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Ulrich Gähde   , Stephan Hartmann, and  Jörn Henning      Wolf 
  Preface 
       In 2006, within the Academy of Sciences and Humanities in Hamburg, the working 

group  Models, Simulations, and the Reduction of Complexity  was founded. In this 

group, scientists from various disciplines  – economics, engineering science, 

history of science, mathematics, medicine, philosophy, physics, psychology, 

sociology  – cooperate in order to analyze methodological and epistemological 

problems connected with the use of models and simulations in an interdisciplin-

ary framework. As a first public event, the members of this group, in coopera-

tion with Stephan Hartmann    (then at Tilburg University, The Netherlands), orga-

nized an international conference on  Models, Simulations, and the Reduction of 

Complexity  that took place at the University of Hamburg on 18–19 March, 2010. 

During this conference, eight selected model building and simulation projects 

from different disciplines from the natural, engineering, and social sciences were 

presented. Each presentation was commented on by a philosopher of science spe-

cializing in problems of model construction and simulation, and trained in the 

respective discipline. The main task of the commentators was pointing out and 

analyzing methodological, discipline-specific peculiarities, as well as any inter-

disciplinary parallels of the modeling and simulation techniques applied. The 

subsequent discussions focused on different strategies used for the reduction of 

complexity in the various disciplines, on the relation between models and under-

lying theories, and on the possibility for one discipline to learn from the tech-

niques and strategies used in others. The essays and commentaries assembled 

in this volume are revised and extended versions of the papers and comments 

presented at this conference. 

 It is a pleasure to thank all contributors for their excellent papers and com-

mentaries and for undertaking the task of preparing a revised version of their 

contribution for this volume. Furthermore, we wish to thank the Academy of 

Sciences and Humanities in Hamburg for generous financial and organizational 

support. In particular, we would like to thank its former president, Professor 

Heimo Reinitzer, and Dr. Elke Senne for their interest in the project and continu-

ous support. Finally, we are grateful to Ms Victoria Pöhls for preparing the index 

and the final manuscript. 
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          Ulrich   Gähde     and  Stephan   Hartmann    
Introduction  
             Modern science is, to a large extent, a model-building activity. In the natural and 

engineering sciences as well as in the social sciences, models are constructed, 

tested and revised, they are compared with other models, applied, interpreted 

and sometimes rejected or replaced by a better model. Some models help scien-

tists to systematize huge amounts of data, coming from experiments or gener-

ated through computer  simulation  , and to extract information out of them. Other 

models are developed with the aim to explain a puzzling scientific phenom-

enon – a task that typically requires a number of clever idealizing assumptions 

and, more and more, the use of computer simulations. By now it is uncontro-

versial that scientific models are indispensable for solving scientific problems. 

While some philosophers (such as Ronald Giere    (1999) and Bas van Fraassen    

(1990)) think that science can do without laws, it seems utterly impossible for 

science to do without models. 

 The extraordinary importance of models in science has not gone unnoticed 

by philosophers of science. Starting in the 1960s, scholars such as Peter Achin-

stein (1968) and Mary Hesse    (1963) focused on simple  models  , such as the bil-

liard ball model of a gas, to illustrate various philosophical claims about, for 

example, the role of metaphors and analogies in science. Others, most notably 

Patrick Suppes    (1969), explored the connections between scientific models and 

mathematical (model-theoretical) models and stressed the role of models in the 

analysis of data (“models of data”). Later, beginning in the 1980s and initiated 

by seminal contributions by Nancy Cartwright    (1983), Ronald Giere    (1988), Ian 

Hacking    (1983) and Bas van Fraassen    (1980), increasingly complicated scientific 

models, from physics as well as from the special sciences, gained center stage, 

and new questions, for example about the relation between theories and models, 

came to the fore. This debate led to a rethinking of many traditional topics in the 

philosophy of science, including the nature of confirmation, explanation, and 

the structure of scientific theories, as well as the role of approximations, idealiza-

tions and intertheoretic relations. For a detailed overview of these debates, we 

refer the reader to the survey article by Frigg    and Hartmann    (2012). Bailer Jones 

(2009) gives a book-length discussion of models in science, including an intrigu-

ing account of the history of the philosophy of scientific models. 

 In order to narrow down this tremendously broad and rich field of study, 

we decided to focus on the modeling of  complex   systems. All natural and social 

sciences are concerned with such systems, and it is here where one of the great 

advantages of model-building becomes especially vivid: Modeling helps scien-
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tists to make  complex   objects or systems comprehensible. With the help of a 

model, and by studying its features, scientists learn about the object or system 

that the model represents (van Fraassen    (2008)). To model an object or system 

means to  reduce its complexity  and to provide a simplified description of it. This 

requires the identification of relevant features of the object or system under inves-

tigation that suffice, or so it is hoped, to serve a certain purpose (e.g. confirma-

tion, explanation, prediction or understanding). This volume illustrates how this 

works by focusing on examples from real science, especially from bioinformatics, 

climate science, mathematics, neuroscience, physics, psychology, and the social 

sciences. We will see that the resulting equations are typically too complicated 

to be solved analytically, and so computer simulations are required to proceed, 

which stresses the pragmatic constraints on scientific models and simulations 

(Humphreys 2004). For further philosophical discussions of the role of computer 

simulations in science and the methodological problems that they raise, we refer 

the reader to Hartmann    (1996) and Winsberg    (2010). 

 While these questions may appear to be of exclusively philosophical impor-

tance, the practice of model-building also raises many specific methodological 

problems that worry scientists. Many of these problems are so specific that they 

are exclusively dealt with in the respective scientific community. Other questions 

are somewhat more general and call for a philosophical analysis; these are the 

ones we want to address in this volume. To do so, this volume assembles eight 

articles by leading scientists, each of which is commented on by a philosopher 

of science. At the conference, a general discussion followed. This speaker-com-

mentator-discussion scheme led to a lively debate, and we hope that the essays 

assembled in this volume reflect this exchange of ideas. At this point we want to 

outline three major areas of discussion and interaction between scientists and 

philosophers of science. 

 First, we are interested in  descriptive questions  regarding how scientists in the 

various disciplines proceed when they model  complex   systems. Which model ing 

strategies do they apply? Are these strategies subject-specific, or are there more 

universal strategies that are useful in several disciplines? Can one scientific disci-

pline learn from the techniques and strategies used in another? 

 Second, we are interested in  normative questions  of model assessment. There 

are several factors that play a role here and that scientists value. Scientists want, 

for example, that a model accounts for the available data. At the same time, 

they want it to be consistent with relevant theories, and they want the model 

to provide understanding. Note that these goals may be in conflict with each 

other: Models that provide understanding often do not get the data right, and, 

conversely, models that get the data right do not provide understanding. This 

raises the question of how the various goals should be weighted. And: Are these 
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weights subject specific, or can one say something more general here? Can the 

different goals of scientific modeling be reduced to one goal, say truth? These 

are some of the normative questions that philosophers of science address. Other, 

more specific normative questions, include issues regarding the empirical testing 

of models and the question which normative conclusions, e.g. in the social sci-

ences, should be drawn from (typically) highly idealized models. 

 Third, we are interested in  epistemological and metaphysical implications  

of the practice of model-building. What picture of science and the world makes 

best sense of this practice? Should we conclude, inspired by the apparent patch-

work of theories and models, that also the world is a patchwork, i.e. shall we 

follow Nancy Cartwright    (1999), who famously argued that the world is dappled? 

Or is there hope that, one day, all the bits and pieces that scientists collected 

will fit into a neat coherent picture of the world? And: How are theories and 

models related anyway? Is there a hierarchy of theoretical approaches, or do all 

approaches operate at the same level of fundamentality? See also Hartmann    et al. 

(2008) and    Morgan &    Morrison (1999) for collections of papers on these topics. 

 These are only some of the questions that are addressed in this volume. Let us 

now shortly outline the individual chapters. 

 The essay by  Matthias Bartelmann     (University of Heidelberg) explains that 

there are at least three reasons why any attempt to construct cosmological models 

seems to be a bold enterprise: Firstly, we cannot do experiments with the universe 

as a whole. Secondly, we are part of this universe. Thirdly, we always only see a 

small – although growing – section of it. In spite of these challenges, the standard 

model of cosmology is a remarkably successful example for how the complexity 

of the real world can be reduced. The starting point for the construction of this 

model is Einstein   ’s General Theory of Relativity. By adding two simple  symmetry   

conditions – namely the requirements that arbitrary spatial rotations and transla-

tions should leave the observable universe unchanged for any observer – the class 

of so-called Friedman models is obtained. These models are characterized by a 

small number of parameters. It can be shown that it is possible to find a single set 

of parameters such that from these models a consistent picture of the actual state 

of the universe and its evolution can be drawn. This picture is in accordance with 

virtually all cosmological observations, amongst them the expansion of the uni-

verse, the  cosmic microwave background and its temperature fluctuations. For 

this picture, however, a price is to be paid: the existence of dark matter and dark 

 energy   has to be accepted. 

 In his commentary on Bartelmann   ’s paper,  Andreas Bartels  (University of 

Bonn) uses the standard model of cosmology as a striking example to illustrate 

three main tasks that models can fulfill: Firstly, they provide a net of theoretical 

relations that can be used to interpret data. Secondly, these data thus integrated 
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in the model may fulfill an  evaluative  function   by confirming or disconfirming 

theoretical relations of the model. Thirdly, there is also an explorative  function   of 

models that is responsible for the research dynamics of cosmology. Models do not 

only describe reality, they are also instruments for exploring reality. 

 What happens when a phenomenon is to be investigated for which no detailed 

and precise mathematical  model   can be derived or for which a model is available 

but too complicated to be analyzed? These are the questions addressed in the 

contribution by  Martin Golubitsky     (The Ohio State University). The author shows 

that in such cases the existence of  symmetry   can nevertheless help understand-

ing certain patterns of the system in question and enable new predictions and 

explanations. He illustrates this point by discussing three examples: In his first 

example, he discusses  symmetry   and   symmetry   breaking with respect to patterns 

in burner flames. The second example refers to the  symmetry   description of loco-

motor central pattern generators. Golubitsky    argues that this description allows 

several new predictions to be made. In particular, it makes possible to predict 

the existence of an unexpected but natural gait shown by mammals of differ-

ent species: the jump. The third example refers to the experimentally determined 

 symmetry   of the primary visual cortex. Golubitsky    outlines how, through  symme-

try   breaking arguments, an unexpected correlation between this  symmetry   and a 

variety of geometric visual  hallucinations can be predicted. He thereby refers to 

hallucinations experienced by test persons who have taken certain drugs. 

 In his commentary on Golubitsky’s    paper,  Thomas Reydon     (Leibniz Univer-

sity Hannover) addresses the epistemic virtues of general mathematical models. 

More specifically, he asks how symmetries (as well as broken symmetries) help 

scientists to understand patterns exhibited by various physical and biologi-

cal systems. He argues that the role of these models is more heuristic in nature: 

they only provide “how possibly” explanations that – when applied to biological 

systems – have to be supplemented by “how and why actually” explanations of 

functional, developmental and evolutionary biology. 

 In his essay,  Dirk Helbing     (ETH Zurich) is concerned with the modeling of 

 complex   systems, especially those  complex   systems that we find in the social sci-

ences. This endeavor raises a number of challenging methodological questions 

that Helbing    addresses on the basis of an analysis of a number of case studies 

from his own research. Helbing    is especially interested in the epistemological 

status of multiple models for the same phenomenon. How are these different 

models related? Are they all true, or is none of them true? And: Is there one true 

model that we will develop at some point, or do we have to be content with a  plu-

rality   of models? So far, science certainly confronts us with a  plurality   of models, 

and the question arises, for example, whether averaging the predictions of all 

such models leads to a better prediction. Helbing    concludes that a paradigm shift 
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towards a pluralistic or possibilistic modeling approach, i.e. an approach that 

integrates multiple world views, is overdue and argues that it can be useful to 

combine many different modeling approaches to obtain a good picture of reality, 

even though they may be inconsistent. 

  Stephan Hartmann     (LMU Munich) discusses Helbing   ’s insights and ideas 

from the point of view of contemporary philosophy of science. More specifically, 

Hartmann    distinguishes between different kinds of pluralism and elaborates on 

the question under which conditions the availability of multiple models is advan-

tageous from an epistemological point of view. 

 In his essay,  Uskali Mäki     (University of Helsinki) focuses on the role of models 

in economics and the methodological questions that the practice of modeling 

raises. Mäki    starts off by observing that models are a central tool in economics 

and any policy recommendation an economist gives is based on a model. At the 

same time, models are highly idealized and abstract from many features of the 

system under consideration. This prompts the question how economic models 

relate to the world. Or, to put it more philosophically, how does an economic 

model represent its target system? To address these questions, Mäki    presents 

a detailed theory of how economic models represent an economic system and 

shows how this theory fits into a realist philosophy of economics that he has been 

defending and elaborating for many years. Furthermore, he extends his frame-

work by distinguishing three broad ways in which modeling can be, and actually 

is, contested in the controversial discipline of economics. These correspond to 

three kinds of possible failures of modeling. 

 In his commentary , Julian Reiss     (Durham University) provides a detailed criti-

cism of Mäki   ’s account and makes a number of suggestions for how to fix it. Reiss    

is especially concerned with the application of economic models to practical and 

policy-related problems, which raises additional methodological problems. 

 In their essay,  Peter König   , Kai-Uwe Kühnberger     and  Tim Kietzmann     (Univer-

sity of Osnabrück) consider models of the function of the mind. This is an espe-

cially complicated task as the human mind is probably the most  complex   system 

on earth. Their ambitious goal is to present a unified model of low- and high-level 

cognitive systems. Such a unified model seems reasonable as high- and low-level 

cognitive systems implement similar structures despite their functional differ-

ences. 

 In their commentary,  Markus Werning     (Ruhr University Bochum),  Michela 

C. Tacca     (University of Düsseldorf) and  Alexandra Mrocko-Wąsowicz  (National 

Yang-Ming University Taipei) provide a detailed criticism of the specific model 

that König    and collaborators suggested and discuss alternative accounts. To do 

so, they focus on the visual domain and draw on the theory of neuroframes. 
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 The essay by  Reinhold Kliegl     and  Ralf Engbert     (University of Potsdam) presents 

an example of a model, located at the interface between experimental psychol-

ogy, cognitive neuroscience, and computational neuroscience: a model for eye-

movement control in reading. At a very basic level, reading can be described as an 

alternation between quick eye movements (saccades) and periods of relative rest 

(fixations). In cognitive modeling of this process, two prototypical approaches 

are distinguished. The serial processing approach assumes that attention moves 

from one word to the next, contingent on access of the meaning of a word. Also 

saccade programs are contingent on the completion of some lexical subprocess. 

In contrast, the parallel processing approach assumes that lexical and oculomo-

tor processes are only loosely coupled and that sometimes more than one word 

can be processed simultaneously. The SWIFT model is an implementation of the 

second approach. Following up previous proposals, the authors demonstrate that 

the sole reliance of a criterion of goodness of  fit   is not sufficient for a differenti-

ated evaluation and ranking of competing models. They illustrate the application 

of three additional criteria – model strictness, reliability of  data  , and unexpected 

model predictions – for the evaluation of the SWIFT model. 

 In his commentary,  Martin Hoffmann     (University of Hamburg) focuses on 

the relation between specialized models and more general and comprehensive 

empirical theories. He argues that Kliegl    and Engbert   ’s SWIFT model provides 

an example of a model that was developed largely independently of any more 

general psychological theory. By referring to the unexpected model predictions 

criterion, which Kliegl    and Engbert    apply to evaluate the SWIFT model, and relat-

ing this criterion to Lakatos   ’ methodology of research programmes, Hoffmann   

analyzes differences in the evaluation of models and theories. He finally proposes 

two necessary conditions that must be fulfilled in order to turn models into useful 

instruments for the development of a more general underlying theory. 

 Within the realm of the natural sciences, models and simulations are primar-

ily used in order to better understand and quantitatively explain natural phe-

nomena. By contrast, modeling in the engineering sciences focuses on designing, 

operating and controlling artificial systems and processes. In his contribution, 

 Wolfgang Marquardt     (RWTH Aachen) describes the outlines of a general meth-

odology for modeling  complex   kinetic phenomena that govern the behavior of 

chemical and biological process systems. Marquardt    explains how modeling 

and simulation techniques, as well as techniques for model identification and 

discrimination are combined with high resolution-measurements in the method-

ology in a highly elaborate way. In an iterative process, models and underlying 

(real or simulated) experiments are used for mutual refinement. This methodol-

ogy enables the successive design of more detailed models that are tested by an 

expanding data basis. Marquardt    concludes by illustrating this methodology by 
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three typical chemical  engineering   problems: reaction  kinetics  , multi-component 

diffusion in  liquids  , and energy transport in falling film flow. 

  Robin Findlay Hendry     (University of Durham) starts his commentary on Mar-

quardt   ’s paper by comparing the role of models in chemical  engineering   with 

the role models play in ‘pure’ chemistry. He then focuses on kinetic models of 

chemical reactions and discusses the mutual refinement of kinetic models and 

the corresponding experimental set-ups. He argues that the identification of the 

mechanisms that lead from the reactants to the products can be seen as a case 

of eliminative induction. Theoretical models of molecular  structure   and  reaction 

mechanisms provide the starting point for this process insofar as they delimit the 

set of mechanisms that have to be considered. 

 In the last essay collected in this volume,  Valerio Lucarini     (University of 

Hamburg) concerns the role of models and simulations in climate science. 

He explains why the use of these tools faces specific problems in this field of 

research. One problem is related to our imperfect knowledge of the initial con-

ditions, another to the imperfect representation of the processes of the system. 

Together, both deficits severely limit the possibility of providing realistic simula-

tions and predictions. Considerable difficulties are caused by the fact that climate 

science does not have laboratories where models and simulations could be tested 

against experiments. Finally, serious methodological problems are generated by 

the fact that the relevant processes of climate  change   occur on a large variety of 

spatial and temporal scales. Lucarini    argues that the macroscopic theory of non-

equilibrium  thermodynamics   provides a relevant framework for improving our 

understanding of climate  change   and our ability to model it. At the same time, he 

rejects the expectation that there will be fundamental progress in climate science 

in the next few decades simply because computers become more and more pow-

erful. 

 In his commentary,  Gregor Betz     (Karlsruhe Institute of Technology) distin-

guishes between those aspects of climate  change   that are known independently 

of any global climate model, and those that cannot be estimated without these 

models. He argues against the assumption that the chaotic nature of weather 

automatically – without any further empirical evidence – implies that the climate 

system is also chaotic. Given the  plurality   of global climate  models  , he then turns 

to the question whether and how one can empirically test, compare, and rank 

these rival models. To illustrate his points, Betz    focuses on Lucarini’s    proposal of 

a process-oriented  metrics   for model evaluation, which puts special emphasis on 

a better understanding of the key causal processes in climate systems. 

 In closing, we hope that this volume will encourage the reader to reflect upon 

the fascinating role of models in science and that it will stimulate further discus-

sions between scientists and philosophers of science.  
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  Matthias  Bartelmann 
 Cosmology – The Largest Possible Model?  

1              Laws of Nature and the Foundations of 
Cosmology 

 Upon which foundation should one build a model for the Universe as a whole? 

The idea that such a model should exist seems bold itself. Can we really believe 

that we might be able to construct a physical model for a unique object that we 

cannot experiment with, that we are part of and of which we can only see a very 

small section? The goal of this article is to explain that this does indeed seem pos-

sible, that mathematical simplicity is used as a guiding principle in this construc-

tion, and that the resulting world model is remarkably consistent with a wealth 

of observations. 

 Let us begin with a detour through the foundation of laws of nature in physics. 

It is important to realise that laws of nature do not describe nature herself, but 

human concepts of nature. Otherwise it would not be possible to replace estab-

lished laws by other, more general ones, as it has happened several times in the 

history of physics. Theories in physics are based on axioms chosen by physicists, 

and these axioms can be altered. 

 Newton’s axioms underlie classical mechanics. They distinguish four enti-

ties; bodies, forces, space and time, and formulate how bodies move in time 

through space under the influence of forces. Field theory, initiated by Faraday, 

attaches forces to space and gives force fields their own dynamics. Special Rela-

tivity realises that space and time have no independent existence and thereby 

connects forces, space and time. General Relativity explains how the presence of 

bodies and energy affects the structure of space-time. Thus, in a general-relativ-

istic field theory, the four initially separate entities of Newtonian physics are all 

linked together. 

 The dynamics of physical entities, i.e. their change in time, is described by 

differential equations. They themselves are not postulated, but derived from a 

more general concept overarching physics, namely that of an extremal  principle  . 

The best-known example is perhaps Fermat’s principle, which states that light 

rays connect the source and the receiver in such a way that the light travel time 

is extremal along them. The extremal  principle   underlying essentially all of the 

established theories in physics is the so-called principle of least  action  , or Ham-

ilton   ’s principle. The  action   itself is an abstract quantity that can be constructed 

under very general rules. It must be independent of any observer’s state of motion, 
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and it is typically chosen to be invariant under certain  symmetry   operations. Both 

criteria are expressed by the mathematical concept of  symmetry   groups. 

 Symmetry groups and  extremal principles currently form the deepest foun-

dation of physical laws. Which  symmetry   operations a physical theory should 

obey exactly is largely the physicists’ choice. Ultimately, however, no theory is 

acceptable that is in demonstrable conflict with experiments. 

 We know four fundamental interactions. The strong force keeps the funda-

mental building blocks of matter bound, the so-called hadrons. The weak force is 

responsible for certain conversions of particles into others, in particular through 

the so-called beta decay. Both act only on subatomic distances. Electromagne-

tism keeps atoms and molecules bound and is responsible for all interactions 

between charges and between matter and light. Gravity is by a large margin the 

weakest of the four interactions. Both electromagnetism and gravity have unlim-

ited range and thus determine physical interactions in the macroscopic world. 

Since the sources of electromagnetism are positive and negative charges, the 

effects of one type of charge can be shielded or compensated by the other type. 

Effectively, therefore, the range of the electromagnetic interaction is typically also 

limited. Shielding is impossible with gravity, as it knows only one type of charge, 

i.e. the mass. Electromagnetism as well as the strong and the weak interactions 

are described by a unified quantum field theory called the Standard Model of 

Particle Physics. Gravity has so far withstood all attempts to cast it into the form 

of a quantum field theory as well. 

 If we now return to cosmology, we realise that any cosmological model must 

essentially be derived from a theory of gravity as the only long-range force that 

cannot be shielded. The most advanced theory of gravity is Albert Einstein   ’s 

theory of General Relativity. We must thus begin with General Relativity in our 

construction of modern physical world models. 

 General Relativity can be seen as a prototypical example for a physical theory 

constructed as outlined above. It is based on the fundamental concept that the 

geometry of space-time, characterised by its  metric  , is a dynamical field deter-

mined by the presence of matter and energy. The dynamical equations of General 

Relativity, called Einstein   ’s field equations, follow from the principle of least 

 action  , with an  action   that combines the geometry of space-time with the pres-

ence of matter in what seems to be the most straightforward and simple way. 

 Einstein   ’s field equations form a set of ten independent, non-linear, partial 

differential equations that cannot be solved once and for all with a general 

scheme. Special solutions can be constructed once certain simplifying assump-

tions are being imposed. Typically, these come in the form of  symmetry   assump-

tions. We thus encounter  symmetry   considerations a second time at a more spe-

cific level. At a fundamental level, they were used to construct plausible physical 
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theories themselves, for which General Relativity is one example. Now,  symmetry   

assumptions are used a second time to identify classes of solutions of the dynami-

cal equations of this theory. To construct a simple class of cosmological solutions 

of General Relativity, Friedman first assumed that they should be spatially isotro-

pic and homogeneous. This means that arbitrary spatial rotations and transla-

tions should leave the observable universe unchanged for any observer. The solu-

tions so obtained form a class characterised by certain parameters that describe 

the matter and energy content of the Universe and its expansion behaviour at one 

point in time. Once these parameters are known or set, the world model is fixed. 

 The only justification Friedman gave for the  symmetry   assumptions was 

mathematical simplicity. Do these assumptions and the world models constructed 

upon them correspond to reality in any way? As we saw,  isotropy   demands that 

the Universe, as seen by any observer, should exhibit the same physical proper-

ties in all directions. At first sight, this seems to be manifestly incorrect: The night 

sky does not at all appear independent of direction. However, if the properties 

observed in the Universe are averaged over sufficiently large scales, they do in 

fact approach  isotropy  . The most striking example for this statement is the cosmic 

microwave background (CMB)   , which will be introduced and discussed further 

below. 

 If we observe at least approximate  isotropy  , so should any other observer in 

the Universe. Since the Copernican revolution, we have grown used to the notion 

that our location in space and time is by no means unique or central. If, however, 

the Universe is isotropic about all of its points, as this concept suggests, then it 

must also be homogeneous. 

 With these considerations, we have come a long way already. We have seen 

that theories in physics are constructed upon very general concepts, expressed 

by symmetries and  extremal principles, from which the dynamical differential 

equations follow. Of the modern theories of physics, only General Relativity is rel-

evant for the construction of world models. In order to find appropriate solutions 

of its field equations, Friedman introduced the further  symmetry   assumptions 

of spatial homogeneity and  isotropy  , with the sole justification of mathematical 

simplicity. When combined with these  symmetry   assumptions, the field equa-

tions of General Relativity reduce to the class of Friedman world models. Two 

questions then arise: First, does our Universe exhibit at least the qualitative fea-

tures of the Friedman models? Second, if so, is there a unique combination of 

the cosmological parameters appearing in these models that identifies a single 

Friedman model out of this class?  
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2    Empirical Evidence for the Standard Cosmology 
 Let us now investigate the class of Friedman solutions and the two questions 

raised above. These questions are asking whether the line of reasoning leading 

from the foundation of physical theories to the construction of physical world 

models finds its expression in nature. Two aspects of this procedure cannot be 

overemphasised: First, we have used  symmetry   assumptions and thus essentially 

mathematical concepts of regularity and simplicity as guiding principles. The 

Friedman models are a particularly simple class of solutions of Einstein   ’s field 

equations. Why should they have any  resemblance   with the real world we find 

ourselves in? 

 The astounding result of decades of cosmological research, as shall be out-

lined now, is that it is indeed possible to draw a consistent, quantitative picture of 

our actual universe and its evolution within the class of Friedman models. 

 Second, while all other areas of physics can conduct experiments with their 

objects, cosmology cannot. It should be kept in mind that all statements concern-

ing our universe as a whole are based on the comparatively tiny portion of it from 

which we can receive information. We thus vastly expand the realm of physical 

laws from our laboratories to the entire observable universe, and we extrapolate 

from the observable universe to the universe as a whole. The fact that the empiri-

cal evidence collected in cosmology does indeed seem to converge with the the-

oretical concepts underlying the class of Friedman models has a breath-taking 

aspect. 

 We shall now go through the most pronounced and relevant empirical pieces 

of evidence. 

   1.   Friedman models turn out to be generically unstable. They must either con-

tract or expand unless their parameters are very finely tuned. This means that 

any two points in space identified at a fixed time must either move towards 

or away from each other not because they move in space, but because space 

itself drags them along. In expanding models, every observer should see gal-

axies in his neighbourhood move away from himself with a velocity linearly 

increasing with distance. The most obvious question to begin with is thus 

whether our universe is in fact changing with time and whether the galaxies 

surrounding us do in fact move away from us in the linear fashion that the 

Friedman models predict.   

 This is a simple question in principle, but quite hard to address in practice. The 

problem is that our universe is not ideally homogeneous, as our existence dem-

onstrates. The matter density is not constant, but fluctuates locally. Regions of 

higher matter density attract neighbouring galaxies and imprint a local motion 
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on them that is superposed on any motion of cosmic origin. Since any cosmic 

velocity increases with distance in the Friedman models, the cosmic motion can 

be expected to dominate the local peculiar motion only beyond a certain distance. 

Thus, distant galaxies must be precisely observed and their distances measured, 

which is a demanding procedure. Slipher observed in the 1920s that galaxies 

typically move away from us, and Hubble found around 1930 that their velocities 

increase linearly with their distance, just as the Friedman models predict. If this 

is the correct interpretation of the mean motion of distant galaxies, we seem to 

be living in an expanding universe. The expansion rate, defined as the relative 

amount by which cosmological distances increase in time, is called the Hubble 

 constant   and is one of the fundamental parameters of any Friedman model. 

   2.   The inverse of the Hubble  constant   sets the  time scale for the cosmic expan-

sion, which turns out to be on the order of 10 billion years. Is this time scale 

long enough to encompass the observable evolution of the universe, or are 

there any known objects whose age credibly exceeds the age of the universe? 

How old are the Earth, the Galaxy and the oldest objects we find in our 

observable universe?   

 The decay of suitably long-lived radioactive isotopes such as  235 U or  238 U provides 

the best constraints of the terrestric and the galactic ages. The Earth turns out to 

be 4.6 billion years old. The age of the Galaxy is less well constrained, but likely 

between 7 and 10 billion years. Older objects exist in the universe whose age we 

can determine. These are in particular certain end products of stellar evolution, 

the white dwarfs, and a certain class of co-eval stellar populations, the globular 

clusters. Upper limits on their age touch approximately 12 billion years. The fact 

that these age limits broadly agree with the time scale set by the inverse cosmic 

expansion rate is reassuring. 

   3.   The observation that our universe is expanding today does not necessarily 

imply that it has been expanding during all of its past. Friedman models 

which are expanding today but were shrinking or stagnating for part of their 

history would also be possible. However, a few simple observations show 

that our universe cannot be of this type. The most intuitive of these is that 

objects exist whose spectra reveal that the universe was at least six or seven 

times smaller when their light was emitted than it is today. Thus, if our uni-

verse behaves like a Friedman model at all, its present expansion implies that 

it has always been expanding.   

 A monotonically expanding Universe keeps shrinking as we go back in time. Any 

two points then keep approaching each other until they come arbitrarily close 

after finite time. Any finite section of the Universe must have been very small at 



14       Matthias Bartelmann

early times. Backward in time, the cosmic matter is compressed by the shrinking 

volume it is enclosed in. Thus, matter and all other ingredients of the Universe 

must have been hotter in the past than they are now. If it once was very small, the 

whole universe may have been as hot as the interior of stars is now. Then, nuclear 

fusion processes must have occurred throughout the Universe, leading to the for-

mation of light elements such as deuterium, tritium or helium from hydrogen. In 

fact, interstellar gas contains about 25 % helium and 75 % hydrogen. This large 

amount of helium cannot have been fused by stars, but only if the entire Universe 

acted as a nuclear fusion reactor very early during its evolution. 

 It had been realised by Gamow and his collaborators already in the 1940s 

that the abundance of helium in the universe can be explained assuming that the 

Universe itself produced it in a hypothetical hot and dense, early phase. Effective 

fusion could have set in once the temperature of the Universe had dropped just 

below a billion degrees, and ended very quickly thereafter as the universe kept 

expanding and cooling. This happened when the Universe was between two and 

three minutes old. 

   4.   Charged and sufficiently dense particles at temperatures so high produce 

energetic thermal radiation. Thus, if the universe was once indeed hot enough 

to fuse helium, the thermal radiation then produced must still be present, 

albeit cooled down considerably as the Universe expanded. In fact, it was 

possible already in the 1940s to predict from the observed helium abundance 

that the thermal leftover radiation should now have arrived at a temperature 

of a few degrees Kelvin. Thermal radiation with such a low temperature has 

characteristic wavelengths in the microwave regime. Thus, the existence of 

a so-called cosmic microwave background (CMB)    could be predicted from 

the assumption of a hot beginning together with the observable amount of 

helium. An apparently isotropic, ambient radiation field with properties like 

the CMB was serendipitously discovered by Penzias and Wilson in 1965 while 

testing a telecommunication antenna. Immediately, Dicke and co-workers 

surmised that this radiation could indeed be thermal radiation left over from 

the very early Universe.   

 At that time, it was not possible to confirm that the radiation discovered was 

thermal radiation, as required by this interpretation. However, if one assumed 

that it was thermal, the temperature corresponding to the measured intensity was 

found to be approximately 3 Kelvin, in good agreement with the earlier prediction. 

 A satellite called the Cosmic Background Explorer, COBE in short, impres-

sively demonstrated the thermal nature of the CMB. One of its three instruments 

measured the electromagnetic spectrum of the CMB and found it to be in perfect 

agreement with that of thermal radiation with a temperature of 2.7 K. 
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 Another of COBE’s instruments solved an acute problem that had accumu-

lated since the discovery of the CMB. Since there are structures like galaxies, 

galaxy clusters and even larger objects in the Universe, the CMB is not supposed 

to be ideally homogeneous. Since the present cosmic structures should have orig-

inated from predecessors in the very early universe, those should have left their 

imprint on the CMB. It was estimated that temperature fluctuations with milli-

Kelvin amplitudes around the mean temperature should be found. However, 

when detectors finally reached the required sensitivity, such fluctuations were 

not detected. Even at a level of one part in a thousand, the CMB was found to be 

perfectly isotropic. 

 Since  isotropy   is one of the primary  symmetry   assumptions underlying the 

Friedman models, the remarkable  isotropy   of the CMB was impressive evidence 

in their favour. The lack of temperature fluctuations at the level expected from the 

existing cosmic structures was highly disturbing at the same time. A solution was 

proposed by Peebles in the 1980s. If cosmic structures consisted not of ordinary 

matter as we know it, but of a form of matter that does not participate in the elec-

tromagnetic interaction, the present cosmic structures could be reconciled with 

considerably smaller temperature fluctuations in the CMB since then the imprint 

of the cosmic structures in formation on the CMB could be substantially lower. 

Fluctuations of one part in 100,000 would then be expected. 

 At that level, COBE finally found these fluctuations in 1992. This can be seen 

as a turning point for cosmology, and at the same time as a piece of evidence 

that cosmic structures are not dominated by the electromagnetically interacting 

forms of matter that we know, but by some dark matter of hitherto unknown 

composition. 

   5.   The existence of dark matter was not surprising at that time. Rather, the impor-

tant result was that dark matter cannot interact electromagnetically. Already 

in the 1930s, Zwicky had found that the member galaxies of the galaxy cluster 

in the constellation Coma moved so fast that much more matter was needed 

to keep them gravitationally bound than could be inferred from the amount 

of light emitted by the cluster and its galaxies. The amount of mass necessary 

for balancing the motion of the galaxies was approximately ten times higher 

than that necessary to produce the light observed. A similar observation was 

made later at the level of individual galaxies. Their stars also move consider-

ably faster than they should if they moved under the influence of the gravity 

of their visible matter alone. Dark matter is thus seen on a hierarchy of levels 

in the Universe, but only the CMB requires it to be of a hitherto unknown form 

avoiding the electromagnetic interaction.  

  6.   The physics of the CMB and its temperature fluctuations are simple and 

well understood. The CMB was set free when the universe had become cool 
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enough for hydrogen atoms to form from the cosmic plasma. It can easily 

be calculated that the temperature had to drop to approximately 3,000 K for 

this to happen. When this temperature was reached, the universe was just 

below 400,000 years old. The hydrogen plasma combined to form hydrogen 

gas within the relatively short time of about 40,000  years. Since then, the 

photons of the CMB could propagate almost freely throughout the universe.   

 Of course, it is not possible to predict the exact structure of the temperature fluc-

tuations in the CMB since they depend on presumably random initial conditions 

whose exact realisation we cannot know in detail. However, predicting their sta-

tistical properties, in particular what the amplitudes of temperature fluctuations 

of a given size should be like, was possible as early as in 1970. This, however, 

depends on some of the most important cosmological parameters, such as the 

densities of ordinary and dark matter, the total matter and energy density in the 

universe, its expansion rate and the like. The statistical analysis of detailed and 

sensitive measurements of the CMB temperature fluctuations could thus reveal a 

good fraction of the cosmological parameters, once compared with theory. 

 It is an amazing fact on its own that precise measurements of CMB struc-

tures confirmed the theoretical predictions in detail and could in turn be used to 

accurately determine cosmological parameters. For this reason, measuring and 

interpreting CMB temperature fluctuations has developed into one of the main 

objectives of current cosmological research. After COBE, two further CMB satel-

lites have been launched. The Wilkinson Microwave  Anisotropy probe or WMAP 

has been observing between 2001 and 2010, while the Planck satellite began 

operations in 2009. The CMB data taken so far have greatly helped constraining 

the cosmological parameters with high precision. They have not revolutionised 

the cosmological model itself, but they were decisive for turning it into the cos-

mological standard model, whose parameters are now determined typically with 

relative uncertainties of 10 or less per cent. 

   7.   So far, we have discussed only one piece of evidence probing the late universe, 

namely the cosmological expansion reflected by the systematic recession of 

the galaxies in our cosmic neighbourhood. In contrast, the fusion of helium 

and other light elements and the CMB both probe the early universe, albeit 

with a large separation in time. Helium fusion ended about three minutes 

after the beginning, while the CMB was released almost 400,000 years later.   

 We have touched an important argument that we need to accentuate further: It 

is possible to interpret these three types of observation in favour of the Friedman 

models. The recession of the galaxies agrees with the intrinsic instability of the 

Friedman models and exhibits the expected expansion behaviour. Moreover, it 
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defines a  time scale for the evolution of the universe which agrees reasonably 

well with the age determinations of old cosmic objects. 

 Its present expansion suggests that the universe originated in a hot and dense 

early state, which allowed the fusion of the large amounts of helium that are actu-

ally observed. This, in turn, gives rise to the prediction of left-over thermal radia-

tion and thus of the CMB, whose temperature of a few degrees Kelvin is directly 

related to the amount of helium observed. The level of the temperature fluctua-

tions in the CMB is a strong argument in favour of a form of dark matter that 

avoids the electromagnetic interaction. The statistics of the CMB temperature 

fluctuations depend on the details of the cosmic matter content in a precisely 

predictable way, enabling accurate constraints of cosmological parameters. The 

abundance of ordinary matter derived from the CMB agrees precisely with the 

abundance needed to understand the  efficiency   of the helium fusion. 

 This indicates that these pieces of evidence do not only individually support 

the  class  of Friedman models, but that they can be combined to jointly support a 

 single  Friedman model. This is an important step forward. Friedman models do 

not only allow the interpretation of snapshots of the universe taken at vastly dif-

ferent times, but they seem to single out one specific Friedman model that allows 

the consistent interpretation of all cosmological evidence discussed so far. 

   8.   This picture can be extended by a few more colourful strokes. Further evi-

dence is available that probes the Friedman models at epochs intermediate 

between the CMB and today.   

 Exciting and lively debated is the direct measurement of the cosmic expansion 

by means of a particular type of stellar explosion, the so-called supernovae of 

type Ia. We believe that such explosions arise when a white dwarf star is driven 

above its upper mass limit by matter overflowing from a companion star. Above 

this well-defined mass limit, the white-dwarf material is explosively ignited 

which disrupts the entire star. The amount of exploding material is thus known, 

approximately 1.4 solar masses, and therefore also the energy released, which 

sets the luminosity of the supernova. From the observed flux, we can then infer 

its distance. Its spectrum reveals when in cosmic history the supernova exploded. 

Type-Ia supernovae thus allow the reconstruction of the evolving of distances 

with the cosmic expansion, i.e. they directly probe the cosmic expansion history. 

 In doing so, they reveal an astonishing fact: When the universe was about 

half as old as it is now, its expansion began to accelerate. This is utterly counter-

intuitive. We expect gravity to decelerate the cosmic expansion because of the 

usual gravitational attraction. Accelerated expansion is allowed, however, by 

General Relativity, provided there is a substance that Einstein    introduced under 
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the name of cosmological  term   or cosmological  constant   in order to stabilise the 

intrinsically unstable Friedman models. 

 We do not know what the cosmological  constant   could be. Attempts at 

explaining it in terms of a quantum field lead to the concept of dark  energy  , intro-

duced for the sole purpose of interpreting the accelerated cosmic expansion indi-

cated by type-Ia supernovae. 

 Strange as they may sound, these ideas receive substantial support from the 

CMB. Among the most solid conclusions from the statistical analysis of the CMB 

temperature fluctuations is the insight that the universe must be spatially flat. This 

is concluded directly from the size of the most pronounced warm and cool spots 

in the CMB. At fixed physical size, they appear larger if space is positively curved, 

and smaller if it is negatively curved. However, spatial flatness in the Friedman 

models is possible only if the matter or energy densities of all components of the 

cosmic fluid add up to a critical value of about one proton in five cubic metres. 

We thus know what the total matter and energy density in the universe is, but we 

know also what the densities of dark and ordinary matter are. Both together sum 

up to only about 30 % of the known total amount. If the difference is contributed 

by the cosmological  constant   or the dark  energy  , a model emerges which can pre-

cisely reproduce the expansion history probed by the type-Ia supernovae. 

 Another important class of observations probes the large-scale structure in 

the universe. Galaxies are not randomly distributed in space. Rather, they form 

galaxy clusters and extended filamentary structures, many millions of light-years 

long. Like the structures in the CMB, these structures in the distribution of cosmic 

objects carry most valuable statistical information. In particular, there is a char-

acteristic length scale imprinted into the galaxy distribution which was set at a 

very specific epoch in cosmic history which is defined by the total matter density 

compared to the energy density of radiation in the universe. This implies that, if 

this characteristic scale in the galaxy distribution can be measured, the matter 

density can be inferred from it. 

 This approach requires galaxy surveys extending to distances that are sub-

stantially larger than the characteristic scale to be measured. Surveys of such size 

have become possible only in the recent past. They confirmed that the total matter 

density is about 30 % of the critical value, in agreement with the CMB data. 

 Yet another probe of cosmic structures dominated by dark matter is provided 

by the so-called gravitational lensing effect. General Relativity implies that con-

centrations of mass or energy deflect light in a way comparable to convex optical 

lenses. This gives rise to a multitude of interesting effects of different magnitude. 

In our context, the most important one is that any light ray propagating from a 

distant source to us must be deflected multiple times by the intervening large-

scale structures, irrespective of what kind of matter they are composed of. This 
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deflection gives rise to faint distortions of background galaxies which are indeed 

measurable, albeit with a formidable effort. 

 This cosmological weak lensing effect cannot distinguish between diluted 

matter that is clumped to a large degree and dense matter that is less clumpy 

because it is only sensitive to the absolute amount of inhomogeneity in the matter 

distribution. However, the results are well in agreement with a Friedman model in 

which the matter density reaches approximately 30 % of the total, critical density, 

while the rest is contributed by the cosmological  constant   or dark  energy  .  

3    Consequences and Perspectives 
 What does it all mean? We have collected a substantial body of evidence in favour 

of the Friedman class of cosmological models. It is worth recalling what they are 

based upon: The only two ingredients were General Relativity, combined with 

spatial  isotropy   and homogeneity. Going one level deeper, General Relativity itself 

is built upon the concepts that the geometry of space-time adapts to the pres-

ence of matter and energy and that the experimentally well-established theory 

of Special Relativity remains locally valid. The dynamical equations governing 

the way how geometry reacts to the presence of matter and energy again follow 

from underlying  symmetry   and  extremal principles extending far beyond General 

Relativity itself. Interestingly, it can be mathematically proven that General Rela-

tivity is unique in a quite general sense. Under broadly acceptable assumptions, 

Einstein   ’s field equations are even the only dynamical equations possible. 

 The class of Friedman world models thus seems to stand on a rock-solid theo-

retical foundation, supported by a large body of empirical evidence. However, 

ways out are possible along the paths sketched in the beginning. 

 Either, one remains within General Relativity, then at least one of the two  sym-

metry   assumptions must be abandoned that the Friedman models are built upon. 

Any deviations from  symmetry   must, however, obey the tight limits on  isotropy   

set in particular by the temperature of the CMB and its fluctuations. More vulner-

able is the assumption of homogeneity, which is much harder testable, if at all. If 

we decided to give it up, we would have to accept being located not at a random, 

but at a fairly special place in the universe. While this is not at all impossible, it 

is quite unlikely that a sufficiently special place exists from where the universe 

looks as peculiar as it does, in particular in view of its accelerated expansion. 

 Alternatively, we could give up or modify General Relativity. The most gentle 

way of doing so consists in adding terms to the  action   that are still in agreement 

with the general underlying symmetries. The principle of least  action   then pro-
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vides a standardised way of deriving modified field equations to replace Ein-

stein   ’s equations. Based upon them, Friedman’s  symmetry   assumptions could 

be re-established to arrive at modified or generalised Friedman models. Alterna-

tively, at least  isotropy   could be questioned in addition. However, General Rela-

tivity has so far survived all experimental tests it was subjected to. Admittedly, 

the most stringent tests all concerned local, weak gravity in the Solar System, but 

nonetheless these must also be met by alternative theories. 

 More radical approaches are also possible and are being pursued. One con-

sists in extending General Relativity to more than four space-time dimensions. 

This was already suggested by Klein    and Kaluza in the 1920s in attempts to 

unify electromagnetism and gravity and to explain quantum aspects of matter. 

The additional, fifth, dimension then introduced had to be considered as com-

pactified, or rolled up, in order to be macroscopically hidden. This concept has 

been revived in current theories. Another approach aims at a quantum theory of 

gravity, which still seems well beyond the horizon. 

 Perhaps the most conservative point of view accepts that the foundations of 

the Friedman models are hard to shatter. Then, accepting the Friedman models 

and testing them against the empirical evidence leads to the single, standard 

model of cosmology that provides a consistent framework for virtually all cos-

mological observations. It comes, however, at the considerable price that dark 

matter and dark  energy   must then be accepted. We have some promising and 

testable ideas regarding the nature of the dark matter. Most likely, it is composed 

of weakly interacting, massive elementary particles. No suitable particle has yet 

been discovered, but it seems plausible that if dark-matter particles exist, either 

indirect evidence for them will be found at the Large Hadron Collider, or direct 

evidence in dedicated recoil experiments. 

 Dark energy, in contrast, remains essentially mysterious to us. It could be 

Einstein   ’s cosmological  constant  , but then its theoretical foundation seems 

unsatisfactory. It could be some quantum field taking part in the cosmological 

evolution in some way, but so far there is no empirical evidence whatsoever that 

the dark  energy   might depend on time. It is well possible that, if General Relativ-

ity persists, we have to accept the cosmological  constant   in just the same way as 

we have to accept other constants of nature, such as the fine-structure constant 

or the elementary charge. 

 Unveiling the nature of the dark matter and the dark  energy   are at the heart 

of current cosmological research. In the context of cosmological model building, 

this is perhaps an irrelevant detail. What is important, however, is a remarkable 

reversal in the order of arguments usually leading to the construction or the dis-

missal of a model. The foundations of the Friedman class of cosmological models 

appear so solid that it seems more appropriate to accept the seemingly exotic 
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consequences of dark matter and dark  energy   than to abandon the model. The 

situation reminds of a letter Einstein    wrote to Sommerfeld    after he had completed 

General Relativity. In this letter, Einstein    remarked that he would lose no words in 

defending the theory because Sommerfeld    would be convinced of it at a glance. In 

the cosmological standard model, the simplicity and the high degree of  symmetry   

of the primary assumptions seem more appealing than the apparently preposter-

ous consequences might be repelling.  

4     Dark matter, dark  energy  , and the future of the 
Universe 

 Up to this point, the cosmological standard model may appear impressive by its 

simplicity and its  consistency   throughout almost all of cosmic history. We have, 

however, swept one of its major problems under the rug, which has to do with an 

apparent violation of causality. 

 As we have seen before, the CMB was released from the cosmic plasma when 

the universe was approximately 400,000 years old. During this time, light can 

obviously travel by no more than 400,000 light years. When compared to the 

full CMB sky, this distance corresponds to a very small angular scale. It spans an 

angle approximately as large as twice the full moon. Since no information can 

propagate faster than the speed of light, two points on the CMB separated by 

more than twice the so-called horizon radius of 400,000 light years could never 

communicate prior to the release of the CMB. How was it possible then that any 

two points on the CMB separated by more than a few angular diametres of the full 

moon could ever have arranged to attain the same temperature? How could the 

temperature information at one point on the CMB sky ever have propagated far 

enough to adjust the temperature to the same value everywhere? 

 One might object that this is of course necessarily so – in a model universe 

that has been set up to be ideally isotropic. By construction, the temperature 

must then be the same everywhere on the observer’s sky, thus the observation 

of a CMB sky with constant temperature just appears as a consequence of the 

far-reaching  symmetry   assumptions that we started out with. This is not a way 

out, however, because coherent structures exist in the CMB that are larger than 

the horizon radius. Thus, even if we would be willing to accept  isotropy   of the 

CMB temperature without asking further how it could have been established in 

absence of causal mechanisms, the existence of coherent structures larger than 

the horizon radius implies that the processes creating these structures must have 
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acted in a causally connected way even though the structures extend well beyond 

the scale of causal connection. This is an unbearable imposition. 

 The only feasible way out seems to be postulating a very early epoch in the 

cosmic evolution in which the universe expanded in a very strongly accelerated 

fashion. This epoch is called cosmological inflation. Among the primary pur-

poses of its introduction was the causality  problem   just sketched. It solves this 

problem by assuming that tiny, causally connected regions in the primordial uni-

verse were stretched to cosmological size by the inflationary  expansion  , turning 

a potentially small section of a region that was previously in causal contact into 

our observable universe. 

 It is unclear what this epoch of cosmological inflation could have been driven 

by. A suitable quantum field called the inflaton is postulated for this purpose. This 

may seem helplessly unsatisfactory, but it has observable consequences. One of 

them is that any quantum field must undergo fluctuations because of Heisen-

berg’s uncertainty principle. During the inflationary epoch, these quantum fluc-

tuations would have been stretched to macroscopic and even cosmological scales 

such that they could later form the seeds for the rich variety of cosmic structures 

we see today. Even though it may appear ludicrous, this hypothesis allows a 

calculation of the expected statistical properties of cosmic structures produced 

that way. Measurements of the temperature fluctuations in the CMB confirm this 

expectation precisely. 

 This gives rise to the truly breath-taking notion that cosmic structures may 

have originated in quantum fluctuations of a primordial inflaton field that drove 

the early phase of accelerated expansion. If this seems incredible, we must recall 

that we have now entered another phase of accelerated cosmic expansion, as 

demonstrated directly by the type-Ia supernovae and indirectly by the CMB.   
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  Andreas   Bartels 
   The Standard Model of Cosmology as a Tool 
for Interpretation and Discovery 
 Commentary on Matthias Bartelmann     

         Science does not live with facts alone. In addition to facts, it needs models. Sci-

entific models fulfill two main functions with respect to empirical facts. First, 

they provide a net of theoretical relations by which we may  interpret  the data. 

By embedding data into the standard model of cosmology (sometimes by iden-

tifying the data as fulfilling a certain  prediction  of the theory), a fact about the 

universe that would otherwise be rather contingent and unrelated to other facts, 

will be located at a particular place in the causal net of the model, and hence 

will be supplied with  evidential  status with respect to other parts of the model. 

In reverse direction, the data thus integrated in the model may fulfill   evaluative  

function: When further analyzed, they turn out to  confirm  or to  disconfirm  theo-

retical relations of the model. In the latter case, the model has to be modified 

or to be rejected altogether. Empirical data, which have been integrated into the 

model, cannot only confirm or disconfirm the model, but they can also be used to 

 specify  the values of theoretical parameters of the model. 

 This sort of interaction between the data and the model constitutes what may 

be called the  descriptive  (or puzzle solving) dimension of science. But there is 

also a   explorative  function of models that is responsible for the research dynam-

ics of cosmology. Models do not only  describe  reality, they are also instruments 

for  exploring  reality. They are not only involved in the  integration  of known data, 

but also in the  discovery  of new data. This function is demonstrated by the stan-

dard model’s prediction of the existence of dark matter and dark  energy   in the 

actual universe. The model requires, under the assumption of some previously 

accepted interpretations (flatness and critical density), that facts, not yet detected 

by observations, do exist. In order to be able to play that sort of role, the model 

must have gained high reputation (with respect to former successes in integrating 

data). Because of this reputation (contrary to the case of testing the model), not 

the model, but the observations are blamed for the disagreement of the observed 

data with predictions of the model. In contrast, for example, with the case of 

the deviation of the orbit of Uranus, compared to the predictions of Newtonian 

gravitation theory, assuming that some additional boundary condition is present 

that has not yet been detected by observation, would be no option. All possible 

boundary conditions have already been included in the model. The fact is also not 
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conceived as an  anomaly   of the theory, but on the contrary, as indicating that, for 

the actual observations, there are  some hidden facts that have not been uncovered 

by these observations . Actually, the model shows that our observations have been 

blind for important facts as yet; facts required by the authority of the model – this 

makes the case distinct to the usual case of prediction of novel facts by a model. 

 Matthias Bartelmann   ’s presentation of the present state of research in cosmol-

ogy nicely demonstrates how these four different sorts of interactions between 

models and facts are actually fulfilled: Interpretation (of observed facts by the 

model), evaluation (of the model by the facts), specification (of the model by the 

facts), and exploration (of not yet observed facts by the model). 

  Interpretation : The discovery of the cosmic microwave background (CMB)    

exemplifies a case of interpretation. After the unintentional finding of the iso-

tropic radiation background by Wilson and Penzias in 1965, it appeared that this 

radiation might be interpreted as the microwave background predicted by Gamow 

and collaborators in the 1940s as the relict of the hot period of the universe near 

the big bang, in which the helium observed in the actual universe has been pro-

duced. The general background that made this interpretation possible was the 

Friedman class of models as a tool for the scientific understanding of the actual 

universe. Questions that had to be answered in order to launch that interpretation 

were: First, is the measured radiation actually  thermal  radiation, as the model 

requires? (This question has been answered to the positive by the later COBE find-

ings). Second, are there fluctuations in the radiation as they have to be expected 

in order to account for the observed inhomogeneity of the matter distribution of 

the observed universe? To this question, the researchers, in the first instance, did 

not get the expected answer: the necessary fluctuations did simply not appear. 

 At that point the interpretation relation between the data (the COBE mea-

surement results) and the model turns into an explorative relation: The disagree-

ment between the measurements and the alleged inhomogeneity could possibly 

be removed, if the model would be enriched by additional mechanisms. Such an 

additional mechanism is the invention of the dark matter hypothesis: “If cosmic 

structures consisted not of ordinary matter as we know it, but of a form of matter 

that does not participate in the electromagnetic interaction, the present cosmic 

structures could be reconciled with considerably smaller temperature fluctua-

tions in the CMB since then the imprint of the cosmic structures in formation on 

the CMB could be substantially lower” (Bartelmann    2011, 6). According to the 

dark matter hypothesis, dark matter had no interaction with light, and thus does 

not show up in the CMB data in the way ordinary matter does. If no such addi-

tional mechanism would have been available to remove the disagreements of the 

CMB data with the theoretical requirements, then this would have meant a poten-

tial negative  evidence   for the standard model of cosmology. 
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  Evaluation : Actually, the measured temperature fluctuations in the CMB 

data have turned out to be the most decisive tool for testing the standard model. 

First, in 1992, the new fluctuation predictions, on the basis of the dark matter 

hypothesis, were confirmed by COBE measurements. Bartelmann    comments this 

finding as the decisive breakthrough in recent cosmology: “This can be seen as 

a turning point for cosmology, and at the same time as a piece of evidence that 

cosmic structures are dominated not by the electromagnetically interacting forms 

of matter that we know, but by some dark matter of hitherto unknown composi-

tion” (Bartelmann    2011, 6). What appeared as a major challenge for the original 

standard model in the first instance, had turned out to provide some impressive 

confirmation of the enlarged version of the model. Even if the CMB data gained 

their theoretical relevance only by means of the background of an interpreta-

tion provided by the standard model, and thus were “theory-dependent” in that 

sense, this did not result in a problematic status of that empirical data concerning 

their capacity for testing the standard model. Instead, it appeared that the CMB 

data entail aspects conflicting with the original standard model and thus provoke 

a modification of it. Again, the prediction’s compatibility resulting from that 

modification with the CMB data was not self-guaranteed, but actually appeared. 

In retrospect, CMB not only provided positive evidence for the standard model, 

but also turned out to work as a detector for the limits of the model – a circum-

stance that increases the empirical credibility of the model all the more. Since 

the model’s confirming evidence not simply “fits” the model’s predictions, but 

discloses some missing pieces of the puzzle, the evidence turns out to be highly 

 model- independent   . There obviously exists no self-contained agreement between 

the data and the model produced by the model’s interpretation of the data. 

  Specification : Empirical data do not only have the capacity to confirm or to 

disconfirm a model. They can also be used to  specify  the values of the model’s 

theoretical parameters. This connection between confirmation and specification 

of theoretical parameters has most clearly been pointed out by Clark Glymour    in 

his bootstrap model of  confirmation   (Glymour    1980). He claimed that in interest-

ing cases of theory confirmation the confirming evidence will not speak in favor 

of a theory, unless the evidence has been used, in connection with some part of 

the theory, as a resource to specify values of some parameters of the theory. To 

speak in favor of a theory therefore means to specify the values of those theo-

retical parameters that must be known to the scientist in order to enable him to 

determine whether the data satisfy some equations of the theory. 

 There are strong theoretical connections, according to the enlarged standard 

model, between the statistical properties of the temperature fluctuations in the 

CMB and important cosmological parameters, such as the densities of ordinary 

and dark matter, the total matter and energy density, and the expansion rate of 
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the universe. Thus, the measurement results for these statistical properties also 

allow for specifications of those important parameters (cf. Bartelmann    2011, 7). 

Furthermore, the statistical analysis of the CMB, provides a measure of the global 

curvature of space. The results have been in favor of the global flatness of the uni-

verse; this, in turn, means that the universe must have a  critical density  which is 

about three times the observed matter density of the universe. The determination 

of the critical density leads to a prominent further prediction of the model: Even 

if dark matter is included, there is a gap of 70% between the critical density and 

the matter-energy of the universe. This means that there must be a high amount 

of  dark  energy    in the universe. 

  Exploration : I have already mentioned that the use of the CMB data for the 

evaluation of the standard model also discloses some theoretically highly relevant 

disagreements between the data and the model. The data roughly fit the model, 

but to yield a precise fit, some modifications of the model would be required. 

Thus, the example of the recent development of the standard model of cosmol-

ogy confirms the insight proposed by philosophers of science, such as Kuhn    

and Lakatos   , according to which a disagreement between data and the model 

does not necessarily lead to a “falsification” of the model. There is an alternative 

scenario of postponed  falsification  , according to which the scientists continue 

using the model as long as all possible resources to remove the disagreement by 

modifications, either in initial and boundary conditions or in the equations of 

the theory, have been exhausted. But even if this is not plainly wrong, it seems at 

least to miss a decisive point as highlighted by our current example: Depending 

on the credibility of the corresponding model – and the credibility of the stan-

dard model of cosmology was extremely high when CMB was discovered – it can 

happen that the scientists take the disagreement as a positive indication of some 

not yet detected mechanisms. Then the data – in connection with the model – 

no longer figure as a tool for confirming or disconfirming an existing theory, but 

seem to transmute into a tool of  exploration  aiming at the discovery of possible 

missing pieces in the theoretical picture. Confirmation and disconfirmation are 

present also then, but related to the testing of particular mechanisms the intro-

duction of which have been provoked by the data. 

 The new pieces within the theoretical picture, as demonstrated by the case 

of the cosmological standard model, may exhibit new theoretical riddles. Such 

a riddle is presented by Bartelmann    in the last part of his paper, titled “Dark 

matter, dark  energy  , and the future of the Universe”. The high  isotropy   of CMB in 

the recent period of the universe, Bartelmann    argues, provokes the question of 

“how could the temperature information at one point of the CMB sky ever have 

propagated far enough to adjust the temperature to the same value everywhere” 

(Bartelmann    2011, 12). This again is the starting point for the invention of a new 
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mechanism to be added to the standard model, namely the mechanism of the 

 inflationary  expansion   . 

 The example of the standard model of cosmology clearly demonstrates how 

methodology of science misses scientific practice, if it is only devoted to the 

confirmation-or-falsification aspect of the dynamics of theories. New data drive 

the development of a theory not only by providing new information with respect 

to the evaluation of theories, but also – and sometimes more importantly – by 

provoking new ideas concerning the incorporation of new mechanisms into the 

theory. The observations not only pass their judgment on the predictions of a 

model – sometimes they drive the generation of new predictions. In those cases, 

the observations – on the basis of a well-established model – initiate the discov-

ery of real mechanisms that the former picture had neglected.  
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      Martin  Golubitsky 
Patterns in Physical and Biological Systems      
       Mathematics can be applied in many ways in science, but let’s begin by focus-

ing on one typical caricature. Study an application until it is possible to derive 

a detailed mathematical  model  . Then use mathematics (by which we include 

both analysis and computation) to solve that model and make predictions. 

Compare the results of the model with experiments; if there is a discrepancy 

refine the model and iterate the process. Spectacularly successful examples of 

this caricature include the  n -body problem (a model for planetary motion) and 

the Navier-Stokes equations (a model for fluid motion) – though there are many 

other examples. 

 The question that we want to discuss here is what happens when a model is 

too complicated to be analyzed or when no detailed model can be derived. Can 

mathematics still be used to help understand that application and even to make 

predictions? The answer is yes – but one must ask the right kind of question. 

