
Official Textbooks for Huawei ICT Academy

DATABASE PRINCIPLES AND
TECHNOLOGIES – BASED ON

HUAWEI GAUSSDB

Huawei Technologies Co., Ltd.

Database Principles and Technologies – Based
on Huawei GaussDB

Huawei Technologies Co., Ltd.

Database Principles
and Technologies – Based
on Huawei GaussDB

Huawei Technologies Co., Ltd.
Hangzhou, China

This work was supported by Huawei Technologies Co., Ltd.

ISBN 978-981-19-3031-7 ISBN 978-981-19-3032-4 (eBook)
https://doi.org/10.1007/978-981-19-3032-4

Jointly published with Posts & Telecom Press, Beijing, China
The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the
print book from: Posts & Telecom Press.

© Posts & Telecom Press 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if you modified the licensed material. You do not have permission
under this license to share adapted material derived from this book or parts of it.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
This work is subject to copyright. All commercial rights are reserved by the author(s), whether the whole
or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Regarding these commercial rights a non-exclusive license has been
granted to the publisher.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-3032-4
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Preface

Nowadays, database technology has developed from the early stage of simply saving
and processing data files to a rich, comprehensive discipline with data modeling and
database management system as the core, as the foundation and core of modern
computer application system. Entering the Internet era, the traditional database
system began to show decadence in response to the storage needs of big data, and
enterprise customers urgently need a new generation of database products, that is,
products with dynamic expansion and contraction capacity, high throughput, low
cost, and other characteristics. As a result, cloud computing-based databases have
emerged and risen, showing the future-oriented trend of cloud-based, distributed,
and multi-mode processing.

Based on Huawei's GaussDB (for MySQL) cloud computing-based database, this
book focuses on various cloud computing-based features and application scenarios
of cloud computing-based databases. The division of the book’s eight chapters is as
follows:

Chapter 1 mainly introduces databases, including database technology overview,
database technology history, relational database architecture, and mainstream appli-
cation scenarios of relational databases.

Chapter 2 mainly teaches database basics, including the main responsibilities and
contents of database management, and introduces some common and important
basic concepts of databases.

Chapter 3 introduces SQL syntax, including GaussDB (for MySQL) data types,
system functions and operators, which aims to help beginners master get started with
SQL syntax.

Chapter 4 focuses on SQL syntax classification and further explains SQL state-
ments accordingly, covering data query, data update, data definition, and data
control.

Chapter 5 focuses on database security fundamentals, including basic security
management techniques for databases, such as access control, user management,
permission management, object permissions, and cloud auditing services, which will
be elaborated from basic concepts, usages, and application scenarios.

v

Chapter 6 focuses on the database development environment, including the use of
all the tools of GaussDB (for MySQL), for the convenience of users to learn
and view.

Chapter 7 mainly teaches database design fundamentals, detailing the specific
work of requirements analysis, conceptual design, logical design and physical design
in accordance with the New Orleans design methodology, and finally introducing the
specific means of database design implementation with relevant cases.

Chapter 8 mainly introduces the features of GaussDB database, involving Huawei
relational database and Huawei NoSQL database.

This book is edited by Huawei Technologies Co., Ltd., thanks to Ma Ruixin for
the specific writing and final compilation of the whole book. We welcome readers’
criticism and correction if there are any shortcomings in the book, due to the limited
time for compilation.

Hangzhou, China Huawei Technologies Co., Ltd.
December 2021

vi Preface

Contents

1 Introduction to Databases . 1
1.1 Overview of Database Technology . 1

1.1.1 Data . 1
1.1.2 Database . 2
1.1.3 Database Management System . 3
1.1.4 Database System . 4

1.2 History of Database Technology . 5
1.2.1 Emergence and Development of Database Technology . . . 5
1.2.2 Comparison of the Three Stages of Data Management . . . 6
1.2.3 Benefits of Database . 8
1.2.4 Development Characteristics of the Database 9
1.2.5 Hierarchical Model, Mesh Model and Relational Model . . 10
1.2.6 Structured Query Language . 14
1.2.7 Characteristics of Relational Databases 14
1.2.8 Historical Review of Relational Database Products 15
1.2.9 Other Data Models . 17
1.2.10 New Challenges for Data Management Technologies 18
1.2.11 NoSQL Database . 19
1.2.12 NewSQL Database . 21
1.2.13 Database Ranking . 23

1.3 Architecture of Relational Databases . 24
1.3.1 Development of Database Architecture 24
1.3.2 Single-Host Architecture . 24
1.3.3 Group Architecture: Master-Standby Architecture 26
1.3.4 Group Architecture: Master-Slave Architecture 27
1.3.5 Group Architecture: Multi-Master Architecture 28
1.3.6 Shared Disk Architecture . 28
1.3.7 Sharding Architecture . 29
1.3.8 Shared-Nothing Architecture . 30

vii

1.3.9 Massively Parallel Processing Architecture 31
1.3.10 Comparison of the Characteristics of Database

Architectures . 32
1.4 Mainstream Applications of Relational Databases 34

1.4.1 Online Transaction Processing . 34
1.4.2 Online Analytical Processing . 34
1.4.3 Database Performance Measurement Indicators 35

1.5 Summary . 37
1.6 Exercises . 37

2 Basic Knowledge of Database . 41
2.1 Overview of Database Management . 41

2.1.1 Database Management and Its Scope of Work 41
2.1.2 Object Management . 43
2.1.3 Backup and Recovery Management 44
2.1.4 Security Management . 49
2.1.5 Performance Management . 53
2.1.6 O&M Management . 56

2.2 Key Concepts of Database . 60
2.2.1 Database and Database Instance 60
2.2.2 Database Connection and Session 61
2.2.3 Schema . 63
2.2.4 Tablespace . 64
2.2.5 Table . 65
2.2.6 How the Table Is Stored . 66
2.2.7 Partition . 68
2.2.8 Data Distribution . 71
2.2.9 Data Types . 72
2.2.10 View . 74
2.2.11 Index . 76
2.2.12 Constraints . 77
2.2.13 Transaction . 80

2.3 Summary . 84
2.4 Exercises . 85

3 Getting Started with SQL Syntax . 87
3.1 Overview of SQL Statements . 88

3.1.1 What is an SQL Statement . 88
3.1.2 Comprehensive Application of SQL Statements 89

3.2 Data Types . 89
3.2.1 Common Data Types . 90
3.2.2 Uncommon Data Types . 92
3.2.3 Cases of Data Types . 93

3.3 System Functions . 94
3.3.1 Numeric Calculation Functions . 94

viii Contents

3.3.2 Character Processing Functions . 97
3.3.3 Time and Date Functions . 100
3.3.4 Type Conversion Functions . 101
3.3.5 System Information Functions . 104

3.4 Operators . 104
3.4.1 Logical Operators . 104
3.4.2 Comparison Operators . 105
3.4.3 Arithmetic Operators . 106
3.4.4 Test Operators . 107
3.4.5 Other Operators . 110

3.5 Summary . 111
3.6 Exercises . 111

4 SQL Syntax Categories . 115
4.1 Data Query . 115

4.1.1 Simple Query . 115
4.1.2 Removing Duplicate Values . 117
4.1.3 Query Column Selection . 118
4.1.4 Conditional Query . 120
4.1.5 Join Query . 123
4.1.6 Subquery . 128
4.1.7 Merging Result Sets . 131
4.1.8 Difference Result Sets . 133
4.1.9 Data Grouping . 133
4.1.10 Data Sorting . 135
4.1.11 Data Restriction . 136

4.2 Data Update . 137
4.2.1 Data Insertion . 138
4.2.2 Data Modification . 140
4.2.3 Data Deletion . 142

4.3 Data Definition . 144
4.3.1 Database Objects . 144
4.3.2 Creating a Table . 145
4.3.3 Modifying Table Properties . 148
4.3.4 Deleting a Table . 149
4.3.5 Index . 149
4.3.6 View . 153

4.4 Data Control . 155
4.4.1 Transaction Control . 155
4.4.2 Committing a Transaction . 155
4.4.3 Rolling Back a Transaction . 156
4.4.4 Transaction Save Points . 157

4.5 Others . 159
4.5.1 SHOW Command . 159
4.5.2 SET Command . 161

Contents ix

4.6 Summary . 162
4.7 Exercises . 162

5 Database Security Fundamentals . 167
5.1 Overview of Database Security Features . 167

5.1.1 What Is Database Security Management 167
5.1.2 Database Security Framework . 167
5.1.3 Database Security Features . 168

5.2 Access Control . 168
5.2.1 What Is IAM . 168
5.2.2 IAM Features . 169
5.2.3 IAM Authorization . 171
5.2.4 Relationship Between IAM and GaussDB (for MySQL)

usage . 172
5.2.5 How to Use GaussDB(for MySQL) with IAM 172
5.2.6 Detailed Explanation of SSL . 173

5.3 User Permission Control . 174
5.3.1 Permission Concept . 174
5.3.2 Users . 175
5.3.3 Modifying a User . 176
5.3.4 Deleting a User . 177
5.3.5 Roles . 178
5.3.6 Authorization . 179
5.3.7 Permission Recovery . 181

5.4 Cloud Audit Services . 183
5.4.1 What Are Cloud Audit Services 183
5.4.2 Key Operations to Support Cloud Audit Services 184

5.5 Summary . 186
5.6 Exercises . 186

6 Database Development Environment . 189
6.1 GaussDB Database Driver . 189

6.1.1 What Is a Driver . 189
6.1.2 JDBC . 190
6.1.3 ODBC . 194
6.1.4 Others . 200

6.2 Database Tools . 202
6.2.1 DDM . 202
6.2.2 DRS . 208
6.2.3 DAS . 215

6.3 Client Tools . 223
6.3.1 zsql . 225
6.3.2 gsql . 235
6.3.3 Data Studio . 238
6.3.4 MySQL Workbench . 240

x Contents

6.4 Summary . 242
6.5 Exercises . 242

7 Database Design Fundamentals . 245
7.1 Database Design Overview . 245

7.1.1 Difficulties of Database Design . 246
7.1.2 Goal of Database Design . 246
7.1.3 Methods of Database Design . 247

7.2 Requirements Analysis . 247
7.2.1 Significance of Requirement Analysis 247
7.2.2 Tasks of the Requirement Analysis Stage 248
7.2.3 Methods of Requirement Analysis 249
7.2.4 Data Dictionary . 249

7.3 Conceptual Design . 250
7.3.1 Conceptual Design and Conceptual Model 250
7.3.2 E-R Approach . 251

7.4 Logical Design . 253
7.4.1 Logical Design and Logical Models 253
7.4.2 IDEF1X Method . 253
7.4.3 Entities and Attributes in the Logic Model 254
7.4.4 NF Theory . 260
7.4.5 Logic Design Considerations . 265

7.5 Physical Design . 267
7.5.1 Physical Design and Physical Models 267
7.5.2 Denormalization of the Physical Model 268
7.5.3 Maintaining Data Integrity . 270
7.5.4 Establishing a Physicalized Naming Convention 271
7.5.5 Physicalizing Tables and Fields 272
7.5.6 Using Modeling Software . 274
7.5.7 Physical Model Products . 275

7.6 Database Design Case . 275
7.6.1 Scenario Description . 275
7.6.2 Regularization Processing . 275
7.6.3 Data Types and Length . 279
7.6.4 Denormalization . 280
7.6.5 Index Selection . 281

7.7 Summary . 282
7.8 Exercises . 282

8 Introduction to Huawei Cloud Database GaussDB 287
8.1 GaussDB Database Overview . 287

8.1.1 GaussDB Database Family . 287
8.1.2 Typical OLTP and OLAP Databases 289

8.2 Relational Database Products and Related Tools 290
8.2.1 GaussDB (for MySQL) . 290

Contents xi

8.2.2 GaussDB (openGauss) . 296
8.2.3 GaussDB (DWS) . 299
8.2.4 Data Studio . 304

8.3 NoSQL Databases . 307
8.3.1 GaussDB (for Mongo) . 307

8.4 Summary . 309
8.5 Exercises . 311

Index . 313

xii Contents

About the Author

Huawei Technologies Co., Ltd. Founded in 1987, Huawei is a leading global
provider of information and communications technology (ICT) infrastructure and
smart devices. We have approximately 197,000 employees and we operate in over
170 countries and regions, serving more than three billion people around the world.

Huawei’s mission is to bring digital to every person, home and organization for a
fully connected, intelligent world. To this end, we will: drive ubiquitous connectivity
and promote equal access to networks to lay the foundation for the intelligent world;
provide the ultimate computing power to deliver ubiquitous cloud and intelligence;
build powerful digital platforms to help all industries and organizations become
more agile, efficient, and dynamic; redefine user experience with AI, offering
consumers more personalized and intelligent experiences across all scenarios,
including home, travel, office, entertainment, and fitness & health.

xiii

Chapter 1
Introduction to Databases

Database technology is a technology developed earlier in computer science, having
experienced nearly 60 years of history since its birth in the early 1960s. Now,
database technology has developed from the early stage of simply saving and
processing data files to a rich comprehensive discipline with data modeling and
DBMS as the core, as the foundation and core of modern computer application
system. With the continuous refinement of “Internet+”, big data, AI and data mining
technologies in recent years, database technology and products are changing day by
day. This chapter will give a brief introduction to the basic knowledge and concepts
of database.

1.1 Overview of Database Technology

Database technology is an effective technology used for data management. It studies
how to manage data scientifically so as to provide people with shareable, secure and
reliable data. It involves four important concepts, as shown in Fig. 1.1, which are
introduced below.

1.1.1 Data

Data refers to the raw records that have not been processed. Generally speaking, data
is not clearly organized and classified, and thus cannot clearly express the meaning
of what things represent. Data can be a pile of magazines, a stack of newspapers,
minutes of a meeting, or a copy of medical records. Early computer systems were
primarily used for scientific calculations and dealt with numerical data, that is,
numbers in the generalized concept of data, such as integers like 1, 2, 3, 4, 5, but
also floating point numbers like 3.14, 100.34, and �25.336.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_1&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_1#DOI

In modern computer systems, the concept of data is generalized. In a broad sense,
data includes number, text, graphic, image, audio, video, and many other forms, and
after digitization they can be stored in the computer as shown in Fig. 1.2.

In addition to its presentation, data also involves semantics, i.e., the meaning and
implications of the data. Data and the semantics of data are closely related. For
example, 88 as a data can indicate that the total number of employees in a department
is 88, or that a student's score in a certain subject is 88, or that the price of a product is
88 yuan or a person's weight is 88 kg.

1.1.2 Database

Database is a large collection of organized and shareable data stored in the computer
for a long time, with the following three characteristics.

Fig. 1.1 Overview of
database technology

Fig. 1.2 Information is
stored in a computer after
being digitized as data

2 1 Introduction to Databases

(1) Long-term storage: The database should provide a reliable mechanism to sup-
port long-term data storage, so that data recovery is feasible upon the system
failure to prevent data loss in the database.

(2) Organization: Data should be organized, described and stored in a certain data
model. Model-based storage endows data with less redundancy, higher indepen-
dence and easy scalability.

(3) Sharebility: The data in the database is shared and used by all types of users, not
exclusive to a single user.

The student information database shown in Fig. 1.3 should be accessible
non-exclusively to different users such as students, teachers and parents
simultaneously.

1.1.3 Database Management System

Database management system (DBMS) is a system software located between the
user and the operating system that can organize and store data scientifically, access
and maintain data efficiently.

Like the operating system, the DBMS is also the basic software of the computer
system, as shown in Fig. 1.4.

The DBMS mainly functions as follows.

(1) Data definition. The DBMS provides data definition language (DDL), through
which the user can easily define the composition and structure of data objects in
the database.

(2) Data organization, storage and management. The DBMS is responsible for
organizing, storing and managing data in a classified manner, involving data
dictionaries, user data, data access paths, etc. The DBMS also has to determine
in which file structure and which access method to organize this data in the

Fig. 1.3 Database

1.1 Overview of Database Technology 3

storage space, and how to realize the linkage between the data. The basic goal of
data organization and storage is to improve storage space utilization, facilitate
data access, and provide a variety of data access to improve access efficiency.

(3) Data manipulation. DBMS also provides data manipulation language (DML),
with which users can manipulate data to achieve such basic operations as query,
insert, deletion and modification on data.

(4) Transaction management and operation management of the database. The data-
base is unified managed and controlled by the DBMS during establishment,
operation and maintenance to ensure the correct operation of transactions, the
security and integrity of data, the concurrent use of data by multiple users and the
system recovery after a failure.

(5) Database establishment and maintenance. This function covers the database
initial data input and conversion, database dump and recovery, database reorga-
nization and performance monitoring, analysis function, etc. These functions are
usually implemented by certain programs or management tools.

1.1.4 Database System

The database system (DBS) is a system for storing, managing, processing and
maintaining data composed of database, DBMS and its application development
tools, applications and database administrators.

In Fig. 1.5, the parts other than the user and the operating system are the
components of the database system.

Fig. 1.4 Hierarchy diagram
of computer system

4 1 Introduction to Databases

Though the operating system is not a component of the database system, the DBMS
needs to call the interface provided by the operating system in order to access the
database.

1.2 History of Database Technology

1.2.1 Emergence and Development of Database Technology

Database technology emerged in response to the need of data management tasks.
Data management refers to the classification, organization, coding, storage, retrieval
and maintenance of data, which is the core of data processing.

The development of data management has gone through three stages, as shown in
Fig. 1.6.

(1) Manual management stage (from the emergence of computers to the mid-1950s).
Before the mid-1950s, there was no software system responsible for data
management. To perform data computation on a computer, programmers needed
to design their own programs. Not only the logical structure of the data had to be

Fig. 1.5 Database System

1.2 History of Database Technology 5

specified in the application, but also the physical structure, including storage
structures, access methods, etc. had to be designed. Thus, on one hand, pro-
grammers had a very heavy workload, while on the other hand,
non-programmers were incapable to use the computer system.

(2) File system stage (from the late 1950s to the mid-1960s). In this phase, data was
organized into separate data files, which is accessed based on file name and
saved and obtained based on record, with file opening, closing, and access
support provided by the file system.

(3) Database system stage (from the late 1960s to present). In the late 1960s,
database systems (proprietary software systems) emerged to allow large-scale
data management. In this stage, with the development of the times, hierarchical
databases, mesh databases, and classic relational databases have emerged suc-
cessively. In the last 20 years or so, emerging databases such as NoSQL and
NewSQL have also emerged.

1.2.2 Comparison of the Three Stages of Data Management

A comparison of the three stages of data management is shown in Table 1.1.
Among the three stages, the manual management is the most primitive stage, in

which the data is not shareable. A set of application-oriented data corresponds to a
program. Multiple applications processing the same data must be defined individu-
ally. They cannot use each other, so there is a large amount of redundant data
between programs. In addition, the data lacks independence, which means that
when the logical and physical structure of the data changes, the application must
be modified accordingly. So, the data is completely dependent on the application.

The file system stage supports sharing to some extent compared to the manual
management stage, but such sharing is still poor and redundant, so that the files are
still application-oriented. In this phase, different applications must create their own
files even if they use the same data. Given the lack of file independence, the same

Fig. 1.6 Timeline of data management development

6 1 Introduction to Databases

data is stored repeatedly and data redundancy is high. Such separate management
approach is prone to data inconsistency.

The lack of file independence means that the file serves a specific application and
the logical structure of the file is designed for this application. If the logical structure
of the data changes, the definition of the file structure in the application must be
modified, because the data depends on the application. In addition, files do not reflect
the intrinsic linkage between things in the real world because they are independent of
each other. From file system to database system, data management technology has
made a leap.

Table 1.1 Comparison of the three stages of data management

Manual
management
stage

File system
stage Database system stage

Background Application
background

Scientific
computing

Scientific com-
puting and data
management

Large-scale data
management

Hardware
background

No direct stor-
age device

Disks and
drums

Large capacity disks and
disk arrays

Software
background

No operating
system

File system DBMS

Characteristics Processing
mode

Batch
processing

Online real-
time
processing and
batch
processing

Online real-time
processing, distributed
processing, and batch
processing

Data
administrators

Users
(programmers)

File system DBMS

Data objects A particular
application

Applications Real world (individual,
department, enterprise,
etc.)

Degree of
data sharing

No shareabil-
ity, very high
redundancy

Poor shareabil-
ity, high
redundancy

High shareability, low
redundancy

Data
independence

No indepen-
dence, com-
plete depen-
dence on
programs

Poor
independence

High physical indepen-
dence and certain logical
independence

Data structure Unstructured Structured
within records,
but unstruc-
tured as a
whole

Structured as a whole, and
described by a data model

Data control
capabilities

Application
control

Application
control

Data security and integ-
rity guaranteed by the
DBMS, providing con-
currency control and data
recovery capabilities

1.2 History of Database Technology 7

In the database system stage, database technology is applied to data management
on a large scale and starts to use large-capacity disks and disk arrays for data storage.
Dedicated DBMS has emerged that allows online real-time processing, distributed
processing, and batch processing. At this stage, data is well shared and less redun-
dant, and data files reach a high level of physical independence and certain logical
independence. The overall structure of the data can be described by a data model,
and the database system has the ability to ensure data security and integrity and
provide concurrency control and data recovery.

1.2.3 Benefits of Database

The database delivers following benefits.

(1) Data structure as a whole. The data structure is for the whole organization, not
for a particular application. The structure of records and the links between
records are maintained by the DBMS, thus reducing the workload of
programmers.

(2) High level of data sharing and easy expansion. Data can be shared by multiple
applications, reducing data redundancy and saving storage space. Data sharing
avoids incompatibility and inconsistency between data. The reason for achieving
easy expansion is to take into account the overall needs of the system to form
structured data, and a highly resilient and easily expandable database system can
meet a variety of requirements.

(3) Strong data independence. In terms of physical independence, the physical
storage characteristics of data are managed by the DBMS, which can be ignored
by the application; the application only needs to deal with the logical structure,
and does not need to make changes with the changes of the physical storage
characteristics of data. In terms of logical independence, the application can
remain unchanged when the logical structure of data in the database is changed.
Data independence simplifies application development and greatly reduces the
complexity of the applications. Data independence from the application is
actually decoupling the data from the application, while the original strongly
coupled approach presented the disadvantages of poor flexibility, high develop-
ment volume, and heavy maintenance tasks.

(4) Unified management and control. The database system facilitates users to
manage and control data in a unified manner, including data security protection,
data integrity checking, concurrency control, data recovery, etc. Data security
protection refers to the protection of data to prevent data leakage or damage
caused by unlawful use. Data integrity checking refers to checking the correct-
ness, validity and uniformity of data. It controls the data within valid limits and
ensures that certain relations are satisfied between the data. Concurrency control
refers to the control and coordination of concurrent access operations by multi-
ple users when they access the database at the same time, so as to avoid

8 1 Introduction to Databases

interfering with each other and affecting the results obtained from the access.
Data recovery refers to the function that the DBMS restores the database from an
error state to a known correct state when the database system has hardware
failure, software failure, operation error, etc.

1.2.4 Development Characteristics of the Database

Database has become one of the important foundation and core technology of
computer information system and intelligent application system, as shown in
Fig. 1.7.

The development of database systems presents the following three characteristics.

(1) The database development is concentrated on the data model development. The
data model is the core and foundation of the database system, so the develop-
ment of the database system and the development of the data model are insep-
arable. How to divide the data model is an important criterion for database
system division.

(2) Intersection and combination with other computer technologies. With the end-
less emergence of new computer technology, intersecting and combining with
other computer technologies becomes a significant feature of the development of
database system, such as the distributed database upon the combination with

Fig. 1.7 Applications and related technologies and models of database systems

1.2 History of Database Technology 9

distributed processing technology, and cloud database upon the combination
with cloud technology.

(3) Development of new database technology for application fields. The universal
database cannot meet the application requirements in specific fields, and it is
necessary to develop specific database systems according to the specific require-
ments of relevant fields.

1.2.5 Hierarchical Model, Mesh Model and Relational Model

The hierarchical model, mesh model and relational model are the three classical data
models that have emerged throughout history.

1. Hierarchical model
The hierarchical model presents a tree-like data structure, as shown in Fig. 1.8.

There are two very typical features as follows.

(1) There is one and only one node without “two parents” nodes, which is called
the root node.

(2) Each of the nodes other than the root node has one and only one “two
parents” node, and this hierarchical model is often used in common organi-
zational structures.

2. Mesh model
The mesh model has a data structure similar to a network diagram, as shown in

Fig. 1.9. In the mesh model diagram, E represents an entity and R represents the
relation between entities. In the mesh model, more than one node is allowed to
have no “two parents” node, and a node can have more than one “two parents”
node. As shown in Fig. 1.9, E1 and E2 have no “two parents” node, while E3 and
E5 have two “two parents” nodes respectively. The mesh model is able to map a
lot of many-to-many relations in reality, such as students choosing courses and
teachers teaching them.

Fig. 1.8 Hierarchical
model

10 1 Introduction to Databases

3. Relational model
A strict concept of relation is the basis of the relational model, and this relation

must be normalized and the component of the relation must be an indivisible data
item, as shown in Fig. 1.10.

Explanation

In 1970, Dr. Edgar Frank Codd, a researcher at IBM, published a paper entitled “A
Relational Model of Data for Large Shared Data Banks” in the publication
Communication of the ACM. He introduced the concept of relational model and
laid the theoretical foundation for the relational model. Dr. Codd has published
several articles on paradigm theory and 12 criteria that define how to measure
relational systems. This laid the foundation of the relational model with mathe-
matical theory.

Built on the set algebra, the relational model consists of a set of relations, each
with a normalized two-dimensional table as its data structure. As the student

Fig. 1.9 Mesh model

Fig. 1.10 Relational model

1.2 History of Database Technology 11

information table shown in Fig. 1.10, a relation usually corresponds to a table.
A tuple denotes a row in the table (a row denotes a tuple), an attribute denotes a
column in the table (a column denotes an attribute); a key is also called a code, a
domain is a set of values of the same data type, and a relational model is a relation
name (Attribute 1, Attribute 2, Attribute 3,..., Attribute n), such as the relation in
the example is student (student number, name, age, gender).

4. Comparison of the Three Models
Table 1.2 shows a comparison of the three models.
Both the mesh model and the hierarchical model are formatted models whose

data structure is based on the basic hierarchical linkage as the basic unit. The
basic hierarchical linkage refers to two records and the one-to-many (including
one-to-one) linkage between them in a single-record operation. Entities in the
formatted model are represented as records, the attributes of which correspond to
the data items (or fields) of the records, and the linkages between entities are
converted into linkages between records in the formatted model. The data linkage
is reflected by the access path, in the sense that any given record value can only be
viewed by its access path, and no “child” record value can exist independently of
the “two parents” record value. The relational model, on the other hand, reflects
data linkages not by access paths but by associative linkages, so it is more capable
of reflecting the linkages between things in the real world.

The hierarchical and mesh models are efficient in querying because the
application usually uses pointers to link the data, thus the record values can be
found quickly by following the paths pointed by the pointers. Despite the efficient
access, the hierarchical and mesh models are not easy to use for the average user
because queries generally require a high-level or procedural language. Hence the
poor experience for the average user. In the early days, the query efficiency of the
relational model was relatively low; however, with the development of hardware,
this deficiency in efficiency has been gradually overcome and compensated by
the high flexibility and independence of the relational model. The structured
query language provided by the relational model can greatly reduce the develop-
ment workload for programmers and lower the threshold of use for general users.
Therefore, the relational model can quickly replace the hierarchical and mesh
models and become the dominant data model in recent years.

Each tuple in a relational database should be distinguishable and unique,
which relies on entity integrity to achieve.

(1) Entity integrity: Simply put, the primary key cannot be null.
(2) Referential integrity: Simply put, it is the linkage between primary and

foreign keys.
(3) User-defined integrity: for a specific constraint, such as a unique value.

12 1 Introduction to Databases

Table 1.2 Comparison of hierarchical model, mesh model, and relational model

Features Hierarchical model Mesh model Relational model

Data Structure Formatted model with
simple and clear tree-like
structure

Formatted model Normalization-compli-
ant model

Data
Manipulation

There is no “two par-
ents” node, and no
“child” node can be
inserted; the “child”
node will be deleted
when the “two parents”
nodes are deleted

Corresponding informa-
tion (e.g. pointer) is also
be added or deleted in
the “two parents” nodes
when adding and delet-
ing nodes

Data operations are set
operations, where the
object and result of the
operation are relations.
Data operations must
satisfy the integrity
constraints on relations.

Data Linkage The linkage between
data is reflected by the
access path

The linkage between
data is reflected by the
access path

The linkage between
data is reflected by the
relation

Advantages 1. Simple and clear data
structure
2. High query efficiency
3. Good integrity support

1. Directer description of
the real world, reflecting
many-to-many relations
2. Good performance
and high saving and
access efficiency

1. Based on a rigorous
mathematical theory
2. Single concept, with
relations to represent
entities and linkages
between entities
3. Access path transpar-
ent to the user, with a
high degree of indepen-
dence and confidential-
ity
4. Simplification of
development work for
programmers

Disadvantages 1. Many non-hierarchical
linkages that exist in the
real world are not suit-
able for representation
by hierarchical models
2. Representation of
many-to-many linkages
generates a lot of redun-
dant data
3. Hierarchical com-
mands tend to be proce-
dural due to the tight
structure

1. Complex structures
become extremely com-
plex as applications
expand
2. The complexity of the
object definition and
manipulation language
requires the embedding
of high-level languages
(COBOL, C), thus mak-
ing it difficult for users
to master and use
3. due to the existence of
multiple paths, the user
must understand the
details of the system
structure, thus increasing
the burden of writing
code

1. The hidden access
path leads to less effi-
cient queries than the
formatted model
2. Optimization of the
user's query is required

1.2 History of Database Technology 13

1.2.6 Structured Query Language

Structured query language (SQL) is a high-level, non-procedural programming
language that allows users to work on high-level data structures without requiring
them to specify data storage methods or to understand specific data access methods.
This language allows various relational databases with completely different under-
lying structures to use the same SQL as an interface for data manipulation and
management. That's why SQL has become the de facto universal language for
relational databases, even until now. Considering the large user base of SQL,
many NoSQL products also develop SQL-compatible interface forms to facilitate
the use of a wide range of users.

SQL not only can be nested, but also can realize procedural programming through
advanced objects, which has great flexibility and rich functions, and is known as the
de facto universal language standard for relational databases. The development
timeline of SQL standard is shown in Fig. 1.11.

1.2.7 Characteristics of Relational Databases

The ACID characteristics of relational databases are as follows.

(1) Atomicity. The transaction is the logical unit of work of the database; the
operations in the transaction are either all done or nothing done.

(2) Consistency. The result of the execution of the transaction must be to move the
database from one consistent state to another consistent state. For example, if
User A transferring $100 to User B is a transaction, then it must ensure that
Account A is reduced by $100, and Account B is increased by $100 at the same

Fig. 1.11 Development timeline of SQL standard

14 1 Introduction to Databases

time; there must be no consistency violation where Account A has reduced the
amount of money but Account B has not increased..

(3) Isolation. The execution of a transaction in the database cannot be interfered
with by other transactions, that is, the internal operation of a transaction and the
use of data are isolated from other transactions; multiple transactions subject to
concurrent execution cannot interfere with each other.

(4) Durability. Once a transaction is committed, the changes to the data in the
database are permanent. Post-commit operation or failure will not have any
effect on the result of the transaction.

1.2.8 Historical Review of Relational Database Products

The introduction of the relational model was an epochal and significant event in the
history of database development. The great success in the research of relational
theory and the development of relational DBMS has further promoted the develop-
ment of relational database. The last 40 years have been the most “glorious” years for
relational databases, during which many successful database products have been
born, having a great impact on the development of society and our life. Some of the
relational database products are shown in Fig. 1.12.

(1) Oracle is the database product of Oracle Corporation, which is one of the most
popular relational databases in the world. In 1977, Larry Ellison and his
colleague Bob Miner founded Software Development Labs (SDL), and they
also developed the first version of Oracle in assembly language based on a
paper published by Dr. Codd (released to the public in 1979).

Fig. 1.12 Some of the relational database products

1.2 History of Database Technology 15

The Oracle's success can be attributed to the following reasons.

(a) High openness. It supported running on all mainstream platforms at that
time, fully complied with various industry standards and was highly
compatible.

(b) High security. It provided multiple security protections, including features
for assessing risk, preventing unauthorized data leakage, detecting and
reporting database activity, and enforcing data access control in the data-
base through data-driven security.

(c) Strong performance. Under the open platform, the database has been a
perennial leader in professional test results. In the 1980s to 1990s, it
consistently followed and led the technical trend of relational databases.
In addition, Oracle released Oracle EXADATAAll-in-One product in 2009
to compete for the high-end online analytical processing (OLAP) market.

(2) Teradata is a database product launched by Tenet of the US. The first database
computer DBC/1012, which was released in 1984, was the first database-
dedicated platform with massively parallel processing (MPP) architecture.
The Teradata database was primarily available in the early days as an all-in-
one machine, positioned as a large data warehouse system. Proprietary software
and hardware gave it excellent OLAP performance, but it was very expensive.

(3) DB2 is the database product of IBM. DB2 is the main relational database
product promoted by IBM, which only served IBM mainframe and small
machine at the beginning, and then started to support Windows, UNIX and
other platforms in 1995. The reason why it is named DB2 is because DB1 is a
hierarchical database.

(4) Ingres was originally a relational database research project initiated by the
University of California, Berkeley in 1974, and the code of Ingres was avail-
able for free, so much commercial database software was produced based on it,
including Sybase, Microsoft SQL Server, Informix, and the successor project
PostgreSQL. It can be said that Ingres is one of the most influential computer
research projects in history.

(5) Informix was the first commercial Ingres product to appear in 1982, but was
later acquired by IBM in 2000 due to management failures by its owner. The
source code of Informix was then licensed to GBASE from China, which
developed the Chinese-made Gbase 8t product on the basis of its source code.

(6) Sybase is a database product of Sybase Inc. The company was founded in 1984,
named after the combination of the words “System” and “Database”, and one
of its founders, Bob Epstein, was one of the main designers of Ingres. Sybase
first proposed and implemented the idea of the Client/Server database archi-
tecture. The company began working with Microsoft in 1987 to develop the
Sybase SQL Server product. After the termination of the partnership, Microsoft
continued to develop the MS SQL Server and Sybase continued to develop the
Sybase ASE. Its subsequent relational database, Sybase IQ, designed especially

16 1 Introduction to Databases

for data warehousing, was a highly successful columnar database. In May
2010, Sybase was acquired by the German company SAP.

(7) MySQL 1.0, the internal version of the MySQL database product, was released
in 1996, and MySQL 3.11.1 was released in October of the same year. MySQL
is allowed to be distributed commercially for free, but may not be bundled with
other commercial products. MySQL was acquired by Sun in January 2008, and
the latter was acquired by Oracle in 2009, so MySQL is now an Oracle product,
but is still available as a free open source product.

(8) PostgreSQL database was born in 1989, inheriting many ideas from Ingres, and
its SQL engine was modified and formally communitized in 1995. Greenplum,
Netezza, Amazon Redshift, and GaussDB (DWS) are all databases developed
based on PostgreSQL versions.

(9) Greenplum and Netezza are both distributed databases adopting the MPP
architecture based on PostgreSQL version 8.x. Greenplum was acquired by
EMC Corporation as a pure software version and formed the Pivotal family
together with other products, of which Greenplum is the relational database
product.

(10) Netezza is a software and hardware all-in-one product with proprietary hard-
ware optimization technology, which was later acquired by IBM.

(11) Aster Data is a relational database product based on Greenplum, similar to
Greenplum, with the main feature of providing SQL-based data discovery
algorithms and powerful statistical analysis functions. The product was later
acquired by Teradata Corporation.

(12) Amazon Redshift is a cloud-based relational database from Amazon, devel-
oped based on PostgreSQL.

(13) SAP HANA is SAP's self-developed in-memory database product, using
columnar storage, data compression and parallel processing technologies.

(14) Vertica is a columnar database, suitable for the OLAP.

1.2.9 Other Data Models

With the expansion of the database industry and the diversification of data objects,
the traditional relational database model begins to reveal many weaknesses, such as
poor identification capability for complex objects, weak semantic expression capa-
bility, and poor processing capability for data types such as text, time, space, sound,
image and video. For example, multimedia data are basically stored as binary data
streams in relational databases, but for binary data streams, the generic database has
poor identification capability and poor semantic expression capability, which is not
conducive to retrieval and query.

In view of this, many new data models have been proposed to adapt to the new
application requirements, specifically the following.

1.2 History of Database Technology 17

(1) Object oriented data model (OODM). This model, combining the semantic data
model and object-oriented programming methods, uses a series of object-
oriented methods and new concepts to form the basis of the model. However,
the OODM operation language is too complex, which increases the burden of
system upgrade for enterprises, and it is difficult for users to accept such a
complex way of use. So OODM is not as universally accepted as relational
database except for some specific application markets.

(2) XML data model. With the rapid development of the Internet, there are a large
number of semi-structured and unstructured data sources. Extensible markup
language (XML) has become a common data model for exchanging data on the
Internet and a hot spot for database research, and accordingly derived an XML
data model for semi-structured data. Pure XML database, based on XML node
tree model, supports XML data management, but the same requires to solve the
various problems faced by traditional relational database.

(3) RDF data model. The information in the Internet lacks a unified expression, so
the World Wide Web Consortium (W3C) proposes to describe and annotate
Internet resources with the resource description framework (RDF). The RDF is a
markup language for describing Internet resources, with triple containing
resources (subject), attributes (predicate), and attribute values (object) as the
infrastructure. Such a triple is also called a statement, where an attribute value
can be a resource (either a resource or a literal; if it is a literal, it can only be an
atomic value, such as a number, a date, etc.), and an attribute describes the
relationship between the resource and the attribute value. Statement can also be
represented as a graph: a directed edge points from the statement resource to the
attribute value, with the attribute on the edge; the attribute value of a statement
can be the resource of another statement.

1.2.10 New Challenges for Data Management Technologies

Although new data models are emerging from time to time, all of them have failed to
replace the relational database model as the common basic model for database
products due to problems such as lack of convenience and generality.

New challenges for data management technologies are as follows.

(1) With the automation, diversification and intelligence of data acquisition means,
the volume of data is soaring, so the databases need to provide a high degree of
scalability and scalability.

(2) The ability to deal with diverse data types is needed. Data can be classified into
structured data, semi-structured and unstructured data, including texts, graphics,
images, audio, videos and other multimedia data, stream data, queue data, etc.
Diverse data types require database products to develop the ability of dealing
with multiple data types and the ability to heterogeneous processing.

(3) The development of sensing, network and communication technologies has put
forward higher requirements for data acquisition and processing in real-time.

18 1 Introduction to Databases

(4) At the advent of the era of big data, data problems such as massive heterogene-
ity, complicated forms, high growth rate, and low value density have posed
comprehensive challenges to traditional relational databases. NoSQL technol-
ogy has flourished in response to the needs of big data development. Big data has
4V characteristics, as shown in Fig. 1.13.

The 4Vs are Volume (huge data volume), Variety (rich data types), Velocity (fast
generation speed), and Veracity (widely varying veracity). Volume: The volume of
data covered by Big Data processing is huge, having risen from the traditional
terabyte level to the petabyte level. Variety: Big data processing involves a wide
range of data types, where in addition to traditional structured data, Internet web
logs, videos, pictures, geolocation information, etc. can also be found; moreover,
semi-structured data and unstructured data also need to be processed. Velocity: The
high processing speed in the Internet of Things (IoT) applications is particularly
significant, with the requirement for real-time processing. Veracity: Big data
processing pursues high quality data, i.e., mining valuable data from massive data
with a lot of noise, and due to low data value density, high-value information needs
to be mined among a large amount of low-value data.

1.2.11 NoSQL Database

To meet the challenges of the big data era, new models and technologies have sprung
up, typically the NoSQL database technology, which first emerged in 1998 as a
lightweight, open-source, non-relational database technology that does not provide
SQL functionality. By 2009, the concept began to return, but it was a completely

Fig. 1.13 Big data's 4V characteristics

1.2 History of Database Technology 19

different concept compared to the original one. The NoSQL technology, or Not Only
SQL, that is widely accepted today is no longer just SQL technology.

Many different types of NoSQL database products have been created over the
years, and although they have different characteristics, non-relational, distributed,
and not guaranteed to meet ACID characteristics are their unifying features.

NoSQL databases have the following three technical features.

(1) Partitioning of data (Partition). It can distribute data across multiple nodes in a
cluster, and then conduct parallel processing on a large number of nodes to
achieve high performance; it also facilitates the scaling of the cluster by scaling
horizontally.

(2) Reduction of ACID consistency constraint. Based on the BASE principle, it
accepts the eventual consistency constraint although it allows temporary
inconsistency.

Explanation

The BASE principle contains the following 3 levels of meaning.
Basically available: Short-term data unavailability is tolerated, and no emphasis is
placed on 24/7 service.
Soft state: There is a period of state asynchrony, i.e. asynchronous state.
Eventual consistency: It requires eventual data consistency and does not require
strict full consistency.

(3) Backup for each data partition. The general principle of triple backup (three
copies of data are kept on the current node, another node in the same rack, and
another node in another rack against node failure and rack failure. The more
backups, the greater the data redundancy. Based on the comprehensive consid-
eration of security and redundancy, such triple backup of data is the most
reasonable setting) is followed to cope with node failures and improve system
availability.

The four common types of NoSQL database technologies are divided by storage
model, including key-value database, graph database, column family database, and
document database, as shown in Fig. 1.14.

Table 1.3 briefly introduces the main NoSQL databases. Key-value databases are
generally implemented based on hash tables by pointing key to value; storing keys in
memory enables extremely efficient key-based, or code-based, query and write
operations, and is suitable for caching user information, session information, con-
figuration files, shopping carts, and other application scenarios. Such products as
column grouping database, document database and graph database also feature their
own characteristics, but since this book is mainly concerned with relational data-
bases, they will not be covered here.

NoSQL was not created to replace a relational DBMS (RDBMS), and while it has
both significant advantages and disadvantages. It is designed to work with RDBMS
to build a complete data ecosystem.

20 1 Introduction to Databases

1.2.12 NewSQL Database

Since the introduction of NoSQL, a highly scalable product, its ease of use has been
recognized. If applied to traditional databases, it can greatly enhance the scalability
of traditional databases. Therefore, a relational database that combines the scalability
of NoSQL with support for the relational model has been developed. This new-type
database is mainly oriented to the online transaction processing (OLTP) scenario that
shows high requirements for speed and concurrency. The database uses SQL as the
main language, so it is called NewSQL database.

“NewSQL” is only a description of this class, not an officially defined name.
NewSQL database is a relational database system that supports the relational model
(including ACID features) while achieving the scalability of NoSQL, mainly ori-
ented to the OLTP scenario, allowing SQL as the primary language.

The classification of NewSQL databases is as follows.

(1) Databases re-constructed with new architecture.

Fig. 1.14 Four common types of NoSQL database technologies

1.2 History of Database Technology 21

T
ab

le
1.
3

B
ri
ef

in
tr
od

uc
tio

n
of

th
e
m
ai
n
N
oS

Q
L
da
ta
ba
se
s

T
yp

e
R
ep
re
se
nt
at
iv
e

pr
od

uc
ts

T
yp

ic
al
ap
pl
ic
at
io
n
sc
en
ar
io
s

D
at
a
m
od

el
A
dv

an
ta
ge
s

D
is
ad
va
nt
ag
es

K
ey
-v
al
ue

da
ta
ba
se

R
ed
is

M
em

C
ah
ed

C
ac
hi
ng

us
er

in
fo
rm

at
io
n,

se
s-

si
on

in
fo
rm

at
io
n,

pr
ofi

le
s,

sh
op

pi
ng

ca
rt
s,
et
c.

G
en
er
al
ly

im
pl
em

en
te
d
ba
se
d

on
ha
sh

ta
bl
es

by
po

in
tin

g
ke
y
to

va
lu
e

F
as
t
se
ar
ch

U
ns
tr
uc
tu
re
d
da
ta
,s
uc
h
as

st
ri
ng

s
or

bi
na
ry

da
ta

C
ol
um

n
fa
m
ily

da
ta
ba
se

H
B
as
e

C
as
sa
nd

ra
L
og

gi
ng

an
d
bl
og

gi
ng

pl
at
fo
rm

s
C
ol
um

na
r
st
or
ag
e

F
as
t
se
ar
ch

an
d
di
st
ri
bu

te
d

sc
al
ab
ili
ty

N
ot

su
ita
bl
e
fo
r
ra
nd

om
up

da
te
s
or

re
al
-t
im

e
op

er
a-

tio
ns

w
ith

de
le
tio

ns
an
d

up
da
te
s

D
oc
um

en
t

da
ta
ba
se

D
ou

ch
D
B

M
on

go
D
B

L
og

gi
ng

pl
at
fo
rm

s,
w
hi
ch

ca
n

st
or
e
lo
g
in
fo
rm

at
io
n
of

di
ff
er
-

en
tm

od
es
;
da
ta
an
al
ys
is
ba
se
d

on
w
ea
k
pa
tte
rn
s

S
im

ila
r
to

po
in
tin

g
ke
y
to

va
lu
e,
bu

tt
he

da
ta
st
ru
ct
ur
e
of

va
lu
e
is
no

t
st
ri
ct
,n

o
re
qu

ir
-

in
g
pr
e-
de
fi
ni
tio

n
of

ta
bl
e

st
ru
ct
ur
e

V
ar
ia
bl
e
ta
bl
e
st
ru
ct
ur
e,

hi
gh

sc
al
ab
ili
ty
,a
nd

su
it-

ab
ili
ty

fo
r
un

st
ru
ct
ur
ed

ob
je
ct
s

S
om

e
pr
od

uc
ts
do

no
t
su
p-

po
rt
tr
an
sa
ct
io
n
op

er
at
io
ns

G
ra
ph

da
ta
ba
se

N
eo
4j

In
fi
ni
te
G
ra
ph

R
ec
om

m
en
da
tio

n
en
gi
ne
s
an
d

re
la
tio

ns
hi
p
gr
ap
hs

G
ra
ph

st
ru
ct
ur
e

H
an
dl
in
g
do

m
ai
n-
sp
ec
ifi
c

pr
ob

le
m
s
w
ith

th
e
he
lp

of
gr
ap
h
th
eo
ry

al
go

ri
th
m
s

R
es
tr
ic
te
d
ap
pl
ic
at
io
ns

in
no

n-
gr
ap
h
do

m
ai
ns

22 1 Introduction to Databases

They may adopt technical architectures such as multi-node concurrency
control, distributed processing, replication-based fault tolerance, and flow con-
trol. Such products include Google Spanner, H-Store, VoltDB, etc.

(2) Databases adopting the middleware technology of transparent shard.
The generation of data shards is transparent to users, and users do not need to

make changes to their applications.
These products are Oracle, MySQL, Proxy, MariaDB MaxScale, etc.

(3) Database as a Service (DaaS).
The database products provided by cloud service providers are generally such

databases with NewSQL features.
Such products include Amazon Aurora, Alibaba Cloud's Oceanbase, Tencent

Cloud's CynosDB, Huawei's GaussDB (DWS) and GaussDB (for MySQL).

1.2.13 Database Ranking

Like programming languages, databases have popularity rankings, which are
updated monthly and include overall database rankings and rankings under database
types, such as special rankings for relational databases, key-value databases, tem-
poral databases, graph databases, and so on, as shown in Fig. 1.15. The figure shows
that in August 2019, the top 3 are firmly held by traditional relational databases; four
NoSQL databases appear in the top 10; and the top 20 are generally evenly split
between relational and NoSQL databases. Relational databases are extending their
functionality and features.

Fig. 1.15 Database ranking

1.2 History of Database Technology 23

1.3 Architecture of Relational Databases

1.3.1 Development of Database Architecture

In the early days when the data size was not too large, the database system used a
very simple stand-alone service, i.e., database software was installed on a dedicated
server to provide external data access services. However, as business expands, the
data size in the database and the pressure on the business are upgraded. This requires
the database architecture to change accordingly. The architecture classification
shown in Fig. 1.16 is a way to distinguish the database architecture according to
the number of hosts.

An architecture with only one database host is a single-host architecture, while an
architecture with more than one database host is a multi-host architecture. The single
host in the single-host architecture deploys both database application and database
on the same host; while the stand-alone host deploys them separately, with the
database exclusively on a separate database server. The multi-host architecture
enhances the availability and service capability of the overall database services by
increasing the number of servers. This architecture can be classified into two models
based on whether data shards are generated. One type is the group architecture, in
which, depending on the role of each server, the servers are further divided into
master-standby, master-slave and multi-master architectures. Regardless of the
grouping method, the databases share the same structure and store exactly the
same data, essentially replicating data between multiple databases with synchroni-
zation techniques. Another model is the sharding architecture, which spreads the
data shards within different hosts through a certain mechanism.

1.3.2 Single-Host Architecture

In order to avoid the application services and database services from competing for
resources, the single-host architecture evolved from the earlier single-host model to

Fig. 1.16 Database architecture classification by number of hosts

24 1 Introduction to Databases

stand-alone host for database, which separates the application services and data
services. For the application services, the number of servers can be increased to
balance the load, thus enhancing the concurrency capability of the system. The
single-host deployment features such as flexibility and ease of deployment in
R&D, learning, and simulation environments, as shown in Fig. 1.17.

The LAMP (Linux, Apache, MySQL, and PHP) architecture of the early Internet
is a typical single-host architecture, with following obvious shortcomings.

(1) Poor scalability. The single-host architecture only supports vertical expansion,
improving performance by increasing the hardware configuration, but there is an
upper limit to the hardware resources that can be configured on a single host.

(2) Single point of failure. Expansion of the single-host architecture often requires
suspension, and the service will also suspense. In addition, hardware failure can
easily lead to the unavailability of the entire service, and can even cause
data loss.

(3) As business expands, the single-host architecture is bound to encounter perfor-
mance bottlenecks.

Fig. 1.17 Single-host architecture

1.3 Architecture of Relational Databases 25

1.3.3 Group Architecture: Master-Standby Architecture

The master-standby architecture in the group architecture is actually born from the
single-host architecture to solve the single point of failure, as shown in Fig. 1.18.

The database is deployed on two servers, where the server that undertakes the
data read/write service is called the host, and the other server, standby, is used as a
backup to copy the data from the host using the data synchronization mechanism.
Only one server provides data services at the same time.

This architecture has the advantage that the application does not require addi-
tional development to cope with database failures, plus it improves data fault
tolerance compared to a stand-alone architecture.

The disadvantage is the waste of resources, the backup and the host enjoy the
same configuration, but the backup resources are basically in idle state; in addition,
the performance pressure is still concentrated on a single server, which cannot
address the performance bottleneck. When a failure occurs, the switch between the
host and the standby requires some manual intervention or monitoring. So to say,
this model only addresses the data availability and cannot break through the perfor-
mance bottleneck; while the performance is still limited by the hardware configura-
tion of a single server, cannot be improved overall by increasing the number of
servers.

Fig. 1.18 Group
architecture—master-
standby architecture

26 1 Introduction to Databases

1.3.4 Group Architecture: Master-Slave Architecture

The deployment model of master-slave architecture is similar to that of master-
standby architecture, but in which the standby is promoted to the slave role and
provides certain data services. The application can adopt the read/write separation,
and the development model needs to be adjusted accordingly at this time, i.e., the
three write operations of write, modify, and delete are required to be done on the
write library (host), and the query requests (read operations) are assigned to the read
library (slave), as shown in Fig. 1.19.

This architecture brings the benefit of improved resource utilization and is
suitable for application scenarios with more read operations and few write opera-
tions. In addition, it can be balanced among multiple slaves in scenarios with highly
concurrent read operations. The slaves can be flexibly expanded, and the expansion
operation generally does not affect the service.

However, the master-slave architecture also has the following disadvantages:
first, data latency, i.e., there is a delay when synchronizing data to the slave database,
so the application must be able to tolerate short inconsistencies, which is not suitable
for scenarios with very high requirements for consistency; second, the performance
pressure of write operations is still concentrated on the host; third, availability
problems, i.e., when switching from the host to a slave due to host failure, such
manual intervention costs time to respond, and the complexity to achieve automatic
switching is high.

Fig. 1.19 Group
architecture—master-slave
architecture

1.3 Architecture of Relational Databases 27

1.3.5 Group Architecture: Multi-Master Architecture

Multi-master architecture is also called active-active or multi-active architecture, in
which the database and servers are master and slave to each other, and provide
complete data services at the same time, as shown in Fig. 1.20.

The advantage of the multi-master architecture is to ensure higher resource
utilization while reducing the risk of single point of failure; however, there is also
the disadvantage that since both hosts receive write data, bi-directional synchroni-
zation of data must be achieved, but bi-directional replication also brings latency
issues, and in extreme cases even the risk of data loss must be considered. When
changing from dual hosts to multiple hosts, the increased number of databases
further complicates the data synchronization issues, so the dual-host model is more
common in practical applications.

1.3.6 Shared Disk Architecture

Next, we will introduce a special kind of multi-master architecture—shared disk. In
this architecture, the database and servers share the stored data, and load balancing is
achieved by multiple servers, as shown in Fig. 1.21.

The advantage of shared disk is that multiple servers can provide highly available
services at the same time, thus achieving a high level of availability and scalability as
a whole and avoiding a single point of failure of server clusters. This architecture
supports easy horizontal scaling, which in turn enhances the parallel processing
capability of the overall system.

The disadvantage is that it is quite difficult to implement the technology. In
addition, when the memory interface bandwidth reaches saturation, adding nodes

Fig. 1.20 Group
architecture—multi-master
architecture

28 1 Introduction to Databases

does not result in higher performance, and storage I/O can easily become a bottle-
neck affecting the overall system performance.

1.3.7 Sharding Architecture

The sharding architecture is primarily a horizontal data sharding architecture, which
is a sharding scheme that spreads data across multiple nodes. Each shard consists of a
part of the database. Multiple nodes in this architecture share the same database
structure, without intersection between the data in different shards, and the concat-
enation of all data shards forms the data aggregate. Common sharding algorithms are
those based on list values, range intervals, and hash values, as shown in Fig. 1.22.

The advantage of this architecture is that the data is scatted on the nodes within
the cluster, and each node can work independently, giving full play to the parallelism
of the cluster.

Fig. 1.21 Shared disk
architecture

1.3 Architecture of Relational Databases 29

1.3.8 Shared-Nothing Architecture

The shared-nothing architecture is a completely non-shared architecture in which
each node (processing unit) in the cluster has its own independent CPU, memory and
external memory, never sharing resources. Each node (processing unit) processes its
own local data, and the results can be aggregated upward or circulated among the
nodes through communication protocols. The nodes are independent of each other
and have high scalability, so the whole cluster obtains a strong parallel processing
capability, as shown in Fig. 1.23.

Hardware has evolved to the point where a node or a physical host can accom-
modate multiple processing units, so the smallest unit of the architecture may not be
a physical host, but a logical virtual processing unit. For example, for a physical host
with a quad-core CPU, four database instances can be deployed, which is equivalent
to having four processing units.

Fig. 1.22 Sharding architecture

30 1 Introduction to Databases

1.3.9 Massively Parallel Processing Architecture

The massively parallel processing (MPP) architecture spreads tasks in parallel across
multiple servers and nodes. After the computation on each node is completed, the
results of each part are aggregated into the final result, as shown in Fig. 1.24.

The MPP architecture is characterized by the fact that the tasks are executed in
parallel, while the computation is distributed. Two minor variations exist here, one is
the non-shared host architecture and the other is the shared host architecture. In the
non-shared host architecture, all nodes are peer-to-peer, and data can be queried and

Fig. 1.23 Shared-nothing
architecture

Fig. 1.24 MPP architecture

1.3 Architecture of Relational Databases 31

loaded by any node, which generally does not have performance bottlenecks and
single-point risks, but the technical implementation is more complex.

The common MPP architecture products are as follows.

(1) Non-shared host architecture: Vertica and Teradata.
(2) Shared host architecture: Greenplum and Netezza.

Teradata and Netezza are hardware-software all-in-one machines, while GaussDB
(DWS), Greeplum, and Vertica are software versions of MPP architecture databases.
The shared architecture is the basis of the shared-nothing architecture, and shared-
nothing for clusters is only possible if data is sharded.

Explanation

The concept of shared-nothing describes the architecture from the perspective of
resource independence, while the concept of shard describes the architecture from
the perspective of data independence. The MPP describes the architecture from the
perspective of parallel computing, which is the application and embodiment of
parallel computing technology on distributed databases. The terms shard, shared-
nothing and MPP can be regarded as the proper nouns of distributed database
architecture.

1.3.10 Comparison of the Characteristics of Database
Architectures

Finally, let's compare the characteristics of the above database architectures, as
shown in Table 1.4.

In terms of high availability, the more hosts there are, the better the high
availability will perform. As for read/write performance, both stand-alone architec-
ture and master-standby architecture depend on single-host hardware, so both are
affected by single-host hardware's performance bottleneck. While the master-slave
architecture can use read/write separation to enhance read/write performance; the
multi-master architecture and sharding architecture both have better read/write
service capability and can provide strong parallel processing capability. In terms
of data consistency, the stand-alone architecture excludes the data consistency
issues, while the master-standby and master-slave architectures require data syn-
chronization among multiple hosts because they increase the number of hosts, thus
making it difficult to avoid data latency and data consistency issues. Multi-host
architecture also faces the data inconsistency, unlike the shared disk architecture that
benefit from shared storage. Inside the sharding architecture, data is scattered on
each node and data synchronization is not required between nodes, so there is no data
inconsistency. Finally, scalability. The stand-alone architecture and master-standby
architecture only support vertical scaling, and both will encounter the stand-alone
issues and hardware performance bottleneck. The master-slave architecture can
improve concurrent read capability by scaling horizontally, and the multi-master
architecture scales well, but increasing the hosts will lead to a sharp increase in the

32 1 Introduction to Databases

T
ab

le
1.
4

C
om

pa
ri
so
n
of

th
e
ch
ar
ac
te
ri
st
ic
s
of

da
ta
ba
se

ar
ch
ite
ct
ur
es

C
ha
ra
ct
er
is
tic

F
ir
st
-p
ho

ne
S
ta
nd

-a
lo
ne

ar
ch
ite
ct
ur
e

M
as
te
r-
sl
av
e
ar
ch
ite
ct
ur
e

M
ul
ti-
m
as
te
r
ar
ch
ite
ct
ur
e

S
ha
rd
in
g
ar
ch
ite
ct
ur
e

A
va
ila
bi
lit
y

P
oo

r
A
ve
ra
ge

F
ai
r

G
oo

d
G
oo

d

R
ea
d/
w
ri
te

pe
rf
or
m
an
ce

H
ar
dw

ar
e
pe
rf
or
m
an
ce

de
pe
nd

en
t
on

a
si
ng

le
ho

st

H
ar
dw

ar
e
pe
rf
or
m
an
ce

de
pe
nd

en
t
on

a
si
ng

le
ho

st

W
ith

re
ad
/w
ri
te
se
pa
ra
-

tio
n,

th
e
w
ri
te
pe
rf
or
-

m
an
ce

is
lim

ite
d
by

th
e

ho
st
,w

hi
le
th
e
re
ad

pe
r-

fo
rm

an
ce

is
en
ha
nc
ed

by
in
cr
ea
si
ng

th
e
nu

m
be
r
of

sl
av
es

to
en
ha
nc
e

co
nc
ur
re
nc
y

H
ig
h
re
ad
/w
ri
te
ca
pa
bi
l-

ity
is
ac
hi
ev
ed

be
ca
us
e

m
ul
tip

le
ho

st
s
ca
n
pr
o-

vi
de

re
ad
/w
ri
te
se
rv
ic
es

si
m
ul
ta
ne
ou

sl
y

T
he

no
n-
sh
ar
ed

ar
ch
ite
c-

tu
re

pr
ov

id
es

ex
ce
lle
nt

di
st
ri
bu

te
d
co
m
pu

tin
g

ca
pa
bi
lit
ie
s
w
ith

st
ro
ng

pa
ra
lle
l
pr
oc
es
si
ng

ca
pa
bi
lit
ie
s

D
at
a

co
ns
is
te
nc
y

N
o
da
ta
co
ns
is
te
nc
y

is
su
es

T
he

da
ta
sy
nc
hr
on

iz
at
io
n

m
ec
ha
ni
sm

is
ad
op

te
d
to

sy
nc
hr
on

iz
e
be
tw
ee
n

m
as
te
r
an
d
st
an
db

y,
bu

t
th
er
e
ar
e
da
ta
la
te
nc
y

is
su
es

an
d
da
ta
lo
ss

ri
sk
s

S
am

e
as

th
e
m
as
te
r-

st
an
db

y
m
od

e,
an
d
w
ith

th
e
in
cr
ea
se

of
th
e
nu

m
-

be
r
of

sl
av
es
,t
he

da
ta

la
te
nc
y
is
su
es

an
d
da
ta

lo
ss

ri
sk

w
ill

be
m
or
e

pr
om

in
en
t

T
he

da
ta
ne
ed
s
to

be
sy
n-

ch
ro
ni
ze
d
in

bo
th

di
re
c-

tio
ns

be
tw
ee
n
m
ul
tip

le
ho

st
s,
so

it
is
pr
on

e
to
da
ta

in
co
ns
is
te
nc
y.

