

Certifications of Critical Systems –
The CECRIS Experience

RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE
AND TECHNOLOGY

Series Editors

K. C. CHEN SANDEEP SHUKLA
National Taiwan University Virginia Tech, USA
Taipei, Taiwan and

Indian Institute of Technology Kanpur, India

Indexing: All books published in this series are submitted to Thomson Reuters Book Citation
Index (BkCI), CrossRef and to Google Scholar.

The “River Publishers Series in Information Science and Technology” covers research which
ushers the 21st Century into an Internet and multimedia era. Multimedia means the theory
and application of filtering, coding, estimating, analyzing, detecting and recognizing, syn-
thesizing, classifying, recording, and reproducing signals by digital and/or analog devices or
techniques, while the scope of “signal” includes audio, video, speech, image, musical, multi-
media, data/content, geophysical, sonar/radar, bio/medical, sensation, etc. Networking suggests
transportation of such multimedia contents among nodes in communication and/or computer
networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implemen-
tation of wired/wireless networking are all within the scope of this series. Based on network and
communication science, we further extend the scope for 21st Century life through the knowl-
edge in robotics, machine learning, embedded systems, cognitive science, pattern recognition,
quantum/biological/molecular computation and information processing, biology, ecology, social
science and economics, user behaviors and interface, and applications to health and society
advance.

Books published in the series include research monographs, edited volumes, handbooks and
textbooks. The books provide professionals, researchers, educators, and advanced students in the
field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

• Communication/Computer Networking Technologies and Applications
• Queuing Theory
• Optimization
• Operation Research
• Stochastic Processes
• Information Theory
• Multimedia/Speech/Video Processing
• Computation and Information Processing
• Machine Intelligence
• Cognitive Science and Brian Science
• Embedded Systems
• Computer Architectures
• Reconfigurable Computing
• Cyber Security

For a list of other books in this series, www.riverpublishers.com

The NEC and You Perfect Together:
A Comprehensive Study of the

National Electrical Code

Gregory P. Bierals
Electrical Design Institute, USA

River Publishers

Certifications of Critical Systems –
The CECRIS Experience

Editors

Andrea Bondavalli

Consorzio Interuniversitario Nazionale per l’Informatica (CINI)
and University of Florence

Italy

Francesco Brancati

ResilTech Srl
Italy

Published 2017 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Certifications of Critical Systems – The CECRIS Experience / by Andrea Bondavalli, Francesco
Brancati.

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa business

ISBN 978-87-93519-56-5 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.

Contents

Preface xiii

List of Contributors xxi

List of Figures xxv

List of Tables xxix

List of Abbreviations xxxi

1 A Framework to Identify Companies Gaps When Introducing
New Standards for Safety-Critical Software 1

Andrea Ceccarelli and Nuno Silva

1.1 Introduction . 1
1.1.1 Contribution . 2

1.2 State of the Art on Gap Analysis in the ICT World 3
1.3 Overview of the Framework and Methodology 4

1.3.1 The Framework 5
1.3.1.1 Processes 5
1.3.1.2 Techniques and tools 6
1.3.1.3 Personnel 6

1.3.2 The Methodology to Exercise the Framework 7
1.4 Dataset Structure and Population 8

1.4.1 Dataset Structure 8
1.4.2 Population of the Dataset 10

1.5 Metrics for Gap Analysis 14
1.5.1 Qualitative Indications 14
1.5.2 Quantitative Indication 15
1.5.3 Driving Conclusions 16

v

vi Contents

1.6 Case Study and Gap Analysis for DO-178B 17
1.6.1 Matching of DO-178B Techniques and Company’s

Techniques . 17
1.6.2 Acquire Data from Personnel 18
1.6.3 Analyze the Data: Techniques 18
1.6.4 Analyze the Data: Tools 21
1.6.5 Conclusive Recommendations and Feedbacks 22

1.7 Discussion about the Gap Analysis Framework 23
1.7.1 An Application to the Moving Process 23
1.7.2 Time and Cost . 24
1.7.3 Effectiveness and Reactions 24
1.7.4 Replacement Techniques 25
1.7.5 Different Approaches to Compliance 25
1.7.6 Questionnaire Assessment and Bias 26

1.8 Conclusions . 26
References . 27

2 Experiencing Model-Driven Engineering for Railway
Interlocking Systems 31

Fabio Scippacercola, András Zentai and Stefano Russo

2.1 Introduction . 31
2.2 Background: MDE . 32

2.2.1 MDA Viewpoints and Views 35
2.3 The Maturity of MDE . 36
2.4 A Model-Driven Methodology for Prolan 40

2.4.1 Experimentation within A Pilot Project 45
2.4.2 System Requirements Specification 45
2.4.3 System Design . 48
2.4.4 Component Design 50

2.4.4.1 Implementation 51
2.4.5 Validation Design 52
2.4.6 Integration Verification Design 52
2.4.7 Component Verification Design 53
2.4.8 Model-Driven V&V Subprocess 54

2.5 Environment System Validation 55
2.6 Experimenting the CIT . 56
2.7 Lesson Learned . 58

References . 59

Contents vii

3 SYSML-UML Like Modeling Environment Based on Google
Blockly Customization 65

Arun Babu Puthuparambil, Francesco Brancati,
Andrea Bondavalli and Andrea Ceccarelli

