,

∂(−∂Q2
)�(chm)

V

(
Q2
) = 1

π

∫ ∞

s0

ds
Im �

(chm)
V (s)(

s +Q2
)2 . (5.20b)

Following the original treatment of this system [ShVZ 79a], we work at Q2 = 0
and employ a moment analysis of the short-distance expansion containing just the
identity and gluon contributions. The experimental input is obtained from

M(expt)
n =

∫
ds

sn+1

σe+e−→ cc̄(s)

σe+e−→ μ−μ+(s)
, (5.21a)

whereas the theory side involves

M(thy)
n = 12π2e2

c

n! · d

dq2n
�
(chm)
V (q2 = 0). (5.21b)

The moments M(thy)
n can be determined in terms of an operator-product expansion,

which is dominated by the QCD-perturbative contribution provided the value of
n is not too large, i.e., mc/n > QCD. Perturbative contributions have long been
studied and a library of exact results is now available (see [DeHMZ 11]):

(1) O(α0
s ) and O(α1

s ): known for all n.
(2) O(α2

s ): known up to n= 30.
(3) O(α3

s ): known up to n= 3.

Below, we cite two specific O(α3
s ) determinations of the charm quark mass

[KuSS 07], [DeHMZ 11]. Both adopt the gluon condensate value 〈αs
π
G2〉0= 0.006±

0.012 GeV4 (each analysis obtains only a minor effect for this term). The results
obtained in MS renormalization are

mc(mc) = (1.286± 0.013) GeV [KuSS 07],

mc(mc) = (1.277± 0.026) GeV [DeHMZ 11], (5.22)
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whereas the value mc(mc)= (1.275± 0.025) GeV is cited in [RPP 12]. The issue
of how to assign uncertainty in QCD-sum-rule-determinations of charm mass,
especially involving the data side of the calculation, is currently a topic of some
interest,

(iii) Weak decay constant of the D+ meson: Consider first the axial-current diver-
gence and correlator associated with a heavy quark Q and a light antiquark q,
respectively of mass mQ and mq , which comprise a heavy meson MQ,

∂μA
μ
− = i(mQ +mq)qγ5Q,

�P (q
2) = i

∫
d4x eiq·x〈0|T (∂μAμ−(x)∂νAν†

− (0))|0〉. (5.23)

A transformation with Borel variable τ yields

�P(τ) =
∫ ∞

(mQ+mq)2
ds e−sτ ρpert(s, μ)+�pwr(τ,mQ,μ) (5.24)

where ρ= Im �/π and ρpert(s, μ) and �pwr(τ,mQ,μ) represent respectively, the
perturbative and nonperturbative contributions.

Let us now consider specifically the decay constant of the D+, where symbol-
ically D+ ∼ (cū). The experimental value, fD ≡

√
2FD = 206.7 ± 8.9 MeV is

found from D+ → μ+νμ via decay formulas akin to the tree-level Eq. (VII–1.24)
or radiatively corrected Eq. (VII–1.34) for pion leptonic decay. On the theory side,
it is shown in [LuMS 11] that a straightforward QCD sum rule approach yields

f 2
D+M

4
D+e

−M2
D+ τ =

∫ seff(τ )

(mc+mu)2
ds e−sτ ρpert(s, μ)+�pwr(τ,mQ,μ), (5.25)

where the condensate values adopted are

〈qq〉(μ) = −(267± 17 MeV)3,
〈αs
π
G2
〉
= (0.024± 0.012)GeV4, (5.26)

with μ= 2 GeV being the MS renormalization scale. The most novel part of the
expression in Eq. (5.25) is the presence of an ‘effective continuum threshold’
seff(τ ). The τ -dependence of seff supplants the traditional form of Eq. (5.10) in
which a constant cut-off sc is used to describe the onset of continuum contribu-
tions. We leave a detailed discussion of the effective threshold to [LuMS 11] and
simply state the final result,

f
(thy)
D = (206.2± 7.3(OPE) ± 5.1(sys)

)
MeV,

which is consistent with the experimental finding shown above.

(iv) Nucleon mass: It is not necessary to restrict oneself to mesonic currents as in
Eq. (5.1). Here, we consider a current ηN (and its correlator), which carries the
quantum numbers of the nucleon,
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ηN = εijku
iCγ μujγ5γμd

k,

�(q2) = �1(q
2)+ /q�2(q

2) = i

∫
d4x eiq·x〈0|T (ηN(x)ηN(0)) |0〉, (5.27)

where C is the charge-conjugation matrix. The simplest approximation to the dis-
persion integral comes from the nucleon pole,

�
(
q2
) |pole = λ2

N

MN + /q
q2 −M2

N

, (5.28)

where the coupling λ2
N is proportional to the ‘nucleon decay constant’, i.e., the

probability of finding all three quarks within the nucleon at one point. Upon making
a simple approximation to the operator-product expansion,

�1
(
q2
) � − q2

4π2
ln
(−q2

) 〈qq〉0, �2
(
q2
) � q4

64π2
ln
(−q2

)
, (5.29)

and employing a Borel transform, one obtains an amusing relation between nucleon
mass and quark condensate [Io 81],

MN =
(−8π2〈qq〉0

)1/3 + . . . � 1 GeV, (5.30)

and implies the vanishing of the former with the latter. However, it should be
realized that this result is subject to important corrections in a more complete
treatment.

Each of the above examples has involved two-point functions. It is possible to
apply the method to three-point functions as well, where one can obtain coupling-
constant relations. The underlying principles are the same, but some technical
details are modified owing to the larger number of variables, e.g., one encounters
double-moments or double-transforms.

QCD sum rules work best when there is a reliable way to estimate the dispersion
integral, most often with ground-state single-particle contributions. However, the
method has its limitations. It is not at its best in probing radial excitations since
their dispersion effects are generally rather small. Even having a good approxi-
mation to the dispersion integral is not sufficient to guarantee success. For exam-
ple, the method has trouble in dealing with high-spin (J > 3) mesons because,
even with dispersion integrals which are dominated by ground-state contributions,
power corrections in the operator-product expansion become unmanageable.

Problems

(1) Velocity in potential models
Truly nonrelativistic systems have excitation energies small compared to the
masses of their constituents. However, fitting the observed spectrum of light
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hadrons requires excitation energies comparable to or larger than the con-
stituent masses.

Assuming nonrelativistic kinematics, consider a particle of reduced mass m
moving in a harmonic-oscillator potential of angular frequency ω. Expressing
ω in terms of the energy splitting E1 − E0 between the first-excited state and
the ground state, use the virial theorem to determine the ‘rms’ velocities of the
ground state (v(0)rms) and of the first-excited state (v(1)rms) in terms of E1 − E0.
Compute the magnitude of v(0)rms/c and v(1)rms/c using as inputs (i) mf2 − mρ �
500 MeV for light hadrons and (ii) mψ(2S) − mJ/ψ � 590 MeV for charmed
quarks.

Your results should demonstrate that the kinematics of quarks in light hadrons
is not truly nonrelativistic. However, one tends to overlook this flaw given the
potential model’s overall utility.

(2) Nucleon mass and the Skyrme model
(a) Use the Skyrme ansatz of Eq. (4.15) to derive the expression Eq. (4.16) for

the nucleon energy E[F ].
(b) Using the simple trial function F(r)=π exp(−r/R), scale out the range

factor R to put E[F ] in the form of Eq. (4.11), where a � 30.8F 2
π and

b � 44.7/e2 are determined via numerical integration.
(c) Minimize E[F ] by varying R and compare your result with the value

73Fπ/e determined with a more complex variational function.
(d) Using the numerical value of the nucleon mass, determine e and compare

with the value

1

32e2
· 4

F 2
π

∼ 1

(4πFπ)2

expected from chiral-scaling arguments.
(3) A ‘QCD sum rule’ for the isotropic harmonic oscillator

Consider three-dimensional isotropic harmonic motion with angular frequency
ω of a particle of mass m.
(a) Using ordinary quantum mechanics or more formal path-integral methods,

determine the exact Green’s function G(τ) for propagation from time t = 0
to imaginary time t = − iτ at fixed spatial point x= 0. G(τ) is the analog
of the ‘correlator’ for our quantum mechanical system.

(b) From the representationG(τ)=〈0,−iτ |0, 0〉, use completeness to express
G(τ) in terms of the S-wave radial wavefunctions {Rn(0)} evaluated at
the origin and the energy eigenvalues {En}. What values of n contribute?
This representation is the analog of the dispersion relation expression for a
correlator in which one takes into account an infinity of resonances.
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(c) Plot the negative logarithmic derivative −d[lnG(τ)]/dτ for the range 0 ≤
ωτ ≤ 5 and interpret the large ωτ behavior in terms of your result in
part (b).

(d) Obtain the first three terms in a power series for−d[lnG(τ)]/dτ , expanded
about τ = 0. This is the analog of the series of operator-product ‘power
corrections’ to −d[lnG(τ)]/dτ . Assume, as is the case in QCD, that you
know only a limited number of terms in this series, first two terms and then
four terms. Is there a common range of ωτ for which (i) your truncated
series reasonably approximates the exact behavior, and (ii) the approxima-
tion for keeping just the lowest bound state in part (b) is likewise reason-
able? It is this compromise between competing demands of the resonance
and operator-product approximations which must be satisfied in sucessfully
applying the QCD sum rules to physical systems.



XII

Baryon properties

An important sector of hadron phenomenology is associated with the electroweak
interactions. Baryons provide a particularly rich source of information, with data on
vector and axial-vector couplings, magnetic moments, and charge radii. In
Sect. XII–1, we describe the procedure for computing matrix elements in the con-
stituent quark model, and then turn to a variety of applications in the succeeding
sections.1

XII–1 Matrix-element computations

Much of the application of the quark model to physical systems involves the calcu-
lation of matrix elements. The subject divides naturally into two parts. On the one
hand, many quantities of interest follow from just the flavor and spin content of the
hadronic states. On the other, it is often necessary to have a detailed picture of
the quark spatial wavefunction.

Flavor and spin matrix elements

For the first of these, the quark model is particularly appealing because of the intu-
itive physical picture which it provides. For example, consider the quark content of
the proton state vector, which we reproduce here from Table XI–2,

|p↑〉 = 1√
18
εijk[(u†

i↓d
†
j↑ − u†

i↑d
†
j↓)u

†
k↑] |0〉. (1.1)

The first two quarks form a spin-zero, isospin-zero pair with the net spin and
isospin of the proton being given by the final quark. The prefactor of 1/

√
18

ensures that the state vector has unit normalization. Calculation reveals that one-
third of the magnitude of this normalization factor comes from the u↑u↓d↑ term

1 The reader can also consult the Nc →∞ studies as described in [DaJM 94, Je 98].
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Table XII–1. Some baryon octet expectation values.

p n  �+ �0 �− !0 !−

〈Q〉 1 0 0 1 0 −1 0 −1
〈Qσz〉 1 −2/3 −1/3 1 1/3a −1/3 −2/3 −1/3
〈λ3σz〉 5/3 −5/3 2/

√
6 4/3 0 −4/3 −1/3 1/3

aThe off-diagonal transition �0 →  has |〈Qσz〉| = 1/
√

3.

and two-thirds from the u↑u↑d↓ term, i.e. one concludes that ‘the proton is twice
as likely to be found in the configuration with the u-quark spins aligned than
anti-aligned’,

Prob. =
{

2/3 (u↑u↑d↓),
1/3 (u↑u↓d↑).

(1.2)

The ‘six parts in eighteen’ of the u↑u↓d↑ configuration arises entirely from the six
ways that color can be distributed among three distinct entities. The configuration
u↑u↑d↓ is twice as large due to the presence of two u↑ states. Similar kinds of
inferences can be drawn for the remaining baryon state vectors in Table XI–2.

We can proceed analogously in deriving and interpreting various matrix-element
relationships. It is instructive to work at first in the limit of SU(3) invariance
because more predictions become available. The effect of symmetry breaking is
addressed in Sect. XII–2. Let us consider matrix elements, taken between mem-
bers of the spin one-half baryon octet, of the operators

squared charge-radius :
∫
d3x r2ψ†Qψ ∝ 〈Q〉,

axial-vector current :
∫
d3x ψ†γ3γ5λ3ψ ∝ 〈λ3σz〉,

magnetic moment :
∫
d3x

1

2
(r× ψ†αQψ)3 ∝ 〈Qσz〉. (1.3)

Along with the definition of each operator is indicated the flavor–spin attribute
of an individual quark which is being averaged over. For example, a magnetic
moment is sensitive to the combination Qσz of each quark within the baryon.
Matrix elements will then be products of such averages times quark wavefunction
overlap integrals. The flavor–spin averages for the baryon octet are displayed in
Table XII–1.

To see how these values are arrived at, let us compute the value 5/3 obtained for
the proton axial-vector matrix element. For the configuration u↑u↑d↓, which occurs
with a probability of 2/3, the average value of λ3σz equals (1+ 1+ 1)× 2/3 = 2,
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whereas for the configuration u↑u↓d↑ one finds (1−1−1)×1/3 = −1/3. Together
they sum to the value 5/3.

Overlaps of spatial wavefunctions

The spatial description of quark wavefunctions is less well understood than the
spin/flavor aspect of the phenomenology.2 The most extensive studies of the spa-
tial wavefunctions are associated with matrix elements of currents. Because these
are bilinear in quark fields and because of the wavefunction normalization con-
dition, the magnitudes of these amplitudes are constrained to be nearly correct.
Dimensional matrix elements are primarily governed by the radius of the bound
state. As long as the proper value is fed into the calculation, the scale should come
out right.

As noted in Sect. XI–1, a relativistic quark moving in a spin-independent central
potential has a ground-state wavefunction of the form

ψ(x)

∣∣∣∣
gnd

=
(
i u(r) χ


(r)σ · x̂ χ
)
e−iEt , (1.4)

where u, 
 signify ‘upper’ and ‘lower’ components. For the bag model, these radial
wavefunctions are just spherical Bessel functions. This form also appears in some
relativistic harmonic oscillator models, which use a central potential. To charac-
terize different types of relativistic behavior, it is worthwhile to express matrix
elements in terms of u and 
 without specifying them in detail. The normalization
condition for the spatial wavefunction is then∫

d3x ψ†(x)ψ(x) =
∫
d3x (u2(r)+ 
2(r)) = 1. (1.5)

In the nonrelativistic regime, the lower component vanishes (
 = 0).
Let us consider the size of the lower components which occur in various

approaches. In the bag model one obtains for massless quarks the integrated value∫
d3x 
2(r) � 0.26. (1.6)

Relativistic effects are often included in potential models by working in momentum
space and employing the spinor appropriate for a quark q in momentum
eigenstate p,

2 Even the experimental value of the proton charge radius rE is in question. The historical approach, to
measure the differential cross section in elastic electron–proton scattering at low Q2, gives rE = 0.879(8) fm
and rE = 0.875(11) fm [Zh et al. 11] in recent experiments. By contrast, measurement of the
2SF=0

1/2 − 2PF=1
3/2 energy difference in muonic hydrogen [An et al. 13] yields (using a consistent definition

of charge radius) rE = 0.84087(39) fm, which is at 7σ variance relative to the scattering value.
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u(p) = √E +mq

⎛⎜⎜⎝ χ

σ · p
E +mq

χ

⎞⎟⎟⎠ . (1.7)

In this case the relevant prescription is∫
d3x 
2(r)→

〈
p2

2E(E +mq)

〉
, (1.8)

where the averaging is taken over the momentum-space wavefunction of the par-
ticular model. Using the uncertainty principle relation of Eq. (XI–1.14) to estimate
〈p2〉, we find typical values〈

p2

2E(E +mq)

〉
� 0.13 → 0.20 (1.9)

for a confinement scale of 1 fm. Larger effects are found in the harmonic-oscillator
model if one uses the value α2 = 0.17 GeV2 (see Fig. XI–2). Generally, the lower
component is found to be significant but not dominant in quark wavefunctions.

Connection to momentum eigenstates

In all cases except for the nonrelativistic version of the harmonic oscillator model,
one cannot explicitly separate out the center-of-mass motion. The result of a quark
model description of a bound state is a configuration localized in coordinate space,
i.e., a position eigenstate. However, the analysis of scattering and decay deals with
the plane waves of momentum eigenstates.

The basic assumption made in all quark models is that the bound state with a
given set of quantum numbers is related to only those momentum eigenstates of
the same type. If we denote |H(x)〉 as a unit-normalized hadron state centered
about point x and |H(p)〉 as a plane-wave state, then we have

|H(x)〉 =
∫

d3p ϕ(p)eip·x |H(p)〉. (1.10)

We shall give a prescription for obtaining a functional form for ϕ(p) shortly. Let
us normalize the plane-wave states for both mesons and baryons as

〈H(p′)|H(p)〉 = 2ωp(2π)
3δ(3)(p′ − p). (1.11)

The constraint of unit normalization then implies∫
d3p 2ωp(2π)

3 |ϕ(p)|2 = 1. (1.12)
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We can employ the above wavepacket description to derive a general procedure
within the quark model for calculating matrix elements [DoJ 80]. Many matrix
elements of interest involve a local operator O evaluated between initial and final
single-hadron states. Let us characterize the magnitude of the matrix element in
terms of a constant g. Then, for baryons in the momentum basis, the spatial depen-
dence is given by

〈B ′(p′) |O(x)|B(p)〉 = g u(p′)�Ou(p) ei(p
′−p)·x, (1.13)

where �O is a Dirac matrix appropriate for the operator O. By comparison, one
obtains in any bound-state quark model (QM) calculation a spatial dependence
whose specific form is model-dependent,

QM〈B ′ |O(x)|B〉QM = f (x). (1.14)

Hereafter, let us center all quark model states at the origin. The method of
wavepackets then implies

QM〈B ′|
∫
d3x O(x)|B〉QM = g

∫
d3x

∫
d3p′d3p ϕ∗(p′)ϕ(p)

× u(p′)�Ou(p)ei(p′−p)·x

= g

∫
d3p (2π)3 |ϕ(p)|2 u(p)�Ou(p). (1.15)

For sufficiently heavy bound states the fluctuation in squared momentum 〈p2〉 is
small, and one may expand about |p| = 0,

u(p)�Ou(p) = u(0)�Ou(0)+O
(〈p2〉/m2

B

)
. (1.16)

A common approach consists of keeping only the leading term to obtain

g

2mB

u(0)�Ou(0) = QM〈B ′|
∫
d3x O(x) |B〉QM. (1.17)

It is interesting to note that this relation, often thought of as fundamental, is in fact
only an approximation.

As an example, let us perform the complete quark model procedure for the
neutron–proton axial-vector current matrix element. We begin by defining as usual

〈p(p2, s2)
∣∣Aμ(x)∣∣ n(p1, s1)〉 = gAu(p2, s2)γμγ5u(p1, s1)e

i(p2−p1)·x + · · · .
(1.18)

For spin-up nucleons the choice μ = 3 gives

u(0,↑)γ3γ5u(0,↑) = 2mN, (1.19)
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yielding for Eq. (1.18) the basic formula,

gA = QM〈p↑|
∫
d3x u(x)γ3γ5d(x) |n↑〉QM. (1.20)

The field operator for any quark q is expanded as in Eq. (XI–1.1),

qα(x) =
∑
n,s

[
ψn,s(x)e

−iωntqn,α(s)+ ψn,s(x)eiωntq†
n,α(s)

]
. (1.21)

Substituting, we have

gA = QM〈p↑|
∫
d3x ψ0,s′(x) γ3γ5ψ0,s(x) u

†
α(s)dα(s

′)|n↑〉QM, (1.22)

where only the n = 0 ground-state mode contributes. At this stage, one can factor-
ize the spin and space components by using the general ground-state wavefunction
of Eq. (1.4). This leads to∫

d3x ψ0,sγ3γ5ψ0,s′ =
∫
d3x χ†

s (u
2σ3 − 
2r̂3σ · r̂)χs′

= σ ss
′

3

∫
d3x (u2 − 1

3

2), (1.23)

and thus

gA =
∫
d3x

(
u2 − 1

3

2

)
QM〈p↑

∣∣∣u†(s, α)σ ss
′

3 d(s ′, α)
∣∣∣ n↑〉QM. (1.24)

Finally, upon dealing with the spin dependence in Eq. (1.24), we obtain

gA = 5

3

∫
d3x

(
u2 − 1

3

2

)
= 5

3

(
1− 4

3

∫
d3x 
2

)
. (1.25)

Any nonrelativistic quark model, having zero lower components, would simply
yield gA = 5/3. If one desires to make relativistic corrections to such a model,
the result can be inferred from the above general formula with the appropriate
substitution of Eq. (1.8). Clearly, the procedure just given can be extended to matrix
elements of any physical observable.

The wavepacket formalism also allows for the estimation of the ‘center-of-mass’
correction. This arises from the 〈p2〉 modifications to Eq. (1.16). For the axial cur-
rent, the zero-momentum relation in Eq. (1.19) is extended for nonzero momentum
to

u2(p,↑)γ3γ5u1(p,↑)
2E

= 1− p2

3m1m2

(
1

4
+ 3

8

m2

m1
+ 3

8

m1

m2

)
+O(p4), (1.26)
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where an average over the direction of p has been performed. This expression
generalizes Eq. (1.25) to

gA

[
1− 〈p2〉np

3mnmp

(
1

4
+ 3

8

mp

mn

+ 3

8

mn

mp

)]
= 5

3

∫
d3x

(
u2 − 1

3

2

)
, (1.27)

where 〈p2〉np � 0.5 GeV2 is a typical bag model value.
It is possible to argue that in the transition from the current quarks of the QCD

lagrangian to the constituent quarks of the quark model, the couplings to currents
should be modified. For example, one might suspect that the coupling of a con-
stituent quark to the axial current occurs not with strength unity, but with a strength
g
(q)

A such that the nonrelativistic expectation is not g1= 5/3 but rather g1= 5g(q)A /3.
The choice g(q)A � 3/4 would then yield the experimental value. This is not unrea-
sonable but, if fully adopted, leads to a lack of predictivity. In such a picture, not
only can the magnetic moments and weak couplings be renormalized, but also the
spin and flavor structures. That is, in the ‘dressing’ process which a constituent
quark undergoes, there could be ‘sea’ quarks, such that the constituent u quark
could have gluonic, d-quark, or s-quark content. Likewise, some of the spin of
the constituent quarks could be carried by gluons. One is then at a loss to know
how to calculate matrix elements of currents. In practice, however, the naive quark
model, with no rescaling of gA or of the magnetic moment, does a reasonable job of
describing current matrix elements. It is then of interest to study both the structure
and limitations of this simple approach.

Calculations in the Skyrme model

There are several differences between taking matrix elements in the quark model
and in the Skyrme model [Sk 62]. To begin, in the quark model a current is
expressed in terms of a bilinear covariant in the quark fields (cf. Eq. (1.3)), whereas
in the Skyrme model the representation of a current is rather different. As an
example, application of either Noether’s theorem or the external source method
of Sect. IV–6 identifies the SU(2) vector and axial-vector currents to be(

Jv
a

)a
μ
= iF 2

π

4
Tr
(
τ a(∂μU U † ± ∂μU † U)

)
− i

16e2

[
Tr
([
τ a, ∂νU U †

] [
∂μU U †, ∂νU U †

])
±Tr

([
τ a, ∂νU

† U
] [
∂μU

† U, ∂νU † U
])]

, (1.28)

where U = A(t)U0A
−1(t) is the quantized skyrmion form and A(t) is an SU(2)

matrix. We shall neglect derivatives of A(t), as the quantization hypothesis corre-
sponds to slow rotations. This leads to a result similar in form to Eq. (1.28), but
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with U → U0 and τ a → A−1(t)τ aA(t). The answer may be simplified by use of
the explicit form of U0 appearing in Eq. (XI–4.15).

Let us use Eq. (1.28) to compute the spatial integral of the axial current. After
some algebra, we obtain a product of spatial and internal factors,∫

d3x (JA)
a
j = −G5 Tr (τ aAτ jA−1),

G5 = − π

3e2

∫ ∞

0
dr̃ r̃2

[
F ′ + sin 2F

r̃
+ 4 sin 2F

r̃
(F ′)2

+8 sin2 F

r̃2
F ′ + 4 sin2 F sin 2F

r̃3

]
, (1.29)

where a is the isospin component and j is the Lorentz component. This is now
suitable for taking matrix elements, such as

〈p↑|
∫
d3x (JA)

a
j |p↑〉 =

∫
d3x

∫
d�3 〈p↑|A〉 (JA)aj 〈A|p↑〉

= G5

∫
d�3 D

( 1
2 )∗
− 1

2 ,
1
2
(A)Tr (τ aAτ jA−1)D

( 1
2 )

− 1
2 ,

1
2
(A),

(1.30)

where we have used the completeness relation of Eq. (XI–4.42). Upon expressing
the trace in Eq. (1.30) as a rotation matrix, Tr (τ kAτ lA−1)/2 = D

(1)
kl , we can

determine the group integration in Eq. (1.30) in terms of SU(2) Clebsch–Gordan
coefficients,∫

d�3 D
(T ′′)∗
mn (A)D

(T ′)
kl (A)D

(T )
ij (A) = (−)2(T ′−T+m) 2π2

2T ′′ + 1
CT ′T T ′′
kim CT ′T T ′′

ljn .

(1.31)

Alternatively, one can work directly with the collective coordinates, e.g., with the
aid of Eqs. (XI–4.41–4.44) we obtain for a = j = 3

−2G5

π2

∫
d�3 (a1 − ia2)(a

2
0 + a2

3 − a2
1 − a2

2)(a1 + ia2) = 2

3
G5. (1.32)

Before one can infer a Skyrme model prediction for gA from this calculation,
there is a subtlety not present for the quark calculation, which must be addressed.
Due to the original chirally invariant lagrangian, the Skyrme model is unique among
phenomenological models in being completely compatible with the constraints of
chiral symmetry. As a consequence, the near-static axial-vector matrix element is
constrained to obey

qj 〈p(p′)|(JA)3j |p(p)〉 = 0, (q = p − p′) (1.33a)
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and hence must be of the form [AdNW 83],

〈p(p′)|(JA)3j |p(p)〉 = 2mpgA

(
δjk − qjqk

|q|2
)
〈σk〉. (1.33b)

The term containing |q|−2 arises from the pion pole, as will be discussed in
Sect. XII–3 in connection with the Goldberger–Treiman relation. An angular aver-
age of Eq. (1.33b) then yields 2gA/3, which from comparison with Eq. (1.32)
implies gA = G5. Thus in the Skyrme model, the axial-vector coupling constant
equals the radial integral in Eq. (1.29) which defines G5. Use of the profile given
in Sect. XI–4 leads to the prediction gA = 0.61, which is about only one-half
the experimental value and constitutes a well-known deficiency of skyrmion phe-
nomenology. Presumably, consideration of a more general chiral lagrangian could
modify this result by including higher derivative components in the weak current.

Pions may be added to the Skyrme description through introduction of the matrix
ξ described in App. B–4 [Sc 84],

U = ξA(t)U0A
−1(t)ξ, ξ = exp [iτ · π/(2Fπ)] . (1.34)

If currents are formed using this ansatz, some terms occur without derivatives on
the pion field, while others contain one or more factors of ∂μπ . Since ∂μπ gives rise
to a momentum factor qμπ when matrix elements are taken and soft-pion theorems
deal with the limit qμπ → 0, the lowest-order soft-pion contribution will consist
of keeping only terms without derivatives. Thus in the process νμ + N → N +
π +μ the final-state pion is produced by a hadronic weak current and the soft-pion
theorem relates the N → Nπ matrix element to the N → N current form factors.
Expanding the currents to first order in the pion field yields(

Jv
a

)a
μ
= iFπ

2

[
Tr
(
τ aA−1

(
∂μU

†
0 U0 ± ∂μU0 U

†
0

)
A
)

− iπ
b

2Fπ
Tr
(
[τ a, τ b]A−1

(
∂μU

†
0 U0 ∓ ∂μU0 U

†
0

)
A
)
+ · · ·

]
, (1.35)

where for notational simplicity we have displayed only the first term in the current.
Note the sign flip in the second line. This form is in accord with the soft-pion
theorem (see App. B–3)

lim
qλπ→0

〈N ′(p′)πb(qπ)|
(
Jv

a

)a
μ
|N(p)〉 = − i

Fπ
〈N ′(p′)|

[
Qb

5,
(
Jv

a

)a
μ

]
|N(p)〉

= −ε
abc

Fπ
〈N ′(p′)|

(
Jv

a

)c
μ
|N(p)〉, (1.36)

where the current commutation rules of App. B–3 have been used.
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XII–2 Electroweak matrix elements

The static properties of baryons can be determined from their coupling to the weak
and electromagnetic currents. In this section, we shall describe these features in
terms of the quark model.

Magnetic moments

The generic quark model assumption for the magnetic moment is that the individual
quarks couple independently to a photon probe. For ground-state baryons where all
the quarks move in relative S waves, the magnetic moment is thus the vector sum
of the quark magnetic moments,

μbaryon =
3∑
i=1

μiσ i , (2.1)

where σ i is the Pauli matrix representing the spin state of the ith quark andμi is the
magnitude of the quark magnetic moment.3 Since the light hadrons contain three
quark flavors, the most general fitting procedure to the moments of the baryon octet
will involve the magnetic moments μu,μd, μs .

It is straightforward to infer baryon magnetic-moment predictions in the quark
model directly from the state vectors of Table XI–2. For example, we have seen that
the proton occurs in the two configurations u↑u↑d↓ and u↑u↓d↑ with probabilities
2/3 and 1/3, respectively. This can be used to carry out the construction defined
by Eq. (2.1) as follows:

μp = 2

3
μ(u↑u↑d↓) + 1

3
μ(u↑u↓d↑)

= 2

3
[2μ(u↑)+ μ(d↓)] + 1

3
[μ(u↓)+ μ(u↑)+ μ(d↑)] = 4

3
μu − 1

3
μd, (2.2)

and similarly for the other baryons. Experimental and quark model values are dis-
played in Table XII–2.

It is of interest to see how well the assumption of SU(3) symmetry fares. In
the limit of degenerate quark mass (denoted by a superbar), the quark magnetic
moments are proportional to the quark electric charges,

μ̄d = μ̄s = −1

2
μ̄u (SU(3) limit), (2.3a)

3 When referring to the ‘magnetic moment’ of a quantum system, one means the maximum component
along a quantization axis (often chosen as the 3-axis). Thus, the magnetic moment is sensitive to the third
component of quark spin as weighted by the quark magnetic moment.
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Table XII–2. Baryon magnetic moments.

Mode Experimenta Quark model Fit Ab Fit Bc

μp 2.792847386(63) 4μu−μd
3 2.79 2.79

μn −1.91304275(45) 4μd−μu
3 −1.86 −1.91

μ −0.613(4) μs −0.93 −0.61
μ�+ 2.458(10) 4μu−μs

3 2.79 2.67
|μ�0| 1.61(8) |μu−μd |√

3
1.61 1.63

μ�− −1.160(25) 4μd−μs
3 −0.93 −1.09

μ!0 −1.250(14) 4μs−μu
3 −1.86 −1.44

μ!− −0.651(3) 4μs−μd
3 −0.93 −0.49

aExpressed in units of the nucleon magneton μN = e�/2Mp.
bSU(3) symmetric fit.
cμu, μd, μs taken as independent parameters.

while isospin symmetry would imply

μ̄d = −1

2
μ̄u (SU(2) limit). (2.3b)

If we determine the one free parameter by fitting to the very precisely known proton
moment, we obtain the SU(3) symmetric Fit A shown in Table XII–2. More gener-
ally, allowing μu,μd, μs to differ and determining them from the proton, neutron,
and lambda moments yields

μu = 1.85 μN, μd = −0.972 μN, μs = −0.613 μN, (2.4)

and leads to the improved (but not perfect) agreement of Fit B in Table XII–2.
We see from Eq. (2.4) that the main effect of SU(3) breaking is to substantially
reduce the magnetic moment of the strange quark relative to that of the down quark.
The deviation of μd/μu from the isospin expectation of μd/μu = −1/2 is smaller
and perhaps not significant. Observe that the famous prediction of the SU(2) limit,
μn/μp = −2/3, is very nearly satisfied.

The magnetic moment as derived from the multipole expansion of the electric
current is defined by

μ = 1

2

∫
d3x r× Jem(x). (2.5)

It follows from this expression that the contribution of a nonrelativistic quark ‘q’
to the hadronic magnetic moment is just the Dirac result,

μq = Q

2Mq

, (2.6)
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where Mq is the quark’s constituent mass and Q is its charge. We can use this
together with Eq. (2.4) to determine the constituent quark masses, with the result

Mu � Md � 320 MeV, Ms � 510 MeV. (2.7)

As we shall see in Sect. XIII–1, these masses are comparable to those extracted
from mass spectra of the light hadrons.

One can also construct models involving relativistic quarks. For these, the
magnetic-moment contribution of an individual quark becomes

μ = 2Q

3
σ

∫
d3x r u(r) 
(r). (2.8)

Note the absence of an explicit dependence on quark mass. This is compensated by
some appropriate dimensional quantity. The inverse radius R−1 plays this role in
the bag model, and other determinations of R allow for a prediction of the hadronic
magnetic moment. For example, the bag model defined by taking zero quark mass
(corresponding to the ultrarelativistic limit) and R = 1 fm yields the value μp �
2.5 in a treatment which takes center-of-mass corrections into account [DoJ 80].
Although this specific value is somewhat too small, it is fair to say that quark
models give a reasonable first approximation to baryon magnetic moments.

Semileptonic matrix elements

The most general form for the hadronic weak current in the transition B1 → B2
ν̄


is

〈B2(p2)|J (wk)
μ |B1(p1)〉

= ū(p2)

[
f1(q

2)γμ − if2(q
2)

m1 +m2
σμνq

ν + f3(q
2)

m1 +m2
qμ

+ g1(q
2)γμγ5 − ig2(q

2)

m1 +m2
σμνq

νγ5 + g3(q
2)

m1 +m2
qμγ5

]
u(p1), (2.9)

where the {fi} and {gi} form factors correspond respectively to the vector and
axial-vector current matrix elements, and q = p1 − p2 is the momentum trans-
fer.4 The form factors are all functions of q2 and the phases are chosen so that each
form factor is real-valued if time-reversal invariance is respected. In practice, the
form factors accompanying the two terms with the kinematical factor qμ are dif-
ficult to observe because each such contribution is multiplied by a (small) lepton
mass upon being contracted with a leptonic weak current. Thus, we shall drop these
until Sect. XII–4.
4 Given the context of application, there should be no confusion between the QCD strong coupling constant g3

and the axial-vector form factor g3(q
2).
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As regards the remaining form factors, we have already presented the ingredients
for performing a quark model analysis (see also [DoGH 86b]). Using the n → p

transition as a prototype, we have

f
np

1 = 〈p↑|
∫
d3x ūγ 0d |n↑〉 =

∫
d3x (uuud + 
u
d) = 1 , (2.10a)

f
np

1 + f np2

mp +mn

= 〈p↑|
∫
d3x

1

2
[r× (ūγ d)]3 |n↑〉

= 1

3

∫
d3x r(uu
d + ud
u) = 1

2

(
1

2Mu

+ 1

2Md

)
, (2.10b)

g
np

1 = 〈p↑|
∫
d3x ūγ3γ5d |n↑〉 = 5

3

∫
d3x (uuud − 1

3

u
d), (2.10c)

g
np

2

mn +mp

+
(

1

2mn

− 1

2mp

)
g
np

1 + gnp3

2
= 〈p↑| − i

∫
d3x zūγ 0γ5d |n↑〉

= 1

3

∫
d3x z(ud
u − uu
d) = 1

2

(
1

2Md

− 1

2Mu

)
. (2.10d)

In each case, we first give the defining relation, then the general Dirac wavefunc-
tion (cf. Eq. (1.4)) and, finally, the nonrelativistic quark model limit. The vanish-
ing of gnp2 in the limit of exact isospin symmetry is a consequence of G-parity
(cf. Sect. V–3)).

Predictions for the other baryonic transitions are governed by SU(3) invariance,
amended by small departures from SU(3) invariance as suggested by the quark
model, i.e., s → u transitions are similar to those of d → u as given above, but with
the down-quark mass and wavefunction replaced by those of the strange quark.
SU(3) breaking in the form factors arises from this difference in the wavefunction.
As a quark gets heavier, its wavefunction is more concentrated near the origin
and the lower component becomes less important. The form factors of the matrix
element 〈Bb|Jμc |Ba〉 evaluated in the SU(3) limit at q2 = 0 give for the vector
current,

f1(0) = ifabc, f2(0) = ifabcf + dabcd,
f = 1

2
(μp + μn − 1), d = −3

2
μn,

(2.11a)

with f/d = 0.29, and for the axial-vector current,

g1(0) = ifabcF + dabcD, (2.11b)

with F +D = g
np

1 = gA = 1.27. In the above, the indices a, b, c = 1, . . . , 8 label
the SU(3) of flavor, with c = (1 + i2) for �S = 0 and c = 4 + i5 for �S = 1.
There is no SU(3) parameterization for the g2 form factor because it vanishes in the
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SU(3) limit. An important result specific to the quark model is D/(D+F) = 3/5
for the SU(3) structure of the axial-current {g1} form factors.
SU(3) breaking in the {f1} form factors is required by the Ademollo–Gatto the-

orem to occur only beginning at second order (see Sect. VIII–1). In practice, the
quark model prediction for SU(3) breaking yields an extremely small effect. This
is not true for the {f2} form factors of weak magnetism, where inclusion of the
strange-quark mass lowers all s → u transitions by 20% compared to the d → u

transition. The wavefunction overlaps in g1 lead to a slight increase in the strength
of the s → u transition compared to d → u because of the reduced lower compo-
nent of the s quark. For g2, a nonzero but highly model-dependent value is gener-
ated, typically of order |g2/g1| � 0.3.

XII–3 Symmetry properties and masses

In our discussion of baryon properties, we have first discussed quark models
because they are generally simple and have predictive power. However, effective
field theory methods are also useful when applied to the study of baryons.5 We
shall combine the two descriptions in this section.

Effective lagrangians for baryons

We begin by writing effective lagrangians which include baryon fields, using the
procedure described in App. B–4. The lowest-order SU(2)-invariant lagrangian
describing the nucleon and its pionic couplings has the form

LN = N̄
(
i /D − gA /Aγ5 −m0

)
N

− Z0

2
N̄
(
ξm̂ξ + ξ †m̂ξ †

)
N − Z1

2
N̄N Tr

(
m̂U + U †m̂

)
,

Dμ ≡ ∂μ + iV μ, ξ ≡ exp [iτ · π/(2Fπ)] , U ≡ ξξ,

V μ ≡ − i
2

(
ξ †∂μξ + ξ∂μξ †

)
, Aμ ≡ − i

2

(
ξ †∂μξ − ξ∂μξ †

)
, (3.1)

where N = (p
n

)
is the nucleon field, m̂ is the mass matrix for current quarks (with

mu = md ≡ m̂), Z0 and Z1 are arbitrary constants which parameterize terms pro-
portional to the quark mass matrix, and the constant gA is the nucleon axial-vector
coupling constant gA � 1.27 (cf. Prob. XII–1). The mass parameter m0 represents
the nucleon mass in the SU(2) chiral limit.

5 There is also an effective field theory treatment of the few nucleon case [We 90, Va 08, EpM 12] which helps
understand nuclei in a systematic manner.
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For the full SU(3) octet of baryons, the analog of ‘N’ is

B = 1√
2

8∑
a=1

λaBa =

⎛⎜⎜⎜⎝
�0√

2
+ √

6
�+ p

�− −�0√
2
+ √

6
n

!− !0 − 2√
6

⎞⎟⎟⎟⎠ , (3.2)

where the phases have been adjusted to match our quark model phase convention
of Eq. (XI–1.8). The SU(3) version of Eq. (3.1) becomes

LB = Tr
(
B̄ (i /D − m̄0)B − D

(
B̄γ μγ5{Aμ,B}

) − F
(
B̄γ μγ5[Aμ,B]

))
− Z0

2
Tr
(
dm
(
B̄{ξmξ + ξ †mξ †, B}) + fm

(
B̄
[
ξmξ + ξ †mξ †, B

]))
− Z1

2
Tr (B̄B)Tr (mU + U †m), (3.3)

where the covariant derivative is now DμB ≡ ∂μB + i[V μ,B], ξ is the SU(3)
generalization of the quantity in Eq. (3.1) with τ replaced by λ, m is the diagonal
SU(3) quark mass matrix,

m = (m̂, m̂, ms

)
diag =

1

3
(2m̂+ms)1+ 1√

3
(m̂−ms)λ8, (3.4)

and m̄0 is the degenerate baryon mass in the SU(3) chiral limit. Consistency of the
SU(2) and SU(3) lagrangians requires

D + F = gA, dm + fm = 1,

m0 = m̄0 + Z1ms − Z0ms(fm − dm). (3.5)

The description thus far is based on symmetry. It includes quark mass, but not
higher powers of derivatives.

Baryon mass splittings and quark masses

The various parameters (m̂,ms, Z0 etc.) appearing in the chiral lagrangians of
Eqs. (3.1), (3.3) can be determined from baryon mass and scattering data. In the
nonstrange sector, the nucleon mass is given in the notation of Eq. (3.1) as

mN = m0 + (Z0 + 2Z1)m̂. (3.6)

To isolate the effect of the nonstrange quark mass m̂ and of the constants Z0, Z1, it
will prove useful to define a quantity σ ,

σ = mN −m0 = m̂
〈N |uu+ dd|N〉

2mN

= m̂ (Z0 + 2Z1). (3.7)
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Shortly, we shall see how this quantity can be determined from pion–nucleon scat-
tering data.

However, let us first consider the baryonic mass splittings generated by the
mass difference ms − m̂. Upon using Eq. (3.3) to obtain expressions for the baryon
masses and working with isospin-averaged masses, it is possible by adopting the
numerical values

Z0(ms − m̂) = 132 MeV, dm/fm = −0.31, (3.8)

to obtain the following good fit:

m� −mN = (fm − dm)Z0(ms − m̂) = 251 MeV (expt. : 254.2 MeV),

m� −m = −4

3
dmZ0(ms − m̂) = 79 MeV (expt. : 77.5 Mev),

m! −mN = 2fmZ0(ms − m̂) = 383 MeV (expt. : 379.2 MeV).

(3.9)

Observe that these mass splittings depend on Z0 but not on Z1. The three relations
of Eq. (3.9) imply the Gell-Mann–Okubo formula [Ge 61, Ok 62],

m� −mN = 1

2
(m! −mN)+ 3

4
(m� −m)

(Expt. : 254 MeV = 248 MeV), (3.10)

which displays an impressive level of agreement (� 3%) with experimental values.
The above analysis, based on a chiral lagrangian, can be enhanced by using ideas

taken from the quark model. In the limit of noninteracting quarks, the quark model
yields for a general spatial wavefunction,6

m −mN = m� −mN = m! −m� = (ms − m̂)
∫
d3x (u2 − 
2). (3.11)

However, observe that m� = m (corresponding in the chiral lagrangian descrip-
tion to dm = 0) for noninteracting quarks. Of course, the actual  and � baryons
are not degenerate, so additional physics is required. A quark model source of the
−� mass splitting lies in the hyperfine interaction of Eq. (XI–2.14),

H
(baryon)
hyp = 1

2

∑
i<j

H̄ij si · sj δ(3)(r), (3.12)

where the prefactor of 1/2 is associated with the color dependence of Eq. (XI–2.4).
Matrix elements of this operator give rise to the additive mass contributions,

6 One could equivalently use the language of the potential model, where these baryon mass splittings arise
from the constituent quark mass difference Ms − M̂ .
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mN = · · · − 3

8
Hnn, m = · · · − 3

8
Hnn,

m� = · · · + 1

8
Hnn − 1

2
Hns, m! = · · · − 1

2
Hns + 1

8
Hss,

(3.13)

where H̄ij and Hij are related by Hij ≡ H̄ij |�(0)|2 and the subscripts ‘n’, ‘s’
denote an interaction involving a nonstrange quark and a strange quark respec-
tively. For Hnn �= Hns, the � and  will not be degenerate. Treating both quark
mass splittings and hyperfine effects as first-order perturbations (e.g. Hss −Hns =
Hns −Hnn), one obtains quark model mass relations

m −mN = (ms − m̂)
∫
d3x (u2 − 
2),

m� −m = 1

2
(Hnn −Hns),

m! −mN = 1

4
(Hnn −Hns)+ 2(ms − m̂)

∫
d3x (u2 − 
2) (3.14)

in accord with the sum rule of Eq. (3.10). These formulae can provide an estimate
of quark mass. For the usual range of quark model wavefunctions (encompassing
both bag and potential descriptions), the overlap integral has magnitude∫

d3x (u2 − 
2) � 1

2
→ 3

4
. (3.15)

To the extent that this estimate is valid, it produces the values

ms − m̂ � 230 → 350 MeV, m̂ � 11 → 14 MeV, (3.16)

where the chiral symmetry mass ratio of Eq. (VII–1.15a) has been used to obtain
m̂. In general, quoting absolute values of quark masses is dangerous as one must
specify how the operator qq, which occurs in the mass term mqqq, has been
renormalized. It is all too common in the literature to ignore this point by using
ms − m̂ = m − mN . The values quoted here are actually current-quark mass
differences, renormalized at a hadronic scale using quark model matrix elements.

The parameter Z1 which appears in the SU(3) lagrangian of Eq. (3.3) is difficult
to constrain in a quark model. For example, one might consider the matrix element

〈N |msss|N〉
2mN

= ms (Z1 − Z0(fm − dm)) . (3.17)

The most naive assumption, that 〈N |msss|N〉 vanishes, would imply Z1 = Z0

(fm − dm) � 1.9Z0. However, one may legitimately question whether such an
assumption is reasonable. We shall return to the issue of the ‘strangeness content’
of the nucleon later in this section.
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Goldberger–Treiman relation

Moving from the study of baryon masses to the topic of interactions, let us consider
the coupling of pions and nucleons. The SU(2) lagrangian of Eq. (3.1), expanded
to order π2, becomes

LN = N̄(i/∂ −mN)N + gA

Fπ
N̄γ μγ5

τ

2
N · ∂μπ

− 1

4F 2
π

N̄γ μτ · π × ∂μπ N + 1

2F 2
π

π2N̄Nσ + · · · , (3.18)

where σ is defined in Eq. (3.7). The second term describes the NNπ vertex. Upon
using Eq. (3.18) to compute the pion emission amplitude N → Nπi and compar-
ing with the Lorentz invariant form

MN→Nπi = −igπNNu(p′)γ5τ
iu(p), (3.19)

one immediately obtains the Goldberger–Treiman relation [GoT 58],

gπNN = gAmN

Fπ
. (3.20)

Inserting the experimental value, g2
πNN/4π � 13.8, for the πNN coupling con-

stant, one finds the Goldberger–Treiman relation to be satisfied to about 2.5%.
There also exist important implications for the g3 term in the general expression

given in Eq. (2.9) for the axial-current matrix element. In forming the n→ p axial
matrix element, one encounters a direct γμγ5 contribution and also a pion-pole term
which corresponds to pion propagation from the n→ pπ− emission vertex to the
axial current. Making use of Eq. (3.20) and Prob. XII–1, we have

〈p(p′)|A+μ |n(p)〉 = u(p′)

[
gAγμγ5 − gA√

2Fπ
/qγ5

√
2Fπqμ

q2 −m2
π

]
u(p)

= u(p′)
[
gAγμγ5 + 2mNgA

q2 −m2
π

qμγ5

]
u(p). (3.21)

where q = p − p′. It is this induced pseudoscalar modification which allows the
axial current to be conserved in the chiral limit m2

π → 0,

−i∂μ〈p(p′)|A+μ |n(p)〉 = 2mNgA

[
1− q2

q2 −m2
π

]
u(p′)γ5u(p)

= −2mNgAm
2
π

q2 −m2
π

u(p′)γ5u(p). (3.22)

Note that for nonzero pion mass, the above is consistent with the PCAC relation of
Eq. (B–3.7),

Fπm
2
ππ

k = ∂μAkμ, (3.23)
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as both sides have the same matrix element,

−i〈p(p′) ∣∣Fπm2
ππ

+(0)
∣∣ n(p)〉 = i

√
2 gπNNu(p′)γ5u(p)

i

q2 −m2
π

√
2Fπm

2
π

= −2mNgAm
2
π

q2 −m2
π

u(p′)γ5u(p). (3.24)

The pion-pole contribution of the axial-vector current-matrix element has been
probed in nuclear muon capture, as will be described in Sect. XII–4.

The nucleon sigma term

One of the features immediately apparent from the effective lagrangian of Eq. (3.1)
is that all the couplings of pions to nucleons, with the exception of the quark mass
terms, are derivative couplings. Before turning to the sigma term, which appears
in the nonderivative sector, let us briefly consider the expansion in powers of the
number of derivatives for pion-nucleon scattering. Recall for pion–pion scattering
(cf. Sect. VI–4), there were no large masses and the chiral expansion was expressed
in terms of m2

π or E2
π . However, correction terms in the chiral expansion for nucle-

ons will enter at relatively low energies since a term like 2p · q � 2mpEπ can
get large quickly (it is linear in the energy and has a large coefficient, e.g., Eπ =
250 MeV gives 2mpEπ = (700 MeV)2). To combat this difficulty, additional (but
still general) inputs such as analyticity and crossing symmetry are often invoked.
Fortified with these theoretical constraints, one then matches intermediate-energy
data to the low-energy chiral parameterizations. The low-energy chiral results
thereby obtained appear to be well satisfied [Hö 83, GaSS 88].

The nonderivative pion–nucleon coupling coming from the quark mass terms in
Eq. (3.1) is of particular interest. To determine this contribution from experiment,
one must be able to suppress the various derivative couplings. Thus, if one extra-
polated in the chiral limit to zero four-momentum, the derivative couplings would
vanish. Not surprisingly then, a soft-pion analysis reveals that the nonderivative
coupling can be isolated by extrapolating the isospin-even πN scattering amplitude
with the Born term subtracted (called D̄+ in the literature) to the so-called ‘Cheng–
Dashen point’ t = m2

π , s = m2
N [ChD 71]. It is conventional to multiply the

extrapolated amplitude by F 2
π and thus define a quantity �,

� ≡ F 2
π D̄

+
CD. (3.25)

To lowest order in the chiral expansion, the measured quantity � is just the matrix
element σ defined in Eq. (3.7),

� = σ = m̂
〈N |uu+ dd|N〉

2mN

. (3.26)
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It is this isospin-even scattering amplitude D̄+ which provides a unique window
on the nonstrange quark mass m̂. Because � is proportional to the small mass m̂,
it is difficult to determine this quantity precisely, and considerable effort has gone
into its extraction. The Cheng–Dashen point lies outside the physical kinematic
region, and extrapolation from the experimental region must be done carefully with
dispersion relations. A recent estimate is [AlCO 13]

� = 59± 7MeV. (3.27)

The result σ = � − 15 MeV has been obtained from studies of higher-order chiral
corrections, implying

σ � 44 MeV (3.28)

as the measure of light-quark mass [GaLS 91].

Strangeness in the nucleon

In light of the above discussion, it is tempting to interpret various contributions to
the nucleon mass by making use of the energy-momentum trace. Recall the trace
anomaly of Eq. (III–4.16),

θμμ =
βQCD

2g3
Fa
μνF

aμν +muuu+mddd +msss. (3.29)

Taking the nucleon matrix element gives

mN =
〈N ∣∣θμμ ∣∣N〉

2mN

= m0 + σ,

m0 = (2mN)
−1〈N

∣∣∣∣βQCD2g3
Fa
μνF

aμν +msss

∣∣∣∣N〉 � 894± 8 MeV,

σ = m̂
〈N |uu+ dd|N〉

2mN

� 44 MeV. (3.30)

This result is already quite interesting in that the largest contributions, the gluon
and strange-quark terms in m0, appear to be ‘nonvalence’. At this stage, the sepa-
ration is essentially model-independent.

One can explore the ‘strangeness content of the nucleon’ by using an SU(3)
analysis of hyperon masses. Thus, we introduce a mass-splitting operator, which
transforms as the eighth component of an octet,

Lm-s = 1

3
(m̂−ms)(uu+ dd − 2ss). (3.31)
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Since the hyperon mass splittings are governed by this octet operator, we find

δs ≡ 〈p
∣∣(ms − m̂)(uu+ dd − 2ss)

∣∣p〉
2mp

= 3

2
(m! −mN) = 574 MeV. (3.32a)

When scaled by the quark mass ratio m̂/ms , Eq. (3.32a) becomes

δ ≡ m̂
〈N ∣∣uu+ dd − 2ss

∣∣N〉
2mN

= 3

2

m2
π

m2
K −m2

π

(m! −m) � 25 MeV (35 MeV), (3.32b)

where the figure in parentheses includes higher-order chiral corrections [Ga 87].
Comparison of δ and σ immediately indicates that they are compatible only if the
strange-quark matrix element does not vanish. Indeed, one requires

〈N |ss|N〉
〈N ∣∣uu+ dd + ss∣∣N〉 � 0.18 (0.09). (3.33)

This gives for the constant Z1 of Eq. (3.1) the value Z1 � 3.9Z0 (2.9Z0) to be
contrasted with the estimate which follows Eq. (3.17). At the same time, one can
separate out the following matrix elements

(2mN)
−1〈N

∣∣∣∣βQCD2g3
Fa
μνF

aμν

∣∣∣∣N〉 � 634 MeV (764 MeV),

(2mN)
−1〈N |msss|N〉 � 260 MeV (130 MeV), (3.34)

where figures in brackets use the corresponding bracketed quantity in Eq. (3.32b).
Note the surprisingly large effect of the strange quarks. These results are contro-
versial because they draw a counter-intuitive conclusion from the use of SU(3)
symmetry. However, even with SU(3) breaking, the difference between σ and the
SU(3) value of δ is large enough that some ss contribution is likely to be required.

This analysis does not go well with the naive interpretation of the quark model
as embodied, for example, in the proton-state vector formula which began this
chapter. However, it is possibly compatible with a more sophisticated interpretation
of the constituent quarks which enter into quark models. In the process of forming
a constituent quark, the quark is ‘dressed’ by gluonic and even ss quark fields. It
is no longer the naive object that occurs in the QCD lagrangian. It is this dressed
object which may then easily generate gluonic and perhaps strange quark matrix
elements. Recall that even the vacuum state has gluonic and quark matrix elements.
Similar explanations exist in bag and Skyrme models [DoN 86]. This issue remains
unresolved at present.

Based on the possible existence of a substantial nonzero value for the scalar
density matrix element 〈N |s̄s|N〉, a major program was launched to investigate
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the possibility for a similar nonzero value for the strange vector-current matrix
element 〈N |s̄γμs|N〉 which can be characterized in terms of charge and magnetic
form factors F s

1 (q
2), F s

2 (q
2) via

〈N |s̄γμs|N〉 = ū(p′)
[
γμF

s
1 (q

2)− i

2mN

σμνq
νF s

2 (q
2)

]
u(p). (3.35)

The form factor F s
1 (q

2) obeys F s
1 (0) = 0, whereas F s

2 (q
2) has no such constraint.7

In order to determine the size of the ūγμu, d̄γμd, s̄γμs contributions to the cor-
responding nucleon matrix elements, three experimental inputs are required. Two
of these come from well-known electromagnetic form factors of the proton and
neutron. The third can be found by performing parity-violating electron-scattering
experiments from the proton, by measuring the difference in the cross sections for
the scattering of electrons with left- and right-handed helicities. This is sensitive to
the strange-quark current because the electromagnetic current and the neutral weak
current involve strange quarks with different strengths. In this case there exists an
interference between the electromagnetic (γ -exchange) and weak (Z0-exchange)
contributions and the resultant asymmetry will have the form

ALR = dσR − dσL
dσR + dσl ∼

Gq2

4π
√

2α
(ME +MM + · · · ) , (3.36)

where ME, MM involve the interference of the electromagnetic and electric, mag-
netic weak form factors and the ellipses indicate a small piece involving the vec-
tor electron coupling and the axial current. In this asymmetry, the electron side
involves an axial current while the nucleon side involves a vector current. This
asymmetry has been studied as a function of q2 in a series of experiments at elec-
tron laboratories at MIT-Bates, at Jefferson Laboratory, and at the Mainz microtron.
The result is that no signal for a strange vector-current matrix element has been
seen and limits have been placed on the strange form factors. Numerically, strange
quarks contribute less than 5% of the mean square charge radius and less than 10%
of the magnetic moment of the proton. Reviews of this body of work can be found
in [ArM 12] and [BeH 01].

Quarks and nucleon spin structure

The constituent quark model provides a simple picture of the contents of baryons as
systems composed of three constituent quarks and nothing else. A rigorous descrip-
tion using the quark and gluon degrees of freedom which appear in the fundamental

7 The condition on Fs1 (0) is a consequence of current conservation. Equivalently, taking μ = 0 in Eq. (3.35)

and integrating over the proton volume, one encounters the strangeness ‘charge’ S ≡ ∫ d3x s†(x)s(x) and
S|N〉 = 0 since the nucleon carries no net strangeness.



352 Baryon properties

lagrangian is in general more complex, but it is often nevertheless instructive to
explore the constituent picture of a given observable. An interesting example is the
spin structure of the nucleon.

For any Lorentz invariant theory, Noether’s theorem requires that there exist
an angular momentum tensor Mμαβ which is conserved (∂μMμαβ = 0) and which
gives rise to three angular momentum charges associated with rotational invariance,

J αβ ≡
∫
d3x M0αβ(x). (3.37)

In the rest frame of a particle, the {J αβ} are related to the three components of
angular momenta via

J i = 1

2
εijkJ jk. (3.38)

For the example of a free fermion, the above quantities take the form

Mμαβ = iψ̄γ μ
(
xα∂β − xβ∂α)ψ + 1

2
ψ̄γ μσαβψ, (3.39)

up to total derivatives which do not contribute to the charges, and

J =
∫
d3x

[
−iψ† (x× ∂) ψ + 1

2
ψ̄γ γ5ψ

]
≡ L+ S. (3.40)

The two contributions in Eq. (3.40) may be labeled the orbital and spin components
of the angular momentum.