B
ut

th
e

sh
ar
ed

di
sk

ar
ch
ite
ct
ur
e

w
ith

sh
ar
ed

st
or
ag
e
do

es
no

th
av
e
da
ta
co
ns
is
te
nc
y

is
su
es

B
as
ed

on
th
e
sh
ar
di
ng

te
ch
no

lo
gy

,d
at
a
is

sc
at
te
re
d
on

ea
ch

no
de
,

an
d
da
ta
sy
nc
hr
on

iz
at
io
n

is
no

t
re
qu

ir
ed

be
tw
ee
n

no
de
s,
so

th
er
e
is
no

da
ta

co
ns
is
te
nc
y
is
su
es

S
ca
la
bi
lit
y

O
nl
y
ve
rt
ic
al
sc
al
in
g
is

su
pp

or
te
d,

an
d
w
ill

en
co
un

te
r
ha
rd
w
ar
e
pe
r-

fo
rm

an
ce

bo
ttl
en
ec
ks

du
e

to
th
e
si
ng

le
ho

st

O
nl
y
ve
rt
ic
al
sc
al
in
g
is

su
pp

or
te
d,

an
d
w
ill

en
co
un

te
r
ha
rd
w
ar
e
pe
r-

fo
rm

an
ce

bo
ttl
en
ec
ks

du
e

to
th
e
si
ng

le
ho

st

T
he

sl
av
e
ca
n
be

sc
al
ed

ho
ri
zo
nt
al
ly

fo
r
be
tte
r

co
nc
ur
re
nt

re
ad

ca
pa
ci
ty

G
oo

d
sc
al
ab
ili
ty
,b

ut
in
cr
ea
si
ng

th
e
nu

m
be
r
of

ho
st
s
w
ill

le
ad

to
a
dr
a-

m
at
ic
in
cr
ea
se

in
da
ta

sy
nc
hr
on

iz
at
io
n

co
m
pl
ex
ity

L
in
ea
r
sc
al
in
g
is
th
eo
re
ti-

ca
lly

po
ss
ib
le
,s
o
sc
al
-

ab
ili
ty

is
be
st

1.3 Architecture of Relational Databases 33

complexity of data synchronization; while the sharding architecture can theoretically
achieve linear scaling, and has the best scalability among these architectures.

1.4 Mainstream Applications of Relational Databases

1.4.1 Online Transaction Processing

Online transaction processing (OLTP) is the main application of traditional relational
database, which is oriented to basic and daily transaction processing, such as access
transaction and transfer transaction of deposit service.

Database transaction is a basic logical unit in the database execution process. The
database system needs to ensure that all operations in a transaction are completed
successfully and the results are permanently stored in the database.

For example, someone wants to buy something worth $100 in a store using
electronic money. This involves at least two operations: the person's account is
reduced by $100; the store account is increased by $100. A transactional DBMS
makes sure that both of these operations (i.e., the entire transaction) either complete
or are canceled together; otherwise, the $100 will disappear or appear for nothing.
But in reality, the risk of failure is high. The execution of database transactions may
encounter operation failures, database system or operating system errors, or even
storage media errors. This requires the DBMS to perform recovery operations on a
failed transaction execution to restore its database state to a consistent state (the state
in which data consistency is guaranteed), for which the DBMS usually needs to
maintain transaction logs to track all operations in the transaction that affect the
database data.

OLTP is characterized precisely by high throughput, as evidenced by the ability
to support a large number of short online transactions (inserts, updates, deletes), and
very fast query processing, supporting high concurrency and (quasi-real time) real-
time response.

The OLTP scenario places very high demands on the timeliness of response,
requiring the database system to have the ability to quickly handle a large number of
concurrent transaction operations, where the response of each transaction reaches
millisecond level or even faster. Moreover, the transaction concurrency is very large,
so high concurrency is also one of the most significant features in OLTP scenarios.
For example, online ticketing systems, retail systems and flash sale campaigns are
typical OLTP application scenarios.

1.4.2 Online Analytical Processing

The concept of online analytical processing (OLAP) was first proposed by Edgar
Frank Codd in 1993 relative to OLTP system, and refers to the query and analysis

34 1 Introduction to Databases

operations on data. Usually, when querying and analyzing a large amount of
historical data, the historical period involved is long, the volume of data is large,
and the aggregation operations at different levels make the transaction processing
more complex.

OLAP is characterized by its focus on complex queries and some “strategic”
problem solving. In terms of data processing, it focuses on “analytical” data
processing and operations such as data aggregation, grouping calculation, and
window calculation, involving multi-dimensional data usage and analysis.

Common OLAP scenarios include reporting systems, customer relationship man-
agement (CRM) systems, financial risk prediction and early warning systems, anti-
money laundering systems, data marts, data warehouses, etc. A reporting system is a
platform or system that generates reports for a fixed period or in a fixed format, such
as daily, weekly, and monthly reports, to provide electronic reporting data for
business decision making. A CRM system is a comprehensive business system
platform that provides customer maintenance services, stores customer-related infor-
mation, analyzes customer behavior, responds to customers, and manages marketing
activities. A data mart is generally an application geared toward the departmental
needs of an organization, such as the analytical needs of a credit card department.
Data warehouse is an enterprise-oriented analytic platform system created to build an
analytic processing environment for the entire enterprise.

1.4.3 Database Performance Measurement Indicators

The particular architectural design and implementation of different databases will
vary depending on the scenario. So to evaluate the merits of different databases in
different scenarios, there is a need for a more authoritative standard. The Transaction
Processing Performance Council (TPC) is responsible for developing benchmark
specifications, performance and price metrics for business applications, and manag-
ing the publication of test results. It is a standard specification rather than a code, and
any manufacturer can optimally construct their own system and evaluate it according
to the specification. The TPC has introduced a number of benchmarking standards,
including the following two specifications for OLTP and OLAP, respectively.

(1) TPC-C specification is for OLTP systems, including the traffic indicator tpmC
(tpm: transactions per minute [test system transactions per minute]) and cost
performance indicators (price [test system price]/tpmC), the latter is the cost to
achieve a basic unit.

(2) OLAP-oriented system is the TPC-H specification, whose test metric is the
traffic indicator qphH (qph: query per hour [complex queries processed per
hour]) The TPC-H specification requires consideration of the size of the test
data set, and the specification specifies 22 query statements for different test data
sets, which can be fine-tuned according to specific products. The test scenarios
include data loading, power testing and traffic testing; the specific test criteria are

1.4 Mainstream Applications of Relational Databases 35

explained by the test specification documents, which are publicly available
online and can be accessed at the TPC website.

The comparative analysis of OLTP and OLAP is shown in Table 1.5, and similar
analyses can be found on the web; they mostly refer to the relevant contents
described in the book Build in the Body to Y by Iven, the proposer of the data
warehouse concept. From the perspective of analysis granularity, OLTP is a detailed
analysis, dealing with every most basic transaction event, while OLAP is a compre-
hensive analysis, in which there is more integrated and aggregated analysis. In terms
of timeliness, OLTP emphasizes transient technicality, with transactions ending
when they are completed. In terms of data update requirements, OLAP does not
require updates in general.

To sum up, both OLTP and OLAP systems follow the ACID principle and use
relational databases. Both are functionally similar in that they support SQL state-
ments, can handle large volume of data, and implement highly consistent transac-
tional processing. However, for application scenarios, OLTP places more emphasis
on substantive requirements, while OLAP more on analysis of large-volume data. In
general, due to the different goals pursued by the two in their respective application
scenarios, it is currently not suitable to use them interchangeably, for example, using
OLTP databases for OLAP analytics applications or using OLAP as a core transac-
tion system with high requirements for real-time. But now an emerging hybrid
transaction and analytical process (HTAP) database system aims to achieve a system
that can host both OLTP and OLAP application scenarios. Related products apply-
ing this technology appear on the scene from time to time and are one of the trends in

Table 1.5 Comparative analysis of OLTP and OLAP

Item OLTP OLAP

Analysis
granularity

Detailed Detailed, aggregated and extractive

Timeliness Accurate at the moment of access Represents past data

Data update Can be updated Usually no update is required

Operation
predictability

Operation requirements are known in
advance

Operation requirements may be
unknown in advance

Real-time High performance requirements,
millisecond or second response time

Relatively lenient performance require-
ments, minute or hourly response time

Data volume Dealing with one or a few records at a
time, small data volume

Dealing with a set at a time, large data
volume

Drive
method

Transaction-driven Analysis-driven

Application
type

Application-oriented Analytics-oriented

Application
scenarios

Supporting daily operations Supporting management needs

Typical
applications

Bank core systems and credit card
systems

Analytical customer relationship man-
agement and risk management

36 1 Introduction to Databases

the development of NewSQL database technology. Readers can find related mate-
rials to expand their knowledge on their own.

1.5 Summary

This chapter introduces the basic concepts of database and data management system,
reviews the development history of database for decades, details the development of
database from early mesh model and hierarchical model to relational model, and
introduces the emerging NoSQL and NewSQL concepts in recent years; provides a
comparative analysis and introduction to the main architectures of relational data-
base, and briefly explains the advantages and disadvantages of various architectures
in different scenarios; finally, introduces and contrasts the mainstream application
scenarios of OLTP and OLAP for relational data.

Through the study of this chapter, readers are able to describe the concepts related
to database technology, enumerate the main relational databases, distinguish differ-
ent relational data architectures, and describe and identify the main application
scenarios of relational databases.

1.6 Exercises

1. [Multiple Choice] The characteristics of the data stored in the database are ().

A. Permanently stored
B. Organized
C. Independent
D. Shareable

2. [Multiple Choice] The components of the concept of a database system are ().

A. Database management system
B. Database
C. Application development tool
D. Application

3. [True or False] Database applications can read database files directly, without
using the database management system. ()

A. True
B. False

4. [Multiple Choice] What are the stages in the development of data management?
()

1.6 Exercises 37

A. Manual stage
B. Intelligent system
C. File system
D. Database system

5. [Single Choice] In which data model, more than one node is allowed to have no
“two parents” node, and a node can have more than one “two parents” node. ()

A. Hierarchical model
B. Relational model
C. Object-oriented model
D. Mesh model

6. [Multiple Choice] Which of the following are NoSQL databases? ()

A. Graph database
B. Document database
C. Key-value database
D. Column family database

7. [True or False] The emergence of NoSQL and NewSQL databases can
completely subvert and replace the original relational database systems. ()

A. True
B. False

8. [True or False] The master-standby architecture can improve the overall read/
write concurrency by separating read and write. ()

A. True
B. False

9. [Single Choice] Which database architecture has good linear scalability? ()

A. Master-slave architecture
B. Shared-nothing architecture
C. Shared disk architecture
D. Master-standby architecture

10. [True or False] The characteristic of the sharding architecture is that the data is
scattered on each database node of the cluster through a certain algorithm, and
the advantage of server number in the cluster is taken for parallel computing. ()

A. True
B. False

11. [Multiple Choice] Test metrics used to measure OLTP systems include ().

A. tpmC
B. Price/tmpC
C. qphH
D. qps

38 1 Introduction to Databases

12. [Multiple Choice] OLAP system is suitable for which of the following scenar-
ios? ()

A. Reporting system
B. Online transaction system
C. Multi-dimensional analysis and data mining systems
D. Data warehouse

13. [True or False] OLAP system can analyze and process a large volume of data, so
it can also meet the processing performance requirements of OLTP for small
data volume. ()

A. True
B. False

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

1.6 Exercises 39

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 2
Basic Knowledge of Database

Various database products have different characteristics, but they share some com-
mon ground in the main database concepts, that is, they can achieve various database
objects and different levels of security protection measures, and they also emphasize
the performance management and daily operation and maintenance management of
the database.

This chapter is about the main responsibilities and contents of database manage-
ment, and introduces some common but important basic concepts of databases to lay
a good foundation for the next stage of learning. After completing this chapter,
readers will be able to describe the main work of database management, including
distinguishing different backup methods, listing measures for security management
and describing the work of performance management, as well as describing the
important basic concepts of database and the usage of each database object.

2.1 Overview of Database Management

2.1.1 Database Management and Its Scope of Work

Database management refers to the management and maintenance of the DBMS,
whose core goal is to ensure the stability of the database, security and data consis-
tency, as well as the high performance of the system.

Stability refers to the high availability of the database. Master-slave, multi-
master, distributed and other highly available architectures are used to ensure the
availability and stability of the database system.

Security refers to the security of the content stored in the database to avoid illegal
access and use of data content.

Data consistency refers to the database itself will provide many functions to
ensure data consistency, such as foreign key constraints and non-null constraints
on table, etc. Data consistency here is about the use of synchronization technology,

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_2&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_2#DOI

replication tools, etc. provided by the database when building master-standby
systems, master-slave systems and other multi-master systems to ensure data con-
sistency among multiple databases. This assurance work is part of the database
management work.

The high performance of the system mainly involves the optimization, monitor-
ing, troubleshooting and other work inside the database management.

Database Administrator (DBA) is a collective term for the personnel involved in
managing and maintaining the DBMS, not a particular person, but a role. Some
companies also call the DBA database engineer. The work of the two roles is
basically the same, ensuring 7/24 stable and efficient operation of the database.

Database management work includes management of database objects, database
security, backup and recovery, performance and environment.

Database object management is actually the management of the data in the
database, including physical design and implementation work. Physical design
work refers to understanding the features and functions provided by different
database objects, and transforming the data model in conceptual design and logical
design into physical database objects on the basis of following reasonable relational
design principles. Physical implementation work refers to the creation, deletion,
modification and optimization of database objects.

Database security management refers to the prevention of unauthorized access to
avoid leakage of protected information, as well as the prevention of security
breaches and improper data modifications to ensure that data is available only to
authorized users. Database security management work includes, but is not limited to,
the management of system security, data security and network security. Enterprise
database security strategy includes laying a solid foundation with authentication,
authorization, access, control, recovery, classification, and batch management;
encryption and desensitization through defensive data protection measures to protect
critical information and data privacy without affecting program application func-
tions; creating database intrusion detection with audit monitoring and vulnerability
assessment, etc., while developing security policies and standards to ensure role
separation and availability.

Backup and recovery management is said to develop a reasonable backup strat-
egy to achieve regular backup function, so as to ensure the fastest recovery and
minimum loss for the database system in case of disaster.

Database performance management means monitoring and optimizing the factors
that affect database performance and optimizing the resources that the database can
use to increase system throughput and reduce contention to handle the maximum
possible workload. The factors involved in database performance optimization
include workload, throughput, resources, and contention. Among them, the work-
load for the database is the user-submitted usage requirements, expressed in different
forms such as online transactions, batch jobs, analytical queries, instant queries. The
workload of the database varies from time to time, and the overall workload has a
great impact on the database performance. Throughput refers to the overall
processing capacity of the database software, i.e., the number of queries and trans-
actions that can be processed per unit of time. Resources include CPU, I/O, network,

42 2 Basic Knowledge of Database

storage, processes, threads, and all other hardware and software objects that are
available and at the disposal of the database. Competition refers to the demand for
the use of the same resource by multiple workloads at the same time, and this conflict
arises because the number of resources is less than the demand of the workload.

Database environment management covers such database operation and mainte-
nance management as installation, configuration, upgrade, migration and other
management work to ensure the normal operation of the IT infrastructure, including
database systems.

2.1.2 Object Management

Database object is a general term for the various concepts and structures used to store
and point to data in the database. Object management is about a management process
that uses objects to define languages, create tools, or modify or delete various
database objects. Basic database objects generally include tables, views, index
sequences, stored procedures and functions, as shown in Table 2.1.

The database product itself does not propose strict naming restrictions, but
arbitrary naming of objects will lead to an uncontrollable and unmaintainable
system, or even cause the maintenance difficulties to the entire system. The devel-
opment of naming convention is a basic requirement for database design, because a
good naming convention means a good start.

There are several suggestions for naming convention as follows.

(1) Unify the case of the names. The case of the names can be standardized on a
project basis, such as all capitalization, all lowercase, or initial capitalization.

(2) Use prefixes to identify the type of object, such as the table name prefix “t_”,
view prefix “v_”, function prefix “f_” and so on.

(3) Try to choose meaningful, easy to remember, descriptive, short and unique
English words for naming, not recommended to use Chinese Pinyin.

Table 2.1 Basic database objects

Object Name Role

Table Table It is used to store the basic structure of data

View View It is a logical “virtual table” that reflects the data in the table in
a different way and does not store data itself

Index Index It provides a pointer to the data value of a specified column
stored in a table, like a table of contents of a book, and can
speed up the query of a table

Sequence Sequence It is used to generate a unique integer database object

Store proce-
dure, function

Procedure,
function

It is a set of SQL statements used to accomplish a specific
function. Procedures and functions can be called repeatedly
after compilation, which can reduce the workload of database
developers

2.1 Overview of Database Management 43

(4) Use the name dictionary to develop some common abbreviations on a project
basis, such as “amt” for “amount”.

Some commercial databases set length limits for table names and view names in
early versions, for example, they cannot exceed 30 characters. Too long names are
not easy to remember and communicate, nor easy for SQL code writing. Some
public database naming specifications can be used as a blueprint to develop some
industry- and project-oriented database naming conventions according to project
characteristics, as shown in Table 2.2.

2.1.3 Backup and Recovery Management

There are many possible reasons for data loss, mainly storage media failure, user’s
operation error, server failure, virus invasion, natural disasters, etc. Backup database
is to additionally store the data in the database and the relevant information to ensure
the normal operation of the database system, so that it can be used to restore the
database upon the system failure.

The objects of database backup include but not limited to data itself and data-
related database objects, users, permissions, database environment (profiles, timing
tasks), etc. Data recovery is the activity of restoring a database system from a failed
or paralyzed state to one that is operational and capable of restoring data to an
acceptable state.

For enterprises and other organizations, database systems and other application
systems constitute a larger information system platform, so database backup and
recovery is not independent, but should be combined with other application systems
to consider the overall disaster recovery performance of the whole information
system platform. This is the so-called enterprise-level disaster recovery.

Table 2.2 Database naming convention

Not
recommended Recommended Description

Table_customer t_customer Table is a database-reserved keyword, not recommended

t_001 t_customer_orders The original name has only numbers and meaningless
letters, which cannot reflect the meaning of the object as a
whole

v@orders v_orders The original name contains an illegal character

shitu_dizhi v_address The use of Hanyu Pinyin should be avoided

Not recommended Suggested Description

Special_customer_account_total_amount acct_amt Appropriate use of abbreviations is
recommended to shorten the name
length

T_Customer_Orders, v_customer_orders t_cust_orders,
v_cust_orders

Case rules should be unified

44 2 Basic Knowledge of Database

Disaster backup refers to the process of backing up data, data processing systems,
network systems, infrastructure, specialized technical information and operational
management information for the purpose of recovery after a disaster occurs. Disaster
backup has two objectives, one is recovery time objective (RTO) and the other is
recovery point objective (RPO). RTO is the time limit within which recovery must
be completed after a disaster has stopped an information system or business function.
RPO is the requirement for the time point to which the system and data are recovered
to after a disaster. For example, if the RPO requirement is one day, then the system
and data must be recovered to the state 24 h before the failure caused by the disaster,
and the possibility of data loss within 24 h is allowed in this case. However, if the
data can be restored to the state only two days ago, that is, 48 h ago, the requirement
of RPO ¼ 1 day is not satisfied. The RTO emphasizes the availability of the service,
and the smaller the RTO, the less the loss of service. The RPO targets data loss, and
the smaller the RPO, the less the data loss. A typical disaster recovery goal of an
enterprise is RTO <30 min, with zero data loss (RPO ¼ 0).

China’s GB/T 20988-2007: Information security technology—Disaster recovery
specifications for information systems divides disaster recovery into six levels, as
shown in Fig. 2.1.

Level 1: Basic support. The data backup system is required to guarantee data backup
at least once a week, and the backup media can be stored off-site, with no specific
requirements for the backup data processing system and backup network system.
For example, it is required to store the data backup on a tape placed in another
location in the same city.

Level 2: Alternate site support. On the basis of meeting Level 1, it is required to
equip part of the data processing equipment required for disaster recovery, or to

Fig. 2.1 Disaster recovery levels

2.1 Overview of Database Management 45

deploy the required data processing equipment to the backup site within a
predetermined time after a disaster; it is also required to equip part of the
communication lines and corresponding network equipment, or to deploy the
required communication lines and network equipment to the backup site within a
predetermined time after a disaster.

Level 3: Electronic transmission and equipment support. It is required to conduct at
least one full data backup every day, and the backup media is stored off-site,
while using communication equipment to transfer critical data to the backup site
in batches at regular intervals several times a day; part of the data processing
equipment, communication lines and corresponding network equipment required
for disaster recovery should be equipped.

Level 4: Electronic transfer and complete device support. On the basis of Level 3, it
is required to configure all data processing equipment, communication lines and
corresponding network equipment required for disaster recovery, which must be
in ready or operational status.

Level 5: Real-time data transfer and complete device support. In addition to requir-
ing at least one full data backup per day and backup media stored off-site, it also
requires the use of remote data replication technology to replicate critical data to
the backup site in real time through the communication network.

Level 6: Zero data loss and remote cluster support. It is required to realize remote
real-time backup with zero data loss; the backup data processing system should
have the same processing capability as the production data processing system,
and the application software should be “clustered” and can be switched seam-
lessly in real time.

Table 2.3 exemplifies the disaster recovery levels defined by the Information security
technology—Disaster recovery specifications for information systems.

The higher the disaster recovery level, the better the protection of the information
system, but this also means a sharp increase in cost. Therefore, a reasonable disaster
recovery level needs to be determined for service systems based on the cost-risk
balance principle (i.e., balancing the cost of disaster recovery resources against the
potential loss due to risk). For example, the disaster recovery capability specified for
core financial service systems is Level 6, while non-core services are generally
specified as Level 4 or Level 5 depending on the scope of service and industry
standards; the disaster recovery level for SMS networks in the telecom industry is

Table 2.3 Disaster recovery levels

Disaster recovery level RTO RPO

1 More than 2 days 1–7 days

2 More than 24 h 1–7 days

3 More than 12 h Several hours to 1 day

4 Several hours to 2 day Several hours to 1 day

5 Several minutes to 2 day 0–30 min

6 Several minutes 0

46 2 Basic Knowledge of Database

Level 3 or Level 4. Each industry should follow the specifications to assess the
importance of its own service systems to determine the disaster recovery level of
each system.

Different databases provide different backup tools and means, but all involve
various “backup strategies”. Backup strategies are divided into full backup, differ-
ential backup and incremental backup according to the scope of data collection; or
into hot backup, warm backup and cold backup according to whether the database is
deactivated; or into physical backup and logical backup according to the backup
content.

Full backup, also called complete backup, refers to the complete backup of all
data and corresponding structures at a specified point in time. Full backup is
characterized by the most complete data and is the basis for differential and incre-
mental backups, as well as the most secure backup type, whose backup and recovery
time increases significantly with the increase in data volume. While important, full
backup also comes at a cost in time and expenses, and is prone to a performance
impact on the entire system.

The amount of data to be backed up each time for full backup is quite large and
takes a long time, so it should not be operated frequently, even with the highest data
security. Differential backup is a backup of data that has changed since the last full
backup. Incremental backup is a backup of the data that has changed after the
previous backup, as shown in Fig. 2.2.

Given that incremental backups have the advantage of not backing up data
repeatedly, each incremental backup involves a small volume of data and requires
very little time, but the reliability of each backup must be guaranteed. For example,
when a system failure occurs in the early hours of Thursday morning and the system
needs to be restored, the full backup on Sunday, the incremental backup on Monday,
the incremental backup on Tuesday, and the incremental backup on Wednesday
must all be prepared and restored in chronological order. If Tuesday’s incremental
backup file is corrupted, then Wednesday’s incremental backup will also fail, so that
only the data state at 12:00 PM on Monday can be restored.

The differential backup shows the same advantage as incremental backup, the
volume of data per backup is small and the backup time is short, but the availability
of system data should be guaranteed. It only needs the data from the last full backup
and the most recent differential backup. For example, if a failure occurs early

Fig. 2.2 Differential and incremental backups

2.1 Overview of Database Management 47

Thursday morning and the system needs to be restored, simply prepare the full
backup on Sunday and the differential backup on Wednesday.

In terms of the volume of data to be backed up, the largest volume of data to be
backed up is the full backup, followed by the differential backup and finally the
incremental backup. Usually, full backup + differential backup is recommended
when the backup time window allows. If the incremental data volume for differential
backup is larger and the backup operation cannot be completed within the allowed
backup time window, then the full backup + incremental backup can be used.

Hot backup is performed when the database is running normally, where read/
write operations can be performed on the database during the backup period.

Warm backup means that only database read operations can be performed during
the backup period, and no write operation is allowed, where the database availability
is weaker than hot backup.

Cold backup means that read/write operations are not available during the backup
period, and the backup data is the most reliable.

In the case that the database application does not allow the service to stop, a hot
backup solution must be used, but the absolute accuracy of the data cannot be
guaranteed. In the case where the read/write service of the application can be stopped
and the accuracy of the backup data is required, the cold backup solution is preferred.
For example, the hot backup solution should be used as much as possible for routine
daily backups, while a cold backup solution is recommended in the case of system
migration, so as to ensure data accuracy.

A physical backup is a direct backup of the data files corresponding to the
database or even the entire disk. Logical backup refers to exporting data from the
database and archiving the exported data for backup. The difference between the two
is shown in Table 2.4.

Backup portability means that the backup results of the database can be restored
to different database versions and database platforms. In terms of recovery

Table 2.4 Physical and logical backups

Category Physical backup Logical backup

Backup
object

Physical files of the database (such as
data files, control files, archived log
files, etc.)

Database objects (e.g. users, tables,
stored procedures, etc.)

Portability Weak, even non-portable Database object-level backup, with
stronger portability

Space
occupation

Large space occupied Relatively smaller space occupied

Recovery
efficiency

High Relatively low

Applicable
scenarios

Disaster recovery of large service sys-
tems or the whole system, and system-
level full backup

Incremental data backup between pri-
mary and backup databases, data syn-
chronization between different service
systems, and online data migration dur-
ing upgrade without business
interruption

48 2 Basic Knowledge of Database

efficiency, the physical backup only needs to directly recover data files of data
blocks, which is highly efficient; the logical backup is equivalent to re-executing
SQL statements when recovering, so the system overhead is high and inefficient
when the data volume is large. Compared with the strong dependence of physical
backup on the physical format of logs, the logical backup is only based on logical
changes of data, which makes the application more flexible and enables cross-
version replication, replication to other heterogeneous databases, and customization
support when the table structure of source and target databases are inconsistent.

Logical backups only support backup to SQL script files. Logical backups take up
less space in comparison with physical backups, because the latter generate data
files. Physical backups also allow backing up only metadata, at which time the
backup result takes up the least amount of space.

2.1.4 Security Management

In a broad sense, the database security framework is divided into three levels:
network security, operating system security, and DBMS security.

(1) Network security. The main technologies for maintaining network security are
encryption technology, digital signature technology, firewall technology, and
intrusion detection technology. The security at the network level focuses on the
encryption of transmission contents. Before transmission through the network,
the transmission content should be encrypted, and the receiver should decrypt
the data after receiving it to ensure the security of the data in the transmission
process.

(2) Operating system security. Encryption aiming at securing the operating system
refers to the encryption of data files stored in the operating system, the core of
which is to ensure the security of the server, mainly in terms of the server’s user
accounts, passwords, access rights, etc. Data security is mainly reflected in the
encryption technology, security of data storage, security of data transmission,
such as Kerberos, IPsec, SSL and VPN technologies.

Kerberos is a computer network authorization protocol used to authenticate personal
communications in a non-secure network by secure means. It was originally designed
to provide strong authentication between client and server applications through a key
system. In a cluster using Kerberos authentication, the client does not authenticate
directly with the server, instead, authenticates with each other through the key
distribution center (KDC).
The Internet Protocol Security (IPsec) is a family of network transport protocols
(a collection of interconnected protocols) that protect IP addresses by encrypting and
authenticating their packets.
The secure sockets layer (SSL) protocol and its successor, transport layer security
(TLS), are security protocols that provide security and data integrity for network
communications. TLS and SSL encrypt network connections at the transport layer.

2.1 Overview of Database Management 49

(3) DBMS security. The encryption aimed at DBMS security refers to the encryp-
tion and decryption of data in the process of reading and writing data by means
of custom functions or built-in system functions, involving database encryption,
data access control, security auditing, and data backup.

To summarize, all the three levels of security involve encryption. The security at the
network level focuses on encryption of the transmission content, where the sender
encrypts the transmission content before the network transmission and the receiver
decrypts the information after receiving it, thus securing the transmission. The
encryption aiming at securing the operating system refers to the encryption of data
files stored in the operating system. The encryption aimed at DBMS security refers
to the encryption and decryption of data in the process of reading and writing data by
means of custom functions or built-in system functions.

Security control is to provide security against intentional and unintentional
damage at different levels of the database application system, for example:

(1) Encryption of access data ! intentional illegal activities.
(2) User authentication and restriction of operation rights ! intentional illegal

operations.
(3) Improvement of system reliability and data backup ! unintentional damage

behavior.

The security control model shown in Fig. 2.3 is only a schematic diagram, while all
database products nowadays have their own security control models. When a user
needs to access a database, he or she first has to enter the database system. The user
provides his identity to the application, and the application submits the user’s
identity to the DBMS for authentication, after that, only legitimate users can proceed
to the next step. When a legitimate user is performing a database operation, the
DBMS further verifies that the user has such operation rights. The user can only
operate if he or she has operation rights, otherwise the operation will be denied. The
operating system also has its own protection measures, such as setting access rights
to files and encrypting storage for files stored on disk, so that the data is unreadable
even if it is stolen. In addition, it is possible to save multiple copies of data files, thus
avoiding data loss when accidents occur.

The authentication of database users is the outermost security protection provided
by the DBMS to prevent unauthorized users from accessing.

Fig. 2.3 Security control model

50 2 Basic Knowledge of Database

As database applications now commonly use the “user name + password”
authentication mode, it is necessary to enhance the password strength, the main
measures for which are as follows.

(1) Longer strings, such as 8–20 characters, should be used.
(2) A mixture of numbers, letters and symbols should be used.
(3) Passwords should be changed regularly.
(4) Passwords should not be used repeatedly.

The security policy mainly involves password complexity, password reuse, pass-
word validity, password modification, password verification, and prohibits the
explicit display of passwords. In general, it is recommended to use an interactive
method and real-time password input method for login; some fixed-running scripts
or codes should be deployed on a specific and trusted server side, where the user sets
a specific password-free login method to allow the code and scripts executed by a
specific server to log in to the database through the password-free method.

GaussDB (for MySQL) sets a password security policy for new database users created
on the client side.

The password length is at least eight characters.
The password should contain at least one uppercase letter, one lowercase letter,

one digit and one special character.
The password should be changed periodically.

Access control is the most effective method of database security management,
and also is the most problematic link. Its basic principle is to assign different rights to
different users according to the classification requirements of sensitive data.

(1) The principle of least right. To meet the needs of the minimum right range, the
arbitrary expansion of the scope of authority grant is not allowed. For example, a
user who needs to query data only needs to be granted SELECT right, and
cannot be granted DELETE and UPDATE rights.

(2) Check the key rights. Rights such as DROP, TRUNCATE, UPDATE, and
DELETE, which will cause data to disappear or change, should be granted
cautiously, and it is also necessary to check whether the users who have obtained
the rights continue to use the rights.

(3) Check the rights of key database objects. The access rights of system tables, data
dictionaries and sensitive database tables should be strictly checked.

Role based access control (RBAC) is mainly used in right management for large
database systems or systems with a large volume of user data.

A database “role” is a collection of operations that one or a group of users can
perform in a database. Roles can be created based on different job responsibilities,
and then the user is assigned to the corresponding role. Users can easily switch roles
or bears multiple roles.

The starting point of RBAC is to exclude direct contact between users and
database objects, so that rights are assigned to roles, and users can only obtain the

2.1 Overview of Database Management 51

appropriate rights to access the corresponding database objects if they have the
corresponding roles.

For example, if User A wants to query the data of Table T, then we can grant User
A the right to query Table T directly, or we can create Role R, then grant the right to
view Table T to Role R, and finally grant Role R to User A.

Audit can help database administrators to find the vulnerabilities in the existing
architecture and its usage. Audit of users and database administrators is to analyze
and report on various operations, such as creating, deleting, and modifying
instances, resetting passwords, backing up and restoring, creating, modifying, and
deleting parameter templates, and other operations.

The levels of database audit are as follows.

(1) Access and authentication audit: analysis of database user’s login (log in) and
logout (log out) information, such as login and logout time, connection method
and parameter information, login path, etc.

(2) User and database administrator audit: analysis and reporting on the activities
performed by users and database administrators.

(3) Security activity monitoring: recording of any unauthorized or suspicious activ-
ities in the database and generation of audit reports.

(4) Vulnerability and threat audit: identification of possible vulnerabilities in the
database and the “users” who intend to exploit them.

The encryption of database is divided into two layers—the encryption of kernel layer
and the encryption of outer layer. Kernel-layer encryption means that the data is
encrypted or decrypted before physical access, which is transparent to the database
users. If encrypted store is used, the encryption operation runs on the server side,
which will increase the load on the server to some extent. Outer-layer encryption
means developing special encryption and decryption tools, or defining encryption
and decryption methods, which can control the encryption object granularity, and
encrypt and decrypt at table or field level, and users only need to focus on sensitive
information range.

When enabling kernel-layer encryption for high-load systems, it is important to
carefully consider its impact on performance as the functionality is enabled at the
entire database management system level.

The outer-layer encryption requires extra development time, the algorithms of
encryption and decryption for different data objects and different data types are
complicated, and there are also certain business rules that need to be followed after
encrypting some business-critical data, for example, the names of tables can be
associated after being encrypted, etc. So it is a very large project to implement a good
encryption engine.

52 2 Basic Knowledge of Database

2.1.5 Performance Management

There are upper limits on the processing capacity of resources. For example, the disk
space is limited, and there are also upper limits on CPU frequency, memory size and
network bandwidth. Resources are divided into supply resources and concurrency
control resources. The supply resources, also called basic resources, are the
resources corresponding to computer hardware, including the resources managed
by the operating system, whose processing capacity is ordered as “CPU > memory
>> disk � network”. Concurrency control resources include but are not limited to
locks, queues, caches, mutually exclusive signals, etc., which are also resources
managed by the database system. The basic principle of performance management is
to make full use of resources and not to waste them.

Unlike the even supply of resources, the use of resources is uneven. For example,
if a distributed system fails to choose a reasonable data slicing method, the nodes
with more data will be heavily loaded and their resources will be strained, but the
nodes with less data will be lightly loaded and their resources will be relatively
“idle”, as shown in Table 2.5.

1 ns ¼ 10�9 s

Resource bottlenecks can be exchanged. For example, a system with low I/O
performance and sufficient memory can be exchanged through high memory and
high CPU consumption. A system with limited network bandwidth can also improve
the efficiency of data transfer by compressing the transfer, i.e., using the CPU to

Table 2.5 Performance indicators

Indicator Description Time (ns)

L1 cache reference Read the level-1 cache of CPU 0.5

L2 cache reference Read the level-2 cache of CPU 7

Main Memory reference Read Memory data 100

Compress 1k bytes with Zippy Compress 1k bytes with Zippy
algorithm

10,000

Send 2k bytes over 1 Gbit/s
Network

Send 2k bytes over 1 Gbit/s network 20,000

Read 1 MB sequentially from
Memory

Read 1 MB sequentially from
Memory

250,000

Disk seek Disk seek 10,000,000
(10 ms)

Read 1 MB sequentially from
Network

Read 1 MB sequentially from
Network

10,000,000

Read 1 MB sequentially from Disk Read 1 MB sequentially from Disk 30,000,000

2.1 Overview of Database Management 53

handle compression and decompression. This is the optimization idea of exchanging
space for time and time for space.

For the use of database, the ideal situation is to have infinite resources, CPU with
infinite processing speed, infinite amount of memory, infinite disk space, and infinite
network bandwidth. But the database is actually always running in a limited envi-
ronment. The effective management of resources can ensure that the database system
can meet the user’s performance requirements for the system during the peak period,
and the meaning of performance management lies in the efficient use of resources.
Real-time system performance monitoring through the logs or tools provided by the
database can respond to system problems in a timely manner, analyze existing
problems based on historical performance data, identify potential problems, and
propose better preventive measures based on development trends. The data collected
by performance management is the basis for system capacity planning and other
forward planning, because data speaks with facts, not with feelings.

Regarding performance management, the basic indicators of database systems
include throughput and response time. OLTP and OLAP performance management
goals should actually be treated differently, but the two indicators should be ana-
lyzed together. In performance management, one of the indicators cannot be pursued
unilaterally. OLTP is to provide the highest possible throughput on top of acceptable
response times to reduce consumption per unit of resource, to move quickly through
the shared area for concurrency, and to reduce bottleneck constraints. OLAP is to
reduce response time as much as possible within limited resources, and a transaction
should make full use of resources to accelerate processing time. In the case of SQL,
for example, SQL optimization for OLTP should minimize the use of resources by
SQL. OLAP systems, on the other hand, require SQL to make the best possible use
of resources within a limited range. For OLAP systems, when processing batch jobs,
the higher the resource utilization rate, the better (it needs to be within a certain time
window).

Some of the main scenarios to which performance optimization applies are as
follows.

(1) Performance optimization for go-online scenario or below-expected perfor-
mance. It may be obvious for OLTP systems that the performance fails to
reach the expectation after going online, because the development environment
and test environment tend to pay more attention to functional development, and
even stress tests are SQL stress tests of some form query types. For batch
operations on the OLAP, in the full data or historical data environment, its
performance will be very different from the scenario of a small volume of
sample data.

(2) Performance optimization for the situation where the response gradually
becomes slower after going online for a while. Due to the development of data
volume and business, the model and specification of system data have deviated
from the original design, and the performance has also changed. In this case, it is
basically necessary to analyze and find out which factors are related to this based
on the long-term accumulation of performance data.

54 2 Basic Knowledge of Database

(3) System optimization for sudden slowdown during system operation (emergency
processing). In the emergency processing scenario, performance problems do
not happen for any reason. Sudden performance changes are often caused by
code changes, such as put-into-production of newly developed business, new
requirement changes, DDL changes, unexpected configuration changes, data-
base upgrades, etc. Generally, this kind of problem has a high degree of urgency,
which often requires the intervention of experienced personnel and quick
response.

(4) Performance optimization for the situation where the system suddenly becomes
slow and then returns to normal after a period of time. This is generally due to
bottlenecks that limit throughput during peak periods, and capacity expansion is
the simplest way to solve it. However, due to the extra investment and time
period involved, this method needs to be supported by sufficient resources. A
more natural solution is to reduce the number of operations per unit (concur-
rency control) or to reduce the resource consumption per unit of operation.

(5) System optimization based on the reduction of resource consumption. In this
scenario, the whole system generally does not suffer from obvious performance
problems, but rather emphasizes the effectiveness of resource usage, which is
relatively well-timed and less stressful. For example, to analyze and optimize the
top ten jobs that consume the most resources and have the longest response time
in system application.

(6) Preventive daily inspection. Inspection work is generally applicable to scenarios
where the whole system does not have obvious performance problems.

The data to be collected for performance management include CPU usage data,
space utilization, users and roles using the database system, response time of
heartbeat queries, performance data submitted to the database with SQL as the
basic unit, and job-related performance data submitted by database tools (such as
load, unload, backup, restore, etc.). As far as the timing of data collection is
concerned, some daily data collection can be arranged, or data collection can be
carried out during the time period when users use the system intensively in one day,
or during the time period when the system pressure is relatively high.

After data collection is completed, corresponding performance reports need to be
generated. For example, periodic performance reports or performance trend analysis
reports. There are many monitoring reports that can be extracted in the database
system, for example, regular performance reports (daily, weekly and monthly
reports) can be established by using performance-related data; the performance
trend analysis report can be established by using common indicators to obtain an
intuitive display of the current system performance; you can also generate reports of
specific trend types, such as reports based on abnormal events, reports of SQL or
jobs that consume a lot of resources, reports of resource consumption of specific
users and user groups, and reports of resource consumption of specific applications.

2.1 Overview of Database Management 55

Built-in resource views or monitoring reports are some advanced features provided by
the database that are not available in some databases.

2.1.6 O&M Management

1. Database installation
The basic principles adopted by different database products are similar, but each
product has its own characteristics and precautions, which users need to under-
stand and learn before installation.

The first is the installation of the database, the process of which is shown in
Fig. 2.4.

The premise of database installation is some basic preparations, mainly as
follows.

Fig. 2.4 Database
installation

56 2 Basic Knowledge of Database

(1) To understand the theory of relational database.
(2) To understand the knowledge of operating system.
(3) To understand the characteristics of database products and server

architecture.
The software architecture is the composition of the components within the

database product. What needs to be understood is which components are
basic, major, and must be installed, and which are optional.

Generally speaking, the network architecture should ensure that the data-
base server can run and manage the network and the planning of the database
network.

The database network refers to the intranet used by the database, hosts and
spares, and cascading brackets synchronously.

Management network generally refers to the communication network used
between management module and agent module.

To understand the server architecture is to understand the considerations
of building the product in single-host mode, master-standby mode, cluster
mode or distributed mode.

(4) To know and understand the proper nouns and specific terms of the target
database. The meaning of the same word in different database products may
vary greatly, cannot be generalized.

(5) To read the installation manual, especially the installation notes.

2. Database uninstallation
Before the database is upgraded, it is necessary to uninstall and clean up the

old version of the database. The basic steps of traditional database uninstallation
are as follows.

(1) (Optional) Make a full backup of the database.
(2) Stop the database service.
(3) Uninstall the database.

The basic steps of cloud database uninstallation are as follows.
(1) (Optional) Make a full backup of the database.
(2) Delete the data instance from the cloud platform.

The uninstallation approaches are similar for single-host, master-standby,
and one-master-multi-standby architectures, and the uninstallation operations
to be performed on each node are the same. Uninstallation of distributed
clusters generally uses proprietary uninstallation tools. Some users need to
destroy the data on the store media after uninstalling the database in order to
prevent data leakage.

3. Database migration
Database migration needs to design different migration schemes according to

different migration scenarios, and the factors to be considered are as follows:

2.1 Overview of Database Management 57

(1) the available time window for migration;
(2) the available tools for migration;
(3) whether the data source system stops writing operations during the migration

process;
(4) the network conditions between the data source system and the target system

during the migration;
(5) estimated backup recovery time based on the volume of data migrated;
(6) audit the data consistency between the source database system and the target

database system after migration.
Judging the network situation during database migration is mainly to

provide reference for deciding whether data direct connection can be used.
If the network condition is good at both ends, then the direct data migration
without landing can be more efficient because it can avoid the large disk I/O
overhead generated by the data landing. In the audit of data consistency, a
quick comparison method is usually to compare the number of the same table
on both sides and confirm that the numbers of records are the same. The
method of comparing the results of aggregation operations on specific col-
umns can also be used, such as finding the sum of amount fields and
comparing the results, grouping statistics based on date fields, and counting
whether the numbers of records for each day are the same.

Data migration often faces the challenge of completing a huge amount of
work within a limited time, and designing multiple scenarios and contingency
plans is a prerequisite for successful data migration.

4. Database expansion
The capacity of any database system is determined after estimating the volume

of data in the future at a certain time point. When determining the capacity, not
only the volume of data store should be considered, but also the following
shortcomings should be avoided:

(1) Inadequacy of computing power (average daily busy level of CPU of the
whole system > 90%).

(2) Insufficient response and concurrency capability (qps and tps are significantly
reduced, failing to meet the SLA).

SLA is the abbreviation of Service Level Agreement. When signing a contract with a
customer, some performance commitments are generally made to the customer, for
example, the database system provided should be able to meet 10,000 queries/s, the
response time for a single query should not exceed 30ms, and to meet the database-
related service indicators. SLA may also include service commitments such as 7� 24
response.

(3) Insufficient data capacity. The definition of insufficient capacity is different
between OLTP and OLAP.

58 2 Basic Knowledge of Database

The differences between vertical and horizontal capacity expansion are as
follows.

(1) Vertical expansion refers to increasing the hardware of the database server,
such as increasing memory, increasing store, increasing network bandwidth,
and improving the performance configuration of hardware. This method is
relatively simple, but it will encounter the bottleneck of single-node hardware
performance.

(2) Horizontal expansion refers to increasing the number of servers horizontally,
taking advantage of the servers in the cluster to improve the overall system
performance.

The differences between Downtime expansion and smooth expansion are
as follows:

(1) Downtime expansion is a simple way, but limited by the time window. Once
there is a problem, the expansion will fail, and it will take too long to be
accepted by customers.

(2) Smooth expansion has no impact on database services, but the technical
implementation is relatively complex. Especially, the complexity of expan-
sion will rise sharply with the increase of database servers.

5. Routine maintenance
In order to carry out routine maintenance, a more rigorous work plan should be

formulated for each job, and implemented to check the risks and ensure the safe
and efficient operation of the database system.

Database troubleshooting mainly involves the following matters.

(1) Configure database monitoring indicators and alarm thresholds.
(2) Set the alarming process for the fault events at each level.
(3) Receive the alarm and locate the fault according to the logs.
(4) Record the original information in detail for the problems encountered.
(5) Strictly abide by the operating procedures and industry safety regulations.
(6) For major operations, the operation feasibility should be confirmed before

operation, and the operation personnel with authority should perform them
after the corresponding backup, emergency and safety measures are in place.

Database health inspection mainly involves the following matters.
(1) View health inspection tasks.
(2) Manage health inspection reports.
(3) Modify the health inspection configuration.

2.1 Overview of Database Management 59

2.2 Key Concepts of Database

2.2.1 Database and Database Instance

Database system is made for managing data, and database is actually a collection of
data, which is expressed as a collection of data files, data blocks, physical operating
system files or disk data blocks, such as data files, index files and structure files. But
not all database systems are file-based, there are also databases that write data
directly into memory.

Database instance refers to a series of processes in the operating system and the
memory blocks allocated for these processes, which are the channels to access the
database. Generally speaking, a database instance corresponds to a database, as
shown in Fig. 2.5.

A database is a collection of physically stored data, and a database instance is the
collection of software processes, threads and memory that access data. Oracle is
process-based, so its instance refers to a series of processes; and a MySQL instance
is a series of threads and the memory associated with the threads.

Multi-instance is to build and run multiple database instances on a physical
server, each using a different port to listen through a different socket, and each
having a separate parameter profile. Multi-instance operation can make full use of
hardware resources and maximize the service performance of the database.

Distributed database presents unified instances, and generally does not allow
users to directly connect to instances on data nodes. A distributed cluster is a set
of mutually independent servers that form a computer system through a high-speed
network. Each server may have a complete copy or a partial copy of the database,
and all servers are connected to each other through the network, together forming a
complete global large-scale database that is logically centralized and physically
distributed.

Multi-instance and distributed cluster are shown in Fig. 2.6.

Fig. 2.5 Database instance

60 2 Basic Knowledge of Database

2.2.2 Database Connection and Session

Database connection is a physical communication connection, which refers to the
network connection between a client and a dedicated server or a shared server
established on the same network. When establishing a connection, it is necessary
to specify the connection parameters, such as server host name, IP address, port
number, and user name and password for the connection, etc.

Database Session refers to the logical connection between the client and the
database, which is a context from the beginning throughout the end of communica-
tion. This context is located in the memory of the server, recording the client of this
connection, the corresponding application process number, the corresponding user
login information and other information.

The session and connection are established simultaneously, which are descrip-
tions of the same thing at different levels, as shown in Fig. 2.7. Simply put, the
connection is the physical communication link between the client and the server,
while the session refers to the logical communication interaction between the user
and the server. In a database connection, a proprietary server is an instance on the
database server. The scheduling server generally refers to the server on the distrib-
uted cluster where the external interface component resides, which in GaussDB
(DWS) corresponds to the coordinator node (CN).

Frequent creation and closing of database connections is costly, which makes the
allocation and release of connection resources a bottleneck for the database, thus
eroding the performance of the database system. The connection pool is used to
reuse database connections, responsible for allocating, managing and releasing
database connections. It allows an application to reuse an existing database connec-
tion instead of creating a new one, allowing efficient and secure reuse of database
connections.

The basic idea of connection pool is to store database connections as objects in
memory during system initialization. In this way, a user who needs to access the
database does not need to establish a new connection, but directly takes out an
established idle connection object from the connection pool, as shown in Fig. 2.8.
Instead of closing the connection directly after use, the user puts the connection back

Fig. 2.6 Multi-instance and distributed cluster

2.2 Key Concepts of Database 61

into the connection pool for the next user to request. Connection creation and
disconnection are managed by the connection pool itself, and the initial number of
connections, the upper and lower limits of number of connections, the maximum
times of uses per connection, and the maximum idle time can be controlled by setting
the parameters of the connection pool. However, there are alternatives, that is,
monitoring the number and usage of database connections through its own manage-
ment mechanism. Connections also vary by database product. Oracle’s connection
overhead is large, while MySQL’s is relatively small. For highly concurrent service
scenarios, if there are many connections accumulated, the overall connection cost of
the whole database should also be considered by database administrators.

Fig. 2.7 Flow chart of
establishing database
connection

62 2 Basic Knowledge of Database

2.2.3 Schema

Schema is a collection of related database objects that allows multiple users to share
the same database without interfering with each other. The schema organizes
database objects into logical groups for easier management and form namespaces
to avoid object name conflicts. A schema contains tables, other database objects, data
types, functions, operators, etc.

“table_a” shown in Fig. 2.9 indicates tables with the same name. Since they
belong to different schemas, they are allowed to use the same name, but in fact they
may store different data and have different structures. When accessing one of the
tables with the same name, it is necessary to specify the schema name to explicitly
point to the target table.

Conceptually, a schema is a set of interrelated database objects. Different databases
may adopt different concepts to reflect the schema, so database users generally use the
English word “schema” to express the concept.

Fig. 2.8 Database connection pool

2.2 Key Concepts of Database 63

2.2.4 Tablespace

Tablespace is composed of one or more data files, with which you can define where
database object files are stored. All objects in the database are logically stored in the
tablespace, and physically stored in the data files belonging to the tablespace.

The function of table space is to arrange the physical store location of data
according to the usage pattern of database objects, so as to improve the performance
of database. It places frequently used indexes on the disk with stable performance
and fast computing speed to facilitate data archiving, and place tables that are used
less frequently and require lower access performance on the disk with slower
computing speed.

You can also specify the physical disk space occupied by data through
tablespaces and set the upper limit of physical space usage to avoid running out of
disk space.

In view of the fact that tablespaces correspond to physical data files, tablespaces
can actually associate data with store, and then the tablespaces themselves specify
the store locations of database objects such as tables and indexes in the database.
After the database administrator creates a tablespace, he or she can refer to it when
creating database objects.

Fig. 2.9 Schema

64 2 Basic Knowledge of Database

Figure 2.10 shows the tablespaces of GaussDB (for MySQL), which are created
as the system predefines six tablespaces, including SYSTEM tablespace, TEMP
tablespace, TEMP2 tablespace, TEMP2_UNDO tablespace, UNDO tablespace, and
USERS tablespace, as shown in Table 2.6.

TEMP tablespaces, as the intermediate result set of SQL statements, are be used
by common temporary tables of users. When executing DML (insert, update and
delete, etc.) operations, the old data generated before the execution of the operation
will be written to the UNDO tablespace, which is mainly used to implement
transaction rollback, database instance recovery, read consistency and flashback
queries.

2.2.5 Table

In a relational database, a database table is a collection of two-dimensional arrays
that represent the relationships between the data objects being stored. Each row in
the table is called a record and consists of several fields; each column in the table can
be called a field, which has two attributes—column name and data type, as shown in
Table 2.7.

Fig. 2.10 Tablespaces

Table 2.6 Tablespaces within GaussDB (for MySQL)

Tablespace Description

SYSTEM Used to store metadata of GaussDB (for MySQL)

TEMP When a user’s SQL statement requires disk space to complete an operation,
GaussDB (for MySQL) database will allocate temporary segments from the
TEMP tablespace

TEMP2 Used to store NOLOGGING table data

TEMP2-
UNDO

Used to store NOLOGGING table’s UNDO data

UNDO Used to store UNDO data

USERS The default user tablespace, used to carry all the information of a new user when
the user is created but no tablespace is specified

2.2 Key Concepts of Database 65

GaussDB (for MySQL) supports the creation of temporary tables, which are used
to hold the data needed for a session or a transaction. When a session exits or a user
commits and rolls back a transaction, the data in the temporary table is automatically
cleared, but the table structure remains.

The data in a temporary table is temporary and procedural, with no need to be
retained permanently like a normal data table.

Temporary tables cannot be displayed using the [SHOW TABLES] command.
To avoid deleting a permanent table with the same table name, you can use the

[DROP TEMPORARY TABLE staff_history_session;] command when performing
a delete of the table structure.

The data in the temporary table exists only for the life of the session and is
automatically cleared when the user exits the session and the session ends, as shown
below.

CREATE TEMPORARY TABLE staff_history_session
(
startdate DATE,
enddate DATE
);

Temporary tables with the same name can be created for different sessions. The
name of the temporary table can be the same as the name of the permanent table.

Execute the following command to create a temporary table in GaussDB (for
MySQL):

CREATE TEMPORARY TABLE test_tpcds (a INT, b VARCHAR (10));

2.2.6 How the Table Is Stored

According to the way data is stored, tables are divided into row store and column
store, as shown in Fig. 2.11. GaussDB (for MySQL) currently supports only row
store, while GaussDB (DWS) supports both row store and column store. The default
store mode is row store, which differs from column store only in store mode. From

Table 2.7 Database table

Author number Author name Author’s age Author’s address

001 Zhang San 40 ���� City, ���� Province

002 Li Si 50 ���� City, ���� Province

...

66 2 Basic Knowledge of Database

the presentation form of tables, the tables in the two store modes still hold
two-dimensional data, which accord with the relational theory of relational database.

If the table in the form of row store (row store table) stores the same row of data in
different columns, records can be written once when performing INSERT and
UPDATE operations; But when you choose to query, even if you only query a
few columns, all the data will be read.

The table in the form of column store (column store table) first splits the rows
when writing data, at which time a row is split into multiple columns, and then the
data of the same column is stored in the adjacent physical area. Therefore, in the
column store mode, the times of write of a row record is obviously more than that in
the row store mode. This increase in the write times leads to higher overhead and
poorer performance of the column store table compared with the row store table
when performing INSERT and UPDATE operations. However, when querying,
column store tables just scan the columns involved and then read them, so the I/O
scanning and reading range are much smaller than row store tables. Column-store
query can eliminate irrelevant columns. If only a few columns need to be queried, it
can greatly reduce the amount of data to be queried, and then speed up the query. In
addition, for column store tables, each row hold the data of the same data type, and
the data of the same type can be compressed by a lightweight compression algorithm
to achieve a good compression ratio, so the space occupied by the column store table
is relatively small.

Fig. 2.11 How the table is stored

2.2 Key Concepts of Database 67

Row store tables, on the other hand, are difficult to compress because the field
types of the tables are not uniform and cannot be compressed dynamically unless
they are confirmed in advance.

Regarding the choice of store mode, row store is the default store mode. The
scenarios for which column store is suitable are mainly queries of statistical analysis
type (scenarios with a lot of GROUP and JOIN operations), OLAP, data mining and
other application query scenarios that make a lot of query requests. One of the main
advantages of column storage is that it can greatly reduce the I/O occupation of the
system in the reading process, especially when querying massive data, I/O has
always been one of the main bottlenecks of the system. Row store is suitable for
scenarios such as point queries (simple queries with fewer returned records and
based on indexes), lightweight transactions like OLTP, and scenarios that involves a
lot of write operations and more data additions, deletions and changes. Row store is
more suitable for OLTP, such as the traditional applications based on addition,
deletion, change and check operations. Column store is more suitable for OLAP,
and is well suited to play a role in the field of data warehousing, such as data
analysis, mass store and business intelligence, which mainly involves infrequently
updated data.

2.2.7 Partition

A partitioned table is obtained by dividing the data of a large table into many small
subsets of data. The main types of partitioned tables are as follows.

(1) Range-partitioned table: The data is mapped to each partition based on a range
determined by the partition key specified when the partition table is created. This
is the most commonly used partition method, and the date is often used as the
partitioning key, for example, the sales data is partitioned by month.

(2) List-partitioned table: A huge table is partitioned into small manageable blocks.
(3) Hash-partitioned tables: In many cases, users cannot predict the range of data

changes on a particular column, and therefore cannot create a fixed number of
range partitions or list partitions. In this case, hash-partitioned tables provide a
way to divide the data equally among a specified number of partitions, so that
the data written to the table is evenly distributed among the partitions; however,
the user cannot predict which partition the data will be written to. For example, if
the sales cities are spread all over the country, it is difficult to partition the table
in a list, and then the table can be hash-partitioned.

(4) Interval-partitioned table: It is a special kind of range-partitioned table. For
ordinary range partition, users will pre-create partitions, and if the inserted
data is not in the partition, the database will report an error. In this case, the
user can add the partition manually or use the interval partition. For example, the
user can use the range-partitioned table in the way of one partition per day, and
create a batch of partitions (e.g. 3 months) for subsequent use when the service is

68 2 Basic Knowledge of Database

deployed, but the partitions need to be created again after 3 months, otherwise
the subsequent service data entry will report an error. This approach of range
partition increases maintenance costs and requires the kernel to support auto-
matic partition creation. But with interval partition, the user does not need to care
about creating subsequent partitions, which reduces partition design and main-
tenance costs.

Example: The code for range-partitioning a date is as follows.

CREATE TABLE tp
(
id INT,
name VARCHAR(50),
purchased DATE
)

PARTITION BY RANGE(YEAR(purchased))
(

PARTITION p0 VALUES LESS THAN (2015),
PARTITION p1 VALUES LESS THAN (2016),
PARTITION p2 VALUES LESS THAN (2017),
PARTITION p3 VALUES LESS THAN (2018),
PARTITION p4 VALUES LESS THAN (2019),
PARTITION p5 VALUES LESS THAN (2020)

);

The advantages of partitioned tables are as follows.

(1) Improved query performance: When querying partitioned objects, you can
search only the partitions you care about (also known as partition pruning),
which improves retrieval efficiency.

(2) Enhanced availability: If a partition in a partitioned table fails, the data in other
partitions of the table is still available.

(3) Easy maintenance: If a partition of a partitioned table fails and you need to repair
the data, you can repair only that partition.

(4) Balanced I/O: Different partitions can be mapped to different disks to balance
I/O and improve the performance of the whole system.