3.1 Introduction . 65
3.1.1 Goal . 66
3.1.2 Blockly Customization 66
3.1.3 Model Transformation 66
3.1.4 Requirements Management 67
3.1.5 MDE Flow . 67
3.1.6 Guiding and Warning Users 69
3.1.7 Modular Design and Viewpoints 71
3.1.8 Model Querying 73
3.1.9 Code Generation and Export to PlantUML 74
3.1.10 Simulation . 76
3.1.11 Conclusion and Future Work 76

4 A Process for Finding and Tackling the Main Root Causes
that Affect Critical Systems Quality 81

Nuno Silva, Francisco Moreira, João Carlos Cunha
and Marco Vieira

4.1 Introduction . 81
4.2 Background . 83

4.2.1 Orthogonal Defect Classification 84
4.2.2 Independent Software Verification and Validation

(ISVV) . 85
4.2.3 Related Work . 86

4.3 Defects Assessment Process 87
4.3.1 Procedure Prerequisites 88
4.3.2 Defects Classification 88
4.3.3 Defects Root Cause Analysis 89
4.3.4 Improvements and Validation 90

4.4 Results . 90
4.4.1 Characterization of the Systems 91
4.4.2 Defects in the Dataset 92
4.4.3 Enhanced ODC Results 92
4.4.4 Enhanced ODC Defect Impact Analysis 94

viii Contents

4.4.4.1 Type vs. Impact 95
4.4.4.2 Trigger vs. Impact 96

4.4.5 Consolidation of the Root Cause Analysis
and Proposed Improvements 97

4.5 Conclusions . 100
References . 100

5 Framework for Automation of Hazard Log Management
on Large Critical Projects 103

Lorenzo Vinerbi and Arun Babu Puthuparambil

5.1 Introduction . 103
5.1.1 Brief Introduction on DOORS 104

5.2 Approach . 105
5.3 Case Study . 110
5.4 Conclusion . 111
5.5 Tool Screenshots . 112

References . 115

6 Cost Estimation for Independent Systems Verification
and Validation 117

András Pataricza, László Gönczy, Francesco Brancati,
Francisco Moreira, Nuno Silva, Rosaria Esposito,
Andrea Bondavalli and Alexandre Esper

6.1 Introduction . 118
6.1.1 ISVV Workflow 118
6.1.2 Objectives . 120
6.1.3 Approach . 121

6.2 Construction of the ISVV Specific Cost Estimator 121
6.2.1 Structure of the Cost Predictor 122
6.2.2 Cost Drivers . 123
6.2.3 Focal Problems in Predicting Costs for ISVV 123
6.2.4 Factor Reusability for ISVV-Related CE 124
6.2.5 Human and Organizational Factors 125
6.2.6 Motivating Example: Testing 126

6.3 Experimental Results . 127
6.3.1 Faithfulness of the Results 127
6.3.2 Sensitivity Analysis 129
6.3.3 Pilot Use Case for Project Management 131

Contents ix

6.4 Case Studies . 132
6.4.1 Complexity Factors 132
6.4.2 Cost Impact of Requirement Management 134
6.4.3 Automated Analysis for Factor Selection 135
6.4.4 Quality Maintenance Across Project Phases 136
6.4.5 Fault Density and Input Complexity 138

6.5 Conclusions . 139
References . 140

7 Lightweight Formal Analysis of Requirements 143

András Pataricza, Imre Kocsis, Francesco Brancati,
Lorenzo Vinerbi and Andrea Bondavalli

7.1 Introduction . 143
7.2 Objective . 144
7.3 ReqIF and Modeling . 145

7.3.1 Domain Conceptualization 148
7.3.2 Integration with Existing Practice of ISVV 150

7.4 Requirement Change Propagation 152
7.4.1 Original Specification 152
7.4.2 Changed Specification 154
7.4.3 The Change Impact Propagation Method 154

7.5 Abstraction Levels of Impact Propagation 156
7.5.1 Topology-Based Propagation 158
7.5.2 Type-Based Propagation 158
7.5.3 Value-Based Propagation 160

7.6 Resolution Modeling with CSP 161
7.7 Conclusions . 163

References . 165

8 STECA – Security Threats, Effects and Criticality Analysis:
Definition and Application to Smart Grids 167

Mario Rui Baptista, Nuno Silva, Nicola Nostro,
Tommaso Zoppi and Andrea Ceccarelli

8.1 Introduction . 167
8.2 Motivation . 168

8.2.1 Motivating Concerns in Industry 168
8.2.2 State of the Art and Background 170

8.3 STECA Process Description 171

x Contents

8.3.1 The High Level STECA 171
8.3.2 STECA Inputs . 172
8.3.3 Security Vulnerabilities 172
8.3.4 Threats Map . 174
8.3.5 Risk Assessment and Attack Severity 176
8.3.6 STECA Recommendations 178

8.4 Conclusion . 181
References . 181

9 Composable Framework Support for Software-FMEA
through Model Execution 183

Valentina Bonfiglio, Francesco Brancati, Francesco Rossi,
Andrea Bondavalli, Leonardo Montecchi, András Pataricza,
Imre Kocsis and Vince Molnár