 The common approach is to understand the structure that a detailed model 

must have and then use that structure to make predictions about the kinds of 

solutions one can expect the unknown equations to produce. In the past 50 years 

this meta-principle has appeared in a number of different guises including, for 

example, catastrophe theory (R. Thom, 1972; E.C. Zeeman   , 1977), bifurcation 

theory (J. Guckenheimer and P. Holmes, 1983; M. Golubitsky    and D.G. Schaeffer, 

1985), and  symmetry-breaking and pattern formation (L. Michel, 1972; D.H. Sat-

tinger, 1979; M. Golubitsky    et al., 1988; M. Golubitsky    and I. Stewart   , 2002). In 

these theories some structure is assumed and then the kinds of solutions consis-

tent with that structure are classified. Also, in these theories new solutions are 

found by classifying typical transitions as parameters are varied. 

 For example, catastrophe theory classifies the expected transitions between 

critical points as parameters are varied (assuming that the model has a potential 

function) and bifurcation theory classifies the expected kinds of dynamics that 

occur in systems of differential equations near an equilibrium that loses  stabil-

ity   as a parameter is varied. In both theories the expected transitions depend on 

the number of (independent) parameters that the model is assumed to have. In 

 symmetry-breaking and often in pattern formation the additional assumed struc-

ture is a group of symmetries for the model equations. 

 This article will focus on  symmetry-breaking and pattern formation in its 

simplest form. We will discuss two applications where no detailed system of 

model equations is known, but where a group of symmetries for these unknown 

equations can safely be assumed. We will assume that there is a homogeneous (or 
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group invariant) equilibrium and classify the  symmetry   properties of new solu-

tions when that equilibrium loses  stability   (a  symmetry-breaking bifurcation) as 

a single parameter is varied. And then – we will interpret these results for the 

application. The focus will be on applications and predictions; only references 

will be given for the needed mathematics. Our exposition will follow closely 

the descriptions of these applications given in  The Symmetry Perspective  by (M. 

Golubitsky    and I. Stewart   , 2002) (indeed some of the material is taken verbatim 

from this volume). This reference also supplies many of the mathematical details 

behind the arguments that we give here. 

1     Patterns in Flames 
 There is a huge literature on patterns in a variety of classical fluid dynamical and 

chemical reacting systems including the Taylor-Couette experiment, Bénard con-

vection, the Faraday experiment, and the Belouysov-Zhabotinskii reaction. See, 

for example, the references in (M. Golubitsky    and I. Stewart   , 2002). An experi-

mental system that has received somewhat less discussion is the pattern-rich 

porous plug burner studied for many years by the physicist Michael Gorman at 

the University of Houston (M. Gorman et al., 1994a,b). 

 A cross-section of Gorman’s system is shown in  Figure 1  (left). Viewed from 

above the burner is circularly symmetric. The flame is ignited on top of the burner 

and maintained by the fuel flowing continuously through the burner. A typical 

steady flame pattern is also shown in  Figure 1  (right). 

 Figure 1    :  Cross section of a porous plug burner and a typical pattern formed by the flame on 
the burner’s top surface.   Images courtesy of M. Gorman.
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   Symmetry enters the discussion of flames most prominently through time-

periodic states. A theorem that has been proved many times in the literature in 

specific applications, but whose validity depends only on the existence of cir-

cular  symmetry   (M. Golubitsky    et al., 1988), is the following. When a circularly 

symmetric equilibrium of a circularly symmetric system (see  Figure 2  (left)) loses 

 stability   to time-periodic oscillations two states form: rotating waves and stand-

ing waves. A  rotating wave  is a state whereby time evolution of the state is given 

by rigid rotation and a  standing wave  is a time-periodic state that has at least one 

line of  symmetry   for all time. The physical implication is that when a rotating 

wave is found in an experiment, it can be presumed that standing waves are also 

present; hence it is not surprising that the standing waves will also be observed. 

    Figure 2    :  Flames on circular burner. (Left) Circularly symmetric flame; (right) rotating two-cell 
flame. Images courtesy of M. Gorman.  

    Figure 3    :  Standing wave flames on circular burner. Two images on one trajectory illustrating 
same four lines of  symmetry  . Images courtesy of M. Gorman.  
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This is precisely what Gorman found. He observed a rotating wave in the flame 

experiment (see  Figure 2  (right)) and sometime later (a year or so, as it happened) 

Gorman also found the standing wave (see  Figure 3 ). 

2          Quadruped Central Pattern Generators 
 It is well known that all horses walk and that some horses trot while others pace. 

In addition squirrels bound and deer will sometimes pronk. There is one feature 

that is common to all  gaits: they are repetitive; that is, they are time-periodic. 

 In the pace, trot, and bound the animal’s legs can be divided into two pairs – 

the legs in each pair move in synchrony, while legs in different pairs move with a 

half-period phase shift. The two pairs in a  bound  consist of the fore legs and the 

hind legs; the two pairs in a  pace  consist of the left legs and the right legs; and 

the two pairs in a  trot  consist of the the two diagonal pairs of legs. The quadru-

ped  walk  has a more complicated cadence (each leg moves independently with 

a quarter-period phase-shift in the order left hind, left fore, right hind, and right 

fore), whereas the quadruped  pronk  is a simple motion (all four legs move syn-

chronously). 

 We summarize the descriptions of these five  gaits in  Figure 4  by indicating 

the phases in the gait cycle when each given leg hits the ground. For definiteness, 

we start the gait cycle when the left hind leg hits the ground. 

 Figure 4    :  Five standard quadrupedal  gaits.  
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   (J.J. Collins    and I. Stewart   , 1993, 1994) and (G. Schöner et al., 1990) made the 

observation that each of these  gaits can be distinguished by  symmetry   in the fol-

lowing sense.  Spatio-temporal symmetries are permutations of the legs coupled 

with time shifts. So interchanging the two fore legs and the two hind legs of a 

bounding animal does not change the gait, while interchanging the two left legs 

and the two right legs leads to a half-period phase shift. In a walk permuting 

the legs in the order left hind to left fore to right hind to right fore leads to a 

quarter-period phase shift. Based on these  gaits we consider three symmetries: 

the bilateral  symmetry   that simultaneously interchanges left legs and right legs; 

the transposition that interchanges front and back legs; and the walk  symmetry  . 

Table 1 lists which of these symmetries are applicable to each gait and, if appli-

cable, the associated phase shift. 

    Table 1   : Phase shifts corresponding to leg permutation symmetries in standard quadrupel gaits  

 Gait left-right front-back walk

trot 1/2 1/2 n.a.
pace 1/2 0 n.a.
walk 1/2 n.a. 1/4
bound 0 1/2 1/2
pronk 0 0 0

 Biologists often make the assumption that somewhere in the nervous system is a 

locomotor  central pattern generator  or CPG that produces the rhythms associated 

to each gait. CPGs are known to exist in primitive animals but they have not been 

identified in mammals. Nevertheless, suppose we assume that there is a locomo-

tor CPG in quadrupeds – how can we model it? Neurons themselves are modeled 

by systems of differential equations (for example, the Hodgkin-Huxley equa-

tions (J. Keener and J. Sneyd, 1998)) and CPGs are thought to be a coupled array 

of neurons (see (N. Kopell and G.B. Ermentrout, 1988, 1990), (G. Schöner et al., 

1990), (R.H. Rand et al., 1988)). So we may assume that our model is (a perhaps 

large dimensional) system of coupled ODEs. What structure may we assume that 

such a system of equations should have? 

 We imagine that for each leg there is a single group of neurons whose job is 

to signal that leg to move, and that the groups of neurons are otherwise identical. 

Moreover, we assume that the groups of neurons are coupled in some manner – 

and to simplify matters we assume that the kinds of  coupling   fall into a small 

number of identical types. A natural mathematical question now arises – even at 

this level of generality. Can couplings between these four groups of neurons be 
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set up so that periodic solutions having the rhythms associated with each of these 

 gaits exist? The answer is, perhaps surprisingly, no. The reason for this is subtle. 

It is known that trot and pace are different  gaits. However, if a four group system 

were capable of producing periodic solutions with the symmetries of walk, trot, 

and pace, then walk and trot must be the same up to  symmetry   and would for all 

practical purposes be the same gait. 

 The next simplest model would have eight groups of neurons with each leg 

receiving signals from two different groups of neurons. (M. Golubitsky    et  al., 

1998) introduced the network shown in  Figure 5  by assuming that the eight-node 

network should independently have both bilateral  κ   symmetry   and the four-cycle 

walk  symmetry    ω . Thus the  symmetry   group of the eight-cell quadruped CPG is 

Γ =  Z  2 ( κ ) ×    Z  4 ( ω ). For expository purposes we assume that cells 1, … , 4 determine 

the timing of leg movements, and refer to the remaining four cells as ‘hidden’. We 

also follow (M. Golubitsky    et al., 1999) and show how the mathematical analysis 

of the structure of this CPG network can still lead to testable predictions about the 

structure of  gaits. 

  Figure 5    :  Eight-cell network for quadrupeds. Double lines indicate contralateral coupling; 
single lines indicate ipsilateral  coupling  . Direction of ipsilateral  coupling   is indicated by arrows; 
contralateral  coupling   is bidirectional.  

    In fact, the eight-cell network in  Figure 5  (right) is essentially the only one that 

can produce periodic solutions with the  spatio-temporal symmetries of walk, 

trot and pace (M. Golubitsky    et al., 1998, 1999; P.L. Buono    and M. Golubitsky   , 

2001). Next we ask the question: Which periodic solution types can be expected 

to emanate from a stand equilibrium in systems of differential equations associ-
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ated with this cell network. We call these gait types  primary   gaits. It turns out 

that such systems can produce a non-standard gait in addition to the five  gaits 

we have discussed previously. This gait is called the  jump  and can be described 

as ‘fore feet hit ground, then hind feet hit ground after one beat, then three beats 

later fore feet hit ground’. The existence of this quadruped gait is a prediction of 

the model. 

 Indeed, we observed a gait with that spatio-temporal pattern of the jump at 

the Houston Livestock Show and Rodeo. Figure 6 shows four equal time-interval 

video frames of a bucking bronco. The timing of the footfalls is close to 0 and 1/4 

of the period of this rhythmic motion. Later on we found that (P.P. Gambaryan, 

1974) had identified the  primitive ricocheting jump  of a Norway rat and an Asia 

Minor gerbil that also has the cadence of the jump. 

  Figure 6    :  Approximate quarter cycles of bareback bronc jump at Houston Livestock Show and 
Rodeo.  
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3         Geometric Visual  Hallucinations 
 (H. Klüver, 1966) observed that geometric visual  hallucinations divide into four 

 form constants : tunnels and funnels; spirals; lattices including honeycombs and 

phosphenes; and cobwebs. See Figure  7. (P.C. Bressloff    et  al., 2001, 2002) are 

able to explain the origins of the four form constants as  symmetry-breaking with 

respect to the Euclidean group of planar translations, rotations and reflections 

as it acts on the primary visual cortex (V1). In this section we will describe that 

 action  . 

  Figure 7    :  Hallucinatory form constants. (I) funnel and (II) spiral images seen following ingestion 
of LSD (R.K. Siegel and M.E. Jarvik, 1975), (III) honeycomb generated by marihuana (J. Clottes 
and  D. Lewis-Williams, 1998), (IV) cobweb petroglyph (A. Patterson, 1992).  

    The idea of viewing the origin of geometric visual  hallucinations dates to the 

work of (G.B. Ermentrout and J.D. Cowan   , 1979). Ermentrout and Cowan    argue 

that when an individual is under the influence of a drug, the entire primary visual 

cortex is stimulated uniformly by the drug and not by the retina. When this forced 

stimulus is sufficiently large, patterns of activation are formed on V1 and inter-

preted by the brain as visual images – often with a distinctly geometric flavor. 

However, the work in (G.B. Ermentrout and J.D. Cowan   , 1979) was completed 
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before the nature of  coupling   of neurons in V1 was understood. Thus (G.B. Ermen-

trout and J.D. Cowan   , 1979) assumed that models of V1 are Euclidean-invariant 

with respect to the standard  action   of the Euclidean group on the plane and  sym-

metry-breaking arguments only led to two of the four form constants (funnels and 

spirals). 

 In this section we present part of the discussion of V1 in (M. Golubitsky    and I. 

Stewart   , 2002) (much of it verbatim), which itself is an abbreviated version of the 

discussion in (P.C. Bressloff    et al., 2001). In mammalian vision, neurons in V1 are 

known to be sensitive to the orientation of contours in the visual field. Moreover, 

as discussed in (P.C. Bressloff    et al., 2001), the pattern of neuronal connections 

in V1 leads to a specific  action   of the Euclidean group that is different from the 

standard one on the plane. 

 The V1 layer is approximately a square, 40 mm  on a side. (D.H. Hubel and T.N. 

Wiesel, 1974a,b,c) noted that V1 is divided into small areas of about 1 mm  diam-

eter, called  hypercolumns , and the neurons in each hypercolumn receive signals 

from one small area in the retina. A hypercolumn contains all cortical cells that 

correspond to such an area: its architecture allows it to determine whether a 

contour occurs at that point in the retinal image, and if so, what its orientation is. 

This task is accomplished by having all pairs of cells in a hypercolumn connected 

by inhibitory coupling  – so if a contour is detected by one neuron, it tends to 

suppress the other neurons in that hypercolumn, a local  winner-take-all  strategy. 

Experimental confirmation of the existence of hypercolumns is found in (G. G. 

Blasdel, 1992), see the iso-orientation patches in  Figure 8 . 

  Figure 8    :  Distribution of orientation preferences in V1 obtained via optical imaging. Redrawn 
from (G. G. Blasdel, 1992).  

    What is curious – and crucial from the  symmetry   point of view – is how hyper-

columns themselves are coupled. In recent years information has been obtained 



38       Martin Golubitsky

about connections using, for example, optical imaging with voltage-sensitive 

dyes (W.H. Bosking et al., 1997). These studies show that cells that selectively fire 

for one orientation make contact only every millimeter or so along their axons 

with cells that fire selectively in the same orientation. See Figure 9, which illus-

trates the inhomogeneity in lateral  coupling  . 

  Figure 9    :  Lateral connections made by a cell in V1 superimposed on iso-orientation patches. 
Redrawn from (W.H. Bosking et al., 1997).  

    In addition, it appears that the long axons that support such connections, 

known as  intrinsic lateral  or horizontal connections, tend to be oriented more or 

less along the direction of their cells’ preference. See the schematic diagram in 

 Figure 10 . Note that the strength of the lateral connection between hypercolumns 

is small when compared to the strength of the local connections within hypercol-

umns. These observations lead to the schematic pattern of neuronal connections 

shown in  Figure 10 . 

 Observe that when one makes the hypercolumns infinitesimal then the 

resulting schematic is invariant under translations but that rotations spoil the 

form of the lateral connections unless the orientation tuning of neurons within 

a hypercolumn is also relabeled (by the amount of rotation). So the Ermentrout-

Cowan and the    Bressloff-Cowan    models both have Euclidean  symmetry  , but the 

ways that the Euclidean group acts are different and this leads to different pattern 

formation results. The end result is that the Bressloff-Cowan model predicts plan-

forms of the type in  Figure 11 . Note the similarities with the geometric  hallucina-

tions reported in  Figure 7 . 
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 Figure 10    :  Short and long range connections in the visual cortex. · · · inhibitory; 
· − · − · − excitatory.  

4         Conclusions 
 We have attempted to show how the existence of  symmetry   (both in equilibrium 

and time-periodic states) can help to understand patterns in applications even 

when the application has no precise mathematical  model  . 

 The  symmetry   description of locomotor central pattern generators leads to 

a variety of predictions about quadrupedal and bipedal  gaits. In this article we 

described only one: the existence of an unexpected but natural gait – the jump. 

The proposed structure of CPG models leads to a variety of other predictions (the 

difference between primary and secondary  gaits; the physiological need for each 

leg to be controlled by two neuron groups; and unexpected properties of centi-

pede primary  gaits). See (M. Golubitsky    et al., 1999; M. Golubitsky    and I. Stewart   , 

2002). 

 The  symmetry   of the primary visual cortex (determined experimentally) led, 

through  symmetry-breaking arguments, to an unexpected correlation between 

this  symmetry   and the richness of geometric visual  hallucinations. It is important 

to observe that this correlation can be understood without the need of a detailed 

model of the cortex V1 – just the  symmetry   structure that such a model should 

have. 
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  Figure 11    :  Taken from Bressloff et al. 2002  

        References 
  Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity.  Monkey Striate Cortex 

12 , 3139–3161.  
  Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2001). Geometric 

visual hallucinations, Euclidean symmetry  , and the functional architecture of striate 
cortex.  Philosophical Transactions of the Royal Society B 356 . 299–330.  

  Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2002). What 
geometric visual hallucinations tell us about the visual cortex.  Neural Computation 14 . 
473–491.  

    Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and 
the arrangement of horizontal connections in tree shrew striate cortex.  The Journal of 
Neuroscience 17 . 2112–2127.  

Buono, P. L. & Golubitsky, M. (2001). Models of central pattern generators for quadruped 
locomotion: I. primary gaits.  Journal of Mathematical Biology 42 . 291–326.  



 Patterns in Physical and Biological Systems       41

  Clottes, J. & Lewis-Williams, D. (1998).  The Shamans of Prehistory: Trance and Magic in the 
Painted Caves . New York: Abrams.  

  Collins, J. J. & Stewart, I. (1993). Coupled nonlinear oscillators and the symmetries of animal 
gaits.  Journal of Nonlinear Science 3.  349–392.  

  Collins, J. J. & Stewart, I. (1994). A group-theoretic approach to rings of coupled biological 
oscillators.  Biological Cybernetics 71 . 95–103.  

  Ermentrout, G. B. & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. 
 Biolological Cybernetics 34 . 137–150.  

  Gambaryan. P. P. (1974).  How Mammals Run: Anatomical Adaptations . New York: Wiley.  
  Golubitsky, M. & Schaeffer, D. G. (1985).  Singularities and Groups in Bifurcation Theory: Vol. 1 . 

Applied Mathematical Sciences 51, New York: Springer Verlag.  
  Golubitsky, M. & Stewart, I. (2002).  The Symmetry Perspective: From Equilibrium to Chaos in 

Phase Space and Physical Space . Revised Edition. Basel: Birkhäuser.  
  Golubitsky, M. & Stewart, I. (2006). Nonlinear dynamics of networks: the groupoid formalism. 

 Bulletin of the American Mathematical Society 43 . 305–364.  
  Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1998). A modular network for legged 

locomotion.  Physica D 115 . 56–72.  
  Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central 

pattern generators and animal gaits.  Nature 401 . 693–695.  
  Golubitsky, M., Stewart, I. N., & Schaeffer, D. G. (1988).  Singularities and Groups in Bifurcation 

Theory: Vol. 2 . Applied Mathematical Sciences 69. New York: Springer Verlag.  
  Gorman, M., El-Hamdi, M., & Robbins, K. A. (1994). Experimental Observation of Ordered States 

in Cellular Flames.  Combustion Science and Technology 98 . 37–45.  
  Gorman, M., Hamill, C. F., El-Hamdi, M., & Robbins, K. A. (1994). Rotating and modulated 

rotating states of cellular flames.  Combustion Science and Technology 98.  25–35.  
  Guckenheimer, J. & Holmes, P. (1983).  Nonlinear Oscillations, Dynamical Systems, and 

Bifurcations of Vector Fields . Applied Mathematical Sciences 42. New York: Springer 
Verlag.  

  Hubel, D. H. & Wiesel, T. N. (1974). Sequence regularity and geometry of orientation columns in 
the monkey striate cortex.  The Journal of Comparative Neurology 158 . 267–294.  

  Hubel, D. H. & Wiesel, T. N. (1974). Uniformity of monkey striate cortex: a parallel relationship 
between field size, scatter, and magnification factor.  The Journal of Comparative 
Neurology 158 . 295–306.  

  Hubel, D. H. & Wiesel, T. N. (1974). Ordered arrangement of orientation columns in monkeys 
lacking visual experience.  The Journal of Comparative Neurology 158 . 307–318.  

  Keener, J. & Sneyd, J. (1998).  Mathematical Physiology . Interdisplinary Applied Mathematics 8. 
New York: Springer Verlag.  

  Klüver, H. (1966).  Mescal and Mechanisms of Hallucinations . Chicago: University of Chicago 
Press.  

  Kopell, N. & Ermentrout, G. B. (1988). Coupled oscillators and the design of central pattern 
generators.  Mathematical Biosciences 89 . 14–23.  

  Kopell, N. & Ermentrout, G. B. (1990). Phase transitions and other phenomena in chains of 
oscillators.  SIAM Journal Applied Mathematics 50 . 1014–1052.  

  Michel, L. (1972). Nonlinear group action: Smooth actions of compact Lie groups on manifolds. 
In:  Sen, R. N. & Wiel, C. (eds). Statistical Mechanics and Field Theory . Jerusalem: Israel 
University Press. 133–150.  

  Patterson, A. (1992).  Rock Art Symbols of the Greater Southwest . Boulder: Johnson Books.  



42       Martin Golubitsky

  Rand, R. H., Cohen, A. H., & Holmes, P. J. (1988). Systems of coupled oscillators as models of 
central pattern generators. In: Cohen, A. H., Rossignol, S., & Grillner, S. (eds.).  Neural 
Control of Rhythmic Movements in Vertebrates . New York: Wiley. 333–367.  

  Sattinger, D. H. (1979).  Group Theoretic Methods in Bifurcation Theory . Lecture Notes in 
Mathematics 762. New York: Springer Verlag.  

  Schöner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal gaits and 
gait transitions.  Journal of Theoretical Biology 142 . 359–391.  

  Siegel, R. K. & Jarvik, M. E. (1975). Drug-Induced Hallucinations in Animals and Man. In: Siegel, 
R. K. & West, L. J. (eds.).  Hallucinations: Behavior, Experience and Theory . New York: Wiley. 
81–161.  

  Thom, R. (1972).  Stabilité structurelle et morphogénèse . New York: W A Benjamin.  
  Zeeman, E. C. (1977).  Catastrophe Theory: Selected papers, 1972–1977 . Oxford: Addison-Wesley.     

 This work was supported in part by NSF Grant DMS-1008412 to MG and NSF Grant 

DMS-0931642 to the Mathematical Biosciences Institute.

  Prof. Dr. Martin Golubitsky    

 The Ohio State University

  Mathematical Biosciences Institute 

 Columbus, OH 43215 

 USA 

 mg@mbi.osu.edu 



   Thomas A. C.  Reydon    
 Symmetry and the Explanation of 
Organismal  Form   
 Commentary on Martin Golubitsky     

1      Introduction 
 Golubitsky    (this volume) presented three examples in which the concepts of 

 symmetry   and   symmetry   breaking, as well as their mathematical formaliza-

tions, played an important role in understanding patterns exhibited by physical 

and biological systems. These examples concerned patterns occurring in burner 

flames, in animal locomotion and in visual hallucinations. A striking feature 

of these examples was that the same general mathematical  model   of  symmetry   

breaking could be applied in all cases, even though the systems under consider-

ation came from quite different realms. Golubitsky   ’s claims were that the math-

ematics of  symmetry   and  symmetry   breaking can help us understand the origins 

of patterns observed in physical as well as biological systems, and that there is 

a general “menu of patterns” that encompasses patterns that can be realized in 

materially very different kinds of systems (this volume; Stewart    and Golubitsky   , 

1993: 186, 207, 218). 

 The philosophical question that Golubitsky   ’s claims give rise to pertains to 

mathematical models in general: If there are general mathematical models that 

apply to materially very different kinds of systems, physical as well as biological 

ones, and can help us understand how these systems work, then what exactly is 

the role of such models in understanding and explaining the phenomena under 

study? What is the epistemic work that such models do in science? 

 This is a very broad question, which needs to be constrained more. Here, 

I will only consider one of Golubitsky   ’s examples, namely the explanations of 

organismal traits such as the various locomotive patterns that animals exhibit. 

Where do mathematical models of the sort discussed by Golubitsky    fit into the 

larger explanatory structure of biological science? I will begin by addressing the 

role of mathematical models in biology in general.  
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2     What work do  mathematical  models do in the 
biosciences? 

 Although mathematical models are widespread in biology, the role of mathemat-

ics in biology seems quite different from its role in, for example, physics and 

chemistry. In these latter sciences, mathematical formalisms constitute a core 

feature of theories and explanations. But this is not so for the principal theories of 

biology. For example, evolutionary theory and evolutionary explanations, which 

constitute the backbone of biological science,¹ are often presented in verbal/con-

ceptual form without using much mathematics. Similarly, organismal develop-

ment is usually explained in terms of the operation of different genes and gene 

networks without necessarily relying on mathematical formalisms. This is not to 

say that mathematics is unimportant in developmental and evolutionary biology: 

it is not (e.g., Rice   , 2004), but it does play a less prominent role in biology than in 

the exact natural sciences. Accordingly, Ernst Mayr    (1982: 43) once claimed that 

progress in biology does not occur by formulating strict  laws   of the sort found in 

the physical sciences, but is largely a matter of the articulation and refinement of 

concepts. 

 This suggests that mathematical models in biology do not play their main 

parts in the formulation of explanations. Rather, their main roles might be heuris-

tic. They can aid communication and serve didactical and rhetorical purposes by 

functioning as metaphors and analogies that represent real systems in ways that 

are easier to understand than the  complex   “real thing” (e.g., Stewart  , 2003: 184). 

Moreover, they enable scientists to simulate how systems behave under various 

conditions in cases in which the “real thing” is difficult to access. 

 Golubitsky   ’s example of animal gaits supports this suggestion (this volume; 

Field    and Golubitsky   , 1992: 32; Stewart   and Golubitsky   , 1993: Chapter  8; Golu-

bitsky    et  al., 1998; 1999; Stewart   , 2003; Pinto    and Golubitsky   , 2006). There, 

models play two heuristic roles. First, they provide information about how indi-

vidual animals realize locomotion, thus contributing to the study of how organ-

isms work. According to a widely held (but not uncontroversial  – Stewart      and 

Golubitsky   , 1993: 201–203) assumption, animal locomotion is controlled by 

so-called central pattern generators (CPGs), neural networks that control limb 

motion (Stewart    and Golubitsky   , 1993: 199–203; Golubitsky    et al., 1998: 57; Gol-

ubitsky    et  al., 1999: 693; Stewart   , 2003: 197; Pinto    and Golubitsky   , 2006: 475). 

CPGs themselves are difficult to study  in vivo  or  in vitro , so investigators work 

1   Allegedly, “nothing in biology makes sense except in the light of evolution” (Dobzhansky   , 

1964: 449; 1973: 125).  
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backwards and try to derive information about how CPGs function from observa-

tions about the patterns they produce. The models used by Golubitsky    and co-

workers start from observed symmetries in animal gaits and  symmetry   breakings 

that occur in transfers between gaits. From this, the possible structures of the 

underlying CPGs are inferred, guided by the thought that the observed symme-

tries and   symmetry   breakings must correspond to those that an abstract network 

of a limited number of nodes can produce. The observed symmetries thus allow 

inferences about the symmetries of the underlying networks: “symmetry can be 

used to infer a plausible class of CPG network architectures from observed pat-

terns of animal gaits” (Golubitsky    et al., 1999: 693). In turn, from the symmetries 

of these general network architectures possible gaits can be predicted and looked 

for in animals in nature.² 

 Second, the relations between the various models of animal gaits can be used 

as indirect evidence for possible evolutionary scenarios (Pinto    and Golubitsky   , 

2006: 487; Stewart   , 2003: 196). The number of steps required to get from one set 

of gaits to another can be interpreted as an indication of the number of steps that 

evolution must have taken on its way from a taxon exhibiting one set of gaits to a 

taxon exhibiting the other set. For example, the steps needed to get from the set 

of gaits characteristic of quadrupedal locomotion to the set for bipedal locomo-

tion can be taken to indicate the steps taken in the evolution of bipedal organisms 

from quadrupeds. Thus,  mathematical models can provide clues about the evolu-

tionary distance between and evolutionary history of taxa. 

 In both these cases, the inference is toward a class of possibilities (a class of 

possible CPG structures and a class of possible evolutionary routes). The models 

provide clues about which architectures or routes are possible, but not about 

the  actual  architectures or routes involved and thus don’t provide any concrete 

explanatory details. The question thus remains open whether mathematical 

models can be more than heuristic tools and might perform “proper” explana-

tory roles. I will address this question by considering the search for a theory of 

organismal  form  .  

2  Golubitsky   ’s example of visual hallucinations works in the same manner (Bressloff    et al., 2001: 

323–326; Bressloff    et al., 2002: 476–477). The question is which neural network architectures are 

required to produce the variety of geometrical patterns found in visual hallucinations. This is 

answered by relating the observed symmetries of hallucination patterns to the symmetries that a 

producing network must possess. In this way the  possible  architectures of the visual cortex area 

responsible for producing visual hallucinations are inferred from the  actual  patterns of observed 

hallucinations.  
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3    What natural  selection   does not explain 
 Among the principal questions of biological science are why we have the organ-

ismal diversity that we do (rather than a different diversity) and why the organ-

isms we find around us have the traits they do, instead of other possible traits 

they might have exhibited (and that sometimes organisms of different species 

 do  exhibit). Ever since Darwin   ’s work an important part of the answers to these 

questions is given in terms of natural  selection  . But it has long been clear that 

selection constitutes only part of the answer. 

 In the first place, not  all  organismal traits are necessarily explained by 

selection, as paleontologist Stephen Jay Gould    and geneticist Richard Lewontin    

pointed out in their famous “spandrels” paper (Gould    and Lewontin   , 1979). They 

criticized a procedure commonly followed by biologists, namely to break organ-

isms down into discrete traits and to propose a separate adaptive story for each 

trait. Each trait’s presence is then explained as a consequence of some function 

that it performed in ancestral organisms, endowing these with a selective advan-

tage over organisms not possessing the trait in question. The underlying assump-

tion is that “natural selection [is] so powerful and the constraints upon it so few 

that direct production of adaptation through its operation becomes the primary 

cause of nearly all organic form, function, and behaviour” (Gould    and Lewontin   , 

1979: 584–585). However, Gould    and Lewontin    argued, this assumption stands 

unsupported: many organismal traits might be correctly explained as products of 

evolution by means of natural  selection  , but not necessarily all or nearly all traits 

are. Other explanatory factors besides natural  selection  , such as constraints 

on organismal development, also play important roles and may outweigh the 

explanatory importance of selection. Thus, Gould    and Lewontin    argued in favor 

of a pluralistic approach to biological explanation in which a  plurality   of explan-

atory factors can be invoked when explaining biodiversity and organismal traits. 

As they pointed out (Gould    and Lewontin    1979: 589), this is in line with Darwin   ’s 

own view “that Natural Selection has been the main but not exclusive means of 

modification” (Darwin   , 1859: 6). 

 Furthermore, even for traits that are correctly explained as products of natural 

 selection  , selection is only part of the answer. Selection explains the trait’s  pres-

ence  and its adaptive aspects, but there is more to say. Soon after the publica-

tion of the  Origin of Species , biologists have begun to criticize Darwin   ’s theory 

for addressing the spread and persistence of traits through ancestor-descendant 

lineages but not being able to explain how these traits arise in the first place (see 

Reydon   , 2011). The criticism, which is also voiced by some contemporary biolo-

gists (Fontana    and Buss   , 1994; Gilbert   , 2000), is that even if natural  selection   can 



 Symmetry and the Explanation of Organismal Form       47

cause the differential reproduction of organism types with varying traits, it needs 

material to work with: natural  selection   filters, but it does not create new traits. 

 These two criticisms constitute the motivation behind a tradition of work 

in biology aiming to develop a theory of the origins of organismal forms, where 

‘form’ is understood broadly as encompassing the shapes of organisms as well as 

their other physical and behavioral traits. The theory sought after should explain 

the origins of organismal traits and complement the theory of selection, which 

explains their preservation and spread.  

4    Growth and form: D’Arcy Thompson   ’s project 
 A key figure in the quest for a theory of organismal  form   was zoologist D’Arcy 

Wentworth Thompson   . In his  On Growth and Form , Thompson    developed the 

project of comparing organismal forms to forms and patterns found in non-liv-

ing systems and understanding these as instances of the same phenomena. The 

central thought in Thompson   ’s book is that the principal causes of organismal 

forms are physical forces, such that organismal traits should be explained by 

taking recourse to general physical and chemical principles rather than selec-

tion and adaptation. Thompson    thought of natural  selection   as a mere filter that 

could not create evolutionary  novelty   and thus could not explain organismal 

 form   (Bonner   , 1992: xvii). 

 In a famous example, he compared the shapes of jellyfish to the shapes that 

liquid drops assume when falling through other liquids and suggested that both 

phenomena might be susceptible to the same explanation (Thompson   , 1942: 

392–398). Jellyfish here are modeled as expanding drops of a fluid with a differ-

ent density than the water in which they are immersed and the observed shapes 

are explained as consequences of the operation of the physical laws that govern 

the flow of fluids in fluids.³ It is unclear, however, exactly how much explanatory 

work Thompson   ’s  mathematical models do. For instance, Thompson    writes: 

  [W]e may use a hanging drop, which, while it sinks, remains suspended to the surface … 

[T]he figure so produced, in either case, is closely analogous to that of a medusa or jelly-

fish …  It is hard to say how much or little all these analogies imply . But they indicate, at the 

very least, how certain simple organic  forms might be naturally assumed by one fluid mass 

within another , when gravity, surface tension and fluid friction play their part (Thompson   , 

1942: 395–398; emphasis added).  

3  Note that another of Thompson   ’s (1942: 39–50) examples concerned animal locomotion and 

flight.  
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 Although Thompson    was careful not to imply too much, this quotation does 

suggest that he took the  analogy   as having  some  explanatory value in that the 

various shapes of jellyfish can be explained as what is bound to occur for particu-

lar fluids under particular conditions. 

 Similarly to Golubitsky   ’s models, Thompson   ’s models take recourse to physi-

cal laws to map out the spectrum of what is possible under various conditions 

(Bonner   , 1992: xxii). In this respect, the laws of physics function in the same way 

in explanations of organismal  form   as in explanations of phenomena in the non-

living realm: in both cases there are general physical principles that apply uni-

versally and determine what is bound to occur in such-and-such kinds of systems 

under such-and-such conditions, irrespective of the systems’ material bases. 

As Thompson    writes at the end of his book: “So the living and the dead, things 

animate and inanimate … are bound alike by physical and mathematical law” 

(Thompson   , 1942: 1097). 

 This motif is found elsewhere too. For example, zoologist Rupert Riedl 

remarked that “[t]he living world happens to be crowded by universal patterns 

of organization which … find no direct explanation through environmental con-

ditions or adaptive radiation, but exist primarily through universal requirements 

which can only be expected under the systems conditions of  complex   organization 

itself” (Riedl, in Gould    and Lewontin   , 1979: 594). In a similar spirit, mathemati-

cian (and frequent collaborator of Golubitsky   ’s) Ian Stewart    remarked about the 

observed   symmetry   breakings in the developmental cycle of the alga  Acetabularia 

acetabulum  that these are the same as found in a particular type of fluid flow, 

“ as they should be  since such patterns are universal in cylindrically symmetric 

systems” (Stewart   , 2003: 190; emphasis added). And it seems to me to be the motif 

underlying Golubitsky   ’s suggestion that there is a general “menu of patterns” that 

can be realized in materially very different kinds of systems found in different 

realms in nature (this volume; Stewart    and Golubitsky   , 1993: 186, 207, 218). 

 Invoking such universal patterns that can be captured in  mathematical 

models of  symmetry   and  symmetry   breakings does not explicate what is  actually  

the case in a system under study, as it abstracts away from the system’s character-

istics. It narrows down the set of possible explanations of the phenomenon under 

study to a limited number of possible scenarios. On some accounts of explana-

tion this could be accepted as “proper” scientific explanation and Thompson   ’s 

and Golubitsky   ’s models would count as “how possibly” explanations (O’Hara   , 

1988; Brandon   , 1990; Resnik   , 1991; Reiner   , 1993). However, whether “how pos-

sibly” explanations should be accepted as “proper” scientific explanations is still 

a controversial issue in the philosophy of science.  
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5    Conclusion 
 As Golubitsky    showed,   symmetry   breaking is common in the living world, e.g., 

in animal locomotion or organismal growth.⁴ In Thompson   ’s project, too, the 

concept of  symmetry   played an important role: “In all cases where the principle 

of maxima and minima comes into play […] the configurations so produced are 

characterized by obvious and remarkable   symmetry   . Such  symmetry   is highly 

characteristic of organic forms and is rarely absent in living things” (Thompson   , 

1942: 357). If this is right, there clearly must be epistemic work to do for the con-

cepts of  symmetry   and  symmetry   breaking and their mathematical formaliza-

tions in explanations of organismal  form  . But there are good reasons to think of 

this work as not being explanatory in and by itself. 

 Even though mathematical models of  symmetry   and  symmetry   breaking seem 

to provide “how possibly” explanations, the mathematics  itself  does not provide 

explanatory force: the applicable physical laws and system specifications do (cf. 

Stewart   , 2003: 191). Similarly,  symmetry   breaking itself does not explain much. 

The explanatory work is done by the causes  underlying   symmetry   breakings, i.e., 

the physical laws that govern particular kinds of systems and the slight imbal-

ances in an overall symmetrical system that at some point causes the breaking of 

its  symmetry   (Stewart   , 2003: 188). That the same mathematical  model   applies to 

a number of very different systems merely indicates that in all these systems the 

same physical laws are involved. Mathematical models of symmetries and  sym-

metry   breakings do not capture the complexity of the systems under study, but 

abstract away from much detail, allowing us to focus on the relevant overall pat-

terns and to identify the relevant underlying laws. While this is important to gain 

insight into what could occur in the system under consideration, actual explana-

tions of concrete phenomena will need to specify the details of the system itself. 

 Golubitsky   ’s examples showed how models of symmetries and  symmetry   

breakings provide clues about what might possibly be the case in the systems 

under study. The models describe how organismal function, development and 

evolution are constrained by the general laws of physics and chemistry, making 

some traits possible and others impossible (cf. Stewart   , 2003: 200). One might 

interpret such models as adding “how possibly” explanations to the “how and 

why actually” explanations of functional, developmental and evolutionary 

biology. But in my view their role in fact is more heuristic in nature and it is to be 

doubted whether such “how possibly” explanations should count as “proper” 

scientific explanations on an equal level with other explanations in biology.   

4  Another example: non-spherically-symmetrical starfish develop from spherically symmetrical 

eggs (Field    and Golubitsky   , 1992: 32).  
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     Dirk  Helbing    
 Pluralistic Modeling of  Complex Systems  

1             Introduction 
 When the father of sociology, August Comte   , came up with the idea of a “social 

physics”, he hoped that the puzzles of social systems could be revealed with a 

natural science approach (Comte   , A., 1856). However, progress along these lines 

was very difficult and slow. Today, most sociologists do not believe in his posi-

tivistic approach anymore. The question is whether this proves the failure of the 

positivistic approach or whether it just shows that social scientists did not use 

the right methods so far. After all, social scientists rarely have a background in 

the natural sciences, while the positivistic approach has been most successful in 

fields like physics, chemistry, or biology. 

 In fact, recently, new scientific communities are developing, and they are 

growing quickly. They call themselves socio-physicists, mathematical soci-

ologists, computational social scientists, agent-based modelers, complexity 

or network scientists. Researchers from the social sciences, physics, computer 

science, biology, mathematics, and artificial intelligence research are addressing 

the challenges of social and economic systems with mathematical or computa-

tional models and lab or web experiments. Will they end up with resignation in 

view of the complexity of social and economic systems, or will they manage to 

push our knowledge of social systems considerably beyond what was imaginable 

even a decade ago? Will August Comte   ’s vision of sociology as “the queen of the 

sciences” (Comte   , A., 1830–1842) finally become true? 

 My own judgement is that it is less hopeless to develop  mathematical models 

for social systems than most social scientists usually think, but more difficult 

than most natural scientists imagine. The crucial question is, how one can make 

substantial progress in a field as complicated and multi-faceted as the social sci-

ences, and how the current obstacles can be overcome. And what are these obsta-

cles, after all? The current contribution tries to make the controversial issues 

better understandable to scientific communities with different approaches and 

backgrounds. While each of the points may be well-known to some scientists, 

they are probably not so obvious for others. Putting it differently, this contribu-

tion tries to build bridges between different disciplines interested in similar sub-

jects, and to make thoughts understandable to scientific communities with differ-

ent points of views. 

 A dialogue between social, natural and economic sciences seems to be desir-

able not only for the sake of an intellectual exchange on fundamental scientific 
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problems. It also appears that science is behind the pace of upcoming socio-eco-

nomic problems, and that we need to become more efficient in addressing prac-

tical problems (Helbing   , D., 2010,  Grand socio-economic challenges ). President 

Lee C. Bollinger of New York’s prestigious Columbia University formulated the 

challenge as follows: 

  The forces affecting societies around the world (…) are powerful and novel. The spread of 

global market systems (…) are (…) reshaping our world (…), raising profound questions. 

These questions call for the kinds of analyses and understandings that academic institu-

tions are uniquely capable of providing. Too many policy failures are fundamentally fail-

ures of knowledge.¹  

 The fundamental and practical scientific challenges require from us to do every-

thing we can to find solutions, and not to give up before the limits or failure of 

a scientific approach have become obvious. As will be argued in Sec. 5, different 

methods should be seen complementary to each other and, even when incon-

sistent, may allow one to get a better picture than any single method can do, no 

matter how powerful it may seem.  

2     Particular Difficulties of Modeling Socio-Eco-
nomic Systems 

 When speaking about socio-economic systems in the following, it could be any-

thing from families over social groups or companies up to countries, markets, or 

the world economy including the financial system and the labor market. The con-

stituting system elements or system components would be individuals, groups, or 

companies, for example, depending on the system under consideration and the 

level of description one is interested in. 

 On the macroscopic (systemic) level, social and economic systems have 

some features that seem to be similar to properties of some physical or biological 

systems. One example is the hierarchical organization. In social systems, individ-

uals form groups, which establish organizations, companies, parties, etc., which 

make up states, and these build communities of states (like the United States or 

the European Union, for example). In physics, elementary particles form atoms, 

which create molecules, which may form solid bodies, fluids or gases, which 

1  L. C. Bollinger, announcing the Columbia committee on global thought, see  http://www.co-

lumbia.edu/cu/president/docs/communications/2005-2006/051214-committee-global-thought.

html .  
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together make up our planet, which belongs to a solar system, and a galaxy. In 

biology, cells are composed of organelles, they form tissues and organs, which 

are the constituting parts of living creatures, and these make up ecosystems. 

 Such analogies are certainly interesting and have been discussed, for 

example, by Herbert Spencer (Spencer, H., 1898) and later on in systems theory 

(Bertalanffy   , L. von, 1968). It is not so obvious, however, how much one can learn 

from them. While physical systems are often well understood by  mathemati-

cal models, biological and socio-economic systems are usually not. This often 

inspires physicists to transfer their models to biological and socioeconomic 

models (see the discussion in Sec. 4.4), while biologists, social scientists, and 

economists often find such attempts “physicalistic” and inadequate. In fact, 

social and economic systems possess a number of properties, which distinguish 

them from most physical ones: 

   1.   the number of variables involved is typically (much) larger (considering that 

each human brain contains about 1000 billion neurons),  

  2.   the relevant variables and parameters are often unknown and hard to 

measure (the existence of “unknown unknowns” is typical),  

  3.   the time scales    on which the variables evolve are often not well separated 

from each other,  

  4.   the statistical variation of measurements is considerable and masks laws of 

social behavior, where they exist (if they exist at all),  

  5.   frequently there is no  ensemble   of equivalent systems, but just one realiza-

tion (one human history),  

  6.   empirical studies are limited by technical, financial, and ethical issues,  

  7.   it is difficult or impossible to subdivide the system into simple, non-interact-

ing subsystems that can be separately studied,  

  8.   the observer participates in the system and modifies social reality,  

  9.   the non-linear and/or network dependence of many variables leads to 

 complex   dynamics and structures, and sometimes paradoxical effects,  

  10.   interaction effects are often strong, and emergent phenomena are ubiquitous 

(hence, not understandable by the measurement and quantification of the 

individual system elements),  

  11.   factors such as a large degree of randomness and heterogeneity, memory, 

anticipation, decision-making, communication, consciousness, and the rel-

evance of intentions and individual interpretations complicate the analysis 

and modeling a lot,  

  12.   the same applies to human features such as emotions, creativity, and innova-

tion,  
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  13.   the impact of information is often more decisive for the behavior of a socio-

economic system than physical aspects (energy, matter) or our biological 

heritage,  

  14.   the “rules of the game” and the interactions in a social or economic system 

may change over time, in contrast to what we believe to be true for the funda-

mental laws and forces of physics,  

  15.   in particular, social systems are influenced by normative and moral issues, 

which are variable.   

 For such reasons, social systems are the most  complex   systems we know. They are 

certainly more  complex   than physical systems are. As a consequence, a consider-

able fraction of sociologists thinks that  mathematical models for social systems 

are destined to fail, while most economists and many quantitatively oriented 

social scientists seem to believe in models with many variables. Both is in sharp 

contrast to the often simple  models   containing a few variables only, which physi-

cists tend to propose. So, who is right? The following discussion suggests that 

this is the wrong question. We will therefore discuss why different scientists, who 

apparently deal with the same research subject, come to so dramatically different 

conclusions. 

 It is clear that this situation has some undesirable side effects: Scientists 

belonging to different schools of thought often do not talk to each other, do not 

learn from each other, and probably reject each others’ project proposals more 

frequently. It is, therefore, important to make the approach of each school under-

standable to the others.  

3     Modeling Philosophies 

3.1     Qualitative Descriptions 

 Many social scientists think that the fifteen challenges listed above are so serious 

that it is hopeless to come up with mathematical models for social systems. The 

basic philosophy seems to be that all models are wrong. Thus, a widespread 

approach is to work out narratives, i.e. to give a qualitative (non-mathematical 

and non-algorithmic) description of reality that is as detailed as possible. This 

may be compared with a naturalist painting. 

 Narratives are important, as they collect empirical evidence and create 

knowledge that is essential for modelers sooner or later. Good models require 

several steps of intellectual digestion, and the first and very essential one is to 
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create a picture of the system one is interested in and to make sense of what is 

going on in it. This step is clearly indispensible. Nevertheless, the approach is 

sometimes criticized for reasons such as the following: 

 –      Observation, description, and interpretation are difficult to separate from 

each other, since they are typically performed by the same brain (of a single 

scientist). Since these processes strongly involve the observer, it is hard or 

even impossible to provide an objective description of a system at this level 

of detail. Therefore, different scientists may analyze and interpret the system 

in different, subjective ways. What is an important aspect for one observer 

may be an irrelevant detail for another, or may even be overlooked. There is 

a saying that “one misses the forest for the trees”, i.e. details may hide the 

bigger picture or the underlying mechanisms. In the natural sciences, this 

problem has been partially overcome by splitting up observation, descrip-

tion, and interpretation into separate processes: measurements, statistical 

analysis, and modeling attempts. Many of these steps are supported by tech-

nical instruments, computers, and software tools to reduce the individual 

element and subjective influence. Obviously, this method cannot be easily 

transferred to the study of social systems, as individuals and subjective inter-

pretations can have important impacts on the overall system.  

 –   Despite its level of detail, a narrative is often not suited to be translated into 

a computer program that would reproduce the phenomena depicted by it. 

When scientists try to do so, in many cases it turns out that the descriptions 

are ambiguous, i.e. not detailed enough to come up with a unique computer 

model. In other words, different programmers would end up with different 

computer models, producing different results. Therefore, Joshua Epstein    

claims: “If you didn’t grow it, you didn’t explain it” (Epstein   , J. M., 2006) 

(where “grow” stands here for “simulate in the computer”). For example, if 

system elements interact in a non-linear way, i.e. effects are not proportional 

to causes, there are many different possibilities to specify the non-linearity: 

is it a parabola, an exponential dependence, a square root, a logarithm, a 

power law, …? Or when a system shows partially random behavior, is it best 

described by additive or multiplicative noise, internal or external noise? Is 

it chaotic or turbulent behavior, or are the system elements just heteroge-

neous? It could even be a combination of several options. What differences 

would these various possibilities make?    
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3.2     Detailed Models 

 In certain fields of computational social science or economics, it is common to 

develop computer models that grasp as many details as possible. They would 

try to implement all the aspects of the system under consideration, which are 

known to exist. In the ideal case, these facts would be properties, which have 

been repeatedly observed in several independent studies of the kind of system 

under consideration, preferably in different areas of the world. In some sense, 

they would correspond to the overlapping part of many narratives. Thus, one 

could assume that these properties would be characteristic features of the kind of 

system under consideration, not just properties of a single and potentially quite 

particular system. 

 Although it sounds logical to proceed in this way, there are several criticisms 

of this approach: 

 –    In case of many variables, it is difficult to specify their interdependencies in 

the right way. (Just   remember the many different possibilities to specify non-

linear interactions and randomness in the system.)  

 –   Some models containing many variables may have a large variety of different 

solutions, which may be highly dependent on the initial or boundary condi-

tions, or the history of the system. This particularly applies to models con-

taining non-linear interactions, which may have multiple stable solutions or 

non-stationary ones (such as periodic or non-periodic oscillations), or they 

may even show chaotic behavior. Therefore, depending on the parameter 

choice and the initial condition, such a model could show virtually any kind 

of behavior. While one may think that such a model would be a flexible world 

model, it would in fact be just a fit model. Moreover, it would probably not 

be very helpful to understand the mechanisms underlying the behavior of 

the system. As some people say: “A model containing more than 3 param-

eters can fit an elephant” (Dyson, F., 2004), which wants to express that a 

model with many parameters can fit anything and explains nothing. This is 

certainly an extreme standpoint, but there is some truth in it.  

 –   When many variables are considered, it is hard to judge which ones are 

independent of each other and which ones are not. If variables are mutually 

dependent, one effect may easily be considered twice in the model, which 

would lead to biased results. Dependencies among variables may also imply 

serious problems in the process of parameter calibration. The problem is 

known, for example, from sets of linear equations containing collinear vari-

ables.  

 –   Models with many variables, particularly non-linear ones, may be sensitive 

to the exact specification of parameters, initial, or boundary conditions, or to 
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small random effects. Phenomena like hysteresis (history-dependence) ( May-

ergoyz  , I. D., 2003), phase transiti ons   (Stanley   , H. E., 1987) or “catastrophes” 

(Zeeman   , E. C. (ed.), 1977), chaos (Schuster   , H. G., and Just   , W., 2005), or 

noise-induced transitions (Horsthemke   , W., and Lefever   , R., 1983) illustrate 

this clearly.  

 –   The parameters, initial and boundary conditions of models with many vari-

ables are hard to calibrate. If small (or no) data sets are available, the model is 

under-specified, and the remaining data must be estimated based on “expert 

knowledge”, intuition or rules of thumb, but due to the sensitivity problem, 

the results may be quite misleading. The simulation of many scenarios with 

varying parameters can overcome the problem in part, as it gives an idea of 

the possible variability of systemic behaviors. However, the resulting vari-

ability can be quite large. Moreover, a full exploration of the parameter space 

is usually not possible when a model contains many parameters, not even 

with supercomputers.  

 –   In models with many variables, it is often difficult to identify the mechanism 

underlying a certain phenomenon or system behavior. The majority of vari-

ables may be irrelevant for it. However, in order to understand a phenom-

enon, it is essential to identify the variables and interactions (i.e. the interde-

pendencies among them) that matter.    

3.3     Simple Models 

 Simple models try to avoid (some of) the problems of detailed models by restrict-

ing themselves to a minimum number of variables needed to reproduce a certain 

effect, phenomenon or system behavior. They are aiming at a better understand-

ing of so-called “stylized facts”, i.e. simplified, abstracted, or “idealtypical” 

observations (the “essence”). For example, while detailed descriptions pay a lot 

of attention to the particular content of social norms or opinions and how they 

change over time in relation to the respective cultural setting, simple  models   

abstract from the content of social norms and opinions. They try to formulate 

general rules of how social norms come about or how opinions change, indepen-

dently of their content, with the aim of understanding why these processes are 

history-dependent (“hysteretic”) and in what way they depend on microscopic 

and macroscopic influences. 

 It is clear that simple  models   do not describe (and do not even want to 

describe) all details of a system under consideration, and for this reason they are 

also called minimal or toy models sometimes. The philosophy of this approach 

may be represented by a few quotes. The “KISS principle” of model build-
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ing demands to “ k eep  i t  s imple and  s traightforward”². This is also known as 

Occam’s (or Ockham’s) razor, or as principle of parsimony. Albert Einstein    as well 

demanded (Einstein   , A., 1934): “Make everything as simple as possible, but not 

simpler”. 

 A clear advantage of simple  models   is that they may facilitate an analytical 

treatment and, thereby, a better understanding. Moreover, it is easy to extend 

simple  models   in a way that allows one to consider heterogeneity among the 

system components. This supports the consideration of effects of individuality 

and the creation of simple “ecological models” for socio-economic systems. Nev-

ertheless, as George Bo x   puts it: “Essentially, all models are wrong, but some are 

useful” (Bo x  , G. E. P., and Draper   , N. R., 1987). 

 The last quote touches an important point. The choice of the model and 

its degree of detail should depend on the purpose of a model, i.e. its range of 

application. For example, there is a large variety of models used for the model-

ing and simulation of freeway traffic. The most prominent model classes are 

“microscopic” car-following models, focussing on the interaction of single vehi-

cles, “mesoscopic” gas-kinetic models, describing the change of the velocity dis-

tribution of vehicles in space and time, “macroscopic” fluid-dynamic models, 

restricting themselves to changes of the average speed and density of vehicles, 

and cellular automata, which simplify microscopic ones in favor of simulation 

speed. Each type of model has certain ranges of application. Macroscopic and 

cellular automata models, for example, are used for large-scale traffic simula-

tions to determine the traffic situation on freeways and perform short-term fore-

casts, while microscopic ones are used to study the interaction of vehicles and to 

develop driver assistance systems. For some of these models, it is also known how 

they are mathematically connected with each other, i.e. macroscopic ones can be 

derived from microscopic ones by certain kinds of simplifications (approxima-

tions) (Helbing   , D., 2009,  Derivation ; Helbing   , D., 2001). 

 The main purpose of models is to guide people’s thoughts. Therefore, models 

may be compared with city maps. It is clear that maps simplify facts; otherwise 

they would be quite confusing. We do not want to see any single detail (e.g. each 

tree) in them. Rather we expect a map to show the facts we are interested in, and 

depending on the respective purpose, there are quite different maps (showing 

streets, points of interest, topography, supply networks, industrial production, 

mining of natural resources, etc.). 

 One common purpose of models is prediction, which is mostly (mis)under-

stood as “forecast”, while it often means “the identification of implications 

2   “KISS principle”  at Wikipedia.org. See  http://en.wikipedia.org/wiki/KISS_principle .  
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regarding how a system is expected to behave under certain conditions”. It is 

clear that, in contrast to the motion of a planet around the sun, the behavior of an 

individual can hardly be forecasted. Nevertheless, there are certain tendencies or 

probabilities of doing certain things, and we usually have our hypotheses of what 

our friends, colleagues, or family members would do in certain situations. It turns 

out that, when many people interact, the aggregate behavior can sometimes be 

quite predictable. For example, the “wisdom of crowds” is based on the statistical 

law of large numbers (Galton   , F., 1907), according to which individual variations 

(here: the independent estimation of facts) are averaged out. 

 Furthermore, interactions between many individuals tend to restrict the 

degree of freedom regarding what each individual can or will do. This is, why 

the concept of “social norms” is so important. Another example is the behavior 

of a driver, which is constrained by other surrounding vehicles. Therefore, the 

dynamics of traffic flows can be mathematically well understood (Helbing   , D., 

2001).³ Nevertheless, one cannot exactly forecast the moment in which free traffic 

flow breaks down and congestion sets in, and therefore, one cannot forecast 

travel times well. The reason for this is the history-dependent dynamics, which 

makes it dependent on random effects, namely on the size of perturbations in the 

traffic flow. However, what can be predicted is what are the possible traffic states 

and what are conditions under which they can occur. One can also identify the 

 probability   of traffic flows to break down under certain flow conditions, and it is 

possible to estimate travel times under free and congested flow conditions, given 

a measurement of the inflows. The detail that cannot be forecasted is the exact 

moment in which the regime shift from free to congested traffic flow occurs, but 

this detail has a dramatic influence on the system. It can determine whether the 

travel time for a certain freeway section is 2 minutes or 20 minutes. 

 However, it is important to underline that, in contrast to what is frequently 

stated, the purpose of developing models is not only prediction. Joshua Epstein   , 

for example, discusses 16 other reasons to build models, including explanation, 

guiding data collection, revealing dynamical analogies, discovering new ques-

tions, illuminating core uncertainties, demonstrating tradeoffs, training practi-

tioners, and decision support, particularly in crises (Epstein   , J. M., 2008). 

 Of course, not everybody favors simple  models  , and typical criticisms of them 

are: 

 –    It is usually easy to find empirical evidence, which is not compatible with 

simple  models   (even though, to be fair, one would have to consider the 

purpose they have been created for, when judging them). Therefore, one can 

3   Helbing   , D. et al. See collection of publications on analytical traffic flow theory at  http://www.

soms.ethz.ch/research/traffictheory .  



62       Dirk Helbing

say that simple  models   tend to over-simplify things and leave out more or 

less important facts. For this reason, they may be considered inadequate to 

describe a system under consideration.  

 –   Due to their simplicity, it may be dangerous to take decisions based on their 

implications.  

 –   It may be difficult to decide, what the few relevant variables and parameters 

are, which a simple model should consider. Scientists may even disagree 

about the stylized facts to model.  

 –   Simple models tend to reproduce a few stylized facts only and are often not 

able to consistently reproduce a large number of observations. The bigger 

picture and the systemic view may get lost.  

 –   Making simple  models   compatible with a long list of stylized facts often 

requires to improve or extend the models by additional terms or parameter 

dependencies. Eventually, this improvement process ends up with detailed 

models, leaving one with the problems specified there (see Sec. 3.2).  

 –   Certain properties and behaviors of socio-economic systems may not be 

understandable with methods, which have been successful in physics: Sub-

dividing the system into subsystems, analyzing and modeling these subsys-

tems, and putting the models together may not lead to a good description 

of the overall system. For example, several effects may act in parallel and 

have non-separable orders of magnitude. This makes it difficult or impos-

sible to start with a zeroth or first order approximation and to improve it by 

adding correction terms (as it is done, for example, when the falling of a body 

is described by the effect of gravitational acceleration plus the effect of air 

resistance). Summing up the mathematical terms that describe the different 

effects may not converge. It is also not clear whether  complex   systems can 

be always understood via simple principles, as the success of complexity 

science might suggest. Some  complex   systems may require  complex   models 

to explain them, and there may even be phenomena, whose complexity is 

irreducible. Turbulence (Davidson   , P. A., 2004) could be such an example. 

While it is a long-standing problem that has been addressed by many bright 

people, it has still not been explained completely.   

 It should be added, however, that we do not know today, whether the last point is 

relevant, how relevant it is, and where. So far, it is a potential problem one should 

be aware of. It basically limits the realm, in which classical modeling will be suc-

cessful, but we have certainly not reached these limits, yet.  
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3.4     Modeling Complex Systems 

 Modeling socio-economic systems is less hopeless than many social scientists 

may think (Weidlich   , W., 2006). In recent years, considerable progress has been 

made in a variety of relevant fields, including 

 –    experimental research (Kagel   , J. H., and Roth   , A. E., 1995; Guala   , F., 2005; 

Helbing   , D., and Yu, W., 2010),  

 –   data mining (Maimon, O., and Rokach, L., 2005),  

 –   network analysis (Jackson   , M. O., 2008),  

 –   agent-based modeling (Epstein   , J. M., 2006; Gilbert   , N. (ed.), 2010),  

 –   the theory of  complex   systems (including self-organization phenomena and 

chaos) (Miller   , J. H. and Page   , S. E., 2007),  

 –   the theory of phase transitio ns   (Stanley   , H. E., 1987) (“catastrophes” (Zeeman   , 

E. C. (ed.), 1977)), critical phenomena (Sornette, D., 2006), and extreme 

events (Albeverio   , S., et al. (eds.), 2005), and  

 –   the engineering of intelligent systems (Floreano   , D., and Matiussi, C., 2005; 

Nolfi   , S., and Floreano   , D., 2000).   

 These fields have considerably advanced our understanding of  complex   systems. 

In this connection, one should be aware that the term “complexity” is used in 

many different ways. In the following, we will distinguish three kinds of complex-

ity: 

   1.   structural,  

  2.   dynamical, and  

  3.   functional complexity.   

 One could also add algorithmic complexity, which is given by the amount of com-

putational time needed to solve certain problems. Some optimization problems, 

such as the optimization of logistic or traffic signal operations, are algorithmi-

cally  complex   (Helbing   , D., et al., 2009). 

 Linear models are not considered to be  complex  , no matter how many terms 

they contain. An example for structural complexity is a car or airplane. They 

are constructed in a way that is dynamically more or less deterministic and well 

controllable, i.e. dynamically simple, and they also serve relatively simple func-

tions (the motion from a location A to another location B). While the acceleration 

of a car or a periodic oscillation would be an example for a simple dynamics, 

examples for  complex   dynamical behavior are non-periodic changes, determin-

istic chaos, or history-dependent behaviors. Complex dynamics can already be 

produced by simple sets of non-linearly coupled equations. While a planet orbit-

ing around the sun follows a simple dynamics, the interaction of three celestial 
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bodies can already show a chaotic dynamics. Ecosystems, the human body or the 

brain would be functionally  complex   systems. The same would hold for the world 

wide web, financial markets, or running a country or multi-national company. 

