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Preface

The introduction of scientific evidence in legal proceedings raises a host of intricate
questions and themes, ranging from the architecture of legal systems across contem-
porary jurisdictions and psychological aspects of judgment and decision-making, to
principles and methods of logical reasoning and decision-making under uncertainty.
Over decades of theoretical and practice-oriented research, scholars in fields such
as law, statistics, history, philosophy of science, psychology, and forensic science
have come to the understanding that the sound use of scientific findings in evidence
and proof processes critically depends on the ability of forensic scientists to use
formal methods of reasoning, so as to ensure a coherent approach to dealing with
and communicating about uncertainty. The focal point of these developments is the
recognition of probability as the reference method for measuring uncertainty.

It is thus hardly surprising that, in recent years, the intersection between law
and forensic science has seen an increase in the number of reports, guidelines, and
recommendations issued by eminent societies, review panels, and expert groups
that insist on the importance of aligning the interpretation of scientific evidence by
forensic scientists to a probabilistic measure of the value of evidence.1 This measure
is the likelihood ratio and has been widely described in peer-reviewed articles and
textbooks.

What is less often recognized, however, is that the likelihood ratio is merely a
particular instance of a more general concept, known as the Bayes factor. While
the likelihood ratio is typically presented in the focused context of evidence-based
discrimination between pairs of competing propositions, the Bayes factor is a
method of choice for approaching a more comprehensive collection of problems
commonly associated with the use of measurements and data in forensic science.

1 Examples include documents issued by the Royal Statistical Society (Aitken et al., 2010), The
Royal Society of Edinburgh (Nic Daéid et al., 2020), The UK Forensic Science Regulator (Tully,
2021), The European Network of Forensic Science Institutes (Willis et al., 2015), The Association
of Forensic Science Providers (Association of Forensic Science Providers, 2009), and expert
communities, in particular sub-fields of forensic science, such as forensic genetics (e.g. Gill et al.,
2018) or forensic voice comparison (Drygajlo et al., 2015; Morrison et al., 2021).
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viii Preface

Examples include the comparison of probabilistic models, model selection, and
decision-making regarding competing theories and model parameters. We believe
that by becoming acquainted with Bayes factors across a range of different
applications, forensic scientists can strengthen the use of probabilistic methods in
their respective disciplines. Forensic scientists should also gain an understanding of
the role of Bayes factors in coherent decision-making under uncertainty. The core
idea of this book on Bayes factors, the first on this theme in forensic science, is to
address these questions.

Bayes Factors for Forensic Decision Analyses with R is a new Bayesian modeling
book that provides a self-contained account of essential elements of computational
Bayesian statistics using R, a leading programming language and a freely available
software environment for statistical computing. This book features a well-rounded
approach to three naturally interrelated topics. The first is probabilistic inference.
As a core concept of Bayesian inferential statistics, Bayes factors are ideally suited
to help forensic scientists think about the logical and balanced evaluation of the
value of evidence. This is a necessary preliminary to coherent reporting on scientific
evidence. Second, this book highlights the logical connection between probabilistic
reasoning, using Bayes factors, and decision analysis under uncertainty. This
perspective involves the decision-theoretic (re-)conceptualization of questions that,
in classical statistics, are often framed as problems of hypothesis testing using a
disparate set of concepts, such as p-values, that have a longstanding and well-
documented history of misinterpretations by both scientists and recipients of expert
information. Here, Bayes factors provide a sound and defensible alternative. The
third theme that this book covers is operational relevance. Thus, throughout this
book, all key concepts are systematically illustrated with hands-on examples and
complete template code in R, including sensitivity analyses and explanations on
how to interpret results in context. This usefully complements the theoretical and
philosophical justifications for the coherent approach to inference and decision
emphasized throughout this book.

Besides explaining the role of the Bayes factor as a guide to reasoning and as
a preliminary to coherent decision analysis, the original contribution of this book
is to work out the relevance of these topics with respect to two main forensic
areas of application: investigation and evaluation. The first, investigation, refers
to discriminating between general propositions of interest, i.e., when no named
person (or object) is available for comparative examinations with a given trace,
mark, or impression of unknown source. The second, evaluation, is concerned
with assessing the meaning of evidence with respect to specific propositions of
interest, e.g., whether given trace material, a mark, or an impression comes from a
particular person (or object), rather than from an unknown person (or object). While
investigation and evaluation pertain to distinct procedural phases with specific needs
and constraints, they involve inferential and decisional tasks that have common
conceptual underpinnings that can be formally captured, analyzed, and expressed in
terms of Bayes factors, and embedded in a coherent framework for decision analysis.

This book does not contain recipes nor does it intend to prescribe what scientists
should do. Instead, the aim of this book is to provide forensic scientists with
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a sound analytical framework for inference and decision analysis that allows
them to critically rethink their current approaches drawn from more traditional
courses in probability and statistics. As prerequisites, readers should have a
minimal background in probability and statistics including, ideally, notions from
Bayesian statistics. With its balanced presentation of theoretical and philosophical
background, together with practical illustrations, this concise book seeks to make
an original contribution to forensic science literature. It will be of equal interest to
forensic practitioners and applied forensic statisticians, and can be used to support
courses on Bayesian statistics for forensic scientists. Occasionally, we will refer to
datasets and computational routines, available as online supplementary materials on
the book’s website at http://link.springer.com/.

This book presents materials developed through a longstanding collaboration
between the authors. Their research was supported, at various instances, by the
Swiss National Science Foundation, the Foundation for the University of Lausanne
(Fondation pour l’Université de Lausanne), the Vaud Academic Society (Société
Académique Vaudoise), the Department of Economics of Ca’ Foscari University
of Venice, and the School of Criminal Justice of the University of Lausanne. The
authors are deeply indebted to Colin Aitken and Daniel Ramos for their valuable
advice, to Lorenzo Gaborini for sharing routines developed in his Ph.D thesis, and
to Luc Besson, Jacques Linden, Raymond Marquis, Valentin Scherz, and Matthieu
Schmittbuhl for sharing data of forensic interest. Finally, students and fellow
researchers at Ca’ Foscari University of Venice and the University of Lausanne have
provided the authors with exciting and encouraging environments without which
much of the writing of this book would not have been possible.

Venice, Italy Silvia Bozza
Lausanne-Dorigny, Switzerland Franco Taroni
Lausanne-Dorigny, Switzerland Alex Biedermann
August 2022
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Chapter 1
Introduction to the Bayes Factor and
Decision Analysis

1.1 Introduction

The assessment of the value of scientific evidence involves subtle forensic, sta-
tistical, and computational aspects that can represent an obstacle in practical
applications. The purpose of this book is to provide theory, examples, and elements
of R code to illustrate a variety of topics pertaining to value of evidence assessments
using Bayes factors in a decision-theoretic perspective.

The structure of this book is as follows. This chapter starts by presenting an
overview of the role of statistics in forensic science, with an emphasis on the
Bayesian perspective and the role of the Bayes factor for logical inference and
decision. Next, the chapter addresses three general topics that forensic scientists
commonly encounter: model choice, evaluation, and investigation. For each of these
themes, Bayes factors will be developed and discussed using practical examples.
Particular attention will be devoted to the distinction between feature- and score-
based Bayes factors, typically used in evaluative settings. This chapter also provides
theoretical background analysts might need during data analysis, including elements
of forensic interpretation, computational methods, decision theory, prior elicitation,
and sensitivity analysis.

Chapter 2 addresses the problem of discrimination between competing propo-
sitions regarding target features of a population of interest (i.e., parameters).
Examples include applications involving counting processes and propositions refer-
ring to the proportion of items of forensic interest (e.g., items with illegal content)
or an unknown quantity. Attention will be drawn to background elements that may
affect counting processes or continuous measurements and a decisional approach to
this problem.

Chapter 3 addresses the problem of evaluation of scientific evidence in the form
of discrete, continuous, and continuous multivariate data. The latter may present a
complex dependence structure that will be handled by means of multilevel models.

© The Author(s) 2022
S. Bozza et al., Bayes Factors for Forensic Decision Analyses with R,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-031-09839-0_1
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2 1 Introduction to the Bayes Factor and Decision Analysis

Chapter 4 focuses on the problem of investigation, using examples involving
either univariate or multivariate data.

For each topic covered in the book, examples will be accompanied with R
code, allowing readers to reproduce computations and adapt sample code to their
own problems. The end of each chapter presents an outline of the principal R
functions used throughout the respective chapters. While some functions can be
easily reproduced, others are more elaborate and copying their R code would
be tedious. These functions are available, as well as datasets, as supplementary
materials on the book’s website (on http://link.springer.com/).

1.2 Statistics in Forensic Science

Forensic science uses scientific principles and technical methods to help with the
use of evidence in legal proceedings of criminal, civil, or administrative nature. To
assist members of the judiciary in their inquiries regarding the existence or past
occurrence of events of legal interest, forensic scientists examine recovered traces,
objects, and materials related to persons of interest. This may involve, for example,
the analysis of the nature of body fluids and various other items such as textile
fibers, glass and paint fragments, handwriting, digital device data, as well as the
classification of such items and data into various categories.

More generally, forensic science takes a major interest in both investigative pro-
ceedings and evaluative processes at trial. This involves the examination of persons
and objects, as well as the vestiges of actions. Forensic scientists also help with
reconstructing past events. Thus, incomplete knowledge and, hence, uncertainty are
key challenges that all participants in the legal process must deal with. The standard
approach to cope with uncertainty is the structured collection and sound use of data.
Typically, data result from the analysis and comparative examination of evidential
material (i.e., biological traces, toxic substances, documents, crime scene findings,
imaging data, etc.), followed by an assessment of the probative value of scientific
results within the context of the event under investigation and in the light of the
task-relevant information.

However, despite its potential to support legal evidence and proof processes,
forensic science has also been found to be a contributing factor to miscarriages of
justice (Cole, 2014). Furthermore, over the last decade, reviews by expert panels
have exposed several areas of forensic science practice as insufficiently reliable
(e.g., PCAST, 2016), and courts across many jurisdictions have insisted on the need
to probe and demonstrate the empirical foundations of forensic science disciplines.

Scientists currently address these challenges by directing research not only
toward more studies involving experiments under controlled conditions but also by
developing formal frameworks for value of evidence assessment that can cope with
scientific evidence independent of its nature and type. Central to this development
is a convergence to the Bayesian perspective, which is well suited to help forensic
scientists assess the probative value of observations that, typically, do not arise
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1.2 Statistics in Forensic Science 3

under only one given hypothesis or proposition.1 Bayesian thinking can cope with
situations in which one holds varying degrees of belief about competing hypotheses
and one considers that those hypotheses may differ in their capacity to account for
one’s observations and findings. As noted by Cornfield (1967, p. 34),

Bayes’ theorem is important because it provides an explication for this process of consistent
choice between hypotheses on the basis of observations and for quantitative characterization
of their respective uncertainties.

In forensic science, the Bayes factor (BF)—a central element in Bayesian
analysis—has come to play an extremely important role. It represents a key statistic
for assessing the value of scientific findings and is, thereby, widely covered in
forensic literature (e.g., Aitken et al., 2021; Buckleton et al., 2016). It allows
scientists to assess case-related observations or measurements in the light of
competing propositions presented by parties at trial. In essence, the Bayes factor
is a concept that provides a measure of the degree to which a scientific finding is
capable to discriminate between the competing propositions of interest.

The choice of the Bayes factor to assess the value of outcomes of laboratory
examinations and analyses results from the requirement to comply with several prac-
tical precepts of coherent thinking and decision-making. The desirable properties
that the Bayes factor accounts for are balance, transparency, robustness, and logic.
In addition, it is a flexible measure, acknowledged throughout forensic science, law,
and statistics, because it can deal with any type of evidence (e.g., Evett, 1996;
Jackson, 2000; Robertson & Vignaux, 1993; Robertson et al., 2016; Good, 1950;
Kass & Raftery, 1995; Lindley, 1977; Taroni et al., 2010).

In forensic science, the Bayes factor is more commonly called likelihood ratio,
even if this may create confusion because the two terms represent two distinct
concepts, and the Bayes factor does not always simplify to a likelihood ratio. This
will be explained later in Sect. 1.4. Generally, the use of the Bayes factor is now well
established in both theory and practice, though some branches of forensic science
are more advanced in Bayes factor analyses than others. A general overview is
presented by the Royal Statistical Society’s Section Committee on Statistics and
Law (e.g., Aitken et al., 2010) in a series of practitioner guides for judges, forensic
scientists, and expert witnesses.

While the Bayes factor represents a coherent metric for value of evidence

1 The term hypothesis (or proposition) is interpreted here as an assertion or a statement that such
and such is the case (e.g., an outcome or a state of nature of the kind “the questioned document has
been printed with printer 1” or “the recovered item is from the same source as the control item”)
and also as a description of a decision. Propositions are, therefore, statements that are either true or
false and that can be affirmed or denied. An important basis for much of the argument developed
in this book is the assumption that personal degrees of belief can be assigned to propositions or
hypotheses. Throughout this book, hypothesis and proposition are treated as synonyms.
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assessment2 in evaluative reporting3 (i.e., when a person of interest is available
for comparison purposes), it is important to mention that it can also be used in
investigative contexts. A case is investigative when there is no person or object
available for comparison, and examinations concentrate primarily on helping to
draw inferences about general features (e.g., sex, right-/left-handedness, etc.) related
to the source of a recovered stain, mark, or trace. More generally, the Bayes factor
can be used for two main purposes in forensic science:

• The first purpose is to assign a value to the result of a comparison between an item
of unknown source and an item from a known source. This refers to the evaluative
mode in which forensic scientists operate. Evaluating a scientific finding thus
means that the scientist provides an expression of the value of the observation
in support—which may be positive, negative, or neutral—of a proposition of
interest in legal proceedings, compared to a relevant alternative proposition.

• The second purpose is to provide information in investigative proceedings. Here,
scientists operate in what is called investigative mode. They try to help answer
questions such as “what happened?” and “what (material) is this?” (Jackson et al.,
2006). The scientist is said to be “event focused” and uses the findings to generate
hypotheses and suggestions for explanations of observations, in order to give
guidance to investigators or litigants.

To illustrate these concepts, imagine a case involving a questioned document
and handwriting. In cases of anonymous letter-writing, it regularly occurs that, at
least initially, no suspected writer is available. In such a case, there will be no
possibility for jointly evaluating characteristics observed on a questioned document
and features on reference (known or control) material from a person of interest,
as would be the case in an evaluative context. However, this does not mean that
measurements made only on the questioned document, without comparison to
reference material, could not be informative for investigative purposes. For example,
features extracted from the handwriting of unknown source may be evaluated with
respect to more general propositions such as “the questioned document (e.g., a
ransom note) has been written by a man (woman)” or “the questioned document has
been written by a right- (left)-handed person.” Helping to discriminate between such
propositions contributes to reducing the pool of potential writers in an investigation.

As a metric to assess the value of findings in a forensic context, the Bayes factor
allows practitioners to offer a quantitative expression that they can convey in a more
general reasoning framework that conforms to the logic of Bayesian thinking. From
the scientist’s point of view, the contribution to inference is perfectly symmetric.
That is, the findings may support either of the two competing propositions, with

2 A list of necessary logical conditions to guarantee coherence is presented and discussed in Taroni
et al. (2021a).
3 On the difference between evaluative and other types of reporting, such as technical and
intelligence reporting, see ENFSI Guideline for Evaluative Reporting in Forensic Science (Willis
et al., 2015) §1.1.
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respect to the relevant alternative proposition. This strengthens the scientist’s role
as balanced expert in the legal process.

1.3 Bayesian Thinking and the Value of Evidence

Bayesian philosophy is named after Reverend Thomas Bayes and is based on an
interpretation of probability as personal degree of belief (de Finetti, 1989). In
Bayesian theory, all uncertainties in a problem must necessarily be described by
probabilities. Probability is intended as one’s conditional measure of uncertainty
associated with the evidence, the available information, and all the underlying
assumptions. In this book, we will use the term evidence in the general sense of a
given piece of information or data. This includes, but is not restricted to, the idea of
evidence used in legal proceedings. The term evidence is used here in a broad sense
as synonym for other terms such as “finding” or “outcome.” According to Good
(1988), evidence may be defined as data that makes one alter one’s beliefs about
how the world is working. The word finding, in turn, is used in this book to designate
the result of a forensic examination or analysis. Findings are measurements in a
quantitative form, discrete or continuous. Examples for discrete quantitative results
are counts of glass fragments or gunshot residues. Examples for continuous results
are measurements of physical quantities such as length, weight, refractive index,
and summaries of complex comparisons in the form of similarity scores. For a
formal definition of the term findings, see also the ENFSI Guideline for Evaluative
Reporting in Forensic Science (Willis et al., 2015).

Starting from prior probabilities, representing subjective degrees of belief about
propositions of interest, the Bayesian paradigm allows one to rationally revise such
beliefs and compute posterior probabilities, draw inferences about propositions, and
make decisions (Sprenger, 2016). For example, when new information becomes
available, it may be necessary to assess how this information ought to affect
propositions regarding the involvement of a person of interest in particular alleged
activities. Likewise, physicians need to structure their thought processes when
performing medical diagnosis. In general, the question is how to update one’s
personal beliefs regarding uncertain events when one receives new information.

Suppose that the events H1, . . . , Hn form a partition, and denote by Pr(Hi | I )

the probability that is associated with Hi , i = 1, . . . , n, given relevant background
information I . This probability is called a prior probability. Furthermore, consider
an event or quantity E, whose probability can be expressed by means of the law of
total probability as

Pr(E | I ) =
∑

j

Pr(E | Hj , I) Pr(Hj | I ). (1.1)

The ENFSI Guideline for Evaluative Reporting in Forensic Science (Willis et al.,
2015, at p. 21) regards conditioning information as the essential ingredient of prob-
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ability assignment, since all probabilities are conditional. In forensic evaluation, it
is important not to focus on all possible information, but only on the information
that is relevant to the forensic task at hand. Disciplined forensic reporting requires
scientists to make clear their perception of the conditioning information at the time
they conduct their evaluation. Conditioning information is sometimes known as
the framework of circumstances (or background information). Much of the non-
scientific information will not have a bearing on the value of scientific findings, but
it is essential to recognize those aspects that do. Examples of relevant information
may include the ethnic origin of the perpetrator (but not that of the suspect) and the
nature of garments and surfaces involved in alleged transfer events. More generally,
conditioning information may also include data and domain knowledge that the
expert uses to assign probabilities. The conditioning on (task-) relevant information
I is important because it clarifies that probability assignments are personal and
depend on the knowledge of the person conducting the evaluation.

Bayes rule (or theorem) is a straightforward application of the conditionalization
principle and the partition formula (1.1). It allows one to compute the so-called
posterior probability Pr(Hi | E, I) as

Pr(Hi | E, I) = Pr(E | Hi, I ) Pr(Hi | I )

Pr(E | I )
= Pr(E | Hi, I ) Pr(Hi | I )∑

j Pr(E | Hj , I) Pr(Hj | I )
,

which emphasizes that certain knowledge of E modifies the probability of Hi .4 Note
that prior and posterior probabilities are only relative to the new finding E. The
posterior probability will become again a prior probability when additional findings
become available. Lindley (2000, p. 301) expressed this as follows: “Today’s
posterior is tomorrow’s prior.” Bayesian statistics is the sequential application
of Bayes rule to all situations that involve observed and missing data, unknown
quantities (e.g., events, propositions, population parameters), or unobserved data
(e.g., future observations).

Participants in the legal process are typically concerned with the problem of
comparing competing propositions about a contested event. A typical example for
trace evidence is “the recovered glass fragments come from the broken window”
versus “the recovered glass fragments come from an unknown source.” When
measurements on various items (i.e., glass fragments) are available, it may be
necessary to quantitatively evaluate these findings with respect to selected proposi-
tions of interest. According to Bayesian methodology developed by Jeffreys (1961),
this involves the introduction of a statistical model to describe the probability
of the available measurements according to different hypotheses (propositions or
models). The posterior probability of each hypothesis is then computed via a
direct application of Bayes theorem. Following Jeffreys’ criterion for comparing
hypotheses, a hypothesis is accepted or rejected on the basis of its posterior

4 See Taroni et al. (2020) for a discussion on the generalization of Bayes rule (i.e. Jeffrey’s
conditionalization) when one is faced to uncertain evidence.
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probability being greater or smaller than that of the alternative proposition. Note that
the acceptance or rejection of a proposition is not meant as an assertion of its truth
or falsity, only that its probability is greater or smaller than that of the respective
alternative proposition (Press, 2003).

The primary element in Bayesian methodology for comparing propositions is the
Bayes factor (BF for short). It provides a numerical representation of the impact
of findings on propositions of interest. In other words, the Bayes factor quantifies
the degree to which observed measurements discriminate between competing
propositions. The Bayes factor is the ingredient by which the prior odds in favor
of a proposition are multiplied in virtue of the knowledge of the findings (Good,
1958):

Posterior odds = BF × Prior odds.

Broadly speaking, prior and posterior odds are the ratios of probabilities of the
hypotheses of interest before and after acquiring new findings, respectively. The
value of experimental outcomes is measured by how much more probable they make
one hypothesis relative to the respective alternative hypothesis, compared to the
situation before considering the experimental findings.

A formal definition of the Bayes factor is given in Sect. 1.4, along with a
discussion about its interpretation as measure of the value of the evidence. Practical
examples in Sects. 1.5 and 1.6 and further developments in Chaps. 3 and 4 will
illustrate the use of the Bayes factor for evaluative and investigative purposes.

1.4 Bayes Factor for Model Choice

Consider an unknown quantity X, referring to a quantity or measurement of interest
such as the number of ecstasy pills in a sample drawn from a large seizure of
pills, the elemental chemical composition of glass fragments, or a feature (e.g., the
length) of a handwritten character. Furthermore, suppose that f (x | θ) is a suitable
probability model5 for X, where the unknown parameter6 θ belongs to the parameter
space Θ . Suppose also that the parameter space consists of two non-overlapping sets
Θ1 and Θ2 such that Θ = Θ1 ∪ Θ2. A question that may be of interest is whether
the parameter θ belongs to Θ1, or to Θ2, that is to compare the hypothesis

H1 : θ ∈ Θ1,

against the alternative hypothesis

5 A probability model is understood here as a characterization of the distribution of measurements.
6 A parameter is taken here as a characteristic of the distribution of all members (e.g., individuals
or objects) of a population of interest.
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H2 : θ ∈ Θ2.

Note that H1 is usually called the null hypothesis. Under a classical (frequentist)
approach, the distinction between null and alternative hypotheses is very important.
Users must be aware that when performing significance testing, competing hypothe-
ses are not equivalent and there is, in fact, an asymmetry associated with them. One
collects data (or evidence) against the null hypothesis before it is rejected, but the
acceptance of the null hypothesis is not an assertion about its truthfulness. It merely
means that there is little evidence against it. As will be shown, under the Bayesian
paradigm, this does not represent an issue.

A hypothesis Hi is called simple if there is only one possible value for θ , say
Θi = {θi}. A hypothesis is called composite (see, e.g., Example 1.1) if there is more
than one possible value.

Let π1 = Pr(H1) = Pr(θ ∈ Θ1) and π2 = Pr(H2) = Pr(θ ∈ Θ2) denote the prior
probabilities for the competing composite hypotheses H1 and H2. Note that, for the
sake of simplicity, the letter I denoting background information is omitted here. The
ratio of the prior probabilities π1/π2 is called the prior odds of H1 to H2. The prior
odds indicate whether hypothesis H1 is more or less probable than hypothesis H2
(prior odds being greater or smaller than 1) or whether the hypotheses are (almost)
equally probable, i.e., the prior odds are (close) to 1.7 Suppose observational data
x are available that do not provide conclusive evidence8 about the propositions of
interest but will allow one to update prior beliefs using Bayes theorem. Let us denote
by fHi

(x) the marginal probability of the data under proposition Hi , that is,

fHi
(x) =

∫

Θi

f (x | θ)πHi
(θ)dθ, (1.2)

where πHi
(θ) denotes the prior probability density of θ for θ ∈ Θi . The marginal

probability is also called the predictive probability, which is the probability to
observe the actual data before any data become available. Kass and Raftery (1995)
refer to it as the marginal likelihood: the probability of the observations averaged

7 The ratio of the probabilities of two mutually exclusive and collectively exhaustive events is
called odds in favor of the event whose probability is in the numerator of the ratio. Note that
hypotheses are not necessarily exhaustive: the word odds is sometimes used loosely in reference
to the ratio of the probabilities of mutually exclusive propositions whose probabilities do not add
to 1 (Taroni et al., 2010).
8 The problem of imperfect evidence is well illustrated by Robertson and Vignaux (1995, at p.12):

An ideal piece of evidence would be something that always occurs when what we are trying
to prove is true and never occurs otherwise. If we are trying to demonstrate the truth of an
hypothesis or assertion we would like to find as evidence something which always occurs
when the hypothesis is true and never occurs when the hypothesis is not true. In real life,
evidence this good is almost impossible to find.
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across the prior distribution over the parameter space Θ . Note that the parameter
space Θ can be either continuous or discrete. In the latter case, the integral in (1.2)
must be replaced by a sum, and the marginal probability of the evidence (i.e., data
x) becomes

fHi
(x) =

∑

θ∈Θi

f (x | θ) Pr(θ | Hi).

The Bayes factor for comparing H1 and H2 is defined as the ratio of the marginal
probabilities fHi

(x) under the competing hypotheses, that is,

BF = fH1(x)

fH2(x)
. (1.3)

Let α1 = Pr(H1 | x) = Pr(θ ∈ Θ1 | x) and α2 = Pr(H2 | x) = Pr(θ ∈ Θ2 | x)

denote the posterior probabilities for the competing hypotheses. The ratio of the
posterior probabilities α1/α2 is called the posterior odds of H1 to H2. Recalling
the odds form of Bayes theorem, one can express the Bayes factor for comparing
hypothesis H1 against hypothesis H2 as the factor by which the prior odds of H1 to
H2 are multiplied in virtue of the knowledge of the data to obtain the posterior odds,
that is,

α1/α2 = BF × π1/π2.

The Bayes factor measures the change produced by the new information (or, data)
in the odds when going from the prior to the posterior distributions in favor of one
proposition as opposed to a given alternative. For this reason, it is not uncommon to
find the BF defined as the ratio of the posterior odds in favor of H1 to the prior odds
in favor of H1, that is,

BF = α1/α2

π1/π2
. (1.4)

One of the attractive features of using a Bayes factor to quantify the value of the
acquired information is that it does not depend on prior probabilities of competing
hypotheses. However, this bears potential for misunderstandings. The Bayes factor
is sometimes interpreted as, for example, the odds provided by the data alone, for
H1 to H2: this is conceptually incorrect. Though cases may be found where the
Bayes factor can be expressed as a ratio of likelihoods9 and correctly be interpreted

9 While probabilistic modeling provides the probability f (x | θ) of any hypothetical data x before
any observation is made, conditional on θ , statistical methods allow one to draw conclusions
about θ given the collected observations x. This difference in focus is expressed by the likelihood
function, written l(θ | x), where the probability distribution f (x | θ) is written as a function of θ

conditional on the observations x, i.e., f (x | θ) = l(θ | x).
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as the “summary of the evidence provided by the data in favor of one scientific
theory (. . . ) as opposed to another” (Kass & Raftery, 1995, at p. 777), this does not
hold in general. The Bayes factor will generally depend on prior assumptions. It is
necessary, thus, to clarify the meaning of “prior assumptions” because confusion
may arise between, on the one hand, the notion of prior probability about model
parameters (θ ∈ Θi) and, on the other hand, prior probabilities of propositions (Hi).

To clarify this distinction, consider the comparison of a simple hypothesis H1 :
θ = θ1 against a simple alternative hypothesis H2 : θ = θ2. The prior probabilities
of these hypotheses are expressed as π1 = Pr(θ = θ1) and π2 = Pr(θ = θ2). The
posterior probabilities αi in the light of prior probabilities πi (i = 1, 2) and observed
data x can be easily computed by means of a direct application of Bayes theorem:

αi = Pr(Hi | x) = Pr(θ = θi | x) = f (x | θi)πi∑
j=1,2 f (x | θj )πj

. (1.5)

The ratio of the posterior probabilities α1/α2 obtained from computing (1.5) for
i = 1, 2 simplifies to the product of the likelihood ratio times the ratio of the prior
probabilities, that is,

α1

α2
= f (x | θ1)

f (x | θ2)
× π1

π2
.

Recalling (1.4), it is readily seen that the Bayes factor in this simple case is the
likelihood ratio of H1 to H2,

BF = f (x | θ1)

f (x | θ2)
× π1

π2
× π2

π1
= f (x | θ1)

f (x | θ2)
, (1.6)

and it is correct then to interpret this as “the odds provided by the data alone for H1
to H2.”

However, the comparison of simple versus simple hypotheses is a particular case
among many others. Practitioners may face the more general situation where at least
one of the hypotheses is composite, that is, the parameter of interest may take one of
a range of different values (e.g., Θi = {θ1, . . . , θk}), or infinitely many, as is the case
when θ is continuous. In the case of composite hypotheses, the prior probabilities
πi for i = 1, 2 will take the following form:

πi = Pr(θ ∈ Θi) =

⎧
⎪⎨

⎪⎩

∑
θ∈Θi

Pr(θ) for θ discrete

∫
Θi

π(θ)dθ for θ continuous,
(1.7)

where π(θ) is the prior probability density for θ ∈ Θ . The posterior probabilities αi

are therefore computed as
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αi = Pr(θ ∈ Θi | x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
θ∈Θi

f (x|θ) Pr(θ)
∑

θ∈Θ f (x|θ) Pr(θ)
for θ discrete

∫
Θi

f (x|θ)π(θ)dθ
∫
Θ f (x|θ)π(θ)dθ

for θ continuous,

(1.8)

and the posterior odds will be

α1

α2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
θ∈Θ1

f (x|θ) Pr(θ)
∑

θ∈Θ2
f (x|θ) Pr(θ)

for θ discrete

∫
Θ1

f (x|θ)π(θ)dθ
∫
Θ2

f (x|θ)π(θ)dθ
for θ continuous.

(1.9)

Following (1.4), the Bayes factor can be reconstructed as follows:

BF =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
θ∈Θ1

f (x|θ) Pr(θ)
∑

θ∈Θ2
f (x|θ) Pr(θ)

/π1
π2

for θ discrete

∫
Θ1

f (x|θ)π(θ)dθ
∫
Θ2

f (x|θ)π(θ)dθ
/π1

π2
for θ continuous,

(1.10)

where the πi are computed as in (1.7). It is seen that the Bayes factor can no longer
be expressed as a likelihood ratio as in the case of comparing simple versus simple
hypotheses. We will show this for the case where θ is continuous.

Start with the prior probability density π(θ) on Θ , and divide it by the probability
πi of the hypothesis Hi to obtain the restriction of the prior probability density π(θ)

on Θi , that is,

πHi
(θ) = π(θ)

πi

for θ ∈ Θi.

The probability density πHi
(θ) simply describes how the prior probability spreads

over the hypothesis Hi . The prior probability density π(θ) can thus be rewritten in
the following form:

π(θ) =
⎧
⎨

⎩

π1πH1(θ) for θ ∈ Θ1,

π2πH2(θ) for θ ∈ Θ2.

Therefore, the posterior odds in (1.9) for the continuous case can be rewritten as

α1

α2
= π1

∫
Θ1

f (x | θ)πH1(θ)dθ

π2
∫
Θ2

f (x | θ)πH2(θ)dθ
. (1.11)

Recalling (1.4), the Bayes factor in (1.10) will take the form of integrated likelihoods
under the hypotheses of interest, that is,
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BF =
∫
Θ1

f (x | θ)πH1(θ)dθ
∫
Θ2

f (x | θ)πH2(θ)dθ
. (1.12)

The reader can verify that the two expressions in (1.3) and (1.12) are equivalent.
Prior evaluations enter the Bayes factor through the weights πH1(θ) and πH2(θ).
The Bayes factor depends on how the prior mass is spread over the two hypotheses
(Berger, 1985). It is also worth noting that whenever hypotheses are unidirectional
(e.g., when comparing H1 : θ ≤ θ0 against H2 : θ > θ0), the choice of a prior
probability density π(θ) over Θ = Θ1 ∪ Θ2 (with Θ1 = [0, θ0] and Θ1 = (θ0, 1])
is equivalent to the expression of a prior probability for the competing hypotheses.
Conversely, whenever hypotheses are bidirectional (e.g., when comparing H1 : θ =
θ0 against H2 : θ �= θ0), one cannot choose a prior probability density π(θ) over the
entire parameter space Θ , as this would amount to place a probability equal to 0 to
the hypothesis H1 : θ = θ0. The prior probability distribution over θ must, in this
case, be a mixture of a discrete component that assigns a positive mass π1 = Pr(θ =
θ0) to H1 and a continuous component that spreads the remaining mass π2 = 1−π1
over Θ2 according to the probability density πH2(θ). The posterior probability α1
can then be computed as in (1.8), where Θ1 = θ0,

α1 = Pr(H1 | x) = π1f (x | θ0)

π1f (x | θ0) + π2
∫
Θ2

f (x | θ)πH2(θ)dθ
. (1.13)

Analogously, the posterior probability α2 may be computed, and the Bayes factor is

BF = f (x | θ0)∫
Θ2

f (x | θ)πH2(θ)dθ
. (1.14)

It can be observed that the Bayes factor in (1.14) does not depend on the
prior probabilities of competing hypotheses which can vary considerably among
recipients of expert information. Any such recipient can, starting from their own
probabilities, use the Bayes factor to obtain posterior probabilities in a straight-
forward manner. Consider, for the sake of illustration, the posterior probability of
hypothesis H1 in (1.13). A simple manipulation allows one to obtain

α1 =
[

1 + π2

π1

1

BF

]−1

= BF

BF + π2/π1
.

In summary, the Bayes factor thus measures the change in the odds in favor of one
hypothesis, as compared to a given alternative hypothesis, when going from the prior
to the posterior distribution. This means that a Bayes factor larger than 1 indicates
that the data support hypothesis H1 compared to H2. However, the Bayes factor
does not indicate whether H1 is more probable than the opposing hypothesis H2,
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the BF only makes it more probable than it was before observing the data (Lavine
& Schervish, 1999).

Example 1.1 (Alcohol Concentration in Blood) A person is stopped because
of suspicion of driving under the influence of alcohol. Blood taken from that
person is submitted to a forensic laboratory to investigate whether the quantity
of alcohol in blood θ is greater than a legal threshold of, say, 0.5 g/kg. Thus,
the hypotheses of interest can be defined as H1 : θ > 0.5 versus H2 : θ ≤ 0.5.
Suppose that a prior probability density π(θ) is given for θ and that the
prior probabilities of H1 and H2 in (1.7) are π1 = 0.05 and π2 = 0.95,
corresponding to prior odds approximately equal to 0.0526. These values
suggest that, based on the circumstances, and before considering results of
blood analyses, the hypothesis H1 is believed to be much less probable
than the alternative hypothesis. Suppose next that the posterior probabilities,
after taking into account laboratory measurements, are computed as in (1.8).
The results are α1 = 0.24 and α2 = 0.76. Thus, the posterior odds are
approximately equal to 0.3158. The ratio of the posterior odds by the prior
odds leads to a BF equal to 6. This result represents limited evidence in
support of the hypothesis that the alcohol level in blood is greater than the
legal threshold, compared to the alternative hypothesis. Still, the posterior
probability of hypothesis H1 is low: the BF only renders the hypothesis H1
slightly more probable than it was before observing the measurements made
in the laboratory. This example will be further developed in Chap. 2.

1.5 Bayes Factor in the Evaluative Setting

Consider the general situation where evidentiary material is collected and control
items from a person or object of interest are available for comparative purposes. The
following measurements of a particular characteristic are available: measurements
y on a questioned item (e.g., a glass fragment found on the clothing of a person
of interest) and measurements x on a control item (e.g., fragments from a broken
window). In this evaluative setting, so-called source level propositions10 could be
defined as follows:

10 The notion of source level refers to a given level in a hierarchy of hypotheses. This view
considers a classification (i.e., hierarchy) of propositions into three main categories or levels, called
the source level, activity level, and crime level. See Cook et al. (1998) for a discussion. Note that
source level propositions for the example of glass fragments are chosen here as a formative example
and for illustrative purposes. As a type of transfer evidence, glass fragments should be evaluated
using activity level propositions (Willis et al., 2015).
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H1: The recovered (i.e., questioned) item comes from the same source as the
control item.

H2: The recovered (i.e., questioned) item comes from an unknown source (i.e.,
different from the control item).

This setting is called evaluative because it involves the comparison between
control and recovered items and the use of the results of this comparison for
discriminating between the competing propositions. Models for comparison can
either be feature-based or score-based. Feature-based models (Sect. 1.5.1) focus on
the probability of measurements made directly on evidentiary and reference items.
Conversely, score-based models (Sect. 1.5.2) focus on the probability of observing
a pairwise similarity (or distance), i.e., score, between compared materials.

1.5.1 Feature-Based Models

If one assumes that y and x are realizations of random variables Y and X with a
given probability distribution f (·), the Bayes factor is

BF = f (y, x | H1, I )

f (y, x | H2, I )
, (1.15)

where I represents the available background information. Application of the rules
of conditional probability allows one to rewrite the Bayes factor as follows:

BF = f (y | x,H1, I )

f (y | x,H2, I )
× f (x | H1, I )

f (x | H2, I )
.

This expression can be further simplified by considering the fact that (i) the
distribution of measurements x on the control item does not depend on whether H1
or H2 is true (and hence f (x | H1, I ) = f (x | H2, I ) holds) and (ii) the distribution
of the measurement y on the questioned item does not depend on the measurement
x on the control item if H2 is true,11 so that f (y | x,H2, I ) = f (y | H2, I ). The
Bayes factor can therefore be written as

BF = f (y | x,H1, I )

f (y | H2, I )
. (1.16)

11 Note that this assumption of independence is not always valid, e.g., with DNA evidence (Balding
& Nichols, 1994; Aitken et al., 2021). A further example is the case of questioned signatures. Under
the proposition that a signature has been forged and therefore is not authentic, one should take into
account that a forger will attempt to reproduce the features of a target signature. Thus, recovered
and control measurements cannot be considered independent (Linden et al., 2021); see Sect. 3.4.3.
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The numerator is the probability of observing the measurements on the recovered
item under the assumption that it comes from the known source, given the informa-
tion I and knowledge of x, the features of the known source. The denominator is
the probability of observing the measurements y on the recovered item, assuming
that it comes from an unknown source, usually selected in some aleatory way from
a relevant population,12 and assuming again the relevant information I . Note that,
for the sake of simplicity, the conditioning information I will be omitted in the
arguments hereafter.

For many types of forensic evidence, it can be reasonable to assume a parametric
model {f (· | θ), θ ∈ Θ}. In this way, the probability distribution characterizing
the available data is of a known form, with the only unknown element being
the parameter θ , which may vary between sources. Consider, for example, the
probability distribution f (· | θ) with unknown parameter θ = θy for the
measurements y on the recovered item and the same probability distribution with
unknown parameter θ = θx for the measurements x on the control item. In
practice, the parameter θ is unknown, and a prior probability distribution π(θ | Hi),
representing personal beliefs about θ under each hypothesis Hi , is introduced. The
marginal distribution f (y | x,H1) in the numerator of (1.16) may be rewritten as
follows:

f (y | x,H1) =
∫

f (y | θ)π(θ | x,H1)dθ

=
∫

f (y | θ)f (x | θ)π(θ | H1)dθ/f (x | H1), (1.17)

where the posterior density π(θ | x,H1) in the first line is rewritten in extended
form using Bayes theorem. The distribution f (y | x,H1) is also called a posterior
predictive distribution.13

The marginal distribution f (y | H2) in the denominator of (1.16) can be rewritten
as follows:

f (y | H2) =
∫

f (y | θ)π(θ | H2)dθ. (1.18)

This is also called a predictive distribution.

12 Note that rules of conditional probability do not specify on which variable we should condition.
Champod et al. (2004) suggest that we should condition on the item with greater information
content. Therefore we usually condition on the control item (e.g., in the case of DNA, traces can
be degraded or of small quantity, while a complete profile can usually be obtained for a person of
interest). For further comments, see also Aitken et al. (2021, pp. 619–627).
13 For a discussion of posterior predictive distributions in forensic science contexts, see, e.g.,
Biedermann et al. (2015).
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Example 1.2 (Toner on Printed Documents) Suppose experimental findings
are available in the form of measurements of magnetism of toner on printed
documents of known origin (x) and questioned origin (y) for which a Normal
distribution is considered suitable. Thus, X ∼ N(θx, σ

2) and Y ∼ N(θy, σ
2),

where the variance σ 2 of both distributions is assumed known and equal
(Biedermann et al., 2016a). A Normal distribution with mean μ and variance
τ 2 is taken to model our prior uncertainty about the means θx and θy , that
is, θ ∼ N(μ, τ 2) for θ = {θx, θy}. The integrals in (1.17) and (1.18) have
an analytical solution, and the marginals can be obtained in closed form. See
Aitken et al. (2021, pp. 815–817) for more details.