9.1 Introduction . 183
9.2 Software-FMEA Using fUML/ALF 184

9.2.1 Tooling for fUML and Alf 185
9.2.2 Software-FMEA through Alf Execution 185
9.2.3 Framework Support for Executable Error

Propagation . 186
9.2.4 Error Tokens, Component Activation 186
9.2.5 Execution Orchestration 188
9.2.6 Fault Injection . 189

9.3 Case Study: Application of Software-FMEA
through Model Execution 189
9.3.1 Definition of the Modelled System 189
9.3.2 Process Evaluation 193

9.4 Implementation in a Blockly-based Modelling Tool 195
9.4.1 Preparation of the Model 195
9.4.2 Aggregation and Analysis of Traces 197

9.5 Concluding Remarks . 199
References . 199

10 A Monitoring and Testing Framework for Critical
Off-the-Shelf Applications and Services 201

Nuno Antunes, Francesco Brancati, Andrea Ceccarelli,
Andrea Bondavalli and Marco Vieira

10.1 Introduction . 202
10.2 Framework Architecture 204

Contents xi

10.2.1 Instrumented System (IS) 205
10.2.2 Test and Collect . 206

10.3 Implementation Details . 209
10.3.1 Instrumented System (IS) Implementation 209
10.3.2 Test and Collect Implementation 210

10.3.2.1 Functional and stress testing 211
10.3.2.2 Robustness testing and penetration

testing 212
10.3.2.3 Data storage and analysis tools 212

10.4 Demonstration . 213
10.4.1 Case Study: Life Ray Web Services 214

10.4.1.1 Tests performed 214
10.4.1.2 Tests results 216

10.4.2 Case Study: SHAPE 220
10.4.2.1 Monitoring environment adaptation 220
10.4.2.2 Tests performed 221

10.5 Conclusion . 222
References . 223

11 Validating a Safety Critical Railway Application Using Fault
Injection 227

Ivano Irrera, András Zentai, João Carlos Cunha
and Henrique Madeira

11.1 Introduction . 227
11.2 Fault Injection for V&V and Certification 229

11.2.1 Standards for Safety-critical Railway
Applications . 230

11.2.2 Fault Injection . 231
11.3 The ProSigma Safety-critical Railway Interlocking

System . 232
11.3.1 Concepts of Generic Product, Generic Application

and Specific Application 232
11.3.2 The System Architecture and Functionality 233

11.3.2.1 Logic and Input (LI) card 234
11.3.2.2 ETH card 236
11.3.2.3 RPI card 237
11.3.2.4 Power Supply Units 237
11.3.2.5 Diagnostic centers 238
11.3.2.6 Parameter modules 238

xii Contents

11.3.3 System’s Critical Aspects Worth to Study
Using FI . 238

11.4 The ProSigma FI Framework 238
11.4.1 Fault Injector Framework Architecture

and Functionalities 239
11.4.2 The ProSigma FI Tool (ProSigma-FIT) 240

11.5 ProSigma Safety Assessment Through FI: Experiments
and Results . 241
11.5.1 Safety Assessment of the Prosigma System:

Experimental Setup 242
11.5.2 Results . 242

11.6 Conclusion . 245
References . 245

12 Robustness and Fault Injection for the Validation
of Critical Systems 247

Nuno Laranjeiro, Gonçalo Pereira, Seyma Nur Soydemir, Raul Barbosa,
Jorge Bernardino, Cristiana Areias, Nuno Antunes, João Carlos Cunha,
Marco Vieira and Henrique Madeira

12.1 Introduction . 247
12.2 Related Work . 250
12.3 Robustness Testing and Fault Injection for the Robustness

Evaluation of Services . 254
12.3.1 Robustness Testing with wsrbench and PDInjector 255
12.3.2 Emulating Software Faults with ucXception 258

12.4 Case Studies . 260
12.4.1 External Interface Testing: Case Study #1 261
12.4.2 Inner Interface Testing: Case Study #2 262
12.4.3 Injecting Software Faults in Service Middleware:

Case Study #3 . 265
12.4.4 Results for Case Study #3 266

12.5 Conclusion . 270
References . 270

Index 275

About the Editors 277

Preface

The rapid spread of critical systems raises new challenges from multiple
aspects. The functionality embedded into critical systems is a major driver
of efficient and economic operation of a variety of societal services ranging
from traffic control to health care, but at the same time, the vulnerability of
the society to malfunctioning equipment reaches a critical level both in the
terms of risks to the human life and huge economic impacts. The rapid devel-
opment of underlying technologies implies a huge challenge to this industry
which followed for decades a safety driven conservative approach. This way,
a uniform approach to the development, validation and verification is an
important factor in the Europe wide integration of services as emphasized
for instance by the creation of the ARTEMIS European Technology Platform
on the side of technology. On the human skill side, the dissemination of the
best industrial practices and appropriate training is a key enabling factor for
this unification process.

All over Europe there is a significant lack of skilled workforce related to
critical embedded systems.

Traditional V&V methods frequently exceed effort needed for the core
development time, and while the “soft” IT industry rapidly turns to sys-
tem integration based on the reuse of high volume hardware and software
components, for safety related applications this will still evolve.