The quarks in the Noether current are lagrangian (current) quarks, not con-
stituent quarks. Nevertheless, in the spirit of the quark model let us apply Eq. (3.40)
to the quarks in a spin-up proton. As expressed in terms of upper (u) and lower (
)
components (cf. Eq. (XI–1.13)), the orbital and spin contributions are found to be

〈L〉 = 2

3

∫
d3x 
2〈σ 〉, 〈S〉 =

∫
d3x

(
u2 − 1

3

2

) 〈σ 〉
2
. (3.41)

Aside from the factor 1/2 occurring in σ/2, the quark spin contribution to S is just
the axial-vector matrix element of Eq. (1.24), whereas the orbital angular momen-
tum contains just the lower component 
 because the x× ∂ operator has a nonzero
effect only when acting on the σ · x̂ factor in the lower component of Eq. (XI–1.13).
Observe that the orbital angular momentum is nonvanishing and proportional to the
quark spin. The spin and orbital portions for the individual u, d flavors are easily
computed to yield

〈S(u)z 〉 =
2

3

∫
d3x

(
u2 − 1

3

2

)
,

〈L(u)z 〉 =
8

9

∫
d3x 
2,

〈S(d)z 〉 = −
1

6

∫
d3x

(
u2 − 1

3

2

)
,

〈L(d)z 〉 = −
2

9

∫
d3x 
2.

(3.42)
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A first lesson is that, despite the spin wavefunction of the protons being written
entirely in terms of quarks as in Table XI–2, the quark spin averages of Eq. (3.42)
do not add up to yield the proton spin. The sum is reduced from the anticipated
value of 1/2 by the lower component 
 in the Dirac spinor. It is the total angular
momentum J which has the expected result,

〈J〉 = 1

2
〈σ 〉, (3.43)

but the total is split up between the orbital and spin components. The bag model,
for example, yields

〈S〉 � 0.65 〈J〉, (3.44)

so about 35% of the nucleon spin arises from orbital angular momentum.
Of course, QCD is a full interacting theory and the discussion of the angular

momenta of the quarks and the gluons cannot be fully separated because these
fields interact with each other. The total angular momentum can be decomposed
into several terms, including the interactions between the fields [JaM 90]. These
can be grouped in various ways. In the current quark–gluon description, it is com-
mon to write

1

2
= 1

2
Sq + Lq + Jg, (3.45)

where Sq, Lq are the spin and angular momentum components carried by the
quarks and Jg is that carried by the gluons. Thus, we have

Jq =
∫
d3x

[
ψ† �

2
ψ + ψ† x× (−iD)ψ

]
,

Jg =
∫
d3x x× (E× B), (3.46)

where � is the usual Dirac spin matrix and Dμψ = [∂μ + igAμ]ψ is the covariant
derivative of ψ and therefore, in this definition, the quark angular momentum has
a gluonic component [JiTH 96].

Polarized deep-inelastic electron scattering from the nucleon can measure spin
effects of the quarks. The study of spin dependent deep inelastic scattering involves
the antisymmetric component of the nucleon tensor,8 which can be written in the
form

W [μν] = 1

4π

∫
d4x e−q·x〈p, s|[J em

μ (x), J em
ν (0)]|p, s〉

= −iεμναβqα
[
G1(ν,Q

2) · s
β

m2
N

+G2(ν,Q
2) · mNνs

β − s · qpβ
m4
N

]
, (3.47)

8 More details can be found in the review [Ba 05].
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where ν = p · q/mN and Q2 = −q2. The scaling behavior of the two structure
functions is

g1(x,Q
2) = ν

mN

G1(ν,Q
2), g2(x,Q

2) =
(
ν

mN

)2

G2(ν,Q
2), (3.48)

where x = Q2/2mNν is the Bjorken scaling variable. In the parton model, neglect-
ing QCD renormalization, one determines∫ 1

0
dx g

p

1 (x,Q
2) = 1

2

∑
q

e2
q�q =

1

12
g
(3)
A + 1

36
g
(8)
A + 1

9
g
(0)
A , (3.49)

where g(3)A , g
(8)
A , g

(0)
A are the isovector, SU (3) octet, and flavor-singlet axial charges

respectively. The axial charges are written in terms of their quark spin content as

2mNsμ�q = 〈p, s|q̄γμγ5q|p, s〉, (3.50)

with

�q =
∫ 1

0
dx (q↑(x)− q↓(x)), (3.51)

where qs(x) is the parton distribution function carrying spin s. In terms of the light
quarks we have then

g
(3)
A = �u−�d, g

(8)
A = �u+�d − 2�s, g

(0)
A = �u+�d +�s. (3.52)

The first two of these are well defined from the study of hyperon beta decay,

g
(3)
A = F +D = 1.27± 0.003 (from neutron beta decay) ,

g
(8)
A = 3F −D = 0.58± 0.03 (from semileptonic hyperon decay) . (3.53)

The first of these is directly measured and the second comes from an SU(3) rotation
from the values that are obtained in an SU(3) fit to �S = 1 hyperon decay. Such
a partonic analysis leads to a decomposition, �u = 0.84 ± 0.01 ± 0.02,�d =
−0.43 ± 0.01 ± 0.02 and �s = −0.08 ± 0.01 ± 0.02, where these numbers are
from recent COMPASS data [Qu 12]. The sum of these, �u + �d + �s ∼ 0.33,
is about half of what would be expected for the nucleon spin in the naive quark
model, Eq. (3.44), and of course the quark model predicts that the �s should be
zero.

However, there is reason for caution in this interpretation. The singlet axial
current,

J 0
μ = ūγμγ5u+ d̄γμγ5d + s̄γμγ5s, (3.54)

whose matrix element is said to be represented by �u +�d +�s, is anomalous,
as seen in Sect. III–3. This has important consequences [AlR 88, Sh 08]. While
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the axial currents which transform as SU(3) octets have only finite multiplica-
tive renormalization, the singlet current mixes with gluonic fields under radia-
tive corrections. Different renormalization schemes yield different mixtures of the
quark and gluon components [Sh 08]. Moreover, the quark component is not scale-
independent; there is renormalization group running as a function of Q2. Note that
the other currents do not suffer from these problems. In particular, the Bjorken
sum rule [Bj 66] involves the difference of the proton and neutron matrix elements,
which then cancels out the isosinglet contributions, such that the first moment is
independent of Q2, ∫ 1

0
dx g

p−n
1 (x,Q2) = 1

6
g
(3)
A . (3.55)

This sum rule yields a value g(3)A = 1.28± 0.07± 0.01, which agrees well with the
number g(3)A = 1.270± 0.003 measured in neutron beta decay. The anomaly in the
singlet current complicates the discussion of the quark contribution to the proton
spin.

The partonic analysis of the quark spins has led to further studies. Attempts at
the experimental study of the gluonic contributions has revealed only a small con-
tribution to the nucleon spin [AiBHM 13]. There may be the possibility of studying
the angular-momentum components through the concept of generalized parton dis-
tributions [Ji 94]. However, the experimental determination of these generalized
parton distributions is yet to be achieved.

XII–4 Nuclear weak processes

One area in which the structure of the weak hadronic current has received a great
deal of attention is that of nuclear beta decay and muon capture. Although in
some sense this represents simply a nuclear modification of the basic weak tran-
sitions n → p + e− + ν̄e, p → n + e+ + νe, the use of nuclei allows spe-
cific features to be accented by the choice of levels possessing particular spins
and/or parities [Ho 89]. Here, we shall confine our attention to allowed decays
(�J = 0,±1, no parity change) and will emphasize those aspects which stress
the structure of the weak current rather than that of the nucleus itself. In particular,
nuclear beta decay provides the best determination of Vud, while muon capture pro-
vides the only measurement of the pseudoscalar axial weak form factor predicted
by chiral symmetry.

Measurement of Vud

There are many occurrences in nuclei of an isotriplet of JP = 0+ states. Exam-
ples are found with A = 10, 14, 26, 34, 42, . . . . Because Coulombic effects raise
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the mass of the proton-rich I3=1 state with respect to that with I3=0, the positron
emission processN1(Iz = 1)→ N2(Iz = 0)+e++νe can occur. These transitions
are particularly clean theoretically, and this is the reason why they are important.
Since the transition is 0+ → 0+, only the vector current is involved, and because
of the lack of spin there can be no weak magnetic form factor. The vector-current
matrix element involves but a single form factor a(q2),

〈N2(p2)|Vμ|N1(p1)〉 = a(q2)(p1 + p2)μ. (4.1)

This form factor is known at q2 = 0 because the charged vector weak current Vμ
is just the isospin rotation of the electromagnetic current,

[I−, J μem] = d̄γ μu. (4.2)

This relation is often called the conserved vector current hypothesis or CVC, and
requires for each of the 0+ → 0+ transitions,

a(0) = √2. (4.3)

What is generally quoted for such decays is the F t1/2 value, essentially the half-
life t1/2 multiplied by the (kinematic) phase space factor f plus various radiative
and Coulomb corrections [WiM 72]. Theoretically, one expects a universal form

F t1/2 = 2π3 ln 2

G2
μm

5
e|Vud|2a2(0)

(
1− α

2π
(4 ln(MZ/mN)+ · · · )

)
, (4.4)

which should be identical for each isotriplet transition. Gμ is the weak decay con-
stant measured in muon decay while the logarithmic correction arises from ‘hard’-
photon corrections, as discussed in Chap. VII. The ‘soft’-photon piece as well as
finite-size and Coulombic corrections are contained in the phase space factor F .
Much careful experimental and theoretical study has been given to this problem,
and the current situation is summarized in Table XII–3 where the experimental
F t1/2 values are tabulated. A fit to these and additional Fermi decays produces
the value F t1/2 = 3072.08 ± 0.79 s with chi-squared per degree of freedom
χ2/ν = 0.28. This excellent agreement over a wide range of Z values is evidence
that soft-photon corrections are under control.

Comparison of the experimental F t1/2 value with the theoretical expression
given in Eq. (4.4) yields the determination

Vud = 0.97425(22), (4.5)

which makes Vud the most precisely measured component of the CKM matrix.
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Table XII–3. Energy release and F t1/2 values for
0+ → 0+ Fermi decays [HaT 09].

Nucleus E0(KeV) F t1/2 (s)
10C 885.87(11) 3076.7(4.6)
14O 1809.24(23) 3071.5(3.3)
26mAl 3210.66(06) 3072.4(1.4)
34Cl 4469.64(23) 3070.2(2.1)
38mK 5022.40(11) 3072.5(2.4)
42Sc 5404.28(30) 3072.4(2.7)
46V 6030.49(16) 3073.3(2.7)
50Mn 6612.45(07) 3070.9(2.8)
54Co 7222.37(28) 3069.9(3.2)

The pseudoscalar axial form factor

Chiral symmetry predicts a rather striking result for the form factor g3(q
2) of

Eq. (2.9), namely that it is determined by the pion pole with a coupling fixed by
the PCAC condition. One cannot detect this term in either neutron or nuclear beta
decay because when the full matrix element is taken, one obtains

g3

2mN

v(pν)qμγ μ(1+ γ5)u(pe) = g3me

2mN

v(pν)(1− γ5)u(pe), (4.6)

which is proportional to the electron mass and is thus too small to be seen (effects
in the spectra are O(m2

e/mNEe) � 1). However, in the muon capture process
μ−p→ νμn, the corresponding effect is O(mμ/mN) ∼ 10%. Thus, muon capture
is a feasible arena in which to study the chiral symmetry prediction [CzM 07]. The
drawback in this case is that typically one has available from experiment only a
single number, the capture rate. In order to interpret such experiments, one needs
to know the value of each nuclear form factor at q2 � −0.9 m2

μ, which intro-
duces some uncertainty since these quantities are determined in beta decay only
at q2 � 0. Nevertheless, predicted and experimental capture rates are generally in
good agreement provided one assumes (i) the q2 � 0 value of form factors from
the analogous beta decay, (ii) q2 dependence of form factors from CVC and elec-
tron scattering results, (iii) the CVC value for the weak magnetic term f2, and (iv)
the PCAC value of Eq. (3.21) for g3. The results are summarized in Table XII–4.
Obviously, agreement is good except for 6Li, for which the origin of the discrep-
ancy is unknown, although it has been speculated that perhaps the spin mixture is
not statistical. Also, in the case of 3He there remains a small disagreement between
the elementary particle model (EPM) and impulse approximation (IA) predictions
for the capture rate.
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Table XII–4. Muon capture rates.

Reaction Theory (103 s−1) Experiment (103 s−1)

μ− + p→ νμ + n 0.712± 0.005a 0.715± 0.005± 0.005a

μ− + 3He → νμ + 3H 1.537± 0.022EPM 1.496± 0.004
1.506± 0.015IA

μ− + 6Li → νμ + 6He 0.98± 0.15 1.60
+0.33
−0.12

μ− + 12C → νμ + 12B 7.01± 0.16 6.75
+0.3
−0.75

aSμ−p = 0.

Before proceeding, we should emphasize one relevant point. When PCAC is
applied, it is for the nucleon

2mNg1(q
2)− q2

2mN

g3(q
2) = 2FπgπNN(q

2)

(
1− q2

m2
π

)−1

. (4.7)

Then, at q2 = 0, we have

1.27 = g1(0) � FπgπNN(m
2
π)

mN

= 1.30, (4.8)

which is the Goldberger–Treiman relation. On the other hand, taking similar q2

dependence for g1(q
2) and gπNN(q2), we find

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 2mNmμ

m2
π + 0.9m2

μ

− 1

3
r2
AmμmN � 6.45. (4.9)

PCAC is generally applied in nuclei in the context of a simple impulse approxi-
mation, and it is this version of PCAC which is tested by the muon capture rates
listed in Table XII–4. The direct application of PCAC in nuclei cannot generally
be utilized since the pion couplings are unknown.

In the case of muon capture on 12C, additional experimental data are available.
One class of experiment involves measurement of the polarization of the recoiling
12B nucleus. Combining this measurement with that of the total capture rate yields
a separate test of CVC as well as of PCAC. The results,

f
expt
2

f CVC2

= 1.00± 0.05,
mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 8.0± 3.0, (4.10)

are in good agreement with both symmetry assumptions.
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In addition, one can measure the average and longitudinal recoil polarizations in
the 12C muon capture, yielding a value for the induced pseudoscalar coupling,

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 9.0± 1.7, (4.11)

which is again in good agreement with PCAC.
The most precise value comes from the recent measurement of the singlet-muon

capture rate in hydrogen, which yields

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 5.75± 0.95, (4.12)

which is excellent agreement with PCAC.

XII–5 Hyperon semileptonic decay

The goals in studying hyperon semileptonic processes are to confirm the value of
Vus obtained in kaon decay and to use the form factors to better understand hadronic
structure. These two goals are interconnected. In earlier days when data were not
very precise, fits to hyperon decays were made under the assumption of perfect
SU(3) invariance in order to extract Vus. Presently, the experiments are precise
enough that exact SU(3) no longer provides an acceptable fit. The desire to learn
about Vus is thus impacted by the need to understand the SU(3) breaking.

We have already described in Sect. XII–1 the physics ingredients which lead to
SU(3) breaking within a simple quark description. These include recoil or center-
of-mass corrections, wavefunction mismatch (in which a normalization condition
realized in the symmetry limit no longer holds), and generation of the axial form
factor g2. For hyperons, because of the presence of the axial current, SU(3) break-
ing can occur in first order. This means that hyperon decays are more difficult to
use for determining Vus than are kaon decays, where the Ademollo–Gatto theo-
rem reduces the amount of symmetry breaking. Thus, at the moment it is probably
best to use the value of Vus determined from kaon decay, and require that hyperon
decays yield a consistent value.

The clearest evidence on SU(3) breaking comes from the �− →  + e− +
ν̄e rate. Since this is a �S = 0 process, Vus does not enter and, in addition, the
vector current matrix element must vanish. Thus, the rate is determined by the
axial-current contribution alone, for which the theoretical prediction is

g�
−

1 = ρ

√
2

3

D

D + F g
np

1 , (5.1)
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where ρ is a SU(3) breaking factor due to the center-of-mass effect. A bag-model
estimate yields ρ = 0.939. Taking ρ = 1, the best SU(3) symmetric fit to all the
data [CaSW 03] would require D/(D + F) = 0.635 ± 0.006, and hence g�

−
1 =

0.658 if SU(3) were exact. On the other hand, the data on �− → eν̄e requires
g�

−
1 = 0.591 ± 0.014, which implies the correction ρ = 0.931 ± 0.022. There

seems to be no way to avoid this need for SU(3) breaking.
The full pattern of SU(3) breaking is more difficult to uncover. One problem is

experimental. When the g1 values are extracted from the data, they have generally
been analyzed under the assumptions that the f1 and f2 form factors have exactly
their SU(3) values and that g2 = 0. If these assumptions are not correct, then the
values cited in [RPP 12] do not reflect the true g1 but rather some combination
of g1, f1, f2, and g2. The correlation with g2 is particularly strong. Thus, quoted
values of g1 must be treated with caution.

The present status of these decays is reviewed in [CaSW 03]. The data can be fit
well either by the center-of-mass correction described above, with g2 = 0, or by
the full corrections including wavefunction mismatch, with g2/g1 = 0.20 ± 0.07
in → p+ e+ ν̄e. Without an independent measurement of g2 one cannot decide
between these. We note, however, that either option yields a value of Vus consistent
with that found in kaon decays,

Vus = 0.2250± 0.0027. (5.2)

XII–6 Nonleptonic decay

The dominant decays of hyperons are the nonleptonic B → B ′π modes. Because
of the spin of the baryons and the many decay modes available, the nonleptonic
hyperon decays present a richer opportunity for study than do the nonleptonic kaon
decays.

Phenomenology

The B → B ′π matrix elements can be written in the form

MB→B ′π = ū(p′) [A+ Bγ5] u(p), (6.1)

with parity-violating (A) and parity-conserving (B) amplitudes. Watson’s theorem
implies that if CP is conserved, the phase of these amplitudes is given by the strong
B ′π scattering phase shifts in the final-state S wave (for A) or P wave (for B), i.e.,

A = A0 exp (iδSB ′π), B = B0 exp (iδPB ′π), (6.2)
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with A0, B0 real. Aside from the πN system, these phase shifts are not known
precisely, but are estimated to be � 10◦ in magnitude. The decay rate is expressed
in terms of the partial wave amplitudes by

�B→B ′π = |q|(E
′ +mB ′)

4πmB

(|A|2 + |B̄|2) , (6.3)

where q is the pion momentum in the parent rest frame and we define B̄ ≡ (E′ −
mB ′/E

′ +mB ′)
1/2B. Additional observables are the decay distribution W(θ),

W(θ) = 1+ αPB · p̂B ′, α = 2Re (A∗ B̄)
|A|2 + |B̄|2 , (6.4)

and the polarization 〈PB ′ 〉 of the final-state baryon,

〈PB ′ 〉 =
(
α + PB · p̂B ′

)
p̂B ′ + β

(
PB × p̂B ′

)+ γ [p̂B ′ × (PB × p̂B ′
)]

W(θ)
,

β = 2Im(A∗ B̄)
|A|2 + |B̄|2 , γ = |A|

2 − |B̄|2
|A|2 + |B̄|2 = ±

√
1− α2 − β2, (6.5)

where PB is the polarization of B and p̂B ′ is a unit vector in the direction of motion
of B ′. Experimental studies of these distributions lead to the amplitudes listed in
Table XII–5.

The nonleptonic amplitudes may be decomposed into isospin components in a
notation where superscripts refer to �I = 1/2, 3/2,

A→pπ− = √2A(1) − A(3) ,
A→nπ0 = −A(1) −√2A(3) ,

A!0→π0 = −A(1)! −√2A(3)! ,

A!−→π− =
√

2A(1)! − A(3)! ,

A�−→nπ− = A
(1)
� + A(3)� ,

A�+→nπ+ = 1

3
A
(1)
� − 2

3
A
(3)
� +X�,

√
2A�+→pπ0 = −2

3
A
(1)
� + 4

3
A
(3)
� +X�,

(6.6)

and X� is of mixed symmetry. Similar relations hold for the B amplitudes. From
the entries in Table XII–5 it is not hard to see that the �I = 1/2 rule, described
previously for kaon decays, is also present here. Table XII–6 illustrates that the
dominance of �I = 1/2 amplitudes compared to those with �I = 3/2 holds
in the six possible tests in S-wave and P -wave hyperon decay, at about the same
level (several per cent) as occurs in kaon decay.9 Thus, the �I = 1/2 rule is
not an accident of kaon physics, but is rather a universal feature of nonleptonic
decays. This makes the failure to clearly understand it all the more frustrating.

9 For P waves, the observed smallness of B�−→nπ− indicates that B(1)� is small, presumably accidentally so.

In this case the measure of �I = 3/2 to �I = 1/2 effects is given by B(3)� /X� .
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Table XII–5. Hyperon decay amplitudes.a

A amplitudes B amplitudes

Mode Expt. Thy.b Expt. Thy.

→ pπ− 3.25 3.38 22.1 23.0
→ nπ0 −2.37 −2.39 −15.8 −16.0
�+ → nπ+ 0.13 0.00 42.2 4.3
�+ → pπ0 −3.27 −3.18 26.6 10.0
�− → nπ− 4.27 4.50 −1.44 −10.0
!0 → π0 3.43 3.14 −12.3 3.3
!− → π− −4.51 −4.45 16.6 −4.7

aIn units of 10−7.
bLowest-order chiral fit.

The assumption that the dominant�I = 1/2 hamiltonian is a member of an SU(3)
octet leads to an additional formula, called the Lee-Sugawara relation,

√
3A�+→pπ0 = 2A!−→π− + A→pπ−, (6.7)

which also is well satisfied by the data. In this case, the corresponding formula for
the B amplitudes is not a symmetry prediction [MaRR 69], although for unknown
reasons it is in qualitative accord there also.

Lowest-order chiral analysis

Chiral symmetry provides a description of hyperon nonleptonic decay, which is
of mixed success when truncated at lowest order in the energy expansion. Given
our comments on the convergence of the energy expansion for baryons made in
Sect. XII–3, the need for corrections to the lowest-order results is not surprising.
We shall present the lowest-order analysis here, as it forms the starting point for
most theoretical analyses.

Recalling from Sect. IV–7 the procedure for adding baryons to the chiral anal-
ysis, one finds that the two following nonderivative lagrangians have the chiral
(8L, 1R) transformation property:

Table XII–6. Ratio of �I = 3/2, 1/2 amplitudes.

S wave P wave

 0.014 0.006
� −0.017 −0.047
! 0.034 0.023
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Fig. XII–1 P-wave hyperon decay amplitudes.

L(S)W = D Tr
(
B̄{ξ †λ6ξ, B}

)+ F Tr
(
B̄
[
ξ †λ6ξ, B

])
,

L(P )W = D5 Tr
(
B̄γ5{ξ †λ6ξ, B}

)+ F5 Tr
(
B̄γ5

[
ξ †λ6ξ, B

])
, (6.8)

where ξ, B are defined in Eqs. (3.1), (3.2) respectively. However, the operator L(P )W

must vanish, as it has the wrong transformation property under CP [LeS 64]. That
is, a CP transformation implies

B → (
iγ2B̄

)T
, ξ → (

ξ †
)T
, (6.9)

and including the anticommutation of B and B̄, L(S)W is seen to return to itself,
but L(P )W changes sign and hence must vanish. This leaves L(S)W as the only allowed
chiral lagrangian at lowest order. Observe that L(S)W lacks a γ5 factor. Thus, its B →
B ′π matrix elements will be parity-violating, leading to only A amplitudes. The
parity-conserving B amplitudes in B → B ′π are produced through pole diagrams
as in Fig. XII–1, and are proportional to the parity-conserving B → B ′ matrix
elements of L(S)W .

The counting of powers of energy (momentum transfer) in the energy expansion
goes as follows. Both the B → B ′ transition and theA amplitudes in B → B ′π are
obtained as matrix elements of L(S)W , which is zeroth order in the energy. The pole
diagrams are likewise of zeroth order in the energy, being the product of the L(S)W
vertex (O(1)), a baryon propagator (O(q−1)) and an NNπ vertex (O(q)). Since
the kinematic part of the pole diagrams, u′γ5u ∼ σ · q, is of first order in q, the B
amplitudes themselves are of order B ∼ q−1 ∼ 1/�m for the baryon pole. Kaon
poles and higher-order chiral lagrangians enter at next order, i.e., having one power
of the momentum transfer.

The lowest-order chiral SU(3) analysis provides a fit to the data in terms of two
parameters, called F and D,

iA→nπ0 = − 1

2Fπ
(3F +D),

iA�+→nπ+ = 0,

iA�+→pπ0 =
√

6

2Fπ
(D − F),

iA!0→π0 = 1

2Fπ
(3F −D),

(6.10)

with other amplitudes being predicted by the �I = 1/2 rule. Use of the numerical
values
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D

F
= −0.42,

F

2Fπ
= 0.92× 10−7, (6.11)

leads to the excellent fit of the S-wave amplitudes seen in Table XII–5. Note that
this form has one less free parameter than the general SU(3) structure [MaRR 69].
Thus, the prediction of chiral symmetry that A�+→nπ+ � 0 is independent of the
D/F ratio (up to �I = 3/2 effects), and represents a successful explanation of the
smallness of this amplitude.

In principle, theA amplitudes, together with the strongBB ′π vertices, determine
the baryon pole contributions to the B amplitudes. These are then parametrized by
the same d/f ratio as in the axial current,10 e.g.,

M�+→�+π0 = 2f

Fπ
ūγμγ5u q

μ = g�
+�+

A

Fπ
ūγμγ5u q

μ

= 2gπNN
2mN

f

f + d ūγμγ5u q
μ . (6.12)

Using this parameterization for the pole diagrams, one finds contributions such as

B�+→pπ0 = −mN +m�

2mNFπ
· (d − f )M�+p

m� −mN

. (6.13)

Taking d + f = 1.27, d/f = 1.8, one obtains from relations like this the disap-
pointing P -wave predictions quoted in Table XII–5. This failure to simultaneously
fit the S waves and P waves is a deficiency of the lowest-order chiral analysis. Per-
haps this is not too surprising, as the chiral expansion converges slower in baryons
than in mesons [BoH 99]. At the next order in the energy expansion, the chiral
analysis contains enough free parameters to accommodate the data, but is not pre-
dictive. Lattice studies are just beginning to explore this topic [BeBPS 05].

Problems

(1) The axial-vector coupling

Consider the effective lagrangian in Eq. (3.1) for nucleons and pions. For com-
bined left-handed and right-handed transformations of the fields, we have

U → LUR†, ξ → LξV † = V ξR†, N → VN,

where L[R] are the spacetime independent SU(2) matrices corresponding to
global transformations in SU(2)L[SU(2)R] and V = V (π(x)) is an SU(2)

10 This statement is the SU(3) generalization of the Goldberger–Treiman relation, Eqs. (3.20), (3.24).
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matrix describing a vectorial transformation of the nucleons. For the lagrangian
of Eq. (3.1), use Noether’s theorem to generate the SU(2) axial-vector current,

Ajμ =
gA

4
ψ̄γμγ5

(
ξλjξ † + ξ †λjξ

)
ψ,

where ξ is the ‘square root’ of U (cf. Eq. (3.1)), and thereby show that the
axial-vector coupling constant for beta decay is given by g1 = gA.

(2) CP violation and nonleptonic hyperon decay
Although the �S = 1 hamiltonian of the Standard Model contains a CP-
violating component, there is no practical way to see this in any single hyperon
decay mode. Rather, one must compare the decays of hyperons with those of
antihyperons [DoHP 86]. In the presence of CP violation, there are two sources
of phases in the weak matrix elements, e.g., for the  decay modes,

A→pπ− = A1 e
iϕS1 eiδ

S
1 + A3 e

iϕS3 eiδ
S
3 ,

B→pπ− = B1 e
iϕP1 eiδ

P
1 + B3 e

iϕP3 eiδ
p
3 ,

where the isospin (I ) subscripts ‘1, 3’ stand for �I = 1/2, 3/2, the angular
momentum (J ) superscripts ‘S, P ’ stand for S waves or P waves, AI are real
amplitudes, δJI are strong final-state phases, and ϕJI are the weak CP-violating
phases. Observe that there are three small parameters in these amplitudes – the
weak phases ϕJI , the strong phases δJI � 10◦, and the ratio of �I = 3/2 to
�I = 1/2 effects. To leading order in these quantities, show that one has the
CP-odd observables,

β + β
α − α = sin

(
ϕS1 − ϕP1

)
,
α + α
α − α = − sin

(
ϕS1 − ϕP1

)
sin
(
δS1 − δP1

)
,

�pπ− − �pπ+
�pπ− + �pπ+

= −2
A1A3 sin(δS1 − δS3 ) sin(ϕS1 − ϕS3 )

|A1|2 + |B1|2

− 2
B̄1B̄3 sin(δP1 − δP3 ) sin(ϕP1 − ϕP3 )

|A1|2 + |B̄1|2
.

A hierarchy is apparent in these three signals. The β + β asymmetry requires
only the weak phase, the α + α asymmetry requires both the weak and final-
state phases, while � − � has both phases plus a �I = 3/2 suppression.
Present experiments are not sufficiently sensitive to test for CP violation in
these observables at the required accuracy.
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Hadron spectroscopy

Studies of hadron masses, and of both strong and electromagnetic decays of
hadrons, provide insights regarding QCD dynamics over a variety of distance scales.
Among various possible theoretical approaches, the potential model has most heav-
ily been employed in this area. We shall start our discussion by considering heavy-
quark bound states, which begin to approximate truly nonrelativistic systems and
for which the potential model is expected to provide a suitable basis for discussion.

XIII–1 The charmonium and bottomonium systems

Quarkonium is the bound state of a heavy quark Q with its antiparticle. Two
such systems, charmonium (cc̄) and bottomonium (bb̄) have been the subject of
much experimental and theoretical study; a comprehensive overview is provided by
[Br et al. 11]. Due to weak decay of the top quark, the t t̄ system has rather different
properties from these, and thus constitutes a special case (cf. Sect. XIV–2).

Since the quarkonium systems are quark–antiquark composites, we shall employ
the set of quantum numbers n,L, S, J introduced in Sect. XI–2. One generally
refers to the individual quarkonium levels with the nomenclature of Table XIII–1,

Table XIII–1. Nomenclature for S-wave and P -wave states
in the cc̄ and bb̄ systems.

L S Charmonium Bottomonium

0 1 ψ(nS)a ϒ(nS)
0 ηc(nS) ηb(nS)

1 1 χcJ (nP ) χbJ (nP )
0 hc(nP ) hb(nP )

aFor historical reasons, the spin-one charmonium ground state is
called J/ψ .

366
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Fig. XIII–1 The low-lying spectrum of charmonium.

although the nL identification is sometimes replaced by either the degree of excita-
tion or the mass, e.g., ψ(2S) is called ψ ′ or ψ(3686). The n2S+1LJ spectroscopic
notation is also invoked on occasion.

Figs. XIII–1,2 give a summary of the lightest observed cc̄ and bb̄ states. Most of
these states, as well as their transitions have been detected both in the charmonium
and bottomonium systems [Br et al. 11]. The largest set of observed excitations
comes from the ψ(nS) and ϒ(nS) radial towers, reaching up to n = 6 for the ϒ
system. Excitation energies are relatively small on the scale of the bottomonium
reduced mass μb � 2.5 GeV, but not that of charmonium μc � 0.8 GeV.

Phenomenological potentials: Historically, the success of potential models in
charmonium was of major importance in convincing the community that quarks
were simple dynamical objects and that QCD provides a manageable theory of the
strong interactions. Because of this success, we describe the states by the spec-
troscopic classification of nonrelativistic quantum mechanics. Thus, quarkonium
mass values are often expressed as

m[nLSJ ] = 2MQ + E[nLSJ ], (1.1)
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Fig. XIII–2 The low-lying spectrum of bottomonium.
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Fig. XIII–3 Energy levels of various potential functions.

where E[nLSJ ] is obtained by solving the Schrodinger equation for a particle of
reduced mass μQ = MQ/2 moving in the field of an assumed potential energy
function. The shape of the potential is chosen via a combination of theoretical and
phenomenological considerations.

The spectra of quarkonium states already hints at the radial dependence of
the QQ̄ potential, with the progression in nL levels suggesting an interaction
which lies ‘between’ Coulomb and harmonic oscillator potentials, as depicted in
Fig. XIII–3. Conceptually, the simplest potential that matches QCD to this
behavior is

V (r) = br − a

r
+ V0, (1.2)

where a, b, V0 are constants and the color dependence between quark and antiquark
is that in Eq. (XI–2.4). The Coulomb-like 1/r component is designed to reproduce
one-gluon exchange at short distance. The confining linear ‘br’ term models a
color-flux tube of constant energy density, as noted in Sect. XI–2. The coefficient
b is commonly described in the literature as the string tension, in reference to the
string model of hadrons, and its value is estimated from a string model relation
involving the typical slope α′ of a hadronic Regge trajectory (cf. Table XIII–2),

b = (2πα′)−1 � 0.18 GeV2. (1.3)

This is equivalent to a restoring force of about 16 tons!
In practice, phenomenological studies of quarkonium can be carried out by adopt-

ing the potential of Eq. (1.2) or another assumed potential energy functions. Exam-
ples include the following, e.g.,1

V (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 64π2

27 F
{[
q2 ln

(
1+ (q2/2)

)]−1
}
{ � 0.4 GeV} ,

br − a/r
{
b� 0.18 GeV2

a� 0.52

}
,

crd
{
c� 6.87 GeV
d � 0.1

}
,

(1.4)

1 The second and third potentials provide fits only up to an additive constant.
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Table XIII–2. Regge trajectories.

Trajectory N Slopea J -intercept

N 3 0.99 −0.34
� 3 0.92 0.07
 3 0.94 −0.64
� 3 1.1 −1.2
�∗ 2 0.91 −0.24
π 3 0.72 −0.05
ρ 4 0.84 0.54
K 4 0.69 −0.22
K∗ 4 0.86 0.29

aIn units of GeV−2

where F{. . . } denotes a Fourier transform. The first two of the potentials in Eq. (1.4)
are commonly called the ‘Richardson’ [Ri 79] and ‘Cornell’ [EiGKLY 80] poten-
tials, respectively. They are constructed to mimic QCD by exhibiting a linear con-
fining potential at long distances and single gluon exchange at short distances.
The Richardson potential even incorporates the asymptotic freedom property for
the strong interaction coupling. The third is a power-law potential [Ma 81] which,
although not motivated by QCD, can be of use in analytical work or in obtain-
ing simple scaling laws. The power-law potential also serves as a reminder of
how alternative forms can achieve a reasonable success in fitting bb̄ and cc̄ spec-
tra, which, after all, are primarily sensitive to the limited length scale 0.25 ≤
r(fm) ≤ 1.

From the viewpoint of phenomenology, it is ultimately more useful to appreciate
the general features of the QQ̄ static potential than to dwell on the relative virtues
and shortcomings of individual models.

Effective field theories: The full theory of QCD is richer than can be captured in a
single potential function. Gluon degrees of freedom can be dynamically active, and
field-theoretic corrections introduce subtle modification to masses and couplings.
Effective field theory techniques provide a modern way of understanding both the
perturbative and nonperturbative properties of heavy-quark systems.

There are various scales associated with quarkonium systems. The heavy-quark
mass sets a hard scale. Degrees of freedom associated with this scale may be treated
perturbatively. Scales connected to the momentum transfer in the bound state,
p ∼ mv, are related to the typical spatial extent, 〈 r 〉, of the bound state. The
time scales involved for quarkonium dynamics are related to the nonrelativistic
kinetic energy E ∼ mv2/2. For large quark mass, the velocity, typically of order
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v2 ∼ 0.1 → 0.3, can be treated as a small parameter such that each of these scales
is technically distinct, with

mQ 
 mQv 
 mQv
2. (1.5)

Different versions of effective field theories can be invoked to treat the different
scales [BrPSV 05].

In Non-Relativistic QCD, abbreviated as NRQCD, degrees of freedom of order
mQ are integrated out from the theory [CaL 86]. This leaves the light degrees of
freedom being the full set of particles of QCD. The gluons (and light quarks)
are included dynamically, but are treated with an ultraviolet cut-off of order mQ

because their high-momentum components have been integrated out.2 The heavy
quark itself is treated nonrelativistically. Because the hard modes have been inte-
grated out, there appear higher-order gauge-invariant interactions with Wilson coef-
ficients that parameterize the strength of the new terms. The effective lagrangian
then starts out as

L = L0G + L0Q + L(h.o.)Q (1.6)

where L0G is the usual lagrangian for gluons and L0Q is the lowest-order lagrangian
for nonrelativistic quarks

L0Q = ψ†

[
iD0 + Ck

2mQ

D2

]
ψ (1.7)

where D0, D give the coupling of the heavy quarks to gluons. To lowest order in
the both the QCD coupling constant and in the heavy-quark expansion one can set
the Wilson coefficient Ck = 1, but perturbative corrections lead to different defini-
tions of the heavy-quark mass (see Sect. XIV–1) and Ck can account for matching
onto these definitions. Operators that are higher order in the 1/mQ expansion also
emerge. Examples are

L(h.o.)Q = ψ†

[
C4

8m3
Q

D4 + g3CG

2mQ

σ · B
]
ψ + C0

m2
Q

ψ†ψψ†ψ + · · · (1.8)

The first two terms here describe higher-order interactions with gluons, while the
last term is a contact interaction which mimics the effect of a potential. In effective
field theory, the contact interaction is appropriate because it comes from the higher-
momentum modes above the scale p ∼ mv. The gluonic Coulomb interaction is
still treated perturbatively. There will be further contact interactions for different
spin and color combinations.

2 See the discussion of Sec. IV–7.



XIII–1 The charmonium and bottomonium systems 371

Because this effective theory includes gluons, there are perturbative corrections
also to the heavy-quark mass. These are discussed more fully in Sect. XIV–1. For
the purposes here, we will note that the definition of the quark mass is tied up with
an overall energy shift in the potential, previously denoted by V0 in Eq. (1.2). Def-
initions of the mass which are perturbatively well-behaved are those that are tied
to physical thresholds [HoSSW 98]. Effectively, this absorbs V0 into the definition
of the quark mass within some specific prescription. Because this prescription may
vary, the appropriate kinetic energy mass in Eq. (1.7) may have a different value,
leading to Ck �= 1.

One can go further and integrate out degrees of freedom between p ∼ mv and
E ∼ mv2. Since these modes are below the spatial scale of the bound state,
contact interactions are no longer appropriate, but they must be replaced by a
spatially dependent potential [PiS 98]. Such an effective field theory is labeled
pNRQCD, with the ‘p’ referring to the potential. This starts to make closer contact
with the phenomenological potential models. However, it remains a field theory
and there are controlled perturbative modifications from the so-called ‘ultra-soft’
modes which remain dynamical at this scale [HoS 03].

The effective field theory treatments put many of the early successes of phe-
nomenological potential models onto a firmer footing. Moreover, they have also
been successful at helping to connect lattice calculations to the phenomenology of
quarkonium.

Lattice studies: Lattice-gauge theory is well suited to the exploration of the
heavy-quark potential [DeD 10, GaL 10, Ro 12]. In the heavy-quark limit, the
quarks become static and their interaction energy can be measured by numerical
methods. Such studies confirm the general picture of a ‘Coulomb plus linear’ inter-
action. However, the lattice calculations can also provide the connection between
the physical values of the parameters to the underlying scale of QCD, QCD.

In general, the static interaction can be described by a function

V (r) = −
∫

d3q

(2π)3
eiq·r

a
(
q2
)

q2
(1.9)

At large q, the coefficient a(q) is determined by the perturbative expansion of
QCD, which has now been accomplished to three-loop order [AnKS 10]. Numeri-
cal studies must then match on to the perturbative results at short distance, and this
can be accomplished.3 In doing so, the residual interactions can be mapped onto
the operators of NRQCD and/or the potential of pNRQCD. While the state of the
art continues to advance, the present connection between theory and experiment in
the quarkonium spectrum is impressive [Br et al. 11].

3 See, e.g., [Le 98]
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Transitions in quarkonium

All quarkonium states are unstable. Among the decay mechanisms are annihilation
processes, hadronic transitions, and radiative transitions. Roughly speaking, the
lightest quarkonium states are relatively narrow, but those lying above the heavy-
flavor threshold, defined as twice the mass of the lightest heavy-flavored meson
and depicted by dashed lines in Figs. XIII–1 and XIII–2, are broader. This pattern
is particularly apparent for the 3S1 states – below the heavy-flavor threshold, widths
are typically tens of keV, whereas above, they are tens of MeV. The primary reason
for this difference is that above the heavy-flavor threshold, quarkonium can rapidly
‘fall apart’ into a pair of heavy-flavored mesons, e.g., ϒ[4S] → BB̄, whereas
below, this mode is kinematically forbidden.

In the following, we shall describe only decays which occur beneath the heavy-
flavor threshold, and shall limit our discussion to annihilation processes and
hadronic decays. Radiative electric and magnetic dipole transitions are adequately
described in quantum mechanics textbooks.

Annihilation transitions: To motivate a procedure for computing annihilation
rates in quarkonium, let us consider the simple case of a charged lepton of mass
m moving nonrelativistically with its antiparticle in a 1S0 state, and undergoing a
transition to a two-photon final state.4 First, we write down the invariant amplitude
for the pair annihilation process,

M = −ie2v̄(p+, λ+)
[
ε/∗2

i

p/− − q/1 −m
ε/∗1 + ε/∗1

i

p/− − q/2 −m
ε/∗2

]
u(p−, λ−),

(1.10)

for momentum eigenstates. In the lepton rest frame, we are free to choose the trans-
verse gauge ε∗1 · p− = ε∗2 · p− = 0, i.e. ε0

1,2 = 0. Since 3S1 states can make no
contribution to the two-photon mode, we can compute the squared-amplitude for a
1S0 transition by summing over initial state spins,∑

λ±

|M|2 = e4

2m2

[
2+ ω1

ω2
+ ω2

ω1
− 4

(
ε∗1 · ε∗2

)2]
, (1.11)

where ω1,2 are the photon energies in the lepton rest frame. Near threshold, the
photons emerge back to back, and the differential cross section is found to be

dσ

d�
= α2

2m2v+

(
1− (ε∗1 · ε∗2)2) . (1.12)

Likewise, near threshold, a sum on photon polarizations gives

4 The 1S0 (3S1) states have even (odd) charge conjugation, and can therefore give rise to even (odd) numbers
of photons in an annihilation process.
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Fig. XIII–4 Decay of quarkonium through annihilation.

∑
σ1,2

(
1− (ε∗1 · ε∗2)2)

thr
= 2, (1.13)

and upon integrating over half the solid angle (due to photon indistinguishability)
we obtain the cross section,

σ = 4α2π

m2v+
. (1.14)

This is the transition rate per incident flux of antileptons. Since the flux is just the
antilepton velocity v+ times a unit lepton density, we interpret v+σ̄ as the transition
rate for a density of one lepton per volume. For a bound state with radial quantum
number n and wavefunction �n(x), the density is |�n(0)|2 and the lowest-order
expression for the electromagnetic decay rate �(em)

γ γ [1S0] becomes

�(em)
γ γ

[
1S0
] = v+σ̄ |�n(0)|2 = 4πα2

m2
|�n(0)|2. (1.15)

The corresponding rate for γ γ emission from 1S0 states of the bb̄ (ϒ) system is
obtained from Eq. (1.15) by including a factor e4

b = 1/81, which accounts for the
b-quark charge, and a color factor of three. Determination of the two-gluon emis-
sion is found similarly (cf. Fig. XIII–4(a)) provided the gluons are taken to be
massless free particles, and is left for a problem at the end of the chapter. Including
also the effects of QCD radiative corrections, referred to a common renormaliza-
tion point μR = mb, we have [KwQR 87]

�ϒ→γ γ

[
n1S0

] = 48πα2|�n(0)|2
81(2mb)2

[
1− 3.4

αs(mb)

π

]
,

�ϒ→gg

[
n1S0

] = 32πα2
s (mb)|�n(0)|2
3(2mb)2

[
1+ 4.4

αs(mb)

π

]
. (1.16)

Decays can also occur from the n3S1 states.5 The single-photon intermediate
state of Fig. XIII–4(b) leads to emission of a lepton pair, whereas Fig. XIII–4(c)
describes final states consisting of three gluons, two gluons and a photon, or three

5 There are annihilations from higher partial waves as well. These involve derivatives of the wavefunction at
the origin.
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photons. For such a three-particle final state, there are six Feynman diagrams per
amplitude and three-particle phase space to contend with. Upon including QCD
radiative corrections, the results are [KwQR 87]

�ϒ→

̄[n3S1] = 16πα2|�n(0)|2
9(2mb)2

[
1− 16

3

αs(mb)

π

]
,

�ϒ→3g[n3S1] = 160
(
π2 − 9

)
α3
s (mb)|�n(0)|2

81(2mb)2

[
1− 4.9

αs(mb)

π

]
,

�ϒ→3γ [n3S1] = 64
(
π2 − 9

)
α3|�n(0)|2

2187(2mb)2

[
1− 12.6

αs(mb)

π

]
,

�ϒ→ggγ [n3S1] = 128
(
π2 − 9

)
αα2

s (mb)|�n(0)|2
81(2mb)2

[
1− 1.7

αs(mb)

π

]
. (1.17)

The QCD contributions in Eq. (1.17) are of interest in several respects. They con-
tribute, on the whole, with rather sizeable coefficients and can substantially affect
the annihilation rates. Also, they have come to be used as one of several stan-
dard inputs for phenomenological determinations of αs . To eliminate the model-
dependent factors |�n(0)|2, one works with ratios of annihilation rates,

�ϒ→ggγ

[
n3S1

]
�ϒ→3g

[
n3S1

] = 4

5

α

αs(mb)

(
1− 2.6

αs(mb)

π

)
,

�ϒ→3g
[
n3S1

]
�ϒ→μμ̄

[
n3S1

] = 10

9

(π2 − 9)α3
s (mb)

πα2

(
Mϒ

2mb

)2 (
1+ 0.43

αs(mb)

π

)
. (1.18)

In reality, there are a number of theoretical and experimental concerns which make
the extraction of αs(mb) a rather more subtle process than it might at first appear:
(i) the contribution of |�n(0)|2 in Eqs. (1.16), (1.17) as a strictly multiplicative
factor is a consequence of the nonrelativistic approximation and may be affected by
relativistic corrections; (ii) there is no assurance that O(αs)2 terms are negligible;
particularly in the light of the large first-order corrections; (iii) experiments see not
gluons but rather gluon jets, and at the mass scale of the upsilon system, jets are
not particularly well defined; and (iv) the γ spectrum observed in the γgg mode is
softer than that predicted by perturbative QCD, implying the presence of important
nonperturbative effects. Nevertheless, determinations of this type lead to the central
value (and its uncertainties) (4)

MS
= 296± 10 MeV as extracted from upsilon data

and cited earlier in Table II–2. This example indicates how demanding a task it is
to obtain a precise experimental determination of αs(q2).
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Hadron transitions: The transitions V ′ → V + π0 and V ′ → V + η involving
the decay of an excited 3S1 quarkonium level (V ′) down to the 3S1 ground state
(V ) are interesting because they are forbidden in the limits of flavor-SU(2) and
flavor-SU(3) symmetry, respectively. Their rates are therefore governed by quark
mass differences, and a ratio of such rates provides a determination of quark mass
ratios. There is a modest theoretical subtlety in extracting the rates, as degenerate
perturbation theory must be used [IoS 80]. The leading-order effective lagrangian
for these P -wave transitions must be linear in the quark mass matrix m,

LVVM = −i c

2
√

2
Fπ Tr

(
m
(
U − U †

))
εμναβ∂μVν∂αV

′
β

= c

[
(md −mu)

π3√
2
+ (2ms −md −mu)

η8√
6
+ · · ·

]
εμναβ∂μVν∂αV

′
β,

(1.19)

where c is a constant. Here, π3 and η8 are the pure SU(3) states which appear prior
to mixing

π0 = cos θ π3 + sin θ η8, η = − sin θ π3 + cos θ η8, (1.20)

where tan θ � θ = √3(md − mu)/[2(2ms −md − mu)] describes the quark mix-
ing. Upon calculating the transition amplitudes and then substituting for the small
mixing angle θ , we obtain

MV ′→Vπ0 = M0√
2

[
md −mu + 2ms −md −mu√

3
θ

]
= 3M0

2
√

2
(md −mu),

MV ′→V η0 = M0√
2

[
(md −mu)θ + 2ms −md −mu√

3

]
= 2M0√

6
(ms − m̂)+O

(
(md −mu)

2

ms

)
, (1.21)

where M0 ≡ ic εμναβkμε
∗
ν k
′
αεβ . The ratio of decay rates is found to be

� ≡ �V ′→Vπ0

�V ′→V η

= 27

16

∣∣∣∣md −mu

ms − m̂
∣∣∣∣2∣∣∣∣pπpη

∣∣∣∣3. (1.22)

We can extract a quark mass ratio from charmonium data involving ψ(2S) →
J/ψ transitions. From the measured value� = 0.0396±0.0033 [RPP 12], we find

md −mu

ms − m̂ = 0.0354 ± 0.0015, (1.23)

which is rather larger than the value in Eq. (VII–1.19) extracted from pion and
kaon masses.
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XIII–2 Light mesons and baryons

In the quark model, the light baryons and mesons are Q3 and QQ̄ combinations
of the u, d, s quarks. The resulting spectrum is very rich, containing both orbital
and radial excitations of the L = 0 ground-state hadrons. For mesons, the Q and
Q̄ spins couple to the total spins S = 0, 1, and each (L,S) combination occurs
in the nine flavor configurations of the flavor-SU(3) multiplets 8, 1. Analogous
statements can be made for baryon states.

In the face of such complex spectra, we are mainly interested in the regulari-
ties that allow us to extract the essential physics. A tour through the database in
[RPP 12] reveals some general patterns.6 Both radial and orbital excitations of the
light hadrons appear 0.5 → 0.7 GeV above the ground states. As pointed out in
Sect. XI–1, this indicates that the light quarks move relativistically. Other strik-
ing regularities are (i) the existence of quasi-degenerate supermultiplets of parti-
cles with differing flavors and equal (or adjoining) spins, and (ii) excitations of a
given flavor having increasingly large mass (M) and angular momentum (J ) val-
ues, which obey J = α′M2 + J0.

SU(6) classification of the light hadrons

To the extent that the potential is spin-independent and we work in the limit of
equal u, d, s mass, the quark hamiltonian is invariant under flavor-SU(3) and spin-
SU(2) transformations. To lowest order, hadrons are thus placed in irreducible
representations of SU(6), and quarks are assigned to the fundamental representa-
tion 6,

6 = (u↑ d ↑ s ↑ u ↓ d ↓ s ↓). (2.1)

We can also write the SU(6) quark multiplet in terms of the SU(3) flavor represen-
tation and the spin multiplicity as 6 = (3, 2). Although the SU(6), invariant limit
forms a convenient basis for a classification of the meson and baryon states, it can-
not be a full symmetry of Nature since the spin is a spacetime property of particles
whereas SU(3) flavor symmetry is not. Thus, it is impossible to unite the flavor
and spin symmetries in a relativistically invariant manner [CoM 67]. Although we
shall avoid making detailed predictions based on SU(6), it is nonetheless useful in
organizing the multitude of observed hadronic levels.

Meson supermultiplets: The L=0 QQ̄ composites are contained in the SU(6)
group product 6× 6∗ = 35⊕ 1, where the representations 35, 1 have flavor–spin
content

6 Our discussion will focus on hadron masses. Strong and electromagnetic transitions are described in
[LeOPR 88].
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Fig. XIII–5 Spectrum of the light mesons.

35 = (8, 3)⊕ (8, 1)⊕ (1, 3), 1 = (1, 1). (2.2)

The L = 0 ground state consists of a vector octet, a pseudoscalar octet, a vector
singlet, and a pseudoscalar singlet. For excited states, the meson supermultiplets
constitute an SU(6) × O(3) spectrum of particles. The O(3) label refers to how
the total angular momentum is obtained from J = L+ S, giving rise to the pattern
of rotational excitations displayed previously in Table XI–3. Roughly speaking,
mesons occur in mass bands having a common degree of radial and/or orbital exci-
tation.

Fig. XIII–5 provides a view of the mass spectrum for the lightest mesons. The
SU(6) × O(3) structure of the ground state and a sequence of orbitally excited
states are observed to the extent that sufficient data are available for particle assign-
ments to be made. Note that the S-wave QQ states are all accounted for, but gaps
appear in all higher partial waves. Even after many years of study, meson phe-
nomenology below 2 GeV is far from complete!

Baryon supermultiplets: The SU(6) baryon multiplet structure arises from the
Q3 group product (6 × 6) × 6 = (21 ⊕ 15) × 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20, and has
flavor–spin content
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Fig. XIII–6 The low-lying baryon spectrum.

56 = (10, 4)⊕ (8, 2),

70 = (8, 4)⊕ (10, 2)⊕ (8, 2)⊕ (1, 2),

20 = (8, 2)⊕ (1, 4). (2.3)

A three-quark system must adhere to the constraint of Fermi statistics. Each baryon-
state vector is thus antisymmetric under the interchange of any two quarks. A
Young-tableaux analysis of the above group product reveals that the spin–flavor
parts of the 56, 70 and 20 multiplets are, respectively, symmetric, mixed, and anti-
symmetric under interchange of pairs of quarks. Since the color part of any Q3

color-singlet-state vector is antisymmetric under interchange of any two quarks,
the 56-plet has a totally symmetric space wavefunction, with zero orbital angular
momentum between each quark pair. The 70 and 20 multiplets require either radial
excitations and/or orbital excitations. Recall the characterization of the baryon
spectrum in terms of the basis defined by an independent pair of oscillators
(cf. Eq. (XI–2.12)). In this context, a standard notation for a baryon supermulti-
plet is (R, LP

N), where R labels the SU(6) representation, P is the parity, N labels
the number of oscillator quanta and L is the orbital angular momentum quantum
number (cf. Sect. XI–2).

Like meson masses, baryon masses tend to cluster in bands having a com-
mon value of N . The first three bands are shown in Fig. XIII–6, and effects of
SU(6) breaking are displayed for the first two. The lowest-lying SU(6) × O(3)
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supermultiplet is the positive-parity (56, 0+0 ), having content as in Eq. (2.3). Next
comes the negative-parity (70, 1−1 ) supermultiplet. This contains more states than
the 70-plet shown in Eq. (2.3) because the extension from L = 0 to L = 1 requires
addition of angular momenta,

(10, 2)→ (10, 4)⊕ (10, 2),
(1, 2) → (1, 4)⊕ (1, 2),

(8, 4)→ (8, 6)⊕ (8, 4)⊕ (8, 2),
(8, 2)→ (8, 4)⊕ (8, 2).

(2.4)

The number of supermultiplets grows per unit of excitation thereafter. There are
five SU(6)multiplets in theN = 2 band, (56, 2+2 ), (56, 0+2 ), (70, 2+2 ), (70, 0+2 ), and
(20, 1+2 ). Recall that the baryonic inter-quark potential was expressed in Eq. (XI–
2.10) as V = Vosc + U , where Vosc is the potential energy of a harmonic oscillator
and U ≡ V − Vosc. If the potential energy were purely Vosc, the supermultiplets
within the N = 2 band would all be degenerate. In the potential model, assuming
that the largest part of U is purely radial, this degeneracy is removed by the first-
order perturbative effect of U , and the splittings in the N = 2 band are shown at
the top of Fig. XIII–6. Aside from choosing the (56, 0+2 ) supermultiplet to have
the lowest mass, one finds the pattern of splitting to be as shown in Fig. XIII–6,
independent of the particular form of U .

Regge trajectories

It is natural to classify together a ground-state hadron and its rotational excita-
tions, e.g., the isospin one-half positive-parity baryons N(939)J=1/2 (the nucleon),
N(1680)J=5/2, N(2220)J=9/2 and N(2700)J=13/2. Although no higher-spin entries
have been detected in this particular set of nucleonic states (presumably due to
experimental limitations), there is no theoretical reason to expect any such sequence
to end. The database in [RPP 12] contains a number of similar structures, each
characteristically containing three or four members.

Each such collection of states is said to belong to a given Regge trajectory. To
see how this concept arises, let us consider the simplest case of two spinless parti-
cles with scattering amplitude f (E, z) (i.e. dσ/d� = |f (E, z)|2), where E is the
energy and z = cos θ is the scattering angle. It turns out that analytic properties of
the scattering amplitude in the complex angular momentum (J ) plane are of inter-
est. One may obtain a representation of f (E, z) in the complex J -plane by con-
verting the partial wave expansion into a so-called Watson–Sommerfeld transform,

f (E, z) =
∞∑

=0

(−)
(2
+ 1)a(E, 
)P
(−z)

→ 1

2πi

∮
C
dJ

π

sinπJ
(2J + 1)a(E, J )PJ (−z), (2.5)
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where P
 is a Legendre polynomial and C is a contour enclosing the nonnegative
integers. Suppose that as C is deformed away from the Re J -axis to, say, a line of
constant Re J , a pole in the partial wave amplitude a(E, J ) is encountered. Such
a singularity is referred to as a Regge pole and contributes (cf. Eq. (2.5)) to the full
scattering amplitude as

f (E, z) = β[E]Pα[E](−z)
sin(πα[E]) + · · · , (2.6)

where α[E] is the energy-dependent pole position in the complex J -plane and β[E]
is the pole residue.

The Regge-pole contribution of Eq. (2.6) can manifest itself physically in both
the direct channel as a resonance and a crossed channel as an exchanged particle.
Here, we discuss just the former case by demonstrating how a given Regge pole can
be related to a sequence of rotational excitations. Suppose that at some energy ER,
the real part of the pole position equals a nonnegative integer 
, i.e., Re α[ER] = 
.
Then, with the aid of the identity,

1

2

∫ 1

−1
dz P
(z)Pα(−z) = 1

π

sin(πα)

(
− α)(
+ α + 1)
, (2.7)

we can infer from Eq. (2.6) the Breit–Wigner resonance form,

a
(Rg.-ple.)

 = β

π

1

(α[E] − 
)(α[E] + 
+ 1)
� �/2

E − ER + i�/2 , (2.8)

provided Re α[ER] 
 Im α[ER]. A physical resonance thus appears if α[E] passes
near a nonnegative integer and, if the Regge pole moves to ever-increasing J values
in the complex J -plane as the energy E is increased, it generates a tower of high-
spin states. Except in instances of so-called exchange degeneracy, parity dictates
that there be two units of angular momentum between members of a given trajec-
tory. In this manner, a single Regge pole in the angular-momentum plane gives rise
to the collection of physical states called a Regge trajectory.