 While the interrelation between function, form and dynamics still poses great 

scientific challenges, the understanding of structurally or dynamically  complex   

systems has significantly progressed. Simple agent-based models of systems with 

a large number of interacting system elements (be it particles, cars, pedestrians, 

individuals, or companies) show properties, which remind of socio-economic 

systems. Assuming that these elements mutually adapt to each other through 

non-linear or network interactions (i.e. that the elements are influenced by their 

environment while modifying it themselves), one can find a rich, history-depen-

dent system behavior, which is often counter-intuitive, hardly predictable, and 

seemingly uncontrollable. These models challenge our common way of thinking 

and help to grasp behaviors of  complex   systems, which are currently a nightmare 

for decision-makers. 

 For example,  complex   systems are often unresponsive to control attempts, 

while close to “critical points” (also known as “ tipping points”), they may cause 

sudden (and often unexpected)  phase transition (so-called “regime shifts”). 

These correspond to discontinuous changes in the system behavior. The break-

down of free traffic flow would be a harmless example, while a systemic crisis 

(such as a financial collapse or revolution) would be a more dramatic one. Such 

systemic crises are often based on cascade spreading through network interac-

tions (Helbing   , D., 2009,  System risks ). Complex adaptive systems also allow one 

to understand extreme events as a result of strong interactions in a system (rather 

than as externally caused shocks). Furthermore, the interaction of many system 

elements may give rise to interesting self-organization phenomena and emergent 

properties, which cannot be understood from the behaviors of the single ele-

ments or by adding them up. Typical examples are collective patterns of motion 

in pedestrian crowds or what is sometimes called “swarm intelligence” (Mous-

said   , M., et al., 2009). 

 Considering this, it is conceivable that many of today’s puzzles in the social 

sciences may one day be explained by simple  models  , namely as emergent phe-

nomena resulting from interactions of many individuals and/or other system 

elements. Note that emergent phenomena cannot be explained by linear models 

(which are most common in many areas of quantitative empirical research in 

the social sciences and economics). Unfortunately, there is no standard way to 

set up models of emergent phenomena. On the one hand, there are many pos-

sible kinds of non-linear functional dependencies (“interactions”) (see the end 

of Sec. 3.1). On the other hand, model assumptions that appear plausible do often 

not produce the desired or expected effects. 
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 In spite of these difficulties, taking time-dependent change into account, a 

non-linear  coupling   of variables, spatial or network interactions, randomness, 

and/or correlations (i.e. features that many social and economic models currently 

do not consider to the necessary extent), can sometimes deliver unexpected 

solutions of long-standing puzzles. For example, it turns out that representa-

tive agent models (which are common in economics) can be quite misleading, 

as the same kinds of interactions among the system components can imply com-

pletely different or even opposite conclusions, when interactions take place in a 

socio-economic network rather than with average (or randomly chosen) interac-

tion partners (Helbing   . D., et  al., 2010). In other words, models often produce 

counter-intuitive results, when spatio-temporal or network interactions are rel-

evant. Therefore, a simple non-linear model may explain phenomena, which 

complicated linear models may fail to reproduce. In fact, this generally applies 

to systems that can show several possible states (i.e. systems which do not have 

just one stable equilibrium). Out-of-equilibrium models are also required for the 

description of systemic crises such as the current financial crisis (Helbing   , D., 

2009,  System risks ).   

4     Challenges of Socio-Economic Modeling 
 Many people before and after Popper    have been thinking about the logic of sci-

entific discovery (Popper   , K. R., 1959). A widespread opinion is that a good model 

should be applicable to measurements of many systems of a certain kind, in 

particular to measurements in different areas of the world. The more observa-

tions a model can explain and the less parameters it has, the more powerful it 

is usually considered to be. Models with a few parameters can often be easier to 

calibrate, and cause-and-effect relationships may be better identified, but one 

can usually not expect that these models would provide an exact description of 

reality. Nevertheless, a good model should make predictions regarding some pos-

sible, but previously unobserved system behaviors. In this connnection, predic-

tion does not necessarily mean the forecast of a certain event at a specific future 

point in time. It means a specific system behavior that is expected to occur (or to 

be possible) under certain conditions (e.g. for certain parameter combinations 

or certain initial conditions). When such conditions apply and the system shows 

the expected behavior, this would be considered to verify the model, while the 

model would be falsified or seriously questioned, if the predicted system behav-

ior would not occur. By experimentally challenging models based on their predic-

tions (implications), it has been possible in the natural sciences to rate alterna-



66       Dirk Helbing

tive models based on their quality in reproducing and predicting measured data. 

Unfortunately, it turns out that this approach is less suited to identify “the right 

model” of a social or economic system under consideration. As we will discuss in 

the following, this is not only due to the smaller amount of data available on most 

aspects of social and economic systems and due to experimental limitations for 

financial, technical and ethical reasons. 

4.1     Promises and Difficulties of the Experimental Approach 

 So far, it is very expensive to carry out social and economic experiments, for 

example in the laboratory. While the study of human behavior under controlled 

conditions has become a common research method not only in psychology, but 

also in experimental economics and in sociology, the number of individuals that 

can be studied in such experiments is limited. This implies a large degree of sta-

tistical variation, which makes it difficult to determine behavioral laws or to dis-

tinguish between different models. The statistical noise creates something like 

a foggy situation, which makes it difficult to see what is going on. In physics, 

this problem can be usually solved by better measurement methods (apart from 

uncertainty that results from the laws of quantum mechanics). In social systems, 

however, there is an irreducible degree of randomness. The behavior varies not 

only between individuals due to their heterogeneity (different “personality”). It 

also varies from one instance to another, i.e. the decision-making of an individ-

ual is usually not deterministic. This could be due to various reasons: unknown 

external influences (details attracting the attention of the individual) or internal 

factors (exploration behavior, decisions taken by mistake, memory effects, etc.). 

The large level of behavioral variability within and between individuals is prob-

ably not only due to the different histories individuals have, but also due to the 

fact that exploration behavior and the heterogeneity of behaviors are beneficial 

for the learning of individuals and for the adaptibility of human groups to various 

environmental conditions. Applying a theory of social evolution would, therefore, 

suggest that randomness is significant in social and economic systems, because 

it increases system performance. Besides, heterogeneity can also have individ-

ual benefits, as differentiation facilitates specialization. The benefit of a varia-

tion between individuals is also well-known from ecological systems (Tilman   , D., 

et al., 1996). 

 Besides impeding the discovery of behavioral laws, the limited number of 

participants in laboratory experiments also restricts the number of repetitions 

and the number of experimental settings or parameter combinations that can be 

studied. Scanning parameter spaces is impossible so far, while it would be useful 
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to detect different system behaviors and to determine under which conditions 

they occur. It can be quite tricky to select suitable system parameters (e.g. the 

payoff matrix in a game-theoretical experiment). Computer simulations suggest 

that one would find interesting results mainly, if the parameters selected in dif-

ferent experimental setups imply different system behaviors, i.e. if they belong to 

different “phases” in the parameter space (see Fig. 1). In order to determine such 

parameter combinations, it is advised to perform computer simulations before, 

to determine the phase diagram for the system under consideration (Helbing   , D., 

and Yu, W., 2010). The problem, however, is that the underlying model is unlikely 

to be perfect, i.e. even a good social or economic model is expected to make pre-

dictions which are only approximately valid. As a consequence, the effect one 

likes to show may appear for (somewhat) different parameter values, or it may 

not occur at all (considering the level of randomness) (Traulsen   , A., et al., 2010).  

4.2     Several Models Are Right 

 The above mentioned properties of socio-economic systems imply that it is dif-

ficult to select the “right” model among several alternative ones. For an illustra-

tion, let us take car-following models, as they are used for the simulation of urban 

or freeway traffic. Thanks to radar sensors, it has become possible to measure 

the acceleration of vehicles as a function of the typical variables of car-following 

models, which are the distance to the car ahead, the own speed, and the speed 

difference. When fitting the parameters of different car-following models to data 

of such measurements, it turns out that the remaining error between computer 

simulations and measurements is about the same for most of the models. The cal-

ibration error varies between 12 and 17 percent, and according to the authors, “no 

model can be denoted to be the best” (Brockfeld   , E., et al., 2004). When the error 

of different models (i.e. the deviation between model and data) is determined 

for a new data set (using the model parameters determined with the previous 

data set), the resulting  validation   error usually varies between 17 and 22 percent 

(larger  validation   errors mainly result, when the calibration data set is overfitted) 

(Brockfeld   , E., et al., 2004). Again, the performance of the different models is so 

similar that it would not be well justified to select one of them as the “correct” 

model and exclude all the others. A closer analysis shows that the parameters of 

the car-following dynamics varies among different drivers, but the behavior of 

specific drivers also varies over time (Kesting   , A., and Treiber   , M., 2008). We have 

to assume that the same applies to basically all kinds of behavior, not only for 

driving a car. Moreover, it is likely that many behaviors (such as decision-making 

behaviors) vary even more than car-following behavior does. As a consequence, 
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it would be even more difficult to distinguish between different models by means 

of empirical or experimental data, which would mean that we may have to accept 

several models to be (possibly) “right”, even when they are not consistent with 

each other. In other words, the question “Which is the best model?” or “How to 

choose the model?” may not be decidable in a reasonable way, as is also sug-

gested by the next section. This situation reminds a bit of Gödel   ’s Undecidability 

Theorem (Gödel   , K., 1962), which relates to the (in)completeness of certain axiom 

systems. 

 It may be tempting to determine the best model as the one, which is most suc-

cessful, for example in terms of the number of citations, it gets. However, success 

is not necessarily an indicator of a good model. Let us take models used for stock 

trading as an example. Clearly, even if the stock prices vary in a perfectly random 

manner and if the average success of each model is the same over an infinite time 

period; when different traders apply different trading models, they will be differ-

ently successful at any chosen point in time. Therefore, one would consider some 

models more successful than others, while this would be only a matter of luck. As 

a matter of chance, at other points in time, different models would be the most 

successful ones. 

 Of course, if behaviors are not just random so that behavioral laws that go 

beyond statistical distributions exist, some models should be better than others, 

and it should eventually be possible to separate “good” from “bad” models 

through the “wisdom of crowds” effect. However, the “wisdom of crowds” 

assumes independent judgements, while scientists have repeated interactions. It 

has been shown experimentally that this tends to create consensus, but that this 

consensus will often deviate from the truth (Lorenz   , J., et al., 2010). The problem 

results from social influence, which creates a herding effect that can undermine 

the “wisdom of crowds”. Of course, this mainly applies, when the facts are not 

sufficiently obvious, which is the case in the social sciences due to the high vari-

ability of observations, while the problem is less pressing in the natural sciences 

thanks to the higher measurement precision. Nevertheless, the physicist Max 

Planck is known for the quote: “Science progresses funeral by funeral”⁴. Kuhn’s 

study of scientific revolutions (Kuhn   , T. S., 1962) suggests as well that scientific 

progress is not continuous, but there are sudden paradigm shifts. This reveals 

the problem of herding effects. Even a collective agreement is no guarantee for 

the correctness of a model, as the replacement of classical mechanics by relativ-

istic quantum theory shows. In other words, success is not necessarily an indica-

4   Max Planck: “An important scientific innovation rarely makes its way by gradually winning 

over and converting its opponents, but rather because its opponents eventually die, and a new 

generation grows up that is familiar with it.”  
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 Figure 1   : Phase diagram showing the finally remaining strategies in the spatial public goods 
game with cooperators (C), defectors (D), cooperators who punish defectors (PC) and hypocriti-
cal punishers (PD), who punish other defectors while defecting themselves (after Helbing   , D., 
et al., 2010). Initially, each of the four strategies occupies 25% of the sites of the square lattice, 
and their distribution is uniform in space. However, due to their evolutionary competition, two 
or three strategies die out after some time. The finally resulting state depends on the punish-
ment cost, the punishment fine, and the synergy r of cooperation (the factor by which coop-
eration increases the sum of investments). The displayed phase diagrams are for (a) r =2.0, 
(b) r =3.5, and (c) r =4.4. (d) Enlargement of the small-cost area for r =3.5. Solid separating lines 
indicate that the resulting fractions of all strategies change continuously with a modification 
of the punishment cost and punishment fine, while broken lines correspond to discontinuous 
changes. All diagrams show that cooperators and defectors cannot stop the spreading of costly 
punishment, if only the fine-to-cost ratio is large enough (see green PC area). Note that, in the 
absence of defectors, the spreading of punishing cooperators is extremely slow and follows a 
voter model kind of dynamics. A small level of strategy mutations (which continuously creates 
a small number of strategies of all kinds, in particular defectors) can largely accelerate the 
spreading of them. Furthermore, there are parameter regions where punishing cooperators can 
crowd out ”second-order free-riders” (non-punishing cooperators) in the presence of defectors 
(D+PC). Finally, for low punishment costs, but moderate punishment fines, it may happen that 
”moralists”, who cooperate and punish non-cooperative behavior, can only survive through 
an ”unholy alliance” with ”immoral”, hypocritical punishers (PD+PC). For related videos, see 
 http://www.soms.ethz.ch/research/secondorder-freeriders  or  http://www.matjazperc.com/
games/moral.html .  
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tor for good models. It may just indicate which model is most fashionable at a 

given time. The problem becomes worse by the academic selection process that 

decides, which scientists make a career and which ones do not. It creates a con-

siderable inertia in the adjustment to new knowledge, i.e. scientific trends are 

likely to persist longer than what is justified by facts. 

4.3          No Known Model is Right 

 A typical approach in the natural sciences is to verify or falsify previously 

untested predictions (implications) of alternative models by sometimes quite 

sophisticated experiments. Only in the minority of cases, two alternative theo-

ries turn out to be the same, like the wave and the particle picture of quantum 

mechanics. In most cases, however, two theories A and B are non-identical and 

inconsistent, which means that they should make different predictions in par-

ticular kinds of situations. Experiments are performed to find out whether theory 

A or theory B is right, or whether both of them deviate from the measurements. 

If the experimental data confirm theory A and are not compatible with theory B 

(i.e. deviate significantly from it), one would discard theory B forever. In this way, 

experiments are thought to narrow down the number of alternative theories, until 

a single, “true” theory remains. 

 When social or economic systems are modeled, the following situation is 

not unlikely to happen: Scientists identify mutually incompatible predictions of 

theories A and B, and it turns out that an experiment supports theory A, but not 

theory B. One day, another scientist identifies a different set of incompatible pre-

dictions, and another experiment supports theory B, but not theory A. Due to the 

inherent simplifications of socio-economic models, for any model it should be 

easy to find empirical evidence that contradicts it. What should one do in such 

cases? Giving up on modeling would probably not be the best idea. Generalizing 

a model is always possible, but it will usually end up with detailed models, which 

imply a number of problems that have been outlined in Sec. 3.2. One could also 

stay with many particular models and determine their respective ranges of valid-

ity. This, however, will never result in a holistic or systemic model. A possible way 

out would be the approach of pluralistic modeling outlined in Sec. 5.1. 

 Modeling in modern physics seems to face similar problems. While one would 

expect that each experiment narrows down the number of remaining, non-falsi-

fied models, one actually observes that, after each experiment, scientists come 

up with a number of new models. As people say: “Each answered question raises 

ten new ones.” In fact, there is an abundance of elementary particle models, and 

the same applies to cosmological models. Many models require assuming the 



 Pluralistic Modeling of Complex Systems       71

existence of factors that have never been measured and perhaps will never be 

measured, such as Higgs bosons, dark matter, or dark e nergy  . We will probably 

have to live with the fact that models are just models that never grasp all details 

of reality. Moreover, as has been pointed out, understanding elementary particles 

and fundamental forces in physics would not explain at all what is happening 

in the world around us (Vicsek   , T., 2002; Pietronero   , L., 2008). Many emergent 

phenomena that we observe in the biological, economic and social world will 

never be derived from elementary particle physics, because emergent properties 

of a system cannot be understood from the properties of its system components 

alone. They usually come about by the interaction of a large number of system 

components. Let us be honest: We do not even understand the particular proper-

ties of water, as simple as H2O molecules may be. 

 Generally, there is a serious lack in understanding the connection between 

function, dynamics, and form. Emergence often seems to have an element of 

surprise. The medical effect of a new chemical drug cannot be understood by 

computer  simulation   alone. So far, we also do not understand emotions and 

consciousness, and we cannot calculate the biological fitness of a species in the 

computer. The most exciting open puzzles in science concern such emergent phe-

nomena. It would be interesting to study, whether social and economic phenom-

ena such as trust, solidarity, and economic value can be understood as emergent 

phenomena as well (Helbing   , D., 2010,  Grand socio-economic challenges ).  

4.4     The Model Captures Some Features, But May Be 
Inadequate 

 Scientists are often prompted to transfer their methods to another area of appli-

cation, based on analogies that they see between the behavior of different 

systems. Systems science is based on such analogies, and physicists generalize 

their methods as well. The question is how useful a “physicalist approach” can 

be, which transfers properties of many-particle systems to social or economic 

systems, although individuals are certainly more intelligent than particles and 

have many more behavioral degrees of freedom. 

 Of course, physicists would never claim that particle models could provide 

an exact description of social or economic systems. Why, then, do they think the 

models could make a contribution to the understanding of these systems? This 

is, because they have experience with what can happen in systems character-

ized by the non-linear interaction of many system components in space and time, 

and when randomness plays a role. They know how self-organized collective 

phenomena on the “macroscopic” (aggregate) level can result from interactions 
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on the “microscopic” (individual) level. And they have learned, how this can 

lead to phase transiti ons   (also called “regime shifts” or “catastrophes”), when a 

system parameter (“control parameter”) crosses a critical point (“ tipping point”). 

Furthermore, they have discovered that, at a critical point, the system typically 

shows a scale-free behavior (i.e. power laws or other fat-tail distributions rather 

than Gaussian distributions). 

 It is important to note that the characteristic features of the system at the 

critical point tend to be “universal”, i.e. they do not depend on the details of the 

interactions. This is, why physicists think they can abstract from the details. Of 

course, details are expected to be relevant when the system is not close to a criti-

cal point. It should also be added that there are a couple of different kinds of 

universal behavior, so-called universality classes. Nevertheless, many-particle 

models may allow one to get a better understanding of regime shifts, which are 

not so well understood by most established models in economics or the social sci-

ences. However, if the tipping point is far away, the usefulness of many-particle 

models is limited, and detailed descriptions, as they are favored by economists 

and social scientists, appear to be more adequate. 

 Sometimes, it is not so clear how far analogies can carry, or if they are useful 

at all. Let us take neural network models. In a certain sense, they can be used 

to model learning, generalization, and abstraction. However, the hope that they 

would explain the functioning of the brain has been largely disappointed. Today, 

we know that the brain works quite differently, but neural network theory has 

given birth to many interesting engineering applications that are even commer-

cially applied. Let us consider models of cooperation based on coupled oscillators 

as a second example. Without any doubt, the synchronization of cyclical behav-

ior is among the most interesting collective phenomena we know of, and models 

allow one to study if and how groups of oscillators will coordinate each other or 

fall apart into subgroups (which are not synchronized among each other, while 

the oscillators in each of them are) (Mikhailov   , A. S., and Calenbuhr   , V., 2002). 

Despite this  analogy   to group formation and group dynamics, it is not clear, what 

we can learn from such models for social systems. A similar point is sometimes 

raised for spin models, which have been proposed to describe opinion forma-

tion processes or the emergence of cooperation in social dilemma situations. In 

this connection, it has been pointed out that social interactions cannot always be 

broken down into binary interactions. Some interactions involve three or more 

individuals at the same time, which may change the character of the interaction. 

Nevertheless, similar phenomena have been studied by overlaying binary inter-

actions, and it is not fully clear how important the difference is. 

 Let us finally ask whether unrealistic assumptions are generally a sign of bad 

models. The discussion in Sec. 3.3 suggests that this is not necessarily so. It seems 
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more a matter of the purpose of a model, which determines the level of simplifica-

tion, and a matter of the availability of better models, i.e. a matter of competition. 

Note, however, that a more realistic model is not necessarily more useful. For 

example, many car-following models are more realistic than fluid-dynamic traffic 

models, but they are not suited to simulate large-scale traffic networks in real-

time. For social systems, there are a number of different modeling approaches as 

well, including the following: 

 –    Physical(istic) modeling approach: Socio-and econo-physicists often abstract 

social interactions so much that their models come down to multi-particle 

models (or even spin models with two behavioral options). Such models focus 

on the effect of non-linear interactions and are a special case of bounded 

rationality models, sometimes called zero-intelligence models (Bentley   , R. 

A., and Ormerod   , P.,  forthcoming ). Nevertheless, they may display features 

of collective or swarm intelligence (Moussaid   , M., et al., 2009). Furthermore, 

they may be suited to describe regime shifts or situations of routine choice 

(Gintis   , H., 2009), i.e. situations where individuals react to their environment 

in a more or less subconscious and automatic way. Paul Ormerod   , an econo-

mist by background, argues as follows (Ormerod   , P., 2008): “In many social 

and economic contexts, self-awareness of agents is of little consequence… No 

matter how advanced the cognitive abilities of agents in abstract intellectual 

terms, it is as if they operate with relatively low cognitive ability within the 

system… The more useful null model in social science agent modelling is one 

close to zero intelligence. It is only when this fails that more advanced cogni-

tion of agents should be considered.”  

 –   Economic modeling approach: Economists seem to have quite the oppo-

site approach. Their concept of “homo economicus” (the “perfect egoist”) 

assumes that individuals take strategic decisions, choosing the optimal of 

their behavioral options. This requires individuals with infinite memory and 

processing capacities. Insofar, one could speak of an infinite-intelligence 

approach. It is also known as rational choice approach and has the advan-

tage that the expected behaviors of individuals can be axiomatically derived. 

In this way, it was possible to build the voluminous and impressive theory 

of mainstream economics. Again, the reliability of this theory depends, of 

course, on the realism of its underlying assumptions.  

 –   Sociological modeling approach: Certain schools of sociologists use rational 

choice models as well. In contrast to economists, however, they do not gener-

ally assume that individuals would radically optimize their own profit. Their 

models rather consider that social exchange is more differentiated and multi-

faceted. For example, when choosing their behavior, individuals may not 

only consider their own preferences, but the preferences of their interaction 
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partner(s) as well. In recent years, “fairness theory” has received a particu-

lar attention (Fehr   , E., and Schmidt   , K. M., 1999) and often been contrasted 

with rational choice theory. These social aspects of decision-making are now 

eventually entering economic thinking as well (Frey   , B., 1999).  

 –   Psychological modeling approach: Psychologists are perhaps least axiomatic 

and usually oriented at empirical observations. They have identified behav-

ioral paradoxies, which are inconsistent with rational choice theory, at least 

its classical variant. For example, it turns out that most people behave in a 

risk averse way. To account for their observations, new concepts have been 

developed, including prospect theory (Kahneman   , D., and Tversky   , A., 1979), 

satisficing theory (Simon, H. A., 1955), and the concept of behavioral heu-

ristics (Gigerenzer   , G., et al., 2000). In particular, it turns out that individual 

decisions depend on the respective framing. In his economic Nobel lecture, 

Daniel Kahneman    put it this way: “Rational models are psychologically unre-

alistic… the central characteristic of agents is not that they reason poorly, but 

that they often act intuitively. And the behavior of these agents is not guided 

by what they are able to compute, but by what they happen to see at a given 

moment.” Therefore, modern research directions relate to the cognitive and 

neurosciences. These results are now finding their way into economics via 

the fields of experimental, behavioral, and neuro-economics.   

 In summary, there is currently no unified approach that scientists generally agree 

on. Some of the approaches are more stylized or axiomatic. Others are in better 

quantitative agreement with empirical or experimental evidence, but mathe-

matically less elaborated. Therefore, they are theoretically less suited to derive 

implications for the behavior in situations, which have not been explored so far. 

Consequently, all models have their strengths and weaknesses, no matter how 

realistic they may be. Moreover, none of the  mathematical models available so far 

seems to be sophisticated enough to reflect the full complexity of social interac-

tions between many people.   

5     Discussion and Outlook 

5.1     Pluralistic or Possibilistic Modeling and Multiple World 
Views: The Way Out? 

 Summarizing the previous discussion, it is quite unlikely that we will ever have 

a single, consistent, complete, and correct model of socio-economic systems. 
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Maybe we will not even find such a grand unified theory in physics. Recently, 

doubts along these lines have even been raised by some particle physicists (Woit   , 

P., 2006; Smolin   , L., 2007). It may be the time to say good-bye to a modeling phi-

losophy that believes in the feasibility of a unique, general, integrated and con-

sistent model. At least there is no theoretical or empirical evidence for the pos-

sibility of it. 

 This calls for a paradigm shift in the modeling approach. It is important to 

be honest that each model is limited, but most models are useful for something. 

In other words, we should be tolerant with regard to each other’s models and see 

where they can complement each other. This does not mean that there would 

be separate models for non-overlapping parts of the system, one for each sub-

system. As has been pointed out, it is hard to decide whether a particular model 

is valid, no matter how small the subsystem is chosen. It makes more sense to 

assume that each model has a certain validity or usefulness between 0 and 1, 

and that the validity furthermore depends on the part or aspect of the system 

addressed. This validity may be quantified, for example, by the goodness of  fit   of 

a given system or the accuracy of description of another system of the same kind. 

As there are often several models for each part or aspect of a system, one could 

weight the models with their respective validity, as determined statistically. Anal-

ogously to the “wisdom of crowds” (Galton   , F., 1907), which is based on the law 

of large numbers, this should lead to a better quantitative fit or prediction than 

most (or even each) model in separation, despite the likely inconsistency among 

the models. Such an approach could be called a pluralistic modeling approach 

(Rotmans   , J., and Asselt   , M. B. A. van, 2001), as it tolerates and integrates mul-

tiple worldviews. It may also be called a possibilistic approach (Dubois   , D., and 

Prade   , H., 2004), because it takes into account that each model has only certain 

likelihood to be valid, i.e. each model describes a possible truth. However, this 

should not be misunderstood as an appeal for a subjectivistic approach. The plu-

ralistic modeling approach still assumes that there is some underlying reality 

that some, many, or all of us share (depending on the aspect we talk about). 

 As shocking as it may be for many scientists and decision-makers to abandon 

their belief in the existence of a unique, true model, the pluralistic modeling 

approach is already being used. Hurricane prediction and climate modeling are 

such examples (Lucarini   , V., 2002). Even modern airplanes are controlled by mul-

tiple computer programs that are run in parallel. If they do not agree with each 

other, a majority decision is taken and implemented. Although this seems pretty 

scary, this approach has worked surprisingly well so far. Moreover, when crash 

tests of newly developed cars are simulated in the computer, the simulations are 

again performed with several models, each of which is based on different approx-

imation methods. 
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 It is plausible to assume that pluralistic modeling will be much more widely 

used in future, whenever a  complex   system shall be modeled.  

5.2     Where Social Scientists and Natural Scientists or 
Engineers Can Learn From Each Other 

 It has been argued that each modeling approach has its strength and weaknesses, 

and that they should be considered complementary rather than competitive. This 

also implies that scientists of different disciplines may profit and learn from each 

other. Areas of fruitful multi-disciplinary collaboration could be: 

 –    the modeling of socio-economic systems themselves,  

 –   understanding the impacts that engineered systems have on the socio-eco-

nomic world,  

 –   the modeling of the social mechanisms that drive the evolution and spread-

ing of innovations, norms, technologies, products etc.,  

 –   scientific challenges relating to the managing of complexity and to systems 

design,  

 –   the application of social coordination and cooperation mechanisms to the 

creation of self-organizing technical systems (such as decentralized traffic 

controls or peer-to-peer systems),  

 –   the development of techno-social systems (Vespignani   , A., 2009), in which 

the use of technology is combined with social competence and human 

knowledge (such as Wikipedia, prediction markets, recommender systems, 

or the semantic web).   

 Given the large potentials of such collaborations, it is time to overcome disciplin-

ary boundaries. They seem to make less and less sense. It rather appears that 

multi-disciplinary, large-scale efforts are needed to describe and understand 

socio-economic systems well enough to address practical challenges of humanity 

(such as the financial and economic crisis) more successfully (Helbing   , D., 2010, 

 The FuturIcT knowledge ).    
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     Stephan   Hartmann    
The Methodological Challenges of Complex 
Systems 
 Commentary on Dirk Helbing     

1             Introduction 
 In this rich and insightful paper, Dirk Helbing    addresses a large number of 

methodological problems regarding the modeling of  complex   systems. Some of 

these problems concern models of  complex   systems in general; others concern 

particular models of socio-economic systems. The latter are the most  complex   

systems we can think of, and it is by no means clear (and accordingly controver-

sial) whether the modeling approach can succeed here at all. However, there has 

been a lot of progress in this field in the last years. This progress is made pos-

sible by the increase in computer power and the highly interdisciplinary nature 

of this research, which led to a variety of different modeling approaches. Helbing    

has tremendously illuminating things to say about all this, and I recommend this 

paper highly to all philosophers of science interested in modeling. 

 In this short commentary, I will discuss two central methodological points 

that Helbing    makes: his plea for pluralistic modeling (Sec. 2) and the possibilistic 

approach that he advocates (Sec. 3).  

2     Pluralistic Modeling 
 Helbing    explains that we find a whole spectrum of types of models in the new 

field of socio-economic modeling. While some of these models are more detailed, 

others are simple (so-called ‘toy models’). Whereas some models use a physical 

approach, others use an economic, sociological, or psychological approach. It is 

important to note that all types of models have various merits and shortcomings. 

Even if we consider different models of the same type, we find that some models 

work well for a certain class of applications, while other models work well for 

other applications. No single model gets everything right, which makes it hard or 

even impossible to identify the one true model (if there is one). Besides, different 

models have different functions. For example, while some models allow us to 

make accurate predictions, others give us insight and understanding. Interest-
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ingly, no single model fulfills all desired functions. For these reasons, Helbing    

advocates a pluralistic approach to socio-economic modeling according to which 

the scientific community should study a variety of models for a certain phenom-

enon even if the different models are not consistent with each other and presup-

pose different “world views”. Here are a few remarks on these claims: 

 I think that Helbing    is right to stress that different models have different func-

tions and that the scientific community values and desires all these functions 

(Frigg    and Hartmann    2006). However, it may happen that different scientists give 

different weights to a certain function. For example, one scientist might find it 

most important that a model makes accurate predictions. Such a scientist will 

presumably favor a more detailed model to a simple model, as more detailed 

models typically lead to better predictions. Another scientist, who is interested 

in gaining understanding, will prefer a simple model which is easier to grasp, 

and from which she hopes to identify the essential features that bring about the 

phenomenon under consideration. It seems that both scientists are rational in 

their choice. Consequently, there does not seem to be a unique model choice, 

which is independent of the (arguably equally rational) epistemic preferences of 

the scientists. However, if two scientists agree on their epistemic preferences (i.e. 

on the weights they assign to different functions), they might well (and perhaps 

even  should ) agree on their model choice. 

 Our previous discussion has presupposed that the different functions of 

models are independent and mutually irreducible. That is, we assume, for 

example, that a predictively successful model does not automatically also 

provide good explanations. Moreover, the different functions are not entailed by 

a common goal such as truth. That is, we follow Cartwright    (1983), who famously 

argued that “the truth does not explain much”. Cartwright    rightly observed 

that simple explanatory models are often far from empirically adequate, while 

detailed models do not provide much insight (Hartmann    1998). And so we have 

to make a choice. This typically means that some members of the scientific com-

munity explore simple  models  , while others explore more complicated models. 

Again, others explore some models in-between. 

 Despite Cartwright   ’s skepticism, it is controversial amongst philosophers 

of science whether, and to what extent, the various functions of models can be 

reduced to the goal of truth. For example, some authors have presented ingenious 

arguments to show that unification (Myrvold    2003) and simplicity (Swinburne    

1997) are truth-conducive. And while a lot of progress has been made here, not 

everybody is convinced. Consequently, I assume that a number of different epis-

temic and pragmatic values are associated with scientific theories and models, 

which we take to be irreducible, to the effect that different scientists (or differ-

ent parts of the scientific community) endorse different values. There is another 
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reason why the goal of truth is not privileged. After all, why would the scientific 

community care about a true but otherwise useless (e.g. too complicated) model? 

 To proceed, let us assume that two scientists agree on their epistemic prefer-

ences and ask whether a proliferation of models is methodologically advisable. 

Two considerations come to mind here: First, one may say that a proliferation of 

models is advantageous as the availability of alternatives helps finding the best 

model that satisfies the agreed-upon epistemic preferences. The belief here is 

that there is a best model, and that it is only a matter of effort to find it. Explor-

ing several alternative models at the same time will then speed up the process 

of arriving at the best model. This is the  epistemically optimistic  view associated 

pluralism. Alternatively, one may believe that there is no best model, and that all 

we can do is to entertain a number of alternative models, explore them, and apply 

them as good as we can. This is the  epistemically pessimistic  view of pluralism. 

 It is not quite clear which of the two options Helbing    favors. He presents 

some polemics against the ‘one-true-model’ view, but I am not sure whether his 

arguments also apply if we agree on the functions (and their respective weights). 

Helbing    also does not say much about the conditions of adequacy of an accept-

able model. Are all models equally acceptable? Or are there certain conditions 

that a model has to satisfy to be acceptable or (at least) entertainable? Does a 

model have to score high on at least one function? And: What if a model conflicts 

with some data? Shall we then wait and see if it accounts well for other data, or 

shall we reject the model right away in this case? It is difficult to find answers to 

these questions and to formulate reliable criteria. Much seems to depend on the 

details of the specific case, and on the judgments of the respective scientists. 

 Let us turn to the relation between different models for the same phenom-

enon. Helbing    observes that different models of the same phenomenon make dif-

ferent assumptions about the world. Thus, it is interesting to ask whether these 

assumptions (and hence, the models) are compatible with each other. Helbing    

seems to be content with different models being inconsistent with each other. I 

have two comments on this: First, the situation in socio-economic modeling is 

not at all special in this regard. We also find alternative and seemingly incompat-

ible models in more traditional parts of science, such as nuclear physics. There, 

we have a similarly rich spectrum of models ranging from, e.g., the liquid drop 

model to the various shell models. These models make fundamentally different 

assumptions about their target system and appear to be contradictory. However, 

there does not seem to be a reason for concern about these apparent inconsisten-

cies. Firstly, all nuclear models are just models and, as such, involve idealiza-

tions. They are strictly speaking false and do not tell us the whole truth about 

the object or system under consideration. The different models rather comple-

ment each other, and each model provides (metaphorically speaking) a certain 
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perspective on the phenomenon in question (Giere    2006). It is also interesting to 

note that the various models can often be approximately derived from (or at least 

be made plausible on the basis of) a more fundamental theory (Hartmann    1999, 

cf. Morrison    2011). Besides, the different models often have different domains of 

applicability. One model may explain certain aspects of a phenomenon, another 

model may explain others. If one adds the domain of applicability of a model in a 

ceteris paribus clause, the apparent inconsistency of different models disappears. 

And so I conclude that we should not worry about apparent inconsistencies. They 

only become a problem if we take the models too seriously (Hartmann    1996).  

3     Possibilistic Modeling 
 Many of my above claims may be too liberal. Is it really false to assume that truth 

plays a privileged role in scientific theorizing? Should we not instead require that 

a model is at least approximately true? This seems to be a plausible requirement, 

as giving up truth altogether and focusing only on the pragmatic functions of 

models does not seem to do justice to the scientific endeavor. It seems reasonable 

to think that a model is only possible if it is approximately true, and so Helbing   ’s 

(not worked out) possibilistic approach seems to require an explication of the 

notion of ‘approximate truth’. To do so, several proposals have been made in the 

literature, see Festa    et al. (2005) and Niiniluoto    (1999). 

 On a related note, it is also hard to assign non-vanishing probabilities to 

models if we accept that the latter involve idealizations (i.e. false claims). Should 

we then not assign a  probability   of zero to the model? And if we do not assign a 

 probability   of zero to such a model, what does the  probability   assignment actu-

ally mean? Does it measure the usefulness of the model? But if it does, it is not 

clear why these (effective) utilities should follow the axioms of  probability   theory. 

 These are important questions, which any Bayesian philosopher of science 

who wants to account for the practice of science (in which models play an impor-

tant role) has to address. Here, we can only sketch a proposal for how non-van-

ishing probabilities can be assigned to a given model. The basic idea is that ideal-

ization-involving models may nevertheless help us to make good predictions and 

account for given data  within a certain margin of error . It seems that, given such 

an error margin, it does not matter whether we use a highly idealized assumption 

(such as “the Earth is a point mass”), or a more realistic assumption (i.e. that the 

Earth has a certain shape and mass distribution) if we want to calculate, e.g., how 

long a rock needs to fall down from a certain height. Replacing the true assump-

tion by an idealized assumption is justified in this case. Clearly, this idea needs to 
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be made more precise. But if we do so, it appears possible to assign probabilities 

to idealized models for a specific application, and given a certain margin of error. 

 With these probabilities, along with epistemic utilities that weigh the differ-

ent functions of a model, an individual scientist (or a group of scientists) can then 

calculate the expected utility of different models and choose the one which maxi-

mizes expected utility. This scientist (or group of scientists) will then explore the 

model further, apply it, and study its domain of applicability. Given the provisional 

nature of the various models, it is however important that other members of the 

scientific community focus on other models. And if predictions are expected from 

the scientific community (as, for example, in the case of  climate models), some 

average of the predictions of the various models should be chosen. But which 

average? One option is to simply use the straight average, i.e. to give all models 

the same weight. As Professor Helbing    stresses, this strategy uses “the wisdom of 

the crowds” and often leads to much more reliable predictions. Alternatively, one 

could weigh each model prediction with its validity (as Professor Helbing    sug-

gests). However, I doubt that this works. Firstly, there will not be a consensus on 

these validities across the scientific community. All we have is subjective assess-

ments of the true validity value. Secondly, to reach a consensus on the validity 

value, some kind of deliberation has to take place. However, Professor Helbing    

himself has shown that this procedure often leads us away from the truth (Lorenz    

et al. 2011). And so I think that taking the straight average of the various model 

predictions is the best strategy. It is also very easy to implement.   
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  Uskali  Mäki 
 Contested Modeling: The Case of Economics  

1             Introduction 
 Economics is a culturally and politically powerful and contested discipline, and 

it has been that way as long as it has existed. For some commentators, economics 

is the “queen of the social sciences”, while others view it as a “dismal science” 

(and both of these epithets allow for diverse interpretations; see Mäki    2002). Eco-

nomics is also a discipline that deals with a dynamically  complex   subject matter 

and has a tradition of reducing this complexity by using systematic procedures 

of simplification. Nowadays, these procedures involve for the most part building 

and using  mathematical models (for an overview of the philosophical issues, see 

Morgan    and Knuuttila    2011). In the dominant circles of the discipline, one is not 

regarded as a serious economist having a professional expert view on any given 

economic or social issue without having a model about it. Much of the power of 

the discipline and its characteristic contestations therefore involve models and 

modeling: the successes and failures of the dismal queen are those of modeling. 

The issues involved in economic modeling have been made particularly acute 

once again by the financial crisis of 2008–2009 and its aftermath: the discipline 

of economics is among the candidates for the major blame for failure. 

 I will first outline some thoughts about the characteristic disciplinary conven-

tions that guide and constrain modeling in economics. I will then summarize my 

account of the very ideas of models and modeling. Finally, within the framework 

of that account, I will highlight some major issues of contestation and sketch the 

respective notions of potential success and failure in economic modeling with 

illustrations. These notions are motivated by my subscription to a (flexible and 

discipline-sensitive) realist philosophy of science (e.g. Mäki    2005).  

2     Some characteristics of economics and 
economic modeling 

 The notions of model and modeling can be conceived broadly or more narrowly. 

Broadly conceived, they encompass activities such as theoretical modeling, labo-

ratory experimentation, and computer  simulation  . These are examples of  surro-

gate  reasoning    that share the strategy of using one thing (the  surrogate object) 

to learn about another thing (the  target object). While in other ways different 
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from one another, the study of theoretical models, laboratory experiments and 

simulations is similar in being species of surrogate  reasoning   (for the similarities 

and differences between theoretical modeling and experimentation, see Morgan    

2003; and Mäki    1992, 2005). More narrowly conceived, of these three categories, 

only theoretical modeling qualifies as proper modeling. The present paper has a 

narrow focus on theoretical models and modeling in economics. 

 The prevalence of modeling, whether more broadly or more narrowly con-

ceived, is particularly salient in research fields that seek [a] to access targets that 

are  complex   (such as biology, ecology, climatology); [b] to access targets that are 

distant in time or space, very small, very large, very slow, very fast, or ethically 

awkward (such as cosmology, archaeology, evolutionary theory, nuclear physics, 

biomedicine); and [c] to access familiar but  complex   targets whose overall func-

tioning is often unapparent, possibly for reasons such as those listed above in [a] 

and [b] (of this, economics is a prominent example). 

 Each discipline or type of discipline has its own ways  – styles, routines, 

values, and conventions – of modeling, and they are not a simple function of the 

specific nature of its target domain. It is always somewhat risky to make gener-

alizing claims about a discipline and its characteristic practices and the values 

guiding those practices, but I believe the following will be recognized as more or 

less accurate regarding much of economic modeling in the recent decades. 

  First , economic modeling is often theory- driven  , shaped and constrained 

strongly by the dominant theoretical framework. This framework nowadays 

usually requires that models be built in terms of optimizing agents and equilib-

rium outcomes. 

  Second , the combination of parsimony and breadth is highly valued in eco-

nomics. This means that there is an urge to increase the unification of diverse 

phenomena in terms of portable model  structures   or modeling principles, that is, 

structures or principles that can easily be transferred from one domain (or even 

discipline) to another (see Mäki    2001, 2009). 

  Third , what is typically highly valued in economic modeling is mathematical 

rather than numerical precision. It is not surprising therefore that analytical deri-

vation tends to be preferred to computer  simulation   (see Lehtinen    and Kuorikoski    

2007). 

  Fourth , among the achievements of theoretical modeling economists often 

mention that models provide some “insight” into phenomena and the mecha-

nisms which produce them; that they yield conditional predictions that state that 

if certain conditions were to prevail, then this or that would happen; and that 

they suggest how-possibly explanations that give account of ways in which some 

given phenomena might have come about (in contrast to how they actually did 

come about). 
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  Fifth , the so-called Duhem-Quine prob lem   of underdetermination of theory 

or model choice by the empirical data is particularly pressing in economics. In 

practice this often means that theoretical disputes are hard to settle by empirical 

means, and that theories and models that were thought to have been refuted by 

empirical evidence often make a comeback and enjoy long academic lives. 

  Sixth , the dominant streams of 20 th  century economics have for the most part 

been characterized by one-way disciplinary autonomy, that is, the relative reluc-

tance to import to economics substantive ideas from other disciplines such as 

sociology or psychology. 

 Disciplinary conventions are not carved in stone, so they may occasionally be 

subject to modification or rejection. Some of the above disciplinary conventions of 

economics are being increasingly questioned and alternatives are being tried out. 

For example, the proportion of data-d riven   modeling and computer simulations, 

even if still relatively small, has been increasing, and there is growing interdis-

ciplinary traffic flowing to economics from experimental psychology and cogni-

tive neurosciences. In the aftermath of the crisis of 2008–2009, many economists 

have proposed that, in order to understand the mechanisms that tend to bring 

about this sort of crisis, economists should better do agent-based simulations 

(e.g. Farmer    and Foley 2009) and incorporate “animal spirits” in their models, 

informed by cognitive sciences broadly conceived (e.g. Akerlof    and Shiller    2009). 

Predicting the future of a discipline is always difficult, but economics may have 

started becoming more diverse in its disciplinary conventions than has been the 

case in the recent decades. 

 Whatever the future of the discipline may hold, its past has had one perennial 

methodological issue above others. This is the concern of unrealistic models and 

their assumptions – such as perfect competition, the fully informed self-seeking 

rational  homo economicus , instantaneous and cost-free market adjustment in an 

institutional vacuum, international trade with two countries, two goods and two 

factors of production, and so on. Within and around economics, nothing com-

pares to the most important methodological issue: what if any justification might 

be available to  unrealisticness   in models and their assumptions? 

 In dealing with this issue, economics have to overcome pressures and worries 

from two directions. There is the “phenomenological” pressure and the respec-

tive worry:  Does the world look like that?  This is the puzzlement among  audiences 

such as beginning economics students and other uninitiated observers such as 

other social scientists. There is also the “practical” pressure and the related worry: 

 Does the model work?  This reflects the expectations among the policy-advising 

economists as well as consumers of economics such as policy makers and the 

general public as spectators of the performance of economics regarding its policy 

relevance, akin to other technologically oriented engineering disciplines. 
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 The  phenomenological worry  derives from the fact that ordinary people, 

including students of economics, are also economic agents with amassed col-

lectively shared experience and commonsense conceptions about the economy. 

The contrast between theoretical models and phenomenology is often stark. This 

discrepancy has two very different sources. First, economic models are formu-

lated in terms of assumptions that radically idealize items in the commonsense 

experience, e.g. when the behaviour of ordinary people is portrayed as that of the 

fictional  homo economicus . Second, economic models typically provide (invisi-

ble-hand) explanations, which are surprising and counterintuitive from the com-

monsense point of view, e.g. when free trade is modelled as benefiting all parties 

and when apparently irrational herd behaviour is modelled as arising from indi-

vidual rationality. 

 The  practical worry  is equally pressing. Economics is regularly faced with 

charges of practical failures. This is an ongoing concern, but in every few decades 

the credentials of economics are questioned more seriously in public. In these sit-

uations, the challenge of academic accountability of the discipline is turned into 

one of broader public accountability. In fact, we have such a situation right now. 

On 16 th  July 2009, the  Economist  magazine wrote: “Of all the economic bubbles 

that have been pricked, few have burst more spectacularly than the reputation of 

economics itself.” 

 The two worries – the phenomenological and the practical – imply that a com-

mentator of economic models has to meet special challenges. The clash of theo-

retical models with commonsense views implies a need to understand the origins 

of the clash and the associated attitudes and arguments, including attempts to 

justify theoretical models not only as unproblematic, but also as superior to the 

commonsense conceptions. The successes and failures of economics in guiding 

economic policy likewise give rise to the call for explanation and justification of 

the varying practical performance of the discipline. For these purposes we need 

accounts of criticism and defence of, as well as success and failure in modeling. 

They are accounts of various kinds of contestation faced by economic modeling. 

Before these will be discussed, an account of modeling is needed.  

3     The very ideas of model and modeling 
 The key idea of modeling is to examine one thing (the target) by examining 

another (the model). Using models is motivated by the circumstance that there is 

no direct and easy epistemic access to the target. A model is, at best, a surrogate 

 object   in the following way: By directly examining what happens in the surrogate 
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 object   the investigator seeks to indirectly acquire information about the target 

 object  . The surrogate  object   is taken to stand for the target and must be required 

to be sufficiently similar with it for such information acquisition to be possible. 

Another way of putting this is saying the surrogate  object    represents  the target 

 object  . 

 In many contexts, we are inclined to talk about models in simple dyadic 

terms such that one thing  is  a model of another. In order to understand what 

a model is, however, it is not enough to think of it in terms of a dyadic relation 

between two objects, the model and its target. Recent philosophical work has 

stressed the roles of two further components in constituting a model, namely an 

agent and a purpose: an agent considers or uses one object as a model of another 

object for some purpose (e.g. Giere    1999). The recent literature has also investi-

gated the notion of representation in connection to models: indeed, models are 

typically conceived as representations of their targets. Yet there is no elaborate 

notion of model representation available that would express a consensus view. 

In my opinion adequate accounts of model and representation should be richer 

than has been customary. Further elements are needed in addition to agents and 

purposes associated with models. I have suggested such a richer idea of model 

representation that takes representation to have two aspects, those of representa-

tive and  resemblance  . It distinguishes between a model and its description, and 

it adds the ideas of  audience   and commentary to the overall notion (e.g. Mäki    

2009a,b, 2011). Here is a formulation of this account of model representation: 

   [ModRep]   

  Agent  A   

  uses (imagined) object  M  as  

  a  representative  of (actual or possible) target  R   

  for  purpose  P  ,  

  addressing   audience    E  ,  

  at least potentially prompting genuine  issues of  resemblance    between  M  and  R  

to arise,  

  describing  M  and drawing inferences about  M  and  R  in terms of one or more 

  model descriptions  D  ,  

  and applies  commentary  C   to identify and coordinate the other components.  

 There are several noteworthy features in [ModRep]. Nothing is a model without 

being used as such by some individual or collective  agent . Use implies purpose. 

A model can be used for a variety of different  purposes , such as predicting some 

future event or property with a certain degree of accuracy; isolating a fragment of 

a causal structure; exploring possible causal configurations; serving as a bench-
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mark; refining a mathematical technique; designing a well-functioning insti-

tution; and so on. Reflecting the social nature of scientific inquiry, models are 

used in relation to various  audiences  – such as specialists in the same research 

field, students, policy makers, the curious general public  – in order to pursue 

goals such as communicating information, teaching undergraduate students the 

core principles of conventional economic reasoning, and persuading some rel-

evant  audience   to adopt a point of view. The choice of  model descripti on    typically 

reflects the presumed expectations and competencies of the relevant  audience  . 

For example, advanced mathematical languages may be used when addressing 

expert scientists in the same field, while familiar metaphors and visualizations 

of various kinds may be relatively more effective when addressing beginning stu-

dents and lay audiences. 

 The very idea of models as representations can be briefly summarized. I take 

representation to involve two aspects: that of representative and that of  resem-

blance  . A model represents (rather: is used to represent) a target by being (used 

as) its  representative , by standing for it. This is the relatively more voluntary side 

of modeling: the modeler chooses (or chooses to build) the object that is then 

used as a representative of some target. This is not yet sufficient for representa-

tion: not just any object can reasonably represent the target  object  . Some further 

conditions or constraints must be met, and these are not entirely subject to the 

decision of the modeler. The key condition in [ModRep] is given by the second 

aspect of representation, that of   resemblance    or similarity with some target. This 

idea comes with two important qualifications. First, it is not required that the 

model actually does resemble the target, it is rather required that the model has 

 a chance of resembling  some target and that this  potentially prompts the issue 

of whether indeed the model does resemble . Further inquiry may then settle this 

issue, but such inquiry is not required for establishing whether the object repre-

sents or not. Further inquiry  is  required for establishing whether the model  truth-

fully  represents. 

 Resemblance is a matter of how the model world – the world envisaged in a 

model – is related to the real world. The second qualification is that what really 

matters in modeling is not  resemblance   per se, but rather  relevant  resemblance   . 

The notion of relevant  resemblance   combines ontological and pragmatic per-

spectives in modeling:  resemblance   is an objective matter of fact, while relevance 

derives from the modeler’s interests and goals, purposes and audiences. Among 

the latter there are goals such as predicting the inflation rate with a degree of 

accuracy useful for economic policy makers; outlining the core structure of a 

bubble-generating mechanism in a way that is understandable for the elector-

ate; showing that a result is robust to a change of an assumption so as to impress 

one’s peers; unifying diverse classes of social phenomena so as to expand the 
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academic authority of economics; designing a regime of regulation for the finan-

cial sector useful for legislators. 

 Relevant  resemblance   is always incomplete and imperfect. Complete and 

perfect  resemblance   is unattainable (and would be impractical anyway), and 

most partial and imperfect resemblances are irrelevant for a given purpose and 

 audience  . A model that relevantly resembles a target, resembles it in a specifi-

cally limited way that serves a purpose and helps to reach an intended  audience  . 

It highlights only some selected aspects of the real world and does this in some 

imperfect degree of accuracy. Relevance is a function of the pragmatic context of 

purposes and audiences, while relevant  resemblance   is a function of the prag-

matic context together with the relationship between the model and the target 

 object  . It is the task of model commentar y   to point out what kind of relevant 

 resemblance   is being sought and perhaps achieved (and it is the task of philo-

sophical analysis to investigate whether relevant  resemblance   can be interpreted 

as truth or not; for a positive answer, see Mäki    2011a). 

 This framework also helps to understand the role of false idealizing assump-

tions in modeling. They are among the descriptions of a model. If we take models 

to be imagined systems, it is obvious that such systems can be described in many 

different ways, such as in terms of verbal means, mathematical equations, graphs 

and diagrams and other visualisations. So idealizing assumptions can be consid-

ered as describing or even defining models rather than being statements about 

some real-world system. The challenge then is one of understanding and justify-

ing such idealizations. The answer lies in the  analogy   between model and experi-

ment, or what I have called the “experimental moment” in theoretical modeling. 

 Structurally, theoretical modeling is similar to laboratory experiments. Both 

aim at the  isolation   of some important relationship or mechanism – theoretical 

and material  isolation  , respectively. Both pursue it by controlling things other 

than those that are being isolated. Laboratory experimentation does this by  caus-

ally manipulating  those “other things” while theoretical modeling does the same 

by  making assumptions . There is therefore an obvious sense in which theoretical 

models are thought experiments. (Mäki    1992) 

  Model commentary  is an important part of modeling. It plays a key role in 

identifying and coordinating the other components of model representation. 

By specifying the purposes and audiences of the exercise, it fixes the standards 

of relevance. By illuminating the roles played by idealizing assumptions, it can 

dispel unnecessary suspicions about some models while helping raise legitimate 

doubts about others. For example, an informed commentary should be able to 

show differences between defending an assumption on grounds such as the fol-

lowing four (Musgrave    1981; Hindriks    2006; Mäki    2011b). First, a false idealizing 

assumption – such as that the information held by economic agents is symmetri-
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cal – can be defended by saying that it should be interpreted as the possibly true 

claim that the asymmetries in information are  negligible  for some given purpose. 

Second, an assumption can be defended by suggesting that the model is only 

 applicable  to domains where information is symmetrical or where the asymme-

tries are negligible. Third, it can be defended by suggesting that, ceteris paribus, 

the use of the assumption makes the modeling of some phenomenon (math-

ematically)  tractable  (or, in case it additionally distorts non-negligible facts, it 

should be criticized). Fourth, it can be defended by interpreting it as an  early-step  

assumption that will be relaxed in later-step versions of the model; such a de-

idealization is a way of de-isolating the model by bringing in previously excluded 

factors. This may aim at checking the robustness of the model’s basic view of 

the world (see Kuorikoski   , Lehtinen    and Marchionni    2010) or bringing the model 

closer to being applicable to some specific domain.  

4     Economic modeling contested: Three ways 
 Models are often contested by raising issues of relevant  resemblance  . A model – 

or a family of models, or the strategy of modeling – can be challenged by claiming 

that it fails the test of  resemblance   relative to some purpose and  audience  . Or the 

charge can be that the model commen tary   has failed to identify the functions of 

particular idealizing assumptions or the limits of applicability of a model, and so 

on. Using the account of models and modeling outlined above we can now iden-

tify three ways of contesting an economic model, a family of models, or a style of 

modeling (see Mäki    2009). 

 The most radical challenge questions the strategy of modeling in general as 

misguided simply because models and their assumptions are found to be so unre-

alistic that the strategy is judged to be unsuitable for accessing economic reality. 

This may manifest the phenomenological worry based of a perceived dissimilarity 

between the model worlds and the real world, suggesting that  unrealistic models 

cannot possibly serve as surrogate worlds  that might pave the epistemic way to 

the real world. To this suspicion my response has been, and continues to be, that 

unrealistic assumptions per se are no obstacle to successful surrogate modeling. 

 The second kind of contestation considers unrealistic economic models as 

potentially successful  surrogate objects helpful for acquiring information about 

the  complex   real world, but  criticizes particular surrogate models for failure  in the 

task. While unrealistic assumptions in general are not an impediment to surro-

gate  reasoning   about the real world, particular unrealistic assumptions are taken 

to be the source of failure for they are responsible for the exclusion of important 
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causal factors from a model. With respect to this charge, it is easy to agree that 

many models fail just in this way. In the recent years, many very important eco-

nomic models were blamed for having failed in this manner, reinforcing the prac-

tical worry about misguided or missing policy advice. 

 The third variant of contestation puts forth the charge that  modeling has 

degenerated into producing and manipulating mere substitute systems  in contrast 

to surrogate systems. Research and reasoning are concerned with the properties 

of toy models only, with no further concern about how they relate to and might 

provide epistemic access to real world systems. Modeling becomes governed by 

consideration of  tractability   and mathematical convenience. Again, in response 

to this worry, it seems obvious that, among the many forces that govern economic 

modeling, there is also a temptation and tendency in economics to retreat to sub-

stitute modeling. 

4.1     Can simple  models   with unrealistic assumptions serve as 
surrogate systems? 

 Simple economic models do not do justice to the rich and  complex   economic 

reality. Models involve idealizing assumptions that often severely distort the 

facts. Models depict closed systems, while the economic world is open and 

cannot be artificially closed. Therefore, theoretical modeling is a dubious strat-

egy of inquiry in economics. This, or something along these lines, is a critique 

sometimes put forward against the possibility of successful economic modeling. 

The focus of this challenge does not lie on the particular idealizing assumptions 

used in particular models or model families, it rather lies on the strategy itself, 

that of simplification and idealization in economic modeling. 

 Consider a model of planetary motion that isolates a simple system that con-

sists of one planet and the sun, both considered as mass points, excluding all 

other objects and properties and forces other than the gravity between the two 

included mass points. If the purpose of this model is to provide predictions with 

a certain degree of accuracy, and if it manages to provide them, it cannot be con-

tested by raising a phenomenological worry just by pointing out that the idealiza-

tions of the model distort many features of the actual world. 

 Then consider the 2×2×2 model of international trade. It isolates a system 

of two countries, two goods and two factors of production (labour and capital), 

assuming that the factors are homogeneous and production technologies are iden-

tical between the two countries and exhibit constant returns to scale. Capital and 

labour can move within countries but not between them. Competition is perfect 

within countries, but firms are not considered in the model. There is no unem-
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ployment and there are no tariffs. The only difference between the two countries 

is their relative abundance of labour and capital. This simple Heckscher-Ohlin 

version of the 2×2×2 model isolates a mechanism of comparative advantage that 

generates outcome patterns in which capital-abundant countries export the prod-

ucts of capital-intensive industries, while labour-abundant countries export the 

good produced by their labour-intensive industries. 

 The assumptions of the simple Heckscher-Ohlin model are highly unrealistic 

and its implied prediction is inaccurate about the actual world. It may be hard to 

generally justify the idealizations as true negligibility assumptions, claiming that 

deviations from the facts are generally negligibly small for the predictions of the 

model to come out sufficiently correct. It may also be hard to find many empirical 

cases in which the distortions would indeed be negligible, so as to defend them as 

applicability assumptions. Therefore, they often serve best as early-step assump-

tions, which are to be relaxed and replaced by other more realistic assumptions. 

This is what has happened, both in a more piecemeal fashion and in more radical 

ways, which end up isolating different kinds of mechanism. ”New trade theory” 

relaxes the assumption of constant returns to scale and assumes returns to be 

increasing. It brings firms to the model, but assumes them to be identical. ”New 

new trade theory” allows for a diversity of firms and analyses their differential 

roles in relation to international trade. These developments suggest that the 

models are at least some of the time considered as surrogate systems.  Unrealistic-

ness as such does not undermine this ambition. 

 Perhaps the most striking example of this principle is what has sometimes 

been called the world’s first economic model, J.H. von Thünen   ’s  Der isolierte 

Staat , a very simple and highly idealized model of the distribution of agricultural 

land use (von Thünen    1828; for an analysis, see Mäki    2011a). The model makes 

highly idealizing assumptions and implies a very idealized land use pattern of 

concentric rings. Among the idealizations, the region is assumed to be a perfect 

plain without mountains, valleys or navigable rivers; throughout cultivatable and 

of homogeneous fertility and climate; to have just one dimensionless town in the 

middle with a market on which the agricultural products will be sold; to be cut 

off from the rest of the world by a wilderness. Furthermore, transportation costs 

and land rents are assumed to be functions of the distance from the town (longer 

distances are associated with higher transportation costs and lower land rents). 

And naturally, agents are assumed to be rational maximizers, doing a perfect job 

in balancing the pull and push of the two magnitudes in deciding where to locate. 

The assumptions and implications of this simple model are false, but yet there is 

a fair chance that it manages to isolate a real mechanism that causally contrib-

utes to actual land-use patterns. The distortions by the assumptions might not be 

negligible if the purpose is to predict the outcome pattern with a relatively high 



 Contested Modeling: The Case of Economics       97

degree of accuracy, but they might be so for the purpose of isolating a fragment of 

the causal structure of the world. 

 An important condition for models to succeed as  surrogate objects is for the 

model commenta ry   to be informed about their capacities and limitations, their 

appropriate domains of application and the sorts of question they can be used 

to answer. There is a failure of model commentar y   in case a model is applied to 

domains to which it does not properly apply and is used for answering explan-

atory questions on which no illumination can be cast with that model. A good 

model commenta ry   sees to it that models are applied in a way that promotes the 

pursuit of the goals for which they are fit. 