All this poses serious difficulties to companies, which are on one hand
constrained to meet predefined quality goals, whereas, on the other hand,
are required to deliver systems at acceptable cost and time to market. Large
companies mainly follow a brute-force approach by focused large volume
investment into tooling and in-house training, but even high-tech SMEs are
highly vulnerable to the new challenges.

Looking at the field of the Verification and Validation one of the most
challenging goals is the definition of methods, strategies and tools able to vali-
date a system adequately, while simultaneously keeping the cost and delivery
time reasonably low. It is not easily possible to establish a proper balance
between achievable quality with a particular technique (in terms of RAMS

xiii

xiv Preface

attributes) and the costs required for achieving such quality. The situation
is even worse in the case of integration of existing SW in a safety critical
system to be certified, since, assessing products which encompass COTS
software is a challenge although modern standards consider this possibility.
An additional concern is the usage of recently adopted methods for SW
development like model based ones, since the certification of systems using
software developed with these supports is at the limit of the applicability of
the existing standards, and only the most recent ones are aligned with these
‘modern’ methods.

This book documents the main insights on Cost Effective Verification
and Validation processes that we gained during our work in the European
Research Project CECRIS (acronym for Certification of Critical Systems).
The objective of this research was to tackle the challenges of certification
by focusing on those aspects that turn out to be more difficult and or
important for current and future critical systems industry: the effective use
of methodologies, processes and tools.

The CECRIS project took a step forward in the growing field of devel-
opment, verification and validation and certification of critical systems. It
focused on the more difficult/important points of (safety, efficiency, business)
of critical system development, verification and validation and certification
process. The scientific objectives of the project were to study both the
scientific and industrial state of the art methodologies for system develop-
ment and the impact of their usage on the verification and validation and
certification of critical systems. Moreover the project aimed at developing
strategies and techniques supported by automatic or semi-automatic tools
and methods for these types of activities, whose cost-quality achievements
are well-predictable in order to tie costs of application of techniques to the
RAMS attributes level achieved by the product being tested. The project
set guidelines to support engineers during the planning of the verification &
validation phases.

The Project Consortium was composed by three academic partners and
three companies:

1. CINI-Consorzio Interuniversitario Nazionale per l’Informatica
2. Resiltech S.r.l.
3. Universidade de Coimbra
4. Budapesti Muszaki es Gazdasagtudomanyi Egyetem
5. Prolan Iranyitastechnikai Zartkoruen Mukodo Reszvenytarsasag
6. CRITICAL Software SA

Preface xv

The CECRIS project has given to the partners the opportunity of sharing
their industrial-academic expertise and experiences and to develop fruitful
collaborations and research products. Through the ‘Transfer of Knowledge’
activities, industrial partners have had the opportunity to better know, evaluate
and apply new research methods, while the academic partners could get from
industry valuable feedback, better understanding the industrial problems and
needs.

Several synergies that have been established during the secondments, are
now in place beyond the project termination for exploiting further potential
strategic research activities. Moreover, the collaborations for the maintenance
and improvement of the project tools developed during CECRIS will last
for years, since these tools support the overall V&V process and reduce the
certification costs of safety-critical systems.

It is the objective of this book to collect the main project results in terms
of methodologies and processes and to propose them in a single edited book.

The first part of the book is related to certification processes. Chapter one
presents an easy-to-use framework and a supporting methodology to perform
a rapid gap analysis on the usage of standards for safety-critical software,
being them new ones to be introduced or standards already applied. In other
words, the framework can be applied to reason in terms of “changing stan-
dard” or in terms of “introducing a new standard”. The ultimate objective is to
discover with limited effort how far a company is from acquiring sufficient the
necessary and sufficient level of knowledge to apply a specific standard. Our
approach is based on the concept of rating the knowledge available: it starts
from an understanding of the expertise of a company, and it rates the improve-
ments, in terms of training, needed to reach an adequate level of confidence
with the techniques and processes required in the standard. Our approach
can be applied to an entire standard, a part of it, or to individual techniques
and tools. Thus, our framework offers the possibility to depict the status of
the knowledge available in the company, which may offer valuable insights
on the areas that are mostly covered, and where potential improvements are
possible. The approach can indicate the introduction time, which estimates
the overall training time required to introduce a new standard.

The second part of the book focuses on model-driven methodologies.
For a company being competitive on the market, following technologies and
being updated with new trends and practices is essential. In safety-critical
domains, the introduction of new practices and methodologies is slower
than in other engineering fields, since safety standards and long established
practices tend to defer the adoption of new emerging technologies, until

xvi Preface

assessments and time reveal them mature and safe enough. Slow introduction
of new methods is especially characterizing the railway domain where the
lifespan of products could easily reach decades or even a century. Now it
is long time that Model-Driven Engineering techniques and tools have been
proposed, but their maturity – especially for safety-critical systems – is still
debated. Some recent surveys investigated the adoption of MDE methodolo-
gies and technologies in practice. They revealed the increasing adoption of
MDE in industry. The technology is attractive for the development of critical
systems, since it can speed up the activities of Verification and Validation
(V&V), and it enables the early verification of systems, through techniques
such as model reviews, guideline checkers, rapid control prototyping and
model- and software-in-the-loop Tests. These techniques shift the cost of
development from the phases of V&V to the ones of requirement analysis
and design, thus leading to benefits in terms of residual errors. Compa-
nies not performing model-in-the-loop testing find almost 30% more errors
during module test. Chapter two reports the results of a twelve months
industrial-academic partnership for the transfer of knowledge of MDE tech-
niques from the academy to one of the company involved in the project,
with the goal of assessing their level of maturity for industrial adoption.
During this activity, it emerged the lack of well-defined processes for the
development of a CENELEC SIL-4 safety critical signaling system that was
suited for the real industrial needs.