Here, H1 and H2 denote the propositions according to which the items
of toner come from, respectively, the same and different printing machines.
Consider, first, the numerator of the BF in (1.17), where the posterior density
π(θ | x,H1) is still a Normal distribution with mean μx and variance τ 2

x ,
computed according to well-known updating rules (see, e.g., Lee, 2012),

μx = σ 2

σ 2 + τ 2 μ + τ 2

σ 2 + τ 2 x (1.19)

and

τ 2
x = σ 2τ 2

σ 2 + τ 2 . (1.20)

The posterior mean, μx , is a weighted average of the prior mean μ and the
observation x. The weights are given by the population variance σ 2 and the
variance τ 2 of the prior probability distribution, respectively, such that the
component (observation or prior mean) which has the smaller variance has
the greater contribution to the posterior mean. This result can be generalized
to consider the distribution of the mean of a set of n observations x1, . . . , xn

from the same Normal distribution (see Sect. 2.3.1).
The marginal or posterior predictive distribution f (y | x,H1) is also a

Normal distribution with mean equal to the posterior mean μx and variance
equal to the sum of the posterior variance τ 2

x and the population variance σ 2,
that is,

(Y | x,H1) ∼ N(μx, τ
2
x + σ 2). (1.21)

The same arguments apply to the marginal or predictive distribution f (y |
H2) in the denominator, which is a Normal distribution with mean equal to
the prior mean μ and variance equal to the sum of the prior variance τ 2 and
the population variance σ 2, that is,

(continued)
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Example 1.2 (continued)

(Y | H2) ∼ N(μ, τ 2 + σ 2). (1.22)

The Bayes factor can then obtained as follows:

BF = N(y | μx, τ
2
x + σ 2)

N(y | μ, τ 2 + σ 2)

=
(τ 2

x + σ 2)−1/2 exp
{
− 1

2
(y−μx)2

τ 2
x +σ 2

}

(τ 2 + σ 2)−1/2 exp
{
− 1

2
(y−μ)2

τ 2+σ 2

} .

Note that this can be easily extended to cases with multiple measurements
y = (y1, . . . , yn) (see Sect. 3.3.1).

Note that the value of the measurements y and x may be expressed as a ratio of
the marginal likelihoods in (1.17) and (1.18), that is,

BF =
∫

f (y | θ)f (x | θ)π(θ | H1)dθ

f (x | H1)
× 1

f (y | H2)

=
∫

f (y | θ)f (x | θ)π(θ | H1)dθ∫
f (x | θ)π(θ | H2)dθ

∫
f (y | θ)π(θ | H2)dθ

, (1.23)

as f (x | H1) = f (x | H2). If the recovered item and the control item come
from the same source (i.e., hypothesis H1 holds), then θy = θx , otherwise θy �= θx

(i.e., hypothesis H2 holds). If H2 is true and hence the examined items come from
different sources, the measurements can be considered independent. Note, however,
that this is not necessarily the case. There are instances where the assumption of
independence among measurements on control and recovered material under H2
does not hold, and the BF will not simplify as in (1.23). See Linden et al. (2021) for
a discussion about this issue in the context of questioned signatures.

The expression of the Bayes factor in (1.23) involves prior assessments about
the unknown parameter θ , in terms of π(θ | Hi), as well as the likelihood function
f (· | θ). Thus, the Bayes factor cannot generally be regarded as a measure of the
relative support to competing propositions provided by the data alone.

1.5.2 Score-Based Models

For some types of forensic evidence, the specification of a probability model for
available data may be difficult. This is the case, for example, when the mea-
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surements are obtained using high-dimensional quantification techniques, e.g., for
fingermarks or toolmarks (using complex sets of variables), in speaker recognition,
or for traces such as glass, drugs or toxic substances that may be described by
several chemical components. In such applications, a feature-based Bayes factor
(Sect. 1.5.1) may not be feasible, and a score-based approach may represent a
practicable (or even the only) available alternative. Broadly speaking, a score is
a metric that summarizes the result of a forensic comparison of two items or traces,
in terms of a single variable, representing a measure of similarity or difference (e.g.,
distance). Various distance measures can be used, such as Euclidean or Manhattan
distance, see, e.g., Bolck et al. (2015).14 One of the first proposals of score-based
approaches in forensic science was presented in the context of forensic speaker
recognition by Meuwly (2001).

Let Δ(·) denote the function which assesses the degree of similarity between
feature vectors x and y. The similarity score Δ(x, y) represents the evidence for
which a Bayes factor is to be computed. The introduction of a score function
for quantifying the similarities/dissimilarities between compared items allows one
to reduce the dimensionality of the problem, while retaining the discriminative
information as much as possible. For a score given by a distance, for example, one
will expect a value close to zero if the features x and y relate to items from the same
source. Vice versa, if the features x and y relate to items from different sources, one
will expect a larger score, provided that there are differences between members in a
population. The score-based Bayes factor (sBF) is

sBF = g(Δ(x, y) | H1, I )

g(Δ(x, y) | H2, I )
, (1.24)

where g(·) denotes the probability distribution associated with Δ(X, Y ). For the
sake of simplicity, the conditioning information I will be omitted hereafter.

For the Bayes factor in (1.24), one cannot reproduce the simplified expression
that was derived in (1.16) for the feature-based Bayes factor. The score-based
Bayes factor must be computed as the ratio of two probability density functions
evaluated at the evidence score Δ(x, y), given the competing propositions H1 and
H2. Since these two distributions are not generally available by default, the forensic
examiner will generally try to derive a sBF using sampling distributions based on
many scores produced under each of the two competing propositions. One way to
compute the density of the score Δ(x, y) in the numerator is to generate many scores
for comparisons between the known features x and the features y of other items
known to come from the potential source assumed under H1. The numerator can
therefore be written as ĝ(Δ(x, y) | x,H1), where ĝ(·) indicates that the distribution
is constructed on the basis of relevant data (scores) produced for the case of interest.

14 The score can also be interpreted as the inner product of two vectors (Neumann & Ausdemore,
2020).



1.5 Bayes Factor in the Evaluative Setting 19

In the denominator, it is assumed that the proposition H2 is true, and x and
y denote features of items that come from different sources. The challenge for
the forensic examiner is that of selecting the most appropriate data for obtaining
the distribution in the denominator. Note that there are different ways to address
this question because, depending on the case at hand, it might be appropriate
to condition on (i) the known source (i.e., pursuing a so-called source-anchored
approach), (ii) the trace (i.e., trace-anchored approach), or (iii) none of these (i.e.,
non-anchored approach). This amounts to evaluating the score using the probability
density distribution that is obtained by producing scores for comparisons between
(i) the features x of the control item from the known source and features of items
taken from randomly selected sources of the relevant population, (ii) the features
y of the trace item and features of items taken from sources selected randomly in
the relevant population, (iii) features of pairs of items taken from sources selected
randomly in the relevant population (i.e., without using x and y). Formally, this
amounts to defining the distribution in the denominator as follows:

(i) ĝ(Δ(x, y) | x,H2),

(ii) ĝ(Δ(x, y) | y,H2),

(iii) ĝ(Δ(x, y) | H2).

See, e.g., Hepler et al. (2012) for a discussion of this topic.

Example 1.3 (Image Comparison) Consider a hypothetical case where the
face of an individual is captured by surveillance cameras during the com-
mission of a crime. Available screenshots are compared with the reference
image(s) of a person of interest. For image comparison purposes, the evidence
to be considered is a score given by the distance between the feature vectors
x of the known reference and the evidential recording y (see Jacquet and
Champod (2020) for a review). Consider the following competing proposi-
tions. H1: The person of interest is the individual shown in the images of the
surveillance camera, versus H2: An unknown person is depicted in the image
of the surveillance camera. To help specify the probability distribution of the
score in the numerator, one can take several pairs of images from the person
of interest to serve as pairs of questioned and reference items. To inform the
probability distribution for the score in the denominator, conditioning on the
reference item x (i.e., the images depicting the person of interest) can be
justified as it may contain information that is relevant to the case and may
be helpful for generating scores (Jacquet & Champod, 2020; Hepler et al.,
2012). The distribution in the denominator can thus be computed using a
source-anchored approach as in (i). The sBF can therefore be obtained as

(continued)
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Example 1.3 (continued)

sBF = ĝ(Δ(x, y) | x,H1)

ĝ(Δ(x, y) | x,H2)
.

In other types of forensic cases, conditioning on y in the denominator, case (ii),
may be more appropriate. This represents an asymmetric approach to defining the
distribution in the numerator and in the denominator.

Example 1.4 (Handwritten Documents) Consider a case involving handwrit-
ing on a questioned document. Handwriting features y on the questioned
document are compared to the handwriting features x of a person of interest.
The similarities and differences between x and y are measured by a suitable
metric (score). To inform about the probability distribution of the scores in
the numerator, one can take several draws of pairs of handwritten characters
originating from the known source to serve as recovered and control items
and to obtain scores from the selected draws. Under H2, consideration of
x is not relevant for the assessment. Note that here H2 is the proposition
according to which the person of interest is not the source of the handwriting
on the questioned document, but someone else from the relevant population. It
would then seem reasonable to construct the distribution for the denominator
by comparing the features y of the questioned document with features x

from items of handwriting of persons randomly selected from the relevant
population of potential writers. This amounts to a trace-anchored approach
as in situation (ii) defined above. In fact, for handwriting, the approach (i)
would amount to discarding relevant information related to the questioned
document. The sBF can therefore be obtained as

sBF = ĝ(Δ(x, y) | x,H1)

ĝ(Δ(x, y) | y,H2)
.

In yet other cases, the distribution in the denominator may be obtained by
comparing pairs of items drawn randomly from the relevant population, without
conditioning on either x or y. In such cases, the alternative proposition H2 is that
the two compared items come from different sources.
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Example 1.5 (Firearm Examination) Consider a case in which a bullet is
found at a crime scene and a person carrying a gun is arrested. The extent
of agreement between marks left by firearms on bullets can be summarized
by a score or multiple scores. An example of a simple score is the concept of
consecutive matching striations. To inform the distribution in the numerator,
the scientist fires multiple bullets using the seized firearm. To inform the
distribution in the denominator, the scientist fires and compares many bullets
known to come from different guns (i.e., different relevant models). The
distribution in the denominator can thus be computed using a non-anchored
approach. The sBF can therefore be obtained as

sBF = ĝ(Δ(x, y) | x,H1)

ĝ(Δ(x, y) | H2)
.

Note that this is a coarse approach in the sense that no consideration is given
to general manufacturing features. Indeed, the amount and quality of striation
on a bullet may depend on aspects such as the caliber and the composition
(e.g., jacketed/non-jacketed bullets, etc.), hence a conditioning on y may be
considered.

Another example for a non-anchored approach, in the context of fingermark
comparison, can be found in Leegwater et al. (2017). An example will be presented
in Sect. 3.3.4.

Note that the above considerations refer to so-called specific-source cases. In
such cases, recovered material is compared to material from a known source.
However, there are also other situations where the competing propositions are as
follows:

H1: The recovered and the control material originate from the same source.
H2: The recovered and the control material originate from different sources.

For such common-source propositions, the sampling distributions under the
competing propositions can be learned, under H1, from many scores for known
same-source pairs (with each pair drawn from a distinct source) and, under (H2),
from many scores for pairs known to come from different sources. The score-based
BF in this case will account for the occurrence of the observed score under the
competing propositions, but it does not account for the rarity of the characteristics
of the trace.

While a score-based approach has the potential to reduce the dimensionality of
the problem, the use of scores implies a loss of information because features y and
x are replaced by a single score. Therefore, there is a trade-off to be found between
the complexity of the original configuration of features and the performance of the
score-metric, the choice of which requires a justification.
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For a critical discussion of score-based evaluative metrics, see Neumann (2020)
and Neumann and Ausdemore (2020). See also Bolck et al. (2015) for a discussion
of feature- and score-based approaches for multivariate data.

1.6 Bayes Factor in the Investigative Setting

While the use of the Bayes factor for evaluative purposes is rather well established
in both theory and practice, the focus on investigative settings still offers much room
for original developments. In many forensic settings, especially in early stages of an
investigation, it may be that no potential source is available for comparison. In such
situations, it will not be possible to compare characteristics observed on recovered
and reference materials, as would be the case in an evaluative setting (Sect. 1.5).
Nevertheless, one can derive valuable information from the recovered material
alone. Consider, for example, two populations denoted p1 and p2, respectively, and
the following two propositions:

H1: The recovered item comes from population p1 (e.g., a population of females).
H2: The recovered item comes from population p2 (e.g., a population of males).

Denote by y the measurements on the recovered material known to belong to one
of the two populations specified by the competing hypotheses, but it is not known
which one. For such a situation, the Bayes factor measures the change produced by
the measurements y on the recovered item in the odds in favor of H1, as compared
to H2, when going from the prior to the posterior distribution.

Assume that a parametric statistical model {f (· | θ), θ ∈ Θ} is suitable for
the data at hand. The problem of discriminating between two populations can then
be treated as a problem of comparing statistical hypotheses, assuming that the
probability distribution for the measurements on the recovered material (under each
hypothesis) is of a given form. Consider, first, the situation where the parameters
characterizing the two populations are known, that is, θ = θ1 if the recovered item
comes from population p1 and θ = θ2 if the recovered item comes from population
p2. Formally, this amounts to specifying the probability distributions f (y | θ1) and
f (y | θ2), respectively. The posterior probability of the competing propositions can
be computed as in (1.5) and the Bayes factor simplifies to a ratio of likelihoods as
in (1.6).

Example 1.6 (Fingermark Examination) Consider a case involving a single
fingermark of unknown source. The fingerprint examiner seeks to help with
the question of whether the mark comes from a man or woman. Thus, for
investigative purposes, the following two propositions are of interest:

(continued)
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Example 1.6 (continued)
H1: The fingermark comes from a man.
H2: The fingermark comes from a woman.

A type of data that can be acquired from fingermarks is ridge width,
summarized in terms of the ridge count per surface in mm2. See, for example,
Appendix A of Champod et al. (2016) for a summary of different data
collections. Consider ridge density, which was found to vary as a function
of sex (i.e., women tend have narrower ridges than men), but also between
populations. Suppose that normality represents a reasonable assumption for
ridge density so that the probability distribution for available measurements
can be considered Normal N(θi, σ

2
i ), with the unknown mean θ being equal

to θi and the variance σ 2 being equal to σ 2
i if Hi is true. Given H1, the

measurements y thus have a probability distribution N(θ1, σ
2
1 ) and given H2

a probability distribution N(θ2, σ
2
2 ).

The posterior probability of the competing propositions can be computed
as in (1.5), and the Bayes factor simplifies to a likelihood ratio as in (1.6), that
is,

BF = N(y | θ1, σ
2
1 )

N(y | θ2, σ
2
2 )

.

Generally, however, the parameters, or some of the parameters, characterizing the
two distributions are unknown and a pair of probability density distributions will be
introduced to model this uncertainty. As a consequence, the Bayes factor will also
depend on prior assumptions and will not simplify to a likelihood ratio. Consider the
case where parameters θi are continuous and take values in the parameter space Θi .
A prior distribution π(θi | pi) must be specified, with θi ∈ Θi and pi representing
the population of interest. A marginal distribution for each population pi can be
computed as in (1.2),

fHi
(y) =

∫

Θi

f (y | θi)π(θi | pi)dθi (1.25)

and the Bayes factor will take the form of a ratio of marginal likelihoods as in (1.3),
that is,

BF = fH1(y)

fH2(y)
. (1.26)
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Example 1.7 (Fingermark Examination—Continued) Recall Example 1.6
where a Normal probability distribution was assumed for the measured ridge
density on a fingermark, with variance known and equal to σ 2

i . A conjugate
prior distribution may be introduced for the population mean θi , say θi ∼
N(μi, τ

2
i ). The marginal likelihoods are still Normal with mean equal to the

prior mean μi and variance equal to the sum of the prior variance τ 2
i and the

population variance σ 2
i . The Bayes factor therefore is

BF = N(y | μ1, τ
2
1 + σ 2

1 )

N(y | μ2, τ
2
2 + σ 2

2 )
.

The same idea can be extended to the case where both the mean and the
variance are unknown. This will be addressed in Sect. 4.3.2.

The Bayes factor thus depends on the prior assumptions about parameters
characterizing each population. This must not be confused, as noted earlier, with
prior probabilities for competing propositions. The latter will form the prior odds
which will be multiplied by the Bayes factor to compute the posterior odds

Pr(H1 | y)

Pr(H2 | y)
= fH1(y)

fH2(y)
× Pr(H1)

Pr(H2)
.

The Bayesian approach for discriminating between two propositions regarding
population membership can be easily generalized to the case where there are any
number k (>2) of competing mutually exclusive propositions. Let H1, . . . , Hk

denote k propositions and denote by y the observation to be evaluated. The
propositions of interest can be defined as follows:

H1: The recovered item comes from population 1 (p1).
H2: The recovered item comes from population 2 (p2).

...

Hk: The recovered item comes from population k (pk).

Example 1.8 (Questioned Documents) Consider a case involving questioned
documents where the issue of interest is which of three printing machines has
been used to print a questioned document. Propositions of interest are:

H1: The questioned documents have been printed with printer 1.
H2: The questioned documents have been printed with printer 2.

(continued)
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Example 1.8 (continued)
H3: The questioned documents have been printed with printer 3.

After having specified a Bayesian statistical model for each proposition
(i.e., a probability distribution for the available measurements and a prior
distribution for the unknown parameters), the marginal likelihoods fHi

(y),
i = 1, 2, 3, characterizing propositions H1, H2, and H3, can be obtained as in
(1.25).

Occasionally, cases involve multiple propositions. Imagine a case involving DNA
findings, such as bloodstains recovered on a crime scene, with the reported profile
being compared against the profile of a person of interest. The defense argues that
the bloodstain does not come from the person but from either a relative (e.g., a
brother) or an unknown person. A question that may arise in such a case is how to
evaluate and report results, because the Bayes factor involves pairwise comparisons.
One option is to report only the marginal likelihoods fHi

(y), even if they may not be
easy to interpret. Alternatively, one may report a scaled version f ∗

Hi
(y) as suggested

by Berger and Pericchi (2015), that is,

f ∗
Hi

(y) = fHi
(y)

∑k
j=1 fHj

(y)
. (1.27)

This expression will be much easier to interpret, because the scaled likelihoods
f ∗

Hi
(y) sum up to 1. Generally, prior probabilities Pr(Hi) may vary between

recipients of such reports, but the posterior probability can be easily computed as

Pr(Hi | y) = Pr(Hi)f
∗
Hi

(y)
∑k

j=1 Pr(Hj )f
∗
Hj

(y)
, i = 1, . . . , k

followed, if required, by classification of the recovered material in the population
with the highest posterior probability. Note that reporting the scaled version in (1.27)
is equivalent to assuming equal prior probabilities for competing propositions. In
fact, if Pr(Hi) = 1

k
, i = 1, . . . , k, then it can easily be shown that

Pr(Hi | y) = f ∗
Hi

(y)
∑k

j=1 f ∗
Hj

(y)
= f ∗

Hi
(y), i = 1, . . . , k,

as
∑k

j=1 f ∗
Hj

(y) = 1.
The analyst may also consider the possibility of summarizing several proposi-

tions into one, in order to produce a comparison between two propositions regarding
population membership. One of these propositions will be composite. Let H̄1 =
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H2 ∪ · · · ∪ Hk . Starting from k possible populations from which the recovered
material may come from, a pair of competing propositions of interest may thus be
formulated as follows:

H1: The recovered item comes from population 1 (p1).
H̄1: The recovered item comes from one of the other populations (p2, . . . , pk).

The marginal likelihood fH1(y) characterizing proposition H1 is obtained as in
(1.25), while the marginal likelihood under H̄1 is

fH̄1
(y) =

k∑

i=2

Pr(pi)

∫

Θi

f (y | θi)π(θi | pi)dθi,

with
∑k

i=1 Pr(pi) = 1. The Bayes factor expressing the value of y for comparing
H1 against H̄i becomes

BF = fH1(y)
∑k

i=2 Pr(pi)

fH̄1
(y)

. (1.28)

The posterior odds become

Pr(H1 | y)

Pr(H̄1 | y)
= fH1(y) Pr(p1)

fH̄1
(y)

,

(Aitken et al., 2021, p. 643).

Example 1.9 (Questioned Documents—Continued) Consider the following
propositions:

H1: The questioned documents have been printed with printer 1.
H̄1: The questioned documents have been printed with printer 2 or with

printer 3.

The marginal likelihood characterizing proposition H1 is

fH1(y) =
∫

Θ1

f (y | θ1)π(θ1 | p1)dθ1.

The marginal likelihood characterizing proposition H̄1 will become

fH̄1
(y) = Pr(p2)

∫

Θ2

f (y | θ2)π(θ2 | p2)dθ2

(continued)
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Table 1.1 Scale for verbally
expressing support provided
by the observations for one
hypothesis over an alternative
adapted from Jeffreys (1961)

BF Evidence in favor of H1

1 to 3.2 Not worth more than a bare mention

3.2 to 10 Substantial

10 to 100 Strong

>100 Decisive

Table 1.2 Verbal scale for expressing evidential value, in terms of the Bayes factor, in support of
the prosecution’s proposition over the alternative (defense) proposition (Willis et al., 2015)

Value of the BF Verbal equivalent: The forensic findings . . .

1 Do not support one hypothesis over the other

2 to 10 Provide weak support (for the first hypothesis relative to the
alternative)

10 to 100 Provide moderate support (idem)

100 to 1000 Provide moderately strong support (idem)

1000 to 10,000 Provide strong support (idem)

10,000 to 1,000,000 Provide very strong support (idem)

1,000,000 and above Provide extremely strong support (idem)

Example 1.9 (continued)

+ Pr(p3)

∫

Θ3

f (y | θ3)π(θ3 | p3)dθ3,

and the Bayes factor can be obtained as in (1.28).

1.7 Bayes Factor Interpretation

The Bayes factor is a coherent measure of the change in support that the findings
provide for one hypothesis against a given alternative (Jeffrey, 1975). Table 1.1
shows a guide for expressing Bayes factors verbally, following Jeffreys (1961). A
historical review is presented in Aitken and Taroni (2021).

The verbal equivalent must express a degree of support for one of the propo-
sitions relative to an alternative and is defined from ranges of Bayes factor values.
Qualitative interpretations of the Bayes factor have also been proposed in the context
of forensic science (Evett, 1987, 1990; Evett et al., 2000; Nordgaard et al., 2012;
Willis et al., 2015). Table 1.2 summarizes an example of a scale given in the ENFSI
Guideline for Evaluative Reporting in Forensic Science (Willis et al., 2015), inspired
by the scale proposed by Nordgaard et al. (2012). Users of these scales must be
aware that labelling several Bayes factor apportionments offers a broad descriptive
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statement about standards of evidence in scientific investigation and not a calibration
of the Bayes factor (Kass, 1993). See, e.g., Ramos and Gonzalez-Rodriguez (2013),
van Leeuwen and Brümmer (2013) and Aitken et al. (2021) for an account of
calibration as a measure of performance of BF computation methods.

Moreover, it is important to note that the choice of a reported verbal equivalent is
based on the magnitude of the Bayes factor and not the reverse. Marquis et al. (2016)
present a discussion on how to implement a verbal scale in a forensic laboratory,
considering benefits, pitfalls, and suggestions to avoid misunderstandings.

It is worth to reiterate that a Bayes factor represents a measure of change in
support rather than a measure of support, though the two expressions may be
perceived as equivalent. In fact, the Bayes factor can be shown to be a non-
coherent measure of support: a small Bayes factor means that the data will lower
the probability of the hypothesis of interest relative to its value prior to considering
the evidence, but it does not imply that the probability of this hypothesis is low. The
Bayes factor measures the change produced in the odds, thus providing a measure
of whether the available findings have increased or decreased the odds in favor of
one proposition compared to the alternative (Bernardo & Smith, 2000).

1.8 Computational Aspects

The computation of Bayes factors can be challenging, especially when the marginal
likelihoods in the numerator and in the denominator (1.2) involve integrals that do
not have an analytical solution. Several methods have been proposed to address this
complication. See Kass and Raftery (1995) and Han and Carlin (2001) for a review.

Consider the following general expression for the marginal likelihood:

f (x) =
∫

f (x | θ)π(θ)dθ. (1.29)

If the likelihood f (x | θ) and the prior π(θ) are not family conjugates, then
an analytical solution may not be available. But suppose that it is possible to
draw values from the prior distribution π(·). The integral in (1.29) can then be
approximated by Monte Carlo methods as

f̂1(x) =
N∑

i=1

f (x | θ(i))/N, (1.30)

where θ(i), i = 1, . . . , N , are N independent draws from π(·). This is the average
of the likelihood of the sampled values. An example will be provided in Sect. 2.2.2
(Example 2.3).

This simulation process can be rather inefficient when the posterior distribution is
concentrated, relative to the prior, as most of the θ(i) will have a small likelihood and
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the estimate f̂1(x) in (1.30) may be dominated by a few values with large likelihood.
The precision of the Monte Carlo integration can be improved by importance
sampling (Kass & Raftery, 1995). Moreover, statistical packages (e.g., in R) allow
one to sample from a certain number of distributions.

Importance sampling as well as other Monte Carlo tools may help to overcome
such difficulties as there is no need for the distribution π(θ) to be available in closed
form. Consider any manageable density π∗(θ) from which it is feasible to sample.
The integral in (1.29) can then be approximated by importance sampling as

f̂2(x) =
∑N

i=1 wif (x | θ(i))
∑N

i=1 wi

, (1.31)

where θ(i) are independent draws from π∗(θ) and are weighted by importance
weights wi = π(θ(i))/π∗(θ(i)). The function π∗(θ) is known as importance
sampling function (e.g., Geweke, 1989). An example will be provided in Sect. 2.2.2
(Example 2.3).

In the case where π∗(θ) is taken to be the posterior density π(θ | x) = π(θ)f (x |
θ)/f (x), the use of this expression in (1.31) yields the harmonic mean of the
sampled likelihood values as an estimate for the marginal likelihood f (x):

f̂3(x) =
[

1

N

N∑

i=1

1

f (x | θi)

]−1

.

Note that, whatever method is used, the output of such a simulation procedure is an
approximation that must be handled carefully. Notwithstanding, it is worth pointing
out that while the Monte Carlo estimate is not exact, the Monte Carlo error (e.g.,
f (x)−f̂1(x)) can be very small if a sufficiently large number of draws are generated.
A study of Monte Carlo errors for the quantification of the value of forensic evidence
is provided by Ommen et al. (2017).

Many practical problems require more advanced techniques based on Markov
chain Monte Carlo methods (MCMC) to overcome computational hurdles. The
general idea behind these methods is to sample recursively values θ(i) from some
transition distribution that depends on the previous draw θ(i−1) in such a way that at
each step of the iteration process, we expect to draw from a distribution that becomes
closer (i.e., converges) to the target posterior distribution π(θ | x). This means that,
for many iterations, θ(i) is approximately distributed according to π(θ | x) and can
be used like the output of a Monte Carlo simulation algorithm. To avoid the effect
of starting values, the first set of iterations is generally discarded (this is called the
burn in period), and the simulated values beyond the first nb iterations

θ(nb+1), . . . , θ (N)
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are taken as draws from the target posterior distribution. The Gibbs sampling
algorithm is a well-known method to construct a chain with these features. Suppose
that the parameter vector can be decomposed into several components, say θ =
(θ1, . . . , θp), and let π(θj | θ

(i−1)
−j ) denote the so-called full conditional distribution,

that is the conditional distribution of θj at step (i) given all the other components,
say θ−j , at the previous step (i − 1)

θ
(i−1)
−j = (θ

(i−1)
1 , . . . , θ

(i−1)
j−1 , θ

(i−1)
j+1 , . . . , θ (i−1)

p ).

For many problems, it is possible to sample easily from the conditional distribu-
tions, as is the case when distributions are conjugate. The Gibbs sampling algorithm
works as follows: start with an arbitrary value θ(0) = (θ

(0)
1 , . . . , θ

(0)
p ) and generate

θ
(i)
j at each iteration according to the conditional distribution given the current

values θ
(i−1)
−j . Examples will be given in Sects. 3.4.1.3 (Example 3.14) and 3.4.3

(Example 3.16.)
Whenever it is not possible to decompose the joint distribution in manageable

conditionals, one can implement an alternative approach, the Metropolis–Hastings
(M–H) algorithm (e.g. Gelman et al., 2014). This algorithm can be summarized as
follows. Start with an arbitrary value θ(0) = (θ

(0)
1 , . . . , θ

(0)
p ) and generate θ

(i)
j at

each iteration, as follows:

1. Draw a proposal value θ
prop
j form a density q(θ

(i−1)
j , θ

prop
j ), called candidate

generating density.
2. Compute a probability of acceptance as follows:

α
(
θ

(i−1)
j , θ

prop
j

)
= min

⎧
⎨

⎩
π
(
θ

prop
j

)
q
(
θ

prop
j , θ

(i−1)
j

)

π
(
θ

(i−1)
j

)
q
(
θ

(i−1)
j , θ

prop
j

)

⎫
⎬

⎭ . (1.32)

3. Accept the proposed value θ
prop
j with probability α

(
θ

(i−1)
j , θ

prop
j

)
, and set θ

(i)
j =

θ
prop
j ; otherwise, reject the proposed value and set θ

(i)
j = θ

(i−1)
j .

Note that if the candidate generating function is symmetric (e.g., a Normal
probability density), the acceptance probability in (1.32) simplifies to

α
(
θ

(i−1)
j , θ

prop
j

)
= min

⎧
⎨

⎩
π
(
θ

prop
j

)

π
(
θ

(i−1)
j

)

⎫
⎬

⎭ .

The performance of an MCMC algorithm can be monitored by inspecting graphs
and computing diagnostic statistics. Such exploratory analysis is fundamental for
assessing convergence to the posterior distribution. An example will be given in
Sect. 2.2.2 (Example 2.6).
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The output of the MCMC algorithm can be used to provide the marginal
likelihood that is needed for the numerator and the denominator of the Bayes
factor, as proposed by Chib (1995) for a Gibbs sampling algorithm and by Chib
and Jeliazkov (2001) for an M–H algorithm. The key idea is to obtain the marginal
likelihood f (x) by a direct application of Bayes theorem since it can be seen as the
normalizing constant of the posterior density

f (x) = f (x | θ∗)π(θ∗)
π(θ∗ | x)

, (1.33)

where θ∗ is a parameter value with high posterior density. Note that (1.33) is valid
for any parameter value θ ∈ Θ . The likelihood f (x | θ) and the prior density π(θ)

can be directly computed at a given parameter point θ∗. The posterior density π(θ |
x) is unavailable in closed form, but it can be approximated by using the output of
the Gibbs sampling. Consequently, the marginal likelihood can be approximated as

f̂ (x) = f (x | θ∗)π(θ∗)
π̂(θ∗ | x)

. (1.34)

Examples will be given in Sects. 3.4.1.3 (Example 3.14) and 3.4.3 (Example 3.16).
This short overview of computational tools is not intended to be exhaustive.

There are instances, for example when dealing with high-dimensional distributions,
where the simulation process is very slow, giving rise to inefficiencies in the
behavior of the Gibbs sampler or Metropolis algorithm. An alternative solution
is given by the Hamiltonian Monte Carlo (HMC) method, where the proposal
distribution is not centered on the current position of the chain and changes depend
on the current position of the chain. This allows one to obtain more promising
candidate values, avoiding to get stuck in a very slow exploration of the target
distribution and therefore to move much more rapidly (Neal, 1996). As in any
Metropolis algorithm, the HMC proceeds by a series of iterations, though it requires
more efforts in terms of programming and tuning. The user can refer to a computer
program called Stan (sampling through adaptive neighborhoods) to directly apply
the Hamiltonian Monte Carlo method. The reader can refer to Gelman et al. (2014)
and Stan Development Team (2021) for instructions and examples. A complete
picture of basic and more advanced methods of Bayesian computation can be found,
e.g., in Gelman et al. (2014), Marin and Robert (2014), and Robert and Casella
(2010). The reader can also refer to Han and Carlin (2001) and to Friel and Pettitt
(2008) for a review of methods to compute BFs.

In all examples in this book, dealing with the Gibbs sampler and the Metropolis–
Hastings algorithm, we will directly program the computations in R. Other open-
source programs however exist that can be used to build Markov chain Monte
Carlo sampler, such as Stan or Jags (Just another Gibbs sampler, https://mcmc-jags.
sourceforge.io/). They both can interact with R (see libraries RStan, rjags and
runjags). Further examples can be found in Albert (2009) and Kruschke (2015).
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1.9 Bayes Factor and Decision Analysis

The Bayes factor provides a coherent and quantitative way for relating probabil-
ities for states of nature, before information is obtained, to probabilities given
information that has become available. A subsequent step, the choice between
different hypotheses, represents a problem of decision-making (Lindley, 1985). For
the purpose of illustration, consider the simple and regularly encountered case where
only two hypotheses are of interest, say H1 and H2. The two hypotheses represent
the list of, more generally, n exclusive and exhaustive uncertain events (also called
states of nature) and denote the entirety of nature. The decision space is the set of
all possible actions, here decisions d1 and d2, where decision di can be formalized
as the acceptance of hypothesis Hi . The decision problem can be expressed in terms
of a decision matrix (see Table 1.3) with Cij denoting the consequence of deciding
di when hypothesis Hj is true. Decision di is called “correct” if hypothesis Hj is
true and i = j . Conversely decision di is not correct if hypothesis Hj is true and
i �= j , i.e., H¬i is true. When choosing between competing hypotheses, one takes
preferences among decision consequences into account, in particular among adverse
outcomes. This aspect is formalized by introducing a measure for expressing the
decision maker’s relative desirability, or undesirability, of the various decision
consequences. To measure the undesirability of consequences on a numerical scale,
one can introduce a loss function L(·), where L(Cij ) denotes the loss that one
assigns to the outcome of deciding di when hypothesis Hj is true.

If it can be agreed that a correct decision represents neither a loss nor a gain, the
loss function for a two-action problem can be described with a two-way table that
contains zeros for the losses L(Cij ), i = j , and the value li for L(Cij ), i �= j . Such
a “0 − li” loss function is shown in Table 1.4, where li = L(di,H¬i ) denotes the
loss one incurs whenever decision di is a wrong decision.

The relative (un-)desirability of available decisions can be expressed by their
expected loss EL(·), computed as

Table 1.3 Decision matrix with d1 and d2 denoting the possible actions, H1 and H2 denoting the
states of nature, and Cij denoting the consequence of deciding di when hypothesis Hj is true

H1 H2

d1 C11 C12

d2 C21 C22

Table 1.4 The “0− li” loss function for a decision problem with d1 and d2 denoting the possible
actions, H1 and H2 denoting the states of nature, and li denoting the loss associated with adverse
decision consequences

H1 H2

d1 0 l1

d2 l2 0
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EL(di | x) = L(di,Hi)︸ ︷︷ ︸
0

Pr(Hi | x)︸ ︷︷ ︸
αi

+ L(di,H¬i )︸ ︷︷ ︸
li

Pr(H¬i | x)︸ ︷︷ ︸
α¬i

= liα¬i ,

where x denotes the observation or a series of measurements and α¬i denotes the
(posterior) probability of the event H¬i given x. The formal Bayesian decision
criterion is to accept hypothesis H1 if the expected loss of the decision to accept H1
is smaller than the expected loss of rejecting it, that is, if the (posterior) expected
loss of decision d1 is smaller than the (posterior) expected loss of decision d2:

EL(d1 | x) < EL(d2 | x)

l1α2 < l2α1. (1.35)

When rearranging the terms in (1.35) to α1/α2 > l1/l2, and dividing both sides by
the prior odds π1/π2, the Bayes decision criterion states that accepting H1 is the
optimal decision whenever

α1/α2

π1/π2
>

l1/l2

π1/π2
= c.

This is equivalent to accepting H1 whenever the Bayes factor in favor of this
proposition is larger than a constant c determined by the prior odds and the loss
ratio. Given a set of observations, the Bayes factor is computed and, depending on
whether or not it exceeds a given threshold, the decision maker chooses between the
members in the list of states of nature (here H1 and H2). Examples will be given
in Chap. 3 in the context of inference of source (Sect. 3.3.3) and in Chap. 4 in the
context of classification (Sects. 4.2.2 and 4.4.1.2). An extended review of elements
of decision analysis in forensic science can be found in Taroni et al. (2021b).

This decision criterion is simple and intuitive, yet it poses challenges. For
example, the requirement to choose a prior probability for the two hypotheses may
be discomforting, because there is no ad hoc recipe for this purpose. In principle,
probabilities are personal, since they depend on one’s knowledge (Lindley, 2014).
They may change as information changes and may vary among individuals. For
example, a given hypothesis may be considered almost true by one individual,
but far less probable by someone else. The fact that different individuals with
different knowledge bases may specify different probabilities for the same event,
provided that they are accompanied with a justification, is not a problem in principle
(Lindley, 2000). The only strict requirement to which probability assignments ought
to conform is coherence (de Finetti, 2017). Coherence has the normative role of
encouraging people to make careful assignments based on their personal knowledge.
This can be operationally supported by the concept of scoring rules. See, for
example, Biedermann et al. (2013, 2017a) for a discussion of scoring rules in the
context of forensic science.
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The same viewpoint applies to utility and loss functions, which may be difficult
to specify. A “correct” utility (or loss) function does not exist, because preference
structures are personal. Adverse decision consequences may be considered more
or less undesirable, depending on the background, the context and the decision
maker’s objectives (e.g., Taroni et al., 2010). Moreover, the loss function does
not need to have constant values, such as the “0 − li” loss function introduced
above. More general loss functions treat the loss as a function of the severity of the
consequences. Examples will be given in Chap. 2 regarding inference and decision
about a proportion (Sect. 2.2.3) and about a mean (Sect. 2.3.3).

Note that, in the context here, the terms “personal” and “subjective” do not
mean that the theory is arbitrary, unjustified or groundless (Biedermann et al.,
2017b; Taroni et al., 2018). There are various devices for the sound elicitation of
probabilities and the measurement of the value of decision consequences (Lindley,
1985). What matters in a situation in which a decision maker is asked to make a
choice among alternative courses of action that have uncertain consequences is that
the behavior is one that can be qualified as rational. This includes, in particular, a
coherent specification of the loss function, reflecting personal preferences among
consequences in terms of desirability or undesirability.

This formal decision-analytic approach provides decision criteria that (i) are
based on clearly defined concepts, (ii) promote rational decision-making under
uncertainty, and (iii) make a clear distinction between the evaluation of the strength
of evidence (as given by the Bayes factor), which is the domain of the forensic
scientist, and the specification of the threshold with which the Bayes factor is
compared, i.e., the ratio between the loss ratio and the prior odds. The latter lies in
the domain of the recipient of expert information, such as investigative authorities
and members of the judiciary.

1.10 Choice of the Prior Distribution

Bayesian model builders may encounter various difficulties. One of them is the
choice of the prior distribution. Bayes theorem does not specify how one ought to
define the prior distribution. The chosen prior distribution should, however, suitably
reflect one’s prior beliefs. In this context, so-called vague or non-informative prior
distributions may help to find a broad consensus. However, it is important to keep
in mind that even a “non-informative” prior distribution effectively conveys a well-
defined opinion, i.e., that probabilities spread uniformly over the parameter space
(de Finetti, 1993a). In contrast to this, personal or so-called informative priors aim
at encoding available prior knowledge. Whenever feasible, it is advantageous to
choose a member of the class of conjugate distributions, that is, a family of prior
distributions such that for any prior in this family and a particular probability
distribution, the corresponding posterior distribution will be in the same family.
For example, the beta distribution and the binomial distribution are said to be
conjugate in this sense. Several examples will be provided throughout this book.
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Table 1.5 Some common conjugate prior distribution families

Probability distribution Conjugate prior distribution

Binomial: Beta:

f (x | θ) = Bin(n, θ) π(θ) = Be(α, β)

Multinomial: Dirichlet:

f (x1, . . . , xk | θ1, . . . , θk) = Mult(n, θ1, . . . , θk) f (θ1, . . . , θk) = Dir(α1, . . . , αk)

Poisson: Gamma:

f (x | λ) = Pn(λ) π(λ) = Ga(α, β)

Normal (known variance): Normal:

f (x | θ, σ 2) = N(θ, σ 2) π(θ) = N(μ, τ 2)

Normal (known mean): Inverse Gamma:

f (x | θ, σ 2) = N(θ, σ 2) π(σ 2) = IG(α, β)

Table 1.5 provides a list of some common families of conjugate distributions. A
more extensive list can be found in Bernardo and Smith (2000). Despite such smooth
technical options, eliciting a prior distribution may not be easy.

First, it may be that none of the standard parametric families mentioned above
is suitable to describe one’s prior degree of belief. There may be circumstances
where multimodal priors may better reflect the available knowledge, and mixture
priors would be more convenient (see e.g. Taroni et al., 2010). Another option is to
specify prior beliefs over a selection of points and then interpolate between them
(Bolstad & Curran, 2017). More generally, there may be cases where the choice
of a conjugate prior is not appropriate as it does not properly reflect available
knowledge. If this is the case, the application of Bayes theorem may lead to a
posterior distribution that is analytically intractable. Such situations require the
implementation of computational tools as described in Sect. 1.8.