 Theoretical models in economics often provide  how-possibly explanations  – 

to be pointed out by a commentary. There is an observed pattern, such as a pattern 

of trade or of agricultural land use. One then suggests a model that depicts a 

mechanism that has possibly brought about the pattern. No claim is made at this 

point that the mechanism has actually generated the pattern. Indeed, it might 

have arisen in some other way as well (such as a land-use pattern having arisen as 

a result of centralized zoning). Models providing how-possibly explanations are 

surrogate models for they can be used for making claims about some real struc-

tural features of a domain of causes and effects. They often isolate mechanisms 

but are alone insufficient for determining whether those mechanisms are actually 

in operation and whether their operation is or is not modified or even overridden 

by other mechanisms. For these purposes, other models and an informed model 

commenta ry   are required.  

4.2     Failing surrogate models with failing unrealistic 
assumptions 

 In contrast to the suspicion discussed above, modeling is here not contested as a 

general strategy that in principle cannot succeed in generating reliable informa-

tion about the real world. So the possibility of surrogate modeling is granted, 

but its actual implementation is judged as a failure. All models idealize and are 

simple, but bad models idealize and simplify too much or in a wrong way. The 

alleged reasons for such a failure can be many, such as mistaken background 

theories, incomplete or poor quality data, weak or misguided methods of testing, 

the tempting mathematical convenience of some idealizing assumptions, ideo-

logical bias, and so on. 

 What many of these criticisms share is the idea that  a model misses some 

causally important factors that should be modelled . Another way of putting this 

is to trace the alleged failure of bad models back to some key assumptions that 
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are claimed to be responsible for the failure. Those assumptions are idealizations 

that help exclude from the model world one or more factors that are causally 

important in the real world. 

 The flaws of economic models have been diagnosed with respect to the recent 

crisis in the same way. The two sets of models most often accused of major failure 

are efficient financial markets models and the macroeconomic DSGE (dynamic 

stochastic general equilibrium) models. They share the image of unregulated 

markets as efficient and basically self-correcting, and of economic agents as 

rational and well informed. 

 Models of efficient financial markets rely on assumptions such as zero trans-

action costs and perfect and symmetrical information between the agents. Such 

idealizations are instrumental in generating an image of the financial system in 

which market prices fully reflect all available information and in which there can 

be no bubbles in asset prices such as those of stocks or houses. This is a surrogate 

 object   that has the nice feature of being self-regulated and having the capacity of 

containing all relevant risks. 

 It then takes a major step to move from this surrogate world to the real world. 

This step can be taken in a variety of ways and on a number of grounds. One 

extreme and straightforward option would be to reject the model on phenomeno-

logical grounds, simply because the key idealizing assumptions seem to get the 

facts wrong. At the other extreme, without much further investigation, the model 

would be accepted as a true or useful surrogate system that is relevantly similar 

to the relevant target systems. It would be believed to get the important proper-

ties of the real financial system right – such as asset prices reflecting all available 

information, no bubbles being generated, and so the real-world financial system 

having the self-stabilizing properties needed for containing all risks. 

 The critics claim that economists or practitioners in the financial markets – 

enchanted by models of efficient markets  – have been too hasty in conclud-

ing that there is relevant  resemblance   between the models and the real world, 

perhaps believing that informational imperfections in real-world markets are 

negligible. The critics believe there is no relevant  resemblance   at all, so the real-

world imperfections are far from negligible. They argue that the properties of real-

world markets may in fact be the reverse of those of the model-world markets: 

  … where the Efficient Markets Hypothesis suggests that financial markets provide a way of 

managing economic risk, the evidence suggests that they are actually a major source of risk. 

(Quiggin    2010, 51)  

 The charge might be put by saying that  economists have missed real-world risks by 

underestimating modeling  risks   . The move from the model world to the real world 
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is typically far more difficult and risky than is the mere production of publishable 

results of the theoretical examination of models. It is these epistemic risks that 

may have been neglected. 

 The same complaint can be made about dominant macroeconomic models. 

In an interview in 2009 Nobel Laureate Robert Solow diagnoses their failures as 

deriving from their shared image of the economy that distort some basic facts: 

  currently fashionable macroeconomics likes to formulate things in a way that inevitably 

endows the economy with more coherence and purpose than we have any right to assume.  

 By saying that, “without any right” the models “endow the economy” with prop-

erties that the economy does not have, Solow implies that macroeconomists have 

been careless risk takers in moving from examining their well behaving model 

worlds – in which there is a lot of “coherence and purpose” – to making claims 

about the less orderly real world. 

 The contested macroeconomic models rely on the image of financial markets 

being efficient, so no further inquiry is required to incorporate more nuanced 

assumptions about how the financial markets actually function. This is not the 

only objection. It is an instance of the more general complaint that the models 

leave out causally important factors and in doing so also miss important 

explananda. Those factors are causally important, because they are responsible 

for, say, the sort of crisis we have recently witnessed. Since the causes of such 

crises are not among the isolated factors in the models, their effects – the crises 

and their characteristics – cannot be explained or predicted. In the worst case, 

they cannot even be conceived within the framework of those models. This is, 

among many others, the main focus of the complaints levelled by Nobel Laureate 

Joseph Stiglitz    and many others. 

 Macroeconomic models using representative agents miss the crucial causal 

factors that lie in things such as informational asymmetries, structure of finan-

cial markets, and corporate governance. These models therefore do not recognize 

phenomena such as excess indebtedness, debt restructuring, bankruptcy, and 

agency problems. Any model with these characteristics 

  leaves out much, if not most, of what is to be explained; if that model were correct, the phe-

nomena – the major recessions, depressions and crises that we seek to understand – would 

not and could not have occurred (Stiglitz    2011, 168).  

 These models fail to incorporate factors that are crucial for major macroeconomic 

fluctuations and instead focus on minor price distortions due to inflation. Mac-

roeconomic models are better in explaining “the small and relatively unimpor-

tant fluctuations that occur ‘normally’, ignoring the large fluctuations that have 
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episodically afflicted countries all over the world.” Those models have failed, and 

are unable, to answer explanatory questions such as, Why have such fluctuations 

occurred? Why do disturbances get amplified? And why are recoveries so slow? 

(Ibid., 169.) 

 So the core of the contestation is one of failed  isolation: the poor models have 

isolated factors of secondary importance and by idealizing wrongly have come to 

leave out many others that are crucial. The charge is not that models fail to rep-

resent or are not intended as  surrogate objects but rather that “the conventional 

models inadequately modelled – and typically left out – many, if not most, of the 

key factors that played a central role in this crisis” (172). The issue is about the 

relevant  resemblance   between the models and the target phenomena, and the 

claim is that the issue has been unsuccessfully resolved. Given that relevance is 

determined by the explanatory urge to understand the behaviour of the bubbles 

of the current crisis, the verdict levelled by the critics is that for this purpose, 

models do not relevantly resemble their targets. 

 The reason why a model fails is that the causal factors it excludes are not 

negligible. This is what Stiglitz    implies: 

  Economists assumed that information was perfect even though they understood that it was 

not. Theorists hoped that a world with imperfect information was very much like a world 

with perfect information – at least so long as the information imperfections were not too 

large. (2010, 242)  

 The charge is here that economists dealt with the false perfect information 

assumption as a true negligibility assumption. But as Stiglitz    reminds us, econo-

mists have no rigorous way of measuring the size of information imperfections – 

which makes estimating their negligibility even more difficult. This creates room 

for the role of sheer hope that they are negligible (yet Stiglitz    himself does not 

hesitate to claim that information imperfection is not negligibly small). 

 The issue often becomes transformed into an issue of the purposes of model-

ing and the intended domain of their applicability. 

  Is the purpose of an economic model to help us predict a little bit better how the economy 

is performing in ’normal’ times – when things do not matter much? Or, is the purpose of an 

economic model to predict, prevent and manage big fluctuations and crises? (Stiglitz    2011, 

168)  

 The criticism is often phrased by saying that the poor models deal with ”special 

cases where market inefficiencies do not arise” (Stiglitz    2011, 166) or that they do 

not apply to economies that are capable of generating bubbles. In the imagined 

worlds of these models, agents are super-rational and fully informed, there are 
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markets for all goods and all risks extending infinitely far into the future and 

covering all risks (“one can buy insurance against every conceivable risk”). In 

such worlds, bubbles don’t occur (Stiglitz    2010, 252). Careless epistemic risk taker 

economists then proceed to conclude that bubbles do not occur in real world 

economies, either. 

 Such careless risk taking reflects deficiencies in the model comm entary   that 

fails to inform modelers and model users about the structure of the modeling 

exercise and what it takes to successfully manage the epistemic risks in model 

application. Among other things, the commentary should give the obvious advice 

to build a pool of models from which one can choose and put in use those that are 

appropriate to the kind of case at hand – for example, a set of models for situa-

tions with bubble-generating mechanisms in operation and another set for other 

sorts of situation (cf. Colander    2010). This advice may fail to be given insofar as it 

cannot be easily reconciled with disciplinary conventions such as that of unifica-

tion. Some observers suspect that behind such an uninformed model commen-

tar y   there is an ideological bias: “Unfortunately, careful attention to the limita-

tions of simplified models has not been the norm in the era of market liberalism.” 

(Quiggin    2010, 109)  

4.3     Substitute modeling 

 The type of challenge discussed in the previous section identifies possible model-

ing failure in the failed attempt to build models that would isolate the factors that 

are causally important for some major phenomena such as financial crises of the 

present type. While such a failure is a matter of a  failed attempt , the one to be 

briefly discussed in this section is a matter of  failing to attempt . This is the distinc-

tion between surrogate modeling and substitute modeling (Mäki    2009). 

  Surrogate modeling  is motivated by epistemic ambitions that reach beyond 

learning about just the model. By directly examining the properties of the model, 

the modeler seeks to indirectly learn about some target. Resemblance between 

the model world and the real world is an issue that is prompted and perhaps 

settled. In surrogate modeling, the model system is intended – or found to serve – 

as a  bridge  to some real system (and may fail as such a bridge). 

 By contrast,  substitute modeling  is a degenerate activity that has no ambi-

tions beyond dealing just with models. The modeler only examines the model 

and only learns about its properties, whereas the  resemblance   of the model world 

with some real world system is not prompted as a genuine issue to be resolved. 

Examining a model is a substitute for trying to indirectly access the real target. 

Criteria other than those indicating  resemblance   dominate the exercise. Rather 
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than offering a bridge, the model remains an intellectual  island  unconnected to 

the real world. 

 There is a deeply rooted suspicion among many critics that much – or at any 

rate too much – economic modeling is of a substitute variety. According to this 

charge, economists too often only have an interest in examining the properties of 

their models and have no interest in checking how those properties relate to the 

properties of some important real world systems. At the time of crises, this charge 

regularly makes an appearance (e.g. Hodgson    2009). 

 This provides a framework for reading Nobel Laureate Paul Krugman   ’s criti-

cal account of the sources of failure of economics in dealing with – anticipating 

and analyzing – the financial and economic crisis of 2007–2008. In a column in 

the  New York Times Magazine , Krugman    (2009) stated that 

  […] the economics profession went astray because economists, as a group, mistook beauty, 

clad in impressive-looking mathematics, for truth. […]  

 This can be translated into the idea that economists have failed in dealing with 

the crisis because they have been busy with substitute modeling rather than 

surrogate modeling. Accordingly, economists have been preoccupied with the 

beauty and neatness of their models, expressed in impressive mathematics, while 

this has contributed nothing to the task of finding relevant truths about the real 

world. 

 Regarding the contents of these models, Krugman    says economists have 

envisaged a fantasy world of perfectly rational agents in perfectly functioning 

markets, very far removed from the imperfections of the real world – and that this 

must change. 

  When it comes to the all-too-human problem of recessions and depressions, economists 

need to abandon the neat but wrong solution of assuming that everyone is rational and 

markets work perfectly. The vision that emerges as the profession rethinks its foundations 

may not be all that clear; it certainly won’t be neat; but we can hope that it will have the 

virtue of being at least partly right.  

 So the model worlds envisaged by economists  – with perfect rationality and 

perfect markets, and therefore without the sorts of financial bubble that burst in 

2008 – have been excessively neat and tractable. Such models permit relatively 

easy derivations of relatively unambiguous modeling results. Krugman    might be 

taken to suggest that there is some sort of trade-off between neatness and truth, 

such that when trying to get their models closer to the truth (“at least partly right”) 

economists will have to give up at least some of the neatness of their models. 
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 We may develop this line of thought further by envisaging an extreme situ-

ation in which the virtues of neatness and  tractability   completely come to domi-

nate modeling at the expense of other (“reality-oriented”) virtues. Once a model 

world is sufficiently far from the real world, the modeler is tempted to pay all her 

attention to the properties of the models only and to ignore any further issues of 

 resemblance   with the real world. This would be degenerate substitute modeling. 

 This inclination could be generated or reinforced by an  excessive role of math-

ematical convenience or  tractability    in modeling. Some idealizing assumptions in 

models are indeed made to serve mathematical  tractability   purposes (they are 

called “modelling tricks” by Krugman   ; cf. Mäki    1992; Hindriks    2006). In case  trac-

tability   and negligibility do not coincide – in case the distortions brought about 

by those  tractability   idealizations are not negligible from the  resemblance   point 

of view – we have a possible source of failure (Mäki    2011b). John von Neumann    – 

surely with no dislike for mathematics per se – was aware of these dangers: 

  As a mathematical discipline travels far from its empirical source, or still more, if it is a 

second and third generation only indirectly inspired by ideas coming from “reality”, it is 

beset with very grave dangers. It becomes more and more purely aestheticizing, more and 

more purely l’art pour l’art. This need not be bad if the field is surrounded by correlated sub-

jects, which still have closer empirical connections, or if the discipline is under the influ-

ence of men with an exceptionally well-developed taste. But there is a grave danger that the 

subject will develop along the line of least resistance, that the stream, so far from its source, 

will separate into a multitude of insignificant branches, and that the discipline will become 

a disorganized mass of details and complexities. In other words, at a great distance from its 

empirical source, or after much “abstract” inbreeding, a mathematical subject is in danger 

of degeneration. (von Neumann    1947, 9)  

 Yet, we should not rush to any simplistic conclusions on this matter. The world 

of modeling  – not just the world modelled  – is  complex   and easily misunder-

stood. It is fairly safe to make the general observation that economists are happy 

with examining models and making claims about their properties in a rigorous 

manner, but are equally happy with saying nothing – or at most saying something 

very casual – about any real targets based on what they discover about models 

(cf. Sugden    2009). Yet, as such, this alone does not imply that economists are 

practicing substitute modeling. Let me explain why. 

 Talking about models as if they were the world is a natural aspect of model-

based research strategy in all disciplines. Models easily become objectified or 

reified as the immediate targets of inquiry: their properties and behaviour are 

investigated and the results are reported in scientific publications. The important 

question is  what else  is going on in inquiry. The relevant dimensions of the pos-

sible answers to this question are the collective and the historical. There is the 



104       Uskali Mäki 

collective dimension:  What does the research community do as a whole?  And there 

is the historical dimension:  What will happen in later stages of research?  

 Some portion of economic modeling could perhaps be saved from charges of 

substitute modeling provided one or both of the following two conditions were 

met: there is a well functioning division of intellectual labour such that while 

some economists only build and examine models, there are others doing the hard 

work of investigating how those models relate to the real world; and/or there is 

a historical sequence of bodies of research such that an earlier stage of study of 

model properties will in due time be followed up by the study of how those model 

properties relate to real world properties. Another way of putting this is to say that 

substitute modeling may only appear to be such, while in fact it is a phase of sur-

rogate modeling considered in a broad enough collective and historical context. 

 Indeed, in their defensive commentary of apparent substitute models, econo-

mists often appeal to such collective and historical considerations. However, this 

is an all too easy move if nothing more specific is said about the two dimensions. 

The critic may grant the relevance of the collective division and historical order-

ing of tasks, and yet argue that economic modeling has recently failed just in this. 

The needs of policy are often urgent, so they cannot wait for some possible future 

generation of economists to do its share in bridging the gap between the models 

and the world. This would be a failure in the institutions of modeling – its rules 

and conventions, incentive structures and industrial organization.   

5     Conclusion 
 I have outlined three sets of ideas. First, I have articulated what I think are among 

the dominant disciplinary conventions that guide economic modeling. Second, 

I have sketched a general account of modeling as ontologically and pragmati-

cally constrained epistemic activity. Third, without trying to be exhaustive, I have 

provided a rough partial typology of three ways of contesting economic model-

ing: questioning the use of unrealistic assumptions and thereby the strategy of 

modeling as such; questioning the use of particular unrealistic assumptions and 

models conceived as  surrogate objects; and questioning the allegedly degenerate 

practice of substitute modeling. 

 The boundaries between the three ways of contestation are not always clear 

and sharp. For example, it is not always easy to tell a surrogate model used for 

offering a how-possibly account from a substitute model governed by goals other 

than reasoned truth about the world. More generally, the difference between 

the two may be hard to tell, because the collective and historical dimensions of 
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excuse allow for flexible interpretations: there is no unambiguous and uncon-

troversial way of fixing the required sort of division of research labour and the 

permitted time lag between examining a model and checking how it relates to the 

real world. Yet I believe something of the sort I have suggested might serve as a 

beginning for drawing a map within which various ways of contesting modeling 

might find a place. 

 As I see it, modeling is a powerful and indispensable method of  managing 

complexity  in a discipline like economics. At the same time, it is extremely impor-

tant to recognize the difficulties of  managing the risks of modeling . As Keynes 

said, in the long run we are all dead. The critic of modeling might add that in 

the long enough run, we may all be killed by some deep economic disaster – the 

possibility which economists failed to conceive and the actual occurrence which 

they failed to anticipate just because they were too fond of their simplistic model 

worlds.   
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   Julian  Reiss 
Models, Representation, and Economic 
Practice 
 Commentary on Uskali Mäki  

   Few, if any philosophers of economics and economic methodologists have been 

brought up without being nurtured on Uskali Mäki   ’s writings on idealisation, 

models, realism, truth,  isolation   and many other aspects of economic methodol-

ogy. I certainly have been. In graduate school, his article ‘Scientific Realism and 

Some Peculiarities of Economics’ (Mäki    1996) was presented to me as a classic, 

and I still use it to teach my own students about realism. It is therefore a par-

ticular pleasure to have been given the opportunity to provide some thoughts on 

Mäki   ’s latest on models and idealisation. 

 The aim of Mäki   ’s paper is three-fold. First, he outlines a number of epis-

temic virtues economists seek in models – such as being constrained by theory, 

being parsimonious, broadly applicable, couched in mathematics, uninfluenced 

by findings in other disciplines as well as providing insights into phenomena 

and their generative mechanisms – as well as obstacles to their realisation, e.g. 

the Duhem-Quine p roblem  . Second, he gives a new formulation of his account of 

modeling and defends some of its aspects. Finally, he discusses three challenges 

critics have posed to economic modellers and either rebuts or sustains these chal-

lenges. In my comment I will focus on the account of modeling and how it deals 

with the three challenges. 

1     Representation by Models 
 For convenience let me repeat Mäki   ’s account of representation here: 

   [ModRep]  

 Agent  A  uses (imagined) object  M  as a  representative  of (actual or possible) 

target  R  for  purpose   P , addressing   audience     E , at least potentially prompting 

genuine  issues of  resemblance    between  M  and  R  to arise, describing  M  and 

drawing inferences about  M  and  R  in terms of one or more   model descriptions  

 D , and applies  commentary   C  to identify and coordinate the other components.  
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 [ModRep] departs, more than any other account, from the usual way of think-

ing of representation as a two-place relationship between a model and a target. 

Why two additional places should be included is straightforward. Nothing is a 

model of something else without being stipulated as such – or ‘ used  as a repre-

sentative’ as Mäki    states. Thus, agency is essential. And there is no way to tell 

whether a model is a good one, or whether it is an accurate or adequate represen-

tation, without specifying a purpose. 

 The reasons for including the other aspects are less conspicuous, despite 

what Mäki    remarks on pp. 91–94. One way to understand them would be to hold 

that representation is not a four-place relationship between a model, a target, 

a user or agent, and a purpose, but rather a seven-place relationship that also 

includes an  audience  , a description and a commentary. 

 If so, we may ask why we need an  audience   in addition to a purpose. I was 

taught about the solar system using a mainly mechanical model that had a big 

light bulb at its centre to represent the sun. I do not think that model was of much 

scientific use. Its purpose was to help the teacher getting across some basic astro-

nomic knowledge to the students. The purpose, properly specified, includes the 

 audience  . We could ask: does the representation relation change when the  audi-

ence   changes? Surely not when the solar system model is used between 9 a.m. and 

10 a.m. for one set of students and between 10 a.m. and 11 a.m. for another. But 

it would make a difference if a crazy scientist, who would use the model to draw 

inferences about how to send a probe to Mars, replaced the students. However 

this would be because the model was built for the purpose of education (or, more 

specifically, of educating grade-eight grammar school students in the UK with 

such-and-such a background and …) and not for calculating the trajectory of Mars 

probes. Thus, purpose includes  audience  . 

 The same is true for the commentary. A commentary can draw our attention 

to the fact that a model was built for one purpose and not for another. David Col-

ander    suggested it might be a good idea, if an economic model included ‘warning 

labels to prevent the model from being misused’ (Colander    2010). The fact that a 

model was built for one purpose and not another makes some applications of the 

model instances of misuse, not the commentary. A different commentary does 

not change the representation relation as long as the purpose stays the same. 

 Finally, it is true that models always occur under a certain description. But 

it is noteworthy that the descriptions define the model. It is not the case that the 

same model  M  has a different representation relation to its target  R  when the 

description of it is changed. Rather, the model has changed – and it is  qua  that 

change that the representation relation may or may not have changed. 

 Therefore, Mäki    cannot mean that representation is a seven-place relation-

ship. Instead, I would suggest, the somewhat Baroque account is meant to remind 
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us that representation is a  complex   scientific activity that cannot be reduced to 

the simply minded search for similarity relations between one object (the ‘model’) 

and another (the ‘target’). This, to my mind, is entirely correct and an important 

point to make. 

 The representation relation itself has, according to Mäki   , two aspects: the 

‘representative’ aspect and the aspect of ‘resemblance’. The agent decides 

whether an object is a representative of another. This is why I stated above that 

agency was essential. At this stage there are not yet limits to what can be used as 

a model of something else. If I point to some sprawling weeds in my garden and 

say: ‘These weeds are a model of world capitalism!’, then the weeds  are  a model 

of world capitalism.  Whether  something is a model of something else is decided 

by fiat or use. If someone countered my exclamation with: ‘No, they are not!’, he 

would not have understood the rules of the game. But of course, that something 

is a model of something else does not automatically mean that it is also a  good  

model of it. This is why in addition to representativeness we need  resemblance  . 

 Whether or not any given model is also a good model of its target depends in 

part on the purpose of its use. If my intention is to suggest that capitalism takes 

over even the remotest corners of the world economy, like the weeds are taking 

over my garden, then they might well be a good model. But certainly I will not 

learn many useful things about the causes of world capitalism’s behaviour by 

examining my weeds. 

 Now, while Mäki    does not address this issue explicitly, his paper suggests 

that he takes the circumstance whether the model resembles its target to be a fact 

about the relation between the model and its target. Pragmatic factors determine, 

which aspects of the model (or the model/target relationship) are relevant. But 

once this issue is settled, facts alone determine whether a model bears ‘resem-

blance’ to its target, and thereby whether the model is a good one. 

 In my view, this gives context and purposes a too small role to play in repre-

sentation. Resemblance is not a natural kind whose presence is determined by 

the facts alone. Any two objects are similar and dissimilar in uncountable ways. 

We need context and purpose to determine not only what aspects are relevant, 

but also in what sense model and target should resemble each other. Paul Teller    

makes the point succinctly as follows (Teller    2001: 402): 

  In short, once the relevant context has been specified, for example by saying what is to 

be explained or predicted and how much damage will result from what kinds of error, the 

needs of the case will provide the required basis for determining what kind of similarity is 

correctly demanded for the case at hand. More specifically, similarity involves both agree-

ment and difference of properties, and only the needs of the case at hand will determine 

whether the agreement is sufficient and the differences tolerable in view of those needs. 

There can be no general account of similarity, but there is also no need for a general account 
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because the details of any case will provide the information, which will establish just what 

should count as relevant similarity in that case. There is no general problem of similarity, 

just many specific problems, and no general reason why any of the specific problems need 

be intractable.   

2     Challenging Economic Models 
 Mäki    discusses three sets of criticisms commentators have levelled against eco-

nomic models. The first challenge is that economic models cannot be epistemi-

cally useful, because they simplify and idealise. The second holds that the par-

ticular assumptions a particular model makes may be unsuitable for a particular 

task at hand. The third criticism concerns the economics profession at large and 

maintains that economists practise modeling too much (or even exclusively) for 

its own sake rather than with specific (policy or other practical) applications in 

mind. Let us consider these in turn. 

  (A) Simple and idealising models (SIMs) cannot be epistemically useful.  

 To begin with a disclaimer, I do not know anyone who makes the criticism at 

this very general level, and Mäki    does not provide a single reference to anyone 

who does. The charge is highly implausible: all models simplify and idealise in 

myriad ways (for a classification, see for instance Wimsatt    2007: 101–102), and 

it would be hard to maintain that no model is epistemically useful. Perhaps the 

charge is somewhat more specific: all  economic  models simplify and idealise too 

much  relative to economic reality . Again, I know no one who would hold such an 

implausible view. Tony Lawson    (1997, 2003) comes close, but his criticism con-

cerns the mathematisation of economic models, not models (or simplification/

idealisation)  per se . All other critics I am aware of make more nuanced remarks, 

remarks concerning specific modeling strategies and specific domains of appli-

cation. 

 Mäki    nevertheless provides two defences. First, even the most highly sim-

plifying and idealising assumptions may be considered to be mere ‘early step 

assumptions’, which are to be replaced by more realistic assumptions at a later 

stage. Second, SIMs often provide ‘how-possible explanations’. 

 Neither line of defence is entirely convincing. The ‘SIMs play a heuristic role 

for future models that are epistemically useful’-defence leads into a dilemma. 

Either simplifications and idealisations can be relaxed so as to make models more 

realistic and thereby epistemically useful or they cannot. If they can, one would 
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have to be able to tell a good story of what precise heuristic role the SIMs play on 

the road to better models (why do we build epistemically useless models if we 

can have useful models?), and I would imagine this will be no mere trifle. More 

importantly, however, one could simply ignore SIMs and focus on those models 

that are useful. The criticism would amount to saying no more than ‘ some  models 

are not useful’. But that’s hardly a criticism. 

 Or the simplifications and idealisations cannot be relaxed. But then models 

involving them could not play a heuristic role for better models. Either way, this 

line of defence leads straight into a  cul-de-sac . 

 The other defence is that SIMs can provide ‘how-possible explanations’. But 

this notion has the modal operator in the wrong place. A ‘how-possible “explana-

tion”’ is not an explanation. It is  possibly  an explanation. Suppose an implication 

of a SIM is a claim of the following form: ‘In situation  S  (which can be described 

by conditions  s 1,  s 2, …,  s n), factor  C  causes outcome  E ’. This allows us to provide 

a more precise characterisation of what a SIM is: a model, which entails causal 

claims that are true under conditions rarely or, more frequently, never found 

empirically. Typical examples of such conditions include a continuum of eco-

nomic agents, agents who are perfectly rational, agents with an infinite lifespan, 

businesses located on a line that has neither depth nor breadth, consumer goods 

that have a single property and so on. 

 There is indeed a sense in which SIMs make a possibility claim,  viz . they 

show that  it is possible that C  causes  E . It is important to see, however, that this is 

a very weak sense of possibility, something like logical or conceptual possibility. 

SIMs do not prove an existence claim of the form: ‘There is an empirical situation 

 S  e  in which  C  causes  E ’. 

 I have given an account of how models, resulting in those possibilities, can 

be epistemically useful (Reiss    2008: Ch. 6). Essentially, if everyone in some epis-

temic community at some point in time is convinced that it is impossible that  C  

causes  E , it might well be useful to learn that there are conditions, even though 

non-empirical conditions, under which  C  does cause  E  because now we have a 

reason to investigate empirically whether  C  causes  E  in situations that interest us. 

A SIM, in my 2008 terminology, gives  prima facie  evidence for a causal claim: a 

licence to further investigate it. (Till Grüne-Yanoff    2009 gives a very similar albeit 

more detailed account.) 

 But this account is not Mäki   ’s. To show that a causal relation is logically or 

conceptually possible is not to explain anything. Take the famous Akerlof    lemons 

model in which asymmetric information brings about market failure (Akerlof    

1970). Mäki    is of course right to say that Akerlof    provides an account of how 

market failure might come about. But that account explains no single instance 

of market failure. Rather, it gives a possible or  potential  explanation. A potential 
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explanation is not a genuine explanation unless all other potential explanations 

have been ruled out. Therefore, the ‘how-possible explanation’ defence does not 

work, either. 

  (B)  Specific SIMs simplify and/or idealise too much or in the wrong way (to 

be useful for the task at hand)  

 For this charge to have any bite, one must couple it with the empirical claim that 

such ‘bad’ models are typically used in epistemically or practically important 

applications or both. One does not have to go far afield to find some evidence 

for that empirical claim in the current situation in which blaming economists 

and their modeling practices for the financial crisis of the late 2000s has become 

an academic fashion (see for instance Acemoglu    2011; Akerlof    and Shiller    2009; 

Cassidy    2009; Colander    2010; Colander    et  al. 2009; du Plessis    2010; Hodgson    

2011; Kirman    2010; Lawson    2009, Ormerod    2010; Roubini    and Mihm    2010; Stiglitz    

2009, 2010, 2011). Mäki    joins this choir, but goes beyond many of the other com-

mentators for he provides a general methodological account why it is the case 

‘that macro and financial economists helped cause the crisis, that they failed to 

spot it, and that they have no idea how to fix it’ ( The Economist , July 16 2009): 

their models exclude non-negligible causal factors. 

 Here Mäki   ’s realism stands in the way of a more nuanced analysis. Econo-

mists are not in the business of building models that represent all and only those 

factors that are causally relevant for outcomes of interest. They are in the busi-

ness of building models that describe and predict, explain and underwrite poli-

cies. Non-negligible causal factors will no doubt play  some  role in such models. 

But, depending on the purpose, such factors will often play an attenuated or neg-

ligible role. 

 We all know that one does not need causality for predictive success. For a 

classical philosophers’ example, the barometer reading reliably predicts the 

storm without causing it. If the goal is to predict a storm, there is little reason to 

model all the causally relevant factors for storm. It is indicator variables we need, 

and barometers are good indicators. 

 The problem for the causal realist is that factors that  cause  outcomes of inter-

est are never essential and often of limited usefulness. Explaining phenomena 

is the best test case, because of the tight semantic connection between ‘causes’ 

and ‘explains’. But even for explanation causation is not essential. Though highly 

successful, the causal account of explanation is not the only existing one. Most 

famously, there is the alternative account of explanation as unification (Fried-

man 1974; Kitcher    1985; 1989). This is, of course, not an argument in itself, as the 

unification account might just be wrong. But what is important to understand is, 
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that the causal account is difficult to square with the fact that all models idealise 

heavily and yet appear to be explanatory – and are often taken to be explanatory 

by economists and many other scientists (see Reiss    2012 for a discussion; for a 

defence of the causal account in the light of idealisations, see Strevens    2007). The 

causal account is also difficult to square with the fact that some relations seem 

to require non-causal, but explanatory relations such as constitution (Ylikoski    

2011). The least we should take from these considerations is that not all success-

ful explanations are causal. 

 Finally, it is clear that successful  descriptions  do not always require causal 

information (for an argument to the effect that causal-mechanistic information is 

not always helpful for description, see Reiss    2007), and it has been argued that 

causal relations are not needed for policy analysis (Leuridan    et al. 2008). 

 The upshot of this discussion is that a more nuanced argument is needed to 

support sweeping claims of the sort ‘economists’ models helped cause the crisis’. 

There is no unique recipe for failure one might say. Omitting non-negligible caus-

ally relevant factors in a model may well be a reason for failure. Only in the light 

of a specific use of the model and if an argument to the effect that the omission 

was essential for the failure is available, we can determine whether this is so. 

  (C) Modeling for modeling’s sake  

 The final challenge is normative. A model, as we have seen, is good or bad only in 

the light of the purpose pursued with its construction and use. Any related meth-

odological criticism is consequently instrumental: we criticise models not as such 

but rather as means to given ends. But many methodological debates concern 

in fact the ends themselves: do we want models to describe and predict or shall 

we seek explanation in addition (famously, Friedman 1953)? Shall we, perhaps, 

ultimately seek only explanation, because prediction is impossible and descrip-

tion is subsidiary ( e.g ., critical realism: Lawson    1997; 2003; the new mechanists: 

Elster    2006; prediction is impossible: McCloskey    1998)?  Is  accurate description 

of merely instrumental value or is it an important end in itself (e.g.,  Sen   1981)? 

 The present charge concerning the aims of economic modeling is that econ-

omists too often engage in the pursuit of models with primarily non-empirical 

virtues at the expense of the more empirical description/prediction/explana-

tion/policy analysis. What these non-empirical virtues are is not quite clear. 

In a widely cited op-ed piece, Paul Krugman    lamented that economists were 

‘mistaking beauty for truth’ (Krugman    2009; see also Juselius    2009). Mäki    puts 

it differently: economists too often pursue  substitute  in lieu of  surrogate  model-

ing. A model is usually a model for or of something. An animal model is called 

such because it is examined in order to make predictions about other animals, 
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usually humans. The mechanical model with the lamp at its centre I mentioned 

above was a model of the solar system. Mäki    calls this kind of modeling practice 

in which a model is used as a stand-in for something else, ‘surrogate modeling’. 

In surrogate modeling, we examine one system to learn about another, because 

the latter is epistemically inaccessible for technological, financial or ethical 

reasons. 

‘ Substitute modeling’ works without target systems of interest. The model 

system’s properties are examined, but not for the sake of learning about another 

system. The model system’s properties are examined for the sake of learning 

about the model system. 

 Mäki    calls this activity ‘degenerate’ (p. 101). This is a little too fast, however, 

according to Mäki   ’s considerations that follow. Perhaps there is some sort of 

division of labour going on between ‘theoretical’ economists devising models 

and investigating their properties and ‘applied’ economists using the models to 

describe, predict and explain phenomena of interest, and to prepare policy. 

 Something goes wrong only when the discipline as a whole becomes one of 

substitute modellers – because no one is left to apply the models to our urgent 

practical and policy problems (p. 104). 

 Though I share Mäki   ’s concern in principle, I would like to add that divisions 

of intellectual labour of the proposed kind often only happen to the detriment 

of the practical goals of a science (Kitcher    2001; Cartwright    2006; Reiss    2008: 

Ch. 5). Simply because of the way in which science proceeds, one cannot easily 

separate the more theoretical role of constructing problem-solving templates of 

wide applicability and the more applied role of using these templates for solving 

concrete problems. New models always build on old models; and if all the models 

there are were built with a particular purpose in mind, it is very difficult to build 

new models for different purposes (Biddle    and Winsberg    2009). One would have 

to start from scratch. But letting applied scientists build models that are useful 

to them from scratch is exactly what the proposed division of labour is meant to 

prevent. 

 Robert Sugden    senses this problem when he writes (Sugden    2009: 25): 

  In the light of Schelling’s argument about social mechanisms, however, I cannot claim that 

theorists who make such claims are necessarily committing methodological errors or failing 

to act in good faith. It is just that the approach of looking for significant mechanisms while 

not trying to explain anything in particular seems unlikely to be productive.  

 My point is stronger: to build models with no particular application in mind  is  to 

commit a methodological error – as long as the aims of economics are considered 

to be largely practical.   
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  Peter  König    ,   Kai-Uwe     Kühnberger,  and   Tim C.  Kietzmann    
 A Unifying Approach to High- and Low-Level 
Cognition  

          Introduction 

   Cognitive science on low- and high-level – A divided land 

 From its early beginnings to today, the interdisciplinary endeavor of cognitive 

science has led to a fundamentally improved understanding of many aspects 

of cognition. Some of this is due to the multi-leveled approach, as researchers 

have adopted a wide variety of techniques to understand cognitive phenomena 

at various levels of description. One way of distinguishing these different levels 

is by separating them into high- and low-level cognitive processes. Whereas the 

former includes cognitive abilities like planning and reasoning, the latter is gen-

erally seen as including the various modalities of sensory  processing  . 

 There are many reasons for such a seemingly principled  division  . For 

instance, low-level cognition, such as sensory  processing  , exists in virtually 

all animal-species, whereas high-level cognition, as described in more detail 

below, is mostly ascribed to human cognitive processing. In terms of bandwidth, 

vision, a low-level cognitive function, is the most dominant sensory modality in 

humans. Vision can be found in most species, specifically in all chordates (Land    

and Fernald    1992). In many of the latter, e.g. birds of prey, the spatial acuity of 

the visual system even surpasses human performance by a factor of 2 and more 

(Reymond    1985). Similar statements can be made with respect to other sensory 

modalities, such as audition. Sophisticated auditory systems are found in all 

chordates (Alexander 1981) and many species outperform human capabilities 

with respect to frequency range or sensitivity. Importantly, similarities across 

species can also be found with respect to the structures supporting sensory  pro-

cessing  . For instance, although many different forms of receptors for optic signals 

can be found, lens-bearing eyes, as present in vertebrates, have evolved several 

times (Land    and Fernald    1992; Nilsson    1989). Moreover, more proximal structures 

that support sensory  processing   exhibit similar organizational structures (Kaas    

1997). From this it can be concluded that high performance sensory  processing   is 

a general capability, performed by most living species and that it is mostly based 

on related principles. 

 With regard to high-level cognition, there is no general definition or classi-

fication available and the typical assignment is mostly based on intuitions. Yet, 
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researchers agree that logical reasoning, planning and language belong to its 

core capabilities (Thagard    2008). On a broader scope, decision-making, memory 

skills, creativity, general intelligence and social interactions are also mentioned 

in this context. Contrary to low-level cognitive processes, these capabilities are 

mostly thought of as being uniquely human. As studies comparing human and 

animal performance are still scarce, reports of intelligent animal behavior are 

greeted with great attention (Watanabe    ND Huber    2006; Blaisdell    et  al. 2006). 

Summing up, the present state of research ascribes high-level cognitive processes 

primarily to human cognition. 

 A second case for the view of a principled  division   can be made by investi-

gating in how far low- and high-level cognitive processes are approachable with 

modern information processing techniques. Whereas visual processing in artifi-

cial systems, again classified as a low-level cognitive function, can greatly benefit 

from our increased understanding of the cortical visual system (Pinto    et al. 2008; 

Kietzmann    et al. 2009), high-level cognition poses more challenging problems. In 

the realm of sensory  processing  , ideas flow back and forth between the two disci-

plines and the performance of artificial systems can be quantified and compared 

to human performance. Importantly, common belief holds that there are no prin-

cipled obstacles to achieving near-perfect performance with artificial systems. 

In contrast to this, state-of-the-art computer systems targeting high-level cogni-

tive capabilities, as defined above, do not (yet) resemble neuronal structures in 

the least. Doctor Dostert predicted that “five, perhaps three years hence, inter-

lingual meaning conversion by electronic process in important functional areas 

of several languages may well be an accomplished fact”¹ (IBM 1954). After more 

than 50 years, with machines that are 100.000.000 times faster² problems origi-

nating from the domain of high-level cognition are still considered as extremely 

difficult, even though many of them are in fact considered simple by human stan-

dards. Impressive advances have been made in the context of well-defined artifi-

cial settings, e.g. chess playing, but artificial systems still perform poorly in high-

level cognitive tasks that require a combination or integration of many specific 

high-level abilities. A good example is the usage of natural language, an ability 

that requires the integration of background knowledge, linguistic knowledge, 

reasoning, pragmatic aspects, gestures etc. Hence, the widely disparate progress 

approaching low- and high-level cognitive tasks in artificial systems underlines 

the view of a principled  division  . 

1    http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html .  

2    http://www.tomshardware.com/reviews/core-i7-990x-extreme-edition-gulftown,2874-6.

html ,  http://www.ibm.com/ibm100/us/en/icons/ibm700series/ .  
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 Finally, cognitive phenomena can be divided into high- and low-level on the 

basis of their relation to our body and  actions in the real world. Sensory process-

ing seems to be necessarily connected to actions performed by natural agents 

of all developmental levels in real environments (Varela    et al. 1991). Moreover, 

it has been proposed that knowledge of changes of sensory signals contingent 

on performed actions is constitutive of perceptual consciousness (O’Regan    and 

N oe   2001). In contrast to this, high-level cognition, at least in humans, allows 

for abstract reasoning processes that are completely decoupled from concurrent 

or subsequent actions. This line of reasoning does of course not imply that the 

development of abstract reasoning abilities can evolve without grounding in real 

world actions. Nevertheless, reasoning may be performed without direct refer-

ence to actions in the world, once they are developed. Rodin’s “the thinker”, 

being deep in thoughts while completely immobilized, can be seen as a symbol-

ization of this decoupling of high-level cognitive processing and actions in the 

world (Figure  1a). Contrary to this, the Braitenberg    vehicle (Braitenberg    1984, 

Bach    et al. 2007) represents a direct interaction of sensory  processing   and cor-

responding actions (Figure  1b)³ and is therefore an example of pure low-level 

cognition. 

 Figure 1   : The difference between high- and low-level cognition can be symbolized by the con-
trast of “the thinker (Rodin)” and a Braitenberg    vehicle.  

3   Figure 1b adapted from Bach    (2009) with author’s permission.  
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 These arguments match the common intuitions of a fundamental gap between 

the stream of sensory input and the conceptual or symbolic level of interpreta-

tions. In fact, it still seems to be rather magic how analog and distributed sensory 

input can be “lifted“ to a symbolic level on which many high-level cognitive pro-

cesses operate and, back again, how reasoning processes can be propagated to 

the actuator level. Taken together, these properties argue for a principled  division   

of labor between two different cognitive systems employing qualitatively differ-

ent algorithms suited for their respective problem domain. 

     A question that arises naturally from this division of labor is whether the 

two systems, high- and low-level cognition, share common neural substrates or 

whether their function is in fact reflected in distinct cortical systems. Evidence 

for the latter is based on the long tradition of investigations of functional losses 

after localized cortical lesions. Here it was demonstrated that lesions to differ-

ent parts of the cerebral cortex result in selective loss or changes in functional-

ity of high- or low-level cognitive processing capabilities. For instance, damage 

to the cortical region in the occipital pole was found to lead to a loss of visual 

function and perceptual awareness. Additionally, to name just a few, blindsight 

results from a  lesion   of early visual areas (Weiskrantz    1968, Stoerig    and Cowey    

1997); visual agnosia was shown to be the result of lesions to the occipitotempo-

ral cortex (Farah    2000); prosopagnosia can be elicited by lesions to the inferior 

occipital cortex or fusiform gyrus (Steeves    et al. 2009); akinetopsia by lesioning 

paroetal cortex (Zihl    et al. 1983); achromatopsia by lesions to the ventral occipi-

tal cortex (Zeki    1990); and personality and behavior were shown to be affected 

by lesions to the frontal lobe (Barker    1995). Today, this view is complemented 

by studies applying modern imaging techniques, such as fMRI, PET, EEG, and 

MEG that demonstrate a functional compartmentalization in far reaching areas of 

cognition. Indeed, a fair part of the research effort focuses on the localization of 

cognitive functions and the remaining white spots on the cortical map are shrink-

ing quickly. Thus, in addition to above observations, also the rapidly growing 

number of experiments that identify various functional specializations of differ-

ent cortical regions speak in favor of a cortical  dissociation   between high- and 

low-level cognition.  

   Re-unification by a statistical approach and 
embodiment 
 From the apparent differences in high- and low-level cognitive processes it could 

be proposed that both need to also rest on qualitatively different cortical opera-



 A Unifying Approach to High- and Low-Level Cognition       121

tions and that the respective functional modules therefore exhibit structural dif-

ferences. Indeed, individual areas have been delineated based on cortical struc-

ture in the form of lamination (Brodman 1909). Complementing this structural 

approach, more recent imaging techniques have been used to provide   functional  

definitions of cortical modules (Felleman    and van Essen    1991; Hilgetag    and 

Barbas    2009). By taking both types of information together, it is now possible to 

validate the claim of a direct structure-to-function mapping. As a result, mostly 

early sensory areas and the primary motor areas were shown to be dissociable 

based on functional as well as structural information. However, many regions 

that can be functionally separable cannot be distinguished based on their ana-

tomical structure. Among others, this holds for the large variety of areas in the 

intraparietal lobulus (LIP, VIP, MIP, PRR, AIP), which were shown to be func-

tionally distinguishable despite all being situated within Brodman area 39. In 

addition to this structural similarity across different functionally defined areas, 

larger scale structures exhibit functional  restructuring  . This highly impressive 

capability of the human cortex was demonstrated for auditory information that 

can successfully be rerouted to visual cortex (Su r   et al. 1988). It is also evident 

in blind subjects for whom the visual cortex seems to fulfill detailed sensory 

information processing during Braille reading (Sadato    et al. 1996; Hamilton    and 

Pascual-Leone    1998; Merabet    et al. 2009). From this we can conclude that corti-

cal modules are not limited to their primary function but can adapt to a wide 

variety of tasks. Importantly, it can be hypothesized that the quantitative proper-

ties typically used for a structural separation are more related to a fine-tuning of 

function, but not to qualitative differences of operations in the respective areas. 

That is, different functional specializations do not necessarily match one-to-one 

on different structural specializations. This allows for the proposition that opera-

tions performed in different cortical modules, including both high- and low-level 

cognition, are also not as distinct as the supported functions might suggest, but 

that they are in fact rather comparable. This resonates well with the concept of 

a canonical microcircuit (Douglas    and Martin    2004), which holds that the struc-

ture of neocortical circuits is general and that neuronal circuits in neocortex can 

therefore be considered canonical. 

 Given these observations, we hypothesize that a similar approach can be 

taken for the description of high- and low-level cognition: Although both are 

based on different networks of functionally defined cortical regions, both types of 

cognitive processing may in fact implement comparable operations. As a result, 

 functional differences arise solely from different statistical properties of afferent 

signals and different context of those networks and not from inherently different 

structural  properties   . Put differently, we argue that low-level sensory  processing   

has many more similarities with high-level cognitive reasoning than previously 
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assumed. To illustrate this admittedly bold claim, we concentrate on two central 

examples of low- and high-level cognition in the remainder of this article: invari-

ant object  recognition   and analogical reasoning.   

   An example of a low-level cognitive process: 
object  recognition   

  The hard problems of object  recognition   

 Cognitive tasks of diverse complexity rely on a successful and reliable recogni-

tion of objects. For instance, consider the recognition of your car in a parking 

lot. Without problems you can identify it immediately in a large array of similar 

objects, despite different light-conditions, occlusions, different viewpoints 

depending on the direction in which you approach it, different retinal sizes that 

arise from different distances, as well as largely diverse background colors and 

clutter. Importantly, object  identification   is fast. Thus, even if timing is more 

crucial and the environment is more dynamic, as in the case of being part of a 

soccer game, we are immediately able to recognize the ball, independently of its 

color or texture, together with the goal and other players albeit their dramatic 

changes in shape upon movement. Finally, consider the more general case of 

object classification, as for instance in the case of classifying an animal as a dog. 

Despite the large variety of sizes, colors and types of dogs, we are very well able 

to successfully complete this task. 

 As these examples illustrate, both types of object  recognition   (identifica-

tion and classification) belong to the most essential capabilities of the human 

visual system and prepare the grounds for many higher-level cognitive processes. 

Although we perform this task constantly and seemingly without effort, it is an 

extremely difficult problem from a computational point of view, as exemplified in 

above examples.  

   Divide and conquer: processing in the visual 
hierarchy 
 How is the visual system set up in order to solve this complicated task? What 

cortical structures enable the system to fulfill the requirement of highly specific 
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and at the same time robust classifications, i.e. to solve the specificity-vs-invari-

ance problem? In the human brain, invariant object  recognition   is largely accom-

plished in the ventral visual stream (Haxby    et  al. 1991), which exhibits a hier-

archical structure (Felleman    and van Essen   , 1991). Starting from retinal input, 

which passes through the Lateral Geniculate Nucleus (LGN), information enters 

striate cortex (V1), in which neurons are selective to bars of light and basic colors. 

Further downstream, information passes through areas in which neurons exhibit 

receptive fields of increasing complexity and size. These include the areas V2 and 

V4, in which color constancy is accomplished, and the lateral occipital  complex  , 

which is selective to spatially congruent, informative object parts (Lerner    et al. 

2008). Finally, information enters the cortical structures in the inferotemporal 

cortex. Here, cells exhibit selectivity for  complex   shapes including selective object 

views and view-invariant object representations (Tanaka    1996). Moreover, recent 

work demonstrates that neurons in the medial temporal lobe combine high selec-

tivity for individuals with impressive invariance operations (Quiroga     et al. 2005) 

and it is indeed possible to reliably classify and identify visual objects based on 

small populations of neurons in inferotemporal cortex (Hung    et al. 2005). These 

results, and many more that cannot be covered in the scope of this article, paint 

the picture of a systematic division of labor within the ventral stream of the visual 

system. Following the hierarchy of visual areas, neurons exhibit more and more 

 complex   and at the same time increasingly robust response  properties   that lead 

to representations suitable for explicit object  recognition  . 

 Despite our increased understanding of the different neuronal  selectiv-

ity   across the ventral stream, however, it remains largely an unsolved question 

which principles underlie the development of these hierarchical representations 

and underlying cortical structures. Here, the class of normative  approach   is par-

ticularly promising, as detailed below.  

   Optimality as a general statistical principle: from 
sparseness to  stability   
 In recent years, an increasing number of studies explicitly addressed the variabil-

ity of neuronal response  properties   by a normative  approach  . This notion dates 

back to Barlow   ’s fundamental principle that neuronal representations should 

comply with the relevance for the animal, be suitable for decoding by down-

stream areas, and allow for efficient encoding by virtue of redundancy  reduction   

(Barlow    1961). Specifically the latter endorses the approach that sensory  process-

ing   should optimize mathematically defined criteria. These criteria are optimized 
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for a given set of inputs, i.e. natural sensory stimuli. This rather different approach 

towards understanding sensory  processing   has mostly been studied in the visual 

domain, where computational models have successfully demonstrated the emer-

gence of receptive field types exhibiting neuronal properties that are comparable 

to the ones found in the visual cortex. Notably, the normative  approach   is comple-

mentary to the experimental approaches: rather than measuring response  prop-

erties   of neurons in individual cortical areas, they are understood as the effect of 

unsupervised learning from natural input and its statistics. 

 The normative  approach  , which presupposes that neuronal representations 

optimize an objective function, requires a definition of the target properties. Fol-

lowing the requirement of efficient coding, optimality was first formalized on the 

basis of sparse representations. This implies that each representational unit spe-

cifically codes only for a small subset of the typical stimuli; i.e. neuronal recep-

tive fields should be shaped in a way such that they lead to  action   potentials 

for only a small set of effective stimuli. Indeed, it has been found that the neu-

ronal  selectivity   in the area V1 can be understood as adhering to a sparse code, 

given natural input (Olshausen    and Field    1996). It was shown experimentally that 

natural stimuli evoke sparse activity patterns not only in V1, but also in higher 

visual cortices. Moreover, the application of a sparse coding scheme to intraareal 

interactions leads to functional  coupling   that is compatible with the lateral con-

nectivity in V1 (Garrigues    and Olshausen    2008). Finally, optimally sparse repre-

sentations are closely related to independent component analysis, a statistical 

method suitable to infer the independent sources of a superposition of signals 

(Bell    and Sejnowski    1997; Hyvärinen    and O ja   2000). 

  Sparse coding leads by definition to high levels of specificity. This is due to 

the fact that sparseness enforces representations that react to only a small frac-

tion of possible input. As seen in our earlier examples, however, specificity does 

not suffice for successful and robust object  recognition  , as invariance to sensory 

fluctuations and viewing conditions is equally important. This idea is picked up 

in another family of coding principles, which is based on the temporal continuity 

of natural stimuli. Despite changing implementations and names ( stability,  slow-

ness  , temporal  coherence  , etc.), the underlying assumption of these approaches 

is that relevant properties typically vary on a slower time-scale than irrelevant 

ones (Földiak    1991; Körding    and König    2001; Wiskott    and Sejnowski    2002). Think-

ing back to our first object  recognition   examples above (your car in a parking lot), 

what is common to all of the described complications is the fact that although 

sensory sampling differs largely from one situation to another, the identity of 

the object remains constant. Exactly this observation is capitalized upon with 

temporal coding schemes, which imply that the identity of an object changes on 

a slower timescale than the associated sensory information. Again, correspond-
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ing computational simulations targeting at striate cortex proved to be rather 

successful (Wiskott    and Sejnowski    2002, Einhäuser    et  al. 2002; Körding    et  al. 

2004, Berkes    and Wiskott    2005). It was shown that  stability   does not only lead to 

simple-cell-like receptive field structures, but also that it can explain the phase 

invariance of  complex   cells. Although many questions are still open (Olshausen    

and Field    2005) the normative  approach   has led to significant progress in a prin-

cipled understanding of primary visual cortex. 

 As an obvious next step, the normative  approach   was extended to higher 

visual cortices further down the ventral stream. For instance, it was shown that 

a stability-optimizing neural network increased the rotation invariance of the 

emerging representations, thereby enhancing recognition capabilities in a set of 

readout neurons (Einhäuser    et al. 2005). Moreover, simulations of hierarchical 

networks based on the visual input of an artificial agent in a natural environ-

ment demonstrated the emergence of increasingly  complex  , yet stable visual rep-

resentations. At the upmost hierarchical level, higher-level representations were 

shown to emerge that were selective to the position of the agent in space, but 

invariant with respect to its orientation (Wyss    et al. 2006; Franzius    et al. 2007). 

These matched properties of place cells as observed in the hippocampus (O’Keefe    

and Dostrovsky    1971). Finally, cells responsive for head-direction and spatial 

view-cells can be explained by the same set of principles (Franzius    et al. 2007, 

Sprekeler    and Wiskott    2011). 

 In addition to the computational work, important support for the  stability   

approach was provided by electrophysiological experiments in which it was 

demonstrated that targeted changes of the temporal  contiguity   of objects lead to 

changes in response  properties   in inferotemporal neurons – a direct prediction of 

a neuronal coding scheme that is based on the  stability   principle (  Li   and DiCarlo    

2010). These important results demonstrate that the normative  approach   does 

not only give a faithful description of neuronal response  properties   throughout 

the ventral stream, but that it also predicts the consequences of experimental 

manipulations. Moreover, the hierarchical application of the  stability   princi-

ple is a promising candidate in the attempt to close the gap to invariant object 

 recognition  . Thus, invariant object  recognition   and the development of neuro-

nal response  properties   can be partly understood as a consequence of optimal 

sensory representations. 

 Besides to the well-studied visual domain, the normative  approach   has also 

been applied to other sensory modalities, such as auditory and somatosensory 

processing (Klein    et al. 2003; Hipp    et al. 2005; Duff et al. 2007). Taken together, 

these studies indicate that the wide variety of response  properties   on different 

levels of the visual system and of other modalities are fully compatible with a 
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single set of principles governing  sensory processing: Sparseness,  slowness   and 

decorrelation. 

 Above considerations are mostly based on the case of object  recognition   in 

which variations in sensory sampling originate from one object. However, it can 

also be argued that the resulting networks exhibit a most crucial new property: 

they can generalize from invariant object  identification   to the case in which differ-

ent objects are associated with one label (object classification, our third example 

above). If object classification is understood as requiring invariance over object 

identities (as opposed to sensory variation), then the task could in principle be 

accomplished by the same normative  approach   as that lead to an increasing 

invariance over sensory sampling only. If this is indeed possible, then this implies 

that different objects of the same category share similar aspects of cortical repre-

sentation. It has to be noted, however, that despite our ability to classify objects, 

we are still well able to recognize individual object instances under a great variety 

of conditions and viewpoints.  

   Combining supervised and unsupervised learning 
schemes for successful object  recognition   
 The renaissance of neural networks in the ’80s of the 20 th  century is tightly linked 

with the discovery and re-discovery of training methods for hierarchical neural 

networks (Werbos    1974; LeCun    1986; Rumelhart    et al. 1986). How does an unsu-

pervised training scheme, such as the normative  approach   described above, 

match with the typically utilized supervised algorithms of artificial neural net-

works? For the latter, the parameters and connection weights are iteratively tuned 

to match the output to the desired result. By now this work has expanded to a 

huge field and excellent reviews and textbooks are available (Bishop    2006). For 

the present purpose, however, we want to highlight a single specific problem only. 

These supervised learning procedures require labeled data, which are scarce and 

expensive in real life and thus might hinder proper convergence and generaliza-

tion of the network structures. Hence, it is attractive to combine these methods 

with unsupervised learning, i.e. a normative  approach   described above. Indeed, 

applying unsupervised training to all layers of a hierarchical network but the last, 

and complementing this approach with supervised training of the output layer 

significantly reduces complexity of learning at a small price in performance only 

(Einhäuser    et al. 2005, Franzius    et al. 2008). Hence, the normative  approach   is 

fully compatible and fosters object  recognition   in hierarchical networks.  
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   From optimal sparseness, and optimal  slowness   
to optimal predictability 
 The family of  temporal coherence/slowness/stability approaches has been shown 

to explain many aspects of receptive field properties found in the visual hierar-

chy and thereby provides a principled approach for understanding invariant 

object  recognition  . However, if  stability   based on the statistics of natural input 

was the only objective function that is optimized in the mammalian cortex then 

the question arises why different species exhibit radically different sensory repre-

sentations. Previously, we have put forward the hypothesis that sensory systems 

optimize the capabilities to predict and support sensory consequences of actions 

(König    and Krüger    2006). Moreover, sensory selectivity should be shaped in a 

way such that they optimally support the potential actions of the agent. Because 

of this, neuronal representations should also be tuned to address those features 

that are optimally predictable with respect to the agent’s actions. This entails 

the crucial step that the sensory predictability is integrated into the previously 

defined objective function (Weiler et al. 2010). 

 With the reference to different actions, the principle of predictability refers 

implicitly to the behavioral repertoire of the agent. Compared to the previously 

mentioned principles, this is a decisive step. Given that the visual systems of 

humans, non-human primates and carnivores differ in profound ways, relating 

visual processing to the behavioral repertoire opens a new avenue to understand-

ing these differences.  

   Towards optimal high-level processes: the 
example of analogies 
 How can we bring together the normative  approach  , which has been successfully 

applied in the domain of visual processing, a low-level cognitive function, with 

a high-level cognitive process such as the formation of analogies? In this section 

we will present our central claim that the principle of optimal  action   predict-

ability and invariant actions supplies a unified framework of low-level and high-

level cognitive functions. With this concept, we move from investigating purely 

sensory features to active representations that jointly address sensory informa-

tion and the agent’s  action   repertoire. 

 As an illustrative example, consider the case of the soccer ball from above. 

Kicking the ball requires the player to first recognize the individual ball, an item 



128       Peter König, Kai-Uwe Kühnberger, and Tim C. Kietzmann

which was trained earlier, before any aiming or kicking can be accomplished 

( object recognition). However, if we were to swap the ball with a different one, 

it would nevertheless be possible for the player to immediately recognize the 

item to be kicked and to perform the appropriate  action  . Although this example 

might seem trivial at first, the performed computation is more complicated. This 

is because the player did not only generalize from one ball to a different exemplar 

(classification based on afforded actions), but also performed a generalized pre-

diction of the consequences of the  action  . It is therefore an example of invariant 

actions. Importantly, despite the simplicity of the example, what has happened 

through the described generalization in sensory-motor space can in fact be seen 

as the drawing of an  analogy  . In the following sections, we will first describe the 

general research on (predictive) analogies before we describe the details on how 

both research areas can be understood on the basis of a unifying approach.  

  ( Predictive) analogies 
 Analogies are in the intense focus of research addressing high-level cognitive pro-

cesses. Although an important topic in many disciplines for a long time, their 

scientific study in the context of cognitive science started with the seminal paper 

(Gentner    1983) introducing the  Structure-mapping theory . This theory is based on 

the idea that establishing an analogical relation is a structural comparison of two 

domains, such that an “interesting” substructure in the source domain is aligned 

to an “interesting” substructure of the target domain. In other words, the forming 

of analogies relies on identifying commonalities of the two substructures. The 

structure-mapping  theory   has been proven its remarkable potential and is a de 

facto standard in cognitive models of analogy-making. Furthermore, the techni-

cal realization of the structure-mapping engine provides a standard computa-

tional model (Falkenhainer    et al. 1998). 

 There are at least three classical domains from which typical examples of 

high-level cognition involving analogical reasoning are drawn: geometry (Evans    

1968), naïve physics (Falkenhainer    et al. 1998), and formal languages (Hofstadter    

et al. 1995). Besides these classical domains, however, many other domains have 

been discussed in the literature (intelligence tests, metaphorical expressions of 

natural language, problem solving, didactics of mathematics, sketch recogni-

tion etc.). Accompanying the variety of domains, researchers proposed a variety 

of different frameworks to account for the observed phenomena, ranging from 

symbolic models, like  Structure-mapping theory  or  Heuristic-driven-theory-projec-

tion  (Schwering    et al. 2009), to neurally inspired frameworks, like  Learning and 
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inference with schemas and analogies  (Hummel    and Holyoak    1997) and hybrid 

approaches, like  Associative memory-based reasoning  (Kokinov    and Petrov    2001). 