The data covered by the query condition is located in a partition, so SQL only needs
to scan the data of a partition in the query process, instead of scanning the whole
table, as shown in Fig. 2.12. Suppose the table contains 10 years of data, if there is no
partitioned table, you have to scan all the data of 10 years to calculate the result,
while with a partitioned table, you only need to scan 1 year of data in a partitioned
table, thus the amount of scanned data is only 1/10.

Table 2.8 shows the applicable scenarios of partitioning.

Scenario 1 (Row 1 in Table 2.8): Usually this situation occurs in WHERE clause,
where the filter condition uses a partition field and the partition field is equal to a
partition; or when “BETWEEN...AND...” statement is used, the search condition

2.2 Key Concepts of Database 69

is within several partitions, so when the query statement scans data, it will only
search specific partitions instead of scanning the whole table through partition
pruning. In general, the I/O overhead of partition scanning is n/m compared to
scanning the entire table, where m is the total number of partitions and n is the
number of partitions that satisfy the WHERE condition.

Scenario 2 (Row 2 in Table 2.8): Inserting data into an empty partition is similar to
loading data into an empty table, and the efficiency of inserting data is higher with
this internal implementation.

Scenario 3 (Row 3 in Table 2.8): If data is to be deleted or truncated, the data in some
partitioned tables can be processed directly because the quick positioning and
deletion function of partition makes the processing much more efficient than the
scenario without partition.

Fig. 2.12 Partition pruning

Table 2.8 Applicable scenarios of partitioning

Scenario description Advantages

When rows with high access rates in a table are
located in a single partition or in a few partitions

Significantly reduces search space, thus
improving access performance

When inserting data into an empty partition Improves the efficiency of inserting data into
the empty partition

When the records that need to be loaded or
deleted in large quantities are located in a single
partition or in a few partitions

Reads or deletes the corresponding partition
(s) directly, thus improving the processing
performance; at the same time, the fragmenta-
tion workload can be reduced because a large
number of fragmented deletion operations are
avoided

70 2 Basic Knowledge of Database

2.2.8 Data Distribution

The data tables of GaussDB (DWS) distributed database are scattered on all data
nodes (DNs), so you need to specify the distribution columns when you create the
tables, as shown in Table 2.9.

The sample code for the Hash distribution is as follows.

CREATE TABLE sales_fact
(
region_id INTEGER,
depart_id INTEGER,
product_id INTEGER,
sale_amt NUMERIC (9,2),
sale_qty INTEGER
)
DISTRIBUTE BY HASH(region_id,depart_id,product_id);

The sample code for the Replication distribution is as follows.

CREATE TABLE depart_dim
(
depart_id INTEGER,
depart_name VARHCARH2(60)
)
DISTRIBUTE BY REPLICATION;

The data policy selection is shown in Fig. 2.13.
It should be noted that GaussDB (DWS) only supports Hash and Replication

distribution methods, while database shared storage of GaussDB (for MySQL) is not
involved at present.

Table 2.9 Data distribution

Distribution method Description

Hash The table data is hashed to all DNs in the cluster by the Hash method

Replication Each DN in the cluster has a copy of the full table data

List Table data is distributed to specified DNs by the List method

Range Table data is distributed to specified DNs by the Range method

2.2 Key Concepts of Database 71

2.2.9 Data Types

The data in the database is classified into basic data, compound data, serial number
data and geometric data. Basic data includes numerical value, character, binary data,
date and time, Boolean data, enumeration data, etc., as shown in Table 2.10.

Fig. 2.13 Data policy selection

Table 2.10 Data types

72 2 Basic Knowledge of Database

FLOAT and DOUBLE numbers in floating-point numbers are inaccurate, which
will sacrifice accuracy. Inaccuracy means that some values cannot be accurately
converted into values in an internal format, but are stored in an approximate form, so
some missing may occur when the data is stored and then output. Therefore, in
applications with strict requirements for precision such as financial calculations, data
types with high precision like DECIMAL and NUMERIC should be preferred.

CHAR type is a fixed-length string, which automatically fills the empty digits
when the inserted character is less than the set length. For example, under the
definition of CHAR(10), when the character “abc” is inserted, it will be
supplemented with 7 null digits to ensure that the whole character string is
10 bytes long.

Basic data type is the built-in data type of the database, including INTEGER,
CHAR, VARCHAR and other data types.

Regarding the field design, considering the query efficiency, the design sugges-
tions are as follows.

(1) Give priority to the use of efficient data types. Ensure that the specified maxi-
mum length is greater than the maximum character number to be stored to avoid
truncation of characters when the maximum length is exceeded. In the database,
when using SQL statements to insert data, if the characters are truncated, the
SQL statement will not report an error. It is recommended to use data types with
higher execution efficiency as much as possible. Generally speaking, integer
data operations (including¼,>,<,�,�, 6¼ and other conventional comparison
operations, as well as GROUP BY) are more efficient than strings and floating-
point numbers. The data type of the short field is also recommended. Data types
with shorter lengths not only reduce the size of data files and improve I/O
performance, but also reduce memory consumption during related calculations
and improve computational performance. For example, for integer data, try not
to use INT if you can use SMALLINT, and try not to use BIGINT if you can
use INT.

(2) Use consistent data types. Try to use the same data type for the associated
columns in the table; otherwise, the database must dynamically convert them
into the same data type for comparison, which will bring some performance
overhead. When there is a logical relationship between multiple tables, the fields
representing the same meaning should use the same data type.

For string data, it is recommended to use the data type of variable-length string and
specify the maximum length. Ensure that the specified maximum length is greater
than the maximum character number to be stored to avoid truncation of characters
when the maximum length is exceeded.

2.2 Key Concepts of Database 73

2.2.10 View

Unlike the base table, a view is not physically present, but is a dummy table. If the
data in the base table changes, then the data queried from the view will also change.
In this sense a view is a window through which the data of interest to the user in the
database and its changes can be seen, and the view is run once each time it is
referenced.

“author_v1” shown in Fig. 2.14 is vertically split data, only two columns in the
base table are visible, and other columns are not visible through the view;
“author_v2” is horizontally split data, only all data in the table with age values
greater than 20 are visible, but all columns are visible. No matter how to split, the
data of “author_v1” and “author_v2” views are not really stored in the database.
When the user accesses the view through the SELECT statement, the user accesses
the data in the underlying base table through the view, so the view is called a
“dummy table”. To the user, accessing a view is exactly the same as accessing a
table.

The main functions of a view are as follows.

(1) Simplifies operations. When querying, we often have to use aggregate functions
and display information about other fields, and we may need to associate other
tables, thus there is a long statement to write. If this action happens frequently,
we can create views, just by executing the SELECT * FROM view statement.

(2) Improves security. Users can only query and modify the data they see, because
the view is virtual, not physically present, and it just stores a collection of data.
The view is a dynamic collection of data, and the data is updated as the base table

Fig. 2.14 View

74 2 Basic Knowledge of Database

is updated. We can present the important field information in the base table to the
user through the view, but the user cannot change and delete the view at will to
ensure the security of the data.

(3) Achieves logical independence and shields the impact from the structure of real
tables. Views allow the application and database tables to be somewhat inde-
pendent of each other. Without a view, the application must be built on top of the
table; but with a view, the application can be built on top of the view. The
application is separated from the database table by the view.

The following sample code encapsulates more complex logic through views.

CREATE VIEW stu_class(id,name,class)
AS
SELECT student.s_id,student.name,stu_info.class
FROM student, stu_info
WHERE student.s_id=stu_info.s_id;

The user uses the same simplified SQL query statement as the normal table, with
the code shown below.

SELECT * FROM stu_class WHERE class=‘Beijing’

However, the view also has its limitations, mainly as follows.

(1) Performance issues: The query may be simple, but the statement that encapsu-
lates the view is complex.

(2) Modification restrictions: For complex views, users cannot modify the base table
data through the view.

However, if the view is a single table queried directly using the SELECT statement
as follows:

CREATE v_abc(a,b,c) AS SELECT a,b,c FROM tableA;

This form is called a simple view, which enables the modification of the table
through the view, for example, using the “UPDATE v_abc SET a¼‘101’ WHERE
b¼‘xxxx’;” statement.

However, if the view has aggregate functions, summary functions, or GROUP
BY grouping calculations, or if the view is a result view with multiple table
associations, they are complex views that cannot be used to make changes to the
base table data.

2.2 Key Concepts of Database 75

2.2.11 Index

An index provides pointers to data values stored in specified columns of a table, like
a table of contents of a book. It can speed up table queries, but also increase the
processing time of insertion, update, and deletion operations.

If you want to add an index to a table, then which fields the index is built on is a
question that must be considered before creating the index. It is also necessary to
analyze the service processing of the application, data usage, fields that are often
used as query conditions or required to be sorted, so as to determine whether to
establish an index.

When creating indexes, the following suggestions are used as a reference.

(1) Create indexes on columns that are frequently required to be searched and
queried, which can speed up the search and query.

(2) Create an index on a column that used as the primary key, which emphasizes the
uniqueness of the column and organizes the arrangement structure of the data in
the table.

(3) Create indexes on columns that often need to be searched based on ranges as the
ordering of indexes can ensure the continuity of the specified ranges.

(4) Create indexes on columns that need to be ordered frequently as the ordering of
indexes can reduce query time.

(5) Create indexes on the columns that often use the WHERE clause to speed up the
judgment of the condition.

(6) Create indexes for fields that often follow the keywords ORDER BY, GROUP
BY, and DISTINCT.

The created index may not be used, and when to use the index will be automatically
judged by the system after the index is successfully created. Indexes are used when
the system thinks it is faster to use them than to scan them sequentially. Successfully
created indexes must be synchronized with tables to ensure that new data can be
found accurately, which increases the load of data operation. We also need to remove
useless indexes periodically, and we can query the execution plan by EXPLAIN
statement to determine whether to use an index or not.

The indexing methods are shown in Table 2.11.
If a table declares a unique constraint or primary key, a unique index (possibly a

multi-field index) is automatically created on the fields that make up the unique
constraint or primary key to implement those constraints.

Create a normal index

CREATE INDEX index_name ON table_name(col_name);

76 2 Basic Knowledge of Database

Create a unique index

CREATE UNIQUE INDEX index_name ON table_name(col_name);

Create a normal combined index

CREATE INDEX index_name ON table_name(col_name_1,col_name_2);

Create a unique combined index

CREATE UNIQUE INDEX index_name ON table_name(col_name_1,
col_name_2);

Create a full-text index

CREATE FULLTEXT INDEX index_contents ON article(contents);

2.2.12 Constraints

Data integrity refers to the correctness and consistency of data. Integrity constraints
can be defined at the time of defining a table. Integrity constraint itself is a rule that
does not occupy database space. Integrity constraints are stored in the data dictionary
together with the table structure definitions.

Figure 2.15 shows the common constraint types, as follows.

Table 2.11 Indexing methods

Indexing
method Description

Normal index A basic index type without restriction, allowing to insert duplicate values and
null values in the columns that define the index, but only to speed up the query

Unique index The value in the index column must be unique, but null values are allowed

Primary key
index

A special type of unique index, not allowing null values

Combined
index

An index created on multiple combined fields in a table, which will only be used
if the left field of these fields is used in the query condition

Full-text index Used primarily to find keywords in the text, rather than comparing directly with
the values in the index

2.2 Key Concepts of Database 77

(1) Unique (UNIQUE) and primary key (PRIMARY KEY) constraints. When all
values in the field will not have duplicate records, you can add unique constraints
to the corresponding fields, such as ID card field and employee number field. If a
table does not have a unique constraint, then duplicate records can appear in the
table. If the fields can be guaranteed to satisfy the unique constraint and not-null
constraint, then the primary key constraint can be used, and usually a table can
only have one primary key constraint.

(2) References key constraint is used to establish a relationship between two tables,
which is necessary to specify which column of the primary table is referenced.

(3) Check constraint is a constraint on the range of legal values in a field. For
example, the balance in the savings account table is not allowed to be negative,
so a check constraint can be added to the balance field so that the balance field
takes a value � 0.

(4) Not-null constraint. If the current field should not have null values or unknown
data in service sense, you can add not-null constraints to ensure that the inserted
data are all not-null data, such as the ID card field of personal information.

(5) Default constraint. When inserting data, if no specific value is given, then the
default constraint will be used to give a default initial value, for example, if the
default value of the initial member’s rank is 0, when a new member record is
added, the member’s rank will be 0.

If the field values can be filled in from the service level, then it is recommended that
the default constraint not be used to avoid unintended results when the data is loaded.
Add a not-null constraint to a field that clearly does not have a null value, and the
optimizer will automatically optimize it and explicitly name the constraint that is
allowed to be explicitly named. Explicit naming is supported for all types of
constraints except not-null and default constraints.

If a default constraint is used, it is actually assigned by default for some unex-
pected cases. Such default values may hide potential problems. So for OLAP

Fig. 2.15 Common
constraint types

78 2 Basic Knowledge of Database

systems, default constraints should be used carefully or sparingly. But in OLTP
system, they are relatively more commonly used.

A summary of database objects is shown in Fig. 2.16.
Schema: A database can contain one or more named schemata. A schema is a

logical concept, including tables, indexes and other database objects.
Tablespace: A tablespace is used to specify where to store database objects such

as tables and indexes in the database, which is a physical concept. After the database
administrator creates a tablespace, he or she can refer to it when creating database
objects.

Table: A tablespace can contain multiple tables. All the data in the database exist
in the form of tables, and the tables are built in the database. The same tables can be
stored in different databases or in different modes of the same database.

Schema 1 includes objects Table 0, Table 1 and Table 2.
Schema 2 includes objects Table 3, Table 5, Table 6, View3 and Index5.
Schema 3 includes objects Table 3 and Table 4.

There are two Table3, but they are in Schema2 and Schema3 respectively, so they
can have the same name, and are distinguished by Schema2.Table3 and Schema3.
Table3.

View3 corresponds to Table3, which is a dummy table that does not occupy
actual physical space.

Index5 corresponds to Table5, the table and index can be not in the same
tablespace.

The objects of physical data stored in Tablespace1 are Table1, Table2, Table3
and Index5.

The objects stored in Tablespace2 are Table3, Table4, and Table5.

Fig. 2.16 Relationship between database objects

2.2 Key Concepts of Database 79

2.2.13 Transaction

Transaction is a user-defined sequence of data operations, these operations are
executed as a complete job unit. The data in the database is shared, allowing multiple
users to access the same data at the same time. When multiple users add, delete, or
change operations on the same piece of data at the same time, it can cause data
exceptions if no action is taken.

All statements within a transaction, as a whole, are either all executed or none
executed.

For example, when Account A transfers $1000 to Account B, the first operation is
to subtract $1000 from Account A, and the second operation is to add $1000 to
Account B. All the operations must be successful or failed through transactions.

The ACID characteristics of the transactions are shown below.

(1) Atomicity. The transaction is the logical unit of the database jobs; the operations
in the transaction are either all done or none done.

(2) Consistency. The result of transaction execution must be a transition from one
consistent state to another.

(3) Isolation. The execution of a transaction in the database cannot be interfered
with by other transactions. That is, the internal operation of a transaction and the
use of data are isolated from other transactions; multiple transactions subject to
concurrent execution cannot interfere with each other. For example, in the
process of transferring money from Account A to Account B, if Account C
also transfers money to Account A, the transaction of transferring money from
Account C to Account A should be isolated from the transaction of transferring
from Account A to Account B, without interfering with each other. If the
isolation level is not enough, there will be multiple data inconsistencies.

(4) Durability. Once a transaction is committed, the changes to the data in the
database are permanent. Post-commit operations or failures will not have any
effect on the outcome of the transaction. For example, at the beginning of a
transaction, read the value of A as 100, and after calculation, A becomes
200, and then continue to perform subsequent operations after submitting the
operation, at this time, the database fails. When the failure is recovered, the value
of A should be 200 when it is fetched from the database, not the initial value of
100 or some other value.

There are two markers for the end of a transaction: normal end—COMMIT (commit
the transaction); and abnormal end—ROLLBACK (roll back the transaction).

After committing a transaction, all operations of the transaction are physically
stored in the database as permanent operations. After rolling back a transaction, all
operations in the transaction are undone and the database returns to the state it was in
before the transaction started.

There are two types of transaction processing models.

80 2 Basic Knowledge of Database

(1) Explicit commit: Transactions have explicit start and end marks.
(2) Implicit commit: Each data operation statement automatically becomes a trans-

action. GaussDB (for MySQL) adopts implicit COMMIT by default, without
adding COMMIT statement, and each statement is regarded as an automatic
commit of transaction.

Implicit commit can be turned off with the SET autocommit ¼ 0 statement.
The code to set explicit commit is as follows.

CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
START TRANSACTION;
INSERT INTO customer VALUES (10, 'Heikki');
COMMIT;
SET autocommit=0;
INSERT INTO customer VALUES (15, 'John');
INSERT INTO customer VALUES (20, 'Paul');
DELETE FROM customer WHERE b = 'Heikki';
ROLLBACK;
SELECT * FROM customer;

Figure 2.17 shows the specific operations of transaction commit and rollback.
GaussDB (for MySQL) is an OLTP database that adopts an explicit transaction

processing model, but it does not provide a statement that explicitly defines the
transaction start, instead, it takes the first executable SQL as the transaction start.

You may face a data inconsistency in implicit commit—dirty read, which means
that one transaction reads data that has not been committed (uncommitted) from
another transaction. The uncommitted data is called “dirty” data because of the
possibility of rollback.

The transaction T1 shown in Fig. 2.18 transfers $200 from Account A to
Account B, where the initial balance of Account A is $1000 and the initial balance
of Account B is $500.

Fig. 2.17 Transaction commit and rollback

2.2 Key Concepts of Database 81

There is another kind of data inconsistency—non-repeatable read (NRR), which
refers to that a transaction read the data that can be modified by other data. The
reason why it is called NRR is that a transaction reads the same data many times
during processing (repeated reads), but this data may change, as shown in Fig. 2.19.

Phantom read is a more special scenario of non-repeatable read—after Transac-
tion T1 reads the data based on certain conditions (using the WHERE filter condi-
tion), Transaction T2 deletes some records or inserts some new records, after which
these changed data are satisfied with the WHERE filter condition. Then when
Transaction T1 reads the data based on the same conditions again, it will find that
some data is inexplicably missing or increased.

Such missing or increased data is called phantom data.

A. Transaction T1 calculates that the sum of A and B is 300.
B. Transaction T2 reads the value of B, and records calculated result 400.
C. Transaction T1 reads the values of A and B again and sums them up, but this

time the calculation result becomes 500. At this time, for transaction T1, the
same data source is read many times in one transaction with the result changing.
This case is the so-called NRR.

Fig. 2.18 Dirty read. (a) Transaction T1 changes the value of A from 1000 to 800 and changes the
value of B from 500 to 700, but has not yet committed the transaction. (b) At this time, Transaction
T2 starts to read the data, and gets A of value 800 modified by the transaction T1. (c) Transaction T1
is rolled back, but because it is not committed, A recovers to the initial value 1000, while the value
of B is 500; at this time, for Transaction T2, the value of A is still 800. This case is dirty read, that is,
Transaction T2 reads data that has not been committed by Transaction T1.

82 2 Basic Knowledge of Database

The ANSI SQL standard defines 4 transaction isolation levels to avoid 3 kinds of
data inconsistency. The transaction levels, from high to low, are shown below.

(1) Serializable. All transactions in the system are executed one by one in a serial
manner, so all data inconsistencies can be avoided. However, this serializable
execution method of controlling concurrent transactions in an exclusive manner
will lead to queuing of transactions that significantly reduces the concurrency of
the system, so should be used with great caution.

Here serialization means that all operations are serially queued, for example:

Q1 indicates the insert operation “INSERT INTO TA valules(1,2,3)”;
Q2 indicates the query operation “SELECT * FROM TA”;

Under the serializable transaction isolation mechanism, Q2 must wait for Q1
to complete before getting the returned result. If Q1 is not completed, Q2 is
always in the queuing state.

(2) Repeatable read. Once a transaction is started, all data read during the transaction
is not allowed to be modified by other transactions. This isolation level has no
way to solve the problem of phantom reads. It only “protects” the data it reads
from being modified, but other data still can be modified. If other data is
modified to meet the current transaction’s filter conditions (WHERE statement),
then a phantom read will occur.

Fig. 2.19 Non-repeatable
read (NRR)

2.2 Key Concepts of Database 83

For the Q1 transaction, the “SELECT * FROM TA WHERE
order_date¼‘2019-01-01’” statement queries 100 rows for the first time, and
then goes to perform query operations on other tables. At this time, the Q2
transaction performs an insert operation “INSERT INTO TA values
(1,2,3,‘2019-01-01’)”, adding a record of orderr_date¼2019-01-01. Then if
the Q1 transaction executes the “SELECT * FROM TA WHERE
order_date¼‘2019-01-01’” statement again, the query results become
101 rows. For Q1 transaction, it queries the same transaction in the same
range but gets different results. This is the so-called phantom read.

(3) Read committed. A transaction can read data that has been committed by other
transactions. If a certain data is read repeatedly in processing, and the read data
happens to be modified and committed by other transactions, then the current
transaction that reads data repeatedly will encounter data inconsistency.

(4) Read uncommitted. A transaction can read data that has been modified by other
transactions but has not yet been committed. Data modified by other transactions
but not yet committed may be rolled back. The read of this “uncommitted” data
is a dirty read, which may occur at this isolation level.

GaussDB (for MySQL) implements 2 levels of transaction isolation: read
committed and repeatable read. The table about the correspondence between the
four transaction isolation levels and the problems is shown in Table 2.12.

2.3 Summary

This chapter describes the core objectives of database management, and introduces
the scope of database management work, explaining the basic concepts of database
object management, backup recovery, and disaster recovery levels, as well as the
important concepts of database. Some concepts that tend to be confused are com-
pared and explained, and the important but rather obscure concepts are introduced
and analyzed based on scenarios.

Table 2.12 Correspondence between 4 transaction isolation levels and problems

Transaction isolation level Dirty read Non-repeatable read Phantom read

Read uncommitted Possible Possible Possible

Read committed Impossible Possible Possible

Repeatable read Impossible Impossible Possble

Serializable Impossible Impossible Impossible

84 2 Basic Knowledge of Database

2.4 Exercises

1. [Multiple Choice] To migrate data from a database to other heterogeneous
databases, you can use the () approach.

A. Physical backup
B. Logical backup

2. [Multiple Choice] To improve the speed of table queries, you can create the
database object ().

A. View
B. Function
C. Index
D. Sequence

3. [Single Choice] When an organization sets disaster recovery standards, it wants to
have the ability to restore the system to an externally serviceable state within 1 h
after a disaster occurs. This indicator refers to ().

A. RTO
B. RPO

4. [Multiple Choice] To add an index to a table, on which fields is it recommended
to create the index? ()

A. Creating indexes on columns that are frequently required to be searched and
queried can speed up the search.

B. Creating an index on a column that used as the primary key emphasizes the
uniqueness of the column and organizes the arrangement structure of the data
in the table.

C. Create indexes on the columns that often use the WHERE clause to speed up
the judgment of the condition.

D. Create indexes for fields that often follow the keywords ORDER BY,
GROUP BY, and DISTINCT.

5. [Single choice] Among the following statements about the selection of data types,
() is incorrect.

A. It is recommended to use data types with higher execution efficiency as much
as possible.

B. The data type of the short field is also recommended.
C. For string data, try to use the fixed-length string and specify the string length.
D. When there is a logical relationship between multiple tables, the fields

representing the same meaning should use the same data type.

2.4 Exercises 85

6. [Multiple Choice] Among the following options, () is a transaction
characteristic.

A. Atomicity
B. Isolation
C. Durability
D. Consistency

7. [Multiple Choice] Which of the following situations will not occur under the
Repeatable Read? ()

A. Dirty read
B. Non-repeatable read
C. Phantom read

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

86 2 Basic Knowledge of Database

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 3
Getting Started with SQL Syntax

Huawei GaussDB (for MySQL) is a cloud-based high-performance, high-available
relational database that fully supports the syntax and functionality of the open source
database MySQL. This chapter introduces GaussDB (for MySQL) data types,
system functions and operators to help readers get started with SQL syntax.

After learning this chapter, readers will be able to do the following four things.

(1) Describe the definitions and types of SQL statements and identify the categories
to which a given statement belongs, including data definition language (DDL),
data manipulation language (DML), data control language (DCL), and data
query language (DQL).

(2) List the available data types and learn to select the correct data type for creating a
table. For example, when to choose a character data and when to choose numeric
value data. The right data type helps improve the efficiency of storing and
querying data.

(3) Describe the usage of different system functions and master how to use them
correctly in query statements. For example, what numeric processing function
should be used in specific numeric processing; what character processing func-
tions should be used in character processing. The correct system functions can
improve the use of the database and query efficiency.

(4) List the common operators and master the priority and usage of different
operators. For example, when to use the logical operator and when to use the
comparison operator. The correct operators can also improve the query effi-
ciency and query accuracy.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_3

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_3&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_3#DOI

3.1 Overview of SQL Statements

3.1.1 What is an SQL Statement

Structured query language (SQL) is a purpose-built programming language used to
manage relational DBMS or to perform stream processing in relational data stream
management systems. SQL is based on relational algebra and tuple relational
algorithms, which includes the DDL and DML. The scope of SQL management
covers data insertion, query, update and deletion, as well as database schema
creation and modification, and data access control. GaussDB (for MySQL) is a
kind of relational database. SQL statements include DDL, DML, DCL and DQL.

DDL is used to define or modify objects in the database, where database objects
include tables, indexes, views, databases, stored procedures, triggers, custom func-
tions, etc. The following operations are mainly involved.

(1) Define databases: create a database (CREATE DATABASE), modify a database
attribute (ALTER DATABASE), and delete a database (DROP DATABASE).

(2) Define tablespaces: create a tablespace (CREATE TABLESPACE), modify a
tablespace (ALTER TABLESPACE), and delete a tablespace (DROP
TABLESPACE).

(3) Define tables: create a table (CREATE TABLE), modify a table attribute
(ALTER TABLE), delete a table (DROP TABLE), and delete all data in a
table (TRUNCATE TABLE).

(4) Define indexes: create an index (CREATE INDEX), modify an index attribute
(ALTER INDex), and delete an index (DROP INDEX).

(5) Define roles: create a role (CREATE ROLE), and delete a role (DROP ROLE).
(6) Define users: create a user (CREATE USER), modify a user attribute (ALTER

USER), and delete a user (DROP USER).
(7) Define views: create a view (CREATE VIEW), and delete a view

(DROP VIEW).
(8) Define events: create an event (CREATE EVENT), modify an event (ALTER

EVENT), and delete an event (DROP EVENT).

DML is used to insert, update and delete data in database tables, mainly involving
the following operations.

(1) Data operations: insert data (INSERT), update data (UPDATE) and delete data
(DELETE).

(2) Import/Export operations: import (LOAD) and export (DUMP).
(3) Other operations: call (CALL), replace (REPLACE), etc.

DCL is used to set or change database transactions, save point operations and
permission operations (user or role authorization, permission revoking, role creation,
role deletion, etc.), locking tables (two locking modes of shared lock and exclusive
lock are supported), locking instances, and shutdown, etc. The following operations
are mainly involved.

88 3 Getting Started with SQL Syntax

(1) Transaction management: start a transaction (START TRANSACTION/
BEGIN), commit a transaction (COMMIT), and roll back a transaction
(ROLLBACK).

(2) Save point setting: start a save point (SAVEPOINT), roll back a save point
(ROLLBACK TO SAVEPOINT), and publish a save point (PUBLISH
SAVEPOINT).

(3) Authorization operations: grant a permission (GRANT), revoke a permission
(REVOKE), create a role (CREATE ROLE), and delete a role (DROP ROLE).

(4) Locking table: lock a table (LOCK TABLE), and unlock a table (UNLOCK
TABLE).

(5) Locking instance (LOCK INSTANCE FOR BACKUP).
(6) Shutdown (SHUTDOWN).

DQL is used to query the data in the database, such as single-table query and multi-
table query, which mainly involves the following operations.

(1) Query data (SELECT).
(2) Merge the result sets of multiple SELECT statements.

3.1.2 Comprehensive Application of SQL Statements

The following is a comprehensive application of the operations involved in the
above four languages to store a company’s employee information.

(1) First of all, you need to create a table to store employee information, which can
be realized by the CREATE TABLE statement, i.e. DDL.

(2) To insert specific employee information into the table, it can be achieved by the
INSERT statement, i.e. DML.

(3) When you need to commit the inserted information to make it persistent, you can
achieve it through the COMMIT statement, i.e. DCL.

(4) It can be done by the SELECT statement, i.e. DQL.

Different SQL statements are applicable to different service scenarios, and the
readers have to choose the appropriate SQL statement according to the specific
scenario.

3.2 Data Types

Data type is a basic attribute of data. Data are generally divided into common data
and uncommon data. Common data types include numeric value, character, date and
time, and so on. Uncommon data types include Boolean data, spatial data, JSON
data, etc.

3.2 Data Types 89

Different data types occupy different storage space, and can perform different oper-
ations. The data in the database is stored in the data tables. Each column in the data
table is defined with the data type. When storing data, the user must comply with the
attributes of these data types, otherwise errors may occur.

3.2.1 Common Data Types

1. Numeric Value
The numeric value types available in GaussDB (for MySQL) database include
integer, floating-point number and fixed-point number, which support basic
32-bit integer and 64-bit integer.

(1) There are five types of integers, as shown in Table 3.1.
INTEGER (32-bit signed integer) occupies 4 bytes, with value range from

-231 to 231-1, which can be expressed by the keywords INT, INTEGER,
BINARY_INTERGER, INT SIGNED, INTEGER SINGNED, SHORT,
SMALLINT and TINYINT. BIGINT (64-bit signed integer) occupies
8 bytes, with value range from -263 to 263-1, which can be expressed by the
keywords BIGINT, BINARY_BIGINT and BIGINT SIGNED.

(2) Floating-point numbers are divided into two types as follows.
FLOAT: single-precision floating-point number occupying 4 bytes, with

8-bit precision.
DOUBLE: double-precision floating-point number occupying 8 bytes,

with 16-bit precision.
(3) The fixed-point numbers occupy 4–24 bytes, with actual length related to the

effective number it represents, and with value range from -1.0E128 to
1.0E128, which can be expressed by keywords DECIMAL and NUMERIC.
They are in the following syntax format, requiring s � p.

NUMERIC/DECIMAL、NUMERIC/DECIMAL(p) and NUMERIC /DECIMAL(p,s)

The bytes occupied by DECIMAL/NUMERIC depend on their precision,
among which, “p” takes values ranging from 1 to 65, and “s” from 0 to 30.

Table 3.1 Integer types

Integer type Range (signed) Range (unsigned) Space occupied/byte

TINYINT [-128, 127] [0, 255] 1

SMALLINT [-32768, 32767] [0, 65535] 2

MEDIUMINT [-8388608, 8388607] [0, 16777215] 3

INT(INTEGER) [-2147483648, 2147483647] [0, 4294967295] 4

BIGINT [-263, 263-1] [0, 264-1] 8

90 3 Getting Started with SQL Syntax

If the values of “p” and “s” are not specified, “p” defaults to 10, meaning
that there is no restriction on the value after the decimal point. If the value of
“s” is not specified or s ¼ 0, the fixed-point number has no decimal part.

2. Character
The character types supported by GaussDB (for MySQL) are CHAR,

VARCHAR, BINARY, VARBINARY, TEXT, BLOB, ENUM, and SET.
Under the default encoding set “utf8mb4”, Chinese characters occupy 3 bytes,
numeric and English characters occupy 1 byte, and other characters occupy up to
4 bytes. The characters are divided into fixed-length strings and variable-length
strings.

CHAR(n) is used to store fixed-length bytes or strings, with the n indicating
the length of the string, and taking values from 0 to 255. If the length of the input
string is less than n, the right end will be made up with spaces. For example,
CHAR(4) will occupy 4 bytes no matter how many characters are input.

VARCHAR(n) is used to store variable-length bytes or strings, with the
n indicating the length of the string, and taking values from 0 to 65535. If the
length of the input string is less than n, there is no need to make up with spaces.
The number of bytes occupied by VARCHAR is the actual number of characters
input + 1 byte (n� 255) or 2 bytes (n> 255), so VARCHAR(4) occupies 4 bytes
when 3 English characters are input.

In the string comparison between CHAR and VARCHAR, the case sensitivity and the
spaces at the end are ignored.

BINARY(n) stores binary fixed-length strings, and automatically adds 0x00
bytes to the end of the strings when the length is less than n bytes.

VARBINARY(n) stores binary variable-length strings, but there is no need to
add 0x00 bytes to the end of the strings when the length is less than n bytes.

TEXT stores variable-length strings of large objects, which can save character
data, such as articles and diaries. Its keywords are mainly TINYTEXT (1 byte),
TEXT (2 bytes), MEDIUMTEXT (3 bytes), and LONGTEXT (4 bytes).

BLOB stores binary variable-length strings of large objects, which can save
binary data, such as photos. Its keywords are mainly TINYBLOB (1 byte), BLOB
(2 bytes), MEDIUMBLOB (3 bytes) and LONGBLOB (4 bytes).

ENUM refers to single-select enumeration, which can contain up to 65535
different elements.

SET refers to multi-select enumeration, which can contain up to 64 different
elements.

3. Date
The types of date data are shown in Table 3.2.
Gaussian database supports two date types: timestamp without time zone

(8 bytes) and timestamp with time zone. When storing timestamp data without

3.2 Data Types 91

time zone, you can use DATETIME, DATE and TIMESTAMP types, which can
all indicate year, month, day, hour, minute and second information; however,
unlike DATE and DATETIME which support up to seconds, TIMESTAMP can
support up to microseconds.

YEAR can also be expressed as a two-digit string “YY”, ranging from 00 to
99, among which, values of 00–69 and 70–99 are converted to YEAR values of
2000–2069 and 1970–1999.

The value range of DATETIME/DATE is [0001-01-01 00:00:00, 9999-12-31
23:59:59], Expressed as “2019-08-22 17:29:13”.

TIMESTAMP[(n)] can specify the precision to be saved through the parameter
n, ranging from 0 to 6; or takes no parameter, in which case the default precision
of decimals after the second is 6. For example, 2019-08-22 17:29:13.263183 (n¼
6), 2019-08-22 17:34:36.383 (n¼ 3). The value range of TIMESTAMP is [0001-
01-01 00:00:00.000000, 9999-12-31 23:59:59.999999].

When storing timestamp data with time zone, TIMESTAMP(n) WITH TIME
ZONE and TIMESTAMP(n) WITH LOCAL TIME ZONE can be used. The
difference between the two is that TIMESTAMP(n) WITH TIME ZONE holds
the time and time zone information and therefore occupies 12 bytes, e.g., 2019-
08-22 18:41:30.135428 +08:00. TIMESTAMP(n) WITH LOCAL TIME ZONE
uses local data information, which only saves time information, not time zone
information. It will be converted to the timestamp of the current time zone of the
database when stored, and will be displayed with the information of the local time
zone when viewed, so it occupies 8 bytes. For example, when stored, it is
displayed as 2019-08-22 18: 41:30.135428; when viewed, it is displayed as
2019-08-22 18:41:30. 135428 +08:00.

3.2.2 Uncommon Data Types

Boolean data can be stored by the keywords BOOL and BOOLEAN, occupying
1 byte. For string input, the normal strings TRUE and FALSE are supported, as well
as the single characters T and F, and the string values 1 and 0. Boolean data can be
converted to and from INT and BIGINT data because Boolean data can be seen as

Table 3.2 Date types

Date type Range Format
Space occupied/
byte

Year 1901–2155 YYYY/YY 1

Date 1000-01-01 - 9999-12-31 YYYY-MM-DD 3

Time -838:59:59 - 838:59:59 HH:MM:SS 3

Timestamp 1970-01-01 00:00:00 - 2037-12-31
23:59:59

YYYY-MM-DD
HH-MM-SS

4

Datetime 1000-01-01 00:00:00 - 9999-12-31
23:59:59

YYYY-MM-DD
HH-MM-SS

8

92 3 Getting Started with SQL Syntax

the numbers 0 and 1, so it can be converted to the integers 0 and 1. Integer data can
also be converted to Boolean data. The conversion rule is that integer 0 corresponds
to the Boolean value FALSE, and other non-zero integers correspond to the Boolean
value TRUE. For the output of Boolean data, when Boolean data is displayed, or
when converting Boolean data to character data, Gaussian database uniformly out-
puts 1 as string TRUE and 0 as string FALSE. When the input value is null, the
output of the Boolean data is also null.

Spatial data types include GEOMETRY, POINT, LINESTRING,
POLYGON, etc.

JSON data (JSON: Javascript Object Notation) support native JSON data,
allowing for more efficient storage and management of JSON documents.

3.2.3 Cases of Data Types

To store department information of a company, first create a table with fields for
department information. Suppose the department information to be stored includes
department number, department level, department name, establishment time, and
whether it is an excellent department, etc., we need to determine the data type of the
specific information first: if the department number is numeric data, it can be
expressed as NUMBER; if the department level is integer data, it can be expressed
as INT; if the department name is character data, it can be expressed as VARCHAR;
the establishment time can be expressed by date data; whether it is an excellent
department can be expressed by Boolean data. This is the CREATE TABLE
statements to create a department information table. The code is shown below.

SQL>DROP TABLE IFEXITS T_TEST_CASE;
CREATE TABLE T_TEST_CASE(
section_id NUMBER(10) PRIMARY KEY,
section_grade INT,
section_name VARCHAR(100),
section_is_excellent BOOLEAN,
section_date DATE
);

After the table is created successfully, if you want to store the department
description information in the table, you can add more columns to the table. Suppose
the column name is “section_description”, if the department description information
is expressed by a string, the content may be bulky; and if it is defined as BLOB data,
it can be achieved by the following statement.

SQL> ALTER TABLE T_TEST_CASE ADD section_description BLOB;

3.2 Data Types 93

Where, “seciton_description” is the department description field and BLOB is the
data type of the field information. The department level is now an integer, and if you
want to modify it to a decimal number, recorded as a floating point number, you can
do so by modifying the data type of the corresponding column. The “section_grade”
field can be modified to DOUBLE type by the following code.

SQL> ALTER TABLE T_TEST_CASE MODIFY section_grade DOUBLE;

3.3 System Functions

A system function is encapsulation for some service logic to accomplish a specific
function. System functions can be executed with or without parameters depending
on their specific functions, and they return the result after execution.

GaussDB (for MySQL) provides 10 types of system functions. This section
introduces five more common system functions: numeric calculation function,
character processing function, time and date function, type conversion function,
and system information function.

GaussDB (for MySQL) system functions cannot be modified manually.

3.3.1 Numeric Calculation Functions

The numeric calculation functions are responsible to calculate numeric values, such
as absolute value calculation function ABS(x), sine function SIN(x), cosine function
COS(x), inverse sine function ASIN(i), and inverse cosine function ACOS(x).

The ABS(x) function is used to calculate the absolute value. The input parameter
can be a numeric value or a non-numeric value that can be implicitly converted to a
numeric value. The type of the return value is the same as that of the input parameter.
x must be an expression that can be converted to a numeric value type. ABS(x)
eventually returns the absolute value of x (including INT, BIGINT, REAL, NUM-
BER, and DECIMAL types).

The SIN(x) and COS(x) functions are used to calculate the sine and cosine values,
whose input parameter is an expression that can be converted to a numeric value, and
the return value is of type NUMBER.

94 3 Getting Started with SQL Syntax

The ASIN(x) and ACOS(x) functions are used to calculate the arc sine and arc
cosine values, whose input parameter is an expression that can be converted to a
numeric value, with the range of [-1, 1], and the return value is of type NUMBER.

The code is shown below.

mysql> SELECT ABS(-10),COS(0),SIN(0),ACOS(1),ASIN(0) FROM dual;
+----------+------–+------–+---------+---------+
| ABS(-10) | COS(0) | SIN(0) | ACOS(1) | ASIN(0) |
+----------+------–+------–+---------+---------+
| -- 10 | -- 1 | -- 0 | -- 0 | - 0 |
+----------+------–+------–+---------+---------+
1 row in set (0.00 sec)

ROUND(X,D) can truncate the numeric value X before and after the decimal
point according to the value specified by D, and round it to return the truncated
value. The value ofD is in the range [�30, 30]. IfD is ignored, all fractional parts are
intercepted and rounded. If D is negative, it means that the left digit from the decimal
point is filled with zeros and rounded, and the decimal part is removed. The code is
shown below.

mysql> SELECT ROUND(1234.5678,-2),ROUND(1234.5678,2) FROM dual;
+---------------------+------------------–+
| ROUND(1234.5678,-2) | ROUND(1234.5678,2) |
+---------------------+------------------–+
| 1200 | 1234.57 |
+---------------------+------------------–+
1 row in set (0.00 sec)

POW(X,Y) is equivalent to POWER(X,Y), which means calculate the Yth power
of X. The code is shown below.

mysql> SELECT POW(3,2),POWER(3,-2) FROM dual;
+----------+---------------------+
| POW(3,2) | POWER(3,-2) |
+----------+---------------------+
| 9 | 0.1111111111111111 |
+----------+---------------------+
1 row in set (0.00 sec)

The CEIL(X) function is used to calculate the smallest integer greater than or
equal to the specified expression n, whose input parameter is an expression that can

3.3 System Functions 95

be converted to a numeric value, and the return value is an integer. For example,
CEIL(15.3) is calculated as 16. Numeric calculation functions are shown in
Table 3.3.

The SIGN(X) function is used to take the sign of the numeric value type, which
returns 1 if greater than 0, returns -1 if less than 0, and returns 0 if equal to 0. The
returned value is of the numeric value type. For example, for SIGN(2*3), 2 � 3 ¼
6, if greater than 0, the calculation result is 1.

The SQRT(X) function is used to calculate the square root of a non-negative real
number, whose input parameter is an expression that can be converted to a
non-negative values, and the return value is of type DECIMAL. For example,
SQRT(49) is calculated as 7.

The TRUNCATE (X,D) function is used to intercept the input numeric data in the
specified format, without rounding, where X indicates the data to be intercepted, and
D for the interception accuracy, and the return value is of type NUMBER. For
example, TRUNCATE(15.79,1) is 15.7 after intercepting a decimal to the right;
TRUNCATE(15.79,-1) is 10 after intercepting an integer to the left.

The FLOOR(X) function is used to find the nearest integer less than or equal to
the value of the expression, whose input parameter is an expression that can be
converted to a numeric value, and the return value is of type NUMBER. For
example, FLOOR(12.8) is calculated as 12.

The PI() function is used to return the value of π, with valid number default to
7 digits. For example, PI() returns 3.141593.

The MOD(X,Y) function is used for modulo operations, whose input parameter is
an expression that can be converted to a NUMBER data, and the return value is of
type NUMBER. For example, MOD (29,3) is calculated as 2.

Other numeric calculation functions include the exponentiation function POWER
(), etc.

Table 3.3 Numeric calculation functions

Syntax Function Example

CEIL(X) Returns the smallest integer greater than or equal to the
specified expression X

CEIL(15.3) ! 16

SIGN(X) Takes the sign of X result: greater than 0 then return 1, less
than 0 then return �1, equal to 0 then return 0

SIGN(2*3) ! 1

SQRT(X) Returns the square root of the non-negative real number X.
The input parameter is an expression that can be converted
to a non-negative value

SQRT(49) ! 7

TRUNCATE
(X,D)

Intercepts the input numeric data in the specified format
X indicates the data to be intercepted, and D indicates the
interception accuracy

TRUNCATE
(15.79,1) ! 15.7;
TRUNCATE
(15.79,-1) ! 10

FLOOR(X) Finds the nearest integer less than or equal to the value of
the expression X

LOOR(12.8) !
12

PI() Returns the value of π, with valid number default to 7 digits PI() ! 3.141593

MOD(X,Y) Modulo operation MOD(29,3) ! 2

96 3 Getting Started with SQL Syntax

3.3.2 Character Processing Functions

The character splicing functions CONCAT(str[,...]) and CONCAT_WS(separator,
str1,str2,...) are used to splice one or more strings. The CONCAT() function splices
the strings generated by each parameter without separating them; the input param-
eters are strings or expressions that can be converted to strings, separated by
commas. The CONCAT_WS() function splices the strings and separate them with
commas; the first input parameter is the separator, and the subsequent ones are
strings or expressions that can be converted to strings. If the parameter is NULL,
CONCAT or CONCAT_WS, the parameter will be ignored. If NULL is enclosed in
single quotes, NULL will be treated as a string. The CONCAT() and CONCAT_WS
() functions can be nested and support return values of up to 8000 bytes.

mysql> SELECT CONCAT('11','NULL','22'),CONCAT_WS('-','11',NULL,'22')
FROM dual;
+------------------------–+-------------------------------+
| CONCAT('11','NULL','22') | CONCAT_WS('-','11',NULL,'22') |
+------------------------–+-------------------------------+
| 11NULL22 | 11-22 |
+------------------------–+-------------------------------+
1 row in set (0.00 sec)

In the above example, the CONCAT() function splices the strings ‘11’, ‘NULL’
and ‘22’ to return the string 11NULL22, and the CONCAT_WS() function splices
‘11’, NULL and ‘22’ by the separator ‘-’, where NULL means null, to return 11–22.

The HEX (str) function returns a string of hexadecimal value, whose input
parameter is of numeric value type or character type, and the return value is of string
type. The HEX2BIN (str) and HEXTORAW (str) functions return strings
represented as hexadecimal strings. The difference between the two is that the
HEX2BIN() function returns the BINARY type, where the input hexadecimal string
must be prefixed with 0x, while the HEXTORAW() function returns the RAW type.

mysql> SELECT HEX('ABC');
+------------+
| HEX('ABC') |
+------------+
| 414243 |
+------------+
1 row in set (0.00 sec)

In the above example, the HEX(‘ABC’) function returns the hexadecimal string
414243 for ABC. The HEX2BIN(‘0X28’) function returns the string “(” represented
by the hexadecimal string 28. The HEXTORAW(‘ABC’) function returns the
hexadecimal string ABC of type RAW.

3.3 System Functions 97

The string insertion function INSERT(str,pos,len,newstr) replaces the string with
the length of len with newstr from pos position, and then returns the replaced string.
If pos is not within the length of the string str, the original string is returned. If the
value of the parameter len is greater than the length of the rest of the strings starting
from the parameter pos, then all strings starting from pos are replaced with newstr.
Both the input parameters str and newstr are expressions that can be converted to
strings, with the maximum value of up to 8000 bytes.

mysql> SELECT INSERT('quadratic',5,2,'what'),REPLACE('123456','45',
'abds') FROM dual;
+--------------------------–+-------------------------------+
| INSERT('quadratic',5,2,'what') | REPLACE('123456','45','abds') |
+---------------------------–+------------------------------–+
| quadwhattic | 123abds6 |
+------------------------------–+--------------------------–+
1 row in set (0.00 sec)

INSERT(‘quadratic’,5,2,‘what’) means that replace the two consecutive charac-
ters’ of the quadratic string from the fifth character with what, which is equal to
REPLACE(‘quadratic’,‘ra’,‘what’).

The REPLACE(str,src,dst) function is to replace the corresponding src substring
in the string str with the dst substring. The input parameter str indicates the original
string, src indicates the string to be replaced, and dst indicates to replace the string.
The return value is of string type.

REPLACE(‘123456’,‘45’,‘abds’) means to replace “45” in the string “123456”
with “abds”, equal to INSERT(‘123456’,4,2,‘abds’).

The INSTR(str1,str2) function is a string lookup function that returns the first
occurrence of the string to be found in the source string, where str1 indicates the
source string, and str2 indicates the string to be found.

mysql> SELECT INSTR('gaussdb数据库','库');
+---------------------------------+
| INSTR('gaussdb数据库','库') |
+---------------------------------+
| 10 |
+---------------------------------+
1 row in set (0.00 sec)

In the example above, the INSTR(‘gaussdb数据库’, ‘库’) function returns the
first occurrence of the string “库” in the source string to be found, returning
10, indicating the first occurrence of “库”. Character processing functions are
shown in Table 3.4.

The LEFT(str, length) function returns the left few characters of the specified
string. For example, the result after executing LEFT(‘abcdef’,3) is abc. If length is

98 3 Getting Started with SQL Syntax

less than or equal to 0, then a null string is returned. The function of RIGHT(str,
length) is opposite to that of LEFT(), which returns the right few characters of the
specified string. For example, the result after executing RIGHT(‘abcdef’,3) is def. If
length is less than or equal to 0, then a null string is returned.

The LEFT () and RIGHT () functions are described as follows. str is the source
string from which the substring is to be extracted. length is a positive integer,
specifying the number of characters returned from the left or right. If length is 0 or
a negative number, then a null string is returned. If length is greater than the length of
the str string, the function returns the entire str string. The client currently supports a
maximum string of 32767 bytes, so the function returns a maximum value of 32767
bytes.

The LENGTH(str) function is used to get the length of the string function, for
example, the result of executing LENGTH(‘1234大’) is 7. The LENGTH () function
returns the number of characters in str, whose input parameter is an expression that
can be converted to a string, and the return value is of type INT.

The LOWER(str) function is used to convert a string to the corresponding
lowercase form. For example, the result of executing LOWER(‘ABCD’) is abcd,
without converting the numeric value type. Corresponding to the LOWER() func-
tion, the UPPER(str) function is used to convert a string to the corresponding
uppercase form. For example, the result of executing UPPER(‘abcd’) is ABCD,
without converting the numeric value type. The LOWER() and UPPER() functions
have input parameters that can be converted to string expressions and return values
that are of string type.

Table 3.4 Character processing functions

Syntax Function Example

LEFT(str,
length)

Returns the left few characters of the
specified string

LEFT(‘abcdef’,3) ! abc
LEFT(‘abcdef’,0) or LEFT(‘abcdef’,-1) !
null string

LENGTH
(str)

A function to get the number of
bytes in a string

LENGTH(‘1234大’) ! 7

LOWER
(str)

Converts a string to the
corresponding lowercase form

LOWER(‘ABCD’) ! abcd
LOWER(‘1234’) ! 1234

UPPER
(str)

Converts a string to the
corresponding uppercase form

UPPER(‘abcd’) ! ABCD
UPPER(‘1234’) ! 1234

SPACE(n) Generate n spaces CONCAT(‘123’,space(3),‘abc’) ! 123
abc

RIGHT
(str,len)

Returns the right few characters of
the specified string

RIGHT(‘abcdef’,3) ! def
RIGHT(‘abcdef’,0) or right(‘abcdef’,-1) !
null string

REVERSE
(str)

Returns the reverse order of a string.
Only the string type are supported

REVERSE(‘abcd’) ! dcba

SUBSTR
(str,start,
len)

String interception function SUBSTR(‘abcdefg’,3,4) ! cdef
Indicates that intercept a string of length
4 from the third character of the abcdefg
string

3.3 System Functions 99

The SPACE (n) function is to generate n spaces, and the value range of n is
[0,4000]. For example, the result of CONCAT(‘123’, SPACE(4),‘abc’) is 123 abc.

The REVERSE(str) function returns the reverse order of the string, only supports
the string type. For example, the result of REVERSE(‘abcd’) is dcba.

SUBSTR(str,start,len) is a string interception function. For example, SUBSTR
(‘abcdefg’,3,4) indicates that intercept a string of length 4 from the third character,
delivering the result cdef. The SUBstr () function intercepts and returns a substring
with len characters from start in str, where the input parameter str must be an
expression that can be converted into a string, and the input parameters start and
len must be expressions that can be converted into INT type. The return value is of
string type.

3.3.3 Time and Date Functions

The DATE_FORMAT(date,format) function is a formatted date function, used to
convert to the required format according to the parameter format. The value of
format includes: % w (Monday - Sunday); %w (1–7); %Y (YYYY: 4-digit year);
%m (1–12); %d (00–31).

mysql> SELECT
DATE_FORMAT(SYSDATE(),'%W'),DATE_FORMAT(SYSDATE(),'%w'),

DATE_ FORMAT(SYSDATE(),'%Y-%m-%d');
+---------------------------+---------------------------

+---------------------------------+
|DATE_FORMAT(SYSDATE(),'%W')|DATE_FORMAT(SYSDATE(),'%w')|

DATE_FORMAT(SYSDATE(),'%Y-%m-%d')|
+---------------------------+---------------------------

+----------------------------------+
| Tuesday | 2 | 2020-05-19

|
+---------------------------+---------------------------

+---------------------------------+
1 row in set (0.00 sec)

The EXTRACT(field from datetime) function extracts the specified time field
“field” from the specified datetime, where the values of the field include year, month,
day, hour, minute, and second, and the return value is of the numeric value type. If
the field value is SECOND, the return value is of the floating-point number type,
where the integer part indicates second, and the decimal part indicates microsecond.
This function takes any numeric value or any non-numeric value that can be
implicitly converted to a numeric value as an parameter and returns the same data
type as the parameter.

100 3 Getting Started with SQL Syntax

mysql> SELECT EXTRACT(month from date '2019-08-23') FROM dual;
+--+
| EXTRACT(month from date '2019-08-23')|
+--+
| 8 |
+--+
1 row in set (0.00 sec)

The above code extracts the month from “2019-08-23”, and returns the result 8;
and intercepts from the system date according to “YY”, and the result is 2019-01-01
00:00:00. Time and date functions are shown in Table 3.5.

3.3.4 Type Conversion Functions

IF(cond,p1,p2) function: Cond is taken as the calculation condition, if the condition
is true, p1 is returned, otherwise, p2 is returned.

IFNULL(p1,p2) function: P1 is returned if p1 is not NULL, otherwise p2 is
returned.

NULLIF(p1,p2) function: If p1 is equal to p2, NULL is returned; otherwise, P1 is
returned. It is not supported that both parameters are CLOB type or BLOB type, and
the input parameter p1 cannot be NULL, otherwise the verification will report an
error.

The specific example is as follows.

mysql> SELECT IF(10>13,10,14),IFNULL(10,12),nullif(10,12);
+---------------–+---------------+---------------+
| IF(10>13,10,14) | IFNULL(10,12) | NULLIF(10,12) |
+---------------–+---------------+---------------+
| 14 | 10 | 10 |
+---------------–+---------------+---------------+
1 row in set (0.00 sec)

Type conversion functions are shown in Table 3.6.
The ASCII(str) function returns the ASCII value corresponding to the first

character of the string str, whose input parameter is a string or a single character,
which needs to be enclosed by single quotation marks (''), and the return value is the
ASCII value.

CHAR(n) returns characters with ASCII value of n, where the value range of n is
[0,127], and the input parameter is an expression that can be converted into the
numeric value type.

The CAST(value as type) function converts the column name or value to the
specified data type, and the expression can be converted to the same type as itself.

3.3 System Functions 101

Table 3.5 Time and date functions

Syntax Function Example

CURRENT_TIMESTAMP
(fractional_second_precision)

Gets the timestamp of the cur-
rent system time

CURRENT_TIMESTAMP
(4) ! 2019-08-23 16:
10:45.5461

CURRENT_DATE() Gets the current date CURRENT_DATE() !
2019-08-23

CURRENT_TIME() Gets the current time CURRENT_TIME() ! 16:
10:45

FROM_UNIXTIME
(unix_timestamp)

Converts the UNIX timestamp
to a date

FROM_UNIXTIME
(1111885200)! 2005-03-27
09:00:00

NOW
(fractional_second_precision)

Gets the current system time NOW() ! 2019-08-23 16:
15:22

SLEEP(n_second) Sets the hibernation time in
seconds

UNIX_TIMESTAMP()
UNIX_TIMESTAMP
(datetime)

Gets the UNIX timestamp
function, that is, the number of
seconds elapsed from the cur-
rent time to 1970-01-01 00:
00:00 UTC

UNIX_TIMESTAMP() !
1566548122

DATE_ADD(date2,INTER-
VAL d_value d_type)

Adds the date and time in
date2; the d_type values con-
tain second, minute, hour, day,
week, month, and year

DATE_ADD(sysdate(),inter-
val 3 h); that is, the current
time plus 3 h ! 2020-01-20
00:05:48

DATE_SUB(date2,INTER-
VAL d_value d_type)

Subtracts the date and time
from date2; the d_type values
contain second, minute, hour,
day, week, month, and year

DATE_SUB(sysdate(),inter-
val 3 h); that is, the current
time minus 3 h! 2020-01-19
18:07:16

ADD_TIME(date2,
time_interval)

Adds the time interval to date2 ADDTIME(‘1997-12-31 23:
59:59.999999’,‘1 1:
1:1.000002’); ! 1998-01-02
01:01:01.000001

SUB_TIME(date2,
time_interval)

Subtracts the time interval from
date2

SUBTIME(‘1997-12-31 23:
59:59.999999’,‘1 1:
1:1.000002’); ! 1997-12-30
22:58:58.999997

DATEDIFF(date1,date2) Gets the date difference
between date1 and date2

DATEDIFF(sysdate(),‘2017-
08-04’),DATEDIFF(‘2017-
08-04’,sysdate()) !
1019|-1019

TIMEDIFF(time1,time2) Gets the time difference
between date1 and date2

TIMEDIFF(sysdate(),‘2020-
01-01 20:20:20’),TIMEDIFF
(‘2020-01-01 20:20:20’,
sysdate()); !
500:01:59 | -500:01:59

102 3 Getting Started with SQL Syntax

When using CAST () function for data type conversion, the following conditions can
be met, otherwise an error will be reported.

(1) The two expressions can be converted implicitly.
(2) The data types must be explicitly converted.

The code is shown below.

mysql> SELECT CAST('125e342.83' AS signed);
+------------------------------+
| CAST('125e342.83' AS signed) |
+------------------------------+
| 125 |
+------------------------------+
1 row in set,1 warning (0.00 sec)

The function CONVERT(value,type) converts value type into type type, and the
value range is all data types except LONGBLOB, BLOB, and IMAGE.

The code is shown below.

mysql> SELECT CONVERT((1/3)*100, UNSIGNED) AS percent FROM dual;
+---------+
| percent |
+---------+
| 33 |
+---------+
1 row in set (0.00 sec)

Table 3.6 Type conversion functions

Syntax Function Example

ASCII(str) Returns the ASCII value corresponding to
the first character of string str

ASCII(‘hello’) ! 104

CHAR(n) Returns the character whose ASCII value is
n. The value of n is in the range [0,127]. The
input parameter is an expression that can be
converted to a numeric value

CHAR(67) ! C

CAST
(value as
type)

Converts a column name or value to the
specified data type. Expressions can be
converted to the same type as themselves

CAST(‘10’ as int) ! 10

CONVERT
(value,
type)

Converts value type to type type. The range
of values is all data types except
LONGBLOB, BLOB, and IMAGE

CONVERT(‘2018-06-28 13:
14:15’, timestamp) ! 2018-06-28
13:14:15.000000

3.3 System Functions 103

3.3.5 System Information Functions

System information functions are used to query the system information of GaussDB
(for MySQL). The VERSION() function is used to return the database version
number; the CONNECTION_ID() function returns the server connection ID num-
ber; the DATABASE() function returns the name of the current database; the
SCHEMA() function returns the name of the current Schema; the USER(),
SYSTEM_USER(), SESSION _USER(), and CURRENT_USER() functions return
the name of the current user; the LAST_INSERT_ID() function returns the value of
auto_increment; the CHARSET(str) function returns the character set of the string str;
and the COLLATION(str) function returns the character alignment of the string str.

3.4 Operators

An operator can process one or more operands, which may be before, after, or
between two operands. It is an important element that makes up an expression,
specifying the operation to be performed on the operands. Operators are classified
into unary and binary operators depending on the number of operands required. The
priority of operators determines the order in which different operators are computed
in an expression. Operators of the same priority are computed in left-to-right order.

Common operators can be divided into logical operators, comparison operators,
arithmetic operators, test operators, wildcards and other operators according to usage
scenarios.