In Chapter three focuses on the issues related to the lack of expertise in
CS/OO/SysML formalisms that often lead to the need of a lot of training and
support to use the modeling tools. Ideally, designers should spend all their
effort on modeling and nothing else. However, existing modeling tools have
lot of issues related to installation and plug-ins. The use of Google Blockly
was envisaged for modeling and simulation of systems. Blockly is a visual
programming library, used to model/program using interlocked blocks. Each
of the blocks also supports traditional input widgets such as labels, images,
textbox, checkbox, combo box, etc. It can be configured in such a way that
only compatible blocks can be connected together (i.e. can be made “valid
by design”). Blockly supports code and XML generation, and requires only
a modern web browser which can be run on any device or operating system.
However, Blockly was not readily usable for modeling using SysML/UML
like formalisms. A lot of changes and customizations were made in Blockly
to make it more suitable for such type of modeling.

The Third part of this book composed of Chapters four, five, six and
seven, deals with V&V and quality processes.

Preface xvii

Chapter four presents a process for finding and tackling the main root
causes that affect critical systems quality. Following standards and applying
good engineering practices during software development is not enough to
guarantee defects free software, thus additional processes, such as Indepen-
dent Software Verification and Validation (ISVV), are required in critical
projects. The objective of ISVV is to provide complementary and indepen-
dent assessments of the software artifacts in order to find residual defects
and allow their correction in a timely manner. Independence is the most
important concept of ISVV and it has been referred to and used in safety-
critical domains such as civil aviation (DO-178B), railway signaling systems
(CENELEC), and space missions (European Cooperation for Space Stan-
dardization – ECSS). However, such systems are still far from being perfect
and it is common to hear about software bugs in aeronautics, train accidents
caused by software problems, satellite systems that need to be patched after
launch, and so on. This chapter presents an analysis on trends, common (and
uncommon) problems and their causes, and looks at the general picture of
critical defects within the software development lifecycle of space systems,
considering a dataset of 1070 defects. The results are intended to help
engineers in tackling the problems starting from the most frequent ones,
instead of dealing with them one by one, as is traditionally done in industry
nowadays. In practice, this work brings light to the main root causes of issues
in space projects, which were identified, based on the defects classification
and on relevant expert knowledge about those defects and about the software
development process, contributing towards proposing improvements to the
processes, methodologies, tools, standards and industry culture.

Chapter 5 describes a framework for automation of hazard log manage-
ment on large critical projects. A hazard is any situation that could cause harm
to the system or lives. Hazards depend on the system and its environment,
and the probability of the hazard to cause harm is known as risk. Hazards are
analyzed by identifying their causes and the possible negative consequences
that might ensue. This chapter describes a modular and extensible way to
specify rules for checks locally at the stake-holder side, as well as while
combining data from various parties to form the hazard log (HL). The HZ-
LOG automatization tool simplifies the process of hazard data collection on
large projects to form the hazard log while ensuring data consistency and
correctness. The data provided by all parties are collected using a template
containing scripts to check for mistakes/errors based on internal standards of
the company in charge of the hazard management. The collected data is then

xviii Preface

subjected to merging in DOORS, which also contain scripts to check and
import data to form the hazard log.

Chapter 6 instead deals with cost estimation for independent systems
verification and validation. Validation, verification and especially certification
are skill and effort demanding activities which are typically performed in an
independent way by specialized small and medium enterprises. Prediction of
the work needed to accomplish them is crucial for the management of such
projects, which is by its very nature heavily depending on the implementation
of the V&V process and its support. Process management widely uses cost
estimators in planning of software development projects for resource allo-
cation. Cost estimators use the scoring of a set of cost influencing factors,
as input. They use extrapolation functions calibrated previously on measures
extracted from a set of representative historical project records. These pre-
dictors do not provide reliable measures for the separate phases of V&V and
certification in safety critical projects. The current chapter summarizes the
main use cases and results of an activity focusing on these particular phases.

Chapter 7 addresses lightweight formal analysis of requirements which
are the core items of the design (and Validation) workflow of safety critical
systems. Accordingly, their completeness, compliance with the standards and
understandability is a dominant factor in the subsequent steps. Requirements
review is a special kind of Independent Software/Systems Verification and
Validation (ISVV). The chapter presents methodologies to use lightweight
formal methods supporting experts in a peer review based ISVV.

Part four of this book, composed of chapters eight and nine, deals with
particular phases of V&V processes known as FMEA & FMECA.