Despite its symbolic nature,  Heuristic-driven-theory-projection  and  Structure 

mapping theory  explicitly distinguish between low-level and high-level processes. 

 Associative memory-based reasoning  models all cognitive levels, but explicitly 

distinguishes between symbolic (reasoning-related) representations and neurally 

inspired activation spreading for attention and priming mechanisms. A similar 

separation holds in our opinion for the concept of  Learning and inference with 

schemas  and analogies. Hence, all of these frameworks accept the principled 

 division   of low-level and high-level cognitive processes. 

 An important class of analogies is given by so-called predictive  analogies   

(Indurkhya    1992). Predictive analogies explain a new domain (target) by transfer-

ring information (knowledge) from the source to the target, such that non-trivial 

new conclusions can be drawn in the target domain. Because of this productive 

aspect, (predictive) analogies are often considered as a source of creativity and a 

mechanism for analogical, i.e. concept-guided, learning (Friedmann et al. 2009; 

Gust    and Kühnberger    2006). For example, in the naïve physics domain, predictive 

 analogies   relate physical domains that are hardly accessible by our direct experi-

ence to domains that have perceivable properties. Due to the rich explanatory 

power supported by the source domain it is therefore possible to draw predictions 

in the target domain, which can then be experimentally evaluated. For example, 

let’s consider an  analogy   between a water pipe system and an electric circuit. In 

the water pipe system, it can be observed that a “current” is triggered by “pres-

sure” and that the system is necessarily closed. Another observation would be 

that “narrowing wires” influence the ongoing current. If we now apply these 

observations to previously learned concepts from the domain of electricity (the 

flow of electrons is triggered by a voltage difference, and a resistor influences the 

flow of electrons), the  analogy   is striking. Importantly, the  analogy   allows for the 

possibility of drawing new inferences. An example of such a prediction would 

be that adding a further resistance into the circuit should again reduce the flow 

of current. Notice that although these two exemplary domains were both chosen 

from the field of naïve physics, they do not show strong similarities, but are quite 

different from each other concerning the observable properties. Yet, the forma-

tion of analogies allowed for predictions from one domain to another.  
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  Object classification as predictive  analogy   
 Now let us consider predictive  analogies   in the context of object  recognition  . 

First, it should be noted that analogies are already used in current visual sketch 

recognition systems and in systems designed for the recognition of geomet-

ric regularities in intelligence tests (Lovett    et al. 2009; McLure    2010). Although 

such applications of analogy-making systems in the field of object  recognition   

are rather new, some promising results for standardized tests in the geometry 

domain have already been achieved (e.g. Raven’s progressive matrices; Lovett    

et al. 2010). Sketch-recognition systems for analogy-making typically work solely 

on the perceptual level, i.e. they identify important regions and features of such 

regions for an analogical comparison. In contrast to this, further aspects of cogni-

tion, like possible actions or functional properties of objects that are represented, 

do not play a role. 

 As an additional step, let us consider a case in which possible actions or 

action-outcomes can be included. Let us again consider the case in which we are 

presented with an object (e.g. a soccer ball) and need to classify it. Starting with 

the visual features of the object, it is possible to deduce properties that are rel-

evant for an interaction with the object. We call this a ‘predictive property’ of an 

object. An example of such a property is “when kicked, it will roll”. Furthermore, 

we might reasonably expect “when rolling on flat smooth ground, it will continue 

to roll for some time”. However, this sequence of processing steps (from visual 

to predictive properties) is not necessarily required. Instead of starting with a 

visual analysis leading up to the recognition of an object and onwards to poten-

tial actions, we can also twist the argument and assign the primary importance to 

potential interactions with the object and thereby base object  recognition   on this 

set of afforded actions. Now, an object that satisfies the properties “when kicked, 

it will roll” and “when rolling on flat smooth ground, it will continue to roll for 

some time” is by (functional) definition a ball. With this, we have moved from 

a purely visual to a functional  definition  . Nevertheless, the provided functional 

 definition   of a ball can still be fulfilled via purely visual properties. 

 With the above case of a soccer ball, we have intentionally chosen an intro-

ductory example that is highly suitable for the classical approach that starts with 

a visual analysis that leads up to object  recognition   and only from there to func-

tional predictions and we presented the functional  definition   as an alternative 

view. A visual  definition   can be seen in the well-known tradition in linguistics 

and logic of defining a concept by its intention, i.e. by the properties and attri-

butes of the concept (Frege    1960). In the visual domain, such properties and attri-

butes must be perceivable and as discriminative as possible. Important differ-

ences between this tradition and our proposal to define a ball functionally are 
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the explicit emphasis of action-centered and manipulatory properties and the 

predictive character of such properties in the functional  definition  . Yet, already 

a slightly more  complex   example uncovers numerous problems with this purely 

visual approach. What is a chair? A quick look into Wikipedia gives a reasonable 

description: “a chair is a stable, raised surface used to sit on, commonly for use 

by one person”⁴. In normal circumstances, a raised surface can be defined based 

on visual features. A chair put upside down, however, has no raised surface 

anymore and thereby violates the visual definition – yet it is still a chair. On the 

other hand, a cube does have a raised surface, but it is usually not considered to 

be a chair. These problems leave us with the remainder of the definition: “to sit 

on”. This part puts the focus on the use of the object and is in essence a predictive 

 analogy   of the form “when you put your weight on it, you will not fall down”. In 

line with this, the Oxford Dictionary directly concentrates on the function of a 

chair, which is “a separate seat for one person, …”⁵. Notice that such problems 

occur necessarily with every intentional definition, because it is not possible to 

give a sufficient and necessary set of (visual) properties and attributes for classi-

fying every potential instance correctly. Thus, as an alternative to a purely visual 

 definition  , we follow the approach that predictive  analogies   map functional con-

nections and thereby are a vital part of the object definition. 

 While it has to be admitted that the original definition of  predictive  analo-

gies does not perfectly fit into the domain of object  recognition  , successful per-

formance in the visual domain nevertheless requires a transfer of (functional) 

knowledge from known examples to unseen ones in order to make the right clas-

sification and to select appropriate actions. Hence, although the original context 

of predictive  analogies   is in fact a different one, it seems unproblematic to call 

such analogies in the domain of object  recognition   to be predictive.   

   How can we understand the emergence of 
analogies? – A unifying approach 
 Again, we start with a simple example: the case of driving your car to work in 

the morning and back again in the evening. Of course, while approaching your 

car in the morning, you recognize it albeit visually very dissimilar conditions. 

Moreover, (higher) cortical areas implement afforded actions (cyan). Once in the 

car, a specific  action   representation is activated (blue region) when you press the 

4    http://en.wikipedia.org/wiki/Chair .  

5    http://www.oxforddictionaries.com/definition/chair?view=uk .  
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right lever (gas pedal) with your foot and the sensory consequences of this  action   

are predicted. This situation is visualized in  Figure 2  in which part of the sensory 

representation (green area), as well as the  action   state (blue area, e.g. extension 

of the right leg and foot represented by changes in nodes 10 and 14) are altered by 

the active afforded actions (node 12 in cyan area). Because the now altered state, 

the afforded actions have changed as well (cyan area, pushing the break would 

now have an effect and opening the door is prohibited as represented by changes 

in activity of nodes 9 and 13). After work on the way home, it can be assumed that 

large parts, although not all, of active visual representations are identical to the 

ones activated in the morning⁶, while some aspects might differ (e.g. no coffee in 

the cup holder (green node 7)). This has consequences on the sensory, afforded 

actions, and motor level. Yet, pressing the right pedal yields as expected the same 

effect and the sensory representation is transformed. In this case, the  analogy   is 

supported by largely overlapping sensory and  action   representations, which is in 

turn due to the performed invariant object  recognition  . 

 Compared to your own car, driving a different car to work introduces some 

more changes. For instance, the color and the geometry of the seat might be dif-

ferent. Yet, pressing the right pedal does lead to an acceleration and the predic-

tions of sensory changes based on the experience on the former car are correct. 

This again can be considered as an  analogy  , which is supported by invariant 

object classification (different individual, same class) and its associated predic-

tive properties. Indeed, we argue that despite an overwhelming amount of vari-

ance of sensory signals, the basic functionality is identical in both cases. Only 

because of this can the two objects be considered to belong to the same class. 

In this case the problem of invariant  action   representation has been transferred 

to invariant object classification. Now again consider driving a pellet jack. This 

might yield unexpected results although it does have a steering wheel, foot pedal 

and is part of the general category car. Yet, some come with a left foot accelera-

tor pedal and using it in the usual way leads to a mismatch of predictions of the 

sensory consequences of actions and reality. Although the object is obviously a 

vehicle allowing a partly overlapping set of afforded actions (including pressing 

the right pedal), the result is not the same and the  analogy   breaks down. This 

demonstrates that the predictive framework is in fact working on probabilities 

and thus does not always allow for literal logical inferences. 

 Although our examples might lead to this view, it is in general not possible 

to neatly divide the different representational areas into sensory representa-

6   For the sake of the argument and visualization we assume a highly sparse representation of 

sensory signals (green). Please note, however, that a coarse population code does not change the 

principle of the argument.  
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tions, afforded actions, and motor representations (figure 3D). To the contrary, 

a gradual transformation of sensory representations to motor actions leads to a 

setup in which neurons at each level act as “sensory” representations feeding 

bottom-up input to higher levels, modulate other potential affordances by tan-

gential interactions at the same level and predict “action” induced changes of 

sensory representations at the lower level. The label of sensory/affordance/motor 

representations is therefore relative to the viewpoint. Still, even with this view the 

approach is fully compatible with a hierarchical network composed of general 

processing units according to a small set of optimization principles. 

 In our car example, the common set of afforded actions directly mirrors the 

invariant processing in the bottom-up pathway and sensory representations can 

be assumed to largely overlap. Hence, the prediction of sensory changes induced 

by the afforded  action   applies to the whole set of similar sensory representations. 

This is, however, not a necessary precondition. In general the afforded  action   is 

dependent only on a small part of the sensory representation and invariant with 

respect to other parts. This property defines it as an invariant  action  , which is at 

the core of making a predictive  analogy  . 

  

Figure 2   : Schema of gradual transformation of sensory representation via affordances to motor 
actions. For detailed description see text.  
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     Easy and difficult analogies 
 In many everyday situations (and in the example above), the  analogy   comes quite 

natural such that, although being one, it is often not considered to be an  analogy   

at all. In this section, we now consider more  complex   situations in which the 

overlap of sensory representations is not that large and the concept of invariant 

actions is more explicit. In classic examples, the basic constituents differ from 

each other in fundamental ways: To see this, consider, for example, the famous 

Rutherford  analogy   between the solar system, i.e. a system of planets revolving 

around a sun, and an analogous atom model, in which electrons are no longer 

homogeneously distributed as in the historically prior “plum pudding” model, 

but are revolving around a nucleus. In such examples, the overlap of sensory rep-

resentations is minimal or even not existing and structural commonalities on a 

higher, i.e. abstract, level seem to be important. This brings us back to the origins 

of the scientific study of analogies in cognitive science in which rather abstract 

domains were considered. How are analogies emerging under such conditions 

that seem to be completely decoupled from any sensory representations? An 

explanation can be given by considering a situation in which the solar system – 

atom model  analogy   is visualized in form of diagrammatic representations (as in 

a scenario of a teaching situation in high school). In this form of representation, 

the constituents are in fact very similar to each other. There is a center, revolving 

objects represented as little circles and there are attracting and retracting forces 

etc., in short, the  analogy   is striking. It is rather uncontroversial that the emer-

gence of the abstract conceptualization of a revolution movement is without any 

doubts grounded on a simpler, more concrete level and learned by using simpler, 

more concrete examples. Sensory representation, among other aspects as,  is  such 

a concrete level establishing a solid foundation of such generalizations.  

  Object recognition, context, and  actions 
 It is well-known that object  recognition   performances in psychological experi-

ments change significantly, if the object in question is put into varied more or 

less prototypical contexts (flying eagle vs. sitting eagle, Zwaan    et  al. 2002). If 

object  recognition   has anything to do with establishing analogical relations, then 

context effects need to be considered also for analogies. How can context effects 

be transferred to the domain of  analogy   making? We suggest that contextual 

effects in the visual domain are quite often reducible to even more fundamental 

afforded actions and their representations. This is mainly due to the fact that per-
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ception and recognition tasks never occur without a dynamic environment and 

an active agent. For natural scenes, the  coupling   of the recognition of an object 

and action-related aspects is natural (eagles fly, planes fly as well, therefore they 

need wings etc.).   

  Summary and conclusions 
 We propose that a key to overcome the artificial separation of low-level and 

high-level cognition is the concept of invariant actions, which optimally predicts 

action-induced changes of sensory signals. This concept is rooted in the ideas of 

Gibson    (1977), yet makes crucial extensions. (1) To a first order of approximation, 

cortical processing is based on cortical modules of homogeneous structure. The 

function of these modules is to transmit optimally predictable parts of afferent 

signals to higher levels and to make predictions of changes of lower-level repre-

sentations. Hence, functional differences originate mostly in the differences in 

input/output connectivity. (2) The optimization process leads to the emergence 

of invariant representations. Afforded actions emerge gradually in a hierarchical 

processing scheme obliviating a strict separation in sensory and motor represen-

tations. Focusing on the bottom-up direction, these might be viewed as invariant 

object representations, focusing on the top-down direction, these are invariant 

 action   representations. (3) Invariant actions are the core of predictive  analogies  . 

In most situations, the invariance is so natural that we emphasize invariant object 

 recognition   and do not realize that the implied actions are based on predictive 

 analogies  . The more arcane invariant actions, the classical examples of predic-

tive  analogies  , are at the heart of higher cognitive functions. Together, these three 

steps establish “optimally predictive active representations” as a unified descrip-

tion and postulate a uniform cortical substrate and functional mechanisms for 

low-level and high-level cognitive processes.   
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   Markus  Werning,   Michela   C. Tacca   , 
and Aleksandra  Mroczko-Wąsowicz 
 High- vs Low-Level Cognition and the Neuro-
Emulative Theory of Mental Representation 
 Commentary on Peter König, Kai-Uwe    Kühnberger, 
and Tim C. Kietzmann     

1             
 König    et al. (this volume) in conjunction with König    and Krüger    (2006) analyze 

a long-standing and unresolved issue in cognitive science: The relation between 

low- and high-level cognition. Low cognitive processes include the stages of dif-

ferent perceptual modalities, whereas high-level processes include planning, rea-

soning, believing, and so on. From the neurophysiological point of view, those 

systems are based on different networks that correspond to functionally defined 

cortical regions. However, it seems undeniable that lower perceptual and higher 

cognitive systems interact. A typical example of a process that occurs at a per-

ceptual stage and communicates with high-level systems is object  recognition  . 

During this process, the visual system (i) perceives invariants, i.e., it represents 

an object as being the same even if perceived from different points of view; and 

(ii) it subsumes objects that share similar features, for example, different dog 

instances under the same category: DOG. This representation at the visual level 

serves as the basis for further higher cognitive processes. From the fact that one 

recognizes a particular animal as a dog, one can infer a multitude of other facts 

and events: for example, that this particular dog is not a dangerous one. 

 The interaction between low- and high-level cognition calls upon the ques-

tion on whether those systems share similar processes and structures. König    and 

colleagues’ core argument is that low- and high-level cognitive systems imple-

ment similar structures despite their functional differences. According to the 

model, the similarity of structure relates to the statistics of the received inputs and 

the strong relations of perceptual and cognitive systems to  action  . This approach 

combines the following assumptions: Neurons in visual areas have sparse activa-

tions and are feature specific. They compute the slow temporary changes of an 

object in order to represent its identity over time. The model purports to explain 

object representation on the basis of the  stability   of the input. However, as König    

and colleagues notice, when subjects represent an object, they often represent 

this object and its related affordance. An affordance is a property of an object 
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that allows a subject to perform an  action   upon that object in a way specific for 

the object (Gibson   , 1977). For example, the perceived affordance of a chair may 

be ‘sitable’. Affordances may differ depending on the perceiving subject or situ-

ation: The same chair that is suitable to sit for a human adult may be perceived 

as ‘climbable’ by a child or by an adult in a different context (e.g., when using a 

chair to reach an object). These differences may account for the fact that differ-

ent individuals across and within different species perceive the world in different 

ways. Moreover, the representation of affordances is at the root of the ability of 

an individual to predict and support the sensory consequences of actions. For 

example, regardless which type of ball is in front of you, you will know that every 

time you kick a ball, that ball will move in a specific direction. The sameness 

of behavior when faced with similar stimuli can be described in terms of how 

the subject learns to generalize predicting the action’s consequences and thereby 

learns to select an appropriate  action  . 

 According to König    and colleagues, the generalization occurring during 

 object recognition – subsuming different instances of the same object under the 

same category and predicting the consequences of our actions over all instances 

of the same category – is a process similar to the drawing of an  analogy  . Analogy 

is a well-studied high-cognitive phenomenon defined as the transfer of knowl-

edge from known examples to unseen examples in order to make the right clas-

sification. For instance, an  analogy   commonly used in science is to compare 

electrical circuits to hydraulic systems. Sensory systems, like the visual system, 

might draw inferences from a known scenario to an unknown one in a similar 

way. In fact, the generalization of invariants and performed actions allows the 

subject to predict the behavior and perceive the function of newly perceived 

objects if those objects resemble some of the objects that have already been cat-

egorized. Further, it is claimed that a similar mechanism might be at the basis of 

very simple analogies and that higher cognitive analogies may have a sensory 

basis. According to the discussed approach, in the course of perceptual  analogy   

representations within the same category will activate similar neuronal groups. 

For, the objects of a group – e.g., the objects falling under the category BALL – 

share some aspects. However, those representations also differ to a certain extent 

between one another. This might depend on the context of the  action   and the 

perceived affordance of an object. 

 Various approaches on the link between low- and high-level cognition high-

light the sensory basis of higher-cognitive representations (for a review, see 

Barsalou   , 2008). The pivotal question is what perceptual and higher-cognitive 

systems share. König    and colleagues stress their similarities in terms of represen-

tational resources and their structure. We argue that their model based on objec-
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tive function and the representation of affordances explains something more: It 

also accounts for the distinction between attributive and substance concepts.  

2     
 The difference between lower-level sensory representations  – prior to  object 

recognition – and higher-level cognitive representations – presupposing object 

recognition  – can be accounted for in terms of the difference between the use 

of thick substance concepts at the later stage of perceptual representations and 

that of thin attributive concepts at earlier stages. On the one hand, substance 

concepts represent stable features, invariant over time, which are governed by 

the conditions of object identity. For example, a banana no longer falls under 

the substance  concept   BANANA when it has been smashed. On the other hand, 

attributive concepts represent variable features, in the sense that an object can 

fall under different attribute concepts at different times. For example, an object 

can have different colors at different times. Substance concepts are typically 

expressed by concrete nouns – in English by names of individuals like  mama , 

names of kinds like  mouse  and names of stuffs like  milk . Attributive concepts, 

in contrast, are typically expressed in English by adjectives or abstract nouns: 

 blue ( -ness), warm ( -th), lucid ( -ity ). (Millikan   , 1998; Werning   , 2008, 2010) 

 The perspective to be developed here largely draws on the theory of neuro-

frames (Werning    and Maye   , 2007). The theory of neuro-frames holds that (i) sub-

stance concepts are decomposable into less  complex   concepts with attributive 

concepts at the lower levels, that (ii) the decompositional structure of a sub-

stance  concept   can be rendered by a recursive attribute-value structure, that 

(iii) the neural realization of a substance  concept   is distributed over assemblies 

of neurons and meta-assemblies thereof, that (iv) those neurons pertain to neural 

maps for various attributes in many afferent and efferent regions of the cortex, 

and that (v) object-relative neural synchronization is an appropriate mechanism 

for binding together the distributed information into the neural realization of the 

substance  concept  . 

  Frame theory provides us with a universal account not only for categorization 

and its link to action-control, but also for the decomposition of concepts. Frames 

are recursive attribute-value structures. Attributes assign unique values to objects 

and thus describe functional relations. The values can be structured frames 

themselves. A frame is defined for a large domain of things and contains a fixed 

set of attributes (e.g., color, form, flavor), each of which allows for a number of 

different values (red, green, etc.). The attributes in question are not constrained 
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to perceptual modalities, but may involve attributes of motor affordances as well. 

Frames can be nested hierarchically and mutual constraints between attributes 

(e.g. between states of an object and actions directed to it) and between larger 

frames can be incorporated. Our model postulates neuro-frames as neuronal 

bases for concepts. 

    For many attributes involved in perceptual processing one can anatomi-

cally identify cortical correlates. Those areas often exhibit a twofold topological 

structure and justify the notion of a feature map: (i) a receptor topology (e.g., 

retinotopy in vision, somatotopy in touch): neighboring regions of neurons code 

for neighboring regions of the receptor; and (ii) a feature topology: neighboring 

regions of neurons code for similar features. With respect to the monkey, more 

than 30 cortical areas forming feature maps are experimentally known for vision 

alone (Felleman    and van Essen   , 1991). 

 Motor attributes may also be parts of frames and appear to have cortical cor-

relates, predominantly in the premotor and motor cortex (Werning   , 2010). The 

cortical organization of motor control with regard to the effectors follows similar 

topological principles as the cortical organization in perception with regard to the 

receptors. The discovery of the so-called canonical motor neurons in the mirror 

 Figure 1   : Hypothetical fragment of the frame for the concept BANANA. The substance  concept   
to be decomposed is marked by a double-circle as the referring node of the frame. The labeled 
arrows denote attributes, the nodes their values. Nodes are themselves regarded as concepts 
and thus as conceptual parts of the central concept. In English, feature attributes (shown on the 
right) are frequently lexicalized – their arguments typically enter possessive constructions like 
 The color of the banana is yellow  or  The banana has the color yellow . Based on linguistic and 
neurobiological evidence, we assume that affordances often relate to body parts and hence use 
the convention “@ + body part”. Formally, attributes are mappings from domains of some type 
into domains of some other type. Petersen and Werning    (2007) provide an explicit account of 
frames using a calculus of typed feature hierarchies and incorporating typicality effects.  
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neuron system, activated by the sight of an object to which a certain  action   is 

applicable (Rizzolatti    and Luppino, 2001; Rizzolatti    and Craighero   , 2004), may 

provide a basis to integrate affordances into frames. Figure 2 shows a number of 

neural maps that relate to various attributes of frames. 

 

Figure 2   : Cortical realizations of frame attributes. 
 a) Fragment (ca. 4mm²) of the neural feature map for the attribute orientation of cat V1 (adapted 
from Shmuel    and Grinvald   , 2000). The arrows indicate the polar topology of the orientation 
values represented within each hypercolumn. Hypercolumns are arranged in a retinotopic 
topology. 
 b) Color band (ca. 1 mm²) from the thin stripes of macaque V2 (adapted from Xiao    et al., 2003). 
The values of the attribute color are arranged in a topology that follows the similarity of hue as 
defined by the Commission Internationale de l’Eclairages (xy-cromaticity). The topology among 
the various color bands of V2 is retinotopic. 
 c) Neural map (ca. 250 mm²) of forelimb movement in macaque primary motor (F1) and dorsal 
premotor cortex (F2, F7) (adapted from Raos et al., 2003). The overarching topology is somato-
topic from proximal to distal movement as shown by the arrow. Due to the size of the region one 
may expect it to comprise maps for more specific motor attributes. C: central sulcus, AS and AI: 
superior, respectively, inferior arcuate sulcus.  
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   Canonical neurons are involved in mechanisms for recognizing object affordances 

and carrying out the semantic knowledge about the object (Sahin    and Erdogan   , 

2009). Hence, the activation of the mirror system brings its multimodal neurons 

to respond not only to  action   performance, but also to visual, auditory, somato-

sensory and proprioceptive signals. This suggests that related processes are 

grounded functionally by multimodal circuits (Gallese    and Lakoff   , 2005; Rizzo-

latti    and Sinigaglia   , 2010). In particular, the intraparietal sulcus and inferior pari-

etal lobule are involved in multisensory integration and vicarious sensory-motor 

activations (Rizzolatti    and Sinigaglia   , 2010; Ishida    et al., 2010; Rozzi    et al., 2006; 

Bremmer    et  al., 2001). These regions, able to receive visual input, are directly 

connected with each other and with the somatosensory cortex (i.e., BA2; Lewis    

and van Essen   , 2000; Pons    and Kaas   , 1986) integrating tactile and propriocep-

tive stimuli as well as containing shared sensory-motor representations (Keysers    

et al., 2010). These multimodal circuits exhibit some basic semantic features. The 

activation of a specific  action   concept, e.g. expressing an affordance or any other 

motor attribute, induces the activation of the multimodal neural circuits (Pulver-

müller    and Fadiga   , 2010). 

   The fact that values of different attributes may be instantiated by the same 

object, but are processed in distinct regions of cortex is a version of the binding 

problem: how is this information integrated in an object-specific way? How 

can the color and taste of a banana be represented in distinct regions of cortex, 

although they are part of the representation of one and the same object? 

 A prominent and experimentally well supported solution postulates oscil-

latory neural synchronization as a mechanism of binding: Clusters of neurons 

that are indicative of different properties sometimes show synchronous oscil-

latory activity, but only when the properties indicated are instantiated by the 

same object in the perceptual field; otherwise they are firing asynchronously. 

Synchronous oscillation, thus, might be regarded as fulfilling the task of binding 

various property representations together to form the representation of an object 

having these properties (Singer   , 1999). Using oscillatory networks as biologically 

motivated models, it could be demonstrated how the topological organization of 

information in the cortex by mechanisms of synchronization may yield a logically 

structured semantics of concepts (Werning    and Maye   , 2007; Maye    and Werning   , 

2004, see figures 3 and 4). Compositionality theorems have been provided 

(Werning   , 2005). Oscillation functions play the role of object concepts. Clusters 

of feature sensitive neurons play the role of attributive concepts. The experi-

mental findings by Schnitzler    et  al. (2006) on the essential role of neural syn-

chronization for  action   control may justify the extension of the synchrony-based 

neuro-frame approach from features to affordances. It should be noted that the 

envisaged semantics is one of emulation: the neuronal structure is partially iso-
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morphic to a (model-theoretic) model of the representational content. A concept 

like BANANA thus interrelates a.o. sensoric and motoric emulations: Having the 

concept BANANA means being able to emulate what a banana would look, taste, 

feel, and smell like and being able to emulate actions afforded by a banana. Trig-

gering the concept activates the respective sensoric and motoric cerebral regions 

for the purpose of emulation even in the absence of a real banana. The neuro-

frame captures how the various sensoric and motoric emulations are linked to 

each other. Emulative semantics is a non-symbolic, embodied, but still compo-

sitional semantics and might be used to link conceptual resources employed in 

perception and motor planning to linguistic meaning (Werning   , 2012). 

 Figure 3   : Oscillatory network. The network topology reflects the receptor topology (xy-plane) 
and the feature topology (z-axis) of the neural maps. Each module realizes one attribute. 
The layers in each module realize the attribute values. Oscillators activated by neighboring 
stimulus elements with similar attribute values synchronize (light gray). Oscillators activated 
by neighboring stimulus elements with unlike attribute values de-synchronize (dark gray). The 
layers of different modules are connected in a synchronizing way that respects the common 
receptor topology. (From Maye    and Werning   , 2007).  

 Support for the theory of neuro-frames also comes from a number of neuro-lin-

guistic studies. Based on a review of neurobiological data, Pulvermüller    (1999) 

suggests that neural assemblies that pertain to the sensory-motor cortices and 

are bound by neural synchronization play an important role in understanding 

the meanings of words and sentences. These cortical sensory-motor  action   and 

perception circuits are interdependent in language comprehension. Neuroim-
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aging investigations have shown that perception and understanding of stimuli 

depend on motor circuits, i.e. specific motor activations can be found when sub-

jects understand speech sounds, word meanings, semantic categories and sen-

tence structures (Pulvermüller    and Fadiga   , 2010). FMRI studies (Pulvermüller   , 

2005) regarding the understanding of verbs, e.g., hint at a differential top-down 

activation of motor and pre-motors areas. We know that the understanding of con-

crete nouns like  hammer , for which not only features, but also affordances are 

salient, results in an activity distributed over the premotor and the visual cortex 

(Martin   et al., 1996;  Martin  , 2007). The hypothesis that words for  substance con-

cepts arouse more widely distributed activity than words for attributive concepts 

has also been supported by EEG studies (Rappelsberger    et al., 2000). Brain areas 

involved in motor control contribute to neural networks in which verb representa-

tions are grounded, e.g. studies on motor deficits such as Parkinson disease reveal 

impairment of patients’  action   naming (Rodríguez-Ferreiro    et al., 2009). Higher-

order abilities such as thinking or linguistic concept use are based in sensory-

motor abilities. The relation to attentional mechanisms has been studied by Tacca    

(2010). Parallels to cases of synaesthesia where hyperbinding within neuroframes 

might play a role have been discussed by Mroczko-Wąsowicz    and Werning    (2012). 

      Figure 4   : An oscillator network with a single module for color with layers for red and green is 
stimulated with the Kanizsa illusion. a) Stimulus: three red circle segments on a green ground. 
b) The two strongest eigenmodes of the network dynamics  v  1  and  v  2 , each subdivided accord-
ing to layers, are shown. The signs of the vector components are indicated by shades of gray: 
light gray: positive, middle gray: zero, dark gray: negative. c) Temporal evolution of the two 
eigenmodes are given by the characteristic oscillatory functions c 1 (t) and c 2 (t). The eigenvalues 
λ 1,2  yield the relative contribution of each eigenmode to the overall variability of the network 
dynamics. Semantic interpretation: The first eigenmode does not render figure ground segrega-
tion. The second eigenmode, however, renders a representation of the illusionary triangle 
(object concept: −c 2 ) as distinct from the background (mostly zero) and the united circle seg-
ments (object concept: +c 2 ).  
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3        Conclusions 
 We argue that König    and colleagues’ model, which highlights the optimization 

of feature selectivity and feature predictability, may also contribute to the expla-

nation of a further property of high- and low- level processes: The distinction 

between substance and attributive concepts. Neuroframe theory gives a detailed 

account of how  substance concepts  – presupposed for higher cognitive pro-

cesses – and attributive concepts – hosted by lower perceptual cortical areas – 

relate to each other. The relation is one of recursive conceptual decomposition. 

Due to the interaction between affordance and feature attributes, neuroframes 

are flexible enough to allow for a situational dependency when it comes to 

feature selection. While attributive concepts specify volatile properties of objects, 

substance concepts are governed by the identity conditions of objects and thus 

warrant a stable identification of those objects. Since neuroframes capture how 

substance and attributive concepts relate to each other a situation dependent 

way they enable an optimization of predictability. 

 A main idea in philosophy is that if perception and cognition interact, they 

need to have the same type of representational content, or if they do have differ-

ent types of content, one needs to further explain how their contents relate. Our 

hypothesis is that representations at the cognitive level involve conceptual rep-

resentations (substance concepts) that derive from the recombination of primi-

tive attribute concepts that occur at earlier stages. König    and colleagues instead 

argue that the differences in the final make-up of the representation between 

low- and high-level cognition account for those systems to implement distinct 

kinds of content. A hallmark of conceptuality is that representations combine in a 

compositional fashion. As we noticed above, the recombination of attributive per-

ceptual and motor representations into substance concepts satisfies the principle 

of compositionality. Hence, we argue that those representations have conceptual 

content, even if they are not symbolic representations, but emulations.   
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 Reinhold   Kliegl     and   Ralf  Engbert    
 Evaluating a Computational Model of 
Eye-Movement Control in Reading  

1             Some basic facts about eye movements during 
reading 

 Reading is an activity we all engage in on a daily basis. It requires the coordina-

tion of perceptual and oculomotor processes as well as the integration of this 

new information provided by perception and eye movements with the available 

knowledge and expectations about what is being read. This chapter is about how 

we evaluate a model about an important component of this  complex   process, that 

is a model about how we move our eyes across the words of a sentence. We present 

this model as a prototype of an integrated theoretical, computational, and data-

analytic approach for the interface between experimental psychology, cognitive 

(neuro-)science and computational neuroscience. With examples from ongoing 

research we illustrate how the model can be evaluated against a set of criteria for 

strong model tests, comprising goodness of  fit  , strictness of model, reliability of 

 data  , and unexpected  predictions   (Roberts    and Pashler   , 2000). Before we turn 

to these model tests we introduce some basic facts about eye movements during 

reading and (a subset of) the theoretical principles that guided the construction 

of our model. 

 When we record or directly observe a reader’s eye movements, it is imme-

diately apparent that the eyes do not move continuously across the words of a 

sentence.¹ Counter to what introspection suggests that we do most of the time; 

we notice a strict alternation of quick movements, called saccades (lasting about 

20 to 30 ms), and periods of relative rest, called fixations (with mean durations 

ranging from 150 to 350 ms). Visual input about what we read occurs only during 

fixations; we are effectively blind while the eyes are in flight and indeed most of 

the time we are not aware of saccades. Thus, what we experience as a continuous 

movement across the words of a sentence is largely a construction of the mind. 

1   The results reported in this chapter are based on binocular measurements at 250 Hz or 500 

Hz from 273 readers who read 144 isolated sentences (i.e., the Potsdam Sentence Corpus; Kliegl   , 

Grabner   , Rolfs   , and Engbert   , 2004; Kliegl   , Nuthmann   , and Engbert   , 2006). We map fixation posi-

tions to a specific letter within a word. The fixation positions differ slightly between the two eyes. 

Our results are based on measurements of the right eye.  
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  Figure 1:    (top) Illustration of four types of eye movements and their marginal probabilities 
during normal reading of German prose. Experimental (exp) and simulated (sim) values for skip-
ping (skip), regression (regr), and fixation probabilities (2 or >=3) conditional on word length 
(bottom left) and on log10 word frequency per million words (bottom right) (modified from 
Engbert    et al., 2005).  

 The discrete nature of fixation-saccade cycles suggests a simple taxonomy of eye 

movements relative to the words of the sentence. As illustrated in  Figure 1  (top 

panel), we distinguish four types: roughly 50% of the saccades carry the eyes 

from one word to the next word, about 20% of them shift the position within the 

currently fixated word, about 20% skip the next word, and about 10% of the time 

we move back to an earlier word. These statistics greatly depend on word proper-

ties, most notably on the lengths of the words. As shown in  Figure 1  (bottom left), 

skipping  probability   decreases strongly from roughly 60% for two-letter words to 

less than 1% for 12-letter words; conversely the  probability   of refixations increases 

from close to 0% to around 40%. The same statistics can also be plotted over the 

frequency with which words are observed. As shown in  Figure 1  (bottom right), 

skipping and refixation  probability   decreases and increases with log-frequency of 

observing a word in texts comprising one million words. 

    Fixation probabilities yield one key set of dependent measures. The second 

set of measures relates to different types of fixation durations. Here we distin-

guish, for example, between durations of fixations when they are the only fixa-
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tion on a word (i.e., a single fixation duration), the first of two fixations, or the 

second of two fixations. Usually, we also sum all the fixations on a word to a 

measure of total reading time. Again, all these measures exhibit systematic rela-

tions to the lengths and frequencies of words on which they are observed: The 

longer or the less frequent a word, the longer the fixation duration or total fixa-

tion time. 

 The length and type frequency of the fixated word are but two highly cor-

related properties of a large number of variables that have been shown to influ-

ence fixation probabilities and durations (e.g., Rayner   , 1998, for a review). Other 

variables are, for example, the predictability of a word given the prior words of 

the sentence. This measure is usually obtained in independent studies in which 

subjects have to guess the words of a sentence in an incremental order. Other 

variables reflect how similar the word is to other words of the language, measured 

by how many words can be derived from a word if one allows to exchange one 

letter (i.e., an edit distance of 1). Another example is the informativeness of the 

beginning of a word for its identification. For example, given a long word with 

“xy…” as initial letters, there are not many alternatives to “xylophone”. Moreover 

and critically, properties of words n-1 or n+1 have been shown to influence fixa-

tion durations on word n (e.g., Kliegl    et al., 2006). We will describe a few of these 

and a few additional effects in the context of introducing some of the theoreti-

cal principles guiding the evaluation of our computational model. In summary, 

despite the one-dimensional space during reading a single sentence on a line, the 

associated eye movements exhibit a very  complex   trajectory modulated by a large 

number of variables.  

2     Theoretical principles of eye-movement control 
during reading 

 Statistics of various types of fixation probabilities and fixation durations serve 

as benchmark data for all computational models of eye movements during 

reading. Usually, for each model a number of free parameters is estimated such 

that summary statistics as those described in  Figure 1  are reproduced. The bottom 

panels of Figure 1 show that our model, called SWIFT, does a good job of recover-

ing fixation probabilities; it does not show that the model also accounts for the dif-

ferentiated pattern of fixation durations and distributions of landing positions in 

words contingent on word length and the amplitude of the last saccade (Engbert   , 
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Nuthmann   , Richter   , and Kliegl   , 2005).² The model is not unique in this respect – 

there are at least three other models that can account for such data (McDonald   , 

Carpenter   , B., and Shillcock   , 2006; Reichle   , Pollatsek   , Fisher   , and Rayner   , 1998; 

Reilly    and Radach   , 2006; for a comprehensive review of these and other models 

see Reichle   , Pollatsek   , and Rayner   , 2003). Given this state of the research we can 

describe how we plan to compare such models in a principled way. But before we 

turn to the issue of model comparison, evaluation, and development, we describe 

two of seven core principles that guided the implementation of the SWIFT model: 

(1) the distinction between when and where to move the eyes and (2) the notion 

of the perceptual span. These theoretical principles have always been formulated 

in a qualitative way. Only their implementation in a computer program requires a 

commitment to a specific mathematical representation. 

2.1     When and where to move the eyes 

 When reading these lines, the control of our eye movements is based on prin-

ciples about  when  and  where  to launch the next saccade that moves the next word 

into the fovea for high-acuity analysis. Interestingly, neurophysiological evidence 

suggests that the temporal and spatial aspects of saccade-generation are largely 

independent across several levels of organization (Findlay    and Walker   , 1999). 

 The temporal aspect of eye-movement behavior, the when decision, is cap-

tured by fixation duration measures. Over the past 30 years, much research has 

been conducted to determine the relationship between fixation durations and lin-

guistic and/or oculomotor variables. First, as described above, it has been shown 

that various lexical, syntactic, and discourse factors influence fixation durations 

on words. Thus, fixation durations in reading are sensitive to local processing 

difficulty (Rayner   , 1998). Second, fixation durations are also influenced by low-

level nonlinguistic factors. As a consequence, there are fundamental modula-

tions of fixation durations by word length, within-word fixation position, and the 

distance between fixation locations (i.e., launch site of last saccade), which are 

unrelated to word recognition (Vitu   , McConkie   , Kerr   , and O’Regan   , 2001). 

 The where pathway, i.e., the question of spatial selection for the next saccade, 

must solve two tasks: First, which word is to be selected as the target of the next 

saccade, and, second, what are the principles underlying the control of within-

word landing position. The mean value of the landing position distribution is 

termed the preferred viewing location (Rayner   , 1979), which is on average slightly 

2    http://www.agnld.uni-potsdam.de/~ralf/swift/ .  
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left of the word center. The initial landing position gives rise to the roughly para-

bolic refixation  probability   effect, the optimal viewing position (McConkie   , Kerr   , 

Reddix   , Zola   , and Jacobs   , 1989), and the inverted-optimal viewing position (IOVP) 

for fixation durations (Vitu    et al., 2001). The assumption that there are partially 

independent when and where pathways ( Schad and Engbert, 2012) provides an 

important boundary condition for the development of psychologically plausible 

theoretical models of eye-movement control during reading.  

2.2     Perceptual span 

 Analyses of large corpora of eye movements strongly suggest that non-local (dis-

tributed) effects of word difficulty on eye fixations during reading are likely to be 

much more pervasive than suggested by research examining only a few experi-

mentally manipulated target words per sentence (Kliegl    et al., 2006; Kliegl   , 2007). 

Distributed processing means that the fixation duration on a word is not only 

influenced by the characteristics of the fixated word itself but – due to graded 

parallel word processing within the perceptual span – depends also on the char-

acteristics of the word to the left (lag effect) as well as those of the word to the 

right of fixation (successor effect). The perceptual span covers an area roughly 

extending about 15 characters to the right and three characters to the left of the 

point of fixation in alphabetic languages (McConkie    and Rayner   , 1975; Rayner   , 

1975; see  Figure  2  for an illustration). Given the decrease of visual acuity with 

an increase in the eccentricity of information relative to the fixation position, 

the rate of processing (represented by the height of the functions in  Figure 2 ) is 

expected to decline. The asymmetry in the direction of reading is interpreted as 

a modulation of visual perception by attention. Determining which type of infor-

mation (i.e., visual, sublexical, lexical, semantic) is available from the upcoming 

word is an area of active and controversial research (see Kliegl    et al., 2006; Kliegl   , 

2007; Rayner   , Pollatsek   , Drieghe   , Slattery   , and Reichle   , 2007). 

     Figure 2 also illustrates the proposal that the perceptual span is dynamically 

modulated by the difficulty of local processing ( Schad and Engbert, 2012). Specif-

ically, the peak of processing rate may be lower and the rightward extension may 

be larger when the eye rests on highly frequent or predictable words in compari-

son to fixations on low or unpredictable words. Such a dynamical modulation of 

the perceptual/attentional span implies that processing of a fixated difficult word 

is processed at a higher rate than on average, but at the cost of reduced parafo-

veal processing of the upcoming word (Henderson    and Ferreira   , 1990; Inhoff    and 

Rayner   , 1986; Rayner    and Pollatsek   , 1987).  
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word n-1 word n word n+2  n+1 

Processing rate 
w/ difficult word n 

Processing rate 
w/ easy word n 

 Figure 2:    Perceptual/attentional span for a fixation on word n (•) and its dynamical modulation 
by the difficulty of word n. Height of curves represents processing rates for a difficult and an 
easy word n.  

2.3     Other core principles 

 Separate pathways for saccade timing and saccade target selection and spatially 

distributed processing of an activation field are two of seven core principles of 

the SWIFT model (Engbert    et al., 2005; Table 1). The other five relate to timing 

of saccade programs and to how this timer can be inhibited with a delay by 

foveal processing difficulty, to a distinction between different stages in a saccade 

program, to systematic and random errors in saccade lengths and the impli-

cations for mislocated fixations due to such error, and to the relation between 

saccade latency and saccade amplitude.   

3     Computational models of eye-movement control 
in reading 

 In  Figure 3 a we illustrate how the SWIFT model simulates reading the sentence 

“Manchmal sagen Opfer vor Gericht nicht die volle Wahrheit” [Sometimes victims 

do not say the complete truth in court]. With time running from top to bottom, the 

black line indicates the position of the eye at a given moment. Thus, vertical black 

lines represent fixation durations and horizontal black lines indicate saccades. 

     The grey hills beneath each word in  Figure 3 a, show the dynamics of the acti-

vation field for the nine words of this sentence in this simulation. Note that some 
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of the activations overlap in time; there is parallel distributed processing. For 

example, during the first fixation the first three words are active at one point in 

time. The rate of processing these words depends on how far the word is from the 

current fixation position. Activation rises steeply for the first, less steeply for the 

second, and very slowly for the third word. After the first saccade, the rate rises 

steeply for the third word; also the fourth word is activated because it is now in 

the perceptual span. 

 In general, activations related to the N words of a sentence are governed by 

an N-dimensional set of coupled ordinary differential equations, 

 
d
dt   an(t ) = Fn (t )�n(t )− ! (n = 1, 2, 3, . . . ,N ), (1) 

      where Λn(t) is the processing rate, Fn(t) is a preprocessing factor, which intro-

duces a fast buildup of activation in an early processing stage and is modulated 

by word predictability pn, and ω is a global decay process, which we interpret as 

a memory leakage (see Engbert    et al., 2005, for more details of the mathematical 

formulation of SWIFT). 

 Turning one such activation “hill” 90° degrees counterclockwise, process-

ing a word means that two random walks spliced at the peak are completed. In 

SWIFT, word processing difficulty is modulated by printed word frequency and 

predictability. Low-frequency words have high peaks; high-frequency words have 

very small peaks. For example, you barely notice the activation associated with 

 Figure 3 :   The SWIFT model. Left: Example of a numerical simulation of the SWIFT model 
Saccade target selection is driven by a spatially-distributed activation field. Word-based activa-
tions are illustrated by the shaded areas. The eye’s scanpath is indicated by the black line (from 
Engbert et al., 2005, Fig. 7). Right: Schematic representation of SWIFT. Two independent path-
ways control fixation duration (“when”) and saccade target selection (“where”). A random timer 
controlling fixation durations can be inhibited to adjust fixation duration to foveal processing 
difficulty (from Engbert et al., 2005, Fig. 6).  
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“sich”, a reflexive pronoun. Thus, we assume that word frequency, fn, is related to 

the maximum of activation, Ln, 

    L n   = α − β log  f n  , (2)  

 while predictability, pn, modulates processing rate. High values of predictability 

decrease processing rate during parafoveal preprocessing and increase process-

ing rate during lexical completion. Given this dynamics, effects of word length are 

the consequence of an asymmetric Gaussian-type distribution of processing rate 

around the current fixation position as shown in  Figure 2 . 

  The second principle of separate where-and-when pathways specifies that 

we must distinguish between target selection (Where?) and timing of saccades 

(When?). As illustrated in  Figure 2 b for SWIFT, saccade generation begins with a 

random timer inducing the start of the next saccade program. The  probability   to 

select a word as the next saccade target is computed from its relative lexical activa-

tion (i.e., the word’s activation value divided by the sum of all lexical activations). 

Saccade execution occurs only after the necessary saccade-program latency and 

thereby induces a delay between the effect of lexical activation on target selec-

tion and the effect of this saccade on the processing rates in the dynamical field 

of activations. The set of lexical activations causes also foveal inhibition on the 

start of the next saccade program (see right panel of Figure 3). Again, this long-

loop lexical control process takes time, and this second type of delay is captured 

within the model parameter τ. 

 Thus, the movement of the eye depends stochastically on lexical activation 

of the field of words at the time when this decision is made. Those with high 

activation are more likely to be selected as saccade targets. For example, for the 

first saccade of Figure  1, the second and the third word have activation above 

zero and the second word “won” the competition for being selected as saccade 

target. Importantly, this single principle of target selection generates all types 

of eye movements introduced in  Figure 1 : movement to the next word, skipping, 

refixations, and regressions. None of the competitor models are as “parsimoni-

ous” in this respect. 

 In the initial versions of SWIFT, processing rate for letters was assumed to 

follow an asymmetric Gaussian distribution with different parameters, σR and σL, 

representing the extension of the span to the right and to the left of the fixation 

point, respectively. Basically, one of the curves shown in  Figure 2  was assumed 

to apply throughout a simulation. In the dynamical  systems   framework of SWIFT, 

discrete processing cycles (“sense” → “think” → “act”) are replaced by the tempo-

rally continuous evolution of a set of mutually interacting variables representing 

different cognitive subsystems (Beer   , 2000). Within such a framework, it is con-
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ceptually possible to implement the dynamic interactions between subsystems 

very precisely. 

 We illustrate such a model modification with the proposal of a dynamical 

span (Schad and Engbert, 2012). When the reading material is difficult, the size 

of the perceptual span is smaller than for a text of average difficulty (Henderson    

and Ferreira   , 1990). As illustrated in  Figure 2 , this effect can be accounted for with 

a sharper distribution of the processing span, determined by parameters σR and 

σL, for increasing foveal word difficulty represented by a higher average foveal 

activation ak(t) at time t. Specifically, Engbert    (2007; see also Schad  and Engbert, 

2012) assumes that (i) the extension of the processing span to the left is constant; 

and given by parameter σL, (ii) the processing span is symmetric for high foveal 

load ak(t); and (iii) the extension to the right, σR, increases with decreasing foveal 

load ak(t). 

 This leads to the following relation: 

   σ  R   = σ  L   + δ 1  F ( a k   ( t )) (3)  

 where δ1 is a free parameter representing the strength of the dynamical control 

mechanism and F(a) is a sigmoid function. 

 This is only the beginning. To explore the viability of the concept of a dynamic 

perceptual span, different mathematical formulations must be implemented and 

tested by computer simulations and statistical analyses. For example, in ongoing 

simulations of data from German-English bilingual readers, the Gaussian-type 

processing span was not constrained enough by data due to its long tail. There-

fore, we revised the functional form of the processing span to an inverted qua-

dratic form. As an important property of such a span, we obtained sharp edges 

of processing. Based on this modification, we were able to estimate the dynamic 

part of the processing span.  

4     Model analysis and comparison 
 We developed the SWIFT model (Engbert   , Longtin   , and Kliegl   , 2002, Engbert    

et al., 2005) on the assumption of spatially distributed processing. Another model 

implementing this assumption is Glenmore (Reilly    and Radach   , 2003, 2006). 

In contrast, the E-Z Reader model (Reichle    et al., 1998, Reichle   , Pollatsek   , and 

Rayner   , 2006) is built on the notion of sequential attention shifts (SAS). For the 

class of SAS models, the serial allocation of visual attention from one word to 

the next is the central principle driving eye movements. We also contributed to 
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the SAS-line of research by proposing a model with fewer internal states based 

on advanced stochastic principles (semi-Markov processes; Engbert    and Kliegl   , 

2001). 

 Finally, the SERIF model is another fully implemented model which builds 

upon functional implications of an apparent vertical splitting of the fovea 

(McDonald    et al., 2005). 

 The development of such quantitative psychological theories is a clear signa-

ture of scientific progress. Given the range of competing models of eye-movement 

control during reading, the need for mathematical analyses and comparisons of 

models is obvious. Of course, the problem of model selection, analysis, and com-

parison is a growing area of research in cognitive science in general (e.g., Special 

Issue on “Model Selection” in the Journal of Mathematical Psychology, 2002). 

 So how should we compare different mathematical/computational models? 

Model comparisons are typically based on goodness-of-fit (GOF) statistics, which 

quantify how much a model’s prediction deviates from a given set of experimen-

tal data. When using  GOF, the underlying assumption is that the model producing 

the best fit to all data must be a closer approximation to the underlying cognitive 

process. However, because of random variation in the experimental and statis-

tical methods used (e.g., repeated measurements, inferential statistics), model 

comparisons based on GOF alone will, in general, produce misleading results 

(Roberts    and Pashler   , 2000). 

 Figure 4 :   Both (a) the initial SWIFT model (Engbert    et al., 2002, Fig. 5a) and (b) the E-Z Reader  
model (Reichle    et al., 2003, Fig. 6 top panel) were fit to the same set of fixation durations 
measured for 5 different word-frequency classes (data from Schilling    et al., 1998). Lines refer to 
observed (Obs) and predicted (Pred) gaze durations (GDs), single fixation durations (SFDs), and 
first fixation durations (FFDs).  
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 Moreover, advanced  mathematical models often fit experimental data equally 

well. For example, SWIFT (Engbert    et al., 2002) and E-Z Reader (Reichle    et al., 

2006) reproduced fixation durations reported in Schilling   , Rayner   , and Chumbley    

(1998) equally well in terms of GOF (see  Figure 4 ). The lines represent observed 

and predicted gaze durations (i.e., the sum of fixations when a word is first read), 

single-fixation durations (i.e., when a word is fixated exactly once), and first-fix-

ation durations (i.e., the duration of the first fixation, irrespective of how many 

fixations occurred) as a function of five log-frequency classes. 

 Figure 5 :   Data and simulations of single-fixation, skipping, and refixation probabilities as a 
function of log10 word frequency (per million words) for the E-Z Reader model (left, Reichle    
et al., 2003, Fig. 6 bottom panel) and the initial SWIFT model (middle, Engbert    et al., 2002, 
Fig. 5b) were fit to the same set of fixation durations measured for 5 different word-frequency 
classes (data from English sentences; Schilling    et al., 1998). The right panel shows the fit of 
the SERIF model (McDonald    et al., 2005, Fig. 3b; data from English newspaper texts [Dundee 
corpus], Kennedy   , 2003).  
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      Figure  5  (left and middle panel) illustrates the similarity in fit relating to 

probabilities for single fixations, skipping, or refixations as a function of word 

frequency for the same data (Schilling    et  al., 1998) and the same two models 

(E-Reader 9, Reichle    et al., 2006; SWIFT, Engbert    et al., 2002). Interestingly, the 

simulations of the SERIF model (McDonald    et  al., 2005) led to a very similar 

pattern of means although the model was fit to a completely different set of 

English eye movement data (i.e., Dundee Corpus; Kennedy    2003).³ 

 We consider the qualitative (and also largely quantitative) agreement between 

observations and simulations as quite remarkable. Therefore, to restate the argu-

ment from above, for this research field at this point in time, the qualitative agree-

ment between model and data is more important than differences in quantitative 

goodness-of-fit statistics (such as root mean squared error). 

     If we grant comparability in goodness of  fit  , we may still compare the models 

with respect to their complexity. One indicator of model complexity is the number 

of free model parameters. Interestingly, the models do not differ on this dimen-

sion either, ranging from 13 to 18. Moreover, many of the parameters are only free 

to vary within a range dictated by substantive issues. For example, in the SWIFT 

model, the asymmetry of the span, estimated as Gaussian standard deviations 

for the left and right processing-rate functions (see  Figure 2 ), must map onto a 

plausible range of letters (i.e., 3 to the left and around 10 to the right). Similarly, 

parameters estimating delay lines in the model are narrowly constrained by the 

physiology of the structures known to be involved in saccade programming and 

execution. 

   The dissimilarity of models, immediately apparent from the cartoons in 

 Figure 6 , can be traced to fundamental decisions about their architectures (E-Z 

Reader: stochastic automaton, SWIFT: stochastic dynamical system, SERIF: sto-

chastic model, Glenmore: connectionist network/coupled difference equations) 

and to their implementation of temporal (when) and spatial (where) decisions. 

The fact that the models do a comparably good job in accounting for benchmark 

results with a comparable degree of model complexity as indexed by the number 

and constraints on free parameters, strongly suggests that the models are not 

sufficiently constrained by the benchmark results. Therefore, a more promising 

route than comparisons in terms of goodness of  fit  , is to increase the scope of 

results they are expected to simulate. 

3   Differences between Figure  5 and Figure  1 (which displays similar probabilities) are due to 

language differences between English and German. Data in  Figure 1  were fit by the later version 

of SWIFT (Engbert    et al., 2005).  
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 Figure 6 :   Architectural blueprints of E-Z Reader (top left, from Reichle et al., 1998, Fig. 4), 
SWIFT (top right, from Engbert et al., 2005, Fig. 6), SERIF (bottom left, from McDonald et al., 
2005, Fig. 1), and Glenmore (bottom right, from Reilly and Radach, 2006, Fig. 1) exhibit a high 
dissimilarity between these computational models of eye-movement control during reading.  

 Figure 7 :   Classification of methods for model analysis and comparison in a two-dimensional 
space (modified from Pitt    et al., 2006), defined by the degree to which the method evaluates 
quantitative versus qualitative model performance (vertical axis) and whether the method 
focuses on local or global model behavior (horizontal axis).  
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   Pitt   , Kim   , Navarro   , and Myung    (2006) suggest a classification of methods for 

model analysis and selection in a two-dimensional space, where the first dimen-

sion represents the range from local to global methods and the second dimension 

is a scale from qualitative  methods   to quantitative methods ( Figure 7 ). 

   Psychological research almost exclusively applies local methods, but methods 

representing the global approach are needed to test model reliability and gener-

alizability. The reason for this imbalance is that the applicability of quantitative 

global methods to the diverse range of models in psychology is currently “limited 

by their technical requirements” (Pitt    et al., 2006). An important reason is that 

realistic models are computational rather than analytical, which creates prob-

lems for the implementation of methods of model analysis and comparison. 

5        Meeting the Roberts    and Pashler    (2000) 
challenge 

 Global methods for data analysis, quantitative and qualitative, may become avail-

able in a convincing way for psychological models over the next years. Currently, we 

do not see a straightforward application for the models in our domain of research. 

In psychology, the problem is that we are usually satisfied with good model fits, 

rarely complemented by sensitivity analyses of parameters or cross-validation of 

results. Therefore, for now, we may remain within the local-quantitative quadrant 

of Figure  7. Roberts    and Pashler   ’s (2000, 2002) starting point is that, although 

psychological models may live up to reasonable expectations about goodness of 

 fit  , goodness of  fit   does not discriminate convincingly between the models and is 

only a necessary condition for model evaluation. Consequently, they argued that 

there is currently no psychological theory in the sense in which we use this term 

in physics because psychological theories (or models) fall short on the follow-

ing three criteria: strictness of model, reliability of  data  , and unexpected  predic-

tions  . True or not, let us proceed from the assumption that several computational 

models of eye-movement control in reading, varying widely in theoretical assump-

tions and architectures, recover critical experimental benchmark results with the 

same number of free parameters, but cannot be distinguished in goodness of  fit  . In 

the following we review research and outline a research program that, at least in 

perspective, may allow us to meet this challenge for the SWIFT model. 
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5.1     Strictness of model and reliability of  data   

 Figure 8 serves to illustrate the first two criteria: strictness of model and reliabil-

ity of  data  . The left panel is taken from Roberts    and Pashler    (2000). Crosses with 

error bars represent two experimental measures or estimates A and B that can 

be derived from empirical data. Depending on the reliability of the experimental 

data, the error bars will be narrow (left column) or wide (right column). The grey 

points are results from model simulations; they are predictions of the models for 

different combinations of the model parameters. Thus, a strict model (top row) 

will generate a smaller set of predictions than a very flexible model (bottom row). 

In each panel, the data fall into the grey model zone. Thus, the models are always 

consistent with the data. By itself, however, the  goodness-of-fit criterion does 

not say anything about model strictness and data reliability. The models in the 

bottom row are too flexible and the data in the right column are too variable. 

Strong support of the model is only present in the top left panel, where model 

strictness and reliability of  data   are in a reasonable relation with each other. 

 

Model 
Potsdam: Young 
Potsdam: Old 
Potsdam: 
LowContrast 
E-Z Reader 
Schilling 

 Figure 8 :   Left: Illustration of model strictness and reliability of  data   (from Roberts and    Pashler, 
2000, Fig. 1). Crosses represent experimental results; grey dots represent model simulations. 
Criteria for strict model and reliable data fulfilled for top-left panel.  Right: Application to relation 
between intercept (x-axis) and slope (y-axs) for regression of skipping  probability   on log of word 
frequency. Crosses indicate different data sets; grey dots indicate results from SWIFT simulations.  

    As a concrete example from our research (see right panel of Figure 8), we regressed 

skipping  probability   on log of word frequency; from this we obtain two “mea-
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sures”, the intercept and the slope (which is positive as skipping increases with 

word frequency). In a next step we carry out a large number of model simulations 

with parameters drawn randomly from reasonable ranges. From the data of each 

simulation we derive intercept and slope for the two measures. These values, 

again, are shown as grey dots and represent possible predictions by the SWIFT 

model. The crosses represent intercepts and slopes from different data sets, 

comprising young and old German readers, young German readers reading with 

strongly reduced screen contrast, and young English readers. These results show 

that the reliability of the estimates is quite comparable across data sets and more 

importantly that the between-language variation has a much stronger effect than 

the within-language age or within-language contrast manipulation. This sug-

gests that language-comparative research in reading may hold much potential to 

explore the “legal” parameter settings of the model. Most importantly, however, 

we argue that these results suggest that the between-simulation variability of 

the SWIFT model is in a reasonable agreement with the experimental results. 

The next step is to expand the measurement space and, of course, to engage in 

systematic comparisons between models of claiming similar goodness of  fit   of 

benchmark results with similar number of model parameters.  

5.2      Unexpected predictions 

 By far the toughest criterion to meet, the gold standard for a model is to gener-

ate predictions about behavior that is subsequently recovered from the data or 

experimentally established. Lakatos    (1978, 6) put this succinctly: 

  The hallmark of empirical progress is not trivial  verification  . … It is no success for Newto-

nian theory that stones, when dropped, fall towards the earth, no matter how often this is 

repeated. But so-called ‘refutations’ are not the hallmark of empirical failure, as Popper    

has preached, since all programmes grow in a permanent ocean of anomalies. What really 

counts are dramatic, unexpected stunning predictions: a few of them are enough to tilt the 

balance…  

 As an example for a stunning prediction of Newtonian physics, he mentions Hal-

ley’s exact prediction of space and time for the return of Halley’s comet 72 years 

later. Lakatos    expresses the essence of the third problem: The a priori  probability   

that the theory will fit the data is often ignored. At the end of this section we will 

give an example from our research, which was surprising to us. This example, 

however, is not representative of normal model development, given that none 

of the psychological theories we are aware of would seriously claim to be in the 

Newtonian league of scientific theories. Indeed, history of science regularly 
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uncovers the meandering between alternative conceptualizations and difficulties 

in choosing between them at the time of emergence of theories, which are now 

known only in a single canonical form.⁴ 

5.2.1     Case 1: Surprising results, incompatible with model predictions 

 Most frequently, development of psychological models is driven by new exper-

imental results. Of course, in part this is simply due to the fact that there are 

many more experimental psychologists contributing new knowledge than there 

are modelers (and models) who can devote time to address the new results with 

their models. Indeed, we suspect that models will often not handle new experi-

mental results adequately as they are implemented at the time of their publica-

tion. However, the results may not be incompatible with the theoretical principles 

guiding the model implementation (Rayner   , 2009). 