Second, practitioners will immediately realize that even if the choice of a given
standard parametric family may appear justifiable, they will still need to choose
a member from the selected family. Stated otherwise, they will need to fix the
hyperparameters of the prior distribution in a way that the resulting shape will
reasonably reflect their knowledge. Assume that practitioners are in a situation
where, based on their experience in the field, they can summarize and translate
their prior beliefs into a numerical value for the prior mean, say m, and into a
numerical value for the prior standard deviation, say s. They can then find the values
of the parameters that specify a prior distribution that reflects the assessed prior
location and prior dispersion, respectively. For example, suppose that the parameter
of interest, θ , is a proportion and that a beta prior distribution is chosen to model
prior uncertainty, i.e., θ ∼ Be(α, β). The problem then is how to choose α and β.
If one can specify a value m for the prior mean and a value s for the prior standard
deviation, that is the two values describing the location and the shape of the prior
distribution, one can elicit the hyperparameters α and β by relating the assessed
prior mean and prior variance to the prior moments of a beta distributed random
variable, that is,
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m = α

α + β
(1.36)

s2 = αβ

(α + β + 1)(α + β)2
. (1.37)

The hyperparameters of the beta prior can then be obtained by solving the two
equations in (1.36) and (1.37) for α and β

α = m

[
m(1 − m)

s2 − 1

]
(1.38)

β = (1 − m)

[
m(1 − m)

s2 − 1

]
. (1.39)

It is advisable to inspect the prior distribution thus elicited. Producing a graphical
representation can help examine whether the shape of the distribution reasonably
reflects one’s prior beliefs. Moreover, the so-called equivalent sample size ne should
be calculated in order to examine the reasonableness of the amount of information
that underlies the proposed prior; one should make sure that it is not unrealistically
high (Bolstad & Curran, 2017). Stated otherwise, one should examine whether the
information that is conveyed by the prior is equivalent, at least roughly, to the
information that would be obtained by collecting a sample of equivalent size ne.
For example, consider a random sample (X1, . . . , Xne ) of size ne, providing the
same information that is conveyed by the prior. The sample mean X̄ = 1

ne

∑ne

i=1 Xi

should have, at least roughly, the same location and the same dispersion as the prior.
For the beta-binomial case, the equivalent sample size ne can be obtained by

relating the moments of the beta prior to the corresponding moments characterizing
a random sample of size ne from a Bernoullian population with probability of
success θ :

α

α + β
= θ (1.40)

αβ

(α + β + 1)(α + β)2
= θ(1 − θ)

ne

. (1.41)

Solving for ne, one obtains ne = α + β + 1. If this is felt to be unrealistic, then
one should revise one’s prior assessments, increase the dispersion and recalculate
the prior. Otherwise, one might specify too much information about the proportion
θ relative to the amount of information provided by a sample of size ne.
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Example 1.10 (Elicitation of a Beta Prior) Suppose that a prior distribution
needs to be elicited for the proportion θ of non-counterfeit merchandise (e.g.,
medicines) in a target population. It is thought that the distribution is centered
around 0.8 with a standard deviation equal to 0.1. Parameters α and β can be
elicited as in (1.38) and (1.39)

> m=0.8
> s=0.1
> a=m*(m*(1-m)/s^2-1)
> b=(1-m)*(m*(1-m)/s^2-1)
> c(a,b)

[1] 12 3

Figure 1.1 shows the elicited beta prior Be(12, 3).

> plot(function(x) dbeta(x,a,b),0,1,xlab=expression
+ (paste(theta)),ylab=expression(paste(pi)*
+ paste('(')*paste(theta)*paste(')')))

The equivalent sample size is 12+3+1=16. This is the size of the sample that
should be available in terms of information that is equivalent to that conveyed
by the elicited prior.

Fig. 1.1 Prior distribution
Be(12, 3) over θ in
Example 1.10
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An objection to this procedure might be that while specifying a value for the
location of the prior may be feasible, this may not necessarily be so for the
dispersion. In many cases, the available prior knowledge takes the form of a
realization (x1, . . . , xn) of a random sample of size n from a previous experiment.
In this case, it is sufficient to solve (1.40) and (1.41) with respect to α and β for this
sample size n:

α = p(n − 1), (1.42)

β = (1 − p)(n − 1), (1.43)

where θ has been estimated by the sample proportion θ̂ = p = ∑n
i=1 xi/n. One

can immediately verify that whenever the hyperparameters α and β are elicited as
in (1.42) and (1.43), then α +β + 1 = n. The elicited parameters reflect the amount
of information provided by a sample of size n.

Some further practical examples will be provided throughout the book. For an
extended discussion of prior elicitation, the reader can refer to Garthwaite et al.
(2005) and O’Hagan et al. (2006).

1.11 Sensitivity Analysis

In Sect. 1.4, it has been emphasized that the Bayes factor is not a measure of the
relative support for the competing propositions provided by the data alone. The
Bayes factor is influenced by the choice and the elicitation of the subjective prior
densities (probabilities) for model parameters under propositions H1 and H2. This
reflects background knowledge that may be available to analysts. For this reason,
prior elicitation of model parameters must not be confused with prior probabilities
of the propositions of interest.

While the computation of the Bayes factor requires prior assessments about
unknown quantities, a main objection to the choice of such prior distributions
is that they may be hard to define, in particular when the available information
is limited. Situations characterized by an abundance of relevant data that can be
used to construct a prior distribution may be rare. Generally, the choice of a prior
is the result of a subtle combination of relevant information, published data, and
explainable personal knowledge of the expert. The specification of the prior must be
taken seriously, because it can be shown that even when a large amount of evidence
is available, the marginal likelihood is highly sensitive to the choice of the prior
distribution, and so is the Bayes factor (Gelman et al., 2014). This is different for
the posterior distribution that is dominated by the likelihood.

Sensitivity analyses allow one to explore how results may be affected by changes
in the priors (e.g. Kass & Raftery, 1995; Kass, 1993; Liu & Aitkin, 2008). This,
however, may turn out to be computationally intensive and time consuming. An
alternative approach has been proposed by Sinharay and Stern (2002) for comparing
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nested models, though it can be extended to non-nested models. The general idea
is to assess the sensitivity of the Bayes factor to the prior distribution for a given
parameter θ by computing the Bayes factor for a vector of parameter values (or
a grid of parameter values in the case of a two-dimensional vector parameter θ ).
The result is a graphical representation of the Bayes factor (i.e., a sensitivity curve)
as a function of θ , say BFθ . In this way, one can get an idea about the Bayes
factor one could obtain for different values of θ , and thus about the sensitivity
of the Bayes factor to various prior distributions. These prior distributions have
their mass concentrated on different apportionments of the parameter space. For
one or two-dimensional problems, the inspection of a sensitivity curve represents
a straightforward and effective approach to study the impact of varying parameter
values on the BF under consideration. An example is given in Sect. 2.3.1 for the
choice of the prior distribution about a Normal mean. A sensitivity analysis with
respect to the prior probability assessments of competing propositions is provided
in Sect. 3.2.3.

A further layer of sensitivity analyses relates to the choice of the utility/loss
function. An example is presented in Sect. 2.2.3 for the choice of the loss function in
the context of inference and decision about a population proportion. Section 4.4.1.2
gives an example for the investigation of the effect of different prior probabilities
and loss values in the context of classification of skeletal remains.

A sensitivity analysis for Monte Carlo and Markov chain Monte Carlo proce-
dures is presented in Sects. 2.2.2 and 3.4.1.3. In Sect. 4.3.3, a sensitivity analysis is
developed for the choice of a smoothing parameter in a kernel density estimation.

1.12 Using R

R is a rich environment for data analysis and statistical computing. In its base
package, it contains a large collection of functions for exploring, summarizing,
and representing data graphically, handling many standard probability distributions
and more. R includes a simple programming language that users can extend with
new functions. Some basic instructions on the use of R or of particular functions
are available from the R Help menu, by using the command help.start(). The
reader can refer to, for example, Verzani (2014) for a detailed introduction to the
use of R for descriptive and inferential statistics, to Albert (2009) for an overview
of elements of Bayesian computation with R, and to the R project home page
(https://www.r-project.org) for more references. Datasets and routines used in the
examples throughout this book are available on the website of this book (on http://
link.springer.com/).

Generally, we will give results of R computations as produced directly by R. We
do not make any recommendations as to the level of precision that scientists should
use when reporting numerical results.
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Chapter 2
Bayes Factor for Model Choice

2.1 Introduction

The Bayes factor can assist forensic scientists in the evaluation of findings when
recipients of expert information need help in discriminating between propositions
concerning, for example, a parameter of interest. A typical example is the discrimi-
nation between competing propositions regarding the concentration of a controlled
substance (e.g., drugs in blood) with respect to a given threshold. This chapter will
approach one-sided hypothesis testing involving model parameters in the form of a
proportion (Sect. 2.2) and a mean (Sect. 2.3). In both situations, additional factors,
such as errors (Sects. 2.2.2 and 2.3.2), are considered. Aspects of decision-making
are also considered (Sects. 2.2.3 and 2.3.3).

Throughout this chapter, the Bayes factor will be obtained as a ratio of marginal
likelihoods following the ideas described in Sect. 1.4. The greater marginal likeli-
hood will support the respective proposition against the other. This, along with other
aspects, such as the decision maker’s preferences among adverse consequences, has
an impact on the decision-making process.

2.2 Proportion

A common problem in forensic practice is the investigation of the proportion of
items or individuals that present a characteristic of interest, e.g., the proportion
of seized pills containing a controlled substance or the proportion of counterfeit
medicines in a given population. A consignment of items is considered a random
sample from a super-population of items of the same type, and the parameter θ is the
proportion of units in the super-population that present the target characteristic. Note
that for consignments of very large size (i.e., several thousands), a finite number of
units will correspond to each positive value of θ . For consignments of small size
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(i.e., smaller than 50), the parameter θ is a nuisance parameter (i.e., one that is not
of primary interest) that can be integrated out, leaving a probability distribution for
the unknown number of items having the target characteristic. For consignments of
intermediate size, θ can be treated as a continuous value in the interval (0, 1) (e.g.,
Aitken et al., 2021). As an example, consider the following pair of propositions:

H1: The proportion θ of items having the characteristic of interest is larger than
θ0.

H2: The proportion θ of items having the characteristic of interest is smaller than
or equal to θ0,

where θ0 ∈ (0, 1) is a given threshold of legal interest.1 Note that applications of
this type of propositions are broad and include, for example, quality control of food
(and other consumer products), the analysis of levels of contamination of laboratory
equipment, and the extent of environmental pollution.

This section covers three main topics: (1) inference about an unknown proportion
θ (Sect. 2.2.1), (2) inference about θ when background elements may affect the
counting process (Sect. 2.2.2), and (3) decision regarding competing propositions
about θ (Sect. 2.2.3).

2.2.1 Inference About a Proportion

Consider a case of inference about a population parameter based on a sample of
size n. Aitken (1999) and Aitken et al. (2021) discuss how to choose a sample size.
Suppose that among the n items, x shows a characteristic that is of interest from a
legal point of view. The question then is how such an analytical result supports one
or the other of the competing propositions regarding the proportion of items in the
population that have the target characteristic.

Experiments of this kind can be regarded as Bernoulli trials (after the Swiss
mathematician Jacob Bernoulli, 1654–1705), where trials are independent and
give rise to one of the two mutually exclusive outcomes, conventionally labeled
success and failure, with constant probability of success in each trial. The binomial
distribution Bin(n, θ) is a statistical model for data that arise from a sequence of
Bernoulli trials:

f (x | n, θ) =
(

n

x

)
θx(1 − θ)n−x, x = 0, 1, . . . , n.

In the Bayesian perspective, the most common prior distribution for the parameter
of interest θ is the beta distribution Be(α, β):

1 See Biedermann et al. (2012, 2018) for a general discussion of thresholds of legal interest when
data are continuous.
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f (θ | α, β) = θα−1(1 − θ)β−1/B(α, β), 0 < θ < 1 ; α, β > 0,

with B(α, β) = Γ (α)Γ (β)
Γ (α+β)

.
The beta prior distribution and the binomial likelihood are conjugate (see

Sect. 1.10): after inspecting a sample, one can easily compute the posterior
distribution, which is still beta, Be(α∗, β∗) with parameters updated according to
well-known updating rules, α∗ = α+x, β∗ = β +n−x (e.g., Lee, 2012). The prior
odds, the posterior odds, and the Bayes factor can be easily computed, as discussed
in Sect. 1.4, by means of standard routines.

Example 2.1 (Counterfeit Medicines) Consider a case in which a large batch
of medicines (say, N > 50) is seized, suspected to contain counterfeit items.
The following propositions are of interest:

H1: The proportion θ of counterfeit medicines is greater than 0.2.
H2: The proportion θ of counterfeit medicines in not greater than 0.2.

Suppose that, initially, limited information is available so that a uniform prior
distribution is chosen over the interval (0, 1), that is, θ ∼ Be(1, 1). Note that
although a prior distribution Be(1, 1) is often called uninformative, it is in
fact informative (see Sect. 1.10 and de Finetti (1993b)). It conveys the view
that every value of θ in the interval (0, 1) is considered equally probable. The
prior odds can then easily be obtained.

> th=0.2
> a=1
> b=1
> pi1=pbeta(th,a,b,lower.tail=F)
> prior_odds=pi1/(1-pi1)
> prior_odds

[1] 4

A uniform prior distribution clearly favors, a priori, hypothesis H1, that θ is
greater than 0.2. Next, suppose that a sample of size 40 is analyzed and 12
out 40 items are found to be positive (counterfeit). The posterior distribution
follows immediately and so the posterior odds and the Bayes factor.

> n=40
> x=12
> astar=a+x
> bstar=b+n-x
> alpha1=pbeta(th,astar,bstar,lower.tail=F)

(continued)
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Example 2.1 (continued)
> post_odds=alpha1/(1-alpha1)
> post_odds

[1] 18.19594

The posterior probability of proposition H1 is, therefore, approximately 18
times greater than the posterior probability of the alternative proposition H2.
Thus, the Bayes factor can be obtained as

> BF=post_odds/prior_odds
> BF

[1] 4.548985

The Bayes factor indicates that the evidence is in favor of proposition H1
that the proportion of counterfeit medicines is greater than 0.2, rather than
proposition H2 (i.e., θ < 0.2). According to the verbal scale presented in
Table 1.2, the BF weakly supports proposition H1 over H2.

To help specify the prior distribution, information in the form of data regarding
similar consignments from cases with comparable circumstances may be used.
Such data may suggest a distribution other than the uniform distribution used in
the above example. An example of how to elicit a subjective prior distribution
about a proportion is provided in Sect. 1.10. For a more extensive discussion about
prior elicitation for a proportion, the reader can refer to O’Hagan et al. (2006).
Forensically relevant applications of prior elicitation for θ are discussed in Aitken
(1999). Note, however, that in certain practical applications, analytical results may
be affected by further factors that cannot be dissociated from the observational
process. An example for such a factor is considered is Sect. 2.2.2.

The analysis pursued above focused on the problem of inference about a
proportion for a large batch. Consider now the case where the size N of the
consignment is small (less than 50). Suppose a sample of size n is inspected and x

items are found to present the target characteristic (e.g., yield a positive test result),
so that θ ∼ Be(α + x, β + n − x). Denote by Y the unknown number of positive
items in the uninspected part of the consignment. This random variable has still a
binomial distribution, Y ∼ Bin(m, θ), where m = N − n represents the number
of units that have not been inspected. The probability distribution for the unknown
number of positive units can be obtained by integrating out parameter θ . This turns
out to be a beta-binomial distribution Be-Bin(n,m, x, α, β):
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Pr(Y = y | n,m, x, α, β)

= Γ (n + α + β)
(
m
y

)
Γ (y + x + α)Γ (n + m − x − y + β)

Γ (x + α)Γ (n − x + β)Γ (n + m + α + β)
(y = 0, 1, . . . , n)

(2.1)

(Aitken, 1999).

Example 2.2 (Counterfeit Medicines—Small Consignment) Consider Exam-
ple 2.1 and suppose now that the consignment is small, say N = 40.
Suppose further that a sample of size n = 10 has been inspected and that
2 items are found to be counterfeit. Starting from a uniform prior distribution
θ ∼ Be(1, 1), the beta posterior distribution becomes θ ∼ Be(3, 9).

> N=40
> n=10
> x=2
> a=1
> b=1
> astar=a+x
> bstar=b+n-x

The distribution of Y then is Be-Bin(10, 30, 2, 1, 1). The probability to
observe a given number of counterfeit items (e.g., y = 1) in the remainder
of the consignment can be obtained using the function dbbinom that is
available in the package extraDistr (Wolodzko, 2020).

> library(extraDistr)
> dbbinom(1,N-n,astar,bstar)

[1] 0.03665943

One can also use the function pbbinom that allows to compute the cumula-
tive distribution function for the beta-binomial random variable in (2.1). For
example, the probability to observe at most 2 counterfeit items can be obtained
as

> pbbinom(2,N-n,astar,bstar)

[1] 0.109604

A Bayesian network for inference about a proportion of a small consignment
has been developed in Biedermann et al. (2008). Posterior probabilities for θ

can easily be calculated with such models.
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2.2.2 Background Elements Affecting Counting Processes

In many real-world applications, counting processes performed in forensic laborato-
ries cannot be considered error-free. Examinations may be affected by inefficiencies
and perturbing factors. For example, it may be that items are lost or missed during
counting or that background elements are present, i.e., objects observationally indis-
tinguishable from the target objects. This section addresses inferential challenges
due to such background elements.

Suppose that x is the number of recorded successes, i.e., the number of times that
the target characteristic is detected. However, the number x may not correspond
to the number xs of items actually showing the characteristic of interest but be
affected by a certain number of background elements, xb, that are wrongly counted
as successes. This complication may typically arise in applications where the items
of interest are small particles. Consider, for example, the assessment of rice quality
in a context of food quality control. Rice quality can be measured by means of
several features, such as the percentage of cracked or immature grains. For example,
there may be legal provisions regarding the maximum tolerated amount of cracked
grains.2 It might then be of interest to compare alternative propositions according
to which the percentage of cracked grains is above or below a given regulatory
threshold. A key question is how to conduct such a comparison when the counting
process may be affected by background elements, e.g., oil seeds in the example here.

While the number of elements actually showing the target characteristic is
modeled as the outcome of a binomial distribution, Xs ∼ Bin(n, θ), the amount
of background elements affecting the counting process, xb, can be modeled by a
Poisson distribution, Xb ∼ Pn(λ), where λ is the mean number of background
elements (D’Agostini, 2004). The total number of recorded successes is therefore
X = Xs + Xb. The graphical model (see e.g. Cowell et al., 1999) in Fig. 2.1 offers
a schematic representation of the probabilistic relationship among the variables.

Fig. 2.1 Graphical
representation of the
statistical model for inference
about a population proportion
based on count data in
presence of background
elements affecting counting
processes

Xs

θ n

Xb

X

λ

2 For legislation in, e.g., Italy, see Gazzetta Ufficiale della Repubblica Italiana, 6, 09-01-2018,
Decreto 20 settembre 2017.
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It can be shown3 that X has the following probability distribution:

f (x | n, θ, λ) =
x∑

xb=0

(
n

x − xb

)
θx−xb (1 − θ)n−x+xbe−λλxb/xb!

Recall that prior uncertainty about θ can modeled by a beta distribution Be(α, β).
The posterior distribution is then given by

f (θ | n, x, λ) =
∑x

xb=0
( n
x−xb

)
θx−xb (1 − θ)n−x+xb e−λλxb/xb!θα−1(1 − θ)β−1

f (x | n, λ)B(α, β)
, (2.2)

where the normalizing constant f (x | n, λ) in the denominator is

f (x | n, λ) =
∫

f (x | n, θ, λ)f (θ)dθ. (2.3)

The posterior distribution (2.2) cannot be obtained in closed form as the integral
characterizing the normalizing constant f (x |, n, λ) is not tractable analytically.
However, since it is possible to draw values from the beta distribution, the integral
in (2.3) can be computed by Monte Carlo approximation as in (1.30), that is,

f̂ (x | n, λ) = 1

N

N∑

i=1

f (x | n, θ(i), λ), (2.4)

where θ(i) ∼ Be(α, β).

Example 2.3 (Rice Quality) Consider a consignment of rice and suppose that
it is of interest to assess whether the proportion of cracked grains is below a
given level of tolerance. The following competing propositions may be of
interest:

H1: The proportion θ of cracked grains is greater than 0.025.
H2: The proportion θ of cracked grains is smaller than or equal to 0.025.

In a sample of 1000 grains, a total of 28 cracked grains are observed.

(continued)

3 The method for finding the distribution of a sum of random variables is given, for example, in
Casella and Berger (2002). It can be used to extend the model to the case of missing counts, an
aspect that is not treated here.
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Example 2.3 (continued)
> n=1000
> x=28

The beta prior distribution for θ needs to be elicited. Suppose that available
knowledge indicates that it is implausible that the proportion of cracked
grains is greater than 5%. An asymmetric prior distribution with a prior mass
concentrated over values lower than 0.05 can be elicited as follows. Start with
α = 1 and β = 1, then increment β by 1 until the shape of the beta distribution
is such that Pr(θ > 0.05) is small, e.g., equal to 0.1.

> a=1
> b=1
> while(pbeta(0.05,a,b,lower.tail=F)>0.1){b=b+1}
> c(a,b,pbeta(0.05,a,b,lower.tail=F))

[1] 1.00000000 45.00000000 0.09944026

The parameters α and β can thus be set equal to 1 and 45, respectively.
Figure 2.2 (left) can be obtained with

> plot(function(x) dbeta(x,a,b),0,0.1,xlab=expression
+ (theta),ylab=expression(paste(pi)*paste('(')*
+ paste(theta)*paste(')')))

The prior odds can now be computed in a straightforward manner.

> th0=0.025
> pi1=pbeta(th0,a,b,lower.tail=F)
> prior_odds=pi1/(1-pi1)
> prior_odds

[1] 0.4706802

This value, approximately 0.5, means that the probability of hypothesis H2 is,
a priori, approximately 2 times greater than the probability of hypothesis H1.

Suppose that when inspecting a sample of 1000 rice grains, on average, 1
grain (e.g., oil seed) is wrongly counted as cracked. Parameter λ can thus be
taken to be equal to 0.001.

First, we write a function dbinpois that computes the product between
a binomial likelihood Bin(n, θ) at x − xb and a Poisson likelihood Pn(λ) at
xb.

> dbinpois=function(xb){
+ dbinom((x-xb),n,theta)*dpois(xb,lambda)}

The unnormalized posterior distribution in (2.2)

(continued)
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Example 2.3 (continued)∑x
xb=0

(
n

x−xb

)
θx−xb (1 − θ)n−x+xbe−λλxb/xb!θα−1(1 − θ)β−1

B(α, β)

is computed as

> lambda=0.001
> xb=matrix(seq(0,x,1),nrow=1)
> incr=0.0001
> thetav=seq(0.0001,0.9999,incr)
> theta=thetav[1]
> s=sum(apply(xb,2,dbinpois))
> upost=dbeta(theta,a,b)*s
> for (i in 2:length(thetav)){
+ theta=thetav[i]
+ s=sum(apply(xb,2,dbinpois))
+ upost=c(upost,dbeta(theta,a,b)*s)
+ }

The normalizing constant f (x | n, λ) can be approximated as in (2.4)

> theta=rbeta(1,a,b)
> norm_const=sum(apply(xb,2,dbinpois))
> nn=10000
> for (i in 2:nn){
+ theta=rbeta(1,a,b)
+ s=sum(apply(xb,2,dbinpois))
+ norm_const=norm_const+s
+ }
> norm_const=norm_const/nn

and the approximated posterior density, represented in Fig. 2.2 (right), can be
obtained as

> normpost=upost/(norm_const)
> plot(thetav,normpost,xlab=expression(paste(theta)),
+ ylab=expression(hat(f)*paste('(')*paste(theta)*
+ paste('|n,x,')*paste(lambda)*paste(')')),
+ xlim=c(0,0.1),type='l')

To calculate the BF, we need to obtain the posterior probabilities of the competing
propositions H1 and H2. Consider proposition H2. The (approximate) posterior
probability of proposition H2 can be obtained by Monte Carlo integration as
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Fig. 2.2 Left: beta prior distribution Be(1, 45) of the unknown proportion θ of cracked grains
(Example 2.3). Right: approximated posterior distribution of θ , f̂ (θ | n, x, λ). The gray shaded
area shows the posterior probability of the hypothesis H1 (θ > 0.025)

α̂2 = 1

f̂ (x | n, λ)

∫ θ0

0
f (x | n, θ, λ)f (θ)dθ

= θ0

f̂ (x | n, λ)

∫ θ0

0
f (x | n, θ, λ)f (θ)

1

θ0
dθ

≈ θ0

f̂ (x | n, λ)
· 1

N

N∑

i=1

f (x | n, θi, λ)f (θ i)dθ, (2.5)

where θi is sampled from a uniform distribution in the interval (0, θ0), θi ∼
Unif(0, θ0), and the normalizing constant f (x | n, λ) is approximated as in (2.4).
The (approximate) posterior probability of hypothesis H1 is 1 − α̂2. The (approxi-
mated) BF will be

B̂F = α̂1/α̂2

π1/π2
. (2.6)

Example 2.4 (Rice Quality—Continued) Consider the scenario described in
Example 2.3, and compute the (approximate) posterior probability of the
hypothesis H2: the proportion θ of cracked grains is smaller than or equal
to 0.025 (as in 2.5).

(continued)
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Example 2.4 (continued)
> m=10000
> theta=runif(m,0,th0)
> alpha2=mean(rowSums(apply(xb,2,dbinpois))
+ *dbeta(theta,a,b))*th0/norm_const
> alpha2

[1] 0.30753

The (approximate) posterior probability of hypothesis H1 then is α̂1 =
0.6925. This is highlighted by the gray shaded area in Fig. 2.2 (right). The
posterior odds and the BF therefore are

> post_odds=(1-alpha2)/(alpha2)
> post_odds

[1] 2.251715

> BF=post_odds/prior_odds
> BF

[1] 4.783959

The Bayes factor indicates that the evidence favors hypothesis H1, i.e., θ >

0.025, over H2, i.e., θ ≤ 0.025. A BF of approximately 5 provides limited
support for the hypothesis H1. Note that the results obtained by the laboratory
analyses clearly affect our belief about θ . The analytical results change prior
odds in favor of H1 (0.47) to posterior odds of approximately 2.25 in favor of
H1.

2.2.2.1 Sensitivity to Monte Carlo Approximation

The Monte Carlo estimate of the Bayes factor obtained in (2.6) is subject to
variability, which may be a source of concern. Figure 2.3 provides an illustration of
BF variability. The figure shows 500 realizations of the BF approximation in (2.6).

> ns=500
> m=10000
> BFs=0
> dbinpois=function(xb){
+ dbinom((x-xb),n,theta)*dpois(xb,lambda)}
> for (j in 1:ns){
+ rthetav=rbeta(m,a,b)
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+ norm_const=0
+ for (i in 1:m){
+ theta=rthetav[i]
+ s=sum(apply(xb,2,dbinpois))
+ norm_const=norm_const+s
+ }
+ norm_const=norm_const/m
+ theta=runif(m,0,th0)
+ alpha2=mean(rowSums(apply(xb,2,dbinpois))
+ *dbeta(theta,a,b))*th0/norm_const
+ post_odds=(1-alpha2)/alpha2
+ BFs=c(BFs,post_odds/prior_odds)
+ }
> BFs=BFs[-1]
> hist(BFs,main='',prob=T)
> curve(dnorm(x,mean(BFs),sd(BFs)),lwd=2,add=T)
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Fig. 2.3 Histogram of 500 realizations of the BF approximation in (2.6), where the posterior
probability of hypothesis H2 is obtained as in (2.5). The solid line represents the fitted Normal
density

The purpose of the graphical representation in Fig. 2.3 is to illustrate that the
repeated application of the procedure leads to a distribution of BFs. While the Monte
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Carlo estimate is not an exact value, it can be shown that the approximation error can
be made arbitrarily small by generating a sufficiently large amount of observations.
For a large number of simulations, it can also be proven, by Central Limit Theorem,
that the error | f̂ (x) − f (x) | √

N is normally distributed. This can be used to
analyze the variability of the Monte Carlo estimate (see, e.g., Marin and Robert
(2014)). Note that the shape of the histogram is roughly symmetric and bell-shaped,
as shown in Fig. 2.3.

It is worth noting that other, more efficient ways than traditional Monte Carlo
methods may be implemented to compute the integrals related to the posterior
probabilities of the competing hypotheses. Importance sampling (see Sect. 1.8),
for example, can improve the integral approximation. It can also be used when
the target density is unnormalized. Consider again the posterior probability of
hypothesis H2:

α2 =
∫ θ0

0

f (x | n, θ, λ)f (θ)

f (x | n, λ)
dθ.

This can be rewritten as

α2 = 1

f (x | n, λ)

∫ 1

0
h(θ)f (x | n, θ, λ)f (θ)

g(θ)

g(θ)
dθ

= 1

f (x | n, λ)

∫ 1

0
h(θ)w(θ)g(θ)dθ,

where

h(θ) =
⎧
⎨

⎩

1 if 0 < θ < θ0

0 if θ0 ≤ θ < 1,

w(θ) = f (x | n, θ, λ)f (θ)/g(θ) and g(θ) is the importance sampling function.
The posterior probability α2 can be approximated as

α̂2 =
1
N

∑N
i=1 h(θi)w(θi)

1
N

∑N
i=1 w(θi)

, (2.7)

where θi ∼ g(θ).
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Example 2.5 (Rice Quality—Continued) A Be(20, 780) is chosen as impor-
tance sampling function g(θ). It can be readily verified that it is centered at
0.025 and that the density rapidly collapses toward zero for values greater than
0.04. This will avoid the generation of points for which the integrand is close
to zero, with a very modest contribution to the approximation. Next, sample
10000 values from this distribution.

> m=10000
> a1=20
> b1=780
> theta=rbeta(m,a1,b1)

The posterior probability α2 of hypothesis H2 can be obtained as in (2.7)

> fx=rep(0,m)
> fx[theta<th0]=1
> num=mean(rowSums(apply(xb,2,dbinpois))*
+ dbeta(theta,a,b)/dbeta(theta,a1,b1)*fx)
> den=mean(rowSums(apply(xb,2,dbinpois))*
+ dbeta(theta,a,b)/dbeta(theta,a1,b1))
> alpha2=num/den
> alpha2

[1] 0.3079344

> BF=((1-alpha2)/alpha2)/prior_odds
> BF

[1] 4.774886

Figure 2.4 provides an illustration of BF variability. Notice that while the BFs
in Figs. 2.3 and 2.4 have roughly the same location, the importance sampling
in (2.7) produced an increase in precision.

It is important to understand that the resulting distribution does not mean
that there is a distribution for a given BF because the BF, by definition, is a
single number. See, e.g., Taroni et al. (2016) and Biedermann et al. (2017a) for
discussions of this topic among forensic statisticians and forensic scientists. The
error resulting from the implementation of numerical techniques is an important
source of information about which the scientist should be transparent. Following
ideas presented in Tanner (1996), recently reconsidered by Ommen et al. (2017) in
a forensic context, the numerical precision in the overall approximated value can be
estimated by the associated Monte Carlo standard error.
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Fig. 2.4 Histogram of 500 realizations of the BF approximation in (2.6), where the posterior
probability of hypothesis H2 is obtained as in (2.7). The solid line represents the fitted Normal
density

2.2.2.2 Unknown Expected Value of the Number of Background Elements

It is important to note that, contrary to what was developed in Example 2.3, the
expected value λ of the number of background events is generally unknown. The
uncertainty about λ can be modeled by means of a gamma distribution, λ ∼
Ga(a, b). The marginal posterior distribution of parameter θ , written f (θ | n, x),
now takes a more complicated form as one needs to handle the joint posterior
distribution that is proportional to

f (θ, λ | n, x)

∝
x∑

xb=0

(
n

x − xb

)
θx−xb (1 − θ)n−x+xb

e−λλxb

xb! θα−1(1 − θ)β−1λa−1e−bλ.

(2.8)

Following ideas described in Taroni et al. (2010), a two-block M–H algorithm
(Sect. 1.8) can be implemented in order to draw a sample from the joint posterior
distribution in (2.8). For each block, the candidate generating density is taken to be
Normal with the mean equal to the current value of the parameter and the variance
chosen so as to obtain a good acceptance rate (Gamerman & Lopes, 2006).
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Consider the parameter θ first. The full conditional density of θ is proportional
to

f1(θ | λ, n, x) ∝
x∑

xb=0

(
n

x − xb

)
θx−xb (1 − θ)n−x+xb

λxb

xb! θ
α−1(1 − θ)β−1.

Starting from the current value for θ , say θ(i−1), a candidate value θprop for θ can
be obtained as

θprop = eψprop

1 + eψprop , where ψprop ∼ N
(
ψ(i−1), τ 2

1

)
,

and ψ(i−1) = log
(

θ(i−1)

1−θ(i−1)

)
. In this way, the proposed value θprop will be defined

in the interval (0, 1). The candidate value θprop is accepted with probability

α(ψ(i−1), ψprop) = min

{
1,

f (ψprop | λ(i−1))

f (ψ(i−1) | λ(i))

}
,

where f (ψ | λ) is the reparametrized full conditional density of parameter θ and
can be obtained as

f (ψ | λ) = eψ

(1 + eψ)2 f1

(
eψ

(1 + eψ)2 | λ, n, x

)
.

See, e.g., Casella and Berger (2002) for distributions of functions of random
variables.

If the candidate θprop is accepted, it becomes the current value of the chain, i.e.,
θ(i) = θprop; otherwise θ(i) = θ(i−1).

The second block refers to parameter λ. The full conditional density of parameter
λ is proportional to

f2(λ | θ, n, x) ∝
x∑

xb=0

(
n

x − xb

)
θx−xb (1 − θ)n−x+xb

e−λλxb

xb! λa−1 e−bλ.

Starting from the current value for λ, say λ(i−1), a candidate value λprop for λ can
be obtained as

λprop = eφprop
, where φprop ∼ N

(
φ(i−1), τ 2

2

)
,

and φ(i−1) = log λ(i−1). In this way, the proposed value λprop will be defined in the
interval (0,∞). The candidate value λprop is accepted with probability
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α(φ(i−1), φprop) = min

{
1,

f (φprop | θ(i−1))

f (φ(i−1) | θ(i−1))

}
,

where f (φ | θ) is the reparametrized full conditional density of parameter λ and
can be obtained as

f (φ | θ) = eφf2(e
φ | θ, n, x).

If the candidate λprop is accepted, it becomes the current value of the chain, i.e.,
λ(i) = λprop; otherwise λ(i) = λ(i−1).

The two-block M–H algorithm can be summarized as follows:
Initialization: start with arbitrary values θ(0) and λ(0)

Iteration i:

1. Given θ(i−1) and λ(i−1),

– Generate θprop according to f1(θ | λ(i−1), n, x).
– With probability α(θ(i−1), θprop) accept θprop and set θ(i) = θprop;

otherwise reject θprop and set θ(i) = θ(i−1).

2. Given θ(i) and λ(i−1),

– Generate λprop according to f2(λ | θ(i), n, x).
– With probability α(λ(i−1), λprop) accept λprop and set λ(i) = λprop;

otherwise reject λprop and set λ(i) = λ(i−1).

Return {θ(nb+1), . . . , θ (N)} and {λ(nb+1), . . . , λ(N)},
where nb is the burn-in period and N is the number of iterations.

Example 2.6 (Rice Quality—Continued) Consider again Example 2.3 where
prior uncertainty about θ was modeled by a Be(1, 45) distribution, and the
parameter λ was set equal to 0.001. For the purpose of the example here, a
gamma distribution with parameters a = 2 and b = 1000 is used to model
prior uncertainty about λ. The prior density Ga(2, 1000) is shown in Fig. 2.5.
It can be observed that the prior mass is concentrated at very small values of
λ.

> n=1000
> x=28

(continued)
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Fig. 2.5 Gamma prior
distribution Ga(2, 1000) over
λ for λ ∈ (0, 0.01)
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Example 2.6 (continued)
> xb=matrix(seq(0,x,1),nrow=1)
> a=1
> b=45
> ag=2
> bg=1000
> plot(function(x) dgamma(x,2,1000),0,0.01,xlab=
+ expression(lambda),ylab=expression(paste('f(')*
+ paste(lambda)*paste(')')))

Let the starting values for θ and λ be θ(0) = 0.1 and λ(0) = 0.001, and
the variances τ 2

1 and τ 2
2 of the proposal densities be set equal to 0.7 and 3,

respectively.

> theta=0.1
> lambda=0.001
> tau=c(0.7,3)

Current values of the parameters θ and λ will be stored in a vector called
thetav and lambdav, respectively.

> thetav=theta
> lambdav=lambda

(continued)
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Example 2.6 (continued)
Before running the algorithm, it is useful to introduce the following functions:
mh1 is used to obtain the candidate (current) value θprop (θcurr); mh2 is
used to calculate the probability of acceptance of the candidate value θprop;
dbinpois computes the product between a binomial likelihood Bin(n, θ) at
x − xb and a Poisson likelihood at xb.

> mh1=function(x){x/(1+x)}
> mh2=function(x){x/((1+x)^2)}
> dbinpois=function(xb){
+ dbinom((x-xb),n,theta)*dpois(xb,lambda)}

The MCMC algorithm is run over 15000 iterations, with a burn-in range of
5000 iterations.

> n.iter=15000
> acct=n.iter
> accl=n.iter
> burn.in=5000
> for (i in 1:n.iter){
+ psicurr=log(theta/(1-theta))
+ s=sum(apply(xb,2,dbinpois))
+ pipsicurr=mh2(exp(psicurr))*dbeta(theta,a,b)*s
+
+ # Generate the candidate value of parameter theta
+
+ psiprop=rnorm(1,psicurr,tau[1])
+ theta=mh1(exp(psiprop))
+ s=sum(apply(xb,2,dbinpois))
+ pipsiprop=mh2(exp(psiprop))*dbeta(theta,a,b)*s
+
+ # acceptance/rejection of the candidate value
+ # (parameter theta)
+
+ if(runif(1)>pipsiprop/pipsicurr){
+ theta=mh1(exp(psicurr))
+ acct=acct-1}
+ thetav=c(thetav,theta)
+
+ # generate the candidate value of parameter lambda
+
+ phicurr=log(lambda)
+ s=sum(apply(xb,2,dbinpois))

(continued)
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Example 2.6 (continued)
+ piphicurr=exp(phicurr)*dgamma(lambda,ag,bg)*s
+ phiprop=rnorm(1,phicurr,tau[2])
+ lambda=exp(phiprop)
+ s=sum(apply(xb,2,dbinpois))
+ piphiprop=exp(phiprop)*dgamma(lambda,ag,bg)*s
+
+ # acceptance/rejection of the candidate value
+ # (parameter lambda)
+
+ if(runif(1)>piphiprop/piphicurr){
+ lambda=exp(phicurr)
+ accl=accl-1}
+ lambdav=c(lambdav,lambda)
+ }
> c(acct/n.iter,accl/n.iter)

[1] 0.3102000 0.2973333

These values represent the acceptance rates for θ and λ, respectively.
The output of the simulation run is shown in Fig. 2.6, representing the

trace-plot, the autocorrelation plot (showing the correlation structure of the
sequences), and the histogram of the simulated draws for θ (left column) and λ

(right column). The simulated draws have an acceptance rate of approximately
31% for θ and 30% for λ. The trace-plots of simulated draws look like random
noise and the autocorrelation decreases rapidly as the time lag at which it is
calculated increases.

> par(mfrow=c(3,2))
> plot(thetav,type='l',xlab='Iterations',ylab=
+ expression(paste(theta)),main=expression(paste
+ (theta)))
> plot(lambdav,type='l',xlab='Iterations',ylab=
+ expression(paste(lambda)),main=expression(paste
+ (lambda)))
> acf(thetav[-c(1:burn.in)],type="correlation",ci=0,
+ main=expression(paste(theta)),ylab='')
> acf(lambdav[-c(1:burn.in)],type="correlation",ci=0,
+ main=expression(paste(lambda)),ylab='')
> hist(thetav[-c(1:burn.in)],xlab=expression(paste
+ (theta)),ylab='',main='')
> hist(lambdav[-c(1:burn.in)],xlab=expression(paste
+ (lambda)),ylab='',main='')

(continued)
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Example 2.6 (continued)
Note that the argument ci=0 in the function acf for computing and
plotting the estimate of the autocorrelation function suppresses the plot of
the confidence interval.
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Fig. 2.6 MCMC diagnostic with trace-plots of simulated draws of θ (top left) and λ (top right),
autocorrelation plots over the last 10000 iterations (center) and histograms over the last 10000
iterations (bottom)

The simulated values θ(nb+1), . . . , θ (N) can serve as draws from the posterior
distribution f1(θ | λ, n, x). The posterior probability of hypothesis H1 can then be
approximated as
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α̂1 =
∑

θ(i)>0.025

θ(i)/(N − nb), (2.9)

and the BF can be obtained straightforwardly.