A plot of the angular momentum vs. squared-mass for the states on any meson
or baryon trajectory reveals the linear behavior,

J � α′M2 + J0. (2.9)

A compilation of slopes (α′) and intercepts (J0) appears in Table XIII–2, with each
trajectory labeled by its ground-state hadron. Such linearly rising trajectories have
been interpreted as a consequence of QCD [JoT 76]. In this picture, hadrons under-
going highly excited rotational motion come to approach color-flux tubes, where-
upon it becomes possible to relate the angular momentum of rotation to the energy
contained in the color field. This line of reasoning leads to the behavior of Eq. (2.9),
and accounts for the universality seen in the slope values displayed in Table XIII–2.
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SU(6) breaking effects

Although an SU(6)-invariant hamiltonian provides a convenient basis for describ-
ing light hadrons, the physical spectrum exhibits substantial departures from the
mass degeneracies which occur in this overly symmetric picture. In the following,
we shall consider some simple models for explaining the many SU(6)-breaking
effects observed in the real world.

The QCD Breit–Fermi model: If one ascribes the nonconfining part of the quark
interaction to single-gluon exchange, the nonrelativistic limit yields the ‘QCD
Breit–Fermi potential’ [DeGG 75]

Vone-gluon = −4kαs
3r

+ 4kαs
3

∑
i<j

[
8π

3MiMj

si · sj δ3(r)+ π

2
δ3(r)

(
1

M2
i

+ 1

M2
j

)

+ 1

MiMjr3

[
3(si · r̂)(sj · r̂)− si · sj

]
+ 1

r3

(
si · r× pi

2M2
i

− sj · r× pj
2M2

j

− sj · r× pi − si · r× pj
MiMj

)

+ 1

2MiMjr

(
pi · pj + r̂(r̂ · pi) · pj

)]
, (2.10)

where αs is the strong fine structure constant, r ≡ rij , and k denotes the color
dependence of the potential (cf. Sect. XI–2) with k = 1 (1/2) for mesons (baryons).
In keeping with the potential model, the mass parameters {Mi} are interpreted
as constituent quark masses. Although the QCD Breit–Fermi model incorporates
SU(6) breaking by means of both quark mass splittings and spin-dependent inter-
actions, it lacks a rigorous theoretical foundation. One might argue on the grounds
of asymptotic freedom that Eq. (2.10) does justice to physics at very short distances
(in the approximation that αs is constant), but there is no reason to believe that it
suffices at intermediate-length scales. It also does not account for mixing between
isoscalar mesons, so such states must be considered separately.

Meson masses: The gluon-exchange model can be used to obtain information
on constituent quark mass. In the following, we shall temporarily ignore the minor
effect of isospin breaking by working with M̂ ≡ (Mu+Md)/2. To compute meson
masses, we take the expectation value of the full hamiltonian between SU(6) eigen-
states, specifically the L = 0 QQ̄ states.7 Although the form of Eq. (2.10) implies
the presence of spin–spin, spin–orbit, and tensor interactions, the spin–orbit and

7 An analysis of spin dependence in the L = 1 states is the subject of a problem at the end of the chapter
(cf. Prob. XIII–3)).
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tensor terms do not contribute here because each quark pair moves in an S wave,
and it is the spin–spin (hyperfine) interaction which lifts the vector meson states
relative to the pseudosclar mesons. We can parameterize the nonisoscalar L = 0
meson masses as

m
(L=0)
QQ̄

= n̂M̂ + nsMs +
〈p2

Q〉
2MQ

+
〈p2

Q̄
〉

2MQ̄

+HQQ̄〈sQ · sQ̄〉, (2.11)

where n̂ and ns are the number of nonstrange (n) and strange consituents (s) respec-
tively, and HQQ̄ refers to the hyperfine interaction in the second line of Eq. (2.10).

One consequence of Eq. (2.11) is a relation involving the mass ratio M̂/Ms .
Fitting the four masses π(138), K(496), ρ(770), K∗(892) to the parameters in
Eq. (2.11) yields

mK∗ −mK

mρ −mπ

= Hns

Hnn
= M̂

Ms

� 0.63. (2.12)

The origin of this result lies in the inverse dependence of the hyperfine interaction
upon constituent quark mass, which affects the mass splitting between S = 1 and
S = 0 mesons differently for strange and nonstrange mesons. The numerical value
of M̂/Ms in Eq. (2.12) graphically demonstrates the difference between constituent
quark masses and current quark masses, the latter having a mass ratio of about
0.04. In earlier sections of this book, which stressed the role of chiral symmetry,
the pion was given a special status as a quasi-Goldstone particle. In theQQ̄model,
the small pion mass is seen to be a consequence of severe cancelation between the
spin-independent and spin-dependent contributions. However, the parameterization
of Eq. (2.11) cannot explain the large η′(960) mass.

In addition to the SU(6) symmetry-breaking effects of mass and spin, there is an
additive contribution present in the isoscalar channel, which is induced by quark–
antiquark annihilation into gluons. In the basis of u, d, s quark flavor states, this
annihilation process produces a 3× 3 mass matrix of the form⎛⎝2Mu +X X X

X 2Md +X X

X X 2Ms +X

⎞⎠ , (2.13)

where for C = +1(−1) mesons, X is the two-gluon (three-gluon) annihilation
amplitude, and for simplicity we display just the quark mass contribution (2Mi)
as the nonmixing mass contribution. The annihilation process is a short-range phe-
nomenon, so the magnitude ofX depends sharply on the orbital angular momentum
L of the QQ̄ system. For L �= 0 waves (where the wavefunction vanishes at zero
relative separation), and C = −1 channels (where the annihilation amplitude is
suppressed by the three powers of gluon coupling), we expectMs−M̂ 
 X. In this
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limit, diagonalization of Eq. (2.13) yields to leading order the set of basis states
(ūu± d̄d)/√2 and s̄s. Only the L = 0 pseudoscalar channel experiences opposite
limit X 
 Ms − M̂ , wherein to leading order the basis vectors are the SU(3) sin-
glet state (ūu+ d̄d+ s̄s)/√3 and octet states (ūu− d̄d)/√2, (ūu+ d̄d−2s̄s)/

√
6.

The overall picture that emerges is one of relatively unmixed light pseudoscalar
states, and heavily mixed vector, tensor, etc., states.

Baryon masses: Applying the one-gluon exchange potential to the ground-state
baryons of (56, 0+0 ) yields a mass formula analogous to Eq. (2.11),

m
(L=0)
Q3 = n̂M̂ + nsMs +

3∑
i=1

〈p2
i 〉

2Mi

+ 1

2

∑
i<j

Hij 〈si · sj 〉. (2.14)

For the system of 1/2+ and 3/2+ (iospin-averaged) baryons, there are eight mass
values and since the above mass formula contains five parameters, one should
obtain three relations. The additional perturbative assumption Hss −Hns = Hns −
Hnn for the hyperfine mass parameters yields the Gell-Mann–Okubo relation of
Eq. (XII–3.10) for the 1/2+ baryons and the equal spacing rule for 3/2+ states,

m�∗ −m� = m!∗ −m�∗ = m� −m!∗ .

(Expt. 153 MeV = 149 MeV = 139 MeV) (2.15)

A third relation which relates the 3/2+ and 1/2+ masses and is independent of
further perturbative assumptions has the form

3m −m� − 2mN = 2(m�∗ −m�)

(Expt. : 276 MeV = 305 MeV) (2.16)

In addition, one can obtain estimates for M̂/Ms , among them

M̂

Ms

= 2(m�∗ −m�)

2m�∗ +m� − 3m

� 0.62,

M̂

Ms

= m�∗ −m�

m� −mN

� 0.65, (2.17)

both in accord with Eq. (2.12).
Isospin-breaking effects: The above description of SU(6) breaking assumes

isospin conservation. In fact, hadrons exhibit small mass splittings within isospin
multiplets, arising from electromagnetism and the u − d mass difference. In the
pion and kaon systems, we were able to use chiral SU(3) symmetry to isolate each
of these separately. Unfortunately, this is not possible in general, and models are
required to address this issue.
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There are a few consequences which follow purely from symmetry considera-
tions. Since the mass difference mu −md is �I = 1, the �I = 2 combinations

m�+ +m�− − 2m�0 = 1.7± 0.1 MeV, mρ+ −mρ0 = −0.3± 2.2 MeV,
(2.18)

arise only from the electromagnetic interaction. In addition, both electromagnetic
and quark mass contributions satisfy the Coleman–Glashow relation [CoG 64],

m�+ −m�− +mn −mp +m!− −m!0 = 0

[Expt. 0.4± 0.6 MeV = 0]. (2.19)

For electromagnetism, this is a consequence of the U -spin-singlet character of the
current, whereas for quark masses it follows from the �I = 1 and SU(3)-octet
character of the current.

We proceed further by using a simple model, based on the QED Coulomb and
hyperfine effects, to describe the electromagnetic interaction of quarks,

�mcoul = Acoul

∑
i<j

QiQj ,

�mhyp = −Ahyp

∑
i<j

QiQj

MiMj

si · sj , (2.20)

where Acoul, Ahyp are constants, {Qi} are quark electric charges, and the sums are
taken over constituent quarks. In �mhyp, we shall neglect further isospin break-
ing in the masses and use Mu = Md = M̂ , and assume electromagnetic self-
interactions of a quark to be already accounted for in the mass parameter of that
quark. For any values of Acoul and Ahyp, this model contains the sum rule

(mn −mp)em = −1

3
(m�+ +m�− − 2m�0) = −0.57± 0.03 MeV, (2.21)

leaving the excess due to the quark mass difference,

(mn −mp)qm = mu −md

2
· 〈n|ūu− d̄d|n〉 − mu −md

2
· 〈p|ūu− d̄d|p〉

≡ (md −mu)(dm + fm)Z0

= (mn −mp)− (mn −mp)em = 1.86± 0.03 MeV, (2.22)

where the second line in the above uses the parameterization of hyperon mass split-
tings given in Eq. (XII–3.9). To the extent that this estimate of quark mass differ-
ences is meaningful, one obtains the mass ratio,

md −mu

ms − m̂ = (mn −mp)qm

m! −m�

� 0.015, (2.23)
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to be compared to the chiral-symmetry extraction from meson masses, which
yielded 0.023. With further neglect of terms O(α(Ms − M̂)) in the hyperfine inter-
action, this exercise can be repeated for vector mesons to yield

(mK∗0 −mK∗+)em = −2

3
(mρ+ −mρ0) = 0.2± 1.5 MeV,

(mK∗0 −mK∗+)qm = (mK∗0 −mK∗+)− (mK∗0 −mK∗+)em

= 6.5± 1.9 MeV,
md −mu

ms − m̂ = mK∗0 −mK∗+

mK∗ −mρ

= 0.053± 0.016. (2.24)

The additional assumption that the constants Acoul and Ahyp are the same in the
decuplet baryons and the octet baryons, as is true in the SU(6) limit, leads to

(m�++ −m�0)em = 5

3
(m�+ +m�− − 2m�0) = 2.8± 0.2 MeV,

(m�++ −m�0)qm = (m�++ −m�0)− (m�++ −m�0)em

= −5.5± 0.4 MeV,

md −mu

ms − m̂ = 1

2

m�0 −m�++

m�∗ −m�

= 0.018± 0.002. (2.25)

Of course, the spread of values for the mass ratios raises a concern about the valid-
ity of this simple model. However, all methods of calculation agree on the small-
ness of the ratio (md −mu)/(ms − m̂).

XIII–3 The heavy-quark limit

In the quark description, a heavy-flavored hadron contains at least one of the heavy
quarks c, b, t . An effective field theory, Heavy Quark Effective Theory (HQET),
has been developed which provides a powerful tool for heavy quark physics. This
involves a study of the limit (mQ →∞) in which the theory is expanded in powers
of m−1

Q . We describe a simple introduction to the topic and much more detail can
be found in [MaW 07].

Heavy-flavored hadrons in the quark model

The spectroscopy of heavy-flavored hadrons should qualitatively follow that of the
light hadronic spectrum, with states containing a single heavy-quark Q occurring
as either mesons (Qq̄) or baryons (Qq1q2). The lowest-energy state for a given
hadronic flavor will have zero orbital angular momentum between the quarks,
leading to ground-state spin values S = 0, 1 for mesons and S = 1/2, 3/2 for
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Fig. XIII–7 Spectrum of charmed (a) mesons, (b) baryons.

baryons. The hyperfine interaction will lower the S = 0 meson and S = 1/2 baryon
masses, and both orbital and radial hadronic excitations of the ground state will be
present.

Although it is possible to contemplate extended flavor transformations which
involve interchange of the light and heavy quarks, e.g., as in the SU(4) of the
light and charmed hadrons, such symmetries are so badly broken by the difference
in energy scales MQ 
 Mq and MQ 
 QCD as to be rendered useless. The
SU(3)- and SU(2)-flavor symmetries associated with the light hadrons are still
viable, but multiplet patterns become modified. The mesons Qq̄ will exist in the
SU(3) multiplet 3∗, whereas in the baryonic Qq1q2 configurations the two light
quarks q1, q2 will form the flavor-SU(3) multiplets 6 and 3∗. For example, the
charmed system has the meson ground state

3∗ : D+
[
cd̄
]
, D0 [cū] , Ds [cs̄] ,

which displays the mass pattern of an SU(2) doublet (D+1869, D
0
1865) and an SU(2)

singlet (Ds
1969). The charmed-baryon multiplets are

6 : �++c [uuc], �+c [udc], �0
c [ddc], !+(s)c [usc], !0(s)

c [dsc], �0
c[ssc]

3∗ : +c [udc], !+ac [usc], !0a
c [dsc].

Fig. XIII–7 displays the anticipated charmed-meson and charmed-baryon levels,
including the effect of SU(3) breaking.

Heavy-quark constituent mass values can be inferred from theD∗−D andB∗−B
hyperfine splittings. That the former splitting is about three times the latter is a
consequence of Mb � 3Mc and of the inverse dependence of the hyperfine effect
upon quark mass. Analogously to Eq. (2.17), we find

M̂

Mc

= mD∗ −mD

mρ −mπ

� 0.22,
M̂

Mb

= mB∗ −mB

mρ −mπ

� 0.08, (3.1)
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where M̂ ≡ (Mu + Md)/2. These findings depend to some extent on how the
fit is done, e.g., with mesons or with baryons, and we leave further study for
Prob. XIII–4.

Spectroscopy in the mQ →∞ limit

In a hadron which contains a single heavy quark Q along with light degrees of
freedom, the heavy quark is essentially static. The best analogy is with atoms,
where the nucleus can in the first approximation be treated as a static, electrically
charged source. Likewise, for heavy hadrons the heavy quark is a static source
with color charge, and the light degrees of freedom provide a nonstatic hadronic
environment around Q. This scenario can be formalized by partitioning the heavy-
quark lagrangian as [CaL 86, Ei 88, LeT 88]

LQ = ψ̄
(
i /D −mQ

)
ψ ≡ L0 + Lspace

L0 = ψ̄
(
iγ0D0 −mQ

)
ψ, Lspace = −iψ̄γ · Dψ, (3.2)

where Dμψ is the covariant derivative of SU(3)c. Since the spatial γ matrices
connect upper and lower components, we see that the effect of Lspace is O(m−1

Q ).
Observe that the static lagrangian L0 of Eq. (3.2) is invariant under spin rotations

of the heavy quark Q. In the world defined by L0, with both O(QCD/MQ) effects
and O(αs(MQ)) effects (associated with hard-gluon exchange) ignored, heavy-
hadronic energy levels and couplings are constrained by the SU(2) spin symmetry.
It is helpful to visualize the situation. A heavy-flavored hadron of spin S will con-
tain a static quark Q having a constant spin vector SQ (with SQ = 1/2) and light
degrees of freedom having a constant angular momentum vector J
 ≡ S − SQ.8

For a meson of this type, we assume that J
 behaves as it does in the quark model,
with J
 = 1/2 in the ground state and J
 = L ± 1/2 for L > 0 rotational excita-
tions. From the decoupling of the heavy-quark spin, it follows that there will be a
two-fold degeneracy between mesons having spin values S = J
±1/2. The meson
L = 0 ground state will have J
 = 1/2 and thus degenerate states with S = 0, 1.
The L = 1 first rotational excitation with J
 = 1/2 will give rise to degener-
ate S = 0, 1 levels, whereas for J
 = 3/2 one obtains degenerate levels having
S = 1, 2. Moreover, the energy differences between different levels should be
independent of heavy-quark flavor. Analogous conditions hold for heavy flavored
baryons, and hadronic transitions between levels of differing L can be similarly
analyzed.

8 Although the light degree(s) of freedom in the simple quark model is an antiquark q̄ for mesons and two
quarks q1q2 for baryons, the physical (i.e. actual) light degrees of freedom could entail unlimited numbers of
gluons and/or quark–antiquark pairs.
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Let us explicitly demonstrate that the splitting between the JP = 1− and JP =
0− states of a Qq̄ meson must vanish in the limit of infinite quark mass. We note
that the mathematical condition for spin-independence is[

H0, S
Q
3

]
= 0, (3.3)

where SQ3 is the generator of spin rotations about the 3-axis for quark Q and H0 is
the hamiltonian obtained from L0. Since the action of SQ3 on a 0− state produces a
1− state, i.e., |M1−〉 = 2S Q

3 |M0−〉, we then have

H0|M1−〉 = m1−|M1−〉 = 2S Q
3 H0|M0−〉 = m0−|M1−〉 , (3.4)

implying that m1− −m0− → 0 as mQ →∞.
Another consequence of working in the static limit of L0 is that the propagator,

S∞(x, y), of the heavy quark in an external field can be determined exactly. From
the defining equations,(

iγ0D0 −mQ

)
S∞(x, y) = δ(4)(x − y) (D0 ≡ ∂0 + ig3A0 · λ/2), (3.5)

one has the solution

S∞(x, y) = −iP (x0, y0)δ
(3)(x− y)

[
θ(x0 − y0)e−imQ(x

0−y0)

(
1+ γ0

2

)
+ θ(y0 − x0)eimQ(x

0−y0)

(
1− γ0

2

)]
, (3.6)

where P(x0, y0) is the path-ordered exponential along the time direction,

P(x0, y0) ≡ P exp

[
i
g3

2

∫ x0

y0
dt λ · A0(x, t)

]
. (3.7)

In this approximation, the heavy quark is static at point x and the only time-
dependence is that of a phase.

This discussion can be generalized to a frame where the heavy quark is moving at
a fixed velocity v, described by a velocity-four vector vμ=pμ/mQ, with vμvμ= 1.
One can define projection operators

�v± = 1

2
(1± /v), (3.8)

where �2
v± = �v±, �v±�v∓ = 0, and �v++�v− = 1. The �v± generalize the usual

projection of ‘upper’ and ‘lower’ components into the moving frame. A quark mov-
ing with velocity v will have the leading description of its wavefunction contained
in the ‘upper’ component described by a field hv [Ge 90, Wi 91],

�v+ψ ≡ e−imQv·xhv(x), (3.9)
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where the main dependence on the quark mass has been factored out, and hv obvi-
ously satisfies�v+hv = hv. Substituting into the Dirac lagrangian, neglecting lower
components, and using �v+/D�v+ = v ·D yields

LQ = ψ̄
(
i /D −mQ

)
ψ � ψ̄�v+

(
i /D −mQ

)
�v+ψ = h̄viv ·Dhv, (3.10)

which generates the lowest-order equation of motion v · Dhv = 0. This approx-
imation can be systematically improved by inclusion of a ‘lower’ component for
the heavy-quark field [EiH 90, Lu 90, GeGW 90],

�v−ψ ≡ e−imQv·x
v(x), (3.11)

with �v−
v = 
v. The equations of motion allow us to solve for 
v by following
the sequence of steps,

0 = (i /D −mQ

)
ψ = (i /D −mQ

)
e−imQv·x [hv + 
v]

= e−imQv·x
(
mQ (/v − 1)+ ie−imQv·x /D) [hv + 
v]

= e−imQv·x
[
(−2mQ + i /D)
v + i /Dhv

]
, (3.12)

which yields 
v and ψ as


v = i

2mQ

/Dhv +O
(
m−2
Q

)
ψ = e−imQv·x

[
1+ i

2mQ

/D

]
hv +O

(
m−2
Q

)
. (3.13)

Inserting these forms into Eq. (3.10) and using �v+hv = hv and Eq. (III–3.50) for
/D/D yields

LQv = h̄v

[
i /D − /D/D

mQ

− /D(/v − 1)/D

4mQ

]
hv

= h̄v

[
iv ·D − 1

2mQ

(
DμD

μ + 1

4
g3λ

aσμνF a
μν

)
− (v ·D)2

2mQ

]
hv, (3.14)

which is the desired expansion in terms of the heavy-quark mass. Because the last
term in this expression is second order in v ·D and noting that v ·Dhv = 0 to lowest
order, it will not contribute to matrix elements at order 1/mQ and can be dropped.
The lagrangian of Eq. (3.14) corresponds to a quark moving at fixed velocity. Anti-
quark solutions can be constructed with the mass dependence e+imQv·x , with the
result

LQ̄v = k̄v

[
−iv ·D − 1

2mQ

(
DμD

μ + 1

4
g3λ

aσμνF a
μν

)
− (v ·D)2

2mQ

]
kv, (3.15)
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where the field kv satisfies �v−kv = kv. It is legitimate to neglect the production
of heavy QQ̄ pairs. However, one should superpose the lagrangians for different
velocities in a Lorentz-invariant fashion,

L =
∫
d4v δ

(
vμv

μ − 1
)
θ(v0)

[
LQv + LQ̄v

]
=
∫
d3v

2v0

[
LQv + LQ̄v

]
. (3.16)

The nature of the approximation at this stage is more of a classical limit rather
than a nonrelativistic limit. To be sure, for any given quark one can work in the
quark’s rest frame, in which case the quark will be nonrelativistic. However, when
external currents act on the fields, transitions from one frame to another occur for
which �v is not small. On the other hand, the result can be said to be classical
because quantum corrections have not yet been included and these can renormalize
the coefficients in LQQ̄v . Also, diagrams involving the exchange of hard gluons can
produce nonstatic intermediate states. Such corrections can be accounted for in
perturbation theory [Wi 91].

XIII–4 Nonconventional hadron states

Many suggestions have been made regarding the possibility of hadronic states
beyond those predicted by the simple quark model of QQ̄ and Q3 configurations.
The study of such states is hampered by the fact that we still have very little idea
why the quark model works. QCD at low energy is a strongly interacting field
theory, and we would expect a very rich and complicated description of hadronic
structure. That the result should be describable in terms of a simple QQ̄ and Q3

picture as even a first approximation remains a mystery. Quark models have been
popular because they seem to work phenomenologically, not because they are a
controlled approximation to QCD. This weakness becomes all the more evident
when one tries to generalize quark model ideas to new areas.

Much of the theoretical work on nonconventional states has involved the con-
cept of a constituent gluon G, analogous to a constituent quark Q, and we shall
cast our discussion with respect to this degree of freedom.9 It is clear that there
should be a cost in energy to excite a constituent gluon. The energy should not
be extremely large, else it would be difficult to understand the early onset of
scaling in deep-inelastic scattering. However, it cannot be less than the uncer-
tainty principle bound on a massless particle confined to a radius R ∼ 1 fm of
E = p>∼

√
3/R � 342 MeV (cf. Sect. XI–1). Model calculations have tended to

use a somewhat larger effective gluon ‘mass’.

9 However, it should be understood that such a concept has not been shown to follow rigorously from QCD, nor
indeed is a configuration of definite numbers of consitituent gluons a gauge-invariant entity (cf. Sect. X–2).



XIII–4 Nonconventional hadron states 391

Table XIII–3. Gauge-invariant color-singlet
interpolating fields.

Operator Dimension JPC

q̄�q 3 0−+, 1−−, 0++, 1+−, 1++
q̄�Dq 4 2++, 2−±
FF 4 0++, 2++, 0−+, 2−+
q̄�qF 5 0±+, 0±−, 1±+, 1±−, 2±+, 2±
FDF 5 1++, 3++

The basic idea of confinement is that only color-singlet states exist as physical
hadrons. If we identify those states which are color singlets and which contain few
quark or gluon quanta, we can easily find other possible configurations besidesQQ̄
and Q3. Some of the more well-known examples are

(1) Gluonia (or glueballs) – quarkless G2 or G3 states, which we shall discuss in
more detail below,

(2) Hybrids – color-singlet mixtures of constituent quarks and gluons like QQ̄G
mesons or Q3G baryons,

(3) Dibaryons – six-quark configurations in which the quarks have similar spatial
wavefunctions rather than two separate three-quark clusters,

(4) Meson molecules – loosely bound deuteron-like composites of mesons.
(5) Tetraquark states – strongly bound states with quark structures qqq̄q̄.

A convenient framework for describing the quantum numbers of possible
hadronic states is obtained by considering gauge-invariant, color-singlet operators
of low dimension [JaJR 86], as was discussed in Sect. XI–1. Table XIII–3 lists all
such operators up to dimension five which can be constructed from quark fields,
QCD covariant derivatives, and the gluon field strength, denoted respectively by
q, Dq, DF , and F . Also appearing in Table XIII–3 is the collection of JPC quan-
tum numbers associated with each such operator. Particular spin-parity values are
obtained from these operators by choosing indices in appropriate combinations.

The first resonance – σ (440)

The lightest resonance encountered in the meson spectrum has long been one of
the most controversial states. This state is officially known as f0(500), but it is
almost universally referred to as σ . The existence of this resonance has finally
been established unambiguously. However, the interpretation remains remarkably
subtle.
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The scattering of two pions in the I = 0 and J = 0 channel becomes strong at
low energies. The amplitude is described by chiral perturbation theory, as described
in Sect. VII–3. At first order in the energy expansion, the scattering amplitude is10

T
(0)

00 ≡ t0 = s

16πF 2
π

. (4.1)

This amplitude is purely real, while under the general principle of unitarity of the
S matrix the elastic amplitude must have the form

T00 = eiδ00 sin δ00, (4.2)

and has to satisfy

Im T00 = |T00|2. (4.3)

The lowest-order amplitude of Eq. (4.1) has no imaginary part. However, in chiral
perturbation theory, the imaginary part starts at order E4, and the first contribu-
tion to this appears through one-loop diagrams. Chiral perturbation theory satisfies
unitarity order by order in the energy expansion.

The σ appears as a resonance when exact unitarity is applied to the scattering
amplitude. The pole can be seen in an exceptionally simple approximation. If one
simply iterates the lowest-order amplitude one can produce a fully unitary result

T00 = t0

1− it0 , (4.4)

which satisfies Eq. (4.3) exactly and also reproduces the chiral result to first order.
The use of Eq. (4.1) with a complex value for s as the input for Eq. (4.4) produces
a pole on the second sheet at

√
s = (1− i)√8πFπ = (460− i460) MeV. (4.5)

This is the first approximation to the σ .
The complete analysis is much more subtle, but carries a similar result. By

including not only unitarity, but also crossing symmetry and analyticity, one can
obtain a dispersive representation of the scattering amplitude [Ro 71]. When eval-
uated using chiral constraints at low energy and data at high energy, the ππ data
can be fully described [CoGL 01]. When extended into the complex plane, the real
σ pole appears at [CaCL 06]

√
s = mσ − i �σ

2
= (441− i272) MeV. (4.6)

10 In order to keep the formulas simple and physically transparent in this introductory section, we present them
with the pion mass set equal to zero.
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However, this does not appear as a typical resonance. In contrast to others, the σ
width is larger than its mass, indicating that the pole is far from the physical values
of s. Moreover, in the scattering amplitude itself, there is no sign of a resonant
bump. The phase shift rises almost linearly from δ00 = 0 at threshold to δ00 =
100o around 900 MeV. The phase shift does go through 90o, traditionally a sign
of a resonance in elastic scattering, but at an energy

√
s ∼ 850 MeV which is far

removed from the pole position. These unusual features had long created confusion
about the existence of the σ , which has been cleared up only through the rigorous
combination of chiral and dispersive techniques.

The σ is a dynamical strong-coupling resonance. The resonance does not fit nat-
urally into the quark model and it does not seem profitable to try to force the σ
into that framework. While we do expect to see quark model bound states as reso-
nances, there is no requirement that all resonant behavior must be associated with
quark model states. Indeed, there is a strong theoretical argument that the σ is dif-
ferent from the bound states of QCD [Pe 04]. Recall two features of the large Nc

limit discussed in Chap. X – that the meson bound states stay constant in mass
when the large Nc limit is taken, but scattering amplitudes fall like 1/Nc. This lat-
ter requirement is satisfied for the ππ amplitudes; in the lowest-order amplitude
of Eq. (4.1), the amplitude falls with Nc because Fπ ∼ √Nc appears squared in
the denominator. Because the ππ amplitude is smaller at larger Nc, the amplti-
tude becomes of order unity at a higher energy. If the σ is indeed connected with
the strong coupling of ππ scattering, its mass will shift to higher energy as Nc

increases. While we cannot change Nc in the scattering data themselves, there are
straightforward analytic methods, such as the inverse-amplitude method [DoP 97],
which is a variant of Padé techniques,11 to closely describe the data including chiral
perturbation theory and exact unitarity. Use of such techniques is able to reproduce
the σ found in the data, and then when Nc is varied one finds [Pe 04],

mσ ∼
√
Nc, (4.7)

as expected by the general argument. Indeed, even our simplified approximation of
Eq. (4.5) has this behavior, again due to Fπ ∼ √Nc. Because the bound states of
QCD should behave as a constant, m ∼ N0

c , the σ appears distinct from these. It
appears to be a resonance associated with the unitarity of elastic scattering.12

Some caveats and cautions about this result are appropriate. This experimen-
tal resonance does not appear to be the σ of the linear σ model. As described in
Chaps. IV and VII, the coefficients of the chiral lagrangian are sensitive to the
underlying fundamental theory, and the coefficients found for QCD do not resem-

11 Our approximation of Eq. (4.5) above is equivalent to the lowest order of the inverse amplitude method.
12 Other states that may have a related origin include the κ(800) seen in Kπ scattering and the N(1405) in πN

scattering.
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ble those of the linear σ model. Nor is the existence of this state a justification to use
a fundamental σ field in field-theoretic calculations. While the use of σ exchange
with a particular coupling may be a proxy for ππ effects in a given reaction, this
use is not necessarily valid in general. The use of a fundamental σ is much more
restrictive than the variety of pionic effects. Moreover, it is neither an accurate nor
controlled approximation, and may double-count the pionic contributions, which
must also be included.

In addition, the above discussion provides a cautionary counterexample to a
widely used argument. It is common to use the violation of tree unitarity of an
effective theory as an indication of the energy at which New Physics should be
seen [LeQT 77], with the expectation that the New Physics would restore unitar-
ity. In the situation discussed above, the usual measure of tree-unitarity violation,
Re T00 ≤ 1/2, occurs at 460 MeV, which is well below the production threshold of
the quarks and gluons of QCD. Also, the energy of tree-unitarity violation varies
as
√
Nc in units where the scale of QCD is held fixed [AyAD 12]. Thus, any ‘New

Physics’ does not have the same Nc scaling. The strongly coupled effective theory
manages to respect unitarity without new degrees of freedom. The situation above
indicates that, while the violation of tree unitarity does indicate the existence of
a strongly coupled region, its use as an indicator of New Physics must be treated
with caution.

Gluonia

The existence of a gluon degree of freedom in hadrons is beyond dispute, with
evidence from deep-inelastic lepton scattering and jet structure in hadron–hadron
collisions. However, trying to predict the properties of a new class of hadrons
whose primary ingredient is gluonic is nontrivial. Hypothetically, if quarks could
be removed from QCD the resulting hadron spectrum would consist only of gluo-
nia (or ‘glueballs’).

Gluonic configurations should be signaled by the existence of extra states beyond
the expected nonets of QQ̄ hadrons. However, mixing with QQ̄ hadrons is gen-
erally possible (cf. Sect. X–2). Although predicted by the 1/Nc expansion to be
suppressed, such mixing effects serve to cloud the interpretation of data vis-à-vis
gluonium states. Referring to the interpolating fields mentioned above, we see that
for gluons the gauge-invariant combinations

Fa
μνF

aμν, F a
μλF

λ
aν, F a

μνF̃
aμν, F a

μλF̃
λ
aν (4.8)

can be formed out of two factors of a gluon field-strength tensor Fa
μν or its dual

F̃ aμν . The spin, parity, and charge conjugation carried by these these operators
are respectively JPC = 0++, 2++, 0−+, 2−+, and are thus the quantum numbers
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expected for the lightest glueballs,13 i.e., such operators acting on the vacuum state
produce states with these quantum numbers. Although there is no a priori guaran-
tee that one obtains a single particle state (e.g., a 2++ operator could in principle
create two 0++ glueballs in a D wave), the simplicity of the operators leads one to
suspect that this will be the case. There is one, somewhat controversial, construct
missing from the above list. Two massive spin-one particles in an S wave can have
JPC = 1−+ as well as JPC = 0++, 2++, and some models predict such a gluonium
state. However, a 1−+ combination of two massless on-shell vector particles is for-
bidden by a combination of gauge invariance plus rotational symmetry [Ya 50].
The lack of a 1−+ gauge-invariant, two-field operator is an indication of this.

Aside from a list of quantum numbers and some guidance as to relative mass
values, theory does not provide a very clear profile of gluonium phenomenology.
Lattice-gauge methods offer the best hope for future progress. Present quenched
lattice studies predict that in a quarkless version of QCD the lightest glueball is a
0++ state of mass 1.7 ± 0.1 GeV and while the 2++ and 0−+ glueballs are about
1.4± 0.1 times heavier [Ba et al. 93], [MoP 99], [Ch et al. 06].

The challenge arises when couplings to quark degrees of freedom are intro-
duced, in which case substantial mixing between quark and gluonium states must
occur. Lattice studies of the mixing with the 0++ state have yielded mixed results,
some indicating a lowering of the mass by as much as several hundred MeV
[Ha et al. 06], while others show little effect [Ri et al. 10]. It is generally agreed
that inclusion of quarks has little effect on the mass of the 2++ and 0−+ states
[Ri et al. 10], [HaT 02]. The problem has also been studied via QCD sum rules
with inclusion of instanton effects, but again there exists considerable uncertainty
[Fo 05], [Ha et al. 11].

Gluonium states would be classified as flavor-SU(3) singlets and if mixing with
quark states exist there should exist ‘extra’ such states. An example of this phe-
nomenon exists in the 1.5 GeV region where the states

f0(1370), f0(1500), f0(1710), K∗
0 (1430), a0(1450)

can be interpreted as a nonet of qq̄ states plus a glueball [AmC 96]. In this picture
the three f0 states are mixtures of the 0++ glueball and the two qq̄ states from
the nonet. The validity of this description relies on the existence of these three f0

resonances. While the f0(1500) and f0(1710) are reasonably well established and
have significant two-meson decay channels, the same is not true of the f0(1370),
which, if it does exist, has a large (>80%) decay fraction into 4π . For this
reason the interpretation in terms of three-channel mixing of these states is still

13 Gluonic operators with three field-strength tensors produce states with JPC = 0±+, 1±+, 2±+, 1±+, 2±−,
3±−. Because of the extra gluon field, one expects these states to be somewhat heavier.
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Table XIII–4. Spectroscopy of six-quark
configurations.

SU(6) of color-spin SU(3) of flavor Spin

490 1 0
896 8 1,2
280 10 1
175 10∗ 1,3
189 27 0,2
35 35 1

1 28 0

controversial. Thus, despite 30 years of work on the problem of glueballs, the situ-
ation remains confused. A recent review of the subject can be found in [Oc 13].

Additional nonconventional states

There is a widespread belief that gluonium states must appear in the spectrum of the
QCD hamiltonian, though as discussed above it has proved challenging to identify
them. For other kinds of nonconventional configurations, it is also difficult to reach
a meaningful consensus, although experimental efforts to detect such states are
ongoing. We briefly review several such possibilities.

(i) Hybrids: From Table XIII–3, we see that among the Q̄QG meson hybrids is
one with the quantum numbers JPC = 1−+. This would-be hadron is of particular
interest because comparison with Table XI–3 reveals that it cannot be a Q̄Q config-
uration. Model calculations suggest that the lightest such state should be isovector,
with mass in the range 1.5–2.0 GeV, and that such states may largely decouple
from L = 0 Q̄Q meson final states. A study of Q3G baryon hybrids reveals that
none of the states is exotic in the sense of lying outside the usual Q3 spectrum
[GoHK 83].

(ii) Dibaryons: The most remarkable aspect learned yet about the dibaryon states
is how much six-quark configurations are restricted by Fermi–Dirac statistics.
Table XIII–4 lists the possible six-quark SU(3) multiplets along with their spin
values [Ja 77]. Of this collection of states, the most attention has been given to
the spinless SU(3)-singlet state, called the H-dibaryon. This particle, which has
strangeness S = −2 and isospin I = 0, is predicted to be the lightest dibaryon,
and if bound would to be unstable to weak decay. A series of experiments has failed
to find the H, so at this time there is no evidence for the existence of dibaryons.

(iii) Hadronic molecules and tetraquarks: Particles with the quark content qqq̄q̄
also form color singlets. The literature distinguishes two types of such states:
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hadronic molecules and tetraquarks. Roughly speaking, the molecular states refer
to two separate qq̄ color-singlet states that are lightly bound. Since the binding
energy is small, such states could be expected to be found right near the threshold
for the two mesons. Tetraquarks refer to configurations where the qqq̄q̄ constituents
are more compactly intertwined, with the details of the configuration varying in
different models. Clearly, there can be a continuum interpolating between these
extremes. We will not enter into the debate about the signals for the two classes of
four-quark states.

There appears to be clear evidence for the existence of a state in this category.
The Zc(3900) [Li et al. 13] [Ab et al. 13] has mass and production properties that
indicate that it contains a cc̄ pair. However, it also carries a charge which proves
that it also contains light quarks with the ud̄ combination producing the positive
charge. The internal configuration has not been sorted out yet.

Among the particles that have been discussed as molecules are the isovector
a0(980) and isoscalar f0(975) mesons. Nominally, these particles have the quan-
tum numbers of the L = 1 sector of the QQ̄ model, and their near equality in mass
suggests an internal composition similar to that of the ρ(770) and ω(783), i.e.,
orthogonal configurations of nonstrange quark–antiquark pairs. However, among
properties which argue against this are their relatively strong coupling to modes
which contain strange quarks, their narrower-than-expected widths, and their γ γ
couplings. The proximity of the KK̄ threshold and the importance of the KK̄
modes has motivated their interpretation as KK̄ molecules [WeI 83]. However,
interpretation of scattering data near the 1 GeV region is not clear, and indeed a
strong case has been made for the alternative qqq̄q̄ picture [’tHoIMPR 08] and for
heavier states as well.

A clearer situation is provided by the X(3872), which has been interpreted in
terms of a D0–D̄∗0 hadronic molecule, which is bound by π0 exchange at long
distance and quark/color exchange at short distances. That X(3872) is not a sim-
ple charmonium state is indicated by large isospin violation seen in the data. This
occurs in the molecule interpretation because the mass of the resonance is essen-
tially identical to mD0 + mD0∗ and considerably lighter than mD+ + mD−∗ . Thus,
the molecular state would predominantly involve D0–D̄∗0 containing cc̄uū quarks,
so that this structure is a mixture of isospin states

cc̄uū = cc̄

√
1

2

[√
1

2
(uū+ dd̄)+

√
1

2
(uū− dd̄)

]
(4.9)

In this picture there should be nearly comparable decays to final states with I = 0
and I = 1, and this is indeed indicated by significant branching ratios of theX(3872)
to both J/ψρ and Jψω modes.
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Other examples of four-quark states may occur in the bb̄ system and the reso-
nances X+b (10610) and X+b (10650), which appear to be a bound states of B+–B̄0∗

and B0∗–B̄+∗, respectively. In this case the states are charged, with quark content
bb̄ud̄, so that both states are clearly exotic–they cannot be excited bottomonium.

The overall interpretation of these states is complicated by the fact that molecules
and tetraquarks have the same quark content and are distinguished only by details
of their internal configuration. In some cases, both interpretations have advocates
[AlHW 12, Du et al. 10].

Problems

(1) Power-law potential in quarkonium
Consider an interquark potential of the form V (r) = crd .
(a) Use the virial theorem to determine 〈T 〉/〈V 〉 for the ground state.
(b) Given the formE2S−E1S = f (d)M−d/(2+d), whereM is the reduced mass,

determine d from the observed mass differences in the cc̄ and bb̄ systems,
using Eq. (3.1) to supply heavy-quark mass values.

(c) Assuming this model is used to fit the spin-averaged ground-state cc̄ and
bb̄ mass values, determine v2/c2 for each system.

(2) Quarkonium annihilation from the 1S0 state
Modify Eq. (1.15) to obtain the leading-order contributions appearing in
Eq. (1.16).

(3) Mass relations involving heavy quarks
(1) Repeat the analysis of Eq. (3.1) but using the masses of the charmed/strange

mesons Ds,D
∗
s instead. Infer a value for M̂/Mc by referring to the result

obtained in Eq. (2.17). Compare with the determination of Eq. (3.1).
(2) Extend the procedure of Eqs. (2.20–2.25) to isospin-violating mass differ-

ences of c-flavored and b-flavored hadrons.



XIV

Weak interactions of heavy quarks

Heavy quarks provide a valuable guide to the study of weak interactions. Mea-
surements of decay lifetimes and of semileptonic decay spectra of heavy, flavored
mesons1 yield information on individual elements of the CKM matrix, as does the
observation of heavy-meson particle–antiparticle transitions such as Bd–B̄d mix-
ing. Long anticipated data involving detection of CP-violating signals have been
found to be in accord with expectations of the Standard Model and have played a
crucial role in constraining the sole complex phase in the CKM matrix.

XIV–1 Heavy-quark mass

At the level of the Standard Model lagrangian, the six quark masses are equivalent;
they are all just input parameters that must each be determined experimentally. In
the real world of particle phenomenology, quark mass divides into two sectors,
‘light’ (u, d, s) and ‘heavy’ (c, b, t). It is a hallmark of light-quark spectroscopy
that hadron mass is not a direct reflection of quark mass. However, for hadrons
which contain a heavy quark, the energy scale is set by the mass of the heavy quark.
In the following, we discuss topics of special relevance to heavy-quark mass.

Running quark mass

Heretofore we have described the renormalization of quark mass in terms of the
mass shift δm = m−m0, wherem0 is the bare mass. We can also, for convenience,
employ a multiplicative mass renormalization constant Zm with m0 = Zmm. In
minimal subtraction, Zm will have an ε-expansion,

1 Note that in the conventions of the Particle Data Group the quantum numbers of the neutral mesons are
K0 = (ds̄),D0 = (cū), B0 = (db̄) and B0

s = (sb̄).
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Zm
(
αs, ε

−1
) = 1+

∞∑
n=1

Zm,n(αs)

εn
= 1− 3C2(3)

αs

4π

1

ε
+ · · · . (1.1)

Both m = m(μ) and Zm(μ) will depend implicitly on a scale μ, but not the bare
mass m0. A sequence of steps follows from this simple observation,

m0 = Zmm with
dm0

d lnμ
= 0,

dm

d lnμ
= −m(μ)

Zm

dZm

d lnμ
≡ −γm(g(μ))m(μ),

γm = 1

Zm

dZm

d lnμ
= γ (0)m

αs

4π
+ γ (1)m

( αs
4π

)2 + · · · , (1.2)

where γm is called the anomalous dimension of the quark mass operator. Since
there is no explicit dependence in Zm on either quark mass m or a renormalization
scale μ, the anomalous dimension γm is the same in any minimally subtracted
regularization scheme, such as MS.

Let us determine the leading coefficient γ (0)m . From Eq. (1.2) we have2

Zmγm(g) = dZm

d lnμ
= 2g

dg

d lnμ

dZm

dg2
. (1.3)

To proceed, we shall require an extension to ε �= 0 of Eq. (II–2.57b),

dg

d lnμ
≡ β(g(μ), ε) = −εg − β0

g3

16π2
+ · · · = −εg + · · · , (1.4)

where we recall that β0 = 11− 2nf /3 > 0. We then obtain from Eq. (1.3),

(1+ · · · ) (γ (0)m + · · · ) = 2g (−εg + · · · )
(
dZm,1

dg2

1

ε
+ · · ·

)
(1.5)

or, finally, the desired result

γ (0)m = 6C2(3) = 8. (1.6)

At this point, we have a differential equation whose integration gives the scale
dependence of the quark mass,

dm(μ)

m(μ)
= −γm(g(μ))d lnμ,

d lnμ = d lnμ

dg
dg = dg

β(g)
,

m(μ) = m(μ0) exp

[
−
∫ g(μ)

g(μ0)

dg′
γm(g

′)
β(g′)

]
, (1.7)

2 For notational simplicity, we suppress the subscript in g3 and use instead g.
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where β(g) is the beta function of Eq. (II–2.57b). This equation is ordinarily used
for situations for which QCD perturbation theory is applicable (i.e. short distances).
Here, we consider the leading-order expressions, with

β = −β0
αs

4π
g, γm = γ (0)m

αs

4π
, (1.8)

the insertion of which into Eq. (1.7) yields

m(μ) = m(μ0)

[
αs(μ)

αs(μ0)

]γ (0)m /2β0

. (1.9)

We hasten to note that the concept of a running quark mass is valid for all six fla-
vors, not just heavy quarks. For heavy quarks, it has become standard to express the
MS mass in the form m(m), i.e., to refer to the scale μ = m which equals the MS
mass itself. This is convenient because any experimental determination m(μexpt)

can always be ‘run’ to the scale μ = m. A compilation of various phenomenologi-
cal inputs yields [RPP 12]

mc(mc) = 1.275± 0.025 GeV, mb(mb) = 4.18± 0.03 GeV. (1.10)

Equation (1.9) represents the leading-order expression for the running mass.
Extensive work on higher-order corrections has been carried out, to the level of
four loops [Ch 97, VeLR 97]. An accessible recipe for a running mass at four loops
is given by

m(μ) = m(μ0) · c(as(μ))
c(as(μ0))

, (1.11)

where3 as(μ) ≡ αs(μ)/π . In the above, the argument of the function c(as(μ))
requires a running strong-coupling αs(μ) also evaluated at four-loop order, but this
has been addressed earlier in Eqs. (II–2.77), (II–2.78). Useful numerical forms of
c(x) are given in [Ch 97] for each of the s, c, b, and t quarks. For example, we
shall refer in Chap. XV to the b-quark version,

cb(x) = x12/23
(
1+ 1.17549 x + 1.50071 x2 + 0.172478 x3

)
. (1.12)

This can be applied to run the b-quark mass from the scale μ0 = mb(mb) to μ =
MH , whereMH is the mass of the Higgs boson. We findmb(MH) � 0.665mb(mb).

The pole mass of a quark

Since quarks do not exist as free particles, it should perhaps not be surprising that
different theoretical definitions of quark mass appear in the literature. In the above,

3 Note this is not the same as the quantity as appearing in Eq. (II–2.76).
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we have discussed quark mass as it is defined in the MS renormalization scheme.
Another definition, the pole mass, is simply the renormalized quark mass in on-
shell renormalization. As an example where use of pole mass seems natural, con-
sider the top quark. Top-quark mass is measured ‘directly’ in collider experiments,
primarily via the production of t t̄ pairs. The t quarks will each decay as t → W+b,
which ultimately gives rise to lepton + jet, dilepton, and all-jet final states. The
top mass obtained by fitting invariant mass distributions of final-state particles
has been interpreted as a pole mass, with recent Tevatron and LHC evaluations
[Mu 12]

Mt =
{

173.18± 0.94 GeV [Tevatron]
173.3± 1.4 GeV [LHC]. (1.13)

There is also an ‘indirect’ way of determining top mass by performing a global
fit of Standard Model observables in which the top quark contributes as a virtual
particle.

An interesting theoretical issue is the relation between pole mass and MS mass.
This has been carried out in QCD perturbation theory as far as three-loop order
[MeR 00]. In the following we shall review this process to leading order in αs . We
begin with the inverse renormalized quark propagator, expressed as

S−1
F,ren(p) = �pBren(p

2,m2)−mAren(p
2,m2), (1.14)

where the functions Aren and Bren are calculated in QCD perturbation theory, with
m being the MS mass. We must seek a zero in S−1

F,ren(p) for the on-shell conditions
of �p = M and p2 = M2 with M being the pole mass. Following [FlJTV 99], we
have for the O(αs) renormalized propagator amplitudes in the on-shell limit,

Ao-s ≡ Aren

∣∣∣∣
�p=M, p2=M2

= 1+ αs

4π
2C2(3) (2+ ξ)+ · · ·

Bo-s ≡ Bren

∣∣∣∣
�p=M, p2=M2

= 1+ αs

4π
2C2(3)ξ + · · · , (1.15)

where ξ is the gauge parameter and C2(3) is given below Eq. (II–2.12). We can
now obtain the desired relation between pole mass M and MS mass m in terms of
the MS coupling α̂s . The condition for a zero, 0 = mAo-s − MBo-s, implies the
relation,

M = m
Ao-s

Bo-s
= m(M)

[
1+ C2(3)

α̂s(M)

π
+ · · ·

]
, (1.16)

where we exhibit scale dependence in m or αs as it would appear in a more gen-
eral treatment. Notice that the explicit gauge dependence has canceled, as it must.
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For the top quark, a comparison between MS mass and pole mass at NNLO level
in the QCD perturbation theory gives

mt(mt) = 163.3± 2.7 GeV, Mt = 173.3± 2.8 GeV, (1.17)

as inferred from Tevatron data [AlDM 12].
Actually, it would appear that the very concept of pole mass for a quark is para-

doxical because, after all, quarks are not free particles, and it is, in fact, the case
that due to confinement the exact nonperturbative quark propagator will not have a
pole. The pole mass exists as a creature of perturbation theory and phenomenology.
There is, however, a price to pay for this convenience. Calculation has shown that
there will be higher orders which grow factorially in the perturbation expansion
[BeB 95, BiSUV 94]. Because of this, the pole mass itself cannot be determined to
an accuracy better than the confinement scale QCD. Other definitions of the mass
parameter include the 1S mass, defined as one-half the energy of the 1S QQ̄ state
[HoLM 99], and the kinetic mass, defined via a threshold in weak decay [BiSUV
94]. Because these include the effects of confinement, they turn out to be better
behaved in many perturbative calculations [ElL 02]. Indeed, even for the top quark
the 1S mass is prefered for a proper theoretical description of the t t̄ production
cross section near threshold [HoT 99].

Our lack of understanding of the large magnitude of the top mass illustrates how
little we actually know about the mechanism of mass generation. If all fermion
masses arise from the Yukawa interaction of a single Higgs doublet, then the
Yukawa coupling constants must vary by the factor gt/ge = mt/me ∼ 3 × 105.
There is nothing inconsistent about such a variation, but it is so striking as to beg
for a logical explanation, one which is presently lacking.

XIV–2 Inclusive decays

Heavy quarks decay to a large number of final states, often containing many parti-
cles. As the mass of the heavy quark gets larger, it makes increasing sense to treat
the final states inclusively. We discuss this approach in this section.

The spectator model

Consider the weak beta decay, Q → qēνe, of an isolated heavy quark Q into a
lighter quark q. By analogy with muon decay, this proceeds with decay rate (if
radiative corrections are ignored)

�Q→qēνe =
G2
Fm

5
Q

192π3

∣∣VqQ∣∣2 f (mq/mQ),

f (x) = 1− 8x2 + 8x6 − x8 − 24x4 ln x (2.1)
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where f (x) is the phase-space factor already encountered in our discussion
of muon decay in Sect. V–2 and of tau decay in Sect. V–3. Under what
circumstances would this be a good representation for the beta decay of a heavy-
meson-containing quark Q? For it to be accurate, the final state must develop
independently of the other (so-called spectator) quark in the heavy meson. Expe-
rience with deep-inelastic scattering suggests that this occurs when the recoiling
quark q carries energy and momentum larger than typical hadronic scales, i.e., in
the range Eq > 1–1.5 GeV. For D decays, the average light-quark energy is
〈Eq〉 ∼ mD/3 � 0.5 GeV, in which case this approximation is suspect. It should
be considerably better in B decays, but still not perfect.

Let us explore the consequences of adopting the spectator model for D and
B decays. If we neglect CKM-suppressed modes, the main decay channels for b
quarks are b→ cūd, cc̄s, c
ν̄
 (
 = e, μ, τ), while for c quarks they are restricted
to c→ sd̄u, sμ̄νμ, sēνe. Relative to the lepton modes, each hadronic decay chan-
nel picks up an additional factor of 3 upon summing over the final-state colors.
Two of the B-meson final states (cc̄s and cτ ν̄τ ) have significant phase-space sup-
pressions (reducing them to about 20% of the cūd mode) due to the heavy masses
involved. The simplest spectator model then predicts branching ratios

BrD→ēνeX �
1

3+ 2
= 0.2,

BrB→eν̄eX �
1

3× (1+ 0.2)+ 2+ 0.2
= 0.17 (2.2)

where X denotes a sum over the remaining final-state particles. Also, this picture
predicts the absolute rates of the D and B decays to be

τD =
[

5
G2
Fm

5
c

192π
|Vcs|2 f (xc)

]−1

� 1.1× 10−12 s, (2.3a)

τB =
[

5.8
G2
Fm

5
b

192π2
|Vcb|2 f (xb)

]−1

� 1.8× 10−12 s

∣∣∣∣0.041

Vcb

∣∣∣∣2 , (2.3b)

where f (xc) � 0.7 and f (xb) � 0.5 are phase-space factors. For definiteness, we
have taken mc = 1.5 MeV and mb = 4.9 GeV in the above. However, note the
quintic dependence on quark mass; the B-lifetime prediction would be 10% lower
if mb = 5.0 GeV were used!

For D decays, the D+ and D0 lifetimes differ by a factor of about 2.5,

τD+ = (10.40± 0.07)× 10−13 s, τD+/τD0 = 2.54± 0.02, (2.4)

whereas the spectator model requires them to be equal. This failure is not sur-
prising, as the D-meson mass lies in the region of strong hadronic resonances;
final-state interactions can seriously disturb the spectator picture. Thus, we expect
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the spectator model to reveal only gross features of the D system. It is remark-
able, given its simplicity, that the spectator model predicts (roughly) the correct
magnitudes of the lifetime and of the inclusive branching ratios,

BrD0→eν̄eX = (6.49± 0.11)%, BrD+→eν̄eX = (16.07± 0.30)%. (2.5)

We see that the decays of the D+ correspond more closely to the spectator predic-
tions than do those of the D0. The D0-hadronic decay modes are notably greater
that the expectation of the spectator model.

Even for B mesons, the spectator model provides only a rough guide. The life-
times of the different-flavored B mesons are reasonably similar

τB0 = (1.519± 0.0.007)× 10−12 s,
τB+

τB0
= 1.079± 0.007,

τB0
s

τB0
= 0.986± 0.011, (2.6)

and the spectator estimate differs from these by less than 20%. However, the
spectator prediction for the leptonic branching ratio is about 60% larger than the
experimental value

BrB→eν̄eX = (10.72± 0.13)%, (2.7)

where the number quoted corresponds to roughly an equal mixture of B+ and B0.
The shorter lifetime and lower leptonic branching ratio point to a modest enhance-
ment of the hadronic modes.

The heavy-quark expansion

The spectator model can be transformed into a solid QCD calculation through the
use of the operator-product expansion (OPE) [ChGG 90, Ne 05]. This allows the
inclusion of perturbative and nonperturbative corrections.

Using the B meson as our example, the treatment starts by considering the cur-
rent matrix element, squared and summed over all final states,

Wαβ = (2π)4
∑
X

δ4(PB − q − PX)〈B(v)|J †
α |X〉〈X|Jβ |B(v)〉, (2.8)

where q is the momentum carried by the current. The total decay rate is obtained
by combining Wαβ with the squared lepton current matrix element Lαβ ,

Lαβ = 4
(
pα
 p

β
ν + pβ
 pαν − gαβp
 · pν + iεαβγ δp
γ pνδ

)
, (2.9)

and integrating over phase space.
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Fig. XIV–1 The leading contribution to the heavy-quark expansion.

The on-shell tensor Wαβ is given by the discontinuity in the full tensor

Tαβ = −i
∫
d4x e−iq·x〈B(v)|T (J †

α (x)Jβ(0))|B(v)〉, (2.10)

related by Wαβ = −πIm Tαβ . The discontinuity is evaluated at the physical cut,
which extends over the region

mB

√
q2 ≤ mBv · q ≤ 1

2
(m2

B + q2 −m2
j ), (2.11)

where mj is the lightest hadron for the final-state quark qj , i.e., mπ for qj = u or
mD for qj = c. In this formalism, the spectator calculation arises from the evalua-
tion of the diagram in Fig. XIV–1 using the free intermediate-state propagator. For
a current q̄�αb = q̄γα(1+ γ5)b, the tensor Tαβ becomes

Tαβ = −i
∫
d4x e−iq·x〈B(v)| ¯b(x)�αSF (x)�βb(0)|B(v)〉

= 〈B(v)| 2

p2 −m2
q + iε

·Mαμβ · b̄γ μ(1+ γ5)b|B(v)〉, (2.12)

where Mαμβ ≡ gαμpβ + gβμpα − gαβpμ − iεαβμνpν with pμ = mvμ − qμ being
the momentum carried by the intermediate propagator. The only nonzero matrix
element for a B hadron at rest is 〈B|b̄γ 0b|B〉 = 1. In this case, the amplitude is
equivalent to the free decay of a b quark.

However, one can do better because the short-distance behavior of the full ten-
sor can be described by an OPE. Because the heavy b quark carries a high energy
and transfers that energy to the intermediate states, the region of validity of the
OPE is somewhat different than our previous discussion for the weak hamiltonian
[ChGG 90]. As v · q approaches the upper range given in Eq. (2.11), the over-
all hadronic mass becomes smaller and enters the region where binding becomes
important and perturbation theory fails.