3.4.1 Logical Operators

The logical operators are shown in Table 3.7.
The operand must be a Boolean value, which can be expressed as three types of

value - TRUE, FALSE and NULL, where NULL means unknown.
Logical AND (AND) is used to achieve the logical AND operation between

conditions. When all operands are TRUE and not NULL, T is returned; when at least

Table 3.7 Logical operators

Operator Function

Logical AND
(AND)

Used to realize the logical AND operation between conditions in the query
condition WHERE/ON/HAVING statements

Logical OR
(OR)

Used to realize the logical OR operation between conditions in the query
condition WHERE/ON/HAVING statements

Logical NOT
(NOT)

The NOT keyword is added before the conditional expression after the
WHERE/HAVING clause to take the inverse of the conditional result, often
used together with relational operators, such as NOT IN and NOT EXISTS

104 3 Getting Started with SQL Syntax

one operand is FALSE, F is returned, otherwise NULL is returned. Logical AND is
generally used in query conditions WHERE/ON/HAVING statements.

For Logical OR (OR), when both operands are not NULL, and at least one is
TRUE, T is returned, otherwise F is returned; when one operand is NULL, if the
other operand is TRUE, then T is returned, otherwise NULL is returned; if both
operands are NULL, then NULL is returned. Logical OR is generally used in the
query condition WHERE/ON/ HAVING statements.

For logical NOT (NOT), if the operand is TRUE, T is returned, F is returned; if
the operand is FALSE, T is returned; if the operand is NULL, NULL is returned. It
supports to add the NOT keyword before the conditional expression after the
WHERE/HAVING clause to take the inverse of the conditional result, often used
together with relational operators, such as NOT IN and NOT EXISTS.

There is a staffs table, which contains information such as employee name, job
number, hiredate, salary, etc. To query the information of employees who joined
after the year of 2000 and enjoy salary > 5000 from the staffs table, the following
statement can be used. Since both conditions need to be satisfied, the two conditions
after WHERE should be joined by AND.

SELECT * FROM staffs WHERE hire_date>'2000-01-01 00:00:00' AND
salary>5000

If you want to query employees who joined after 2000 or whose salary is >5000
from the staffs table, i.e., if one of the two conditions is required to satisfy, the two
conditions after WHERE should be joined by OR.

SELECT * FROM staffs WHERE hire_date>'2000-01-01 00:00:00' OR
salary>5000

If you want to query from staffs table for employees who did not join after 2000
and whose salary is >5000, you can add NOT in front of the condition of joining
after 2000; at this time, the relationship between hiredate and salary is AND, so the
two conditions after WHERE are joined by AND.

SELECT * FROM staffs NOT WHERE hire_date>'2000-01-01 00:00:00' AND
salary>5000

3.4.2 Comparison Operators

The comparison operators are shown in Table 3.8.

3.4 Operators 105

All data types can be compared using the comparison operator and return a value
of Boolean type. The comparison operators are all binary operators, and the two
piece of data being compared must be of the same data type or of a type that can be
implicitly converted. GaussDB database provides six comparison operators, includ-
ing <,>,<¼,>¼, ¼, <> or !¼ (not equal to), which should be selected according
to the service scenario.

The comparison operator > is used to query the employees whose salary is
greater than 5000 from staffs table.

SELECT *FROM staffs WHERE salary>5000

The comparison operator <> is used to query the employees whose salary is not
equal to 5000 from staffs table.

SELECT *FROM staffs WHERE salary<>5000

3.4.3 Arithmetic Operators

The arithmetic operators are shown in Table 3.9.
The arithmetic operators shown in Table 3.9 are used to perform calculations on

numeric operands. GaussDB database provides the following 11 types of arithmetic
operators: +, -, *, /, % (modulo operation), || (string concatenation), | (bitwise
inclusive OR), & (bitwise AND), ^ (bitwise exclusive OR), << (left shift), and
>> (right shift).

Example of arithmetic operator syntax:

SELECT operation AS result FROM sys_dummy;SELECT 2+3 FROM dual。

Table 3.8 Comparison
operators

Operator Description

< Less than

> Greater than

<¼ Less than or equal to

>¼ Greater than or equal to

¼ Equal to

<> or !¼ Not equal to

106 3 Getting Started with SQL Syntax

The operations are in the form of +, �, *, /, etc., and the order of priority is four
arithmetic operations > left and right shift > bitwise AND > bitwise exclusive OR
> bitwise inclusive OR.

When one of the above bitwise operations is executed, if the input parameter has
decimal places, the input parameter will be rounded before the bitwise operation is
done. A code example is as follows.

mysql> SELECT 2+3, 2*3,3<<1 FROM dual;
+---–+---–+------+
| 2+3| 2*3 | 3<<1 |
+---–+---–+------+
| 5 | 6 | 6 |
+---–+---–+------+
1 row in set (0.00 sec)

3.4.4 Test Operators

The test operators are shown in Table 3.10.
GaussDB database provides 13 test operators, as shown in Table 3.10. IN and

NOT IN operators are used to specify the judgment range of a subquery, where IN
means that the element is in the specified set, and NOT IN means that the element is
not in the specified set.

The sample code is as follows.

SELECT * FROM T_TEST_OPERATOR WHERE ID IN(1, 2);

EXISTS means that an eligible element exists, and NOT EXISTS means that no
eligible element exists. The sample code is as follows.

Table 3.9 Arithmetic operators

Operator Description Operator Description

+ Add | Bitwise inclusive OR

- Minus & Bitwise AND

* Multiply ^ Bitwise exclusive OR

/ Divide (the division operator does not round up) << Left shift

% Modulo operation >> Right shift

|| String concatenation

3.4 Operators 107

SELECT COUNT(1) FROM dual WHERE EXISTS(SELECT ID FROM
T_TEST_OPERATOR WHERE NAME='zhangsan');
SELECT COUNT(1) FROM dual WHERE NOT EXISTS(SELECT ID FROM
T_TEST_OPERATOR WHERE NAME='zhangsan');

BETWEEN...AND... means between the two, i.e. a closed interval,
e.g. a BETWEEN x AND y is equivalent to y>¼a and a>¼x; while NOT
BETWEEN. . .and. . . means not between the two, i.e. an open interval, e.g. a NOT
BETWEEN x AND y is equivalent to. The sample code is as follows.

SELECT * FROM T_TEST_OPERATOR WHERE ID BETWEEN 1 AND 2;

IS NULL means the field is equal to NULL; while IS NOT NULL means the field
is not equal to NULL. The sample code is as follows.

SELECT * FROM T_TEST_OPERATOR WHERE NAME IS NULL;

ANY means it is enough that one of the values in the subquery satisfies the
condition, which matches with each content in one of the following three forms.

(1) ¼ANY: The function is exactly the same as that of the IN operator.

Table 3.10 Test operators

Operator Description

IN The element is in the specified set

NOT IN The element is not in the specified set

EXISTS There is an eligible element

NOT EXISTS No eligible element exists

BETWEEN ...AND ... Between the two, for example, a BETWEEN x AND y is equivalent to
a >¼ x AND a <¼ y

NOT BETWEEN ...
AND ...

Not between the two, for example, a NOT BETWEEN x AND y is
equivalent to a < x OR a > y

IS NULL Equal to NULL

IS NOT NULL Not equal to NULL

LIKE ... [escape
CHAR]

Matches ..., only the character type is supported

NOT LIKE ... [escape
CHAR]

Does not match ...

REGEXP String matches a regular expression; only the string type is supported

REGEXP_LIKE String matches a regular expression; the string type and NUMBER type
are supported; the return value of the expression is of the Boolean type

ANY Any element of the set

108 3 Getting Started with SQL Syntax

SELECT * FROM emp WHERE sal IN (SELECT sal FROM emp WHERE job =
‘MANAGER’);

(2) >ANY: Larger than the largest data in the record returned by the subquery.

SELECT *FROM emp WHERE sal>ANY(SELECT sal FROM emp WHERE
job=‘MANAGER’)

(3) <ANY: Small than the smallest data in the record returned by the subquery.

SELECT * FROM emp WHERE sal<ANY(SELECT sal FROM emp WHERE
job=‘MANAGER’)

LIKE means matching with the expression; NOT LIKE means no match with the
expression. Only character type is supported. The sample code is as follows.

SELECT * FROM T_TEST_OPERATOR WHERE NAME LIKE '%an%';

REGEXP and REFEXP_LIKE indicate that the string matches the regular expres-
sion and the expression return value is of Boolean type. The syntax of
REGEXP_LIKE: REGEXP_LIKE(str,pattern[,match_param]). The input parameter
“str” is the string subject to regular processing, supporting the string type and
NUMBER type; the input parameter “pattern” is the regular expression to be
matched; the input parameter “match_param” indicates the pattern (‘i’ means case-
insensitive search; ‘c’ means case-sensitive search; ‘c’ is set by default). The sample
code is as follows.

DROP TABLE IF EXISTS T_TEST_OPERATOR;
CREATE TABLE T_TEST_OPERATOR(ID INT,NAME VARCHAR(36));
SELECT * FROM T_TEST_OPERATOR WHERE NAME REGEXP'[a-z]*';
SELECT * FROM T_TEST_OPERATOR WHERE REGEXP_LIKE(NAME , '[a-z]*');

To find information in a table that indicates a row with an ID field of 1 or 2, you
can use the ID IN (1, 2) condition after WHERE to perform a conditional query.

SELECT * FROM T_TEST_OPERATOR WHERE ID IN (1,2);

3.4 Operators 109

Require the system to return 1 when there is a string equal to “zhangsan” in the
NAME field in the table, and the EXISTS operator can be used for conditional query.

SELECT COUNT(1) FROM SYS_DUMMY WHERE EXISTS (SELECT ID FROM
T_TEST_OPERATOR WHERE NAME='zhangsan');

To find out the information in the table with ID fields between 1 and 2, you can
use BETWEEN 1 AND 2 for conditional query.

SELECT * FROM T_TEST_OPERATOR WHERE ID BETWEEN 1 AND 2;

To query the information of the rows in the table whose NAME field is NULL,
you can use the IS NULL operator for conditional query.

SELECT * FROM T_TEST_OPERATOR WHERE NAME IS NULL;

To query the information of the rows in the table whose ID field is 1, 3 and 5, you
can use the ANY operator for conditional query.

SELECT * FROM T_TEST_OPERATOR WHERE ID= ANY(1, 3, 5);

To find the information of rows with “an” string in the NAME field, use the LIKE
operator with the wildcard %.

SELECT * FROM T_TEST_OPERATOR WHERE NAME LIKE '%an%';

3.4.5 Other Operators

Wildcard and other operators are shown in Tables 3.11 and 3.12. % indicates any
number of characters, including no character. _ indicates an exact unknown charac-
ter. These two characters are often used in LIKE and NOT LIKE statements to
achieve string matching.

Single quotes (') are used to indicate the string type. If a single quotation mark is
included in the string text, then two single quotation marks must be used The sample
code is as follows.

110 3 Getting Started with SQL Syntax

INSERT INTO tt1 values('''');

Double quotes (") and back quotes (`) are used to indicate the name of an object
such as a table, field, index, etc. or an alias. They are case-sensitive and support
keywords as names or aliases. If the object name is included in double quotes or back
quotes, GaussDB database takes case-insensitive treatment and treats both upper and
lower cases as upper case.

3.5 Summary

This chapter is about the data types, system functions, operators and SQL statements
involved in Huawei GaussDB (for MySQL) to help readers get a preliminary
understanding of GaussDB (for MySQL) and lay a good foundation for the next
step of learning.

3.6 Exercises

1. [True or False] The BIGINT type occupies 4 bytes. ()

A. True
B. False

2. [True or False] the BLOB type is used to store the binary data for large objects
with variable length. ()

Table 3.11 Wildcards

Wildcard Description

% Indicates any number of characters, including no character, used in LIKE and NOT
LIKE statements

_ An underline, indicating an exact unknown character, used in LIKE and NOT LIKE
statements

Table 3.12 Other operators

Operator Description

Single quote (') Indicates the string type. If a single quote is included in the string
text, then two single quotes must be used

Double quotes (") and
back quotes (`)

Indicates the name of an object such as a table, field, index, etc. or an
alias

3.6 Exercises 111

A. True
B. False

3. [Single Choice] Run

CREATE TABLE aaa (name CHAR(5));
INSERT INTO aaa values(‘TEST’);
SELECT name=‘test’ FROM aaa;

and you will get the result ().

A. 1
B. 0

4. [Multiple Choice] Which of the following are numeric calculation functions? ()

A. LENGTH(str)
B. SIN(D)
C. TRUNC(X,D)
D. HEX(p1)

5. [Multiple Choice] GaussDB (for MySQL) takes the UNIX timestamp by the
function ().

A. UNIX_TIMESTAMP()
B. UNIX_TIMESTAMP(datetime)
C. UNIX_TIMESTAMP(datetime_string)
D. FROM_UNIXTIME(unix_timestamp)

6. [Single Choice] When the function if(cond,exp1,exp2) is false in the cond
condition, () is returned.

A. exp1
B. exp2

7. [Multiple Choice] Which of the following are logical operators? ()

A. AND
B. OR
C. NOT
D. NOT OR

8. [True or False] Wildcards are used in LIKE and NOT LIKE statements. ()

A. True
B. False

9. [True or False] The arithmetic operator with the lowest priority is ^. ()

A. True
B. False

112 3 Getting Started with SQL Syntax

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

3.6 Exercises 113

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 4
SQL Syntax Categories

GaussDB (for MySQL) is a high-performance and highly reliable relational database
provided by Huawei Cloud, which provides users with a multi-node cluster archi-
tecture with one write node (master node) and multiple read nodes (read-only nodes)
in the cluster. All the node shares the underlying storage software architecture—data
function virtualization (DFV). This chapter explains SQL statements according to
syntax categories, covering database query language, data manipulation language,
data definition language and data control language.

4.1 Data Query

Data query is used to query the data within a database, specifically the operation of
retrieving data from one or more tables and views. Data query is one of the basic
applications of database. GaussDB (for MySQL) database provides rich query
methods, including simple query, conditional query, join query, subquery, set
operation, data grouping, sorting and restriction, etc. It is necessary to describe the
type of data query language and its usage based on the actual usage scenario.

4.1.1 Simple Query

The most common query in daily use is that implemented by the FROM clause,
whose syntax format is as follows.

SELECT{ , . . . } FROM table_reference{ , . . . }

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_4

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_4&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_4#DOI

The expressions that appear after the SELECT keyword and before the FROM
clause are called SELECT item, and the SELECT item is used to specify the columns
to be queried. If you want to query all columns, you can use the * sign after the
SELECT keyword, while if you only query specific columns, you can directly
specify the column name after the SELECT keyword, and note that the column
names should be separated by commas. The part after the keyword FROM specifies
which table(s) to query from, either a table or multiple tables, or a clause. Simple
query belongs to the case of FORM keyword specifying a table.

Example: Create a training table “training”, insert three rows of data into the table
and then view all the columns in the training table.

Create the training table.

CREATE TABLE training(staff_id INT NOT NULL,course_name CHAR(50),
exam_date DATETIME,score INT);

Insert three rows of data into the table.

INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'SQL majorization', '2017-06-2512:00:00',90);
INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'information safety','2017-06-2612:00:00',95);
INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'master all kinds of thinking methons','2017-07-25 12:
00:00',97);

The above code first creates a table by CREATE TABLE statement, and then
inserts data into the table by INSERT statement, where the table name “training” is
followed by the field information to be inserted; VALUES is followed by the
information of the specific inserted data, which item-by-item corresponds to the
field information behind the table name “training”. The staff_id field is defined as
NOT NULL, which means that the field data cannot be empty, and the field must
have data when inserting. If the value in VALUES contains all the columns in the
training table, the specific field specified after the training table can be omitted. After
that, you can insert three rows of data into the table by the same INSERT statement,
and then query the table by SELECT statement after the insertion is completed.

If you want to query all columns in the table, just add the * sign behind the
SELECT keyword. The sample code is as follows.

116 4 SQL Syntax Categories

SELECT * FROM training;
STAFF_ID COURSE_NAME EXAM_DATE SCORE

10 SQL majorization 2017-06-25 12:00:00 90
10 information safety 2017-06-26 12:00:00 95
10 master all kinds of thinking methods 2017-07-25 12:00:00 97

The keyword FROM is followed by the table name “training”, so all the data
information in the table training can be queried.

4.1.2 Removing Duplicate Values

Sometimes there may be duplicate records in the table, and when retrieving these
records, it is necessary to do so by retrieving only unique records, not duplicate ones,
which can be achieved by the keyword DISTINCT. The DISTINCT keyword means
to remove all duplicate rows from the result set of SELECT, so that each row in the
result set is unique, and the range of values is the names of the fields that already
exist or the expressions of the fields. The syntax format is as follows.

SELECT DISTINCT { , . . . } FROM table_reference {, . . . }

The keyword DISTINCT is added before the SELECT item, and if there is only
one column after the DISTINCT keyword, that column will be used to calculate the
duplicate value; if there are two or more columns, the combined result of those
columns will be used for duplicate checking.

Table 4.1 shows the employee information table of a department. Now let’s query
the employees' job and bonus information and remove the records with duplicate
jobs and bonuses. According to the contents of the query, we can see that the
SELECT item includes job and bonus; to remove the records with the same jobs
and bonuses, we need to use the keyword DISTINCT. Add the DISTINCT keyword

Table 4.1 Employee infor-
mation table of a department

Staff_id Job Job Bonus

30 Wangxin Wangxin 9000

31 Xufeng Tester 7000

34 Denggui Tester 7000

35 Caoming Developer 10,000

37 Lixue Lixue 9000

4.1 Data Query 117

in front of job and bond in the SELECT item to achieve de-duplication and get the
corresponding results without duplicate values, with the specific code as follows.

SELECT DISTINCT job, bonus FROM sections;
JOB BONUS

developer 9000
tester 7000
developer 10000
3 rows fetched.

4.1.3 Query Column Selection

When selecting query columns, the column names can be represented in the follow-
ing forms.

(1) Manually enter the column names, separated by English commas (,). For
example, to query both the a and b columns of table t1 and the f1 and f2 columns
of table t2, use the SELECT a, b, f1, f2 FROM t1, t2 statement, where columns a
and b are the columns of table t1, while f1 and f2 are the columns of table t2, and
the results are displayed in the form of Cartesian product.

(2) Calculate the fields. For example, to query the sum of the two fields a and b in
table t1, perform numerical calculation on the columns a and b, with the
statement SELECT a + b FROM t1.

(3) Use table names to qualify the column names. If two or more tables happen to
have some common column names, it is recommended to use the table name to
qualify the column names. You can also get query results without qualifying the
column names, but the use of fully qualified table and column names not only
makes the SQL statement clearer and easier to understand, but also reduces the
processing workload inside the database, thus improving the return performance
of the query. For example, querying column a of table t1 and column f1 of table
t2 can be achieved by the SELECT t1.a,t2.f1 FROM t1,t2 statement.

Again, take the training table as an example. To view the number of the staff taking
the course and the training course name in the training table, you can specify to query
staff_id column and course_name column in the SELECT item, with the SELECT
staff_id, course_name FROM training statement. This allows you to query the staff
number and course name information directly from the training table. The sample
code is as follows.

118 4 SQL Syntax Categories

SELECT staff_id, course_name FROM training;
STAFF_ID COURSE_NAME

--–
10 SQL majorization
10 information safety
10 master all kinds of thinking methods

Another example is about student scores. There are two score tables, Math and
English, both of which contain student numbers and corresponding scores, as shown
in Tables 4.2 and 4.3.

Now let’s find the math and English scores of the student with the student number
10. To make it easier to describe and use, alias the math score table to “a” and the
English score table to “b”. The score column in the math score table is aliased to
“MATH”, and that in the English score table is aliased to “ENGLISH”. The WHILE
conditional statement can be used to query the scores of student 10. The specific
approach is to restrict the student number sid in the math score table to be equal to
10, and restrict the student number sid in the English score table to be equal to
10 also, and the relationship between the two conditions is “AND”, connected by the
logical operator AND. In this way, we can find out the math score and English score
of the student whose student number is 10 at one time, with the specific code as
follows.

SELECT a.sid,a.score AS math, b.score AS english FROM MATH a,
ENGLISH b WHERE a.sid = 10 AND b.sid = 10;
SID MATH ENGLISH

10 95 82
1 rows fetched.

The above aliases are set using the clause AS some_name, which allows you to
assign another name to a table name or column name for display. Generally aliases
are created to make the column names more readable.

Table 4.3 English score table
“English”

Sid Score

10 82

11 87

12 93

Table 4.2 Math score table
“math”

Sid Score

10 95

11 87

12 99

4.1 Data Query 119

The SQL aliases for columns and tables follow the corresponding column or table
names, respectively, and can be interspersed with the keyword AS. To replace the
staff_id field in the training table with “empno” to display the results, you can do so
by using the SELECT staff_id AS empno, course_name FROM training statement.
The keyword AS can be omitted. The alias can also be indicated by adding double
quotes (SELECT staff_id “empno”, course_name FROM training) so that the
staff_id field in the table is displayed as empno. In the previous example the math
table “math” uses the alias “a”, and the English table “english” uses the alias “b”.
The same is true for aliasing the MATH and ENGLISH columns in the math and
English score tables, respectively. The specific code is as follows.

SELECT staff_id AS empno,course_name FROM training;
EMPNO COURSE_NAME

--–
10 SQL majorization
10 information safety
10 master all kinds of thinking methods

SELECT a.sid, a.score math, b.score english FROM math a, english b WHERE
a.sid = 10 AND b.sid = 10;
SID MATH ENGLISH

10 95 82

4.1.4 Conditional Query

The above example uses a conditional query for querying a student’s scores. A
conditional query is a query that sets conditions in the SELECT statement to get
more accurate results. The condition is specified by both the expression and the
operator, and the value returned by the conditional query is TRUE, FALSE or
UNKNOWN. The query conditions can be applied not only to the WHILE clause
but also to the HAVING clause, where the HAVING clause is used for further
conditional filtering of the grouped result set.

Its syntax formats include both CONDITION clause and PREDICATE clause.
The CONDITION clause is a conditional query statement, followed by the

PREDICATE clause as the query expectation condition, and can be used with
other conditions to perform AND, OR and other operations. The syntax format is
as follows.

SELECT_statement { PREDICATE } [{ AND | OR } CONDITION] [, . . . n]

120 4 SQL Syntax Categories

The PREDICATE clause expression supports numeric logic calculations such as
¼, <, >, >, <, etc. It supports nesting with test operators such as LIKE,
BETWEEN......AND......, IS NULL, EXISTS, etc. and the SELECT clause. The
syntax format is as follows.

{expression{=|<>|!=|>|>=|<|<=}{ALL|ANY}expression|(SELECT)
| string_expression [NOT] LIKE string_expression
| expression [NOT] BETWEEN expression AND expression
| expression IS [NOT] NULL
| expression [NOT] IN (SELECT | expression [, . . . n])
| [NOT] EXISTS (SELECT)
}

The query condition is defined by the expression and the operator jointly. The
common ways to define conditions are as follows.

(1) Use the comparison operators >, <, >¼, <¼, ! ¼, <>, ¼, etc. to specify the
comparison query conditions. When comparing with data of numeric type,
single quotes can be used or not at will; but when comparing with data of
character and date type, the data must be include in single quotes.

(2) Use the test operator to specify the range query conditions. If you expect the
returned results to satisfy more than one condition, you can use the AND logical
operator to connect these conditions; if you expect the returned results to satisfy
one of several conditions, you can use the OR logical operator to connect these
conditions.

Example: To query for information about trainees taking the course SQL
majorization. Here you can use the compare operator to specify the query conditions.
This is done by specifying that course_name is equal to the course name string “SQL
majorization” after the WHILE keyword in the conditional query, as follows.

SELECT * FROM training WHERE course_name = 'SQL majorization';
STAFF_ID COURSE_NAME XAM_DATE SCORE

--–
10 SQL majorization 2017-06-25 12:00:00 90

1 rows fetched.

The commonly used logical operators are AND, OR and NOT, which return
TRUE, FALSE and NULL, respectively, where NULL stands for unknown. Their
operation priority is: NOT > AND > OR.

The operation rules are shown in Table 4.4.
The test operators are also explained in the previous chapters. GaussDB (for

MySQL) supports the test operators shown in Table 4.5.

4.1 Data Query 121

Example: Query the information from the employee bonus table “bonuses_depa”
shown in Table 4.6. Table 4.5 contains four fields: staff_id, name, job, and bonus.
If you need to query from the table the employees as a developer and with bonus

greater than 8000, in view of the query information subject to conditions, you can
use the conditional query, that is, specify job equal to the string developer and bonus
greater than 8000, and use AND to connect the two, because they are of AND
relationship. The sample code is as follows.

SELECT * FROM bonuses_depa WHERE job = 'developer' AND bonus > 8000;
STAFF_ID NAME JOB BONUS

30 wangxin developer 9000

Table 4.4 Operation rules
table

a b a AND b a OR b NOT a

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

Table 4.5 Test operators

Operator Description

IN/NOT IN The element is/is not in the specified set

EXISTS/NOT
EXISTS

Eligible/No eligible element exists

ANY/SOME A value that satisfies the condition exists. SOME is a synonym for ANY

ALL All values satisfy the condition

BETWEEN...
AND...

Between the two, for example, a BETWEEN x AND y is equivalent to
a >¼ x AND a <¼ y

IS NULL/IS NOT
NULL

Equal to/Not equal to NULL

LIKE/NOT LIKE String pattern matches/does not match

REGEXP String matches the regular expression

REGEXP_LIKE String matches the regular expression

Table 4.6 Employee bonus
table

staff_id Name Job Bonus

30 Wangxin Wangxin 9000

31 Xufeng Document developer 7000

37 Liming Liming 8000

39 Wanghua Tester 8000

122 4 SQL Syntax Categories

If you need to query from the table the employees whose surname is wang and
bonus between 8500 and 9500, you should also use the conditional query; since
there are many employees with the surname wang, you should use the operator LIKE
and the wildcard % together if you want to query all employees with the surname
wang. As for the bonus value range, you can use the test operator BETWEEN...
AND...; since the two conditions are of AND relationship, they should be connected
with AND, with sample code as follows.

SELECT * FROM bonuses_depa WHERE name LIKE 'wang%' AND bonus
BETWEEN 8500 AND 9500;
STAFF_ID NAME JOB BONUS
--
30 wangxin developer 9000

4.1.5 Join Query

In practical applications, when querying the required data, it is often necessary to use
two or more tables or views. Such query of two or more data tables or views is called
a join query, which is usually built between “parent-child” tables that are related to
each other.

The syntax format is as follows.

SELECT [, . . .] FROM table_reference
[LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER] | INNER]
JOIN table_reference
[ON { PREDICATE } [{ AND | OR } CONDITION] [, . . . n]]

The table_reference clause can be a table name, view name, query clause, etc.,
and the join keyword is JOIN. The OUTER represents the outer join, and INNER
represents the inner join. The outer join includes the left join, right join, and full join.
ON is followed by restrictions and other information.

When more than one table appears in the FROM clause of the query, the database
will perform the join operation.

(1) The SELECT column of the query can be any one column of these tables, as in
the above-mentioned example of score query. Similarly, the sample code for
querying a column value in Tables 1 and 2 is as follows.

SELECT table1.column, table2.column FROM table1, table2;

4.1 Data Query 123

(2) Most join queries contain at least one join condition, which can be either in the
FROM clause or in the WHERE clause. The sample code is as follows.

SELECT table1.column, table2.column FROM table1 JOIN table2 ON
(table1.column1 = table2.column2);
SELECT table1.column, table2.column FROM table1, table2 WHERE
table1.column1 = table2.column2;

(3) The WHERE clause can be used to convert the join relationship of a table to an
outer join by specifying the + operator, but it is not recommended to use this
method because it is not standard SQL syntax.

The keyword for inner join is INNER JOIN, where INNER can be omitted.
The join execution order of an inner join necessarily follows the order of the
tables written in the statement.

Example: To query employee ID, highest degree and test scores. The query
operation is performed using the relevant column (staff_id) in both the training
and education tables.

We know that the education table contains the employee ID and highest
degree information, while the training table contains the employee ID and test
score information. To query the employee ID, highest degree and test scores at
one time, you need to use inner join query between the two tables, because the
employee ID in the two tables are corresponding. Firstly, the staff_id column of
the two tables is conditionally queried to get the corresponding information, and
then the same staff_id fields is used as the query condition for the join query, so
as to achieve the simultaneous query of employee ID, highest degree and test
scores. The sample code is as follows.

SELECT * FROM training;
STAFF_ID COURSE_NAME EXAM_DATE SCORE

--–
10 SQL majorization 2017-06-25 12:00:00 90
11 BIG DATA 2018-06-25 12:00:00 92
12 Performance Turning 2018-06-29 12:00:00 95

SELECT * FROM education;
STAFF_ID HIGEST_DEGREE GRADUATE_SCHOOL EDUCATION_NOTE

-11 master Northwestern Polytechnical University 211&985
12 doctor Peking University 211&985
13 scholar Peking University 211&985

124 4 SQL Syntax Categories

SELECT e.staff_id, e.higest_degree, t.score FROM education e JOIN
training t ON (e.staff_id = t.staff_id);
STAFF_ID HIGEST_DEGREE SCORE

11 master 92
12 doctor 95

A join query queries multiple tables for related rows. The result set returned by an
inner join query contains only those rows that match the query and join conditions.
However, sometimes it is necessary to include data from unrelated rows, i.e., the
result set returns not only the rows that match the join condition, but also all the rows
in the left table or the right table, or both tables, thus an outer join is required.

The two data sources specified by an inner join are on equal footing, unlike an
outer join, which is based on one data source, and conditionally matches another data
source to the base data source.

An inner join returns all the data records in both tables that satisfy the join
condition. An outer join returns not only the rows that satisfy the join condition,
but also the rows that do not satisfy the join condition.

Outer joins are further divided into left outer join, right outer join and full
outer join.

Left outer join, also known as left join, refers to querying the left table as the base
table, associating the right table according to the specified join conditions, and
getting the data of the base table and the right table that matches the conditions;
for the records that exist in the base table but cannot be matched in the right table, the
corresponding field position of the right table is expressed as NULL, as shown in
Fig. 4.1.

In the query statement, the left table is the education table and the right table is the
training table, so the left join takes the education table as the base table and matches
the right table training by the employee ID. The query result contains two parts.
Suppose the employee IDs of the left table are 11, 12 and 13, and the right table has
the same employee IDs 11 and 12, according to the specified SELECT item, the
result will contain the information of the employee IDs 11 and 12 and the highest
degree information in the left table, and the information of the test scores
corresponding to these employee IDs in the right table. Since the employee ID
13 in the left table does not match any content in the right table, the result will
contain the information of the employee ID 13 and the highest degree information in
the left table, and the test scores corresponding to it in the right table is null, as shown
in Table 4.7.

The specific code is as follows.

4.1 Data Query 125

SELECT e.staff_id, e.higest_degree, t.score FROM education e LEFT
JOIN training t ON (e.staff_id = t.staff_id);
STAFF_ID HIGEST_DEGREE SCORE

11 master 92
12 doctor 95
13 scholar
3 rows fetched.

The right outer join, also known as the right join, corresponds to the left join. It
means that the right table is the base table and the data in the right table is queried on
the basis of the inner join (data not in the left table is filled with NULL), as shown in
Fig. 4.2.

The left table is the education table, and the right table is the training table. The
right join takes the training table as the base table, and matches the highest degree in
the left table by the employee ID. The query results will contain these two parts. If
the employee IDs in the right table are 10, 11 and 12, of which the same as those in
the left table are 11 and 12, the result will contain information about the employee
IDs 11 and 12 in the left table and information about their highest degrees, as well as
information about the test scores corresponding to these employee IDs in the right
table, according to the SELECT item specified. Since the employee ID 10 in the left
table does not match any content in the right table, the result will contain the
information of the employee ID 10 and the highest degree information in the left
table, and the test scores corresponding to it in the right table is null, as shown in
Table 4.8.

The sample code is as follows.

Fig. 4.1 Left outer join

Table 4.7 Staffs table Staff_id Higest_degree score

11 Master 92

12 Master 95

13 Scholar

126 4 SQL Syntax Categories

SELECT e.staff_id, e.higest_degree, t.score FROM education e
RIGHT JOIN training t ON (e.staff_id = t.staff_id);
STAFF_ID HIGEST_DEGREE SCORE

90
11 master 92
12 doctor 95

Semi join is a special type of join that is achieved by adding an IN or EXISTS
subquery after WHERE without a specified keyword in SQL. When multiple rows
on the right side of IN or EXISTS satisfy the conditions of the subquery, the main
query returns only one row that matches the IN or EXISTS subquery, without
copying the rows on the left side. That is, after a table finds a matching row in
another table, the semi join returns the row in the first table, in contrast to the
conditional join. Even if multiple matching rows are found in the right table, only
one row is returned from the left table, and none from the right table.

For example, when viewing the education information of employees attending
training, even if there are many rows in the training table that match the subquery
condition (assuming there are multiple employees under a single employee ID), only
one row matching the employee ID is returned from the training table, and multiple
rows are returned if multiple employee IDs match the condition. First of all, in the
subquery after the keyword EXISTS, find information about the same employee ID
in the education table and the training table; then according to the information of the
same employee ID, find the employee ID and highest degree information in the
education table, and return the query results. The specific code is as follows.

Fig. 4.2 Right outer join

Table 4.8 Staffs table Staff_id Higest_degree Score

90

11 Master 92

12 Master 95

4.1 Data Query 127

SELECT staff_id, higest_degree, education_note FROM education
WHERE EXISTS (SELECT * FROM training WHERE education.staff_id =
training.staff_id);

STAFF_ID HIGEST_DEGREE EDUCATION_NOTE

11 master 211&985
12 doctor 211&985

Anti join is a special type of join without a specified keyword in SQL. It is the
opposite of a semi join and is implemented by adding a NOT IN or NOT EXISTS
subquery after WHERE, returning all rows in the main query that do not satisfy the
condition.

For example, if you query the highest degree information of employees who have
not attended training, first find information about the same employee ID in the
education table and the training table in the subquery after the keyword NOT IN;
then find the information with different employee IDs in the education table
according to the same employee ID information found; and finally return the
employee IDs and highest degree and so on. As you can see, it is the opposite of
the above-mentioned semi join. The sample code is as follows.

SELECT staff_id, higest_degree, education_note FROM education
WHERE staff_id NOT IN (SELECT staff_id FROM training);
STAFF_ID HIGEST_DEGREE EDUCATION_NOTE

13 scholar 211&985

4.1.6 Subquery

A subquery is a query that is embedded inside a query, created table or inserted
statement to obtain a temporary result set. Subqueries can be divided into related and
unrelated subqueries.

A correlated subquery means that when executing a query, the value of an
property of the outer query is obtained first, then the subquery related to this property
is executed, and after the execution is finished, the next value of the outer query is
obtained, and the subquery is executed repeatedly in turn.

(1) The columns in the outer query table are referenced in the subquery.
(2) The value of the subquery depends on the value of the column in the outer query

table.
(3) For each row in the outer query, the subquery is executed once.

128 4 SQL Syntax Categories

An uncorrelated subquery means that the subquery is independent of the outer main
query. The execution of the subquery does not need to obtain the value of the main
query in advance, but only serves as a query condition of the main query. When the
query is executed, the subquery and the main query can be divided into two
independent steps, i.e., the subquery is executed first, and then the main query is
executed.

The syntax format of a subquery is the same as that of a normal query, and it can
appear in the FROM clause, the WHERE clause, and the WITH AS clause. A
subquery in the FROM clause is called an inline view, and a subquery in the
WHERE clause is called a nested subquery.

The WITH AS clause defines a SQL fragment that will be used by the entire SQL
statement, making the SQL statement more readable. The table that stores the SQL
fragment is different from the base table in that it is a dummy table. The database
does not store the definition and data corresponding to the view, and these data are
still stored in the original base table. If the data in the base table changes, the data
queried from the table where the SQL fragment is stored also changes. The syntax
format is as follows.

WITH { table_name AS select_statement1 }[,]
select_statement2

table_name is the user-defined name of the table where the SQL fragment is
stored, i.e., the dummy table's name.

select_ statement1 is the SELECT statement that queries the data from the base
table, and the data found is the data information of the dummy table.

select_ statement2 is the SELECT statement to query the data from the user-
defined table where the SQL fragment is stored, which is the SQL statement to find
the data from the dummy table.

Example: To find the employees in each department whose salary is above the
average salary of the department by a correlated subquery.

A staffs table contains information such as names, department IDs and salaries,
etc. Now to query the information of employees in each department who have
higher-than-average salary in the department, you can do it by subquery. For each
row of the staffs table, the main query uses a correlated subquery to calculate the
average salary of members of the same department, with the following code.

(continued)

4.1 Data Query 129

SELECT s1.last_name, s1.section_id, s1.salary
FROM staffs s1
WHERE salary >(SELECT avg(salary) FROM staffs s2 WHERE s2.

section_id = s1.section_id)
ORDER BY s1.section_id;

For each row of the staffs table, the main query uses a correlated subquery to
calculate the average salary of members of the same department. The correlation
subquery performs the following steps for each row of the staffs table.

(1) Determine the section_id of the row. The alias of the staffs table is s1 in the main
query and s2 in the subquery, and the subquery condition is the section_id in the
main query table has the same information as in the subquery table.

(2) Use the average calculation function AVERAGE() to calculate the department
average salary and section_id to evaluate the main query.

(3) Compare the salary field with the average salary in the main query and take the
results that are greater than the average salary (if the salary in this row is greater
than the average salary in the department, the row is returned).

Each row in the staffs table will be calculated once by the subquery.
The following is an example of the WITH AS subquery.
Example: To query information about employees who have attended BIG DATA

courses.

WITH bigdata_staffs AS (select staff_id,exam_date from training
where course_name = 'BIG DATA')SELECT * FROM bigdata_staffs;
STAFF_ID EXAM_DATE

11 2018-06-25 12:00:00

Example: To create a table with the same structure as the training table by the
subquery.

CREATE TABLE training_new AS SELECT * FROM training WHERE 1<>1;

<> means not equal, so the condition 1<>1 is not valid and the subquery will
not return data.

Since the condition following WHILE is not valid, only the table structure is
created and no data is inserted into it.

Insert all the data of the training table into the training_new table by subquery.

INSERT training_new SELECT * FROM training;

130 4 SQL Syntax Categories

Find out all the data in the training table by subquery, and then insert the data into
the new table training_new by INSERT statement, where the training_new table
already exists, with the table structure same as the training table.

4.1.7 Merging Result Sets

In most databases only one SELECT query statement is used to return a result set. If
you want to query multiple SQL statements at once and merge the results of all
SELECT queries into a single result set, you need to use the merging result set
operator to merge multiple SELECT statements. This type of query is called a
merging or compound query, which can be implemented with the UNION operator.

The UNION operator combines the result sets of multiple query blocks into a
single result and outputs it. The following should be noted when using it.

(1) Each query block must have the same number of queried columns. For example,
if you query a table, the number of fields in both tables must be the same.

(2) The query columns corresponding to each query block must be of the same data
type or of the same data type group. For tables, the data types of the columns
queried by the two tables should be the same or of the same data type group
(interconvertible).

(3) The keyword ALL means keep all duplicate data, and no ALL means delete all
duplicate data.

Figure 4.3 shows the tables A and B, where table A has a column, including
1 and 2; table B is also has a column, with the same definition as table A's
column field, carrying the contents of 2 and 3. If execute A UNION B, the same
content “2” in A and B tables are combined and output, i.e. the result set is 1, 2,

Fig. 4.3 Merging result sets

4.1 Data Query 131

3; if A UNION ALL B, the returned result set outputs both “2” in A and B,
i.e. the result set will be 1, 2, 2, 3.

There are employee information of two departments, as shown in Tables 4.9 and
4.10, let's query the information of employees who have received bonuses over
7000. We know the employee information tables of department 1 and department
2, who carry the same number of columns and definitions, so we can merge the result
sets to get the information of employees with bonuses over 7000 in the two
departments. First, use the SELECT condition to query the IDs, names and bonuses
of employees with bonuses over 7000 in department 1; after that, use the same
SELECT condition to query such information in department 2; then use UNION
ALL to combine the results of the two queries into a result set. This way you can
query information from two departments at once. The code is shown below.

SELECT staff_id, name, bonus FROM bonuses_depa1 WHERE bonus > 7000
UNION ALL SELECT
staff_id, name, bonus FROM bonuses_depa2 WHERE bonus > 7000 ;
STAFF_ID STAFF_NAME BONUS
---–
30 wangxin 9000
35 caoming 10000
25 liulili 8000
29 liuxue 9000

Table 4.9 Bonuses_depa1
department's staffs table

Staff_id Name Job Bonus

23 Wangxia Wangxia 5000

24 Limingying Tester 7000

25 Liulili Quality control 8000

29 Liuxue Tester 9000

Table 4.10 Bonuses_depa2
department's staffs table

Staff_id Name Job Bonus

30 Wangxin Wangxin 9000

31 Xufeng Document developer 6000

34 Denggui Quality control 5000

35 Caoming Tester 10,000

132 4 SQL Syntax Categories

4.1.8 Difference Result Sets

What corresponds to the merging result set is difference result set, which can
perform subtraction on the query result set to calculate the result that exists in the
output of the left query statement but not in the output of the right query statement.

Getting different results in the result sets can be realized by the MINUS and
EXCEPT operators. Use A MINUS B C to get the results after removing all records
contained in result set A from result set B and result set C, i.e., records that exist in A
but not in B and C, with the syntax format as follows.

select_statement1 MINUS/EXCEPT select_statement2 { . . . }

select_statement1 is the SELECT statement that produces the first result set,
similar to result set A.

select_statement2 is the SELECT statement that produces the second result set,
similar to result set B.

The result returned is the difference result set between result set A and result
set B, i.e., the data information that is in result set A but not in result set B.

The contents of result set A are 1, 2, and 3, and the contents of result set B are 2, 3,
and 4. Since the column definitions of result set A and result set B are the same,
conduct the difference result set calculation for A and B, i.e., A MINUS B yields a
difference result of 1, as shown in Fig. 4.4.

The code for querying data using MINUS is as follows.

SELECT * FROM education MINUS SELECT * FROM education_disable WHERE
staff_id=13

4.1.9 Data Grouping

Grouping is a very important application in database query. Grouping refers to the
grouping of records with equal values based on one or some columns in a table,

Fig. 4.4 Difference result set

4.1 Data Query 133

which can be achieved by the keyword GROUP BY with the following syntax
format.

GROUP BY { column_name } [, . . .]

GROUP BY can be followed by column names (one or more). The specific
features of its use are as follows.

(1) The expression in the GROUP BY clause can contain any column of the table or
view in the FROM clause, regardless of whether these columns exist in the
SELECT list.

(2) The GROUP BY clause groups rows, without guaranteeing the order of the
result set. To sort the groups, use the ORDER BY clause. That is, the results
returned by GROUP BY are not in order, and to have the results displayed in
order, they need to be sorted by the ORDER BY clause.

(3) The expression after GROUP BY can be enclosed in parentheses. For example,
two expressions can be enclosed together or separately, but it is not allowed to
have one part inside the parentheses and the other part outside. For example,
GROUP BY(expr1, expr2) or GROUP BY(expr1), (expr2) is correct, but
GROUP BY (expr1, expr2), expr3 is not allowed.

The staffs table is shown in Table 4.11.
Let's group the departments by position and bonus, query the number of

employees in each group, and sort the results in ascending order by number. In
this regard, first, group by job and bonus, which can be achieved by GROUP BY
clause, where GROUP BY followed by the job and bonus column names, respec-
tively job and bonus. Then sort the results in ascending order by number, for which
you need to calculate the number of employees in each group. As the employee
number field in the table is unique, so you can take the sum of the field by COUNT ()
function, and then use the ORDER BY clause to sort the sum of the field in
ascending order. In this way, you can query the corresponding result information.
The specific code is as follows.

Table 4.11 Staffs table Staff_id Job Job Bonus

30 Wangxin Wangxin 9000

31 Xufeng Tester 7000

34 Denggui Tester 7000

35 Caoming Developer 10,000

37 Lixue Lixue 9000

39 Chenjing Chenjing 9000

134 4 SQL Syntax Categories

SELECT job, bonus, COUNT(staff_id) sum FROM bonuses_depa GROUP BY
(job,bonus) ORDER BY sum;
JOB BONUS SUM
--
developer 10000 1
tester 7000 2
developer 9000 3
3 rows fetched.

The HAVING clause can further filter the data in the result set of the grouping by
comparing some properties of the groups with a constant value, where only the
groups that meet the conditions of the HAVING clause are extracted. It is often used
in conjunction with the GROUP BY clause to select special groups, and the syntax
format is as follows.

HAVING CONDITION { , . . . }

HAVING is followed by a restriction, which may not be followed by an alias.
Example: To query the total number of employees for each position with

employee number greater than 3 in the sections table.
First, query the number of employees in each position in the table. As the

employee number field in the table is unique, so you can group the data by job,
and conduct summation on the employee number field by the COUNT() function, so
that you can query the employee numbers of jobs in the table. Finally, query the total
number of employees for each position with employee number greater than 3. The
HAVING clause is used to filter the condition of the sum field of employee number,
so that the corresponding information can be queried. The specific code is as follows.

SELECT job, COUNT(staff_id) FROM bonuses_depa GROUP BY job HAVING
COUNT(staff_id)>3;
JOB COUNT(STAFF_ID)
--
developer 4

4.1.10 Data Sorting

The ORDER BY clause sorts the rows returned by the query statement according to
the specified columns. Without the ORDER BY clause, multiple executions of the

4.1 Data Query 135

same query will not necessarily retrieve rows in the same order. The syntax format of
ORDER BY is as follows.

ORDER BY { column_name | number | expression} [ASC | DESC] [NULLS
FIRST | NULLS LAST] [, . . .]

ORDER BY can be followed by a row name, a rank of a column or an expression.
The specific usage characteristics are as follows.

(1) The ORDER BY statement sorts the records in ascending order by default. If you
want to sort the rows in descending order, you need to use the DESC keyword.

(2) If there are NULL values in the sorted rows, you can specify the sorting position
of NULL values in the ORDER BY column by the keyword NULLS FIRST or
NULLS LAST. FIRST means that the NULL values will be ranked first, and
LAST means be ranked last. If this option is not specified, ASC defaults to
NULLS LAST and DESC defaults to NULLS FIRST.

Again, take Table 4.10 as an example, query the bonus information of each job in the
staffs table of the department, which requires the query results to be sorted first in
ascending order by bonus, and then in descending order by name. This can be
achieved by the ORDER BY clause. First, sort the query results in ascending
order by bonus, by following the ORDER BY with the bonus field and specifying
the ascending keyword as ASC (or leaving it unspecified, because the default is
ASC); then sort them in descending order by name, by following the bonus field with
the name field, where you must specify the keyword as DESC, as they are sorted in
descending order. This will query the corresponding results. The specific code is as
follows.

SELECT * FROM bonuses_depa2 ORDER BY bonus,name DESC;
STAFF_ID NAME JOB BONUS

--–
31 xufeng document developer 6000
30 wangxin developer 9000
34 denggui quality control 5000
35 caoming tester 10000

4.1.11 Data Restriction

If there are many rows of data in a table, but only a few of them need to be queried,
you can use the LIMIT clause to implement the data restriction function. The data

136 4 SQL Syntax Categories

restriction consists of two separate clauses, the LIMIT clause and the OFFSET
clause.

The LIMIT clause is used to limit the rows allowed to be returned by the query,
which can specify the offset and the number of rows or percentage of rows to be
returned. This clause can be used to implement top-N statements. To get consistent
results, specify the ORDER BY clause to determine the order. The OFFSET clause is
used to set the starting position of return. The syntax is shown below.

LIMIT [start,] count | LIMIT count OFFSET start |OFFSET start
[LIMIT count]

start indicates the number of rows to be skipped before the return line, and count
is the maximum number of rows to be returned. When both start and count are
specified, the start rows will be skipped before the count rows to be returned is
counted. To return 20 rows of the result set and skip the first 5 rows, you can do so
with the LIMIT 20 OFFSET 5 expression.

In Table 4.10, the query for employee information is limited to a total of 2 rows of
data after skipping the first 1 row of the query. Since only 2 rows of data are queried,
then the LIMIT clause can be used, where LIMIT 2 can be added after the query
statement to limit the query to only 2 rows; to skip the first 1 row, the OFFSET
clause can be used, where OFFSET 1 can be added after LIMIT, so that the
corresponding data information can be queried. Similarly, the order of LIMIT and
OFFSET clauses can be exchanged, or can be realized directly by the LIMIT clause,
that is, adding LIMIT 1 2 directly after the query statement. The specific code is as
follows.

SELECT name, job, bonus FROM bonuses_depa2 LIMIT 2 OFFSET 1;
NAME JOB BONUS
---–
xufeng document developer 6000
denggui quality control 5000

4.2 Data Update

There are three main ways to update data (data manipulation): data insertion, data
modification, and data deletion. These operations are all commonly used by database
developers.

4.2 Data Update 137

4.2.1 Data Insertion

At the time of data query, the table must have data, otherwise the data will not be
queried. Therefore, data should be inserted into the table first.

The following items should be noted when inserting data.

(1) Only the user with INSERT permission can insert data into the table. SYS user is
the system administrator super user. Ordinary users are not allowed to create
SYS user objects.

(2) To use the RETURNING clause, the user must have SELECT permission for the
table.

(3) If the QUERY clause is used to insert data rows from the query, the user also
needs to have the permission to use the SELECT permission of the table in the
query.

(4) The commit of INSERT transaction is enabled by default.

The keyword of the data insertion statement is INSERT, and the syntax format
presents the following three forms.

(1) Value insertion. Construct a row and insert it into the table with the following
syntax.

INSERT [IGNORE] [INTO] tbl_name [PARTION(partion_name[,
partion_name] . . .)] [(col_name [, col_name] . . .)] [VALUES|
VALUE] (expression [,. . .])

IGNORE means that the INSERT statement ignores errors that occur during
execution, and does not support simultaneous use with ON DUPLICATE KEY
UPDATE. tbl_name is the name of the table to be inserted; partion_name is one
or more partitions or subpartitions (or both) of the table, with the list of names
separated by commas; col_name is the name of the table field to be inserted, and
expression is the value or expression of the inserted field. If the INSERT
statement specifies a field name that contains all the fields in the table, the
field name can be omitted.

(2) Query insertion. Use the result set returned by the SELECT clause to construct
one or more rows and insert them into the table, with the syntax shown below.

INSERT [IGNORE] [INTO] tbl_name [PARTITION (partition_name [,
partition_name] . . .)] [(col_name [, col_name] . . .)]
[AS row_alias[(col_alias [, col_alias] . . .)]] select_ clause

select_clause is the SELECT query result set, which will be used as the value
in the newly inserted table.

138 4 SQL Syntax Categories

(3) Insert a record, and if a primary key conflict error is reported, then perform the
UPDATE operation to update the specified field value, with the syntax below.

INSERT [IGNORE] [INTO] tbl_name [PARTITION (partition_name [,
partition_name] ...)] [AS row_alias [(col_alias [, col_ alias]
...) alias] ...)]] [ON DUPLICATE KEY UPDATE] SET
assignment_list

Example: To insert data into the training1 table.
The first step is to create training1 table with the CREATE_TABLE state-

ment. Define the column names in the table (which are the same as the fields in
the training table), with the following statement.

CREATE TABLE training1(staff_id INT NOT NULL,course_name CHAR
(50),exam_date DATETIME,score INT);

The second step is to perform the value insertion. Insert a row into the
training1 table with the INSERT statement as shown below.

INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(1,'master all kinds of thinking methons','6/26/2017
12:00:00',95);

In the third step, a query insertion is performed. Insert all the data of the
training table into the training1 table by subquery. This can be achieved by the
following statements, using INSERT and SELECT statements to query all the
data in the training table and insert it into training1, with the specific statement as
follows.

INSERT INTO training1 SELECT * FROM training;

Step 4, if there is a primary key conflict error, execute the UPDATE opera-
tion. First, create the primary key in the training table (achieved by the ALTER
TABLE ADD PRIMARYKEY statement), then use the ON DUPLICATE KEY
UPDATE statement in the INSERT statement to achieve the record insertion
operation, and update the primary key name, exam date and other fields when a
primary key conflict occurs. The specific code is shown below.

4.2 Data Update 139

Create the primary key.

ALTER TABLE training1 ADD PRIMARY KEY (staff_id);

Insert the record.

INSERT INTO training1 VALUES (1,'master all kinds of thinking
methonds', '2017-07-25 12:00:00',97) ON DUPLICATE KEY UPDATE
course_name = 'master all kinds of thinking methonds',
exam_date ='2017-07-25 12:00:00',score = 97;

A primary key is a field that uniquely identifies a row or record in a database
table. The primary key cannot be a NULL value and must contain a unique
value. When a primary key conflict occurs, the UPDATE operation is required.
Here, the UPDATE operation is performed because the primary key staff_id in
the training1 table already has the value 1.

4.2.2 Data Modification

Data modification, as the name implies, is to modify the value of the relevant data in
the table, in which the following matters should be noted.

(1) The commit of the UPDATE transaction is enabled by default, not requiring the
COMMIT clause.

(2) The user who performs the operation needs to have the UPDATE permission of
the table.

The data modification keyword is UPDATE, and the syntax format is as
follows.

UPDATE table_reference SET { [col_name = expression] [, ...] |
(col_name[,...]) = (SELECT expression[, ...]) } [WHERE
condition]

The table_reference clause is the table or collection of tables to be updated,
whose value range is the existing table or collection of tables, with the following
example format.

{ table_name
| join_table

}

140 4 SQL Syntax Categories

table_name is the table name to be updated, whose value range is the name of
the existing table; col_name is the field name to be modified, whose value range
is the name of the existing field; and expression is the value or expression
assigned to the field. condition is an expression returning values of Boolean
type, only rows returning TRUE under this expression will be updated.

The join_table clause is a set of tables used for linked queries, including inner
join, left join, and right join.

table_reference [LEFT [OUTER] | RIGHT [OUTER] | INNER] JOIN
table_reference ON conditional_expr

Where, (col_name[,...]) ¼ (expression[,...]) is only supported when using the
join_table clause.

Example: To update the records with the same staff_id in the training table
and staff_id in the education table, and change first_name to ALAN.

First, create the two tables training and education; as these two tables may
already exist, we first delete the tables training and education that may already
exist by the DROP TABLE IF EXISTS statement. The code is as follows.

DROP TABLE IF EXISTS education;
DROP TABLE IF EXISTS training;

Then you can create the tables education and training by the CREATE
TABLE statement, with the code as follows.

CREATE TABLE education(staff_id INT, first_name VARCHAR(20));
CREATE TABLE training(staff_id INT, first_name VARCHAR(20));

Then insert data into the two tables by the INSERT statement, inserting
2 pieces of data into the education table and 4 pieces of data into the training
table with the following code.

INSERT INTO education VALUES(1, 'ALICE');
INSERT INTO education VALUES(2, 'BROWN');
INSERT INTO training VALUES(1, 'ALICE');
INSERT INTO training VALUES(1, 'ALICE');
INSERT INTO training VALUES(1, 'ALICE');
INSERT INTO training VALUES(3, 'BOB');

Now you can update the contents of the table, updating the first_name field
that carries the same record on staff_id in the training table and staff_id in the

4.2 Data Update 141

education table. The table to be updated is the training table, so the keyword
UPDATE is followed by the table name “training”. This update involves two
tables, so it can be done with the JOIN clause. The update condition is that the
staff_id in the training table and the staff_id in the education table are the same,
so the JOIN condition indicates that the staff_id in training table is equal to the
staff_id in the education table. The specific record to be updated is the first_name
in the training table. Therefore, the keyword SET is followed by the setting
information of the first_name in the training table. To set the eligible first_name
to ALAN, the following statement can be executed.

UPDATE training INNER JOIN education ON training.staff_id =
education.staff_id SET training.first_name = 'ALAN';

4.2.3 Data Deletion

Data deletion is to delete data rows from a table, where the following matters should
be paid attention to.

(1) The user using this statement must have the DELETE permission of the table.
(2) The commit of the DELETE transaction is enabled by default.

The keyword for data deletion is DELETE, as INSERT as a transaction operation.
The specific syntax format is as follows.

DELETE FROMtable_name
[WHERE condition]
[ORDER BY { column_name [ASC | DESC] [NULLS FIRST | NULLS LAST] }

[, . . .]]
[LIMIT [start,] count
| LIMIT count OFFSET start
| OFFSET start[LIMIT count]]

table_name is the name of the table to which the data to be deleted belongs.
condition is the condition of the data to be deleted.
The ORDER BY clause specifies the fields of the result set to be sorted.
ASC or DESC specifies whether the ORDER BY clause is to be sorted in

ascending or descending order.
NULLS FIRST specifies the sorting position of NULL values in ORDER BY,

where FIRST means that rows containing NULL values will be at the top, and LAST
means that rows containing NULL values will be at the bottom. If this option is not
specified, ASC defaults to NULLS LAST and DESC defaults to NULLS FIRST.

142 4 SQL Syntax Categories

count specifies the number of rows of data to be returned, and start specifies the
number of rows to be skipped before the value is returned. When both are specified,
it means that the start rows will be skipped before the count rows is returned.

Deleting a row in a table that matches another table can be done in two ways.
The first is achieved by the DELETE FROM statement, where table_ref_list

refers to the table to which the data to be deleted belongs, and temporary tables
are not supported to appear in this temporary table, join_table is a collection of tables
associated with a group of tables, and is used in a similar way to how it is used in data
insertion.

DELETE table_ref_list FROM join_table

The second is achieved by DELETE FROM and USING statements, with the
statement contents as the first method. The both methods can achieve the deletion of
data.

DELETE FROM table_ref_list USING join_table

Example: To delete the training record with staff_id of 10 and with username
NFORMATION SAFETY from the training table.

First create the training table. This table may already exist, so follow the deletion
method introduced in the data insertion to delete the training table that may already
exist by the DROP TABLE IE EXISTS statement, with the code as follows.

DROP TABLE IF EXISTS training;

Then you can create the training table by the CREATE TABLE statement. The
code is as follows.

CREATE TABLE training(staff_id INT NOT NULL,course_name CHAR(50),
exam_date DATETIME,score INT);

Then insert the data into the table by the INSERT statement.

4.2 Data Update 143

INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'SQL majorization','2017-06-25 12:00:00',90);
INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'INFORMATION SAFETY','2017-06-26 12:00:00',95);
INSERT INTO training(staff_id,course_name,exam_date,score)
VALUES(10,'MASTER ALL KINDS OF THINKING METHONDS','2017-07-25 12:
00:00',97);

To delete record where staff_id is 10 and the user name is INFORMATION
SAFETY from the training table, firstly delete the table name “training”, so add
training after DELETE FROM; secondly delete the record with staff_id equal to
10 and course_name of INFORMATION SAFETY, so WHERE should be followed
by staff_id ¼ 10 and course_name ¼ 'INFORMATION SAFETY'. The two condi-
tions are of “AND” relationship, so the two conditions are associated with AND,
with the specific statement as follows, so that the specified training records are
deleted.

DELETE FROM training WHERE course_name='INFORMATION SAFETY' AND
staff_id=10;

4.3 Data Definition

4.3.1 Database Objects

Data definition is to define the objects in the database. Database objects are the
components of the database, mainly including tables, indexes, views, stored pro-
cedures, defaults, rules, triggers, functions, etc.

A table is a special data structure in the database for storing data objects and the
relationship between objects, consisting of rows and columns.

A index is a structure for sorting the values of one or more columns in a database
table, with which the quick access to specific information in a database table is
workable.

A view is a dummy table derived from one or several basic tables that can be used
to control user access to data.

A stored procedure is a collection of SQL statements designed to accomplish a
specific function. It is generally used for report statistics, data migration, etc.

Defaults are pre-determined values assigned to columns or column data items that
do not have specific values specified when creating columns or column data to a
table.

144 4 SQL Syntax Categories

A rule is a restriction on data information in a database table. It restricts the
columns of the table.