Example 2.7 (Rice Quality—Continued) Using a burn-in range of 5000 iter-
ations, the average value of parameter θ over the last 10000 iterations can be
computed as

> thetahat=mean(thetav[-c(1:burn.in)])
> thetahat

[1] 0.02788516

The posterior probability of hypothesis H1 can be approximated as in (2.9):

> alpha1=sum(thetav[-c(1:burn.in)]>th0)/
+ (n.iter-burn.in)
> alpha1

[1] 0.71

> post_odds=alpha1/(1-alpha1)
> post_odds

[1] 2.448276

Recall that the prior odds have been quantified previously as approximately
0.47. The Bayes factor then is

> post_odds/prior_odds

[1] 5.201569

The uncertainty about the presence of background elements, modeled by λ,
modifies the value of the BF from approximately 4.77 to 5.2. This change
is small. The BF still provides only weak support for the hypothesis H1 that
θ > 0.025, compared to H2.

2.2.3 Decision for a Proportion

The normative framework for decision-making introduced in Chap. 1 is well suited
for addressing problems of statistical inference presented in this chapter. Consider
again a pair of competing propositions as defined in Sect. 2.2 regarding the question
of whether the proportion of items showing a target characteristic of interest is
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Fig. 2.7 Linear loss function
L(d1, θ) (solid line) and
L(d2, θ) (dashed line) in
(2.10) for θ0 = 0.2, l1 = 1,
l2 = 1, Θ1 = (0.2, 1),
Θ2 = (0, 0.2]
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greater (H1) or not greater (H2) than a given threshold θ0. From a decision-theoretic
point of view, two courses of action are possible: d1 and d2. Decision d1 amounts
to accepting the view that the proportion θ is greater than a given (legal) threshold,
θ0. Decision d2 amounts to accepting the view that θ is smaller than or equal to the
threshold θ0. A possible loss function L(·) for such a two-action decision problem
is

L(d1, θ) =
⎧
⎨

⎩

0 if θ ∈ Θ1,

l1(θ0 − θ) if θ ∈ Θ2.

L(d2, θ) =
⎧
⎨

⎩

0 if θ ∈ Θ2,

l2(θ − θ0) if θ ∈ Θ1.

(2.10)

This is a linear loss function where the loss is proportional to the magnitude of the
error (e.g., θ0 −θ ). An example is shown in Fig. 2.7, where θ0 = 0.2, and loss values
l1 and l2 are equal to 1.

Given this loss function, the Bayesian posterior expected loss for d1, that is
accepting H1 : θ > θ0, is

EL(d1 | x) =
∫

Θ2

l1θ0f (θ | x)dθ −
∫

Θ2

l1θf (θ | x)dθ,

where f (θ | x) = Be(α∗ = α + x, β∗ = β + n − x). Similarly, the Bayesian
posterior expected loss for d2, that is accepting H2 : θ ≤ θ0, is

EL(d2 | x) =
∫

Θ1

l2θf (θ | x)dθ −
∫

Θ1

l2θ0f (θ | x)dθ.



64 2 Bayes Factor for Model Choice

After some algebra, it can be shown (Taroni et al., 2010) that

EL(d1 | x) = l1θ0 Pr(θ < θ0 | α∗, β∗)− l1
α + x

α + β + n
Pr(θ < θ0 | α∗ +1, β∗),

(2.11)

and

EL(d2 | x) = l2
α + x

α + β + n
Pr(θ > θ0 | α∗ +1, β∗)− l2θ0 Pr(θ > θ0 | α∗, β∗).

(2.12)

The decision criterion then is to decide d1 (d2) whenever EL(d1) is smaller (greater)
than EL(d2).

Example 2.8 (Counterfeit Medicines—Continued) Recall Example 2.1
where the competing propositions refer to the proportion of counterfeit
medicines that may be either greater or not greater than a given limiting
value, e.g., θ0 = 0.2. Consider a uniform prior Be(1, 1) for θ and the
finding that 12 out 40 items are positive. Consider a linear loss function as
in (2.10), with l1 = 1 and l2 = 1. This is a symmetric loss, reflecting the
idea that falsely deciding that the proportion is greater than the threshold is
as undesirable, and hence as severely penalized, as falsely deciding that the
proportion is smaller than the threshold. The expected losses of decisions d1
and d2 are computed as in (2.11) and (2.12).

> th0=0.2
> a=1
> b=1
> n=40
> x=12
> l1=1
> l2=1
> ax=(a+x)/(a+b+n)
> ELd1=l1*th0*pbeta(th0,a+x,b+n-x)-
+ l1*ax*pbeta(th0,a+x+1,b+n-x)
> ELd2=l2*ax*pbeta(th0,a+x+1,b+n-x,lower.tail=F)-
+ l2*th0*pbeta(th0,a+x,b+n-x,lower.tail=F)
> c(ELd1,ELd2)

[1] 0.001207984 0.110731793

(continued)
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Example 2.8 (continued)
The optimal decision thus is d1, since it minimizes the expected loss. Given
prior beliefs, the observed data, and personal loss assignments, the optimal
course of action is to decide in favor of proposition H1 according to which the
proportion of counterfeit medicines is greater than 0.2.

A decision maker may find a “0 − li” loss function, as shown in Table 1.4, more
appropriate. Consider again the case discussed in Sect. 2.2.1 where it was of interest
to compare the hypotheses that the proportion of counterfeit medicines in a seizure
was greater (H1) or not greater (H2) than a given threshold θ0. In such a context,
the loss l1 (i.e., the loss incurred when deciding d1 and H2 is true) could amount
to the net loss represented by expenses incurred by issuing legal proceedings in a
non-priority case (i.e., falsely considering θ > θ0). In turn, loss l2 could amount
to monetary value of property that could have been confiscated by investigative
authorities in a meritorious case. Following results in Sect. 1.9, the decision criterion
becomes

decide d1 if
α1

α2
>

l1

l2
or BF >

l1/l2

π1/π2
.

Decision d1 is to be preferred to decision d2 if and only if the posterior odds in favor
of H1 are greater than the ratio of the losses of adverse outcomes or, alternatively, if
the BF is greater than the ratio between the loss ratio of adverse outcomes and the
prior odds.

Decision makers may find it difficult to assign losses l1 and l2. Note, however,
that when adverse outcomes are considered equally undesirable, then the loss ratio
simplifies to 1, and the decision criterion becomes to decide d1 whenever the
posterior odds are larger than 1, i.e., the posterior probability of hypothesis H1
is greater than the posterior probability of hypothesis H2. In turn, when adverse
consequences are not equally undesirable, a decision maker may consider how much
more (less) undesirable one adverse outcome is compared to the other. This can be
expressed as l1 = kl2, i.e., by specifying how much worse deciding d1 is when
θ ≤ θ0 is true, compared to deciding d2 when θ > θ0 is true (Biedermann et al.,
2016b). A sensitivity analysis can be performed for different values of k.

2.3 Normal Mean

Toxicology laboratories are frequently asked to quantify the amount of target
substance (e.g., alcohol, illegal drugs, particular metabolites, etc.) in samples such
as blood, urine, and hair in order to help assess whether an unknown target quantity
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θ (e.g., the level of alcohol in blood) exceeds a given value (e.g., a legal threshold).
Competing propositions of interest may be specified as follows:

H1: The target quantity θ exceeds a given level θ0.
H2: The target quantity θ is equal to or smaller than a given level θ0.

This section considers three main topics: (1) inference about an unknown quantity
θ (Sect. 2.3.1), (2) inference about θ in presence of factors influencing the
measurement process (Sect. 2.3.2), and (3) decision about competing propositions
regarding θ (Sect. 2.3.3).

2.3.1 Inference About a Normal Mean

Consider the hypothetical case of a person, Mr. X, stopped by traffic police because
of suspicion of driving under the influence of a given substance (e.g., alcohol or
THC). A blood sample is taken and a series of analyses are performed by a forensic
laboratory. The propositions of interest may be, for example, that “The quantity θ

of target substance in Mr. X’s blood exceeds the legal threshold θ0” (H1) versus
the alternative proposition “The quantity θ of target substance in Mr. X’s blood is
smaller than or equal to the legal threshold θ0” (H2). A series of measurements x are
obtained. It is often reasonable to assume that such measurements follow a Normal
distribution N(θ, σ 2):

f (x | θ, σ 2) = 1√
2πσ 2

exp

{
− 1

2σ 2
(x − θ)2

}
,

where the mean θ is the unknown quantity of target substance. The variance σ 2 can
be approximated from previous ad hoc calibrations (see discussion by Howson and
Urbach (1996)). The most common prior distribution for the Normal mean θ is itself
a Normal distribution N(μ, τ 2):

f (θ | μ, τ 2) = 1√
2πτ 2

exp

{
− 1

2τ 2 (θ − μ)2
}

,

where the hyperparameters μ and τ 2 are often called prior mean and prior variance,
respectively.

The posterior distribution of the target quantity θ is still a Normal distribution,
denoted N(μx, τ

2
x ), because the Normal prior and the Normal likelihood are

conjugate. Generalizing the updating formulae (1.19) and (1.20) to the case where
a vector of n measurements (x1, . . . , xn) is available leads to

μx = σ 2/n

σ 2/n + τ 2 μ + τ 2

σ 2/n + τ 2 x̄ (2.13)
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and

τ 2
x = τ 2σ 2/n

σ 2/n + τ 2
, (2.14)

where x̄ = ∑n
i=1 xi/n.

The posterior mean μx and the posterior variance τ 2
x can be calculated by means

of the function post_distr.

> post_distr=function(sigma,n,barx,pm,pv){
+ postm=(pm*sigma/n+barx*pv)/(sigma/n+pv)
+ postv=(pv*sigma/n)/(sigma/n+pv)
+ op=c(postm,postv)
+ return(op)}

The prior odds, the posterior odds, and the Bayes factor can be easily computed,
as discussed in Sect. 1.4, by means of standard routines (see Example 2.9). The
case where the population variance σ 2 is unknown and a prior distribution must be
specified for both parameters (θ, σ 2) will be addressed in Sect. 3.3.2.

Example 2.9 (Alcohol Concentration in Blood) A person is stopped by traf-
fic police because of suspicion of driving under the influence of alcohol. Two
measurements are obtained by the laboratory, 0.4866 g/kg and 0.5078 g/kg.
The population variance σ 2 is known and is taken to be equal to 0.0232.
Available information, e.g., the fact that the person has been stopped by
traffic police while driving late in the night, exceeding the speed limit etc.,
suggests a prior mean equal to 0.8 and a prior variance equal to 0.152, say
θ ∼ N(μ = 0.8, τ 2 = 0.152). This amounts to say that, a priori, values for
the alcohol level in blood lower than 0.35 and larger than 1.25 are considered
extremely implausible (prior probabilities for values outside this range are on
the order of 0.01).

The propositions of interest are the following:

H1: The alcohol level θ in the blood of Mr. X exceeds the legal threshold
θ0 = 0.5 (θ > 0.5).

H2: The alcohol level in the blood of Mr. X is smaller than or equal to the
legal threshold θ0 = 0.5 (θ ≤ 0.5).

The prior odds can be easily computed as follows:

(continued)



68 2 Bayes Factor for Model Choice

Example 2.9 (continued)
> th0=0.5
> pm=0.8
> pv=0.15^2
> pi1=pnorm(th0,pm,sqrt(pv),lower.tail=F)
> prior_odds=pi1/(1-pi1)
> prior_odds

[1] 42.95579

The probability of hypothesis H1 is, a priori, approximately 43 times greater
than the probability of the alternative hypothesis H2. Consider now the effect
of the measurements made on the blood sample.

> x=c(0.4866,0.5078)
> s2=0.023^2
> postm=post_distr(s2,length(x),mean(x),pm,pv)[1]
> postm

[1] 0.5007182

> postv=post_distr(s2,length(x),mean(x),pm,pv)[2]
> postv

[1] 0.0002614268

The posterior distribution of the quantity of alcohol in blood θ is, therefore,
N(0.5007, 3e − 04). The posterior odds are

> alpha1=pnorm(th0,postm,sqrt(postv),lower.tail=F)
> post_odds=alpha1/(1-alpha1)
> post_odds

[1] 1.073465

The ratio between posterior and prior odds gives the Bayes factor:

> BF=post_odds/prior_odds
> BF

[1] 0.02498999

The probability to obtain the two measurements if Mr X’s alcohol level in
blood does not exceed the legal threshold θ0 = 0.5 is approximately 40
times greater than given the proposition that the blood alcohol level is greater
than the legal threshold. The evidence thus provides moderate support for the
hypothesis H2, compared to H1.
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2.3.1.1 Choosing the Parameters of the Normal Prior for the Mean

If the experimenter has no reason to consider the distribution describing prior
uncertainty about the unknown quantity θ to be asymmetric, then a choice may
be made in the family of Normal distributions. When choosing a member from this
family, the analyst will need to assign a value to the prior mean μ and a value to
the prior standard deviation τ . To elicit a Normal prior, it is useful to recall that for
a Normal distribution θ ∼ N(μ, τ 2), approximately 99.7% of values are within 3
standard deviation from the mean, thus

Pr {μ − 3τ ≤ θ ≤ μ + 3τ } ≈ 0.997.

Hence, if the practitioner can assign a measure of location μ and a pair of values
that define the upper and lower bounds of an interval that covers a range of plausible
values of the unknown quantity θ , then the standard deviation can be assigned as

τ = lup − μ

3
, (2.15)

where lup is the upper bound mentioned above. In Example 2.9, a prior location
was fixed at μ = 0.8. Moreover, prior probabilities for values smaller than 0.35
and greater than 1.25 were extremely small (i.e., on the order of 0.01). The standard
deviation has been elicited as in (2.15).

It may be worth to inspect the reasonableness of the elicited prior. This includes,
as highlighted in Sect. 1.10, producing a graphical representation to see whether the
amount of available information is suitably conveyed. Consider a random sample of
size ne from a Normal population providing an equivalent amount of information
conveyed by the prior. The equivalent sample size ne can be found by matching the
prior variance τ 2 to the dispersion from the sample, σ 2/ne, and solving for ne. The
smaller ne, the weaker will be prior beliefs, and the more the posterior distribution
will be influenced by even a modest amount of data. Vice versa, the larger ne, the
stronger will be the prior beliefs, and the more the posterior distribution will be
dominated by the prior. Thus, more data will be necessary to make a substantial
impact on prior beliefs.

Whenever the state of information is such as to consider all possible values of θ

equally plausible, a locally uniform prior can be defined:

f (θ) ∝ constant.

In the latter case, the posterior distribution of θ is a Normal distribution centered at
the sample mean x̄ with spread parameter equal to σ 2/n (e.g., Bolstad & Curran,
2017).
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2.3.1.2 Sensitivity to the Choice of the Prior Distribution

As noted in Sect. 1.11, the marginal likelihood is highly sensitive to the choice of
the prior distribution and so is the Bayes factor. Thus, it should be emphasized that
the BF obtained in Example 2.9, the value 0.02, does not depend on the data alone.
It also depends on the choice of the prior distribution on θ .

For the purpose of illustration, consider a sensitivity analysis for the hyperpa-
rameters that characterize the prior distribution for the unknown level of alcohol in
blood. Let values of μ range from 0.4 to 1 and the prior variance τ 2 be fixed and
equal to 0.0225.

> pm=seq(0.4,1,0.01)
> pv=0.0025

The prior odds, the posterior odds, and the BF can be calculated for all possible
values of the prior mean μ (pm). Note that computing the posterior Normal
distribution with the function post_distr, using several possible values for the
prior mean μ, returns an output vector of length n = 61 whose first n − 1 =
60 elements represent the posterior mean, while the last element represents the
posterior variance.

> th0=0.5
> pi1=pnorm(th0,pm,sqrt(pv),lower.tail=F)
> prior_odds=pi1/(1-pi1)
> x=c(0.4866,0.5078)
> s2=0.023^2
> postm=
+ post_distr(s2,length(x),mean(x),pm,pv)[1:length(pm)]
> postv=post_distr(s2,length(x),mean(x),pm,pv)
+ [length(pm)+1]
> alpha1=pnorm(th0,postm,sqrt(postv),lower.tail=F)
> post_odds=alpha1/(1-alpha1)
> BF=post_odds/prior_odds

Figure 2.8 shows the prior probability π1 of proposition H1, the posterior probability
α1, and the BF in favor of proposition H1 for values of the prior mean μ ranging
from 0.4 to 1.

> plot(pm,BF,type='l',ylim=c(0,max(pi1,alpha1,BF)),
+ xlim=range(pm),xlab=expression(paste(mu)),ylab='')
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> lines(pm,pi1,lty=4)
> lines(pm,alpha1,lty=2)
> leg=expression(paste('BF'),paste(pi)[1],paste(alpha)
+ [1])
> legend(0.85,1.92,leg,lty=c(1,4,2))

Note that the BF favors proposition H1 (i.e., a BF greater than 1) over H2 only for
values of μ smaller than 0.47. Most importantly, one can observe the impact of the
prior assessments (i.e., different choices of the prior mean μ) on the value of the
BF. The higher the prior probability of proposition H1, the lower is the value of
the measurements x = (0.4866, 0.5078) in terms of the BF in favor of H1 over H2
Note, however, that the BF in the latter case represents strong support for H2 over
H1.

μ

0.
0
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5

1.
0

1.
5
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0.47 0.6 0.7 0.8 0.9 1
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π1
α1

Fig. 2.8 Sensitivity analysis of the prior probability π1 (dot-dashed line), posterior probability
α1 (dashed line), and BF (solid line) for values of μ ranging from 0.4 to 1 and τ 2 = 0.0225
(Example 2.9). Note that for a BF of 1 (dotted line), the lines of the prior and posterior probabilities
intersect
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2.3.2 Continuous Measurements Affected by Errors

As noted in Sect. 2.2.2, a measurement process or observations may be affected by
background noise. Consider a case in which it is of interest to assess the height of an
individual based on video recordings made by a surveillance camera during a bank
robbery. Propositions of interest may be as follows:

H1: The height of the individual is less than 180 cm.
H2: The height of the individual is equal to or greater than 180 cm.

Assume that the height measurements x of an individual are normally distributed,
X ∼ N(θ, σ 2), where θ represents the true height of the individual and σ 2 represents
the variance of the measurement device. Assume also that the variance σ 2 is inferred
from previous ad hoc experiments. However, the measured height is, generally,
affected by an error ξ , related to the circumstances under which the recording was
made. Factors of interest here include the posture and movements of the person,
the type of clothing (including headwear and shoes) and lighting conditions. Such
circumstances represent a further source of variation δ2, unrelated to σ 2. The
measured height is therefore X ∼ N(θ + ξ, σ 2 + δ2). A conjugate Normal prior
distribution N(μ, τ 2) is taken to model prior uncertainty about θ . The values of the
parameters ξ and δ2 are case-specific assignments. It can be shown that the posterior
distribution of the true height θ is still Normal with mean

μx = τ 2(x̄ − ξ) + μ(σ 2 + δ2)/n

τ 2 + (σ 2 + δ2)/n
(2.16)

and variance

τ 2
x = τ 2(σ 2 + δ2)/n

τ 2 + (σ 2 + δ2)/n
. (2.17)

Example 2.10 (Image Analysis) Consider the hypothetical case introduced
above and assume that, according to eyewitness testimony, the height of the
perpetrator is approximately between 175 cm and 185 cm. This allows one to
define a prior probability distribution for the height θ centered at 180 cm with
variance equal to 2.79 cm, i.e., θ ∼ N(180, 2.79). The standard deviation can
be quantified as in (2.15):

> lsup=185
> pm=180
> ps=(lsup-pm)/3
> pv=ps^2

(continued)
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Example 2.10 (continued)
Thus, the two hypotheses H1 and H2 introduced above are, a priori, equally
probable (hence, the prior odds equal 1).

> th0=180
> pi1=pnorm(th0,pm,sqrt(pv))
> prior_odds=pi1/(1-pi1)
> prior_odds

[1] 1

The available recordings depict an individual appearing in n = 10 images.
Height measurements yield the sample mean x̄ = 180.25. The variance of the
measurement procedure is known and equal to σ 2 = 0.12. The experimental
setting is such that the values for the parameters of the Normal distribution of
the error can be set to ξ = 0.5 and δ2 = 1.

> mx=180.25
> n=10
> s2=0.12
> xi=0.5
> d2=1

The posterior mean and the posterior variance of θ can be computed as
in (2.16) and (2.17), respectively.

> postm=(pv*(mx-xi)+pm*(s2+d2)/n)/(pv+(s2+d2)/n)
> postm

[1] 179.7597

> postv=(pv*(s2+d2)/n)/(pv+(s2+d2)/n)
> postv

[1] 0.1076592

The gray shaded area in Fig. 2.9 shows the posterior probability of the
hypothesis H1. The posterior odds and the Bayes factor can be obtained
straightforwardly

> alpha1=pnorm(th0,postm,sqrt(postv))
> post_odds=alpha1/(1-alpha1)
> post_odds

[1] 3.311039

> BF=post_odds/prior_odds
> BF

[1] 3.311039

(continued)
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Fig. 2.9 Posterior
distribution f (θ | x) for the
true height θ in
Example 2.10. The gray
shaded area shows the
posterior probability of the
hypothesis H1 (θ < 180 cm)
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Example 2.10 (continued)
Given that the prior odds are 1, the BF is numerically equivalent to the
posterior odds. This value represents support for the hypothesis H1 (the
height of the individual is lower than 180 cm) over H2. Specifically, the BF
indicates that it is approximately 3 times more probable to obtain such height
measurements if the height of the individual is less than 180 cm than if the
height is equal to or greater than 180 cm.

2.3.3 Decision for a Mean

The previous sections focused on how to draw a probabilistic inference about a
Normal mean, using the Bayes factor. Recall that the competing propositions were:

H1: The target quantity θ exceeds a given level θ0.
H2: The target quantity θ is equal to or smaller than a given level θ0.

A related question is how to decide about whether or not a quantity of interest
is above a given (legal) threshold, i.e., accepting either H1 or H2. In order to
address this question, it is necessary to introduce a loss function to take into account
the decision maker’s preferences. Suppose a linear loss function is considered as
in (2.18):
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L(d1, θ) =
⎧
⎨

⎩

0 if θ > θ0,

l1(θ0 − θ) if θ ≤ θ0.

L(d2, θ) =
⎧
⎨

⎩

0 if θ ≤ θ0,

l2(θ − θ0) if θ > θ0.

(2.18)

The Bayesian posterior expected loss of decision d1 can be computed as

EL(d1 | x) = l1

∫

θ≤θ0

(θ0 − θ)f (θ | x)dθ

= l1τx

[
φ(t) + t

∫ t

0
φ(s)ds

]
, (2.19)

where f (θ | x) is a Normal posterior distribution with parameters μx and τ 2(x) as
in (2.13) and (2.14), t = τx(θ0 − μx), while φ(·) denotes the probability density of
a standardized Normal distribution (Bernardo & Smith, 2000).

In turn, the Bayesian posterior expected loss of decision d2 can be computed as

EL(d2 | x) = l2

∫

θ>θ0

(θ − θ0)f (θ | x)dθ

= l2τx

[
φ(t) − t

∫ ∞

t

φ(s)ds

]
. (2.20)

Again, the decision criterion amounts to deciding d1 (d2) whenever EL(d1 | x) is
smaller (greater) than EL(d2 | x).

Example 2.11 (Alcohol Concentration in Blood—Continued) Recall Exam-
ple 2.9 where the posterior distribution of the alcohol level θ was
N(0.50072, 0.00026), and the legal threshold was equal to 0.5.

> th0=0.5
> postm

[1] 0.5007182

> postv

[1] 0.0002614268

Consider a symmetric linear loss function as in (2.18) with l1 = l2 = 1. The
Bayesian posterior expected losses in (2.19) and (2.20) can be obtained as

> l1=1
> l2=1
> t=sqrt(postv)*(th0-postm)

(continued)
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Example 2.11 (continued)
> eld1=l1*sqrt(postv)*(dnorm(t)+t*(pnorm(t)-0.5))
> eld2=l2*sqrt(postv)*(dnorm(t)-t*pnorm(t,lower.
+ tail=F))
> c(eld1,eld2)

[1] 0.006450377 0.006450471

The optimal decision thus is to consider that the alcohol level is greater than
the legal threshold because this decision has a lower expected loss, though the
difference between the two expected losses is, in the example here, extremely
small

> abs(eld1-eld2)

[1] 9.388144e-08

Note that this result crucially depends on the decision maker’s value assess-
ments (i.e., the chosen loss function).

When expected losses for rival decisions are very similar, as is the case in
Example 2.11, a sensitivity analysis should be performed as suggested, for example,
in legal literature (Edwards, 1988). The sensitivity analysis should evaluate the
effect of changes in the prior parameters and the loss values. See also Sect. 2.3.1
for a sensitivity analysis of the BF for evaluating the impact of changes in
hyperparameters characterizing the prior distribution for the unknown level of
alcohol in blood.

It is also worth to reflect on the choice of the loss function. A symmetric loss
function, as previously suggested, may not realistically reflect the decision maker’s
preferences. For example, a decision maker who is concerned about road safety may
consider that falsely concluding that an individual’s blood alcohol concentration
is below the legal limit is a more serious error than falsely concluding that an
individual’s blood alcohol concentration is above the legal threshold. Therefore, l2
may be taken to be larger than l1, reflecting the greater inconvenience associated
with underestimating the alcohol concentration. For example, when l1 = 1 and
l2 = 2, meaning that underestimating the alcohol level is considered twice as serious
as overestimating it, the expected loss of decision d2 will increase. One can verify
that for any reasonable value of l2 greater than l1, decision d1 will be the one with
the smaller expected loss.

2.4 Summary of R Functions

The R functions outlined below have been used in this chapter.
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Functions Available in the Base Package

apply: applies a function to the margins (either rows or columns) of a matrix

acf: computes and plots estimates of the autocorrelation function

d<name of distribution>, p<name of distribution>,
r<name of distribution> (e.g., dbeta, pbeta, rbeta): calculates the

density and the cumulative probability and generates random numbers for various
parametric distributions

rowSums: forms row sums for numeric arrays (or data frames)

Further details can be found in the Help menu, help.start().

Functions Available in Other Packages

dbbinom and pbbinom in package extraDistr: calculates the density and the
cumulative probability for a beta-binomial distribution

Functions Developed in This Chapter

dbinpois: computes the product between a binomial likelihood Bin(n, θ) at x −
xb and a Poisson likelihood Pn(λ) at xb where x represents the number of items
counted as presenting a given target characteristic and xb represents the number of
background elements affecting the counting process

Usage: dbinpois(xb)
Arguments: xb: a vector of integers ranging from 0 to x

Output: a vector of values, where each value represents the probability of the product
between the binomial and the Poisson likelihood at a given value of the input
argument xb

mh1: computes the function x/(1 + x)

Usage: mh1(x)
Arguments: x: a scalar value x

Output: the value of x/(1 + x)

mh2: computes the function x/(1 + x)2

Usage: mh2(x)
Arguments: x: a scalar value x

Output: the value of x/(1 + x)2
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post_distr: computes the posterior distribution N(μx, τ
2
x ) of a Normal mean θ ,

with X ∼ N(θ, σ 2) and θ ∼ N(μ, τ 2)

Usage: post_distr(sigma,n,barx,pm,pv)
Arguments: sigma, the variance σ 2 of the observations; n, the number of observa-

tions; barx, the sample mean x̄ of the observations; pm, the mean μ of the prior
distribution N(μ, τ 2) and pv, the variance τ 2 of the prior distribution N(μ, τ 2)

Output: a vector of two values: the first is the posterior mean μx and the second is
the posterior variance τ 2

x
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Chapter 3
Bayes Factor for Evaluative Purposes

3.1 Introduction

Consider a case where material of known source (control material) and evidential
material of unknown source (recovered or questioned material) are collected
and analyzed. Interpretation of scientific evidence then amounts to assessing the
probative value of the observations made during comparative examinations. The
evidence is evaluated in terms of its effect on the odds in favor of a proposition H1
put forward by the prosecution, compared to an alternative proposition H2 advanced
by the defense.

During comparative examinations, observations and measurements are made,
leading to either discrete or continuous data. Forensic laboratories may also have
equipment and methodologies that can lead to output in the form of multivariate
data. Thus, scientific evidence is often described by more than one variable. For
example, glass fragments from a crime scene can be compared with fragments
collected on the clothing of a person of interest on the basis of several chemical
components, as well as physical characteristics. It should be noted, however, that the
assessment of a Bayes factor for multivariate data may be challenging. For example,
data may not present enough regularity so that standard parametric distributions
cannot be used. Data may also present a complex dependence structure with several
levels of variation. In addition, a feature-based approach might not be always
feasible, and it may be necessary to derive a Bayes factor on the basis of scores.

This chapter is structured as follows. Sections 3.2 and 3.3 address the problem
of evaluation of evidence for various types of discrete and continuous data,
respectively. Section 3.4 presents an extension to continuous multivariate data.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-09839-0_3. The files can be accessed individually by clicking
the DOI link in the accompanying figure caption or by scanning this link with the SN More
Media App.
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3.2 Evidence Evaluation for Discrete Data

This section deals with measurement results in the form of counts, using the
binomial model (Sect. 3.2.1), the multinomial model (Sect. 3.2.2), and the Poisson
model (Sect. 3.2.3).

3.2.1 Binomial Model

In many practical applications, data derive from realizations of experiments that
may take one of two mutually exclusive outcomes. Examples include general
features (so-called class characteristics) observed on questioned and known items
or materials (e.g., fired bullets, fibers) when the question of interest is whether the
compared materials come from the same source.

Consider a hypothetical case involving a questioned document for which results
of analyses of black toner are available. On the questioned document, black bi-
component toner is present. It is of the same type as that used by a given printing
machine (known source). A question that may be of interest in such a case is how
this analytical information should affect one’s belief in the proposition according
to which the questioned document has been printed using the device of interest
(Biedermann et al., 2009, 2011a). The competing propositions can thus be defined
as follows:

H1 : The questioned document has been printed with the device of interest.
H2 : The questioned document has been printed with an unknown device.

Let T denote the observed toner type, either single component (TS) or bi-
component (TB ). Suppose that a database of the toner type (magnetism) of samples
of black toner from N machines is available, n of which use a bi-component toner.
Denote by θ the proportion of the population of printing devices equipped with bi-
component toner. Available counts can be treated as realizations of Bernoulli trials
(Sect. 2.2.1) with constant probability of success θ , Pr(TB | θ) = θ . Suppose a
conjugate beta prior distribution Be(α, β) is used to model uncertainty about θ ,
where α and β can be elicited using the available background knowledge as in (1.42)
and (1.43).

Denote by Ey the observations made on recovered material and by Ex the
observations made on control material (i.e., documents printed with the device of
interest). If the questioned document originates from the device of interest, the
probability of the evidence becomes

Pr(Ey = TB,Ex = TB | H1) =
∫

Θ

Pr(TB | θ) · θα−1(1 − θ)β−1dθ/B(α, β)

=
∫

Θ

θ · θα−1(1 − θ)β−1dθ/B(α, β).
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If the questioned document originates from an unknown device (i.e., two distinct
devices have been used), the probability of the evidence becomes

Pr(Ey = TB,Ex = TB | H2) =
∫

Θ

θ2 · θα−1(1 − θ)β−1dθ/B(α, β).

The Bayes factor can be computed as

BF =
∫
Θ

θ · θα−1(1 − θ)β−1dθ∫
Θ

θ2 · θα−1(1 − θ)β−1dθ

= B(α + 1, β)

B(α + 2, β)

∫

Θ

θα(1 − θ)β−1

θα+1(1 − θ)β−1

B(α + 2, β)

B(α + 1, β)

= α + β + 1

α + 1
. (3.1)

Example 3.1 (Questioned Documents) Consider the case of a printed docu-
ment of unknown origin. Analyses reveal that the toner present on the printed
document is of type “bi-component.” The printing device that is thought
to have been used to print the questioned document is equipped with a bi-
component toner. In an available database with a total of N = 100 samples of
black toner, n = 23 are bi-component (see Table 3.1). Using this information,
the parameters of the beta prior distribution about θ can be elicited as follows:

> n=23
> N=100
> p=n/N
> a=p*(N-1)
> b=(1-p)*(N-1)

This leads to a Be(23, 76).
The Bayes factor in (3.1) can be computed straightforwardly as follows:

> BF=(a+b+1)/(a+1)
> BF

[1] 4.206984

The Bayes factor provides weak support for the proposition H1 according to
which the questioned document has been printed with the printing device of
interest rather than with an unknown printing device (H2).

It is worth noting that there is an alternative development described in the
forensic statistics literature that considers background information derived from a
population database as part of the evidence, (e.g., Ommen et al., 2016; Dawid,
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Table 3.1 Results obtained
following the analysis of,
respectively, the component
type (magnetism) and the
resin type of 100 samples of
black toner (Biedermann
et al., 2011a)

Resin group Single component Bi-component

1. Styrene-co-acrylate 69 14

2. Epoxy A 8 3

3. Epoxy B 0 2

4. Epoxy C 0 1

5. Epoxy D 0 1

6. Polystyrene 0 1

7. Other 0 1

2017). According to this line of reasoning, if proposition H1 is true (numerator),
there are (n + 1) counts of bi-component toners. That is, the questioned item and
the known item are assumed to come from the same source, hence adding one count
to the database. Conversely, if proposition H2 is true (denominator), there are (n+2)

counts of bi-component toner. Here, it is assumed that the questioned item and the
known item come from different sources, hence adding two counts to the database.
The Bayes factor can then be obtained as

BF =
∫
Θ

θn+1(1 − θ)N−nθα−1(1 − θ)β−1dθ∫
Θ

θn+2(1 − θ)N−nθα−1(1 − θ)β−1dθ

= α + β + N + 1

α + n + 1
. (3.2)

One can immediately verify that this corresponds to the BF in (3.1) with parameter
α replaced by α + n, and parameter β replaced by β + N − n. However, it may be
questioned whether the available database should be considered as evidence, rather
than as conditioning information, because the database contains only general data
unrelated to the case under investigation (Aitken et al., 2021).

3.2.2 Multinomial Model

The analyses described in Sect. 3.2.1 can be extended to situations where experi-
ments can lead to more than two mutually exclusive outcomes.

Consider again the case involving printed documents, introduced in Sect. 3.2.1.
Laboratories often analyze resins of toner on printed documents by means of
Fourier Infrared Spectroscopy (FTIR). The results can be classified into one of
several (k) categories (Table 3.1). Suppose that the resin type (R) recovered on
the questioned document belongs to category j , which is also found in the toner
used by a given printing machine. The question of interest is similar to the one
considered in Sect. 3.2.1, that is, how the available analytical information should
affect one’s belief in the proposition according to which a questioned document has
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been printed using a given device, called the potential source, rather than by some
unknown printing device.

Denote by θj the proportion of the population that is of type (category) Rj , j =
1, . . . , k, Pr(Rj | θj ) = θj . Assume that observations of distinct categories can
be treated as independent: available counts n1, . . . , nk can be treated as realizations
from a multinomial distribution Mult(n, θ1, . . . , θk)

f (n1, . . . , nk | θ1, . . . , θk) = N !
n1! · · · · · nk!θ

n1
1 · · · · · θ

nk

k .

A conjugate Dirichlet prior probability distribution Dir(α1, . . . , αk) is considered
for modeling uncertainty about the population proportions θ1, . . . , θk:

f (θ1, . . . , θk | α1, . . . , αk) = θ
α1−1
1 · · · · · θ

αk−1
k /B(α),

with B(α) =
∏k

i=1 Γ (αi)

Γ (α)
and α = ∑k

i=1 αi .
Denote by Ey the observations made on the recovered material and by Ex the

observations made on the control material (i.e., documents printed with the device
of interest). If the questioned document originates from the device of interest, the
probability of the findings E = (Ey,Ex) becomes

Pr(Ey = Rj , Ex = Rj | H1) =
∫

Θ

Pr(Rj | θj ) · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α)

=
∫

Θ

θj · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α).

If the questioned documents originate from an unknown device (i.e., two distinct
devices have been used), the probability of the findings E becomes

Pr(Ey = Rj ,Ex = Rj | H2) =
∫

Θ

θ2
j · θ

α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α).

The Bayes factor can be computed as

BF =
∫

θj · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ

∫
θ2
j · θ

α1−1
1 · · · · · θαj −1

j · · · · · θαk−1
k dθ

= α + 1

αj + 1
. (3.3)
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Example 3.2 (Questioned Documents—Continued) Recall Example 3.1,
involving questioned documents on which black toner is present. Suppose
now that laboratory analyses focus on the toner’s resin component. Suppose
that the parameters of the Dirichlet prior probability distribution are elicited
as

> a=c(15,4,3,2,2,2,2)

Suppose that the rather common resin group Epoxy-A (category j = 2 in
Table 3.1) is observed on both the questioned and known documents. The
Bayes factor in (3.3) can be computed straightforwardly as

> j=2
> BF=(sum(a)+1)/(a[j]+1)
> BF

[1] 6.2

The Bayes factor provides, again, weak support for the proposition H1
according to which the questioned document has been printed with the
printing device of interest, rather than with an unknown printing device (H2).

Suppose that a database of the resin type of samples of black toner from
N machines is available, n1 (n2, . . . ) of which belong to category 1 (2, . . . ),
as in Table 3.1. These data can be used to elicit the Dirichlet prior probability
distribution. Following the methodology proposed by Zapata-Vazquez et al. (2014),
the hyperparameters α1, . . . , αk can be assessed by starting from expert judgments
(e.g., a vector of quantiles) about proportions of items belonging to each category.
Tools for eliciting prior probability distributions from experts’ opinions are also
available in the R package SHELF. An example will be presented in Sect. 4.2.2.

3.2.3 Poisson Model

Some forensic science applications focus on the number of occurrences of particular
events or observations that take place at given intervals of time or space. Practical
examples are the number of gunshot residue particles (GSR) collected on the surface
of the hands of individuals suspected to be involved in the discharge of a firearm
(Cardinetti et al., 2006), or the number of corresponding matching striations in the
comparative examination of marks left by firearms on fired bullets (Bunch, 2000).

Consider the following hypothetical case. A fired bullet is found at a crime scene,
and a person of interest is apprehended, carrying a gun. The following propositions
are of interest:
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H1 : The bullet found at the crime scene was fired with the seized gun.
H2 : The bullet found at the crime scene was fired with an unknown gun.

The recovered bullet and bullets fired with the seized gun are compared. Consecutive
matching striations (CMS) is a simple concept to quantify the extent of agreement
between marks. The number of observed consecutively matching striations can
be interpreted as a score. Let Δ(x, y) be the maximum CMS count for a given
comparison. For the evaluation of a CMS count, data on comparisons made between
pairs of bullets test-fired with the seized gun and between pairs of bullets test-fired
with different guns are needed. The (score-based) Bayes factor therefore is

sBF = g(Δ(x, y) | H1)

g(Δ(x, y) | H2)
.

A statistical model commonly used in the forensic science literature for the type
of data encountered in the example here assumes that counts follow a Poisson
distribution Pn(λ)

g(Δ(x, y) | λi) = e−λi λ
Δ(x,y)
i

Δ(x, y)! , Δ(x, y) = 0, 1, . . . ; λi ≥ 0,

where parameter λi , i = 1, 2, represents the weighted average maximum CMS
count.

Suppose that two datasets are compiled. The first relates to pairs of bullets fired
with the seized gun, and the second to pairs of bullets fired with different guns.
Such data can be used to inform the probability distribution g(·) at the score value
Δ(x, y) as discussed in Sect. 1.5.2 and to compute the Bayes factor as

sBF = ĝ(Δ(x, y) | x,H1)

ĝ(Δ(x, y) | H2)
.

Bunch (2000) describes a likelihood ratio procedure for inference about compet-
ing propositions. This account is based on a frequentist perspective because it uses
the maximum likelihood estimates λ̂1 and λ̂2 for parameters λ1 and λ2, calculated
under the assumption that either proposition H1 or proposition H2 is true. Using
these two estimates in the component Poisson likelihoods leads to the following
likelihood ratio:

LR = e−λ̂1 λ̂
Δ(x,y)

1

e−λ̂2 λ̂
Δ(x,y)

2

.

In Bayesian statistics, the most common prior distribution for λi is the gamma
distribution Ga(αi, βi) with shape parameter α and rate parameter β (e.g. Bernardo
and Smith, 2000):
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f (λi | αi, βi) = β
αi

i

Γ (αi)
λ

αi−1
i e−βiλi , λi > 0 ; αi, βi > 0.