 One example of such a result relates to fixation durations prior to skipped 

words. Experimentally, we observed that fixations before skipped words were 

shorter before short (or high-frequency) words (“skipping benefit”) and longer 

before long (or low-frequency) words (“skipping cost”; see Kliegl    and Engbert   , 

2005, Kliegl   , 2007, for details). The observation of skipping benefits is critical for 

models based on sequential attention shifts (SAS) like E-Z Reader (Reichle    et al., 

1998). In such a model, word skipping can only be produced by (i) cancellation 

of a saccade program to the next word n+1 and (ii) the initiation of a new saccade 

program to word n+2. As a consequence, models of the SAS class always generate 

skipping costs, i.e., longer fixation duration before skipped words. 

 The SWIFT model (Engbert    et al., 2005) also predicts skipping cost but this 

prediction was not tied as strongly to the model architecture as it is for the E-Z 

Reader model. The example is quite illustrative, because the skipping cost arises 

for a very different reason: the longer a fixation duration, the longer the prepro-

cessing of the next word, and the higher the chances that the next word will be 

skipped. Thus, whereas in E-Z Reader long fixations prior to skipped words are 

a consequence of skipping, they are the cause of skipping in SWIFT. Neverthe-

less, neither model correctly recovered the skipping benefit associated with short 

words – counter to our own experimental data. Fortunately, in psychology, such 

reports of a  falsification   of a model do not necessarily preclude publication.  

4   For example, Damerow, Freudenthal, McLauhglin, and Renn (1992) describe and explain the 

problems and misunderstandings during the transition from early concepts of motion to the the-

ory of motion in classical mechanics, using, among others, texts by Descartes and Galileo about 

the free fall of bodies and the composition of motions and forces.  
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5.2.2     Case 2: Surprising results, compatible with model after its modification 

 B ox  ’s (1979) “all models are wrong, some models are useful” is the guiding 

overarching principle.  Falsifications are useful if they inspire model modifica-

tion that encompasses new results in a principled way, rather than by some 

ad-hoc fix of the model. Indeed, such results frequently spur model modifica-

tion to account for the results in such a way that ideally previous successful 

simulation results are preserved. Since the original publication of the failure to 

account for skipping cost, we have used this failure as one starting point for 

the further development of the model. In particular, we implemented the theo-

retical proposal of a dynamical modulation of the perceptual span, contingent 

on the foveal processing difficulty as described in  section 2.2  (see also Figure 2, 

Eq.  3). We assumed that (i) the extension of the processing span to the left is 

constant, (ii) the processing span is symmetric for high foveal load, and (iii) the 

extension to the right increases with decreasing foveal load. Next, we fitted all 

model parameters of this variant of the SWIFT model using the same methods as 

reported by Engbert    et al. (2005). 

  Figure 9 :   Skipping costs and benefits as a function of word length in experimental data and 
SWIFT simulations. The left panel shows average fixations durations in SWIFT simulations. The 
center panel shows the same plot for experimental data. The right panel shows the fixation dura-
tions before skipping subtracted by the fixation durations before non-skipping as a function of 
word length. The model simulations reproduce the experimental result that there are skipping 
costs for long words (word length > 5 letters) and skipping benefits for short words (< 4 letters).  

    Are there consequences of the dynamic processing span in SWIFT for the issue 

of word skipping discussed in the last section? Specifically, will this modifica-

tion reveal skipping benefit prior to short words? Since parafoveal processing is 

very important to word skipping, it is plausible that the dynamical modulation 

of the perceptual span will lead to new results. Experimentally, we had observed 

that fixations before skipped words were shorter before short (or high-frequency) 
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words and longer before long (or low-frequency) words (Figure 9, center panel; 

see Kliegl    and Engbert   , 2005, for details). Interestingly, the SWIFT variant with 

dynamic foveal span can reproduce this highly specific data pattern accurately 

(Figure 9, left panel). The good agreement between experimental data and SWIFT 

simulations can be made visible, when differences in fixation durations (fixation 

durations before skippings subtracted by fixation durations before non-skipping) 

are plotted (Figure 9, right panel). 

 These results from pilot simulations represent a major model improvement, 

because the current version of SWIFT always generated skipping costs (increased 

fixation durations before skipping) between 10 ms (word length 2) and 60 ms 

(word length 6). To our knowledge, the variant of the SWIFT model with dynamic 

foveal processing span investigated here is the only computational model that 

can reproduce the patterns of fixation durations before skipped words. 

 The model modification also “survived” two important tests. First, adding 

a new principle to an existing model might change the model’s performance on 

benchmark tests. Evaluations based on summary statistics for fixation durations 

and fixation probabilities, however, indicate that the dynamic processing span 

is as compatible with experimental data as a constant, asymmetric processing 

span. The overall  goodness-of-fit of the model was not affected by the dynamic 

processing span. Second, the introduction of a dynamic processing span might 

have a strong impact on the effects of word properties of the last and next words 

(Kliegl    et al., 2006), because variations of the extension of the processing span in 

general will change parafoveal processing. Interestingly, such changes in model 

performance were not observed from our pilot simulations. Thus, at this point the 

dynamical span served as defensible extension of the original SWIFT model. For 

a continuation of this story in the context of a further modification of the model 

we refer to Engbert    and Kliegl    (2011). We submit that this back and forth between 

experimental results and model development accounts for most of the research 

time in model development.  

5.2.3     Case 3 (Lakatos    Case): An unexpected prediction lurking in the data 

 We conclude with a “gold standard” example of an unexpected prediction derived 

from the SWIFT model and confirmed by the analyses of data collected many 

years ahead of the prediction (Risse    et al., 2008):  Refixation  probability   should be 

larger after a skipped function word, but not after a skipped content word.  

 The prediction is derived from the assumption that there is a competition 

between saccade targets. Suppose you are looking at a word and next to this word 

is a preposition. The preposition will likely be processed during this fixation, 
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because prepositions are among the most frequent and most predictable words. 

This implies that the next word drops out of the race to become selected as the 

next saccade target. At the same time the second word to the right will be slowly 

raising its activity level. So its chances to become elected increase compared to 

the situation with a competitor in position N+1. And most importantly, it will be 

fixated early in its activation profile, which increases the chances that it will be 

refixated. 

 The results are presented in  Figure 10  and match the prediction very well. 

After a skipped function word the refixation  probability   is higher than after a 

skipped content word. There is some misfit, too: The overall refixation rate after 

skipping is overestimated. 
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 Figure 10 :   Refixation rate after skipped and fixated content and function words. Left: Human 
data. Right: SWIFT simulation results.  

    Finally, the prediction lends itself to a comparison with the E-Z Reader model 

which also makes the general prediction that refixation rate will be higher after 

skipped words, but will generate the opposite prediction with respect to lexical 

status: Refixation rate should be  lower  after a skipped function word than a 

skipped content word. The reason for this prediction is that a skipped function 
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word provides longer preview of the following word than a skipped content word 

in this model. So there will be more need for processing after a skipped content 

word than after a skipped function word.    

6     Perspectives and conclusion 

6.1     Implications beyond reading 

 Experimental and mathematical psychology have developed detailed models 

of the interplay between cognitive subsystems (e.g., perception, attention, lan-

guage, motor control). Dynamic models based on this approach can provide pow-

erful theoretical blueprints for the behavioral and also for the neural organiza-

tion of these cognitive processes, 

   (1)   if they are simulated on a computer with advanced techniques and studied 

qualitatively within the framework of nonlinear-science models,  

  (2)   if model parameters are estimated from high-resolution time series, and  

  (3)   if both experimental data and model simulations are evaluated by advanced 

methods for the analysis of  complex   multivariate time series.   

 As an example, we have described competing models that aspire to meet these 

criteria in the domain of reading research (Engbert    et al., 2005; McDonald    et al., 

2005; Reichle    et al., 1998; Reilly    and Radach   , 2006). There are hardly any more 

convenient measures than eye movements if one is interested in how behavior 

rapidly unfolds over time. Thus, eye movements represent an ideal model system 

in experimental psychology. 

 Most importantly, the neural circuits subserving the generation of eye move-

ments are well understood (Sparks, 2002). Eye movements may well be the most 

direct behavioral signatures of neural firing, for they are directly related to spa-

tio-temporal activation in the superior colliculus (SC). Indeed, the minimum of 

the oculomotor response time is about 60 ms after visual stimulus presentation, 

where the estimate is based on brainstem circuitry. More and more is currently 

learned about how higher-order structures (e.g., frontal eye fields, lateral intra-

parietal cortex, visual cortex) modulate brainstem nuclei when the oculomotor 

system is triggered by perceptual, attentional, and vestibular demands (e.g., 

Munoz    and Everling   , 2004) Further, because the loads on the extraocular muscles 

do not vary, reverse  modeling   can be used to reconstruct the eliciting innervation 

pattern. Most importantly, saccade and fixation parameters describing the eye 

movements across a visual scene or across a text embody behavioral dynamics 
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in experimental designs covering the broad spectrum of behavioral activity from 

simple perception via reading to postural control.  

6.2     Model analysis and comparison 

 Starting with Huey    (1908), research of eye movements in reading has been 

impressed with the range and  stability   of differences between individual readers 

as well as the magnitude of effects induced by differences in task demands. 

For example, individual differences in single-fixation durations among readers 

varying from 18 to 80 years of age account for more variance than 18 fixation-posi-

tions and psycholinguistic predictors (Kliegl    et al., 2006). In agreement with the 

early research, preliminary analyses of data from bilingual readers of English and 

German varying widely in second-language proficiency suggest that individual 

differences will be even more pronounced in skipping and refixation probabili-

ties. Thus, accounting for this variance in the SWIFT model would represent a 

major step in the further development of the model. We also note that there is no 

other computational model of reading or other cognitive processes that has been 

expanded in this direction. 

 Summary statistics relating to fixation durations and probabilities as a func-

tion of word length and word frequency can be reproduced remarkably well by 

at least four computational models of eye-movement control during reading. 

They all succeed with respect to the necessary condition of  goodness of  fit    with 

a comparable number of free model parameters. Here we went beyond this neces-

sary condition and offer some evidence that the SWIFT model may also live up 

to expectations of a strict set of criteria relating to model strictness, reliability of 

 data  , and unexpected  predictions  , as postulated by Roberts    and Pashler    (2000). 

 As a test of  model strictness  and  reliability of the data  we showed that the 

covariation of intercept and slope from the regression of word-skipping  probabil-

ity   on log word frequency across simulations of the SWIFT model with random 

variation of model parameters within plausible ranges of parameter values agrees 

very well with variation observed between different reader groups varying in age, 

contrast of screen, and language. 

 The requirement of  unexpected model predictions  is illustrated in the 

form of three cases. First, in psychological research it is still more common to 

be surprised by new results. They may be compatible with model principles, but 

not recovered by a model in its current implementation. Second, some surpris-

ing results are bound to lead to constructive modifications of principles and 

implementations. Usually, these new “successes” are to be cumulative to earlier 

ones. Third, sometimes model predictions can be evaluated with respect to their 
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agreement with previously not known facts. Such predictions should have a low a 

priori  probability   in the scientific community; they must not be trivial. 

 Model modification usually changes model complexity and requires a con-

sideration of its own. Neal    (1996, 103–104) aptly summarized the issue of model 

complexity as follows: 

  Sometimes a simple model will outperform a more  complex   model … Nevertheless, … delib-

erately limiting the complexity of the model is not fruitful when the problem is evidently 

 complex  . Instead, if a simple model is found that outperforms some particular  complex   

model, the appropriate response is to define a different  complex   model that captures what-

ever aspect of the problem led to the simple model performing well.  

 In summary, we have contributed key findings to both experimental and compu-

tational aspects of eye-movement control during reading. We developed a com-

putational model based on the assumption on distributed processing (SWIFT; 

Engbert   , et  al., 2002, 2005, Schad  and Engbert, 2012). The model accounts for 

a large number of experimental observations, e.g., various measures of inspec-

tion  probabilities and inspection durations, eye landing positions within words, 

delayed lexical access, parafoveal preprocessing. With respect to the scope of 

covered phenomena and transparency of its theoretical principles, arguably, 

SWIFT is currently the most advanced model of eye-movement control during 

reading. Of course, there are also aspects of reading behavior the model cannot 

and cannot be expected to get right at this point in time (see Engbert    et al., 2005; 

Risse    et  al., 2008), but it certainly is a very useful tool guiding much of our 

research (B ox  , 1979).  

6.3     Conclusion 

 We like to think about eye movements during reading as the “drosophila of psy-

chological modeling” because they map onto a comparatively simple measure-

ment space within which behavior of a surprisingly high level of complexity 

unfolds. It is a general critical requirement for modeling of cognitive processes to 

focus on a field of study with just the right level of complexity of behavior for the 

intended model. Eye movements during reading appear to meet this expectation 

in an ideal way.    
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  Martin Hoffmann    
 Considering Criteria for Model Modification 
and Theory Change in Psychology 
 Commentary on Reinhold Kliegl    and Ralf Engbert     

1             Introduction 
 In contemporary philosophy of science, there are two main approaches to recon-

structing the relation between models and theories. According to the so-called 

semantic view of theories, theories are just families of models. It was Patrick 

Suppes    who declared that “a theory is a linguistic entity consisting of a set of 

sentences and models are non-linguistic entities in which the theory is satis-

fied” (Suppes    1960, p. 290); and this basic idea was elaborated by Sneed    (1971), 

van Fraassen    (1980), Stegmüller    (1986), Suppe (1989), and others. Recently, 

this approach was criticised by some authors because it cannot account for the 

 complex   role that models play in scientific practice (Morrison    and Morgan    1999; 

Suárez    1999). These authors propose a second, alternative approach to the rela-

tion between models and theories which regards models as almost independent 

from theories. Models are “autonomous agents” (Morrison    1999) that mediate 

between the level of general theories and concrete empirical data, and fulfil a 

variety of functions: models are useful instruments to represent reality, but also 

to test, explore, and elaborate theories. 

 Kliegl    and Engbert    outline a picture of modeling that fits the second approach 

of the model/theory-relation. In their paper they discuss many interesting and 

innovative ideas how to enhance the methods and how to expand the criteria 

for model evaluation in psychology. The main aim of this endeavour is to gain a 

powerful tool which will enable us to identify the best model amongst the many 

alternatives suggested in the present psychological discussion. 

 Kliegl    and Engbert   ’s account is inspired by a radical critique of the current 

practices of model evaluation in psychology, which have been formulated by 

Roberts    and Pashler    (2000, 2002). The main point of Roberts    and Pashler   ’s chal-

lenge is the following: Many theories in psychology are primarily tested and 

confirmed by their ability to fit the data. The methodological discussion focuses 

on developing methods to determine the goodness of  fit  . But, say Roberts    and 

Pashler   , goodness of  fit   alone is not sufficient to determine the empirical validity 

and the explanatory power of a model. They propose three additional criteria, 

namely model strictness, reliability of  data   and unexpected  predictions  . In their 
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paper, Kliegl    and Engbert    apply these criteria in a subtle way to different ver-

sions of their SWIFT model. They show that model strictness and reliability of 

 data   can be measured at least in principle, and that they can help to compare the 

adequacy of SWIFT with competing accounts. They identify the third criterion of 

Roberts    and Pashler   ’s as the main difficulty: unexpected, but correct model pre-

dictions. On the one hand, Kliegl    and Engbert    qualify this criterion as the “gold 

standard for a model” (section 5.2). On the other hand, they conclude that the 

SWIFT model meets this criterion only in some cases. It is more common that, in 

the beginning, there are surprising experimental findings. Then these findings 

are compared with model predictions, and one has to test whether the model can 

fit the data – which often requires a suitable modification. The central question is 

this: is such a modification of the model legitimate? Or should its failure to gen-

erate a correct prediction be regarded as a strong reason to abandon the model? 

I can only see two possible solutions: either the third criterion by Roberts    and 

Pashler    is unreasonably strict, or it is methodologically problematic to adhere to 

a model which generates wrong predictions. 

 My aim in this commentary is to discuss this tension on the basis of concrete 

examples from the SWIFT model. But before I will do that, it is necessary to say 

something about the epistemological reasons for the third criterion.  

2     Why are unexpected, but correct model 
predictions important at all? 

 Roberts    and Pashler    take the idea for their third criterion from Imre Lakatos   ’ phi-

losophy of science. Kliegl    and Engbert    quote Lakatos   ’ claim that not all predic-

tions, but only the “dramatic, unexpected, stunning predictions” can corrobo-

rate the theory in question (Lakatos    1978a, p. 6). But why should it be important 

that an empirical result is novel, unexpected, or even stunning? These seem to 

be merely psychological categories, and it is not at all clear why such emotive 

responses should have any impact on the corroboration of theories and models. 

In order to see why these features are of any epistemological importance, it is 

necessary to make some remarks about Lakatos   ’ philosophy of science. 

 Lakatos    has formulated a re-statement of Popper   ’s well-known idea of  falsifi-

cation   as a criterion for the validity of empirical theories. Popper    himself thought 

that success in science is primarily determined by strict tests of theories. A theory 

is falsified if a conflict with empirical data is indicated. In Lakatos   ’ view, this 

version of  falsificationism   is naïve, so he puts his own version of sophisticated 

falsificationalism forward. Lakatos   ’ main criticism is that Popper    has construed 
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the central concepts of theory acceptance and  falsification   by employing two-

place relations: observational data on the one hand, and the theory on the other 

hand. (By the way, in this respect there is a  resemblance   between Popper   ’s ideas 

and the criterion of  goodness of fit – which means fitting just one theory or model 

to a data structure). Lakatos    thinks that this reconstruction is inadequate because 

scientific progress is only possible if a falsified theory is replaced by a promising 

successor. For this reason, in Lakatos   ’ view, the competition between rival theo-

ries is neither an accidental property of science nor an indicator of a crisis; it is 

rather an essential element of fruitful theory development. Popper’s    two-place 

relation has – in Lakatos   ’ conception of sophisticated falsificationalism – been 

replaced by a three-place relation between observational data and at least two 

rival theories T and Tʹ. 

  A theory T is falsified if and only if a different theory Tʹ is proposed which exhibits the fol-

lowing characteristics: 

   (1)   Tʹ has excess empirical content over T …;  

  (2)   Tʹ explains the previous success of T …  

  (3)   some of the excess content of Tʹ is corroborated. (Lakatos    1978b, p. 32)   

 The requirement that Tʹ has to be in accordance with novel, unexpected facts is 

essential for condition (1): “Excess empirical content” does not only mean that the 

area of application is broader, or the class of predictions bigger, than that of T. What 

is important here is that Tʹ predicts facts that are improbable or forbidden accord-

ing to T. This is precisely what constitutes the distinction between well-known and 

novel, unexpected facts relevant in the present context. Known and expected facts 

are facts that are in accordance with both theories T and Tʹ. These facts are uninter-

esting for testing the new theory, because on their basis alone no decision between 

T and Tʹ is possible. In contrast to that, reference to novel and unexpected facts 

(like the return of Halley’s Comet) is decisive, because their confirmation allows 

for a justified choice between T and Tʹ. The confirmation of correct but unexpected 

 predictions   is the decisive criterion to identify the theory with excess empirical 

content. But if one changes the content of the theory Tʹ in the light of new data, the 

decision between T and Tʹ becomes arbitrary, since it is possible to immunize every 

theory against conflicting data by making ad hoc assumptions. 

 For this reason, modifications in reaction to new data are problematic. If one 

allows for modifying Tʹ in a way to accommodate the new data, Lakatos   ’ theory of 

justified theory choice no longer works. Kliegl    and Engbert    point out that model 

modifications in fact do play an important role in current model evaluation. So 

the question arises whether one can give a rational reconstruction of this meth-

odological procedure. Let us have a closer look at Kliegl    and Engbert   ’s examples.  
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3     Examples 
 Kliegl    and Engbert    present an example that fulfils the third criterion: concern-

ing refixation probabilities after skipped content and function words, the SWIFT 

model generates unexpected but correct predictions (section  5.2.3). But they 

themselves admit that this example is “not representative of normal model devel-

opment” (section 5.2). Usually, a process of model modification is initiated in the 

light of new experimental data. 

 Kliegl    and Engbert    present two examples to illustrate this process (sections 

5.2.1 and 5.2.2). They focus on the fixation durations prior to skipped words: in the 

majority of cases word skipping generates a  skipping cost , that means an increase 

of the fixation duration before skipped words compared to the fixation duration 

before fixated words. But experimental findings surprisingly show that there are 

also  skipping benefits  (that is  decreased  fixation durations before skipped words), 

which occur when the words are short or occur with high frequency. 

 These skipping benefits conflict with the predictions of the initial SWIFT 

model, presented by Engbert    et al. (2005). But in contrast to alternative models 

for eye movements during reading (like the E-Z-Reader model), the SWIFT 

model’s predictions can be altered by varying the value of a free model param-

eter. The SWIFT model can account for a dynamical modulation of the perceptual 

span depending on word length. This modification allows for fitting the model 

to the experimental data. The modified SWIFT model is in accordance with the 

experimental data and predicts skipping benefits when the words in question are 

short. This methodological move deserves careful interpretation. Let me analyse 

in more detail which function the model modification might have in this particu-

lar context. 

 First of all, it has to be said that the better fit to the data generated by the 

modification contributes nothing to the corroboration of the model. Its initial pre-

dictions went wrong and it is re-stated given the conflicting data. So it does not 

exceed the empirical content of the old model in this respect. But nevertheless 

there is an important difference to a mere ad hoc hypothesis: the model assump-

tions are not just relaxed, but changed. This means that the old model predictions 

are partly replaced by new ones. Even if this does not corroborate the model, it 

may turn out theoretically fruitful: the new predictions can at least potentially be 

confirmed by new, unexpected empirical data. In fact, this is the case in Kliegl    

and Engbert   ’s second example. They report that the invention of a dynamic per-

ceptual span in the SWIFT model does not affect the goodness of  fit   in one other 

important respect (section 5.2.2). In a sense, new and successful predictions can 

outweigh the model relaxation caused by the model modification. 
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 But perhaps the focus on the predictive power of models is too narrow. There 

may be other aspects that have to be taken into account to describe a model’s 

methodological role. In order to explain this, I would like to draw attention to 

the distinction introduced at the beginning: the distinction between models and 

more general and unified theories. It is important to notice that Lakatos    only con-

siders research programmes on the level of  theories . On this general level, the 

methodological aim is to replace one theory by a progressive successor. But it is 

questionable whether the relation between a model and its successor has to be 

reconstructed in the same way. Following Morrison    (1999), models are “autono-

mous agents” and for this reason it is an oversimplification to identify series of 

models with series of succeeding theories. According to this view, models are 

specific, flexible instruments that can be characterized independently of the 

underlying theories and that can be used for a variety of methodological pur-

poses. But this type of “autonomy” of models does not imply that the theories 

themselves are irrelevant. On the contrary, the development of models is no end 

in itself. Models are rather designed as instruments or tools for developing more 

unified theories. They simply do not only serve to corroborate the theory, but also 

to explore the theory, develop new predictions, apply the theory to special and 

new areas, etc. So in order to integrate models into Lakatos   ’ picture of the devel-

opment of research paradigms, it is important to clarify the relations that obtain 

between models and general theories. 

 Therefore, in the present context the following question becomes central: 

what  is  the theory in question that should be refined by the modifications of the 

model? Kliegl    and Engbert    do not say much about the relation between the SWIFT 

model and a corresponding theory. But I think that the conflict between the two 

following theories lies at the heart of their project: their aim is to confirm the 

theory of parallel or distributed processing and to argue against a theory of serial 

or sequential processing. Serial processing is characterized by two assumptions: 

(i) attention is focused on just one word at a time and (ii) attention shifts manda-

torily from one word to the next. Distributed processing is characterised by loos-

ening both assumptions: (iʹ) attention is a process allocated parallel on differ-

ent words, which is called an activation field, (iiʹ) attention shifts are explained 

by different patterns. These general theories are not restricted to eye movement 

control, but claim to give unified accounts of motor behaviour in general. Only 

one of these theories corresponds to the SWIFT models: the theory of distributed 

processing. For this reason the implementation of a dynamical perceptual span is 

possible in the SWIFT model, but it is not in line with models like the E-Z-Reader, 

formulated on the basis of the serial processing theory. Against this background, 

we can interpret the central function of the model modification in question  – 
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while fitting the data – to generate new predictions for future confirmations of 

the theory. 

 Because of the  complex   relation between the SWIFT model and the distrib-

uted processing theory, it is difficult or impossible to define strict normative 

standards for particular model changes at the present time. But perhaps one can 

formulate two modest requirements for the relation between theory and models 

instead. First, it is of crucial importance that every model modification remains in 

accordance with the core assumptions of the theory. Second, every model modifi-

cation should be defined such that the predictions of the new model still contra-

dict the predictions of the competing theory. Only if these conditions are fulfilled, 

the modified model remains a useful instrument for developing the theory in 

question. In this particular case the model predictions are indeed in conflict with 

the predictions of the competing theory of serial processing, because the skipping 

benefits are extremely difficult to explain assuming serial processing. Serial pro-

cessing theory explains word skipping as a termination of the saccade program 

if the next word is recognized. In this case the saccade program is cancelled and 

restarted to fixate the next but one word. But this process can only lead to skip-

ping costs, not to skipping benefits. So the results of the modified SWIFT model, 

which predicts skipping benefits, contradict the theory of serial processing, but 

are perfectly in line with the theory of distributed processing.  

4     Conclusion 
 To sum up, I am in favour of the following position concerning the plausibility 

of Roberts    and Pashler   ’s third criterion: prediction of unexpected, but correct 

empirical results. Applied to models, it is obviously too strong in its unrestricted 

formulation. It would be even irrational to require the fulfilment of this restrictive 

criterion as a necessary condition for accepting a model as part of a progressive 

research programme. However, this does not speak against Lakatos   ’ ideas about 

strict theory testing. One has to consider that Lakatos    applies this criterion only 

to the level of general  theories , not to models. For this reason it is perfectly in line 

with Lakatos   ’ account to maintain the third criterion as a plausible methodologi-

cal rule for theories, and to abandon it for models. 

 In Lakatos   ’ account it remains underdetermined how to react to conflicting 

data on the level of models. Kliegl    and Engbert    present many appealing and orig-

inal ideas concerning model modifications in the particular case of the SWIFT 

model, but it remains difficult to derive more general rules from these. For now, 

it is merely possible to formulate one modest methodological restriction: model 
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modifications, which  only  relax the empirical content of a model, are problem-

atic, because of their ad hoc character. The class of empirical data, which are 

in accordance with the model after its modification, should be outweighed by a 

class of data which were compatible with the previous model, and are not in line 

with its predictions after modification. This restriction is important to prevent 

mere ad hoc modificatio ns   which might render the model compatible with  every  

experimental result. 

 So, primarily, this commentary is not intended to be a criticism of Kliegl    and 

Engbert   ’s application of the criteria by Roberts    and Pashler   , but rather a criticism 

of the application of methodological criteria for strict theory testing in the evalua-

tion of modern,  complex   models. If one adopts the view of models as autonomous 

agents – suggested by Morrison   , Morgan    and others –, it remains an important 

task for future research in philosophy of science to clarify the  complex   relations 

between theories and models in more detail and to define precise methodological 

rules for how to modify models in the light of new data.   
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   Wolfgang  Marquardt    
 Identification of Kinetic Models by 
Incremental Refinement¹  

1             Introduction 
 Chemical (or process) engineering is an engineering science that focuses on the 

foundations of any kind of transformation of matter in order to change its molecu-

lar or morphological constitution. The primary subject of modeling is a (part of a) 

complete production process, which converts raw materials in desired chemical 

products. Any such (sub-)process comprises a set of connected pieces of equip-

ment (or process units), which are typically linked by material, energy and infor-

mation flows. The overall behaviour of the plant is governed by the behaviour of 

its constituents and their nontrivial interactions. The process can be considered 

as a system of systems (Marquardt   , 1995): this process system forms a collection 

of subsystems, i.e., the pieces of equipment, which are connected by different 

types of flows forming a  complex   network. Every piece of equipment is structured 

itself; hence, its decomposition into interconnected subsystems is facilitated. 

Each of these subsystems is governed by typically different types of kinetic phe-

nomena, such as (bio-)chemical reactions or intra- and interphase mass, energy 

and momentum transport. The resulting spatio-temporal behaviour is often very 

 complex   and yet not well-understood. This is particularly true if multiple, reac-

tive phases (gas, liquid or solid) are involved. 

 Mathematical models are in the core “of methodologies for chemical  engi-

neering   decisions (which) should be responsible for indicating how to plan, how 

to design, how to operate, and how to control any kind of unit operation (e.g., 

process unit), chemical and other production process and the chemical industries 

themselves” (Takamatsu, 1983). Given the multitude of model-based engineering 

tasks, any modeling effort has to fulfil specific needs asking for different levels 

of detail and predictive capabilities of the resulting mathematical  model  . While 

modeling in the sciences aims at an understanding and explanation of observed 

system behaviour in the first place, modeling in engineering is an integrated part 

of model-based problem solving strategies aiming at planning, designing, oper-

ating or controlling an artificial (process) system. There is not only a diversity of 

engineering tasks but also an enormous diversity of structures and phenomena 

1   This paper is based on previous reviews on the subject (Marquardt   , 2005; Bardow    and Mar-

quardt   , 2009).  



188       Wolfgang Marquardt

governing (process) system behaviour. Engineering problem solving is faced with 

such multiple dimensions of diversity. A kind of “model factory” has to be estab-

lished in industrial modeling processes in order to reduce the cost of developing 

models of high quality, which can be maintained across the plant lifecycle (Mar-

quardt    et al., 2000). 

 Models of process systems are multi-scale in nature. They span from the 

molecular level with short length- and time-scales to the global supply chain 

involving many productions plants, warehouses and transportation systems. 

The major building block of a model representing some part of a process system 

(sometimes also called a balance envelope) is the differential balance equation, 

which is formulated for a selected set of extensive quantities (Bird    et al., 2002). 

The  balances   constitute of hold-up, of transport and source terms which reflect 

the molecular behaviour of matter on the continuum scale. Averaging is often 

applied to coarse-grain the  resolution   of the model in time and space for com-

plexity reduction (Slattery   , J. C., 1999). The bridging from the molecular to the 

continuum scale by some kind of coarse-graining results unavoidably in so-called 

closure problems. Roughly speaking, a closure problem arises, because the appli-

cation of linear averaging operators to a nonlinear expression in a balance equa-

tion cannot be evaluated analytically to relate the average of such an expression 

to the averaged state variables (such as velocity, temperature, concentrations). 

The closure condition refers to some constitutive (in some cases even differen-

tial equation) model which relates the average of a nonlinear expression to the 

averaged state variables. A well-known closure problem refers to the determina-

tion of the Reynolds stress tensor which results from averaging the Navier-Stokes 

equations with respect to time (Pope   , 2000). Even if such closure conditions 

are derived from theoretical considerations using some kind of scale-bridging 

approach, they typically require the identification of empirical parameters in 

the sub-model structures or in extreme cases even the model structure (i.e., the 

mathematical expressions relating dependent and independent variables) itself. 

In particular, the so-called k-ε-model for the Reynolds stress tensor comprises a 

number of parameters which have to be determined from experiments (Bardow    

et al., 2008). 

  Since such model identification is a  complex   systems problem, a goal-ori-

ented work process has to be established which systematically links high  reso-

lution   measurement techniques, mathematical modeling, real (laboratory) or 

virtual (simulation) experiments (typically on a finer scale) with the formulation 

and solution of so-called  inverse problems (Kirsch   , 1996). These inverse prob-

lems come in different flavours: they may be used to design the most informative 

experiment by fixing the experimental conditions in a given experimental set-up 

appropriately (Walter   , Pronzato   , 1990; Pukelsheim   , 2006), to estimate parame-
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ters (Bard   , 1974; Schittkowski   , 2002) in a given model structure or to discriminate 

among model structure candidates based on experimental evidence (Verheijen   , 

2003). Typically, the model identification task cannot be successfully tackled in 

one go. Rather, some kind of iterative refinement  strategy   is intuitively followed 

by the modeller to exploit the knowledge gained during the model development 

procedure. Probably the most important decision to be made is the level of detail 

to be included in the target model to result in a desired model resoluti on  . 

 To this end, this contribution summarizes recent progress towards a sys-

tematic work process (Bardow    and Marquardt   , 2004; Marquardt   , 2005) to derive 

valid  mathematical models for kinetically controlled reaction and transport prob-

lems, which govern the behaviour of (bio-)chemical process systems. This work 

process is called  model-based experimental analysis  (or MEXA for short) and aims 

at  useful models at minimal engineering effort.  While mathematical models of 

kinetic phenomena can in principle be developed using standard statistical tech-

niques including nonlinear regression (Bard   , 1974) and multi-model inference 

(Burnham   , Anderson   , 2002), this direct approach typically results in strongly 

nonlinear and large-scale mathematical programming problems (Schittkowski   , 

2002; Biegler   , 2010), which may not only be computationally prohibitive, but 

also result in models which are not capturing the underlying physico-chemical 

mechanisms appropriately. In contrast,  incremental model identification  (or IMI 

for short), which is an integral part of the MEXA methodology, constitutes a phys-

ically motivated divide-and-conquer strategy to kinetic model identification. 

 This paper is structured as follows: Section  2 presents a general overview 

on the MEXA methodology. Two identification strategies, simultaneous and 

incremental model identification are introduced in Section 3. Sections 4, 5 and 6 

sketch the application of the MEXA and IMI methodologies exemplarily to three 

challenging and relevant process modeling problems including (bio-)chemical 

reaction  kinetics   in single- and multi-phase systems, multi-component diffusion 

in  liquids   and energy transport in wavy falling film  flows  . The final Section 6 pro-

vides a summarizing discussion.  

2     Model-based experimental analysis 
 An overview on the MEXA methodology is presented in Fig. 1. The typical work-

flow involves the following steps: 

   1.   An initial experiment (comprising the experimental apparatus and appropri-

ate measurement devices) is built to observe a kinetic phenomenon of inter-

est.  
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  2.   Experimental evidence and the available  a-priori knowledge are used to build 

a first structured mathematical  model   of the experiment. Unknown param-

eters are initialized with plausible values.  

  3.   Virtual experiments are carried out by means of simulation studies using 

this first model. Even if the simulation results were only qualitatively correct, 

they will provide insight into the behaviour of the experiment prior to actual 

laboratory work, which could result in a revision of the design of the initial 

experiment and its operation.  

  4.   First experiments are performed. They should be guided by statistical design 

of experiments (Mason    et al., 2003) to explore a telling set of experimental 

conditions. These experiments will provide some qualitative insight into the 

behaviour of the experiment and the governing kinetic phenomena.  

  5.   The measurement data recorded in the initial experiments can be used to 

formulate a parameter estimation problem, which is a special kind of inverse 

 problem  , for the conjectured model structure. Not all parameters may be 

identifiable. Therefore, parameter estimation should be preceded by identifi-

ability  analysis   (Vaida et  al., 1989, Walter   , Pronzato   , 1997) to assess which 

(combinations of) parameters can be estimated uniquely from the available 

measurements.  

  6.   The model of the experiment is now used to find experimental conditions 

by means of optimal design of  experiments   (Walter   , Pronzato   , 1990; Pukels-

heim   , 2006) resulting in most informative data for the intended purpose of 

the experimental investigation. Such a revision of the experiment targets, in 

the first place, the operating conditions of the experiment and the type and 

accuracy of the measurements taken. However, also the experimental set-up 

is subject to possible change.  

  7.   The designed experiment is performed and the observations are recorded. 

One or more inverse problems are formulated and solved to calibrate sensors, 

to estimate unknown inputs, states or parameters of the model or to select 

and discriminate an appropriate model structure.  

  8.   Most often, the resulting model does not reflect the kinetic phenomenon of 

interest with sufficient detail and accuracy. In particular, the selected model 

structure may not properly match reality sufficiently well, or, the model may 

be too detailed to allow for its identification. The accumulated understand-

ing, however, allows for an iterative improvement of the model, either by 

model simplification to improve identifiability (Quaiser    et  al., 2011) or by 

model structure refinement to better capture reality (Verheijen   , 2003).  

  9.   The sequence of steps 6, 7 and 8 is repeated until a model is obtained, which 

is fully consistent with all the measurements available. The investigations 
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should ideally only be terminated if the model can not be falsified by any 

conceivable experiment (Popper   , 1959).   
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  Figure 1   : The MEXA methodology – an overview (Marquardt   , 2005).  

      Research on systematic work processes for mathematical  model   development, 

which combine experiments, data analysis, modeling and model identification, 

dates back at least to the 1970s (Kittrell   , 1970). However, the availability of current, 

more advanced experimental and theoretical techniques offers new opportuni-

ties to develop more comprehensive modeling strategies, which are widely appli-

cable to a variety of modeling problems. For example, a modeling process with 

a focus on optimal design of  experiments   has been reported by Asprey    and Mac-

chietto    (2000). The collaborative research centre CRC 540, “Model-based Experi-

mental Analysis of Fluid Multi-Phase Reaction Systems” (cf.  http://www.sfb540.

rwth-aachen.de/ ), which was funded by the German Research Foundation (DFG), 

addressed the development of advanced modeling work processes comprehen-

sively from 1999 to 2009. The research covered the development of novel high 

 resolution   measurement techniques, efficient numerical  methods   for the solution 

of direct and inverse reaction and transport problems and the development of a 

novel, experimentally driven modeling strategy which relies on iterative model 

identification.  
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3     Two alternative model identification strategies 
 This iterative model identification  strategy   is introduced in the following section 

and compared to the established simultaneous model identification (SMI)  strategy  . 

3.1     Incremental model identification 

 Incremental model identification (IMI) relies on an incremental refinement of the 

model structure which is motivated by systematic model development ( Fig. 2 ) as 

suggested by Marquardt    (1995). The major model development steps and their 

relation to incremental model identification are outlined in the following. 

  Figure 2   : Incremental modeling and identification (Marquardt   , 1995, 2005)  

3.1.1       Model B 

 In model development, balance envelopes and their interactions are determined 

first to represent a certain part of the system of interest. The spatio-temporal  reso-

lution   of the model is decided in each balance envelope, e.g., the model may or 

may not describe the evolution of the behaviour over time  t  and it may or may not 

resolve the spatial  resolution   in up to three space dimensions  z . Those extensive 

quantities  y(z,t)  are selected for which a balance equation is to be formulated. In 

case of spatio-temporally resolved models, the balance reads as 
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 with  y  a selected extensive quantity (such as mass, mass of a certain chemical 

species, energy, etc.) propagated according to the transport term  J f,y (z,t)  and 

generated (or consumed) according to the source term  J s,y (z,t)  at any point in the 

interior of the balance envelope Ω ⊂  R n  , n  = 1,2,3. The symbol  J b,y  (z b ,t)  refers to 

transport across the boundary  G  of the balance envelope. Any extensive quantity 

 y(·)  is related to a set of measured (typically intensive) quantities  x(·)  by some 

constitutive relation 

     ( ) ( ( ), ).y h x⋅ = ⋅ ⋅  (2)  

 If no spatial  resolution   of the state variables is desired, the balance for some  y(t)  

is written as 

     , , 0 0, ( )f y s y
dy j j y t y
dt

= + =  (3)  

 The symbols  j f,y (t)  and  j s,y (t)  refer to transport of  y(t)  and its generation (or con-

sumption) within the balance envelope, respectively. 

 Note that no constitutive equations are considered yet to specify either of the 

fluxes  J f,y , J s,y , J b,y , j f,y   or  j s,y   as a function of the intensive thermodynamic state 

variables  x(·) . While these constitutive equations are selected on the following 

decision level, unknown fluxes  J …   or  j …   are estimated directly from the balance 

equation in incremental model identification. For this purpose, measurements of 

 x(·)  with sufficient  resolution   in time  t  and/or space  z  are assumed. An unknown 

flux,  J …   or  j …  , can then be estimated from one of the balance equations as a func-

tion of time and/or space coordinates without specifying a constitutive equation.  

3.1.2    Model BF 

 In model development, constitutive equations are specified for each flux term in 

the  balances   on the next decision level. In particular, 
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 for spatially lumped balance envelopes. The symbols  k …   and  k’ …   refer to some rate 

coefficient functions which depend on time and space (in case of spatially dis-

tributed balance envelopes) or on time alone (in case of spatially lumped balance 

envelopes), respectively. These constitutive equations could, e.g., correlate inter-

facial fluxes or reaction rates with state variables. 

 Similarly, in incremental model identification, flux model candidates, as in 

Eqs. (4) or (5), are selected or generated on decision level  BF  to relate the flux to 

rate coefficients, to measured states, and possibly to their derivatives. The esti-

mates of the fluxes  J … (z,t)  or  j … (t)  obtained on level  B  are now interpreted as  infer-
ential  measurements. Together with the  real  measurements  x(z,t)  or  x(t) , one of 

these flux estimates can then be used to determine one of the rate coefficients 

 k …   or  k’ …   as a function of time and space from the corresponding equation in (4) 

or (5), respectively. Often, the flux model can be analytically solved for the rate 

coefficient function  k … (z,t)    or  k’ … (t) . These rate coefficient functions, for example, 

refer to heat or mass transfer or reaction rate coefficients.  

3.1.3    Model BFR 

 In many cases, the rate coefficients  k … (z,t)    or  k’ … (t)  introduced in the correlations 

on level  BF  depend on the states  x( ·) themselves. Therefore, a constitutive model  
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 relating the rate coefficients to the states, has to be selected on yet another deci-

sion level named  BFR  (cf. Fig. 2). 

 Mirroring this last model development step in incremental model identifica-

tion, a model for the rate coefficients has to be identified. The model candidates, 

cf. Eq. (6), are assumed to only depend on the measured states, their spatial gra-
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dients and on  constant  parameters  q∈R p  . If only a single candidate structure 

is considered, the parameters  q  can be computed from the estimated functions 

 k … (z,t)    or  k’ … (t)  and the measured states  x  by solving a (typically nonlinear) alge-

braic regression problem. In general, however, a model discrimin ation   problem 

has to be solved, where the most suitable model structure is determined from a 

set of candidates. 

 The cascaded decision making process in model development and model 

identification has been discussed for three levels which commonly occur in prac-

tice. However, model refinement can continue as long as the sub-mo dels   of the 

last model refinement step not only involve constant  q  as in Eqs. (4)–(6), but 

rather coefficient functions, which depend on state variables. While this is the 

decision of the modeller, it should be backed by experimental data and infor-

mation deduced during incremental identification such as the confidence in the 

selected model structure and its parameters (Verheijen   , 2003). 

 This structured modeling approach renders all the individual decisions com-

pletely transparent, i.e., the modeller is in full control of the model refinement 

process. The most important decision relates to the choice of the model structures 

for the flux expressions and the rate coefficient functions in Eqs. (4)–(6). These 

continuum models do not necessarily have to be based on molecular principles. 

Rather, any mathematical correlation can be selected to fix the dependency of 

a flux or a rate coefficient as a function of intensive quantities. A formal, semi-

empirical but physically founded kinetic model may be chosen which at least 

to some extent reflects the molecular level phenomena. Examples include mass 

 action    kinetics   in reaction modeling (Higham   , 2008), Maxwell-Stefan theory of 

multi-component diffusion (Taylor     , Krishna, 1993) or established activity coeffi-

cient models like the Wilson, NRTL or Uniquac models (Prausnitz    et al., 2000). 

Alternatively, a purely mathematically motivated modeling approach could 

be used to correlate states with fluxes or rate coefficients in the sense of black-

box modeling. Commonly used model structures include multivariate linear or 

polynomial models, neural networks, or vector machines among others (Hastie    

et al., 2003). This way, a  certain type of hybrid (or grey-box) model  (Psichogios and 

Ungar, 1992; Agarwal   , 1997; Olivera, 2004) arises in a natural way by combining 

first principles models fixed on previous decision levels with an empirical model 

on the current decision level (Kahrs, Marquardt   , 2008; Romijn    et al., 2008; Kahrs 

et al., 2009).   
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3.2     Simultaneous model identification 

 IMI exploits the natural hierarchy in kinetic models of process systems. All the 

established approaches to model identification, however, neglect this inherent 

structure. The so-called  simultaneous model identification (SMI) approaches 

always assume that the model structure is correct and consider only the fully 

specified model. In particular, the decisions on the balance envelope and the 

desired spatio-temporal  resolution  , the selection of the models for the flux 

expression  (BF ) and the phenomenological coefficients  (BFR ) are specified prior 

to adjusting the model response to the measured data by some kind of identi-

fication method. Since the sub-mod els   are typically not known, suitable model 

structures are selected by the modeller based on prior knowledge, experience and 

intuition. Obviously, the complexity of the decision making process is enormous. 

The number of alternative model structures grows exponentially with the number 

of decision levels and number of kinetic phenomena occurring simultaneously in 

the real system. 

 Any decision on a sub-model will influence the predictive quality of the iden-

tified kinetic model. The model predictions are typically biased if the parameter 

estimation is based on a model containing structural error (Walter   , Pronzato   , 

1997). The theoretically optimal properties of the maximum likelihood  approach   

to parameter estimation (Bard   , 1974) are lost, if structural model mismatch is 

present. More importantly, in case of biased predictions, it is difficult to iden-

tify which of the decisions on a certain sub-model contributed most to the error 

observed. 

 One way to tackle these problems in simultaneous identification is the enu-

meration of all the combinations of the candidate sub-model structures for each 

kinetic phenomenon. Such combinatorial aggregation inevitably results in a large 

number of model structures. The computational effort for parameter estimation 

grows very quickly and calls for high performance  computing  , even in case of 

spatially lumped models, to tackle the exhaustive search for the best model indi-

cated by the maximum likelihood objective (Wahl    et  al., 2006). Even if such a 

brute force approach were adopted, initialization and convergence of the typi-

cally strongly nonlinear parameter estimation problems may be difficult since the 

(typically large number of) parameters of the overall model have to be estimated 

in one step (Cheng   , Yuan   , 1997). The lack of robustness of the computational 

methods may become prohibitive, in particular, in case of spatially distributed 

process models if they are nonlinear in the parameters (Karalashvili    et al., 2011). 

Appropriate initial values can often not be found to result in reasonable conver-

gence of an iterative parameter estimation algorithm.  
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3.3     Implementation of the identification methods 

 After outlining the key ideas of the SMI and IMI methods, some discussion on the 

requirements for the implementation as a prerequisite for their roll-out in practi-

cal applications is presented next. 

 The implementation of SMI is straightforward and can be based on a wealth 

of existing theoretical and computational tools. Implicitly, SMI assumes a  suit-
able experiment  and the  correct model structure  to be available. Then, the follow-

ing steps have to be enacted: 

  SMI procedure 

   1.   Make sure that all the model parameters are identifiable from the measure-

ments (Walter   , Pronzato   , 1997). If necessary, employ local identifiability 

methods (Vajda    et al, 1987). Select initial parameter values based on a priori 

knowledg e   and intuition.  

  2.   Do initial experiments for selected experimental conditions guided by statis-

tical design of experiments (Mason    et al., 2003).  

  3.   Estimate the unknown parameters (Bard   , 1974; Schittkowski   , 2002; Biegler   , 

2010), most favourably by a maximum likelihood  approach   to get unbiased 

estimates, using the available experimental data.  

  4.   Assess the confidence of the estimated parameters and the predictive quality 

of the model (Bard   , 1974; Walter   , Pronzato   , 1997).  

  5.   Design optimal experiments  for parameter  precision    (Walter   , Pronzato   , 1990; 

Pukelsheim   , 2006; Franceschini   , Macchietto   , 2008) and run the experiment.   

 6.   Reiterate the sequence of steps 3 to 5 until no improvement in parameter  pre-

cision   can be obtained.   

 A number of commercial or open-source tools (Buzzi-Ferraris, Manenti, 2009; 

Balsa-Canto, Banga, 2010) are available, which can be readily applied to rea-

sonably  complex models, in particular to models consisting of algebraic and/

or ordinary differential equations. Though this procedure is well established, a 

number of pitfalls may still occur (Buzzi-Ferraris, Manenti, 2009), which render 

the application of SMI a challenge even under the most favourable assumptions. 

An analysis of the literature on applications shows that the identification of (bio-)

chemical reaction  kinetics has been of most interest to date. 

 If a set  S  of candidate model structures  M i   has to be considered because the 

correct model structure is unknown, the SMI approach as outlined above cannot 

be applied without modification. If the  correct model structure M c  were included 
in the set of candidate models , the above SMI procedure has to be modified as 

follows: Steps 1, 3 and 4 have to be carried out for all the candidate models in the 
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set  S . A decision on the correct model in the set should not be based on the results 

of step 4, i.e., the model with highest parameter confidence and the best predic-

tive quality should not be selected, because the experiments carried out so far 

may not allow to distinguish between competing model candidates. An informed 

decision requires replacing step 5 by step 5’, the optimal design of  experiments    for 
model discrimina tion    (Walter   , Pronzato   , 1990; Pukelsheim   , 2006; Michalik et al., 

2010), to determine experiments, which allow distinguishing between the models 

with highest confidence. The designed experiments are executed, the parameters 

in the (so far) most appropriate model structure are estimated. Since the optimal 

design of  experiments   relies on initial parameters, which may be incorrect, step 

3 and 5’ have to be reiterated until the confidence in the most appropriate model 

structure in the candidate set cannot be improved and hence model  M c   has been 

found. Then, steps 5, 3 and 4 are reiterated to determine the best possible param-

eters in the correct model structure. 

 Only little software support is available to the user for an optimal design of 

 experiments   for parameter  precision   (e.g. VPLAN, Körkel    et al., 2004) and even 

less for model discriminat ion  , which is required for a roll-out of the extended SMI 

procedure. Only few experimental studies have been reported which tackle model 

identification in the spirit of the extended SMI procedure. 

 Obviously, if the correct model structure is not known, it cannot be safely 

assumed that the correct model structure is part of the candidate set  S ; rather, 

the correct model, often comprising of a combination of many sub-mode ls  , is not 

known. In this likely case, SMI should be replaced by IMI, the strength of which is 

to find an appropriate model structure composed of many sub-models   . IMI com-

prises the following steps:  

  IMI procedure² 

   1.   Decide on a balance envelope, on the desired spatio-temporal  resolution   and 

on the extensive quantities to be balanced. Develop  model B  (cf. Fig. 2).  

  2.   Decide on the type of measurements necessary to estimate the unknown 

fluxes in  model B .  

  3.   Run informative experiments (following, e.g., a space-filling experiment 

design (Brendel   , Marquardt   , 2008) and estimate the unknown fluxes  J … (z,t)  

or  j … (t)  as a function of time and space coordinates using the measurements 

 x(z,t)  or  x(t)  and Eqs. (1)–(3). Use appropriate regularization techniques to 

control error amplification in the solution of this inverse  problem   (Reinsch   , 

1967; Engl    et al., 1996; Huang   , 2001).  

2   Note, this IMI procedure is not precise, because its details depend on the type of model con-

sidered. The presented procedure is abstracted to roughly cover all types of models.  
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  4.   Analyse the state/flux data and define a set of candidate flux models, Eqs. 

(4), (5), with rate coefficient functions  k … (z,t)  or  k’ … (t)  parameterized in time 

and space. Fit the rate coefficient functions  k … (z,t)  or  k’ … (t)  of all candidate 

models to the state-flux data.  Error-in-variables estimation (Britt   , Luecke, 

1975) should be used for favourable statistical properties, because both, the 

dependent fluxes as well as the measured states are subject to error. A con-

stant rate coefficient is obviously a reasonable special case of such a  param-

eterization  .  

  5.   Form  candidate models BF i   constituting  balances   and (all or only a few prom-

ising) candidate flux models. Re-estimate the parameters in the rate coeffi-

cient functions  k … (z,t)  or  k’ … (t)  in all the  candidate models BF i   to reduce the 

unavoidable bias due to error propagation (Bardow   , Marquardt   , 2004; Karal-

ashvili    et al., 2010). Some kind of regularization of the estimation problem is 

required to enforce uniqueness of the estimation problem and to control error 

amplification in the estimates (Kirsch   , 1996; Engl    et al., 1997). Rank order the 

updated  candidate models BF i   with respect to quality of  fit   using an appropri-

ate statistical measure such as Akaike   ’s information criterion (Akaike   , 1973; 

Burnham   , Anderson   , 2002) or posterior probabilities (Stewart    et al., 1998). In 

case of constant rate coefficients, continue with step 8 replacing models  BFR  

by  BF.   
  6.   Analyse the state/rate-coefficient data and define a set of candidate rate coef-

ficient models  r i,j  , Eqs. (6), for promising  candidate models BF i  . Make sure 

that the parameters  q i,j   in the candidate rate coefficient models  r i,j   are identifi-

able from the state/rate-coefficient data using identifiability  analysis   (Walter   , 

Pronzato   , 1997). Estimate the parameters  q i,j   in the rate coefficient models  r i,j   
by means of an error-in-variables m ethod   (Britt   , Luecke, 1975).  

  7.   Form the candidate models  BFR i,j   by introducing the rate coefficient models 

 r i,j   in the models  BF i  . Re-estimate the parameters  q i,j   in the  candidate models 
BFR i,j   to remove the unavoidable bias due to error propagation.  

  8.   Design  optimal experiments for model discriminati on    using the set of  can-
didate models BFR i,j   to identify the most suitable model structure. Execute 

the design experiments and re-estimate the parameters  q i,j   in the  candidate 
models BFR i,j   using the available experimental data. Re-iterate this step until 

the confidence in the most suitable model structure  BFR c   in the candidate set 

cannot be improved. If no satisfactory model structure can be identified in 

the set of candidate models, the set has to be revised by revisiting all previous 

steps.  

  9.   Design  optimal experiments for parameter  precision    using model  BFR c  . Run 

the experiment and estimate the parameters  q c   in model  BFR c  . Re-iterate this 

step until the confidence in the parameters cannot be improved. If no sat-
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isfactory parameter confidence and prediction quality can be achieved, all 

previous steps have to be revisited.   

 A successful implementation of the incremental identification approach requires 

tailored ingredients such as 

 –    high  resolution   (in-situ and non-invasive) measurement techniques which 

provide field data of states like species concentrations, temperature or veloci-

ties as a function of time and/or space coordinates;  

 –     algorithms for model-free flux estimation by an inversion of the balance 

equations; a problem, which is closely related to input estimation problems 

in systems and control engineering (Hirschhorn, 1979) and to inverse prob-

lems (in particular  inverse source problems) in applied mathematics (Engl    

et al., 1997);  

 –   algorithms for efficient function estimation comprising an (ideally error-con-

trolled) adaptive discretization of the unknown flux or rate coefficient func-

tions in time and space coordinates (Brendel   , Marquardt   , 2009) and robust 

numerical  methods   for ill-conditioned, large-scale parameter estimation 

(Hanke   , 1995);  

 –   methodologies for the generation, assessment and selection of the most suit-

able model structures; and  

 –   model-based methods for the optimal design of  experiments   (Walter   , Pron-

zato   , 1990; Pukelsheim   , 2006), which should be adapted to the requirements 

of IMI.   

 A detailed discussion of all these areas is definitely beyond the scope of this 

work. Some more detail in the context of IMI has been given by Marquardt    (2005). 

Some aspects are highlighted in the applications of IMI approach described in 

the following sections, where recent progress is exemplarily reported for selected 

kinetic modeling problems of chemical process systems. In particular, reaction 

 kinetics   modeling, multi-component diffusion in  liquids  , and energy transport in 

falling liquid films will be addressed.    

4     Reaction  kinetics   
 Mechanistic modeling comprising both, the identification of the most likely 

mechanism and the quantification of the  kinetics   of a chemical reaction system, 

is one of the most relevant and still not yet fully satisfactorily solved tasks in 

process systems modeling (Berger, 2001). More recently, systems biology (Klipp    
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et al., 2005) has revived this classical problem in chemical  engineering   to iden-

tify mechanisms, stoichiometry and  kinetics   of metabolic and signal transduc-

tion pathways in living systems (Engl    et al., 2009). Though this is the very same 

problem as in process systems modeling, it is more difficult to solve it success-

fully, because of three complicating facts: (i) there are severe restrictions to in-vivo 

measurements of metabolite concentrations with sufficient (spatio-temporal) 

 resolution  , (ii) the number of metabolites and reaction steps is often very large, 

and (iii) the qualitative behaviour of living systems changes with time giving rise 

to variable-structure models. 

 IMI has been elaborated in theoretical studies for a variety of reaction 

systems. Bardow    and Marquardt    (2004) investigate the fundamental properties 

of IMI for a very simple reaction kinetic problem to elucidate error propagation 

and to suggest counteractions. Brendel    et al. (2006) work out the IMI procedure 

for homogenous multi-reaction systems comprising any number of irreversible or 

reversible reactions. These authors investigate which measurements are required 

to achieve complete identifiability. They show that the method typically scales 

linearly with the number of reactions because of the decoupling of the identifica-

tion of the reaction rate models. The method is validated with a realistic simula-

tion study. The computational effort can be reduced by two orders of magnitude 

compared to an established SMI approach. Michalik et al. (2007) extend IMI to 

fluid multi-phase reaction systems. These authors show for the first time, how the 

intrinsic reaction  kinetics   can be accessed without the usual masking effects due 

to interfacial mass transfer limitations. The method is illustrated with a simulated 

two-phase liquid-liquid reaction system of moderate complexity. 

 More recently, Amrhein    et al. (2010) and Bhatt    et al. (2010) have suggested 

an alternative decoupling method for single- and multi-phase multi-reaction 

systems, which is based on a linear transformation of the reactor model. The 

transformed model could be used for model identification in the spirit of the SMI 

procedure. Pros and cons of the decomposition approach of Brendel    et al. (2006) 

and Michalik et al. (2007) and the one of Amrhein    et al. (2010) and Bhatt    et al. 

(2010) have been rigorously analysed and illustrated by means of a simulated 

case study (Bhatt    et al., 2012). 

 Selected features of IMI are elucidated for this important class of identifica-

tion problems as follows.  IMI.i  refers to step  i  of the IMI procedure worked out in 

Section 3.3. 
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4.1     Single-phase reaction systems 

 Reaction kinetic studies of reaction systems are often carried out in continuously 

or discontinuously operated stirred tank reactors or in differential flow-through 

reactors where the spatial dependency of concentrations and temperature can 

be safely neglected. Typically, the evolution of concentrations, temperatures and 

flow rates is observed over time. The case of homogeneous reactions in a single 

phase is considered in this section. 

  IMI.1-IMI.3: Reaction flux estimation.  The material  balances   for the mole 

number  n i   of the  n c   chemical species  i  specialize Eqs. (2) and (3) to result in  model 
B , i.e., 

  
( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( ) ( ) , 1,..., .i in

i i i i i c
dn t q t c t q t c t f  t c t V t n t i n

dt
= − + = =     (7)  

 The first two terms on the right hand side refer to the molar flow rates into and out 

of the reactor with known (or measured) molar flow rate  q(t)  and inlet concentra-

tions  c i  in (t) .³ The last term represents the unknown reaction flux of species  i,  i.e. 

the molar amount of species  i  produced or consumed by all chemical reactions 

present. The measured concentrations  c i (t)  are converted into the extensive mole 

numbers  n i (t)  by multiplication with the known (or measured) reactor volume 

 V(t).  It should be noted that the fluxes enter the balance equations linearly and 

the equations are decoupled for each species. All reaction fluxes  f i (t)  can thus be 

estimated individually by numerical differentiation of measured concentration 

data for each measured species from the material  balances  . This ill-posed inverse 

 problem   can successfully be solved by Tikhonov   -Arsenin    filtering (Tikhonov   , 

Arsenin   , 1977; Mhamdi   , Marquardt   , 1999) or smoothing splines (Huang   , 2001; 

Bardow   , Marquardt   , 2004). Regularization parameter choice based on the L-curve 

(Hansen   , O’Leary   , 1993) or generalized cross-validation (Golub    et al., 1979) has 

been shown to give reliable estimates. 

  IMI.4: Reaction rate models.  The reactions fluxes refer to the total amount of a 

certain species produced or consumed in a reaction system. Since any chemical 

species  i  participates in more than one reaction  j  in a multi-reaction system, the 

3   Note that we tacitly assume measurements, which are continuous in time to simplify the pre-

sentation. Obviously, real measurements are taken on a grid of discrete times. Hence, the equa-

tions may have to be interpreted accordingly.  
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reaction rates  r i,j   have to be determined from the reaction fluxes  f i , i=1,…n c  , by 

solving the (usually non-square) linear system 

     ( ) ( )Tf( t ) = V t N r t  (8)  

 for  r(t)  using an appropriate numerical method. The symbol  f(t)  refers to the 

vector of  n c   reaction fluxes,  r(t)  to the vector of reaction rates of the  n r   reactions in 

the reaction system,  V(t)  to the reactor volume and  N  to the stoichiometric matrix 

of appropriate dimension. Often the reaction stoichiometry is unknown; then, 

target factor analysis (Bonvin   , Rippin, 1990) can be used to determine the number 

of relevant reactions and to test candidate stoichiometries suggested by chemical 

research. If more than one of the conjectured stoichiometric matrices is found to 

be consistent with the state/flux data, different estimates of  r(t)  are obtained in 

different scenarios to be followed in parallel in subsequent steps. The concentra-

tion/reaction-rate data are analyzed next to suggest a set of candidate reaction 

rate laws (or purely mathematical relations) which relate each of the reaction 

rates  r j (t)  with the (possibly  n c  ) concentrations  c(t)  according to 

     , ,( , ) , 1,... , .j j l j l r jr m c j n lθ Σ= = ∈  (9)  

 This model assumes isothermal and isobaric experiments, where the quantities 

 q j,l   are constants. A model selection and discrimination problem has to be solved 

subsequently for each of the reaction rates  r j   based on the sets of model candi-

date  S j   because the correct or at least best model structures are not known. These 

problems are, however, independent of each other. At first, the parameters  q j,l   in 

Eq. (9) are estimated from  r j (t) / c(t)  data by means of nonlinear algebraic regres-

sion (Bard   , 1974; Walter   , Pronzato   , 1997). The quality of  fit   is evaluated by some 

means to assess whether the conjectured model structures (9) fit the data suf-

ficiently well. 