There are two key improvements that can be accomplished by this method. One
is the addition of perturbative corrections. Included in this process is the ability to
connect the b-quark mass to a perturbatively well-defined definition of that mass.
This tames the strong m5

b dependence found in the spectator model by relating the
b mass to a well-defined observable. In practice, mass definitions which are tied
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to measurements that already include confinement effects, such as the 1S mass or
the kinetic mass mentioned in Sect. XIV–1, provide the most stable perturbative
definition [BiSUV 94, HoLM 99]. The other path of improvement is to include
new operators that describe nonperturbative hadronic matrix elements [BiSUV 93,
Ma 94, MaW 94]. These new operators enter in an expansion in the inverse of the
heavy-quark mass. The leading operators are those discussed for the heavy-quark
expansion in the preceding chapter. We can see how these arise by expanding the
tensor Tαβ around the heavy-quark limit including interactions. The interactions
can be seen in the full propagator

Sq(x) = 〈x| 1

/D −mq + iε |0〉 = 〈x|(/D +mq)
1

D2 + g3λ
a

4 σμνF a
μν −mq + iε

|0〉,
(2.13)

where /D contains the full covariant derivative including the gauge potential and we
have used Eq. (III–3.50) in obtaining the second form. When the matrix element
is taken, the derivative turns into Dμ = (mvμ − qμ) + dμ where dμ contains the
residual momenta and the gauge field. The result is an OPE of the form

T (J †α(x)J β(0)) = c
αβ

1 b̄b + c
αβ

2

m2
b

b̄(iD)2b + c
αβ

3

m2
b

b̄
ita

2
σijF

aij b. (2.14)

To leading order in 1/mb, the result can then be expressed in terms of the two
matrix elements

μ2
π = 〈B(v)|b̄(iD)2b|B(v)〉, μ2

G = 〈B(v)|b̄
ita

2
σμνF

aμνb|B(v)〉. (2.15)

The overall inclusive result has the form [BeBMU 03]

�(B → Xceν) = G2
Fm

5
b(μ)

192π3
|Vbc|2

[
f

(
mq

mQ

)
(1+O(αs))

(
1− μ2

π − μ2
G

2m2
b

)
−2

(
1− m2

c

m2
b

)4
μ2
G

m2
b

+ · · ·
]
. (2.16)

The gluonic operator also appears in the description of the spectroscopy of heavy
quarks, as described in Chap. XIII, and its value can be estimated from the mass
splittings in heavy hadrons. The kinetic operator can be fit as part of the energy
distribution of semileptonic B decay in a combined fit with the total decay rate.
The perturbative corrections depend on which definition of the renormalized mass
is employed. Further refinements include the perturbative scaling of the coefficients
of μi and the addition of 1/m3

b effects.



408 Weak interactions of heavy quarks

Inclusive measurements can be used to extract the CKM elements [RPP 12],

Vcb = (41.88± 0.44± 0.59)× 10−3, Vub = (4.41± 0.15± 0.16)× 10−3.

(2.17)

The top quark

The top quark is the real heavyweight of the quarks and presents a rather novel
decay pattern. Because mt > MW + mb and the CKM element |Vtb| is near unity,
the dominant decay is the semiweak transition t → b + W+. The amplitude and
transition rate for this process are

Mt→bW+ = −i g2√
8
V ∗tbε

∗
μ(pW)u(pb)γ

μ(1+ γ5)u(pt ),

�t→bW+ = GFm
3
t

8π
√

2
|Vtb|2

[
1− 3

M2
W

m2
t

+ 2
M4
W

m4
t

]
, (2.18)

where we have neglected the b quark mass in the decay rate. The question of which
definition of mt to use can be answered only when including QCD radiative cor-
rections, and the convergence of the perturbative series is best when using a short-
distance definition of the mass, such as the MS mass, rather than the pole mass
[BeB 95]. QCD corrections including gluon radiation have now been carried out
to second order in αs [CzM 99, ChHSS 99]. Including these, the top width is [BeE
et al. 00]

�t = 1.42 GeV, (2.19)

corresponding to a lifetime of τ = 4.6×10−25 s. For such a large t-quark mass, the
emittedW+ bosons are predominantly longitudinally polarized, exceeding produc-
tion of transversely polarized W+ bosons by a factor ∼ m2

t /M
2
W . This is a reflec-

tion of the large Yukawa coupling of the t quark to the (unphysical) charged Higgs
scalar, which becomes the longitudinal component of the W+. Other decay modes
of the t quark will be highly suppressed by weak mixing factors, e.g., for the mode
t → s +W+ the suppression amounts to |Vts/Vtb|2 � 1.6× 10−3.

An interesting consequence of the large t → b + W+ quark decay rate is that
there will not be sufficient time for the top quark to form bound-state hadrons.
In view of the large top-quark mass, the t t̄ system (toponium) is nonrelativistic
and sits in an effectively Coulombic potential, V = −4αs/3r . In the ground state,
one finds the quark velocity vrms = 4αs/3 and atomic radius r0 = 3/(2αsmt).
A characteristic orbital period is then T = 2πr0/vrms = 9π/(4α2

s mt). Using
αs(r0) = 0.12, we estimate T = 19 × 10−25 s. In contrast, the toponium life-
time would be one-half the t lifetime given above, since either t or t̄ could decay
first. These comparisons imply that the top quark has an appreciable probability of
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decaying before completion of even a single bound-state orbit. An equivalent indi-
cation of the same effect is the observation that the toponium weak decay width
(twice that of a single top quark) is larger than the spacing between energy levels,
such as E2S − E1S = α2

s mt/3 ∼ 0.9 GeV. The production cross section does not
then occur through sharp resonances. Instead, there exists a rather broad and weak
threshold enhancement, due to the attractive nature of the Coulombic potential.
This permits the production and decay of top quarks to be analyzed perturbatively,
with �t serving as the infrared cut-off. A heavy top quark can then provide a new
laboratory for perturbative QCD studies.

XIV–3 Exclusive decays in the heavy-quark limit

The spectator model calculates the decay rates as if the final-state quarks were free.
However, the actual decays take place to physical hadronic final states. For the
total rate, there is absolutely no hope of reliably calculating and summing all the
individual nonleptonic decays. For semileptonic decays, the situation is somewhat
better. The data show that the quasi-one-hadron states, i.e., D→ Kēνe, K∗ēνe and
B → Deν̄e, D∗eν̄e, form the largest component of the semileptonic rates,

�D+→Kēνe+K∗ēνe
�D+→Xēνe

= 0.89± 0.03,
�B+→Deν̄e+D∗eν̄e
�B+→Xceν̄e

= 0.74± 0.05. (3.1)

These transitions can be addressed by quark model calculations, so that we have
an independent handle on such decays. The hadronic-current matrix elements are
described by form factors such as

〈K−(p′)
∣∣s̄γμc∣∣D0(p)〉 = f+

(
p + p′)

μ
+ f−

(
p − p′)

μ
,

〈K∗−(p′)
∣∣s̄γμc∣∣D0(p)〉 = igεμναβε

∗ν (p + p′)α (p − p′)β ,
〈K∗−(p′)

∣∣s̄γμγ5c
∣∣D0(p)〉 = f1ε

∗
μ + ε∗ · q

[
f2
(
p + p′)

μ
+ f3 qμ

]
, (3.2)

with analogous definitions for the B decays. All form factors are functions of the
four-momentum transfer q2 = (p−p′)2. The physics underlying these form factors
is two-fold:

(1) If the final-state meson does not recoil, the amplitude is determined by an
overlap of the quark wavefunctions, as described in Sect. XII–2.

(2) As the final-state meson recoils, the wavefunction overlap becomes smaller, so
that the form factors fall off with increasing recoil momentum.

For D decays, the CKM element is known to a high degree of accuracy from the
unitarity of the CKM matrix. In this case, lattice or quark model calculations serve
to check whether the experimental rate can be reproduced. For B decays involving
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the b → c transition, the exclusive rates are treated using Heavy Quark Effective
Theory, which we will describe below.

In the case of nonleptonic B, D decays, we have considerably less confidence in
our ability to predict the decay amplitudes. This is especially true inD nonleptonic
decay because the rescattering corrections required by unitarity can play a major
role. Unitarity predicts (cf. Eq. (C–3.14)) for the D → f matrix element of the
transition operator,

i(T − T †)D→f =
∑
n

T ∗n→f Tn→D, (3.3)

where n are the physically allowed intermediate states. The scattering matrix ele-
ments are evaluated at the mass of the D, which happens to lie in an energy range
where many strong resonances lie. The scattering elements Tn→f are therefore
expected to be of order unity, implying that rescattering can mask the underlying
pattern of weak matrix elements. This makes calculation of nonleptonic D decays
particularly suspect.

Inclusive vs. exclusive models for b → ceν̄e

Inclusive and exclusive techniques appear conceptually quite different, even if we
know that the total inclusive rate is made from a sum of exclusive individual modes.
However, the following observation [ShV 88] is instructive for connecting the two
methods.

Consider the semileptonic decay of a heavy quark into another heavy quark,
Qa → Qbeν̄e, such that their mass difference�m is small compared to the average
of their masses ((ma + mb)/2 
 �m), yet large compared to the QCD scale
(�m 
 QCD). Because of the second condition, one might use the spectator
model result,

�Qa→Qbeν̄e �
G2
F (ma −mb)

5

15π3
|Vab|2 , (3.4)

where Vab is the appropriate weak-mixing matrix element. However, if the first con-
dition is satisfied, the quark recoil will be nonrelativistic. This leads to a nonrela-
tivistic calculation of the transitions from a pseudoscalarQaq̄ state to pseudoscalar
and to vector Qbq̄ states. In this limit, ψ̄bγ0ψa → ψ

†
bψa is proportional to the nor-

malization operator, while the axial current ψ̄bγiγ5ψa → ψ
†
b σiψa is proportional

to the spin operator. For states normalized as

〈(Qaq̄)
0−
p′
∣∣ (Qaq̄)

0−
p 〉 = 2mδ3(p− p′), (3.5)
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one then has

〈(Qbq̄)
0−
p′
∣∣ψ̄bγ0ψa

∣∣ (Qaq̄)
0−
p 〉 = 2m ,

〈(Qbq̄)
1−
p′
∣∣ψ̄bγiγ5ψa

∣∣ (Qaq̄)
0−
p 〉 = 2m ε

†
i (p

′), (3.6)

where m is either ma or mb. This translates into invariant form factors

〈(Qbq̄)
0−
p′
∣∣ψ̄bγμψa∣∣ (Qaq̄)

0−
p 〉 =

(
p + p′)

μ
,

〈(Qbq̄)
1−
p′
∣∣ψ̄bγμγ5ψa

∣∣ (Qaq̄)
0−
p 〉 = 2m ε†

μ(p
′), (3.7)

which are the correct relativistic results. Using these to calculate the semileptonic
decays, one finds

�(Qaq̄)0−→(Qbq̄)0−eν̄e =
G2
F

60π3
(ma −mb)

5 |Vab|2 ,

�(Qaq̄)0−→(Qbq̄)1−eν̄e =
G2
F

20π3
(ma −mb)

5 |Vab|2 . (3.8)

Comparing these, one sees that the sum of the pseudoscalar and vector widths
exactly saturates the spectator result of Eq. (3.4). In this combined set of limits, it
seems that both types of calculations can be valid simultaneously. Direct applica-
tion of this insight to b→ ceν̄e decays is somewhat marginal, as the nonrelativistic
condition is not well satisfied. A velocity as large as v = 0.8c is reached in portions
of the decay region, although on the average a lower value is obtained. However, it
is likely that the near equality of spectator versus quark model results is a remnant
of the situation described above.

Heavy Quark Effective Theory and exclusive decays

The discussion of the previous section leaned heavily on the use of models to
describe quark weak decay. However, many aspects of weak transitions can be
obtained in a model-independent fashion through the use of the mQ → ∞ limit,
which was introduced in Sect. XIII–3. This effective theory provides a variety of
qualitative and quantitative insights of considerable value.

The heavy-quark approximation manages to justify many results which have
become part of the standard lore of quark models. For example, consider the decay
constant of a Qq̄ pseudoscalar meson M ,

〈0 |q̄(x)γ μγ5Q(x)|M(p)〉 = i
√

2FMp
μ e−ip·x. (3.9)

In the quark model one finds that FM ∝ (mM)
−1/2. This follows from the normal-

ization of momentum eigenstates,

〈M(p′)|M(p)〉 = 2Epδ
(3)(p− p′), (3.10)
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such that

〈0|q̄γ0γ5Q|M(0)〉 =
{
i
√

2FMmM (decay const defn.),

i
√

2mM ψ(0)
√

2Nc (quark model reln.),
(3.11)

where ψ(0) is the Qq̄ wavefunction at the origin and Nc is the number of colors.
Since, asmQ →∞, theQq̄ reduced mass approaches the constant value μ→ mq ,
we expect that ψ(0) itself approaches a constant in this limit,4 and the scaling
behavior FM ∝ (mM)

−1/2 then follows immediately from Eq. (3.3). Alternatively,
the dependence of FM on mM can be derived using the wavepacket formalism
introduced in Chap. XII.

This quark model result can be validated in the heavy-quark limit [Ei 88].
Consider the contribution of meson M to the correlation function

C(t) =
∫
d3x 〈0

∣∣∣A0(t, x)A†
0(0)

∣∣∣ 0〉, (3.12)

where A0 ≡ q̄γ0γ5Q. Inserting a complete set of intermediate states and isolating
the contribution of meson M , we have

C(t) =
∫
d3x

∫
d3p

(2π)32Ep
〈0 |A0(t, x)|M(p)〉〈M(p) |A0(0)| 0〉 + · · · , (3.13)

where the ellipses denote other intermediate states. From the definition of FM , one
finds

C(t) = F 2
Mm

2
M

2mM

e−imMt + · · · . (3.14)

Alternatively, the heavy quark develops in time in this correlation function accord-
ing to the static propagator of Eq. (XIII–3.6),

C(t) = − i
2
e−imQt〈0|q̄(t, 0)γ0γ5P(t, 0)(1+ γ5)γ0γ5q(0)|0〉, (3.15)

with all the dynamics being contained in the light degrees of freedom. The matrix
element is independent of mM , and the scaling behavior,

FM ∝ (mM)
−1/2, (3.16)

follows immediately. This technique is applicable to lattice theoretic calculations
of FM . There, one considers euclidean (t → −iτ ) correlation functions, and iden-
tifies the M contribution by the e−mMτ behavior. At present, lattice calculations
attempting to obtain physical results from the mQ → ∞ limit and from the light-
quark limit do not agree in regions of overlap. We thus feel it is premature to quote

4 For example, in the nonrelativistic potential model, the S-wave wavefunction at the origin is related to the
reduced mass by |ψ(0)|2 = μ〈dV/dr〉/2π�2.
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theoretical values of FD, FB . Another piece of quark model lore which can be jus-
tified by this correlation function is that the mass difference mM −mQ approaches
a constant value in the mQ → ∞ limit. This can be inferred by comparing the
exponential time dependences in Eq. (3.14) and Eq. (3.15), and noting that the
difference must be be independent of the heavy quark.

The heavy-quark limit also makes predictions [IsW 89] for transition form fac-
tors between two heavy quarks (which for definiteness we shall call b and c). Recall
the lagrangian developed in Eq. (XIII–3.15), the leading term of which is

Lv = h̄(c)v iv ·D h(c)v + h̄(b)v iv ·D h(b)v . (3.17)

This lagrangian exhibits an SU(2)-flavor symmetry involving rotation of h(c)v
and h(b)v . It is also spin-independent, and thus contains an additional SU(2)-spin
symmetry. The two SU(2)s may be combined to form an SU(4) flavor–spin invari-
ance. Physically, the internal structure of hadrons containing a heavy quark and
moving at a common velocity is seen to become independent of the quark flavor
and spin. This property leads to many relations between transition amplitudes.

An example of a process appropriate for the heavy-quark technique is the weak
semileptonic transition B → D induced by a vector current. For a static matrix
element (i.e., both B and D at rest), the weak current transforms quark flavor
b → c, but leaves the remaining contents unchanged, resulting in unit wavefunc-
tion overlap. This can be seen calculationally by noting that the time component of
the spatially integrated current is the conserved charge of the SU(2)-flavor group
mentioned above,∫

d3x 〈D(p′) |c̄(x)γ0b(x)| B̄(p)〉 = δ(p− p′)
√

4mDmB

= δ(p− p′) [f+(tm) (mD +mB)+ f−(tm) (mB −mD)] , (3.18)

where tm = (mB − mD)
2 is the value of t ≡ (p − p′)2 at the point of zero recoil,

and the general decomposition of a vector-current matrix element,

〈D(p′) ∣∣c̄γμb∣∣ B̄(p)〉 = f+(t)
(
p + p′)

μ
+ f−(t)

(
p − p′)

μ
, (3.19)

has been used in the second line of Eq. (3.18). We have seen results similar to
Eq. (3.18) in the discussion of the Shifman–Voloshin limit in the previous section.
However, there the restriction mB −mD << mB +mD was required, whereas here
no restriction is implied as long as both quarks are sufficiently heavy.

This framework may be extended to nonstatic transitions [IsW 90] with the
observation that the heavy-quark symmetry can be applied in any frame moving
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at fixed velocity. First, in addition to Eq. (3.19) for the B → D transition, we
require also the D→ D and B → B vector form factors,

〈D(p′D)
∣∣c̄γμc∣∣D(pD)〉 = fD(tD)

(
pD + p′D

)
μ
,

〈B̄(p′B)
∣∣b̄γμb∣∣ B̄(pB)〉 = fB(tB)

(
pB + p′B

)
μ
, (3.20)

where fB(0) = fD(0) = 1. Considering the momentum transfers tD, tB , and
tBD ≡ (pB − p′D)

2 in terms of the velocities, using pμj = mjv
μ, pB = mBv,

and pD = mDv, we have

tB =
(
pB − p′B

)2 = 2m2
B

(
1− v · v′) ,

tD =
(
pD − p′D

)2 = 2m2
D

(
1− v · v′) ,

tBD = (pB − pD)2 = (mB −mD)
2 + 2mBmD

(
1− v · v′) . (3.21)

If each transition has common velocity factors, the various momentum transfers
are related by

tD = m2
D

m2
B

tB = mD

mB

(tBD − tm) . (3.22)

In view of the normalization convention of Eq. (3.2), one must divide the state
vector of particle i by

√
2mi (assuming mi 
 |p|) before applying the b ↔ c

symmetry. Upon doing so and requiring the resulting expressions to be identical
functions of the velocities v and v′ leads to the relations

〈D(p′D) |c̄γic|D(pD)〉
2mD

= 〈B̄(p
′
B)
∣∣b̄γib∣∣ B̄(pB)〉
2mB

= 〈D(pD)
′ |c̄γib| B̄(pB)〉√
4mDmB

,

fD(tD)

(
v+ v′

)
i

2
= fB(tB)

(
v+ v′

)
i

2
= f+(tBD)

(
mBv+mDv′

)
i√

4mDmB

+ f−(tBD)
(
mBv−mDv′

)
i√

4mDmB

. (3.23)

After simple algebra, this results in the form-factor relations

fB(t) = fD

[
m2
D

m2
B

t

]
,

f+(t) = mB +mD√
4mBmD

fD

[
mD

mB

(t − tm)
]
,

f−(t) = −mB −mD√
4mBmD

fD

[
mD

mB

(t − tm)
]
. (3.24)

Although consistent with Eq. (3.21), this manages to separate out f±. The results
are expressible in terms of a single function of velocity. It is notationally simpler to



XIV–3 Exclusive decays in the heavy-quark limit 415

express the kinematic dependence using v · v′ instead of t , i.e., fi(t)→ fi(v · v′).
Thus, we have

fB(v · v′) = fD(v · v′) =
√

4mBmD

mB +mD

f+(v · v′),

= −
√

4mBmD

mB −mD

f−(v · v′) ≡ ξ(v · v′), (3.25)

where, aside from the constraint ξ(1) = 1, the function ξ(v · v′) is unknown and
must thus be determined phenomenologically. If we exploit the full SU(4)-flavor–
spin symmetry, then all the weak-current form factors involving B,B∗,D, and D∗

can be expressed in terms of the quantity ξ(v · v′), e.g.,

〈D∗(p′D)
∣∣c̄γμb∣∣ B̄(pB)〉 = i

√
mD∗mBξ(v · v′)εμναβε∗ν (p′D)v′αvβ,

〈D∗(p′D)
∣∣c̄γμγ5b

∣∣ B̄(pB)〉 = √mD∗mBξ(v · v′)
[
(1+ v · v′)ε∗μ − ε∗ · v v′μ.

]
(3.26)

The symmetry language is appropriate here because, similar to the symme-
try relations detailed in the first part of this book, we have related different pro-
cesses even though there remains an uncalculated ingredient to be determined from
experiment. However, effective field theory techniques allow a more detailed study
of the same matrix elements beyond just the leading symmetry relation. Hard per-
turbative effects can also be included [Wi 91, CzM 97]. Suppressed corrections due
to deviations from the heavy-quark limit can be calculated in the effective theory.
The shape of the form factors [CaLN 98] can be determined experimentally, but
what is most important phenomenologically is the normalization of these form fac-
tors at the zero-recoil point v · v′ = 1. This deviation is second order in the inverse
masses [Lu 90] which, since mc � mb, means that it is of order 1/m2

c . While
analytic estimates of this deviation can be achieved [ShUV 95, GaMU 12], lattice
methods now can provide well-controlled calculations of this effect [Be et al. 09].

For the b → u semileptonic transition, there is no corresponding heavy-quark
theory that provides a solid starting point for analysis of the B → πeν decay.
Quark model calculations are particularly unreliable for this transition. Fortunately,
improved lattice calculations now appear capable of calculating the transition
matrix element in the region of small recoil [DaGWDLS 06, Ba et al. 09]. Sup-
plemented by theoretical constraints [BeH 06], experimental work can measure the
q2 variation and use the lattice matrix element to provide the normalization when
using this process to measure Vub.

Phenomenologically, exclusive decays are key ingredients to the extraction of
the CKM elements. The present best values from exclusive decays are [RPP 12]:
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Vcb = (39.6± 0.9)× 10−3, Vub = (3.23± 0.31)× 10−3. (3.27)

The reader will note there is a modest disagreement between the values of these
elements between the inclusive determination of Eq. (2.17) and the exclusive val-
ues of Eq. (3.27). For Vub, the effect is sizeable and may be indicative of a gap in
our theoretical methods. The smaller disagreement seen in Vcb may also be an indi-
cation that more theoretical work is needed at understanding the duality between
inclusive and exclusive methods.

XIV–4 B0–B̄
0

and D0–D̄
0

mixing

Just as K0−K̄0 mixing occurs due to the weak interactions, so does mixing exist
in the Bd−B̄d , Bs−B̄s and D0−D̄0 systems. We shall discuss first the Bd−B̄d and
Bs−B̄s mixings, then conclude with the D0 case. The formalism is the same in
all situations and can be taken directly from the discussion of K0−K̄0 mixing in
Sect. IX–1.

B0–B̄
0

mixing

The mixing occurring in Bd and Bs mesons is short-distance dominated. This is
because (i) the dominant weak coupling of the b quark is to the t quark, and (ii) the
short-distance box diagram (Fig. XIV–2) grows roughly with the squared-mass of
the intermediate-state quarks. Since the very heavy mass of the top quark greatly
enhances its contribution, the top intermediate state dominates B-meson mixing.

The effective hamiltonians for Bd , and Bs mixing are5

H�Bd=2
W = G2

F

16π2

(
VtbV

∗
td

)2
m2
t H (xt )ηBO

Bd + h.c.,

H�Bs=2
W = G2

F

16π2

(
VtbV

∗
ts

)2
m2
t H (xt )ηBO

Bs + h.c.,

OBd = d̄γμ(1+ γ5)b d̄γ
μ(1+ γ5)b,

OBs = s̄γμ(1+ γ5)b s̄γ
μ(1+ γ5)b, (4.1)

where ηB � 0.9 is the QCD correction and H(xt) is given in Eq. (IX–1.20). The
matrix elements of OBd and OBs can be parameterized analogously to that used in
kaon mixing,

〈Bd
∣∣OBd

∣∣ B̄d〉 = 16

3
F 2
Bd
m2
Bd
BBd , 〈Bs

∣∣OBs
∣∣ B̄s〉 = 16

3
F 2
Bs
m2
Bs
BBs , (4.2)

5 A more advanced treatment of Bs–B̄s mixing than given here appears in [LeN 07].
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b d (s)W

W

u,c,t

d (s) b

Fig. XIV–2 Box diagram contribution to B-meson mixing.

where the pseudoscalar decay constants are normalized as

〈0 ∣∣d̄γ μγ5b
∣∣ B̄d(p)〉 = i

√
2FBdp

μ, 〈0 |s̄γ μγ5b| B̄s(p)〉 = i
√

2FBsp
μ. (4.3)

These correspond to the normalization Fπ � 92 MeV.
Both Bd and Bs mixing have been observed, with the results,6

xd ≡ �mBd

�Bd
= 0.775± 0.006, xs ≡ �mBs

�Bs
= 26.82± 0.23. (4.4)

The width difference of Bd is consistent with zero, while that of Bs is nonzero but
small,

��d

�d
= 0.015± 0.018,

��s

�s
= 0.123± 0.017. (4.5)

In Eqs. (4.4)–(4.5) above, we have denoted �m ≡ mH −mL and �� ≡ �H −�L,
where H (L) refers to the heavier (lighter) of the neutral B CP eigenstates,

The large magnitude of xs/xd is readily understood in the Standard Model to be
mainly due to the CKM elements, as the ratio is predicted to be

�mBs

�mBd

=
[
F 2
Bs
BBs

F 2
Bd
BBd

] ∣∣∣∣Vts

Vtd

∣∣∣∣2. (4.6)

The SU(3) breaking in the matrix elements is well under control in lattice calcula-
tions [LaLV 10],

FBs
√
BBs

FBd
√
BBd

= 1.237± 0.032. (4.7)

The remaining dependence in the ratio of the mass splittings comes from the CKM
elements and in fact this ratio is the most precise measurement of the relative sizes
of these CKM elements ∣∣∣∣Vts

Vtd

∣∣∣∣ = 4.739± 0.126, (4.8)

consistent with other determinations. This is an important test of the Standard

6 We use the updated version of [Am et al. (Heavy Flavor Averaging Group collab.) 12] found in
www.slac.stanford.edu/xorg/hfag.
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Fig. XIV–3 Short-distance (a) and long-distance (b) contributions to D-meson
mixing.

Model as New Physics could readily contribute to �mBd and/or �mBs . The abso-
lute magnitudes of these mixings are also compatible with the Standard Model.
Using the mixing formula developed in Chap. IX and the lattice magnitude
[LaLV 10] FBd

√
BBd = (149 ± 9) MeV, the experimental number for �md is

reproduced with |Vtd| = (8.4 ± 0.6) × 10−3, which becomes a tight constraint on
fits of the unitarity triangle, to be discussed shortly.

The width differences are smaller than the mass differences because real on-
shell intermediate states are required; thus, top-quark intermediate states do not
contribute to ��d,s . For this reason, the widths ��d,s are suppressed compared
to �md,s by a factor of roughly m2

b/m
2
t . The width difference for Bd is smaller

than that for Bs because the CKM favored decay mechanism b→ cc̄s when active
for a bd̄ meson leads to an intermediate state (cc̄sd̄) that cannot convert to a db̄
meson, while when occurring in the decay of bs̄ leads to intermediate states (cc̄ss̄
or cc̄) that can transition back to sb̄. Thus, ��d is CKM-suppressed compared to
��s . The measurements of��d,s are also compatible with theoretical expectations
[LeN 07].

D0−D̄
0

mixing

The analysis of D0−D̄0 transitions is considerably more complex than that involv-
ing Bd,s mesons because the mixing is not short-distance-dominated [Wo 85,
DoGH 86a]. To see this, we display the corresponding box diagram in
Fig. XIV–3(a), and some possible long-distance contributions in Fig. XIV–3(b).
The GIM cancelation in the intermediate state is between the two light quarks d, s
(the b-quark contribution is suppressed by CKM angles). However, there is no
compensating large mass factor here; long-distance and short-distance effects con-
tribute at the same order of magnitude. As a result, reliable quantitative predictions
of �mD have eluded theorists thus far, despite the attempts of many to solve the
problem. Even such basic issues as correctly predicting the sign of �mD or deter-
mining to what extent a component from New Physics could be present [GoHPP
07] remain unresolved.
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For example, consider the application of the OPE (which has worked so well for
Bd,s mixings) to D0 mixing [Ge 92, OhRS 93, BiU 01, BoLRR 10],

〈D̄0|H|�C|=2|D0〉 = G
∑
i

Ci(μ)〈D̄0|Qi |D0〉, (4.9)

where the prefactorG has the unit of inverse squared mass, the sum is over operator
dimension, and both Standard Model and New Physics operators are included. The
expansion begins at dimension six, with two operators for just the Standard Model
and eight upon including New Physics. However, even within just the Standard
Model, the number of operators increases sharply as the dimension grows, e.g.,
there are about a dozen at dimension nine and more than twenty at dimension
twelve. This introduces a multitude of unknown parameters. It is also the case
that the sum in Eq. (4.9) is not expected to converge rapidly because the ratio
QCD/mc � 0.25 is not sufficiently small.

Some aspects of D0−D̄0 mixing can, however, be understood. For example,
the Standard Model clearly requires that �mD/�D � 1 because �mD is twice
Cabibbo-suppressed (i.e. �mD = O(λ2)) while �D suffers no such suppression.
Hence, upon counting CKM factors and noting that the GIM cancelation is a mea-
sure of the breaking of SU(3) symmetry, one is led to estimate that7

�mD

�D
∼ λ2 × [SU(3) breaking] = O(10−2). (4.10)

Of the various meson-mixing systems, the D0−D̄0 transitions were the last to
be detected experimentally. However, by studying the decay time dependence of
D0 → K+π−/D0 → K−π+, a recent experiment [Aa et al. (LHCb collab.) 13a]
excludes the no-mixing hypothesis with a probability of over nine standard devia-
tions. The current-mixing values in [RPP 12] are

xD ≡ �mD

�D
= (0.63+0.19

−0.20

)× 10−2,
��D

�D
= (1.50± 0.24)× 10−2. (4.11)

The suppression in D0−D̄0 mixing is evident upon comparing the above value for
xD with those for xd and xs in Eq. (4.4).

Observation of D0–D̄0 mixing motivates the search for CP violation in the
D-meson system. Here, we cite two recent results. In one, the CP-violating asym-
metry AD in the time dependent transition D0 → K+π− is measured to be AD =
(−0.7± 1.9)%, which is consistent with zero [Aa et al. (LHCb collab.) 13c]. In
the other, the CP-violating asymmetry A�(f ), between the D0 and D

0
decay rates

to a given final state f , yields results also consistent with zero [Aa et al. (LHCb
collab.) 13d],
7 Actually, it can be proved that if SU(3) violation in D0 mixing enters perturbatively, then a group theoretic

analysis of 〈0|DHwHwD|0〉 shows that SU(3) breaking occurs only at second order [FaGLP 02].
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A�(π
+π−) = (0.33± 1.06± 0.14)× 10−3,

A�(K
+K−) = (−0.35± 0.62± 0.12)× 10−3. (4.12)

The uncertainties in the above determinations are dominated by statistical, rather
than by systematic, effects. Thus, although the current status of CP violation in
charm is inconclusive, there is reason to be optimistic that additional statistics as
obtained in forthcoming studies will yield nonzero results.

XIV–5 The unitarity triangle

The B-meson transitions form a nontrivial system and provide much of our
information on the pattern of weak mixing. The overall B lifetime and b → c

semileptonic decays are governed by Vcb, the suppressed b → u modes by Vub,
Bd − B̄d mixing by Vtd, and Bs − B̄s mixing by Vts. Together with the Vus element,
these form all of the ‘interesting’ sectors of weak mixing.

There is a useful pictorial representation of the constraints of unitarity on these
elements. Consider the effect of the unitarity relation

VubV
∗

ud + VcbV
∗

cd + VtbV
∗

td = 0. (5.1)

Of the components to this equation, Vud, Vtd and Vcd are known up to corrections
of second order in λ = |Vus|, yielding

Vub − λVcb + V ∗td = 0. (5.2)

If we treat these elements as complex vectors, this relation is equivalent to a triangle
in the complex plane. In the Wolfenstein parameterization the various elements are

Vcb = −Vts = Aλ2, Vub = λ2A(ρ − iη), Vtd = λ3A(1− ρ − iη). (5.3)

The unitarity triangle is shown in Fig. XIV–4. Note that the unitarity triangle can
be constructed knowing only the magnitude of the elements |Vcb|, |Vub|, and |Vtd|.
The existence of such a closed triangle is independent of the parameterization.
Other unitarity triangles, corresponding to the other unitarity constraints, also exist
but are either less useful than this one or are equivalent to it [Ja 89].

The unitarity triangle has an important connection with CP violation. If the
CP-violating parameter η vanishes, the triangle is reduced down to a line since all
the angles go to either 0◦ or 180◦. In fact, the area λ6A2η of this triangle is exactly
the unique rephasing invariant measure of CP violation. The angles α, β, γ are
themselves indicators of nonconservation of CP and play a role in the B studies
to be described in the next section.8 Note that the magnitudes of the sides of the

8 In the literature there is an alternate naming of angles ϕ1 = β, ϕ2 = α, ϕ3 = γ . We are following the
conventions of the Particle Data Group.
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Fig. XIV–4 The unitarity triangle.

triangle and the interior angles of the triangle are all independently measurable and
the fact that the separate measurements are consistent is a powerful test of the Stan-
dard Model. Our Fig. XIV–4 is drawn using the present fits of the sides and angles,
and illustrates the relative magnitudes of these elements.

XIV–6 CP violation in B-meson decays

The decays of B mesons exhibit a rich variety of CP-violating signals, some of
which are rather large [BiS 81]. These reactions have provided dramatic confirma-
tion of the validity of the CKM mixing scheme as the dominant origin of CP vio-
lation. Recall that the value of ε cannot be regarded as a prediction of the Standard
Model because there is an unknown parameter, the CKM phase δ, which must be
adjusted to fit experiment. The value of ε′/ε is consistent with the Standard Model
and is an important verification of the existence of direct CP violation, but theo-
retical uncertainties are presently too large for this to be a precision test. However,
the Standard Model, with its single CP-odd parameter, makes clear predictions for
the patterns of CP violations in B decays, and observation has confirmed many of
these.

There is an important division in the study of CP violations for B mesons:
(i) processes which proceed via B0−B̄0 mixing, and (ii) those which do not. We
shall discuss those involving mixing first, and then return to those not related to
mixing.

CP-odd signals induced by mixing

General formalism: The analysis of time evolution for a B0 or B̄0 meson parallels
that of a neutral kaon. Given the conventions for �m and �� following Eq. (4.5),
one obtains for states that start out at t = 0 being either B0 or B̄0,

|B0(t)〉 = g+(t)|B0〉 + q

p
g−(t)|B̄0〉,

|B̄0(t)〉 = p

q
g−(t)|B0〉 + g+(t)|B̄0〉,
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p

q
≡
√
M12 − i�12

M∗
12 − i�∗12

,

g±(t) ≡ 1

2
e−�Lt/2eimLt

[
1± e−��t/2ei�mt] . (6.1)

The strategy for observing CP-violating asymmetries is to compare the decay
B0(t) → f , where f is some given final state, to that of B̄0(t) → f̄ , where f̄
is the CP-conjugate of f ,

|f̄ 〉 = CP|f 〉. (6.2)

Let us define the matrix elements

A(f ) = 〈f |HW|B0〉, Ā(f̄ ) = 〈f̄ |HW|B̄0〉,
Ā(f ) = 〈f |HW|B̄0〉, A(f̄ ) = 〈f̄ |HW|B0〉, (6.3)

and their ratios,9

ρ̄(f ) = Ā(f )

A(f )
, ρ(f̄ ) = A(f̄ )

Ā(f̄ )
. (6.4)

The decay rates for the two processes are easily found to be [BiKUS 89]

�B0(t)→f ∝
[
a + be−��t + c e− 1

2��t cos�m t + d e− 1
2��t sin�m t

]
e−�Lt ,

a = |A(f )|2
(

1

2

[
1+

∣∣∣∣qp ρ̄(f )
∣∣∣∣2
]
+ Re

[
q

p
ρ̄(f )

])
,

b = |A(f )|2
(

1

2

[
1+

∣∣∣∣qp ρ̄(f )
∣∣∣∣2
]
− Re

[
q

p
ρ̄(f )

])
,

c = |A(f )|2
(

1−
∣∣∣∣qp ρ̄(f )

∣∣∣∣2
)
,

d = 2 |A(f )|2 Im

[
q

p
ρ̄(f )

]
, (6.5a)

and

�B̄0(t)→f̄ ∝
[
ā + b̄ e−��t + c̄ e− 1

2��t cos�m t + d̄ e− 1
2��t sin�m t

]
e−�Lt ,

ā = ∣∣Ā(f̄ )∣∣2 (1

2

[
1+

∣∣∣∣pq ρ(f̄ )
∣∣∣∣2
]
+ Re

[
p

q
ρ(f̄ )

])
,

9 We caution the reader not to confuse the notation for these ratios with the CKM element ρ in the Wolfenstein
parameterization of Eq. (II–4.19).
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b̄ = ∣∣Ā(f̄ )∣∣2 (1

2

[
1+

∣∣∣∣pq ρ(f̄ )
∣∣∣∣2
]
− Re

[
p

q
ρ(f̄ )

])
,

c̄ = ∣∣Ā(f̄ )∣∣2 (1−
∣∣∣∣pq
∣∣∣∣2 ρ(f̄ )|2

)
,

d̄ = 2
∣∣Ā(f̄ )∣∣2 Im

[
p

q
ρ(f̄ )

]
. (6.5b)

Any observed difference between these two quantities would indicate the presence
of CP violation.

Before considering some examples, there is a simplifying approximation which
it is useful to make. As seen in the previous section M12 
 �12 for B and Bs , so
it is a good approximation to neglect �12 (and hence ��) in almost all cases.10 In
this approximation q/p becomes a pure phase, q/p = eiϕ , so that |q/p| = 1.

Decays to CP eigenstates

The most striking processes are those where the final state f is a CP eigenstate,
|f̄ 〉 = ±|f 〉, such as f = ψKS , ψKL,D+D−, π+π−. In this case one has ρ̄(f ) =
1/ρ(f̄ ). Time-dependent CP asymmetries have two components

Af (t) = �(B̄0(t)→ f )− �(B0(t)→ f )

�(B̄0(t)→ f )+ �(B0(t)→ f )
= Sf sin(�mt)− Cf cos(�mt),

(6.6)

where

Sf =
2Im

[
q

p
ρ̄(f )

]
1+

∣∣∣ qp ρ̄(f )∣∣∣2 , Cf =
1−

∣∣∣ qp ρ̄(f )∣∣∣2
1+

∣∣∣ qp ρ̄(f )∣∣∣2) . (6.7)

We see that there are two possible ways that the asymmetry can be nonvanishing,
corresponding to the Sf and Cf amplitudes.

The cleanest analysis occurs when |ρ̄(f )| = 1, i.e., |Ā(f )| = |A(f )|. An exam-
ple is Bd → ψK0

s , which proceeds dominantly through b → cc̄s, so that both
factors are pure phases

ρ̄(f ) = V ∗csVcb

VcsV
∗

cb

,
q

p
= VtdV

∗
tb

V ∗tdVtb
. (6.8)

10 The one exception is the semileptonic asymmetry to be discussed below.
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Fig. XIV–5 Tree (a) and penguin (b) diagrams for B → ππ .

In this case, it is clear that CψK = 0. The asymmetry involves the relative phases
of V ∗csVcb and V ∗tdVtb, which we see from Fig. XIV–4 is the angle β, such that the
result becomes

SψK = sin 2β. (6.9)

This prediction is independent of hadronic uncertainties and depends only on the
phases in the CKM matrix. The result is large, with the resulting measurement
[RPP 12] of the angle β of sin 2β = 0.679 ± 0.020, consistent with other con-
straints on the unitarity triangle. CP violation in this mode is one of the cleanest
and most direct confirmations of the Standard Model.

One might at first expect that |ρ̄(f )|2 = 1 is automatic if f is a CP eigenstate.
However, it is possible to obtain |ρ̄(f )| �= 1 if there are two different ways to reach
the same final state. For example, one could have the decay B̄0 → π+π− either
directly through b → uūd or through the penguin diagram, which includes the
CKM elements for c or t intermediate states, cf. Fig. XIV–5.11 By CKM unitarity,
we have V ∗cbVcd = −(V ∗ubVud + V ∗tbVtd). Therefore, if we absorb the portion of
the penguin diagram proportional to V ∗ubVud into the tree-amplitude reduced matrix
element, which carries the same CKM factor, we have the amplitude expressed in
terms of two CKM elements,

Ā(π+π−) = V ∗udVub |T | eiδT + V ∗tdVtb |P | eiδP ,
A(π+π−) = VudV

∗
ub |T | eiδT + VtdV

∗
tb |P | eiδP , (6.10)

where T and P are tree and penguin amplitudes and δT , δP are strong-interaction
phase shifts. Because the weak phases change sign under CP and the strong phases
do not, we have the ratio of amplitudes |ρ̄(f )| �= 1. Indeed, experimentally one
finds

Sπ+π− = −0.65± 0.07, Cπ+π− = −0.38± 0.06, (6.11)

11 In discussions such as this, it is understood that the weak hamiltonian receives QCD radiative corrections,
which can mix operators with identical quantum numbers. However, since we are using only the CKM
factors and symmetry properties of the amplitudes, these corrections do not influence the analysis and are
absorbed into the reduced matrix elements.
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Table XIV–1. Standard Model pattern for CP
violation in B decays.

Transitions Examples Im (q/p)ρ̄(f )a

b→ cc̄s Bd → ψKS sin 2β
Bs → ψϕ ∼ 0

b→ cc̄d Bd → DD̄ sin 2β
Bs → ψKS ∼ 0

b→ uūd Bd → π+π− sin 2α
Bs → π0KS sin 2α

b→ uūs Bd → π0KS sin 2α
Bs → π0ϕ0 sin 2γ

aThe angles α, β, γ are defined by the unitarity triangle of
Fig. XIV–4 and we take |ρ̄(f )| = 1.

indicating the presence of both CP-violating phases and sizeable strong
rescattering phases. The solution to this ‘penguin pollution’ involves looking at
other ππ modes. There is an isospin relation among the three-pion channels
(cf. Eq. (VIII–4.1)

A(π+π−)− A(π0π0) = √2A(π+π0), (6.12)

similar to the kaon decay analysis of Chap. VIII. The penguin amplitude is purely
�I = 1/2 and hence only the tree amplitude can contribute to the I = 2 final state
π±π0. Measurement of branching ratios and CP asymmetries Sππ , Cππ allows
one to disentangle the CP violation due to tree and penguin amplitudes [GrL 90].
For the tree amplitude, involving V ∗ubVud, the interference is with the Bd-mixing
amplitude, dominated by the top quark, so that the measurement is of the CKM
phase α.

At this stage we can categorize the decays of neutralB mesons to CP eigenstates.
For this purpose it is most convenient to use the Wolfenstein form of the CKM
matrix. In this parameterization, the elements Vtb, Vcb, Vts, Vcs are all almost purely
real. The Bd and Bs decays can proceed either through the CKM-favored transition
b→ cc̄s or the CKM-suppressed transitions b→ uūd , b→ cc̄d, b→ uūs. In the
former category are included Bd → ψKS and also Bs → ψϕ, ψη, D+s D−s . The Bs
decays pick up no phase since

q

p
= VtsV

∗
tb

V ∗tsVtb
= 1 and ρ̄(f ) = Vcb

V ∗cb

= 1 ⇒ Im

[
q

p
ρ̄(f )

]
= 0. (6.13)

However, the Bd decay does pick up a phase, leading to a distinctive signature of
the Standard Model. The CKM-suppressed decays can also be analyzed in terms
of the angles which appear in the unitarity triangle, and are given in Table XIV–1
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for the case |ρ̄(f )| = 1. However, in some cases we know that |ρ̄(f )| �= 1, such
that further efforts are required to extract the given angle, as described for the ππ
system above. It should also be pointed out that under all circumstances, asym-
metries for Bs are more difficult to observe because xs is large due to the rapid
oscillations in the Bs ↔ B̄s system. Thus, regardless of whether one starts out at
t = 0 with Bs or B̄s , after a few oscillation lengths one will have roughly equal
amounts of Bs and B̄s .

Decays to non-CP eigenstates

There may also exist CP violation in final states which are not CP eigenstates.
Consider, for example, the final state Bd → π−K+. This transition can occur both
through tree amplitudes, with the CKM factor V ∗ubVus and through penguin decays
of the form b → sq̄q. Because the CKM elements satisfy V ∗tbVts = −(V ∗cbVcs +
V ∗ubVus), we can write the amplitude in terms of two reduced matrix elements such
that the corresponding decays of the B0 and B̄0 will have the form

A(π−K+) = V ∗ubVus |U | eiδU + V ∗cbVcs |C| eiδC ,
Ā(π+K−) = VubV

∗
us |U | eiδU + VcbV

∗
cs |C| eiδC , (6.14)

where the reduced matrix element C comes from the penguin diagram alone and
U comes from a mixture of tree and penguin effects. The decay rates for these two
processes will then be different by a factor

|A(π−K+)|2 − |Ā(π+K−)|2 = −4|U ||C| sin(δU − δC)λ6A2η, (6.15)

where we have used ImV ∗ubVusVcbV
∗

cs = λ6A2η in the Wolfenstein parameteriza-
tion. This effect has required two paths to the given final state, with differing strong
phases and differing weak phases. Because the hadronic matrix elements are diffi-
cult to calculate reliably, this rate difference cannot by itself be a precision test of
the Standard Model.

However, there is a way to make an approximate test of the Standard Model
using corresponding decays of the Bs meson. The key point [He 99, Gr 00] is
that the tree process b → uūd and the penguin amplitude for b → dq̄q proceed
identically to the corresponding processes used above for b → uūs and b → sq̄q

aside from CKM factors. In the U -spin subgroup of SU(3) the d and s quarks form
a doublet, and all other quarks are singlets. The two sets of interactions then form
two components of a U -spin doublet, and their matrix elements are related. Bd and
Bs are also related by U -spin, so that the matrix elements for Bd → π−K+ and
Bs → K−π+ are U -spin reflections of each other. The corresponding rates for Bs
decay are given in the U -spin limit by
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As(K
−π+) = V ∗ubVud |U | eiδU + V ∗cbVcd |C| eiδC ,

Ās(K
+π−) = VubV

∗
ud |U | eiδU + VcbV

∗
cd |C| eiδC . (6.16)

The weak CKM elements are different, but the hadronic matrix elements are
the same. However, the Standard Model has only a single CP-violating phase, so
the the imaginary parts of the products of CKM elements are always related. In
this case, they are identical up to a sign ImV ∗ubVudVcbV

∗
cd = −λ6A2η, such that the

decay rate differences are the same

|A(π−K+)|2 − |Ā(π+K−)|2 = −(|As(K−π+)|2 − |Ās(K+π−)|2). (6.17)

However, asymmetries are defined by dividing by the the sum of the decay rates,
and the overall decay rates are different in these two cases. Correcting for the over-
all rates yields a sum-rule [Li 05]

Q = ACP(Bs → K−π+)+ ACP(Bd → π−K+)
Br(Bd → π−K+)τs
Br(Bs → K−π+)τd

= 0,

(6.18)

where Br is the CP-averaged branching ratio. Despite the individual rates and
asymmetries being different, the sum-rule appears valid within error bars [Aa et al.
(LHCb collab.) 13c]

ACP(Bs → K−π+) = 0.27± 0.04± 0.01,

ACP(Bd → π−K+) = −0.080± 0.007± 0.003,

Q = −0.02± 0.05± 0.04. (6.19)

While the use of U -spin symmetry is only approximately accurate, this sum-rule
nevertheless is a strong test of the overall pattern of direct CP violation within the
Standard Model, including loop diagrams.

Semileptonic asymmetries

For a final example involving mixing, let us consider CP violation in semileptonic
decays. In much of our previous analysis, we have neglected the quantity �12. How-
ever, for semileptonic decays, the whole effect vanishes if we neglect �12, so we
must include it. For this case, only the transitions B0 → 
+ν
X, B̄0 → 
−ν̄
X
(
 = e, μ, τ ) can occur. The ‘wrong sign’ transitions in the time developments,
B0(t) → 
−ν̄
X, B̄0(t) → 
+ν
X, are then uniquely due to mixing. The appro-
priate formulas can be obtained from our general result Eqs. (6.5a), (6.5b) by the
substitutions
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A(e−)→ 0, A(e−)ρ̄(e−)→ Ā(e−) ,
Ā(e+)→ 0, Ā(e+)ρ(e+)→ A(e+) = Ā(e−). (6.20)

The integrated rate is

ASL =
∫∞

0 dt
[
�B0(t)→
−ν̄
X − �B̄0(t)→
+ν
X

]∫∞
0 dt

[
�B0(t)→
−ν̄
X + �B̄0(t)→
+ν
X

] =
∣∣∣ qp ∣∣∣2 − ∣∣∣pq ∣∣∣2∣∣∣ qp ∣∣∣2 + ∣∣∣pq ∣∣∣2 . (6.21)

This sort of CP violation is thus solely sensitive to mixing in the mass matrix, as
was the semileptonic K0

L asymmetry. Unfortunately, in the Standard Model it is
small for reasons connected to the CKM elements. Expanding in powers of �12

and defining ϕ� ≡ arg
(
�12
/
M12

)
, one has

ASL � −Im
�12

M12
= −

∣∣∣∣���m
∣∣∣∣ sinϕ�. (6.22)

We have seen that ��/�m is suppressed by factors of m2
b/m

2
t since the top quark

cannot contribute to the real intermediate states required for ��. For Bs , there is
a further suppression in the Standard Model because the dominant contributions
to �12 (cc̄ intermediate states coming with CKM elements (V ∗cbVcs)

2) and M12 (t t̄
intermediate states with (V ∗tbVts)

2) have almost the same phase because V ∗tbVts =
−V ∗cbVcs[1+O(λ2)]. Thus, ϕ�s is also suppressed to a fraction of a percent. These
features are seen in the theoretical predictions [LeN 11]

ASL
d [Thy] = (4.1± 0.6)× 10−4, ASL

s [Thy] = (1.9± 0.3)× 10−5. (6.23)

The present experimental results [RPP 12, Ve (LHCb collab.) 13],

ASL
d [Expt] = 0.0007± 0.0027, ASL

s [Expt] = −0.0024± 0.0054± 0.0033,
(6.24)

are not yet precise enough to confirm the Standard Model predictions.

CP-odd signals not induced by mixing

Situations where CP violation occurs without the presence of mixing can occur in
B± decays through the interference of different decay mechanisms. The require-
ments are the same as we saw previously in a different context, i.e., there must
be two different paths to the same final state, these paths must have different
strong-interaction final-state phases, and the two paths must also have different
weak phases. Consider, for example, the decays B+ → D0K+ and B+ → D̄0K+.
While initially one might think that these two reactions are distinct, if the D0 and
D̄0 decay to a common final state, such as K0

Sπ
+π−, the overall amplitudes to that
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final state will in fact interfere. The decay with a D0 in the final state involves the
b̄ → ūcs̄ reaction, with CKM elements V ∗ubVcs, while the D̄0 reaction proceeds
through b̄ → c̄us̄ and V ∗cbVus. The relative phase between these amplitudes is the
angle γ .

Interestingly, despite the need for final-state phases in this reaction, the CP vio-
lation can be extracted without hadronic uncertainties [GrW 91, GiGSZ 03]. The
key to this is that the subreaction D0 → K0

Sπ
+π− can be separately measured in

taggedD reactions as a function of the kinematic variables, and then can be treated
as a known quantity. In addition the D0 and D̄0 decay amplitudes are related to
each other12 at mirror kinematic values. In particular, if the decay D0 → K0

Sπ
+π−

is given the name A(m2+,m2−) with m2± = (pK + p±)2 then the corresponding D̄0

amplitude is Ā(m2+,m2−) = A(m2−,m2+). The amplitudes, including the possibility
of final-state interaction phases, have the form

|AB+→(KSπ
+π−)K+|2 = |A0|2|A(m2

+,m
2
−)+ rĀ(m2

+,m
2
−)e

δ+γ |2,
|AB−→(KSπ

+π−)K−|2 = |A0|2|Ā(m2
+,m

2
−)+ rA(m2

+,m
2
−)e

δ−γ |2, (6.25)

where an overall amplitude for A0 ≡ AB+→D0K+ has been factored out and where
r is the ratio of the magnitudes of the amplitudes r = |AB+→D̄0K+|/|AB+→D0K+|.
Here, the possible strong-phase difference δ has been made explicit. Knowledge
of the D decay amplitudes plus the observation of both B± decays then lets one
separate the strong phase from the weak phase and also divide out the underlying
weak matrix elements. This has become a favored way to measure the angle γ with
the present result [Aa et al. (LHCb collab.) 12],

γ = (71.1+16.6
−15.7)

o, (6.26)

when all related channels are included.
To summarize, we have discussed thus far a variety of tests for CP-violating

signals in the system of B mesons. The partial rate differences can be quite large.
At first, this seems to go against the general dictum that all CP violations in the
Standard Model must be proportional to a single, numerically small product of
CKM angles. However, B decays satisfy this stricture in the sense that the mix-
ing and decay of B mesons are in themselves proportional to small CKM angles.
Overall, the product of mixing, decay, and CP violation does turn out to be propor-
tional to all of these CKM angles. However, in forming the asymmetry by dividing
out the rates themselves, one is canceling the small CKM angles, thus leaving a
rather large effect. This argument also explains why there is little CP violation in
D decays in the Standard Model. The CP observables must be small due to the
usual product of CKM angles. However, the overall decay rate itself has no small
12 Here we neglect CP violation in the D-meson system, which is a good approximation for CKM-favored

decays.
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(a) (b)
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Fig. XIV–6 Some one-loop diagrams for rare B decays.

angles, so that the signal remains small. B-meson decays have proven to be optimal
for the exploration of the rich CP-violating structure of the Standard Model.

XIV–7 Rare decays of B mesons

The number of B-decay modes is so large that any single mode will be ‘rare’ in
the sense of having a small branching ratio. Nonetheless, considerable attention
has been given to modes that proceed only at one loop, as in Fig. XIV–6, and these
are the ones that are normally labeled as rare decays. The expectation is that, by
measuring the transition rates of such processes, one can test the Standard Model
at loop level, and hopefully observe deviations due to New Physics. Moreover,
since prediction of rare decays involves many of the techniques we have developed
for calculating weak transitions, these decays can provide a nontrivial test of our
ability to apply the Standard Model.

The quark transition b → sγ

The process b→ sγ is described by the magnetic-dipole transition

Mb→sγ = GF√
2

e

8π2
F2VcbV

∗
csε

∗(q)μqν

× ū(ps)σμν [mb (1− γ5)+ms (1+ γ5)] u(pb), (7.1)

where the quark mass factors occur in the combination shown because the σμν
Dirac matrix connects left-handed fields to right-handed fields, and a factor of mass
must appear whenever a chirality change L→ R occurs.

The quantity F2, which represents the quark-level loop amplitude with numerical
factors containing GF and e extracted, is given by

F2 � F̄2 (xt )− F̄2 (xc) � F̄2 (xt ) , (7.2)

with xi = m2
i /M

2
W and

F̄2(x) = x

(x − 1)3

[
2x2

3
+ 5x

12
− 7

13
−
(

3x2

2
− x
)

ln x

]
. (7.3)
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t,c c

bb s

(a) (b)

s

γ

γ

Fig. XIV–7 Standard Model diagrams for b→ sγ .

The flavor content of F2 and the overall factor of VcbV
∗

cs in Eq. (7.1) can be eas-
ily understood. The overall loop amplitude, which involves a sum over the inter-
mediate quark flavors t, c, u, must vanish in the limit of equal quark mass from
a GIM cancelation since it involves a neutral flavor-changing process. In reality,
however, the contribution from the very light u quark is negligible, and the top-
quark contribution to F2 clearly dominates. The CKM unitarity relation VtbV

∗
ts =

−VcbV
∗

cs − VubV
∗

us can be used to substitute for VtbV
∗

ts upon neglecting the small
factor VubV

∗
us. The b → sγ decay rate, relative to the b → ceν̄e semileptonic rate

can be expressed in the simple form

�b→sγ

�b→ceν̄e

= 3α|F2|2
f (mc/mb)

, (7.4)

where f (x) is the phase-space factor given in Eq. (2.1), and factors of m2
s /m

2
b

arising from phase space and from the amplitude of Eq. (7.1) have been dropped.
Short-distance QCD corrections can be used to improve this free-quark calcula-

tion. These produce a surprisingly large modification to the analysis of b → sγ ,
and the reason is instructive. The t quark is so heavy that, at all scales relevant to
the weak decay, its effect may be treated as a point bsγ vertex, with renormaliza-
tions as in Fig. XIV–7(a). However, the c quark is light on all scales fromMW tomb

so that in its renormalization one must also include the diagrams of Fig. XIV–7(b),
where the dot represents the b → cc̄s weak hamiltonian. That is, there is mixing
between the b→ sγ vertex and the b→ cc̄s transition. The theoretical prediction
is [Mi et al. 07],

Bb→sγ [Thy] = (3.15± 0.23)× 10−4, (7.5)

for photon energies above 1.6 GeV. The corresponding measurement (highly
nontrivial) is [Am et al. (Heavy Flavor Averaging Group collab.) 12]

Bb→Xsγ [Expt] = (3.55± 0.24± 0.09)× 10−4, (7.6)

where the last error bar is due to uncertainties in the treatment of the photon energy
distribution.

At the hadronic level, the quark transition b→ sγ is observed in channels such
as B → Kπγ,Kππγ, etc. The simplest final state occurs when the Kπ system
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b u,c,t

Z

¯

s̄

W

Fig. XIV–8 The penguin diagram for Bs → 
+
−.

forms a resonant JP = 1− state, K∗(890).13 As the inclusive rate appears to be in
agreement with the Standard Model, this effort is a test of the calculation of exclu-
sive transitions. Within the same class of decays is the transition B → K∗
+
−.
Theoretical interest in this transition comes from the hope that New Physics not
present in B → Xsγ could show up here [DeHMV 13]. The amplitude includes
Z0 as well as photon exchange, and the loops could be sensitive to new inter-
actions. Experimentally, the decay is rich and challenging because a full angular
distribution can be probed, with the possibility of sensitivity to different physics in
different kinematic regions.

The decay Bs → �+�−

The leptonic transition Bs → 
+
− is also particularly promising as a sensitive test
of the Standard Model. The rate is suppressed even more by a factor of m2


 due to
a helicity argument which relies on the current–current structure of the theory, and
this allows New Physics to be present.