Trigger is a special type of stored procedure that triggers execution by a specified
event, generally used for data auditing, data backup, etc.

A function is a encapsulation for some service logic to accomplish a specific
function. It will return the execution result after it is executed.

DDL is used to define or modify objects in the database, mainly divided into three
types of statements—CREATE, ALTER and DROP.

(1) CREATE is used to create database objects.
(2) ALTER is used to modify the properties of the database objects.
(3) DROP is used to delete database objects.

4.3.2 Creating a Table

Database table, also known as a table, is a collection of a series of two-dimensional
arrays, used to represent and store database objects and the relationship between
objects. The relevant functions of the database table and the corresponding SQL
statements are shown in Table 4.12.

A table is the basic structure that constitutes a tablespace, consisting of intervals,
involving vertical columns and horizontal rows. For a particular database table, the
number of columns is generally fixed in advance, and each column is identified by its
name, while the number of rows can change dynamically at any time, and each row
can usually be identified by the data in a particular column or columns, involving the
SQL statements shown below.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS][database_name.]
table_name
{ relational_properties
| [(column_name [DEFAULT expr [ON UPDATE expr]] [

AUTO_INCREMENT] [COMMENT 'string'][COLLATE collation_name]
[inline_constraint] | out_of_line_constraint [, . . .])] AS QUERY}
[physical_properties]
[table_properties]

TEMPORARY is to create a temporary table. IF NOT EXISTS means that if the
table already exists, it will not be created and will be returned directly; if the table

Table 4.12 Related functions
of database tables and
corresponding SQL
statements

Function Related SQL statements

Create a table CREATE TABLE

Modify a table property ALERT TABLE

Delete a table DROP TABLE

Delete all data from a table TRUNCATE TABLE

4.3 Data Definition 145

does not exist, a new table will be created. table_name is the name of the table, which
cannot be duplicated with the existing table name. relational_properties is the table
properties, including column name, type, row constraint and out-of-row constraint
information. DEFAULT is the default value of the column, AUTO_INCREMENT is
the specified self-increment, COMENT 'string' is the comment of the specified
column, inline_constraint is the column constraint, out_of_line_constraint is the
table constraint, and AS QUERY is the specified subquery to insert the rows returned
by the subquery into the table when creating the table.

The following items should be noted when creating a table.

(1) To create the current user's table, the user needs to be granted CREATE TABLE
system permissions.

(2) The table name and column name (data type and size) must be specified when
creating the table.

(3) Self-incrementing columns only support INT and BIGINT types, a table only
supports one self-incrementing column, and the self-incrementing column must
be a primary key or a unique index.

(4) When creating a foreign key, if no column is specified, the primary key of the
parent table is taken by default. If the parent table does not have a primary key,
an error is reported.

(5) The partition key must be an integer or an expression whose result is an integer.
In some scenarios, you can use columns directly for partitioning.

(6) Current supported partition types: RANGE, LIST, HASH, and KEY.
(7) Up to 1024 partition intervals are supported. If the total number of partitions

exceeds 1024, an error is reported.

Partitioning is to divide the data of a table into several smaller parts in some way, but
logically it is still a table. Gaussian database supports partitioning by range
(RANGE), by hash (HASH), by list (LIST), and by interval (KEY). Take the
range partitioning as an example, the syntax format is as follows.

PARTITION BY RANGE (partition_key [, . . .])
({ PARTITION partition_name VALUES LESS THAN
({ partition_value | MAXVALUE } [, . . .])

[TABLESPACE tablespace_name]
[physical_properties_clause]
} [, . . .]

)

PARTITION BY RANGE is the keyword of the range partition table, followed
by partition-key indicating the set of columns where the partition keys are located.
The length of a single column where a partition key is located cannot exceed 2000.
partition_name is the name of the range partition, VALUES LESS THAN is the
upper boundary keyword of the range partition, followed by partition_value as the
upper boundary of the range partition. Each partition needs to specify an upper

146 4 SQL Syntax Categories

boundary. MAXVALUE can be used when creating a range partition, usually for
setting the upper boundary of the last partition. TABLESPACE is the tablespace
keyword, followed by tablespace_name as the name of the tablespace where the
partition is located, and physical_properties_clause which specifies the properties of
the page break storage.

Example: To create the education table.

CREATE TABLE education(staff_id INT, higest_degree CHAR(8) NOT
NULL,
graduate_school VARCHAR(64), graduate_data DATETIME,
education_note VARCHAR (70)) ;

CREATE TABLE is followed by the table name, and the column name and
column definition are specified in parentheses after the table name, with the preced-
ing column name and the following column definition are separated by a space. The
different columns are separated by commas, where the employee ID is of the integer
type; the highest degree is of the fixed-length string type, with the length of 8 bytes,
NOT NULL means the value of the column cannot be empty; the school is a
variable-length string with the maximum length of 64 bytes; the graduation time is
of the time type; and the graduation description is a variable-length string with the
maximum length of 70 bytes.

Create a partition table “training”.

CREATE TABLE training(staff_id INT NOT NULL, course_name CHAR
(20),
course_period DATETIME,
exam_date DATETIME, score INT)
PARTITION BY RANGE(staff_id)
(
PARTITION training1 VALUES LESS THAN(100)),
PARTITION training2 VALUES LESS THAN(200),
PARTITION training3 VALUES LESS THAN(300),
PARTITION training4 VALUES LESS THAN(MAXVALUE)

CREATE TABLE is followed by the table name, as well as the column name and
column definition. The keyword PARTITION BY is followed by RANGE(staff_id)
if you create a range partition table with the employee ID as the partition key. The
keyword PARTITION is followed by the specific partition name in parentheses.
Since it is a range partition, you need to specify the upper boundary keyword for
it. The value in parentheses after VALUES LESS THAN is the upper boundary
value, and the last value MAXVALUE indicates the upper boundary of the last range
partition.

4.3 Data Definition 147

4.3.3 Modifying Table Properties

If, after the table is created, the table properties are found to be inappropriate and
need to be modified, the table properties can be modified by the ALTER TABLE
statement. The specific operations of modifying table properties include: adding,
deleting, modifying and renaming columns, adding, deleting, enabling and disabling
constraints, modifying the table name, and modifying the tablespace of the partition.
The syntax format is as follows.

ALTER TABLE table_name {
| ADD [COLUMN] col_name column_definition
| ADD {INDEX | KEY} [index_name][index_type] (key_part, . . .)
[index_option] . . .
| ADD {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name](key_part, . . .)
[index_ option] . . .
| ADD [CONSTRAINT [symbol]] PRIMARY KEY |UNIQUE [INDEX | KEY]
| DROP {CHECK | CONSTRAINT} symbol
| ALTER {CHECK | CONSTRAINT} symbol [NOT] ENFORCED
| DROP [COLUMN] col_name
| RENAME COLUMN old_col_name TO new_col_name
}

When modifying table properties, the following points should not be overlooked.

(1) When adding column properties to a table, you need to ensure that there are no
rows in the table.

(2) When modifying the column properties of the table, make sure that the data
types in the table do not conflict, and if there is a conflict, the value of the column
needs to be set to NULL.

Commonly used operation examples are as follows.
Add a column full_masks to the training table.

ALTER TABLE training ADD full_masks INT;

Delete the course_period column from the training table.

ALTER TABLE training DROP course_period;

Modify the data type of the course_name column in the training table.

ALTER TABLE training MODIFY course_name VARCHAR(20);

148 4 SQL Syntax Categories

Add a constraint.

ALTER TABLE training ADD CONSTRAINT ck_training CHECK
(staff_id>0);
ALTER TABLE training ADD CONSTRAINT uk_training UNIQUE
(course_name);

4.3.4 Deleting a Table

Users can delete tables under their own name. If you need to delete a table under
another user name, you need to have the DROP TABLE permission. Ordinary users
cannot delete system user objects.

The syntax format of DROP is as follows.

DROP [TEMPORARY] TABLE [IF EXISTS] [schema_name.]table_name
[RESTRICT|CASCADE]

IF EXISTS is used to detect the existence of the specified table and delete it if it
exists; if not, the deletion operation will not report an error.

4.3.5 Index

A index is a structure for sorting the values of one or more columns in a database
table, with which the quick access to specific information in a database table is
workable. Indexes can greatly improve the speed of SQL retrieval. Take the direc-
tory (index) of Chinese dictionary as an example, we can quickly find the Chinese
character we need through a directory sorted by pinyin, strokes, radicals, etc.

For example, to look up the information of the employee with ID 10000 from an
employee table with 200,000 pieces of data, if there is no index, you have to go
through the whole table until you find the row equal to 10,000. Once an index is built
on the ID, you can look it up in the index. Since the index is algorithmically
optimized, the lookup is much faster. Therefore, indexes allows fast access to data.

The SQL statements involved in the index are shown in Table 4.13.
Indexes can be classified into single-column indexes and multi-column indexes

by number of index columns, and into common indexes, unique indexes, functional
indexes, and partitioned indexes by index usage method.

4.3 Data Definition 149

The index types are described below.

(1) Single-column index: The index is established on one column only.
(2) Multi-column index: Multi-column index is also called combined index; if an

index contains more than one column, the index will be used only if the first field
specified as the index was created is used in the query condition. Multi-column
index of GaussDB (for MySQL) supports up to 16 fields, with a maximum
cumulative length of 3900 bytes (whichever is the maximum length of the type).

(3) Common index: B+Tree index is created by default.
(4) Unique index: As the unique index of column values or combinations of column

values, an unique index is automatically created on the primary key when the
table is created.

(5) Function index: An index based on a function.
(6) Partitioned index: An index created independently on a partition of a table. The

deletion of a partitioned index does not affect the use of other partitioned indexes
on that table.

Creating an index means creating an index on a specified table. Indexes can
be used to improve database query performance, but inappropriate use will lead
to a decline in database performance.

(7) Full-text index: Used for word search on CHAR, VARCHAR or TEXT data
columns.

The following matters need to be noted when using indexes.

(1) Indexes cannot be created on LONGBLOB and BLOB fields.
(2) The combined index fields cannot be more than 16, and the cumulative length of

the fields cannot exceed 3900 bytes, whichever is the maximum length of
the type.

(3) Partitioned indexes can only be created with partition tables. The number of
partitioned indexes should be the same as the number of partition tables,
otherwise an error will be reported.

(4) Creating UPPER() and TO_CHAR() function indexes is supported, with the
constraint that the function's argument can only be in one column and that
converting the function index to a constraint is not supported.

The keyword to create an index is CREATE INDEX, and the syntax format is as
follows.

Table 4.13 SQL statements
involved in indexing

Function Related SQL statements

Creating an index CREATE INDEX

Modify index properties ALTER INDEX

Delete an Index DROP INDEX

150 4 SQL Syntax Categories

CREATE[UNIQUE|FULLTEXT|SPATIAL] INDEXindex_name [index_type]
ON table_name(key_part, . . .)[index_option] [algorithm_option|
lock_option]

UNIQUE means to create a unique index, which will detect if there are duplicate
values in the table each time data is added, and report an error if the inserted or
updated values will result in duplicate records.

index_name is the name of the index to be created.
table_name is the name of the table where the index is to be created, which is

allowed to have a user modifier.
The sample code for creating an index online on the normal table “posts” is as

follows.

(1) Create the normal table “posts”.

CREATE TABLE posts(post_id CHAR(2) NOT NULL, post_name CHAR
(6) PRIMARY KEY, basic_wage INT, basic_bonus INT);

(2) Create the index idx_posts.

CREATE INDEX idx_posts ON posts(post_id ASC, post_name);

Example code for creating a partitioned index on the partition table “education” is as
follows.

(1) Create the partition table “education”.

CREATE TABLE education(staff_id INT NOT NULL, highest_degree
CHAR(8), graduate_school VARCHAR(64), graduate_date
DATETIME, education_note VARCHAR(70))
PARTITION BY LIST(highest_degree)
(
PARTITION doctor VALURS ('博士'),
PARTITION master VALURS ('硕士'),
PARTITION bachelor VALURS ('学士'),
);

4.3 Data Definition 151

(2) Create a partitioned index.

CREATE INDEX idx_education ON education(staff_id,
highest_degree);

Create a list partition on the highest degree field, with the doctor partition
indicating the highest degree of doctor, master partition indicating master, and
bachelor partition indicating bachelor. Create indexes on the employee ID and
highest degree fields of the education table, with idx_education as the index
name. The indexes are built on three partitions, with the keyword PARTITION
followed by the names of the three partitions - doctor, master and bachelor.

An existing index definition can be changed by modifying the index properties, with
the following syntax format.

ALTER TABLE table_name {ALTER INDEX index_name {VISIBLE |
INVISIBLE} | RENAME INDEX old_name TO new_name};

ALTER INDEX index_name {VISIBLE | INVISIBLE} defaults to the index
being available after it is created. Use the command SHOW INDEX FROM posts to
see if the index is available.

RENAME INDEX old_name TO new_name is used to rename the index.
A sample operation to modify an index is as follows.
With the following statement you can create the index idx_posts on the posts

table.

CREATE INDEX idx_posts ON posts(post_id ASC, post_name);

To create an index on the posts_id and post_name columns of the posts table, the
table name follows ON, the column names are in parentheses, and the default is
ascending, ASC can be omitted. Add the keyword ONLINE to create indexes online.

To create an index online, you can use the ALTER INDEX statement, the online
rebuild keyword is REBUILD ONLINE, and idx_posts is the index name.

ALTER INDEX idx_posts REBUILD;

Renaming an index can be done using the ALTER INDEX statement, renaming
idx_posts to idx_posts_temp. The specific code is as follows.

152 4 SQL Syntax Categories

ALTER INDEX idx_posts RENAME TO idx_posts_temp;

The syntax format for deleting an index is as follows.

DROP INDEX [IF EXITSTS] [schema_name.]index_name [ON [schems_
name.]table_name]

The parameters are described as follows.
IF EXISTS: Returns success directly if the index does not exist.
[schema_name.]index_name is the name of the index to be deleted.
ON [schema_name.]table_name: After setting the

ENABLE_IDX_CONFS_NAME_DUPL configuration item, the index names of
different tables are supported to be the same, and the table name must be specified
when deleting the index.

The sample code for deleting an index is as follows.

DROP INDEX idx_posts ON posts;

4.3.6 View

A view is a dummy table derived from one or several base tables to control user
access to data, where the SQL statements involved are shown in Table 4.14.

A view is different from a base table in that only the definition of the view is
stored in the database, not the data corresponding to the view, which is still stored in
the original base table. The data queried from the view will change as the data in the
base table changes. In this sense, a view is like a window through which you can see
the data of interest to the user in the database and its changes.

The keyword to create a view is CREATE VIEW, and the syntax format is as
follows.

CREATE [OR REPLACE] VIEW view_name AS SUBQUERY

Table 4.14 SQL statements
involved in views

Function Related SQL statements

Create a view CREATE VIEW

Delete a view DROP VIEW

4.3 Data Definition 153

OR REPLACE is used to create a view or update it if it already exists.
view_name is the user name and the view name, which is the current user by

default.
AS SUBQUERY is a subquery that looks up the data in the table and then views

the found data through the view. Note that the user executing this statement needs to
have the CREATE VIEW or CREATE ANY VIEW system permissions. Normal
users cannot create a system user object, so they cannot create a view of system
object. Examples of view-related operations are as follows.

(1) Create the view training_view, or update the view if it exists.

CREATE OR REPLACE VIEW training_view AS SELECT staff_id,score
FROM training;

The view can be created by the CREATE VIEW statement; if it exists, you
need to update it, so add the keyword OR REPLACE, followed by the view
name training_view, and AS is followed by the subquery. If you need to view all
the data in the staff_id and score fields of the training table, the subquery is
SELECT staff_id,score FROM training.

(2) Create the view training_view and specify the view column alias. As required,
the view should be updated if it exists, so the OR REPLACE keyword needs to
be added. The keyword is followed by the view name training_view; to specify
the view column alias, you can specify the column alias after the view name, and
the alias corresponds to the results found in the subquery, with the specific
statement as follows.

CREATE OR REPLACE VIEW training_view{id,course,date,score} AS
SELECT * FROM training;

(3) View the data in the view. The method is the same as querying the data in the
table, replacing the table name after the query statement with the view name,
with the specific statement as follows.

SELECT * FROM training_view;

(4) View the view structure. You can view the view structure by the DESCRIBE
statement, with the specific syntax as follows.

DESCRIBE training_view;

154 4 SQL Syntax Categories

The keyword to delete the view is DROP VIEW, and the syntax format is as
follows.

DROP VIEW [IF EXISTS] view_name

If the view exists, IF EXISTS performs the deletion operation, and returns
success if the view does not exist.

For example, DROP VIEW IF EXISTS training_view; means if the view
training_view exists, then delete the view, and if it does not exist, then return
success.

4.4 Data Control

4.4.1 Transaction Control

A transaction is a user-defined sequence of database operations that are either all or
nothing, which is an indivisible unit of work. Transaction control provides opera-
tions such as transaction initiation, commit, two-stage commit preparation, rollback,
and isolation level setting, and supports the creation of save points. The SQL
statements involved are shown in Table 4.15.

GaussDB (for MySQL) does not provide a statement that explicitly defines the
start of a transaction; the first executable SQL statement (other than a login state-
ment) implicitly starts the transaction. GaussDB (DWS) supports explicit definition
statements for transactions, which are started by START TRANSACTION. In the
non-explicit definition case, a SQL statement is a transaction by default.

4.4.2 Committing a Transaction

The commit transaction statement “perpetuates” all operations in the current trans-
action unit of work and ends the transaction.

The syntax format is as follows.

COMMIT;

Table 4.15 SQL statements
involved transaction control

Function Related SQL statement

Commit a transaction COMMIT

Roll back a transaction ROLLBACK

4.4 Data Control 155

The code to set the commit ban is as follows.

SET autocommit=0;

(1) Create the training table.

CREATE TABLE training(staff_id INT NOT NULL, staff_name
VARCHAR(16), course_name CHAR(20),course_start_date
DATETIME, course_end_date DATETIME, exam_date DATETIME, score
INT);

(2) Insert data into the training table.

INSERT INTO training(staff_id,staff_name,course_name,
course_start_date,course_ end_date,exam_date,score)
VALUES(10,'LIPENG','JAVA','2017-06-15 12:00:00','2017-06-

20 12:00:00','2017-06- 25 12:00:00',90);

(3) Commit a transaction.

COMMIT;

4.4.3 Rolling Back a Transaction

A rollback transaction is a rollback that undoes all operations in the current unit and
ends the transaction. The keyword to roll back a transaction is ROLLBACK, and the
syntax format is as follows.

ROLLBACK [TO SAVEPOINT savepoint_name]

TO SAVEPOINT is the rollback to the save point.
savepoint_name is the name of the rollback point.
It is recommended to use the COMMIT or ROLLBACK command to explicitly

end the application. If no transaction is committed explicitly and the application
terminates abnormally, the last uncommitted unit of work will be rolled back. If

156 4 SQL Syntax Categories

implicit auto-commit is required, ROLLBACK is required to turn auto-commit off.
The two DDL statements CREATE TABLESPACE and ALTER DATABASE are
not rollbackable.

An example of a rollback transaction is as follows.
Create the table posts, insert data into the table and then roll back all operations

and end the transaction.

(1) Create the table posts.

CREATE TABLE posts(post_id CHAR(2) NOT NULL, post_name CHAR
(16) NOT NULL, basic_wage INT,basic_bonus INT);

(2) Insert records into the table posts.

INSERT INTO posts(post_id,post_name,basic_wage,basic_bonus)
VALUES('A','general manager',50000,5000);

(3) Roll back the transaction.

ROLLBACK;

After the successful execution, the operation performed in the second step
will be undone, that is, the inserted data cannot be found from the table posts. In
the above example, if you do not add ROLLBACK, there will be a record in the
table; after adding ROLLBACK, the data in the table is null.

4.4.4 Transaction Save Points

Transaction save point is a save point set in the transaction. Transaction save point
provides a flexible rollback method, where the transaction can be rolled back to a
save point during the execution, the operation before the save point is valid, and the
subsequent operations are rolled back. A transaction can set multiple save points.

The syntax format for setting the transaction save point is as follows.

SAVEPOINT savepoint_name

savepoint_name is the name of the save point. After rolling back to this save
point, the transaction state is the same as the transaction state at the time of setting the

4.4 Data Control 157

save point, and the transaction operations of the database after this save point will be
rolled back.

An example of setting the transaction save points is as follows.

(1) Create the table bonus_2019.

CREATE TABLE bonus_2019(staff_id INT NOT NULL, staff_name CHAR
(50), job VARCHAR(30), bonus NUMBER);

(2) Insert record 1 into the bonus_2019 table.

INSERT INTO bonus_2019(staff_id, staff_name, job, bonus)
VALUES(23,'limingwang', 'developer',5000);

(3) Set the save point S1.

SAVEPOINT S1;

(4) Insert record 2 into the table bonus_2019.

INSERT INTO bonus_2019(staff_id, staff_name, job, bonus)
VALUES(24, 'liyuyu','tester',7000);

(5) Set the save point S2.

SAVEPOINT S2;

(6) Roll back to the save point S2.

ROLLBACK TO SAVEPOINT S2;

(7) Query the data in the table bonus_2019.

SELECT * FROM bonus_2019;
STAFF_ID STAFF_NAME JOB BONUS
23 limingwang developer 5000
24 liyuyu tester 7000

158 4 SQL Syntax Categories

(8) Roll back to save point S1.

ROLLBACK TO SAVEPOINT S1;

(9) Query the data in table bonus_2019.

SELECT * FROM bonus_2019;
STAFF_ID STAFF_NAME JOB BONUS
23 limingwang developer 5000

4.5 Others

4.5.1 SHOW Command

Function description: This statement has many forms to provide information about
the database, tables, columns, and server status, etc.

The syntax format is as follows.

SHOW {BINARY | MASTER} LOGS
SHOW CHARACTER SET [like_or_where]
SHOW DATABASES
SHOW TABLES
SHOW CREATE DATABASE db_name
SHOW CREATE TABLE tbl_name
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW WARNINGS [LIMIT [OFFSET,] row_count]
SHOW PRIVILEGES
SHOW PROCESSLIST

The parameters are explained below.
[like_or_where] can be followed by a LIKE or WHERE condition for searching.
[FROM db_name] specifies the specific database name.
[LIMIT [OFFSET,] row_count] limits the rows to be displayed.
The code to display the databases under the instance is as follows.

SHOW DATABASES;

4.5 Others 159

Create the table bonus_ 2019.

CREATE TABLE bonus_ 2019(staff id INT NOT NULL, staff name CHAR
(50), job VARCHAR(30), bonus INT);
SHOW TABLES;
SHOW TABLES FROM database name;

The result is as follows.

Tables in demo
bonus_ 2019

Example: To view the creation statement of the table bonus_ 2019.

SHOW CREATE TABLE bonus 2019;

The result is as follows.

Table, Create Table
bonus2019, 'CREATE TABLE 'bonus_ 2019 (
staff id' int NOT NULL,
staff name' CHAR(50) DEFAULT NULL,
job' VARCHAR(30) DEFAULT NULL,
bonus' INT DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET- =utf8

Example: To display the index in the table.
Create the table bonus_2020 and its index.

CREATE TABLE bonus_2020(staff_id INT NOT NULL PRIMARY KEY
auto_increment, staff_name CHAR(50), job VARCHAR(30), bonus INT);
CREATE INDEX idx_staff ON bonus_2020(staff_name);

View the index of the bonus_2020 table.

SHOW INDEX FROM bonus_2020;

The result of the execution is as follows.

160 4 SQL Syntax Categories

Table, Non_unique, Key_name, Seq_in_index, Column_name,
Collation, Cardinality, Sub_part, Packed, Null, Index_type,
Comment, Index_comment, Visible, Expression
bonus_2020, 0, PRIMARY, 1, staff_id, A, 0, , , , BTREE, , , YES,
bonus_2020, 1, idx_staff, 1, staff_name, A, 0, , , YES, BTREE, , ,
YES,

4.5.2 SET Command

Function description: This statement enables the user to assign values to different
variables, servers or clients.

The syntax format is as follows.

SET variable = expr [, variable = expr] . . .
variable: {
user_var_name
| param_name
| local_var_name
| {GLOBAL | @@GLOBAL.} system_var_name
| {PERSIST | @@PERSIST.} system_var_name
| {PERSIST_ONLY | @@PERSIST_ONLY.} system_var_name
| [SESSION | @@SESSION. | @@] system_var_name
}

The following is an example of using the SET command.
Set the value of the variable name to 43.

SET @name = 43;

Set the value of the global parameter max_connections to 1000.

SET GLOBAL max_connections = 1000;
SET @@GLOBA max_connections = 1000;

Set the value of sql_mode for the current session to TRADITIONAL.

4.5 Others 161

TRADITIONAL(只影响当前会话)
SET SESSION sql_mode ='TRADITIONAL';
SET LOCAL sql_mode ='TRADITIONAL';
SET @@ SESSION.sql_mode ='TRADITIONAL';
SET @@ LOCAL.sql_mode ='TRADITIONAL';
SET @@ sql_mode ='TRADITIONAL';
SET sql_mode ='TRADITIONAL';

4.6 Summary

Upon the study this chapter, readers are expected to master the four languages of
SQL statements.

(1) Data query language (DQL): including simple query, conditional query, join
query, subquery, merging result set and other query methods.

(2) Data manipulation language (DML): including data insertion, data modification
and data deletion, etc.

(3) Data definition language (DDL): including the creation and deletion of tables,
indexes, sequences, etc.

(4) Data control language (DCL): including the commit and rollback of transactions.

This chapter introduces the syntax formats, notes, usage scenarios and typical
examples of each language.

The next step is to practice and think more in order to perceive how and why and
apply flexibly, thus improving the efficiency of database use and development.

4.7 Exercises

1. [Single Choice] The logical expression to find the record whose job is engineer
and salary is above 6000 is ().

A. position ¼ ‘engineer’ or salary > 6000
B. position ¼ engineer and salary > 6000
C. position ¼ engineer or salary > 6000
D. position ¼ ‘engineer’ and salary > 6000

2. [Single Choice] The expression “age BETWEEN 20 AND 30” in the WHERE
clause is equivalent to ().

A. age >¼ 20 AND age <¼ 30
B. age >¼ 20 OR age <¼30

162 4 SQL Syntax Categories

C. age > 20 AND age < 30
D. age > 20 OR age < 30

3. [Multiple Choice] To query students’ names, ages and grades from the student
table, the results are sorted in descending order of age, and those of the same age
are sorted in ascending order of grades. The correct ones in the following SQL
statements are ()

A. SELECT name, age, score FROM student ORDER BY age DESC , score;
B. SELECT name, age, score FROM student ORDER BY age , score ASC;
C. SELECT name, age, score FROM student ORDER BY 2 desc , 3 ASC;
D. SELECT name, age, score FROM student ORDER BY 1 DESC , 2 ;

4. [Single Choice] To increase the value of the AGE field of an employee in the
STAFFS table by 5, the SQL statement that should be used is ().

A. UPDATE SET AGE WITH AGE+5
B. UPDATE AGE WITH AGE+5
C. UPDATE STAFFS SET AGE ¼ AGE+5
D. UPDATE STAFFS AGE WITH AGE+5

5. [Single Choice] Among the following four groups of SQL commands, all the
commands in () are data manipulation language commands.

A. CREATE, DROP, UPDATE
B. INSERT, UPDATE, DELETE
C. INSERT, DROP, ALTER
D. UPDATE, DELETE, ALTER

6. [Single Choice] To delete all the students whose class ID (cid) is 6 in the student
table, () among the following SQL statement is correct.

A. DELETE FROM student WHERE cid ¼ 6;
B. DELETE * FROM student WHERE cid ¼ 6;
C. DELETE FROM student ON cid ¼ 6;
D. DELETE * FROM student ON cid ¼ 6;

7. [True or False] When an index is created for a table, if the index is undone, the
contents of the corresponding base table are also deleted. ().

A. True
B. False

8. [Single Choice] The SQL integrates data query, data manipulation, data defini-
tion and data control functions, of which CREATE, DROP and ALTER state-
ments are used to achieve which function? ()

A. Data query
B. Data manipulation
C. Data definition
D. Data control

4.7 Exercises 163

9. [Multiple Choice] To create a decreasing sequence seq_1, the starting point is
400, the step length is �4, the minimum value is 100, and the sequence can be
looped when it reaches the minimum value. Which of the following statement is
correct? ()

A. CREATE SEQUENCE seq_1 START WITH 400 MAXVALUE
100 INCREMENT BY -4 CYCLE;

B. CREATE SEQUENCE seq_1MAXVALUE 400MINVALUE 100 INCRE-
MENT BY -4 CYCLE;

C. CREATE SEQUENCE seq_1 START WITH 400 MINVALUE
100 INCREMENT BY -4 CYCLE;

D. CREATE SEQUENCE seq_1 START WITH 400 MINVALUE
100 MAXVALUE 400 INCREMENT BY -4 CYCLE;

10. [True or False] The function of the COMMIT command in a SQL statement is to
roll back a transaction. ()

A. True
B. False

11. [Multiple Choice] Among the following operations, explicit COMMIT is
required for ().

A. INSERT
B. DELETE
C. UPDATE
D. CREATE

12. [Single Choice] There is an empty table t1. Execute the following statement:

INSERT INTO t1 values(1,1);
CREATE TABLE t2 AS SELECt * FROM t1;
INSERT INTO t2 values(2,2);
ROLLBACK;

Which of the following statement is correct? ()

A. The t1 table has 1 piece of data, (1,1), and the t2 table is empty
B. The t1 table and t2 table are both empty
C. The t1 table has 1 piece of data, (1,1), and the t2 table has 1 piece of data,

(1,1)
D. The t1 table has 1 piece of data, (1,1), and the t2 table has 2 pieces of data,

(1,1) and (2,2)

164 4 SQL Syntax Categories

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

4.7 Exercises 165

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 5
Database Security Fundamentals

Database security management aims to protect the data in the database system to
prevent data leakage, tampering, and destruction. Database system stores all kinds of
important and sensitive data, and as a multi-user system, it is critical to provide
appropriate permissions for different users.

This chapter introduces the basic security management techniques used in the
database, including access control, user management, permission management,
object permissions, and cloud audit services, which will be elaborated in detail
from three aspects: basic concepts, usage methods, and application scenarios.

5.1 Overview of Database Security Features

5.1.1 What Is Database Security Management

Database security management is to protect data from unauthorized access, prevent
leakage of important information, as well as to avoid the loss of data due to hardware
or software errors, including but not limited to network security, system security and
data security.

5.1.2 Database Security Framework

In a broad sense, the database security framework can be divided into three levels, as
shown in Fig. 5.1.

See Sect. 2.1.4 of this book for a detailed description of the database security
framework.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_5

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_5&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_5#DOI

5.1.3 Database Security Features

GaussDB (for MySQL) has the following main security defenses against intentional
and unintentional compromises.

(1) The first line of defense is formed through access control and SSL connection to
prevent client counterfeiting, information leakage and interactive message
tampering.

(2) The second line of defense is formed by user rights management, which mainly
reinforces the database server to prevent risks such as permission changes.

(3) The third defense is formed by security audit management, so that all operations
on the database can be traced.

GaussDB (for MySQL) also supports anti-DOS attacks to prevent clients from
maliciously occupying server-side session resources. If a connection is not authen-
ticated within the set authentication time, the server will forcibly disconnect the
connection and release the session resources it occupies to avoid the connection
session resources exhaustion caused by malicious TCP connections. This setting can
effectively prevent DOS attacks.

This chapter will introduce the main strategies of database security management
from three aspects: access control, user rights management and cloud audit service.

5.2 Access Control

5.2.1 What Is IAM

Identity and Access Management (IAM) is a basic service for Huawei Cloud to
provide access management, which helps users securely control access rights to
Huawei Cloud services and resources.

IAM can be used without payment, and users only need to pay for the resources in
the account. After registering Huawei Cloud, the system will automatically create an

Fig. 5.1 Database security framework

168 5 Database Security Fundamentals

account, which is the subject of resource attribution and billing. Users have full
control over the resources they own and can access all the cloud services of Huawei
Cloud. If a user has purchased multiple resources in Huawei Cloud, such as Elastic
Cloud Server (ECS), Cloud Hard Disk (Elastic Volume Service, EVS), Bare Metal
Server (BMS), etc. for his/her team or application needs, he/she can use the user
management function of IAM to create IAM users for employees or applications and
grant each IAM user the appropriate permissions according to the job requirements.
Newly created IAM users can log in to Huawei Cloud using their individual user
names and passwords. IAM users are useful to avoid sharing passwords for accounts
when multiple users collaborate to operate the same account. The use of IAM is
shown in Fig. 5.2.

5.2.2 IAM Features

IAM features fine-grained permission management, secure access, sensitive opera-
tions, bulk management of user permissions through user groups, isolation of
resources within a region, joint authentication, delegating resource management to

Fig. 5.2 Use of IAM

5.2 Access Control 169

other accounts or cloud services, setting account security policies, and ultimate
consistency.

(1) Fine-grained permission management.
Using IAM, different resources within the account can be assigned to the

created IAM users on demand to achieve fine-grained permission management,
as shown in Fig. 5.3.

For example, control user Charlie has the right to manage the VPCs in
Project B, while restricted user James only has the right to view the data of the
VPCs in Project B.

(2) Secure access.
You can use IAM to generate identity credentials for users or applications

without sharing the account password with other people, and the system will
allow users to securely access the resources in the account through the permis-
sion information carried in the identity credentials.

(3) Sensitive operations.
IAM provides sensitive operation protections including login protection and

operation protection. When logging in to the console or performing sensitive
operations, the system will require a second authentication such as a verification
code for email, cell phone or virtual MFA, so as to provide a higher level of
security protection for the account and resources.

(4) Bulk management of user permissions through user groups.
Instead of individual authorization for each user, just plan the user group and

grant the corresponding permission to the user group, then add the user to the
user group, thus the user inheriting the permission of the user group. If the user
permissions change, just delete the user in the user group or add the user into
other user groups to achieve quick user authorization.

(5) Isolation of resources within a region.
Through creating sub-projects in the region, the resources between projects

under the same region can be isolated from each other.

Fig. 5.3 Example of fine-grained permission management

170 5 Database Security Fundamentals

(6) Joint authentication.
Users who already have their own authentication system do not need to

recreate users in Huawei Cloud, but can directly access Huawei Cloud through
the identity provider function, thus achieving single sign-on.

(7) Delegating resource management to other accounts or cloud services.
Through the delegate trust function, users can delegate the operation author-

ity to other Huawei Cloud accounts or cloud services that are more professional
and efficient, and these accounts or cloud services will complete daily work
instead of users according to the authority.

(8) Setting account security policies.
Improve the security of user information and system data by setting login

authentication policies, password policies, and access control lists.
(9) Ultimate consistency.

Final consistency refers to the operations performed by users in the IAM,
such as creating users and user groups, giving authorization to user groups, etc.
When the IAM replicates data between servers in Huawei Cloud Data Center
and realizes data synchronization in multiple regions, it may cause the submitted
changes to take effect on a delayed basis. It is recommended that users confirm
that the submitted policy changes have taken effect before performing the
operation.

5.2.3 IAM Authorization

IAM provides authentication and authorization functions for other Huawei Cloud
services. Users created in IAM can use other services in the system according to their
permissions after authorization. For services that do not support the use of IAM
authorization, the IAM user created in the account must log in with the account to
use the cloud services. The explanation of related terms in IAM authorization is
shown below.

(1) Service: Cloud services that use IAM authorization, whose service name can be
clicked to display the permissions supported by the service and the difference
between the different permissions.

(2) Region: The region selected for authorization by the cloud service when using
IAM authorization.

(3) Global region: The service is deployed without specifying a physical region, i.e.,
a global-level service, where the service is authorized in a global project and can
be accessed without switching regions.

(4) Other regions: The service is deployed with specifying a physical region, i.e., a
project-level service, where authorization is performed in regions other than the
global region and takes effect only in the authorized region, and the access to a
cloud services requiring switching to the corresponding region.

5.2 Access Control 171

(5) Console: Whether the cloud service supports permission management in the
IAM console.

(6) API: Whether the cloud service supports calling API for permission
management.

(7) Delegation: The user delegates operation permissions to the service, and allows
the service to use other cloud services as itself, performing daily tasks on behalf
of the user.

(8) Policy: Does the cloud service support permission management through poli-
cies; a policy is a language that describes a set of permission sets in JSON
format, which precisely allows or denies users to perform the specified opera-
tions on the resource type of the service.

5.2.4 Relationship Between IAM and GaussDB (for
MySQL) usage

If there is a need for fine-grained permission management of the user-owned cloud
database GaussDB (for MySQL), IAM can be used, and the following functions can
be achieved through IAM.

(1) Enterprises create IAM users in Huawei cloud accounts for employees in
different functions in the enterprise according to the business organization
structure, so that employees have unique security credentials and can use
GaussDB (for MySQL) resources.

(2) According to the functions of enterprise users, set different access rights to
achieve the isolation of rights between users.

(3) Delegate GaussDB (for MySQL) resources to other Huawei cloud accounts or
cloud services that are more professional and efficient, so that they can be
operated and maintained on behalf of the users according to their permissions.

5.2.5 How to Use GaussDB(for MySQL) with IAM

The flow of IAM using GaussDB (for MySQL) is shown in Fig. 5.4.

(1) Create a user group and authorize it. Create a user group in IAM console and
grant GaussDB (for MySQL) read-only access "GaussDB ReadOnlyAccess".

Before authorizing a user group, it is necessary to know the GaussDB(for MySQL)
permissions that the user group can get, and select the system permissions supported
by the cloud database GaussDB(for MySQL) according to the actual needs.

(2) Create users and join user groups. Create users in the IAM console and add them
to the user group created in the previous step.

172 5 Database Security Fundamentals

(3) Users log in and verify permissions. Switch to the authorization area in the
newly created user login console and verify the permissions. Select GaussDB
(for MySQL) in the "Service List" to display the main interface of GaussDB (for
MySQL), click the "Purchase a database instance" button in the upper right
corner, and try to buy an instance of GaussDB (for MySQL). If the purchase
failed (assuming that the current permission only contains GaussDB
ReadOnlyAccess), it means that "GaussDB ReadOnlyAccess" is in effect.

Select any service other than cloud database GaussDB (for MySQL) in the
"Service List" (assuming the current policy only contains GaussDB
ReadOnlyAccess), and if it indicates insufficient permissions, it means
"GaussDB ReadOnlyAccess" is in effect.

5.2.6 Detailed Explanation of SSL

The Secure Sockets Layer (SSL) protocol is a security protocol that provides security
and data integrity to network communications. It is important for the following
reasons.

(1) It is very dangerous to transmit sensitive data (bank data, transaction informa-
tion, password information, etc.) in clear text in the network, and the purpose of
SSL protocol is to provide communication security and data integrity guarantee.

Fig. 5.4 Flow of IAM
using GaussDB (for
MySQL)

5.2 Access Control 173

(2) In the 7-layer Open System Interconnection (OSI), the SSL protocol is located
between the transport layer and the application layer, providing support for
secure communication. Many application layer protocols have derived more
secure protocols by integrating SSL protocol, such as HTTPS.

(3) Google, Facebook, Taobao and other current mainstream websites and applica-
tions all support SSL communication encryption.

(4) GaussDB (for MySQL) supports SSL communication encryption between client
and server to ensure the security and integrity of data transmission.

The symmetric encryption algorithm of SSL is to use the same key for encryption
and decryption, which is characterized by open algorithm, fast encryption and
decryption, and high efficiency. Asymmetric encryption algorithm contains a pair
of keys: public key and private key. Encryption and decryption use different keys
and are characterized by high algorithm complexity, high security and poor perfor-
mance compared to symmetric encryption. SSL uses an asymmetric encryption
algorithm to negotiate the session key during the handshake phase. After the
encryption channel is established, the transmitted data is encrypted and decrypted
using a symmetric encryption algorithm.

5.3 User Permission Control

5.3.1 Permission Concept

Permissions are the ability to execute certain a specific SQL statement, and the
ability to access or maintain a particular object. As you can imagine, it is easy to
manage a village with only a few dozen households, but it would be relatively
difficult to manage a large city with several million people. Permission control on
users is especially important for database resource and security management.

GaussDB (for MySQL) supports the management of user permissions, which
allows you to configure the user's operational access to database objects and the use
of database functions.

The permissions granted to GaussDB (for MySQL) accounts determine the
operations that the accounts can perform. The different permissions of GaussDB
(for MySQL) differ in the contexts and operation levels to which they apply, as
shown below.

(1) Administrative permission: enables users to manage GaussDB (for MySQL)
server operations; the permission is global, as it is not specific to a particular
database.

(2) Database permission: applies to the database and all objects in it; the permission
can be granted for a specific database or globally in order to meet different needs.

(3) Object permission: can be granted to specific objects in the database, all objects
of a given type in the database (such as all tables in the database), or all objects
globally (such as tables, indexes, views, and stored routines).

174 5 Database Security Fundamentals

GaussDB (for MySQL) supports both static and dynamic permissions, with static
permissions built into the server. They can always be granted to user accounts and
cannot be unregistered. Dynamic permissions can be registered and deregistered at
runtime, but this affects their availability. Dynamic permissions that have not been
registered cannot be granted.

The GaussDB (for MySQL) server controls user access to the database through
permission tables, which are stored in the GaussDB (for MySQL) database and
initialized when the database is initialized. An example of permission table is shown
in Table 5.1.

5.3.2 Users

As a database administrator, you should create a database user for each user who
needs to connect to the database. The database user connects to the database by user
name and password. The user here becomes a database user who can manipulate
database objects and access database data after connecting to the database, such as
creating tables, accessing tables, executing SQL statements, etc.

By default, users of GaussDB (for MySQL) database can be divided into
3 categories.

System administrator: has the highest permissions of the database (e.g. SYS user,
SYSDBA user).

Security administrator: has the CREATE USER permission.
Ordinary user: by default, has PUBLIC object permission and only has the

permission of the object they created; if you need other permissions, you need to
be empowered by the system administrator through the GRANT statement.

SYSDBA is the user who can login to the database without password, with "zsql/
AS SYSDBA" to connect to the database.

Two points should to be noted here. First, when connecting to a database, the database
user must use a database that already exists, and cannot connect to a database that
does not exist. Second, a user can establish multiple connections to the database, that
is, multiple sessions can be established for operations.

Table 5.1 An example of permission table

Permission table Permission description

user User account, static global permissions and other non-permission columns

global_grants Dynamic global permissions

db Database-level permissions

tables_priv Table-level permissions

columns_priv Column-level permissions

procs_priv Stored procedure and function permissions

... ...

5.3 User Permission Control 175

Users can be created by the CREATE USER statement. When using this state-
ment, the following three points should be noted.

(1) The user executing this statement needs to have CREATE USER system
permissions, otherwise no new user can be created.

(2) When creating a user, you need to specify the user name and password, the user
name and password required when the user connects to the database is specified
at this time.

(3) The root user is not allowed to be created, because it is a system-preset user.

The common syntax format for creating users is as follows.

CREATE USER user_name IDENTIFIED BY password;

user_name is the user name; password is the user password, which needs to be
enclosed by single quotes. After the user is successfully created, you can connect to
the database with the corresponding user name and password.

The following special characters are not allowed in the user name.
Semicolon (;), vertical line (|), backquote (`), dollar sign ($), bit operator (&),

greater than sign (>), less than sign (<), double quote (""), single quote (''),
exclamation mark (!) , spaces, and the copyright symbol (©). Double quotes or
backquotes are also not allowed. If the user name contains any special characters
other than those prohibited above, it must be enclosed in double quotation marks ("")
or backquotes ('').

When setting a password for a user name, the following requirements must be
met.

(1) The length of the password must be greater than or equal to eight characters.
(2) When creating a password, the password must be enclosed in single quotes.

Example: To create a user with the username "smith" and the password "data-
base_123", you can execute the following statement.

CREATE USER smith IDENTIFIED BY 'database_123';

The user name consists of letters, and the password contains letters, special
symbols and numbers, which meet the requirements and can be created successfully.
The password in the example satisfies the password requirements.

5.3.3 Modifying a User

You can modify users by ALTER USER, during which should pay attention to the
following matters.

176 5 Database Security Fundamentals

(1) The user executing this statement needs to have ALTER USER system permis-
sions, similar to CREATE USER permissions.

(2) If the specified user does not exist, an error message will be displayed. Only the
user that already exists can be modified.

User modification is mainly applied to the following scenarios.

(1) Modify the user password.
(2) Manually lock the user or unlock the user. For example, if a user has been locked

out after a certain number of failed login attempts, the user needs to be unlocked.

The syntax format for changing the user password is as follows.

ALTER USER user_name IDENTIFIED BY new_password;

user_name is the user name to be changed and new_password is the new user
password.

Example: To change user smith's password to "database_456". The administrator
can change it directly with the following statement.

ALTER USER smith IDENTIFIED BY 'database_456';

5.3.4 Deleting a User

When a user is no longer in use, it is necessary to delete the user, and all the objects
created by the user will be deleted accordingly. You can delete a user by the DROP
USER statement. Note that the user executing the statement needs to have the DROP
USER system permission, similar to the CREATE USER permission.

The syntax format for deleting a user is as follows.

DROP USER [IF EXISTS] user_name;

user_name indicates the user name to be deleted. IF EXISTS is used to detect
whether the user to be deleted exists. If the IF EXISTS option is not specified, an
error message will be displayed if the user to be deleted does not exist; if the IF
EXISTS option is specified, when the user to be deleted does not exist, the result of
successful execution will be returned directly, and the user will be deleted if the user
exists.

5.3 User Permission Control 177

Example: To delete user smith, you can use the following statement.

DROP USER IF EXISTS smith;

5.3.5 Roles

A role is a set of permissions, by which the database can divide permissions at the
organization level. The concept of roles was not introduced until MySQL 8. A
database may be accessed by multiple users, so for easy management, you can
first group permissions and assign them to roles, with each set of permissions
corresponding to one role. For users with different permission levels, you can
grant different roles to users, equivalent to granting the permissions that users
need in bulk, instead of granting them one by one.

For example, a company can have multiple financial roles with permissions such
as paying wages and allocating funds. A role does not belong to any user, that is, a
role is not private to a user, but can be owned by multiple users. For example, finance
is a role that is not private to a single employee, but can be shared by multiple
employees. Suppose the user smith creates the role staffs, then smith.staffs is private
to smith. Other users can access or operate on smith.staffs if they have the appro-
priate permissions, but smith.staffs belongs only to the smith user.

Roles can be created through the CREATE ROLE statement. It should be noted
that the user executing the statement needs to have the CREATE ROLE system
permission. The role neither belongs to any user nor can log in to the database and
execute SQL statement operations, and the role must be unique in the system.

GaussDB (for MySQL) contains the following four system-preconfigured roles
by default.

(1) Database administrator: has all system permissions, which cannot be deleted.
(2) RESOURCE, the role to create base object: has the permission to create stored

procedures, functions, triggers, table sequences.
(3) CONNECT, the role to connect: has the permission to connect to the database.
(4) STATISTICE, statistical role.

The syntax format for creating a role is as follows.

CREATE ROLE role_name;

role_name indicates the name of the created role.
Example: To create the role teacher.

178 5 Database Security Fundamentals

CREATE ROLE teacher;

The role can be deleted with the DROP ROLE statement. When deleting a role,
the user executing the statement must have the DROP ANY ROLE system permis-
sion, or be the creator of the role, or have been granted the role and have the WITH
GRANT OPTION attribute. If the role to be deleted does not exist, an error message
is displayed. When a role is deleted, the permissions that the role has are recovered
from the user or other role to which the role was granted, and the user associated with
the role or the role loses the permissions contained in the role.

The syntax format for deleting a role is as follows.

DROP ROLE role_name;

role_name represents the role name.
Example: To delete the role teacher.

DROP ROLE teacher;

The relationship between user roles and permissions is as follows.

(1) Users can define roles and grant them multiple permissions, and roles are a
collection of multiple permissions.

(2) When the role is granted to a user or another role, the granted object has all the
permissions of the role.

(3) The permissions of a role are inheritable.

GaussDB (for MySQL) supports role-based permission management. Users can
define roles, and if a role is granted to a user, the user has all the permissions for
that role. The financial role shown in Fig. 5.5 only has the rights to pay wages and
allocate funds, while the director only has the rights to review the budget and view
the income statements. After granting the financial role to the director, the director
inherits the permissions of the financial role and gets the rights to audit the budget,
view the income statements, and pay wages and allocate funds.

5.3.6 Authorization

The previous sections all mention permissions, which need to be granted. Authori-
zation is the granting of permissions or roles to users or other roles, so that the
corresponding users or roles have the appropriate permissions. For example, a newly
created user has no permission and cannot perform any operations on the database or

5.3 User Permission Control 179

even connect to the database. If you grant the CREATE SESSION create connection
permission to the user, and the user has the right to connect to the database. If the
user needs to create a table, he/she needs to have the CREATE TABLE permission
to create a table. The table created by this user belongs to the object of this user, and
this user can add, delete, change, and check the data in the table. Authorization can
be achieved through the GRANT statement, which can grant one permission to a
user or role, or multiple permissions to a user or role at the same time. You can grant
Permission 1 to User 1, or grant permissions 1, 2, and 3 to Role 1, which then granted
by Role 1 to Role 2, and finally you can grant the permissions of Role 2 to the user,
as shown in Fig. 5.6.

The common syntax format for permission granting is as follows.

GRANT privilege_name ON db/objects TO grantee [WITH GRANT OPTION];

permission_name: the name of the permission.
db/objects: the database or object that is authorized to be used.
grantee: the user or role to be granted.
WITH GRANT OPTION: optional, means that the granted user or role can grant

the granted permissions to other users or roles again.

Fig. 5.6 Authorization

Fig. 5.5 User, role, and
permission

180 5 Database Security Fundamentals

Permissions and roles should be granted following the principle of minimization.

To grant a permission, the user executing the grant statement needs to have been
granted the permission and have the WITH GRANT OPTION attribute.

Example: To grant the CREATE USER permission to the user smith, and allow
smith to grant this permission to other users or roles.

GRANT CREATE USER ON *.* TO smith WITH GRANT OPTION;

The syntax format for granting roles is similar to the format for granting permis-
sions, as follows.

GRANT role_name TO grantee [WITH GRANT OPTION];

role_name is the role name and grantee is the user or role to be granted. WITH
GRANT OPTION is optional, if set, the granted user or role can re-grant the granted
role to other users or roles.

To grant the role, the user executing the granting role statement needs to meet one
of the following conditions.

(1) It has been granted the role and has the WITH GRANT OPTION attribute.
(2) It is the creator of the role.

Example: To grant the role of teacher to smith and allow smith to grant this role to
other users or roles.

GRANT teacher TO smith WITH GRANT OPTION;

Having the WITH GRANT OPTION attribute means that the authorized user can
re-grant the acquired permission or role to other users or roles.

5.3.7 Permission Recovery

Permission recovery is the recovery of a permission or role from the authorized
person. Once recovered, the user or role in question will no longer have that
permission. For example, if you do not want a user to create a table, you can recover
the CREATE TABLE system permission from the user. If you do not want the user
to access the database, you can recover the CREATE SESSION permission from the

5.3 User Permission Control 181

user. Permission recovery includes the recovery of system permissions, object
permissions and role permissions, all of which can be achieved through the
REVOKE statement.

The common syntax format for permission recovery is as follows.

REVOKE privilege_name ON db/objects FROM revokee;

Where, REVOKE is the authorizer, permission_name is the name of the permis-
sion to be recovered, and revokee is the user or role whose permissions are to be
recovered. Up to 63 users or roles can be assigned at a time.

To grant a permission, the user executing the grant statement needs to have been
granted the permission to be recovered and have the WITH GRANT OPTION
attribute. Having the WITH GRANT OPTION attribute means that the authorized
user can re-grant the acquired permission or role to other users or roles.

Example: To recover the CREATE USER permission of for the user smith.

REVOKE CREATE USER ON *.* FROM smith;

When a user who has been granted a role no longer needs to have the permissions
contained in the role, the user's role permissions should be recovered. For example, if
Employee A is a finance employee that has the right view the company's funds, when
he/she is leaving, his/her finance role must be recovered. The system administrator
(SYS user, user in the database administrator role) has all system permissions,
including the GRANT ANY ROLE system permission, so the system administrator
can execute the role recover statement.

If the role is to be recovered, the user who performs the REVOKE operation
needs to meet one of the following conditions.

(1) It has been granted the role and has the WITH GRANT OPTION attribute.
(2) It is the creator of the role being recovered.

The common syntax format for recovering a role is as follows.

REVOKE role_name FROM revokee;

role_name is the name of the role, and revokee is the user or role whose
permissions are recovered. Up to 63 users or roles can be assigned at a time. Note
that you are not allowed to recover the permissions of the database administrator
role. The initial permissions of the database administrator role are determined when
the database is created, and you can subsequently grant permissions to the database
administrator role, but are not allowed to recover its permissions.

182 5 Database Security Fundamentals

The use of permissions should follow the principle of minimization, and in order
to ensure the security of the database, permissions and roles need to be recovered in
time when they are not in use.

An example of the application of users, roles and permissions is as follows.
To create the user smith, with the password database_123.

CREATE USER smith IDENTIFIED BY 'database_123';

Create the role manager, which is implemented by the CREATE ROLE
statement.

CREATE ROLE manager;

Grant the CREATE USER permission to the role manager.

GRANT CREATE USER ON *.* TO manager;

Grant object query and insertion permissions to manager.

GRANT SELECT, INSERT ON mysql.staffs TO manager;

5.4 Cloud Audit Services

5.4.1 What Are Cloud Audit Services

The log audit module is the core component of information security audit function,
and is an important part of enterprises' and organizations' risk control on information
system security. In the context of gradual cloudization of information systems,
global information and data security management organizations at all levels, includ-
ing China's National Standardization Technical Committee, have issued several
standards on this, such as ISO IEC27000, GB/T 20945-2013, COSO, COBIT,
ITIL, NISTSP800, etc.

Cloud Trace Service (CTS) is a professional log auditing service contained in
Huawei's cloud security solution, providing the collection, storage, and query
functions for various cloud resource-related operation records, which can be used
to support common application scenarios such as security analysis, compliance
audit, resource tracking, and problem location, as shown in Fig. 5.7.

5.4 Cloud Audit Services 183

The functions of cloud audit service mainly include the following.
Record audit logs: supports recording operations initiated by users through the

management console or application programming interface (API), as well as self-
triggered operations within each service.

Audit log query: supports querying the operation records within seven days in the
management console from multiple dimensions such as event type, event source,
resource type, filter type, operation user and event level.

Audit log dumping: supports periodically dumping audit logs to OBS buckets
under the object storage service (OBS), which compresses audit logs into event files
according to the service dimension.

Event file encryption: supports encrypting the event file with the key in the data
encryption workshop (DEW) during the dumping process.

5.4.2 Key Operations to Support Cloud Audit Services

With the cloud audit service, operation events related to GaussDB (for MySQL)
instances can be recorded for future queries, audits, and tracebacks. The key
operation events supported by the cloud audit service are shown in Table 5.2.

Track event viewing is the operation that the system starts to record cloud service
resources after the cloud audit service is started. The cloud audit service management
console keeps a record of the last seven days of operations. Log in to the manage-
ment console and select the "Manage & Deploy > Cloud Audit Service" option in
the "All Services" or "Service List" to enter the information page of cloud audit

Fig. 5.7 Cloud audit service

184 5 Database Security Fundamentals

service; select the "Event List" option in the left navigation tree to enter the event list
information page. The event list supports filtering to query the corresponding
operation events. The current event list supports four dimensions of the combined
query, with the relevant content described below.

(1) Event source, resource type and filter type. You can select the corresponding
query conditions in the drop-down box.

Generally, select "CloudTable" as the event source; select "All Resource
Types" as the resource type, or specify a specific resource type; and select "All
Filter Types" as the filter type, or select one of "By Event Name", "By Resource
ID", "By Resource Name".

(2) Operation user. You can select a specific operation user in the drop-down box,
and this operation user is at user level, not at tenant level.

(3) Event Level. The options are "All Event Levels", "Normal", "Warning", "Inci-
dent". Only one of them can be selected.

(4) Start time and end time. The operation events can be queried by selecting the
time period.

Table 5.2 Key operation events supported by the cloud audit service

Operation Resource type Event

Create an instance Instance createInstance

Adds a read-only node Instance addNodes

Delete a read-only node Instance deleteNode

Restart an instance Instance restartinstance

Modify an instance port Instance changeInstancePort

Modify an instance security group Instance modifySecurityGroup

Upgrade a read-only instance to a primary instance Instance instanceFailOver

Bind or unbind a public IP Instance setOrResetPublicIP

Remove an instance Instance deleteInstance

Rename an instance Instance renameInstance

Modify the node priority Instance modifyPriority

Modify the specification Instance instanceAction

Reset the password Instance resetPassword

Back up and restore to a new instance Instance restoreInstance

Create a backup Backup createManualSnapshot

Delete a backup Backup deleteManualSnapshot

Create a parameter template parameterGroup createParameterGroup

Modify a parameter template parameterGroup updateParameterGroup

Delete a parameter template parameterGroup deleteParameterGroup

Copy a parameter template parameterGroup copyParameterGroup

Reset a parameter template parameterGroup resetParameterGroup

Compare parameter templates parameterGroup compareParameterGroup

Apply a parameter template parameterGroup applyParameterGroup

5.4 Cloud Audit Services 185

5.5 Summary

This chapter firstly introduces the basic concepts, usage and application scenarios of
users, roles and permissions, and the relationship between the three; then elaborates
on authorization and permission recovery, including the syntaxes and the conditions
that need to be satisfied by users who perform authorization or permission recovery
operations.

5.6 Exercises

1. [True or False] The SSL technology can prevent man-in-the-middle from
attacking and monitoring the network. ()

A. True
B. False

2. [True or False] The SSL technology can be used only for databases. ()

A. True
B. False

3. [Single Choice] Which of the following syntaxes is used for authorization? ()

A. CREATE
B. ALTER
C. GRANT
D. REVOKE

4. [True or False] The names of roles and users can be duplicated. ()

A. True
B. False

5. [True or False] System permissions and object permissions need to be recovered
when they are not used. ()

A. True
B. False

6. [Short Answer Question] Why does SSL secure connections?

186 5 Database Security Fundamentals

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

5.6 Exercises 187

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 6
Database Development Environment

Huawei's GaussDB (for MySQL) supports the development of applications based
on C, Java and other languages. Understanding GaussDB (for MySQL) related
system structure and concepts help to develop and use GaussDB (for MySQL)
database better.

This chapter explains the use of GaussDB (for MySQL) tools. Before this, readers
need to have knowledge of operating systems, as well as C and Java languages, and
be familiar with the IDE and SQL syntaxes of C or Java languages.

6.1 GaussDB Database Driver

6.1.1 What Is a Driver

A database driver is an interface between an application and a database store. A
driver application is a translator-like program developed by the database vendor to
enable a particular development language (e.g. Java and C) to implement database
calls. It is able to abstract complex database operations and communications into an
access interface for the current development language, as shown in Fig. 6.1.

To meet the requirements, GaussDB (for MySQL) supports database drivers such
as JDBC and ODBC.

The data source contains information such as database location and database type,
which is actually an abstraction of a data connection. The data source manager
shown in Fig. 6.1 is used to manage data sources.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_6

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_6&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_6#DOI

6.1.2 JDBC

Java database connectivity (JDBC) is a Java API for executing SQL statements that
provides a unified access interface to a variety of relational databases. Applications
manipulate data through JDBC. The flow of JDBC connection to database is shown
in Fig. 6.2.

GaussDB (for MySQL) database provides support for JDBC4.0 features. To
compile the program code, you need to use JDK1.8.

The installation and configuration steps of JDBC are as follows.

(1) Configure the JDBC package.
Download the driver package from the relevant website, decompress it and

configure it in the project.
JDBC package name: com.huawei.gauss.jdbc.ZenithDriver.jar.