Since the Poisson and gamma distributions are conjugate (Sect. 1.10), the posterior
distribution of λ is still in the family of gamma distributions, with parameters α

and β updated according to well-known updating rules (see, e.g., Lee, 2012). When
we have a realization of a random sample from a Poisson distribution, Pn(λ), say
(z1, . . . , zn), we end up with a Ga(α′, β ′), where α′ = α+∑n

i=1 zi and β ′ = β +n.
Note that in this case there is only one observation, Δ(x, y); therefore, α′ = α +
Δ(x, y) and β ′ = β + 1. See also Biedermann et al. (2011b) for further illustrations
of the Poisson–gamma model in forensic science applications.

The marginal distribution in the numerator and denominator of the Bayes factor
is known in closed form here. It is a Poisson–gamma distribution:

g(Δ(x, y)|αi, βi) =
∫

λi

g(Δ(x, y)|λi)f (λi |αi, βi)dλi

= 1

Δ(x, y)!
β

αi

i

Γ (αi)

Γ (αi + Δ(x, y))

(βi + 1)αi+Δ(x,y)
. (3.4)

The score-based Bayes factor then becomes

sBF = β
α1
1 Γ (α2)Γ (α1 + Δ(x, y))(β2 + 1)α2+Δ(x,y)

β
α2
2 Γ (α1)Γ (α2 + Δ(x, y))(β1 + 1)α1+Δ(x,y)

. (3.5)

Another example of the use of the Poisson distribution for data in the form
of independent counts can be found in Aitken and Gold (2013). These authors
considered the number of occurrences of selected characteristics of speech recorded
in a succession of time periods. In this application, a feature-based Bayes factor
is used to assess findings with respect to the proposition according to which
recorded and control speeches originate from the same source versus the alternative
proposition that they originate from different sources.

Example 3.3 (Firearm Examination) Consider a case involving a questioned
bullet. During comparison with a reference bullet, the examiner counts four
CMS, i.e., Δ(x, y) = 4. Suppose that the assumptions made in Bunch (2000)
are suitable for the case here so that for bullets fired from the same gun
(proposition H1 holds), the weighted average maximum CMS is taken to be
equal to 3.91. For bullets fired from different guns (proposition H2 holds), the
weighted average maximum CMS count is taken to be equal to 1.32. These
values are used in the Poisson likelihoods under H1 and H2, and the likelihood
ratio can easily obtained as

> s=4
> lambda1=3.91

(continued)
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Example 3.3 (continued)
> lambda2=1.32
> LR=dpois(s,lambda1)/dpois(s,lambda2)
> LR

[1] 5.775487

The evidence provides weak support in favor of the proposition according to
which the recovered bullet passed through the barrel of the seized gun, rather
than through the barrel of an unknown gun.

Consider now the Bayesian perspective. Suppose that the available knowl-
edge allows one to set the hyperparameters of the gamma distribution equal
to {α1 = 125, β1 = 32} for the numerator and to {α2 = 7, β2 = 5} for the
denominator. This amounts to using a gamma prior distribution for λ1 with
mean equal to 3.91 and standard deviation equal to 0.35 and a gamma prior
distribution for λ2 with mean equal to 1.4 and standard deviation equal to
0.53. The two prior distributions are shown in Fig. 3.1.

> an=125
> bn=32
> ad=7
> bd=5
> plot(function(x) dgamma(x,an,bn),0,8,
+ xlab=expression(paste(lambda)),ylab='Probability
+ density')
> plot(function(x) dgamma(x,ad,bd),0,8,add=TRUE,
+ lty=2)
> leg=expression(paste('Ga(125,32)'),paste(
+'Ga(7,5)'))
> legend(4.85,1.15,leg,lty=c(1,2))

First, we write a short function poisg that computes the marginal distribu-
tion in (3.4)

> poisg=function(a,b,x)
+ {(b^a)/gamma(a)*gamma(a+x)/((b+1)^(a+x))}

Next, the Bayes factor can be computed as follows:

> BF=poisg(an,bn,s)/poisg(ad,bd,s)
> BF

[1] 4.248019

Note that the introduction of a prior probability distribution reflecting uncer-
tainty about the population parameters λ1 and λ2 has slightly lowered the
value of the evidence. The result still represents weak evidence in favor of the

(continued)
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Fig. 3.1 Gamma prior for the
Poisson parameter λ under
H1 (solid line) and H2
(dashed line)
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Example 3.3 (continued)
proposition that the recovered bullet was fired with the seized gun, rather than
with an unknown gun.

Note that Example 3.3 involves a non-anchored approach at the numerator. The
probability distribution of the score value is solely conditioned on the hypothesis of
interest, that is ĝ(Δ(x, y) | H1). As mentioned at the beginning of this section, and
in Sect. 1.5.2, other anchoring approaches may be considered.

3.2.3.1 Choosing the Parameters of the Gamma Prior

An evaluator who, initially, would like to give the same weight to all possible values
of λ may consider to use a non-informative prior distribution, that is

f (λi) = λ
−1/2
i ; λi > 0 and i = 1, 2.

The posterior probability distribution given the observations (z1, . . . , zn) will be
of type gamma with shape parameter α′ = ∑n

i=1 zi + 1/2 and rate parameter
β ′ = n. Note that in the type of case considered here, there is only one observation;
therefore, α′ = Δ(x, y) + 1/2 and β ′ = 1.

However, the choice of a non-informative prior distribution may be questioned.
Take, for instance, the case example discussed earlier in this section (Example 3.3).
It is difficult to imagine that no suitable information is available to express prior
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uncertainty about the unknown weighted average maximum count CMS, and
hence that the same non-informative prior distribution should apply under each
proposition.

In Example 3.3, an informative prior distribution has been used. This raises the
question of how to translate prior knowledge into a prior distribution. As illustrated
in Sect. 1.10, one way to elicit prior parameters is to express prior beliefs in terms of
a measure of location and a measure of dispersion and then equate these values with
the prior moments of the distribution. In the case of a gamma distribution Ga(α, β),
this amounts to equate a value for the mean, m, with the prior mean α/β, and a value
for the variance, s2, with the prior variance α/β2, that is,

m = α

β
; s2 = α

β2 .

Solving for α and β gives

α = m2

s2
(3.6)

β = m

s2 . (3.7)

If the shape of the prior distribution resulting from the choice of α and β as
in (3.6) and (3.7) does not reflect one’s prior beliefs suitably, then one should adjust
the numerical values of m and s. However, this may not be enough to ensure that
the resulting prior distribution is reasonable. One should also inquire about whether
the information that is conveyed by the prior is realistically attainable. Consider a
random sample of size ne, providing the same amount of information as conveyed by
the elicited prior. The sample mean should have, at least roughly, the same location
and the same dispersion as the prior. The equivalent sample size ne can then be
found by matching the moments of the gamma distribution to the corresponding
moments characterizing a sample of size ne from a Poisson distributed random
variable located at λ:

α

β
= λ

α

β2
= λ

ne

.

If the mean λ is set equal to the prior mean α/β, the equivalent sample size ne is
equal to β.
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Example 3.4 (Elicitation of a Gamma Prior) In Example 3.3, a Ga(125, 32)

was used for λ1 (the weighted average maximum CMS count under proposi-
tion H1), and a Ga(7, 5) for λ2 (the weighted average maximum CMS count
under proposition H2). For the prior means of λ1 and λ2, the values 3.91
and 1.4 were used following Bunch (2000). For the dispersion of the two
distributions, the values 0.35 and 0.53 have been assigned to the standard
deviation under propositions H1 and H2, respectively. Parameters (α1 =
125, β1 = 32) and (α2 = 7, β2 = 5) have then been obtained as in (3.6)
and (3.7). This amounts to an equivalent sample size equal to 32 for the prior
density of λ1, and 5 for λ2.

3.2.3.2 Sensitivity to Prior Probabilities of Competing Propositions

It is important to emphasize that the analyses presented here make no direct
probabilistic statement about the truth of the propositions put forward by opposing
parties at trial. A Bayes factor of approximately 4.25, as obtained in Example 3.3,
only means that the evidence is approximately 4 times more probable if proposition
H1 is true than if the alternative proposition H2 is true. As noted earlier, this does
not mean that proposition H1 is more probable than H2. This depends on the prior
probabilities of the competing propositions, which can vary considerably among
recipients of expert information, and which are beyond the area of competence of
scientists.

However, it may be of interest to show the impact of different prior probability
assignments on the posterior probability of the competing propositions. To do so,
recall that the posterior odds are given by the product of the prior odds and the
Bayes factor

Pr(H1 | ·)
Pr(H2 | ·) = BF × Pr(H1)

Pr(H2)
.

Using this expression, one can then investigate how the posterior probability of
proposition H1, i.e., α1, varies for values of π1, i.e., Pr(H1), ranging from 0.01
until 0.99, and for a Bayes factor equal to 4.25, as in Example 3.3.

> pi1=seq(0.01,0.99,0.01)
> prior_odds=pi1/(1-pi1)
> BF=4.25
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
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Fig. 3.2 Posterior
probability α1 of proposition
H1 for values of prior
probabilities π1 ranging from
0.01 to 0.99, and a Bayes
factor equal to 4.25 (solid
line), 1 (dashed line), and 100
(dotted line)
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The solid line in Fig. 3.2 shows the value of α1, the posterior probability of the
proposition H1, as a function of the prior probability, π1, for BF = 4.25. The plot
also shows results for BF = 1 (dashed line) and for BF = 100 (dotted line).

> plot(pi1,alpha1,type='l',xlab=expression(pi[1]),
+ ylab=expression(alpha[1]))
> BF=1
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
> lines(pi1,alpha1,lty=2)
> BF=100
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
> lines(pi1,alpha1,lty=3)

More generally, it can be observed that the higher the value of the Bayes factor,
the smaller the impact of the prior probabilities on posterior probabilities.

3.3 Evidence Evaluation for Continuous Data

The previous section considered the evaluation of scientific evidence as given
by discrete data. However, for many types of evidence, measurements result in
continuous data.
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3.3.1 Normal Model with Known Variance

In some applications, the distribution of measurements exhibits enough regularity
to be captured by standard parametric models, such as the Normal distribution.
One example, introduced earlier in Sect. 1.5.1, is the analysis of magnetism of
black toner on printed documents. Due to the wide distribution and availability
of printing machines, forensic document examiners are commonly requested to
examine documents produced by electrophotographic printing processes that use
dry toner. A question that forensic scientists may be asked to help with is whether
or not two or more documents were printed with the same laser printer. This task
involves the comparison of analytical features of a questioned document with those
of control documents. One such analytical feature is the magnetic flux of toner. It is
thought to be largely influenced by individual settings of the printing device, so that
detectable differences may be expected on documents printed at different instances
using the same or different machines (Biedermann et al., 2016a).

Suspected page substitution is a commonly encountered problem in forensic
document examination. Imagine a case involving a contract consisting of three
pages where the allegation is that the second page has been substituted. It may be of
interest, thus, to investigate the extent to which available measurements of magnetic
flux can be informative in this case.

Consider the following pair of propositions:

H1 : Page two has been printed by the device used for printing pages one and three
(i.e., the three pages have been printed with the same device).

H2 : Page two has been printed by a different device.

Denote by y = (y1, . . . , yn) the measurements of magnetic flux obtained for
the questioned page. Measurements are assumed to be normally distributed with
unknown mean θ and known variance σ 2. The likelihood of the normal random
sample (y1, . . . , yn) can therefore be expressed as

f (y | θ) =
n∏

i=1

(2πσ 2)−1/2 exp

{
− 1

2σ 2 (yi − θ)2
}

. (3.8)

It can be shown, (e.g., Bolstad and Curran, 2017), that the likelihood of a normal
random sample is proportional to the likelihood of the sample mean ȳ = 1

n

∑n
i=1 yi .

The sample mean is normally distributed with mean θ and variance σ 2/n

f (ȳ | θ) = (2πσ 2/n)−1/2 exp

{
− 1

2σ 2/n
(ȳ − θ)2

}
. (3.9)

In other words, it is possible to reduce the problem to one where a single normal
observation ȳ is available.

Next, denote the measurements on uncontested pages by {xl} = (xlj , j =
1, . . . , n and l = 1, 2), where the subscript l refers to the page number and j to
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the number of measurements of magnetic flux obtained for the page l. A normal
distribution with mean θ and variance σ 2 is assumed for x, analogously to what
has been assumed for y. A conjugate normal prior distribution is chosen for θ , say
θ ∼ N(μ, τ 2). The Bayes factor can be computed as in (1.16):

BF = f (ȳ | x1, x2,H1)

f (ȳ | H2)

=
∫

f (ȳ | θ)f (θ | x1, x2,H1)dθ∫
f (ȳ | θ)f (θ | H2)dθ

, (3.10)

where f (θ | x1, x2,H1) is the posterior distribution of θ , obtained by updating the
prior distribution N(μ, τ 2) using the measurements x1 and x2. This is a normal
distribution, (θ | x1, x2) ∼ N(μx, τ

2
x ), with posterior mean μx and posterior

variance τ 2
x , computed according to the updating rules (2.13) and (2.14). Using

the result (1.21), one can easily verify that the density in the numerator is still a
normal distribution with mean equal to the posterior mean μx and variance equal to
the sum of the posterior variance τ 2

x and the population variance σ 2 divided by the
sample size n, i.e., τ 2

x + σ 2/n. In the same way, invoking (1.22), the density in the
denominator is still a normal distribution with mean equal to the prior mean μ and
variance equal to the sum of the prior variance τ 2 and the population variance σ 2

divided by the sample size n, i.e., τ 2 + σ 2/n.

Example 3.5 (Printed Documents) Consider the case described above where
a forensic document examiner measures the magnetic flux on two uncontested
pages 1 and 3 (Biedermann et al., 2016a). The results are x1 = (16, 15, 15)

and x2 = (16, 15, 16). The measurements for the contested page 2 are y =
(15, 16, 16). Previous experiments allow one to assign the value 0.24 for the
population standard deviation σ . Based on the available knowledge regarding
the magnetic flux of toner on printed documents, the prior mean μ and the
prior variance τ 2 for the unknown quantity of magnetic flux are set equal
to 17.5 and 3.922, respectively. This means that values of the magnetic flux
smaller than 6 and greater than 29 are considered, a priori, to be extremely
unlikely.

> mu=17.5
> tau2=3.92^2
> sigma2=0.24^2
> x=c(16,15,15,16,15,16)
> y=c(15,16,16)
> nx=length(x)
> ny=length(y)

(continued)
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Example 3.5 (continued)
The posterior distribution f (θ | x1, x2) can be obtained by a single applica-
tion of Bayes theorem with the full set of available measurements (x1, x2).
The posterior parameters μx and τ 2

x can be calculated using the function
post_distr introduced in Sect. 2.3.1.

> mupost=post_distr(sigma2,nx,mean(x),mu,tau2)[1]
> mupost

[1] 15.50125

> tau2post=post_distr(sigma2,nx,mean(x),mu,tau2)[2]
> tau2post

[1] 0.009594006

The two marginal densities in the numerator and denominator of the BF
in (3.10) can be calculated at the sample mean ȳ. The exact value of the Bayes
factor is given by

> BF=dnorm(mean(y),mupost,sqrt(tau2post+sigma2/ny))/
+ dnorm(mean(y),mu,sqrt(tau2+sigma2/ny))
> BF

[1] 16.03199

This value represents moderate support for the proposition of page substitu-
tion, compared to the proposition of no page manipulation.

3.3.2 Normal Model with Both Parameters Unknown

So far, the variance of the distribution of the observations has been assumed to
be known, though in many practical situations the mean and the variance are both
unknown, and it is necessary to choose a prior distribution for the parameter vector
(θ, σ 2). The Bayes factor can be computed as in (1.16):

BF = f (y | x,H1)

f (y | H2)

=
∫

f (y | θ, σ 2)f (θ, σ 2 | x,H1)d(θ, σ 2)∫
f (y | θ, σ 2)f (θ, σ 2 | H2)d(θ, σ 2)

. (3.11)

Consider the case where a conjugate prior distribution for (θ, σ 2) of the form
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f (θ, σ 2) = f (θ | σ 2)f (σ 2) (3.12)

is chosen. In this distribution, prior beliefs about the population mean θ are
calibrated by the scale of measurements of the observations.1 The conditional
distribution f (θ | σ 2) is taken to be normal, centered at μ with variance σ 2/n0,
(θ | σ 2) ∼ N(μ, σ 2

n0
). The parameter n0 can be thought of as the prior sample

size for the distribution of θ . As pointed out in Sect. 2.3.1, it formalizes the size
of the sample from a normal population that provides an equivalent amount of
information about θ . The distribution f (σ 2) is taken to be an S times inverse chi-
squared distribution with k degrees of freedom, σ 2 ∼ S·χ−2(k). It can be shown that
this is equivalent to an inverse gamma distribution with shape parameter α = k/2
and scale parameter β = S/2, σ 2 ∼ IG(α = k/2, β = S/2). Alternatively, prior
uncertainty about dispersion can be formulated in terms of the precision λ2 = 1/σ 2.
The prior distribution of λ2 becomes a gamma distribution with shape parameter
α = k/2 and rate parameter β = S/2, λ2 ∼ Ga(α = k/2, β = S/2). For further
discussion, see e.g. Bernardo and Smith (2000), Bolstad and Curran (2017) and
Robert (2001).

Consider now the posterior distribution of the unknown parameter vector (θ, λ2)

once a vector of observations x = (x1, . . . , xn) becomes available. It takes the form
of a normal–gamma distribution

f (θ, λ2 | x,H1) = NG(μn, n
′, αn, βn),

with

μn = nx̄ + n0μ

n + n0
; n′ = n + n0

αn = α + n

2
;

βn = β + 1

2

[
(n − 1)s2 + n0n(x̄ − μ)2

n0 + n

]
,

1 Note that in (3.12) population parameters are not, a priori, independent. Whenever this condition
is felt to be too restrictive (see, e.g., Robert (2001)), it is also possible to choose a prior distribution
as the product of independent priors, f (θ, σ 2) = f (θ)f (σ 2). In this case, the derivation of the
posterior distribution can be more demanding.
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and s2 = 1
n−1

∑n
i=1(xi − x̄)2.

If uncertainty about the two unknown parameters is modeled by means of the
conjugate prior distribution in (3.12), the integrations in (3.11) have an analytical
solution and the BF can be obtained straightforwardly.

Denote by y = (y1, . . . , yny ) a vector of measurements made on questioned

material and consider the sample mean ȳ = ∑ny

i=1 yi . It can be proved that the
marginal density f (ȳ | x,H1) in the numerator is a Student t distribution with 2α+n

degrees of freedom, centered at μn, with spread parameter, denoted sn, equal to

sn = ny(n + n0)

n + n0 + ny

(
α + n

2

)
β−1

n .

This can be denoted as f1(ȳ | μn, sn, 2α + n).
The marginal density f (y | H2) in the denominator is a Student t distribution

with k degrees of freedom, centered at μ with spread parameter (precision), denoted
sd , equal to

sd = n0ny

n0 + ny

αβ−1

(Bernardo and Smith, 2000). This can be denoted as f2(ȳ | μ, sd, 2α).
The Bayes factor can then be computed as

BF = f1(ȳ | μn, sn, 2α + n)

f2(ȳ | μ, sd, 2α)
. (3.13)

Choosing the Parameters of the Normal Prior

The use of a conjugate prior distribution for the mean and the variance of a
normal distribution raises the question of how to choose the hyperparameters, as the
resulting distribution should suitably reflect available prior knowledge. The prior
distribution f (θ | σ 2) requires one to choose a value for μ, the measure of location,
and a value for n0. The ratio n0/n characterizes the relative precision of the prior
distribution compared to the precision of the observations. If this ratio is very small,
the less informative will be the prior distribution, and the closest will be the posterior
distribution to that obtained using a non-informative prior distribution. In fact,
when n0/n approaches zero, the limiting form of the marginal distribution of the
population mean θ is N(x̄, σ 2/n), which corresponds to the posterior distribution
that would be obtained using a non-informative prior distribution (Robert, 2001).
For more specific prior beliefs (i.e., concentrated on a limited range of values), a
higher value of n0 should be chosen.

Regarding the prior distribution of σ 2, consider a number of degrees of freedom
k = 20 so that the prior mass is distributed rather symmetrically. Suppose also
that, based on knowledge available from previous experiments, it is considered
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that values of σ 2 greater or smaller than 0.05 are equally plausible, so Pr(σ 2 >

0.05) = 0.5. The parameter S can be elicited by recalling that σ 2/S ∼ χ−2(k) and,
analogously, S · λ2 ∼ χ2(k) so

Pr
(
σ 2 > 0.05

)
= Pr

(
S · λ2 < S · 20

)
= 0.5,

where S · 20 is the quantile of order 0.5 of a χ2 distributed random variable with
k = 20 degrees of freedom.

> sigma2=0.05
> k=20
> p=0.5
> q=qchisq(p,k)
> q

[1] 19.33743

> S=q*sigma2

Parameter S is then equal to

S = 19.3374 × 0.05 ≈ 1.

The elicited prior distribution for σ 2 is IG( 20
2 , 1

2 ) and is shown in Fig. 3.3.

Fig. 3.3 Inverse Gamma
prior distribution IG( 20

2 , 1
2 )

for σ 2 in Example 3.6
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Example 3.6 (Printed Documents—Continued) Consider again Example 3.5
where magnetic flux was measured on uncontested and questioned pages.
The population variance σ 2 was assumed known and equal to 0.0576.
Suppose now that a new measuring device is used and that the number
of previous experiments (i.e., measurements) conducted with this device is
limited. A conjugate prior distribution as in (3.12) is introduced to model
prior uncertainty about θ and σ 2.

The prior distribution for θ | σ 2 can be centered at μ = 17.5 as in
Example 3.5 with n0 = 0.004 reflecting a very weak prior belief with respect
to the precision of the observations, θ ∼ N(17.5, σ 2/0.004).

> mu=17.5
> n0=0.004

The prior distribution about σ 2 has been elicited above, with k = 20 degrees
of freedom, and S = 1, σ 2 ∼ IG( 20

2 , 1
2 ), shown in Fig. 3.3.

> library(extraDistr)
> S=1
> k=20
> plot(function(x) dinvgamma(x,k/2,S/2),0,0.2,
+ xlab=expression(paste(sigma)^2),ylab='')

Note that the function dinvgamma is available in the package extraDistr
(Wolodzko, 2020). Measurements are the same as in Example 3.5.

> x=c(16,15,15,16,15,16)
> y=c(15,16,16)
> n=length(x)
> ny=length(y)

Let us first consider the marginal density in the numerator of the Bayes factor
in (3.13). It is a Student t distribution with 2α + n = k + n = 26 degrees of
freedom, centered at μn = 15.5 with spread parameter sn = 20.6724.

> mun=(n*mean(x)+n0*mu)/(n+n0)
> mun

[1] 15.50133

> s2=sum((x-mean(x))^2)
> bn=S/2+(s2+n0*n*(mean(x)-mu)^2*(n0+n)^(-1))/2
> sn=ny*(n+n0)/(n+n0+ny)*(k+n)/2*bn^(-1)
> sn

[1] 20.6724

(continued)
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Example 3.6 (continued)
The marginal density at the denominator of the Bayes factor in (3.13) is a
Student t distribution with 2α = k = 20 degrees of freedom, centered at
μ = 17.5 with spread parameter sd = 0.0799.

> sd=ny*n0/(n0+ny)*k/S
> sd

[1] 0.07989348

The density of a non-central Student t distributed random variable can be cal-
culated using the function dstp, available in the package LaplacesDemon
(Hall et al., 2020). The Bayes factor can be obtained as

> library(LaplacesDemon)
> BF=dstp(mean(y),mun,sn,k+n)/dstp(mean(y),mu,sd,k)
> BF

[1] 13.88188

The Bayes factor represents moderate support for the proposition according
to which page two has been printed by the same device as the one used for
printing pages one and three, compared to the proposition according to which
page two has been printed by a different device.

It is worth emphasizing that the BF is highly sensitive to the choice of the prior
(see Sect. 1.11). A sensitivity analysis should therefore be conducted.

3.3.3 Normal Model for Inference of Source

Consider again a case as described in Sect. 3.3.1, involving the analysis of toner on
printed documents. Magnetic flux was considered as a feature of interest because it
is largely influenced by the settings of the printing device. Suppose now that more
than one potential source (i.e., printing device) is available for examination. The
issue of interest is which of two machines has been used to print a questioned
document (e.g., a contested contract). The propositions of interest can be defined
as follows:

H1 : The questioned document has been printed with machine A.
H2 : The questioned document has been printed with machine B.

The two potential sources, i.e., machines A and B, are used to print documents
under controlled conditions. The measurements made on documents printed by
the two devices are denoted {xp} = (xpi, p = A,B and i = 1, . . . , m), with



100 3 Bayes Factor for Evaluative Purposes

xpi = (xpi1, . . . , xpin) denoting the vector of n measurements for each analyzed
page, i = 1, . . . , m, from each printer p = A,B. Measurements are assumed to
be normally distributed with unknown mean θp, p = A,B, and variance σ 2. The
variance is assumed to be known and equal for the two devices. A conjugate normal
prior distribution is taken for the unknown mean θp, say θp ∼ N(μp, τ 2

p), p = A,B.
Measurements on the questioned document are denoted by y = (y1, . . . , yq),

with yj = (yj1, . . . , yjn) denoting the vector of n measurements from each
contested page j = 1, . . . , q. For cases in which q > 1, it is assumed that all
pages have been printed with a single device. The distribution of measurements
on the questioned document is also taken to be normal. The sample mean ȳ =
1
nq

∑q

j=1

∑n
k=1 yjk has a normal distribution with mean θp and variance σ 2/nq,

(Ȳ | θp, σ 2/nq) ∼ N(θp, σ 2/nq).
The Bayes factor can be computed as

BF =
∫

f (ȳ | θA)f (θA | xA)dθA∫
f (ȳ | θB)f (θB | xB)dθB

= f (ȳ | xA,H1)

f (ȳ | xB,H2)
. (3.14)

The marginal probability density in the numerator can be obtained in closed
form. It is a normal distribution with mean equal to the posterior mean μA,x and
variance equal to the sum of the posterior variance τ 2

A,x and population variance

σ 2
A/nq (where nq is the total number of observations), that is, f (ȳ | xA,H1) =

N(μA,x, τ
2
A,x + σ 2/nq). In the same way, one can obtain the marginal probability

density in the denominator, f (ȳ | xB,H2) = N(μB,x, τ
2
B,x + σ 2/nq). As observed

in Sect. 3.3.1, the numerator and the denominator of (3.14) can be calculated as the
densities of two normally distributed random variables, N(μA,x, τ

2
A,x + σ 2/nq)

and N(μB,x, τ
2
B,x + σ 2/nq), at the sample mean ȳ of the measurements on the

questioned document.

Example 3.7 (Printed Documents) Consider a type of case and propositions
as introduced above, and suppose that there is only one contested page, that is,
q = 1. Measurements of the magnetic flux lead to the following results: y =
(20, 20, 21) (i.e., n = 3 measurements are taken). Two pages are printed with
each printing device. The results are as follows (Biedermann et al., 2016a):

Printer A Printer B

Page 1 20 20 19 21 20 21

Page 2 20 21 20 21 22 21

(continued)
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Example 3.7 (continued)
The available data thus are

> xa=c(20,20,19,20,21,20)
> xb=c(21,20,21,21,22,21)
> y=c(20,20,21)
> n=length(y)

The population standard deviation σ is taken to be equal to 0.24, as in
Example 3.5. We also choose the same prior distribution as used in Example
3.5 to describe uncertainty about the magnetic flux of toner printed by the two
printing devices. Thus, μA = μB = 17.5 and τ 2

A = τ 2
B = 3.922.

> sigma2=0.24^2
> na=length(xa)
> nb=length(xb)
> mu=17.5
> tau2=3.92^2

The posterior distributions f (θA | xA) and f (θB | xB) can be obtained
by a single application of Bayes theorem using the full set of available
measurements for each printer. The posterior parameters μA,x , μB,x , τ 2

A,x

and τ 2
B,x can be calculated using the function post_distr:

> muapost=post_distr(sigma2,na,mean(xa),mu,tau2)[1]
> tauapost=post_distr(sigma2,na,mean(xa),mu,tau2)[2]
> mubpost=post_distr(sigma2,nb,mean(xb),mu,tau2)[1]
> taubpost=post_distr(sigma2,nb,mean(xb),mu,tau2)[2]

The two marginal densities in the numerator and denominator of the BF
in (3.14) can be calculated at the observed value ȳ. The BF can thus be
computed as the ratio of two marginal densities:

> BF=dnorm(mean(y),muapost,sqrt(sigma2/n+tauapost))/
+ dnorm(mean(y),mubpost,sqrt(sigma2/n+taubpost))
> BF

[1] 304.7886

This value represents moderately strong support for the proposition according
to which the questioned page been printed using device A, rather than using
device B.

Consider a “0−li” loss function as in Table 1.4. The optimal decision is to accept
the view according to which the questioned page was printed by the device A (as
stated by proposition H1), rather than by device B, whenever
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BF >
l1/l2

π1/π2
.

If the odds are evens, and a symmetric loss function is felt to be appropriate, the
Bayes decision is to accept the view according to which the questioned document
has been printed with machine A (B) whenever the BF is greater (smaller) than 1.

When available information is limited, one may choose a non-informative prior
distribution for (θ, σ 2) that can be specified as

f (θ, σ 2) = 1

σ 2 . (3.15)

In this case, the marginal distribution in the numerator of the BF is proportional to a
Student t distribution with nA − 1 degrees of freedom, centered at the sample mean
x̄A with spread parameter sn equal to

sn = nAnq

(nA + nq)s2
A

,

where sA = 1
nA−1

∑nA

i=1(xA − x̄A)2, nA is the total number of observations from
device A, and nq is the total number of measurements from the q contested
pages (i.e., n measurements for each contested page). This can be denoted as
f1(ȳ | x̄A, sn, nA − 1).

Vice versa, the marginal distribution in the denominator of the BF is proportional
to a Student t distribution with nB − 1 degrees of freedom, centered at the sample
mean x̄B with spread parameter sd equal to

sd = nBnq

(nB + nq)s2
B

,

where sB = 1
nB−1

∑nB

i=1(xB − x̄B)2 and nB is the total number of observations from
device B. This can be denoted as f2(ȳ | x̄B, sd , nB − 1).

The Bayes factor can then be obtained as

BF = f1(ȳ | x̄A, sn, nA − 1)

f2(ȳ | x̄B, sd , nB − 1)
. (3.16)

Example 3.8 (Printed Documents—Continued) In Example 3.7, a normal
prior distribution has been used for (θ, σ 2). Consider now a non-informative
prior distribution as in (3.15). In order to compute the Bayes factor, one must
first obtain the spread parameters sn and sd under the competing propositions.

(continued)
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Example 3.8 (continued)
> s2a=var(xa)
> sn=na*n/((na+n)*s2a)
> s2b=var(xb)
> sd=nb*n/((nb+n)*s2b)

Note that in this case the number of contested pages q is set equal to 1. The
density of a non-central Student t distributed random variable can be obtained
using the function dstp available in the package LaplacesDemon (Hall
et al., 2020). The Bayes factor can be obtained as follows:

> library(LaplacesDemon)
> BF=dstp(mean(y),mean(xa),sn,na-1)/
+ dstp(mean(y),mean(xb),sd,nb-1)
> BF

[1] 2.197

The Bayes factor represents weak support for the proposition according to
which the questioned document has been printed with machine A, rather than
with machine B.

More Than Two Propositions

Consider now the case where more than two devices are available. As in Sect. 1.6,
the question is how to evaluate measurements made on questioned and known items
(i.e., documents), as the BF involves pairwise comparisons. A scaled version of the
marginal likelihood may be reported as in (1.27).

Example 3.9 (Printed Documents, More Than Two Propositions) Recall
Example 3.7, and assume that a third printer, machine C, is available for
comparative examinations. The propositions of interest are therefore:

H1 : The questioned document has been printed with machine A.
H2 : The questioned document has been printed with machine B.
H3 : The questioned document has been printed with machine C.

Two pages are printed with the additional printing device C. All results,
including those from machines A and B, are as follows:

(continued)
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Example 3.9 (continued)

Printer A Printer B Printer C

Page 1 20 20 19 21 20 21 21 20 21

Page 2 20 21 20 21 22 21 20 21 20

Let the prior distribution describing uncertainty about the magnetic flux
characterizing machine C be the same as introduced previously, that is μC =
17.5 and τ 2

C = 3.922. First, the posterior distribution f (θC | xC) is calculated:

> xc=c(21,20,21,20,21,20)
> nc=length(xc)
> mucpost=post_distr(sigma2,nc,mean(xc),mu,tau2)[1]
> taucpost=post_distr(sigma2,nc,mean(xc),mu,tau2)[2]

Next, consider the marginal likelihoods of the sample mean that can be
obtained as

> mla=dnorm(mean(y),muapost,sqrt(sigma2/n+tauapost))
> mlb=dnorm(mean(y),mubpost,sqrt(sigma2/n+taubpost))
> mlc=dnorm(mean(y),mucpost,sqrt(sigma2/n+taucpost))

The scaled version of the marginal likelihoods then is

> smla=mla/(mla+mlb+mlc)
> smlb=mlb/(mla+mlb+mlc)
> smlc=mlc/(mla+mlb+mlc)
> round(c(smla,smlb,smlc),5)

[1] 0.18593 0.00061 0.81346

Recall from Sect. 1.6 that this is equivalent to reporting the posterior prob-
ability of competing propositions with equal prior probabilities. Therefore,
if Pr(H1) = Pr(H2) = Pr(H3) = 1

3 , then proposition H3 has received the
greatest evidential support.

Alternatively, the analyst may also consider the possibility of aggregating
propositions H1 and H2 and consider:

H1 : The questioned document has been printed with machine C.
H̄1 : The questioned document has been printed with machine A or B.
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Example 3.10 (Printed Documents, More Than Two Propositions—
Continued) When considering a single proposition H1 compared to a
composite proposition H̄1 as defined above, the Bayes factor can be obtained
as in (1.28), with Pr(H1) = 1/3 and Pr(H̄1) = 2/3.

> p=1/3
> mlc*(1-p)/(mla*p+mlb*p)

[1] 8.72179

3.3.4 Score-Based Bayes Factor

As mentioned previously in Sect. 1.5.2, it may not be possible to specify a
probability model for some types of forensic evidence and data. An example was
given in Sect. 3.2.3 for discrete data regarding consecutive matching striations, used
to quantify the extent of agreement between marks on bullets.

Consider now a case where a saliva trace is collected at the crime scene. The
salivary microbiome is analyzed as well as that of traces originating from a known
source, Mr. X, with the aim of discriminating between the following competing
propositions:

H1 : The saliva trace comes from Mr. X.
H2 : The saliva trace comes from the twin brother of Mr. X.

Note that the proposition H2 represents an extreme case of relatedness. To
investigate this type of case, consider the data collected by Scherz (2021). This
longitudinal study involving 30 monozygotic twins has shown the potential of
salivary microbiome profiles to discriminate between closely related individuals
(Scherz et al., 2021). This may represent an alternative method when standard DNA
profiling analyses yield no useful results.

In the study by Scherz (2021), four salivary samples have been collected from
each participant. The first at the beginning of the study, and the others after 1, 12,
and 13 months. Given the complex composition of microbiota, a distance can be
calculated to compare microbiota profiles. One possibility is the Jaccard distance,
obtained by dividing the number of amplicon sequence variants (AVSs) shared by
the two samples by the number of distinct AVSs in the two compared samples.
This measure has shown good discriminatory power. Other distances (e.g., Jensen–
Shannon) can be calculated (Scherz, 2021).

The intra-individual variability was studied by comparing all four samples of
each individual. The intra-pair variability was evaluated by comparing pairs of
samples from related individuals (here: homozygous twins). The inter-individual
variability was studied by comparing samples of unrelated individuals (Fig. 3.4).
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Fig. 3.4 Jaccard distances
for salivary microbiota
compositions of pairs of
samples from individual
persons (intra-individual),
pairs of related persons
(intra-pair), and pairs of
unrelated persons (unrelated)
[Source of data: (Scherz
et al., 2021)]
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Let δ(y, x) denote the distance between the analytical features of questioned
material (i.e., a saliva trace of unknown origin) and control material (i.e., a saliva
sample from Mr. X). A score-based Bayes factor (sBF) can be defined as follows:

sBF = g(δ(x, y) | H1)

g(δ(x, y) | H2)
. (3.17)

To obtain a value for this sBF, it is necessary to study the probability distribution
of the calculated score under the competing propositions. However, the limited
number of samples per individual, available for pairwise comparison, might make it
difficult to assess the numerator, which is specific for a given person of interest. To
address this problem, Davis et al. (2012) propose the use of a database of simulated
samples to help with the construction of probability distributions for scores.

In the example studied here, a maximum number of 6 intra-volunteer com-
parisons are available for each participant. A viable alternative is to perform
a so-called common-source comparison,2 and use the limited number of items
from all participants, provided that one is willing to assume a generic probability
distribution for all individuals in the numerator. In the same way, a generic
probability distribution is used at the denominator in all cases where a twin is
assumed as the alternative source of the salivary trace (Bozza et al., 2022).

Denote by {Z1
ij , i = 1, . . . , m1, j = 1, . . . , n1} the intra-individual distances

and by {Z2
ij , i = 1, . . . , m2, j = 1, . . . , n2} the intra-pair distances, where m1 (m2)

are the number of distinct individuals (couples of twin brothers) and n1 (n2) are the
number of distances calculated for each individual (couple). A normal distribution is
used for both the numerator and denominator to model the within-source variation

2 See Sect. 1.5.2 on the difference between specific-source and common-source propositions.
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(i.e., the variation between distances characterizing materials originating from the
same individual and from the same couple of twins, respectively), Z

p
ij ∼ N(θp, σ 2

p),
where p = {1, 2}. Different distributions can be used to describe the between-source
variation (i.e., the variation between distances characterizing materials originating
from different individuals and from different couples of twins, respectively). Here, a
normal distribution is retained, θp ∼ N(μp, τ 2

p). The mean vector between sources

μp, the within-source variance σ 2
p , and the between-source variance τ 2

p can be
estimated from the background data:

μ̂p = z̄p = 1

mpnp

mp∑

i=1

np∑

j=1

z
p
ij (3.18)

σ̂ 2
p = 1

mp(np − 1)

mp∑

i=1

np∑

j=1

(z
p
ij − z̄i )

2 (3.19)

τ̂ 2
p = 1

mp − 1

mp∑

i=1

(z̄
p
i − z̄p)2 − σ̂ 2

p

np

, (3.20)

where z̄
p
i = ∑np

j=1 zij .

Example 3.11 (Saliva Traces) Consider a case where a saliva trace is
recovered at a crime scene and a sample is taken from a person of interest
for comparative purposes. The Jaccard distance between the microbiota
composition of recovered and control sample is equal to 0.51.

> d=0.51

The propositions are H1, the compared items come from the same source,
and H2, the compared items come from different sources (twins). Suppose
that the estimated means between sources in (3.18) are 0.454 and 0.769;
the estimated within-source variances in (3.19) are 0.0057 and 0.00067; the
estimated between-source variances in (3.20) are 0.0028 and 0.0024 (Source
of data: Scherz (2021)).

> mu1=0.454
> mu2=0.769
> sigma1=0.0057
> sigma2=0.00067
> tau1=0.0028
> tau2=0.0024

The Bayes factor can then be obtained straightforwardly as in (3.17)

(continued)
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Example 3.11 (continued)
> BF=dnorm(d,mu1,sqrt(tau1+sigma1))/
+ dnorm(d,mu2,sqrt(tau2+sigma2))
> BF

[1] 27766.33

The Bayes factor provides very strong support for the proposition that the
saliva traces originate from the same individual rather than from two different
individuals (twins).

Note that a higher value of the BF is expected whenever the alternative
proposition H2 involves unrelated individuals. The inspection of Fig. 3.4 highlights
that higher distances are recorded in this type of case.

The between-source variability can also be modeled by a kernel density distri-
bution, as presented in Bozza et al. (2022). See also Sect. 3.4.1.2, where a detailed
description of the kernel density approach is given for two-level multivariate data.

3.4 Multivariate Data

Forensic scientists encounter multivariate data in contexts where the examined
objects and materials can be described by several variables. Examples are glass
fragments that are searched and recovered on the clothing of a person of interest
and on a crime scene, or seized materials supposed to contain illicit substances. Such
materials may be analyzed and compared on the basis of their chemical compounds
as well as their physical characteristics. Multivariate data also arise in other forensic
science disciplines, such as handwriting examination. Handwritten characters can,
in fact, be described by means of several variables, such as the width, the height,
the surface, the orientation of the strokes, or by Fourier descriptors (Marquis et al.,
2005). In addition, an emerging topic that forensic document examiners nowadays
encounter is handwriting (e.g., signatures) on digital tablets. Such electronic devices
provide several static (e.g., length of a signature) and dynamic features (e.g.,
speed) that can be used as variables to describe signatures (Linden et al., 2018).
These developments have led to substantial databases that often present a complex
dependence structure, a large number of variables, and multiple sources of variation.
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3.4.1 Two-Level Models

Denote by p the number of characteristics (variables) observed on items of a
particular evidential type. Suppose that continuous measurements of these variables
are available on a random sample of m sources with n items from each source. For
handwriting evidence, a source is a single writer, with n characters from each writer
and p observed characteristics that pertain to the shape of handwritten characters.
For glass evidence, a source is a window, with n replicate measurements from a
glass fragment originating from each window and p observed characteristics given
by concentrations in elemental composition. The background data can be denoted
by zij = (zij1, . . . , zijp), where i = 1, . . . , m denotes the number of sources (e.g.,
windows), j = 1, . . . , n denotes the number of items for each source (e.g., replicate
measurements from a glass fragment), and p is the number of variables.