The decay proceeds through the Z0 penguin diagram of Fig. XIV–8 with the
dominant contribution from the top quark due to its large mass. The photon penguin
does not contribute because the photon as a vector has C = −1, while the lepton–
antilepton pair with zero angular momentum has C = +1. The transition then
occurs through the axial-vector Z0 current, with an effective hamiltonian,

H = GFα

2
√

2π sin2 θW
V ∗tbVtsCAb̄γ μγ5s 
̄γμγ5
, (7.7)

where, as usual, CA is a coefficient which includes the QCD short-distance correc-
tions. When computing the decay amplitude, we encounter the matrix element

〈0|b̄γ μγ5s|Bs(q)〉 = iFBsq
μ, (7.8)

and the qμ contracted with the lepton current produces a factor ofm
 in direct anal-
ogy to the pion decay discussed in Chap. VII. Note that scalar or pseudoscalar inter-
actions would not have such suppression and so these New Physics possibilities

13 The B → Kγ transition is forbidden because it is a spin-zero to spin-zero transition.
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could potentially have a large enhancement over the Standard Model prediction.
The theoretical prediction [BuGGI 12, DeFKKMPT 12]

B(theo)
Bs→μ+μ− = (3.54± 0.30)× 10−9 (7.9)

is quite robust, with the major uncertainty being the lattice calculation of FBs . This
mode has recently been measured [Aa et al. (LHCb collab.) 13b] with the result,

B(expt)
Bs→μ+μ− =

(
3.2+1.5

−1.2

)× 10−9. (7.10)

An even more recent result, although preliminary, shows that combined LHCb and
CMS data agree with the Standard Model prediction by more than 5σ . This clearly
indicates that there is no large effect from New Physics.

Problems

(1) Patterns of CP violation
All signals of CP violation involve the interference of two or more amplitudes.
Identify the origin of the interference in partial rate asymmetries for the decays
(a) Bs → ϕϕ, (b) Bs → ρ±π∓, (c) Bd → K̄∗0ϕ, (d) B± → ρ±π0, (e)
B± → K±π0.

(2) Amplitude relations in the heavy-quark limit
In the heavy-quark limit, a static b quark in a B meson can be described in
terms of just the two upper components of its four-component Dirac field. This
can simplify various matrix elements or be used to relate them. Use this feature
to show that the B̄ → K∗γ matrix element of the σμν operator,

〈K∗(ε,k)|s̄σ μνb|B̄(p)〉 = εμναβ
[
A ε†

αpβ + B ε†
αkβ + ε† · p C pαkβ

]
,

can be related to the vector and axial-vector form factors of B̄ → ρ
ν̄
,

〈ρ+(ε,k)|ūγ μb|B̄0(p)〉 = iD εμναβpνε
†
αkβ,

〈ρ+(ε,k)|ūγ μγ5b|B̄0(p)〉 = E ε†μ + ε† · p [Fpμ +Gkμ],
through

A = −(E − k0mBD)/mB, B = −mBD, C = (D +G)/mB,

under the assumptions of a static b quark and of SU(3) symmetry. In this
relation, all form factors must be evaluated at the same momentum transfer,
q2 = (p − k)2.
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The Higgs boson

On July 4, 2012, the LHC collaborations ATLAS and CMS announced the discov-
ery of a resonance which, despite limited statistics, seemed to have characteristics
expected of a Standard Model Higgs boson. Mass determinations presented at the
2013 Lepton-Photon Conference are

MH(GeV) =
{

125.5± 0.2 (stat) +0.5
−0.6(syst) [Ja (ATLAS collab.) 13]

125.7± 0.4 [De (CMS collab.) 13].
(1.1)

Since this resonance has a nonzero branching fraction for decay into two photons,
it must be a boson, one not having spin-one. In fact, current spin/parity analyses
are compatible with JP = 0+ but not with JP = 0−, 1+, 1−, 2+ [Aa et al. (ATLAS
collab.) 13b], [Ch et al. (CMS Collab.) 13]. Its couplings to bosons and fermions
appear to be consistent with Standard Model expectations, in particular that the
Higgs should couple to mass. At present, the overall precision is limited to about
25%, so an extended period of careful study will be necessary to reveal the anoma-
lous properties, if any, of this particle. In this chapter, we will consider the basics
of the Standard Model Higgs, with the intent of describing its phenomenology and
also addressing certain theoretical issues.

XV–1 Introduction

A central feature of the Standard Model is the spontaneous symmetry breaking in
the electroweak sector which gives mass to fermions and to the W± and Z0 gauge
bosons. Although a complex doublet of Higgs fields is initially introduced in the
Weinberg–Salam model, there remains following spontaneous symmetry breaking
precisely one physical Higgs state, a neutral scalar particleH 0. That is, if we define
the number of degrees of freedom for Higgs and gauge-boson states, respectively,
as NH and NG, then before the symmetry breaking we have NH = 4, NG = 8

434
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whereas afterwards we find NH = 1, NG = 11. To obtain these values, recall
that massive vector particles have three spin components whereas massless vector
particles have just two. Although the total of Higgs and gauge-boson degrees of
freedom remains fixed (NH +NG = 12), there is a transfer of three states from the
Higgs sector to the gauge-boson sector. These Higgs states become the longitudinal
spin modes of the W±, Z0 particles.

This transfer can be displayed analytically by first performing a contact trans-
formation to cast the two complex Higgs states ϕ0, ϕ+ in terms of four real fields
H 0 and χ = {χi} (i = 1, 2, 3)

� = U−1(χ)

(
0

(v +H 0)/
√

2

)
, (1.2)

where

U(χ) = exp(iχ · τ/v), (1.3)

and we recall that v = 1/
√

21/2GF � 246 GeV. One completes the procedure with
the gauge transformation,

�′ = U(χ)� =
⎛⎝ 0

(v +H 0)/
√

2

⎞⎠ ,
ψ ′L = U(χ)ψL, ψ ′R = ψR, B ′μ = Bμ,

τ

2
·W′

μ = U(χ)
τ

2
·WμU

−1(χ)+ ig−1
2 ∂μU(χ) · U−1(χ), (1.4)

for all fermion weak isodoublets ψL and weak isosinglets ψR. Within this unitary
gauge, the physical content of the theory is manifest, and the quantity �′ is seen to
contain a single Higgs field H 0.1 In the following, we shall employ this gauge but
with the primes in Eq. (1.4) suppressed.

XV–2 Mass and couplings of the Higgs boson

We have already specified in Chap. II how the Higgs bosonH fits into the Standard
Model. The various lagrangians written down there provide the basis for a complete
phenomenological portrait to be drawn for the H boson. In this section, and the
ones to follow, we present the theory for this program.

1 For notational simplicity, we shall hereafter omit the superscript ‘0’ and denote the Higgs field simply as H .
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Higgs mass term

Consider first the Higgs potential of Eq. (II–3.19) which, when expressed in terms
of the field H , becomes

V = −μ
2v2

4
+ μ2H 2

0 + λvH 3
0 +

λ

4
H 4

0 , (2.1)

where the parameters μ, λ are a priori unknown. The term quadratic in the Higgs
field determines the Higgs mass to be

MH =
√

2μ = v
√

2λ. (2.2)

This does not provide a numerical value for the Higgs mass MH because only the
quantity v, but not λ, is phenomenologically determined.

This fact places the burden of determining the Higgs mass on experiment. We
will interpret the LHC finding of an unstable boson as indeed the Standard Model
Higgs boson and for definiteness adopt the value

MH = (126.0± 0.5) GeV (2.3)

for subsequent discussion. If so, the remaining parameters in Eq. (2.1) become

μ = 89.1± 0.3 GeV and λ = 0.131± 0.001. (2.4)

The naturalness problem

Radiative corrections to the Higgs mass raise a question of the ‘naturalness’ of the
Standard Model. To motivate the discussion, let us first consider one-loop electro-
magnetic corrections to the electron mass. If we impose a cut-offe on the momen-
tum flowing through the loop, the mass shift,

me = me,0

[
1+ 3

2

α

π
ln

e

me,0
+ · · ·

]
, (2.5)

is obtained. The magnitude of this first-order correction, although cut-off depen-
dent, is generally tiny. Taking for e the entire mass of the observable universe,
e � 1079 GeV, results in only the modest mass shift me � 1.7me,0. This teaches
us that, with logarithmic behavior, the renormalization program of absorbing diver-
gences into renormalized parameters is not implausible.

However, radiative corrections to the Higgs mass are not as tame. We display
in Fig. XV–1 one-loop self-energy processes which shift the Higgs boson mass.
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(a) (b) (c)

Fig. XV–1 Some quadratically divergent Higgs self-energy diagrams.

Considering for definiteness diagram (c), which involves a Higgs loop with quartic
self-coupling, we have

−i�H(p) = −3iλ
∫

d4k

(2π)4
i

k2 −M2
H,0 + iε

. (2.6)

This expression is quadratically divergent, �H ∼ 2
H , where H is the cut-off

parameter for the above integral, and leads to a shift of the Higgs mass,

M2
H = M2

H,0 +
3

16

λ

π2
2
H . (2.7)

If H is as large as, say, the Planck mass EPlanck � 1019 GeV, then in order to
obtain a renormalized mass as given by Eq. (2.3), the parameter M2

H,0 must be
negative and have a magnitude which equals the correction up to 31 decimal places!
This is referred to as fine tuning. While technically possible, it is surely unnatural.
Including the other contributions of Fig. XV–1 we obtain the Higgs mass shift

M2
H = M2

H,0 +
3

16

λ

π2
2
H

[
M2
H + 2M2

W +M2
Z − 4m2

t

]
. (2.8)

It is possible to cancel this mass shift by arranging the value of MH contained
within the brackets in Eq. (2.8). This strategy givesMH � 314 GeV, which is ruled
out by experiment.

The inability to make sense of Higgs mass corrections is perhaps the most seri-
ous flaw in the fabric of the Standard Model. At present, there are no known com-
pelling mechanisms for curing this ailment. Accordingly, many physicists have
been motivated by this ‘unnaturalness problem’ to search for alternatives to the
Standard Model description, and to suggest that New Physics must exist not very
far above the weak scale v ∼ 250 GeV.

Higgs coupling constants

There are a variety of ways that the Higgs can interact, including vacuum energy,
Higgs self-couplings, Higgs couplings to massive particles, and finally Higgs
couplings to massless particles.



438 The Higgs boson

Table XV–1. Higgs-boson coupling constants.

gf̄ fH gWWH gWWH 2 gZZH gZZH 2 gH 3 gH 4

mf

v

2M2
W

v

2M2
W

v2

2M2
Z

v

2M2
Z

v2

3M2
H

v

3M2
H

v2

Vacuum Higgs energy: The first term in V , the Higgs potential of Eq. (2.1), is a
constant energy density, which can be interpreted as a contribution (Higgs) to the
full cosmological constant . Inserting known values for μ and v, we have

|U(vac)
Higgs| = (Higgs) = μ2v2

4
� 1.2× 108 GeV4, (2.9a)

which is huge compared to the observed value [RPP 12],

|(obs)| � (2.3× 10−3 eV)4 = 2.8× 10−47 GeV4. (2.9b)

This should not, however, be viewed as a defect of the Higgs mechanism, as there
are many such contributions to the vacuum energy. Presumably, there is some over-
riding issue of physics which forces the suppression or cancelation of the vacuum
energy by so many orders of magnitude.

Higgs coupling to massive particles: Next, we express couplings of the Higgs
boson to particles which have nonzero mass. In cases where n identical fields
appear, a numerical factor 1/n! is introduced to account for the number of identical
fields. The set of all such coupling constants is collected in Table XV–1.

The Higgs potential of Eq. (2.1) contains cubic and quartic Higgs interactions,
which we express as

Lself = −gH 3

3! H
3 − gH 4

4! H
4. (2.10a)

There are also couplings of the Higgs to massive fermions. From Eq. (2.3) and
Eq. (II–3.20), we find for the interaction to fermion f ,

Lf f̄H = −gf̄ fHHψ̄fψf . (2.10b)

The catalog of Higgs particle interactions is extended by presenting its couplings
to the W± and Z0 bosons, including both trilinear and quadrilinear terms for each,

LWWH = W−
μ W

μ
+
[gWWH 2

2! H 2 + gWWHH
]
,

LZZH = ZμZ
μ

[
gZZH 2

(2!)2 H
2 + gZZH

2! H

]
, (2.10c)
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where we have employed Eqs. (II–3.18), (II–3.29), (II–3.32). Observe that each of
the couplings gH 4, gf̄ fH , gWWH 2, gZZH 2 are pure numbers whereas gH 3, gWWH ,

gZZH have the unit of energy.

Higgs coupling to massless particles: The coupling between the Higgs boson
and a particle depends on the particle’s mass. This means that at the basic level of
the Higgs lagrangian, there is no coupling to photons and gluons because these par-
ticles are massless. However, such couplings are induced through quantum effects.
This is a phenomenon we have seen already in Chap. IV, in which the photon-
photon interaction, γ γ → γ γ , although zero at a fundamental level, is described
to one-loop order by the Euler–Heisenberg effective lagrangian of Eq. (IV–8.5).

Higgs–photon–photon vertex: A Higgs boson will couple to a two-photon final
state through W±-boson and charged-fermion loops. The decay rate

�H→γ γ = M3
H

4π
·
∣∣∣∣∣∣ α8πv

[
A1(xW)+

∑
f=q,


Ncq
2
fA1/2(xf )

]∣∣∣∣∣∣
2

, (2.11)

contains the loop functions A1(x) and A1/2(x),

A1(x) = − 1

x2

[
2x2 + 3x + 3(2x − 1)f (x)

]
,

A1/2(x) = 2

x2
[x + (x − 1)f (x)] ,

f (x) =

⎧⎪⎪⎨⎪⎪⎩
arcsin2(

√
x) (x ≤ 1)

−1

4

(
ln

[
1+ (1− 1/x)1/2

1− (1− 1/x)1/2

]
− iπ

)2

, (x > 1)
(2.12)

where x is the dimensionless variable x ≡ M2
H/(4m

2) and the subscripts on
A1(x) and A1/2(x) denote the respective spins of the loop particles. The sum over
fermions f in Eq. (2.11) is taken over both quarks q and leptons 
.

The above procedure is based on calculating the decay amplitude from Feynman
diagrams as in Fig. XV–2. It is worthwhile to consider the possibility of an alter-
native approach. Throughout this book, we have emphasized the use of effective
field theories. Can we employ this method here, via a local effective lagrangian,
to describe the Higgs–photon–photon vertex? Note that the function f (x) defined
in Eq. (2.12) develops an imaginary part for m < MH/2, which is the case for
all the loop fermions except the t quark. The imaginary part signals that H would
be able to physically decay into any of the light fermion–antifermion loop pairs.
If so, the conversion of a Higgs into two photons is nonlocal and cannot possibly
be described with a local lagrangian defined at scale μ = MH . Although the W±

and t quark evade such a prohibition, the issue remains whether it would be a good
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(a) (b) (c)

Fig. XV–2 H → γ γ via (a) charged fermion, (b)–(c) W boson.

numerical approximation to use a local lagrangian for either. Let us compare the
loop functions A1 and A1/2 evaluated both in the heavy mass limit x → 0 and also
using the physical values xW � 0.60 and xt � 0.13,2∣∣∣∣A1(0)−A1(xW)

A1(0)

∣∣∣∣ � 0.16 vs.

∣∣∣∣A1/2(0)−A1/2(xt )

A1/2(0)

∣∣∣∣ � 0.03.

Since the difference between the infinite-mass and physical t-quark amplitudes is
only 3%, most would agree that an effective lagrangian description for the t-quark
contribution is appropriate, and we write

Leff = g(t)γ γHF
μνFμν with g(t)γ γ =

2α

9πv
, (2.13)

where α is the fine-structure constant and Fμν is the electromagnetic field strength
tensor (cf. Eq. (I–5.9)). Note that the heavy top quark evades the decoupling theo-
rem of Sect. IV–2 because the t t̄H vertex is proportional to the large mass
parameter mt .

An alternate derivation of Eq. (2.13) begins by considering the contribution of a
t t̄ loop to the photon vacuum polarization [ShVVZ 79],

�μν(q)

∣∣∣∣
t-quark

= (qμqν − q2gμν)

[
Ncq

2
t α

3π
ln
2

m2
t

+ · · ·
]
, (2.14)

where qt = 2/3 is the top-quark electric charge in units of e and we have chosen
regularization with cut-off  here (instead of the dimensional approach used else-
where in this book) to keep the notation compact. The photon vacuum polarization
of Eq. (2.14) can equivalently be expressed via the effective lagrangian,

L(t-loop)
ph. vac. pol. = −

1

4
FμνF

μν · q
2
t α

π
ln
2

m2
t

, (2.15)

2 For reference we note the expansions about x = 0: A1/2(x) � 4/3(1+ 7x/30+ 2x2/21+ · · · ) and

A1(x) � −7− 22x/15− 76x2/105+ · · · .
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as can be shown by taking its photon-to-photon matrix element. Now, writing the
top-quark mass term together with its Higgs interaction,

LHtt̄ = −
(
mt + mt

v
H
)
t̄ t = −mt

(
1+ H

v

)
t̄ t, (2.16)

suggests treating the Higgs field as a constant and thus formally extending the top-
quark mass as mt → mt (1+H/v). Inserting this into Eq. (2.15) and considering
only the term linear in H yields precisely the effective lagrangian of Eq. (2.13).
This ‘background field’ derivation is valid if the momenta involved are small com-
pared to the top-quark mass, which is not perfect but a good first approximation.3

Higgs–Z0–photon vertex: This process, too, occurs first as a loop amplitude
([CaCF 79], who assume MH < MZ and study Z0 → Hγ ; see also [BeH 85])
via triangle diagrams dominated by W±-boson and t-quark contributions. We refer
the reader to the literature for the explicit, somewhat cumbersome, analytic form
of the vertex.

Higgs–gluon–gluon interaction: The Higgs two-gluon amplitude has similarities
with the Higgs two-photon interaction. One calculates Feynman amplitudes for
triangle diagrams, although now summed over only quarks {q} since gluons couple
neither to leptons nor to the electroweak gauge bosons, leading to

�H→gg = 2M3
H

π
·
∣∣∣∣∣ αs

16πv

[∑
q

A1/2(xq)

]∣∣∣∣∣
2

. (2.17)

The top-quark amplitude is by far the largest in the above sum, and so we can
again turn to the effective lagrangian description. The contribution of a t t̄ loop to
the gluon vacuum polarization in cut-off regularization is

�μν(q)ab

∣∣∣∣
t-quark

= δab(q
μqν − q2gμν)

[
αs

6π
ln
2

m2
t

+ · · ·
]
, (2.18)

which leads, as explained earlier, to

L(t-loop)
gl. vac. pol. = −

1

4
Fa
μνF

aμν · αs
6π

ln
2

m2
t

, (2.19)

and finally, from Eq. (2.16), to

Leff = g(t)ggHF
aμνF a

μν with g(t)gg = −
αs

12πv
, (2.20)

3 For completeness, we take note of yet another derivation [ElGN 76] of Eq. (2.13) which uses the QED trace
anomaly (see Eq. (III–4.16) for the QCD version),

θ
μ
μ = αs

12π
FμνF

μν +mt t̄t,

taking into account only the t-quark part of the fermion contribution.
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where Faμν is the chromodynamic field strength tensor of Eq. (II–2.2a). This rep-
resents the linear term in an expansion in powers of the Higgs field H . Higher
powers provide the two-gluon coupling to an arbitrary number of Higgs bosons.
The quadratic term in this expansion would be a prediction for gg→ HH . There,
in addition to the direct coupling of Eq. (2.20), one encounters a pole diagram (i.e.
gg → H → HH ) which contains the triple Higgs coupling. The direct and pole
contributions cancel exactly at threshold and, more generally, the residual effect
remains small.

XV–3 Production and decay of the Higgs boson

Following the discovery of the top quark, finding the Standard Model Higgs boson
became a primary goal of experimental particle physics. The search strategy was
based on Standard Model predictions of both production and decay amplitudes. We
discuss each of these in turn, beginning with the topic of Higgs decay.

Decay

One begins calculation of a Higgs decay mode with the lowest-order amplitude,
and then incorporates higher-order QCD and electroweak (EW) corrections. These
higher-order effects are described, with many references, in [Dj 08]. Here, we dis-
play branching fraction predictions in Table XV–2 [He et al. 13], but restrict our
presentation here to only the lowest-order analysis (except for two decaysH → bb̄

and H → gg, which have especially large corrections). The major two-body Stan-
dard Model decay branching fractions in Table XV–2 correspond to a total width,

�
(tot)
H � 4.21 (±3.9%) MeV. (3.1)

The individual branching fractions in Table XV–2 are purely theoretical quantities.
An experimental reality at LHC is that detection of the modes bb̄, gg, cc̄ is greatly
inhibited by huge hadronic backgrounds. As a consequence, other modes (e.g. γ γ )
can play a central role in Higgs phenomenology at the LHC, despite their smaller
branching fractions.

Table XV–2. Two-body Higgs branching fractions.a

b̄b WW ∗b gg τ+τ− c̄c ZZ∗b γ γ γZ μ+μ−

56.1 23.1 8.48 6.15 2.83 2.89 0.23 0.16 0.02

aAll branching fractions are in % and the value MH = 126. GeV is assumed.
bThe asterisk denotes a virtual vector boson.
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Decay into fermion–antifermion pairs: For transitions of the type H → f f̄ , the
leading-order (LO) decay rate is

�
(LO)
H→f f̄

= Nc

8π

m2
f

v2
MH

(
1− 4x2

f

)3/2
, (3.2a)

where mf is the fermion mass (which arises from the Yukawa coupling), xf ≡
mf /MH and Nc = 1 for leptons and Nc = 3 for quarks. We already know that in
the Standard Model the Higgs coupling to a fermion–antifermion pair is linear in
the fermion mass mf . The factor of m2

f in Eq. (3.2a) reflects this and ensures that
the bb̄ mode is largest amongst all fermions with 2mf < MH (the mode H → t t̄

is kinematically forbidden).
Let us consider the H → bb̄ mode in a bit more detail. If Eq. (3.2a) is used

to determine the bb̄ decay rate and Eq. (3.1) is used for �(tot)
H , then a branching

fraction � 104% is predicted. This unphysical result is disconcerting to say the
least! The flaw in our numerical exercise is that we have ignored corrections to the
tree-level prediction of Eq. (3.2a). Ordinarily, one expects a ‘correction’ to be no
more than a few tens of percent and usually much smaller. This case is not like
that; it turns out that the most important correction is to replace the m2

f factor by

the squared running mass m2
f (μ) with μ = MH ,

�H→f f̄ =
Nc

8π

m2
b(MH)

v2
MH

(
1− 4x2

f

)3/2 [
1+ 5.67

αs(MH)

π
+ · · ·

]
, (3.2b)

where the O(αs) correction is also displayed. For the b quark, we have already
found below Eq. (XIV–1.12) that mb(MH) � 0.665 mb(mb), implying a corrected
H → bb̄ branching fraction of 56%. This means that all the remaining corrections
for this mode amount to a rather more modest effect. The moral of this lesson is to
not place unwarranted trust in tree-level estimates.

Decay into three-body states: Although the Higgs boson couples to the electroweak
gauge bosons, a Higgs with mass MH � 126 GeV is too light to decay into WW

and ZZ final states. However, a transition like H → WW ∗ → Wf f̄ ′ (or H →
Zf f̄ ) can occur, e.g., H → W+dū or H → W−cs̄ and so on. We shall consider
this possibility here. If dependence on fermion mass (such as mf /MH or mf /MW )
is ignored, the energy distribution of the final state W is [KeM 84]

d�
(LO)
H→Wf f̄ ′

dx
= 1

192π3

(
MW

v

)4

MH

(x2 − 4ε2)1/2

(1− x)2
(
x2 − 4ε2x + 8ε2 + 12ε4

)
,

(3.3)

where x = 2EW/MH and ε = MW/MH . Integration over the W -boson energy
yields
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�
(LO)
H→Wf f̄ ′ =

1

192π3

(
MW

v

)4

MHF(ε)

F (ε) = 3(1− 8ε2 + 20ε4)

(4ε2 − 1)1/2
arccos

[
3ε2 − 1

2ε3

]
− (1− ε2)

[
47

2
ε2 − 13

2
+ 1

ε2

]
− 3

(
1− 6ε2 + 4ε4

)
ln ε. (3.4)

Thus far, we have kept the final state fixed as Wf f̄ ′. To obtain the inclusive
rate �H→W±X, we sum over all distinct final states (like the ones displayed above
Eq. (3.3)) to find

�
(LO)
H→W±X =

3

32π3

(
MW

v

)4

MHF(ε). (3.5)

The case of H → Zf f̄ is obtained from the above relations via insertion of a
factor ηZ = 7

12 − 10
9 sin2 θw + 40

9 sin4 θw.

Decay into four-body states: The degrees of freedom appearing in Table XV–2 are
those occurring at the primary vertex, at which the Higgs decay process begins.
However, these are often not the final states which are actually detected. For exam-
ple, the quark–antiquark states will hadronize into jets whereas the vector gauge
bosons will quickly decay and be observed as four-fermion final states, e.g., as in
final states containing leptons and antileptons. We do not display analytic formu-
lae here for such modes, but numerical examples are displayed in Table XV–3.
The leptons and neutrinos there are summed respectively over 
 = e, μ, τ and
ν = νe, νμ, ντ .

Decay into massless final-state particles: The general leading-order H → γ γ

decay rate is given in Eq. (2.11). Approximating this with the W -boson and top-
quark contributions gives

�
(LO)
H→γ γ �

α2

256π3
· M

3
H

v2

∣∣∣∣A1(xW)+Ncq
2
t A1/2(xt )

∣∣∣∣2, (3.6)

where the quantities A1(xW) and A1/2(xt ) are the loop functions defined in
Eq. (2.11), with arguments xW = M2

H/(4M
2
W) and xt = M2

H/(4m
2
t ). Although the

Table XV–3. Four-body Higgs branching fractions.a

(qqqq) (qq
ν
)b (qqνν) (qq
+
−) (
+
−
+
−)

11.8 3.38 0.81 0.27 0.03

aAll branching fractions are in % and the value MH = 126. GeV is assumed.
bHere, 
 = e, μ.
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top-quark contribution dominates that of the other fermions (due to its much larger
Yukawa coupling to the Higgs), that of the W -boson is even larger, |Ncq

2
t A1/2(xt )/

A1(xW)| � 0.22.
For the transition H → gg, decay products would appear as jets consisting

of light hadrons. The H → gg decay rate has already been given in Eq. (2.17).
Approximating this with the dominant top-quark contribution in the heavymt limit
yields the tree-level expression,

�
(LO)
H→gg =

α2
sM

3
H

72π3v2
. (3.7)

Virtual gluon exchanges will modify the above. Unlike the case for H → γ γ the
next-to-leading-order H → gg amplitude will experience gluon self-interactions
such as triple-gluon vertices and turns out to have a large numerical effect
[SpDGZ 95],

�H→gg � �
(LO)
H→gg

[
1+

(
95

4
− 7

6
nf

)
αs(MH)+ . . .

]
� 1.64 �(LO)

H→gg, (3.8)

with nf = 5 and αs(MH) given previously in Eq. (II–2.79).

Production

Next, we consider the most important of the mechanisms at LHC energies for
producing the Higgs boson in the inclusive process p + p → H + X, where X
represents a sum over all the other final-state particles. The scattering which yields
the Higgs production will involve the basic degrees of freedom (partons) occur-
ring within a proton, the quarks and gluons. Because the partons are not physical
entities, the cross section must be expressed as

σ =
∑
i,j

∫ 1

0
dx1 dx2 fi(xi,Q)fj (x2,Q)σ̂ij , (3.9)

where the indices i, j refer to the two initial-state protons and the quantities fi
and fj are parton distribution functions (‘PDFs’). A hadron’s PDF f (x,Q) gives
the probability density for finding a parton carrying a fraction x of the hadronic
longitudinal momentum at momentum reference scale Q. Given the difficulty pre-
sented by nonperturbative QCD, a PDF is commonly inferred from experimental
data, e.g., as with

fi(x,Q) = Nxαi (1− x)βi gi(x). (3.10)

where αi, βi are fit parameters. The function gi(x) is defined to approach constants
at x = 0, 1 e.g., gi(x) = 1+εi√x+Dix+Eix2 and itself contains the fit parameters
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(a) (b) (c) (d)

Fig. XV–3 Higgs production via: (a) gg fusion, (b) VBF, (c) HV, (d) t t̄H .

εi,Di, Ei . The parton cross section σ̂ij is calculated at leading order from various
Standard Method processes and corrected by both QCD and EW perturbations.

Within this phenomenological framework, one has at the Higgs mass scale and
LHC energies the following Standard Model mechanisms, depicted to leading order
in Figure XV–3 and listed here according to cross-section magnitude:

(1) Gluon–gluon fusion (gg fusion): gg→ t t̄ → H

(2) Vector–boson fusion (VBF): qq → qq + V ∗V ∗ → qq +H
(3) Vector–boson-associated production (HV): qq̄ → V ∗ → H + V
(4) t t̄ associated-production (t t̄H ): gg→ t t̄ +H ,

Numerical values [He et al. 13] for each of these contributions at the energies√
s = 8, 14 TeV appear in Table XV–4. Table XV–4 contains not only cross-section

values but also uncertainties for each, given numerically in per cent. These arise
mainly from aspects of QCD, such as uncertainties in QCD parameters (e.g. αs ,
mc, etc.), parton PDFs and a significant uncertainty from the uncalculated higher-
order QCD corrections.

The gluon–gluon fusion reaction proceeding via top-quark loops is the domi-
nant component of the p + p→ H + X cross section.4 It also has the interesting
property of being sensitive to certain types of virtual heavy particles. We saw in
the derivation of Eq. (2.20) that the top-quark contribution to the triangle graph for
H → gg does not decouple, despite having 4m2

t 
 M2
H , because the coupling

Table XV–4. Standard Model Higgs production cross sections.a

√
s (TeV) gg Fusion VBF HW HZ t t̄H

8 18.97 (+7.2%
−7.8%) 1.57 (+0.3%

−0.1%) 0.69 (±1.0%) 0.41 (±3.2%) 0.13 (+3.8%
−9.3%)

14 49.85(+19.6%
−14.6%) 4.18(+2.8%

−3.0%) 1.50(+4.1%
−4.4%) 0.88(+6.4%

−5.5%) 0.61(+14.8%
−18.2%)

aAll cross sections are in pb units; the value MH = 126 GeV is used for
√
s = 8 (TeV)

and MH = 125 GeV for
√
s = 14 (TeV).

4 The next most important contribution, that of the b-quark loop, is estimated at leading order to be at most a
10% effect.
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between t t̄H is proportional to mt . Thus, what if there were a very heavy fourth
generation of Standard Model fermions (a situation often denoted as SM4) with
all else the same (i.e. same Standard Model couplings, only one physical Higgs
boson) as with the known fermions? The new generation would contain two new,
very heavy quarks, say u4, d4, which likewise would not decouple in the H → gg

vertex. The H → gg amplitude would then be about a factor three larger than
in the Standard Model case, and the gluon–fusion production cross section about
nine times as large. Moreover, using LHC and Tevatron data as input, it has been
concluded from an analysis of Higgs decay modes that SM4 is excluded at more
than 5σ [EbHLLMNW 12].

Earlier, in the discussion following Eq. (3.1), we pointed out that detection of
final states like bb̄, gg, cc̄ at the LHC, where the gg → H is the dominant pro-
duction mechanism, is greatly hindered by hadronic backgrounds. However, a bb̄
final state can be relatively more accessible if the Higgs particle is predominantly
produced in association with a vector boson (V = W,Z) or a t t̄ pair, a strategy
which has been pursued by the detectors CDF and D0 (Tevatron) and ATLAS and
CMS (LHC). This can lead to detection of H → bb̄ via more easily identifiable
configurations like

HW → bb̄
ν
, HZ→ bb̄

̄, HW,HZ→��ET bb̄

where 
 = e, μ and ��ET represents missing transverse energy. Some promising
results have been obtained thus far, e.g., a reported excess of events at 3.1σ with
MH = 125. GeV [Aa et al. (CDF and D0 Collabs.) 13] and a > 3σ significance
in the combined τ τ̄ + bb̄ channels reported by the CMS collaboration at the 2013
Lepton–Photon Conference.

Comparison of Standard Model expectations with LHC data

Statistical data analyses have been performed to test the extent to which collected
data agree with the Standard Model Higgs boson scenario. Such testing can be done
directly by experimental collaboration or as a theoretically motivated exercise:

(1) Experimental: One can define a global signal strength factor μi for a given
final state ‘i’ by folding together the production cross section and branching
fraction for the observed signal relative to the Standard Model prediction,

μi =
[∑

j σj→H BrH→i

]
obs[∑

j σj→H BrH→i

]
SM

. (3.11)

There is a label ‘j ’ because a given final state ‘i’ might be summed over a
subset of Higgs production processes ‘i’. The value μ = 0 corresponds to
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the background-only hypothesis whereas μ = 1 corresponds to the Standard
Model Higgs boson signal in addition to the background. Announced results
from the LHC detectors have been found, thus far, to be statistically consistent
with the Standard Model hypothesis.

(2) Theoretical: There are a number of ways to parameterize couplings to include
non-Standard Model behavior. Suppose Standard Model Higgs couplings to
fermion f and to vector boson V are generalized to have the forms [ElY 12],

gf =
√

2
mf

v
→√

2
(mf

M

)1+ε
, gV = 2

M2
V

v
→ 2

M
2(1+ε)
V

M(1+2ε)
, (3.12)

where ε and M are purely phenomenological parameters. In the Standard
Model, they become ε = 0 and M = v � 246 GeV. A global fit to LHC
data yields results consistent with these values, ε = 0.05 ± 0.08 and M =
241± 18 GeV.

Another procedure is to consider an effective lagrangian for the electroweak
symmetry-breaking sector, which modifies couplings to vector mesons and
fermions in terms of universal parameters ‘a’ and ‘c’.

Leff =
∑

V=W,Z
ηVM

2
V V

†
μV

μ

[
1+ 2a

H

v

]
−
∑
i

mif̄ifi

[
1+ cH

v

]
+ · · ·

(3.13)

where ηW = 1, ηZ = 1/2, and the ellipses represent a sum over all remaining
Standard Model contributions as well as possible higher-order terms in the field
variable H . In the Standard Model, we have a = c = 1. Fits to the current
dataset again yield results consistent with Standard Model expectations [ElY
12, EsGMT 12].

The above parameterizations are just two examples of Higgs-related
phenomenology. These tests, and others, will continue into the future as the
Higgs database expands.

XV–4 Higgs contributions to electroweak corrections

Prior to the discovery of a new boson at the LHC, direct Higgs searches yielded
only upper bounds, e.g., as with MH < 114.4 GeV obtained at LEP2. How-
ever, the calculation of quantum corrections to Standard Model predictions came
to play a central role in particle phenomenology and Higgs physics in particular.
The procedure is straightforward; a collection of observables (MW, . . . ) is mea-
sured and then compared to predictions expressed in terms of a set of input para-
meters (Gμ, α, . . . ) including the Higgs mass MH (cf. Sect. XVI–6). Although
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the dependence on Higgs mass in such analyses is somewhat weak, being loga-
rithmic ∼ lnM2

H at leading order, it has continued to show for quite some time
that the Higgs boson is ‘light’. A recent �χ2 fit gives [Ba et al. (Gfitter group)
12] MH = 94+25

−22 GeV. That this value is consistent with the LHC determinations
of MH is generally regarded as a noteworthy success of the Standard Model. To
observe the role of the Higgs boson in this procedure, let us next consider a few
specific examples of such corrections.

The corrections 
ρ and 
r

Higgs contributions to �ρ: We begin with the so-called effective weak mixing
angle

s̄2
w = 1− M2

W

M2
Z

+ c2
w�ρ, (4.1)

which is discussed at length in Sect. XVI–1. The corrections to s̄2
w are contained

within the quantity �ρ. For arbitrary MH , the one-loop Higgs contribution to �ρ
is

�ρ
1-loop
H = −3

4

(
M2
W

4π2v2

)
f (M2

H/M
2
Z), (4.2a)

where

f (x) = x

[
ln c2

w − ln x

c2
w − x

+ ln x

c2
w(1− x)

]
. (4.2b)

The leading dependence on MH for MH 
 MW is logarithmic,

�ρ
1-loop
H ∼ −3

4

(
M2
W

4π2v2

)
s2

w

c2
w

ln
M2
H

M2
W

, (4.3)

as are all the other leading one-loop Higgs contributions.5 A term like lnM2
H/M

2
W

does not respond sensitively to changes in M2
H , so the shift �ρ1-loop

H by itself does
not lead to a precise estimate for MH .

There are also multi-loop Higgs contributions. In contrast to the lnM2
H/M

2
W

logarithmic dependence of the one-loop amplitude, these also contain power-law
dependence on MH ,

�ρ
2-loop
H ∼ 0.1499

(
M2
W

4π2v2

)2
s2

wM
2
H

c2
wM

2
W

, (4.4a)

5 It is, however, not the case that one-loop corrections for all the remaining Standard Model particles are
logarithmic, e.g., �ρ has a O(Gμm2

t ) dependence on the t-quark mass (viz. Sect. XVI–6).
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Table XV–5. Higgs contribution to �ρ.

Order: One-loop Two-loop Three-loop

−1.8× 10−3 8.1× 10−7 −6.2× 10−8

and the three-loop amplitude gives

�ρ
3-loop
H ∼ −1.728

(
M2
W

4π2v2

)3
s2

wM
4
H

c2
wM

4
W

. (4.4b)

Observe that common to all terms is the coefficient,

M2
W

4π2v2
� 0.0027. (4.5)

An extra power of this small quantity will accompany each additional loop and thus
suppress the multi-loop contributions, at least for moderate values of MH . Note
also that the two-loop and three-loop amplitudes have opposite sign. The values of
the one-loop, two-loop, and three-loop amplitudes are summarized in Table XV–5
using MH = 126. GeV. The one-loop amplitude is dominant and gives an accurate
estimate of the Higgs contribution to �ρ.

Higgs contributions to�r: A second class of Standard Model corrections affects
the relation between the Fermi constant and MW , given to leading order by
Eq. (II–3.43). Upon using Eq. (II–3.42) and Eq. (II–3.33), we can express this as

M2
W

(
1− M2

W

M2
Z

)
= πα√

2Gμ

. (4.6)

The one-loop Higgs correction to this relation,

M2
W

(
1− M2

W

M2
Z

)
= πα√

2Gμ

(
1+�r1-loop

H

)
, (4.7)

is given by

�r
1-loop
H = 11

48π2
· M

2
W

v2

(
ln
M2
H

M2
W

− 5

6

)
. (4.8)

Custodial symmetry

As part of our discussion of chiral symmetry in Chap. IV, we obtained a repre-
sentation of the linear sigma model by expressing an SU(2)L × SU(2)R invariant
lagrangian (cf. Eq. (IV–1.4)) in terms of two chiral fermions ψL,ψR and a 2 × 2
matrix � = σ + iτ ·π of four scalar fields. The SU(2)L× SU(2)R transformation
properties were ψL → LψL, ψR → RψR and �→ L�R† with L,R in SU(2).
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Somewhat analogously, we can express the Higgs doublet as a matrix H via the
construction6

H = 1√
2

(
�̃ �

) ≡ 1√
2

(
ϕ0∗ ϕ+

−ϕ− ϕ0

)
, (4.9)

where � is the Higgs field of Eq. (II–3.16) and �̃ is its conjugate.7 This will be
convenient for considering transformations of both SU(2)L and SU(2)R.

Even though this chapter is, for the most part, a discussion/celebration of the
M � 125 GeV particle, which could well be the Standard Model Higgs boson,
we shall, for the remainder of this section, instead emphasize the symmetry aspect
of the Higgs sector. In the notation introduced above, a Higgs lagrangian invariant
under SU(2)L × U(1)Y gauge symmetry is

LHiggs = Tr
[
(DμH)∗DμH

]− V (H†H), (4.10a)

where the covariant derivative is

DμH = (∂μ + i g1

2
Bμτ3 + ig2

�τ
2
· �Wμ)H, (4.10b)

and the potential has the form

V (H†H) = −μ2 Tr
[
H†H

]+ λ (Tr
[
H†H

])2
. (4.10c)

The matrix τ3 in Eq. (4.10b) accounts for the opposite relative weak hypercharge
of� and its conjugate �̃. That the lagrangian LHiggs of Eq. (4.10a) is indeed gauge-
invariant can be verified by noting

SU(2)L : H → LH and DμH → L(DμH) U(1)Y : H → He−iτ3θY . (4.11)

Actually, the potential energy V (H†H) of Eq. (4.10c) (but not the kinetic part in
Eq. (4.10a)) is invariant under the larger set of SU(2)L× SU(2)R transformations.

Thus far, we have simply used a new notation to reproduce what we already
know. In order to learn something new, however, consider the limit g1 → 0. There
is now present the symmetry, SU(2)R, under which

SU(2)R : H → HR† and DμH → (DμH)R†. (4.12)

Thus, for the combined SU(2)L× SU(2)R transformations, we have H → LHR†,
like the sigma model matrix� mentioned at the beginning of this section. Although
true, the above analysis is incomplete; we must address the Higgs spontaneous

6 In the following, we adopt the general approach of [SiSVZ 80] and [Wi 04].
7 In the language of group theory, the conjugate spinor �̃ = iτ2�

∗ is equivalent to �.
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symmetry breaking of Eq. (II–3.25), for which the ground-state configuration of H
becomes

〈H〉 = 1

2

(
v 0
0 v

)
, (4.13)

with v ≡ (μ2/λ)1/2 as in Eq. (II–3.24). Although this ground state does not respect
the full SU(2)L × SU(2)R symmetry,

L〈H〉 �= 〈H〉, 〈H〉R† �= 〈H〉, (4.14a)

it does remain invariant under SU(2)L+R transformations, i.e., those having
R = L,

L〈H〉L† = 〈H〉. (4.14b)

This SU(2)L+R invariance is often referred to as custodial symmetry [SiSVZ 80].
In Chap. II, the basis of our discussion of the electroweak sector was the Higgs

effect, i.e., the spontaneous breaking of the gauge symmetry SU(2)L × U(1)Y .
Here, let us instead use elementary group theory to see what the g1 = 0 world,
with its exact SU(2)L+R global symmetry, would be like.8 Eq. (II–3.31) shows that
setting g1 = 0 would cause the weak mixing angle to vanish, θw → 0, and so from
Eq. (II–3.30) for Z0 → W3.

It follows from Eq. (I–5.17) that the three W-boson fields would transform
as an isotriplet under the (global!) SU(2)L transformations, and as an isosinglet
under SU(2)R (since g1 = 0). They would thus transform as an isotriplet under
SU(2)L+R and, since the SU(2)L+R symmetry is exact, the W triplet would be
degenerate. The above remarks imply the equality

ρ = (MW/(MZ cos θw))
2 = 1 (in the g1 → 0 limit). (4.15a)

When viewed as a statement of invariance, this equality is a consequence of the
SU(2)L+R symmetry, which is called ‘custodial’ for this reason. As we then return
to the real world of g1 �= 0 and allow for higher-order Standard Model corrections,
we would expect corrections to ρ = 1 to be modest [SiSVZ 80],

ρ = 1+O(α)+O(α(m2
u −m2

d)/M
2
W). (4.15b)

XV–5 The quantum Higgs potential and vacuum stability

Our treatment of the Higgs potential has thus far been at the classical level. We have
simply taken the quadratic and quartic terms that appear in the bare lagrangian,

8 For example, the electric charge would vanish (cf. Eq. (II–3.42)), so modest mass shifts would occur, e.g., the
leading-order contribution to pion mass splitting would vanish, etc.
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minimized the energy, and found the vacuum expectation value and the Higgs
mass. However, quantum effects modify this form significantly, most importantly
through a top-quark loop. Even more remarkably, the presently indicated value of
the Higgs and top masses indicate that we are very close to the border where the
Higgs potential is actually unstable. In this section, we explore the nature of the
quantum effects. Our focus is on the role of the top quark, which is the major
contributor to the potential instability.

The Higgs potential describes the vacuum energy as a function of a constant
Higgs field. Since the top-quark mass and the Higgs Yukawa coupling to the top
quark are related, it is convenient to define a background field h(x) = v + H(x).
In the following we take H (and hence h) as constant and thus omit any spacetime
dependence,

−Lt = �t√
2
(v +H)t̄t ≡ �t√

2
ht̄t ≡ mt(h)t̄ t, (5.1)

wheremt(h) = �th/
√

2 is the field-dependent mass. We then calculate the vacuum
energy as a function of mt(h). This can be done relatively simply by studying the
t t̄ contribution to the vacuum matrix element of the energy-momentum tensor Tμν ,

〈0|Tμν |0〉top = −Nc

∫
ddp

(2π)d
1

2
Tr

[
(γμpν + γνpμ) i

/p −mt(h)+ iε
]

= −12
∫

ddp

(2π)d
pμpν

i

p2 −m2
t (h)+ iε

= δV (h)gμν, (5.2)

where the important minus sign comes from the Feynman rule for a closed fermion
loop. This leads to a result

δV (h) = 3m4
t (h)

16π2

[
2

4− d − γ + ln 4π − ln
m2
t (h)

μ2
d

+ 3

2

]
, (5.3)

with μd being the scale that enters in dimensionally regularized integrals.9 The
divergence is proportional to m4

t (h) ∼ h4 and thus goes into the renormalization
of the λϕ4 term in the Higgs potential. In the MS scheme, one then arrives at the
potential,

V (h) = −1

2
μ2h2 + 1

4
λ(μd)h

4 − 3m4
t (h)

16π2

[
ln
m2
t (h)

μ2
d

− 3

2

]
. (5.4)

The −m4
t (h) lnm2

t (h) ∼ −h4 lnh2 term from the loop diagram is the key new
feature.
9 In this context we add the subscript to μd to avoid confusion with the −μ2ϕ2 term in Higgs potential.
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We note that the logarithmic term produces an instability for large enough values
of the field h. No matter what the coefficient λ(μd) of the h4 term is, the −h4 lnh2

term eventually will overpower it and lead to a potential that is unbounded below at
large enough values of h. However, New Physics (NP) beyond the Standard Model
could modify this result, for example by generating an effective operator

−LNP = 1

2
(ϕ†ϕ)3 = 1

82
h6. (5.5)

At the very least, such effects should be generated at the Planck scale  ∼ MP ,
so that we should not be concerned if the apparent instability occurs beyond the
Planck scale. However, if the instability occurs at a lower scale, it implies either
that the vacuum is at best meta-stable – a very dramatic conclusion – or that other
New Physics must come in before the Planck scale – also important.

To use the quantum effective potential, one minimizes the energy with the va-
cuum expectation value constrained to equal 246 GeV and the top-quark mass
equal to its physical value, and determines the Higgs mass parameter from the
quadratic term in the expansion. However, unlike at tree level, the curvature of the
potential near the minimum does not give the physical Higgs mass. In order to get
the Higgs pole mass one must include finite momentum effects from the vacuum
polarization diagrams.

Given the physical values of these parameters, indications are that the potential
is close to being unstable below the Planck scale. A more detailed treatment must
include the effects of the Higgs itself and of the other particles. The state of the art
includes the inclusion of more loops and the use of running couplings [De et al.
12]. Moreover, if the seesaw mechanism is at play for neutrino masses, the neutrino
Yukawa couplings provide an extra unknown destabilizing influence [CaDIQ 00].
It remains very interesting that the parameters of the Standard Model place us
so close to this prediction of an unstable Higgs potential, implying yet another
suggestion of New Physics below the Planck scale.

XV–6 Two Higgs doublets

Earlier in this chapter we briefly discussed the issue of a very heavy fourth quark
generation, assumed to otherwise resemble the observed three generations. On the
one hand, it would introduce new particles and thus lie beyond the Standard Model;
on the other, it would respect the twin pillars of gauge symmetry and spontaneous
symmetry breaking of a scalar doublet on which the Standard Model is based.
Here, we proceed analogously by briefly considering the replacement of a single
Higgs doublet � by two Higgs doublets (�1,�2) having the same SU(2)⊗ U(1)
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quantum numbers.10 A two-Higgs-doublet theory would enlarge the spectrum of
Higgs bosons and also considerably enrich the content of the Higgs potential.

Spectrum: Since each Higgs doublet corresponds to four real fields as in Eq. (1.2),
then two Higgs doublets will amount to eight real fields. Of these, three will become
the longitudinal degrees of freedom of the Z0 and W± gauge bosons. There will
also be five spinless Higgs particles: a charged pair (H±), two CP = +1 neutrals
(H, h), and one CP = −1 neutral (A). If we associate H with the Higgs boson
of the one-doublet theory, then the two-doublet model predicts the four new parti-
cles h,A,H±. At present, there is no experimental evidence for any of these four.
Current lower-mass bounds are in the range of roughly 100 GeV for each [RPP 12].

Consider, for example, charged Higgs particles [Le 73] whose rich phenomeno-
logy was realized early on [DoL 79, GoY 79]. The H± particles can be sought
directly or indirectly:

(1) Direct: Charged Higgs-pair production, e+e− → H+H− would arise via H±

coupling to photons and Z0 bosons. A charged Higgs could also couple semi-
weakly to the known fermions with strength proportional to the fermion mass.
Thus, at the LHC, a study [Aa et al. (ATLAS collab.) 13a] of gg → t t̄

followed by a decay chain such as

t → H+b→ cs̄ b and t̄ → H−b̄→ c̄s b̄

has yielded sharp upper limits on Brt→H±b for the mass range 90 < MH

(GeV) < 150.

(2) Indirect: A charged Higgs could contribute as a virtual particle, as with the
leptonic decay of a B meson,

BrB+→
+ν
 = Br(SM)

B+→
+ν


[
1− tan2 β

m2
B

M2
H±

]2

,

where tanβ ≡ 〈ϕ0
2〉/〈ϕ0

1〉.

Higgs potential: The Standard Model Higgs potential energy of Eq. (II–3.19)
is based on one quadratic mass term and one quartic Higgs self-coupling. The
most general renormalizable SU(2) ⊗ U(1) two-Higgs-doublet version has three
quadratic mass terms and seven quartic Higgs self-couplings,

10 The possibility of two Higgs-doublets is usually associated with supersymmetry, but this is not necessary.
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V2-Higgs = m2
11�

†
1�1 +m2

22�
†
2�2 −

[
m2

12�
†
1�2 + h.c.

]
+ λ1

2

(
�

†
1�1
)2 + λ2

2

(
�

†
2�2
)2

+ λ3
(
�

†
1�1
)(
�

†
2�2
)+ λ4

(
�

†
1�2
)(
�

†
2�1
)+ [λ5

2

(
�

†
1�2

)2 + h.c.

]
+ [λ6�
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]
�

†
1�1 +

[
λ7�

†
1�2 + h.c.

]
�

†
2�2. (6.1)

Since this most general structure has the potential to produce overly large flavor-
changing neutral currents (FCNCs) or gross violations of custodial symmetry, it
cannot be realized in Nature without restrictions on the ten free parameters. A great
deal of research on V2-Higgs has been reported in the literature; two recent works cit-
ing many earlier contributions are [MaM 10] and [HaO 11]. Two additional items of
interest deserve mention. One is that the above potential energy allows for CP vio-
lation. A careful discussion appears in Chapter 22 of [BrLS 99]. Another involves
the vexing strong CP problem of QCD. It has been shown that introduction of a
‘Peccei–Quinn’ global U(1)PQ symmetry [PeQ 77], which becomes spontaneously
broken, can lead to a solution of the problem. The two-Higgs framework provides
a natural platform for the U(1)PQ symmetry.

Problems

(1) The rho parameter
(a) Show that for an arbitrary number of Higgs multiplets (〈ϕi〉0 �= 0,

(i = 1, . . .)), the rho parameter becomes

ρ0 =
∑

i [(Iw)
2
i + (Iw)i − (I 2

w3)i]〈ϕi〉20
2
∑

i (I
2
w3)i〈ϕi〉20

.

(b) Given two Higgs fields, with quantum numbers Iw = −Iw3 = 1/2 and
Iw = 1, Iw3 = 0 respectively, and with nonvanishing vacuum expectation
values 〈ϕ1/2〉 and 〈ϕ1〉, obtain a bound for |〈ϕ1〉/〈ϕ1/2〉| assuming an exper-
imental value ρ0 = 1.0004± 0.0003.

(2) Higgs–gluon coupling
In the text we used the background field method to show that, at lowest order
in the momenta, the effective Higgs coupling to gluons is

Leff = αs

24π
ln

(
h2

v2

)
Fa
μνF

aμν,

with h = v + H . As mentioned briefly in the text, this coupling implies a
cancelation in the Standard Model prediction for the reaction in which two
gluons produce two Higgs bosons, which makes the residual effect small.
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In addition to the direct coupling from the above effective lagrangian, there
is a pole diagram of GG → H → HH , which utilizes the triple Higgs cou-
pling. Show that these two contributions cancel exactly at threshold.

(3) Higgs sector and the cosmological constant
The Higgs sector makes several contributions to the cosmological constant, ,
which is defined as the energy density of the vacuum. The observed value of
the cosmological constant is  = Uvac = 2.8 × 10−47 GeV4. In Eq. (2.9)
we displayed one contribution that is 51 orders of magnitude larger than the
observed value. Other calculable contributions also come from the Higgs sec-
tor. For example, show that if one changes the up-quark Yukawa coupling by
a few parts in 10−43, one changes the cosmological constant by 100%. The
leading change is linear in the Yukawa coupling, and to uncover this you may
use the effective lagrangians of Chap. VII. Specifically, compare the Yukawa
coupling’s effect on the vacuum expectation value of the lagrangian to the con-
tribution of the Yukawa coupling to the mass of the pion, expressing the result
in terms of Fπ , mπ and ratios of the quark masses.
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The electroweak sector

Early studies of the weak interactions were confined to processes, like nuclear beta
decay and muon decay, which concern just the charged weak current. Starting from
the mid-1970s, the field of weak interaction phenomenology was broadened by
experiments involving neutral weak currents. The advent of collider experiments
made possible direct studies of the W± and Z0 gauge bosons themselves. This
chapter will first address the topic of low-energy neutral-current phenomenology
and then consider physical processes at the higher mass scales MW and MZ. To
conclude, we turn to the more theoretical topic of electroweak radiative corrections
and renormalization. Throughout, we shall keep our treatment at a relatively simple
introductory level.

XVI–1 Neutral weak phenomena at low energy

The words ‘low energy’ in the title of this section denote processes withQ2 � M2
Z.

We shall focus on three of these:

(1) deep-inelastic neutrino scattering (DIνS),
(2) atomic parity violation (APV),
(3) parity-violating (PV) Møller scattering.

In each case, the main finding is a determination of the weak mixing angle at the
kinematical scale μ=Q appropriate to that experiment. In this context, it is con-
venient to use a scale-dependent version of the weak mixing angle, such as the
MS quantity ŝ2

w(μ).
1 Then, we display in Fig. XVI–1 the dependence of ŝ2

w on Q2

found from both low-energy and high-energy studies. Fig. XVI–1, although not
yet reaching the iconic status of Fig. II–6 (which displays the asymptotic freedom

1 We employ the common abbreviations sw ≡ sin θw, cw ≡ cos θw and also employ ŝw for MS
renormalization. For convenience, we shall refer (admittedly loosely) to the quantity s2

w as the ‘weak
mixing angle’.

458
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Fig. XVI–1 Scale dependence of ŝ2
w, from [RPP 12] (used with permission).

property of QCD), has become an apt representation of this field. It has, indeed,
been a major achievement of low-energy neutral-current studies to verify (within
experimental uncertainties) the variation of ŝ2

w(μ) with scale μ expected from the
Standard Model.

One can use the renormalization group to ‘run’ each of the low-energy deter-
minations up to a standard reference scale, say μ=MZ, to provide the values
for ŝ2

w(MZ) shown in Table XVI–1 [KuMMS 13]. For comparison’s sake is also
included the quantity ŝ2

w(MZ) obtained by using an average of data from experi-
ments carried out directly at the Z0 scale, e.g., Z0 decays and cross-section asym-
metries, cf. Sect. XVI–2. At present, the high-energy determination is far more
accurate than the low-energy determination due to its dominance in statistics.

Neutral-current effective lagrangians

To provide a theoretical language for such low-energy experiments, let us identify
effective lagrangians for some neutral-current processes. Recall from Eq. (II–3.40)
that the neutral weak interaction between the gauge boson Z0 and a fermion f is
given at tree level by

Table XVI–1. Weak mixing angle from neutral-current
experiments

Experiment 〈Q2〉(GeV2) ŝ2
w(MZ)

DIνS 20 0.2356(16)
APV (in Cs) 5.8× 10−6 0.2383(20)
PV Møller 2.6× 10−2 0.2329(13)

Average at Z mass scale M2
Z � 8.3× 103 0.23125(016)
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L(f )ntl−wk = −
g2,0

2cw,0
Zμ f̄

(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f

g
(f )

v,0 = T
(f )

w3 − 2s2
w,0Q

(f )

el , g
(f )

a,0 = T
(f )

w3 , (1.1)

where we denote tree-level parameters with a ‘0’ subscript. Examples of individual
g
(f )

v,0 and g(f )a,0 appear in Eq. (II–3.41). To describe neutral-current interactions at
low energies, one forms an effective four-fermion lagrangian, akin to the Fermi
model of charged-current interactions. At tree level, the Z0-mediated interaction in
the low-energy limit is

L = −1

2

g2
2,0

4c2
w,0

∑
f,f ′

f
(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f

1

M2
Z,0

f
′ (
g
(f ′)
v,0 γμ + g(f

′)
a,0 γμγ5

)
f ′

= −ρ0
Gμ√

2

∑
f,f ′

f
(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f f

′ (
g
(f ′)
v,0 γμ + g(f

′)
a,0 γμγ5

)
f ′, (1.2)

where ρ0 is the tree-level rho parameter,

ρ0 ≡ 1

c2
w,0

M2
W,0

M2
Z,0

. (1.3)

Comparison of the second of the relations in Eq. (1.2) with Eq. (V–2.1) shows that
ρ0 governs the relative strengths of the neutral and charged weak-current effective
lagrangians. In the Standard Model, it has the tree-level value unity, ρ(SM)

0 = 1. The
reader might wonder – why include a quantity, ρ0, whose Standard Model value
is unity? There are actually two reasons: (i) although ρ(SM)

0 = 1, ρ0 is not unity in
general, e.g., alternative choices for Higgs structure can lead to different values for
ρ0 (cf. Prob. XV–1), and (ii) even in the Standard Model, electroweak corrections
will change its value away from unity (cf. Sect. XVI–6).