(2) Load the driver.
Before creating a database connection, you need to load the database driver

class by loading Class.forName("com.huawei.gauss.jdbc.ZenithDriver") implic-
itly in the code.

(3) Connect to the database.
Before remotely accessing the database, you need to set the IP address and

port number for LSNR_IP and LSNR_PORT monitoring in the configuration
file zengine.ini.

When creating a database connection using JDBC, the following function is
required.

DriverManager.getConnection(String url, String user, String
password);

Fig. 6.1 Database driver

190 6 Database Development Environment

Another way to load the database driver classes is to pass the parameters at
the start of the JVM (Java Virtual Machine), where jdbctes is the name of the test
case program.

java -Djdbc.drivers=com.huawei.gauss.jdbc.ZenithDriver
jdbctest;

This method is not commonly used, so you just need to know about it without going
into particular detail.

Up to 8 monitoring IP addresses can be set at a time, with the IP addresses
separated by commas.

After the database driver class is loaded, you need to connect to the database.
Before remote access to the database, set the IP address and port number to be

Fig. 6.2 Flow of JDBC
connection to database

6.1 GaussDB Database Driver 191

monitored by the corresponding parameters in the configuration file, and then use the
JDBC to create a database connection. The database connection includes three
parameters: url, user, and password, as shown in Table 6.1.

In the url parameter, ip is the database server name, port is the database server
port, and the url connection attributes are split by the & symbol. Each property is a
key/value pair.

Table 6.2 shows the common interfaces of the JDBC.
The following introduces the development and debugging of JDBC application

with the Eclipse environment under Windows operating system as an example.

• Operating system environment: Win10-64bit.
• Compiling and debugging environment: Eclipse SDK version:3.6.1.

The steps of running JDBC application are shown below.

(1) Create a project in Eclipse.
New!Project!Java Project!Next!enter ProjectName (such as

test_jdbc)!Finish.

(2) Create a class.
src!New!Class!enter ClassName (jdbc_test, choose main)!Finish.

Table 6.1 Database connection parameters

Parameter Description

URL Jdbc:zenith:@ip:port[?key¼value[&key¼value] . . .]

User Database user

Password Password of the database user

Table 6.2 JDBC's common interfaces

Interface name Function

Java.sql.Connection Database connection interface

Java.sql.
DatabaseMetaData

Database object definition interface

Java.sql.Driver Database driver interface

Java.sql.
PrepareStatement

Preprocessing statement interface

Java.sql.ResultSet Execution result set interface

Java.sql.
ResultSetMetaData

A specific description of the information related to the ResultSet
object

Java.sql.Statement SQL statement interface

Java.sql.
CallableStatement

SQL statement interface, mainly used to execute stored procedures

Java.sql.Blob Blob interface, mainly used to bind or get the Blob field of the
database

Java.sql.Clob Clob interface, mainly used to bind or get the Clob fields of the
database

192 6 Database Development Environment

(3) Load the library.
src!build path!configure build path!libraries !add external

jars!jdbcjar.

(4) Run the JDBC application.
Write jdbc_test.java document, right click on jdbc_test !run

as!Java Application.

The code for compiling and running the JDBC application is as follows.

package com.huawei.gauss.jdbc.executeType;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import com.huawei.gauss.jdbc.inner.GaussConnectionImpl;
public class jdbc_test{
public void test() {

// 驱动类
String driver = "com.huawei.gauss.jdbc.ZenithDriver";
// 数据库连接描述

String sourceURL = "jdbc:zenith:@10.255.255.1:1888";
Connection conn = NULL;
try {

// 加载数据库驱动类
Class.forName(driver).newInstance();

} catch (Exception e) {
// 抛出异常

e.printStackTrace();
}

try {
// 数据库连接, test_1为用户名, Gauss_234为密码

conn = DriverManager.getConnection
(sourceURL, "test_1", "Gauss_234");

WHILE(TRUE) {
// 执行SQL语句, 若在数据库中能查看到此条数据, 说明成功

PreparedStatement ps = conn.prepareStatement
("INSERT INTO t1 values (1, 2)");

ps.execute();
// 若执行成功, 控制台会输出“Connection succeed!”
System.out.println("Connection succeed!");

}
} catch (Exception e) {

// 抛出异常

e.printStackTrace();
}

}
}

6.1 GaussDB Database Driver 193

6.1.3 ODBC

Open database connectivity (ODBC) was proposed by Microsoft as an application
programming interface for accessing databases. The ODBC connection to database
includes the flows of requesting handle resources, setting environment properties,
connecting to data sources, executing SQL statements, processing result sets,
disconnecting, and releasing handle resources, as shown in Fig. 6.3.

The application interacts with the database through the API provided by ODBC,
which enhances the portability, scalability and maintainability of the application
while avoiding the application to operate the database system directly.

The steps to install ODBC driver manager are as follows.

(1) Obtain the unixODBC source code package.
Download the file unixODBC-2.3.7.tar.gz or a higher version.

(2) Compile and install unixODBC.
In the process of compiling and installing unixODBC, unixODBC is installed

to “/usr/local” directory by default, and the data source file is generated to “/usr/
local/etc” directory by default, and the library file is generated in the “/usr/local/
lib” directory.

Fig. 6.3 Flow of ODBC connection to database

194 6 Database Development Environment

tar -zxvf unixODBC-2.3.7.tar.gz
cd unixODBC-2.3.7
./configure --enable-gui=no
make
make install

(3) Configure the ODBC driver file.
The ODBC driver package for GaussDB (for MySQL) is named as

GAUSSDB100-VxxxRxxxCxx-CLIENT-ODBC- SUSE11SP3-64bit.tar.gz.
Extract it to the ODBC driver directory “/usr/local/lib”.

tar -zxvf GAUSSDB100-VxxxRxxxCxx-CLIENT-ODBC-SUSE11SP3-
64bit.tar.gz

Add the following to the “/usr/local/etc/odbcinst.ini” file.

[GaussDB]
Driver64=/usr/local/odbc/lib/libzeodbc.so
setup=/usr/local/lib/libzeodbc.so

Explanation

The parameters of odbcinst.ini file are explained as follows.
[DriverName]: driver name, corresponding to the driver name in the data source
DSN, e.g. [DRIVER_N].
Driver64: path of the dynamic library for the driver, e.g. Driver64¼/xxx/odbc/lib/
libzeodbc.so.
setup: the path of driver installation, same as the path of dynamic library in
Driver64, e.g. setup¼/xxx/odbc/ lib/libzeodbc.so.

Append the following to the “/usr/local/etc/odbc.ini” file.

[zenith]
Driver=DRIVER_N
Servername=192.168.0.1(数据库Server IP)
Port=1888 (数据库监听端口)

Explanation

The parameters of odbc.ini file are explained as follows.
[DSN]: name of the data source, e.g. [zenith].
Driver: driver name, corresponding to DriverName in odbcinst.ini,
e.g. Driver¼DRIVER_N.
Servername: IP address of the server, e.g. Servername¼192.168.0.1.
Port: port number of the server, e.g. Port¼1888.

6.1 GaussDB Database Driver 195

(4) Configure environment variables.

export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export ODBCSYSINI=/usr/local/etc
export ODBCINI=/usr/local/etc/odbc.ini

Table 6.3 shows the commonly used interfaces of the ODBC.

Some ODBC interfaces are described as follows.

(1) The interface to allocate ODBC handles.

SQLRETURN SQL_API SQLAllocHandle(SQLSMALLINT HandleType,
SQLHANDLE InputHandle, SQLHANDLE *OutputHandle)

SQLAllocHandle parameters are introduced as follows.
Input parameters: HandleType, the type of handle to be allocated

(SQL_HANDLE_ENV, SQL_HANDLE _DBC, SQL_HANDLE_STMT);
InputHandle, the dependent handle.

Output parameter: OutputHandle, the allocated handle.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(2) The interface to allocate the ODBC environment handle.

SQLRETURN SQL_API SQLAllocEnv(SQLHENV *EnvironmentHandle)

Table 6.3 Commonly Used Interfaces of the ODBC

Interface name Function

SQLAllocHandle Request environment, link, statement handle

SQLFreeHandle Release the handle of the ODBC

SQLSetEnvAttr Set the environment handle property of the ODBC

SQLSetConnectAttr Set the link handle property of the ODBC

SQLSetStmtAttr Set the execution handle property of the ODBC

SQLConnect Use the link handle to link to data sources

SQLDisconnect Disconnect from data sources

SQLPrepare Prepare SQL statements for execution

SQLBindParameter Bind parameters to the execution handle of prepared SQL

SQLBindCol Bind the result set column to the buffer

SQLExecute Execute SQL statements

SQLFetch Get the next result row

196 6 Database Development Environment

SQLAllocEnv parameter is introduced as follows.
Output parameter: EnvironmentHandle, the environment handle assigned

to it.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(3) The interface to assign the ODBC link handle.

SQLRETURN SQL_API SQLAllocConnect(SQLHENV EnvironmentHandle,
SQLHDBC *Connection Handle)

SQLAllocConnect parameters are introduced as follows.
Input parameter: EnvironmentHandle, the environment handle.
Output parameter: ConnectionHandle, the link handle assigned to it.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(4) The interface to assign the ODBC execution handle.

SQLRETURN SQL_API SQLAllocStmt(SQLHDBC ConnectionHandle,
SQLHSTMT *Statement Handle)

SQLAllocStmt parameters are introduced as follows.
Input parameter: ConnectionHandle, the link handle.
Output parameter: StatementHandle, the execution handle assigned to it.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(5) The interface to release ODBC handles.

SQLRETURN SQL_API SQLFreeHandle(SQLSMALLINT HandleType,
SQLHANDLE Handle)

SQLFreeHandle parameters are introduced as follows.
Input parameters: HandleType, the type of handle to be released

(SQL_HANDLE_ENV, SQL_HANDLE_DBC, SQL_HANDLE_STMT); Han-
dle, the handle.

Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-
cates failure.

(6) The interface to release ODBC environment handle.

SQLRETURN SQL_API SQLFreeEnv(SQLHENV EnvironmentHandle)

6.1 GaussDB Database Driver 197

SQLFreeEnv parameters are introduced as follows.
Input parameter: EnvironmentHandle, the environment handle to be released.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(7) The interface to release ODBC link handle.

SQLRETURN SQL_API SQLFreeConnect(SQLHDBC ConnectionHandle)

SQLFreeConnect parameters are introduced as follows.
Input parameter: ConnectionHandle, the link handle to be released.
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
(8) The interface to release ODBC execution handle.

SQLRETURN SQL_API SQLFreeStmt(SQLHSTMT StatementHandle,
SQLUSMALLINT Option)

SQLFreeStmt parameters are introduced as follows.
Input parameters: StatementHandle, the execution handle to be released;

Option, the type to be released (SQL_DROP).
Return value: SQL_SUCCESS indicates success; !¼SQL_SUCCESS indi-

cates failure.
ODBC application debugging under Windows operating system can be

performed using the common VC (Visual C++) compilation environment. The
following is an example of the debugging process of ODBC application for
Linux platform.

• Operating system environment: Linux.
• Compiler: GCC 4.3.4.
• Debugger: CGDB 0.6.6/GDB 7.6.

The steps of running and debugging JDBC application are shown below.

(1) Write the JDBC application.
Write the corresponding code and name the document as test_odbc.c.

(2) Compile.
Use the gcc -o test -g test_odbc.c -L/home/test/ -lzeodbc -lodbc -lodbcinst

command to compile the test_odbc.c file into a test binary program. This
compilation requires the GCC compiler.

(3) Run.
Execute the ./test command to run the binary program.

(4) Debug.
Use the gdb/cgdb test command for debugging.
The code for compiling and running the ODBC application is as follows.

198 6 Database Development Environment

#if WIN32
#include <windows.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "sql.h"
#include "sqlext.h"
int main()
{

SQLHANDLE h_env, h_conn, h_stmt;
SQLINTEGER ret;
SQLCHAR *dsn = (SQLCHAR *)"myzenith";/*数据源名称*/
SQLCHAR *username = (SQLCHAR *)"sys";/*用户名*/
SQLCHAR *password = (SQLCHAR *)"sys";/*密码*/
SQLSMALLINT dsn_len = (SQLSMALLINT)strlen((const CHAR *)dsn);
SQLSMALLINT username_len = (SQLSMALLINT)strlen((const CHAR *)
username);
SQLSMALLINT password_len = (SQLSMALLINT)strlen((const CHAR *)
password);
h_env = h_conn = h_stmt = NULL;
//申请句柄资源

ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &h_env);
if ((ret != SQL_SUCCESS)&&(ret != SQL_SUCCESS_WITH_INFO)) {

return SQL_ERROR;
}
//设置环境句柄属性

if (SQL_SUCCESS != SQLSetEnvAttr(h_env,
SQL_ATTR_ODBC_VERSION, (void*)SQL_ OV_ODBC3, 0)) {

SQLFreeHandle(SQL_HANDLE_ENV, h_env);
return SQL_ERROR;

}
//分配链接句柄

if (SQL_SUCCESS != SQLAllocHandle(SQL_HANDLE_DBC, h_env, &
h_conn)) {

return SQL_ERROR; }
//设置链接句柄自动提交属性

if (SQL_SUCCESS != SQLSetConnectAttr(h_conn,
SQL_ATTR_AUTOCOMMIT, (void *)1, 0)) {

SQLFreeHandle(SQL_HANDLE_DBC, h_conn); //用于释放ODBC的句柄

SQLFreeHandle(SQL_HANDLE_ENV, h_env);
return SQL_ERROR; }

//链接数据源

if (SQL_SUCCESS != SQLConnect(h_conn, dsn, dsn_len, username,
username_len, password,

password_len)){
SQLFreeHandle(SQL_HANDLE_DBC, h_conn);
SQLFreeHandle(SQL_HANDLE_ENV, h_env);
return SQL_ERROR; }

//申请执行句柄

if (SQL_SUCCESS != SQLAllocHandle(SQL_HANDLE_STMT, h_conn,

(continued)

6.1 GaussDB Database Driver 199

&h_stmt)) {
SQLFreeHandle(SQL_HANDLE_DBC, h_conn);
SQLFreeHandle(SQL_HANDLE_ENV, h_env);
return SQL_ERROR; }

//创建表并插入一条记录
SQLCHAR*create_table_sql=(SQLCHAR*)"CREATETABLEtest(colINT)";
SQLExecDirect(h_stmt, create_table_sql, strlen
(create_table_sql));
// 直接执行SQL语句

SQLCHAR* insert_sql = (SQLCHAR*)"INSERT INTO test (col) values
(:col)";
SQLPrepare(h_stmt, insert_sql, strlen(insert_sql)); // 准备要

执行的SQL语句

int col = 1;
SQLBindParameter(h_stmt, 1, SQL_PARAM_INPUT, SQL_C_SSHORT,
SQL_INTEGER, sizeof(int), 0,

&col, 0, NULL); // 往准备好SQL的执行句柄上绑定参数
SQLExecute(h_stmt); // 执行SQL语句

printf("Connection succeed!\n");
//断开数据库链接
SQLDisconnect(h_conn);
//释放句柄资源

SQLFreeHandle(SQL_HANDLE_DBC, h_conn);
SQLFreeHandle(SQL_HANDLE_ENV, h_env);
return SQL_SUCCESS;

}

6.1.4 Others

In addition to supporting development based on JDBC and ODBC drivers, GaussDB
(for MySQL) also supports development based on GSC (C-API), Python and Go
drivers.

(1) GSC (C-API) driver: the dependent library is libzeclient.so and the header file is
gsc.h.

When creating a database connection using the GSC (C-API), the following
function is required.

int gsc_connect(gsc_conn_t conn, const CHAR * url, const CHAR *
user, const CHAR * password);

The code to create a connection object using the GSC (C-API) is as follows.

200 6 Database Development Environment

int test_conn_db(CHAR * url, CHAR * user, CHAR * password)
{
gsc_conn_t conn;
if (gsc_alloc_conn(&conn) != GSC_SUCCESS)
{
return GSC_ERROR;
}
if (gsc_connect(conn, url, user, password) != GSC_SUCCESS)
{
return GSC_ERROR;
}
gsc_free_conn(conn);
conn = NULL;
//to avoid using wild pointer, user should set conn NULL after

free
return GSC_SUCCESS;
}

(2) Go driver. The Go driver is released as source code, and the upper-level
application brings the code into the application project and compiles it with
the application for use. From the file level, Go driver is divided into three parts:
Go API, C driver library and C header file. The Zenith Go driver is based on the
Zenith C driver, which is obtained through cgo technology packaging. The lib
subdirectory is the dynamic library for C driver, and the include subdirectory is
the C driver cgo involved in the header files. The Go driver relies on GCC 5.4
and above, and use the GO 1.12.1 or an higher version.

(3) Dynamic library of the Python driver: pyzenith.so. When using the Python
driver to connect to a database, get the Connection and establish the connection
by calling pyzenith.connect. GaussDB (for MySQL) uses Python, on the basis of
the Linux operating system. Python supports time objects, using the following
functions to get the time.

Date(year,month,day)—constructs an object containing the date.
Time(hour,minute,second)—constructs an object containing the time.
Timestamp(year,month,day,hour,minute,second,usec)—constructs an object

containing the timestamp.
DateFromTicks(ticks)—construct the date value given with ticks value.
TimeFromTicks(ticks)—constructs the time value given with ticks value.
TimestampFromTicks(ticks)—constructs the timestamp value given with ticks

value.
The sample code to execute the SQL statement and get all the tuples is as

follows.

6.1 GaussDB Database Driver 201

import pyzenith
conn=pyzenith.connect
('192.168.0.1','gaussdba','database_123','1888')
c=conn.cursor()
c.execute("CREATE TABLE testexecute(a INT,b CHAR(10),c
DATE)")
c.execute("INSERT INTO testexecute values(1,'s','2012-12-
13')")
c.execute("SELECT * FROM testexecute")
row =c.fetchall()
c.close()
conn.close()

6.2 Database Tools

6.2.1 DDM

Distributed database middleware (DDM) service is a middleware service for distrib-
uted relational databases provided by Huawei Public Cloud. It provides applications
with distributed and transparent access to multiple database instances in the form of a
service, which completely solves the database scalability problem and realizes
storage of massive data and high concurrent access; it features easy-to-use, unlimited
expansion and excellent performance. Easy-to-use refers to compatibility with
MySQL protocol and zero changes to application code; unlimited expansion refers
to supporting automatic horizontal splitting, completely solving the database
problem of single machine restriction and realizing smooth expansion of service
department terminals; excellent performance refers to the combination of high-
performance cluster networking (unipolar during public beta) and horizontal expan-
sion functions, thus realizing the linear improvement of performance. The DDM
service flow is shown in Fig. 6.4.

DDM service puts all data into one database in the primary stage, whether it is
small-, medium- or large-scale database or above. Small-scale (<500 qps or 100 tps,
<100 read users,<10 write users): the performance of concurrent reads is improved
by read/write separation in a single database. Medium-scale (<5000 qps or 1000 tps,
<5000 read users,<100 write users): vertical splitting, distributing different services
to different databases. Large-scale and above (10k+ qps, 10k+ tps, 10k+ read users,
1k+ write users): data sharding, dividing the data set into mutually independent and
orthogonal data subsets according to certain rules, and then distributing the data
subsets to different nodes.

202 6 Database Development Environment

Data sharding is used to solve the bottlenecks of database scaling. Commonly
used data sharding solutions are application-layer sharding solution and middleware
sharding solution, as shown in Fig. 6.5.

The advantage of application-level sharding solutions (such as Dangdang's
Sharding-JDBC, Taobao's distributed data framework, etc.) is that they are directly
connected to the database and have less additional overhead. Its disadvantages are
the inability to achieve convergence in the number of connections, the application
intrusion approach used leading to a large number of subsequent upgrades and

Fig. 6.4 DDM service flow

Fig. 6.5 Common data sharding solutions

6.2 Database Tools 203

updates and the high cost of operation and maintenance, and the fact that only Java is
supported in most cases. The advantages of middleware sharding solutions (e.g.,
open source Mycat, Cobar, commercial software Ekoson, etc.) are zero changes to
the application, language-independence, full transparency to the application for
database scaling, and effective convergence of the number of connections through
connection sharing. The disadvantage is the possibility of additional latency (<4%).

The key features of DDM are read/write separation, data sharding, and smooth
database scaling. In the past, the read/write separation was controlled by the appli-
cation itself, including configuring all database information in the client and realiz-
ing the read/write separation; database adjustment requires synchronous
modification of the application, and database failure requires modification of the
application, at which time the operation and maintenance and development need to
synchronize the adjustment configuration. Nowadays, DDM achieves read/write
separation, including: plug-and-play—automatic read/write separation and support
for configuring performance weights for different nodes; application transparency—
the application still operates a single node and database adjustments are not
application-aware; and high availability—master-slave switchover or slave node
failure is transparent to the application, as shown in Fig. 6.6.

The sharding application logic implemented by the application itself is complex:
the application rewrites SQL statements, routes the SQL to different databases, and
aggregates the results; database failure and adjustment require synchronous adjust-
ment by the application, which makes operation and maintenance more difficult
dramatically; the application upgrade and update maintenance workload is large and
unacceptable for large systems. Today, data sharding is implemented by DDM with
zero application changes: large table sharding, which supports automatic sharding by
hash and other algorithms; automatic routing, which routes SQL to the real data
source according to the sharding rules; connection multiplexing, which is used to
substantially improve concurrent database access through connection pool
multiplexing of MySQL instances. A comparison of data sharding is shown in in
Fig. 6.7.

Fig. 6.6 Comparison of read/write separation

204 6 Database Development Environment

If the application itself implements the horizontal expansion of the database, the
expansion is prone to application downtime and service interruption, so tools for
data migration are required. Nowadays, horizontal expansion of database by DDM
can automatically balance data, achieve unlimited expansion (unlimited number of
supported shards, ease coping with massive data), full automation (one-click expan-
sion, automatic rollback of abnormalities), and small impact on services (second-
level interruption, no service awareness at other times). A comparison of database
horizontal scaling is shown in Fig. 6.8.

The applicable scenarios of DMM are as follows.

(1) High-frequency transactions on large applications: e-commerce, finance, O2O,
retail, and social applications. Characteristics: large user base, frequent market-
ing activities, and increasingly slow response of the core database. Countermea-
sures: The linear horizontal scaling function provided by DDM can easily cope
with the high concurrent real-time transaction scenarios.

Fig. 6.8 A comparison of database horizontal scaling

Fig. 6.7 A comparison of data sharding

6.2 Database Tools 205

(2) IoT massive sensors: industrial monitoring, smart city, and Internet of Vehicles.
Characteristics: many sensing devices, high sampling frequency, large data
scale, breakthrough of single database bottleneck. Countermeasures: The capac-
ity horizontal expansion function provided by DDM can help users to store
massive data at low cost.

(3) Massive video and picture data index: Internet, social applications, etc. Charac-
teristics: billions pieces of picture, document, video and other data, and
extremely high performance requirements for indexing these files and providing
real-time addition, deletion, change and query operations. Countermeasures:
The ultra-high performance and distributed expansion function provided by
DDM can effectively improve the search efficiency of the index.

(4) Traditional program, hardware and government agencies: large enterprises and
banks. Characteristics: Traditional solutions rely on commercial solutions with
high hardware cost such as minicomputers and high-end storage. Countermea-
sures: The linear horizontal scaling function provided by DDM can easily cope
with highly concurrent real-time transaction scenarios.

How to use DDM - buy a database middleware.

Step 1: Console > Database > Distributed Database Middleware (DDM) Instance
Management.

Step 2: Click the “Buy Database Middleware Instance” button, as shown in Fig. 6.9.
Step 3: Select “Pay As You Go” for the billing mode. Leave the default settings for

region, available partitions and instance specifications if there are no special
needs, as shown in Fig. 6.10.

Step 4: Enter the instance name, select the corresponding virtual private cloud,
subnet and security group (the virtual private cloud must be consistent with the
database instance), and then click the “Buy Now” button, as shown in Fig. 6.11.

Step 5: Confirm the specification, check the check box to agree to the service
agreement, and click the “Submit” button, as shown in Fig. 6.12.

Multi-instance and distributed cluster are shown in Fig. 6.13.
How to use DDM - data sharding.

Fig. 6.9 Steps of instance purchase (1)

206 6 Database Development Environment

Step 1: Console > Database > Distributed Database Middleware (DDM) Instance
Management.

Step 2: Select the instance that needs to be sharded, and click the “Create Logical
Library” text hyperlink, as shown in Fig. 6.14.

Step 3: Select the split mode, set the logical library name and transaction model, and
select the associated RDS instance, as shown in Fig. 6.15.

Step 4: Select the RDS instance where the logical library can be created (same as the
case of virtual private cloud), and click the “Create” button, as shown in Fig. 6.16.

The data is successfully sharded, as shown in Fig. 6.17.

Fig. 6.10 Steps of instance purchase (2)

Fig. 6.11 Steps of instance purchase (3)

6.2 Database Tools 207

6.2.2 DRS

Data replication service (DRS) is an easy-to-use, stable, and efficient cloud service
for online database migration and real-time database synchronization. DRS targets
cloud databases, reducing the complexity of data flow between databases and
effectively reducing the cost of data transfer.

It features the following capabilities. Online migration: It supports a variety of
service scenarios such as cross-cloud platform database migration, under-cloud
database migration to the cloud or cross-region database migration on the cloud

Fig. 6.12 Example purchase step diagram (4)

Fig. 6.13 The instance is purchased successfully

Fig. 6.14 Data sharding (1)

208 6 Database Development Environment

through various network links. It is characterized by incremental migration technol-
ogy that allows continuous service during migration to the maximum extent, effec-
tively minimizing service system interruption time and impact on service, and
realizing smooth migration of database to the cloud. Data synchronization: Realizes
the real-time flow of key service data between distinctly different systems. Database

Fig. 6.15 Data sharding (2)

Fig. 6.16 Data sharding (3)

Fig. 6.17 Data sharding succeeded

6.2 Database Tools 209

migration is aimed at overall relocation, while synchronization is to maintain the
continuous flow of data between different service systems. Common scenarios are
real-time analysis, reporting system, and data warehouse environment. It is charac-
terized by focusing on tables and data to meet the need for multiple synchronization
flexibility, such as many-to-one, one-to-many, which synchronizes data between
different tables. Multi-live disaster recovery: Through off-site near-real-time data
synchronization, it enables the establishment of database disaster recovery relation-
ships cross regions, cross clouds, between local and cloud, and between hybrid
clouds, providing disaster recovery features such as one-key master-standby rever-
sal, data comparison, delay monitoring, data replenishment, supporting disaster
recovery rehearsal, real disaster recovery and other scenarios, and supporting various
disaster recovery architectures such as master-slave disaster recovery and master-
master disaster recovery. It features offsite long-distance transmission optimization
and provides features around disaster recovery, unlike the solutions formed based on
simple data synchronization. Data subscription: It obtains data change information
of key service \ (often needed by downstream service) in the database and caches
such information and provides a unified SDK interface to facilitate downstream
service subscription, acquisition and consumption, thus decoupling the database
from downstream systems and sesrvice processes. Common scenarios include
Kafka's subscription to MySQL incremental data.

DRS's key features—guided migration. The operation flow of guided migration is
shown in Fig. 6.18.

Figure 6.19 shows how to use DRS—scenario-based selection.
Figure. 6.20 shows how to use DRS—network and security.
DRS contains multiple migration modes. If service interruption is acceptable,

select the full migration mode. This mode is a one-time database migration, suitable
for database migration scenarios where service is allowed to interrupt. Full migration
migrates all database objects and data from a non-system database to the target
database at one time, including tables, views, stored procedures, triggers, etc.

If service interruption is required to keep minimal, select the full + incremental
migration mode. This mode is a continuous migration of database, which is suitable
for scenarios sensitive to service interruption. After completing the migration of
historical data to the target database through full migration, the incremental migra-
tion phase keeps the source database and target database data consistent through
techniques such as catch logs and application logs.

The migration objects that can be selected include databases, tables, views, stored
procedures, and triggers, as shown in Fig. 6.21.

Fig. 6.18 Operation flow of guided migration

210 6 Database Development Environment

DRS classifies users who need to be migrated into three categories, i.e. users who
can be migrated completely, users who need to be downgraded and users who cannot
be migrated, as shown in Fig. 6.22.

In DRS parameter migration, most of the parameters that are not migrated do not
cause the migration to fail, but they often have a direct impact on the operation and
performance of the service. DRS supports parameter migration to make the service

Fig. 6.19 Scenario-based selection

Fig. 6.20 Network and security

6.2 Database Tools 211

and application run more smoothly and worry-free after database migration. Service
parameters include character set settings, maximum number of connections, sched-
uling related settings, lock wait time, Timestamp default behavior and connection
wait time. The performance parameters include *_buffer size and -_cache size, as
shown in Fig. 6.23.

Fig. 6.21 Multiple migration modes

Fig. 6.22 User migration

212 6 Database Development Environment

Figure 6.24 shows how to use DRS - precheck.
Migration monitoring of DRS: You can understand the migration progress in real

time by observing the macro display, and view the percentage progress of the full
migration objects, such as table data, table structure, table indexes, etc. with long
migration time. You can view the migration progress of specific migration objects

Fig. 6.23 Parameter migration

Fig. 6.24 Precheck

6.2 Database Tools 213

through the table, and when the “number of objects” and “number of migrated
objects” are equal, the migration of the object is complete. You can view the
migration progress of each object through the “View Details” hyperlink, and when
the progress is 100%, the migration is complete, as shown in Fig. 6.25.

The macro comparison at object level is used to determine whether data objects
are missing; the data is proofread in detail by data-level comparison. The comparison
of rows and contents at different levels is shown in Fig. 6.26.

Fig. 6.25 Migration monitoring

214 6 Database Development Environment

6.2.3 DAS

Data Admin Service (DAS) is a professional tool to simplify database management.
It provides a good visual operation interface, which can greatly improve the effi-
ciency and make data management both secure and simple. DAS features the
following characteristics.

(1) Realizes managing database on the cloud, and visual interface to connect and
manage database.

(2) Manages data through a dedicated channel in the cloud, where Huawei Cloud
strictly controls access to the database with high security.

(3) Accesses to data simply and conveniently, and manage operations via visual
objects, easy to use.

(4) Realizes cloud R&D testing, fast deployment, fast access to the database, and
improved R&D efficiency.

The DAS includes console, standard version and enterprise version. The console (for
database administrators and operation and maintenance personnel) provides basic
host and instance performance data, slow SQL and full SQL analysis, covering from
real-time performance analysis and diagnosis to comprehensive analysis of historical
operation data, and can quickly find out every problem in database operation and
potential risk points in advance. Standard version (for developers) is the best

Fig. 6.26 Migration comparison

6.2 Database Tools 215

database client with advantages of no local client installation, WYSIWYG visual
operation experience, synchronization of data and table structure, online editing,
intelligent prompt of SQL input, and rich database development functions. Enter-
prise version (enterprise DevOPS platform) provides database DevOPS platforms
for data protection, change auditing, operation auditing and R&D self-service based
on permission minimization control and approval process mechanism, helping
enterprises to realize standardized, efficient and ultra-secure management means
for large-scale database.

DAS can help users build tables like filling out tables, and view, edit, insert and
delete table data like editing Excel files; automated SQL input prompts can help
users write SQL statements, while chain dependency diagrams show real-time lock
waiting session relationships, so users can also be a professional database manager;
automatical generation of table data make development work more convenient;
when the data is modified or deleted by mistake, a rollback task can be initiated to
help users retrieve the data; the automatic timeout mechanism allows users not to
worry about bringing down the database due to the long execution time of SQL
statements.

DAS application scenario: standard version, as shown in Figs. 6.27 and 6.28.
The Console in Fig. 6.27 is further divided into Conn Console and DAS Console.

Conn Console is the console for DAS connection management, and DAS Console is
the unified portal for data administration services. API-for-DAS is the unified
entrance of external API, responsible for conversion of internal and external API
protocols, as well as permission control and API audit. DAS provides database
maintenance and management services, including addition, deletion, change and
check of database, tables, indexes, fields, views and other objects.

DAS application scenario: enterprise version.

Fig. 6.27 DAS application scenario: standard version (1)

216 6 Database Development Environment

Data is the core asset of the enterprise. How to control the access rights of
sensitive data, realize the security of database changes, audit the operation retroac-
tively and reduce the labor cost of DBA is an important demand of enterprises when
the number of database instances reaches a certain scale.

The advantages of DAS enterprise version are as follows.

(1) Secure data access: Employees do not have access to database login name and
password, and need to apply for permission first for querying the library; it
supports multi-dimensional query control on total number of queries per day,
total data rows, maximum number of rows returned per query, etc.

(2) Sensitive data protection: Sensitive fields are automatically identified and
marked; sensitive data will be desensitized and displayed when employees
perform query and export operations.

(3) Change security: All operations on the library are recorded in audit logs, and the
database operation behavior is traceable.

(4) Operation audit: It features risk identification of SQL change, service audit
control; automatic detection of database water level when change is executed;
and data cleaning for large data tables.

(5) Improved efficiency and reduced cost: It features flexible security risk and
approval process customization; the empowerment of the roles of service head
and database administrator on the library delegates the low-risk library change
operations to the service supervisor, reducing the labor cost of the database
administrator in the enterprise.

How to use DAS—add a database connection. The steps are as follows.

Step 1: Console > Database > Data Admin Service (DAS).
Step 2: Click the “Add Database Login” button, as shown in Fig. 6.29.
Step 3: Select the database type as GaussDB (for MySQL).
Step 4: Select the database source (RDS instance), and select the instance under the

corresponding source, as shown in Fig. 6.30.

Fig. 6.28 DAS application scenario: standard version (2)

6.2 Database Tools 217

Step 5: Fill in the login user name and password under the selected instance, and it is
recommended to check the “Remember Password” checkbox, as shown in
Fig. 6.31.

Step 6: Click the “Add Now” button, as shown in Fig. 6.32.
Step 7: Select the database instance to log in, and click the “Login” hyperlink, as

shown in Fig. 6.33.
Step 8: Log in to the DAS Administration page successfully, as shown in Fig. 6.34.

How to use DAS—create an object.
In the Library Management page, we can create and manage database objects,

diagnose SQL, and collect metadata, following the steps as follows.

Fig. 6.29 Add a database connection (1)

Fig. 6.30 Add a database connection (2)

Fig. 6.31 Add a database connection (3)

218 6 Database Development Environment

Step 1: Click “New Database” on the homepage, fill in the database name and click
"OK", as shown in Fig. 6.35.

Step 2: After successful login, you can enter the Library Management page, as
shown in Fig. 6.36.

Step 3: Click the “New Table” button, as shown in Fig. 6.37.
Step 4: Enter the New Table page, set the table's basic information, fields, indexes

and other information, as shown in Fig. 6.38.
Step 5: After setting up, click the “Create Now” button., as shown in Fig. 6.39.
Step 6: In addition to tables, we can also create new views, stored procedures, events

and other objects, as shown in Fig. 6.40.

How to use DAS—create an object.
Open the SQL Operations page, there will be automatic SQL input prompt for

assisting to finish the SQL statement.

Fig. 6.32 Add Now

Fig. 6.33 Add a database connection (4)

Fig. 6.34 Add a database connection (5)

6.2 Database Tools 219

Step 1: Click the “SQL Window” button at the top of the page, or the “SQL Query”
hyperlink at the bottom to open the SQL Operations page, as shown in Fig. 6.41.

On the SQL Operations page, we can perform SQL operations, such as query, etc.
Step 2: Write SQL statements. DAS provides SQL prompt function to facilitate

writing SQL statements, as shown in Fig. 6.42.

Fig. 6.35 Create an object (1)

Fig. 6.36 Create an object (2)

Fig. 6.37 Create an object (3)

220 6 Database Development Environment

Fig. 6.38 Create an object (4)

Fig. 6.39 Create an object (5)

6.2 Database Tools 221

Fig. 6.40 Create an object (6)

Fig. 6.41 SQL operation (1)

Fig. 6.42 SQL operation (2)

222 6 Database Development Environment

Step 3: After the execution of SQL statement, you can check the operation result and
execution record at the bottom, as shown in Fig. 6.43.

How to use DAS—import and export.
In the Import and Export page, we can import the existing SQL statements into

the database for execution, and export the database file or SQL result set for saving.

Step 1: Create a new import task. You can import an SQL file or CSV file.
Step 2: Select the file source, either imported locally or from the OBS.
Step 3: Select the database. The imported file will be executed within the

corresponding database, as shown in Fig. 6.44.
Step 4: Create a new export task and select the database file to be exported, or choose

to export the SQL result set, as shown in Fig. 6.45.

How to use DAS - compare the table structures.
In the Structure Scheme page, we can compare the structures of the tables within

the two databases and choose whether to synchronize after the comparison, as shown
in Fig. 6.46.

Step 1: Create a table structure comparison and synchronization tasks.
Step 2: Select benchmark database and target database.
Step 3: Select the synchronization type.
Step 4: Start the comparison task.
Step 5: Start the synchronization task.

6.3 Client Tools

Client tools are mainly for users to connect, operate and debug databases more
conveniently.

Fig. 6.43 SQL operation (3)

6.3 Client Tools 223

(1) gsql is an interactive database connection tool run by GaussDB (DWS) at the
command line.

(2) Data Studio is a graphical interface tool that allows users to connect to GaussDB
(for MySQL) and debug and execute SQL statements and stored procedures
through Data Studio.

Fig. 6.45 Import and export (2)

Fig. 6.44 Import and export (1)

224 6 Database Development Environment

6.3.1 zsql

The prerequisites for installing zsql are as follows.

(1) Linux operating system is supported.
(2) Python 2.7 needs to be deployed on the host where the client is located, and

Python 2.7.x is mandatory for the host.
(3) zsql client user and user group are created with permissions �0750.
(4) The client installation package has been obtained and the integrity check of the

zsql client installation package has been completed.
For example, create the user group dbgrp and user omm, and add a password

for omm.

groupadd dbgrp
useradd -g dbgrp -d /home/omm -m -s /bin/bash omm
passwd omm

The method of integrity check of the zsql client installation package is as follows.

(1) Execute the following command to output the check value of the installation
package.

Fig. 6.46 Compare the table structures

6.3 Client Tools 225

sha256sum GAUSSDB100-V300R001C00-ZSQL-EULER20SP8-64bit.tar.gz

(2) Check the contents of the sha256 file GAUSSDB100-V300R001C00-ZSQL-
EULER20SP8-64bit.sha256.

(3) Compare the check value with the contents of the check file. If they are
consistent, the check passes, otherwise the check fails.

It should be noted that if you reinstall GaussDB100 zsql client program, you need to
make sure the zsql client directory has been deleted, otherwise it will lead to
reinstallation failure. It is not allowed to install the client program under the server
program directory. For example, if the GaussDB100 database server program is
already stored in the “/home/omm/app” directory, you cannot install the zsql client
program in this directory, but need to plan the zsql client program to another
directory for independent installation. After installation, you need to execute the
su command to switch to the client user again.

If you need to uninstall the zsql client program, delete the files in the installation
directory first. For example, if the client installer directory is “/home/omm/app”, you
can delete this directory. Configure the user environment variable, open "~/.bashrc"
environment variable (the command is “vi ~/.bashrc”), and delete the following
contents.

export PATH=/home/omm/app/bin:$PATH
export LD_LIBRARY_PATH=/home/omm/app/lib:/home/omm/app/add-
ons:$LD_LIBRARY_PATH

After completing the installation of zsql, you need to log in to the server where
GaussDB100 is located as the root user, i.e. the zsql client user. Take omm as an
example, put the client installation package under the directory “/home/omm”, and
modify the installation package user group.

cd /home/omm
chown omm:dbgrp GAUSSDB100-V300R001C00-ZSQL-EULER20SP8-64bit.
tar.gz

Next, make changes to the user group and execute the su command to switch to
the user under which the zsql client is running.

su - omm

Unpack the installation package accordingly.

226 6 Database Development Environment

cd /home/omm
tar -zxvf GAUSSDB100-V300R001C00-ZSQL-EULER20SP8-64bit.tar.gz

If the database user's password contains the special character $, you must escape it
with the escape character \ when connecting to the database via zsql, otherwise the
login will fail.

Go to the directory where the host was unziped.

cd GAUSSDB100-V300R001C00-ZSQL-EULER20SP8-64bit

Run the install_zsql.py script to install the zsql client.

python install_zsql.py -U omm:dbgrp -R /home/omm/app

Here -U is the user running the zsql client, e.g. omm. -R is the directory where the
zsql client is installed.

After completing the installation of the zsql client, use zsql to connect.
Log in as the database administrator with the following code format.

zsql { CONNECT | CONN } / AS SYSDBA [ip:port] [-D /home/gaussdba/
data1] [-q] [-s "silent_file"] [-w connect_timeout]

The sample code is as follows.

[gaussdba@plat1~]$ zsql / AS sysdba -q
Connected

CONNECT|CONN: Connects to the database; where [ip:port] is optional, if not
specified, the local host is connected by default.

When the database system administrator creates multiple database instances, the
�D parameter is required to specify the database directory in order to connect to the
specified database. The �D parameter is only required when the database system
administrator creates multiple database instances; if it is not specified, the host does
not know which database to connect to. Usually users create only one database
instance so do not need to specify it. Therefore, the �D parameters are only for
HCIA users to understand, no need to learn it in depth.

6.3 Client Tools 227

(1) �q: This parameter is used to cancel SSL login authentication view, which can
be used together with the -w parameter.

(2) �s: This parameter is used to set the prompt-free mode to execute SQL
statement.

(3) �w: This parameter indicates the waiting timeout time when the client connects
to the database, currently 10s by default; can be used with the�q parameter. The
value meanings of waiting timeout are as follows.

• �1: means wait for the server response, no timeout.
• 0: means do not wait for the timeout, and return the result directly.
• n: means wait for n seconds.

After using the -w parameter, when zsql starts to connect to the database, the waiting
timeout is set to the specified value. After starting, the waiting response timeout for
the currently established connection, the waiting response timeout for the new
connection re-established and the query timeout are all specified values; the setting
expires after exiting the zsql process.

When logging in as a normal database user, the following three types of logins are
available.

(1) Interactive Login Method 1.

zsql user@ip:port [-D /home/gaussdba/data1] [-q] [-s
"silent_file"] [-w connect_timeout]
Please enter password:

(2) Interactive Login Method 2.

zsql conn user/user_password@ip:port [-D /home/gaussdba/
data1] [-q] [-s "silent_file"] [-w connect_timeout]

(3) Non-Interactive Login Method.

zsql user/user_password@ip:port [-D /home/gaussdba/data1]
[-q] [-s "silent_file"] [-w connect_timeout]

user is the database user name and user_password is the database user
password. ip:port is the IP address and port number of the host where the
database is located, which is 1888 by default.

Interactive Login Method 1 has no conn, where you need to connect and then enter
the password. Interactive Login Method 2 has conn, where you can enter the
password as connect. Non-Interactive Login Method has no conn, where you can
enter the password as connect in a different manner. The most commonly used is the

228 6 Database Development Environment

Non-Interactive Login Method, while for the interactive login methods, you just
need to know about them, because they all have the same result.

Example: User gaussdba logs in locally to the database.

[gaussdba@plat1~]$ zsql
SQL> CONN gaussdba/Changeme_123@127.0.0.1:1611
connected.
//启动zsql进程时设置等待响应超时时间

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611
-w 20
connected.
//创建新用户jim, 并赋予新用户CREATE SESSION权限

SQL> DROP USER IF EXISTS jim;
CREATE USER jim IDENTIFIED BY database_123;
GRANT CREATE SESSION TO jim;
//切换用户, 再次建立的新连接的等待响应超时时间也是20s
CONN jim/Changeme_123@127.0.0.1:1611
connected.
EXIT

When starting the zsql process, set the response timeout to 20s. After starting,
the response timeout for the current connection is 20s. After exiting the zsql process,
the setting expires and the waiting response timeout for new connections remains at
the default value of 20s.

When connecting to zsql, you can set the parameters to meet your specific
functional requirements. If you set the -s parameter to execute SQL statements in
promptless mode, the results will be output to the specified file instead of being
displayed back on the current screen. This parameter should be placed at the end of
the command.

Example: User hr connects to the database in the silent mode, specifying the
output log name as silent.log.

[gaussdba@plat1~]$ zsql hr@127.0.0.1:1611 -s silent.log
//创建表training
CREATE TABLE training(staff_id INT NOT NULL,course_name CHAR

(50),course_start_ date DATETIME,course_end_date DATETIME,
exam_date DATETIME,score INT);
INSERT INTO training(staff_id,course_name,course_start_date,

course_end_date, exam_date,score) values(10,'SQL
majorization','2017-06-15 12:00:00','2017-06-20 12:
00:00','2017-06-25 12:00:00',90);
//退出数据库系统

EXIT
//查看日志silent.log
cat silent.log
Succeed.

6.3 Client Tools 229

The -c parameter refers to the execution of a single SQL statement at startup,
which needs to be placed at the end of the command.

zsql user/password@ip:port -c "SQL_Statement"

Multiple normal SQL statements can be entered in the -c parameter, but the
statements need to be separated by a semicolon (;). When entering procedure
statements in the -c parameter, only a single entry is supported, and the procedure
needs to be ended with a slash /.

The sample code is as follows.

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611
-c "SELECT ABS(-10) FROM dual;"
connected.
SQL>
ABS(-10)
--
10
1 rows fetched.

Objects with $ in their names need to add the escape character \. The maximum
length of a single executable SQL statement should be no longer than 1MB.

-f refers to the execution of SQL scripts, which cannot be used with the -c or -s
parameters. The setting of the -f parameter is the same as that of the -c and -s
parameters, which are placed at the end of the command.

zsql user@ip:port [-a] -f sql_script_file

Or as follows.

zsql user@ip:port [-a] -f "sql_script_file"

The -a parameter is used to output the executed SQL statement, which can be used
together with the -f parameter, and must be in front of the -f parameter. This means
output and execute the SQL statement in the SQL script. If the -a parameter is not set
then output the execution result of the statement in the SQL script directly, and no
SQL script will be output.

230 6 Database Development Environment

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611 –a
connected.
SQL> SELECT ABS(-10);
SELECT ABS(-10); /* 打印SQL脚本*/
ABS(-10)
--
10
1 rows fetched.

Execute the file test.sql.

SELECT ABS(-10) FROM dual;
SELECT * FROM dual;
SELECT 123;
COMMIT;

Execute the -f “test.sql” command

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611 –f
“test.sql”

Execute the -a -f “test.sql” command.

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611 –a
–f "test.sql"

The result of the -f “test.sql” command is as follows.

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611 –f
"test.sql"
connected.
SQL>
ABS(-10)
--
10
1 rows fetched.
SQL>
DUMMY
---–
X
1 rows fetched.

(continued)

6.3 Client Tools 231

SQL>
123

123
1 rows fetched.
SQL>
Succeed.

The result of the -a-f “test.sql” command is as follows.

[gaussdba@plat1~]$ zsql gaussdba/Changeme_123@127.0.0.1:1611 –a
–f "test.sql"
connected.
SQL> SELECT ABS(-10) FROM dual;
ABS(-10)
--
10
1 rows fetched.
SQL> SELECT * FROM dual;
DUMMY
---–
X
1 rows fetched.
SQL> SELECT 123;
123

123
1 rows fetched.
SQL> COMMIT;
Succeed.

The format of the statement to view the database object definition information is
as follows.

DESCRIBE [-o | -O] object

Or as follows.

DESC [-o | -O] object

-o or -O indicates the object, which is optional.
The SQL statement of query: DESC -q SELECT expression (just know it).
Displays column description information when querying with the SELECT

statement, including name, nullable, type, and size(char or byte).

232 6 Database Development Environment

The DESC column size shows the derived value (maximum derived value) at the
time of SQL parsing, and the execution returns column data values that do not
exceed that size.

expression is a query statement.
Query the definition information of the table privilege.

SQL> DROP TABLE IF EXISTS privilege;
SQL> CREATE TABLE privilege(staff_id INT PRIMARY KEY,
privilege_name VARCHAR(64) NOT NULL,privilege_description
VARCHAR(64), privilege_approver VARCHAR(10));
SQL> DESC privilege;
Name Null? Type
---------------------------------–

------– -------------------------------
STAFF_ID NOT NULL BINARY_INTEGER
PRIVILEGE_NAME NOT NULL VARCHAR(64 BYTE)
PRIVILEGE_DESCRIPTION VARCHAR(64 BYTE)
PRIVILEGE_APPROVER VARCHAR(10 BYTE)

Execute the SPOOL command to output the execution results to an operating
system file.

Specify the output file, either in a relative path or an absolute path.

SPOOL file_path

Save the execution result and close the current output file stream.

SPOOL off

Execute the SPOOL command.

SQL> SPOOL ./spool.txt
SQL> CREATE TABLE COUNTRY(Code INT,Name VARCHAR(20),Population
INT);
SQL> SELECT Code, Name, Population
FROM COUNTRY
WHERE Population > 100000;
SQL> SELECT 'This SQL will be output into ./spool.txt' FROM

SYS_DUMMY;
SQL> SPOOL OFF;
SQL> SELECT 'This SQL will not be output into ./spool.txt' FROM

SYS_DUMMY;

6.3 Client Tools 233

When the SPOOL file is specified, zsql results are output to a file. The contents of
the file are approximately the same as those displayed on the zsql command line, and
the output is closed only after SPOOL OFF is specified.

If the file specified by the SPOOL command does not exist, zsql will create a file.
If the specified file already exists, zsql appends the execution result to the original
result.

Exit zsql and enter cat spool.txt to view the contents of the spool.txt file, as
follows.

SQL> CREATE TABLE COUNTRY(Code int,Name varchar(20),Population
int);
Succeed.
SQL> SELECT Code, Name, Population
2 FROM COUNTRY
3 WHERE Population > 100000;

CODE NAME POPULATION
------------ ------------------– ------------
0 rows fetched.
SQL> SELECT 'This SQL will be output into ./spool.txt' FROM

SYS_DUMMY;
'THIS SQL WILL BE OUTPUT INTO ./SPOOL.TXT'
--
This SQL will be output into ./spool.txt
1 rows fetched.
SQL> SPOOL OFF;

Note that spool.txt does not have the SELECT 'This SQL will not be output into . /
spool.txt' FROM SYS_DUMMY; statement, because the SPOOL OFF statement has
been executed before the execution of this statement.

Logical import IMP and logical export EXP.

{EXP | EXPORT}[keyword =param [, . . .]] [. . .];
{IMP | IMPORT} [keyword =param [, . . .]] [. . .];

(1) Logical import and logical export do not support the export of SYS user data.
(2) During the logical import and logical export of data, you need to have the

corresponding operation permission for the object to be exported.
(3) If execute FILETYPE¼BIN during logical import and logical export, three types

of files are exported: metadata files (user-specified files), data files (.D files), and
LOB files (.L files).

(4) If there is a file with the same name existing in the directory during logical
import and logical export, the file will be overwritten directly without any
prompt.

234 6 Database Development Environment

(5) When logically exporting data, a metadata file and a subdirectory named data
will be generated under the specified export file path. If no export file path is
specified, a metadata file and a subdirectory named data will be generated under
the current path by default. When executing FILETYPE¼BIN, the generated
subfiles (data file, LOB file) will be placed under the secondary directory data; if
the specified metadata file and the generated subfiles already exist, an error will
be reported.

Generate the analysis report WSR.
WSR (Workload Statistics Report) is used to generate the performance analysis

report. By default, only SYS users have permission to perform the related operations.
If an ordinary user needs to use it, he/she needs the SYS user permission—grant
statistics to user, which means that the statistics role is granted to the ordinary user.
After authorization, the ordinary user has the permissions to create snapshots, delete
snapshots, view snapshots, and generate WSR reports, but does not have the
permission to change WSR parameters. When an ordinary user performs an opera-
tion, he/she needs to carry the SYS name to execute the corresponding stored
procedure, such as CALL SYS.WSR$CREATE_SNAPSHOT.

Other functions include SHOW (query parameter information), SET (set param-
eters), DUMP (export data), LOAD (import data), COL (set column width), WHEN-
EVER (set whether to continue or exit the connection operation when the script runs
abnormally), etc.

6.3.2 gsql

To configure the database server using gsql, and log in to any node in the GaussDB
(DWS) cluster as the omm user, execute the related command source
${BIGDATA_HOME}/mppdb/.mppdbgs_profile to start the environment variables.

Execute the following command to add the IP address or host name (separated by
a comma) of the external service, where NodeName is the current node name and
10.11.12.13 is the IP address of the network card of the server where CN is located.

gs_guc reload -Z coordinator -N NodeName -I all -c
"listen_addresses='localhost, 192.168.0.100,10.11.12.13'"

listen_addresses can also be configured as *. This configuration will monitor all
NICs, but there are security risks, so it is not recommended for users. It is
recommended that users configure IP address or host name to open the monitoring
as needed.

Add the client IP address authentication information (please replace the client_ip/
mask below with the real client IP address).

6.3 Client Tools 235

gs_guc SET -Z coordinator -N all -I all -h "host all client_ip/mask
sha256"

Unzip the GaussDB-Kernel-VXXXRXXXCXX-XXXX-64bit-gsql.tar.gz
archive, and you will get the following files.

bin: The location where the gsql executable is stored.
gsql_env.sh: environment variable file.
lib: the dynamic database that gsql depends on.
Load the environment variable file source gsql_env.sh that you just extracted, and

you can use gsql normally.

gsql –d postgres –h 10.11.12.13 –U username –W password –p 25308

The -d parameter specifies the database name.
The -h parameter specifies the database CN address.
The -U parameter specifies the database user name.
The -W parameter specifies the password of the database user
The -p parameter specifies the port of the database CN.
Download gsql: Visit the https://console.huaweicloud.com/dws to log in to the

GaussDB (for DWS) administration console; in the left navigation bar, click the
“Connection Management” button; in the “gsql Command Line Client” drop-down
box, select the corresponding version of GaussDB (DWS) client; click the “Down-
load” button to download the gsql matching the existing cluster version.

Configure the server: Log in to the ECS (cloud server) using PuTTY. In the
PuTTY login page, Host Name is the ECS public IP address, Port is 22, Connection
type is SSH. Click the “Open” button and click the “YES” button in the pop-up box,
where login as is root, and password is the root user password (the password is not
explicitly displayed, so make sure it is entered correctly and press Enter). Execute
the command cd <client path> (please replace <client path> with the actual client
path). The execution command punzip dws_client_1.5.x_redhat_x64.zip
(dws_client_redhat_ x64.tar.gz is the client toolkit name corresponding to “RedHat
x64”, which should be replaced with the actual downloaded package name). Execute
the command source gsql_env.sh; if the command line information shown in
Fig. 6.47 is prompted, it means that the client has been successfully configured.

Connect to database: Use gsql client to connect to the database in GaussDB
(DWS) cluster, where the execution statement format is gsql -d<database name> -h
<cluster address> -U<database user> -p<database port> -r. The database name is
the name of the database to be connected. When connecting to the cluster for the first
time using a client, please specify the default database of the cluster as “postgres”. If
you connect via public address, please specify the cluster address as the public
access address or public access domain name; if you connect via intranet address,
please specify the cluster address as the intranet access address or intranet access

236 6 Database Development Environment

domain name. Database user is the user name of the cluster database. When you
connect to the cluster for the first time using the client, please specify the default
administrator user set when creating the cluster, such as “dbadmin”. The database
port is the “database port” set when creating the cluster, as shown in Fig. 6.48.

Usage: gsql can directly send query statements to the database for execution, and
return the execution results.

Fig. 6.47 Configure the server

Fig. 6.48 Connect to the database

6.3 Client Tools 237

postgres=# SELECT * FROM dual;
dummy

X
(1 row)

The gsql tool also provides some more useful meta-commands for quick interac-
tion with the database. For example, to quickly view the object definition, the code is
as follows.

postgres=# \d dual
View "pg_catalog.dual"
Column | Type | Modifiers
------–+------+---------–
dummy | text |
Column:字段名;
Type:字段类型;
Modifiers:约束信息;

For more commands, you can use \? to view the usage instructions.

6.3.3 Data Studio

Data Studio is a graphical user interface (GUI) tool that can be used to connect to
GaussDB databases, execute SQL statements, manage stored procedures, and man-
age database objects. Data Studio currently supports most of the basic features of
GaussDB, providing database developers with a user-friendly graphical interface
that simplifies database development and application development tasks, and can
significantly improve the efficiency of building programs.

Let's download, install and run Data Studio.

(1) Download and install Data Studio under Windows.
Download: Login to Huawei support website, go to “Technical Support >

Cloud Computing > FusionInsight >FusionInsight Tool” page, and select the
corresponding version of Data Studio to download.

Installation: After downloading, unzip the Data Studio installation package.
(2) Set the Data Studio profile (optional).

You can modify the configuration file “Data Studio.ini” to personalize the
Data Studio operating parameters. The modified parameters will take effect after
restarting the Data Studio.

The Data Studio user's manual teaches how to use each parameter.

238 6 Database Development Environment

(3) Run Data Studio.
Double-click the “Data Studio.exe” file to run it (Note: Java 1.8.0_141 or

higher is required).
When using Data Studio to connect to GaussDB (for MySQL) database,

select the type of database to connect to. Enter a custom name, the IP address
of the database, the port of the database, the user name, and the password, as
shown in Fig. 6.49.

The connection to GaussDB (DWS) is similar, but you must select the database type
as GaussDB (DWS).

The main interface of Data Studio is divided into five sections, as shown in
Fig. 6.50.

Area 1 is the top menu bar, Area 2 is the object browser, Area 3 is the editing
window for SQL, Area 4 is the query window for SQL statement execution results,
and Area 5 is the syntax assistant area for SQL.

The object browser takes database connection as the root node and uses a tree-like
hierarchy to display database objects; it provides entrances to various object man-
agement operations in the form of right-click menus, such as creating database,
disconnecting, creating objects, editing table data, viewing object property informa-
tion, executing stored procedures, etc.

The SQL editing window provides a window for users to edit, format and execute
various SQL statements. After executing SQL statements, users can query the results
returned by the statements in the query window, and also sort, filter, copy, and export
the results. The syntax assistant automatically associates and provides complemen-
tary suggestions based on user input during SQL edition.

The query window is used to display the results returned by the query statement,
and users can sort, dynamically filter, copy, export, and edit the results.

The SQL syntax assistant dynamically matches and displays the corresponding
SQL statements based on the user input in the SQL edition window.

Fig. 6.49 Connect to GaussDB (for MySQL) database using Data Studio

6.3 Client Tools 239

Stored procedure management includes viewing, modifying and compiling stored
procedure code, executing or debugging stored procedures, and providing templates
for creating stored procedures for GaussDB syntax.

Preferences configuration allows users to personalize some of the features of the
data source according to their own habits, such as the time interval for automatic
saving, the number of records loaded per query result, SQL statement highlighting
rules, custom shortcuts, etc.

6.3.4 MySQL Workbench

MySQL Workbench is a GUI tool for designing and creating new database icons,
building database documentation, and performing complex MySQL migrations. As
a next-generation tool for visual database design and management, it is available in
both open source and commercial versions. This software supports Windows and
Linux operating systems. MySQL Workbench provides database developers with a
user-friendly graphical interface that simplifies database development and applica-
tion development tasks, and can significantly improve the efficiency of building
programs.

It comes with the MySQL Workbench client for Windows-based platforms.
MySQL Workbench download: Log in to the MySQL official website and select

MySQL MySQL Workbench from the DOWNLOADS option at the bottom of the
page; unzip the downloaded client installation package (32-bit or 64-bit) to the path

Fig. 6.50 The main interface of Data Studio

240 6 Database Development Environment

you need to install (e.g. D:\MySQL Workbench); open the installation directory and
double-click MySQL Workbench.exe (or click the right mouse button and run as
administrator).

Connection to the database using MySQL Workbench: Enter the connection
information in MySQL Workbench.

The main interface of MySQL Workbench includes: navigation bar, SQL edition
window, query result window, and basic database information, as shown in
Fig. 6.51.