This data structure suggests a two-level hierarchy, accounting for two sources of
variation: the variation between replicate measurements within the same source (the
so-called within-source variation) and the variation between sources (the so-called
between-source variation).

3.4.1.1 Normal Distribution for the Between-Source Variability

In some applications, data exhibit regularity that can reasonably be described
using standard probabilistic models. For example, the within-source variability
and the between-source variability may be modeled by a normal distribution.
A Bayesian statistical model for the evaluation of trace evidence for two-level
normally distributed multivariate data was proposed by Aitken and Lucy (2004) in
the context of evaluating the elemental composition of glass fragments. To illustrate
this model, denote the mean vector within source i by θ i . Denote by W the matrix
of within-source variances and covariances. The distribution of Zij for the within-
source variation is taken to be normal, Zij ∼ N(θ i ,W). For the between-source
variation, the mean vector between sources is denoted by μ, and the matrix of
between-source variances and covariances by B. The distribution of the θ i is taken
to be normal, θ i ∼ N(μ, B).

Measurements are available on items from an unknown source (recovered
material) as well as measurements on items from a known source (control material).
The examined items may or may not come from the same source. Competing
propositions may be formulated as follows:

H1 : The recovered and the control item originate from the same source.
H2 : The recovered and the control item originate from different sources.

Denote the measurements on recovered and control items by, respectively,
y = (y1, . . . , yny ) and x = (x1, . . . , xnx ), where yj = (yj1, . . . , yjp), xj =
(xj1, . . . , xjp), j = 1, . . . , ny(x). A Bayes factor can be derived as in (1.15):
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BF = f (y, x | H1)

f (y, x | H2)
. (3.21)

The distribution of the measurements on the recovered and control materials is taken
to be normal, with vector means θy and θx , and covariance matrices Wy and Wx .
Thus,

(Y | θy,Wy) ∼ N(θy,Wy) ; (X | θx,Wx) ∼ N(θx,Wx). (3.22)

The Bayes factor is the ratio of two probability densities of the form f (y, x | Hi) =
fi(y, x | μ,W,B), i = 1, 2. The probability density in the numerator is given by

f1(y, x | μ,W,B) =
∫

θ

f (y | θ ,W)f (x | θ,W)f (θ | μ, B)dθ , (3.23)

where

f (y | θ ,W) = |2π |−pny/2|W |−ny/2 exp

⎡

⎣−1

2

ny∑

j=1

(
yj − θ

)′
W−1 (yj − θ

)
⎤

⎦ , (3.24)

f (x | θ,W) has the same probabilistic structure as f (y | θ,W), and

f (θ | μ, B) = |2π |−p/2|B|−1/2 exp

[
−1

2
(θ − μ)′ B−1 (θ − μ)

]
. (3.25)

In the denominator, where y and x are taken to be independent, the probability
density is given by

f2(y, x | μ,W,B) = f2(y | θ,W,B) × f2(x | θ ,W,B) (3.26)

=
∫

θ

f (y | θ ,W)f (θ | μ, B)dθ

∫

θ

f (x | θ ,W)f (θ | μ, B)dθ .

This is equivalent to the algebraic expression of the Bayes factor in (1.23). In the
numerator, under proposition H1, the source means θy and θx are assumed equal,
say θy = θx = θ . In the denominator, under proposition H2, the source means θy

and θx are assumed to be different.
The integrals in (3.23) and (3.26) have an analytical solution. A proof is given by

Aitken and Lucy (2004). The numerator can be shown to be equal to

f (y, x | H1) =| 2πW |−(ny+nx)/2| 2πB |−1/2| 2π
[
(ny + nx)W

−1 + B−1
]−1 | 1

2

× exp

{
−1

2

[
F1 + F2 + tr

(
SyW

−1
)

+ tr
(
SxW

−1
)]}

, (3.27)
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where:

F1 = (w̄ − μ)′
(

W
ny+nx

+ B
)−1

(w̄ − μ),

F2 = (ȳ − x̄)′
(

W
ny

+ W
nx

)−1
(ȳ − x̄),

w̄ = 1
ny+nx

(∑ny

j=1 yj +∑nx

j=1 xj

)
, ȳ = 1

ny

∑ny

j=1 yj and x̄ = 1
nx

∑nx

j=1 xj ,

Sy = ∑ny

j=1

(
yj − ȳ

) (
yj − ȳ

)′, Sx = ∑nx

j=1

(
xj − x̄

) (
xj − x̄

)′.

Consider the first factor in the denominator, f2(y | θ ,W,B). It can be obtained as

f2(y | μ,W,B) =| 2πW |−ny/2| 2πB |−1/2| 2π(nyW
−1 + B−1)−1 |1/2

×exp

{
−1

2

[
(ȳ − μ)′(n−1

y W +B)−1(ȳ − μ) + tr
(
SyW

−1
)]}

.

(3.28)

The second factor f2(x | θ ,W,B) can be obtained analogously as

f2(x | μ,W,B) =| 2πW |−nx/2| 2πB |−1/2| 2π(nxW
−1 + B−1)−1 |1/2

×exp

{
−1

2

[
(x̄ − μ)′(n−1

x W +B)−1(x̄ − μ) + tr
(
SxW

−1
)]}

.

(3.29)

The Bayes factor in (3.21) then is the ratio between (3.27) and the product
between (3.28) and (3.29), respectively. After some manipulation, the BF can be
obtained as the ratio between

| 2π
[
(ny + nx)W

−1 + B−1
]−1 |1/2 exp

{
−1

2
(F1 + F2)

}
(3.30)

and

| 2πB |−1/2| 2π(nyW
−1 + B−1)−1 |1/2| 2π(nxW

−1 + B−1)−1 |1/2

× exp

{
−1

2
(F3 + F4)

}
, (3.31)

where:

F3 = (μ − μ∗)′
{(

W
ny

+ B
)−1 +

(
W
nx

+ B
)−1

}
(μ − μ∗),

F4 = (ȳ − x̄)′
(

W
ny

+ W
nx

+ 2B
)−1

(ȳ − x̄),

μ∗ =
{(

W
ny

+ B
)−1 +

(
W
nx

+ B
)−1

}−1

×
{(

W
ny

+ B
)−1

ȳ +
(

W
nx

+ B
)−1

x̄
}

.
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The mean vector between sources μ, the within-source covariance matrix W ,
and the between-source covariance matrix B can be estimated using the available
background data:

μ̂ = z̄ = 1

mn

m∑

i=1

n∑

j=1

zij , (3.32)

Ŵ = 1

m(n − 1)

m∑

i=1

n∑

j=1

(zij − z̄i )(zij − z̄i )
′, (3.33)

B̂ = 1

m − 1

m∑

i=1

(z̄i − z̄)(z̄i − z̄)′ − Ŵ

n
, (3.34)

where z̄i = 1
n

∑n
j=1 zij .

Example 3.12 (Glass Evidence) Consider a case in which two glass frag-
ments are recovered on the jacket of an individual who is suspected to be
involved in a crime. Two glass fragments are collected at the crime scene for
comparative purposes. The competing propositions are:

H1 : The recovered and known glass fragments originate from the same
source (broken window at the crime scene).

H2 : The recovered and known glass fragments originate from different
sources.

For each fragment, three variables are considered: the logarithmic trans-
formation of the ratios Ca/K , Ca/Si, and Ca/Fe (Aitken and Lucy, 2004).
Two replicate measurements are available for each fragment. Measurements
on the two recovered fragments are

y1 =
⎛

⎝
3.77379

−0.89063
2.62038

⎞

⎠ , y2 =
⎛

⎝
3.93937

−0.89343
2.63860

⎞

⎠ .

Measurements on the two control fragments are

x1 =
⎛

⎝
3.84396

−0.91010
2.65437

⎞

⎠ , x2 =
⎛

⎝
3.72493

−0.89811
2.61933

⎞

⎠ .

Consider the database named glass-data.txt. This database is part
of the supplementary material of Aitken and Lucy (2004) and contains n = 5
replicate measurements of the elemental concentration of glass fragments

(continued)
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Example 3.12 (continued)
from several windows (m = 62). The variables of interest (i.e., the logarithmic
transformation of the ratios Ca/K , Ca/Si, and Ca/Fe) are displayed in
columns 6, 7 and 8, while the object (window) identifier is in column 9.

> population=read.table("glass-data.txt", header=T)
> variables=c(6,7,8)
> grouping.item=9

Measurements from the recovered fragments, y = (y1, y2), and measure-
ments from the control fragments, x = (x1, x2), were selected from the
available replicate measurements for the first group (window). The first two
replicate measurements were selected to act as recovered data, while the last
two replicate measurements were selected to act as control data

> item=1
> recovered=population[which(population[,grouping.
+ item]==item),][1:2,variables]
> recovered

logCaK logCaSi logCaFe
1 3.77379 -0.89063 2.62038
2 3.93937 -0.89343 2.63860

> control=population[which(population[,grouping.
+ item]==item),][4:5,variables]
> control

logCaK logCaSi logCaFe
4 3.72493 -0.89811 2.61933
5 3.66573 -0.89693 2.76393

Data concerning measurements from the first window were then excluded
from the database

> pop.back <- population[-which(population[,grouping.
+ item]==item),]

The database named pop.back will serve as background data and can be
used to estimate the model parameters μ, W and B as in (3.32), (3.33),
and (3.34) by means of the function two.level.mv.WB contained
in the routines file two_level_functions.r. This file is part of
the supplementary materials available on the website of this book (on

(continued)
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Example 3.12 (continued)
http://link.springer.com/) and can be run in the R console by
inserting the command

> source('two_level_functions.r')

The mean vector between sources, the within-source covariance matrix, and
the between-source covariance matrix can therefore be obtained as follows:

> WB <- two.level.mv.WB(pop.back,variables,
+ grouping.item)
> mu <- WB$all.means
> W <- WB$W
> B <- WB$B
> mu

logCaK logCaSi logCaFe
[1,] 4.20495 -0.7425402 2.770238

> W

logCaK logCaSi logCaFe
logCaK 1.688046e-02 2.792714e-05 2.783344e-04
logCaSi 2.792714e-05 6.545540e-05 8.362677e-06
logCaFe 2.783344e-04 8.362677e-06 1.294188e-03

> B

logCaK logCaSi logCaFe
logCaK 0.71485025 0.099343866 -0.047824106
logCaSi 0.09934387 0.062724678 -0.007360187
logCaFe -0.04782411 -0.007360187 0.102438334

The Bayes factor can be calculated as the ratio between (3.27)
and (3.28) using the function two.level.mvn.BF available in the
routines file two_level_functions.r. This function is part of the
supplementary materials available on the website of this book (on
http://link.springer.com/). First, it is necessary to calculate the
sample means ȳ and x̄ and to determine the sample size ny and nx

> ybar=as.vector(colMeans(recovered))
> xbar=as.vector(colMeans(control))
> ny=dim(recovered)[1]
> nx=dim(control)[1]

(continued)
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Example 3.12 (continued)
The Bayes factor can be obtained as

> BF=two.level.mvn.BF(W, B, mu, xbar, ybar, nx, ny)
> BF

[1] 157.6265

This Bayes factor represents moderately strong support for the proposition
according to which the recovered and the control fragments originate from
the same source, rather than from different sources. This is expected because
the compared measurements refer to the same fragment.

3.4.1.2 Non-normal Distribution for the Between-Source Variability

The two-level random effect model presented in the previous section is based
on the assumption of normality of the between-source variability. However, in
many practical applications, observations or measurements do not exhibit (enough)
regularity for standard parametric models to be used. For example, a multivariate
normal distribution for the mean vector θ may be difficult to justify. It can be
replaced by a kernel density estimate, which is sensitive to multimodality and
skewness, and which may provide a better representation of the available data.

Starting from a database {zij = (zij1, . . . , zij1); i = 1, . . . , m and j =
1, . . . , n)}, the estimate of the probability density distribution for the between-
source variability can be obtained as follows:

f (θ | z̄1, . . . , z̄m,B, h) = 1

m

m∑

i=1

K(θ | z̄i , B, h), (3.35)

where the kernel density function K(θ | z̄i , B, h) is taken to be a multivariate
normal distribution centered at the group mean z̄i , with covariance matrix h2B.
The smoothing parameter h can be estimated as

ĥ =
(

4

2p + 1

) 1
p+4

m−1/(p+4). (3.36)

See also Silverman (1986) and Scott (1992).
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We first write a function hopt that computes the estimate of the smoothing
parameter.

> hopt=function(p,m){
+ h=(4/(2*p+1))^(1/(p+4))*m^(-1/(p+4))
+ return(h)}

Thus, if the number p of variables is set equal to 4 and the number of sources
m is set equal to 30, the smoothing parameter h can be estimated as in (3.36)

> p=4
> m=30
> hopt(p,m)

[1] 0.5906593

The BF can be obtained as in (3.21), where a multivariate normal distribution
is used for the control and the recovered measurements as in (3.22), and a kernel
distribution for the between-source variability, as in (3.35). The numerator and the
denominator of the BF, f1(y, x | μ,W,B) and f2(y, x | μ,W,B), can be obtained
analytically (Aitken and Lucy, 2004). The BF is the ratio between

| B |1/2 mhp | nyW
−1

+ nxW
−1 + (h2B)−1 |−1/2 exp

{
−1

2
F2

} m∑

i=1

exp

{
−1

2
Fi

}
(3.37)

and

| nyW
−1 + (h2B)−1 |−1/2

m∑

i=1

exp

{
−1

2
Fyi

}

× | nxW
−1 + (h2B)−1 |−1/2

m∑

i=1

exp

{
−1

2
Fxi

}
, (3.38)

where:

Fi = (w∗ − z̄i )
′
{(

nyW
−1 + nxW

−1
)−1 + (

h2B
)}−1

(w∗ − z̄i ),

w∗ = (
nyW

−1 + nxW
−1
)−1 (

nyW
−1ȳ + nxW

−1x̄
)
,

Fyi = (ȳ − z̄i )
′
(

W
ny

+ h2B
)−1

(ȳ − z̄i ),

Fxi = (x̄ − z̄i )
′
(

W
nx

+ h2B
)−1

(x̄ − z̄i ).
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Example 3.13 (Glass Evidence—Continued) Consider the case examined in
Example 3.12, and suppose a kernel distribution is used to model the between-
source variability (Aitken and Lucy, 2004). Start from the same database,
glass-data.txt, covering n replicate measurements of p variables for
each of m = 62 different sources. The smoothing parameter can be estimated
using the function hopt, for p = 3.

> p=3
> m=62
> h=hopt(p,m)
> h

[1] 0.5119462

First, the group means z̄i must be obtained. They are an output of the function
two.level.mv.WB, previously used to estimate the model parameters.

> group.means=WB$group.means

Here we show only the first six rows of the (m × p) matrix, where each row
represents the means of the measurements z̄i = 1

n

∑n
i=1 zij .

> head(group.means)

logCaK logCaSi logCaFe
2 4.895500 -0.346682 2.445828
3 2.581000 -0.890684 2.922228
4 4.092612 -0.801742 2.761072
5 4.290912 -0.267606 2.665930
6 4.594812 -0.405718 2.674566
7 2.543280 -0.893428 2.898054

The Bayes factor can then be calculated as the ratio between (3.37)
and (3.38) using the function two.level.mvk.BF contained in
the routines file two_level_functions. This function is part of
the supplementary materials available on the website of this book (on
http://link.springer.com/).

> source('two_level_functions.r')
> BF=two.level.mvk.BF(xbar,ybar,nx,ny,W,B, group.

means, h)
> BF

[1] 151.6001

The Bayes factor represents moderately strong support for the proposition
according to which the recovered and the control fragments originate from
the same source, rather than from different sources.
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A detailed comparison and discussion of the performance of these two multivari-
ate random effect models can be found in Aitken and Lucy (2004). An alternative
approach to the kernel density estimation is presented by Franco-Pedroso et al.
(2016), modeling the between-source distribution by means of a Gaussian mixture
model.

Note that a third level of variability could be considered. In fact, one may wish
to model separately the variability between replicate measurements from a given
item originating from a given source (e.g., replicate measurements from a glass
fragment originating from a given window) and the variability between different
items originating from a given source (e.g., different glass fragments originating
from the same window). This aspect will be tackled in Sect. 3.4.4 where three-level
models will be introduced.

3.4.1.3 Non-constant Within-Source Variability

The two-level random effect models presented in Sects. 3.4.1.1 and 3.4.1.2 are
characterized by the assumption of a constant within-source variability. In other
words, it was assumed that every single source has the same intra-variability.
While for some type of trace evidence this assumption is acceptable (e.g., for
measurements of the elemental composition of glass fragments), a constant within-
source variation may be more difficult to justify in other forensic domains. Consider,
for example, the case of handwriting on questioned documents where it is largely
recognized that intra-variability may vary between writers (Marquis et al., 2006).

Suppose that a handwritten document of unknown source is available for
comparative examinations. Handwritten items from a person who is suspected to
be the writer are collected and analyzed. Multiple characters are analyzed on the
questioned document and on the known writings of the person of interest. The
following propositions are defined:

H1: The person of interest wrote the questioned document.
H2: An unknown person wrote the questioned document.

The distribution of the vector of means within group (source) θi is treated
as explained in Sect. 3.4.1.1, i.e., (θ i | μ, B) ∼ N(μ, B). An inverse Wishart
distribution is chosen to model the uncertainty about the within-group covariance
matrix,

(Wi | Ω, ν) ∼ W−1(Ω, ν), (3.39)

where Ω is the scale matrix and ν are the degrees of freedom (Bozza et al., 2008).
The scale matrix Ω is elicited in a way such that the prior mean of Wi is taken
to be equal to the within-group covariance matrix estimated from the available
background data as in (3.33), while μ is estimated as in (3.32) and the between-
group covariance matrix is estimated as
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B̂ = 1

m − 1

m∑

i=1

n(z̄i − z̄)(z̄i − z̄)′.

A two-level multivariate random effect model with an inverse Wishart distribu-
tion, modeling the uncertainty about the within-source covariance matrix, has also
been proposed by Ommen et al. (2017).

First, consider the numerator of the Bayes factor in (3.21). If proposition H1
holds, then θy = θx = θ and Wy = Wx = W , and the marginal likelihood is as
follows:

f (y, x | H1) = f1(y, x | μ, B,Ω, ν)

=
∫

f (y | θ ,W)f (x | θ ,W)f (θ | μ, B)f (W | Ω, ν)d(θ ,W),

(3.40)

where f (θ | μ, B) is as in (3.25), and

f (W | Ω, ν) = c | Ω |ν−p−1 /2

| W |ν/2 exp

{
−1

2
tr(W−1Ω)

}
,

where c is the normalizing constant (e.g., Press, 2005).
If proposition H2 holds, then θy �= θx and Wy �= Wx , and the marginal likelihood

takes the following form:

f (y, x | H2) = f2(y, x | μ, B,Ω, ν) (3.41)

=
∫

f (y | θ ,W)f (θ,W | μ, B,Ω, ν)d(θ ,W)

×
∫

f (x | θ,W)f (θ ,W | μ, B,Ω, ν)d(θ ,W).

The Bayes factor is the ratio between the marginal likelihoods in (3.40) and (3.41).
However, these distributions are not available in closed form as the integrals do
not have an analytical solution. Several approaches are available to deal with this
problem. Chib (1995) estimates the marginal likelihood f (y, x | Hi) by a direct
application of Bayes theorem, since the marginal likelihood can be seen as the
normalizing constant of the posterior density f (θ ,W | y, x,Hi). The marginal
likelihood can therefore be obtained as

f (y, x | Hi) = f (y, x | θ,W)f (θ ,W | Hi)

f (θ ,W | y, x,Hi)
. (3.42)

While the likelihood function f (y, x | θ,W) and the prior density f (θ ,W | Hi)

can be easily evaluated at any parameter point (θ∗,W ∗), this is not the case for the
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posterior density f (θ ,W | y, x,Hi), which is not known in closed form. A Gibbs
sampling algorithm (Sect. 1.8) can be applied to the set of the complete conditional
densities f (θ | W, y, x,Hi) and f (W | θ, y, x,Hi), and the posterior density
f (θ,W | y, x,Hi) can be approximated from the output of the Gibbs sampling
algorithm as f̂ (θ ,W | y, x,Hi) (Chib, 1995; Bozza et al., 2008; Aitken et al., 2021).

The marginal likelihood in (3.42) can be estimated at a given parameter point
(θ∗,W ∗) as

f̂ (y, x | Hi) = f (y, x | θ∗,W ∗)f (θ∗,W ∗ | Hi)

f (θ∗,W ∗ | y, x,Hi)
.

The Bayes factor is then calculated as

BF = f̂ (y, x | H1)

f̂ (y, x | H2)
. (3.43)

As mentioned in Sect. 1.8, many other approaches are available, and their efficiency
should be studied and compared.

Example 3.14 (Handwriting Evidence) Consider a hypothetical case involv-
ing a handwritten document. Handwritten items from a person of interest
are available for comparative examinations. The propositions of interest are
therefore:

H1 : The person of interest wrote the questioned document.
H2 : An unknown person wrote the questioned document.

Suppose that n1 = 8 characters of type a are collected from the questioned
document and that n2 = 8 characters of the same type are extracted from
a document originating from the person of interest, taken for comparative
purposes. The contour shape of loops of handwritten characters can be
described using a methodology based on Fourier analysis (Marquis et al.,
2005, 2006). In brief, the contour shape of each handwritten character loop
can be described by means of a set of variables representing the surface and a
set of harmonics. Each harmonic corresponds to a specific contribution to the
shape and is defined by an amplitude and a phase, the Fourier descriptors.

Consider the database named handwriting.txt available on the
book’s website. It contains data on p = 9 variables (i.e., the surface, the
amplitude and the phase of the first four harmonics), measured on several
characters of type a collected from m = 20 writers. The variables of interest
are displayed in columns 2 to 10. Column 1 contains the item (writer)
identifier

(continued)
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Example 3.14 (continued)
> population=read.table('handwriting.txt',
+ header=TRUE)
> names(population)=c('writer','A0','A1','B1','A2',
+'B2','A3','B3','A4','B4')
> variables=2:10
> grouping.item=1

In the current example, measurements y on the questioned document and
measurements x on the control document were randomly selected from the
available measurements on characters collected from a given writer (i.e.,
writer no. 1). Starting from a total number of, say, n available characters,
2×n1 characters have been selected: the first n1 characters serve as recovered
data, while the remaining serve as control data

> item=1
> base=population[which(population[,grouping.item]
+ ==item),]
> nr=dim(base)[1]
> n1=8
> recovered=as.matrix(base[1:n1,variables])
> control=as.matrix(base[(n1+1):(2*n1),variables])

Data concerning measurements from the selected writer were then excluded
from the database

> pop.back=population[-which(population[,grouping.
+ item]==item),]

The database pop.back will serve as background data and can be used
to estimate the model parameters as in (Bozza et al., 2008) using the function
two.level.mv.WB available in the file two_level_functions.r.

> source('two_level_functions.r')
> WB = two.level.mv.WB(pop.back,variables,
+ grouping.item,nc=TRUE)
> mu = t(WB$all.means)
> W = WB$W
> B = WB$B

The number of degrees of freedom ν of the inverse Wishart distribution is
chosen so as to reduce the variability of this distribution, centered at the
within-source covariance matrix estimated as in (3.33).

> p=9
> nu=40
> Omega=W*(nu-2*p-2)

(continued)
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Example 3.14 (continued)
The Gibbs sampling algorithm is run over 10000 iterations with a burn-in of
1000.

> n.iter=10000
> burn.in=1000

The Bayes factor in (3.43) can then be calculated using the function
two.level.mvniw.BF that is part of the supplementary materials. Note
also that this routine requires other routines that are available in the packages
MCMCpack (Martin et al., 2021) and mvtnorm (Genz et al., 2020).

> BF=two.level.mvniw.BF(recovered,control,Omega,B,mu,
+ nu,p, n.iter,burn.in)
> BF

[1] 5543330

The Bayes factor represents extremely strong support for the proposition
according to which the questioned and the recovered handwritten materials
originate from the same source, rather than from different sources. A fully
documented open-source package (Gaborini, 2019) has been developed by
Gaborini (2021).

Note that it is important to critically examine large BF values, such as the one
obtained above. For a discussion about extreme values, see Aitken et al. (2021),
Hopwood et al. (2012), and Kaye (2009). Moreover, as underlined in Sect. 1.11,
the marginal likelihood is highly sensitive to the prior assessments and so is the
BF. In particular, while the overall mean vector, the within- and the between-source
covariance matrices are estimated from the available background data, the number
of degrees of freedom of the inverse Wishart distribution are chosen so as to reduce
the dispersion of the prior. A sensitivity analysis may be performed to assess the
sensitivity of the BF to different choices of the degrees of freedom ν in (3.39).

The BF may also be sensitive to the MCMC approximation. Figure 3.5 provides
an illustration of BF variability. Results are based on 50 realizations of the BF
approximation in (3.43).

> ns=50
> BFs=matrix(0,nrow=ns,ncol=1)
> for(i in 1:ns){
+ BFs[i]=two.level.mvniw.BF(recovered,control,Omega,B,
+ mu,nu,p,n.iter,burn.in)}
> hist(log(BF),freq=F,main='',xlab='log(BF)')
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Fig. 3.5 Histogram of 50
realizations of the BF
approximation in (3.43)
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The models discussed here rely on the assumption of independence between
sources, focusing on the inherent variability of features. In the case of questioned
documents (Sect. 3.4.1.3), this amounts to assume that handwritten material has
been produced without any intention of reproducing someone else’s writing style.
The possibility of forgery and/or disguise breaks the independence assumption made
at denominator. Section 3.4.3 will address this complication.

3.4.2 Assessment of Method Performance

The results of the procedures described in the previous sections may be sensitive to
changes in the features of recovered and control materials, the available background
information, as well as to choices made during probabilistic modeling and prior
elicitation. A sensitivity analysis may be conducted in order to gain a better
understanding of the properties of the chosen method. It is fundamental to gain
an understanding of how well a method performs: if the recovered and control
data originate from the same source, the BF is expected to be greater than 1. Vice
versa, if the compared items come from different sources, a BF smaller than 1 is
expected.

Several methods exist for the assessment of the performance of the methods for
evidence evaluation. Commonly encountered measures in this context are rates of
false negatives (i.e., cases in which the Bayes factor is smaller than 1, supporting
hypothesis H2, when hypothesis H1 holds) and false positives (i.e., cases in which
the Bayes factor is greater than 1, supporting hypothesis H1, when hypothesis
H2 holds). The rate of false negatives is the number of same-source comparisons
with a Bayes factor smaller than 1 divided by the total number of same-source
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comparisons. The false positive rate is the number of different-source comparisons
with a Bayes factor greater than 1 divided by the total number of different-
source comparisons. Given a database of cases (e.g., measurements on handwriting
characters) for which the source is known, it is possible to study the behavior of the
Bayes factor as the data pertaining to control and recovered items change.

Consider again the questioned document case discussed in Sect. 3.4.1.3. There is
variability in handwriting, and the reported Bayes factor is sensitive to variability
of the shape of handwritten characters. This is not surprising as no one writes
the same word exactly the same way twice. Consider measurements of features of
handwritten characters of a given writer taken from the available database. These
measurements are organized into a (n × p) matrix, where n is the number of
available handwritten characters and p represents the number of features (variables).
Denote this matrix base. Suppose that, among the n characters, we select a certain
number 2 × n1 < n of characters, forming a group. Repeating this a certain number
of times leads to multiple groups. On each member (character) within a group, p

variables are measured. Then we take pairs of groups (i.e., measurements on the
group members), taken to represent recovered and control data. Then, the Bayes
factor is calculated for each couple. Here, each couple represents a same-source
comparison.

Example 3.15 (Two-Level Model for Handwriting—Assessment of Model Per-
formance) Recall Example 3.14 where a total number of 16 characters have
been randomly selected from the available characters collected from a given
writer (writer no. 1), extracted from the database handwriting.txt. A
Bayes factor equal to 5543330 was obtained. If different sets of characters
are extracted, the Bayes factor will be influenced (also) by the within-writer
variability.

Suppose now that, for the same writer, ns = 50 distinct groups of
characters (each of size 16) are drawn and split into groups of size 8 to act
as questioned and control data. The Bayes factor is calculated for each of the
50 groups. Clearly, since the sampled measurements originate from the same
writer, we expect Bayes factors greater than 1.

> ns=50
> n=dim(base)[1]
> n1=8
> BFs=matrix(0,nrow=ns,ncol=1)
> for (i in 1:ns){
+ ind=sample(1:n,2*n1,replace=F)
+ recovered=as.matrix(base[ind[1:n1],
+ variables])control=as.matrix(base
+ [ind[(n1+1):length(ind)],variables])

(continued)
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Example 3.15 (continued)
+ BFs[i]=two.level.mvniw.BF(recovered,
+ control,Omega,
+ B,mu,nu,p,n.iter,burn.in)
+ }

Figure 3.6 shows a histogram of the results for the ns = 50 groups of
sampled characters. No false negatives have been observed. The range of the
BF values obtained is given here below

> range(BFs)

[1] 1.709027e+02 1.438262e+29

There is also variability between writers, as no two writers write exactly
alike. Consider now measurements of features of handwritten characters from
a different writer, say writer no. 6, drawn from the same database. These
measurements are stored in a matrix denoted base2.

> item2=6
> base2=population[which(population[,grouping.item]==
+ item2),]
> n2=dim(base2)[1]

We first estimate the population parameters from the background population
where both selected writers have been eliminated.

> pop.back=population[-which(population[,grouping
+ .item]==item|population[,grouping.item]==item2),]
> WB = two.level.mv.WB(pop.back,variables,
+ grouping.item,nc=TRUE)
> mu = t(WB$all.means)
> W = WB$W
> B = WB$B
> Omega=W*(nu-2*p-2)

Next, for each of the two writers, take 50 groups of characters (from base
and base2). Each group contains 8 members, on each of which p features are
measured. Then, take a group from each writer and form a so-called known
different-source pair, and do this multiple times. These draws are taken to
represent recovered and control data. Then, the Bayes factor is calculated for
each couple.

> ns=50
> n=dim(base)[1]
> nc=dim(base2)[1]
> n1=8

(continued)
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Fig. 3.6 Histogram of
log(BF) values for 50 groups,
each containing 8 handwritten
characters, sampled from a
given writer to act as
questioned and control
datasets
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Example 3.15 (continued)

> BFs2=matrix(0,nrow=ns,ncol=1)
> for (i in 1:ns){
+ val.r=sample(1:n,n1)
+ recovered=as.matrix(base[val.r,variables])
+ val.c=sample(1:nc,n1)
+ control=as.matrix(base2[val.c,variables])
+ BFs[i]=two.level.mvniw.BF(recovered,
+ control,Omega,B,
+ mu,nu,p,n.iter,burn.in)
+ }

Figure 3.7 shows a histogram of the results. No false positives have been
observed. The range of the BF values obtained is

> range(BFs)

[1] 2.733273e-10 7.034354e-02

The variability of BF values for different samples is not surprising because of
handwriting variability. However, this should not be understood as there being a
Bayes factor distribution. See, e.g., Morrison (2016), Ommen et al. (2016), and
Taroni et al. (2016) for a discussion of issues relating to the reporting of the precision
of forensic likelihood ratios.

Over the past decade, several other approaches have been proposed in forensic
statistics literature for evaluating the performance of statistical procedures, based
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Fig. 3.7 Histogram of
log(BF) values obtained for
50 groups, each containing 8
handwritten characters,
sampled from the same
couple of writers to act as
questioned and control
datasets
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on a likelihood ratio or a Bayes factor. These methods provide a rigorous approach
to assessing and comparing the performance of evaluative methods prior to using
them in casework and forensic reporting. See, in particular, Ramos and Gonzalez-
Rodriguez (2013) and Ramos et al. (2021) for a methodology to measure calibration
of a set of likelihood ratio values and the concept of Empirical Cross-Entropy for
representing performance, illustrated using examples from forensic speech analysis.
These concepts are also discussed by Meuwly et al. (2017) who present a guideline
for the validation of evaluative methods considering source level propositions.
Zadora et al. (2014) present performance assessment for physicochemical data in
the context of trace evidence (e.g., glass). For a recent review, see also Chapter 8 of
Aitken et al. (2021).

3.4.3 On the Assumption of Independence Under H2

The models presented in Sect. 3.4.1 are based on the assumption of independence
between the questioned and known materials under hypothesis H2. This may be
reasonable for certain types of evidence and cases, but less for others. In fact, while
a physical feature (e.g., the elementary composition of glass fragments) requires
external constraint to be altered, a behavioral or biometric feature such as signature
can be modified intentionally.

Consider handwriting as an example. When evaluating results of comparative
handwriting examination, the case circumstances may be such that there is no issue
of handwriting features being disguised or the result of an attempt to imitate the
handwriting of another person. The approach suggested in Sect. 3.4.1.3 may thus
be applicable. In turn, in case of alleged forgery of signatures, the (unknown)
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writer specifically intends to reproduce features of a target signature. The allegation,
then, is that a signature is either simulated or disguised, rather than presenting a
correspondence or similarity with a genuine signature by mere chance alone (Linden
et al., 2021). In such cases, the Bayes factors previously developed in Sect. 3.4.1
cannot be used to approach the question of interest here because the assumption of
independence between sources at the denominator cannot be maintained. It follows
that one must compute

BF = f (y | x,H1)

f (y | x,H2)
, (3.44)

as f (y | x,H2), following the above argument, does not simplify to f (y | H2) (see
also Sect. 1.5.1).

Consider the following competing propositions:

H1 : The person of interest (POI) produced the questioned signature.
H2 : An unknown person produced the questioned signature, trying to simulate the

POI’s signature.

If proposition H2 is true, the forensic document examiner has to deal with a
signature written by someone who has knowledge of the POI’s signature.

Consider the two-level model in Sect. 3.4.1.3 where the distribution of the
measurements on the recovered and control data is taken to be Normal, with vector
means θy and θx , and covariance matrices Wy and Wx

(Y | θy,Wy) ∼ N(θy,Wy) ; (X | θx,Wx) ∼ N(θx,Wx). (3.45)

The probability densities at the numerator and denominator of the BF in (3.44) can
be obtained as

f (y, x | Hi) = fi(y, x | μi , Bi,Ωi, νi)

=
∫

f (y | θ,W)f (θ ,W | x,μi , Bi,Ωi, νi), (3.46)

where (μi , Bi) and (Ωi, νi) are the hyperparameters of the prior distributions
under the competing propositions (i.e., a normal prior and an inverse Wishart prior
distribution). The Bayes factor can thus be calculated as

BF = f1(y, x | μ1, B1,Ω1, ν1)

f2(y, x | μ2, B2,Ω2, ν2)
. (3.47)

Two different background databases are needed to inform model parameters
under the competing propositions: a database of genuine signatures (zij ) and a
database of imitated signatures (sij ). Someone who imitates a signature needs to
work outside their writing habits and movement patterns. Thus, simulated signatures



3.4 Multivariate Data 129

do not reflect the same movements and writing features as genuine signatures.
Model parameter μi can be estimated as in (3.32), and Bi as explained in Sect.
3.4.1.3. The scale matrix Ωi can be chosen so as to center the prior distribution at
the within-group covariance matrix Wi that can be estimated as in (3.33).

The probability densities in (3.46) are not available in closed form but can
be estimated from the output of a MCMC algorithm following, for example, the
ideas described in Sect. 3.4.1.3. A Gibbs sampling algorithm is implemented here.
The routine is different from that developed in Sect. 3.4.1.3 because it calculates
the BF in (3.47). In this formula, no assumption of independence is made at the
denominator, and two different databases are used.

Example 3.16 (Digitally Captured Signatures) Consider a case involving a
questioned signature on a contract signed on a digital tablet. The person
of interest denies having signed the contract. Among the multiple features
that are captured by the digital tablet, the average speed and writing time
are considered here. See Linden et al. (2021) for a detailed description
of the experimental conditions. Measurements on the questioned signature
are y = (4639, 380.42), while measurements on the control signature are
x = (4460, 323.4787). Note that the first value is the average speed and the
second is the writing time.

> quest=c(4639,380.42)
> ref=c(4460,323.4787)

Model parameters under hypothesis H1 (i.e., the mean vector μ1, the within-
group covariance matrix W1, and the between-group covariance matrix B1)
are estimated from an available database of genuine signatures (zij ) and are
given here below.

> mug=matrix(c(2754.767,511.284),ncol=1)
> Wg=matrix(c(95755.861,-4214.939,-4214.939,
+ 2857.975),byrow=T,nrow=2)
> Bg=matrix(c(3377136,30548.24,30548.24,20335.10),
+ byrow=T,nrow=2)

The trace matrix of the inverse Wishart distribution is then obtained as

> p=2
> nu=10
> Omegag=Wg*(nu-2*p-2)

In the same way, model parameters under hypothesis H2 are estimated from
an available database of simulated signatures (sij ) and are given here below.

(continued)
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Example 3.16 (continued)
> mus=matrix(c(14824.3,145.0719),ncol=1)
> Ws=matrix(c(14798844,-42412.0995,-42412.0995,
+ 940.0561), byrow=T,nrow=2)
> Bs=matrix(c(37657528.8,-157142.437,-157142.437,
+ 3691.482), byrow=T,nrow=2)
> Omegas=Ws*(nu-2*p-2)

A Gibbs sampling algorithm is run over 10000 iterations, with a burn-in of
1000.

> n.iter=10000
> burn.in=1000

The Bayes factor in (3.44) can then be calculated using the function
two.level.mvniw2.BF (see supplementary materials).

> source('two_level_functions.r')
> BF=two.level.mvniw2.BF(quest,ref,Wg,Bg,mug,Ws,Bs,
+ mus,nu,p,n.iter,burn.in)
> BF

[1] 40846.87

The BF represents very strong support for the proposition according to
which the questioned signature originates from the person of interest rather
than from an unknown person who attempted to imitate the target signature.

3.4.4 Three-Level Models

So far, two-level models have been considered, taking into account the within-source
and the between-source variability. However, it is not uncommon to encounter
situations in which the hierarchical ordering shows an additional level of variability,
e.g., in relation to measurement error.

Denote again by p the number of variables observed on items of a given
evidential type. Suppose that continuous measurements of these variables are
available on a random sample from m sources with s items for each source and
n replicate measurements on each of the N = ms items. The background data can
be denoted by zikj = (zikj1, . . . , zikjp)′, where i = 1, . . . , m denotes the number of
sources (e.g., windows, writers), k = 1, . . . , s denotes the number of items for each
source (e.g., glass fragments, handwritten characters), and j = 1, . . . , n denotes the
number of replicate measurements for each item.
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A Bayesian statistical model for the evaluation of evidence for three-level
normally distributed multivariate data was proposed by Aitken et al. (2006),
focusing on the elemental composition of glass fragments. Denote the mean vector
within item k in group i as θ ik and the covariance matrix of replicate measurements
as W . For the variability of replicate measurements, the distribution of Zikj is taken
to be normal, Zikj ∼ N(θ ik,W).

Denote by μi the mean vector within group i and by V the within-group
covariance matrix. The distribution of θ ik for the within-group variability is taken
to be normal, θ ik ∼ N(μi , B).

Denote by φ the mean vector between groups. Let U denote the between-group
covariance matrix. For the between-group variability, the distribution of the μi is
taken to be normal, μi ∼ N(φ, V ).

Consider the case described in Sect. 3.4.1, where measurements are available
on ny items from an unknown origin as well as measurements on nx items from
a known origin. These two groups of items may or may not come from the same
source. Competing propositions may be formulated as follows:

H1 : The recovered and the control items originate from the same source.
H2 : The recovered and the control items originate from different sources.

There are n1 replicate measurements available on each of the recovered ny items.
Denote the measurement vector by y, where the vector components are denoted
by ykj (for k = 1, . . . , ny and j = 1, . . . , n1) and ykj = (ykj1, . . . , ykjp)′. For
each of the nx control items, n2 replicate measurements are available. Denote the
measurement vector by x, where the vector components are denoted (xkj , k =
1, . . . , nx and j = 1, . . . , n2) and xkj = (xkj1, . . . , xkjp)′.