  IMI.5: Reducing the bias and ranking the reaction model candidates.  Eqs. 

(8) and (9) are now inserted into Eqs. (7) to form a complete reactor model. The 

parameters in the rate laws (9) are now re-estimated by a suitable dynamic 

parameter estimation method such as multiple shooting (Lohmann    et al., 1992) 

or successive single shooting (Michalik et al., 2009). Obviously, only the models 

in the subsets  S j,p   of the sets  S j      in Eq. (9) are considered which have been identi-

fied to fit the data reasonably well. Very fast convergence is obtained, i.e., often a 

single iteration is sufficient, because of the very good initial parameter estimates 

obtained in step  IMI.4.  This dynamic parameter estimation reduces the bias in the 

parameter estimates computed in step  IMI.4.  The model candidates can now be 
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rank ordered, for example, by Akaike   ’s information criterion (Akaike   , 1973) for a 

first assessment of their relative predictive qualities. 

  IMI.6 and IMI.7: Rate coefficient models.  In case of non-isothermal experi-

ments, the quantities  q j,l   in the rate models (9) are functions of temperature  T . 

In this case,  q j,l   can be replaced by  k’ j,l  , which has to be estimated first without 

specifying a rate coefficient model as in step  IMI.6 . Then, Eq. (9) is modified and 

a parameterized rate coefficient model, such as the Arrhenius law, 

     

,2

, ,1 , , ,, ( , ) , 1,... , .
j
Tj l j j j l j l j l r jk e r k m c j n l
θ

θ θ Σ′ ′= = = ∈  (10)  

 is introduced and the constant parameters  q j,1   and  q j,2   are estimated from the  k’ j,l  

(t) / T(t)  data for every reaction  j  (see Brendel    (2006) for details). 

  IMI.8 and IMI.9: Selecting the best reaction model.  The identification of the 

reaction rate models may not immediately result in reliable model structures and 

parameters because of a lack of information content in the experimental data. 

Iterative improvement with optimally chosen experimental conditions should 

therefore be employed. Optimal experiments are designed first for model struc-

ture discrimination and then, after convergence, for parameter  precision   to yield 

the best model  m j,b (c,q j,b )  contained in the candidate sets  S j,p   for all  j=1,…n r  . 

Experimental validation.     The development of the IMI approach solely relied on 

theoretical considerations which were supported by simulation case studies to 

validate the method and investigate its properties. An experimental validation   

of IMI has been carried out (Michalik et  al., 2007; Schmidt    et  al., 2009) for an 

enzymatic reaction, i.e., the regeneration of  NAD +   to  NADH , a cofactor used in 

many industrial enzymatic reactions where it is reduced to  NAD +  . The reaction 

takes place in aqueous solution using formic acid as a proton donor. There are 

two reactions of interest, the reversible regeneration reaction which forms  NADH  

and  CO 2   as a by-product, and an undesired irreversible decomposition of the 

product  NADH.  The experiments were carried out in a micro-cuvette reactor of 

 300 ml,  where the NADH concentration was measured with high accuracy and 

high  resolution   using UV/Vis spectroscopy at an excitation wavelength of  340 nm.  

The application of IMI to this industrially relevant problem (Michalik et al. 2007) 

resulted in a reaction kinetic model with much better predictive quality compared 

to existing and widely used literature models (Schmidt    et al., 2009).  
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4.2     Multi-phase reaction systems 

 The application of IMI to multi-phase reactions is of great practical interest, 

because it is extremely difficult to access the intrinsic  kinetics   of a chemical reac-

tion, which is completely independent of mass transfer effects. Current practice 

in kinetic modeling of two-phase systems aims at experimental conditions where 

the chemical reaction is clearly rate-limiting and the effect of the (very fast) mass 

transfer between the phases can be safely neglected. Obviously, this strategy is 

quite restrictive and inevitably results in systematic errors in reaction  kinetics   

due to mass transfer contributions. IMI can remedy this long-standing problem in 

a straightforward manner. 

 Let us assume isothermal experiments in a stirred tank reactor, which is 

operated in batch mode (e.g. no material is exchanged with the environment) 

at isothermal conditions. A liquid-liquid (or liquid-gas) reaction is carried out, 

where the reaction occurs in one of the phases, say  (a) , only. The experiment 

is set up such that two well mixed segregated phases  (a)  and  (b)  occur where 

spatial dependencies of the state variables are negligible. This assumption can 

easily be implemented by means of appropriate mixing and stabilization of the 

interface. Concentrations  c i  (a) (t)  and  c i  (b) (t)  of the relevant species are assumed to 

be measured (for example by some kind of optical spectroscopy) in both phases. 

The material  balances  , specializing Eqs. (2) and (3), read as 

     
( ) ( )

( ) ( )( ) ( )( ) ( ) , ( ) , 1,... .
a b

i ia b
i i i c

dc t dc tV j t f  t V j t i n
dt dt

= + = − =   (11)  

 The volumes  V (a)   and  V (b)   of both phases are assumed constant and known for 

the sake of simplicity. The symbols  j i (t)  and  f i (t)  refer to the mass transfer rate of 

species from phase  (b)  to phase  (a)  and the reaction flux in phase  (a) , respec-

tively. 

 Steps  IMI.1  to  IMI.3  have to be slightly modified compared to the case of 

homogenous reaction systems discussed in Section 3.1. In particular, the balance 

of phase  (b)  (on the right in Eq. (11)) and the measurements of the concentra-

tions  c i  (b) (t)  are used to estimate the mass transfer rates  j i (t)  first without specify-

ing a mass transfer model. These estimated functions can be inserted into the 

 balances   of phase  (a)  (on the left in Eq. (11)) to estimate the reaction fluxes  f i (t)  

without specifying any reaction rate model. The intrinsic reaction  kinetics   can 

easily be identified in the subsequent steps  IMI.4  to  IMI.9  from the concentra-

tion measurements  c i  (a) (t)  and the estimated reaction fluxes  f i (t).  Obviously, mass 

transfer models can be identified in the same manner, if the mass transfer rates 
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and the concentration measurements in both phases  c i  (a) (t)  and  c i  (b) (t)  are used 

accordingly. 

 This basic idea has been worked out in detail by Michalik et al. (2009) and 

has been evaluated in a simulated case study of a fluid two-phase system. These 

authors show that the intrinsic reaction  kinetics   can indeed be identified at high 

precision. Work on an experimental validation   of IMI for reaction kinetic model-

ing of fluid two-phase systems is in progress.   

5     Multi-component diffusion in  liquids   
 Despite extensive and lasting research efforts on diffusive transport, there is still 

a surprising lack of  experimentally validated diffusion models, in particular for 

 complex   multi-component liquid mixtures (Bird   , 2004). This is in stark contrast 

to the relevance of the quantitative representation of diffusion to support the 

design of technical equipment. For example, the interplay of multi-component 

diffusion and chemical reaction determines the selectivity towards the desired 

product in industrial reactors. In particular, in micro-reactors, where mixing is 

only due to diffusion because of the laminar flow conditions, the  complex   mixing 

and diffusion patterns are decisive for reactor performance (Bothe    et al., 2010). 

 The application of IMI to diffusive mass transport in liquid systems is fea-

tured in this section. It is based on a recently introduced Raman diffusion experi-

ment (Bardow    et al., 2003, 2006), where the inter-diffusion of two initially layered 

liquid mixtures is observed by Raman spectroscopy under isothermal conditions. 

Concentration profiles  c i (z,t)  of all species are measured on a line in the axis of a 

tailored cuvette at high  resolution   in time and space. The IMI procedure outlined 

in Section 3.3 is instantiated for this particular case as follows. 

  IMI.1-IMI.3: Diffusive flux estimation.  The diffusion process is assumed to be 

well-described by a spatially one-dimensional model. The adaption of the general 

balance equation (1) results in  model B , a system of mass balance equations for 

all species  i:  

     

0,

( , ) ( , ) ( , ), 0, 1,..., 1.i i i
c

z z l

c z t J z t c z t i n
t z z

= =

∂ ∂ ∂
= − = = −

∂ ∂ ∂
 (12)  

 The molar concentrations  c i (z,t)  are determined from Raman spectra by means 

of indirect hard modeling (Alsmeyer    et al., 2004, Kriesten    et al., 2008) at high 

accuracy. The  n c -1  independent diffusive fluxes  J i (z,t)  are unknown and have to 

inferred from Eqs. (12) by an inversion of each of the evolution equations using 
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the measured concentration profiles. In particular, the measurements have to be 

differentiated with respect to time  t  first using smooting splines (Reinsch   , 1967) 

and appropriate regularization (Engl    et al., 1997), and the result has to be inte-

grated over the spatial coordinate  z  next to render the diffusive fluxes  J i (z,t), i=1,…
n c -1,  without specifying a diffusion model. Such a strategy has been followed for 

binary and ternary systems by Bardow    et al. (2003, 2006). Again, there is only a 

linear increase in complexity due to the natural decoupling of the multi-compo-

nent material  balances   (12). 

  IMI.4: Diffusion flux models.  One or more flux models have to be introduced 

next. The generalized Fick model (or the Maxwell-Stefan model, which is not 

further considered here) is a suitable choice. In case of binary mixtures, the Fick 

diffusion coefficient  D 1,2 (z,t)  can be determined at any point in time and space by 

solving the flux equation 

     1
1 1,2

( , )( , ) ( , ) c z tJ z t D z t
z

∂
= −

∂
 (13)  

 for  D 1,2 (z,t).  This strategy does not carry over directly to multi-component mix-

tures because the diffusive flux is a linear combination of all concentration gra-

dients: 

     
1

,
1

( , )
( , ) ( , ) , 1,... 1.

nc j
i i j c

j

c z t
J z t D z t i n

z

−

=

∂
= − = −

∂
∑  (14)  

 Rather, the  n c -1  diffusion coefficients have to be parameterized somehow. For 

example, some approximating spatio-temporal function could be chosen to 

formulate a least-squares problem which determines the diffusion coefficients 

 D i,j (z,t)  as function of time and space coordinates. Alternatively, a physically 

based  parameterization   (e.g., a diffusion coefficient model) could be chosen to 

lump  IMI.4  and  IMI.6  and eliminate  IMI.5.  

IMI.5: Reducing the bias.    The  model BF  can be formed by introducing Eqs. (14) 

into Eqs. (13). The diffusion coefficient functions can be re-estimated using the 

results of the last step  IMI.4  as initial values of the parameter estimation problem 

to reduce the bias due to error propagation. 

  IMI.6 and IMI.7: Diffusion coefficient models.  Diffusion coefficient models 

can now be chosen to correlate the estimated diffusion coefficient data with the 

measured concentrations: 
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     , , , , ,( , ) , , 1,... 1 , .i j i j l j l c i jD m c i j n lθ Σ= = − ∈  (15)  

 Again, a model selection problem has to be solved. The parameters  q j,l   are identi-

fied by error-in-variables estimat ion   (Britt   , Luecke, 1975). The bias can be removed 

by inserting Eq. (15) into Eqs. (14) and the result into Eq. (12) and re-estimating 

the parameters. The models can be ranked with respect to model quality by some 

statistical measure (Burnham   , Anderson   , 2002; Stewart    et al., 1998). 

  IMI.8 and IMI.9: Selecting the best diffusion model.  To remedy the possible 

lack of information content in the experimental data an iterative improvement 

with optimally chosen experimental conditions should finally be employed to 

yield the best diffusion models  D i,j  . 

 Experimental validation.    The suggested strategy has been validated in a number 

of experimental studies including the determination of binary and ternary Fick 

diffusion coefficients with a very low number of Raman experiments (Bardow    

et al., 2003, 2006) and the identification of the full concentration dependency of 

the binary Fick diffusion coefficient by means of a single Raman inter-diffusion 

experiment (Bardow    et al., 2005) and two additional NMR self-diffusion experi-

ments at infinite dilution to improve accuracy (Kriesten    et al., 2009).  

6     Energy transport in falling liquid films 
 The applicability of IMI to relevant and challenging problems has been demon-

strated in the two previous sections. Still, the complexity tackled has been mod-

erate, since three-dimensional (3D), transient transport and reaction problems in 

 complex   spatial geometries have not yet been treated. Such problems are relevant 

not only in chemical process systems, but in many other areas of science and 

engineering. As a first step towards the application of IMI to general 3D transient 

transport and reaction problems the identification of a transport coefficient func-

tion in the energy equation of a model of a wavy falling film has been chosen 

(Karalashvili    et al., 2008, 2011). 

 Falling liquid films are widely used in chemical  engineering  , e.g., to imple-

ment coolers, evaporators, absorbers or chemical reactors, where the wavy 

surface patterns are exploited to intensify heat and mass transfer between the 

liquid film and the surrounding gas. Even the dynamics of heated falling films 

of a single chemical species is  complex   and has been the subject of intensive 

research (e.g., Trevelyan    et al., 2007; Meza   , Balakotaiah   , 2008). Direct numerical 
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simulation of the free-surface, mixed initial-boundary problem involving the con-

tinuity, the momentum and the energy equations is very involved and has not yet 

been reported to the author’s knowledge. Even if it were possible, the computa-

tional complexity would prevent its application for the design of technical equip-

ment. As an alternative, Wilke    (1962) suggested a long time ago to approximate 

the  complex   spatial domain of the wavy liquid film by a flat-film geometry and to 

introduce a so-called  effective transport coefficient  which has to account for the 

wave-induced backmixing present in the wavy film (Adomeit   , Renz   , 2000). Yet, 

there are no accepted and reasonably general models available, which correlate 

the effective transport coefficient with the velocity and temperature fields in the 

falling film. The IMI procedure seems to be a promising starting point to tackle 

this long-standing problem by the sequence of steps outlined in Section 3.3 as 

follows. 

  IMI.1-IMI.3: Diffusive energy flux estimation.  The energy transport in a 3D, 

transient, flat falling film can be represented by the energy equation, which can 

be reformulated for incompressible fluids (with constant density ρ) to result in 

     u
u

w u J
t

ρ ρ
∂

= − ⋅ ∇ − ∇⋅
∂

 (16)  

 with appropriate initial and boundary conditions. The velocity field  w(z,t)  is 

assumed to be known (either measured or computed from a possibly approxi-

mate solution of the Navier-Stokes equations), while the internal energy  u(z,t)  (or 

rather the temperature  T(z,t) ) is assumed to be measured at reasonable spatio-

temporal  resolution  . This  model B  can be refined by decomposing the diffusive 

energy flux  J u (z,t)  into a known molecular and an unknown  wave-induced  term. 

This reformulation results finally in 

     
( , )

( , ) ( , ) ( , ) ( , ) ( , )mol wavy
T z t

w z t T z t a z t T z t F z t
t

∂
⎡ ⎤+ ⋅ ∇ − ∇ ⋅ ∇ =⎣ ⎦∂

 (17)  

 with the known molecular transport coefficient  a mol (z,t)  and the unknown wavy 

contribution to the energy flux  F wavy (z,t).  This flux contribution can be recon-

structed from temperature field data by solving a source inverse  problem  , which 

is linear in the unkown  F wavy (z,t)  by an appropriate regularized numerical method 

(Karalashvili    et al., 2008). 

  IMI.4: Wavy energy flux model.  A reasonable model for the wavy contribution 

to the energy flux is motivated by Fourier’s law. Hence, the flux  F wavy (z,t ) in Eq. 

(17) can be related to wavy transport coefficient  a wavy (z,t)  by the ansatz 
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     ,( , ) ( , ) ( ( , ) ( , )).wavy u wavy wavyF z t J z t a z t T z t= −∇⋅ = −∇⋅ ∇  (18)  

 Note that the effective transport coefficient is defined as the sum of the molecu-

lar and the wavy transport coefficients, i.e.,  a eff =a mol +a wavy  . In order to estimate 

 a wavy (z,t) , a (nonlinear) coefficient inverse  problem   in the spatial domain has to 

be solved for any point in time  t  (Karalashvili    et al., 2008). 

  IMI.5: Reducing the bias.  The  model BF  is formed by introducing Eq. (18) into Eq. 

(17). The resulting equation is used to re-estimate the wavy coefficient  a wavy (z,t),  
starting from the estimate in step  IMI.4  as initial values (Karalashvili    et al., 2011). 

  IMI.6 and IMI.7: Models for the wavy energy transport coefficient.  A set of 

algebraic models is introduced to parameterize the transport coefficients in time 

and space by an appropriate model structure: 

     , ,( , , ) , .wavy wavy l j l ja m z t lθ Σ= ∈  (19)  

 This set is the starting point for the identification of a suitable parametric model, 

which properly relates the transport coefficient with velocity and temperature 

and possibly their gradients. The bias can again be removed by first inserting Eq. 

(19) into Eqs. (18) and the result into Eq. (17) and next re-estimating the param-

eters prior to a ranking of the models with respect to model quality (Karalashvili    

et al., 2011). 

  IMI.8 and IMI.9: Selecting the best transport coefficient model.   Optimal 

design of experiments should finally be employed to obtain most informative 

measurements to finally identify the best model for  a wavy (z,t)  (Karalashvili   , Mar-

quardt   , 2010). 

Experimental validation     has not yet been possible. For one, the development 

of this variant of IMI has not yet been completed. Furthermore, high-resolution 

measurements of film thickness, temperature and velocity fields are manda-

tory. Optical techniques are under investigation in collaborating research groups 

(Schagen    et al., 2006).  
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7     Concluding discussion 
 The exemplary applications of IMI as part of the MEXA work process section 

not only demonstrate its versatility but also its distinct advantages compared to 

established SMI methods (Bardow    and Marquardt   , 2004). 

7.1     Comparing IMI to SMI 

 In contrast to SMI, the IMI approach explicitly accounts for the fact that often an 

appropriate structure of one or more sub-models    in a  complex   process systems 

model is uncertain. The selection of the most suitable sub-model structure has to 

be considered an integral part of the model identification process. Since model 

identification cannot be reduced to estimating the parameters from most infor-

mative experiments in a given, identifiable model structure, the model (struc-

ture) identification process has to be fully transparent to the modeller. Partial 

prior knowledge regarding model structure can easily be incorporated. Missing 

sub-models    are derived either from experimental or from inferred input-output 

data in the previous estimation step supported by theoretical investigations on a 

finer (often the molecular) scale. Any decision on the model structure relates to a 

single physico-chemical phenomenon and thus reduces ambiguity. Identifiability 

can be assessed more easily on the level of the sub-model. This way, the IMI strat-

egy supports the discovery of novel model structures which are consistent with 

the available experimental data. 

 The decomposition strategy of IMI is also very favourable from a computa-

tional perspective. It drastically reduces computational load, because it breaks 

the curse of dimensionality due to the combinatorial nature of the decision 

making problem related to sub-model selection. IMI avoids this problem, because 

the decision making is integrated into the decomposition strategy and systemati-

cally exploits knowledge acquired during the previous identification steps. Fur-

thermore, the computational effort is reduced, because the solution of a  strongly 
nonlinear inverse  problem    involving (partial) differential-algebraic equations is 

replaced by a sequence of less  complex  , often  linear inverse problems  and a few 

 algebraic regression problems . This divide-and-conquer approach also improves 

the robustness of the numerical algorithms and their sensitivity towards the 

choice of initial estimates. Last but not least, the decomposition strategy facili-

tates quasi-global parameter estimation in those cases, where all but the last non-

linear regression problem are convex. A general quasi-global deterministic solu-

tion strategy is worked out by Michalik et al. (2009) for identification problems 

involving differential-algebraic problems. 
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 The computational advantages of IMI become decisive in case of the identifi-

cation of  complex   3D transport and reaction models on  complex   spatial domains. 

Our case studies indicate that SMI is computationally often intractable, while IMI 

renders the estimation problems feasible or at least reduces the load by orders of 

magnitude.  Identifiability analysis and optimal design of  experiments   are key to 

success in case of 3D transport and reaction problems, because sufficient excita-

tion in time and space can typically not be achieved intuitively. 

 Error propagation is unavoidable in IMI, because any estimation error will 

impair the estimation quality in the following steps. The resulting bias can, 

however, be easily removed by a final correction step, where a parameter estima-

tion problem is solved for the best aggregated model(s) using very good initial 

parameter values. Convergence is typically achieved in one or very few iterations. 

 Both, IMI and SMI are not successful, if the information content of the mea-

surements is insufficient. However, identifiability problems can be discovered 

and remedied more easily in IMI compared to SMI. Then, either the model has to 

be simplified (to result in less unknown model parameters) or additional sensors 

have to be installed in the experiment.  

7.2     Previous work related to IMI 

 IMI is not the first multi-step approach to model identification. Similar ideas 

have been employed rather intuitively before in (bio-)chemical engineering. 

The sequence of flux estimation and parameter regression is, e.g., commonly 

employed in reaction  kinetics   as the so-called differential method (Kittrell   , 1970; 

Hosten   , 1979; Froment   , Bischof   , 1990). Markus    et al. (1981) seem to be the first 

suggesting a simple version of IMI to the identification of enzyme  kinetics   models. 

Bastin    and Dochain    (1990) have introduced model-free reaction flux estimation as 

part of a state estimation strategy with applications to bioreactors. More recently, 

a two-step approach has been applied for the hybrid modeling of fermentation 

processes (Tholudur   , Ramirez   , 1999; van Lith et al., 2002), where reaction fluxes 

are estimated first from measured data and neural networks or fuzzy models are 

employed to correlate the fluxes with the measurements. The crystal growth rate 

in mixed-suspension crystallization has been estimated directly from the popula-

tion balance equations (Mahoney    et al., 2002). 

 The idea has not only been around in the chemical  engineering   commu-

nity. For example, Timmer    et al. (2000) and Voss    et al. (2003) use the two-step 

approach of flux estimation and rate law fitting in the modeling of nonlinear elec-

trical circuits. Ramsay    and co-workers used a similar method, called functional 

data analysis, in quantitative psychology to model lip motion (Ramsay   , 1996) 
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and handwriting ( Ramsay   , 2000), and in production planning (Ramsay   , Ramsay   , 

2002). These diverse applications and our own experience lead us to the expecta-

tion that IMI can be rolled out and tailored to many domains in engineering and 

the sciences.  

7.3     Useful models at minimal effort 

 IMI is considered an integral part of the MEXA methodology. Our experience in 

a wide area of applications shows that a sensible integration of modeling and 

experimentation is indispensible if the mathematical  model   is supposed to 

extrapolate with adequate accuracy well beyond the region where model identi-

fication has been carried out. Such good extrapolation provides at least an indi-

cation that the physico-chemical mechanisms underlying the observed system 

behavior have been captured by the model to a certain extent. 

 A coordinated design of the model structure and the experiment as advocated 

in the MEXA work process is most appropriate for several reasons (cf. Bard   , 1974; 

Iyengar    and Ra o  , 1983; Kittrell   , 1990; Beck   , Woodbury   , 1998). On the one hand, 

an overly detailed model is often not identifiable even if perfect measurements 

of all the state variables were available (cf. Quaiser    and Mönnigmann    (2009) for 

an example from systems biology). Hence, any model should only cover a level 

of detail, which facilitates an experimental investigation of model validity. On 

the other hand, an overly simplified model does often not reflect real behaviour 

satisfactorily. For example, equilibrium tray models in distillation assume phase 

equilibrium rather than accounting for the mass transfer resistance between the 

liquid and vapour phases. Though this model is still widely used in industrial 

practice, it has been shown to be inconsistent with basic physical principles, 

since it does not reflect the cross-effects of multi-component diffusion (Taylor     , 

Krishna, 1993). Such a coordinated design of experiment and models is closely 

related to the requirement of refining a model only based on experimental evi-

dence (Markus    et al., 1981). In particular, if a model is able to predict the accessi-

ble observations on the associated real system sufficiently well, its further refine-

ment cannot be justified because it reduces the level of confidence in the model. 

 The identification of  useful models at minimal effort  requires a multi-disci-

plinary team effort. Experts in high-resolution measurement techniques, in the 

application domain of interest, in numerical analysis and in modeling method-

ologies have to join forces to leverage the very high effort of model identification. 

Best-practices and suitable software environments, tailored to a certain applica-

tion, such as reaction  kinetics   identification seem to be indispensible to roll out 

the MEXA framework into routine application. 
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   Robin Findlay    Hendry    
 Kinetics, Models, and Mechanism 
 Commentary on Wolfgang Marquardt     

1              Chemical Engineering vs. Chemistry 
 Wolfgang Marquardt    describes  chemical  engineering   as ‘an engineering science 

that focuses on the foundations of any kind of transformation of matter in order 

to change its molecular or morphological constitution’ (2013, 187). This makes it 

sound close to the ‘pure science’ of chemistry, and it certainly is, but I would like 

to start by highlighting some differences between the two kinds of models: in 

their scope, in the direction of their representational fit, and in the practical and 

epistemic interests that constrain their construction. 

 Starting with scope,  chemical  engineering   models often represent complete 

production processes, including the logistics of the supply of reactants, their 

preparation, their reaction, and the purification and distribution of the products 

(Marquardt    2013, 188; van Brakel    2000, Chapter 7; van Brakel    2011, 533). The pro-

cesses typically studied by chemistry form only part of the overall production 

process. The basic modeling strategy for dealing with the complexity that comes 

with broad scope is to break a multi-stage and multi-scale process down into its 

components (‘unit operations’ such as mixing, flow, chemical transformation 

and separation), so that the process as a whole is considered as a series of inter-

acting systems. So chemical processes are there at the heart of the production 

process as modelled by the chemical engineer, and are themselves broken down 

further, into the basic kinds of chemical change such as oxidation, reduction or 

polymerisation (van Brakel    2011, 535–7). And as we shall see later, it is crucial to 

the understanding of reaction  kinetics   that basic chemical changes themselves 

are understood to consist of a series of basic kinds of step at the molecular level. 

 Turning next to direction of  fit  , one might think of a ‘pure’ scientific model as 

an abstract mathematical object, which is developed as a representation of some 

part of the world. The model is amended to fit the world, not the other way round. 

In contrast, engineering disciplines seek to change the world, not just to under-

stand it. Process development in  chemical  engineering   involves not only the 

construction and refinement of a mathematical  model  , but the construction and 

refinement of a concrete model production process, which is then scaled up to a 

full production process. The concrete model is designed in the light of the abstract 

model, while the abstract model is refined in the light of the behaviour of the con-
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crete model, and so on. Thus according to Jaap van Brakel   , model and reality are 

mutually attuned in a two-way, rather than a one-way process (van Brakel    2000, 

Chapter 7; 2011, 545). The interaction between model and experimental system 

can be  complex: van Brakel    attributes the growth of  ab initio  design in  chemical 

 engineering   to the tailoring of chemical processes so that they realise ‘idealised 

circumstances, circumstances for which the initial and boundary conditions are 

manageable in such a way that the increasing power of computational methods 

can be exploited’ (van Brakel    2011, 534). In other words, computational resources 

constrain the kinds of experimental system that get built. It is possible to over-

state the contrast between pure and engineering science, however. Experimental 

investigation typically involves some kind of material construction: the devel-

opment of devices that reliably behave in certain ways, displaying new kinds of 

behaviour (Hacking    1983, Chapter  13), and, given that theoretical understand-

ing evolves in tandem with the device, the process looks similar to van Brakel   ’s 

interactive account of engineering science. This, in fact, is just how Jed Buchwald    

describes the discovery of electric waves in his scientific biography of Heinrich 

Hertz (Buchwald    1994). 

 Lastly there are the interests that govern model construction: Marquardt    

describes the aim of modeling as the construction of ‘useful models at minimum 

engineering effort’ (Marquardt    2013, 189). This suggests a pragmatic trade-off 

between, on the one hand, quantitative accuracy (good enough for the practi-

cal purposes at hand), and qualitative understanding, versus computational and 

experimental effort on the other hand. In a commercial environment this prag-

matic choice will also involve economic and even environmental considerations 

(van Brakel    2011, 534).  

2     The MEXA Methodology 
 Marquardt    presents his ‘model-based experimental analysis’ (or MEXA for short), 

which is a detailed method for constructing and refining kinetic models of 

chemical reactions. After a pilot experiment on the relevant reaction, ‘[e]xperi-

mental evidence and the available  a-priori knowledge are used to build a first 

structured mathematical  model   of the experiment’ (Marquardt    2013, 190). The 

experimental system is simulated so as to provide some (fallible) insight into its 

behaviour in non-actual situations, and the experiment itself is then performed 

under ‘a telling set of experimental conditions’ (2013, 190). This process provides 

a mixture of qualitative and quantitative information, which acts as a constraint 

on the refinement of the model. The improved model is then used to refine the 
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experimental set-up further. The process is repeated until  consistency   between 

model and experiment is achieved at the required level of accuracy. As Marquardt    

puts it, citing Karl Popper   ’s book  The Logic of Scientific Discovery  (Popper    1959): 

‘The investigations should ideally only be terminated if the model can not be fal-

sified by any conceivable experiment’ (2013, 190–191). Marquardt    characterises 

his approach to model identification as  incremental , in the sense that different 

aspects of the model’s structure are identified step by step, exploiting the ‘natural 

hierarchy in kinetic models of process systems’ (2013, 196). He carefully distin-

guishes this approach from what he calls ‘ simultaneous model identification’ 

(2013, 196), in which decisions are made simultaneously on the various structural 

features and parameters that identify the model. 

 I would like to pick up on two specific features of MEXA mentioned by Mar-

quardt   . The first is the pursuit of the method within a framework of  a priori  con-

straints. This sounds curious: the efficacy of an iterative method like MEXA is 

highly dependent on the choice of its starting point. If the starting point is poorly 

chosen, then, even when the optimizing process is carried out properly, it may 

result in a poor model, because it finds only a local optimum, which in global 

terms may be very poor. This raises the question of how such an important role 

could be played by   a priori  knowledge. In the following I will identify the rel-

evant  a priori  knowledge as molecular  structure   and dynamics, and explain why 

‘a priori’ is not as odd a description as it may sound. The second feature is the 

reference to Popper   ’s falsificationist methodology. Now Popper   ’s  falsificationism   

is also canvassed by Barry Carpenter    as the underlying methodology by which 

 reaction mechanisms are tested by kinetic data (Carpenter    1984, Chapter 1), but 

 falsificationism   is often criticised for being too negative: in particular, Popper   ’s 

scepticism about induction precludes experiments providing positive support 

for any kind of generalisation, and therefore knowledge of the future behaviour 

of any experimental system. For that very reason, it is often regarded as failing 

to explain how experimental knowledge can be applied in practical contexts, 

including engineering (see for instance Putnam 1974, Section 2). Michael Weis-

berg    instead identifies eliminative induction as the framework for understanding 

how reaction mechanisms are confirmed (see Weisberg   , Needham    and Hendry    

2011, Section 5.2.). This is a choice with which I would agree, if one must pick one 

of the classical conceptions of scientific method. But the main difference between 

eliminative induction and Popper   ’s  falsificationism   is that the former, but not the 

latter, requires that a small handful of possible alternative theories be identified 

at the start of the testing process, all but one of these theories are then eliminated 

by experiment. How is that small handful identified? That is a crucial question, 

because the efficacy of eliminative induction is very sensitive to the choice. In the 
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next section I will argue that this role too is played by molecular  structure   and 

dynamics.  

3     Kinetics and  Reaction Mechanism 
 What is a kinetic model of a chemical reaction? It might be taken simply to be a 

mathematical expression of how the amounts (or concentrations) of the various 

reactants and products vary over time. Consider the following reaction, in which 

substances A and B react in the proportions w:x to form the products C and D in 

the proportions y:z (these proportions are the  stoichiometry  of the reaction): 

 wA + xB → yC + zD 

 The rate of the reaction is just the rate at which A and B are used up, or the rate at 

which C and D are generated. Since the reaction cannot proceed if there is no A or 

B present, the reaction rate must depend in some way on the amounts of A and B 

present (or rather, on their concentrations [A] and [B]), but the actual dependence 

is expressed in the  rate law : 

 Rate of reaction ∝ [A] n [B] m  

 In a simple world, the dependence of rate on reactant concentrations would 

reflect just the stoichiometry of the reaction: n and m would just be w and x. But 

as  kinetics   textbooks always point out, this is only rarely the case, and the order 

of the reaction (i.e. n and m) must be identified experimentally (see for instance 

Sykes    1981, 39–40). So is a kinetic model just an empirically-based rate law? And 

is the rate law just an expression of the above form with the parameters n and m 

filled in by inspecting the  actual  time dependence of the concentrations of the 

relevant species?  No : firstly, this would be of little use, as it provides no informa-

tion about how the system would evolve under slightly different conditions. That 

requires some knowledge of the  dependence  of the rate of reaction on various 

determining factors, whether physical (e.g. temperature and pressure) or chemi-

cal (the amounts or concentrations of the reactants). Secondly, under certain con-

ditions a reaction may display a  pseudo -order dependence. That is, the rate of 

reaction may appear to depend on (or be independent of) the concentration of 

one of the reactants in a way that it would not under normal conditions. Thus, 

for instance, a reaction might ‘really’ be first order in A (i.e. the rate proportional 

to [A]), but if A is in vast excess over the other reactants its concentration will 
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remain relatively constant and the dependence would be masked. I take it that 

the distinction between order and pseudo-order would not make sense if the 

kinetic model were just the actual variation of the concentrations of the reactants 

and products over time. 

 In fact the understanding of reaction  kinetics  , and the distinction between 

order and pseudo-order, is tied intimately to knowledge of reaction  mechanism  . 

So what is a reaction mechanism? William Goodwin    identifies two conceptions at 

work in chemical explanation. On the  thick  conception, a reaction  mechanism   is 

‘roughly, a complete characterization of the dynamic process of transforming a 

set of reactant molecules into a set of product molecules’ (2011, 310). This would 

involve something like a ‘motion picture’ that ‘traces, as a continuous path, the 

motions of the atomic nuclei’ (2011, 310). On the  thin  conception, mechanisms are 

‘discrete characterizations of a transformation as a sequence of steps’ (2011, 310). 

The steps in question fall into a relatively small number of basic kinds: an atom or 

group of atoms leaving a molecule, or joining a molecule. It is the thin conception    

that underwrites kinetic explanation: a reaction can only proceed as fast as its 

slowest step – the rate-determining step – and the rate will tend to depend only 

on the concentrations of species involved in this step. 

 Consider a textbook example: the reaction of an alkyl halide RX (for instance 

bromoethane) with a nucleophilic ion Nuc −  (for instance the hydroxyl ion OH − ): 

 RX + Nuc −  → RNuc + X −  

 Depending on the nature of the alkyl group R, the ‘leaving group’ X − , and the 

conditions under which the reaction takes place (e.g. the nature of the solvent), 

the reaction may proceed via two different mechanisms, resulting in two differ-

ent rate laws. In the S N 1 mechanism (‘S N 1’ meaning ‘unimolecular nucleophilic 

substitution’), RX first dissociates (slowly) into R +  and X −  (this is the unimolecu-

lar rate-determining step), and then combines (quickly) with the nucleophile. 

The reaction can be expected to be first order in RX, and the rate independent 

of nucleophile concentration (i.e. zero order). The bimolecular S N 2 mechanism, 

in contrast, proceeds via a mechanism in which, in a single concerted step, the 

nucleophile attacks the alkyl group and the leaving group departs. Since the reac-

tion requires a molecular collision between the nucleophile and the alkyl halide, 

the rate can be expected to be proportional to both [RX] and [Nuc − ]. 

 How does this relate to the earlier theme of molecular  structure   and dynam-

ics providing a framework that delimits the possibilities at the molecular level? It 

is simply that, for a given reaction, there will be a limited number of structurally 

possible ways to get from the reactants to the products. Using detailed  knowledge 

of the structure and dynamics of molecules it will be feasible to work out these 
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possible mechanisms and conduct a series of experiments to determine which 

mechanism is realised under which conditions. As Sykes    puts it, ‘[N]o reaction 

 mechanism   can ever be  proved  to be correct!’ but 

  Sufficient data can nevertheless usually be gathered just to show that one or more theoreti-

cally possible mechanisms are just not compatible with the experimental results, and/or 

to demonstrate that of several alternatives one is a good deal more likely than the others. 

(1981, 43)  

 Roald Hoffmann    gives a beautiful illustration of this process (1995, Chapter 29), 

describing three possible mechanisms for the photolysis of ethane to ethylene, 

and how H. Okabe and J. R. McNesby used isotopic labelling to eliminate two of 

them. By studying the  kinetics   of a reaction and the structure of its products (and 

any intermediates), and using further techniques like isotopic labelling, it is often 

possible to conduct a series of experiments which are collectively  crucial , in the 

traditional philosophical sense that they pick out one of the various theoretical 

possibilities as the actual. This brings us back to eliminative induction, and the 

question of how  a priori  knowledge can delimit the structural possibilities in this 

way. The relevant body of structural theory has its origin in the 1860s, and has 

always been expressed through the medium of visual images rather than math-

ematical equations (Rocke    2010). It is perhaps one of the securest and longest-

lived bodies of knowledge in science. According to G. N. Lewis   , ‘No generalization 

of science, even if we include those capable of exact mathematical statement, has 

ever achieved a greater success in assembling in simple form a multitude of het-

erogeneous observations than this group of ideas which we call structural theory’ 

(Lewis    1923, 20–21). As a body of explanatory theory it is, of course, under empiri-

cal control, but one of its great explanatory advantages has always been that it is 

also under the control of  a priori  spatial intuition. It is spatial intuition that tells 

us that, in identifying a range of alternative mechanisms, we have exhausted the 

possibilities. It is only given this (fallible) judgement that we can have good reason 

to believe that, among the possible mechanisms  we  have thought of, the one best 

supported by the evidence (or least undermined by it) has any real chance of 

being correct. It is more than just the last one standing: the best of a bad bunch.   
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  Valerio  Lucarini 
 Modeling Complexity: The Case of Climate 
Science  

           …Chaos is the future  

  And beyond it is freedom  

  Confusion is next and  

  Next after that is the truth… ¹  

 

  …Illud in his quoque te rebus cognoscere avemus,  
  corpora cum deorsum rectum per inane feruntur  

  ponderibus propriis, incerto tempore ferme  

  incertisque locis spatio depellere paulum,  
  tantum quod momen mutatum dicere possis.  
  Quod nisi declinare solerent, omnia deorsum,  
  imbris uti guttae, caderent per inane profundum,  
  nec foret offensus natus nec plaga creata  

  principiis: ita nil umquam natura creasset… ²  

1     Introduction 
 The climatic system is constituted by four intimately interconnected sub-sys-

tems, atmosphere, hydrosphere, cryosphere, and biosphere, which evolve under 

the  action   of macroscopic driving and modulating agents, such as solar heating, 

Earth’s rotation and gravitation (Peixoto    and Oort    1992). The climate system fea-

tures many degrees of freedom – which makes it  complicated  – and nonlinear 

interactions taking place on a vast range of time-space scales accompanying sen-

sitive dependence on the initial conditions – which makes it   complex   . In  Table 1  

we present some simple examples aimed at clarifying the difference between 

 complex   and complicated systems. The distinction between these two concepts 

is further clarified by considering the origin of the two words: “complex” comes 

from the past participle of the Latin verb  complector, -ari  (to entwine), whereas 

“complicated” comes from the past participle of the Latin verb  complico, -are  (to 

put together). 

1   Moore, T. (1983) Confusion is next. In: Sonic Youth.  Confusion is sex . Distributed by Neutral.  

2   Lucretius.  De Rerum Natura II . 216–224.  
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  Table 1   : Complex vs. complicated systems. Examples from natural sciences.  

Not  complex Complex

Not complicated Harmonic oscillator Lorenz 63 model
Complicated Gas of non-interacting oscillators (e.g. phonons) Turbulent fluid

 The description of the macroscopic dynamics of the climate system is based on 

the systematic use of dominant   balances    derived on a  phenomenological  basis in 

order to  specialize  the dynamical equations. Such  balances   are suitable classes 

of approximate solutions of the evolution equations representing a reasonably 

good approximation to the actual observed fields when sufficiently large spatial 

or temporal averages are considered (Speranza    and Lucarini    2005). Actually, dif-

ferent  balances   have to be considered depending on the time and space scales 

we are focusing our interest on. Depending on the time scale of interest and on 

the problem under investigation, the relevant  active  degrees of freedom (math-

ematically corresponding to the separation between the  slow manifold  and the 

 fast manifold ), needing the most careful representation, change dramatically. For 

relatively short time scales    (below 10 years) the atmospheric degrees of freedom 

are active while the other sub-systems can be considered essentially  frozen . 

For longer time scale s   (100–1000  years) the ocean dominates the dynamics of 

climate, while for even longer time scal es   (over 5000 years) the continental ice 

sheet changes are the most relevant factors of variability (Saltzman 2002). 

 Such an approach reflects the fundamentally heuristic/inductive nature of 

the scientific research in this field, where the traditional reductionist scientific 

 method   is not necessarily effective. Climate science is a quickly evolving subject 

resulting from the intersection of a growing number of disciplines, such as: 

 –    Meteorology, Oceanography, Remote Sensing, Radiative Transfer;  

 –   Statistical Physics,  Thermodynamics, Fluid Dynamics;  

 –   Chaotic and Stochastic  Dynamical Systems;  

 –   Statistics, Data Assimilation, Data reconstruction from Proxy indicators;  

 –    Numerical Methods, Modeling, Coding;  

 –   Biology, Ecology, Geochemistry.   

 In recent years, several authors have attempted the systematization of the growing 

body of research dealing with  complex   systems under the label of  Complexity . 

Numerous books and journals are being published under this, rather successful, 

brand, and it is encouraging to see an ever increasing degree of collaboration and 

exchange between social and natural scientists. For an outstanding example of 

such integrated activities, we refer to the FuturICT EU flagship proposal ( http://
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www.futurict.eu/ ). In Fig. 1 we report an example of a map of complexity, which 

tries to underline that the degree of interconnection between different subfields 

is such that the unique scientific framework of complexity can be defined. Inter-

estingly, most if not all of the proposed maps of complexity feature a notable 

absence, more precisely that of climate science. 

 Figure 1   : Adapted from the Castellano’s complexity map ( http://www.personal.kent.
edu/~bcastel3/ ). The balloon indicating Climate Science has been added by the author.  

 One could propose that in the map presented in Fig. 1, the large empty space in 

the upper right corner should be filled with a balloon referring to climate science. 

Such an absence is considerably puzzling if one considers that some of the most 

notable features shared by most  complex   systems (e.g. sensitive dependence on 

initial conditions, multiscale properties, intermittency) have been discovered 

in the context of or in vicinity to climate problems, and that climate science, 

especially in the last two decades, has emerged to being one of the most widely 

discussed scientific fields. Maybe this is actually the reason of such a notable 

absence: climate science is perceived as a mostly policy-driven, high-tech, com-

puter muscled-up field, rather than being a frontier subject where to test and 

improve the refined tools and concepts needed to analyze and deal with com-

plexity. 

 Therefore, it is clear that the investigation of the global structural  properties   

plays a central role for the provision of a unifying picture of the climate system. 
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Such an endeavor is of fundamental importance for improving substantially our 

understanding of climate variabilit y   and climate change   o n a large variety of 

scales, which encompass major paleoclimatic shifts, almost regularly repeated 

events such as ice ages, as well as the ongoing and future anthropogenic climate 

cha nge  , as envisioned by the scientific program proposed in the landmark book 

by Saltzman (2002). 

     Such an effort has significant relevance also in the context of the ever-increas-

ing attention paid by the scientific community to the quest for validating climate 

mode ls   (CMs) of various degrees of complexity, as explicitly requested by the 

Intergovernmental Panel on Climate Change (IPCC) in its 4 th  Assessment Report 

(IPCC 2007), and for the definition of strategies aimed at the radical improvement 

of their performance (He ld   2005; Lucarini    2008a). 

 In a modern, global perspective, the climate can be seen as a  complex  , non-

equilibrium syste m  , which generates  entropy   by irreversible  processes  , trans-

forms moist static energy into mechanical energy as if it were a heat engine, and, 

when the external and internal parameters have fixed values, achieves a steady 

state by balancing the input and output of energy and  entropy   with the surround-

ing environment (Peixoto    and Oo rt   1992, Johnson    2000, Lorenz    and Kleidon    2005, 

Lucarini    2009a). The tools of phenomenological non-equilibrium  thermodynam-

ics   (de Gro ot   and Ma zur   1962) seem very well suited in defining a new point of 

view for the analysis of the CS for understanding its variability and its large-scale 

processes, including the atmosphere-ocean  coupling  , the hydrological cycle, 

as well as understanding the mechanisms involved in  climate phase transitio ns    
observed at the so-called tipping point s   (Lenton    et al. 2008), i.e. conditions under 

which catastrophes may occur for small variations in the boundary conditions or 

in the internal parameters of the system (Fraedrich    1979). 

 Moreover, a primary goal of climate science is to understand how the sta-

tistical properties – mean values, fluctuations, and higher order moments – of 

the climate system change as a result of modulations to the parameters of the 

system occurring on various time scal es  . A large class of problems fall into this 

category, such as those involving climate sensitivity, climate varia bility  , climate 

chan ge  , climate tipping poin ts  , as well as the response to daily, seasonal, orbital 

forcings, to changes in the atmospheric composition, to changes in the geogra-

phy and topography of the continents and of the seafloor. Recent results from 

non-equilibrium statistical mechanic s   mostly due to Ruelle    (1998, 2009) provide 

rigorous tools for tackling this problem using a perturbative approach (Lucarini    

2008b, 2009b; Lucarini    and Sa rno   2011).  
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2     Issues in Climate Modeling 
 Given the nature of their research, numerical simulation has been a key method 

of investigation for climate scientists since the early days of computers. Actually, 

in the late 1940s, the first large-scale application of automatic  computing   con-

sisted in the first numerical weather forecast, based on greatly simplified equa-

tions, which was proposed by Von Neumann    and mainly devised by Charney. This 

also emphasizes the long-standing strategic relevance of climate-related science. 

Since the late 1950s, the US (and Swedish) technical services have been using 

computer-assisted numerical integration of relatively accurate equations descrip-

tive of the physics of the atmosphere to routinely produce weather forecasts. 

 The evaluation of the accuracy of numerical climate mode ls   and the defini-

tion of strategies for their improvement are, today more than ever, crucial issues 

in the climate scientific community. On the one hand, climate model s   of various 

degrees of complexity constitute tools of fundamental importance to reconstruct 

and project the state of the planet in the future and to test theories related to basic 

geophysical fluid dynamical properties of the atmosphere and of the ocean as 

well as of the physical and chemical feedbacks within the various subdomains 

and between them. On the other hand, the outputs of climate mo dels  , and espe-

cially future climate projection s  , are gaining an ever-increasing relevance in 

several fields, such as ecology, economics, engineering, energy, and architecture, 

as well as for the process of policy-making at national and international level. 

Regarding influences at societal level of climate-related finding, the impacts of 

the 4 th  Assessment Report of the IPCC (2007) are unprecedented, to the point that 

the Panel was awarded the 2007 Nobel Prize for Peace. 

 Numerical modeling options strongly rely on the available computer power, 

so that the continuous improvements in both software and hardware have per-

mitted a large increase in the performances of the models and at the same time an 

impressive widening of their horizons. See Fig. 2 for an overview of the structure 

of a state-of-the-art CM. We remind that parametrizations are approximate repre-

sentation of the effects on the scales resolved by CMs of the processes occurring 

in the range of unresolved scales. See a modern perspective of this problem in 

Palmer and Williams    (2010). On the one hand, the adoption of finer and finer 

 resolutions has allowed a more detailed description of the large scale features of 

the dynamics, and, more critically, a more direct physical description of a larger 

set of processes, thus limiting the need for  parameterization   procedures, which, 

where needed, have become more accurate. On the other hand, it has been pos-

sible to implement and then refine the  coupling   between models pertaining to 

different systems having a common boundary, such as the atmosphere and the 

ocean, or the atmosphere and the land surface. See a pictorial representation of 
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  Figure 2   : Overview of the structure of a state-of-the-art climate model. From the NOAA research 
website  http://www.research.noaa.gov/climate/t_modeling.html   

    

Figure 3   : Geographic  resolution   characteristic of the genera-
tions of climate mod els   used in the IPCC first (FAR, 1990), second 
(SAR, 1996), third (TAR, 2001), and fourth (AR4, 2007) assess-
ment reports. These illustrations are representative of the most 
detailed horizontal  resolution   used for short-term climate simula-
tions. Vertical  resolution   in both atmosphere and ocean models 
is not shown, but it has increased comparably with the horizontal 
 resolution  , beginning typically with a single-layer slab ocean and 
ten atmospheric layers in the FAR and progressing to about thirty 
levels in both atmosphere and ocean. From IPCC (2007), p. 113.  
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the improvement in the horizontal  resolution   of CMs between the 1980’s and the 

2000’s in Fig. 3. The increase in the number of natural processes represented in 

CMs in the same time frame is represented in Fig. 4. 

    Figure 4   : The number of natural processes explicitly represented in climate mode ls   has 
increased over the last few decades. The additional physics incorporated in the models are 
shown pictorially by the different features of the modeled world. From IPCC (2007), p. 99.  
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    Still, since the climate is a multiscale system (Schertzer    and Lovejoy    2004), our 

ability to represent it with numerical models is intrinsically limited. One should 

consider that climate variab ility   is observed within spatial scales ranging from 

10 -6 m to 10 7  m and temporal scales ranging from 10 -6  s to 10 16  s. These ranges that 

dwarf what covered explicitly by present top-notch models by many orders of 

magnitude. The progress in terms of  computing   power of a factor of 10 6  obtained 

in the last 30 years has reduced only by a relatively small amount the distance 

between model and the actual system, so that it seems unfeasible to expect within 

the next decades fundamental progresses to our understanding of the climate 

system obtained only through brute force  computing  . This is in stark contrast to 

what envisioned by Navarra    et al. (2010). 

 Climate modeling faces uncertainties belonging to two distinct classes. 

The uncertainties on the initial conditions ( uncertainties of the first kind)  limit, 

because of the chaotic nature of the system, our ability to predict deterministi-

cally the state of the system at a future time, given our imperfect knowledge of 

its state at the present time. In the growing body of research dealing with climate 

prediction, this kind of uncertainty is partially taken care of by applying the 

same strategies today commonly adopted in the usual weather forecasting, i.e. 

by using  ensemble   simulations. Along these lines, many simulations are started 

with slightly perturbed initial conditions, and the set of evolved trajectories is 

used to provide a probabilistic estimate of how the system will actually evolve. 

Obvious limitations are related to the technological difficulties of running a suf-

ficient number of  ensemble   members. But more basic problems are also present. 

The structural deficiencies together with an unavoidably limited knowledge 

of the external forcings ( uncertainties of the second kind ) limit intrinsically the 

possibility of providing realistic simulations of the statistical properties of the 

climate system, especially affecting the possibility of representing abrupt climate 

ch ange   processes. 

 The  validation  , or auditing  – overall evaluation of accuracy  – of a set of 

climate model s  , is a delicate operation, which can be decomposed in two related, 

albeit distinct, procedures. The first procedure is the intercomparison, which 

aims at assessing the  consistency   of the models in the simulation of certain physi-

cal phenomena over a certain time frame. The second procedure is the  verifica-

tion  , whose goal is to compare the models’ outputs to corresponding observed 

or reconstructed quantities. Hence, a third kind of uncertainty is related to the 

actual procedure of auditing: what are the best  metrics , i.e. the best statistical 

estimators to be used for analyzing the output of climate models? In principle, any 

reasonable function of the variables included in our climate model is a perfectly 

legitimate metrics. Nevertheless, even if all such   observables    are mathematically 

well defined, their physical relevance and robustness can be very different. Since 
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no strict a-priori criterion exists for selecting a good observable, even if taking 

into account some basic physical properties of the climate system can provide 

useful guidance, as explained below, we do not have a unique recipe for testing 

our models. Again, this is in stark contrast to the case of more traditional scien-

tific fields, where the relevant  observables   (e.g., in high-energy physics, “mass”, 

“transition probability”, “cross-section”) are suggested by the very equations we 

are trying to solve or analyze experimentally.  

3     Performance Metrics and Uncertainties 
 A matter of great interest in the analysis of climate mo d els   is the choice of the 

physical  observables   used in the auditing procedures, or, as they are often referred 

to, of the metrics of  validation   of the climate model s  . An ever-increasing attention 

is being paid by the scientific community to the quest for reliable, robust metrics, 

as explicitly requested by the 4 th  Assessment Report of the IPCC. 

 Most typically, the models’  validation   is based upon the analysis of the skill 

in simulating fields of common practical interest, such as the surface air tempera-

ture or the accumulated precipitation. However, these fields describe quantities 

that can hardly be considered  climate state variables . By considering the vertical 

profile of the annual and global mean temperature, the zonal mean surface air 

temperature, or precipitation, the impression is that all models have very similar 

performances and it is very difficult to assess whether a model is performing in 

any sense better than any other. Nevertheless, they differ substantially in the hor-

izontal as well as vertical  resolution  , numerical schemes, physical  parameteriza-

tions, and so on. 

 One aim – from the end-user’s point of view – is immediately checking how 

 realistic  the modeled fields of practical interest are. But if the aim is to define 

strategies aimed at the radical improvement of their performance, beyond incre-

mental advances often obtained at the price of large increases in requested com-

puted power, it is important to fully understand the differences in the representa-

tion of the  climatic machine  among models and possibly decide whether specific 

physical processes are correctly simulated by a specific model. 

 In order to analyze the representation of specific physical processes as well 

as of  balances   involving conservation principles, it is necessary to use special-

ized diagnostic tools – that we may call  process-oriented metr ics    – as indexes for 

model reliability. Such an approach may be helpful in clarifying the distinction 

between the performance of the models in reproducing  diagnostic  and  prognos-
tic  variables of the climate system. The definition of efficient  process-oriented 
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me trics   benefits from the adoption of a well-defined scientific framework. In 

 section 6  we propose our point of view where we maintain that a thermodynamic 

perspective is well-suited for analyzing the climate system, because it provides 

a way to cut through its complexity and, at the same time, carefully takes into 

account its non-equilibrium properties. 

 Additional practical as well as epistemological issues emerge when we con-

sider the actual process of comparing theoretical and numerical investigations 

with experimental data. Model results and approximate theories can often be 

tested only against observational data from the past, which may feature problems 

of various degrees of criticality, essentially because of the physical extension of 

the systems under analysis. The available historical observations sometimes 

feature a relatively low degree of reciprocal synchronic  coherence   and individu-

ally present problems of diachronic  coherence  , due to changes in the strategies of 

data gathering with time, whereas proxy data, by definition, provide only semi-

quantitative information on the past state of the climate system. The natural vari-

ability of both the model and the real system contributes to blur the line between 

a failed and a passed test. Anyway, a positive result would not at all ensure the 

model’s ability to provide consistent future  projections  , whereas at most it is pos-

sible to deduce from a negative result that the model is not reliable enough. Sum-

marizing, difficulties in the process of  falsification   basically emerge because we 

always have to deal with three different kinds of attractors: the attractor of the 

real climate system, its reconstruction from observations, and the attractors of 

the climate mod els  . 

 The unavoidable presence of such critical uncertainties implies that every 

model used to generate  projections   about future climate change   could be inter-

preted as being weak in its descriptive power. When considering the climate as a 

whole, there are no real or virtual laboratories, where theories and models can be 

tested in a classic sense against experiments, because, due to the entropic time 

arrow, repeatability is strictly not possible. Using a standard scientific procedure 

would imply to reject a model, if it fails to comply with even just one observable. 

That is how, e.g., high-energy physics typically works, as shown by the very idea 

of building the Large Hadron Collider (LHC). As clear from the previous discus-

sion, it is unfeasible to use this criterion in climate science, because we would 

end up discarding all models and arresting any progress. Therefore, the Galilean 

scientific framework given by recurrent interplay of experimental results and 

theoretical  predictions   is challenged. 

 As for taking care of possible issues related to initial conditions, often one 

considers an  ensemble   of simulations, where the same climate model is run 

under identical conditions from slightly different initial state. This allows a more 
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detailed exploration of the phase space of the system, with a better sampling – on 

a finite time – of the attractor of the model. 

 The deficiencies of a single climate model and the  stability   of its statistical 

properties can be addressed by applying Monte Carlo techniques to generate an 

 ensemble   of simulations, each characterized by different values of some uncer-

tain key parameters characterizing the global climatic properties. Therefore, in 

this case, sampling is performed by considering attractors that are parametrically 

deformed, which is, by the way, a formally well-defined operation when we con-

sider the Ruelle    (1998, 2009) response theory (see discussion in Lucarini    2008b). 

 A detailed analysis of structural  uncertainties   requires the comparison of 

different models following a horizontal and vertical conceptual hierarchical 

path. The horizontal  comparison   is the comparative study of the results gener-

ated by models sharing a roughly common level of complexity, but having been 

implemented in different ways by different people. The vertical  comparison   is 

the comparative study of the results obtained by a family of models, each built as 

an extension and complexification of another one starting from an initial simple 

parent, thus creating a natural hierarchy of increasing complexity. 

 Figure 5   : Performance of various state-of-the-art climate mo dels   in representing winter 
mid-latitude northern hemisphere atmospheric variability. Climatology of integrated spectral 
power of the waves is plotted against its interannual variability (in m 2 s -2 ). The various points 
correspond to the data set indicated in the legend. The  ensemble   mean is located at the centre 
of the ellipses. Adapted from Lucarini    et al. (2007).  
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 The Project for Climate Model Diagnostics and Intercomparison (PCMDI), through 

its climate mod els   intercomparison projects (CMIPs), has supported the gather-

ing into a single web-location of climate model outputs contributing to the activ-

ities initiated by the IPCC. The PCMDI thus provides a unique opportunity for 

evaluating the state-of-the-art capabilities in simulating the behavior of climate 

system. The CMIP has provided a rather complete and standardized set of climate 

outputs in its third phase, which was related to the IPCC (2007) report, whereas 

the CMIP’s fifth phase will collect data relevant for the preparation of the fifth 

assessment report of IPCC. 

     In order to describe synthetically and comprehensively the outputs of a 

growing number of climate mo dels  , recently it has become common to consider 

multi-model ensembles and focus the attention on the  ensemble   mean and the 

 ensemble   spread of the models, taken respectively as the (possibly weighted) first 

two moments of the models outputs for the considered metric   . Then, informa-

tion from rather different attractors is merged. Whereas this procedure surely has 

advantages, such statistical estimators should not be interpreted in the standard 

way – the mean approximating the truth, the standard deviation describing the 

uncertainty  – because such a straightforward perspective relies on the (false) 

assumption that the set is a probabilistic  ensemble  , formed by equivalent realiza-

tions of a given process, and that the underlying  probability   distribution is uni-

modal. Figure 5 portraits the statistical properties of the mean value (x-axis) and 

interannual variability (y-axis) of a quadratic measure of the strength of winter 

northern hemisphere mid-latitude atmospheric disturbances during the period 

1961–2000 and reports the results for 19 state-of-the-art climate mod els   included 

in the PCMDI dataset. Moreover, reference data are reported for the two reana-

lyses datasets, produced by NCEP-NCAR and ECMWF, commonly considered as 

roughly equivalent reconstructions of the true atmospheric state. As we see, the 

 ensemble   mean (centre of the two ellipses) is actually rather close to the “true” 

state, but, on the other hand, it is positioned in a location where the density of the 

points referring to the outputs of the various models is very low. Note that the two 

semi-axes of the internal (external) ellipsis are given by (twice) the values of the 

standard deviation of the  ensemble   for the two considered variables. Therefore, 

it is at least questionable to interpret the  ensemble   mean as representative in any 

well-defined sense of the models’ outputs.  
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4     A Side Note: An Outlook on Geo-Engineering 
 In spite of all the efforts of several scientific communities, pressure groups, and 

citizens, the more and more widespread concern regarding the climatic impacts 

of the observed steady increase of CO 2  concentration in the atmosphere has not 

been met with the actual provision of an effective, international and multilateral 

protocol of economic and political measures aimed at limiting present and future 

hazards. Being able to deal effectively, and in the context of an increasingly mul-

tipolar world, with the complexities of the global economy and politics and of the 

global climate system at the same time seems an almost insurmountable task. In 

this context, in recent years a growing number of scientists, policy-makers, and 

corporations have proposed the adoption of geo-enginee ring   strategies as – at 

least – short-term mitigation of climate chan ge   effects due to CO 2  increase. 