The basic functions of MySQL Workbench mainly comes in the following
aspects. Navigation bar: Shows the management functions of the database, such as
status check, connection management, user management, data import and export;
provides the entrance of various object management operations, such as starting and
stopping instances, querying logs, viewing operation files; shows the performance of
the database, where reports can be set or generated. SQL edition window: Edits,
formats and executes various SQL statements; in the process of editing SQL
statements, grammar assistant will automatically associate according to user input
and provide suggestions for completion. Query result window: Displays the results
returned by the query statements, where users can sort, dynamically filter, copy,
export, and edit the results. Database basic situation: Shows the existing database
and the basic situation of objects at all levels under the database. Database backup:
According to customer's demand, provides enterprise-level online backup and
backup recovery functions. Audit check: The search field provides narrow-displayed
operation events, including exhibition activity acquisition of inclusion type and

Fig. 6.51 The main interface of MySQL Workbench

6.3 Client Tools 241

display events of query type, and all activities are displayed by default. Custom
filters are also available.

6.4 Summary

This chapter introduces GaussDB database related tools, including JDBC, ODBC,
gsql. The drivers in GaussDB database include JDBC, ODBC, etc. GaussDB
database provides some related connection tools, including zsql, gsql, Data Studio.

6.5 Exercises

1. [Multiple Choice] Which of the following functions can be implemented by the
JDBC common interface? ()

A. Executes SQL statements
B. Executes stored procedures
C. Unloads database
D. Deletes database

2. [Single Choice] Through ODBC interaction, while avoiding the direct operation
of the database system by the application program, what characteristics of the
application program are enhanced? ()

A. Portability, compatibility and maintainability
B. Portability, compatibility and scalability
C. Maintainability, scalability, and portability
D. Compatibility, maintainability and scalability

3. [Multiple Choice] The key features of DDM include ().

A. Smooth scalability
B. Read/write separation
C. Intelligent management
D. Data sharding

4. [True or False] When DDM database middleware is purchased, the virtual
private cloud can be different from the database virtual private cloud it uses. ()

A. True
B. False

5. [Single Choice] Which of the following is not a capability of DRS? ()

A. Online migration
B. Data synchronization

242 6 Database Development Environment

C. Multi-live disaster recovery
D. Smooth scalability

6. [True or False] The migration function provided by DRS does not support the
service interruption function. ()

A. True
B. False

7. [Multiple Choice] The gsql connection command contains the () parameters.

A. Database name
B. Cluster address
C. Database user
D. Database port

8. [True or False] gsql is an interactive database connection tool provided by
GaussDB (DWS) that runs at the command line. ()

A. True
B. False

9. [Multiple Choice] The basic features of MySQL Workbench include ().

A. Navigation bar
B. Database situation display
C. Data backup
D. Audit check

10. [Multiple Choice] Which of the following functions does Data Studio support? (
)

A. Browses database objects
B. Creates and manages database objects
C. Manages stored procedures
D. Edits SQL statements

11. [Short Answer Question] Briefly describe the process of developing applications
with ODBC.

12. [Short Answer Question] Briefly describe the process of DDM data sharding.
13. [Short Answer Question] Briefly describe the process of DRS data migration.
14. [Short Answer Question] Briefly describe the process of connecting to a data-

base using gsql and explain what are the important parameters involved.

6.5 Exercises 243

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

244 6 Database Development Environment

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 7
Database Design Fundamentals

Database design refers to constructing a suitable database schema for specific
application objects according to the characteristics of database system, establishing
database and corresponding applications, so that the whole system can effectively
collect, store, process and manage data to meet the usage requirements of various
users.

This chapter introduces the relevant concepts, overall objectives and problems to
be solved in database design, and details the specific work in stages including
requirement analysis, conceptual design, logical design and physical design
according to the New Orleans design methodology. Finally, the specific means of
implementation of database design are introduced with relevant cases.

Through this chapter, the reader is able to describe the characteristics and uses of
the data models, enumerate the types of data models, describe the criteria of the third
normal form (NF) data model, describe the common concepts in the logical model,
distinguish the corresponding concepts in the logical and physical models, and
enumerate the common means of anti-NF in the physical design process.

7.1 Database Design Overview

Database design refers to the construction of an optimized database logical model
and physical structure for a given application environment, and the establishment of
the database and its application system accordingly, so that it can effectively store
and manage data to meet the application needs of various users. It is worth noting
that there is no "optimal" standard for database design, and different designs and
optimizations need to be made for different applications. The OLTP and OLAP
scenarios are very different, and there are corresponding differences in the methods
and optimization tools for database design.

Readers need to first understand what the most common methods and techniques
are, and then use them in conjunction with different practical scenarios.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_7

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_7&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_7#DOI

7.1.1 Difficulties of Database Design

In practical applications, database design will encounter many difficulties, mainly
the following.

(1) The lack of service knowledge and industry knowledge of technical staff
familiar with the database.

Database design needs to be flexibly adjusted for different applications, which
requires the relevant personnel to have a good understanding of the application
usage scenario and service background, while the technical personnel familiar
with the database often lack service knowledge and industry knowledge.

(2) People who are familiar with service knowledge often lack understanding of
database products.

Relatively speaking, people familiar with service knowledge and service
process often lack understanding of database products and are not familiar
with database design process. Therefore, in the process of data model design,
the two party need to fully communicate with each other in order to do a good
job of database design.

(3) There is no way to clarify the scope of service requirements of the database
system for the application service in the initial stage.

In the initial stage of the project, the application service is not particularly
clear, and the users' requirements are not established. And the database system is
gradually improved along with the users' requirements, which is also a difficult
point in database design.

(4) User requirements are constantly adjusted and modified during the design
process, and even after the database model is landed, new requirements will
appear, which will have an impact on the existing database structure.

Because of the uncertainty of the requirements, database adjustment is
frequent, these will cause some trouble to the database design, so the database
design is a spiral forward work, which needs to be constantly adjusted, improved
and optimized to better meet the needs of the application.

7.1.2 Goal of Database Design

Database design is the technology of establishing database and its application
system, which is the core technology in the development and construction of
information system. The goal of database design is to provide information infra-
structure and efficient operation environment for users and various application
systems. Efficient operation environment means to achieve high efficiency in data-
base data access, database storage space utilization, and database system operation
and management. The goal of database design must set the time range and target
boundary range, and the design goal without restrictive conditions will fail because
of the too large range. Reasonable development of database system goals is a very

246 7 Database Design Fundamentals

difficult thing. The goals that are too large or too high will result in unachievable
goals, and targets that are too small will be unacceptable to the customer. Therefore,
the goals should be planned reasonably in stages and levels so as to form sustainable
solutions for the construction process, ultimately meeting the needs of the users and
achieving the goals.

7.1.3 Methods of Database Design

In October 1978, database experts from more than 30 countries have dedicated their
time to discussing database design methods in New Orleans, USA. They applied the
ideas and methods of software engineering to propose a database design specifica-
tion, which is the famous New Orleans design methodology, currently recognized as
a more complete and authoritative design method for database specification. The
New Orleans design methodology divides the database design into four phases, as
shown in Fig. 7.1.

These four phases are requirement analysis, conceptual design, logical design,
and physical design. The requirement analysis phase mainly analyzes user require-
ments and produces requirement statements; the conceptual design phase mainly
analyzes and defines information and produces conceptual models; the logical
design phase mainly designs based on entity connections and produces logical
models; and the physical design phase mainly designs physical structures based on
physical characteristics of database products and produces physical models.

In addition to the New Orleans design methodology, there are also database
design methods based on E-R diagrams, and design methods based on the 3NF.
They are all specific techniques and methods used in different phases of database
design, which will be described in detail in later chapters.

7.2 Requirements Analysis

7.2.1 Significance of Requirement Analysis

In real life, the whole building without a good foundation is crooked. Experience has
proven that poor requirement analysis can directly lead to incorrect design. If many

Fig. 7.1 The four phases in the New Orleans design methodology

7.2 Requirements Analysis 247

problems are not discovered until the system testing stage and then go back to correct
them, it will be costly, so the requirement analysis stage must be given high priority.

The requirement analysis phase mainly collects information and analyzes and
organizes it to provide sufficient information for the subsequent phases. This stage is
the most difficult and time-consuming stage, but is also the basis of the whole
database design. If the requirement analysis is not done well, the whole database
design may be reworked.

The following points should be done in the requirement analysis phase.

(1) Understand the operation of the existing system, such as the service carried by
the existing system, the service process and the deficiencies.

(2) Determine the functional requirements of the new system, that is, to understand
the end-user's ideas, functional requirements and the desired results.

(3) Collect the basic data and related service processes that can achieve the objec-
tives, so as to prepare for a better understanding of service processes and user
requirements.

7.2.2 Tasks of the Requirement Analysis Stage

The main task of the requirement analysis phase is first to investigate user service
behaviors and processes, then to conduct system research, collect and analyze
requirements, determine the scope of system development, and finally prepare a
requirement analysis report.

The phase of investigation of user service behaviors and processes requires
understanding of user expectations and goals for the new system and the main
problems of the existing system. In the stage of system research, collecting and
analyzing requirements, determine the scope of system development, with the main
tasks being divided into the following three parts.

(1) Information research. It is necessary to determine all the information to be used
in the designed database system and to clarify the sources, methods, data formats
and contents of the information. The main goal of the requirement analysis phase
is to clarify what data is to be stored in the designed database, what data needs to
be processed, and what data needs to be used for the next system.

(2) Processing requirements. Translate the user's service functional requirements
into a requirement statement that defines the functional points of the database
system to be designed. That is, convert the requirements described by users in
service language into design requirements that can be understood by computer
systems or developers; it is necessary to describe the operational functions of
data processing, the sequence of operations, the frequency and occasion of
execution of operations, and the connection between operations and data, as
well as to specify the response time and processing methods required by users.
These contents form the necessary part of the user requirement specification.

248 7 Database Design Fundamentals

(3) Understand and record user requirements in terms of security and integrity. In
the stage of writing requirement analysis report, it needs to go through the
process of system research, collection and processing, and generally the output
product in this stage is the requirement analysis report, including user require-
ment specification and data dictionary. The data dictionary here is a summary
document of the data items and data of the existing services, not the data
dictionary inside the database product.

7.2.3 Methods of Requirement Analysis

The focus of requirement analysis is to sort out the "information flow" and "service
flow" of users. The "service flow" refers to the current status of the service, including
service policies, organization, service processes, etc. The "information flow" refers
to the data flow, including the source, flow and focus of data, the process and
frequency of data generation and modification, and the relation between data and
service processing. External requirements should be clarified during the requirement
analysis phase, including but not limited to data confidentiality requirements, query
response time requirements, output report requirements, etc.

According to the actual situation and the possible support from users, the
requirement investigation can be done by a combination of means, for example,
viewing the design documents and reports of existing systems, talking with service
personnel, and questionnaire surveys. If conditions permit, sample data from
existing service systems should also be collected as part of the design process to
verify some service rules and understand the quality of data.

During the requirement analysis process, do not make assumptions or guesses about
the user's ideas. Always check with the user for assumptions or unclear areas.

7.2.4 Data Dictionary

The data dictionary is the result obtained after the introduction of requirement
analysis, data collection and data analysis. Unlike the data dictionary in the database,
the data dictionary here mainly refers to the description of the data, not the data itself,
and includes the following contents.

(1) Data items: They mainly includes data item name, meaning, data type, length,
value range, unit and logical relation with other data items, which are the basis of
model optimization in logic design stage.

7.2 Requirements Analysis 249

(2) Data structure: Data structure reflects the combination relation between data
items, and a data structure can be composed of several data items and data
structures.

(3) Data flow: The data dictionary is required to represent the data flow, that is, the
transmission path of data in the system, including data source, flow direction,
average flow, peak flow, etc.

(4) Data storage: This includes data access frequency, retention time duration, and
data access methods.

(5) Processing process: This includes the function of the data processing process and
processing requirements. Function refers to what the processing process is used
to do, and the requirements include how many transactions are processed per
unit of time, how much data volume involved, time response requirements, etc.

There is no fixed document specification for the format of data dictionary, in
practice, it can refer to the above content items and can be reflected through different
descriptive documents or in the model file. So the data dictionary is a concept at the
abstract level, a collection of documents. And in the requirement analysis phase, the
most important output is the user requirement specification, where the data dictio-
nary often exists as an annex or appendix to provide a reference for the model
designers in their subsequent work.

7.3 Conceptual Design

7.3.1 Conceptual Design and Conceptual Model

The task of the conceptual design phase is to analyze the requirements proposed by
the users, synthesize, summarize and abstract the user requirements, and form a
conceptual-level abstract model independent of the concrete DBMS, i.e., the con-
ceptual data model (hereinafter referred to as the conceptual model). The conceptual
model is a high level abstract model, independent of any specific database product,
not be bound by any database product characteristics. At this stage, the conceptual
model is independent of the physical attributes of any particular database product.

The conceptual model has developed the following four main features.

(1) It can truly and fully reflect the real world, including the connection between
things and things, as a real model of the real world.

(2) It is easy to understand, enabling discussion with users who are not familiar with
the database.

(3) It is easy to change, when the application environment and application require-
ments change, the conceptual model can be modified and expanded.

(4) It is easy to convert to a relational data model.

The latter two are the basic conditions for the smooth progress of the next stage
of work.

250 7 Database Design Fundamentals

7.3.2 E-R Approach

The conceptual model is a conceptual-level abstract model that is independent of the
concrete database management system, generated by analyzing the requirements
proposed by users and synthesizing, summarizing and abstracting the user require-
ments. The model can directly organize the real world according to the concrete data
model, but many factors must be considered at the same time, and the design work is
complicated with unsatisfactory effect, so an approach is needed to describe the
information structure of the real world.

In 1976 E-R (Entity-Relation) approach was proposed. This approach quickly
became one of the commonly used methods in conceptual models because of its
simplicity and practicality, and is now a common approach to describing information
structures. The tool used in the E-R approach is called E-R diagram, which mainly
consists of three elements - entity, attribute and linkage, which is widely used in the
conceptual design stage. The database concept represented by E-R diagram is very
intuitive and easy to understand by users.

An entity is a collection of real-world objects that have common attributes and
can be distinguished from each other. For example, teachers, students, and courses
are all entities, as shown in Fig. 7.2. In an E-R diagram, specific entities are generally
represented by rectangular boxes. Each specific record value in an entity, such as
each specific student in the student entity, is called an instance of the entity.

Attributes are data items that describe the nature or characteristics of an entity, and
all instances belonging to the same entity have the same attributes. For example, the
student number, name and gender shown in Fig. 7.3 are all attributes. In the conceptual
model, attributes are generally represented by rectangular boxes with rounded corners.

In practice, the conceptual model can also be designed not to the attribute level in
detail, but to the entity level. If the conceptual model will increase the workload is all
the attributes are planned out in detail. The E-R diagram of the conceptual model
should delineate the linkages between entities clearly and express them clearly in the
practical application project. So it is sufficient that the general conceptual model
reaches the level that reflects the linkages between entities.

Fig. 7.2 Entities

Fig. 7.3 Attributes

7.3 Conceptual Design 251

The linkages within and between entities are usually represented by diamond-
shaped boxes. In most cases, the data model is concerned with the linkages between
entities. The linkages between entities are usually divided into three categories.

(1) One-to-one linkage (1:1): Each instance in entity A has at most one instance
linked to it in entity B, and vice versa. For example, a class has a Class Advisor,
this linkage is recorded in the form of 1:1.

(2) One-to-many linkage (1:n): Each instance in entity A has n instances linked to it
in entity B, while each instance in entity B has at most 1 instance linked to it in
entity A, which is recorded as 1:n. For example, there are n students in a class.

(3) Many-to-many linkage (m:n): Each instance in entity A has n instances linked to
it in entity B, while each instance in entity B has m instance linked to it in entity
A, which is recorded as m:n. Take for example the linkage between students and
elective courses. A student can take more than one course, and a course can be
taken by more than one student.

Simply put, conceptual design is the conversion of realistic conceptual abstractions
and linkages into the form of an E-R diagram, as shown in Fig. 7.4.

Fig. 7.4 Linkages

252 7 Database Design Fundamentals

7.4 Logical Design

7.4.1 Logical Design and Logical Models

Logical design is the process of converting a conceptual model into a concrete data
model. According to the basic E-R diagram established in the conceptual design
phase, the selected target data model (hierarchical, mesh, relational, or object-
oriented) is converted into the corresponding logical-layer target data model, and
what is obtained is the logical data model (hereinafter referred to as logical model).
For relational databases, this conversion has to conform to the principles of the
relational data model.

The most important work in the logical design phase is to determine the attributes
and primary keys of the logical model. The primary key identifies the unique primary
keyword in the table, also known as a code. A primary key can consist of a single
field or multiple fields. The more common way of logical design work is to use E-R
design tool and IDEF1X method for logical model building. Commonly used E-R
diagram representations include IDEF1X, Crow's Foot for IE models, Unified
Modeling Language (UML) class diagrams, etc.

7.4.2 IDEF1X Method

The logical model of this book adopts the IDEF1X (Integration DEFinition for
Information Modeling) method. IDEF, which stands for Integration DEFinition
method, was established in the US Air Force ICAM (Integrated Computer Aided
Manufacturing) project, and three methods were initially developed - functional
modeling (IDEF0), information modeling (IDEF1), and dynamic modeling (IDEF2).
Later, as information systems were developed one after another, IDEF cluster
methods were introduced, such as data modeling method (IDEF1X), process
description acquisition method (IDEF3), object-oriented design method (IDEF4),
OO design method using C++ (IDEF4C++), entity description acquisition method
(IDEF5), design theory acquisition method (IDEF6), and Human-system interaction
design method (IDEF8), service constraint discovery method (IDEF9), network
design method (IDEF14), etc. IDEF1X is an extended version of IDEF1 in the
IDEF family of methods, which adds some rules to the E-R method to make the
semantics richer.

The IDEF1X method has several features when used for logic modeling.

(1) It supports the semantic structure necessary for the development of conceptual
and logical models, and has good scalability.

(2) It has concise and consistent structure in semantic concept representation.
(3) It is easy to understand, enabling service personnel, IT technicians, database

administrators and designers to communicate based on the same language.

7.4 Logical Design 253

(4) It can be generated automatically. Commercial modeling software supports the
IDEF1X model design methodology and can be quickly converted to and from
models at all levels.

7.4.3 Entities and Attributes in the Logic Model

According to the characteristics of entities, they can be divided into two categories.

(1) Independent entity, which is usually represented by a rectangular box with right-
angle corners. An independent entity is an entity that exists independently that
does not depend on other entities.

(2) Dependent entity, which is usually represented by a rectangular box with round
corners. Dependent entities must depend on other entities, and the primary key in
a dependent entity must be part or all of the primary key of an independent
entity.

The primary key of the independent entity will appear in and become part of the
primary key of the dependent entity, as shown in Fig. 7.5, where the chapter entity
depends on the book entity. For example, many books have Chap. 2. If there is no
book as one of the ID primary keys to distinguish the Chap. 2 of different books,
only one record of Chap. 2 will appear in the chapter entity. But in fact, the title, page
number and word count of Chap. 2 of different books are different, so the chapter
entity depends on the book entity in order to function.

Attributes are the characteristics of the entity, containing the following types to be
noted.

(1) Primary key. The primary key is an attribute or group of attributes that identifies
the uniqueness of an entity instance. For example, the name of a student entity
cannot be used as a primary key because there may be cases of duplication of

Fig. 7.5 Entity categories

254 7 Database Design Fundamentals

name. The school number or ID number can be used as an attribute that uniquely
identifies the student, i.e., it can be used as a primary key.

(2) Optional key. It can identify other attributes or groups of attributes of the entity.
(3) Foreign key. Two entities are linked, and the foreign key of one entity is the

primary key of the other entity. You can also call the primary key entity the
parent entity and the entity with the foreign key the child entity.

(4) Non-key attribute. It is an attributes other than primary key and foreign key
attributes inside an entity.

(5) Derived attribute. It is a field that can be counted or derived from other fields.

The primary key of the book entity shown in Fig. 7.6 is the book ID, while other
attributes are non-key attributes. The primary key of the chapter is the book ID plus
the chapter number, while other attributes are non-key attributes. The book ID in the
chapter entity is a foreign key.

How to distinguish the relation between primary key, foreign key and index? A
primary key uniquely identifies an instance, have no duplicate values, which is a
non-null attribute, and should not be updated. Its role is to determine the uniqueness
of a record and ensure data integrity, so an entity can have only one primary key.

A foreign key is generally the primary key of another entity, which can be
duplicated or null for this entity, and its role is to establish data reference consistency
with the relation between two entities. So an entity can have more than one foreign
key. For example, attribute A is a foreign key in table X, and it is duplicable in table

Fig. 7.6 Attributes in entities

7.4 Logical Design 255

X. Because it is a foreign key, it must be a primary key in another table. Suppose A is
in table Y (if any) as a primary key, then attribute A is not allowed to be duplicated.

Indexes are physical objects of the database and can be divided into unique
indexes and non-unique indexes by uniqueness. A unique index is an object built
on a table with no duplicate values and can have a null value. A non-unique index is
an object built on a table, which can be null and can have duplicate values. The
purpose of indexes is to improve query efficiency and thus speed up queries. The
relation between primary key, foreign key and index are shown in Table 7.1.

Primary keys and foreign keys are logical concepts in the logical model, while indexes
are physical objects. Many databases can create primary keys when building a table,
at which time the attributes of the primary keys are unique non-null indexes.

After determining the entities and important attributes, you also need to under-
stand the relations between the entities. Relations are used to describe how entities
are related to each other. For example, if a book "includes" several chapters,
"includes" is the relation between these two entities. The relation is directional.
The book "includes" the chapter rather than the chapter "includes" the book, so the
relation between the chapter and the book is "belonging to".

Cardinality is a service rule that reflects the relation between two or more entities,
and the relation cardinality is used to express the concept of "linkage" in the E-R
method.

Figure 7.7 shows the illustration of cardinality in IDEF1X. Understanding the
meanings of the labels helps to quickly clarify the relation between entities as you
see the model structure. From left to right, the first symbol represents a one-to-many
relation, where the cardinality for many party is 0, 1, or n. The P symbol represents a
one-to-many relation, where the cardinality for many party is 1 or n. The difference

Table 7.1 Relation between primary key, foreign key and index

Primary key Foreign key Unique index
Non-unique
index

Characteristic Uniquely identifies
an instance, no dupli-
cate value, non-null,
and should not be
updated

Primary key of
another entity,
can be duplicate
and null

An object built
on a table, no
duplicate value,
can have a null
value

An object built
on a table, can
be null and can
have duplicate
values

Role Determines the
uniqueness of records
and ensures data
integrity

Establishes data
reference consis-
tency and rela-
tion between two
entities

Improves query
efficiency

Improves query
efficiency

Quantity An entity can have
only one primary key

An entity can
have multiple
foreign keys

A table can have
multiple unique
indexes

A table can
have multiple
non-unique
indexes

256 7 Database Design Fundamentals

between these two relations lies in the presence or absence of 0. If there is 0, it is an
optional relation, indicating that the relation may exist, which is expressed as "may"
in English, and the opposite is a mandatory relation, indicating that the relation must
exist, which is expressed as "must" in English. The Z symbol indicates that the
cardinality of the many party is 0 or n. "n" indicates that there are and only
n relations, for example, a rectangle has and only has four right angles, then the
rectangle and the right angle are in 1 ! 4 relations. The n-m symbol represents a
range interval relation. For example, the relation between months and days, how
many days there are in a month, and the relation between months and days is
1 ! (28–31) as the size of the month and leap years vary. The cardinality relation
represented by the {n} symbol cannot be illustrated by a simple number, and an
annotation is needed to show the value range of this n. Such annotated descriptions
are reflected in practical projects as some service rules, for example, the relation
between a month and a securities trading day. How many valid securities trading
days are contained in a month depends on the dates on which the stock exchange
specifies that listing transactions can take place during the month, which varies
annually with policy changes and needs to be stated separately.

In summary, the illustration of the cardinality symbols also reflects the important
point that the cardinalities reflect different relations, and such relations are likely to
reflect important service rules or constraints.

0, n is the expression form of may, which is an optional requirement.
1, n is the expression form of must, which is a mandatory requirement.
In practice, a cardinality of 0 may occur, indicating that a null value (NULL) may
occur when two tables are associated.

The significance of cardinality is that it reflects the relation, as shown in Fig. 7.8.
First of all, both the left and right sides are "including" relations, and the left side of
the relation is 1:1, which means that a chapter must belong to a book, that is, it
belongs to and only belongs to. For the example on the left, the values 0 to n are
possible expressions for the optional requirement that a book may contain one or
more chapters. And the cardinality equal to 0 expression means that a book is not
divided into chapters. In practice, when the cardinality is equal to 0, null values may
appear when the two tables are associated with each other. The example on the right

Fig. 7.7 Cardinality symbols in IDEF1X

7.4 Logical Design 257

takes the values 1 to n, which is a certain form of expression for the mandatory
requirement that the cardinality is not 0 means that a book must contain one or more
chapters.

Identifying relation occurs between independent and dependent entities, where
the instance unique identification of a child entity is associated with the parent entity
and the primary key attribute of the parent entity becomes one of the primary key
attributes of the child entity. The primary key book ID of the parent entity book
shown in Fig. 7.6 becomes the primary key attribute component of the chapter.

Non-identifying relation means that the child entity does not need the relation
with the parent entity to determine the uniqueness of the instance. At this point the
two entities are independent entities with no dependencies. In Fig. 7.6, if the chapter
entity does not depend on the book entity and becomes independent, then each
chapter number can only have one record, and the same chapters of different books
will cover each other, and there is a problem with this design. In this case, the
solution is to modify the non-identifying relation into an identifying relation. It can
be summarized as follows: according to whether the parent entity and child entity
have a foreign key relation, if there is a foreign key, it is a child entity; if there is a
primary key, it is the parent entity. The location of the foreign key determines
whether the parent entity and the child entity are of identifying or non-identifying
relation. If the foreign key appears in the primary key of the child entity, it is an
identifying relation; if the foreign key appears in the non-key attribute of the child
entity, it is a non-identifying relation.

Recursive relation means that the parent entity and the child entity are the same
entity, forming a recursive or nested relation, and the primary key of the entity also
becomes its own foreign key. A recursive relation occurs when the entities them-
selves form a hierarchical relation. In practical applications, such entities of recursive
relation are very common. For example, The organization structure includes superior
departments and subordinate departments. One department may have one or more
subordinate departments, the lowest department has no subordinate department, and
the top department has no superior department, as shown in Fig. 7.9.

Fig. 7.8 Different cardinalities reflect different relations

258 7 Database Design Fundamentals

Subtype relation is the relation between a subclass entity and the parent entity to
which it belongs. There are two types of subtype relation. One is complete subtype
relation, also called complete classification, where each instance of the parent entity
to which it belongs can be associated with an instance of the entity in the subtype
group, and all instances can be found in the classification case, with no exception.
The other is incomplete subtype, also called incomplete classification, where each
instance of the parent entity is not necessarily associated with an entity instance in
the subclass group, and only some instances can be classified in the subclass, and
some instances cannot be classified or do not need to care about the classification.
Remember that in practice you must not divide a pocket of other subclasses in order
to pursue complete classification, which will bring uncertainty to future service
development.

The logic model is summarized as follows.

(1) Entity is the metadata that describes the service.
(2) The primary key is an attribute or group of attributes that identifies the unique-

ness of an entity instance.
(3) Relations exist between entities only if there are foreign keys, and no relation can

be established without foreign keys.
(4) The cardinalities of the relations reflect the service rules between the relations.

The logic model is as follows.

• A customer can have only one type of savings account.
• A customer can have more than one type of savings account.
• An order can correspond to only one shipping order.
• A product includes multiple parts.

Fig. 7.9 Recursive relation

7.4 Logical Design 259

7.4.4 NF Theory

According to the specific service requirements, database design needs to make clear
how to construct a database design pattern that meets the requirements, and how
many entities need to be generated, which attributes these entities are composed of,
and what is the relation between entities. To be precise, these are the questions that
need to be addressed in the logical design stage of relational database. The relational
model is based on strict mathematical theory, so designing the relational model
based on the normalization theory of relational database can construct a reasonable
relational model. In the database logic design phase, the process of placing attributes
in the correct entity is called normalization. Different NFs satisfy different levels of
requirements.

Between 1971 and 1972, Dr. E.F. Codd systematically proposed the concept of
1NF to 3NF, which fully discussed the model normalization issues. Later, others
deepened and proposed higher-level NF standards, but for relational databases, it is
sufficient to achieve the 3NF in practical applications.

The relational data model designed by following the normalization theory has the
following implications.

1. It can avoid the generation of redundant data.
2. The risk of data inconsistency can be reduced.
3. The model has good scalability.
4. It can be flexibly adjusted to reflect changing service rules.

In contrast to normalization in the process of logical model checking, normalization
means denormalization when the physical model is built, i.e., violating some nor-
malization rules to improve the performance when the database is applied by
enhancing the physical rule attributes.

When determining entity attributes, the question often faced is: which attributes
belong to the corresponding entities? This is the question to be addressed by the NF
theory. For example, there will be a lot of business dealings between banks and
individuals, and the same person may be engaged in business such as saving,
spending on credit cards, buying financial products for investment and financial
management, and buying cars and houses with loans. For banks, different services
are carried out by different departments and service systems. For example, if you
spend with credit cards, you have a credit card (credit card number) and a customer
number in the credit card system; if you handle financial management, you open a
financial account; if you make a deposit, you open a savings account. The individual
a bank faces is a person. When building a model, how do you group individuals into
a single customer entity? Do you create three entities or use one entity when
counting a customer's assets? For customers who do not have a loan relation with
the bank, if there is a loan relation in the future, what should the current model
consider in advance for this change? These are all questions that need to be
addressed in the logical design, and the theoretical basis for this is the NF model.

260 7 Database Design Fundamentals

The one that satisfies the minimum requirements is called the first NF (1NF), the
one that further satisfies the requirements based on the 1NF is the second NF (2NF),
and so on. A low-level NF relation pattern can be transformed into a collection of
several higher-level NF relation patterns by schema decomposition. This process is
called normalization, as shown in Fig. 7.10.

Domain is the set of legal values of an attribute, which defines the valid range of
values of the attribute. The values inside the domain are legal data. The domain
reflects the relevant rules.

For example, the domain of the employee ID shown in Fig. 7.11 is an integer
greater than 0, so 0 and�10 are the data outside the domain. For example, if the cell
phone numbers are 11-bit length integers, 12345678910 is legal data; however, if we
consider the actual situation, it cannot be legal data because different operators have
different number segments.

If and only if each attribute contains only atomic values (which cannot be
sub-splittable), a relation (table or entity) conforms to the 1NF, and the value of
each attribute can only contain one value in the value range (not a subset).

Fig. 7.10 Relations
between NFs

Fig. 7.11 Domain

7.4 Logical Design 261

The rules satisfying the 1NF contain the following features.

(1) The attribute value is atomic (non-sub-splittable).
(2) The number of attribute value is single and cannot be a subset inside the value

domain.
(3) A primary key is required to ensure that there are no duplicate records in the

database.
(4) There is no duplicate group problem for the attributes in the entity, because

duplicate groups are prone to producing null values somewhere and unstable
structure, that is, the service development that exists in the actual application can
bring service instability, and duplicate groups can also lead to ambiguity
when used.

For example, in the phone number column shown in Table 7.2, there is a big problem
with the phone number attribute: the value format is not uniform, and contains
non-numeric characters. The bigger problem is that there are two people with
more than one phone number, and the two numbers are subsets of the phone number
value field, which violates the feature "the number of attribute value is single and
cannot be a subset inside the value domain". This kind of table structure is common
in many practical scenarios. Take a list of account followers in social applications as
an example. For this dynamic data, commas are often used to separate a series of
accounts and they are designed as a field.

If the two phone numbers are split into two fields, they are shown in Table 7.3.
It seems to solve the atomicity problem, but the repeating group problem arises.

The repeating group problem technically takes values atomically, but conceptually
repeats the same attributes. The reason why we want to avoid the repeating group
problem is that the following anomalies are introduced by the repeating group.

(1) Some records produce null values. For example, some customers have only one
phone number, without the second phone number, which would result in a null
value in the Phone Number 2 field.

(2) The structure may be unstable. For example, some people have three phone
numbers or even more, so they require to update the table structure frequently to

Table 7.2 Customer information table (1)

Customer ID (PK) Name Age Phone number

123 XXX 30 555-666-1234, 333-888-5678

456 YYY 40 555-777-8080 ext. 43, 155-0099-9900

789 ZZZ 50 777-808-9234

Table 7.3 Customer information table (2)

Customer ID (PK) Name Age Phone number 1 Phone number 2

123 XXX 30 555-666-1234 333-888-5678

456 YYY 40 555-777-8080 ext. 43 155-0099-9900

789 ZZZ 50 777-808-9234

262 7 Database Design Fundamentals

adapt to new situations, which will lead to instability of the model structure, that
is, business development brings instability impact to the model.

(3) Ambiguity arise when using data. Which number should be placed first? Which
number should be put in the second place? What are the rules? Which telephone
number shall prevail when obtaining contact information of customers? All of
the above questions can lead to semantic confusion and ambiguity in the use of
data for service.

To solve the above problems, the solution is to turn the duplicate group into a high
table and put the phone number in the same attribute. This is in line with the 1NF, as
shown in Table 7.4.

Atomicity means indivisibility .But to which degree should it be split? Many
people are prone to misunderstand the concept of atomicity in practical applications.
Generally speaking codes with coding rules are actually composite codes, which are
divisible in terms of rules. For example, ID numbers and cell phone numbers can
both be further split into data of smaller granularity, such as birth year and gender.
However, from the field perspective, the field of ID number is legal as long as it
conforms to the coding rules, i.e., it is atomic data and does not need further splitting.

The 2NF means that each table must have a primary key, with other data elements
corresponding to the primary key one by one. This relation is often referred to as
functional dependence, where all other data elements in the table depend on the
primary key, or the data element is uniquely identified by the primary key. The 2NF
emphasizes full functional dependence, which simply put, all non-primary key fields
are dependent on the primary key as a whole, not some of them.

There are two necessary conditions to satisfy the 2NF: firstly, the 1NF should be
satisfied; secondly, every non-primary attribute is fully functionally dependent on
any of the candidate keys. It can be simply understood that all non-primary key fields
depend on the whole primary key, not a part of it. What is shown in Table 7.5 does
not satisfy the 2NF because the order date depends only on the order number and has
nothing to do with the part number. So the table will have a lot of redundant data as
the order number is repeated.

A simple tip: If an entity has only one primary key field, then basically the entity is
satisfying the 2NF.

Table 7.4 Customer infor-
mation table (3)

Customer ID (PK) Name Age Phone number

123 XXX 30 555-666-1234

123 XXX 30 333-888-5678

456 YYY 40 555-777-8080 ext. 43

456 YYY 40 155-0099-9900

789 ZZZ 50 777-808-9234

7.4 Logical Design 263

Modify Table 7.5 to include the order date and the dependent order number as
primary keys to form another entity, then both entities now satisfy the 2NF. This is
the normalization, where a first-level NF can be converted into a collection of several
higher-level NF relational patterns through schema decomposition, as shown in
Tables 7.6 and 7.7.

The 3NF is that all non-primary key fields depend on the whole primary key, not
on other attributes of the non-primary key. There are two necessary conditions to
satisfy the 3NF: firstly, the 2NF should be satisfied; secondly, every non-primary
attribute is not transitively dependent on the primary key. That is to say, the whole
non-primary key field of the 3NF depends on the whole primary key instead of the
non-primary key attribute. The customer name shown in Table 7.8 depends on the
non-primary key attribute customer ID, so the 3NF is not satisfied.

The 3NF is mainly for the field redundancy constraint, which cannot have derived
fields in the table. If there are redundant fields in the table, when updating data, the
update efficiency will be reduced because of the existence of redundant data, which
will easily lead to inconsistent data. The solution is to split the table into two tables
and form a primary-foreign key relation, as shown in Tables 7.9 and 7.10.

Table 7.5 Order and part table 1

Order number (PK,FK) Part number (FK) Order date Number of parts required

1000 1234 2010-08-01 200

1000 5678 2010-08-01 100

2000 1234 2010-11-15 50

3000 7890 2010-09-30 300

Table 7.6 Order and part table (2)

Order number (PK, FK) Part number (FK) Number of parts required

1000 1234 200

1000 5678 100

2000 1234 50

3000 7890 300

Table 7.7 Order number
table

Order number (PK) Order date

1000 2010-08-01

2000 2010-11-15

3000 2010-09-30

Table 7.8 Order and customer table

Order number (PK) Order date Customer ID Customer name

1000 2010-08-01 1230008 Mr. Wang

2000 2010-11-15 1290004 Mr. Li

3000 2010-09-30 1280003 Ms. Zhao

264 7 Database Design Fundamentals

In 1970, Dr. E.F. Codd, an IBM researcher, published a paper that introduced the
concept of relational model and laid the theoretical foundation of relational model.
After publishing this paper, he defined the concept of the 1NF, 2NF and 3NF in the
early 1970s. In practical applications, it is sufficient for a relational model to satisfy
the 3NF.

The KEY—1st Normal Form (1NF)
The WHOLE Key—2nd Normal Form (2NF)
AND NOTHING BUT the Key—3rd Normal Form (3NF)—E.F. Codd

Database design now satisfies at most the 3NF. It is generally believed that although
higher NFs have better constraint on data relations, they also make database I/O more
busy due to the increase of data relation tables, so in real projects, there are basically
no cases that meet the 3NF or higher.

In the data warehouse, the application layer often encounters a star-shaped or
snowflake-shaped model. The snowflake-shaped model is a model structure com-
monly used in business intelligence (BI) systems and reporting systems, named
because the dimensions of the fact table are similar to snowflakes after expansion, as
shown in Fig. 7.12. This model basically meets the requirements of the 3NF, or at
least the 2NF in many scenarios.

7.4.5 Logic Design Considerations

When designing a logic model, some principle issues should be noted. The first is the
establishment of naming rules. Similar to other language development, it is advisable
to establish naming rules and follow them during logical modeling. The main
purpose of establishing naming rules is to unify ideas, facilitate communication
and achieve standardized development. For example, in the case of unified naming,
the amount is amount, which is abbreviated as amt, and its corresponding physical
type is DECIMAL(9,2). This field needs to be accurate to two decimal places when
calculating. However, if the naming is inconsistent, for example, some people define
the customer ID as cid, and some people define it as customer_id, it is easy to

Table 7.9 Order table Order number (PK) Order date Customer ID (FK)

1000 2010-08-01 1230008

2000 2010-11-15 1290004

3000 2010-09-30 1280003

Table 7.10 Customer table Customer ID (PK) Customer name

1230008 Mr. Wang

1290004 Mr. Li

1280003 Ms. Zhao

7.4 Logical Design 265

question whether the two attributes belong to the same object, which makes different
roles have different understandings of the same model.

The naming suggestions for entities and attributes are as follows.

(1) Entity name: capitalize the type domain + entity descriptor (full name, initial
capitalization).

(2) Attribute name: use full names with initial capitalization, and some conventional
abbreviations are provided after the spaces.

(3) Avoid mixing English and Chinese Pinyin.
(4) If it is abbreviated, it must be the abbreviation of English words, avoid using the

acronym abbreviation of pinyin.

Also pay attention to designing the logic model according to the design process,
determining the entities and attributes, for example, defining the entity's primary key
(PK), defining some non-primary key attributes (Non-Key Attribute), defining
non-unique attribute groups and adding the corresponding comment content.

Finally, it is necessary to determine the relation between entities, e.g., use foreign
keys to determine whether the relation between entities is identifiable and determine
whether the cardinality of the relation is of 1:1, 1:n or n:m. When adding non-key
attributes of entities, it is important to consider whether the added attributes conform
to the design of the 3NF according to the rules of the 3NF. If the added attributes
violate the 3NF, entity splitting is required to determine the relation between the new
entity and the original entity. The content of the annotation is generally a literal
description of the service meaning, code value, etc.

Fig. 7.12 Snowflake-shaped model

266 7 Database Design Fundamentals

7.5 Physical Design

7.5.1 Physical Design and Physical Models

Physical design is the adjustment of the physical attributes of the model based on the
logical model in order to optimize the database performance and improve the
efficiency of service operation and application efficiency. The physical design
should be adjusted in conjunction with the physical attributes of the target database
product, with the ultimate goal of generating a deployable DDL for the target
database.

The main contents include but are not limited to the following.

(1) Non-regularized processing of entities.
(2) Physical naming of tables and fields.
(3) Determining the type of fields, including attributes such as length, precision, and

case sensitivity.
(4) Adding physical objects that do not exist in the logical model, such as indexes,

constraints, partitions, etc.

Table 7.11 shows the designations of the same concept at different stages. For
example, relations in relational theory are called entities in the logical model and
tables in the physical model. A tuple in relational theory is an instance in the logical
model and a row in the physical model. Attributes in relational theory are called
attributes in the logical model and fields of a table in the physical model.

In the comparison between the logical and physical models shown in Table 7.12,
what are included in the logical model are entities and attributes, which correspond

Table 7.11 Names of the same concept at different stages

Operational file system Relational theory Logic model Physical model

File Relation Entity Table

Record Tuple Instance Row

Field Attribute Attribute Column

Table 7.12 Comparison of logical and physical models

Logic model Physical model

Content Entities, attributes Tables, fields

Key value Primary keys Indexes, unique constraints

Name
definition

Service name Physical naming (restricted by database
product)

Regularization 3NF compliant Non-regularization based on performance

Redundant data Without With

Derived data Without With

Users Service personnel and
modelers

Database administrators and developers

7.5 Physical Design 267

to tables and fields in the physical model. As for the key values, the physical model
generally does not use primary keys, but more often uses unique constraints and
not-null constraints to achieve this. Because the data quality requirement is too high
if primary key constraint is used, the constraint requirement is generally reduced in
the physical implementation, and the primary key is mainly reflected in the logical
concept. In terms of name definition, the logical model is named according to the
service rules and the naming convention of real-world objects, while the physical
model needs to consider the limitations of database products, such as no illegal
characters, no database keywords, and no over-length. In terms of regularization, the
logical model design should try to meet the 3NF and be regularized; the physical
model pursues high performance and may have to be denormalized, which is
non-regularized processing.

7.5.2 Denormalization of the Physical Model

Denormalization, also called non-regularization processing, is the process and tech-
nical means that is the opposite of the normalization process, for example, the
process of downgrading a model from the 3NF to 2NF or 1NF. The physical
model design should take into account the physical limitations of the database in
terms of performance and application requirements. Theoretically, if the hardware
conditions are unlimited, such as unlimited CPU speed, unlimited memory, unlim-
ited storage space, unlimited bandwidth and so on, there is no need to denormalize.
However, it is precisely because of limited resources and limited hardware condi-
tions that the physical model requires denormalization, and denormalization needs to
be carried out moderately to avoid possible data redundancy problems and potential
risks of data inconsistency.

Frequent table linkage operations can be avoided by adding redundant columns,
as shown in Tables 7.13, 7.14, and 7.15. There is a primary-foreign key relation
between the order table and the customer table, and if a report can only display the
customer number, it is very inconvenient for users. So you need to perform linkage
operation to display and output customer names together, which is more convenient
for users. However, the linkage operation consumes resources, and in practice, it is
common to have more than a dozen code tables associated in one query. Without
data redundancy processing, a lot of real-time computing resources will be con-
sumed to perform linkage operations, which will affect query efficiency. Therefore,
adding redundant columns and performing pre-linkage operations can improve
query efficiency.

Table 7.13 Order table Order number (PK) Order date Customer ID (FK)

1000 2010-08-01 1230008

2000 2010-11-15 1290004

3000 2010-09-30 1280003

268 7 Database Design Fundamentals

The complexity of SQL can be reduced by adding redundant columns and using
duplicate groups, as shown in Tables 7.16 and 7.17. This example is a conversion
from a high table above to a wide table below, a means often used in the front-end
report query process, which is more suitable for fixed class reports with style
requirements determined in advance.

Tables 7.18 and 7.19 show the reduction of function calculation by adding
derived columns, which is a very common application scenario. For example,
extracting customer age information from ID card numbers; classifying users into
VIP customers, platinum customers, ordinary customers, etc. based on their spend-
ing amounts; and flag suspicious transactions and suspicious accounts after judging

Table 7.14 Customer table Customer ID (PK) Customer name

1230008 Mr. Wang

1290004 Mr. Li

1280003 Ms. Zhao

Table 7.15 Order and customer table

Order number (PK) Order date Customer ID Customer name

1000 2010-08-01 1230008 Mr. Wang

2000 2010-11-15 1290004 Mr. Li

3000 2010-09-30 1280003 Ms. Zhao

Table 7.16 Sales monthly report of a department

Department number (PK) Month (PK) Sales amount/yuan

1000 2019-01 1,000,000

1000 2019-02 1,400,000

1000 2019-03 1,800,000

2000 2019-01 900,000

2000 2019-02 1,300,000

2000 2019-03 2,000,000

Table 7.17 Customer table

Department
number (PK)

January
sales/yuan

February
Sales/yuan

March sales/
yuan

Average monthly sales in
Q1/yuan

1000 1,000,000 1,400,000 1,800,000 1,400,000

2000 900,000 1,300,000 2,000,000 1,400,000

Table 7.18 Original cus-
tomer table

Customer ID (PK) Customer name Age

123008 Mr. Wang 65

129004 Mr. Li 50

128003 Ms. Zhao 45

128009 Ms. Zhang 20

7.5 Physical Design 269

them in the AML system. This method is generally used in customer relation
management projects. In Table 7.19, users are divided into different groups by
age, including elderly, middle-aged and young.

Denormalization is commonly handled by the following means.

(1) Adding duplicate groups.
(2) Performing pre-linkage.
(3) Adding derived fields.
(4) Creating summary tables or temporary tables.
(5) Horizontally or vertically splitting tables.

The negative impact of denormalization is relatively large for OLAP systems, but is
more common for OLTP systems, and is generally used to improve the system's high
concurrency performance for scenarios that require a large number of transactions.
The impact of denormalization needs to be considered more in OLAP systems for the
following reasons.

(1) Denormalization does not bring performance improvement to all processing
processes, and the negative impact needs to be balanced.

(2) Denormalization may sacrifice the flexibility of data models.
(3) Denormalization poses the risk of data inconsistency.

7.5.3 Maintaining Data Integrity

Denormalization brings the increase of redundant data, which requires certain
management measures to maintain data integrity. There are three common
processing methods.

(1) Maintain by batch processing. This approach is to modify the replicated or
derived columns, and after a certain period of time, a batch of processing jobs
or stored procedures are executed to modify the replicated or derived columns.
This can only be used in cases where the real-time requirement is not strict.

(2) Add, delete, and modify all designed tables during the same transaction in the
application implementation. But be sure to pay attention to the data quality,
because it is easy to be neglected when the demand changes frequently, which
leads to data quality problems.

Table 7.19 Derived customer table

Customer ID (PK) Customer name Age Customer group

123008 Mr. Wang 65 Elderly

129004 Mr. Li 50 Middle-aged

128003 Ms. Zhao 45 Middle-aged

128009 Ms. Zhang 20 Youth

270 7 Database Design Fundamentals

(3) Use triggers. The trigger has good real-time processing effect. After the appli-
cation updates the data of Table A, the database will automatically trigger the
update of Table B, but the cost of using the trigger is that it will cause pressure on
the database. The use of triggers in the actual application means a significant
negative impact on performance, so there are fewer and fewer scenes using it.

7.5.4 Establishing a Physicalized Naming Convention

Naming convention should be established when physicalizing. Firstly, naming
should be based on the physical characteristics of the database, then illegal charac-
ters should be avoided in the name, and the reserved keywords of the physical
database should be avoided. English words which are meaningful, easy to remember,
descriptive, short and unique should be used as far as possible, and Chinese Pinyin is
not recommended. The developed naming convention should be unified and strictly
observed within the project team. Name abbreviations should be agreed upon.
Physical characteristics generally refer to the case sensitivity and the length limit
of table names. For example, in GaussDB (DWS), it is specified that the name cannot
exceed 63 characters.

Using database reserved keywords may pass at the syntax level, but will bring
uncontrollable risks to the subsequent operations and maintenance work, other
automated management work and future system upgrades. Generally database object
names are case-insensitive when implemented at the physical level, so do not adopt
the special use of double quotes to force case differentiation.

Table prefixes can be unified using t, view prefixes unified using v, index prefixes
unified using ix. When naming, the corresponding prefix should be added, followed
by a meaningful specific name, and the whole name should be in lowercase, as
shown in Table 7.20. The examples here are for reference only, which are not
mandatory convention.

Table 7.20 Object naming convention

Object Prefix Example Description

Table t_ t_tablename t_tablename

Common
view

v_ v_viewname v_viewname

Index ix_ ix_tablename_columnname The most commonly used index, denoted by
the prefix ix_.
If the table name or field name is too long, it
is represented by an abbreviation of the table
name and field name, using generic abbrevi-
ations or de-voweled abbreviations as much
as possible

Trigger trg_ trg_triggername trg_triggername

Stored
procedure

p_ p_procedurename p_procedurename

Function f_ f_functionname f_functionname

7.5 Physical Design 271

7.5.5 Physicalizing Tables and Fields

The table-level physicalization operations listed here are only part of the work, not
covering all table-level physicalization work.

There are several methods for table physicalization as follows.

(1) Perform the denormalization operation using the methods described earlier.
(2) Decide whether to perform partitioning. Partitioning large tables can reduce the

amount of I/O scanning workload and narrow the scope of queries. But the
granularity of partitioning is not the finer the better. For example, if you only
query monthly summary or conduct monthly query, you only need to partition
by month instead of by day.

(3) Decide whether to split the history table and the current table. History table is
some cold data with low frequency of use, for which you can use low-speed
storage; and current table is the hot data with high frequency of query, for which
you can use high-speed storage. History tables can also use compression to
reduce the storage space occupied.

For field-level physicalization efforts, first try to use data types with short fields.
Data types with shorter lengths not only reduce the size of data files and improve I/O
performance, but also reduce memory consumption during related calculations and
improve computational performance. For example, for integer data, try not to use
INT if you can use SMALLINT, and try not to use BIGINT if you can use INT. The
second is to use consistent data types, trying to use the same data type for table
linkage operations. Otherwise, the database must dynamically convert them into the
same data type for comparison, which will bring some performance overhead. The
last is the use of efficient data. Generally speaking, integer data operations (including
¼,>,<,�,�, 6¼ and other conventional comparison operations, as well as GROUP
BY) are more efficient than strings and floating-point numbers.

The premise of using efficient data is that the data type must meet the service
requirements of the value field. For example, the service context is the amount field
with decimals, then you cannot force the use of integers in pursuit of high efficiency.

Integer data is an efficient type compared to string, TINYINT only occupies
1 byte and takes values in the range of 0–255, which is the most efficient. But it
belongs to the data type that comes with GaussDB database. At present, the ODBC
of GaussDB database is open source odbc driver, with poor compatibility with
tinydb. SMALLINT occupies 2 bytes, taking values in the range of �327 68 to
+32 767, but the field can only use numbers in the future, and cannot use such
characters as a, b, c for expansion. INT occupies 4 bytes, with the range of values
from �2 147 483 648 to +2 147 483 647; BIGINT occupies 8 bytes, from �9
223 372 036 854 775 808 to +9 223 372 036 854 775 807; CHAR(1) occupies
1 byte, with efficiency lower than the integer, but supporting characters 0–9, and A–

272 7 Database Design Fundamentals

Z; VARCHAR(1) takes up at least three characters for the leading characters. So
there is no absolute standard, just decide according to the actual scenario.

Thinking

A certain identification class field takes values of 0,1. If I want to set a data type for
this field, which one is appropriate?

Common constraints on the field level are DEFAULT constraints, non-null
constraints, unique constraints, primary key constraints and check constraints. If
the field value can be completed from the service level, it is not recommended to use
DEFAULT constraints to avoid unintended results when data is loaded. It is
recommended to add a non-null constraint to a field where a null value clearly
does not exist. The primary key constraint is actually equal to the unique constraint
plus the non-null constraint, so it should be added if the conditions allow. The check
constraint is a requirement for data quality, and data that does not satisfy the
constraint will cause SQL execution to fail when inserted into the data table.

Check constraints have little impact on GaussDB (for MySQL) as a whole. In
OLTP system, if some data cannot be inserted because the constraint is not satisfied,
you can record these failure messages and deal with them by other means instead.
However, in GaussDB (DWS) system, it affects the whole job processing system and
has relatively more impact. In the OLAP system, the processing of large data volume
operations may cause the whole SQL statement or operation to fail because some
data records do not meet the check constraints, thus affecting the overall warehouse's
data processing process. Therefore, in the OLAP system, the data quality of the local
data is constrained by the data application as much as possible, so do not add
constraints on the physical tables and fields.

For the creation and use of indexes, here is a list of cases in which indexes are
allowed to add, rather than mandatory requirements. Despite the addition of indexes,
it is up to the database system to make its own optimization judgments about whether
indexes can be used. When using indexes is more efficient and faster, they will be
used; if the use is more costly and the efficiency is not significantly improved, the use
of indexes will not be forced.

The common index use scenarios are as follows.

(1) Create indexes on columns that are frequently required to be searched and
queried, which can speed up the search and query.

(2) Create an index on a column that used as the primary key, which emphasizes the
uniqueness of the column and organizes the arrangement structure of the data in
the table.

(3) Create indexes on columns that often use joins. These columns are mainly
foreign keys, so the speed of association can be accelerated.

(4) Create indexes on columns that often need to be searched based on ranges,
because the indexes are already sorted and their specified ranges are contiguous.

(5) Create indexes on columns that often need to be sorted, also because the indexes
are already sorted, and these queries can shorten the query time of sorting by
index sorting.

7.5 Physical Design 273

(6) Create indexes on the columns that often use the WHERE clause to speed up the
judgment of the condition.

The above scenario allows the use of indexes, but it is not necessary. Whether the
indexes can be used after being added is determined by the database system itself.

However, creating more indexes will have negative effects, such as the need for
more index space; when inserting the base table data, the efficiency of the insertion
operation will be reduced because the index data should be inserted at the same time.
Therefore, invalid indexes should be deleted in time to avoid wasting space.

Other physicalization means are judged to be used according to the situation, for
example, whether to further compress the data, whether to encrypt or desensitize the
data, etc.

7.5.6 Using Modeling Software

During the physical design process, we typically use modeling software for both
logical and physical modeling. Automation software delivers many benefits, such as
forward generation of DDL, reverse analysis of database, and comprehensive satis-
faction of various requirements in modeling, so that efficient modeling can be
carried out.

Advantages of using modeling software for logical modeling and physical
modeling are as follows.

(1) Powerful and rich.
(2) Forward DDL generation and reverse analysis of database.
(3) Free switch of views between logical model and physical model.
(4) Comprehensive satisfaction of various requirements in modeling for efficient

modeling.

The following are some of the commonly used modeling software.

(1) ERwin's full name is ERwin Data Modeler, a data modeling tool from CA,
which supports all major database systems.

(2) PowerDesigner is SAP's enterprise modeling and design solution that uses a
model-driven approach to integrate service and IT, helps deploy effective
enterprise architecture, and provides powerful analysis and design techniques
for R&D lifecycle management. PowerDesigner uniquely integrates multiple
standard data modeling techniques (UML, service process modeling, and
market-leading data modeling) with leading development platforms such
as. NET, WorkSpace, PowerBuilder, Java, Eclipse, etc., providing business
analysis and standardized database design solutions for traditional software
development cycle management.

(3) ER/Studio is a set of model-driven data structure management and database
design products that help companies discover, reuse and document data assets. It
empowers data structures with the ability to fully analyze existing data sources

274 7 Database Design Fundamentals

through regressive database support, and design and implement high-quality
database structures based on service requirements. The easy-to-read visual data
structure facilitates communication between service analysts and developers at
work. ER/Studio Enterprise enables enterprises and task teams to collaborate
through a central repository.

(4) dbeaver is a free, open source, universal database tool for developers and
database administrators.

(5) pgModeler is a dedicated modeling tool for PostgreSQL databases, developed
using Qt and supporting Windows, Linux operating systems and OS X plat-
forms, which uses the classic entity linkage diagram.

7.5.7 Physical Model Products

The products that should be output during the physical model design phase include
the following:

(1) A physical data model, usually an engineering file for some automated modeling
software;

(2) Physical model naming convention, which is a standard convention that every-
one in the project should follow;

(3) Design specification of the physical data model;
(4) DDL table building statements for the target database.

7.6 Database Design Case

7.6.1 Scenario Description

This scenario is a customer placing an order to purchase equipment. A sample order
table is shown in Fig. 7.13. After the customer purchases the equipment, he/she
needs to fill in the relevant information in the order form.

The current demand is to design the model of the underlying database according
to this order style, taking into account the following three requirements.

(1) Record the relevant data information in the database.
(2) Enable to query the information about the order through the database system.
(3) Support some statistical reports of sales volume.

7.6.2 Regularization Processing

The entities and attributes that can be proposed in the order shown in Fig. 7.13 are
order number, order date, customer ID, customer name, contact information, ID

7.6 Database Design Case 275

number, customer address, part number, part description, part unit price, part
quantity, part total price, and order total price.

If this information is generated directly into an entity where the design result is a
table that needs to cover all the information, then the part number, part description,
part unit price, part quantity, and part total price are called duplicate attribute groups
that have to appear repeatedly in the entity, as shown in Fig. 7.14. For example,
including Part Number 1, Part Description 1, Part Unit Price 1, Part Quantity 1, Part
Number 2, Part Description 2, Part Unit Price 2, etc. This situation does not satisfy
the 1NF.

For the duplicate group problem of part information, the relevant information of
the part is extracted to form a separate entity with several parts for each order, then

Fig. 7.13 Order form for a customer to purchase equipment

Fig. 7.14 List of
extractable attributes

276 7 Database Design Fundamentals

the primary key of the new entity is the order number plus the part number, as shown
in Fig. 7.15.

Thinking

After eliminating the duplicate groups, which NF does the model now conform to?

There are still partial dependencies on the information of the parts in the current
model, so normalization should be continued to resolve the partial dependencies.
Extract the partial information that depends only on the part number to form a new
entity, the part entity, as shown in Fig. 7.16.

Thinking

After eliminating the partial dependencies, which NF does the model now
conform to?

Fig. 7.15 Order and order-
part entities

Fig. 7.16 Elimination of partial dependencies

7.6 Database Design Case 277

The problem with the current model is that the customer information depends on
the customer ID, and the customer ID depends on the order number. Such depen-
dency has a transferability and is not directly dependent. So a conversion from the
2NF to the 3NF has to be implemented to eliminate this transmissive dependency.

Eliminating the transmissive dependency is to generate the customer information
as a separate entity, the customer entity, as shown in Fig. 7.17.

Thinking

After eliminating the transmissive dependency, which NF does the model now
conform to?

At this point, the logical model is essentially complete. However, note that the
order total price and the part total price are derived fields, which are not strictly
considered to meet the requirements of the 3NF, so they should be "erased".

After the regularization process is completed, the entity of the 3NF model is
obtained, and the primary key and foreign key are marked in the two-dimensional
table. Experience the 3NF model, as shown in Tables 7.21 and 7.22.

Since the part total price attribute has been removed from the order-part table, if
you want to get the part total price now, you need to do the operation based on the

Fig. 7.17 Separate customer information

Table 7.21 Order table Order number (PK) Order date Customer ID (FK)

1000 2010-08-01 123008

2000 2010-11-15 129004

3000 2010-09-30 128003

278 7 Database Design Fundamentals

order-part table and multiply the part quantity by the sales price. The pseudo SQL
code is as follows.

select 订单编号, 部件编号, (销售价格*部件数量)as部件合计价格 from 订单部

件表;

If you now want to get the order total price, the pseudo SQL code is as follows.