Chapter 8 describes STECA which stands for “Security Threats, Effects
and Criticality Analysis” and its application to a Smart Grids scenario. The
STECA approach is meant to perform security assessment and the chap-
ter explains the process proposed to identify vulnerabilities, their related
threats, a risk assessment approach and finally a path to identify appropriate
countermeasures. This process is based on the same principles used for
the FMEA/FMECA process, widely used for safety critical analysis and
highly regarded by the majority of international standards. STECA starts
from a vulnerability point of view and moves on towards threat analysis and
criticality assessment. Following the guidelines defined, the approach is then
instantiated on a Smart Grid use case, resulting in a set of precise guidelines
and a systematic way to perform security assessment including vulnerability
evaluation and attack impact analysis.

Preface xix

Chapter 9 describes a composable framework support for Software-
FMEA through Model Execution. Performing Failure Mode and Effects
Analysis (FMEA) during software architecture design is becoming a basic
requirement in an increasing number of domains. However, due to the
lack of standardized early design-phase model execution, classic Software-
FMEA (SW-FMEA) approaches carry significant risks and are human
effort-intensive even in processes that use Model-Driven Engineering.

From a dependability-critical development process point of view, FMEA
should be performed in the early phases of system design; for software, this
usually translates to the architecture design phase. Additionally, for some
domains, standards prescribe the safety analysis of the software architecture –
as is the case e.g. with ISO 26262 in the automotive domain. Significant risk
is introduced by the fact that the error propagation assumptions usually made
at this stage have to hold for the final system – otherwise the constructed
hazard mitigation arguments will not hold. This chapter addresses SFMEA
based on a new standard for UML 2 modeling language. Throughout the
chapter, the reader will be introduced to i) advances in standardized model
execution semantics, ii) the outline of a composable framework built on top of
executable software architecture models to help SW-FMEA, iii) a realization
of such a framework applied on a case study from the railway domain.

The last part of this book, Part five, contains contributions developed
in CECRIS related to Robustness and Fault injection and is composed of
3 chapters.

Chapter 10 describes a monitoring and testing framework for critical
off-the-shelf applications and services. One of the biggest verification and
validation challenges is the definition of approaches and tools to support
systems assessment while minimizing costs and delivery time. Such tools
reduce the time and cost of assessing Off-The-Shelf (OTS) software com-
ponents that must undergo proper certification or approval processes to be
used in critical scenarios. In the case of testing, due to the particularities
of components, developers often build ad-hoc and poorly-reusable testing
tools, which results in increased time and costs. This chapter introduces
a framework for testing and monitoring of critical OTS applications and
services. The framework includes i) a box instrumented for monitoring OS
and application level variables, ii) a toolset for testing the target components
and iii) tools for data storing, retrieval and analysis. The chapter presents
an implementation of the framework that allows applying, in a cost-effective
fashion, functional testing, robustness testing and penetration testing to web

xx Preface

services. Finally, the framework usability and utility is demonstrated based
on two different case studies that also show its flexibility.

Chapter 11 is about the validation of a safety critical railway applica-
tion using fault injection. This chapter will summarize the fault injection
experiments performed with the ProSigma system. It will include a detailed
description of the system, fault injection test goals, description of the fault
injection tool, the results of the FI tests, etc.

Chapter 12 is concerned with robustness of complex Critical Systems.
Systems are nowadays being deployed also as services or web applications,
and are being used to provide enterprise-level business-critical operations.
These systems are supported by complex middleware, which often links
different systems, and where a failure can bring in disastrous consequences
for both clients and service providers. In this chapter we present a toolset
that can be used to evaluate the robustness of a given system, under the
following two different perspectives: i) executing robustness tests against the
service’s external interface (e.g., the interface with business clients) and also
inner interfaces (e.g., the application-database interface); ii) emulating the
presence of source code defects, on the service middleware, to understand
how the presence of a defect can affect the robustness of the overall system.
The toolset has been demonstrated on a set of web services, an Enterprise
Resource Planning web application, and on the popular Apache HTTP server.
Results show that the toolset can be easily used to disclose critical problems in
web applications and to support middleware, helping developers in building
and validating more reliable services.

Although the chapters of the book are arranged in a logical order, an effort
has been made to keep each chapter self-contained. This book can be used for
supplemental reading for advanced teaching on Critical systems validation
and verification methodologies.

Andrea Bondavalli

Francesco Brancati

List of Contributors

Alexandre Esper, CRITICAL Software S.A., Coimbra, Portugal

András Pataricza, Dept. of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

András Zentai, Prolan Process Control Co., Szentendrei út 1–3, H-2011
Budakalász, Hungary

Andrea Bondavalli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Andrea Ceccarelli, 1) Department of Mathematics and Informatics, Univer-
sity of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Arun Babu Puthuparambil, Robert Bosch Center for Cyber Physical
Systems, Indian Institute of Science, Bangalore, India

Cristiana Areias, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Fabio Scippacercola, 1) DIETI, Università degli Studi di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Francesco Brancati, Resiltech s.r.l., Pontedera (PI), Italy

xxi

xxii List of Contributors

Francesco Rossi, Resiltech s.r.l., Pontedera (PI), Italy

Francisco Moreira, CRITICAL Software S.A., Coimbra, Portugal

Gonçalo Pereira, CISUC, Department of Informatics Engineering, Univer-
sity of Coimbra, Portugal

Henrique Madeira, CISUC, Department of Informatics Engineering, Uni-
versity of Coimbra, Portugal

Imre Kocsis, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

Ivano Irrera, CISUC, Department of Informatics Engineering, University of
Coimbra, Portugal