 In general, geo-engineeri ng   refers to the adoption of measures aimed at 

modifying, on purpose, the climate system in a – allegedly – controlled way. On 

smaller temporal and spatial scales, several weather modification strategies have 

been devised in the course of the years, such as the seeding of clouds aimed at 

increasing their rain  efficiency  . Nevertheless, geo-engineerin g   is distinct as its 

scope is intrinsically global in space and multiannual in time. One of the most 

relevant proposals in this direction has been that of continuously injecting in the 

atmosphere large amounts of aerosols in order to reduce the amount of net incom-

ing solar radiation (some aerosols reflect the solar radiation quite efficiently), 

thus countering the anthropogenic greenhouse effect due to ever-increasing CO 2  

concentration. This idea has been evaluated as technologically feasible and eco-

nomically very convenient with respect to challenging the present model of eco-

nomic development. Putting aside the ethical issues related to the idea of coun-

tering pollution with further pollution and those to the fact that a single country 

or, in principle, even a private can decide to alter unilaterally the global climate, 

and neglecting the large scientific uncertainties still surrounding the actual 

effects of such large-scale injection of material in the atmosphere, the complexity 

of the climate system seems to suggest that this kind of operation is intrinsically 

ill-posed, or better, far from being able to provide a simple solution to a  complex   

problem like global warm ing  . 

 Mathematically, we can say that geo-enginee ring   is about defining suit-

able isolines constructed in the following way: If we consider an increment x of 

CO 2  concentration, what is the amount of aerosols y needed to keep the average 

value of the statistical properties of the climate variable z constant? By chang-

ing the value of x and finding the corresponding values of y=y z (x), we construct 

the isoline of the climate variable z, i.e., when moving parametrically along such 

a line (corresponding to the adoption of geo-engineerin g   measures contrasting 
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the increase in CO 2  concentration), the climatology of z is not altered. But, if we 

choose any other climate variable z 1 , z 2 , …, z n , the geo-enginee ring   strategy will 

not provide any solution, because z 1 , z 2 , …, z n  are, instead, constant along the iso-

lines y=y z1 (x), …, y=y zn (x), which are in general distinct from y=y z (x). Therefore, 

along the parametric curve y=y z (x) the value of the climate variables z 1 , z 2 , …, z n  

will definitely change, so that  climate will change . Injecting the aerosols in the 

atmosphere has the effect of modulating, but not of erasing in any real sense, the 

effect of increasing CO 2  concentrations. 

 Figure 6   : Apart from the scientific uncertainties, geo-engineeri ng   measures provide a fix only 
for a selected climate observable. The isolines of 〈T S 〉, 〈T A 〉, 〈T SS 〉, and 〈T S,NHML 〉 are, in fact, differ-
ent. See details in the text.  

 Therefore, the geo-engi neering   strategy described by y=y z (x) will only provide an 

example of a constrained climate cha nge   scenario, and not at all a scenario fore-

seeing the cancellation of climate chang e   in general. We then understand that all 

the emphasis is in the selection of the z-variable of interest, and it seems rather 

clear that such a choice has an eminently political nature, and, furthermore, it 

seems hopeless to reach a global consensus on the “right” variable to consider 

in a hypothetically pro-geo-engineering world. In Fig. 6 we provide a graphical 

representation of this issue, where we consider four variables (globally averaged 

surface temperature (〈T S 〉), averaged sea surface temperature (〈T SS 〉), averaged 

atmospheric temperature (〈T A 〉) and surface temperature averaged over the land 
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located in the mid-latitudes of the northern hemisphere (〈T S,NHML 〉). Each country 

or group of countries will have different and even contrasting interests, as the 

effects of climate cha nge   are felt locally and the adaptive capacity is widely dif-

ferent. Note that, by definition, potential strategies aimed at achieving a reduc-

tion of the CO 2  concentration in the atmosphere do not suffer from this problem. 

Therefore, geo-engineer ing   seems to be a logical loophole: rather than providing 

a practical solution to the ongoing anthropogenic forcing, it moves the difficulties 

to the choice of the optimization strategy. 

5          Our Proposal: A Thermodynamic Perspective 
 Many authors have approached the problem of understanding the properties of 

the CS by studying the structure of the bifurcations of dynamical  systems   con-

structed heuristically and featuring a minimal number of climatically relevant 

variables (usually below 10). This strategy has led to great scientific results and 

suggested the existence of generic mathematical structures, sometimes re-discov-

ered in hierarchies of CMs. A relevant example of investigation performed along 

these lines on processes occurring on multi-decadal time scale is the analysis of 

the  stability   of the thermohaline circulation. On atmospheric time sc ales  , some 

of the most important investigations of the low-frequency variab ility   of the mid-

latitude atmosphere have been carried out along similar lines. The limitations of 

this approach lie in the fact that the simplifications adopted in the derivation of 

the dynamical  systems   may blur out the involved physical processes and hardly 

allow for an efficient representation of the fluctuations of the system, to which 

the introduction of stochastic  forcing   provides a partial solution (Hasselmann    

1976). This approach suffers from need for a – usually beyond reach – closure 

theory for the noise properties. 

 While acknowledging the scientific achievements obtained along the above 

mentioned line, we propose a different approach for addressing the  big picture  

of a  complex   system like climate. An alternative way for providing a new, sat-

isfactory theory of climate dynamics able to tackle simultaneously  balances   of 

physical quantities and dynamical instabilities is to adopt a thermodynamic 

perspective, along the lines proposed by Lorenz    (1967). We consider simultane-

ously two closely related approaches, a phenomenological outlook based on the 

macroscopic theory of non-equilibrium  thermodynamics   (see e.g., de Gro ot   and 

Maz ur   1962), and, a more fundamental outlook, based on the paradigm of ergodic 

theory (Eckmann    and Ruelle    1985) and more recent developments of the non-

equilibrium statistical mech anics   (Ruelle    1998, 2009). 
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   The concept of the energy cycle of the atmosphere introduced by Lorenz    (1967) 

allowed for defining an effective climate machine such that the atmospheric and 

oceanic motions simultaneously result from the mechanical work (then dis-

sipated in a turbulent cascade) produced by the engine, and re-equilibrate the 

energy balan ce   of the climate system. One of the fundamental reasons why a com-

prehensive understanding of climate dynamics is hard to achieve lies in the pres-

ence of such a nonlinear closure. Recently, Johnson    (2000) introduced a Carnot 

engine-equivalent picture of the climate system by defining effective warm and 

cold reservoirs and their temperatures, and deriving a suitably defined  efficiency  . 

The interest towards studying the climate irreversibility largely stemmed from the 

proposal of the maximum  entropy   production principle (MEPP), which suggests 

that non-equilibrium nonlinear systems adjust in order to maximize the  entropy   

production (Oza wa   et al 2003, Kleidon    and Lorenz    2005). Even if recent claims of 

 ab initio  derivation of MEPP have been dismissed, it has stimulated the re-exam-

ination of  entropy   production in the climate system (Pascale    et al. 2009) and the 

development of new strategies for improving the CMs  parameterization  . 

  Figure 7   : Dependence of the Entropy Production of the climate system on the value of the solar 
constant. Note the presence of a wide region of bistability, where both the warm (W) and the 
snowball (SB) climates are stable. Adapted from Lucarini    et al. (2010a).  

  Recently, a link has been proposed between the Carnot  efficiency  , the intensity 

of the Lorenz    energy cycle, the  entropy   production and the degree of irrevers-

ibility of the climate system (Lucarini    2009a). In particular, it has been found 
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that the  efficiency   of the equivalent thermal machine sets also the proportionality 

between the internal  entropy   fluctuation of the system and the lower bound to 

 entropy   production by the fluid compatible with the 2 nd  law of  thermodynamics  . 

Such a bound is basically given by the  entropy   produced by the dissipation of 

the mechanical energy, whereas the excess of  entropy   production is due to the 

transport of heat down the gradient of the temperature field. These results pave 

the way for a new, extensive exploration aimed at understanding the climate 

response under various scenarios of forcing, of atmospheric composition, and 

of boundary conditions. Recent preliminary efforts have focused on the impacts 

on the  thermodynamics   of the climate system of changes in the solar constant, 

with the analysis of the onset and decay of snowball Earth conditions (Lucarini    

et  al. 2010a), and on those due to changing CO 2  concentration (Lucarini    et  al. 

2010b). In the snowball Earth experiment, the two climate regimes (ice-covered 

and today-like) feature radically different physical properties. In particular, the 

climate  efficiency   decreases (increases) with increasing solar constant in present 

(snowball) climate conditions. Moreover,  entropy   production (see Fig. 7) and the 

irreversibility of the system are much higher in warmer climates. When consider-

ing CO 2  changes, a warmer CS results to be less efficient, more irreversible, and 

produces more  entropy  . While in cold climates a dominating role for the changes 

in the  thermodynamics   is played by changes in the vertical stratification of the 

atmosphere, in warm ones changes in latent heat fluxes are crucial. 

 As the results in Lucarini    (2009) allow for treating the exchange of mechani-

cal energy between atmosphere and ocean as a boundary term in the energy 

budget, this approach may contribute to quantifying the mechanisms involved 

in the mechanical energy budget in the global ocean, which have long been a 

source of debate in oceanography (e.g. Wunsch    and Ferrari    2004, Tailleux    2010). 

Additionally, a thermodynamic analysis of the climate transitions at the tipping 

po ints   (Lenton    et al. 2008) based upon macro-scale thermodynamic properties 

is also proposed. In Lucarini    et al. (2010a) it is shown that the loss of  stability   

of a climate regime is accompanied by the transition to a regime featuring a less 

efficient climate, which is characterized by thermodynamic conditions closer to 

equilibrium. It seems very relevant to tackle the analysis of the suggestive hypoth-

esis of the generality of this behavior. This has implications for the issue of mul-

tiple  stability   in the atmosphere-biosphere system. 

 Recently, it has been shown that it is possible to compute the  entropy   pro-

duction and derive information on the Lorenz    energy cycle by only looking at 

the 2D fields of top-of-the-atmosphere and surface radiative budgets (Lucarini    

et al. 2011). This paves the way for studying the  thermodynamics   of the  climates  

of planetary bodies other than the Earth, whose investigation has been, by the 

way, one of the first applications of MEPP (Kleidon    and Lorenz    2005). This is a 
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rather promising perspective, given the ever increasing attention paid to, and 

data obtained on, these astronomical objects.  See the recent study in this direc-

tion performed by Boschi et al. (2013).

 The fundamental approach based upon non-equilibrium statistical mechan-

ic s   provides great opportunities, due to the recent development of the discipline 

(Gallavotti    2006), but also great challenges. A serious difficulty in the analysis 

of the CS is that the fluctuation-dissipation  theorem   (see, e.g., Ku bo   1966), cor-

nerstone of quasi-equilibrium statistical mechanics, cannot straightforwardly be 

applied, because the climate is a non-equilibrium, forced and dissipative system, 

where the asymptotic dynamics take place in a strange attractor. Natural fluc-

tuations and forced motions cannot be equivalent, because – while natural fluc-

tuations of the system are restricted to the attractor, due to the fact that asymp-

totically there is no dynamics along the stable manifold – external forcings will 

induce motions out of the attractor with  probability   1 (Ruelle    1998, 2009, Luca-

rini    2008, Lucarini    and Sa rno   2011). In a climatic context, this corresponds to an 

earlier intuition by Lorenz    (1979) on the non equivalence between forced and free 

fluctuations. Therefore, it is at least questionable to take for granted that climate 

chan ge   signals should project on the natural modes of variability. 

 Recently, Ruelle    (1998, 2009) introduced a mathematical theory for  comput-

ing    ab initio  the response of a large class of  non-equilibrium systems to external 

perturbations. The theory specifically applies only to a specific class (Axiom A) 

of statistical mechanical systems. Nevertheless, accepting the chaotic hypoth-

esis (Gallavotti    2006), this class provides an excellent model for general physi-

cal systems. More recently, it has been proved that Kramers-Kronig (KK) relations 

connect the real and imaginary part of the susceptibilities at all orders of nonlin-

earity. The Ruelle    response theory      provides a rigorous way to compute explicitly, 

as well-defined perturbation series, the climate response of a system to forcings 

featuring generic time modulation and generic spatial pattern. The KK theory and 

the related sum rules (Lucarini    2008b) can be used to define a comprehensive self-

consistent theory of climate chan ge   against forcings of all time sca les   and consti-

tute a formidable tool for assessing the  consistency   of a CMs, since they provide 

explicit and computable constraints, based only upon the principle of  causality, 

that have to be necessarily obeyed. Models not complying with these constraints 

cannot feature a consistent dynamics over all of the time and space scales and 

require a detailed re-examination (Lucarini    2008b). 

   The analysis of these properties with CMs of various degrees of complexity 

seems absolutely relevant. The prototypical numerical study by Lucarini    (2009b) 

has been extended by Lucarini    and Sar no   (2011), where the first direct computa-

tion of the Green function of a simplified  climate model has been performed (see 

Fig. 8). The Green function allows for  computing    ab initio  the response of the 
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considered climate observable to the external perturbation introduced into the 

system. This provides a promising way to compute probabilistic climate projec-

tio ns  . Further theoretical extensions and applications to models of higher com-

plexity and deeper climatic interest are definitely necessary. 

  Figure 8   : Green function describing the response to a specific perturbation of the spatially 
averaged total energy (black line) and total momentum (blue line). The short-term behav-
ior, computed  ab initio  using the response theory, is indicated in red (energy) and magenta 
(momentum). Adapted from Lucarini    and Sar no   (2011).  

  Using the response theory formalism and its extension to the frequency domain, 

it is possible to compute the climatic impact of quasi-static perturbations, such as 

those related to changes in the parameters of the system, like atmospheric com-

position, albedo, solar irradiation or Earth’s axis inclination. Moreover, it is pos-

sible to tackle rigorously issues such as determining the impact of periodic forc-

ings like the seasonal cycle, the solar cycle, and multi-millennial orbital variations. 

As in quasi-geostrophic atmospheric modeling, the anomalies in topography and 

surface temperature appear as boundary conditions terms controlled by (small) 

parameters, one can compute explicitly their impact on the statistical properties 

of the circulation, thus extending the work of Speranza    et al. (1985) on orographic 

modification to baroclinic instability in a climatic perspective. Similar strategy 

could be used for specific oceanic problems.  Moreover, Wouters and Lucarini (2012) 

have shown how response theory provides a well-defined strategy for deriving rig-

orous deterministic and stochastic  parameterizations for unresolved processes.
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 Finally, the analysis of the susceptibility function can highlight and quantify 

relevant climate feedbacks. In fact, the response of the system varies enormously 

with the time scale of the forcing: resonances with the internal time sca les   may 

greatly amplify the response to perturbations. On a similar note, the analysis of 

tipping poin ts  , as conditions under which the susceptibility diverges, could be 

envisioned.  

6     Conclusions 
 We have briefly recapitulated some of the scientific challenges and epistemological 

issues related to climate science. We have discussed the formulation and testing of 

theories and numerical models, which, given the presence of unavoidable uncer-

tainties in observational data, the non-repeatability of world-experiment s  , and 

the fact that relevant processes occur in a large variety of spatial and temporal 

scales, require a rather different approach than in other scientific contexts. 

 In particular, we have clarified the presence of two different levels of unavoid-

able uncertainties when dealing with climate mo dels  , related to the complexity 

and chaoticity of the system under investigation. The first is related to the imper-

fect knowledge of the initial conditions; the second is related to the imperfect rep-

resentation of the processes of the system, which can be referred to as structural 

 uncertainties   of the model. We have discussed how Monte Carlo methods provide 

partial but very popular solutions to these problems. A third level of uncertainty 

is related to the need for a, definitely non-trivial, definition of the appropriate 

metrics in the process of  validation   of the climate mo dels  . We have highlighted 

the difference between metrics aimed at providing information of great relevance 

for the end-user from those more focused on the audit of the most important 

physical processes of the climate system. 

 It is becoming clearer and clearer that the current strategy of incremental 

improvements of climate m odels   is failing to produce a qualitative change in our 

ability to describe the climate system, also because the gap between the simula-

tion and the understanding of the climate system is widening (He ld   2005, Lucarini    

2008a). Therefore, the pursuit of a “quantum leap” in climate modeling – which 

definitely requires new scientific ideas rather than just faster supercomputers – is 

becoming more and more of a key issue in the climate community (Shukla    et al. 

2009). In this context, we could not disagree more with the perspective of climate 

science proposed in Navarra    et al. (2010), who foresee a dominance of supercom-

puting in few selected centers, central planning of scientific priorities, and re-

organization of whole academic and scientific framework in close  resemblance   
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with what was done in high-energy physics over 50 years ago. First, centralized 

planning of the scientific priorities (with the related allocation of funds and jobs) 

automatically raises the question of who is going to define such priorities and on 

which basis. Second, and more importantly, as widely discussed in this paper, it 

is hard to find scientific sectors with as different epistemologies as high-energy 

physics and climate science. Navarra    et  al. (2010) talk about “crucial experi-

ments”, but, unfortunately, these just cannot exist in a non-Galilean setting as 

that of climate science. In fact, the distance of climate science from the “time-

less” Galilean science based upon repeated cycles of experimental investigations 

and improvements to scientific theory is so wide that it is impossible to apply 

the usual scientific  validation   criteria to the results of climate science. The dif-

ferent epistemology pertaining to climate science implies that its answers cannot 

be singular and deterministic, while they must be plural and stated in probabi-

listic terms. Flexible and open-source modeling, such as that represented by the 

PLASIM platform (Fraedrich    et al. 2005), and distributed  computing  , such as that 

adopted in the climaprediction.net project (Alle n   1999), seem in principle more 

suited for the goals, the methodologies, and the development of climate science. 

Moreover, proposing new ideas, innovative scientific frameworks, and new para-

digms, rather than flexing and training metaphorical (and expensive) muscles, 

seems definitely more promising in the author’s view. 

 In this regard, we have proposed the adoption of a thermodynamic perspec-

tive as a potentially relevant framework for improving our understanding of the 

climate system and our ability to model it. The macroscopic non-equilibrium 

 thermodynamics   allows for characterizing the climate system in terms of its 

 efficiency   to produce work, i.e. organized atmospheric and oceanic motion, to 

achieve steady state by balancing the input and output of energy and  entropy   

with the surrounding environment, and of its irreversibility, due to entropy-

generating processes. Such global properties allow for diagnosing, describing, 

and understanding the smaller scale processes associated to climate variabil ity  , 

climate feedbacks, climate change    in general, and large scale climate re-organiza-

tions occurring at tipping poin ts   in particular. Moreover, these tools can be used 

for studying the basic properties of the circulation of planetary atmospheres, a 

topic of great interest in the present age characterized by the discovery of quickly 

growing number of  exoplanets  . 

 A more fundamental approach, based upon non-equilibrium statistical 

mechani cs  , can also be envisioned. The fact that, as can be deduced from Ruelle   ’s 

(1998, 2009) arguments, the climate system does not obey the fluctuation dissi-

pation theorem, is another crucial reason why its modeling and its understand-

ing are intrinsically difficult. The climate responses to forcings are in principle 

irreducible to internal fluctuations. Therefore, as opposed to common wisdom 
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in climate science, it is not obvious at all that,  e.g. , climate chan ge   signals will 

project on natural modes of variability. Nonetheless, one should also consider 

that if stochastic  forcing   is added to the system the fluctuation-dissipation 

 theorem   is recovered (Marini Bettolo Marconi    et al. 2008). Moreover, some papers 

have shown that a direct application of the fluctuation dissipation theorem in 

a climatic context is reasonably successful (see, e.g., Gritsun    and Branstator    

2007). It is definitely worth exploring whether this results exactly from the fact 

that numerical schemes introduce at all practical effects noise into the climate 

mod els  , or from the fact that in the specific case of climate in present conditions 

the violation of the fluctuation-dissipation  theorem   is numerically small.  A recent 

paper by Wouters and Lucarini (2013) suggests that, actually, the fluctuation-dis-

sipation relation may be usable also in the case of non-equilibrium steady state 

systems if one focuses on coarse grained properties.

  Non-equilibrium statistical mechanics also provides exciting tools for defin-

ing new strategies for the understanding of basic processes involved in large-

scale climate dynamics, including also feedback mechanisms, and for treating 

rigorously ensembles of model simulations. The Ruelle    response theory      and 

its extension in the frequency domain allow the formulation of a new way of 

studying rigorously, the response of the climate system to perturbations, and 

to provide the foundation for defining what we may call the  spectroscopy of the 
climate system , which provides the possibility of evaluating, using a perturbative 

approach, climate sensitivity and climate chang e   from a radically new perspec-

tive. This paves the way for studying a potentially immense class of problems.  
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 Gregor Betz    
 Chaos,  Plurality, and Model Metrics in 
Climate Science 
 Commentary on Valerio Lucarini  

1       Central findings of climate science are indepen-
dent of model simulations 

 Since the reliability of climate model s   represents a politically highly sensitive 

issue, I would like to remind us upfront, before I comment on the interesting 

and illuminating paper by Valerio Lucarini   , that many central findings of climate 

science are entirely independent of Global Climate Models (GCMs). These results 

include: 

   1.   The atmospheric CO2-concentration has reached levels unprecedented in at 

least the past 650.000  years (IPCC 2007, p.  24). More specifically, the CO2-

concentration varied, during the ice age cycles, between 180 and 300 ppm 

(IPCC 2007, p. 435).  

  2.   The increase of atmospheric CO2 from a pre-industrial concentration of 280 

ppm to 380 ppm in 2005 is caused by human activities, notably by the con-

sumption of fossil fuels (IPCC 2007, p. 25).  

  3.   CO2 is a greenhouse gas. Absorbing infrared light, it contributes to the natural 

greenhouse effect that heats the earth – as well as the planet Venus (Rahm-

storf    and Schellnhuber    2006, p. 32).  

  4.   Increasing the CO2-concentration is a major intervention into the global 

climate system, offsetting the earth’s radiative equilibrium and thus causing 

major readjustments of the climate system. These readjustments might 

consist in global warmi ng   or an increase of the earth’s albedo.  

  5.   Global average surface temperature has increased by roughly 0.6° during the 

last century. In the Polar Regions, where climate chan ge  , as a consequence of 

the ice albedo feedback, is expected to be more severe, surface temperature 

has been increasing at twice the rate of the rest of the world. (IPCC 2007, p. 37)  

  6.   Except for CO2, known forcings of the climate system exhibit no trend during 

the last decades of the 20 th  century. Therefore, at least the latest phase of 

observed global warmi ng   can be attributed to anthropogenic activities. 

(Rahmstorf    and Schellnhuber    2006, pp. 39–40)   
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 These findings alone might constitute a sufficient reason for considering climate 

cha nge   a serious global problem, which has to be addressed by suitable policies. 

That is why even a radical criticism of GCMs does not automatically lend support 

to the position of so-called climate scepti cs  , i.e. the position that the theory of 

anthropogenic climate ch ange   is simply made-up and does not call for any policy 

measures whatsoever. 

 This said, reliable Global  Climate Models would nevertheless be highly valu-

able for practical matters, as Lucarini    has rightly stressed, because there are some 

things we apparently cannot estimate without GCMs.  

2     Some relevant questions cannot be answered 
without GCMs 

 GCMs are required to specify 

   1.   the precise extent and timing of future  global warming;  

  2.   the regional patterns of future temperature and precipitation change;  

  3.   the precise degree to which human activity is responsible for already observed 

climate change;  

  4.   the detailed reconstruction of past climates from (sparse) proxy data.   

 With regard to the rational deliberation of alternative climate policy decisions, 

well-founded conditional predictions corresponding to the items 1 and 2 would 

obviously be extremely helpful. But can we reliably predict the climate? I under-

stand that Lucarini    cites three different uncertainties which prevent us from 

making accurate deterministic forecasts: ignorance about the precise initial con-

ditions, ignorance about future boundary conditions, and ignorance about the 

causal structure of the climate system, which corresponds – in climate science 

jargon  – to “structural uncertainty”. In his assessment of these uncertainties, 

Lucarini    seems to presuppose that the climate system exhibits sensitive depen-

dence on initial conditions. This prompts my first critical question.  

3    Is the climate chaotic? 
 Is the climate system chaotic; or, indeed, does an error in initial conditions grow 

exponentially when predicting the evolution of the climate system? This ques-

tion, I suggest, deserves a careful and differentiated consideration. Granted: The 
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weather is chaotic. But this does not entail that the climate, which is described in 

terms of  average  weather, depends sensitively on initial conditions, too. It seems 

to me an obvious fact that some physical systems are chaotic with regard to the 

microstates they realize, but behave non-chaotically regarding their macrostates 

(Think, e.g., of boiling water, which is, regarding the location of the first vapour 

bubble, chaotic, yet is not in terms of the mean temperature when bubbles start 

to form.). By the way, this is maybe the very reason why reduction of complexity 

(through devising highly aggregated models) can represent a successful research 

strategy. So, even if the weather is chaotic, the climate is not necessarily so, and in 

particular not necessarily with regard to all its state variables. As a philosopher, 

I am, of course, not in a position to answer the empirical question which climate 

variables depend sensitively on initial conditions. But I would like empirical sci-

entists to be more specific regarding the chaos hypothesis. Here is a suggestion 

for how the chaotic character of the climate system might be described in a more 

nuanced way: 

 –    Some large-scale climate processes such as the thermohaline circulation or 

the indian monsoon possess, under specific boundary conditions, several 

equilibria. In such situations, small perturbations might determine whether 

the respective subsystem ends up in one or the other stable state. These cli-

matic changes might be “abrupt” and trigger global effects (affecting, e.g. 

global precipitation or temperature patterns).  

 –   Whether, say, average precipitation in northern Germany in the decade 

 2100–2110 is going to be higher or lower than in the current decade (2000–

2010) possibly also depends on the precise climatic initial and boundary con-

ditions such as today’s radiative forcing, heat uptake of the ocean, state and 

interplay of atmospheric oscillations, etc.  

 –   But whether the emission of another 1000 GtC in the first half of this century 

causes the earth to warm, in 2100, by 10 or by 2 degree Celsius does not 

depend sensitively on today’s initial conditions.    

4    The  plurality   of GCMs 
 Of the three key uncertainties Lucarini    enumerated, namely (1) ignorance of initial 

conditions, (2) ignorance of boundary conditions, and (3) structural uncertainty, it 

is the last one which is responsible for the  plurality   of climate m odels   employed in 

climate science. Unlike in economics, however, climate scientists do understand 

the basic, small-scale processes in the climate system. The fundamental laws 

describing these processes, such as the Navier-Stokes equation, are well estab-
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lished. It is only because of limited computational resources that these equations 

cannot be solved for a system as huge as earth’s climate. The computational limi-

tations call for a description of climate processes on a more aggregate scale – and 

it is precisely on this meso-scale where the causal picture of the climate is still 

inadequate. When devising a GCM, climate scientists face, as a consequence, a 

couple of underdetermined choices, and different groups of modellers end up with 

different climate mo dels   (cf. Parker    2006; B etz   2009; Lenhard    and Winsberg    2010). 

 Thus, the 4AR relies for its major predictions as well as for the analysis of past 

climates on 23 different AOGCMs which are built and run by 17 institutions (IPCC 

2007, p. 597). These GCMs comprise sub models of the atmosphere, the ocean, 

sea ice and land. Their  resolutions range from 1,1°×1,1°–4°×5° with 56–12 vertical 

layers (where, at the equator, one degree of latitude equals a degree of longitude 

and amounts, roughly, to 111 km). 

 Given this  plurality   of models, the question whether one can empirically test, 

compare and rank these rival models arises quite naturally. This question will 

eventually lead us to one of Lucarini   ’s main points, namely the proposal of a new 

metric    for climate model evaluation.  

5     Epistemic evaluation of GCMs: the role of metrics 
 Regarding the epistemic assessment of GCMs, it is important to separate the fol-

lowing two questions: 

   (1)   What are the empirical implications of a climate model that ought to be con-

sidered during its epistemic assessment at all?  

  (2)   What exactly can one infer from the predictive and explanatory performance 

of a GCM regarding the relevant empirical indicators?   

 The second question pertains to the general methodology of the model assess-

ment: Should we try to falsify GCMs and refute those that, for example, give rise 

to false empirical retrodictions? Or do we have to construe the model evaluation 

along the lines of inductive modes of reasoning? Or should one assess the models 

in agreement with a hypothetico-deductive account of confirmation? – We will 

return to this second question below. 

 The first question concerns a more rudimentary issue, which has to be 

addressed before any kind of empirical assessment can be carried out. An answer 

to the first question, which somehow suggests itself, is to say: The empirical 

implication  E  is relevant if and only if  E  concerns climate variables the model 

is supposed to predict or to explain. And that is roughly what the IPCC assumes 
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(IPCC 2007, chapter 8). Accordingly, the aspects of the climate system considered 

in course of the model evaluation include regional mean surface temperature, the 

annual variability of surface temperatures, mean and annual variability of pre-

cipitation, patterns of cyclone activities, mean temperature and salinity structure 

of the ocean, strength and geometry of ocean circulations, the extent of sea ice, 

the severity and frequency of extreme weather events, large-scale processes such 

as the monsoon or El Niño, etc. 

 This  plurality   of relevant climate variables poses a potential problem for 

the assessment of GCMs since there is no climate model which outperforms its 

rivals in terms of empirical adequacy and with regard to all the different relevant 

aspects of the climate system. Every model has some strengths and some defi-

ciencies, and they typically differ from the strengths and deficiencies of its rivals 

(Heffernan    2010). 

 It is in this situation that climate scientists would like to devise a general 

quantity, which aggregates all the relevant aspects, and which allows one to 

express the overall empirical adequacy of a GCM in one single figure. Such an 

aggregated variable is also referred to as a metric   . The IPCC defines a metric    as 

a consistent measurement of an object’s or activity’s characteristic that is other-

wise difficult to quantify. (IPCC 2007, p. 949) 

 In its Third Assessment Report (TAR), published in 2001, the IPCC was unam-

biguous about any attempts to design a metric    that combines all relevant empiri-

cal implications of a GCM: 

  It has proved elusive to derive a fully comprehensive multi-dimensional “figure of merit” for 

climate mod els  . (IPCC 2001, p. 475)  

 In the 4AR, however, the IPCC has become a bit more optimistic, again: 

  The possibility of developing model capability measures (‘metrics’), based on the above 

evaluation methods, that can be used to narrow uncertainty by providing quantitative 

constraints on model climate projectio ns  , has been explored for the first time using model 

ensembles. While these methods show promise, a proven set of measures has yet to be 

established. (IPCC 2007, p. 60)  

 On this background, Lucarini    proposes his own,   process-oriented  metrics for 

model evaluation. As far as I understand, these metrics do not rely on policy-

relevant observational variables but try, rather, to capture the key processes of 

the climate system. They are supposed to describe, based on simulation results or 

on observational data, the central causal mechanisms that drive the (simulated 

or real) climate system – what Lucarini    also calls the “climatic machine”. This 

would enable us to differentiate, for example, between (a) GCMs that perform 
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well in regard of the reproduction of policy-relevant observational trends but do 

not get the underlying causal mechanisms right and (b) GCMs with a fairly good 

representation of key climate processes but a poor performance in terms of pol-

icy-relevant variables. 

 As a philosopher, I cannot judge whether Lucarini   ’s proposal is suited to 

capture some key climate processes. So that is something I take for granted in the 

following discussion. 

 Lucarini   ’s proposal raises the interesting question how the process-oriented 

m etrics   relate to the traditional ones based on fields of practical interest. I take 

it that Lucarini    does not mean to replace traditional metrics by one or several 

process-oriented ones. Still, I see a bunch of questions that deserve further dis-

cussion: 

 –    Should the process-oriented met rics   be the primary indicator for the reliabil-

ity of the predictions of a GCM? So, e.g., does the empirical inadequacy of a 

GCM in terms of a process-oriented metric    undermine the credibility of its 

policy-relevant predictions, even if the model performs well in terms of those 

policy-relevant variables?  

 –   What are the underlying assumptions that justify the expectation that the 

improvement of models in terms of process-oriented metri cs   leads, in the 

long run, to more accurate predictions in terms of policy-relevant variables?   

 These points inevitably lead us back to the question what at all one may infer 

from a good or bad performance of a GCM in terms of the relevant variables; that 

is back to the second question stated above.  

6    Interpreting multi-model ensembles 
 Every GCM has false empirical implications. This holds for policy-relevant impli-

cations as well as, I assume, for process oriented metrics. According to a falsifica-

tionist methodology, all GCMs would have to be rejected. The  ensemble   of GCMs 

the IPCC relies on can thus not be understood as comprising all models not yet 

falsified. Falsificationism is of no help to understand the status of GCMs and the 

way they are assessed given their empirical performance. 

 Lucarini    asserts that the model ensembles must not be interpreted probabi-

listically, either. (Yet, he seems to be ambiguous on this point, claiming in the 

concluding section that climate results “must be plural and stated in probabilistic 

terms”.) I wholeheartedly agree that the empirical implications of GCMs, as of 

today, cannot be used to derive a probabilistic interpretation of the model  ensem-
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ble   (see also B etz   2007; Parker    2010). Let me briefly sketch why: (1.) Assigning 

probabilities to different GCMs only makes sense in a subjectivist interpretation 

of probabilities. (2.) Climate data does not significantly constrain the posteriors, 

which still depend crucially on the prior probabilities. (3.) These priors are really 

arbitrary, because climate scientists do not possess sufficient tacit knowledge 

(of 21 st  century  climate change) to justifiably constrain the priors. Probabilistic 

studies in climatology rely on arbitrary, typically uniform priors. In particular, 

the catch-all hypothesis that a model not yet devised provides a correct analysis, 

is typically assigned the value zero. 

 This said, what does an  ensemble   of GCMs tell us? A group of climatolo-

gists from the Hadley Centre, who basically share the above diagnosis, have put 

forward an interesting proposal. In an article published in 2007, Stainforth    et al. 

suggest: 

  Today’s ensembles give us a lower bound on the maximum range of uncertainty. (Stain-

forth   , Alle n   et al. 2007, p. 2156)  

 So, in other words, whatever happens in a model simulation might actually 

happen in the future. Still, the future evolution of the climate system might also 

follow a dynamic that is not predicted by any GCM yet. That is, the range of possi-

ble evolutions of the climate syste m  , given our current understanding, comprises 

 at least  the predictions of the model  ensemble  . 

 This is arguably a very modest interpretation of the epistemic status of GCMs. 

I would say, however, that this is the correct interpretation. 

 One might wonder whether, according to this interpretation of model ensem-

bles, climate model s   are assessed in terms of their empirical implications at all. 

Is not the methodological outlook of Stainforth    et al. flawed, or at least incom-

plete, as long as it does not explain how GCMs are evaluated on the basis of rel-

evant climate data? We can address this challenge as follows: The empirical data 

regarding relevant climate variables already enters the process of constructing 

climate mode ls  . Model versions that perform definitely very poorly are excluded 

by so-called tuning. It is the calibration of model parameters that makes sure 

that only GCMs with a comparatively high empirical adequacy enter the model 

 ensemble  . And maybe it is exactly here, in the calibration process, where Luca-

rini   ’s process-oriented metri cs   might have a major role to play. But that remains 

a further open question.  
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7    Improving our epistemic situation 
 As a final remark, I would like to draw our attention to the question how to con-

strue scientific  advancement   given the specific interpretation of GCMs. Obvi-

ously, climate scientists should keep on trying to establish reliable and justified 

 probability   forecast, and succeeding in doing so would count as a major scientific 

breakthrough. But provided these attempts fail and the model  ensemble   remains 

merely a lower bound on the range of uncertainty, what sorts of changes count as 

improvement of our epistemic situation? What does scientific progress, in such a 

situation, mean at all? 

 Counter-intuitively, progress might consist in widening the range of models 

and their predictions. This could be achieved through devising ever new models, 

for instance by systematically varying all uncertain model assumptions and 

including ever new, relevant processes into the models. And that is, partly, what 

happens in the climate community. According to a recent News Feature in  Nature , 

some climate scientists expect that this process will lead to a significant exten-

sion of the span of climate predictions, proving the ranges of previous IPCC 

reports too narrow. 

  It’s very likely that the generation of models that will be assessed for the next IPCC report 

will have a wider spread of possible climate outcomes as we move into the future. (Jim 

Hurrell, National Center Atmospheric Research in Boulder, Colorado, quoted in (Heffernan    

2010, p. 1014))  

 Given the interpretation of model ensembles by Stainforth    et al., such an exten-

sion of the scenario range is nothing climate scientists should fear – but rather 

strive for.   

   References 
  Betz  , G. (2007). Probabilities in Climate Policy Advice: A Critical Comment.  Climatic Change  

85(1–2). 1–9.  
  Betz  , G. (2009). Underdetermination, Model-ensemble, and Surprises – On the Epistemology of 

Scenario-analysis in Climatology.  Journal for General Philosophy of Science  40(1). 3–21.          
Heffernan, O. (2010). The Climate Machine. Nature 463(7284). 1014–1016.
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the 

Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: 
Cambridge University Press.



 Chaos, Plurality, and Model Metrics in Climate Science       263

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group 
I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge; New York: Cambridge University Press.

Lenhard, J. & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model 
pluralism. Studies in History and Philosophy of Modern Physics 41(3). 253–262.

Parker, W. S. (2006). Understanding Pluralism in Climate Modeling. Foundations of Science 11. 
349–368.

Parker, W. S. (2010). Predicting weather and climate: Uncertainty, ensembles and probability. 
Studies in History and Philosophy of Modern Physics 41(3). 263–272.

Rahmstorf, S. & Schellnhuber, H. J. (2006). Der Klimawandel. München: C. H. Beck.
Stainforth, D. A., Allen, M. R., et al. (2007). Confidence, uncertainty and decision-support 

relevance in climate predictions. Philosophical Transactions of the Royal Society A – 
Mathematical Physical and Engineering Sciences 365(1857). 2145–2161.

    Jun.-Prof. Dr. Gregor  Betz   

 Karlsruhe Institute of Technology (KIT) 

 Institute of Philosophy 

 Kaiserstraße 12 

 Geb. 20.12 

 76131 Karlsruhe 

 Germany 

 gregor.betz@kit.edu    

        





Subject Index
action 9, 10, 19, 36, 37, 119, 124, 127, 128, 

131, 132, 133, 134, 135, 141, 142, 145, 
146, 147, 148, 195, 229

ad hoc modifications 185
analogy 48, 72, 93, 128, 129, 130, 131, 132, 

133, 134, 142
anomaly 24
a priori knowledge 190, 191, 197, 222, 223, 

225
audience 89, 91, 92, 93, 94, 107, 108

balances 188, 193, 199, 202, 205, 207, 230, 
237, 243

bootstrap model of confirmation 25

causality problem 22, 246
chemical engineering 7, 187, 201, 208, 212, 

221, 222
climate change 7, 232, 236, 241, 242, 243, 

246, 249, 250, 255, 256, 261
climate models 7, 85, 232, 233, 234, 235, 

236, 237, 238, 239, 240, 246, 248, 250, 
255, 256, 257, 258, 259, 261

climate projections 233, 247, 259
climate sceptics 256
climate variability 232, 236, 249
complex 1, 2, 4, 5, 6, 44, 48, 53, 55, 56, 62, 

63, 64, 76, 81, 87, 88, 94, 95, 103, 109, 
123, 125, 131, 134, 143, 153, 155, 173, 175, 
179, 184, 185, 187, 188, 197, 206, 208, 
209, 211, 212, 222, 229, 230, 231, 232, 
241, 243

computer simulation 1, 71, 87, 88
computing 196, 233, 236, 246, 249
consistency 21, 223, 236, 246
cortical dissociation 120
cosmic microwave background (CMB) 3, 11, 

14, 24
cosmological constant 18, 19, 20
cosmological term 18
coupling 33, 34, 37, 38, 65, 124, 135, 232, 233

dark energy 3, 18, 19, 20, 21, 23, 26, 71
data-driven 89

diachronic coherence 238
diffusion in liquids 7, 189, 200, 206
direction of fit 221
Duhem-Quine problem 89, 107
dynamical systems 160, 230, 243

efficiency 17, 241, 244, 245, 249
energy balance 244
ensemble 55, 236, 238, 239, 240, 260, 261, 

262
entropy 232, 244, 245, 249
error-in-variables estimation 199, 208
error-in-variables method 199
evaluative function 4, 23
evolutionary novelty 47
exoplanets 249
experimental validation 204, 206, 208, 210
explorative function 4, 23
extremal principle 9, 10, 11, 19

falsification 26, 169, 170, 180, 181, 238
falsificationism 160, 180, 181, 223
fluctuation-dissipation theorem 246, 249, 

250
functional definition 121, 130, 131
functional restructuring 121

gaits 32, 33, 34, 35, 39
geo-engineering 241, 242, 243
global warming 241, 255, 256
goodness of fit 6, 75, 153, 162, 164, 166, 167, 

168, 171, 174, 179, 181, 182

hallucinations 4, 36, 38, 39
horizontal comparison 239
Hubble constant 13

identifiability analysis 190, 199, 212
inflationary expansion 22, 27
interplay of experimental results and 

theoretical predictions 238
inverse problem 188, 190, 191, 198, 200, 

202, 209, 210, 211
irreversible processes 232



266       Subject Index

isolation 93, 100, 107
isotropy 11, 15, 16, 19, 20, 21, 26
iterative model identification strategy 192
iterative refinement strategy 189

kinetics 7, 189, 195, 197, 200, 201, 205, 206, 
212, 213, 221, 224, 225, 226

lesion 120
low-frequency variability 243

mathematical model 4, 29, 39, 43, 44, 45, 
47, 48, 49, 53, 55, 56, 74, 87, 163, 187, 
189, 190, 191, 213, 221, 222

mathematical models 44
maximum likelihood approach 196, 197
metric 10, 240, 258, 259, 260
model commentary 93, 94, 97, 101
model description 91, 92, 107
model discrimination 195, 198, 199
model-independent 25
modeling risks 98
model resolution 189
molecular structure 7, 223, 224, 225

natural selection 46, 47
negative evidence 24
neuronal selectivity 123, 124
non-equilibrium statistical mechanics 232, 

243, 246, 249, 250
non-equilibrium system 232, 246
normative approach 123, 124, 125, 126, 127
numerical methods 191, 200, 230

object identification 122, 126
object recognition 122, 123, 124, 125, 126, 

127, 128, 130, 131, 132, 134, 135, 141, 
142, 143

observables 236, 237
optimal design of experiments 190, 191, 198, 

200, 210, 212
organismal form 43, 45, 47, 48, 49

parameterization 199, 207, 233, 237, 244, 
247

parameter precision 197, 198, 199, 204
phase transitions 59, 63, 64, 72, 232

plurality 4, 7, 46, 255, 257, 258, 259
portable model structures 88
predictive analogies 128, 129, 130, 131, 135
principled division 117, 118, 120, 129
probability 61, 84, 154, 157, 160, 167, 168, 

171, 172, 174, 175, 240, 246, 262
process-oriented metrics 7, 237, 238, 259, 

260, 261
projections 238

qualitative methods 166
quality of fit 199, 203

range of possible evolutions of the climate 
system 261

reaction mechanism 7, 223, 224, 225, 226
reciprocal synchronic coherence 238
reductionist scientific method 230
redundancy reduction 123
reliability of data 6, 153, 166, 167, 174, 179, 

180
resemblance 12, 91, 92, 93, 94, 98, 100, 101, 

103, 107, 109, 181, 248
resolution 188, 191, 192, 193, 196, 198, 200, 

201, 204, 206, 209, 233, 234, 235, 237, 
258

response properties 123, 124, 125
reverse modeling 173
Ruelle response theory 246, 250

scientific advancement 262
sensory processing 117, 118, 119, 121, 123, 

124, 126
simple models 1, 56, 59, 60, 61, 62, 64, 82, 

95
simultaneous model identification (SMI) 

strategy 192, 196, 223
slowness 124, 126, 127
spatio-temporal symmetries 33, 34
stability 29, 30, 31, 123, 124, 125, 127, 141, 

174, 239, 243, 245
stochastic forcing 243, 250
strict laws 44
structural properties 121, 231
structural uncertainties 239, 248
structure-mapping theory 128
sub-models 195, 196, 198, 211



 Subject Index       267

substance concept 143, 144, 148, 149
surrogate object 87, 90, 91, 94, 97, 98, 100, 

104
surrogate reasoning 87, 88, 94
symmetry 3, 4, 10, 11, 12, 15, 19, 20, 21, 30, 

31, 33, 34, 37, 38, 39, 43, 45, 48, 49
symmetry-breaking 4, 29, 30, 36, 37, 39, 43, 

45, 48, 49

target object 87, 91, 92, 93
temporal coherence 124, 127
temporal contiguity 125
theory-driven 88
thermodynamics 7, 230, 232, 243, 245, 249
thin conception 225
time scale(s) 13, 17, 55, 124, 188, 230, 232, 

243, 246, 248

tipping point(s) 64, 72, 232, 245, 248, 
249

tractability 95, 103
transport in wavy falling film flows 189

unexpected predictions 153, 166, 168, 174, 
179, 181

unrealisticness 89, 96

validation 67, 236, 237, 248, 249
verification 168, 236
vertical comparison 239
visual definition 130, 131

world-experiments 248





Author Index
Acemoglu, D. 112
Adomeit, P. 209
Agarwal, M. 195
Akaike, H. 199, 204
Akerlof, G. 89, 111, 112
Albeverio, S. 63
Allen, M. 249, 261
Alsmeyer, F. 206
Amrhein, M. 201
Anderson, D. R. 189, 199, 208
Arsenin, V. Y. 202
Asprey, S. P. 191
Asselt, M. B. A. van 75

Bach, J. 119
Balakotaiah, V. 208
Barbas, H. 121
Bard, Y. 189, 196, 197, 203, 213
Bardow, A. 187, 188, 189, 199, 201, 202, 206, 

207, 208, 211, 214
Barker, F. G. 120
Barlow, H. B. 123
Barsalou, L. W. 142
Bartelmann, M. VI, 3, 9, 22, 23, 24, 25, 26
Bastin, G. 212
Beck, J. V. 213
Beer, R. D. 160
Bell, A. J. 124
Bentley, R. A. 73
Berkes, P. 125
Bertalanffy, L. von 55
Betz, G. VI, 7, 255, 258, 261, 263
Bhatt, N. 201
Biddle, J. 114
Biegler, L. T. 189, 197
Bird, R. B. 188, 206
Bischof, C. 212
Bishop, C. M. 126
Blaisdell, A. P. 118
Bonner, J. T. 47, 48
Bonvin, D. 203
Bothe, D. 206
Box, G. E. P. 60, 170, 175
Braitenberg, V. 119

Brakel, J. van 221, 222
Brandon, R. N. 48
Branstator, G. 250
Bremmer, F. 146
Brendel, M. 198, 200, 201, 204, 214
Bressloff, P. C. 36, 37, 38, 45
Britt, H. I. 199, 208
Brockfeld, E. 67
Buchwald, J. 222
Buono, P.-L. 34
Burnham, K. P. 189, 199, 208
Buss, L. W. 46

Calenbuhr, V. 72
Carpenter, B. 156, 223
Cartwright, N. 1, 3, 82, 114
Cassidy, J. 112
Cheng, Z. M. 196
Chumbley, J. I. 163
Colander, D. 101, 108, 112
Collins, J. J. 33
Comte, A. 53
Cowan, J. D. 36, 37, 38
Cowey, A. 120
Craighero, L. 145

Darwin, C. R. 46
Davidson, P. A. 62
DiCarlo, J. J. 125
Dobzhansky, T. 44
Dochain, D. 212
Dostrovsky, J. 125
Douglas, R. J. 121
Draper, N. R. 60
Drieghe, D. 157
Dubois, D. 75

Eckmann, J.-P. 243
Einhäuser, W. 125, 126
Einstein, A. 3, 10, 12, 17, 19, 20, 21, 60
Elster, J. 113
Engbert, R. VI, 6, 153, 154, 155, 158, 159, 161, 

162, 163, 164, 169, 170, 171, 173, 175, 
178, 179, 180, 181, 182, 183, 184, 185



270       Author Index

Engl, H. W. 198, 199, 200, 201, 207
Epstein, J. M. 57, 61, 63
Erdogan, S. T. 146
Essen, D. C. van 121, 123, 144, 146
Evans, T. 128
Everling, S. 173

Fadiga, L. 146, 148
Falkenhainer, B. 128
Farah, M. J. 120
Farmer, J. 89
Fehr, E. 74
Felleman, D. J. 121, 123, 144
Fernald, R. D. 117
Ferrari, R. 245
Ferreira, F. 157, 161
Festa, R. 84
Field, M. 44, 49, 124, 125
Findlay, J. M. 156
Fisher, D. L. 156
Floreano, D. 63
Földiak, P. 124
Fontana, W. 46
Fraassen, B. C. van 1, 2, 179
Fraedrich, K. 232, 249
Franceschini, G. 197
Franzius, M. 125, 126
Frege, G. 130
Frey, B. 74
Frigg, R. 1, 82
Froment, G. F. 212

Gähde, U. V, VI, 1
Gallavotti, G. 246
Gallese, V. 146
Galton, F. 61, 75
Garrigues, P. 124
Gentner, D. 128
Gibson, J. J. 135, 142
Giere, R. 1, 84, 91
Gigerenzer, G. 74
Gilbert, N. 63
Gilbert, S. F. 46
Gintis, H. 73
Glymour, C. 25
Gödel, K. 68
Golub, G. H. 202

Golubitsky, M. VI, 4, 29, 30, 31, 34, 37, 39, 
42, 43, 44, 45, 48, 49

Goodwin, W. 225
Gould, S. J. 46, 48
Grabner, E. 153
Grinvald, A. 145
Gritsun, A. 250
Groot, S. R. de 232, 243
Grüne-Yanoff, T. 111
Guala, F. 63
Gust, H. 129

Hacking, I. 1, 222
Hamilton, R. H. 9, 121
Hanke, M. 200
Hansen, P. C. 202
Hartmann, S. V, VI, 1, 2, 3, 5, 81, 82, 84, 86
Hasselmann, K. 243
Hastie, T. 195
Haxby, J. V. 123
Heffernan, O. 259, 262
Helbing, D. VI, 4, 5, 53, 54, 60, 61, 63, 64, 65, 

67, 69, 71, 76, 79, 81, 82, 83, 84, 85
Held, I. M. 232, 248
Henderson, J. M. 157, 161
Hendry, R. F. VI, 7, 221, 223, 227
Hesse, M. 1
Higham, D. J. 195
Hilgetag, C. C. 121
Hindriks, F. 93, 103
Hipp, J. 125
Hodgson, G. 102, 112
Hoffmann, M. VI, 6, 179, 186
Hoffmann, R. 226
Hofstadter, D. 128
Holyoak, K. 129
Horsthemke, W. 59
Hosten, L. H. 212
Huang, C. 198, 202
Huber, L. 118
Huey, E. B. 174
Hummel, J. 129
Hung, C. P. 123
Hyvärinen, A. 124

Indurkhya, B. 129
Inhoff, A. W. 157



 Author Index       271

Ishida, H. 146
Iyengar, S. S. 213

Jackson, M. 63
Jacobs, A. M. 157
Johnson, D. 232, 244
Juselius, K. 113
Just, W. 59

Kaas, J. H. 117, 146
Kagel, J. H. 63
Kahneman, D. 74
Karalashvili, M. 196, 199, 208, 209, 210, 

214
Kennedy, A. 163, 164
Kerr, P. W. 156, 157
Kesting, A. 67
Keysers, C. 146
Kietzmann, T. C. VI, 5, 117, 118, 139, 141
Kim, W. 166
Kirman, A. 112
Kirsch, A. 188, 199
Kitcher, P. 112, 114
Kittrell, J. R. 191, 212, 213
Kleidon, A. 232, 244, 245
Klein, D. J. 20, 125
Kliegl, R. VI, 6, 153, 155, 156, 157, 161, 162, 

169, 171, 174, 178, 179, 180, 181, 182, 
183, 184, 185

Klipp, E. 200
Knuuttila, T. 87
Kokinov, B. 129
König, P. VI, 5, 117, 124, 127, 139, 141, 142, 

149
Körding, K. P. 124, 125
Körkel, S. 198
Kriesten, E. 206, 208
Krüger, N. 127, 141
Krugman, P. 102, 103, 113
Kubo, R. 246
Kühnberger, K.-U. VI, 5, 117, 129, 139, 141
Kuhn, T. S. 26, 68
Kuorikoski, J. 88, 94

Lakatos, I. 6, 26, 168, 171, 180, 181, 183, 184
Lakoff, G. 146
Land, M. F. 117

Lawson, T. 110, 112, 113
LeCun, Y. 126
Lefever, R. 59
Lehtinen, A. 88, 94
Lenhard, J. 258
Lenton, T. M. 232, 245
Lerner, Y. 123
Leuridan, B. 113
Lewis, G. N. 226
Lewis, J. W. 146
Lewis-Williams, D. 36
Lewontin, R. C. 46, 48
Li, N. 125
Lohmann, T. 203
Longtin, A. 161
Lorenz, J. 68, 85
Lorenz, R. D. 232, 243, 244, 245, 246
Lovejoy, S. 236
Lovett, A. 130
Lucarini, V. VI, 7, 75, 230, 232, 239, 244, 245, 

246, 247, 248, 250, 253, 255, 256, 257, 
258, 259, 260, 261

Macchietto, S. 191, 197
Mahoney, A. W. 212
Mäki, U. VI, 5, 87, 88, 91, 93, 94, 96, 101, 

103, 106, 107, 108, 109, 110, 111, 112, 
113, 114

Marchionni, C. 94
Marini Bettolo Marconi, U. 250
Markus, M. 212, 213
Marquardt, W. VI, 6, 7, 187, 188, 189, 191, 

192, 195, 198, 199, 200, 201, 202, 210, 
211, 219, 221, 222, 223

Martin, A. 148
Martin, K. A. C. 121
Mason, R. L. 190, 197
Maye, A. 143, 146, 147
Mayergoyz, I. D. 59
Mayr, E. 44
Mazur, P. 232, 243
McCloskey, D. 113
McConkie, G. W. 156, 157
McDonald, S. A. 156, 162, 163, 164, 173
McLure, M. 130
Merabet, L. 121
Meza, C. E. 208



272       Author Index

Mhamdi, A. 202, 214
Mihm, S. 112
Mikhailov, A. S. 72
Miller, J. H. 63
Millikan, R. G. 143
Mönnigmann, M. 213
Morgan, M. S. 3, 87, 88, 179, 185
Morrison, M. 3, 84, 179, 183, 185
Moussaid, M. 64, 73
Mroczko-Wąsowicz, A. VI, 148, 152
Munoz, D. P. 173
Musgrave, A. 93
Myrvold, W. 82
Myung, J. I. 166

Navarra, A. 236, 248, 249
Navarro, D. J. 166
Neal, R. M. 175
Needham, P. 223
Neumann, J. von 103, 233
Niiniluoto, I. 84
Nilsson, D.-E. 117
Noe, A. 119
Nolfi, S. 63
Nuthmann, A. 153, 156

O’Hara, R. J. 48
Oja, E. 124
O’Keefe, J. 125
O’Leary, D. P. 202
Olshausen, B. A. 124, 125
Oort, A. 229, 232
O’Regan, J. K. 119, 156
Ormerod, P. 73, 112
Ozawa, H. 244

Page, S. E. 63
Parker, W. S. 258, 261
Pascale, S. 244
Pascual-Leone, A. 121
Pashler, H. 153, 162, 166, 167, 174, 179, 180, 

184, 185
Peixoto, J. 229, 232
Petrov, A. 129
Pietronero, L. 71
Pinto, N. 44, 45, 118
Pitt, M. A. 165, 166

Plessis, S. du 112
Pollatsek, A. 156, 157, 161
Pons, T. P. 146
Pope, S. B. 188
Popper, K. 65, 168, 180, 181, 191, 223
Prade, H. 75
Prausnitz, J. M. 195
Pronzato, L. 188, 190, 196, 197, 198, 199, 

200, 203
Pukelsheim, F. 188, 190, 197, 198, 200
Pulvermüller, F. 146, 147, 148

Quaiser, T. 190, 213
Quiggin, J. 98, 101
Quiroga, R. Q. 123

Radach, R. 156, 161, 173
Rahmstorf, S. 255
Ramirez, W. F. 212
Ramsay, J. B. 213
Ramsay, J. O. 212, 213
Rao, M. S. 213
Rappelsberger, P. 148
Rayner, K. 155, 156, 157, 161, 163, 169
Reddix, M. D. 157
Reichle, E. D. 156, 157, 161, 162, 163, 164, 

169, 173
Reilly, R. 156, 161, 173
Reiner, R. 48
Reinsch, C. H. 198, 207
Reiss, J. VI, 5, 111, 113, 114, 116
Renz, U. 209
Resnik, D. B. 48
Reydon, T. A. C. VI, 4, 43, 46, 51
Reymond, L. 117
Rice, S. H. 44
Richter, E. 156
Risse, S. 171, 175
Rizzolatti, G. 145, 146
Roberts, S. 153, 162, 166, 167, 174, 179, 180, 

184, 185
Rocke, A. 226
Rodríguez-Ferreiro, J. 148
Rolfs, M. 153
Romijn, R. 195
Roth, A. E. 63
Rotmans, J. 75



 Author Index       273

Roubini, N. 112
Rozzi, S. 146
Ruelle, D. 232, 239, 243, 246, 249, 250
Rumelhart, D. E. 126

Sadato, N. 121
Sahin, E. 146
Sarno, S. 232, 246, 247
Schad, D. J. 157, 161, 175
Schagen, A. 210
Schellnhuber, H. J. 255
Schertzer, D. 236
Schilling, H. E. H. 162, 163, 164, 167
Schittkowski, K. 189, 197
Schmidt, K. M. 74
Schmidt, T. 204
Schnitzler, A. 146
Schuster, H. G. 59
Schwering, A. 128
Sejnowski, T. J. 124, 125
Sen, A. 113
Shillcock, R. C. 156
Shiller, R. 89, 112
Shmuel, A. 145
Shukla, J. 248
Singer, W. 146
Sinigaglia, C. 146
Slattery, J. C. 157, 188
Smolin, L. 75
Sneed, J. D. 179
Sommerfeld, R. D. 21
Speranza, A. 230, 247
Sprekeler, H. 125
Stainforth, D. A. 261, 262
Stanley, H. E. 59, 63
Steeves, J. 120
Stegmüller, W. 179
Stewart, I. 29, 30, 33, 37, 39, 43, 44, 45, 48, 

49
Stewart, W. E. 199, 208
Stiglitz, J. 99, 100, 101, 112
Stoerig, P. 120
Strevens, M. 113
Suárez, M. 179
Sugden, R. 103, 114
Suppes, P. 1, 179
Sur, M. 121

Swinburne, R. 82
Sykes, P. 224, 226

Tacca, M. C. VI, 5, 148, 152
Tailleux, R. 245
Tanaka, K. 123
Taylor, R. 195, 213
Teller, P. 109
Thagard, P. 118
Tholudur, A. 212
Thompson, E. 47, 48, 49
Thünen, J. H. von 96
Tikhonov, A. N. 202
Tilman, D. 66
Timmer, J. 212
Traulsen, A. 67
Treiber, M. 67
Trevelyan, P. M. J. 208
Tversky, A. 74

Vajda, S. 197
Varela, F. 119
Verheijen, P. J. T. 189, 190, 195
Vespignani, A. 76
Vicsek, T. 71
Vitu, F. 156, 157
Voss, H. U. 212

Wahl, S. A. 196
Walker, R. 156
Walter, E. 188, 190, 196, 197, 198, 199, 200, 

203
Watanabe, S. 118
Weidlich, W. 63
Weisberg, M. 223
Weiskrantz, L. 120
Werbos, P. J. 126
Werning, M. VI, 5, 143, 144, 146, 147, 148, 

152
Wilke, W. 209
Williams, P. 233
Wimsatt, W. 110
Winsberg, E. 2, 114, 258
Wiskott, L. 124, 125
Woit, P. 75
Wolf, J. H. V, VI
Woodbury, K. A. 213



274       Author Index

Wunsch, C. 245
Wyss, R. 125

Xiao, Y. 145

Ylikoski, P. 113
Yuan, W. K. 196

Zeeman, E. C. 29, 59, 63
Zeki, S. 120
Zihl, J. 120
Zola, D. 157
Zwaan, R. 134






	9783110313680
	9783110313680
	ï»¿Preface�����������������
	Contributors�������������������
	Content��������������
	Introduction�������������������
	Cosmology – The Largest Possible Model?
	The Standard Model of Cosmology as a Tool for Interpretation and Discovery���������������������������������������������������������������������������������
	Patterns in Physical and Biological Systems��������������������������������������������������
	Symmetry and the Explanation of Organismal Form������������������������������������������������������
	Pluralistic Modeling of Complex Systems����������������������������������������������
	The Methodological Challenges of Complex Systems�������������������������������������������������������
	Contested Modeling: The Case of Economics������������������������������������������������
	A Unifying Approach to High- and Low-Level Cognition�����������������������������������������������������������
	High–vs Low–Level Cognition and the Neuro- Emulative Theory of Mental Representation
	Evaluating a Computational Model of Eye–Movement Control in Reading
	Considering Criteria for Model Modification and Theory Change in Psychology����������������������������������������������������������������������������������
	Identification of Kinetic Models by Incremental Refinement�����������������������������������������������������������������
	Kinetics, Models, and Mechanism��������������������������������������
	Modeling Complexity: The Case of Climate Science�������������������������������������������������������
	Chaos, Plurality, and Model Metrics in Climate Science�������������������������������������������������������������
	Subject Index��������������������
	Author Index�������������������



<<
  /ASCII85EncodePages true
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2540 2540]
  /PageSize [595.276 841.890]
>> setpagedevice