SELECT 订单编号, SUM (销售价格*部件数量)AS订单合计金额 FROM 订单部件表;

7.6.3 Data Types and Length

After completing the logical model design, the physical model design begins. First,
name the table and field according to certain convention, avoid using database
keywords, and perform certain case-specific design; then determine the data type
at the field level, and if it involves characters, the length of the field definition, then
determine its upper limit according to the possible value fields of the actual data;
after that determine whether each field needs to add non-null constraints, unique
constraints, and other constraints, as shown in Tables 7.23, 7.24, 7.25, and 7.26.

The samples in the above tables are a kind of example, you can adjust them as the
actual situation required in practice.

Table 7.22 Order-part table

Order number (PK, FK) Part number (PK, FK) Sales price Part quantity

1000 8001 100 3

1000 8002 400 5

2000 8002 200 2

2000 8003 100 1

3000 8004 50 4

3000 8005 80 8

Table 7.23 ORDER table Field name Field type Constraint

Order_Num INTEGER NOT NULL, UNIQUE

Order_Date DATE NOT NULL

Customer_Id INTEGER NOT NULL

7.6 Database Design Case 279

Thinking

If the value type of the set price is DEIMAL(5,2), what is the range of the value field?

7.6.4 Denormalization

The denormalization shown in Tables 7.27 and 7.28 solves some service problems
by adding some derived fields. For example, Total_Price states the order total price
of a particular order. Item_Total indicate the sales of a part in an order.

Whether to continue to derive fields or perform other pre-association operations
depends on the service problems to be solved, the computational complexity, and
whether denormalization can speed up these queries.

Table 7.24 CUSTOMER
table

Field name Field type Constraint

Customer_Id INTEGER NOT NULL, UNIQUE

Cust_Name VARCHAR(60) NOT NULL

Mobile_Num VARCHAR(30)

Id_Num VARCHAR(20)

Cust_Address VARCHAR(120)

Table 7.25 ORDER_ITEM
table

Field name Field type Constraint

Order_Num INTEGER NOT NULL

Item_Id INTEGER NOT NULL

Sale_Price DECIMAL(5,2) NOT NULL

Item_Quantity SMALLINT NOT NULL

Table 7.26 ITEM table Field name Field type Constraint

Item_Id INTEGER NOT NULL, UNIQUE

Description VARCHAR(120)

Retail_Price DECIMAL(5,2) NOT NULL

Table 7.27 Order table Field name Field type Constraint

Order_Num INTEGER NOT NULL, UNIQUE

Order_Date DATE NOT NULL

Customer_Id INTEGER NOT NULL

Total_Price DECIMAL(9,2) NOT NULL

280 7 Database Design Fundamentals

Thinking

What is the average monthly sales for Q1? What are the top three parts by sales? You
can further refine the derived fields on your own based on some service issues.

7.6.5 Index Selection

Taking Tables 7.23 and 7.25 as examples, the operation results of adding indexes are
shown in Tables 7.29 and 7.30. Here some partition indexes and query indexes are
added. There is no standard answer for adding indexes, and the same needs to be
judged according to the actual scenario and data volume. For OLTP, each table
needs to add a primary key, and if there is no natural primary key, then a field like
sequence can be used as a proxy primary key. For OLAP distributed database, each
table needs to further select distribution keys upon careful consideration.

Table 7.28 order detail table Field name Field type Constraint

Order_Num INTEGER NOT NULL

Item_Id INTEGER NOT NULL

Sale_Price DECIMAL(5,2) NOT NULL

Item_Quantity SMALLINT NOT NULL

Item_Total DECIMAL(9,2) NOT NULL

Table 7.29 Index selection (1)

Field name Field type Constraint Index selection

Order_Num INTEGER NOT NULL, UNIQUE

Order_Date DATE NOT NULL Partitioning can be considered

Customer_Id INTEGER NOT NULL

Total_Price DECIMAL(9,2) NOT NULL

Table 7.30 Index selection (2)

Field name Field type Constraint Index selection

Order_Num INTEGER NOT NULL

Item_Id INTEGER NOT NULL Add indexes

Sale_Price DECIMAL(5,2) NOT NULL

Item_Quantity SMALLINT NOT NULL

Item_Total DECIMAL(9,2) NOT NULL

7.6 Database Design Case 281

7.7 Summary

This chapter focuses on the New Orleans design methodology to database modeling,
and explains the four phases of requirement analysis, conceptual design, logical
design, and physical design, with the tasks of each design phase clearly explained.
The significance of requirement analysis stage is expounded. The E-R approach is
introduced in the conceptual design stage. For the logical design section, the
important basic concepts and the 3NF are expounded, and each NF is explained in
depth with examples. For the stage of physical design, the denormalization means
and the key points in the work are emphasized. The chapter concludes with a small
practical case to illustrate the main elements of logical and physical modeling.

7.8 Exercises

1. [Single Choice] The next phase after the logical design phase in the New
Orleans design methodology is ().

A. Requirement analysis
B. Physical design
C. Conceptual design
D. Logical design

2. [Multiple Choice] In what ways is the database operating environment efficient?
()

A. Data access efficiency
B. Time cycle of data storage
C. Storage space utilization
D. Efficiency of database system operation and management

3. [Multiple Choice] In the process of requirement investigation, which of the
following methods can be used? ()

A. Questionnaire survey
B. Interviews with service personnel
C. Sample data collection, and data analysis
D. Review or the User Requirement Specification

4. [Multiple Choice] Which of the following options are included in the three
elements of the E-R diagram in model design? ()

A. Entity
B. Relation
C. Cardinality
D. Attribute

282 7 Database Design Fundamentals

5. [Multiple Choice] The linkage between entities are ().

A. One-to-one linkage (1:1)
B. One-to-null linkage (1:0)
C. One-to-many linkage (1:n)
D. Many-to-many linkage (m:n)

6. An entity is a collection of real-world objects that have common attributes and
can be distinguished from each other. For example, teachers, students, and
courses are all entities, as shown in Fig. 7.2. ()

A. True
B. False

7. [Multiple Choice] The significance of normalized modeling in the logic model
design process includes ().

A. Improve the efficiency of database use
B. Reduce redundant data
C. Make the model well scalable
D. Reduce the possibility of data inconsistency

8. [True or False] A model that satisfies the 3NF must satisfy the 2NF. ()

A. True
B. False

9. [Multiple Choice] The physical model has the following characteristics com-
pared to the logical model: ().

A. Strictly observes the 3NF
B. Can contain redundant data
C. Mainly for database administrators and developers
D. Can contain derived data

10. [Multiple Choice] Which of the following are ways to data denormalization? ()

A. Add derived fields
B. Create a summary or temporary table
C. Perform pre-linkage
D. Add duplicate groups

11. [Multiple Choice] The effects of using indexes are ().

A. It will take up more physical storage space
B. With indexes in effect, the efficiency of queries can be greatly improved
C. The efficiency of inserting base tables will be reduced
D. Once the index is established, the database optimizer will definitely use the

index in queries

7.8 Exercises 283

12. [True or False] Because partitioning can reduce the I/O scan overhead during
data query, the more partitions are created during the physicalization process,
the better. ()

A. True
B. False

13. [True or False] The foreign key is the unique identifier that identifies each
instance in an entity. ()

A. True
B. False

14. [True or False] Atomicity that satisfies the 1NF is the sub-splitting of each
attribute to the smallest granularity that is non-sub-splittable. ()

A. True
B. False

15. [True or False] A relation between entities exists only if a foreign key exists, and
a relation between two entities cannot be established without a foreign key. ()

A. True
B. False

16. [Multiple Choice] Which of the following options in the process of building a
logical model is within the scope of work for determining the attributes in an
entity? ()

A. Define the primary key of the entity
B. Define some of the non-key attributes
C. Define non-unique attribute groups
D. Define constraints on attributes

17. [True or False] The data dictionary in the requirement analysis phase of the New
Orleans design methodology has the same meaning as the data dictionary in a
database product. ()

A. True
B. False

284 7 Database Design Fundamentals

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

7.8 Exercises 285

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 8
Introduction to Huawei Cloud Database
GaussDB

Database plays an important role in enterprises, and Huawei GaussDB database is
one of the “main forces” in Kunpeng ecology.

Databases can be divided into relational databases and non-relational databases.
Relational databases include OLTP databases for enterprise production and trans-
actions and OLAP databases for enterprise analysis. For OLTP application scenarios
Huawei launched cloud database GaussDB (for MySQL) and
GaussDB (openGauss); for OLAP scenarios, it launched data warehouse service
GaussDB (DWS). As to non-relational databases (NoSQL), Huawei currently has
GaussDB (for Mongo) and GaussDB (for Cassandra).

Database technology innovation is breaking the existing order, and cloud-based,
distributed, and multi-mode processing are the main trends in the future. This chapter
focuses on the features and application scenarios of Huawei GaussDB (for MySQL)
cloud database, and introduces some application cases.

After learning this chapter, readers will master the following contents.

(1) The features of GaussDB database.
(2) Knowledge of Huawei relational database.
(3) Knowledge of Huawei NoSQL.

8.1 GaussDB Database Overview

8.1.1 GaussDB Database Family

Everything from scratch, from weak to strong, means the accumulation of time and
the precipitation of experience. The decade whets one sword Huawei officially
released GaussDB database series products on May 15, 2019.

In order to pay tribute to German mathematician Gauss, Huawei named its self-
developed databases GaussDB. The Kunpeng ecology develops in three technology

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4_8

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3032-4_8&domain=pdf
https://doi.org/10.1007/978-981-19-3032-4_8#DOI

directions: chip/media, operating system, and database. Among these, Huawei
GaussDB database is one of the “main forces” in Kunpeng ecology.

Databases are generally divided into relational databases and non-relational
databases. Non-relational databases include professional document databases,
graph databases, etc., which are oriented to refined scenarios and more targeted,
but their application areas are narrower, with less market share (< 20%). In the next
5 years, the main market of database is still focused on relational database, whose
market share is more than 80%. The current mainstream databases can be mainly
divided into two categories of OLTP and OLAP in terms of services orientation.
Huawei also targets these two types of services and has launched the transactional
database GaussDB (for MySQL) for OLTP scenarios and the analytical database
GaussDB (DWS) for OLAP scenarios, respectively. What's more, Huawei GaussDB
database holds two important innovations.

(1) It is the industry's first AI-Native distributed database, which integrates AI into
the database kernel, making the database more intelligent to achieve self-O&M,
self-management, self-tuning, fault self-diagnosis and self-healing. It is the first
self-tuning algorithm rooted in deep reinforcement learning under transaction,
analysis and mixed load scenarios based on optimization theory.

(2) It supports heterogeneous computing architecture and can take full advantage of
multiple algorithms such as X86GPU and NPU to make the database more
efficient by releasing diverse computing power. It is also the industry's first
ARM-enabled enterprise-class database.

Figure 8.1 shows the GaussDB database upgraded to a full-scene service, relying on
Huawei Cloud and Huawei CloudStack. Huawei has seven research institutes around
the world engaged in database basic research, with more than 10 years of technical
accumulation in the database field, more than 1000 database-specialized talents, and
more than 30,000 global database applications. After upgrading to Huawei's self-
developed database brand, the business covers both relational and non-relational
database services. The business upgrade relies on Huawei Cloud and Huawei Cloud
Stack to continuously serve users with cloud services, aiming to improve delivery

Fig. 8.1 GaussDB full-scene services

288 8 Introduction to Huawei Cloud Database GaussDB

and O&M efficiency, help users focus on core business innovation, and introduce
innovative technologies and new services faster. Rich ecological options, in addition
to the commitment to build Huawei ecology, are also compatible with widely used
open ecology, such as MySQL, etc., to facilitate users' application migration and
development, ensuring continuity of user investment and business.

8.1.2 Typical OLTP and OLAP Databases

OLTP refers to online transaction processing. OLTP, as the main application of
traditional relational database, mainly supports the basic daily transaction processing
and business activities of enterprises by storing the activity data in query service
applications. Typical OLTP systems involve in e-commerce, banking and securities
trading systems, etc. The business database of eBay in the US is a very typical OLTP
database. OLAP refers to online analytical processing, also known as DSS decision
support system, is often referred to as the data warehouse. OLAP, as the main
application of the data warehouse system, supports complex analytical operations
by storing historical data, focusing on decision support, and provides intuitive and
easy-to-understand query results.

GaussDB (for MySQL) database is recommended for systems with high transac-
tional requirements such as business systems, financial systems, sales systems and
customer service systems; if a large amount of data generated based on business
needs to be stored using data warehouses for subsequent data analysis, data mining,
and supporting business decisions, GaussDB (DWS) database is recommended, as
shown in Fig. 8.2.

Fig. 8.2 Typical OLTP and OLAP databases

8.1 GaussDB Database Overview 289

8.2 Relational Database Products and Related Tools

8.2.1 GaussDB (for MySQL)

The cloud database GaussDB (for MySQL) is Huawei's next-generation self-devel-
oped distributed database, which is highly scalable, supports massive storage, and is
fully compatible with MySQL. Based on Huawei's next-generation DFV storage, it
adopts a computing/storage separation architecture and has a massive storage space
of 128TB, with no need to separate libraries and tables, and can achieve zero data
loss. It combines the high availability of commercial databases with the low cost of
open source databases.

GaussDB (for MySQL) employs a multi-node cluster architecture with a write
node (master node) and multiple read nodes (read-only nodes) in the cluster, and
each node shares the underlying DFV. In general, GaussDB (for MySQL) cluster
should be located at the same location as the elastic cloud server instances to achieve
the highest access performance.

• Has high user value.
• With 128TB storage space and no sub-library and sub-table, solves the problem

of huge amount of data.
• Easy to use, fully compatible with MySQL, with no application modification

required.
• With 15 read-only nodes and read/write separation, solves the performance

scaling problem.
• With cross-AZ deployment, off-site disaster recovery, realizes high reliability.

An AZ (availability zone) is a collection of one or more physical data centers, and
the resources such as computes, networks, and storage are logically subdivided into
multiple clusters within the AZ. An AZ is a physical area with independent power
and network within a geographic region. AZs communicate with each other within
the intranet, but are physically isolated. Each AZ is unaffected by the failure of other
AZs and provides low-cost, low-latency network connectivity to other AZs in the
same region. The use of GaussDB (for MySQL) within a separate AZ protects users'
applications from single-location failures. There is no substantial difference between
different AZs in the same region.

There are many needs and pain points in the database market today, as shown in
Table 8.1.

The core benefits of GaussDB (for MySQL) are shown in Table 8.2.
In the context of the cloud era, enterprise IT business is deployed across regions

and globally, and IT application software is gradually cloud-based and distributed,
so the database is also required to be designed based on cloud scenario architecture
and have the ability to be deployed across regions in a distributed manner. Huawei
Cloud Native distributed database is precisely such a new type of database, follow-
ing the five design principles below.

290 8 Introduction to Huawei Cloud Database GaussDB

(1) Decoupling: separation of computation and storage; master-slave decoupling.
(2) Push-down of near data calculation: push-down from I/O intensive load to

storage node completion, such as redo processing and page reconstruction.
(3) Full use of cloud storage: independent fault tolerance and self-healing service on

the storage layer; shared access (write once and read many).
(4) Full play to the advantages of solid state disk (SSD): avoiding write amplifica-

tion caused by random writing; less wear and shorter time delay; full use of the
random read performance of SSD.

(5) Transfer of performance bottleneck from computing and storage to network: less
network traffic; new network technologies and hardware, such as remote direct
memory access (RDMA).

When designing the Cloud Native database, Huawei took into account the need for
flexibility, including the switch between the host and the standby and the increase of
nodes, so as to sink more operations. Huawei Cloud Native benefited from a strong
team in hardware and deep cooperation with Huawei's storage department who
provided a special platform to sink the operations of the database itself to the storage
node. Huawei Cloud Native maximizes the properties of SSDs to improve the
performance of the database, in addition to the considerations based on multi-
tenancy. It uses new network technologies including AI technology to help users

Table 8.1 Needs and pain points in the database market

Major needs and pain
points Needs description

Compatible with
MySQL

No need to make any modification to the original MySQL application

Massive data storage Supports large data volume of Internet services

Distributed and highly
scalable

Automated database and table splitting or no sub-library and
sub-table, with application transparency

Strongly consistent
transactions

Supports strong consistency of distributed transactions

Highly available Supports cross-AZ, high available, cross-region disaster recovery

High concurrency
performance

Supports high performance under large concurrency scenarios

Non-middleware
architecture

Non-DDM solution (or non-DRDS solution)

Table 8.2 Core benefits

Benefit Description

Ultra high performance Million-level qps

High scalability 1 write node and 15 read-only nodes, and 128TB storage space

High reliability Cross-AZ deployment, and 3 copies of data

High compatibility MySQL compatibility

Low cost 1/10 of commercial database cost

8.2 Relational Database Products and Related Tools 291

improve the throughput of data centers, improve the scalability of network applica-
tions, and implement auto-tuning.

In fact, Huawei divides the database into three parts: SQL layer, abstraction layer
and storage layer. From the physical level, it can be divided into two layers: one is
the SQL layer, which adopts a one-master-multi-standby model; the other is the
storage abstraction layer, which maintains database services for different tenants,
including building pages, log processing, and other related functions, as shown in
Fig. 8.3.

For the SQL layer, the plan, query and management transactions can be isolated
by managing client connections and parsing SQL requests in the form of one read-
write and multiple read-only copies. Meanwhile, Huawei also launched HWSQL
and has made many performance improvements based on HWSQL, including query
result cache, query plan cache and online DD.

The whole design uniquely features the reduction of frequent page reading
operations from memory by SQL replication of multiple nodes. When an update
occurs on the master server, the Replicas SQL database also receives the transaction
and commits the update list.

There is also a storage abstract layer (SAL). SAL is a logical layer that isolates
SQL front ends, transactions, and queries within a storage unit. When manipulating

Fig. 8.3 Three parts of database

292 8 Introduction to Huawei Cloud Database GaussDB

database pages, SAL support accessing multiple versions of the same page. Based on
spaceID and pageID, SAL can shard all data, with its storage and memory resources
growing proportionally.

In terms of performance, GaussDB (for MySQL) takes full advantage of some
features of Huawei. The system container uses Huawei's Hi1882 high-performance
chip, so it is better than the general container in terms of performance; the RDMA
application greatly reduces computational costs; the Co-Processor achieves data
processing with as few resources as possible, reducing the workload of the SQL
nodes, as shown in Fig. 8.4.

The architecture of GaussDB (for MySQL) is shown in Fig 8.5.

(1) Ultimate reliability: zero data loss, flash recovery from failure, and support for
cross-AZ high availability.

(2) Multi-dimensional expansion: compute nodes expansion in both directions.
Horizontal expansion: support for horizontal expansion in 1-write &15-read
mode. Vertical expansion: online elastic expansion, and on-demand billing.

Fig. 8.4 Features of GaussDB (for MySQL)

Fig. 8.5 Architecture of
GaussDB (for MySQL)

8.2 Relational Database Products and Related Tools 293

(3) Massive storage: single-instance scalable data up to 128TB, no need to split
libraries and tables, and fast service go-live on the cloud.

(4) Innovative self-research: Cloud Native distributed database architecture, based
on Huawei's new generation of DFV to achieve the separation of computing and
storage, to ensure cost effectiveness in scalability; storage on pushed-down
database logic, to achieve minimum network load and ultimate performance.

(5) Excellent performance: performance improved up to 7 times of native MySQL,
100% compatibility with MySQL, and industry leading.

(6) Cutting-edge hardware: industry-leading hardware combination based on V5
CPU + Optane DC SSD + RDMA network, and stable and fast data processing.

Kernel optimization of GaussDB (for MySQL) is mainly reflected in the following
aspects.

(1) Removal of secondary writes.
(2) Query Cache/Plan Cache optimization.
(3) Innodb Lock Management optimization.
(4) Audit Plugin efficiency optimization.
(5) Community bug fixes.

Hardware enhancements are mainly reflected in the following areas.

(1) Containerization.
(2) Hi1822 offload.
(3) Use of NVMe SSD.
(4) RDMA.

Through the elastic cloud server or devices that can access GaussDB (for MySQL)
database, connect to GaussDB (for MySQL) database instance with the
corresponding client and import the exported SQL files into GaussDB (for
MySQL) database.

The CPU and memory specifications of the cluster can be changed according to
the service needs, and if the status of the cluster changes from “changing specifica-
tions” to “normal”, the change is successful. After GaussDB (for MySQL) 8.0
cluster specifications are changed successfully, the system will adjust the values of
the following parameters according to the new memory size:
“innodb_buffer_pool_size” “innodb_log_buffer _size” “max_ connections”
“innodb_buffer_pool_instances” “ query_cache_size”.

Users can retrieve the monitoring metrics and alert information generated by the
cloud database GaussDB (for MySQL) through the API provided by the cloud
monitor.

gaussdb_mysql010_innodb_buf_usage: buffer pool utilization ratio, used to
count the ratio of dirty data to data in InnoDB cache, with value ranging from 0 to 1.

gaussdb_mysql011_innodb_buf_hit: buffer pool hit rate, used to count the ratio
of read hits to read requests, with value ranging from 0% to 100%.

294 8 Introduction to Huawei Cloud Database GaussDB

gaussdb_mysql012_innodb_buf_dirty: dirty block rate of buffer pool, used to
count the ratio of used pages to the total data in InnoDB cache, with value ranging
from 0 to 1.

gaussdb_mysql013_innodb_reads: InnoDB read throughput, used to count the
average number of bytes per second read by InnoDB, with value � 0 bytes/s.

gaussdb_mysql014_innodb_writes: InnoDB write throughput, used to count the
average number of bytes per second written by InnoDB, with value � 0 counts/s.

gaussdb_mysql017_innodb_log_write_req_count: InnoDB log write request fre-
quency, used to count the average number of log write requests per second, with
value � 0 counts/s.

If the backup policy of the instance is enabled, a full automatic backup will be
triggered immediately. The binlog backup does not need to be set by the user;
instead, GaussDB (for MySQL) system will automatically do it every 5 min, either
full backup or binlog backup is stored on the object storage service.

GaussDB (for MySQL) expands horizontally fast and requires different data to be
synchronized compared to traditional addition of read-only copies. GaussDB (for
MySQL) only takes about 5 min to add compute nodes due to shared storage, no
matter how much data there is.

GaussDB (for MySQL) adopts distributed storage, with storage capacity up to
128TB. The storage is paid on demand, with no need to plan storage capacity in
advance, reducing user costs.

GaussDB (for MySQL) delivers faster master-standby reversal, eliminating
binlog replication latency, and ensuring guaranteed RTO.

GaussDB (for MySQL) database is fast in crash recovery. and the storage layer is
constantly advancing the logs in an asynchronous and distributed manner.

The fast backup recovery and the distributed storage system customized for
GaussDB (for MySQL) engine greatly improves the data backup and recovery
performance. It also provides powerful data snapshot processing capability through
AppendOnly vs. WriteInPlace, storing natural data at multiple time points and
multiple copies, and supporting second-level snapshot generation and massive
snapshot. Fast rollback at any point in time, based on the multi-point characteristics
of the underlying storage system, without incremental log playback, can directly
realize rollback by point in time. Parallel high-speed backup and recovery, as well as
backup and recovery logic sinking to each storage node, enable local access data to
directly interact with the third-party storage system, realizing high concurrency and
high performance. Through asynchronous data replication plus on-demand real-time
data loading mechanism, the fast instance recovery function enables GaussDB (for
MySQL) instance to be fully functional within a few minutes.

GaussDB (for MySQL) is more cost effective with shared DFV storage and only
one copy of storage compared to traditional RDS for MySQL. When adding a read-
only node, you only need to add one compute node, with no need to purchase
additional storage. The more read-only nodes there are, the more storage costs are
saved. Compared with the traditional RDS for MySQL, the Active-Active architec-
ture no longer has a backup library, with all read-only in active state, and bear the
read traffic, which makes the resource utilization rate higher And compared with the

8.2 Relational Database Products and Related Tools 295

traditional RDS for MySQL, the log-as-data architecture no longer needs to refresh
pages, and all update operations only record logs, removing secondary writes, thus
reducing the consumption of precious network bandwidth.

The instance specifications for GaussDB (for MySQL) are shown in Table 8.3.
The financial industry is currently asset-light, and rapid expansion is the driver for

its use of cloud databases. However, the whole industry is experiencing the pain
point of unpredictable user traffic and generated data, and the user experience is
affected at the peak of business, and even the service must be stopped for expansion.

GaussDB (for MySQL) compute nodes support bi-directional expansion, based
on cloud virtualization, where the specification can be changed on a single node,
which supports 1 write and 15 read nodes, with an expansion ratio of 0.9. It also
supports storage pooling, with a maximum of 128TB storage space. The expansion
of compute nodes will not bring about an increase in storage costs.

In the enterprise-level market where SaaS applications enter, the business pain
points of large Internet companies and traditional large enterprises are huge business,
high throughput, and unsolved open source database problems, so it is necessary to
adopt complicated solutions such as sub-database and sub-table. Enterprise users
generally prefer to commercial databases (eg. SQL Server and Oracle), which cost
highly in license.

GaussDB (for MySQL) adopts storage pooling, uses MySQL native optimiza-
tion, and also has advantages in hardware, such as RDMA, V5CPU, and Optance,
and in terms of architecture, database logic is pushed down to release arithmetic
power and reduce network overhead.

8.2.2 GaussDB (openGauss)

GaussDB (openGauss) is Huawei's next-generation enterprise-class distributed data-
base, fully self-developed in combination with its own technology accumulation,
supporting both centralized and distributed deployment forms; on the basis of
supporting traditional business, it provides unlimited possibilities for enterprises to
face the challenges of the 5G era.

Table 8.3 Instance specifica-
tions for GaussDB (for
MySQL)

Specifications vCPU/pc Memory/GB

Generic Enhanced 16 64

32 128

60 256

Kunpeng Generic Enhanced 16 64

32 128

48 192

296 8 Introduction to Huawei Cloud Database GaussDB

GaussDB (openGauss) database has advantages as follows.

(1) High performance: high throughput and strong consistency transaction capabil-
ity. Supports Kunpeng two-way server, bearing 32 nodes with 12 million tpmC
to achieve distributed strong consistency.

(2) High availability: active-active and two-site and three-center deployment. High
availability within the cluster, no data loss, supporting second-level business
interruption; co-location cross-AZ disaster recovery, no data loss, supporting
minute-level recovery; support for two-site and three-center deployment.

(3) High scalability: horizontal expansion of capacity and performance on demand.
256-node scalability, and excellent linearity ratio; online capacity expansion.

(4) Easy management: easy migration, easy monitoring, and easy O&M. Compat-
ibility with SQL2003 standard syntax + enterprise expansion package; support
for data replication, monitoring O&M, and tool development.

The full open source kernel of openGauss centralized version is the result of
Huawei's ten-year effort in database field, which has gone through the process
from internal self-use incubation stage to joint-creating productization stage, and
then to the open source stage of openGauss centralized version. The development
process and role of openGauss are shown in Table 8.4.

As an open source relational database management system, openGauss deeply
integrates Huawei's years of experience in the database field. Huawei hopes to attract
more contributors in virtue of the charm of open source and jointly builds an
enterprise-class open source database community that integrates diverse technical
architectures. OpenGauss kernel has experienced long-term evolution and is now
giving back to the community. GaussDB database services in Huawei and public
cloud are precisely developed based on openGauss, so the kernel will continue to
evolve for a long time.

The openGauss kernel is derived from PostgreSQL and focuses on continuously
enhancing competitiveness in the direction of architecture, transaction, storage
engine, optimizer, etc. It is deeply optimized on ARM architecture chips and
compatible with X86 architecture to achieve the following technical features.

Table 8.4 Development process and role of openGauss\

2001–2011 Enterprise-class in-memory database

2011–2019 G Line core data warehouse, GaussDB (DWS) Huawei cloud for commercial use;
replacement of commercial database with Z Line core business system.
Supports more than 40 kinds of key products within the company, with global
operators reaching more than 70 and more than 30,000 sets of commercial
databases, serving more than 2 billion people worldwide

2019–2020 GaussDB database released globally on May 15, 2019; partner ecology built;
compatibility with mainstream industry ecology and interface with finance and
other industries

2020 to
present

Open source of openGauss centralized version

8.2 Relational Database Products and Related Tools 297

(1) Concurrency control technology based on multi-core architecture, NUMA-
Aware storage engine, and SQL-Bypass intelligent routing execution technol-
ogy, releasing multi-core expansion capability of the processor and achieving
the performance of 1.5 million tpmC in two-way Kunpeng 128-core scenario.

(2) Support for fast fault reversal with RTO <10s, and full link data protection, to
meet security and reliability requirements.

(3) Simplification of O&M through intelligent parameter tuning, slow SQL diagno-
sis, multi-dimensional performance self-monitoring, online SQL time
prediction, etc.

openGauss adopts Mulan PSL v2, which allows all community participants to freely
modify, use and reference the codes. The openGauss community has also set up a
technical committee to welcome all developers to contribute codes and documents.

Huawei always upholds the overall development strategy of “open hardware,
open source software, and enabling partners”, and supports partners to build their
own brand of commercial databases based on openGauss, so as to support partners to
enhance their commercial competitiveness continuously, as shown in Fig. 8.6.

openGauss provides the following support for partners:

(1) Training: Builds training certification system, carries out kernel technology
salon, and sets up user groups;

(2) Support: Delivers community support teams;
(3) Developer ecology: Builds a developer ecology jointly; promotes university

course development and book publication.

GaussDB database helps Huawei user cloud achieve intelligent business operations.
In terms of business requirements and challenges, Huawei user cloud's big data
platform centrally stores and manages business-side data with a hybrid architecture
of Hadoop + MPP databases. The challenges it faces are as follows:

Fig. 8.6 openGauss

298 8 Introduction to Huawei Cloud Database GaussDB

(1) Rapid business development, with annual data growth of more than 30%;
(2) Real-time analysis capability required for the data analysis platform to achieve

intelligent user experience;
(3) Support for independent report development and visual analysis.

To this end, GaussDB database gives the following solutions:

(1) On-demand elastic expansion to support rapid business development;
(2) SQL on HDFS support for real-time analysis of instant exploration scenarios,

Kafka stream data entry at high speed, and real-time report generation;
(3) Key technologies such as multi-tenant load management and approximate cal-

culation enabling efficient report development and visual analysis.

These solutions generate the following user benefits:

(1) On-demand capacity expansion without business interruption;
(2) Real-time analysis results thanks to the new data analysis model, with marketing

accuracy rate increased by more than 50%;
(3) Response time of typical visual report query and analysis reduced from the past

minute level to within 5 s, and report development cycle reduced from the past
2 weeks to 0.5 h.

GaussDB database is suitable for small and medium-sized banks' Internet-based
transaction systems, such as mobile apps, websites, etc. It is compatible with the
industry's mainstream commercial database ecology, with high performance, secu-
rity and reliability, etc.

The advantages of GaussDB database are as follows.

(1) Security and reliability. It supports SSL encrypted connection and KMS data
encryption to ensure data security; supports database master-standby architec-
ture, and when the host machine fails, where when the master machine fails, the
standby machine is automatically upgraded to the master to ensure business
continuity.

(2) Ultra-high performance. With high performance and low latency transaction
processing capability, the performance of Sysbench data under typical configu-
ration is 30% to 50% higher than that of open source database.

8.2.3 GaussDB (DWS)

Data warehouse service (DWS) is an online data processing database based on
public cloud infrastructure and platform, providing out-of-the-box, scalable and
fully managed analytical database services. GaussDB (DWS) is a service based on
Huawei Cloud's native converged data warehouse, GaussDB database, which is
compliant with the ANSI SQL 99 and SQL 2003 standards, providing competitive
solutions for petabyte-scale massive big data analysis in various industries.

8.2 Relational Database Products and Related Tools 299

GaussDB (DWS) can be widely used in finance, automotive networking, gov-
ernment and enterprises, e-commerce, energy, telecommunications and other fields,
and has been selected in the “Magic Quadrant” data management solution list
released by Gartner for three consecutive years from 2017 to 2019. It is several
times more cost effective than traditional data warehouses, with massive scalability
and enterprise-class reliability.

GaussDB (DWS) is distributed and on-demand, with the advantages of distrib-
uted architecture, high reliability of master-standby/multi-live design, storage and
computing separation, and independent expansion on demand. It is compliant with
the standard SQL 2003 and supports transaction ACID feature to provide strong data
consistency guarantee; supports X86 and ARM platform servers and is vertically
optimized based on Kunpeng chip, which improves performance by 30% compared
with the same generation of X86, as shown in Fig. 8.7.

GaussDB (DWS) is based on a non-shared distributed architecture with MPP
engine, which consists of many logical nodes with independent and non-shared
CPUs, memories, storages and other system resources. In such a system architecture,
business data is scattered across multiple nodes, and data analysis tasks are pushed to
the data site for execution nearby, so that large-scale data processing can be done in
parallel and fast response to data processing can be realized.

Fig. 8.7 Distributed architecture

300 8 Introduction to Huawei Cloud Database GaussDB

The application layer provides data loading tools, ETL (Extract-Transform-Load)
tools, BI tools, data mining and analysis tools, all of which can be integrated with
GaussDB (DWS) through a standard interface. GaussDB (DWS) is compatible with
the PostgreSQL ecosystem and the SQL syntax is processed to be compatible with
MySQL, Oracle and Teradata. Applications can migrate smoothly to GaussDB
(DWS) with only a few changes.

The interface supports applications to connect to GaussDB (DWS) via standard
JDBC 4.0 and ODBC 3.5.

A GaussDB (DWS) cluster (MPP cluster) consists of multiple nodes with the
same specifications in the same subnet, which jointly provide services. Each DN in
the cluster is responsible for storing data, with disk as the storage medium. The
coordinator node (CN) is responsible for receiving access requests from applications
and returning execution results to clients. In addition, the CN is responsible for
decomposing tasks and scheduling task slices to be executed in parallel on each DN.

Automatic data backup supports automatic backup of cluster snapshots to
EB-level OBS, which facilitates periodic backup of the cluster on business idleness
to ensure data recovery after cluster abnormalities. Snapshot is a complete backup of
GaussDB (DWS) cluster at a certain point in time, recording all configuration data
and business data of the specified cluster at that moment.

The tool chain provides the data parallel loading tool GDS (General Data
Service), SQL syntax migration tool DSC, and SQL development tool Data Studio,
and supports O&M monitoring of the cluster through the console.

GaussDB (DWS)'s logical architecture is shown in Fig. 8.8.

CM: Cluster Manager, which manages and monitors the operation of each functional
unit and physical resources in the distributed system to ensure the stable operation
of the whole system.

Fig. 8.8 Logical Architecture

8.2 Relational Database Products and Related Tools 301

GTM: Global Transaction Manager, which provides the information required for
global transaction control and uses multi-version concurrency control mechanism
(based on multiple versions and concurrency control protocol).

WLM: Workload Manager, which controls the allocation of system resources and
prevents excessive business load from hitting the system, leading to business
congestion and system crashes.

Coordinator Node: Acts as the business entry and result return of the whole system;
receives access requests from business applications; decomposes tasks and sched-
ules parallel execution of task shards.

Data Node: The logical entity that executes query task sharding.
GDS Loader: Parallel data loading, multiple configurable; supports text file format

with automatic error data recognition.

GaussDB (DWS) has the following main features and significant advantages over
traditional data warehouses, which can solve the problem of multi-industry ultra-
large data processing and common platform management.

(1) Easy use.
One-stop visualization and convenient management: Uses GaussDB (DWS)

management console to complete the O&M management work such as applica-
tion and data warehouse connection, data backup, data recovery, and data
warehouse resources and performance monitoring.

Seamless integration with big data: You can use standard SQL to query data
on HDFS and OBS without data relocation.

One-click heterogeneous database migration tool: Provides migration tools
that support the migration of SQL scripts from MySQL, Oracle and Teradata to
GaussDB (DWS).

(2) Easy scalability.
On-demand expansion: Non-shared open architecture, where nodes can be

added at any time according to business conditions to improve the data storage
capacity and query analysis performance of the system.

Linear performance improvement upon expansion: Capacity and perfor-
mance improving linearly with the cluster expands, with a linear ratio of 0.8.

Capacity expansion without business interruption: The expansion process
supports data addition, deletion, modification and check operations, as well as
DDL operations (DROP/ TRUNCATE/ALTER TABLE); table-level online
expansion technology, with no business interruption and no perception during
expansion.

(3) High performance.
Cloud-based distributed architecture: GaussDB (DWS) adopts fully parallel

MPP architecture, where business data is scattered across multiple nodes, and
data analysis tasks are pushed to the data site for execution nearby, so that
large-scale data processing can be done in parallel and fast response to data
processing can be realized.

High performance of query, and trillion data response within seconds:
GaussDB (DWS) background realizes parallel execution of instructions in

302 8 Introduction to Huawei Cloud Database GaussDB

registers through multi-threaded parallel execution of algorithms and vectorized
computation engine, and also reduces redundant conditional logic judgments
during query through dynamic compilation of underlying virtual machine
(framework system of architecture compiler), which helps improve data query
performance. GaussDB (DWS) supports row-column hybrid storage, which can
provide users with better data compression ratio (column storage), better index
performance (column storage), and better point update and point query (row
storage) performance at the same time.

Fast data loading: GaussDB (DWS) provides GDS extremely fast parallel
large-scale data loading tool.

Data compression under column storage: For inactive early data, it can be
compressed to reduce its space occupation and lower down procurement and
O&M costs; it can select compression algorithms self-adaptively according to
data characteristics, with an average compression ratio of 7:1; compressed data
can be accessed directly and transparent to business, thus greatly reducing the
preparation time for historical data access.

(4) High reliability.
ACID: It supports distributed transaction ACID feature to provide strong data

consistency guarantee.
All-round HA design: All software processes of GaussDB (DWS) have

primary and secondary guarantees, and all logical components of the cluster
such as CNs and DNs have primary and secondary guarantees; in the case of
physical failure of any single point, the system can still ensure reliable and
consistent data, while providing services to the outside world; hardware-level
high reliability includes disk Raid, switch stacking, NIC bond, and
uninterruptible power supply (UPS).

Security: GaussDB (DWS) supports transparent data encryption, and can be
docked with database security services, based on network isolation and security
group rules to protect system and user privacy and ensure data security;
GaussDB (DWS) also supports automatic full and incremental data backup to
improve data reliability.

(5) Low cost.
Pay-as-you-go: GaussDB (DWS) is billed according to actual usage and

usage length; users just need to pay very low fees and only pay for the actual
consumed resources.

Low threshold: Users do not need to invest more fixed costs in the early stage,
and can start with a low-specification data warehouse instance, and then flexibly
adjust the required resources according to the business situation at any time and
spend as needed.

8.2 Relational Database Products and Related Tools 303

8.2.4 Data Studio

Data Studio's graphical integrated development environment can help database
developers to quickly carry out database development.

Data Studio provides various database development and debugging functions,
including the following.

(1) Creates and manages database objects (databases, schemas, tables, views,
indexes, functions, and stored procedures, etc.).

(2) Database DML, DDL, and DCL operations.
(3) Creates, runs and debugs PL/SQL procedures.

Data warehouse migration is a Data Studio application scenario, as shown in
Fig. 8.9.

Smooth migration: GaussDB (DWS) provides supporting migration tools, which
can support smooth migration of common data analysis systems such as TeraData,
Oracle, MySQL, SQL Server, PostgreSQL, Greenplum, Impala, etc.

Compatibility with traditional data warehouse: GaussDB (DWS) supports SQL
2003 standard, compatible with some syntaxes and data structures of Oracle, sup-
ports stored procedures, and can be seamlessly connected with common BI tools,
with minimal modification during business migration.

Security and reliability: GaussDB (DWS) supports data encryption and can also
be docked with database security services to ensure data security on the cloud.

Big data fusion analysis is also an application scenario for Data Studio, as shown
in Fig. 8.10.

Fig. 8.9 Data warehouse migration

304 8 Introduction to Huawei Cloud Database GaussDB

F
ig
.8

.1
0

B
ig

da
ta
fu
si
on

an
al
ys
is

8.2 Relational Database Products and Related Tools 305

Unified analysis portal: GaussDB (DWS)'s SQL is used as the unified portal for
upper-layer applications, and application developers can access all data using
familiar SQL.

Real-time interactive analysis: For immediate analysis needs, analysts can get
information from the big data platform in real time.

Flexible adjustment: Adding nodes can expand the system's data storage capacity
and query and analysis performance, which can support petabyte-scale data storage
and calculation.

Data Studio application scenarios also include enhanced ETL and real-time BI
analysis, as shown in Fig. 8.11.

Data Migration: It supports multiple data sources, as well as efficient real-time
data import in batch.

High performance: It supports petabyte-scale data storage at low cost and trillions
of data correlation analysis with second-level response.

Real time: Real-time integration of business data streams helps users optimize
and adjust business decisions in a timely manner.

The application scenarios of Data Studio also include real-time data analysis, as
shown in Fig. 8.12.

Real-time streaming data entry: IoT, Internet and other data can be written to
GaussDB (DWS) in real time after being processed by streaming computing and AI
services.

Fig. 8.11 Enhanced ETL and real-time BI analysis

306 8 Introduction to Huawei Cloud Database GaussDB

Real-time monitoring and prediction: It analyzes and predicts against data,
monitors equipment, and predicts behavior for control and optimization.

AI fusion analysis: The analysis results of AI services on data such as images and
text can be correlated and analyzed with other business data in GaussDB (DWS) to
achieve fused data analysis.

8.3 NoSQL Databases

8.3.1 GaussDB (for Mongo)

NoSQL, also called “Not Only SQL” and “non-relational”, refers to a non-relational
database that is different from the traditional relational databases.

There are many significant differences between NoSQL and relational databases.
For example, NoSQL does not guarantee the ACID feature of relational databases;
NoSQL does not use SQL as the query language; NoSQL data storage can be used
without a fixed table schema; NoSQL often avoids the use of SQL JOIN operations.
NoSQL features easy scalability, high performance, etc.

Huawei's self-developed distributed multi-mode NoSQL database service with
computing-storage separation architecture covers four mainstream NoSQL database
services: GaussDB (for Mongo), GaussDB (for Cassandra), GaussDB (for Redis),
and GaussDB (for Influx), as shown in Fig. 8.13.

Fig. 8.12 Real-time data analysis

8.3 NoSQL Databases 307

GaussDB NoSQL supports cross-3AZ clusters of high availability, and has the
advantages of minute-level computing capacity expansion, second-level storage
capacity expansion, strong data consistency, ultra-short latency, and high-speed
backup recovery compared with the community version, which is cost-effective
and suitable for IoT, meteorology, Internet, games and other fields.

The cloud database GaussDB (for Mongo) is a cloud-native NoSQL database
compatible with MongoDB ecology. It features enterprise-class performance, flex-
ibility, high reliability, visual management, etc.

GaussDB (for Mongo), which supports computing-storage separation, extreme
availability and massive storage, mainly demonstrates the following benefits.

(1) Separation of storage and computing: The storage layer adopts DFV high-
performance distributed storage, and the computing and storage resources are
expanded independently on demand.

(2) Extreme availability: It supports distributed deployment with 3–12 nodes, tol-
erates n-1 node failure, and has three copies of data storage to ensure data
security.

(3) Massive storage: It allows up to 96TB storage space.
(4) Autonomy and controllability: It supports Kunpeng architecture.
(5) Compatibility: It is compatible with MongoDB protocol for consistent develop-

ment experience.

The computing-storage separation architecture of GaussDB (for Mongo) allows
computing and storage to expand on-demand separately, effectively reducing
costs; based on shared storage, Rebalance does not migrate data; 3AZ disaster
recovery is supported.

GaussDB (for Mongo) offloads replica sets to distributed storage, reducing the
number of storage copies; all ShardServer can handle business; distributed storage is
based on sharded replication, which can better aggregate I/O performance and fault
reconstruction performance; RocksDB storage engine guarantees good write perfor-
mance; local SSD read Cache (cache) is used to optimize read performance;

Fig. 8.13 GaussDB
NoSQL

308 8 Introduction to Huawei Cloud Database GaussDB

snapshot-based physical backup avoids logical backups to export data, ensuring
better performance; clear backup time points are set; performance is continuously
optimized, including infrastructure, thread pool, and storage RDMA; the cluster size
is automatically scaled up and down according to the business load, reducing user
costs by more than 50%; instantaneous recovery, incremental backup, table-level
backup, and arbitrary point-in-time recovery are supported.

User case: JAC's Internet of Vehicles scenario. It meets nearly one million
concurrent queries per second, with timely response and stable business operation;
the performance of the same concurrency is improved by three times compared with
the same cost based on ECS self-built or open source service solution.

8.3.2 GaussDB (for Cassandra)
GaussDB (for Cassandra) is a massively scalable open source NoSQL database

suitable for managing large amounts of structured, semi-structured and unstructured
data across multiple data centers and clouds. Cassandra is continuously available,
linearly scalable, and simple to operate on multiple commercial servers, with no
single point of failure. Its powerful dynamic data model allows for flexibility and
rapid response. GaussDB (for Cassandra) features the following benefits

(1) Cluster stability: no complete garbage collection problem.
(2) Computing-storage separation: minute-level node capacity expansion; second-

level storage capacity expansion.
(3) Active-Active: distributed architecture; n-1 node failure tolerance.
(4) High performance: performance times higher than the community version.
(5) Massive data: single set of instances up to 100TB data.
(6) High reliability: minute-level backup recovery; strong data consistency.

GaussDB (for Cassandra) database supports elastic expansion, super read/write, high
availability, fault tolerance, strong consistency, continuous query language (CQL),
computing-storage separation, etc., without full GC problem. Its benefits are shown
in Table 8.5.

Figure 8.14 shows the GaussDB (for Cassandra) use cases for industrial
manufacturing and meteorology industries. The large-scale cluster deployment is
suitable for the scenarios of massive data storage in industrial manufacturing and
meteorological industries. The full P2P architecture based on consistent hashing
ensures high availability of business and easy scalability of nodes, which supports
7 � 24 real-time writing of multi-sensor terminal data, with minute-level expansion
for easily coping with operation or project peak.

8.4 Summary

This chapter introduces the database features, including Huawei relational databases
GaussDB (for MySQL), GaussDB (openGauss) and Huawei GaussDB (DWS), and
expounds the product features and business value of NoSQL databases, including
GaussDB (for Mongo) and GaussDB (for Cassandra).

8.4 Summary 309

Table 8.5 Benefits of GaussDB (for Cassandra) database

Compatible
Versions

Cassandra 3.11

Backup Recovery Backup: Supports automatic backup (default retention for 7 days), and
manual data backup
Recovery: Supports backup restore to new instance

Data Migration Supports DynamoDB migration to Cassandra (tool)

Elastic Capacity
Expansion

Minute-level compute resource expansion, and second-level storage node
capacity expansion

Monitoring Node-level monitoring, including CPU usage, memory usage, network
input/output throughput, and active connections

Security Multiple security policies to protect database and user privacy, such as
VPC, subnet, security group, SSL, etc.

Billing On-demand + packet cycle

Performance Superb write performance with multi-fold improvement in read-only
performance

Highly Availability Supports 3AZ and single AZ

Node Specifications 4U16G | 18U32G | 16U64G | 32U128G

Number of Nodes 3 - 200

Fig. 8.14 GaussDB (for Cassandra) use cases for industrial manufacturing and meteorology
industries

310 8 Introduction to Huawei Cloud Database GaussDB

8.5 Exercises

1. [True or False] GaussDB (for MySQL) supports computing-storage separation. (
)

A. True
B. False

2. [Multiple Choice] What are the main advantages of GaussDB (for MySQL)
database products? ()

A. High reliability
B. High scalability
C. Ultra high performance
D. High compatibility

3. [Single Choice] What is the maximum number of read-only nodes that can be
added to a GaussDB (for MySQL) cluster? ()

A. 12
B. 13
C. 14
D. 15

4. [Short Answer Question] How does GaussDB (for MySQL) automatically
perform failover?

5. [True or False] GaussDB (openGauss) is the world's first fully self-developed
enterprise-class OLAP database that supports the Kunpeng hardware architec-
ture. ()

A. True
B. False

6. [Multiple Choice] An e-commerce company uses GaussDB (openGauss) data-
base for its business. Which of the following are the advantages of GaussDB
(openGauss) database? ()

A. Excellent performance
B. High scalability
C. Easy management
D. Security and reliability.

7. [Multiple Choice] GaussDB (openGauss) is based on an innovative database
kernel, which supports high-performance transaction processing capabilities in
real time. Which of the following are the main features of its high performance?
()

A. Distributed strong consistence
B. Support for Kunpeng two-way server

8.5 Exercises 311

C. High throughput and strong consistency transaction capability
D. Compatibility with SQL2003 standard syntaxes

8. [Single Choice] Which of the following components is responsible for receiving
access requests from the application and returning execution results to the
client? ()

A. GTM
B. WLM
C. CN
D. DN

9. [Multiple Choice] Which of the following product advantages does GaussDB
(DWS) have over traditional data warehouses? ()

A. High performance
B. High reliability
C. Easy use
D. Easy scalability

10. [True or False] GaussDB (DWS) provides double HA protection mechanism for
data nodes to ensure uninterrupted business. ()

A. True
B. False

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

312 8 Introduction to Huawei Cloud Database GaussDB

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Index

A
Access control, v, 16, 50, 51, 88, 167–174
Authorization, 42, 49, 88, 89, 170–173,

179–181, 186, 235

B
Backup and recovery

management, 42, 44–49

C
Cloud audit services, 167, 168, 183–185
Cloud-based databases, v
Cloud trace service (CTS), 183

D
Database design, vi, 43, 240, 245–248, 260,

265, 274–281
Database drivers, 189–202
Database instances, 30, 60, 65, 173, 202, 206,

217, 218, 227, 294
Database management system (DBMS), v, 1,

3–5, 7–9, 15, 20, 34, 37, 41, 42, 49, 50,
52, 88, 250, 251, 297

Database security fundamentals, v
Database security management, 42, 51, 167,

168
Database tools, 55, 202–223, 275
Data definition and control, v
Data dictionary, 3, 51, 77, 249–250, 284
Data function virtualization (DFV), 115, 290,

294, 295, 308

Data warehouse service (DWS), 17, 23, 32, 61,
66, 71, 155, 224, 235, 236, 239, 243,
271, 273, 287–289, 297, 299–304, 306,
307, 309, 312

Distributed databases, 9, 17, 32, 60, 71, 202,
206, 207, 281, 288, 290, 294, 296

G
GaussDB, v, vi, 17, 23, 32, 51, 61, 65, 66, 71,

81, 84, 87, 88, 90, 91, 94, 98, 104, 106,
107, 111, 112, 115, 122, 150, 155, 168,
172–175, 178, 179, 184, 189–202, 217,
224, 235, 236, 238–240, 242, 243,
271–273, 287–304, 306–312

GaussDB (for MySQL) client tools, v, vi, 23,
51, 65, 66, 71, 81, 84, 87, 90, 91, 94,
104, 111, 115, 122, 150, 155, 168,
172–175, 179, 184, 189, 190, 195, 200,
201, 217, 224, 239, 273, 287–290,
293–296, 311

H
Hierarchical models, 10–13, 37, 38

I
Identity and access management (IAM),

168–173

M
Mesh models, 10–13, 37, 38
Multi-node cluster architecture, 115, 290

© The Author(s) 2023
Huawei Technologies Co., Ltd., Database Principles and Technologies – Based
on Huawei GaussDB, https://doi.org/10.1007/978-981-19-3032-4

313

https://doi.org/10.1007/978-981-19-3032-4#DOI

N
NF theory, 260–265
Numeric calculation functions, 94–96, 112

O
Object permissions, v, 167, 174, 175, 182, 186
Online analytical processing (OLAP), 16, 17,

34–37, 39, 54, 58, 68, 78, 245, 270, 273,
281, 287–289, 311

Online transaction processing (OLTP), 21,
34–39, 54, 58, 68, 79, 81, 245, 270, 273,
281, 287–289

Operators, v, 63, 87, 104–112, 119–124, 131,
133, 176, 261, 297

R
Relational model, 10–13, 15, 21, 37, 38, 260,

265

S
Secure sockets layer (SSL), 49, 168, 173–174,

186, 228, 299, 310
SQL syntax categories, 115–164
System permissions, 146, 154, 172, 176–179,

181, 182, 186

T
Transaction control, 155, 302

314 Index

	Preface
	Contents
	About the Author
	Chapter 1: Introduction to Databases
	1.1 Overview of Database Technology
	1.1.1 Data
	1.1.2 Database
	1.1.3 Database Management System
	1.1.4 Database System

	1.2 History of Database Technology
	1.2.1 Emergence and Development of Database Technology
	1.2.2 Comparison of the Three Stages of Data Management
	1.2.3 Benefits of Database
	1.2.4 Development Characteristics of the Database
	1.2.5 Hierarchical Model, Mesh Model and Relational Model
	1.2.6 Structured Query Language
	1.2.7 Characteristics of Relational Databases
	1.2.8 Historical Review of Relational Database Products
	1.2.9 Other Data Models
	1.2.10 New Challenges for Data Management Technologies
	1.2.11 NoSQL Database
	1.2.12 NewSQL Database
	1.2.13 Database Ranking

	1.3 Architecture of Relational Databases
	1.3.1 Development of Database Architecture
	1.3.2 Single-Host Architecture
	1.3.3 Group Architecture: Master-Standby Architecture
	1.3.4 Group Architecture: Master-Slave Architecture
	1.3.5 Group Architecture: Multi-Master Architecture
	1.3.6 Shared Disk Architecture
	1.3.7 Sharding Architecture
	1.3.8 Shared-Nothing Architecture
	1.3.9 Massively Parallel Processing Architecture
	1.3.10 Comparison of the Characteristics of Database Architectures

	1.4 Mainstream Applications of Relational Databases
	1.4.1 Online Transaction Processing
	1.4.2 Online Analytical Processing
	1.4.3 Database Performance Measurement Indicators

	1.5 Summary
	1.6 Exercises

	Chapter 2: Basic Knowledge of Database
	2.1 Overview of Database Management
	2.1.1 Database Management and Its Scope of Work
	2.1.2 Object Management
	2.1.3 Backup and Recovery Management
	2.1.4 Security Management
	2.1.5 Performance Management
	2.1.6 O&M Management

	2.2 Key Concepts of Database
	2.2.1 Database and Database Instance
	2.2.2 Database Connection and Session
	2.2.3 Schema
	2.2.4 Tablespace
	2.2.5 Table
	2.2.6 How the Table Is Stored
	2.2.7 Partition
	2.2.8 Data Distribution
	2.2.9 Data Types
	2.2.10 View
	2.2.11 Index
	2.2.12 Constraints
	2.2.13 Transaction

	2.3 Summary
	2.4 Exercises

	Chapter 3: Getting Started with SQL Syntax
	3.1 Overview of SQL Statements
	3.1.1 What is an SQL Statement
	3.1.2 Comprehensive Application of SQL Statements

	3.2 Data Types
	3.2.1 Common Data Types
	3.2.2 Uncommon Data Types
	3.2.3 Cases of Data Types

	3.3 System Functions
	3.3.1 Numeric Calculation Functions
	3.3.2 Character Processing Functions
	3.3.3 Time and Date Functions
	3.3.4 Type Conversion Functions
	3.3.5 System Information Functions

	3.4 Operators
	3.4.1 Logical Operators
	3.4.2 Comparison Operators
	3.4.3 Arithmetic Operators
	3.4.4 Test Operators
	3.4.5 Other Operators

	3.5 Summary
	3.6 Exercises

	Chapter 4: SQL Syntax Categories
	4.1 Data Query
	4.1.1 Simple Query
	4.1.2 Removing Duplicate Values
	4.1.3 Query Column Selection
	4.1.4 Conditional Query
	4.1.5 Join Query
	4.1.6 Subquery
	4.1.7 Merging Result Sets
	4.1.8 Difference Result Sets
	4.1.9 Data Grouping
	4.1.10 Data Sorting
	4.1.11 Data Restriction

	4.2 Data Update
	4.2.1 Data Insertion
	4.2.2 Data Modification
	4.2.3 Data Deletion

	4.3 Data Definition
	4.3.1 Database Objects
	4.3.2 Creating a Table
	4.3.3 Modifying Table Properties
	4.3.4 Deleting a Table
	4.3.5 Index
	4.3.6 View

	4.4 Data Control
	4.4.1 Transaction Control
	4.4.2 Committing a Transaction
	4.4.3 Rolling Back a Transaction
	4.4.4 Transaction Save Points

	4.5 Others
	4.5.1 SHOW Command
	4.5.2 SET Command

	4.6 Summary
	4.7 Exercises

	Chapter 5: Database Security Fundamentals
	5.1 Overview of Database Security Features
	5.1.1 What Is Database Security Management
	5.1.2 Database Security Framework
	5.1.3 Database Security Features

	5.2 Access Control
	5.2.1 What Is IAM
	5.2.2 IAM Features
	5.2.3 IAM Authorization
	5.2.4 Relationship Between IAM and GaussDB (for MySQL) usage
	5.2.5 How to Use GaussDB(for MySQL) with IAM
	5.2.6 Detailed Explanation of SSL

	5.3 User Permission Control
	5.3.1 Permission Concept
	5.3.2 Users
	5.3.3 Modifying a User
	5.3.4 Deleting a User
	5.3.5 Roles
	5.3.6 Authorization
	5.3.7 Permission Recovery

	5.4 Cloud Audit Services
	5.4.1 What Are Cloud Audit Services
	5.4.2 Key Operations to Support Cloud Audit Services

	5.5 Summary
	5.6 Exercises

	Chapter 6: Database Development Environment
	6.1 GaussDB Database Driver
	6.1.1 What Is a Driver
	6.1.2 JDBC
	6.1.3 ODBC
	6.1.4 Others

	6.2 Database Tools
	6.2.1 DDM
	6.2.2 DRS
	6.2.3 DAS

	6.3 Client Tools
	6.3.1 zsql
	6.3.2 gsql
	6.3.3 Data Studio
	6.3.4 MySQL Workbench

	6.4 Summary
	6.5 Exercises

	Chapter 7: Database Design Fundamentals
	7.1 Database Design Overview
	7.1.1 Difficulties of Database Design
	7.1.2 Goal of Database Design
	7.1.3 Methods of Database Design

	7.2 Requirements Analysis
	7.2.1 Significance of Requirement Analysis
	7.2.2 Tasks of the Requirement Analysis Stage
	7.2.3 Methods of Requirement Analysis
	7.2.4 Data Dictionary

	7.3 Conceptual Design
	7.3.1 Conceptual Design and Conceptual Model
	7.3.2 E-R Approach

	7.4 Logical Design
	7.4.1 Logical Design and Logical Models
	7.4.2 IDEF1X Method
	7.4.3 Entities and Attributes in the Logic Model
	7.4.4 NF Theory
	7.4.5 Logic Design Considerations

	7.5 Physical Design
	7.5.1 Physical Design and Physical Models
	7.5.2 Denormalization of the Physical Model
	7.5.3 Maintaining Data Integrity
	7.5.4 Establishing a Physicalized Naming Convention
	7.5.5 Physicalizing Tables and Fields
	7.5.6 Using Modeling Software
	7.5.7 Physical Model Products

	7.6 Database Design Case
	7.6.1 Scenario Description
	7.6.2 Regularization Processing
	7.6.3 Data Types and Length
	7.6.4 Denormalization
	7.6.5 Index Selection

	7.7 Summary
	7.8 Exercises

	Chapter 8: Introduction to Huawei Cloud Database GaussDB
	8.1 GaussDB Database Overview
	8.1.1 GaussDB Database Family
	8.1.2 Typical OLTP and OLAP Databases

	8.2 Relational Database Products and Related Tools
	8.2.1 GaussDB (for MySQL)
	8.2.2 GaussDB (openGauss)
	8.2.3 GaussDB (DWS)
	8.2.4 Data Studio

	8.3 NoSQL Databases
	8.3.1 GaussDB (for Mongo)

	8.4 Summary
	8.5 Exercises

	Index