João Carlos Cunha, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Jorge Bernardino, 1) CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal
2) ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

László Gönczy, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

Leonardo Montecchi, 1) Department of Mathematics and Informatics,
University of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Lorenzo Vinerbi, Resiltech s.r.l., Pontedera (PI), Italy

Marco Vieira, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Mario Rui Baptista, CRITICAL Software S.A., Coimbra, Portugal

List of Contributors xxiii

Nicola Nostro, Resiltech s.r.l., Pontedera (PI), Italy

Nuno Antunes, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Nuno Laranjeiro, CISUC, Department of Informatics Engineering, Univer-
sity of Coimbra, Portugal

Nuno Silva, CRITICAL Software S.A., Coimbra, Portugal

Raul Barbosa, CISUC, Department of Informatics Engineering, University
of Coimbra, Portugal

Rosaria Esposito, Resiltech s.r.l., Pontedera (PI), Italy

Seyma Nur Soydemir, CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal

Stefano Russo, 1) DIETI, Università degli Studi di Napoli Federico II, Via
Claudio 21, 80125 Napoli, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Tommaso Zoppi, 1) Department of Mathematics and Informatics, University
of Florence, Florence, Italy
2) CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Valentina Bonfiglio, Resiltech s.r.l., Pontedera (PI), Italy

Vince Molnár, Dept. of Measurement and Information Systems, Budapest
University of Technology and Economics, Budapest, Hungary

http://taylorandfrancis.com

List of Figures

Figure 1.1 Overall view of the gap analysis framework. 5
Figure 1.2 EER structure of the database. 8
Figure 1.3 Example of roles organization in a critical software

company. 12
Figure 1.4 Involvement of the different roles in avionics

standards. 13
Figure 2.1 A representation of the Prolan Block and its

operating environment. 40
Figure 2.2 Software Development Life Cycle according

to EN 50128. 42
Figure 2.3 The adapted model-driven V-Model life cycle

for Prolan. 43
Figure 2.4 Prolan Block (PB) functional requirements. 46
Figure 2.5 PB non-functional requirements. 46
Figure 2.6 BDD diagram showing the environment

of the PB. 47
Figure 2.7 Computation Independent Model (CIM) use case

diagram for the Prolan Block. 48
Figure 2.8 State machine diagram of the semaphore behavior. . 49
Figure 2.9 High-level system architecture. 50
Figure 2.10 The transformations of the BB-PIT. 53
Figure 2.11 A test case automatically generated

from the BB-PIT by Conformiq. 54
Figure 2.12 The configuration of the PM for HIL Testing. . . . 57
Figure 3.1 Various types of blocks in Blockly. 66
Figure 3.2 An example of a vending machine profile

in PlantUML. 67
Figure 3.3 An example of a vending machine model under

construction. 68
Figure 3.4 An example of requirements management. 68
Figure 3.5 MDE flow. 69

xxv

xxvi List of Figures

Figure 3.6 An example of guiding users with compatible
blocks (for Transitions). 70

Figure 3.7 An example of type indicator plugin (Shows which
blocks are compatible with the current selected
block “Transition/t4” with yellow color). 70

Figure 3.8 An example of constraints. 71
Figure 3.9 An example of groups and links. 72
Figure 3.10 Enabling and disabling viewpoints in model. 72
Figure 3.11 Model query without any filter (return true;). 73
Figure 3.12 Example of model query to select all blocks of type

“RUMI” (return block.of type == ‘RUMI’). 74
Figure 3.13 The subset of example model of “Vending machine”

exported to PlantUML. 75
Figure 3.14 Example sequence diagram in Blockly. 77
Figure 3.15 Classical view of sequence diagram (subset). 78
Figure 3.16 Blocks to support custom simulation initialization

and code to execute when simulation ends. 79
Figure 3.17 Blocks with images. 79
Figure 4.1 ISVV phases. 85
Figure 4.2 Generalized defect assessment procedure. 87
Figure 4.3 Defect type vs. defect impact. 95
Figure 4.4 Defect trigger vs. defect impact. 97
Figure 5.1 Populating the hazard log (HL). 105
Figure 5.2 Excel sheet of one of the participants. 112
Figure 5.3 Checking of HA data through MS Excel scripts. . . 113
Figure 5.4 Dialogue boxes of MS Excel scripts. 113
Figure 5.5 Errors caught in HZ analysis by scripts. 114
Figure 5.6 Excel sheet imported and merged in DOORS

to form HL. 114
Figure 6.1 Schematic view on V&V activities. 119
Figure 6.2 COSYSMO 2.0: Size Drivers/Effort Multipliers. . . 122
Figure 6.3 Rayleigh distribution by different parameters

(a) fault detection rate (b) fault coverage. 126
Figure 6.4 COSYSMO estimation compared to real

V&V effort. 127
Figure 6.5 Cost drivers sensitivity analysis. 131
Figure 6.6 Trends of fault in multi-phased ISVV projects. . . . 137
Figure 6.7 Complexity metrics and fault density. 138
Figure 7.1 ReqIF based information exchange. 145