The Bayes factor is the ratio of two probability densities of the form f (y, x |
Hi) = fi(y, x | φ,W,B, V ), i = 1, 2. The probability density in the numerator is
given by

f1(y, x | φ,W,B, V )

=
∫ ∫

f (y | θ ,W)f (x | θ,W)f (θ | μ, B)f (μ | φ, V )dμdθ , (3.48)

where all probability densities are multivariate normal.
In the denominator, the probability density is given by

f2(y, x | φ,W,B.V ) =
∫ ∫

f (y | θ ,W)f (θ | μ, B)f (μ | φ, V )dμdθ

×
∫ ∫

f (x | θ,W)f (θ | μ, B)f (μ | φ, V )dμdθ ,

(3.49)

where all probability densities are multivariate normal.
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As shown by Aitken et al. (2006), the value of the evidence is the ratio of

| B + V |1/2| [(nyn1 + nxn2)W
−1

+(B + V )−1] |−1/2 exp

{
−1

2
(F1 + F2)

}
(3.50)

to

| (nyn1W
−1 + (B + V )−1) |−1/2| nxn2W

−1 + (B + V )−1 |−1/2

× exp

{
−1

2
(F3 + F4)

}
, (3.51)

where:

F1 = (ȳ − x̄)′
(

nyn1nxn2W
−1

nyn1+nxn2

)
(ȳ − x̄),

F2 = (w̄ − φ)′
(
(nyn1 + nxn2)

−1W + B + V
)−1

(w̄ − φ),

F3 = (ȳ − φ)′
[
(nyn1)

−1W + B + V
]−1

(ȳ − φ),

F4 = (x̄ − φ)′
[
(nxn2)

−1W + B + V
]−1

(x̄ − φ),

and w̄ = nyn1ȳ+nxn2x̄
nyn1+nxn2

.
The overall mean φ, the measurement error covariance matrix W , the within-

group covariance matrix B, and the between-group covariance matrix V can be
estimated using the available background data:

φ̂ = 1

m

1

s

1

n

m∑

i=1

s∑

k=1

n∑

j=1

zikj , (3.52)

Ŵ = 1

ms(n − 1)

m∑

i=1

s∑

k=1

n∑

j=1

(zikj − z̄ik.)(zikj − z̄ik.)
′, (3.53)

B̂ = 1

m(s − 1)

m∑

i=1

s∑

k=1

(z̄ik. − z̄i..)(z̄ik. − z̄i..)
′ − Ŵ

n
, (3.54)

V̂ = 1

m − 1

m∑

i=1

(z̄i.. − z̄...)(z̄i.. − z̄...)
′ − B̂

s
− Ŵ

sn
, (3.55)

where z̄ik. = 1
n

∑n
j=1 zikj , z̄i.. = 1

s

∑s
k=1 zik. and z̄i... = 1

m

∑m
i=1 z̄i...

Example 3.17 (Glass Evidence—Continued) Consider again the case
described in Example 3.12 where two glass fragments are recovered on the
jacket of an individual who is suspected to be involved in a crime. Two glass
fragments are collected at the crime scene for comparative purposes. The
competing propositions are:

(continued)
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Example 3.17 (continued)
H1 : The recovered and known glass fragments originate from the same

source (e.g., a broken window).
H2 : The recovered and known glass fragments originate from different

sources.

A database named glass-database.txt is available as part of the
supplementary material of Zadora et al. (2014). It contains measurements
of the elemental concentration of glass fragments from several windows
(m = 200). For each source, there are s = 12 fragments with n = 3
replicate measurements. For each fragment, five variables are considered: the
logarithmic transformation of the ratios Na/O, Mg/O, Al/O, Si/O, Ca/O.
The variables of interest are displayed in columns 3, 4, 5, 6, and 8, while
the object (window) identifier is in column 1. The fragment identifier is in
column 2.

> population=read.table('glass-database.txt',
+ header=T)
> variables=c(3,4,5,6,8)
> grouping.item=1
> grouping.fragment=2

Three replicate measurements are available for each fragment. Using the
notation introduced above

> ny=2
> nx=2
> n1=3
> n2=3

Measurements for the recovered fragments, y, and measurements for the
control fragments, x, were selected from the available data for the first
and second group (window) and the first two items (fragments) from these
windows. Therefore, a BF smaller than 1 is expected.

> recovered.item=1
> control.item=2
> base_c=population[which(population[,grouping.item]
+ ==control.item),]
> base_r=population[which(population[,grouping.item]
+ ==recovered.item),]
> recovered=base_r[which(base_r[,grouping.fragment]
+ ==1|base_r[,grouping.fragment]==2),
+ c(2,variables)]
> recovered

(continued)
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Example 3.17 (continued)
fragment logNaO logMgO logAlO logSiO

1 1 -0.6603 -1.4683 -1.4683 -0.1463
2 1 -0.6658 -1.4705 -1.4814 -0.1429
3 1 -0.6560 -1.4523 -1.4789 -0.1477
4 2 -0.6309 -1.4707 -1.5121 -0.1823
5 2 -0.6332 -1.4516 -1.4996 -0.1792
6 2 -0.6315 -1.4641 -1.4883 -0.1710

logCaO
1 -1.1096
2 -1.1115
3 -1.1118
4 -1.1306
5 -1.1332
6 -1.1291

> control=base_c[which(base_c[,grouping.fragment]==1|
+ base_c[,grouping.fragment]==2),c(2,variables)]
> control

fragment logNaO logMgO logAlO logSiO
13 1 -0.6231 -1.3641 -1.6540 -0.0964
14 1 -0.6122 -1.3589 -1.6622 -0.0886
15 1 -0.6108 -1.3742 -1.6935 -0.1205
16 2 -0.6135 -1.3686 -1.7202 -0.1381
17 2 -0.6205 -1.3844 -1.6831 -0.1273
18 2 -0.6204 -1.3692 -1.7269 -0.1199

logCaO
13 -0.9993
14 -0.9836
15 -1.0524
16 -1.0830
17 -1.0721
18 -1.0392

Next, the means of measurements ȳ, x̄, and w̄ are obtained.

> bary=colMeans(recovered[,-1])
> barx=colMeans(control[,-1])
> barw=colMeans(rbind(recovered,control)[,-1])

(continued)
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Example 3.17 (continued)
Data concerning measurements from the first two windows were then

excluded from the database

> pop.back <- population[-which(population[,
+ grouping.item]==1|population[,grouping.item]==2),]

The database named pop.back will serve as background data. It can be used
to estimate the model parameters φ, W , B, and V as in (3.52), (3.53), (3.54)
and (3.55) by means of the function three.level.mv.WBV contained in
the routines file three_level_functions.r. This file is part of the
supplementary materials available on the book’s website and can be run in
the R console with the command

> source('three_level_functions.r')

The overall mean, the measurement error covariance matrix, the within-
source covariance matrix, and the between-source covariance matrix can be
estimated as follows:

> WBV=three.level.mv.WBV(pop.back,variables,
+ grouping.item,grouping.fragment)
> psi=WBV$overall.means
> W=WBV$W
> B=WBV$B
> V=WBV$V

The Bayes factor can be calculated as the ratio between (3.50) and (3.51)
using the function three.level.mvn.BF available in the routines file
three_level_functions.r. This function is part of the supplementary
materials available on the book’s website.

> BF=three.level.mvn.BF(bary,barx,barw,ny,nx,n1,n2,
+ psi,W,B,V)
> BF

[1] 0.000083299

The Bayes factor represents extremely strong support for the proposition
according to which the recovered and the control fragments originate from
different sources, rather than from the same source.

Note that the above development does not take into account the topic of variable
selection. See Aitken et al. (2006) for a proposal for dimensionality reduction based
on a probabilistic structure, determined by a graphical model obtained from a scaled
inverse covariance matrix.
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3.5 Summary of R Functions

The R functions outlined below have been used in this chapter.

Functions Available in the Base Package
colMeans: Forms column means for numeric arrays (or data frames)

d <name of distribution>, p <name of distribution> (e.g.,
dpois, pnorm): Calculate the density and the cumulative probability for
many parametric distributions.

More details can be found in the Help menu, help.start().

Functions Available in Other Packages
dinvgamma in package extraDistr: calculates the density of an inverse gamma

distribution.

dstp in package LaplacesDemon: calculates the density of a non-central
Student t distribution.

Functions Developed in the Chapter
hopt: Calculates the estimates ĥ of the smoothing parameter h.
Usage: hopt(p,m).
Arguments: p, the number of variables: m, the number of sources.
Output: A scalar value.

poisg: Computes the density of a Poisson–gamma distribution Pg(α, β, 1) at x.
Usage: poisg(a,b,x).
Arguments: a, the shape parameter α; b, the rate parameter β; x, a scalar value x.
Output: A scalar value.

post_distr: Computes the posterior distribution N(μx, τ
2
x ) of a normal mean θ ,

with X ∼ N(θ, σ 2) and θ ∼ N(μ, τ 2).
Usage: post_distr(sigma,n,barx,pm,pv).
Arguments: sigma, the variance σ 2 of the observations; n, the number of observa-

tions; barx, the sample mean x̄ of the observations; pm, the mean μ of the prior
distribution N(μ, τ 2); pv, the variance τ 2 of the prior distribution N(μ, τ 2).

Output: A vector of values, the first is the posterior mean μx , the second is the
posterior variance τ 2

x .

two.level.mv.WB: Computes the estimate of the overall mean μ, the group
means z̄i , the within-group covariance matrix W , and the between-group covari-
ance matrix B for the two-level model in Sect. 3.4.1.

Usage: two.level.mv.WB(population, variables, grouping.
variable,nc=FALSE).

Arguments: population, a data frame with N rows and k columns for measure-
ments on m sources with n items for each source; variables, a vector con-
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taining the column indices of the variables to be used; grouping.variable,
a scalar specifying the variable that is to be used as the grouping factor. By
default (nc = FALSE), the between-group covariance matrix is estimated as in
Sect. 3.4.1.1. If nc = TRUE, the between-group covariance matrix is estimated
as in Sect. 3.4.1.3.

Output: The group means z̄i , the estimated overall mean μ̂, the estimated within-
group covariance matrix Ŵ , the estimated between-group covariance matrix B̂.

two.level.mvn.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability
are normally distributed, and the within-source covariance matrix is constant
between sources.

Usage: two.level.mvn.BF(W,B,mu,xbar,ybar,nx,ny).
Arguments: W, the within-source covariance matrix; B, the between-source covari-

ance matrix; mu, the mean vector between sources; xbar, the vector of means
for the control item; ybar, the vector of means for the recovered item; nx,
the number of measurements for the control material; ny, the number of
measurements for the recovered material.

Output: A scalar value.

two.level.mvk.BF: Computes the BF for a two-level random effect model
where the within-source variability is normally distributed, the normal distribu-
tion for the between-source variability is replaced by a kernel density distribu-
tion, and the within-source covariance matrix is constant between sources.

Usage: two.level.mvk.BF(xbar,ybar,nx,ny,W,B,group.means,h).
Arguments: xbar, the vector of means for the control item; ybar, the vector

of means for the recovered item; nx, the number of measurements for the
control material; ny, the number of measurements for the recovered material; W,
the within-source covariance matrix; B, the between-source covariance matrix;
group.means, a (m × p) matrix, where each row represents the vector of
means z̄i = 1

n

∑n
j=1 zij ; h, the smoothing parameter.

Output: A scalar value.

two.level.mvniw.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability are
normally distributed, and the uncertainty about the within-source covariance
matrix is modeled by an inverse Wishart distribution.

Usage: two.level.mvniw.BF(quest,ref,O,B,mu,nw,p,n.iter,
burn.in).

Arguments: quest, a (n × p) matrix containing measurements on the questioned
material; ref, a (n×p) matrix containing measurements on the control material;
O, the trace matrix of the inverse Wishart distribution; B, the between-source
covariance matrix; mu, the mean vector between sources; nw, the number
of degrees of freedom of the inverse Wishart distribution; p, the number of
variables; n.iter, the number of iterations of the Gibbs sampling algorithm;
burn.in, the number of discarded iterations.
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Output: A scalar value.

two.level.mvniw2.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability are
normally distributed, the uncertainty about the within-source covariance matrix is
modeled by an inverse Wishart distribution with no assumption of independence
between questioned and known materials at the denominator (i.e., under H2).

Usage: two.level.mvniw2.BF(quest,ref,Og,Bg,mug,Os,Bs,mus,
nu,p,n.iter,burn.in).

Arguments: quest, a (n × p) matrix containing measurements on the questioned
material; ref, a (n×p) matrix containing measurements on the control material;
Og, the trace matrix of the inverse Wishart distribution from the database
of genuine (handwritten) material; Bg, the between-source covariance matrix
from the database of genuine (handwritten) material; mug, the mean vector
between sources from the database of genuine (handwritten) material; Os, the
trace matrix of the inverse Wishart distribution from the database of simulated
(handwritten) material; Bs, the between-source covariance matrix from the
database of simulated (handwritten) material; mus, the mean vector between
sources from the database of simulated (handwritten) material; nw, the number
of degrees of freedom of the inverse Wishart distribution; p, the number of
variables; n.iter, the number of iterations of the Gibbs sampling algorithm;
burn.in, the number of discarded iterations.

Output: A scalar value.

three.level.mv.WBV: Computes the estimate of the overall mean φ, the
measurement error covariance matrix W , the within-group covariance matrix B,
and the between-group covariance matrix V for the three-level model presented
in Sect. 3.4.4.

Usage: three.level.mv.WBV(population,variables,grouping.
item,grouping.fragment).

Arguments: population, a data frame with msn rows and k columns collecting
measurements on m sources with s items for each source and n replicate
measurements for each item; variables, a vector containing the column
indices of the variables to be used; grouping.item, a scalar specifying the
variable that is to be used as the grouping item; grouping.fragment, a
scalar specifying the variable that is to be used for the grouping fragment.

Output: The estimated overall mean φ̂, the estimated measurement error covariance
matrix Ŵ , the estimated within-group covariance matrix B̂, the estimated
between-group covariance matrix V̂ .

three.level.mvn.BF: Computes the BF for a three-level random effect model
where the variation at all three levels is normally distributed.

Usage: three.level.mvn.BF(bary,barx,barw,ny,nx,n1,n2,psi,
W,B,V).

Arguments: bary, the mean vector of measurements on recovered items; barx,
the mean vector of measurements on control items; barw, the mean vector of
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measurements; ny, the number of recovered items; nx, the number of control
items; n1, the number of replicate measurements on each of the recovered items;
n2, the number of replicate measurements on each of the control items; psi,
the overall mean vector; W, the replicate measurements covariance matrix; B, the
within-group covariance matrix; V, the between-source covariance matrix.

Output: A scalar value.

Published with the support of the Swiss National Science Foundation (Grant no.

10BP12_208532/1).
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Chapter 4
Bayes Factor for Investigative Purposes

4.1 Introduction

Forensic laboratories routinely face the problem of classifying items or individuals
into one of several classes or populations on the basis of available data (e.g.,
measurements of one or more attributes), when no control material is available
for comparison. As discussed in Sect. 1.6, forensic analyses can provide valuable
information regarding the category membership of a particular item. For example,
it may be of interest to classify banknotes seized on a person of interest as either
banknotes from general circulation or banknotes related to drug trafficking (Wilson
et al., 2014). The collected material is analyzed (e.g., the degree of contamination
with cocaine is measured), and results are evaluated in terms of their effect on the
odds in favor of a proposition H1 according to which the recovered items originate
from a given population (e.g., banknotes in general circulation), compared to an
alternative proposition H2 according to which the recovered items originate from
another population (e.g., banknotes related to drug trafficking).

An assumption made throughout this chapter is that there is a finite number
of populations to which an item of interest may belong. Each population will be
characterized by a member from a family of probability distributions. Data can be
either discrete or continuous, though for the latter it is easier to find examples and
applications. There are many instances where the scientific evidence is described by
several variables, and available measurements take the form of multivariate data. As
mentioned in Sect. 3.1, data do not always present enough regularity so that standard
parametric distributions could be used (e.g., the normal model). Moreover, data may
present a complex dependence structure with several levels of variation.
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This chapter is structured as follows. Sections 4.2 and 4.3 address the problem
of classification for various types of discrete and continuous data, respectively.
Section 4.4 presents an extension to continuous multivariate data. Note that most of
the examples developed in this chapter involve only two populations. An extension
to more than two propositions is given in Sect. 4.2.2.

4.2 Discrete Data

This section deals with measurement results in the form of counts, using the
binomial model (Sect. 4.2.1) and the multinomial model (Sect. 4.2.2).

4.2.1 Binomial Model

Imagine a case in which the issue is the quality of a consignment of Basmati rice.
Basmati is a rice variety originating from the Indian subcontinent that became
valuable in international trade in the last decades. This prompted the cultivation
of high-yielding Basmati derivatives. Traditional and evolved (non-traditional)
varieties, however, have distinct characteristics (e.g., Kamath et al., 2008), and
distinguishing between varieties may be a relevant analytical task. Given a batch of
Basmati rice of unknown type, the following pair of propositions may be of interest:

H1: The batch is traditional Basmati rice.
H2: The batch is non-traditional Basmati rice.

Denote by θ1 and θ2 the proportion of chalky grains in the two populations,
respectively. Available counts can be treated as realizations of Bernoulli trials
(Sect. 2.2.1) with constant probability of success θ1 (θ2). Suppose a conjugate beta
prior distribution Be(αi, βi) is used to model uncertainty about θi , where αi and βi

can be elicited using the available background knowledge (as in Sect. 1.10).
Among several characteristics of interest, such as grain length, thickness, weight,

etc., is the percentage of chalky grains, determined by counting the number of grains
having chalky area. A sample of size n is inspected, and a total number y of chalky
grains are observed. This can be treated as a realization of a binomial distribution
Bin(n, θ).

The marginal distribution at the numerator and denominator can be computed as
in (1.25):

fHi
(y) =

(
n

y

)
Γ (αi + βi)Γ (αi + y)Γ (βi + n − y)

Γ (αi)Γ (βi)Γ (αi + n + βi)
.
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This is a beta-binomial distribution with parameters n, αi , and βi . The Bayes factor
in favor of proposition H1 can be computed as in (1.26) and becomes

fH1(y)

fH2(y)
= Γ (α1 + β1)Γ (α1 + y)Γ (β1 + n−y)Γ (α2)Γ (β2)Γ (α2 + n + β2)

Γ (α2 + β2)Γ (α2 + y)Γ (β2 + n−y)Γ (α1)Γ (β1)Γ (α1 + n + β1)
. (4.1)

Example 4.1 (Basmati Rice) Consider a case where 500 rice grains are
examined and a total of 200 chalky grains are counted.

> n=500
> y=200

Suppose that the prior distribution for the proportion θ1 of chalky grains in
traditional varieties can be centered at 0.51 with a standard deviation equal
to 0.19, while the proportion θ2 of chalky grains in non-traditional varieties
can be centered at 0.39 with a standard deviation equal to 0.31. The prior
parameters (αi, βi) can be elicited as in (1.38) and (1.39).

> m1=0.51
> s1=0.19
> m2=0.39
> s2=0.31

We first write a function beta_prior that computes the prior parameters
αi and βi according to (1.38) and (1.39).

> beta_prior=function(m,v){
+ a=m*(m*(1-m)/v-1)
+ b=(1-m)*(m*(1-m)/v-1)
+ return(c(a,b))}

The hyperparameters of the two beta distributions, say α1, β1, α2, and β2 can
then be obtained straightforwardly as

> ab1=beta_prior(m1,s1^2)
> ab2=beta_prior(m2,s2^2)

The beta-binomial distribution can be calculated straightforwardly using
the function dbbinom that is available in the package extraDistr
(Wolodzko, 2020).

> library(extraDistr)
> BF=dbbinom(y,n,ab1[1],ab1[2])/dbbinom(y,n,ab2[1],
+ ab2[2])
> BF

[1] 2.009102

The Bayes factor provides weak support for the hypothesis that the rice
type is traditional rather than non-traditional.
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4.2.2 Multinomial Model

The physical and chemical analysis of gunshot residues (GSR) is a well-established
field within forensic science. GSR are commonly analyzed to help with issues
regarding the distance of firing and alleged activities of persons in incidents involv-
ing the use of firearms. A study by Brozek-Mucha and Jankowicz (2001) focused
on the use of GSR for discriminating between a selected number of case types
(i.e., particular combinations of weapon and ammunition). The authors conducted
experiments using six categories, each consisting of a specific combination of
weapon and ammunition, called categories A to F. Note that the aim here is not
to infer a particular weapon and ammunition as the source of recovered GSR
of unknown source. The purpose is only to provide assistance in discriminating
between well-defined case types (i.e., categories).

Consider the following pair of competing propositions:

H1: The gunshot residue particles are of type D (Beretta pistol and 9 mm Luger
ammunition).

H2: The gunshot residue particles are of type E (Margolin pistol with Sporting
5.6 mm ammunition).

Denote by θ1j and θ2j the proportion of particles in given chemical classes,
j = 1, . . . , k, characterizing categories D (i.e., category 1) and E (i.e., category 2).
The number n1, . . . , nk of particles pertaining to distinct chemical classes 1, . . . , k,
i.e., the chemical classes PbSbBa, PbSb, SbBa, Sb(Sn), Pb, and PbSnPb as specified
in Brozek-Mucha and Jankowicz (2001), can be treated as realization from a multi-
nomial distribution f (n1, . . . , nk | θi1, . . . , θik), i = 1, 2. A conjugate Dirichlet
prior probability distribution f (θi1, . . . , θik | αi1, . . . , αik) can be considered for
modeling uncertainty about the proportions θij , i = 1, 2 (Sect. 3.2.2).

The marginal distribution at the numerator and the denominator of the Bayes
factor in (1.26) can be computed as in (1.25) and becomes

fHi
(n1, . . . , nk | αi1, . . . , αik) = Γ (αi)Γ (n + 1)

Γ (n + αi)

k∏

j=1

Γ (nk + αij )

Γ (αij )Γ (nj + 1)
,

where αi = ∑k
j=1 αij and n = ∑k

j=1 nj . This is a Dirichlet-multinomial
distribution with parameters n and αi1, . . . , αik .

From a decision-theoretic point of view, the questioned items can be classified in
category D (decision d1) whenever

BF >
l1/l2

π1/π2
, (4.2)

where l1 (l2) represents the loss incurred when decision d1 (d2) is erroneous, and a
“0 − li” loss function is chosen (Sect. 1.9 and Table 1.4), while π1/π2 is the prior
odds in favor of H1.
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It may be objected that the values for l1 and l2 are difficult to assess. However,
what really matters is the ratio k of the actual values, l1 = k · l2. Note that this is
an asymmetric loss function. In this way, starting from a prior odds equal to 1, the
criterion in (4.2) may be rewritten as follows:

BF > k. (4.3)

Stated otherwise, whenever the competing hypotheses are considered equally
probable, a priori, the decision d1 will be optimal if BF > k, that is if wrongly
deciding d1 (i.e., H2 holds) is less than BF times worse than wrongly deciding d2
(i.e., H1 holds). Clearly, the prior odds must not necessarily be equal to 1, and the
criterion can be adapted accordingly.

4.2.2.1 Choosing the Parameters of the Dirichlet Prior

The problem of how to elicit a prior probability distribution about a proportion has
been discussed in Sect. 1.10. In the type of case considered here, an analyst will face
the problem of eliciting a prior opinion about a set of proportions, assuming that the
subjective prior distribution is chosen from the family of Dirichlet distributions.

There are various options for the hyperparameters αi1, . . . , αik , characterizing
the prior probability distribution on the proportions θi1, . . . , θik . One is the uniform
prior probability distribution, with αij = 1, j = 1, . . . , k. Whenever further
information is available in terms of the number of outcomes in the distinct
categories, e.g., xi1, . . . , xik , the hyperparameters αij can be updated to αij + xij .

There are cases, however, where the analyst is able to specify a non-uniform
prior probability distribution about the proportions. Following the methodology
illustrated in Zapata-Vazquez et al. (2014), the prior probability distribution about
a set of proportions θi1, . . . , θik can be elicited using tools available in the package
SHELF (Oakley, 2008). The user is only asked to provide a lower (e.g., 0.25), a
median, and a upper (e.g., 0.75) quantile for the marginal densities of proportions
that follow a beta distribution. Details will follow in the next example. The reader
can also refer to O’Hagan et al. (2006), where a practical example is provided.

Example 4.2 (Gunshot Residue Particles) Consider a case in which a given
number of particles (266) have been collected and analyzed by a scientist. The
particles have been collected from a target surface (e.g., a person’s hands). The
counts of gunshot residue particles are as follows:

(continued)
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Example 4.2 (continued)

Total number Chemical classes

of particles PbSbBa PbSb SbBa Sb(Sn) Pb PbSnPb

266 18 36 2 150 38 22

The scientist is asked to help discriminating between the following two
propositions:

H1: The gunshot residue particles are of type D (Beretta pistol with Luger
9 mm ammunition).

H2: The gunshot residue particles are of type E (Margolin pistol with
Sporting 5.6 mm ammunition).

One way to elicit the Dirichlet distribution in the case here is to use
observed frequencies of particles in various chemical classes as reported in
previous studies (e.g., Brozek-Mucha & Jankowicz, 2001). Suppose that the
elicited expert judgments for the marginal proportions characterizing category
D are as follows:

Quartiles Chemical classes

(%) PbSbBa PbSb SbBa Sb(Sn) Pb PbSnPb

Lower 5.00 9.00 0.40 66 9.00 7.60

Median 5.25 9.25 0.45 68 9.25 7.80

Upper 5.50 9.50 0.50 70 9.50 8.00

and those characterizing category E:

Quartiles Chemical classes

(%) PbSbBa PbSb SbBa Sb(Sn) Pb PbSnPb

Lower 2.35 7.00 0.13 56 24 5.60

Median 2.55 7.50 0.15 58 26 5.80

Upper 2.75 8.00 0.17 60 28 6.00

Consider, first, the elicitation of the Dirichlet distribution concerning the
first population, Dir(θ11, . . . , θ1k | α11, . . . , α1k). Starting from the given
lower, median, and upper quartiles for each marginal proportion, the prior
distribution can be elicited as follows.

> p=c(0.25,0.5,0.75)
> th1=c(5,5.25,5.5)/100

(continued)
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Example 4.2 (continued)
> th2=c(9,9.25,9.5)/100
> th3=c(0.4,0.45,0.5)/100
> th4=c(66,68,70)/100
> th5=c(9,9.25,9.5)/100
> th6=c(7.6,7.8,8)/100

The function fitdist, available in the package SHELF, allows one to fit a
parametric distribution starting from the elicited probabilities. In the example
here, the parameters of the elicited beta distribution for each proportion are of
interest.

> library(SHELF)
> fit1=fitdist(vals = th1, probs = p, 0, 1)
> fit2=fitdist(vals = th2, probs = p, 0, 1)
> fit3=fitdist(vals = th3, probs = p, 0, 1)
> fit4=fitdist(vals = th4, probs = p, 0, 1)
> fit5=fitdist(vals = th5, probs = p, 0, 1)
> fit6=fitdist(vals = th6, probs = p, 0, 1)

The last six objects contain the parameters of the beta distribution that is fitted
for each marginal proportion. For example, the parameters α1 and β1 of the
elicited beta distribution of θ1 (i.e., proportion of gunshot residue particles in
category PbSbBa) can be obtained as

> fit1$Beta

shape1 shape2
1 190.1306 3427.17

Next, fit the Dirichlet distribution to the elicited marginals by means of the
function fitDirichlet that is available in the same package.

> d.fit = fitDirichlet(fit1,fit2,fit3,fit4,fit5,fit6,
+ categories = c("PbSbBa","PbSb","SbBa","Sb(Sn)",
+ "Pb","PbSnPb"),n.fitted = "min")

Directly elicited beta marginal distributions:

PbSbBa PbSb SbBa Sb(Sn)
shape1 1.90e+02 5.65e+02 3.67e+01 168.0000
shape2 3.43e+03 5.54e+03 8.06e+03 79.3000
mean 5.26e-02 9.25e-02 4.53e-03 0.6800
sd 3.71e-03 3.71e-03 7.46e-04 0.0296
sum 3.62e+03 6.11e+03 8.10e+03 248.0000

(continued)
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Example 4.2 (continued)
Pb PbSnPb

shape1 5.65e+02 6.38e+02
shape2 5.54e+03 7.54e+03
mean 9.25e-02 7.80e-02
sd 3.71e-03 2.97e-03
sum 6.11e+03 8.18e+03

Sum of elicited marginal means: 1

Beta marginal distributions from Dirichlet fit:

PbSbBa PbSb SbBa Sb(Sn)
shape1 13.0000 22.9000 1.12e+00 168.0000
shape2 235.0000 225.0000 2.46e+02 79.3000
mean 0.0526 0.0925 4.53e-03 0.6800
sd 0.0142 0.0184 4.26e-03 0.0296
sum 248.0000 248.0000 2.48e+02 248.0000

Pb PbSnPb
shape1 22.9000 19.300
shape2 225.0000 228.000
mean 0.0925 0.078
sd 0.0184 0.017
sum 248.0000 248.000

The Dirichlet parameters α11, . . . , α1k can be read off from the row shape
1 and will be stored in a vector named a1.

> a1=c(13,22.9,1.12,168,22.9,19.3)

Parameter n of the Dirichlet prior is chosen by minimizing the sum of the beta
parameters in each elicited marginal (input n.fitted set equal to min). See
Oakley (2008) for more details.

In the same way, the Dirichlet distribution concerning the second popula-
tion, Dir(θ21, . . . , θ2k | α21, . . . , α2k), can be elicited.

> th1=c(2.35,2.55,2.75)/100
> th2=c(7,7.5,8)/100
> th3=c(0.13,0.15,0.17)/100
> th4=c(56,58,60)/100
> th5=c(24,26,28)/100
> th6=c(5.6,5.8,6)/100
> fit1=fitdist(vals = th1, probs = p, 0, 1)
> fit2=fitdist(vals = th2, probs = p, 0, 1)

(continued)
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Example 4.2 (continued)
> fit3=fitdist(vals = th3, probs = p, 0, 1)
> fit4=fitdist(vals = th4, probs = p, 0, 1)
> fit5=fitdist(vals = th5, probs = p, 0, 1)
> fit6=fitdist(vals = th6, probs = p, 0, 1)
> d.fit = fitDirichlet(fit1,fit2,fit3,fit4,fit5,fit6,
+ categories = c("PbSbBa","PbSb","SbBa","Sb(Sn)",
+ "Pb","PbSnPb"),n.fitted = "min")

The Dirichlet parameters α21, . . . , α2k can be read off analogously from the
row shape 1 (not shown here) and will be stored in a vector named a2.

> a2=c(5.59,16.4,0.331,127,57,12.7)

The counts of gunshot residue particles are

> n=c(18,36,2,150,38,22)

The density of a Dirichlet-multinomial distribution can be calculated using
the function ddirmnom that is available in the package extraDistr
(Wolodzko, 2020), and the Bayes factor can be obtained straightforwardly

> library(extraDistr)
> BF=ddirmnom(n,sum(n),a1)/ddirmnom(n,sum(n),a2)
> BF

[1] 658.6326

The Bayes factor provides moderately strong support for the hypothesis
that the gunshot residue particles originate from a Beretta pistol with Luger
9 mm ammunition rather than from a Margolin pistol with Sporting 5.6 mm
ammunition.

Assume π1 = π2 = 1. If a “0 − li” loss function is introduced, then
decision d1, classifying the gunshot residue particles into category D, is to
be preferred to the alternative decision d2 unless wrongly deciding d1 is felt
more than 659 times worse than classifying the particles in category E.

Note that by choosing a “0 − 1” loss function, or a symmetric “0 − li” loss
function with l1 = l2, a BF greater than 1 (or, more generally, greater than π2/π1
for unequal prior probabilities) provides a criterion for addressing the classification
problem. The aim here was to show that when assuming equal prior probabilities
for the hypotheses being compared, then, for the decision d2 to be optimal, it is
not sufficient to have an asymmetric loss function that assigns a loss to the adverse
consequence of decision d1 that is greater than the loss assigned to the adverse
consequence of decision d2. Specifically, this loss must be roughly 659 times greater.
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4.2.2.2 More than Two Populations

Consider now the case where more than two weapons (and related ammunitions)
could be at the origin of the collected gunshot particles. Suppose that a third weapon
is taken into consideration and that the competing propositions are specified as
follows:

H1: The gunshot residue particles are of type D (Beretta pistol with Luger 9 mm
ammunition; population p1).

H2: The gunshot residue particles are of type E (Margolin pistol with Sporting
5.6 mm ammunition; population p2).

H3: The gunshot residue particles are of type F (TT-33 pistol with Tokarev
7.62 mm ammunition; population p3).

As discussed in Sect. 1.6, the expert may calculate the marginal likelihood fHi
(y)

(i.e., a Dirichlet-multinomial distribution) for each proposition and report a scaled
version as in (1.27), that is,

f ∗
Hi

(y) = fHi
(y)

∑3
j=1 fHj

(y)
,

or the posterior probabilities

Pr(Hi | y) = Pr(Hi)f
∗
Hi

(y)
∑3

j=1 Pr(Hj )f
∗
Hj

(y)
, i = 1, . . . , 3.

Alternatively, the analyst may also consider the possibility of summarizing proposi-
tions H2 and H3 into one as H̄1 = H2 ∪ H3. A pair of competing propositions may
thus be formulated as follows:

H1: The gunshot residue particles are of type D (Beretta pistol with Luger 9 mm
ammunition; population p1).

H̄1: The gunshot residue particles are of type E (Margolin pistol with Sporting
5.6 mm ammunition; population p2) or of type F (TT-33 pistol with Tokarev
7.62 mm ammunition; population p3).

The Bayes factor can be obtained as in (1.28), that is,

BF = fH1(y)
∑3

i=2 Pr(pi)

fH̄1
(y)

, (4.4)

where

fH̄1
(y) =

3∑

i=2

Pr(pi)

∫

Θi

f (y | θi)π(θi | pi)dθi .
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Example 4.3 (Gunshot Residue Particles—Continued) Recall Example 4.2,
and suppose that the elicited expert judgments for the marginal propositions
characterizing category F are as follows:

Quartiles Chemical classes

(%) PbSbBa PbSb SbBa Sb(Sn) Pb PbSnPb

Lower 6.00 4.50 3.00 65 14.0 3.00

Median 6.15 4.75 3.25 67 14.5 3.25

Upper 6.30 5.00 3.50 69 15.0 3.50

The Dirichlet distribution concerning this new combination of
weapon/ammunition can be elicited as before:

> th1=c(6,6.15,6.30)/100
> th2=c(4.5,4.75,5)/100
> th3=c(3,3.25,3.5)/100
> th4=c(65,67,69)/100
> th5=c(14,14.5,15)/100
> th6=c(3,3.25,3.5)/100
> fit1=fitdist(vals = th1, probs = p, 0, 1)
> fit2=fitdist(vals = th2, probs = p, 0, 1)
> fit3=fitdist(vals = th3, probs = p, 0, 1)
> fit4=fitdist(vals = th4, probs = p, 0, 1)
> fit5=fitdist(vals = th5, probs = p, 0, 1)
> fit6=fitdist(vals = th6, probs = p, 0, 1)
> d.fit = fitDirichlet(fit1,fit2,fit3,fit4,fit5,fit6,
+ categories = c("PbSbBa","PbSb","SbBa","Sb(Sn)",
+ "Pb","PbSnPb"),n.fitted = "min")

The Dirichlet parameters α31, . . . , α3k can be read off from the row shape
1 (not shown here) and will be stored in a vector named a3.

> a3=c(15.7,12.1,8.29,170,36.9,8.29)

The scaled version of the marginal likelihoods can be easily obtained as

> fh1=ddirmnom(n,sum(n),a1)
> fh2=ddirmnom(n,sum(n),a2)
> fh3=ddirmnom(n,sum(n),a3)
> fh1scaled=fh1/(fh1+fh2+fh3)
> fh2scaled=fh2/(fh1+fh2+fh3)

(continued)
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Example 4.3 (continued)
> fh3scaled=fh3/(fh1+fh2+fh3)
> c(fh1scaled,fh2scaled,fh3scaled)

[1] 0.9980356379 0.0015153146 0.0004490475

Note that the scaled likelihoods f ∗
Hi

(y) are equivalent to the posterior proba-
bilities Pr(Hi | y) whenever the prior probabilities of the three propositions
are equal.

Alternatively, suppose that propositions H2 and H3 are summarized as
above, i.e., H̄1 = H2 ∪ H3, and that the prior probabilities of H1 and H̄1
are equal, so that Pr(H1) = 0.5 and Pr(H2) = Pr(H3) = 0.25.

> p2=0.25
> p3=0.25

The Bayes factor can then be obtained as

> fh1=ddirmnom(n,sum(n),a1)
> fh2=p2*ddirmnom(n,sum(n),a2)+p3*
+ ddirmnom(n,sum(n),a3)
> BF=fh1*(p2+p3)/fh2
> BF

[1] 1016.142

4.3 Continuous Data

The previous section considered the evaluation of scientific evidence in the form
of discrete data for investigative purposes. However, for many types of scientific
evidence, measurements lead to continuous data. In this section, we discuss
parametric and non-parametric models for continuous data.

4.3.1 Normal Model and Known Variance

Suppose that tablets of unknown source are seized, and the question is whether they
belong to population A or population B, which differ in color dye concentration.
The propositions of interest are as follows:

H1: The seized tablets come from population A.
H2: The seized tablets come from population B.
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The measurement of color dye concentration leads to continuous data for which
a normal distribution is considered appropriate, say XA ∼ N(θA, σ 2

A) for population
A and XB ∼ N(θB, σ 2

B) for population B. Suppose that the variance of color dye
concentration in the different populations is known. For the population means, a
conjugate prior normal distribution is introduced, i.e., θA ∼ N(μA, τ 2

A) and θB ∼
N(μB, τB).

The analysis of a tablet of unknown origin yields the measurement y. The Bayes
factor can be obtained as in (1.26), where the marginal likelihoods fHi

(y) are still
normal with mean equal to the prior mean μ and variance equal to the sum of the
prior variance τ 2 and the population variance σ 2, fHi

(y) = N(μ, τ 2 + σ 2).
Whenever several measurements (y1, . . . , yn) are available, it is sufficient to

recall that the joint likelihood is proportional to the likelihood of the sample mean
ȳ, which is normally distributed, Ȳ ∼ N(θ, σ 2/n), and that the marginal likelihood
in correspondence of the sample mean ȳ becomes fHi

(ȳ) = N(μ, τ 2 + σ 2/n).

Example 4.4 (Color Dye Concentration in Ecstasy Tablets) A tablet of
unknown origin is analyzed, and the measured color dye concentration is
0.16 (measurements are in %). A prior probability distribution is elicited for
the mean of population A, as θA ∼ N(0.14, 0.0032), and for the mean of
population B, as θB ∼ N(0.3, 0.0162). The population variances σ 2

A and
σ 2

B are assumed to be known and equal to 0.012 and 0.062, respectively
(Goldmann et al., 2004).

> y=0.160
> pma=0.14
> pva=0.003^2
> pmb=0.3
> pvb=0.016^2
> sigmaa=0.01^2
> sigmab=0.06^2

The Bayes factor in (1.26) can be obtained straightforwardly as the ratio of
two normal likelihoods evaluated for the available measurement of color dye
concentration y.

> BF=dnorm(y,pma,sqrt(pva+sigmaa))/
+ dnorm(y,pmb,sqrt(pvb+sigmab))
> BF

[1] 12.05706

The Bayes factor provides moderate support for the proposition according
to which the analyzed tablet comes from population A, rather than the
proposition according to which the tablet comes from population B. Note

(continued)
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Example 4.4 (continued)
again that this result does not mean that proposition H1 is more probable
than proposition H2. It solely means that the probability to observe the
concentration y is roughly 12 times greater if the tablet originates from
population A rather than from population B. The posterior odds might be in
favor of proposition H2 even in the presence of a Bayes factor greater than 1,
if the prior probability of proposition H1 is sufficiently small. In the case at
hand, it can be easily verified that the prior probability of proposition H1
needs to be smaller than 0.07 in order for the posterior odds to be in favor of
H2.

Suppose now that n = 5 tablets are available, and the color dye concentra-
tion measurements are y = (0.155, 0.160, 0.165, 0.161, 0.159). The value of
the evidence can then be computed for the sample mean

> y=c(0.155,0.160,0.165,0.161,0.159)
> n=length(y)
> num=dnorm(mean(y),pma,sqrt(pva+sigmaa/n))
> den=dnorm(mean(y),pmb,sqrt(pvb+sigmab/n))
> BF=num/den
> BF

[1] 134.628

The Bayes factor now provides moderately strong support for the proposition
H1, compared to proposition H2. This is a direct effect of the increased
number of measurements.

4.3.2 Normal Model and Unknown Variance

In some applications, both parameters are unknown, and a prior distribution for the
population mean and the population variance must be introduced. A non-informative
or a subjective prior distribution may be chosen, as mentioned previously in
Sect. 3.3.2.

Consider a case where skeletal remains are analyzed, and the question is whether
they belong to a man or a woman. The competing propositions are as follows:

H1: The skeletal remains belong to a woman.
H2: The skeletal remains belong to a man.

The study of Benazzi et al. (2009) found that the measurement of the sacral base
is a useful indicator of sex.