The set of low-energy neutral-current processes includes neutrino–electron,
neutrino–quark, and parity-violating electron–quark interactions. There is an effec-
tive lagrangian for each of these, two examples being

Lνq = −Gμ√
2
ν
γ

μ(1+ γ5)ν


[
ε
(α)
L qαγμ(1+ γ5)qα + ε(α)R qαγμ(1− γ5)qα

]
L(p.v.)eq = −Gμ√

2

[
Cα

1 eγ
μγ5e qαγμqα + Cα

2 eγ
μe qαγμγ5qα

]
, (1.4)

where the index α= u, d, . . . denotes quark flavor. Of course, contributions other
than neutral weak effects also enter, e.g., parity-conserving eq scattering experi-
ences the electromagnetic interaction.

In Eq. (1.4), we have implicitly included the effect of radiative corrections and
thus omit the subscript ‘0’. Table XVI–2 gives a compilation of the radiatively



XVI–1 Neutral weak phenomena at low energy 461

Table XVI–2. Radiatively corrected coefficients.

Coefficient General forma

ε
(u)
L ρνN

(
1
2 − 2

3κνNs
2
w

)
ε
(d)
L ρνN

(
− 1

2 + 1
3κνNs

2
w

)
ε
(u)
R ρνN

(
− 2

3κνNs
2
w

)
ε
(d)
R ρνN

(
1
3κνNs

2
w

)
Cu1 ρeq

(
− 1

2 + 4
3κeqs

2
w

)
Cd1 ρeq

(
1
2 − 2

3κeqs
2
w

)
aSmall additive terms are omitted.

corrected coefficients (with renormalization scheme left unspecified). The quan-
tities ρi and κi in Table XVI–2 reduce at tree level to unity, ρi,0= κi,0= 1. The
ρi are overall multiplicative factors and the κi multiply the weak mixing angle,
which itself has become renormalized, s2

w,0 → s2
w. The presence of such quantities

in the effective lagrangians can be traced back to the underlying neutral-current
couplings,

g
(f )

v,0 → g(f )v = √ρf
(
T
(f )

w3 − 2κf s
2
wQ

(f )

el

)
, g

(f )

a,0 → g(f )a = √ρf T (f )w3 , (1.5)

where, again, we leave the renormalization scheme unspecified. However, see
[MaS 80] for the introduction of MS renormalization to electroweak corrections.
The quantities ρi and κi will be discussed in more detail later in Sect. XVI–6.

Deep-inelastic neutrino scattering from isoscalar targets

In deep-inelastic scattering, one measures the ratios of neutral to charged-current
neutrino/antineutrino cross sections,

Rν ≡ σNC
νN /σ

CC
νN , Rν̄ ≡ σNC

ν̄N /σ
CC
ν̄N . (1.6)

Under the conditions of ‘deep-inelastic’ kinematics ([BaP 87]), theoretical calcula-
tions of Rν and Rν̄ are carried out in terms of quark, rather than hadronic, degrees
of freedom. It is plausible that by working with ratios like those in Eq. (1.6), theo-
retical uncertainites associated with hadron structure tend to cancel. At tree level,
Rν and Rν̄ are straightforwardly computed if scattering from an isoscalar target is
assumed and antiquark contributions are ignored. It is useful to express the ε(α)L,R

coefficients of Eq. (1.4) as
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g2
L ≡

(
ε
(u)
L

)2 +
(
ε
(d)
L

)2 � 1

2
− s2

w,0 +
5

9
(1+ r0) s

4
w,0,

g2
R ≡

(
ε
(u)
R

)2 +
(
ε
(d)
R

)2 � 5

9
s4

w,0. (1.7)

These quantities can be determined from the combination of neutrino and anti-
neutrino cross sections,

R± ≡ Rν ± rRν̄
1± r = g2

L ± g2
R, (1.8)

where r = 1/r̄ ≡ σCC
ν̄N /σ

CC
νN are measurable quantities with tree-level values

r0= r̄−1
0 = 3. The NuTeV experiment [Ze et al. 01] at Fermilab, carried out at an

average momentum-squared transfer 〈Q2〉= 〈−q2〉 � 20 GeV2, has yielded the
most precise determination to date,

g2
L = 0.3005± 0.0014, g2

R = 0.0310± 0.0011. (1.9)

This translates into a determination of the weak mixing angle, which lies nearly
3σ above the stated Standard Model prediction, a finding which has spurred much
discussion since then.

Atomic parity violation in cesium

The Z0-mediated electron–nucleus interaction, expressed here in the electron spin
space, contains a component which is parity-violating,

HPNC(r) = Gμ

2
√

2
Qwγ5ρnucl(r), (1.10)

where γ5 signals the presence of parity violation and ρnucl(r) reminds us that the
electron feels the effect only where the nuclear density is nonvanishing.2 The quan-
tity Qw is the ‘weak nuclear charge’ to which the electron couples, and is given to
lowest order by

Qw,0(N,Z) = −2
(
NuC

u
1,0 +NdC

d
1,0

) = Z
(
1− 4s2

w,0

)+N, (1.11)

where Z and N are, respectively, the nuclear proton and neutron number. The fact
that s2

w,0 � 0.25 suppresses the proton contribution, leaving the coupling of the
atomic electron to neutrons as dominant.

Consider the effect in atomic cesium, 138Ce. Because of the neutral weak-current
interaction, the single valence electron in cesium contains small admixtures of P
wave in its 6S (ground) and 7S (excited) states. We write these mixed states as |6S〉
2 The abbreviation ‘PNC’ stands for parity nonconservation.



XVI–1 Neutral weak phenomena at low energy 463

and |7S〉. As a consequence, there occurs a measurable parity-violating 7S → 6S
electric-dipole (E1) transition matrix element [NoMW 88],

Im EPNC = 〈7S〉|D|6S〉 ≡ Qw

N
kPNC, (1.12a)

where D is the electric-dipole operator and

kPNC ≡ N

Qw

∑
n

[〈7S|D|nP 〉〈nP |HPNC|6S〉
E6S − EnP + 〈7S|HPNC|nP 〉〈nP |D|6S〉

E7S − EnP
]
.

(1.12b)

The experiments involve finding the ratio of the PNC amplitude EPNC to the vec-
tor transition probability β. The most accurate results to date on the 6S → 7S tran-
sition are EPNC/β = 1.5935(56) mV cm−1 [BeCMRTWW 97] and β = 26.957(51)
a3

B [BeW 99]. However, interpretation of the PNC measurements requires evalu-
ating Eq. (1.12b) and this contains intractable aspects of the atomic many-body
problem. There has, however, been recent progress [PoBD 09] and the latest cal-
culation gives [DzBFR 12] EPNC= 0.08977(40)i(−Qw/N), implying the weak-
charge value

Qw(
138Ce) = −72.58(29)expt(32)thy, (1.13)

where the uncertainties refer respectively to statistical and theoretical contribu-
tions. This result lies about 1.5σ beneath the Standard Model prediction Q(SM)

w

(138Ce)=−73.23(2).

Polarized Møller scattering

Another experiment which has probed the weak mixing angle at a low-energy
scale is polarized Møller scattering [An et al. (SLAC E158 collab.) 05], where
we remind the reader that Møller scattering is the elastic scattering of electrons on
electrons. In SLAC E158, a 50 GeV beam of longitudinally polarized electrons was
scattered from an unpolarized fixed target. The parity-violating observable is the
asymmetry

Apv = σR − σL
σR + σL , (1.14)

where σR(L) is the cross section for incident right (left) polarized electrons. Rel-
evant kinematic variables are the center-of-mass-squared energy s= (p + p′)2,
the momentum transfer Q2=−q2=−(p − p′)2, and the ratio of the two, y ≡
Q2/s= (1 − cos θ)/2, where θ is the scattering angle in the center of mass. The
experiment was carried out with average values 〈Q2〉= 0.026 GeV2 and 〈y〉 � 0.6;
the tiny asymmetry Apv=−131(14)stat(10)sys × 10−9 was found.
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There are three parts to the theory analysis. First is the tree-level amplitude,
where the Møller scattering amplitude arises from t-channel and u-channel γ and
Z0 exchange diagrams. Parity violation is due to the interference of the electromag-
netic and weak neutral-current amplitudes. An approximate tree-level expression
for Apv which is valid for the conditions of the E158 experiment is

A(tree)
pv � GμQ

2

√
2πα

· 1− y
1+ y4 + (1− y)4

(
1− 4 sin2 θw,0

)
. (1.15)

The dependence on the weak mixing angle suppresses A(tree)
pv due to the proximity

of sin2 θw,0 to 1/4.
Next are the one-loop corrections, due mainly to the γ –Z0 propagator-mixing

terms induced by fermion and W -boson loop amplitudes [CzM 96]. These are
absorbed by the MS running weak mixing angle,

ŝ2
w(μ) = (1+�κ(μ)) ŝ2

w(MZ), (1.16a)

as parameterized by �κ(μ). In particular, one finds �κ(0) � 0.03, so that

1− 4 sin θ2
w � 0.075 =⇒ 1− κ(0)ŝ2

w(MZ) � 0.046. (1.16b)

The rather small (∼3%) effect of �κ(0) translates into a major (∼40%) change
in 1− 4 sin θ2

w! Finally comes the renormalization-group-improved analysis
[ErR-M 05]. This serves to ameliorate the dependence on large logarithms (ln(m2

f /

Q2) and ln(M2
W/Q

2) for fermion and W -boson loops respectively), which appear
in the one-loop amplitudes. This results in the improved determinations,

�κ(0) = 0.03232± 0.00029, ŝ2
w(0) = 0.23867± 0.00016. (1.17)

XVI–2 Measurements at the Z0 mass scale

The collection of resonances observed in eē collisions as a function of the total
center-of-mass energy is displayed in Fig. XVI–2. At the Z0 mass scale, it is the
weak interaction which dominates the physics in this reaction, with strong and elec-
tromagnetic effects merely supplying modest corrections. An enormous database
has been established at the Z0 factories with the LEP1 experiments at CERN and
the SLD collaboration at SLAC. There also exists data from pp̄ → f +f − mea-
sured at the Tevatron as well as that from pp → 
+
− + X taken by the LHC
detectors. These experiments have come to be analyzed in terms of a so-called
‘effective description’ wherein the renormalized vector and axial-vector couplings
of Eq. (1.5) are written as

ḡ(f )v = √ρf
(
T
(f )

w3 − 2s̄2
fQ

(f )

el

)
, ḡ(f )a = √ρf T (f )w3 , (2.1)
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Fig. XVI–2 Resonances in eē collisions.

where the superbars denote evaluation in the effective renormalization scheme
associated with the scaleμ=MZ. In this approach, the effective weak mixing angle
s̄f for fermion f is defined so as to absorb the κf factor in Eq. (1.5) [Sc et al. 06],

s̄2
f ≡ κf s

2
w, (2.2a)

and can be measured experimentally by

s̄2
f =

1

4

(
1− ḡ(f )v /ḡ(f )a

)
, (2.2b)

independent of the quantity κf .3

We shall discuss two kinds of measurements in the following: Z0 decay into
fermion–antifermion pairs, which is sensitive to (ḡ(f )v )2+(ḡ(f )a )2, and cross-section

3 Although both ρf and κf are both generally complex-valued, we shall tacitly use just the real part without
further comment.
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asymmetries in the reaction e−e+ → f f̄ at energy
√
s=MZ, which determine

the ratios ḡ(f )v /ḡ
(f )
a and thus lead to precise determinations of s̄2

f but not of the
individual couplings themselves. However, between the two kinds of experiments
a full determination of the couplings becomes possible. A comprehensive review
of Z0-related studies carried out at CERN and SLAC appears in [Sc et al. 06].

Decays of Z0 into fermion–antifermion pairs

Experiments at the LEP and SLD colliders have provided accurate determinations
of the Z0 mass and decay modes [Sc et al. 06]. To lowest order, the decay of a Z0

boson into a fermion–antifermion pair f f̄ can be conveniently expressed as

L(f f̄ )ntl =
(√

2GμM
2
Z

)1/2
Zμf̄ γμ

(
g(f )v + g(f )a γ5

)
f, (2.3)

where f = u, d, νe, e, . . . . Upon defining y ≡ m2/M2
Z for fermion mass m, we

obtain for the lowest-order transition rate to a pair f f̄ ,

�
(0)
Z0→f f̄

= Nc

6π

GμM
3
Z√

2

(
g(f )2v + g(f )2a

)√
1− 4y

[
1+ 2y

g
(f )2
v − 2g(f )2a

g
(f )2
v + g(f )2a

]

−→
y→0

Nc

6π

GμM
3
Z√

2

(
g(f )2v + g(f )2a

)
, (2.4a)

where Nc= 3 if f is a quark and unity otherwise. If the final-state fermions are
quarks, QCD-radiative corrections modify Eq. (2.4a) by a multiplicative factor
δQCD,

δQCD = 1+ αs
(
M2
W

)
π

+ 1.41

(
αs(M

2
W)

π

)2

+ · · · � 1.04, (2.4b)

where αs(M2
W) � 0.12 has been used in the above.

There exist also electroweak radiative effects, which we can take into account
by employing the effective weak coupling constants ḡ(f )v and ḡ

(f )
a of Eq. (2.1).

Upon including both strong and electroweak corrections, the tree-level relation of
Eq. (2.4a) is replaced (shown here in the limit of massless final-state fermions) by

�Z0→f f̄ = ηf
Nc

6π

GμM
3
Z√

2

(
ḡ(f )2v + ḡ(f )2a

)
, (2.5)

where ηf = δQCD if f is a quark and ηf = 1 otherwise.
Some Z0 decay-related quantities are listed in Table XVI–3. These results are

taken from [Sc et al. 06], but many others are provided in this source. Although
there will be some adjustments from more recent studies (e.g. see [RPP 12]), the
overall picture provided by [Sc et al. 06] bears testimony to an impressive advance
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Table XVI–3. Z0 decay [Sc et al. 06].

Measurablea Experiment Standard Model prediction

�eē 83.9± 0.1 84.00± 0.01
�inv 496.2± 8.8 501.66± 0.03
�bb̄ 377.3± 0.3 375.98± 0.03
�tot 2495.2± 2.3 2496.0± 0.2
ḡ
(
)2
v 0.0012± 0.0003 0.0011 → 0.0013
ḡ
(
)2
a 0.2492± 0.0012 0.2513 → 0.2518

aDecay widths are expressed in units of MeV.

in particle physics. One application, among many, of the Z0 decays is to use lep-
tonic modes to test the concept of lepton universality, and one finds

�μμ̄

�eē
= 1.0009± 0.0027,

�τ τ̄

�eē
= 1.0021± 0.0030, (2.6)

which is seen to be consistent with universality.

Asymmetries at the Z0 peak

For the reaction e−e+ → f f̄ carried out at the Z0 peak a natural variable is the
asymmetry parameter for fermion f ,

Af ≡ 2
ḡ
(f )
v ḡ

(f )
a

ḡ
(f )2
v + ḡ(f )2a

= 2
ḡ
(f )
v /ḡ

(f )
a

1+
(
ḡ
(f )2
v /ḡ

(f )2
a

) , (2.7)

which can be determined experimentally from angular distribution and/or polar-
ization data, as discussed below. In the case that the final-state fermion f is a
quark q, then it is hadrons which are detected and the final-state hadronic charge
asymmetry which is measured. It is to be understood that the measured data have
been corrected for contributions such as initial-state QED corrections, γ exchange,
γ –Z0 interference, etc., leaving asymmetries which are purely electroweak in ori-
gin. Finally, let the incident electron beam carry a polarization Pe but the positron
beam be unpolarized. For LEP1, the incident electron beam is unpolarized (Pe= 0),
whereas for SLC one has partial polarization (Pe � 0.75).

In the following, the symbols σF and σB refer to

σF = 2π
∫ 1

0
d cos θ

dσ

d�
, σB = 2π

∫ 0

−1
d cos θ

dσ

d�
, (2.8)

and σL, σR denote the cross section for an incident left-handed and right-handed
polarized electron. Then three types of asymmetry are:
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AFB ≡ σF − σB
σF + σB [forward–backward], (2.9a)

ALR ≡ σL − σR
σL + σR [left–right], (2.9b)

ALRFB ≡ (σF − σB)L − (σF − σB)R
(σF − σB)L + (σF − σB)R [left–right forward-backward], (2.9c)

and the relation of these to the asymmetry parameter of Eq. (2.7) is

A
(f )

FB =
3

4
Af

Ae + Pe

1+AePe

ALR = AePe A
(f )

FBLR =
3

4
Af . (2.10)

Yet another approach is to exploit the fact that final-state tau leptons themselves
carry a polarization Pτ , which affects the tau angular distribution as well as its FB
asymmetry P (τ )

FB . As such, the LEP1 experiments were able to extract the asymme-
try parameters Aτ and Ae via the polarization measurements

Aτ = −Pτ , Ae = −4

3
P (τ )

FB . (2.11)

The above set of asymmetries were the subject of much study for a number of
years. One interesting example is the high-precision measurement of ALR carried
out by the SLD collaboration [Ab et al. (SLD collab.) 00]. The left–right asym-
metry was measured from the e+e− production cross section by counting (mainly)
hadronic final states for each of the two longitudinal polarizations of the incident
electron beam at energies near the Z0 mass. Despite the emphasis on detecting
final-state hadrons, this measurement actually probes the asymmetry parameter of
the incident-state electrons,

ALR = 1− 4s̄2



1− 4s̄2

 + 8s̄2




, (2.12)

where we have assumed lepton universality in writing the weak mixing angle as
s̄2

 . The precision measurement of ALR then leads to the following determination

of s̄2

 ,

A
(e)
LR = 0.15138± 0.00216, s̄2


 = 0.23097± 0.00027. (2.13)

In summary, the collection of measurements taken at scale μ=MZ has, on the
whole, been in agreement with Standard Model expectations.

Let us conclude by commenting on just a few topics:

(1) Effective weak mixing angle s̄
: Adopting a Higgs mass value MH = 125 GeV,
the Standard Model prediction [ErS 13] s̄2


 = 0.23158 is consistent with the
experimental determination s̄2


 = 0.23153± 0.00016.
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(2) Unresolved issue: A long-standing item is the roughly 3σ difference between
the two most precise individual measurements s̄
= 0.23097 ± 0.00027
(via ALR from the SLD production cross sections discussed earlier) and
s̄2

 = 0.23221± 0.00029 (via AFB from the Z0 → bb̄ transition found at LEP).

Despite much discussion, the issue remains unresolved.
(3) Quantum corrections: The large collection of high-quality Z0 data has pro-

vided determinations which are sensitive to quantum corrections. For exam-
ple, the result g(
)a =−0.50125 ± 0.00026 (found in part by assuming lepton
universality) implies via Eq. (2.1) that ρ
= 1.005 ± 0.001. This differs from
the bare value ρ(tree)


 = 1.000 by 5σ and attests that quantum corrections have
indeed been probed. Some even more impressive examples appear in Sect. I of
[FeS 12].

Definitions of the weak mixing angle

Thus far in this chapter, we have made reference to three different versions of (and
notations for) the weak mixing angle,

Effective : s̄2
f On-shell : s2

w MS : ŝ2
w(μ). (2.14)

Since there is, in principle, an unlimited number of renormalization prescriptions
for a given quantity in quantum field theory, it is no surprise to come across the
three above usages in the literature (several others, not covered here, also exist).
Let us briefly consider their relation to each other, starting with the effective weak
angle for a lepton 
.

Given the definition for s̄2

 in Eq. (2.2b), it’s clear that this quantity is tied to the

ratio ḡ(
)v /ḡ(
)a as measured at the scale μ=MZ. The motivation for doing things
this way is a matter of convenience for the massive experimental effort by the Z0

factories – one reads off a basic quantity of the Standard Model directly in terms
of Z0-related data. The current precise determination, given earlier and repeated
here, of s̄2


 = 0.23153 ± 0.00016 attests to the success achieved by the Z0-factory
experimentalists in doing precision physics.

We have already seen (cf. Sect. II–1) how modified minimal subtraction (MS)
can be implemented in dimensional regularization for the electric charge e(q2),
and one proceeds accordingly for the weak mixing angle ŝ2

w(q
2) (or sw(q

2)MS) by
adopting the scale-dependent definition [Ma 79, MaS 81],

ŝ2
w

(
q2
) ≡ e2

(
q2
)

g2
2

(
q2
) . (2.15)

A fit to the current database yields the value appearing already in Table XVI–1,
viz., ŝ2

w(MZ)= 0.23125± 0.00016.
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The effective and MS descriptions of the weak mixing angle can be related
[GaS 94]. As pointed out in [GaS 94] there was, at the time of the LEP1 operation,
‘considerable confusion among theorists and experimentalists alike as to the pre-
cise conceptual and numerical relation between the two’. The analysis in [GaS 94]
established that

s̄2

 = Reκ̂
(MZ) ŝ

2
w(MZ) � 1.0012 ŝ2

w(MZ) � ŝ2
w(MZ)+ 0.0003. (2.16)

This is in accord with the individual values for s̄2

 and ŝ2

w(MZ) given above.
Finally, the on-shell weak mixing angle is defined in terms of the physical gauge-

boson masses,

s2
w ≡ 1−M2

W/M
2
Z. (2.17a)

Thus, the on-shell weak mixing angle can be experimentally determined directly
from MW and MZ. Inserting the gauge-boson mass values from Table I–1 into
Eq. (2.17a), one has

s2
w

∣∣
MW,MZ

= 0.2229± 0.0003. (2.17b)

The current uncertainty in s2
w

∣∣
MW,MZ

, about twice that in s̄2

 and ŝ2

w(MZ), is due
largely to theW± mass uncertainty, δMW = 15 MeV, compared to the much smaller
δMZ = 2.1 MeV. With the completion of the Tevatron data analysis, along with the
resumption of LHC operations, the precision gap between the direct on-shell deter-
mination and the alternative s̄2


 and ŝ2
w(MZ) schemes is expected to be narrowed.

Even so, the fact that the on-shell scheme contains some relatively large O(Gμm
2
t )

corrections (see Sect. XVI–6 for a discussion) not present in MS renormalization
lessens its appeal for use in electroweak perturbation theory.

Returning to the idea of scale-dependent (or running) quantities, consider the
possibility of relating gauge coupling constants ĝk (k= 1, 2, 3) in the MS scheme
at the Z0 scale with those of a ‘grand unified’ theory defined at an energy EGUT 

MZ. The so-called GUT scale signals the existence of a gauge group undergoing
spontaneous symmetry breaking to SU(3)c × SU(2)L × U(1)Y . The condition

ĝ1 = ĝ2 = ĝ3 (E = EGUT) (2.18)

leads to a prediction [GeQW 74] for the weak mixing angle at the scaleEGUT. In the
grand unified theory of SU(5) [GeG 74, La 81] and its supersymmetric extension
(SUSY–SU(5)), the MS weak mixing angle obeys

ŝ2
w(EGUT) = 3/8. (2.19)
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At the much lower energy scale μ=MZ, this value is reduced by a calculable
amount,4

ŝ2
w(MZ) ≡ s̄2

w =
3

8

[
1− C ᾱ

2π
ln
MX

MZ

+ · · ·
]
, (2.20)

where ᾱ ≡ α̂(MZ), MX is the mass scale of the superheavy gauge bosons, and C
is a constant which depends upon the number nH of Higgs doublets,

C =

⎧⎪⎨⎪⎩
110− nH

9
(SU(5))

30− nH
3

(SUSY–SU(5)).
(2.21)

The SU(5) extension of the Standard Model has nH = 1, whereas the minimal
supersymmetric model takes nH = 2.

The ‘bare-bones’ SU(5) model turns out to be unacceptable. It is well known to
give rise to an unacceptably short proton lifetime, and precision data indicate that
the three coupling constants of the Standard Model disagree with a single unifi-
cation point if evolved according to SU(5) [AmBF 91]. Interestingly, the SUSY
extension improves matters in both respects. The rate at which ŝ2

w(μ) ‘runs’ is
decreased due to contributions from supersymmetric partners (‘sparticles’) of the
known particles, and the unification scale is raised to a level (MX � 1016 GeV) con-
sistent with the observed proton stability. The unification condition of Eq. (2.18)
is better satisfied. Studies continue on whether supersymmetry breaking yields
insights regarding masses of the long-sought SUSY ‘sparticles’.

XVI–3 Some W± properties

We shall return to issues regarding the weak mixing angle and its several definitions
in Sect. XVI–4. Before that, however, we consider some aspects of W± physics.
The LEP2 (e+e−), the Tevatron (p̄p) and the LHC (pp), colliders have provided
copious W±-related data.

Decays of W± into fermions

The decay of a W -boson into a lepton and neutrino pair 
ν
 is governed by the
lagrangian,5

L(lept)
ch = − g2√

8
W+
μ ν
γ

μ(1+ γ5)
 + h.c. (3.1)

4 Actually, Eq. (2.20) represents a simplification in that (i) lowest-order estimates for the renormalization-
group coefficients are employed, (ii) supersymmetry-breaking effects are ignored, and (iii) the fact that
mt > MZ is also ignored.

5 Although we shall denote tree-level decay widths, cross sections, etc. with a zero superscript in this section,
for the sake of notational simplicity, we shall suppress the zero subscript for bare parameters.
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It is a straightforward exercise to compute the tree-level decay width,

�
(0)
W→ν



= g2
2

8

MW

6π
(1− x)

(
1− x

2
− x2

2

)
−→
x→0

1

6π

Gμ√
2
M3
W, (3.2)

where x ≡ m2

/M

2
W and we have employed Eq. (II–3.43). Including a small electro-

weak correction, we have �W→eνe � 0.226 GeV.
There exist also decays W → q(i)q(j) into quark modes (the superscripts i,

j = 1, 2, 3 are generation labels), induced by the lagrangian

L(qk)
ch = − g2√

8
W+
μ Vij q

(i)
k γ

μ(1+ γ5)q
(j)

k + h.c., (3.3)

where Vij is a CKM matrix element, and the index k labels color. The lowest-order
decay width for quark emission is∑

color

�
(0)
W→q(i)q(j)

= 1

2π

Gμ√
2
M3
W

∣∣Vij ∣∣2 [1− 2(x + x)+ (x − x)2]1/2
×
[

1− x + x
2

− (x − x)2
2

]
−→
x,x→0

1

2π

Gμ√
2
M3
W

∣∣Vij ∣∣2 , (3.4)

where x, x are mass ratios defined as above, and we assume that all emitted quarks
eventually convert to hadrons. Since the t quark is too massive to be a product ofW
decay, a sum over accessible quark flavors yields

∑
i,j

∣∣Vij ∣∣2 = 2. For decay into
quarks, these lowest-order partial decay widths are modified by δQCD, the QCD
factor of Eq. (2.4b) introduced in our earlier discussion of Z0 hadronic decays.

If all final-state masses are ignored, the predicted total width for W± decay into
fermions is

�
(tot)
W± = �

(had)
W± + �(lept)

W± � 2.093 GeV

(
MW(GeV)

80.385

)3

. (3.5)

An average of data [RPP 12] yields the value �(tot)
W± = 2.085± 0.042 GeV, which is

consistent with the prediction of Eq. (3.5). The current experimental uncertainty far
exceeds that from theory. In the limit of massless final-state particles, the branch-
ing ratio for decay into a lepton pair 
ν̄
 is (Br)
 � 1/9 (
= e, μ, τ), while
inclusive decay to a mode containing a positively charged quark q (q = u, c) gives
(Br)q � 1/3.

Triple-gauge couplings

The SU(2)× U(1) lagrangian of Eq. (II–3.10) and the SU(2) field strength tensor
of Eq. (II–3.11) alert us that there will be trilinear and quadrilinear couplings of the



XVI–3 Some W± properties 473

gauge bosons. We shall limit our discussion here to the so-called charged triple-
gauge couplings (TGCs). Upon using Eq. (II–3.30) to replace the neutral gauge
bosons Bμ,W 3

μ with the physical fields Aμ,Z0
μ, we can write an effective WWV

(V =Z0, γ ) lagrangian as6

LWWV = igWWV

[
gV1
(
W †
μνW

μ −WμνW
μ†
)
V ν + κVW †

μWνV
μν

+ i λV
M2
W

W †
ρμW

μ
ν V

νρ

]
, (3.6a)

whereWμν ≡ ∂μWν−∂νWμ, Vμν ≡ ∂μVν−∂νVμ and gWWV represents the coupling
strengths

gWWγ = −e, gWWZ0 = −e cot θw. (3.6b)

The above lagrangian is constrained to contain only terms which are invariant under
charge-conjugation (C), parity (P), and SU(2) × U(1) gauge transformations. In
the Standard Model, the individual couplings in Eq. (3.6a) become

gV1 = 1, κV = 1, λV = 0
(
V = Z0, γ

)
, (3.6c)

and are consistent with the following constraint of gauge invariance,

κZ = gZ1 − (κγ − 1) tan2 θw, λZ = λγ . (3.6d)

A recent review of LEP experiments gives [Sc et al. 13]

gZ1 = 0.984+0.018
−0.020, κγ = 0.982± 0.042, λγ = −0.022± 0.019, (3.7)

consistent with Standard Model expectations.
We can read off static electromagnetic properties of the W boson upon taking

V = γ . The decomposition in Eq. (3.6a) allows for the existence of a magnetic
dipole moment μW and an electric quadrupole moment qW ,

μW = e

2MW

(1+ κγ + λγ ), qW = − e

M2
W

(κγ − λγ ), (3.8a)

or to lowest order in the Standard Model (SM),

μSM
W = e/MW, qSM

W = e/M2
W . (3.8b)

A number of experimental studies of the TGCs, especially data from the LEP2
e+e−, the Tevatron p̄p, and the LHC pp colliders, has emphasized searching for
anomalous TGCs, often expressed in terms of the five quantities,

�gZ1 ≡ gZ1 − 1, �κZ ≡ κZ − 1, �κγ ≡ κγ − 1, λZ, λγ . (3.9)

6 Unlike TGCs with two W± bosons, purely neutral gauge-boson vertices are not present at tree level in the
Standard Model.
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These constitute anomalous behavior in that they vanish for the Standard Model
values in Eq. (3.6c). Currently, no experimental evidence exists for any of the
anomalous TGCs, for example

−0.038 < λZ < +0.031, −0.111 < �κγ < 0.142 [CMS],

−0.074 < λZ < +0.073, −0.135 < �κγ < 0.190 [ATLAS]. (3.10)

The status of recent bounds is indicated by the results the LHC detectors. ATLAS
and CMS will be performing further studies at higher energies and, even lacking
discovery of such effects, will supply ever more stringent bounds on anomalous
behavior.

We can expand the preceding discussion to incorporate possible violations of
parity and charge-conjugation invariance, for which an appropriate effective
lagrangian L̃WWV which does just this is

L̃WWV = gWWV

[
iκ̃VW

†
μWνṼ

μν + i λ̃V
M2
W

W †
αμW

μ
νṼ

να

+ gV4 W †
μWν (∂

μV ν + ∂νV μ)+ gV5 εμναβ
(
W †
μ∂αWν − ∂αW †

μ ·Wν

)
Vβ

]
.

(3.11)

Here, κ̃γ and λ̃γ are P -violating but C-invariant, whereas gV4 respects P but not
C and gV5 respects neither P nor C. In particular, the W boson could itself have
static properties which violate at least some of the discrete symmetries. For exam-
ple, an electric dipole moment dW or magnetic quadrupole moment q̃W would be
parameterized as

dW = e

2MW

(̃
κγ + λ̃γ

)
, q̃W = − e

M2
W

(̃
κγ − λ̃γ

)
. (3.12)

Limits on the neutron electric dipole moment can be used to place a bound on
the W electric dipole moment [MaQ 86], and an updated evaluation gives |dW | ≤
5× 10−21 e-cm.

XVI–4 The quantum electroweak lagrangian

In the following three sections, we shall give a simple description of how electro-
weak radiative corrections are calculated. We begin by quantizing the classical
electroweak lagrangian to obtain certain of its Feynman rules. We also expand on
earlier comments made in Sect. XVI–1 regarding on-shell renormalization.
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Classical electroweak theory of three fermion generations is defined by an
SU(2)L × U(1)Y gauge-invariant lagrangian,7

L(cl)
ew = L(cl)

ew

({
ψ
(f )

L,R

}
,Wμ, Bμ,� ; {gf }, g1, g2, λ, v

2
)
, (4.1)

where � is the Higgs doublet and the collection {gf } of Higgs–fermion coupling
constants is flavor-nondiagonal. With spontaneous symmetry breaking, all parti-
cles but the photon become massive and diagonalization of the neutral gauge-
boson mass matrix occurs in the basis of the photon Aμ and massive gauge-boson
Z0
μ fields, as given at tree level by Eq. (II–3.30). In addition, diagonalization of

the charged-fermion and neutrino mass matrices for the three-generation system
involves additional mixing angles and phases. The physical degrees of freedom of
the gauge and Higgs sectors become manifest in unitary gauge (cf. Sect. XV–1),

L(cl)
ew = L(cl)

ew

({
ψ(f )

}
,W±

μ , Z
0
μ,Aμ,H0 ; {mf },MW,MZ,MH, e

)
, (4.2)

where the fermion mixing parameters are included in the {mf }.

Gauge fixing and ghost fields in the electroweak sector

The quantum electroweak lagrangian L(qm)
ew will contain, in addition to the classical

lagrangian of Eq. (4.1), both gauge-fixing and ghost-field contributions,

L(qm)
ew = L(cl)

ew + L(g-f)
ew + L(gh)

ew . (4.3)

Mixing between gauge fields and unphysical Higgs fields occurs in the covariant
derivative of the Higgs doublet (cf. Eq. (II–3.18)),8

LHG =
∣∣∣∣(I
(
∂μ + i

2
g1Bμ

)
+ i

2
g2�τ · �Wμ

)
�

∣∣∣∣2 + · · ·
= i

g1

2
(∂μ�)†Bμ�+ i g2

2
(∂μ�)†�τ · �Wμ �+ h.c.+ · · · . (4.4)

One can arrange the gauge-fixing term to cancel such mixing contributions.
Expressing the complex Higgs doublet in terms of the physical fieldH0, unphysical
fields χ+, χ3, and the vacuum expectation value v as

� = 1√
2

( √
2χ+

H0 + iχ3 + v
)
, (4.5)

we write the gauge-fixing contribution in the form,

7 We have replaced the Higgs parameter μ2 by the equivalent quantity v2.
8 Mixing also occurs, of course, between the neutral gauge fields Bμ, W3

μ.
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L(g-f)
ew = − 1

2ξ+

∣∣∣∣∂μWμ
+ − ξ+g2v

2
χ+
∣∣∣∣2

− 1

2ξ3

(
∂μW

μ

3 −
ξ3g2v

2
χ3

)2

− 1

2ξ0

(
∂μB

μ + ξ0g1v

2
χ3

)2

. (4.6)

It is not hard to see that cancelation of the unwanted Higgs–gauge mixing terms
occurs for arbitrary values of the gauge-fixing parameters ξ+,3,0. Even with this
cancelation, there remain in L(g-f)

ew quadratic terms containing the unphysical Higgs
fields, and such terms will contribute to the propagators of these fields.

As explained in App. A–6, once the gauge fixing is specified as in Eq. (4.6), the
structure of the Faddeev–Popov lagrangian L(gh)

ew of ghost fields is determined. For
the electroweak sector, it turns out that there are four ghost fields,

L(gh)
ew = L(gh)

ew (cW, cB). (4.7)

These are associated with the four gauge fields Wμ, Bμ which appear in the original
SU(2)L × U(1)Y symmetric lagrangian.

A subset of electroweak Feynman rules

The full set of electroweak Feynman rules is rather lengthy and we refer the reader
to the detailed discussions in [BöHS 86, AoHKKM 82] or to the summary in
[Ho 90]. A few of the more useful rules, expressed in terms of bare parameters
are9

fermion W -boson vertex:

−i e

2
√

2sw

Vij
[
γμ(1+ γ5)

]
αβ

μ

αβ j i (4.8a)

fermion Z-boson vertex:

−i e

2swcw

[
γμ(g

(f )
v + g(f )a γ5)

]
αβ

μ

αβ (4.8b)

9 For notational simplicity, we suppress the zero subscript in the following discussion.
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W -boson propagator iD(W)
μν (q):

i
q2 −M2

W + iε
[
−gμν + qμqν(1− ξ+)

q2 − ξ+M2
W + iε

]
μ

q

ν (4.8c)

Z-boson propagator iD(Z)
μν (q):

i
q2 −M2

Z + iε
[
−gμν + qμqν(1− ξZ)

q2 − ξZM2
Z + iε

]
μ

q

ν (4.8d)

unphysical charged Higgs propagator i�(χ+)(q):

i

q2 − ξ+M2
W + iε

q
(4.8e)

In the above, (Vij ) is a matrix element for quark-mixing, g(f )(v,a) are given in Eq. (II–
3.41), and ξZ is defined by expressing the gauge fixing in the form of Eq. (4.6) but
using the physical neutral fields.

As seen in Eqs. (4.8c), (4.8e), each boson propagator is explicitly gauge-
dependent and, in particular, the propagator of the unphysical χ+ vanishes in the
ξ+→∞ limit of the unitary gauge. This is as expected, because only physical
degrees of freedom appear in unitary gauge. In fact, the absence of unphysical
degrees of freedom in unitary gauge would appear to be an appealing reason for
carrying out the computation of radiative corrections in this gauge. However, there
is a ‘hidden cost’. In unitary gauge, the W± propagator of Eq. (4.8c) becomes

iD(W)
μν (q)

∣∣∣∣
unitary

= i
−gμν + qμqν/M2

W

q2 −M2
W + iε

, (4.9)

and the high-energy behavior produced by the qμqν/M2
W term makes this a ques-

tionable choice for doing higher-order calculations. Instead, as the price for accept-
able high-energy behavior, many opt to accept the presence of unphysical fields.
One popular choice of gauge fixing is the ’t Hooft–Feynman gauge, defined by
setting all the gauge-fixing parameters equal to unity, ξi = 1. In this gauge, the
lowest-order propagators for the physical gauge bosons and unphysical Higgs and
ghost fields have poles at either M2

W or M2
Z. This condition can be maintained in

higher orders by a suitable renormalization of the gauge-fixing parameters.
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On-shell determination of electroweak parameters

The topic of electroweak radiative corrections to Standard Model quantities has
been well developed over many years of research and by now there exists an
impressively large literature. To focus our attention, there is one aspect that we
will particularly address in the following. Given that the largest mass parameter in
the Standard Model is that of the top quark, a natural question regards the effect
mt has on the set of electroweak corrections. The answer turns out to depend on
the renormalization prescription followed, its effect being largest in the so-called
on-shell scheme.

Two sets of electroweak parameters appear in the classical lagrangians of
Eqs. (4.1), (4.2),

classical parameter sets =
{
{gf }, g1, g2, λ, v

2 (Eq. (4.1)),

{mf },MW,MZ,MH, e (Eq. (4.2)).

Considered as bare (input) parameters to the quantum theory, these obey the simple
tree-level relations

MW,0 = v0
g2,0

2
, MZ,0 = v0

g2
1,0 + g2

2,0

2
, e−2

0 = g−2
1,0 + g−2

2,0,

MH,0 = v0

√
2λ0, mf,0 = v0

gf,0√
2
. (4.10)

At this stage, there are several (equivalent) expressions for the bare weak mixing
angle, e.g.,

s2
w,0 = 1− M2

W,0

M2
Z,0

or s2
w,0 =

g2
1,0

g2
1,0 + g2

2,0

. (4.11)

The second relation becomes Eq. (2.15) in the MS renormalization.
Radiative corrections will generally modify tree-level relations and, as a result,

necessitate a precise definition of the weak mixing angle. Following the analysis in
[Si 80], let us compare the parameter subsets (g1,0, g2,0, v

2
0) and (e0,MW,0,MZ,0).

Each of these bare quantities will experience a shift,

g1,0 = g1 − δg1, g2,0 = g2 − δg2, v2
0 = v2 − δv2,

e0 = e − δe, M2
W,0 = M2

W + δM2
W, M2

Z,0 = M2
Z + δM2

Z. (4.12)

In on-shell renormalization, the theory is specified in terms of e, MW , and MZ.
Moreover, the following relations are arranged to hold order by order,

e−2 = g−2
1 + g−2

2 , M2
W = v2g

2
2

4
, M2

Z = v2

(
g2

1 + g2
2

)
4

. (4.13)

These equations constrain the effects of radiative corrections upon the parameters.
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By differentiating the three relations in Eq. (4.13), one finds after a modest amount
of algebra the conditions,⎛⎜⎜⎜⎜⎝

δg2
1

g2
1

δg2
2

g2
2

δv2

v2

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎝
−1 1 1
c2

w
s2
w

− c2
w
s2
w

1
s2
w−c2

w
s2
w

c2
w
s2
w

−1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
δM2

W

M2
W

δM2
Z

M2
Z

δe2

e2

⎞⎟⎟⎟⎟⎠ . (4.14)

Also in on-shell renormalization, one defines the weak mixing angle in terms of
the masses MW,MZ as in Eq. (2.17a). Since this relation is to be maintained to all
orders, the bare value s2

w,0 will be modified by shifts in the W and Z masses,

s2
w,0 = 1− M2

W,0

M2
Z,0

= 1− M2
W + δM2

W

M2
Z + δM2

Z

� s2
w

[
1− cot2 θw

(
δM2

W

M2
W

− δM2
Z

M2
Z

)]
. (4.15)

For any renormalizable field theory, it makes sense to express results in terms
of the most accurately measured quantities available. Thus, it is preferable in the
electroweak sector to replace MW by Gμ and work with a modified parameter set,

Physical parameter set =

⎧⎪⎨⎪⎩
α−1 = 137.035999173(35),

Gμ = 1.1663787(6)× 10−5 GeV−2,

MZ = 91.1876(21) GeV.

(4.16)

To accomplish this, the relationship Gμ = Gμ(α,MW,MZ, . . . ) can be used to
replace MW by Gμ.

XVI–5 Self-energies of the massive gauge bosons

It is is evident from Eq. (4.14) that the parameter shifts δe2, δM2
W and δM2

Z play an
important role in the study of electroweak radiative corrections. We have already
determined from our analysis of QED (cf. Eq. (II–1.30)) that

δe2

e2
= −�(0), (5.1)

where the photon vacuum polarization �(q2) appears in Eq. (II–1.26). In this sec-
tion, we shall compute the portion of δM2

W and δM2
Z arising from the fermionic va-

cuum polarization contributions to the W± and Z0 propagators. As a consequence,
we shall be able to reveal the presence of propagator contributions which scale as
O(Gμm

2
t ).
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The charged gauge bosons W±

The radiative correction experienced by aW± gauge boson propagating at momen-
tum q is expressed in terms of a self-energy function, �μν

ww(q
2),

�μν
ww

(
q2
) ≡ Aww

(
q2
)
gμν − Bww

(
q2
)
qμqν. (5.2)

(For notational simplicity in this subsection we denote W and Z boson subscripts
for the quantities �μν , A, and B in terms of lower-case Roman indices.) Although
a vector-boson propagator iDμν(q) generally contains terms proportional to gμν
and to qμqν , it will suffice to study just the gμν part. As indicated at the end of
Sect. II–3, the qμqν dependence is absent if the gauge boson couples to a con-
served current or will give rise to suppressed contributions if the external parti-
cles have small mass. Thus, we have for the W propagator in ’t Hooft–Feynman
gauge,

−igμν
q2 −M2

W,0

→ −igμν
q2 −M2

W,0

+ −igμα
q2 −M2

W,0

(−iAww(q
2)gαβ

) −igβν
q2 −M2

W,0

→ −igμν
q2 −M2

W,0 + Aww(q2)

= −igμν
q2 −M2

W + Aww(q2)− δM2
W

, (5.3)

where we have substituted for the bare W mass using Eq. (4.12).
Let us now calculate the loop contribution of a fermion–antifermion pair f1f̄2

to the self-energy Aww(q
2). We begin with

−i�αβ
ww(q

2)

∣∣∣∣
f1f̄2

= −(−ig2)
2ηf1f̄2

8

×
∫

d4p

(2π)4
Tr

[
γ α(1+ γ5)

i

�p −m1
γ β(1+ γ5)

i

�p −�q −m2

]
,

(5.4)

where ηf1f̄2
=Nc|Vf1f2 |2 for the case when the fermions are quarks. Aside from

the occurrence of the 1+γ5 chiral factor and the nondegeneracy in fermion masses
m1,m2, the above Feynman integral is identical to the photon vacuum polariza-
tion function of Eq. (II–1.20). It is thus straightforward to evaluate this quantity in
dimensional regularization, and we find for the gαβ component,
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A(f1f̄2)
ww (q2) = ηf1f̄2

g2
2

24π2

[
q2

{
2

ε
− γ

2
+ ln

√
4π

−3
∫ 1

0
dx x(1− x) ln

M2 − q2x(1− x)
μ2

}
−3

2

{
(m2

1 +m2
2)

[
2

ε
− γ

2
+ ln

√
4π

]
−
∫ 1

0
dx M2 ln

M2 − q2x(1− x)
μ2

}]
,

(5.5)

where M2 ≡ m2
1x + m2

2(1 − x). Since the W± boson is an unstable particle with
decay rate �W , the function Aww(q

2) is complex-valued, and we consider its real
and imaginary parts separately.

From Eq. (5.5), we see that Re Aww(q
2) is divergent. One can construct a finite

quantity Âww(q
2) by defining the field renormalization, Wμ,0= (ZW

2 )
1/2Wμ, and

constraining δM2
W and δZW

2 to cancel the ultraviolet divergence in Re Aww(q
2),

Âww
(
q2
) ≡ Aww

(
q2
)− δM2

W + δZW
2

(
q2 −M2

W

)
. (5.6)

It follows from Eq. (5.6) that the mass shift δM2
W is fixed by

δM2
W = Re Aww

(
M2
W

)
, (5.7)

and the f1f̄2 contribution to the field renormalization, which ensures that Âww

(M2
W)= 0 is

δZW
2 [f1f̄2] =

ηf1f̄2
g2

2

8π2

[
2

ε
− γ

2
+ ln

√
4π

]
. (5.8)

To obtain a relation for the imaginary part of the self-energy, we recall that insta-
bility in a propagating state of mass M is described by the replacement M →
M − i�/2. This produces the following modification of a propagator denominator,

1

q2 −M2
→ 1

q2 −M2 + iM�
, (5.9)

where we ignore the O(�2) term. Comparison with Eq. (5.5) then immediately
yields

Im Aww(M
2
W) = MW�W. (5.10)

We can use Eq. (5.6) to check this relation by setting q2=M2
W . If, for simplicity,

we neglect the masses of the fermion–antifermion pair f1f̄2, then the imaginary
part comes from the logarithm contained in the first of the integrals in Eq. (5.5),

Im
∫ 1

0
dx x(1− x) ln

−q2x(1− x)
μ2 − iε −→

q2=M2
W

−π
6
, (5.11)
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and we obtain

�W→f1f̄2
=

Im
[
A
(f1f̄2)
ww

(
M2
W

)]
MW

= ηf1f̄2

GμM
3
W

6
√

2π
, (5.12)

where we have substituted g2
2 = 4

√
2M2

WGμ. This agrees with the results of our
earlier decay width calculations for W decay in Sect. XVI–3.

The neutral gauge bosons Z0, γ

The system of neutral gauge bosons is treated analogously to the charged case
except that we must deal with a 2 × 2 propagator matrix, and the issue of parti-
cle mixing arises. Although the neutral channel was already diagonalized at tree
level (cf. Eq. (II–3.30)), interactions reintroduce nondiagonal propagator contri-
butions at higher orders. The gμν part of the neutral channel inverse propagator
D−1
[ntl]μν

(
q2
)
, diagonal at tree level,

D(0)−1
[ntl]μν

(
q2
) = igμν

(
q2 0
0 q2 −M2

Z,0

)
, (5.13)

has the renormalized form,

D(0)−1
[ntl]μν

(
q2
)→ D−1

[ntl]μν
(
q2
) = gμν

(
q2 + Âγ γ

(
q2
)

Âγ z
(
q2
)

Âγ z
(
q2
)

q2 −M2
Z + Âzz

(
q2
)) .
(5.14)

Upon taking the inverse, we obtain for the individual neutral boson renormalized
propagators,

Dμν
γγ

(
q2
) = −igμν

q2 + Âγ γ
(
q2
)− Â2

γ z

(
q2
) / (

q2 −M2
Z + Â2

zz

(
q2
)) ,

Dμν
zz

(
q2
) = −igμν

q2 −M2
Z + Âzz

(
q2
)− Â2

γ z

(
q2
) / (

q2 + Â2
γ γ

(
q2
)) ,

Dμν
γ z

(
q2
) = igμνÂγ z

(
q2
)[

q2 + Âγ γ
(
q2
)] [

q2 −M2
Z + Â2

γ γ

(
q2
)]− Â2

γ z

(
q2
) . (5.15)

Observe that there is indeed a particle-mixing propagator, Dμν
γ z , proportional to the

the reduced self-energy Âγ z(q2). It might appear from Eq. (5.15) that Z0-photon
mixing gives rise to a photon mass contribution. However, one arranges as a renor-
malization condition that Âγ z(0)= 0, and the photon remains massless under elec-
troweak radiative corrections.
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If we consider only the vacuum-polarization loop contribution due to a fermion
of mass m, we obtain for the Z0 self-energy,

−i�αβ
zz

(
q2
) = Nc

(
ig2

2cw

)2 ∫
d4p

(2π)4
Nαβ(

p2 −m2
) (
(p − q)2 −m2

) , (5.16)

where m is the fermion mass, Nc is a quark color factor, and

Nαβ = g(f )2v Tr
[
γ α�pγ

β(�p −�q)+m2γ αγ β
]

+ g(f )2a Tr
[
γ α�pγ

β(�p −�q)−m2γ αγ β
]
. (5.17)

The quantities in Nαβ are just those expected from the coupling of fermion f to
the neutral weak current. We then obtain, using dimensional regularization,

A(f f̄ )zz (q2) = g2
2Nc

16π2c2
w

[
2q2(g

(f )2
v + g(f )2a )

3

{
2

ε
− γ

2
+ ln

√
4π

−3
∫ 1

0
dx x(1− x) ln

m2 − q2x(1− x)
μ2

}
+4m2g(f )2a

{
2

ε
− γ

2
+ ln

√
4π − 1

2

∫ 1

0
dx ln

m2 − q2x(1− x)
μ2

}]
.

(5.18)

It is also easy to demonstrate that the photon–Z0 self-energy A(f f̄ )γ z is propor-
tional to A(f f̄ )γ γ for the case of a charged-fermion loop contribution,

A
(f f̄ )
γ z

(
q2
) = g

(f )
v

2cwswQf

A
(f f̄ )
γ γ

(
q2
)
, (5.19)

where Qf is the electric charge of the fermion.

XVI–6 Examples of electroweak radiative corrections

All electroweak amplitudes will be affected by radiative corrections. We have
already pointed out our interest in potentially large contributions arising from the
heavy masses mt and MH . We shall find leading corrections which are quadratic
in the top-quark mass (O(Gμm

2
t )).

10 To begin this section, we consider corrections
to the coefficients ρf and κf of Eq. (1.5), followed by an analysis of the quantum
correction known as �r , and finally the Z → bb̄ vertex correction. A historical
overview of electroweak corrections appears in [FeS 12], and a thorough state-of-
the-art presentation is given by Erler and Langacker in [RPP 12].

10 Recall from Chap. XV that corrections at leading order are only logarithmic in the Higgs mass
(O(ln[M2

H
/M2

Z
])).
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Fig. XVI–3 Top-quark corrections to the (a) W±, (b) Z0 propagators.

The O(Gμm2
t ) contribution to 
ρ

Contributions to ρf and κf can be classified as either independent of the external
fermions (universal ) or explicitly dependent on the fermion flavor f (nonuniver-
sal). Recalling that at tree level these quantities reduce to unity, we have

ρf = 1+�ρ + (�ρ)(f )nonuniv, κf = 1+�κ + (�κ)(f )nonuniv, (6.1)

where �ρ and �κ denote universal pieces. It should be apparent that W±- and
Z0-propagator corrections, like those in Fig. XVI–3, occur independent of the
external fermions and are thus ‘universal’. Nonuniversal effects have been found
to be small (i.e. subdominant) except for the Z0 → b̄b vertex. The universal
effects are of special interest because they turn out to be the primary source of
O(Gμm

2
t ) radiative corrections [Ve 77a, ChFH 78]. As such, in the following we

shall approximate

�ρ = (�ρ)t + · · · , �κ = c2
w

s2
w

(�ρ)t + · · · , (6.2)

where

(�ρ)t = 3Gμm
2
t

8π2
√

2
� 0.00942×

( mt

173.4 GeV

)2
. (6.3)

Observe in Eq. (6.2) that �κ is proportional to �ρ. This is a result of the Standard
Model; in general, these quantities are independent.

The quantity �ρ can be defined as a correction to the rho parameter of Eq. (1.3),

ρ0 = 1

c2
w,0

· DZ(q
2 = 0)

DW(q2 = 0)

ρ0 +�ρ = M2
Z + δM2

Z

M2
W + δM2

W

·
(−M2

Z − δM2
Z + Azz(0)

)−1(−M2
W − δM2

W + Aww(0)
)−1 (6.4)

or

�ρ = Azz(0)

M2
Z

− Aww(0)

M2
W

. (6.5)
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Observe that �ρ is finite since the singular terms in Eqs. (5.5), (5.18) cancel. If we
set m1=mt and m2=mb in Eq. (5.5) and include both t-quark and b-quark loops
in Eq. (5.18), a simple calculation reveals that �ρ= 0 in the limit that mt =mb.
However, the leading term in the small mb limit gives

(�ρ)t = g2
2Nc

16π2M2
W

∫ 1

0
dx

[
m2
t

2
ln
m2
t

μ2
− xm2

t ln
xm2

t

μ2

]
+ · · ·

= g2
2Nc

64π2

m2
t

M2
W

+ · · · . (6.6)

Substitution of Nc= 3 and Gμ/
√

2= g2
2/8M

2
W yields the result shown in

Eqs. (6.2), (6.3).
This quadratic dependence on the heavy-top-quark mass is in striking contrast

with the behavior observed for the photon self-energy (cf. Eq. (II–1.26)). In the
heavy-fermion limit, the photon vacuum polarization exhibits instead the decoup-
ling result O(m−2

t ). The reason for this difference is that QED is a vector theory,
whereas the charged and neutral weak interactions are chiral. Indeed, one can show
(cf. Prob. XVI–2) that the decoupling expected of a vector interaction results when
left-handed and right-handed self-energies are averaged. However, equally impor-
tant is the fact that as mt grows while mb is kept fixed, the weak doublet is being
split in mass. Thus, decoupling of the top quark in the large mt limit should not
be expected because if we were to integrate out the top quark, we would no longer
have a renormalizable theory – the remaining low-energy theory would have an
incomplete weak doublet. Early contributions to this subject appear in [Ve 77b]
and [ChFH 78]. As noted above, if both members of the doublet are taken to be
equally heavy (mt =mb →∞), there would exist no quadratic dependence on the
heavy-quark mass, and the decoupling theorem (cf. Sect. IV–2) would be satisfied.
It is the large splitting in the weak doublet which leads to the observable violation
of decoupling.

Even though two different renormalization schemes must give the same final set
of results, intermediate details will generally differ. For example, the leading mt

behaviors for the coefficients ρf and κf of Eq. (1.5) are [RPP 12],

on-shell : ρf ∼ 1+ (�ρ)t + · · · κf ∼ 1+ c2
w

s2
w

(�ρ)t + · · ·
(MS) : ρ̂f ∼ 1+ · · · κ̂f ∼ 1+ · · · , (6.7)

where (�ρ)t is defined in Eq. (6.3).11

11 The case f = b is special; the leading behaviors are ρ̂f ∼ 1− 4(�ρ)t /3 and κ̂f ∼ 1+ 2(�ρ)t /3.
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Fig. XVI–4 (a)–(b) Vertex, (c) propagator, and (d) mass-shift counterterm cor-
rections to muon decay.

The O(Gμm2
t ) contribution to 
r

The quantity �r describes the effect of electroweak corrections on the leading
order relation which defines the muon decay constant. In particular, the tree-level
relation of Eq. (II–3.43) becomes modified by the radiative corrections of
Fig. XVI–4 [Si 80, BuJ 89],

Gμ,0√
2
= g2

2,0

8M2
W,0

→ Gμ√
2
= g2

2

8M2
W

[1+�r]. (6.8a)

It is to be understood in Eq. (6.8a) that ‘Gμ’ is determined from the muon lifetime
with the photonic corrections described in Sect. V–2 already taken into account.
Thus, �r contains only the remaining electroweak effects.

To trace the origin of the quantum correction, we observe first the effect of the
W± self-energy on the bare relation in Eq. (6.8a),

Gμ√
2
= −g

2
2,0

8

1

q2 −M2
W,0 + Aww(0)

� g2
2,0

8M2
W,0

[
1+ Aww(0)

M2
W

+ · · ·
]
, (6.8b)

where we have taken q2 � 0. Next, we replace the bare parameters g2
2,0 and M2

W,0

by their physical forms as in Eq. (4.12). Comparison with Eq. (6.8a) directly yields

�r = δM2
W − Aww(0)

M2
W

− δg2
2

g2
2

. (6.9)

Upon using Eq. (4.14) for δg2
2, we can rewrite Eq. (6.9) as

�r = −δe
2

e2
− c2

w

s2
w

[
δM2

Z

M2
Z

− δM2
W

M2
W

]
+ Aww(0)− δM2

W

M2
W

. (6.10)

Recalling that theW± andZ0 mass shifts can be related to the self-energy functions
Aww(M

2
W) and Azz(M

2
Z), it should be clear that Eq. (6.9) expresses �r entirely

in terms of calculable quantities.12 Although each of the terms in Eq. (6.10) is

12 There are additional radiative corrections, such as the ‘box’ diagrams, which we shall not discuss.
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divergent, the overall combination is finite. A number of rearrangements and alge-
braic steps can be used to isolate the leading contributions, and one finds

�r = �α +�rw + (�r)rem, (6.11)

where

�α ≡ α
(
M2
Z

)− α
α

� �̂
(
M2
Z

)
, and �rw = −c

2
w

s2
w

�ρ. (6.12)

�ρ is given by Eqs. (6.5)–(6.6), and (�r)rem contains smaller finite contributions.
The largest contribution to �r is �α, the shift in the fine-structure constant.

Although we have previously expressed the variation in α(q2) in terms of fermion
masses (cf. Eq. (II–1.38)), the difficulty in precisely determining quark masses
would appear to undermine an accurate evaluation of �α. However, one can use
dispersion relations to relate the hadronic contribution to the vacuum polarization,
�̂had(q

2), directly to cross-section data. Recalling Prob. V–2, we have

�
μν

had(q
2) = ie2

∫
d4x eiq·x〈0|T (Jμem(x)J

ν
em(0))|0〉

= (qμqν − q2gμν
)
�had

(
q2
)
. (6.13)

The imaginary part of �had(q
2) is expressible in terms of cross-section data evalu-

ated at invariant energy q2,

Im �had
(
q2
) = α

3
R
(
q2
)

with R
(
q2
) ≡ σ(eē→ hadrons)

σ (eē→ μμ̄)
. (6.14)

Thus, we obtain a dispersion relation for the subtracted quantity �̂had(q
2),

�̂had
(
q2
) ≡ �had

(
q2
)−�had(0)

= αq2

3π

[∫ s0

4m2
π

+
∫ ∞

s0

]
ds

R(s)

s(s − q2 − iε) , (6.15)

where s0 denotes the point at which data become unavailable. For energies
above s0, a perturbative representation is used to approximate R(s). The result of
Eq. (6.15), when added to the lepton contributions, implies a value for α−1(M2

Z)

[DaHMZ 11],13

α−1
(
M2
Z

) = 128.952± 0.014. (6.16)

Some feeling for the magnitudes of ‘�r’ corrections is given in the following
(the numerical values have been taken from [KuMMS 13]):

13 There are minor differences in various evaluations cited in the literature, depending on how the perturbative
estimate is performed or on the particular renormalization scheme.
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Fig. XVI–5 Top-quark corrections to the Z0bb̄ vertex.

�r = 1− πα√
2GμM

2
W

(
1−M2

W/M
2
Z

) = 0.0350(9),

�r̂w = 1− πα√
2GμM

2
W Ŝ

2
w(MZ)

= 0.0699(7)(4),

�r̂ = 1− πα√
2GμM

2
ZĈ

2
w(MZ)Ŝ2

w(MZ)
= 0.0598(4). (6.17)

The above relations, although exact at tree level (the ‘�r = 0’ limit), lead to the
different values shown away from this limit. As before in this chapter, the quantities
ŝ2

w(MZ) and ĉ2
w(MZ) are defined in MS renormalization and evaluated at scaleMZ.

In order to obtain the above form for �r , we have replaced [1+�r] in Eq. (6.8a)
by 1/[1−�r], which is valid in our first-order analysis.

The Z → bb̄ vertex correction

The preceding analyses of �ρ and �r could very well be carried out for any other
electroweak observable. In most cases, we would again find important O(Gμm

2
t )

radiative corrections. Thus, for example, the Z0 width for decay into lepton 


(
= e, μ, τ ) has the form

�Z0→

̄=�(0)Z0→

̄
[1+ (�ρ)t + · · · ] , (6.18)

and grows quadratically with increasing mt [AkBYR 86]. The origin of this effect,
the one-loop t t̄ contribution to the Z0 propagator, is identical to that discussed
earlier.

Interestingly, however, a more complete calculation reveals a slight decrease to
occur in the decay rate �Z0→bb̄ as mt grows. This is because, although the decay
amplitude contains a (universal) propagator contribution proportional to (�ρ)t , an
even larger effect, the vertex correction of Fig. XVI–5, contributes with opposite
sign [AkBYR 86, DjKZ 90],14

14 Due to cancelations, the vertex correction turns out not to affect asymmetry phenomena, such as the b-quark

forward–backward asymmetry A(b)
FB

.
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�Z0→bb̄ = �
(0)
Z0→bb̄

[
1+ 19

13

(
(�ρ)t +

(
�v(b)

)
t

)+ · · · ] , (6.19)

where the Z0bb̄ vertex correction is given by

(�v(b))t = −20

19
(�ρ)t − 130

57

α

π
ln
m2
t

M2
Z

. (6.20)

The dd̄, ss̄ modes also contain virtual t-quark vertex corrections, but they are
greatly suppressed by the tiny accompanying CKM factors |Vti|2 (i= d, s). Recall-
ing the characterization given in Sect. XVI–1 of radiative corrections as either ‘uni-
versal’ or ‘nonuniversal’, one may interpet the Z0bb̄ effect as a nonuniversal term
which contributes as

(�ρ)
(b)
nonuniv = −2(�κ)(b)nonuniv = −

4

3
�ρ − α

4πs2
w

(
8

3
+ 1

6c2
w

)
ln
m2
t

M2
W

. (6.21)

Although O(m2
t ) corrections are the most important, O(ln(m2

t /M
2
Z) logarithmic

dependence has been included in Eq. (6.20) because it has a nonnegligible numer-
ical impact.

Precision tests and New Physics

In precision electroweak tests, about 20 (mainly W± or Z0) observables are fit
to Standard Model predictions (e.g. see [Ba et al. (Gfitter group) 12, RPP 12]).
Such tests are based on the availability of high-quality data (with precision at the
1% level or better), multi-loop theoretical Standard Model predictions, and sophis-
ticated software packages.15 In view of the LHC discovery regarding the Higgs
boson, the list of detected Standard Model particles is now complete. Consequently,
there will be, more than ever, an emphasis on using precision tests to probe contri-
butions from beyond the Standard Model.

As was noted ever since the first electroweak corrections were calculated (e.g.
[Ve 77a]), physics associated with a large-energy scale  should affect the gauge-
boson self-energies−i�i

μν(q) (i= γ γ, γ z,WW,ZZ). In particular, the−i�i
μν(q)

could contain loop corrections (sometimes referred to as oblique corrections) from

15 Let us describe just a few of these. The Zfitter collaboration, begun in 1985 ([AkARR 13]), established a
FORTRAN library of Standard Model predictions for e+e− → f f (+γ ′s) at energies

√
s= 20 → 150 GeV

using the on-shell renormalization scheme. The LEP electroweak working group LEPEWWG was founded
in 1993 to perform fits of LEP and Tevatron data, particularly of Z-pole observables such as the effective
weak mixing angle s̄2

f
of Eqs. (2.2b),(2.14), using Zfitter in part as input. A more recent effort using on-shell

renormalization to perform electroweak global fits is the Gfitter group. The Global Analysis of Particle
Properties (GAPP) software is employed by the Particle Data Group [Er 00]. This is a special purpose
FORTRAN package, which performs calculations and fitting procedures and utilizes MS renormalization,
Finally, the Heavy Flavor Averaging Group provides updates to world averages of heavy-flavor quantities.
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‘new’ particles. For2 
 q2, one would expect rapid convergence of an expansion
for −i�i

μν(q) in powers of q2/2, yielding the following effective low-energy
description,

−i�i
μν(q) = gμν

(
Ai + q2A′i

)+ · · · . (6.22)

This description involves eight free parameters,Aγγ , . . . , A′zz. However, the condi-
tions �γγ (0)=�γ z(0)= 0 reduce this number to six. An additional three parame-
ters can be absorbed into the renormalization of α,Gμ,MZ, which experience the
shifts [BaFGH 90],

δα

α
=−A′γ γ ,

δGμ

Gμ

= Aww,
δM2

Z

M2
Z

= −Azz

M2
Z

− A′zz. (6.23)

The three remaining parameters may be chosen to be quantities known as S, T ,U
and defined as [PeT 90] (we employ MS renormalization here [RPP 12])

α̂ (MZ)

4ŝ2
Zĉ

2
Z

S ≡
[
A(NP)

zz

(
M2
Z

)− A(NP)
zz (0)

M2
Z

− ĉ2
Z − ŝ2

Z

ŝ2
Zĉ

2
Z

A(NP)
zγ (0)

M2
Z

− A(NP)
γ γ (0)

M2
Z

]
,

α̂(MZ)T ≡
[
A(NP)

ww (0)

M2
W

− A(NP)
zz (0)

M2
Z

]
,

α̂(MZ)

4ŝ2
Z

(S + U) ≡
[
A(NP)

ww

(
M2
W

)− A(NP)
ww (0)

M2
W

− ĉZ

ŝZ

A(NP)
zγ (0)

M2
Z

− A(NP)
γ γ (0)

M2
Z

]
,

(6.24)

where the superscript (NP) refers to contributions only from New Physics. Clearly,
these S, T ,U parameters are defined so as to vanish in the limit of only Stan-
dard Model physics. If nonzero, they would appear as new contributions to various
observables, e.g., [

M
(expt)
Z

M
(SM)
Z

]2

= 1− α̂(MZ)T

1−GμM
(SM)2
Z S/(2

√
2π)

,

[
M

(expt)
W

M
(SM)
W

]2

= 1

1−GμM
(SM)2
W (S + U)/(2√2π)

,

[
M

(SM)
Z

M
(expt)
Z

]3

· �
(expt)
Z

�
(SM)
Z

= 1

1− α̂(MZ)T
, (6.25)

all of which compare the experimental value with the Standard Model (SM) predic-
tion. In this way, bounds are placed on the New Physics parameters and the results
found in [RPP 12] are16

16 The range of Higgs-boson masses 115.5 < MH (GeV) < 127 was used as input.
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S = 0.00+0.11
−0.10, T = 0.02+0.11

−0,12, U = 0.08± 0.11, (6.26)

and are consistent with Standard Model expectations. At present, the precision
electroweak fits do not yet display evidence for effects beyond those predicted by
the Standard Model.

The literature contains several other possible New Physics parameterizations.
For example, if the scale of New Physics is not much larger than the Standard
Model weak scale, then parameters X, Y, V,W will, in principle, contribute to the
fitting procedure [BuGKLM 94, BaPRS 04]. However, their determination requires
data at energies higher than the scale set by the Z-boson mass and so, e.g., in the
work of [Ba et al. (Gfitter group) 12], the quantities X, Y, V,W are set equal to
zero.

As we have emphasized throughout this book (e.g. Sect. IV–9), the effects of
heavy particles can be analyzed theoretically by using effective lagrangians and the
preceding analysis can be expressed naturally in this language (e.g. see [Sk 10]).
These must respect the SU(2)L × U(1)Y gauge symmetry, but may or may not
include the extra custodial SU(2)L × SU(2)R invariance of the Higgs sector with
doublet Higgs fields. There will be a tower of such operators, beginning with those
of dimension-six. However, not all dimension-six operators are relevant to elec-
troweak phenomenology. Examples of these are

(
H †H

)3
and H †HDμH

†DμH ,
the point being that processes having Higgs bosons as external states are presently
experimentally inaccessible. Instead, we consider the two operators.17

OS ≡ H †σ iHF
i
μνB

μν, OT ≡
∣∣H †DμH

∣∣2, (6.27)

where Bμν , F i
μν are, respectively, the field strength tensors defined in Eqs. (II–

3.11), (II–3.12). These operators, together with the usual Standard Model
lagrangian LSM, can be added together to form

L = LSM + aSOS + aTOT . (6.28)

The New Physics coefficients aS and aT will each carry units of inverse squared-
energy and the Higgs fields in Eq. (6.27) will each contribute a factor of the
symmetry-breaking energy v, so that in this approach the S, T parameters will
obey

S ∝ aS v
2, T ∝ aT v

2, (6.29)

and we leave evaluation of the proportionality factors to an exercise at the end of
the chapter. Although we do not survey New Physics models in this book, a large
variety is discussed in [Sk 10, RPP 12, Ba et al. 12], among others.

17 It turns out that associated with the parameter U will be a dimension-eight operator.
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Problems

(1) Tree-level coefficients in effective lagrangians
(a) Using the simplest quark–parton description of protons and neutrons as

uud and ddu composites, reproduce the content of the tree-level expres-
sions of Eq. (1.7) by determining the quantities Rν,0 and Rν̄,0 for scattering
from an isoscalar target. It might be helpful to first refer to a summary of
parton phenomenology, e.g., as in [RPP 12], for guidance. Suppose a neu-
trino deep-inelastic experiment reports Rν = 0.3072 ± 0.0032. Infer from
this a central value and an error estimate for the tree-level quantity s2

w,0.

(b) Likewise, reproduce the tree-level expressions for the coefficients C(u,d)
1,0 of

Eq. (1.11), and infer a value for s2
w,0 assuming the value Qw=−69.4 ±

1.55± 3.8 for the weak nuclear charge.
(2) Power-law radiative corrections

(a) Verify the statement that if mt =mb → ∞, there is no quadratic mass
dependence in the calculation of �ρ.

(b) From the combination of Dirac matrices appearing in Eq. (5.4), it is evident
that the self-energy amplitude has a ‘left–left’ (LL) chiral structure. To see
how this affects the result, repeat the analysis of Eqs. (5.4), (5.5) except
now employing a ‘left–right’ (LR) chiral structure.

(c) By averaging the LL and LR self-energies and passing to the limit m1=
m2 → m, reproduce the gαβ part of the photon self-energy of Eq. (II–1.26).

(d) If we had a purely left-handed U(1) theory, the vacuum polarization would
grow with m2

t as mt →∞. How can this be consistent with the decoupling
theorem?

(3) Effective field theory and the S,T parameters
Determine the proportionality factors which were not provided in Eq. (6.29).



Appendix A

Functional integration

In this appendix we outline the basis of functional methods which are employed
in the text. Path-integral techniques appear at first sight to be rather formal and
abstract. However, it is remarkable how easy it is to obtain practical information
from them. Very often they add insight or new results, which are difficult to obtain
from canonical quantization.

A–1 Quantum-mechanical formalism

Before attempting to address the full field-theoretic formalism we first review the
application of such techniques within the more familiar setting of nonrelativistic
quantum mechanics in one spatial dimension. Unless otherwise specified we here-
after set � = 1.

Path-integral propagator

Simply stated, the functional integral is an alternative way of evaluating the
quantity

D(xf , tf ; xi, ti) = 〈xf |e−iH(tf−ti )|xi〉 ≡ 〈xf , tf |xi, ti〉. (1.1)

This matrix element, usually called the propagator, is the amplitude for a particle
located at position xi and time ti to be found at position xf and subsequent time tf .
The propagator can also be written as a functional integral

D(xf , tf ; xi, ti) =
∫

D [x(t)] eiS[x(t)], (1.2)

where the integration is over all histories (i.e. paths) of the system which begin at
spacetime point xi, ti and end at xf , tf . The paths are identified by specifying the
coordinate x at each intermediate time t , so that the symbol

∫
D [x(t)] represents

493
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a sum over all such trajectories. The contribution of each path to the integral is
weighted by the exponential involving the classical action

S [x(t)] =
∫ tf

ti

dt
(m

2
ẋ2(t)− V (x(t))

)
, (1.3)

which, since it depends on the detailed shape of x(t), is a functional of the trajec-
tory.1 Although the validity of the path-integral representation, Eq. (1.2), may not
be obvious, its correctness can be verified by beginning with Eq. (1.1) and breaking
the time interval tf − ti into N discrete steps of size ε = (tf − ti)/N . Using the
completeness relation

1 =
∫ ∞

−∞
dxn |xn〉〈xn|,

one can write Eq. (1.1) as

D(xf , tf ; xi, ti) =
∫ ∞

−∞
dxN−1 · · ·

∫ ∞

−∞
dx1

〈xN |e−iεH |xN−1〉〈xN−1|e−iεH |xN−2〉 · · · 〈x1|e−iεH |x0〉, (1.4)

where x0 ≡ xi , xN ≡ xf . In the limit of large N the time slices become infinitesi-
mal, implying

〈x
|e−iHε|x
−1〉 = 〈x
|e−iε
(
p2

2m+V (x)
)
|x
−1〉

= e−iεV (x
)〈x
|e−iε p
2

2m |x
−1〉 +O(ε2). (1.5)

Inserting a complete set of momentum states and introducing a convergence factor
e−κp2

for the resulting integral over momentum, we have

〈x
|e−iε p
2

2m |x
−1〉 = lim
κ→0

∫ ∞

−∞
dp

2π
eip(x
−x
−1)−iεp2/2m−κp2

=
√

m

2πiε
ei

m
2ε (x
−x
−1)

2

. (1.6)

1 It is important to understand the difference between the concept of a function and that of a functional.
A real-valued function involves the mapping from the space of real numbers onto themselves

reals ←− [f : reals].

On the other hand, a real-valued functional such as S [x(t)] is a mapping from the space of functions x(t)
onto real numbers

reals ←− [S : x(t)] .
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Upon taking the continuum limit we obtain

D
(
xf , tf ; xi, ti

)
= lim

N→∞

( m

2πiε

)N
2

[
N−1∏
n=1

∫ ∞

−∞
dxn

]
e
i
∑N


=1

(
m
2
(x
−x
−1)

2

ε
−εV (x
)

)
. (1.7)

It is clear then that we can make connection with Eq. (1.2) by identifying each path
with the sequence of locations (x1, . . . , xN−1) at times ε, 2ε, . . . , (N−1)ε. Integra-
tion over these intermediate positions is what is meant by the symbol

∫
D [x(t)],

viz. ∫
D [x(t)] ≡ lim

N→∞

( m

2πiε

)N/2 N−1∏
n=1

∫ ∞

−∞
dxn. (1.8)

Each trajectory has an associated exponential factor eiS[x(t)], where the quantity

S [x(t)] =
N∑

=1

ε

(
m

2

(x
 − x
−1)
2

ε2
− V (x
)

)
(1.9)

becomes the classical action in the limit N → ∞. We have thus demonstrated
the equivalence of the operator (Eq. (1.1)) and path-integral (Eq. (1.2)) representa-
tions of the propagator.2 It is important to realize that in the latter all quantities are
classical – no operators are involved.

The path-integral propagator contains a great deal of information, and there are
a variety of techniques for extracting it. For example, the spatial wavefunctions
and energies are all present, as can be seen by inserting a complete set of energy
eigenstates {| n〉} into the definition of the propagator given in Eq. (1.1),

D(xf , tf ; xi, ti) =
∞∑
n=0

ψn(xf )ψ
∗
n (xi)e

−iEn(tf−ti ). (1.10)

2 For completeness, we note that by combining Eqs. (1.5)–(1.8), one can also write the propagator in a
corresponding hamiltonian path-integral representation

D(xf , tf ; xi , ti ) = lim
N→∞

∫
dp0

2π
dx1

dp1

2π
dx2 · · · dxN−1

dpN−1

2π

× e
i
∑N

=1

(
p
(x
−x
−1)−

(
p2



2m+V (x
)
)
ε

)

≡
∫

D [x(t)]D [p(t)] ei
∫
dt (pẋ−H(p,x)).

This form is useful when one is dealing with non-cartesian variables or with constrained systems.
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In addition, other quantum-mechanical amplitudes can be found by use of the
identity3

〈xf , tf |T (x(t1) · · · x(tn)) |xi, ti〉
=
∫

D [x(t)] x(t1) · · · x(tn) ei
∫ tf
ti
dt( m2 ẋ

2(t)−V (x(t))), (1.11)

where ‘T ’ is the time-ordered product.

External sources

An important technique involves the addition of an external source. In the quantum-
mechanical case this is added like an arbitrary external ‘force’ j (t),

〈xf , tf |xi, ti〉j (t) =
∫

D [x(t)] ei
∫ tf
ti
dt[m2 ẋ2(t)−V (x(t))+j (t)x(t)]. (1.12)

The amplitude is now a functional of the source j (t). From this quantity one can
obtain all matrix elements using functional differentiation, which can be defined
by means of the relation

j (t) =
∫
dt ′δ(t − t ′)j (t ′) ⇒ δj (t)

δj (t ′)
= δ(t − t ′) (1.13)

and yields the result we seek,

〈xf , tf |T (x(t1) · · · x(tn)) |xi, ti〉
= (−i)n δn

δj (t1) . . . δj (tn)
〈xf , tf |xi, ti〉j (t)

∣∣
j=0. (1.14)

For many applications it is necessary only to consider matrix elements between
the lowest energy states (vacuum) of the quantum system. This can be

3 One can prove this relation by choosing a particular ordering, say

ti < t1 < t2 < · · · < tf ,

and noting that

〈xf , tf |T (x(t1) · · · x(tn)) |xi , ti 〉 = 〈xf , tf |x(tn)x(tn−1) · · · x(t1)|xi , ti 〉

=
n∏
k=1

∫ ∞
−∞

dxk〈xf , tf |xn, tn〉 xn〈xn, tn|xn−1, tn−1〉xn−1 · · · x1〈x1, t1|, xi , ti 〉,

where we have used completeness and have defined xk = x(tk) (k = 1, 2, . . . , n). The amplitudes
〈xk, tk |xk−1, tk−1〉 are simply free propagators as in Eq. (1.1), and can be evaluated by means of the
time-slice methods outlined above. Thus, the above expression is identical to the right-hand side of
Eq. (1.11). In the case of a different time ordering the same result goes through provided one always places
the times such that the later time always appears to the left of an earlier counterpart. However, this is simply
the definition of the time-ordered product and hence the proof holds in general.
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accomplished in either of two ways. First, it is possible to explicitly project out
this amplitude using the ground-state wavefunction

〈x, t |0〉 = ψ0(x)e
−iE0t , (1.15)

which implies

〈0|T (x(t1) · · · x(tn)) |0〉 ≡
∫ ∞

−∞
dxf

∫ ∞

−∞
dxi ψ

∗
0 (xf ) e

iE0tf

〈xf , tf |T (x(t1) · · · x(tn)) |xi, ti〉ψ0(xi) e
−iE0ti . (1.16)

However, this amplitude can be isolated in a simpler fashion. If we consider the
amplitude 〈xf , tf |xi, ti〉 in the unphysical limit tf → −iτf , ti → +iτi we find for
large τf + τi ,

〈xf , tf |xi, ti〉 →
∑
n

ψn(xf )ψ
∗
n (xi) e

−En(τf+τi )

−→
τf+τi→∞

ψ0(xf )ψ
∗
0 (xi) e

−E0(τf+τi ). (1.17)

Generalizing, we have

lim
tf→−i∞
ti→i∞

eiE0(tf−ti )

ψ0(xf )ψ
∗
0 (xi)

〈xf , tf |T (x(t1) · · · x(tn)) |xi, ti〉

= 〈0|T (x(t1) · · · x(tn)) |0〉 (1.18)

which is operationally a much simpler procedure than Eq. (1.16).

The generating functional

We may combine all these techniques in the so-called generating functional,
defined by

Z[j ] = lim
tf→−i∞
ti→+i∞

〈xf , tf |xi, ti〉j (t). (1.19)

This has the path-integral representation

Z[j ] = lim
tf→−i∞
ti→i∞

∫
D [x(t)] ei

∫ tf
ti
dt ( m2 ẋ

2(t)−V (x(t))+x(t)j (t)). (1.20)

Noting that for ti = iτi and tf = −iτf ,

〈xf , tf |xi, ti〉 → ψ0(xf )ψ
∗
0 (xi) e

−E0(τf+τi ) −→
τi ,τf→∞

Z[0], (1.21)
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we find that ground-state matrix elements as in Eq. (1.16) can be given in terms of
the generating functional Z[j ],

〈0|T (x(t1) · · · x(tn)) |0〉 = (−i)n 1

Z[0]
δn

δj (t1) · · · δj (tn)Z[j ]
∣∣
j=0. (1.22)

It often happens with path integrals that formal procedures are best defined, as
above, by using the imaginary-time limits t → ±i∞. However, in practice it is
common instead to express the theory in terms of Minkowski spacetime. Thus,
the generating functional will involve the real-time limits t → ±∞. Does the
dominance of the ground-state contribution, as in Eq. (1.21), continue to hold?
The answer is ‘yes’. At an intuitive level, one understands this as a consequence
of the rapid variation of the phase e−iEnt in the limit t → ∞. The more rapid
phase variation accompanying the increased energy En of any excited state washes
out its contribution relative to that of the ground state. In a more formal sense,
the real-time limit is defined by an analytic continuation from imaginary time. To
properly define the continuation, one must introduce appropriate ‘iε’ factors into
the Green’s functions in order to deal with various singularities. Beginning with the
next section, we shall often employ the Minkowski formulation and thus explicitly
display the ‘iε’ terms in our formulae.

The prescription given in Eq. (1.22) represents a powerful but formal procedure
for the generation of matrix elements in the presence of an arbitrary potential V (x).
Unfortunately, an explicit evaluation is no more generally accessible via this route
than is an exact solution of the Schrödinger equation. In practice, aside from an
occasional special case, the only path integrals which can be performed exactly
are those in quadratic form. However, approximation procedures are generally
available.

One of the most common of these is perturbation theory. Suppose that the full
potential V (x) is the sum of two parts V1(x) and V2(x), where V1(x) is such that
the generating functional can be evaluated exactly while V2(x) is in some sense
small. Then we can write

Z[j ] = lim
tf→−i∞
ti→i∞

∫
D[x(t)]ei

∫ tf
ti
dt[m2 ẋ2(t)−V1(x(t))−V2(x(t))+x(t)j (t)]

= lim
tf→−i∞
ti→i∞

e
−i ∫ tfti dt V2

(
−i δ

δj (t)

)
Z(0)[j ]

= lim
tf→−i∞
ti→i∞

∞∑
n=0

(−i)n
n!

[∫ tf

ti

dt V2

(
−i δ

δj (t)

)]n
Z(0)[j ], (1.23)
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where

Z(0)[j ] = lim
tf→−i∞
ti→i∞

∫
D[x(t)] ei

∫ tf
ti
dt[m2 ẋ2(t)−V1(x(t))+x(t)j (t)] (1.24)

is the generating functional for V1(x) alone. Obviously, Eq. (1.23) defines an
expansion for Z[j ] in powers of the perturbing potential V2(x).

A–2 The harmonic oscillator

It is useful to interrupt our formal development by considering the harmonic oscil-
lator as an example of these methods. This treatment turns out to reproduce known
oscillator properties with the use of functional methods, which are very similar to
corresponding field-theory techniques.

It is most convenient to address the problem by employing Fourier transforms,

x(t) =
∫ ∞

−∞
dE

2π
e−iEt x̃(E), (2.1)

whereby for ti = −∞ and tf = +∞,

Sj [x(t)] =
∫ ∞

−∞
dt

(
m

2
ẋ2(t)− mω2

2
x2(t)+ x(t)j (t)

)

=
∫ ∞

−∞
dE

2π

[
m

2
(E2 − ω2)x̃(E)x̃(−E)+ 1

2
j̃ (E)x̃(−E)+ 1

2
j̃ (−E)x̃(E)

]

=
∫ ∞

−∞
dE

2π

{
m

2
(E2 − ω2)x̃ ′(E)x̃ ′(−E)− 1

2m
j̃(E)

1

E2 − ω2 + iε j̃ (−E)
}
,

(2.2)

with the definition x̃ ′(E) ≡ x̃(E) + j̃ (E)/(mE2 − mω2 + iε). An infintesimal
imaginary part iε has been introduced to make the integration precise. Upon taking
the inverse Fourier transform

x ′(t) =
∫ ∞

−∞
dE

2π
e−iEt x̃ ′(E) = x(t)+ 1

m

∫ ∞

−∞
dt ′D(t − t ′)j (t ′), (2.3)

where

D(t − t ′) =
∫ ∞

−∞
dE

2π
e−iE(t−t

′) 1

E2 − ω2 + iε = −
i

2ω
e−iω|t

′−t |, (2.4)
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we have

Sj [x(t)] =
∫ ∞

−∞
dt

(
m

2
ẋ ′2(t)− mω2

2
x ′2(t)

)
− 1

2m

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ j (t)D(t − t ′)j (t ′). (2.5)

Finally, changing variables from x(t) to x ′(t) we obtain the generating functional

Z[j ] =
∫

D
[
x ′(t)

]
e
i
∫∞
−∞ dt

(
m
2 ẋ
′2(t)−mω2

2 x′2(t)
)

× e− i
2m

∫∞
−∞ dt

∫∞
−∞ dt ′j (t)D(t−t ′)j (t ′)

= Z[0]e− i
2m

∫∞
−∞ dt

∫∞
−∞ dt ′j (t)D(t−t ′)j (t ′). (2.6)

Note that the above change of variables has left the measure invariant (
∫
D [x(t)] =∫

D
[
x ′(t)

]
).

We can use this result to calculate arbitrary oscillator matrix elements. Thus for
t2 > t1, we have for the ground state

〈0|T (x(t2)x(t1)) |0〉 = (−i)2 1

Z[0]
δ2Z[j ]

δj (t2)δj (t1)

∣∣∣∣
j=0

= i

m
D(t2 − t1) = e−iω(t2−t1)

2mω
, (2.7)

which, in the limit t2 → t1, reproduces the familiar result

〈0|x2|0〉 = 1

2mω
. (2.8)

Although only ground-state expectation values have been treated thus far, it is
also possible to deal with arbitrary oscillator matrix elements with this formalism
by generalizing the operator relation

|n〉 = 1√
n!
(
a†
)n |0〉, (2.9)

where

a† =
√
mω

2

(
x − i

mω
p

)
(2.10)

is the usual creation operator. First, however, it is convenient to use the classical
relation p = mẋ to rewrite the operator a† as

a† =
√
mω

2

(
1− i

ω

d

dt

)
x(t). (2.11)
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In a simple application, we calculate that

〈0|x|1〉 = lim
t2→t+1

√
mω

2

(
1− i

ω

∂

∂t1

)
〈0|x(t2)x(t1)|0〉

= lim
t2→t+1

(−i)2
√
mω

2

(
1− i

ω

∂

∂t1

)
1

Z[0]
δ2

δj (t2)δj (t1)
Z[j ]

= lim
t2→t+1

√
mω

2

(
1− i

ω

∂

∂t1

)
i

m
D(t2 − t1)

= 1√
2mω

, (2.12)

which agrees with the result obtained by more conventional means,

〈0|x|1〉 =
√

1

2mω
〈0| (a + a†

) |1〉 = 1√
2mω

. (2.13)

More complicated matrix elements can also be found, as with

〈1|x2|1〉 = mω

2
lim
t2→t−
t1→t+

(
1+ i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

)
〈0|x(t1)x2(t)x(t2)|0〉

= (−i)4
Z[0] lim

t2→t ′−,t1→t+
t ′→t−

(mω
2

)(
1+ i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

)
δ4

δj (t1)δj (t2)δj (t)δj (t ′)
Z[j ]

∣∣∣∣
j=0

= mω

2

(
i

m

)2

lim
t2→t−
t1→t+

(
1+ i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

)

× [D(t1 − t2)D(0)+ 2D(t1 − t)D(t − t2)
] = 3

2mω
, (2.14)

which agrees with

〈1|x2|1〉 = 1

2mω
〈1| (a + a†

) (
a + a†

) |1〉 = 3

2mω
. (2.15)

In this manner, arbitrary oscillator matrix elements can be reduced to ground-state
expectation values, which in turn can be determined from the generating functional
Z[j ]. The ground-state amplitude in the presence of an arbitrary source j (t) con-
tains all the information about the harmonic oscillator.

One should note the analogy of the above methods to those of quantum field the-
ory. The ‘one-particle’ matrix elements involving |1〉 have been reduced to vacuum
matrix elements by use of Eq. (2.9). This is similar to the LSZ reduction of fields
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(see App. B–3). As a result, all that one needs to deal with are the vacuum Green’s
functions. The generating functional is ideal for this purpose, as we shall see in our
development of functional techniques in field theory.

A–3 Field-theoretic formalism

One of the advantages of the functional approach to quantum mechanics is that it
can be taken over with little difficulty to quantum field theory. An important differ-
ence is that instead of trajectories x(t), which pick out a particular point in space
at a given time, one must deal with fields ϕ(x, t) which are defined at all points
in space at a given time t . Also, instead of a sum

∫
D [x(t)] over trajectories one

has instead a sum
∫

[dϕ(x)] over all possible field configurations. Nevertheless,
the analogy is rather direct.

Path integrals with fields

The formal transition from quantum mechanics to field theory can be accomplished
by dividing spacetime, both time and space, into a set of tiny four-dimensional
cubes of volume δt δx δy δz. Within each cube one takes the field

ϕ
(
xi, yj , zk, t


)
(3.1)

as a constant. Derivatives are defined in terms of differences between fields in
neighboring blocks, e.g.,

∂tϕ
∣∣
xi ,yj ,xk,tl

� 1

δt

(
ϕ
(
xi, yj , zk, tl + δt

)− ϕ (xi, yj , zk, tl)) . (3.2)

The lagrangian is easily found,

L(ϕ, ∂μϕ)
∣∣
xi ,yj ,zk,tl

� L
(
ϕ
(
xi, yj , zk, tl

)
, ∂μϕ

(
xi, yj , zk, tl

))
, (3.3)

and the action is written as

S �
∑
i,j,k,l

δxδyδzδt L
(
ϕ
(
xi, yj , zk, tl

)
, ∂μϕ

(
xi, yj , zk, tl

))
. (3.4)

The field-theory analog of the path integral can then be constructed by summing
over all possible field values in each cell

D ∼
∏
i,j,k,l

∫ ∞

−∞
dϕ
(
xi, yj , zk, tl

)
eiS[ϕ(xi ,yk,zk,tl ), ∂μϕ(xi ,yj ,zk,tl)]. (3.5)

Formally, in the limit in which the cell size is taken to zero, this is written as∫
[dϕ(x)] eiS[ϕ(x), ∂μϕ(x)]. (3.6)
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By analogy with the quantum mechanical case (cf. Eq. (1.18)), it is clear that, since
the time integration for S in Eq. (3.4) is from −∞ to +∞, this amplitude is to be
identified with the vacuum-to-vacuum amplitude of the field theory,

〈0|0〉 = N

∫
[dϕ(x)] eiS[ϕ(x),∂μϕ(x)]. (3.7)

Generally, quantum field theory is formulated in terms of vacuum expectation val-
ues of time-ordered products of the fields

G(n)(x1, . . . , xn) = 〈0|T (ϕ(x1) · · ·ϕ(xn)) |0〉 (3.8)

i.e., the Green’s functions of the theory. By analogy with the quantum-mechanical
case, one is naturally led to the path-integral definition

G(n)(x1, . . . , xn) = N

∫
[dϕ(x)]ϕ(x1) · · ·ϕ(xn)eiS[ϕ(x),∂μϕ(x)], (3.9)

where N is a normalization factor. Again we emphasize that all quantities here are
c numbers and no operators are involved. In terms of a functional representation,
we then have from Eqs. (3.7), (3.9),

G(n)(x1, . . . , xn) =
∫

[dϕ(x)] ϕ(x1) · · ·ϕ(xn)eiS[ϕ(x),∂μϕ(x)]∫
[dϕ(x)] eiS[ϕ(x),∂μϕ(x)]

. (3.10)

Generating functional with fields

These Green’s functions can most easily be evaluated by use of the generating
functional

Z[j ] = N

∫
[dϕ(x)] e(iS[ϕ(x),∂μϕ(x)]+i

∫
d4x j (x)ϕ(x)) (3.11)

Functional differentiation for fields is defined by

δϕ(y)

δϕ(x)
= δ(4)(x − y), (3.12)

which lets us obtain (cf. Eq. (3.9))

G(n)(x1, . . . , xn) = (−i)n 1

Z[0]
δn

δj (x1) · · · δj (xn)Z[j ]
∣∣∣∣
j=0

. (3.13)

As an example of this formalism consider the free scalar field theory

L(0)(x) = 1

2
∂μϕ∂

μϕ − m2

2
ϕ2. (3.14)
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In general, we have

Z(0)[j ] = Z(0)[0]
∞∑
n=0

in

n!

[
n∏
k=1

∫ ∞

−∞
dxk j (xk)

]
G(n)(x1, x2, . . . , xn), (3.15)

where the generating functional Z(0)[j ] is given by

Z(0)[j ] = N

∫
[dϕ(x)] e

i
∫
d4x
(

1
2 ∂μϕ∂

μϕ−m2
2 ϕ2+jϕ

)
. (3.16)

There exist two common ways in which to handle the issue of convergence for
such functional integrals, i.e., to ensure acceptable behavior for large ϕ2. One
is to give the mass an infinitesimal negative imaginary part, m2 → m2 − iε.
This is the approach we shall employ in the discussion to follow. The second
involves a continuation to euclidean space by means of t → −iτ wherein the
functional integral becomes

〈0|0〉 = N

∫
[dϕ(x)]e−

∫
d4xE

(
1
2 ∂μϕ∂μϕ+m2

2 ϕ2
)
, (3.17)

and is now convergent due to the negative argument of the exponential. Continua-
tion back to Minkowski space then yields the desired result.

Integrating by parts, we have from Eq. (3.16)

Z(0)[j ] = N

∫
[dϕ] e

−i ∫ d4x
[

1
2ϕ(x)Oxϕ(x)−ϕ(x)j (x)

]

= N

∫ [
dϕ′
]
e−

i
2 [
∫
d4x ϕ′(x)Oxϕ′(x)+

∫
d4x

∫
d4y j (x)�F (x−y)j (y)] (3.18)

where Ox = x +m2 − iε and

ϕ′(x) = ϕ(x)+
∫
d4y �F (x − y)j (y),

i�F (x − y) =
∫

d4k

(2π)4
e−ik·(x−y)

i

k2 −m2 + iε ,
( x +m2)�F (x − y) = −δ(4)(x − y). (3.19)

Note that we have used invariance of the measure
(∫ [

dϕ
] = ∫ [dϕ′]). Finally, we

recognize a factor of Z(0)[0] in Eq. (3.18), thus leading to the expression

Z(0)[j ] = Z(0)[0]e− i
2

∫
d4x

∫
d4y j (x)�F (x−y)j (y). (3.20)
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We can now determine the Green’s functions for the free field theory, e.g.,

G(2)(x1, x2) = (−i)2
Z(0)[0]

δ2

δj (x1)δj (x2)
Z(0)[j ]

∣∣∣∣
j=0

= i�F (x1 − x2),

G(4)(x1, x2, x3, x4) = (−i)4
Z(0)[0]

δ4

δj (x1)δj (x2)δj (x3)δj (x4)
Z(0)[j ]

∣∣∣∣
j=0

= G(2)(x1, x2)G
(2)(x3, x4)+G(2)(x1, x3)G

(2)(x2, x4)

+ G(2)(x1, x4)G
(2)(x2, x3). (3.21)

More interesting is the case of a self-interacting field theory for which the
lagrangian becomes

L(x) = 1

2
∂μϕ∂

μϕ − 1

2
m2ϕ2 + Lint(ϕ) ≡ L(0)(ϕ)+ Lint(ϕ). (3.22)

The theory is no longer exactly soluble, but one can find a perturbative solution by
use of the generating functional

Z[j ] = N

∫
[dϕ(x)] ei

∫
d4x (L(0)(ϕ)+Lint(ϕ)+j (x)ϕ(x))

= Ne
i
∫
d4x Lint

(
−i δ

δj (x)

)
Z(0)[j ]. (3.23)

As before, the Green’s functions of the theory are given by

G(n)(x1, . . . , xn) = 1

Z[0]

[
n∏
k=1

−iδ
δj (xk)

]
e
i
∫
d4xLint

(
−i δ

δj (x)

)
Z(0)[j ]

∣∣∣∣
j=0

. (3.24)

For most purposes one requires only the connected portions of the Green’s
function, i.e., those diagrams which cannot be broken into two or more disjoint
pieces. This is illustrated in Fig. A–1 which can be found by dividing the full
Green’s function

G(n)(x1, . . . , xn) = 〈0|T (ϕ(x1) · · ·ϕ(xn))|0〉 (3.25)

into products of connected particle sectors and dividing by the vacuum-to-vacuum
amplitude 〈0|0〉 in each sector.

Mathematically, one eliminates the disconnected diagrams by defining

Z[j ] = eiW [j ]. (3.26)

Then one can show that W [j ] is the generating functional for connected Green’s
functions,

iW [j ] =
∞∑
n=0

in

n!
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn j (x1) · · · j (xn)G(n)

conn(x1, . . . , xn), (3.27)
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(a) (b) (c) (d)

Fig. A–1 Contributions to the four-point Green’s function in ϕ4 theory: (a)–(b)
connected, (c)–(d) disconnected.

where

G(n)
conn(x1, . . . , xn) = (−i)n−1 δn

δj (x1) · · · δj (xn)W [j ]
∣∣∣∣
j=0

. (3.28)

A–4 Quadratic forms

The most important example of a soluble path integral is one that is quadratic in
the fields because, at least formally, it can be solved exactly.

Let us consider an action quadratic in the fields,

S = −
∫
d4x ϕ(x)Oϕ(x), (4.1)

where O is some differential operator which may contain fields distinct from ϕ

within it. The general result for the quadratic path integral is given by

Iquad =
∫
[dϕ(x)]e−i

∫
d4x ϕ(x)Oϕ(x) = N[det O]−1/2, (4.2)

where det O is the determinant of the operator O. In order to prove this, one can
expand ϕ(x) in terms of eigenfunctions of O,

ϕ(x) =
∑
n

anϕn(x), (4.3)

where ϕn(x) satisfies

Oϕn(x) = λnϕn(x) and
∫
d4x ϕn(x)ϕm(x) = δnm. (4.4)

The sum over all field values can then be performed by summing over all values of
the expansion coefficients an,

Iquad = N

[∏
n

∫ ∞

−∞
dan

]
e−i

∫
d4x

∑∞
k=1 akϕk(x)

∑∞
l=1 alϕ
(x)λl

= N
∏
n

∫ ∞

−∞
dan e

−iλna2
n = N ′ (det O)−1/2 , (4.5)
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where N,N ′ are normalization constants and

det O =
∞∏
n=1

λn (4.6)

denotes, as usual, the product of operator eigenvalues.
In general, some effort is required to evaluate the determinant of an operator. One

valuable relation, easily proven for finite dimensional matrices and generalizable
to infinite dimensional ones is4

det O = exp( tr lnO). (4.7)

This trace now denotes a summation over spacetime points, i.e.,

tr lnO =
∫
d4x 〈x | lnO | x〉, (4.8)

which is the most commonly used form in practice.

Background field method to one loop

We can illustrate one use of this result by constructing an expansion about a back-
ground field configuration (which satisfies the classical equation of motion) and
retaining the quantum fluctuations up to quadratic order. Consider a scalar field
theory with interaction Lint (ϕ(x)). We define ϕ̄ as a solution to( +m2

)
ϕ̄(x)− L′int (ϕ̄(x)) = j (x). (4.9)

Writing

ϕ(x) = ϕ̄(x)+ δϕ(x), (4.10)

leads to the generating functional

Z[j ] = e(iS[ϕ̄(x)]+i ∫ d4x j (x)ϕ̄(x))∫
[dδϕ] ei

∫
d4x( 1

2 ∂μδϕ∂
μδϕ− 1

2(m
2−L′′int(ϕ̄(x)))δϕ

2) + · · · , (4.11)

where

S [ϕ̄(x)] =
∫
d4x

(
1

2
∂μϕ̄(x)∂

μϕ̄(x)− m2

2
ϕ̄2(x)+ Lint (ϕ̄(x))

)
. (4.12)

4 For a discrete basis, this follows from the result

exp( tr lnO) = exp
∑
n

ln λn =
∏
n

exp(ln λn) =
∏
n

λn = detO,

where λn are the eigenvalues of the operator O.
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Integration by parts gives

Z[j ] = e(iS[ϕ̄(x)]+i ∫ d4x ϕ̄(x)j (x))
∫
[dδϕ] e− i

2

∫
d4x δϕ(x)Oxδϕ(x), (4.13)

where

Ox ≡ x +m2 − L′′int (ϕ̄(x)) . (4.14)

The functional integration can then be performed (cf. Eq. (4.5)) and we obtain

Z[j ] = const. (detOx)
−1/2 e(iS[ϕ̄(x)]+i ∫ d4x j (x)ϕ̄(x)). (4.15)

It is convenient to normalize the determinant somewhat differently by defining

O0x ≡ x +m2. (4.16)

Then, suppressing the x subscript, we write

(detO)−1/2 = const.
(
detO−1

0 O
)−1/2

, (4.17)

where

const. = (detO0)
−1/2 , (4.18)

and

O−1
0 O = 1+�FL′′int (ϕ) . (4.19)

Using Eq. (4.2) we have

Z[j ] = Ne

[
iS[ϕ̄(x)]+i ∫ d4x j (x)ϕ̄(x)− 1

2 Tr ln(1+�FL′′(ϕ̄))
]
. (4.20)

The generating functional for connected diagrams can now be identified
immediately as

W [j ] = S [ϕ̄]+
∫
d4x j (x)ϕ̄(x)+ i

2
Tr ln

(
1+�FL′′int (ϕ̄)

)
=
∫
d4x

[
1

2
j (x)ϕ̄(x)+ Lint (ϕ̄)− 1

2
ϕ̄(x)L′int (ϕ̄)

]
+ i

2
Tr ln

(
1+�FL′′int (ϕ̄)

)
. (4.21)

The trace ‘Tr’ includes the integration over spacetime variables and can be
interpreted as follows,
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Tr ln
[
1+�FL′′int (ϕ̄)

] = Tr
∞∑
n=1

(−)n+1

n

(
�FL′′int (ϕ̄)

)n
,

Tr
[
�FL′′int (ϕ̄)

] = ∫ d4x �F (x − x)L′′int (ϕ̄) ,

Tr
[
�FL′′int (ϕ̄)�FL′′int (ϕ̄)

] = ∫ d4x

∫
d4y �F (x − y)L′′int (ϕ̄(y))

×�F(y − x)L′′int (ϕ̄(x)) . (4.22)

In this manner, one-loop diagrams containing arbitrary numbers of L′′int (ϕ̄) factors
are generated. The physics associated with this approximation can be gleaned from
counting arguments. The overall power of � attached to a particular diagram can
be found by noting that associated with a propagator and a vertex are the powers �
and �

−1, respectively. There is also an overall factor of � for each diagram. Then
with the relation

no. internal lines− no. internal vertices = no. loops− 1

we see that this approximation corresponds to an expansion to one loop. The clas-
sical phase generates the tree diagram

(
O(�0)

)
contribution and the determinant

yields the one-loop
(
O(�1)

)
correction to a given amplitude.

A–5 Fermion field theory

Thus far, our development has been performed within the simple context of scalar
fields. It is important also to consider the case of fermion fields where the require-
ments of antisymmetry impose interesting modifications on functional integra-
tion techniques. The key to the treatment of anticommuting fields is the use of
Grassmann variables. Thus, while ordinary c-number quantities (hereafter denoted
by roman letters a, b, . . .) commute with one another,

[a, a] = [a, b] = [a, c] = · · · = 0, (5.1)

the Grassmann numbers (hereafter denoted by Greek letters α, β, . . .)
anticommute,

{α, α} = {α, β} = {α, γ } = · · · = 0. (5.2)

It follows that the square of a Grassmann quantity must vanish,

α2 = β2 = γ 2 = · · · = 0, (5.3)

and that any function must have the general expansion

f (α) = f0 + f1α , g(α, β) = g0 + g1α + g2β + g3αβ. (5.4)
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Differentiation is defined correspondingly via

dα

dα
= dβ

dβ
= · · · = 1 ,

dβ

dα
= dα

dβ
= · · · = 0, (5.5)

so that in the notation of Eq. (5.4) we have

df

dα
(α) = f1,

dg

dβ
(α, β) = g2 − g3α. (5.6)

Second derivatives then have the property

d2

dαdα
= 0. (5.7)

We must also define the concept of Grassmann integration. If we demand that
integration have the property of translation invariance∫

dα f (α) =
∫
dα f (α + β), (5.8)

it follows that ∫
dα f1β = 0 or

∫
dα = 0. (5.9)

The normalization in the diagonal integral can be chosen for convenience,∫
dα α = 1,

∫
dα f (α) = f1. (5.10)

Let us extend this formalism to a matrix notation by considering the discrete
sets α = {α1, . . . , αn} and ᾱ = {ᾱ1, . . . , ᾱn} of Grassmann variables. A class of
integrals which commonly arises in a functional framework is

Z[M] =
∫
dᾱn · · · dᾱ1 dαn · · · dα1e

iᾱMα. (5.11)

As an example, the simple 2× 2 case is calculated to be

Z[M] =
∫
dᾱ2 dᾱ1 dα2 dα1

[
1+ iᾱiMijαj

+ ᾱ2ᾱ1α2α1 (M11M22 −M12M21)
]
. (5.12)

Only the final term survives the integration, and we obtain

Z[M] = detM. (5.13)
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This result generalizes to the n× n system [Le 82] yielding essentially the inverse
of the result found for Bose fields,

Z[M]Fermi =
∫
dᾱn · · · dᾱ1 dαn · · · dα1e

iᾱMα = detM,

Z[M]Bose =
∫
da∗n · · · da∗1 dan · · · da1e

−a∗Ma ∝ (detM)−1 . (5.14)

We can now extend this formalism to the case of fermion fields ψ(x) and ψ̄(x).
Since such quantities always enter the lagrangian quadratically, the functional
integral can be performed exactly to yield

Z[O] =
∫

[dψ]
[
dψ̄
]
ei
∫
d4x ψ̄(x)Oψ(x) = N detO. (5.15)

The remaining development proceeds parallel to that given for scalar fields. Given
the free field lagrangian

L0
(
ψ̄, ψ

) = ψ̄(x) (i/∂ −m)ψ(x), (5.16)

the generating functional for the noninteracting spin one-half field becomes

Z[η, η̄] =
∫

[dψ]
[
dψ̄
]
ei
∫
d4x[ ψ̄(x)Oxψ(x)+η̄(x)ψ(x)+ψ̄(x)η(x)], (5.17)

where Ox ≡ i/∂x − m + iε and η̄(x), η(x) are Grassmann fields. Introducing the
change of variables

ψ ′(x) = ψ(x)−
∫
d4y SF (x, y)η(y),

ψ̄ ′(x) = ψ̄(x)−
∫
d4y η̄(y)SF (y, x),

iSF (x − y) =
∫

d4k

(2π)4
e−ik·(x−y)

i

k/−m+ iε
(i∂/x −m)SF (x − y) = δ(4)(x − y), (5.18)

we find that an alternative form for the generating functional is

Z[η, η̄] =
∫ [

dψ ′
] [
dψ̄ ′

]
ei
∫
d4x ψ̄ ′(x)Oxψ ′(x)−i

∫
d4x

∫
d4y η̄(x)SF (x,y)η(x),

= Z[0, 0]e−i
∫
d4x

∫
d4y η̄(x)SF (x,y)η(x). (5.19)

Thus, the generating functional for connected diagrams is

W [η, η̄] = −
∫
d4x

∫
d4y η̄(x)SF (x, y)η(y), (5.20)
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and the only nonvanishing connected Green’s function is

G(2)
conn(x1, x2) = (−i)2 δ2W

δη(x2)δη̄(x1)

= SF (x1, x2) =
∫

d4k

(2π)4
e−ik·(x1−x2)

i

k/ −m+ iε , (5.21)

which is the usual Feynman propagator.

A–6 Gauge theories

For our final topic, we examine gauge theories within a functional framework. We
shall employ QED as the archetypical example, for which the action is

S[Aμ] = −1

4

∫
d4x FμνF

μν = 1

2

∫
d4x (Aμ xA

μ − Aμ∂μx ∂νxAν)

≡ 1

2

∫
d4x AμO

μν
x Aν, (6.1)

where the second line follows from the first by an integration by parts and

Oμν
x ≡ gμν x − ∂μx ∂νx . (6.2)

In the presence of a source jμ, the generating functional is then

Z[jμ] = N

∫
[dAμ]eiS[Aμ]+i

∫
d4x jμA

μ

. (6.3)

Due to the bilinear form of Eq. (6.1), it would appear that one could perform the
functional integration as usual, resulting in

Z[jμ] = Z[0]e− i
2

∫
d4x

∫
d4y jμ(x)DFμν(x,y)j

ν(y), (6.4)

where the inverse operator DFμν(x, y) is defined as

Oλμ
x DFμν(x, y) ≡ δλν δ

(4)(x − y). (6.5)

However, this is illusory since the inverse does not exist. That is, acting on Eq. (6.5)
from the left with the derivative ∂xλ yields

0×DFμν(x, y) = ∂xν δ
(4)(x − y), (6.6)

implying that DFμν must be infinite. An alternative way to demonstrate that Oμν
x

is a singular operator is to observe that

Oμν
x ∂xν α = 0. (6.7)

Thus, any four-gradient ∂xν α is an eigenfunction of Oμν
x having eigenvalue zero,

and an operator having zero eigenvalues does not possess an inverse.
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Gauge fixing

The occurrence of such a divergence in the generating functional of a gauge theory
can be traced to gauge invariance. For QED, any gauge transformation of vector
potentials (cf. Eq. (II–1.3)),

Aμ(x)→ A′μ(x) = Aμ(x)+ 1

e
∂μα(x), (6.8)

leaves the action invariant,

S[A′μ(x)] = S[Aμ(x)]. (6.9)

If we partition the full field integration [dAμ] into a component [dĀμ] that includes
only those configurations which are not related by a gauge transformation and a
component [dα] that denotes all possible gauge transformations, then we have∫

[dAμ] eiS[Aμ] =
∫
[dĀμ] eiS[Āμ] ×

∫
[dα]. (6.10)

But
∫ [dα] is clearly infinite and this is the origin of the problem. The solution, first

given by Faddeev and Popov [FaP 67], involves finding a procedure which some-
how isolates the integration over the distinctly different vector potentials Āμ(x).
In order to understand this technique, we shall first examine a finite-dimensional
analog [Ra 89].

Consider the functional

Z[A] =
[

N∏
i=1

∫ ∞

−∞
dxi

]
e−

∑
k,l xkAklxl , (6.11)

where A is an N ×N matrix. Suppose that A is brought into diagonal form AD by
linear transformation R,

AD ≡ RAR−1. (6.12)

Letting �y = R�x denote the coordinates in the diagonal basis, we have

Z[A] =
[

N∏
i=1

∫
dyi

]
e−
∑

k,lykA
D
klyl =

[
N∏
i=1

∫
dyi

]
e−
∑

ky
2
kA

D
kk

=
N∏
i=1

(
π

ADii

)1/2

= πN/2[det A]−1/2. (6.13)

Suppose that the last n of theN eigenvalues belonging to A vanish. The exponential
factor in Eq. (6.13) is then independent of the coordinates yN−n+1, . . . , yN and the
corresponding integrations

∫
dyN−n+1 . . .

∫
dyN diverge. This is reflected in the

vanishing of det A, and causes the quantities in Eq. (6.13) to diverge. The infinity
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is removed if the integration is restricted to only variables associated with nonzero
eigenvalues, in which case we obtain the finite result

Zf [A] =
[
N−n∏
i=1

∫
dyi

]
e−
∑

k,lykA
D
klyl . (6.14)

It is possible to express Zf [A] as an integral over the full range of indices 1 ≤
i ≤ N by defining variables

zi =
{
yi (1 ≤ i ≤ N − n),
arbitrary (N − n+ 1 ≤ i ≤ N),

(6.15)

and writing for the generating functional

Zf [A] =
[

N∏
i=1

∫
dzi

]
δ(zN−n+1) · · · δ(zN)e−

∑
k,lzk(x)Aklzl (x). (6.16)

Upon tranforming back to an arbitrary set of coordinates {xi}, we obtain the useful
expression

Zf [A] =
[

N∏
i=1

∫
dxi

]
det

∣∣∣∣ ∂�z∂ �x
∣∣∣∣ N∏
j=N−n+1

δ
(
zj (�x)

)
e−
∑

k,lxkAklxl . (6.17)

Let us now return to the subject of gauge fields, broadening the scope of our
discussion to include even nonabelian gauge theories. By analogy, corresponding
to the variables zN−n+1, . . . , zN will be the gauge degrees of freedom and the pre-
scription of Faddeev and Popov becomes for generic gauge fields Aaμ(x),

Zf =
∏
a

∫
[dAaμ]

n∏
b=1

δ(Gb(A
a
μ)) det |δGb/δαa| eiS[Aaμ], (6.18)

where the {αa} are gauge-transformation parameters (cf. Sect. I–4) and the
{Gb(A

a
μ)} are functions which vanish for some value of Aaμ(x). Since the {Gb}

serve to define the gauge, such contributions to the generating functional are
referred to as gauge-fixing terms. The variation δGb/δαa signifies the response
of the gauge-fixing function Gb to a gauge-transformation parameter αa .

For any gauge theory, there are a variety of choices possible for the gauge-fixing
function G. In QED, one defines the axial gauge by

G(Aμ) = nμA
μ, (6.19)

where nμ is an arbitrary spacelike four-vector. Due to the presence of the four-
vector nμ, one must forgo manifestly covariant Feynman rules in this approach.
Thus, one often employs a covariant gauge-fixing condition such as
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G(Aμ) = ∂μAμ − F, (6.20)

where F is an arbitrary constant. Under the gauge transformation of Eq. (6.8), we
find

G(Aμ)→ G(Aμ)+ α, (6.21)

so that

δG/δα = . (6.22)

Referring back to the general formula of Eq. (6.18), we see in this case that
det |δG/δα| is independent of the gauge field and thus may be dropped from the
functional integral. The QED generating functional then becomes

Z[jμ] = N

∫
[dAμ] δ(∂μAμ − F) ei

∫
d4x ( 1

2Aμ xA
μ− 1

2Aμ∂
μ
x ∂

ν
x Aν+jμAμ)

= N

∫
[dAμ]ei

∫
d4x ( 1

2Aμ xA
μ+jμAμ)

= Z[0]e− i
2

∫
d4x

∫
d4y jλ(x)D

λν
F (x,y)jν(y). (6.23)

Note that, as promised, this result is finite and leads to a photon propagator in
Feynman gauge

Dνλ
F (x, y) =

1

Z[0]
δ2Z[jμ]

δjν(x)δjλ(y)

∣∣
jμ=0 = −i

∫
d4q

(2π)4
e−iq·(x−y)

gνλ

q2 + iε . (6.24)

The result is independent of the choice of F . Consequently, even if the constant F is
evaluated to the status of a field F(x), one can functionally integrate over F(x)with
an arbitrary weighting factor since this will only affect the overall normalization of
the generating functional. A common choice is∫

[dF ] δ(∂μAμ − F(x))e− i
2ξ

∫
d4x F 2(x) = e

− i
2ξ

∫
d4x (∂μAμ)

2
, (6.25)

where ξ is a real-valued parameter. In this case, the generating functional becomes

Z[jμ] = N

∫
[dAμ] ei

∫
d4x
(

1
2Aμ( gμν− ∂μ∂ν)Aν− 1

2ξ (∂
μAμ)

2+jμAμ
)
. (6.26)

The integrand of the above spacetime integral can be regarded as the effective
lagrangian of the theory, and the gauge-fixing term appears as one of its contri-
butions. At this point, the functional integration can be carried out with impunity
to obtain

Z[jμ] = Z[0]e− i
2

∫
d4x

∫
d4y jμ(x)D

μν
F (x,y)jν(y), (6.27)
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where Dμν

F is defined as(
xg

μν − (1− ξ−1)∂μx ∂
ν
x

)
DFνλ(x − y) = δ

μ
λ δ

(4)(x − y). (6.28)

We find in this way the form of the photon propagator in an arbitrary gauge, as
appearing in Eq. (II–1.17).