Consider a normal probability distribution for the area of the sacral base XF ∼
N(θF , σ 2

F ) for the population of females, and XM ∼ N(θM, σ 2
M) for the population
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of males. A conjugate prior probability distribution f (θi, σ
2
i ) can be assumed for

(θi, σ
2
i ) as in (3.12), where (θi | σ 2

i ) ∼ N(μi, σ
2
i /ni) and σ 2

i ∼ Si · χ−2(ki),
i = {F,M}. This amounts to an inverse gamma distribution with shape parameter
αi = ki/2 and scale parameter βi = Si/2, σ 2

i ∼ IG(ki/2, Si/2).
The marginal density needed to compute the BF, fHi

(·), is a Student t distribution
with ki degrees of freedom, centered at μi , with spread parameter, denoted here spi ,
equal to

spi = ni

ni + 1
αiβ

−1
i

(as noted previously in Sect. 3.3.2). Note that in this case there is one available
measure (ny = 1).

Example 4.5 (Sex Discrimination for Skeletal Remains) The sacral base of a
skeletal remain is measured and found to be 11.5 cm2. The prior probability
distribution for (θp, σ 2

p), as illustrated in Sect. 3.3.2, is elicited based on the
following population data:

Population Females Males

Number of individuals 38 35

Sample mean (cm2) 10.35 14.09

Std dev (cm2) 1.42 1.52

The prior distribution for (θF | σ 2
F ) and (θM | σ 2

M) can be centered at μF =
10.35 and μM = 14.09, respectively, with nF = 38 and nM = 35.

> muf=10.35
> nf=38
> mum=14.09
> nm=35

The prior distribution for σ 2
F and σ 2

M can be elicited using the parameter value
k = 20 (as in Example 3.6) and choosing SF and SM such that

Pr(σ 2
F > 1.422) = Pr(σ 2

M > 1.522) = 0.5

> k=20
> sigmaf=1.42^2
> sigmam=1.52^2
> q=qchisq(0.5,k)

(continued)
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Example 4.5 (continued)
> Sf=q*sigmaf
> Sm=q*sigmam
> c(Sf,Sm)

[1] 38.99199 44.67720

The prior distributions for σ 2
F and σ 2

M are 39 · χ−2(20) and 45 · χ−2(20),
respectively. The marginal density in the numerator of the Bayes factor is a
Student t distribution with kF degrees of freedom, centered at μF = 10.35
with spread parameter sF = 0.5 (rounded at the second decimal).

> spf=nf/(nf+1)*k/Sf

The marginal density in the denominator of the Bayes factor is a Student t
distribution with kM degrees of freedom, centered at μM = 14.09 with spread
parameter sM = 0.44 (rounded at the second decimal).

> spm=nm/(nm+1)*k/Sm

Note that in this case kF = kM = k.
The density of a non-central Student t distributed random variable

can be calculated using the function dstp available in the package
LaplacesDemon (Hall et al., 2020). The Bayes factor can be obtained as
follows:

> library(LaplacesDemon)
> y=11.5
> BF=dstp(y,muf,spf,k)/dstp(y,mum,spm,k)
> BF

[1] 3.184994

This value provides weak support for the proposition according to which the
skeletal remains belong to a woman rather than a man.

4.3.3 Non-Normal Model

As pointed out in Sect. 3.4.1.2, certain types of observations lack sufficient regular-
ity to apply standard parametric models.

Consider a case where banknotes are seized on an individual following an arrest.
A question commonly asked in such a case is whether the seized banknotes come
from a population of banknotes used in drug dealing activities. The following
propositions may thus be formulated:
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Fig. 4.1 Drug intensity measured on banknotes of 200 euro in a population of banknotes from
drug trafficking (left) and general circulation (right) (Besson, 2004)

H1: The seized banknotes have been used in illegal drug dealing activities
(population p1).

H2: The seized banknotes are from general circulation (population p2).

Figure 4.1 shows histograms of drug intensities measured on banknotes from
drug trafficking (left) and general circulation (right). It can immediately be observed
that the distributions for the two populations are different, that the distribution
related to banknotes involved in drug trafficking is not unimodal, and that the one
for banknotes in general circulation is positively skewed (Besson, 2004).

Suppose a database is available {zl = (zl1, . . . , zlml
), l = 1, 2}. The probability

distribution for population pl , fl(·), can be estimated by means of kernel density
estimation f̂l(·) as

f̂l(y | zl1, . . . , zlml
) = 1

ml

ml∑

i=1

K(y | zli , hl), (4.5)

where K(y | zli , hl) is taken to be a normal distribution centered at zli with variance
equal to h2

l s
2
l , s2

l = ∑ml

i=1(zli − z̄l)
2/(ml − 1), and z̄l = ∑ml

i=1 zli/ml .

The estimate f̂l(y) of the probability density is obtained by adding individual
densities over all observations in the database and then dividing by the sum of the
observations.

Figure 4.2 shows the kernel density estimates f̂1(y | z11, . . . , z1m1) and f̂2(y |
z21, . . . , z2m2) obtained using (4.5) with the smoothing parameter set equal to 0.15
for both populations. It can be observed that kernel density estimates are more
sensitive to multimodality and skewness and provide a better representation of the
available data.
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Fig. 4.2 Drug intensity measured on banknotes of 200 euro in a population of banknotes from
drug trafficking (left) and general circulation (right), and associated kernel density estimates with
smoothing parameter h equal to 0.15

Starting from the available measurements y = (y1, . . . , yn) on a sample of size
n, a Bayes factor can be obtained as

BF = fH1(y)

fH2(y)
=
∏m1

i=1 f̂1(yi | z11, . . . , z1m1)∏m2
i=1 f̂2(yi | z21, . . . , z2m2)

. (4.6)

Example 4.6 (Contaminated Banknotes) Consider a case in
which 8 banknotes are seized on a person of interest. Laboratory
analyses of the banknotes reveal drug intensities [du] equal to
y = (322, 158, 114, 125, 361, 801, 798, 135). A database named
banknotes.Rdata is available on the book’s website. It contains
sample data for drug intensities on banknotes from drug trafficking and
general circulation (Fig. 4.1). Note that these are hypothetical data used for
the sole purpose of illustration. The (n1 × 1) vector of measurements on
banknotes from drug trafficking is extracted and denoted pop1; analogously,
the (n2 × 1) vector of measurements on banknotes from general circulation
is extracted and denoted pop2.

> load('/.../banknotes.Rdata')
> po1=bancnotes[[1]]
> pop2=bancnotes[[2]]

(continued)
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Example 4.6 (continued)
The smoothing parameters h1 and h2 are set equal to 0.15. The variances

of drug concentration from each population, s2
1 and s2

2 , are estimated by the
sample variance

> h1=0.15
> h2=0.15
> s1=var(pop1)
> s2=var(pop2)

The kernel density estimation in (4.5) for the numerator and the denominator
is computed by means of the functions kn1 and kn2, respectively.

> n1=length(pop1)
> n2=length(pop2)
> sk1=h1*sqrt(s1)
> sk2=h2*sqrt(s2)
> kn1=function(x){sum(dnorm(x,pop1,sk1))/n1}
> kn2=function(x){sum(dnorm(x,pop2,sk2))/n2}

The estimated probability densities are represented in Fig. 4.2.

> x=matrix(seq(0,1100,1),nrow=1)
> f1h=apply(x,2,kn1)
> f2h=apply(x,2,kn2)
> par(mfrow=c(1,2))
> hist(pop1,freq=F)
> lines(f1h,type='l')
> hist(pop2,freq=F)
> lines(f2h,type='l')

Consider now the vector of measurements y. The probability densities are
estimated as in (4.5):

> y=matrix(c(322,158,114,125,361,801,798,135),nrow=1)
> f1=apply(y,2,kn1)
> f2=apply(y,2,kn2)

and the Bayes factor is obtained as in (4.6):

> BF=prod(f1)/prod(f2)
> BF

[1] 29.7187

The Bayes factor represents moderate support for the proposition according
to which the seized banknotes have been used in illegal drug trafficking
rather than the proposition according to which they are part of the general
circulation.
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Sensitivity to the Choice of the Smoothing Parameter

The sensitivity of the BF to the choice of the smoothing parameter may be a cause of
concern, as different choices may be made. The smoothing parameter h determines
the shape of the estimated probability density: if it is (too) large, the curve f̂ (y)

will be (very) smooth; on the other side, if it is (too) small, the resulting curve will
be more spiky. Figure 4.3 shows, for both populations, the density curves obtained
with h = 0.1 (dotted line), h = 0.15 (solid line), h = 0.2 (dashed line), h = 0.25
(dot-dashed line). The Bayes factor for the available measurements in Example 4.6
is then calculated for several choices of the smoothing parameter h.

> hsens=c(0.1,0.15,0.2,0.25)
> BFsens=rep(0,length(hsens))
> for (i in 1:length(hsens)){
+ sk1=hsens[i]*sqrt(s1)
+ sk2=hsens[i]*sqrt(s2)
+ f1=apply(y,2,kn1)
+ f2=apply(y,2,kn2)
+ BFsens[i]=prod(f1)/prod(f2)}
> round(BFsens,2)

[1] 1402.94 29.72 5.63 2.00

Note that the last two values correspond to large values of the smoothing
parameter h, providing a very smooth curve.

4.4 Multivariate Data

As mentioned in Sect. 3.4, analysts frequently encounter multivariate data because
the features of examined items and materials, such as handwritten or printed
documents, glass fragments, or skeletal remains, can be described by more than
one variable. Such data often present a complex dependence structure with a large
number of variables and multiple levels of variation.

4.4.1 Normal Multivariate Data

The classification of skeletal remains on the basis of sexual dimorphism is a
common problem in paleontology. Section 4.3.2 dealt with the question of how to
quantify the evidential value of measurements of a given morphological trait (e.g.,
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Fig. 4.3 Sample data used in Example 4.6 regarding drug intensities on banknotes for a
population of banknotes from drug trafficking (top) and in general circulation (bottom), and
associated kernel density estimates with smoothing parameter h equal to 0.1 (dashed line), 0.15
(solid line), 0.2 (dotted line), and 0.25 (dot-dashed line)
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the profile of the sacral base). A number of studies have documented sex differences
in particular pelvic traits, such as the obturator foramen, that tend to be oval in males
and triangular in females. The shape of these traits can be described quantitatively
by Fourier descriptors following the image analysis procedure developed by Bierry
et al. (2010). Each item can be described by means of several variables, i.e., the
amplitude and the phase of the first three harmonics.

Suppose that observations are available from a p-dimensional multivariate
normal distribution whose mean vector and variance–covariance matrix are θ l and
Wl , respectively, Zli ∼ N(θ l ,Wl), l = 1, 2 (where l = 1 stands for the population
of females and l = 2 for the population of males). Suppose further that the prior
distribution about (θ l ,Wl) is chosen in the conjugate family of the normal-inverse
Wishart distribution NIW(Ωl, νl,μl , cl):1

f (θ l ,Wl) ∝| Wl |−(νl+p+2)/2 exp

{
−cl

2
(θ l−μl )

′W−1
l (θ l−μl ) − 1

2
tr(W−1

l Ωl)

}
,

where μl is the center vector, cl are the degrees of freedom associated with the center
vector μl , Ωl is the dispersion matrix, and νl are the degrees of freedom associated
with the dispersion matrix Ωl (O’Hagan & Kendall, 1994).

Consider now a case where skeletal remains are recovered, and the following
propositions are of interest:

H1: The skeletal remains belong to a woman (i.e., a member of population p1).
H2: The skeletal remains belong to a man (i.e., a member of population p2).

Denote by y = (y1, . . . , yp) the measurements (i.e., Fourier descriptors) related
to the item whose origin is unknown and that needs to be classified. The marginal
distribution under the competing propositions H1 and H2, fHl

(y) for l = 1, 2, can
be obtained as

f (y | μl , cl,Ωl, νl) =
∫

θ l ,Wl

f (y | θ ,W)f (θ ,W)d(θ ,W)

∝
{

1+(y − μl )
′
[
cl+1

cl

Ωl

]−1

(y − μl )

}−(νl+1)/2

. (4.7)

This is a p-dimensional Student t distribution with δl = νl + 1 − p degrees of
freedom, location μl , and scale matrix

Δl = (cl + 1)Ωl

(clδl)
.

1 Note that a conjugate prior distribution may not always be the best choice. A method for
assessing a non-conjugate prior distribution where the vector mean and the covariance matrix of
the multivariate normal are, a priori, independent is provided by Garthwaite and Al-Awadhi (2001).
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The Bayes factor can be obtained as

BF = f (y | μ1, c1,Ω1, ν1)

f (y | μ2, c2,Ω2, ν2)
.

4.4.1.1 Prior Distribution for the Unknown Mean and Variance

Four parameters must be elicited. The elicitation of μl is rather simple. Since μl

represents the mean, the median, and the mode of the prior probability distribution,
the analyst may assess any of these summaries (O’Hagan et al., 2006). A procedure
for the elicitation of the degrees of freedom c and ν and the dispersion matrix Ω has
been provided by Al-Awadhi and Garthwaite (1998).

Here, suppose a non-informative prior distribution is used:

f (θ l ,Wl) ∝| Wl |−(p+1)/2 .

A database is available, with n1 measurements for the population of females (p1)
and n2 measurements for the population of males (p2). The corresponding posterior
distributions (one for the numerator, one for the denominator) can be written as

(θ l | zl , Σl) ∼ N(z̄l , Σl/nl) (4.8)

(Σl | zl ) ∼ IW(Sl, nl − 1), (4.9)

where Sl = ∑nl

i=1(zli − z̄l )(zli − z̄l )
′ is the sum of the squares about the sample

mean and z̄l = ∑nl

j=1 zlj /nl .
The marginal likelihood fHl

(y) is, therefore, a p-dimensional Student t distribu-
tion with nl − p degrees of freedom, location vector z̄l , and scale matrix

Fl = (nl + 1)Sl

nl(nl − p)
, (4.10)

so that (y | z̄l , Fl, nl − p) ∼ tnl−p(z̄l , Fl).

Example 4.7 (Sex Discrimination for Skeletal Remains Using Multivariate
Data) Skeletal remains are recovered, and the obturator foramen area is
measured. The measurements of the first three pairs of Fourier descriptors
are as follows:

(continued)
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Example 4.7 (continued)

First harmonic Amplitude 0.083095

Phase 2.6527709

Second harmonic Amplitude 0.932333

Phase 0.4530559

Third harmonic Amplitude 0.413736

Phase 0.3174581

Suppose that two databases of dimensions (n1 × p) = (51 × 6) and
(n2 × p) = (50 × 6) are available for the population of women and men,
respectively. These two databases can be used to obtain the summaries z̄1, z̄2
(i.e., the location vectors) and S1, S2 (i.e., the sum of the squares about the
sample means) that are needed to calculate the marginal probability densities
of the available measurements under the competing propositions. The location
vectors z1 and z2 and the sum of the squares about the sample means S1 and
S2 can be obtained straightforwardly as

> as.matrix(colMeans(population))
> cov(population)*(n-1)

where population is a database of dimension (n × p) containing the
available data. Note that only summaries z1, z2, S1, S2, as well as the vector
of measurements y are available in the database skeletal.Rdata and can
be obtained as

> load('skeletal.Rdata')
> y

A1 Phi1 A2 Phi2 A3
0.0830950 2.6527709 0.9323330 0.4530559 0.4137360

Phi3
0.3174581

> cbind(m1,m2)

[,1] [,2]
A1 0.07500563 0.05078316
Phi1 2.60792515 3.37739963
A2 1.08366494 1.15684192
Phi2 0.17014670 0.08233948
A3 0.50490100 0.39364526
Phi3 0.34169629 0.39422141

> S1

(continued)
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Example 4.7 (continued)
A1 Phi1 A2

A1 0.09264018 0.3596888 0.16429701
Phi1 0.35968880 27.1073815 1.57099019
A2 0.16429701 1.5709902 2.34609053
Phi2 0.12045387 0.3766871 -0.03091293
A3 0.02310556 -0.7037211 -0.28908117
Phi3 -0.04738129 0.7762414 -0.36724194

Phi2 A3 Phi3
A1 0.12045387 0.02310556 -0.04738129
Phi1 0.37668708 -0.70372110 0.77624136
A2 -0.03091293 -0.28908117 -0.36724194
Phi2 0.36278820 -0.02996462 -0.04588018
A3 -0.02996462 0.58676167 0.31452185
Phi3 -0.04588018 0.31452185 0.53788595

> S2

A1 Phi1 A2
A1 0.059683655 0.41066454 -0.02342685
Phi1 0.410664544 138.15898708 2.29687413
A2 -0.023426848 2.29687413 1.53297489
Phi2 0.049798218 -1.91573412 -0.02475354
A3 0.082509024 0.01934154 -0.31589891
Phi3 0.007252672 2.47533633 -0.32754776

Phi2 A3 Phi3
A1 0.04979822 0.08250902 0.007252672
Phi1 -1.91573412 0.01934154 2.475336335
A2 -0.02475354 -0.31589891 -0.327547756
Phi2 0.25584612 0.12310366 -0.149047658
A3 0.12310366 0.59361567 0.225155831
Phi3 -0.14904766 0.22515583 0.608557392

The marginal density fH1(y) in the numerator of the Bayes factor is a p-
dimensional Student t distribution with n1 − p = 45 degrees of freedom,
location m1 as above, and scale matrix

> n1=51
> p=6
> F1=S1*(n1+1)/(n1*(n1-p))

The marginal density fH2(y) in the denominator of the Bayes factor is a p-
dimensional Student t distribution with n2 − p = 44 degrees of freedom,
location m2 as above, and scale matrix

(continued)
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Example 4.7 (continued)
> n2=50
> F2=S2*(n2+1)/(n2*(n2-p))

The density of a multivariate Student t distributed random variable can be cal-
culated using the function dmvt available in the package LaplacesDemon
(Hall et al., 2020).

> library(LaplacesDemon)
> num=dmvt(y,t(m1),F1,n1-p,log=FALSE)
> den=dmvt(y,t(m2),F2,n2-p,log=FALSE)
> num/den

[1] 1545.489

The Bayes factor represents strong support for the proposition according to
which the skeletal remains originate from a woman (population p1) rather
than from a man (population p2).

As discussed in Sect. 3.4.2, it is important to study the performance of the
proposed model. This can be achieved by using the available databases to generate
many test cases and computing relevant performance metrics.

4.4.1.2 Classification as a Decision

The BF obtained in Example 4.7 supports proposition H1 over H2. However, if a
decision is to be made, one needs to take into account the prior uncertainty (in terms
of probabilities) about the competing propositions and the undesirability (in terms
of losses) of adverse outcomes (i.e., classification errors).

Let π1 and π2 denote the prior probabilities of propositions H1 and H2. The
posterior probabilities α1 and α2 can be easily calculated as

αl = πlf (y | μl , cl,Ωl, νl)∑2
j=1 πjf (y | μj , cj ,Ωj , νj )

,

where the marginals f (y | μj , cj ,Ωj , νj ), l = 1, 2, are as in (4.7).
A criterion that can be used to classify the recovered item into one of the two

populations has been outlined in Sect. 1.9. When using a “0 − li” loss function
(Table 1.4), the Bayes decision criterion states that the decision d1, classifying the
recovered item in the population of females (p1), is optimal whenever

BF >
l1/l2

π1/π2
= c. (4.11)
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Example 4.8 (Sex Discrimination for Skeletal Remains Using Multivariate
Data—Continued) If the prior odds are 1, and a symmetric loss function
is chosen (i.e., l1 = l2), the criterion in (4.11) says that the decision d1 is
optimal whenever BF > 1.

Assuming equal prior probabilities may be unrealistic because, often,
there is at least some information to help assert whether one proposition is
more probable than the stated alternative proposition. Likewise, the decision
maker’s preferences among adverse outcomes may not properly be reflected
by a symmetric loss function, though it should be noted that what actually
matters is only the ratio of l1 to l2.

To investigate the effect of alternative choices for the prior odds and the
loss function, one can conduct a sensitivity analysis. Figure 4.4 shows an
example for the threshold c in (4.11) as a function of increasing values of
the prior probability π1 and for different asymmetric loss functions, where l2,
the loss associated with the adverse outcome of the decision d2, is fixed at 1,
and l1, associated with the adverse outcome of the decision d1, is equal to 10,
50, and 100.

This analysis reveals that d1 is not the optimal decision for very high values
of l1, compared to l2, and for very small values of the prior probability π1.

Fig. 4.4 Threshold c, the BF
necessary to ensure that the
decision d1 has the smaller
expected loss than the
decision d2, as specified by
Eq. (4.11), as a function of
the prior probability π1 and
for different loss ratios l1/l2)
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4.4.2 Two-Level Models

A recurrent problem in forensic practice is to help distinguish between legal and
illegal cannabis plants (Bozza et al., 2014). Cannabis seedlings can be discriminated,
to some extent, on the basis of their chemical profiles using chemometric tools and
a methodology as described in Broséus et al. (2010). This study focused on several
target compounds, taking into account their presence in drug type (illegal) and fiber
type (legal) Cannabis.

Suppose a dataset is available that consists of replicate measurements (n) made
on illegal plants (population p1) and on fiber type plants (population p2). The
sample size is equal to m1 and m2 for populations p1 and p2, respectively.
Background data can be denoted by zlij = (zlij1, . . . , zlijp), where l = 1, 2, i =
1, . . . , ml , j = 1, . . . , n, and p is the number of variables. Available data suggest
that a statistical model with two levels of variation is suitable: variation between
replicate measurements from the same source and variation between measurements
from different sources.

4.4.2.1 Normal Distribution for the Between-Source Variation

Here we use the two-level random effect model described in Sect. 3.4.1.1. For
the within-source variation, the distribution of Zlij is taken to be normal, Zlij ∼
N(θ li ,Wl). For the between-source variation, denote the mean vector between
sources by μl , and the matrix of between-source variances and covariances by Bl .
The distribution of θ li is taken to be normal, θ li ∼ N(μl , Bl).

Measurements are available on some seized material, denoted by y =
(y1, . . . , yn), where yj = (yj1, . . . , yjp), j = 1, . . . , n. A laboratory is asked
to help determine the plant’s chemotype. The following propositions may be of
interest:

H1: The seized plant is drug type Cannabis (population p1).
H2: The seized plant is fiber type Cannabis (population p2).

The probability distribution of the measurements on items from each population
is taken to be normal, Y ∼ N(θ l , Bl), l = 1, 2. The marginal probability densities in
the numerator and denominator have the form fHl

(y) = fl(y | μl ,Wl, Bl), l = 1, 2,
and can be obtained as in (3.28)

fl(y | μl ,Wl, Bl) =| 2πWl |−n/2| 2πBl |−1/2| 2π(nW−1
l + B−1

l )−1 |1/2

× exp

{
−1

2

[
(ȳ − μl )

′(n−1Wl + Bl)
−1(ȳ − μl ) + tr

(
SW−1

l

)]}
, (4.12)

where S = ∑n
i=1(yi − ȳ)(yi − ȳ)′.
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The Bayes factor can then be obtained as in (1.26) as a ratio between the two
marginals

BF = fH1(y)
fH2(y)

= f1(y |,μ1,W1, B1)

f2(y | μ2,W2, B2)

=
( |W1|

|W2|
)− n

2
( |B1|

|B2|
)− 1

2

⎛

⎜⎝
|
(
nW−1

1 + B−1
1

)−1 |

|
(
nW−1

2 + B−1
2

)−1 |

⎞

⎟⎠

1
2

× exp

{
2∑

i=1

(−1)i
1

2

[
tr(SWi)

−1 + (
ȳ − μi

)′ (
n−1Wi + Bi

)−1 (
ȳ − μi

)]
}

.

(4.13)

The overall means μ1 and μ2, the within-source covariance matrices W1 and W2,
and the between-source covariance matrices B1 and B2 can be estimated from the
available background data using (3.32), (3.33), and (3.34).

Example 4.9 (Cannabis Seedlings) A plant of unknown type is analyzed, and
the chemical profile is extracted. Three replicate measurements are taken (n =
3) on three variables (p = 3): Cannabidiol (CBD), D9-Tetrahydrocannabinol
(THC), and Cannabinol (CBN). Measurements on the item of unknown type
are as follows:

CBD THC CBN

−1.3040 0.2310 0.6874

−1.2918 0.2400 0.7350

−1.0719 0.3176 0.9113

> y=matrix(c(-1.304,0.231,0.6874,-1.2918,0.24,0.735,
+ -1.0710,0.3176,0.9113),nrow=3,byrow=T)

The mean vectors between sources μ, the within-source covariance matrices
W , and the between-source covariance matrices B can be estimated from the
available background data (Bozza et al., 2014).

The estimates of the overall means μ1 and μ2 of the within-source covari-
ance matrices W1 and W2 and of the between-source covariance matrices B1
and B2 are available in the database plant.Rdata and can be obtained as

(continued)
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Example 4.9 (continued)
> load('plant.Rdata')
> mu1

CBD THC CBN
[1,] -0.4566709 0.9728053 0.9196972

> mu2

CBD THC CBN
[1,] 0.4097014 -0.7850832 -0.7592971

> W1

CBD THC CBN
CBD 0.01995126 0.015787374 0.010380235
THC 0.01578737 0.015708590 0.005226694
CBN 0.01038024 0.005226694 0.094354823

> W2

CBD THC CBN
CBD 0.0180694402 1.901708e-03 -3.699212e-04
THC 0.0019017082 5.685754e-04 7.930402e-05
CBN -0.0003699212 7.930402e-05 1.878924e-02

> B1

CBD THC CBN
CBD 0.4154039 0.2135218 0.1470832
THC 0.2135218 0.4752159 0.3893965
CBN 0.1470832 0.3893965 0.4292913

> B2

CBD THC CBN
CBD 1.10811258 0.05630523 0.01847022
THC 0.05630523 0.06703743 0.05462002
CBN 0.01847022 0.05462002 0.10964122

These estimates can be obtained using the function two.level.mv.WB
introduced in Sect. 3.4.1.1

> two.level.mv.WB(population,variables,
+ grouping.object)

where population is a data frame with the available data,
variables indicates the columns where variables are displayed, and
grouping.object indicates the item number.

(continued)
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Example 4.9 (continued)
Given the available measurements, the Bayes factor can be calculated as in

(4.13) using the function two.level.mvn.inv.BF.

> BF=two.level.mvn.inv.BF(y,W1,W2,B1,B2,mu1,mu2)
> BF

[1] 48739.7

The Bayes factor represents very strong support for the proposition according
to which the seized plant is of drug type rather than fiber type.

4.4.2.2 Non-normal Distribution for the Between-Source Variation

As noted in Sect. 3.4.1.2, whenever the assumption of normality for the between-
source variability is considered inappropriate, the normal distribution f (θ li |
μl , Bl) = N(μl , Bl) previously proposed can be replaced by a kernel density esti-
mate as in (3.35). The marginal densities fHl

(y) at the numerator and denominator
of the Bayes factor become

fl(ȳ | Wl,Bl, hl) = (2π)−p | Bl |−1 (mlh
2
l )

−2 | Dl |−1/2| D−1
l +(h2

l Bl)
−1 |−1/2

×
ml∑

i=1

exp

{
−1

2
(ȳ − z̄li )

′(Dl + h2
l Bl)

−1(ȳ − z̄li )

}
, (4.14)

where Dl = n−1Wl . Note that this is just the marginal density of the recovered data,
that is, the first line in (3.38), with all multiplicative constants.

The Bayes factor is then given by the ratio of the marginal probability densities
in (4.14) for l = 1, 2, that is,

BF = f1(ȳ | W1, B1, h1)

f2(ȳ | W2, B2, h2)
. (4.15)

Example 4.10 (Cannabis Seedlings—Continued) Consider again the case
examined in Example 4.9, and suppose that a kernel distribution is
used to model the between-source variability. First, the group means z̄li

must be obtained. They can be obtained as an output of the function
two.level.mv.WB that can be used to estimate the model parameters.

(continued)
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Example 4.10 (continued)
> head(group.means.1)

CBD THC CBN
1 -1.22249231 0.2629209 0.777929
2 -0.04734919 1.7607730 2.293862
3 -0.59036072 1.1574978 1.403290
4 -0.27733591 1.5211215 1.832527
5 -0.54204482 1.2387804 1.545526
6 -0.65989575 -0.9686288 1.831042

> head(group.means.2)

CBD THC CBN
141 -0.12963445 -1.0232887 -0.896759
142 -0.16827410 -0.9934113 -0.896759
143 -0.61568550 -1.0464456 -0.896759
144 0.03267767 -0.9815586 -0.896759
145 0.12647601 -0.9349308 -0.896759
146 -0.51730995 -0.9909842 -0.896759

> m1=dim(group.means.1)[1]
> m2=dim(group.means.2)[1]
> c(m1,m2)

[1] 117 155

Here we show only the first six rows of the (ml × p) matrices, where each
row represents the vector of means z̄li = 1

n

∑n
j=1 zlij , l = 1, 2. Note that the

group means z̄1 and z̄2, as well as all the estimated parameters (μ1, μ2, W1,
W2, B1 and B2) are available in the database plant.Rdata.

The smoothing parameters h1 and h2 in the two populations can be
estimated as in (3.36), using the function hopt:

> p=3
> h1=hopt(p,m1)
> h2=hopt(p,m2)
> c(h1,h2)

[1] 0.4675469 0.4491338

Given the available measurements, the Bayes factor can be calculated as
in (4.15) using the function two.level.mvk.inv.BF available in the
supplementary materials available on the book’s website

> BF=two.level.mvk.inv.BF(y,group.means.1,
+ group.means.2,W1,W2,B1,B2,h1,h2)

(continued)
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Example 4.10 (continued)
> BF
[1] 7.42

The Bayes factor represents moderate support for the proposition according to
which the seized plant is drug type Cannabis rather than fiber type Cannabis.

4.4.2.3 Assessing Model Performance

One way to investigate the performance of the two models described in Sects. 4.4.2.1
and 4.4.2.2, denoted here Model 1 and Model 2, is to calculate a Bayes factor for all
available measurements on items from population 1 (drug type). One would expect
to obtain BFs greater than 1 (see Table 4.1). Clearly, one should also consider BF
computations for all measurements on items from population p2 (fiber type). In the
latter case, BFs smaller than 1 would be expected (see Table 4.2).

Table 4.1 Bayes factor
values for items of
population 1 (Example 4.9
and 4.10) obtained using
(4.13) (Method 1) and (4.15)
(Method 2)

BF Model 1 Model 2

< 10−1 2 2

10−1 − 1 1 3

1 − 10 2 7

10 − 102 0 7

102 − 103 2 9

103 − 104 3 8

104 − 105 5 2

105 − 106 4 3

106 − 107 1 5

107 − 108 6 3

108 − 109 1 4

109 − 1010 8 2

1010 − 10100 82 62

Number of BFs > 1 114 112

Number of BFs < 1 3 5
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Table 4.2 Bayes factor
values for items of
population 2 (Example 4.9
and 4.10) obtained using
(4.13) (Method 1) and (4.15)
(Method 2)

BF Model 1 Model 2

< 10−10 20 85

10−10 − 10−9 4 0

10−9 − 10−8 8 0

10−8 − 10−7 10 0

10−7 − 10−6 14 0

10−6 − 10−5 29 0

10−5 − 10−4 19 0

10−4 − 10−3 20 0

10−3 − 10−2 16 35

10−2 − 10−1 2 23

10−1 − 1 1 7

1 − 10 6 3

10 − 102 0 1

102 − 103 0 1

> 104 6 0

Number of BFs > 1 12 5

Number of BFs < 1 143 150

4.5 Summary of R Functions

The R functions outlined below have been used in this chapter.

Functions Available in the Base Package
apply: Applies a function to the margins (either rows or columns) of a matrix.
colMeans: Forms column means for numeric arrays (or data frames).
d<name of distribution> (e.g., dnorm): Calculates the density for many

parametric distributions.
More details can be found in the Help menu, help.start().

Functions Available in Other Packages
dbbinom and ddirmnom in the package extraDistr: Calculate the density

of a beta-binomial distribution and that of a Dirichlet-multinomial distribution,
respectively.

dstp and dmvt in the package LaplacesDemon: Calculate the density of a
non-central Student t distribution and of a non-central multivariate Student t
distribution, respectively.

fitdist and fitDirichlet in the package SHELF: Fit a parametric distri-
bution starting from elicited probabilities and a Dirichlet distribution from the
elicited beta distributions for a set of proportions, respectively.
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Functions Developed in the Chapter
beta_prior: Calculates the hyperparameters α and β of a beta distribution

Be(α, β) starting from the prior mean m and the prior variance v.
Usage: beta_prior(m,v).
Arguments: m, the prior mean; v, the prior variance.
Output: A vector of values, the first is α, the second is β.

hopt: Calculates the estimates ĥ of the smoothing parameter h.
Usage: hopt(p,m).
Arguments: p, the number of variables; m, the number of sources.
Output: A scalar value.

kn1: Computes the kernel density estimation (numerator).
Usage: kn1(x,pop1,sk1).
Arguments: x, a vector of available measurements; pop1, a vector of measurements

of drug intensities on banknotes from drug trafficking where the kernel is
centered; sk1, the variance h2

1s
2
1 of the kernel, where h1 is the smoothing

parameter and s2
1 is the sample variance of the available measurements.

Output: A scalar value.

post_distr: Computes the posterior distribution N(μx, τ
2
x ) of a normal mean θ ,

with X ∼ N(θ, σ 2) and θ ∼ N(μ, τ 2).
Usage: post_distr(sigma,n,barx,pm,pv).
Arguments: sigma, the variance σ 2 of the observations; n, the number of observa-

tions; barx, the sample mean x̄ of the observations. pm, the mean μ of the prior
distribution N(μ, τ 2); pv, the variance τ 2 of the prior distribution N(μ, τ 2).

Output: A vector of two values, the first is the posterior mean μx , the second is the
posterior variance τ 2

x .

two.level.mv.WB: Computes the estimate of the overall mean μ, the group
means z̄i , the within-group covariance matrix W , and the between-group covari-
ance matrix B.

Usage: two.level.mv.WB(population, variables,grouping
.variable)

Arguments: population, a data frame with N rows and k columns collecting
measurements on m sources with ni items for each source, i = 1, . . . , m;
variables, a vector containing the column indices of the variables to be used;
grouping.variable, a scalar specifying the variable that is to be used as
the grouping factor.

Output: The group means z̄i , the estimated overall mean μ̂, the estimated within-
group covariance matrix Ŵ , the estimated between-group covariance matrix B̂.

two.level.mvn.inv.BF: Computes the BF for investigative purposes from a
two-level model where both the within-source variability and the between-source
variability are normally distributed.

Usage: two.level.mvn.inv.BF(y,W1,W2,B1,B2,mu1,mu2, vari
ables).
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Arguments: y, a (n × p) matrix of measurements; W1 and W2, the within-source
covariance matrices; B1 and B2, the between-source covariance matrices; the
overall group means μ1 and μ2; variables, a vector containing the column
indices of the variables to be used.

Output: A scalar value.

two.level.mvk.inv.BF: Computes the BF for investigative purposes from a
two-level model where the within-source variability is assumed to be normally
distributed, while the between-source variability is modeled by a kernel density.

Usage: two.level.mvk.inv.BF(y,gmu1,gmu2,W1,W2,B1,B2,h1,h2).
Arguments: y, a (n×p) matrix of measurements; gmu1 and gmu2, the group means

z̄1i and z̄2i ; W1 and W2, the within-source covariance matrices; B1 and B2, the
between-source covariance matrices; h1 and h2, the smoothing parameters h1
and h2.

Output: A scalar value.
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Index

A
Alcohol concentration, 13, 67, 70, 74, 75

B
Bayes factor, 3, 7, 9, 10

approximation, 50
computational aspects, 28–31
for continuous data, 11
for discrete data, 11
for evaluation, 13–22
feature-based, 14
for investigation, 22–27
for multiple propositions, 26, 150
interpretation, 27–28
score-based, 18, 86
verbal scale, 27

Bayesian network, 45
Bayesian thinking, 5–7
Bayes’ theorem, 3, 6, 10, 119
Belief, 3, 5
Bernoulli trials, 42, 80, 142

C
Cannabis plant type, 169, 171
Consecutive matching striations, 85, 86
Counterfeit medicines, 43, 45, 64

D
Decision

for classification, 166
consequence, 32
criterion, 33, 64, 75, 144, 145, 166
expected loss, 32, 63, 75

loss function, 32
matrix, 32
for a mean, 74–76
for a proportion, 62–65

Decision analysis, 32–34
Distribution

beta, 35, 42, 80, 142
beta-binomial, 44, 143
binomial, 35, 42, 44, 46
chi-squared, 97
conjugate, 24, 34, 35, 43, 66, 80, 83, 86, 93,

94, 100, 142, 153, 155
Dirichlet, 35, 83, 144
Dirichlet-multinomial, 144
gamma, 35, 55, 85, 88, 95
inverse chi-squared, 95, 97
inverse gamma, 35, 95, 97, 155
inverse Wishart, 118, 128
kernel, 115, 157, 171

density estimation, 115, 157
smoothing parameter, 115, 157, 159,

172
marginal, 15, 23
multinomial, 35, 83, 144
multivariate normal, 110, 115, 116, 118,

128, 131, 160, 162, 168, 171
non-informative prior, 163

multivariate Student t, 162, 163
normal, 16, 23, 35, 66, 100, 106, 153, 154,

157
known variance, 92
mean and variance unknown, 94
non-informative prior, 102
posterior mean, 16
posterior variance, 16

© The Author(s) 2022
S. Bozza et al., Bayes Factors for Forensic Decision Analyses with R,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-031-09839-0

185


 8542 61494 a 8542 61494 a
 
https://doi.org/10.1007/978-3-031-09839-0


186 Index

Distribution (cont.)
normal-gamma, 95
normal-inverse Wishart, 162
Poisson, 35, 46, 85
Poisson-gamma, 86
posterior predictive, 15
predictive, 15

normal, 16
prior choice, 34–38
prior elicitation, 44

beta, 35, 37, 38, 48
Dirichlet, 145
equivalent sample size, 36, 69, 89
gamma, 88
non-informative, 88
normal, 69
normal-gamma, 96, 155
normal-inverse Wishart, 163

Student t, 96, 102, 155, 156
uniform, 43, 69, 88, 145

Drugs on banknotes, 158

E
Ecstasy tablets, 153
Error

continuous measurements, 72
counting process, 46

Evaluation, 4
for continuous data, 91–108

normal (both parameters unknown),
94

normal (known variance), 92
score-based, 105

for discrete data, 80–91
binomial, 80
multnomial, 82
Poisson, 84

for multivariate data, 108–135
non-constant within-source variation,

118
non-normal between-source variation,

115
normal between-source variation, 109
three-level, 130
two-level, 109

Evidence, 5

F
Fingermarks, 22, 24
Firearms, 21, 84, 86
Food quality control, 46
Fourier descriptors, 120, 162

G
Gibbs sampling, 30, 120
Glass, 112, 117, 132
Gunshot residues, 144, 145, 151

H
Hamiltonian Monte Carlo, 31
Handwriting, 20, 120, 124
Hyperparameter, 35
Hypothesis, 3

alternative, 8
composite, 8
null, 8
simple, 8

I
Image analysis, 72
Image comparison, 19
Independence under the alternative proposition,

14, 127
Inference

discrete propositions, 99
mean, 66–68
proportion, 42–45

Information
background, 6
task-relevant, 6

Investigation, 4
with continuous data, 152–160

non-normal, 156
normal (both parameters unknown), 154
normal (known variance), 152

with discrete data, 142–149
binomial, 142
multinomial, 144

with multivariate data, 160–173
non-normal between-source variation,

171
normal between-source variation, 168
two-level, 168

J
Jaccard distance, 107

L
Likelihood

function, 9
marginal, 8, 17, 23, 28

normal, 24
scaled, 25

ratio, 3, 10, 85, 86



Index 187

Loss function, 32
0 − 1, 149
0 − li , 32, 65, 101, 144, 149, 166
asymmetric, 145, 167
linear, 63, 74
symmetric, 64, 149, 167

M
Markov chain Monte Carlo, 29

autocorrelation plot, 60
Gibbs sampling algorithm, 30, 120
Hamiltonian Monte Carlo, 31
Metropolis–Hastings algorithm, 30
Metropolis-Hastings algorithm

two-block, 55
trace-plot, 60

Maximum likelihood, 85
Measurements

continuous, 5
discrete, 5

Metropolis–Hastings algorithm, 30
Metropolis-Hastings algorithm

two-block, 55
Model

comparison, 7–13
feature-based, 14–17
parametric, 15
performance, 123, 173
score-based, 14, 17–22

non-anchored, 19, 21, 88
source-anchored, 19
trace-anchored, 19, 20

statistical, 6
three-level, 130–135
two-level, 109–130, 168–173

Monte Carlo
error, 29, 54
estimate, 29, 47, 49
Hamiltonian Monte Carlo, 31
importance sampling, 29, 53
method, 28

O
Odds

posterior, 9, 11, 90
prior, 8, 90

P
Parameter, 7

space, 7
continuous, 9
discrete, 9

Population
relevant, 15

Prior assumptions, 10
Probability, 5

density, 8, 10
law of total, 5
marginal, 8
model, 7
posterior, 5
predictive, 8
prior, 5

Proposition, 3
common-source, 21, 106
hierarchy of, 13
multiple, 25, 103
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