Ghost fields

In the path-integral formalism, if the generating functional can be written in purely
exponential form, then one can read off the lagrangian of the theory from the
exponent. However, the general formula in Eq. (6.18) for a gauge-fixed generat-
ing functional contains a seemingly nonexponential factor, the determinant factor
det |δGb/δαa|. A fruitful procedure, due to Faddeev and Popov, for expressing the
determinant as an exponential factor is motivated by the identity (cf. Eq. (5.15)),

det M = N

∫
[dc][dc̄] eic̄Mc, (6.29)

where c, c̄ are Grassmann fields. This identity suggests that we replace the deter-
minant factor with an appropriate functional integration over Grassmann variables.

For QED, the generating functional can then be written in the concise form

Z[jμ] = N

∫
[dAμ][dc][dc̄] ei

∫
d4x (Aμ( gμν−∂μ∂ν)Aν− 1

2ξ (∂
μAμ)

2+c̄ x c+jμAμ).

(6.30)

As pointed out earlier, for this case the integration over c, c̄ yields only an unim-
portant constant and may be discarded. However, for nonabelian gauge theory
Eq. (6.30) generalizes to

Z[jaμ] =
∫ ∏

a,b,d

[dAaμ][dcb][dc̄d] ei
∫
d4x

[
L[Aaμ]+jaμAμa+c̄bMbec

e− 1
2ξ

∑
bF

2
b (A

a
μ)
]
, (6.31)

where repeated indices are summed over. The quantities

Mbe ≡
δFb(A

a
μ)

δαe
(6.32)

will generally depend upon the fields Aaμ themselves. Thus, the fields {ca}, {c̄a}
will appear as degrees of freedom in the defining lagrangian of the theory. How-
ever, although coupled to the gauge fields Aaμ through c̄Mc, they do not interact
with any source terms and therefore can only appear in closed loops inside more
complex diagrams.5 Since these Grassmann quantities are unphysical, they are

5 Such loops must include a multiplicative factor of −1 to account for the anticommuting nature of these
variables.
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often called Faddeev–Popov ghost fields. They are scalar, anticommuting variables,
which transform as members of the regular representation of the gauge group, e.g.,
for the gauge group SU(n), there are n2 − 1 of the {ca} and {c̄a} fields.

To complete the discussion, let us determine the ghost-field contribution to the
QCD lagrangian. We choose Fb = ∂μA

μ

b and note the form of a gauge transforma-
tion (cf. Eqs. (I–5.12), (I–5.17) with αa infinitesimal),

A
μ

b → A
′μ
b = A

μ

b +
1

g3
∂μαb − fbaeAμa αe. (6.33)

Then we find from a direct evaluation of ∂Fb/∂αe followed by the rescaling
−g−1

3 c̄c→ c̄c,

Lgh = −c̄b∂ν[δbe∂ν − g3fbaeA
ν
a]ce. (6.34)

Upon performing an integration by parts in the first term and relabeling the indices
in the second, we obtain the ghost contribution to the QCD lagrangian of
Eq. (II–2.25).

Problems

(1) The van Vleck determinant
The semiclassical approximation to the propagator (valid as � → 0) can be
derived by expanding about the classical path. Writing

x(t) = xcl(t)+ δx(t),
we have

D(xf , tf ; xi, ti) = eiS[xcl(t)]
∫

D[δx(t)]e i2
∫
dtdt ′ δx(t) δ2S

δx(t)δx(t ′) δx(t
′)
,

where

δ2S

δx(t)δx(t ′)
= −

(
∂2

∂t2
+ ∂2V [xcl(t)]

∂x2
cl(t)

)
δ(t − t ′)

and we have dropped the term linear in δx(t) by Hamilton’s condition.
Performing the path integration we have then

D(xf , tf ; xi, ti) = N

[
det

δ2S

δx(t)δx(t ′)

]−1/2

eiS[xcl(t)],

where N is a normalization constant and the quantity inside the square root is
called the van Vleck determinant.
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(a) Show that this can be written in the form

N

[
δ2S

δx(t)δx(t ′)

]− 1
2

=
[

1

2πi

∂2S[xcl(t)]
∂xf ∂xi

]1/2

.

Hint: The following argument is hardly rigorous but leads to the correct
answer. Write

D(xf , tf ; xi, ti) ≡ A(xf , xi; tf − ti)eiScl(xf ,xi ;tf−ti )

and use completeness to show that at equal times

δ(xf − xi)D(xf , ti; xi, ti)
=
∫
dx A(xf , x; T )A∗(xi, x; T )ei(Scl(xf ,x;T )−Scl(xi ,x;T )),

where T is an arbitrary positive time. Now define ρ(xi, x; T ) ≡
∂Scl(xi, x; T )/∂xi so that

Scl(xf , x; T )− Scl(xi, x; T ) � (xf − xi)ρ(xi, x; T ).
Finally, change variables from x to ρ and compare with the free particle
result to obtain

A(xf , xi; T ) =
[

1

2πi

∂2Scl

∂xf ∂xi

]1/2

.

(b) Show that

Scl(xf , xi; T ) = −ET +
∫ xf

xi

dx
√

2m(E − V (x))

and verify that[
1

2πi

∂2Scl

∂xf ∂xi

] 1
2

=
[

m

2πiẋcl(tf )ẋcl(ti)
∫ xf
xi
dx ẋ−3

cl (x)

]1/2

.

Hint: Recall that t is an independent variable, so that

0 = ∂t

∂xf
= ∂t

∂ti
.

We thus have the result for the semiclassical propagator

D(xf , tf ; xi, ti) =
[

m

2πiẋcl(ti)ẋcl(tf )
∫ xf
xi
dx ẋ−3

cl (x)

]1/2

eiScl,

which is identical to that found from WKB methods.
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(2) Propagator for the charged scalar field
The lagrangian for a charged scalar field ϕ of mass m and charge e in the
presence of an external (c-number) potential Aμ is

L = Dμϕ∗Dμϕ −m2ϕ∗ϕ,

where Dμ = ∂μ + ieAμ is the covariant derivative.
(a) Show that the full Feynman propagator,

DF(x
′; x) =

∫ [dϕ][dϕ∗]ϕ(x ′)ϕ∗(x)ei ∫ d4x L(x)∫ [dϕ][dϕ∗]ei ∫ L(x) ,

can be written as

DF(x
′; x) = −i〈x ′|(DμDμ +m2 − iε)−1|x〉.

Suggestion: This is a quadratic form. Use the generating functional to
integrate it.

(b) By expanding DF(x
′; x) as a power series in Aμ(x), show that an

alternative representation for the propagator is

DF(x
′; x) = 〈x ′|

∫ ∞

0
ds e−is(D

μDμ+m2−iε)|x〉.

(3) Functional methods and ϕ4 theory
Consider a scalar field theory with the self-interaction

Lint = − λ
4!ϕ

4(x).

(a) Show that the generating functional can be written as

Z[j ] = Ne
−i λ4!

∫
d4z
(

δ4

δj4(z)

)
e−

1
2

∫
d4x

∫
d4y j (x)i�F (x,y)j (y),

where the free field Feynman propagator i�F (x, y) is as in Eq. (C–2.12).
(b) Evaluate the two-point function to O(λ2). Associate a Feynman diagram

with each term of this expansion and separate the connected and discon-
nected diagrams.

(c) Calculate the connected generating functional via

W [j ] = W0[j ] − i ln

[
1+ e−iW(0)[j ]

(
e
−i λ4!

∫
d4z δ4

δj4(z) − 1

)
eiW

(0)[j ]
]

where

W(0)[j ] = 1

2

∫
d4x

∫
d4y j (x)i�F (x, y)j (y).

(d) Compare the connected diagrams found in parts (b) and (c).



Appendix B

Advanced field-theoretic methods

B–1 The heat kernel

When using path-integral techniques one must often evaluate quantities of the form

H(x, τ) ≡ 〈x ∣∣e−τD∣∣ x〉 , (1.1)

where D is a differential operator and τ is a parameter. In this section, we shall
describe the heat kernel method by which H(x, τ) is expressed as a power series
in τ . For example, if in d dimensions the differential operator D is of the form

D = +m2 + V, (1.2)

where V is some interaction, then the heat kernel expansion for H(x, τ) is

H(x, τ) = i

(4π)d/2
e−τm2

τ d/2

[
a0(x)+ a1(x)τ + a2(x)τ

2 + · · · ] , (1.3)

where ai(x) are coefficients which will be determined below.
Let us begin by citing the two most common occurrences of H(x, τ). One is in

the evaluation of the functional determinant

detD = e tr lnD = e
∫
d4x Tr 〈x| lnD|x〉, (1.4)

where ‘ Tr ’ is a trace over internal variables like isospin, Dirac matrices, etc., and
‘ tr ’ is a trace over these plus spacetime. The (generally singular) matrix element
〈x| lnD|x〉 appearing in Eq. (1.4) can be expressed in a variety of ways. For exam-
ple, in dimensional regularization one can use the identity

ln
b

a
=
∫ ∞

0

dx

x

(
e−ax − e−bx) (1.5)

to write

〈x| lnD|x〉 = −
∫ ∞

0

dτ

τ

〈
x
∣∣e−τD∣∣ x〉+ C, (1.6)

520



B–1 The heat kernel 521

where C is a divergent constant having no physical consequences. Substituting
Eq. (1.3) into the above yields

〈x| lnD|x〉 − C = − i

(4π)d/2

∞∑
n=0

md−2n �

(
n− d

2

)
an(x). (1.7)

The divergences in the series representation arise from the � function and are
restricted in four dimensions to the terms a0(x), a1(x), a2(x).

The heat kernel can likewise be used to analyze the functional determinant in
alternative regularization procedures, such as zeta-function regularization. Here,
one expresses the matrix element 〈x| lnD|x〉 as

〈x| lnD|x〉 = −
〈
x

∣∣∣∣[ dds e−s lnD
]
s=0

∣∣∣∣ x〉
= −

[
d

ds

〈
x

∣∣∣∣ 1

Ds

∣∣∣∣ x〉 ]
s=0

= − d

ds
ξD(x, s)

∣∣∣∣
s=0

,

ξD(x, s) ≡ 1

�(s)

∫ ∞

0
dτ τ s−1H(x, τ). (1.8)

The penultimate equality in Eq. (1.8) is obtained from repeated formal differentia-
tion of Eq. (1.6) with respect to D. Upon expanding the H(x, τ) term in ξD(x, s),
one arrives at the desired power-series expansion of 〈x| lnD|x〉. This usage is
applied in the next section.

The other main use of the heat kernel is in the regularization of anomalies. Often
one is faced with making sense of Tr 〈x |O(x)| x〉, where O is a local operator.
Although such quantities are generally singular, they can be defined in a gauge-
invariant manner by damping out the contributions of large eigenvalues,

Tr 〈x |O(x)| x〉 = lim
ε→0

Tr
〈
x
∣∣O(x)e−εD∣∣ x〉 , (1.9)

where D is a gauge-invariant differential operator. Again, it is only the low-order
coefficients, generally those up to a2(x), which contribute in the ε → 0 limit. We
employ this technique in Sects. III–3,4.

As an example of heat-kernel techniques, let us consider the following operator
defined in d dimensions:

D = dμd
μ +m2 + σ(x)

(
dμ ≡ ∂

∂xμ
+ �μ(x)

)
, (1.10)

where �μ(x) and σ(x) are functions and/or matrices defined in some internal sym-
metry space. In particular, neither �μ nor σ contains derivative operators. Employ-
ing a complete set of momentum eigenstates {|p〉} allows us to express the heat
kernel as



522 Advanced field-theoretic methods

H(x, τ) =
∫

ddp

(2π)d
e−ip·xe−τDeip·x, (1.11)

where in d dimensions use is made of the relations

〈p|x〉 = 1

(2π)d/2
eip·x,

〈
x|x ′〉 = ∫ ddp

(2π)d
eip·(x

′−x) = δ(d)(x − x ′),
〈
p′|p〉 = ∫ ddx

(2π)d
ei(p

′−p)·x = δ(d)(p′ − p). (1.12)

From the identities

dμe
ip·x = eip·x(ipμ + dμ),

dμd
μeip·x = eip·x(ipμ + dμ)(ipμ + dμ), (1.13)

we can then write

H(x, τ) =
∫

ddp

(2π)d
e−τ[(ipμ+dμ)

2+m2+σ]

=
∫

ddp

(2π)d
eτ [p

2−m2]e−τ [d·d+σ+2ip·d]. (1.14)

The first exponential factor is simply the free field result, while all the interesting
physics is in the second exponential. The latter can be Taylor expanded in powers
of τ , keeping those terms which contribute up to order τ 2 after the integration over
momentum is performed. Note that each power of p2 contributes a factor of 1/τ .
Thus, we obtain the expansion

H(x, τ) =
∫

ddp

(2π)d
eτ(p

2−m2)

[
1− τ [d · d + σ ]

+ τ 2

2
[(d · d + σ)(d · d + σ)− 4p · d p · d]

+ 4τ 3

3!
[
p · d p · d(d · d + σ)+ p · d(d · d + σ)p · d

+ (d · d + σ)p · d p · d]
+ 16τ 4

4! p · d p · d p · d p · d + · · ·
]
, (1.15)

where terms odd in p have been dropped and we have displayed only those O(τ 3)

and O(τ 4) terms which contribute to H at order τ 2 after p is integrated over.
To perform the integral, it is convenient to continue to euclidean momentum
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pE = {p1, p2, p3, p4 = −ip0}. Then, with the replacement pμpμ → −|pμEpμE| =
−p2

E , we obtain∫
ddpE

(2π)d
e−(p

2
E+m2)τ =

∫
d�d

(2π)d

∫
dpE p

d−1
E e−(p

2
E+m2)τ

= 2πd/2

�(d/2)

1

(2π)d
e−m2τ�(d/2)

2τ d/2

= 1

(4π)d/2
e−m2τ

τ d/2
,∫

ddpE

(2π)d
e−(p

2
E+m2)τp

μ

Ep
ν
E =

δμν

d

1

(4π)d/2
e−m2τ

τ d/2+1

�(d/2+ 1)

�(d/2)

= δμν

2

e−m2τ

(4π)d/2τ d/2+1
,∫

ddpE

(2π)d
e−(p

2
E+m2)τp

μ

Ep
ν
Ep

λ
Ep

σ
E =

e−m2τ

(4π)d/2τ d/2+2

×
(
δμνδλσ + δμλδνσ + δμσ δλν)

4
. (1.16)

Employing these relations to evaluate Eq. (1.14) gives (to second order in τ ),

H(x, τ) = ie−m2τ

(4π)d/2τ d/2

×
[

1− τσ + τ 2

(
1

2
σ 2 + 1

12
[dμ, dν][dμ, dν] + 1

6
[dμ, [dμ, σ ]]

)]
,

(1.17)

or in the notation of Eq. (1.3),

a0(x) = 1, a1(x) = −σ,
a2(x) = 1

2
σ 2 + 1

12
[dμ, dν][dμ, dν] + 1

6

[
dμ, [dμ, σ ]

]
. (1.18)

Fermions are treated in a similar manner. For example, the identity

ln /D = 1

2
ln(/D /D) (1.19)

allows the same technique to be used for the operator /D /D. In particular let us
consider the case where

��D = �∂ + i��V + i�Aγ5. (1.20)
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With some work, one can cast this into the form of Eq. (1.10) with the identifica-
tions

/D /D ≡ D = dμd
μ + σ,

dμ = ∂μ + iVμ + σμνAνγ5 ≡ ∂μ + �μ,
σ = 1

2
σμνV

μν − 2AμA
μ + (i∂μAμ − [Vμ,Aμ]) γ5,

Vμν = ∂μVν − ∂νVμ + i[Vμ, Vν] + i[Aμ,Aν]. (1.21)

The values of ai(x) appearing in Eq. (1.18) can also be used in this case. The heat-
kernel coefficients have been worked out for more general situations [Gi 75].

B–2 Chiral renormalization and background fields

In this section, we illustrate the method described above while also proving an
important result for the theory of chiral symmetry. The goal is to demonstrate that
all the divergences encountered at one loop can be absorbed into a renormalization
of the coefficients of the O(E4) chiral lagrangian and to identify the renormaliza-
tion constants. The technique used here, the background field method, is of consid-
erable interest in its own right [Sc 51, De 67, Ab 82] and is applicable to areas such
as general relativity [BiD 82].

The basic idea of the background field method is to calculate quantum correc-
tions about some nonvanishing field configuration ϕ,

ϕ(x) = ϕ̄(x)+ δϕ(x), (2.1)

rather than about the zero field,1 and to then compute the path integral over the
fluctuation δϕ(x). The result is an effective action for ϕ̄. This effective action can
be expanded in powers of ϕ and applied to matrix elements at tree level, resulting
in a description of scattering processes at one-loop order. In the case of the chiral
lagrangian, one expands the full chiral matrix

U = Ū + δU, (2.2)

where Ū satisfies the classical equation of motion. Upon integration over δU , one
obtains the one-loop effective action for Ū . This contains a great deal of informa-
tion. In particular, Ū can be expanded in the usual way in terms of a set of external
meson fields

Ū = exp(iλaϕ̄a/F ) (a = 1, . . . , 8). (2.3)

1 See the discussion in Appendix A–4.
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Contained in Seff(Ū) is the effective one-loop action for arbitrary numbers of meson
fields. Upon identification of renormalization constants, all processes become renor-
malized at the same time.

Our starting point is, in the notation of Sect. IV–6, the O(E2) lagrangian

L2 = F 2
0

4
Tr
(
DμUD

μU †
)+ F 2

0

4
Tr
(
χ†U + U †χ

)
. (2.4)

The procedure to follow is rather technical, so let us first quote the end result of
the calculation. Upon performing the one-loop quantum corrections, the effective
action will have the form

Seff = Sren
2 + Sren

4 + Sfinite
4 + · · · .

Here the lagrangians in Sren
2 , Sren

4 are the ones quoted in Sect. VII–2, but now with
renormalized coefficients. In particular Sren

4 is the sum Sren
4 = Sbare

4 + Sdiv
4 where,

in chiral SU(3) and employing dimensional regularization, Sdiv
4 is given by

Sdiv
4 = −λ

∫
d4x

[
3

32

[
Tr
(
DμUD

μU †
)]2

+ 3

16
Tr
(
DμUDνU

†
)

Tr
(
DμUDνU †

)
+ 1

8
Tr
(
DμUD

μU †
)

Tr
(
χ†U + U †χ

)
+ 3

8
Tr
[
DμUD

μU †
(
χU † + Uχ†

)]
+ 11

144

[
Tr
(
χU † + Uχ†

)]2 + 5

48
Tr
(
χU †χU † + Uχ†Uχ†

)
+ i

4
Tr
(
LμνD

μUDνU † + RμνDμU †DνU
)− 1

4
Tr
(
LμνUR

μνU †
)]
(2.5)

with

λ ≡ 1

32π2

{
2

d − 4
− ln 4π − 1+ γ

}
. (2.6)

The terms in Sdiv
4 are all of the same form as the terms in the bare lagrangian at

order E4. Therefore, all the divergences can be absorbed into renormalized values
of these constants. The finite remainder, Sfinite

4 , cannot be simply expressed as a
local lagrangian, but can be worked out for any given transition. When Sdiv

4 is added
to the O(E4) tree-level lagrangian of Eq. (VII–2.7), the result has the same form
but with coefficients

Lri = Li − γiλ, (2.7)
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Table B–1. Renormalization coefficients.

i 1 2 3 4 5 6 7 8 9 10

SU(2) γi
1

12
1
6 0 1

8
1
4

3
32 0 0 1

6 − 1
6

SU(3) γi
3

32
3
16 0 1

8
3
8

11
144 0 5

48
1
4 − 1

4

where the {γi} are numbers which are given in Table B–1 for both the case of chiral
SU(2) and SU(3). Thus, the divergences can all be absorbed into the redefined
parameters and these in turn can be determined from experiment. Let us now turn
to the task of obtaining this result.

In applying the background field method, there are a variety of ways to para-
meterize δU , and several different ones are used in the literature. The prime con-
sideration is to maintain the unitarity property U †U = 1 = (Ū † + δU †

) (
Ū + δU)

along with Ū †Ū = 1. We shall take

U = Ūei�, (2.8)

with � ≡ λa�a representing the quantum fluctuations. This choice is made to
simplify the algebra in the heat-kernel renormalization approach, which we shall
describe shortly. Another possible choice is

U = ξeiηξ (2.9)

with η = λaηa and ξξ ≡ Ū . These two forms are related by η = ξ�ξ †. Since in
the path integral, we integrate over all values of� (or η) at each point of spacetime,
these two choices are equivalent.

The expansion of the lagrangian in terms of Ū and � is straightforward, and we
find

Tr
(
DμUD

μU †
) = Tr

(
DμŪD

μŪ †
)− 2i Tr

(
Ū †DμŪD̃

μ�
)

+ Tr
[
D̃μ�D̃

μ�+ Ū †DμŪ
(
�D̃μ�− D̃μ��

)]
,

Tr
(
χ†U + U †χ

) = Tr
(
χ†Ū + Ū †χ

)+ i Tr
(
�
(
χ†Ū − Ū †χ

))
− 1

2
Tr
[
�2
(
χ†Ū + Ū †χ

)]
, (2.10)

where

D̃μ� ≡ ∂μ�+ i
[
rμ,�

]
, (2.11)

where rμ is the matrix source function of Eqs. (IV–6.1,6.2). Since Ū satisfies the
equation of motion, there is no term linear in �. One may integrate various terms
in the action by parts to obtain
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S
(0)
2 =

∫
d4x

{
L2(Ū)− F 2

0

2
�a
(
dμd

μ + σ )ab �b + · · ·
}
, (2.12)

where

dabμ = δab∂μ + �abμ ,
�abμ = −

1

4
Tr
([
λa, λb

] (
Ū †∂μŪ + iŪ †
μŪ + irμ

))
,

σ ab = 1

8
Tr
({λa, λb} (χ†Ū + Ū †χ

)+ [λa, Ū †DμŪ
] [
λb, Ū †DμŪ

])
. (2.13)

The action is now a simple quadratic form, and the path integral may be per-
formed. The only potential complication is the question of interpreting the integra-
tion variables. This is referred to as the ‘question of the path-integral measure’. The
integration over all the unitary matrices U can be accomplished by an integration
over the parameters in the exponential∫

[dU ] = N

∫
[d�a], (2.14)

where N is a constant which plays no dynamical role. With this identification one
obtains

eiWloop =
∫
[d�a]ei

∫
d4x F

2
2 �a(dμdμ+σ)ab�b

= (det
[
dμd

μ + σ ])−1/2 = e−
1
2 tr ln(dμdμ+σ). (2.15)

Here ‘tr’ indicates a trace over the spacetime indices as well as over the SU(N)
indices a, b.

The identification of divergences is most conveniently done by using the heat-
kernel expansion derived earlier in App. B–1, where it is shown that all the ultra-
violet divergences are contained in the first few expansion coefficients. The relevant
terms are

Wloop = i

2
tr ln

(
dμd

μ + σ )
= 1

2(4π)d/2

∫
d4x lim

m→0

{
�

(
1− d

2

)
md−2 Tr σ

+ md−4�

(
2− d

2

)
Tr

(
1

12
�μν�

μν + 1

2
σ 2

)
+ · · ·

}
, (2.16)

where

�abμν = ∂μ�
ab
ν − ∂ν�abμ + �acμ �cbν − �acν �cbμ =

[
dμ, dν

]ab
. (2.17)
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For Nf flavors, the operator part of the first term in Eq. (2.16) is

Tr σ = Nf

2
Tr
(
DμŪD

μŪ †
)+ N2

f − 1

2Nf

Tr
(
χ†Ū + Ū †χ

)
. (2.18)

The above two traces are just those which appear in L2; as such, they can only
modify the quantities Fπ and m2

π . The remaining terms can be worked out with a
bit more algebra. Using the identity

∂μ
(
Ū †∂νŪ

)− ∂ν (Ū †∂μŪ
) = − [Ū †∂μU, Ū

†∂νU
]
, (2.19)

we find for the field strength,

�abμν =
1

8
Tr
{[
λa, λb

]([
Ū †DμŪ, Ū

†DνŪ
]
+ iŪ †LμνŪ + iRμν

)}
. (2.20)

This produces, for Nf flavors in chiral SU(Nf ),

Tr
(
�μν�

μν
) = Nf

8
Tr
([
Ū †DμŪ, Ū

†DνŪ
] [
Ū †DμŪ, Ū †DνŪ

])
+ iNf Tr

(
Rμν∂

μŪ †∂νŪ + Lμν∂μŪ∂νŪ †
)

− Nf Tr
(
LμνŪR

μνŪ †
)− Nf

2
Tr
(
LμνL

μν + RμνRμν
)
,

Tr σ 2 = 1

8

[
Tr
(
DμŪD

μŪ †
)]2 + 1

4
Tr
(
DμŪDνŪ

†
)

Tr
(
DμŪDνŪ †

)
+ Nf

8
Tr
(
DμŪD

μŪ †DνŪD
νŪ †

)+ 2+N2
f

8N2
f

[
Tr
(
χŪ † + Ū †χ

)]2
+ 1

4
Tr
(
DμŪD

μŪ †
)

Tr
(
χŪ † + Ūχ†

)
+ Nf

4
Tr
(
DμŪD

μŪ †
(
χŪ † + Ūχ†

))
+ N2

f − 4

8Nf

Tr
((
χŪ † + Ūχ†

) (
χŪ † + Ūχ†

))
. (2.21)

The only operator which is not of the same form as the basic O(E4) lagrangian
occurs in the first term of Tr�2. However, by use of Eq. (VII–2.3) for SU(3), it
can be written as a linear combination of our standard forms. For Nf = 3, these
add up to the result previously quoted in Eq. (2.5). Here, the divergence is in the
parameter λ. For convenience in applications, we have added some finite terms
to the definitions of λ in Eq. (2.6). The results for Nf = 2 are also quoted in
Table B–1, although some of the operators are redundant for that case.

The reader who has understood the above development as well as the standard
perturbative methods presented in the main text will be prepared for the use of
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the background field method in the full calculation of transition amplitudes. This
procedure consists of writing

dμd
μ + σ = D0 + V

D0 = +m2

V = {∂μ, �μ} + �μ�μ + σ −m2, (2.22)

wherem2 is the meson mass-squared matrix. The one-loop action is then expanded
in powers of the interaction V

Wloop = i

2
tr ln(dμd

μ + σ) = i

2
tr
[
lnD0 + ln(1+D−1

0 V )
]

= i

2
tr

[
lnD0 +D−1

0 V − 1

2
D−1

0 VD−1
0 V + · · ·

]
. (2.23)

The first term is an uninteresting constant which may be dropped, and the remain-
der has the coordinate space form

Wloop = − i
2

∫
d4x Tr [�F(x − x)V (x)]

− i

4

∫
d4xd4y Tr [�F(x − y)V (y)�F (y − x)V (x)] + · · · . (2.24)

When the matrix elements of this action are taken, the result contains not only the
divergent terms calculated above, but also the finite components of the one-loop
amplitudes. The resulting expressions are presented fully in [GaL 84, GaL 85a].
This method allows one to calculate the one-loop corrections to many processes at
the same time and, in practice, is a much simpler procedure for some of the more
difficult calculations.

B–3 PCAC and the soft-pion theorem

We have emphasized the use of effective lagrangians to elucidate the symmetry
predictions of a theory. For a dynamically broken chiral symmetry such as QCD,
these predictions will relate processes which have different numbers of Goldstone
bosons. The machinery of effective lagrangians will correctly yield such predic-
tions, but it is often useful to have an alternative technique for understanding or
calculating these results. In the case of chiral symmetry, this is provided by the
soft-pion theorem, which explicitly relates a process with a pion to one with that
pion removed from the amplitude. Calculations performed this way uses current
algebra methods which go by the name of partial conservation of the axial cur-
rent or PCAC [AdD 68]. While these techniques are often more cumbersome, they
often are useful. This section describes these methods.
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We can again turn to the sigma model to introduce this subject. We return to
the effective lagrangian treatment of Chap. IV, with a pion mass included and the
S field integrated out. The lagrangian of Eq. (IV–6.12) gives rise to the vector and
axial-vector currents

V k
μ = −i

v2

4
Tr
[
τ k
(
U †∂μU + U∂μU †

)]
,

Akμ = i
v2

4
Tr
[
τ k
(
U †∂μU − U∂μU †

)]
, (3.1)

with k = 1, 2, 3. The equation of motion is found to be

∂μ
(
U †∂μU

)+ m2
π

2

(
U − U †

) = 0, (3.2)

and two important matrix elements are〈
0
∣∣Akμ∣∣πj(p)〉 = ivpμδ

kj ,
〈
0
∣∣∂μAkμ∣∣πj(p)〉 = vm2

πδ
kj . (3.3)

The former allows the identification v = Fπ , where Fπ is the pion decay constant
Fπ � 92 MeV, while the latter follows either from Eq. (3.1) directly, or by use of
the equation of motion for Akμ,

∂μAkμ = −i
v2m2

π

4
Tr
[
τ k
(
U − U †

)] = Fπm
2
ππ

k + · · · . (3.4)

This last equation forms the heart of the PCAC method. It describes a situation
covered by Haag’s theorem (recall Sect. IV–1), and says that we may use either
πk or ∂μAkμ (properly normalized) as the pion field. It is more general than the
sigma model, which we used to motivate it. This, plus certain smoothness assump-
tions, gives rise to a soft-pion theorem for the following matrix element of a local
operator O,

lim
qμ→0

〈
πk(q)β|O|α〉 = − i

Fπ

〈
β| [Qk

5,O
] |α〉 , (3.5)

where β, α are arbitrary states and Qk
5 =

∫
d3x Ak0(x) is an axial charge.

The proof of Eq. (3.5) starts with the LSZ reduction formula. We consider the
matrix element for the process α → β + πk(q) as the pion four-momentum q is
taken off the mass-shell,〈

πk(q)β|O(0)|α〉 = i

∫
d4x eiq·x

( +m2
π

) 〈
β|T (πk(x)O(0)) |α〉

= i

∫
d4x eiq·x(−q2 +m2

π)
〈
β|T (πk(x)O(0)) |α〉 , (3.6)
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The pion field can be replaced by using the PCAC relation (valid in the sense of
Haag’s theorem),

πk = 1

Fπm2
π

∂μAkμ, (3.7)

leading to〈
πk(q)β|O(0)|α〉 = i

(m2
π − q2)

Fπm2
π

∫
d4x eiq·x

〈
β|T (∂μAkμ(x)O(0)) |α〉 . (3.8)

The derivative can be extracted from the time-ordered product by using

∂μ
〈
β|T (Akμ(x)O(0)) |α〉
= 〈β|T (∂μAkμ(x)O(0)) |α〉+ δ(x0)

〈
β| [Ak0(x),O(0)] |α〉 , (3.9)

where the last term arises from differentiating the functions θ(±x0), which occur
in the time-ordering prescription. Upon integrating by parts, we find〈

πk(q)β|O(0)|α〉 = i
(m2

π − q2)

Fπm2
π

∫
d4x eiq·x

[− 〈β| [Ak0(x),O(0)] |α〉 δ(x0)

− iqμ
〈
β|T (Akμ(x)O(0)) |α〉] . (3.10)

Up to this stage all the formulae are exact for physical processes, even if appearing
rather senseless, since ∂μAkμ has the same singularity for q2 → m2

π as does the
field πk. However, to obtain the soft-pion theorem one assumes that the matrix
element does not vary much between its on-shell value and the point where the
pion’s four-momentum vanishes. In that circumstance, we have [NaL 62, AdD 68]

lim
qμ→0

〈
πk(q)β|O|α〉 = − i

Fπ

〈
β| [Qk

5,O(0)
] |α〉+ lim

qμ→0
iqμRk

μ, (3.11)

where

Rk
μ = −

i

Fπ

∫
d4x eiq·x

〈
β|T (Akμ(x)O(0)) |α〉 . (3.12)

The remainder term of Eq. (3.11) vanishes unless Rk
μ has a singularity as qμ → 0.

Such a singularity can occur if there are intermediate states in Rk
μ which are degen-

erate in mass with either α or β. This last statement can be proven by inserting a
complete set of intermediate states in the time-ordered product in Rk

μ, and taking
the qμ → 0 limit. This caveat should be kept in mind as it is sometimes relevant.

The soft-pion theorem relates to the intuitive picture for dynamically broken
symmetries mentioned in Sect. I–6. Since a chiral transformation corresponds in the
symmetry limit to the addition of a zero-energy Goldstone boson, we expect the
states 〈β| and 〈πkqμ=0β| to be related by the symmetry and, indeed, the soft-pion
theorem expresses this. Although the soft-pion theorem is exact in the symmetry
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limit, a smoothness assumption is needed in the real world to pass from qμ = 0 to
q2 = m2

π , implying that corrections of order qμ or of order m2
π can be expected.

In the Standard Model, the charge commutation rules are commonly abstracted
from those of the quark model. Upon expressing charge operators in terms of quark
fields,

Qk =
∫
d3x ψ̄γ0

λk

2
ψ, Qk

5 =
∫
d3x ψ̄γ0γ5

λk

2
ψ, (3.13)

one obtains the algebra[
Qi, V j

μ

] = if ijkV k
μ,

[
Qi

5, V
j
μ

] = if ijkAkμ,[
Qi,Ajμ

] = if ijkAkμ,
[
Qi

5, A
j
μ

] = if ijkV k
μ. (3.14)

These commutation rules can be extended to equal-time commutators, which con-
tain a charge density, e.g.,[

V i
0 (x), A

j
μ(y)

]
x0=y0 = if ijkAkμδ

(3)(x− y). (3.15)

However, commutators which involve two spatial components can be more
problematic [AdD 68].

Sometimes, in the PCAC approach, if the matrix element is assumed to be
strictly constant, the various soft-pion limits turn out to be contradictory. If so,
the amplitude must be extended to include momentum dependence, as happens in
nonleptonic kaon decay. By contrast, the effective lagrangian approach automat-
ically gives the appropriate momentum dependence, and its predictions follow in
a straightforward manner. Moreover, effective lagrangians are especially useful in
identifying and parameterizing corrections to the lowest-order results. They allow
a systematic expansion in terms of energy and mass.

B–4 Matching fields with different symmetry-transformation properties

In Chapter IV, we described the construction of an effective lagrangian for pion
fields with chiral transformation properties. However, most particles do not trans-
form in the same way as the pions of that chapter. In a broader context, we require
a procedure for combining fields with different symmetry properties. For example,
in the case of hadronic physics one often needs to consider particles such as nucle-
ons, ρ(770), etc., interacting with pions. A general approach for this was presented
in a set of classic papers on the subject [We 68, CoWZ 69, CaCWZ 69]. We shall
introduce this framework by again referring to the sigma model, and then we shall
extend the results.
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Heavy particles do not themselves exist in chiral multiplets. For example, the
chiral partner of ρ(770) would be the J PC = 1++ state a(1260). The a(1260)–
ρ(770) mass difference is considerable, and attempts to pair these particles in a
chiral multiplet would clearly be a matter of speculation. However, since each falls
into vectorial flavor (SU(2) or SU(3)) multiplets, it makes sense to build in only
vectorial flavor invariance without invoking assumptions about chiral properties.

We shall proceed by first working out an example, the fermionic sector of the
linear sigma model,

Lf = ψ̄ [i/∂ − g (σ − iτ · πγ5)]ψ

= ψ̄Li/∂ψL + ψ̄Ri/∂ψR − gv
(

1+ S

v

) (
ψ̄LUψR + ψ̄RU †ψL

)
. (4.1)

We shall drop reference to the scalar field S in the following. The above lagrangian
is invariant under the chiral transformations

ψL → LψL, ψR → RψR, U → LU R†, (4.2)

with L in SU(2)L and R in SU(2)R. As always, we are free to change variables
via contact transformations. In this instance, a useful choice of field redefinitions
turns out to be

NL ≡ ξ †ψL, NR ≡ ξψR, U = ξ ξ, (4.3)

where ξ = exp(iτ ·π/2Fπ). This is seen, after some algebra, to convert the fermion
lagrangian to

L′f = N
(
i /D − /Aγ5 −M

)
N, Dμ = ∂μ + iV μ,

V μ = − i
2

(
ξ †∂μξ + ξ∂μξ †

)
, Aμ = − i

2

(
ξ †∂μξ − ξ∂μξ †

)
,

(4.4)

which is a theory of fermions of mass M = gv having pseudovector coupling. The
new fields transform as

ξ → LξV † ≡ V ξ R†, NL → V NL, NR → V NR,

V μ → V
(
V μ − i∂μV † · V )V †, Aμ → V AμV

†, DμN → V DμN.
(4.5)

For purely vector transformations we haveL = R = V . ForL �= R, the property
of V is more complicated, and Eq. (4.5) implies that it cannot be a simple global
transformation, but must be a function of π(x) and hence a function of x. At first
sight, the need to express an SU(2)-transformation matrix like V as a function
of π(x) appears unnatural. However, it is in fact consistent with physical expec-
tations. Recall from the general discussion of dynamical symmetry breaking in
Sect. I–6 that, in the symmetry limit, axial transformations mix the proton not
with the neutron (as in isospin transformations) but rather with states consisting of
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nucleons plus zero-momentum pions. Mathematically, the important point is that
NL and NR transform in an identical fashion. This corresponds to the fact that
heavy fields do not transform chirally, but have a common vectorial SU(2) trans-
formation. It can be directly verified that Eq. (3.5) is a symmetry of the lagrangian.
Thus, we have obtained the expected result that the baryons can have a vectorial
SU(2) invariance, while maintaining a chiral invariance for pion couplings.

We see in the above example the ingredients of a general procedure for adding
heavy fields to effective chiral lagrangians. The heavy fields are assumed to have an
SU(2) (or SU(n), if desired) transformation described by the matrix V . A deriva-
tive ∂μ acting on a heavy field must be incorporated as part of a covariant deriva-
tive Dμ in order to maintain this invariance. Couplings to pions are described by
the matrices ξ and U , with ξ having the same transformation as in Eq. (4.5). It
is usually straightforward to combine factors of ξ and U in such a way that the
overall lagrangian is invariant. In the general case, each invariant term will have an
unknown coefficient which must be determined phenomenologically. For example,
the N̄ /Aγ5 N term in Eq. (4.4) would be expected to have a coefficient different
from unity; the unit coefficient is a prediction specific to the linear sigma model.
Effects which break the symmetry in an explicit fashion, like mass terms or elec-
troweak interactions, can be added by using appropriate external sources. To date,
heavy-field lagrangians have been used in applications primarily at tree level. The
feature which is essential for their application is that the pion momenta are small,
and hence the heavy fields are essentially static.
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Useful formulae

C–1 Numerics

Conversion factors (� = c = kB = 1):

1 GeV−1 = 6.582122× 10−25 s 1 GeV = 1.16× 1013 K
= 0.197327 fm = 1.78× 10−24 g.

Physical constants (� = c = 1):

Gμ = 1.1663787(6)× 10−5 GeV−2 G
−1/2
N = MPl = 1.2× 1019 GeV

α−1 = 137.035999074(44) sin2 θMS
w (MZ) = 0.23125(16)

mW = 80.385(15) GeV mZ = 91.1876(21) GeV
me = 0.510998928(11) MeV mp = 938.272046(21) MeV
Fπ = 92.2(2)MeV FK = 110.4(8) MeV

|η+−| = 2.232(11)× 10−3 |η00| = 2.220(11)× 10−3.

CKM matrix elements:

|Vud| = 0.97427(15) |Vus| = 0.22534(65) |Vub| = 0.00351+0.00015
−0.00014

|Vcd| = 0.22520(65) |Vcs| = 0.97344(16) |Vcb| = 0.0412+0.0011
−0.0005

|Vtd| = 0.00867+0.00029
−0.00031 |Vts| = 0.0404+0.0011

−0.0005 |Vtb| = 0.999146+0.000021
−0.000046.

C–2 Notations and identities

Metric tensor:

gμν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ gμμ = 4. (2.1)

535



536 Useful formulae

Totally antisymmetric four-tensor:

εμναβ =
⎧⎨⎩
+1 {μ, ν, α, β} even permutation of {0, 1, 2, 3}
−1 odd permutation

0 otherwise

εμναβε ν′α′β ′
μ = gνα

′
gαν

′
gββ

′ + gνν′gαβ ′gβα′ + gνβ ′gαα′gβν′

− gνν′gαα′gββ ′ − gνβ ′gαν′gβα′ − gνα′gαβ ′gβν′ . (2.2)

Totally antisymmetric three-tensor:

εijk =
⎧⎨⎩
+1 {i, j, k} even permutation of {1, 2, 3}
−1 odd permutation
0 otherwise

ε0ijk = −ε0ijk = εijk = εijk

εijkεilm = δjlδkm − δjmδkl. (2.3)

Pauli matrices:

σ jσ k = δjkI + iεjklσ l (j, k, l = 1, 2, 3)

σ
j

abσ
j

cd = 2δadδbc − δabδcd (a, b, c, d = 1, 2). (2.4)

Dirac matrices:

γ5 = −iγ 0γ 1γ 2γ 3

σμν = i

2

[
γ μ, γ ν

]
γ μγ νγ α = gμνγ α + gναγ μ − gαμγ ν − iεμναβγβγ5

γ 0�
†
i γ

0 = �i (�i = 1, γ μ, γ μγ5, σ
μν)

γ 0�
†
i γ

0 = −�i (�i = γ5). (2.5)

Trace relations:

Tr (γ μ) = 0

Tr (γ5) = 0

Tr (γ μγ ν) = 4gμν

Tr (γ μγ νγ5) = 0

Tr
(
γ μγ νγ αγ β

) = 4
(
gμνgαβ − gμαgνβ + gμβgνα)

Tr
(
γ5γ

μγ νγ αγ β
) = 4iεμναβ

Tr
(
/a1 . . . /a2n+1

) = 0

Tr
(
/a1 . . . /a2n

) = Tr
(
/a2n . . . /a1

)
. (2.6)
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Plane wave solutions:
The Dirac spinor u(p, s) is a positive-energy eigenstate of the momentum p and
energy E = √p2 +m2. Antifermions are described in terms of the Dirac spinor
v(p, s). The adjoint solutions are denoted by ū ≡ u†γ 0 and v̄ ≡ v†γ 0. Note that
our normalization of Dirac spinors behaves smoothly in the massless limit.

(/p −m)u(p, s) = 0

ū(p, s)(/p −m) = 0

(/p +m)v(p, s) = 0

v̄(p, s)(/p +m) = 0

ū(p, r)u(p, s) = 2mδrs

v̄(p, r)v(p, s) = −2mδrs

u†(p, r)u(p, s) = 2Eδrs

v†(p, r)v(p, s) = 2Eδrs∑
s

u(p, s)ū(p, s) = /p +m∑
s

v(p, s)v̄(p, s) = /p −m. (2.7)

Gordon decomposition for a fermion of mass m:

ū
(
p′, r

)
γ μu(p, s) = ū(p′, r)

((
p′ + p)μ

2m
+ iσμν

(
p′ − p)

ν

2m

)
u(p, s). (2.8)

Dirac representation:

γ 0 =
(

1 0
0 −1

)
γ =

(
0 σ

−σ 0

)
γ5 =

(
0 −1
−1 0

)
(2.9)

u(p, s) = √E +m
⎛⎜⎝ χs

σ · p
E +mχs

⎞⎟⎠ v(p, s) = √E +m
⎛⎝ σ · p
E +mχs

χs

⎞⎠ .
(2.10)

Fierz relations:

The anticommutativity of fermion fields and the algebra of Dirac matrices imply
the (particularly useful) Fierz relations,

ψ̄1γ
μ(1+ γ5)ψ2ψ̄3γμ(1+ γ5)ψ4 = ψ̄1γ

μ(1+ γ5)ψ4ψ̄3γμ(1+ γ5)ψ2

ψ̄1γ
μ(1+ γ5)ψ2ψ̄3γμ(1− γ5)ψ4 = −2ψ̄1(1− γ5)ψ4ψ̄3(1+ γ5)ψ2. (2.11)
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Propagators:
The propagators associated with fields ϕ(x), ψ(x), Wλ(x) having spins 0, 1/2, 1
and masses μ, m, M are, respectively,

i�F (x) = 〈0|T
(
ϕ(x)ϕ†(0)

) |0〉 = ∫ d4p

(2π)4
e−ip·x

i

p2 − μ2 + iε
iSFβα(x) = 〈0|T

(
ψβ(x)ψ̄α(0)

) |0〉 = ∫ d4p

(2π)4
e−ip·x

i (/p +m)βα
p2 −m2 + iε

iDFλν(x) = 〈0|T
(
Wλ(x)W †ν(0)

) |0〉
=
∫

d4p

(2π)4
e−ip·x

i (−gλν + (1− ξ)pλpν/
(
p2 − ξM2 + iε)

p2 −M2 + iε , (2.12)

where ξ is a gauge-dependent parameter.

Feynman parameterization:

1

anbm
= �(n+m)
�(n)�(m)

∫ 1

0
dx

xn−1(1− x)m−1

[ax + b(1− x)]n+m (n,m > 0)

1

abc
= 2

∫ 1

0
x dx

∫ 1

0
dy

1

[a(1− x)+ bxy + cx(1− y)]3 . (2.13)

C–3 Decay lifetimes and cross sections

Parameters of choice for quantum fields:
The literature reveals a variety of conventions employed in quantum field theory.
We can characterize all of these with certain parameters of choice, Ji, Ki, Li

(i = B,F distinguishes bosons from fermions), occurring in the normalization of
spin zero and spin one-half fields,

ϕ(x) =
∫

d3k

JB

(
a(k)e−ik·x + a†(k)eik·x

)
ψ(x) =

∑
s

∫
d3p

JF

(
b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x

)
, (3.1)

in momentum space algebraic relations, e.g.,[
a(k), a†(k′)

] = KBδ
3(k− k′),{

b(p, r), b†(p′, s)
} = KFδrsδ

3(p− p′), (3.2)

and in the normalization of single-particle states

|k〉B = LBa
†(k)|0〉, |p, s〉F = LFb

†(p, s)|0〉. (3.3)
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It is convenient to introduce an additional parameter NF to characterize the choice
of fermion spinor normalization,

u†(p, r)u(p, s) = NF2Epδrs . (3.4)

For uniformity of notation, we also define NB ≡ 1. The constants Ji,Ki,Ni are
constrained by the canonical commutation or anticommutation relations to obey

KiNi

J 2
i

= 1

(2π)32E
(i = B,F). (3.5)

Using the above, one can express the single-particle expectation value of the quan-
tum mechanical probability density as

ρi = KiL
2
i

(2π)3
(i = B,F). (3.6)

The conventions employed in this book, together with the implied normalization
for boson or fermion single-particle states, are

LB = LF = NB = NF = 1, JB = JF = KB = KF = 2E(2π)3,

〈p′, s|p, r〉 = 2Epδrs(2π)
3δ(3)(p′ − p), (3.7)

where r, s are spin labels. This choice, although somewhat unconventional for
fermions,1 has the advantages that bosons and fermions are treated symmetrically
throughout the formalism, the zero-mass limit presents no difficulty, and matrix
elements are free of cumbersome kinematic factors.

Lifetimes:
From the decay law N(t) = N(0)e−t/τ , the inverse mean life τ−1 is seen to be the
transition rate per decaying particle, � = τ−1 = −Ṅ/N . For decay of a particle
of energy E1 into a total of n− 1 bosons and/or fermions, the S-matrix amplitude
can be written in terms of a reduced (or invariant) amplitude Mfi as

〈f |S − 1|i〉 = −i(2π)4δ(4)(p1 − p2 · · · − pn)
n∏
k=1

(
KkLk

Jk

)
Mfi

= −i(2π)4δ(4)(p1 − p2 · · · − pn)
n∏
k=1

(
ρk

2EkNk

)1/2

Mfi, (3.8)

where the index k labels the individual particles as to whether they are bosons or
fermions. The inverse lifetime is computed from the squared S-matrix amplitude
per spacetime volume V T and incident particle density ρ1, integrated over final-
state phase space. The choice of phase space is already fixed by our analysis. Thus,

1 Another book sharing this convention is [ChL 84].
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defining a parameter of choice A(p) for the (momentum) phase space per particle,

Phase space per particle ≡
∫

d3k
A(k)

, (3.9)

the application of completeness to Eq. (3.7) yields

〈p′|p〉 =
∫
d3k

A
〈p′|k〉〈k|p〉 ⇒ A = KL2 = (2π)3ρ. (3.10)

The inverse lifetime (or decay width) is then given by

τ−1 = � = 1

ρ1

1

Z

∫ (
n∏
k=2

d3pk

(2π)3ρk

)
|S − 1|2fi
V T

= 1

2E1N1

1

Z

∫ ( n∏
k=2

d3pk

(2π)32EkNk

)
(2π)4δ4(p1 − · · · − pn)

∑
int

|Mfi|2,
(3.11)

where Z =∏j nj ! is a statistical factor accounting for the presence of nj identical
particles of type j in the final state, and the sum ‘int’ is over internal degrees of
freedom such as spin and color.

Cross sections:
For the reaction 1 + 2 → 3 + . . . n, the cross section σ is the transition rate per
incident flux. The incident flux finc can be represented as

finc = ρ1ρ2|v1 − v2| = ρ1ρ2

E1E2
[(p1 · p2)

2 −m2
1m

2
2]1/2, (3.12)

and the cross section becomes

σ = 1

Z
1

4
(
(p1 · p2)

2 −m2
1m

2
2

)1/2
×
∫ ( n∏

k=3

d3pk

(2π)32EkNk

)
(2π)4δ4(p1 + p2 − · · · − pn)

∑
int

|Mfi|2. (3.13)

Watson’s theorem:
The scattering operator S is unitary, S†S = 1. Thus, the transition operator T ,
defined by S = 1 − iT , obeys i(T − T †) = T †T . With the aid of the relation
〈f |T †|i〉 = 〈i|T |f 〉∗, we obtain the unitarity constraint for matrix elements,

i
(
Tfi − T ∗if

) =∑
n

T ∗nfTni, (3.14)
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where Tfi ≡ 〈f |T |i〉. This constraint implies the existence of phase relations
between the various intermediate-state amplitudes. For example, consider a weak
transition followed by a strong final-state interaction for which there is a unique
intermediate state identical to the final state,

A −→
weak

BC −→
strong

BC, (3.15)

i.e., i = A, n = f = BC. In this circumstance, time-reversal invariance of the
hamiltonian implies Tfi = Tif, so the left-hand side of the unitarity relation reduces
to −2ImTif and both sides of Eq. (3.14) are real-valued. Denoting the weak and
strong matrix elements as |Tw|eiδw and |Ts|eiδs , it then follows that δw = δs.

C–4 Field dimension

We consider a limit in which the theory is invariant under the set of scale trans-
formations xμ → λxμ (λ > 0) of the spacetime coordinates. Associate with each
such coordinate transformation a unitary operator U(λ) whose effect on a generic
quantum field� is given byU(λ)�(x)U †(λ) = λd��(λx), where d� is the dimen-
sion of the field �. From the canonical commutation relation obeyed by a boson
field ϕ or the canonical anticommutation relation obeyed by a fermion field ψα,

[ϕ(0, x), ϕ̇(0)] = iδ3(x),
{
ψα(0, x), ψ†

β(0)
}
= δαβδ

3(x), (4.1)

it follows that the canonical field dimensions are dϕ = 1 and dψ = 3/2. Com-
posites built from products of these fields carry a dimension of their own, e.g.,
all fermion bilinears ψ�ψ (� is a 4 × 4 matrix) have canonical dimension 3.
Unless protected by some kind of algebraic relation, a field dimension will gen-
erally be modified from the canonical value by interaction-dependent anomalous
dimensions. Field dimensions are particularly useful in ordering the terms con-
tained in a short-distance expansion,

A(x)B(0) −→
x→0

∑
n

cn(x)On, (4.2)

where A,B,On are local quantum fields. From the scale invariance of the short-
distance limit, it follows that cn(x) ∼ xdOn−dA−dB . Thus, the fields On of lowest
dimension have the most singular coefficient functions.

C–5 Mathematics in d dimensions

Dirac algebra:
The following set of rules, generally referred to as NDR (naive dimensional regu-
larization), is the one most commonly used in the literature. We employ a metric
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gμν corresponding to a spacetime of continuous dimension d and maintain certain
d = 4 properties of the Dirac matrices such as the trace relations of Eq. (2.6). In the
following, Id is a diagonal d-dimensional matrix with Tr Id = 4 and ε ≡ (4−d)/2.

g μ
μ = d

{γμ, γν} = 2gμνId

γμγ
μ = d Id

γμ /p γ
μ = (2ε − 2) /p

γμ /p /q γ
μ = 4p · qId − 2ε /p /q

γμ /p /q /r γ
μ = −2 /r /q /p + 2ε /p /q /r

/p/q/r + /r/q/p = 2p · q/r + 2q · r/p − 2p · r/q
{γμ, γ5} = 0. (5.1)

Note that in NDR, γ5 anticommutes with the gamma matrices. This will suffice
for the calculations appearing in this book, but is not valid for all amplitudes (e.g.
closed odd-parity fermion loops).

Integrals:
For the following integrals, we define the denominator function

D ≡ m2
1x +m2

2(1− x)− q2x(1− x)− iε, (5.2)

take n1, n2 ≥ 1, and denote iε as the infinitesimal Feynman parameter.∫
ddp

(2π)d
1[

(p − q)2 −m2
1 + iε

]n1
[
p2 −m2

2 + iε
]n2

= (−1)n1+n2
i

(4π)d/2
�(n1 + n2 − d/2)
�(n1)�(n2)

∫ 1

0
dx

xn1−1(1− x)n2−1

Dn1+n2−d/2 , (5.3a)∫
ddp

(2π)d
pμ[

(p − q)2 −m2
1 + iε

]n1
[
p2 −m2

2 + iε
]n2

= (−1)n1+n2qμ
i

(4π)d/2
�(n1 + n2 − d/2)
�(n1)�(n2)

∫ 1

0
dx

xn1(1− x)n2−1

Dn1+n2−d/2 , (5.3b)∫
ddp

(2π)d
pμpν[

(p − q)2 −m2
1 + iε

]n1
[
p2 −m2

2 + iε
]n2

= i

(4π)d/2
(−1)n1+n2

�(n1)�(n2)

[
qμqν�(n1 + n2 − d/2)

∫ 1

0
dx

xn1+1(1− x)n2−1

Dn1+n2−d/2

− gμν

2
�(n1 + n2 − 1− d/2)

∫ 1

0
dx

xn1−1(1− x)n2−1

Dn1+n2−1−d/2

]
, (5.3c)
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ddp

(2π)d
pμpνpλ[

(p − q)+ iε]n1
[
p2 −m2

2 + iε
]n2

= i

(4π)d/2
(−1)n1+n2

�(n1)�(n2)

[
qμqνqλ�(n1 + n2 − d/2)

∫ 1

0
dx

xn1+2(1− x)n2−1

Dn1+n2−d/2

− 1

2

(
gμνqλ+ gμλqν + gνλqμ)�(n1+ n2− 1− d/2)

∫ 1

0
dx

xn1(1− x)n2−1

Dn1+n2−1−d/2

]
,

(5.3d)∫
ddp

(2π)d
pμpνpλpσ[

(p − q)2 −m2
1 + iε

]n1
[
p2 −m2

2 + iε
]n2

= i

(4π)d/2
(−1)n1+n2

�(n1)�(n2)

[
qμqνqλqσ�(n1 + n2 − d/2)

∫ 1

0
dx

xn1+3(1− x)n2−1

Dn1+n2−d/2

− 1

2

(
gμνqλqσ + gμλqνqσ + 4 perm.

)
�(n1 + n2 − 1− d/2)

∫ 1

0
dx

xn1+1(1− x)n2−1

Dn1+n2−1−d/2

+1

4

(
gμνgλσ + gμλgνσ + gμσ gνλ)�(n1 + n2 − 2− d/2)

∫ 1

0
dx

xn1−1(1− x)n2−1

Dn1+n2−2−d/2

]
.

(5.3e)

Solid angle:

�d =
∫ π

0
dθd−1 sind−2 θd−1 . . .

∫ π

0
dθ2 sin θ2

∫ 2π

0
dθ1 = 2πd/2

�(d/2)
.

�2 = 2π, �3 = 4π, �4 = 2π2, . . . . (5.4)

Gamma, psi, beta, and hypergeometric functions:

�(z) =
∫ ∞

0
dt e−t t z−1 (Re z > 0),

�(z+ 1) = z�(z) = z(z− 1)�(z− 1) = · · · = z!,
� (−n+ ε) = (−)n

n!
[

1

ε
+ ψ(n+ 1)+O(ε)

]
(n integer),

d�(z)/dz = �(z)ψ(z) where ψ(z+ 1) = ψ(z)+ 1/z,

ψ(1) = −γ = − lim
n→∞

(
1+ 1

2
+ · · · + 1

n
− ln n

)
� −0.5772,

dψ(z+ 1)/dz ≡ ψ ′(z+ 1) = ψ ′(z)− 1/z2 with ψ ′(1) = π2/6,

B(z,w) = �(z)�(w)

�(z+ w) = 2
∫ ∞

0
dt

t2z−1

(t2 + 1)z+w
(Re z, Re w > 0),



544 Useful formulae

F(a, b; c; z) = �(c)

�(b)�(c − b)
∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a

(Re c > Re b > 0),

F (a, b; c; 1) = �(c)�(c − a − b)
�(c − a)�(c − b),

dF (a, b; c; z)
dz

= ab

c
F (a + 1, b + 1; c + 1; z). (5.5)
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