List of Figures xxvii

Figure 7.2 Exchange document structure. 146
Figure 7.3 Specifications, requirements, and attributes. 147
Figure 7.4 Unstructured and structured model. 150
Figure 7.5 Causality statistics structure. 151
Figure 7.6 The original and changed specification

in our example. 153
Figure 7.7 Propagation resolution and computed change

impact cover extent. 156
Figure 7.8 Example rich requirement structure for propagation

categorization. 157
Figure 7.9 Change impact propagation categories. 159
Figure 8.1 High level view of the STEC process. 171
Figure 8.2 Example from the Energy industry showing

the architecture of a Smart Grid. 173
Figure 8.3 Attack probability graph. 177
Figure 8.4 Threat Event Risk Matrix. 177
Figure 8.5 Description of impact categories. 178
Figure 8.6 STECA report example. 179
Figure 9.1 Composite error token passing during execution

and component activation. 187
Figure 9.2 Framework components for program composition. . 188
Figure 9.3 Parts of the simulated environment in the case

study. 190
Figure 9.4 Main components of the modelled system. 191
Figure 9.5 Structure of a balise telegram. 192
Figure 9.6 Alf implementation of a BTM behaviour. 192
Figure 9.7 Log trace of a fault-free execution of the case study

model. 193
Figure 9.8 Visualization of a fault-free execution

tree of the case study model. 193
Figure 9.9 Blockly-based model of the case study system

and its environment. 196
Figure 9.10 Error propagation in the case study model

when input is consistent. 198
Figure 10.1 Framework architecture: overall view

and interactions. 205
Figure 10.2 Detailed functioning of the Instrumented System. . 206
Figure 10.3 Detailed functioning of the Test and Collect. 207

xxviii List of Figures

Figure 10.4 An extract of the workload to set a New Calendar
Event. 217

Figure 10.5 Extract from robustness test results. 218
Figure 10.6 Example of robustness test: (a) request;

(b) response. 218
Figure 10.7 Calendar Service penetration tests result. 219
Figure 10.8 Evolution of Number of working processes

in SHAPE. 222
Figure 11.1 The ProSigma abstraction layers. 233
Figure 11.2 System architecture. 234
Figure 11.3 LI card interfaces. 235
Figure 11.4 ETH card architecture. 237
Figure 11.5 RPI card architecture. 238
Figure 11.6 Fault injection structure and environment. 239
Figure 11.7 Fault injection structure and environment. 241
Figure 11.8 The ProSigma system and the FI tool

and environment. 243
Figure 11.9 Fault injection campaign: failure modes

distribution. 244
Figure 12.1 Scenario for service robustness evaluation using

wsrbench, PDInjector and ucXception. 254
Figure 12.2 Basic execution profile of the tests. 257
Figure 12.3 Anomalous effects by type of patch. 268
Figure 12.4 Effects by behavior. 269

List of Tables

Table 1.1 A sample extract of the traceability matrix
on processes . 7

Table 1.2 A sample extract of the traceability matrix
on techniques . 7

Table 1.3 The binary decision diagram 15
Table 1.4 An extract of our sheet for data analysis; overall

it contains 48 techniques and 41 tools. The whole
data set is not reported because of its dimension
and non-disclosure agreements 19

Table 4.1 Orthogonal defect classification attributes
description . 84

Table 4.2 Enhanced ODC classification results 93
Table 4.3 Summary of root causes for main defect types 96
Table 4.4 Summary of root causes for main defect triggers . . 98
Table 5.1 Hazard analysis template 106
Table 5.2 An example configuration of hazard log tool

(“Hazard Log Field” are the fields in DOORS, “HA”
is the fields in Excel, and “Type” indicates
where the field can be found (HZ, ‘hazard’;
MT, ‘mitigation’; BH, ‘can be found in both’) 108

Table 5.3 Example configuration for Excel scripts 108
Table 6.1 Pilot use case for introducing formal methods

in verification . 131
Table 6.2 Effect of requirement lifecycle 134
Table 7.1 Comparison of change impact propagation

categories . 162
Table 8.1 Vulnerabilities, weak spots, and security threats . . . 174
Table 8.2 Linking weak spots and ISO/IEC 27005 vulnerability

categories . 175
Table 10.1 Extract test results for New Calendar Event 217
Table 10.2 Summary of the variables monitored 222

xxix

xxx List of Tables

Table 11.1 Railway object outputs 236
Table 11.2 Failure modes . 243
Table 11.3 Summary of FI campaign results 244
Table 12.1 Examples of Robustness and poor data quality

mutations . 257
Table 12.2 Fault emulation operators 259
Table 12.3 Fault emulation constraints 260
Table 12.4 Overview of the tests and results for case

study #2 . 263
Table 12.5 Selected cases from case study #2 263
Table 12.6 Number of patches for mod rewrite 266
Table 12.7 Types of observed behaviors 267
Table 12.8 Results by behavior 268

List of Abbreviations

A/D Analog/Digital
ALARP As low as reasonably practicable
Alf Action Language for Foundational UML
ASILs Automotive Software Integrity Levels
ASPICE Automotive SPICE
BB-PIT Black Box Platform Independent Test Model
BB-PST Black Box Platform Specific Test Model
BDD Block Definition Diagram
BI Business Intelligence
CAN Controller Area Network
CE Cost Estimator
CENELEC Comité européen de normalisation en électronique et en

électrotechnique
CIM Computation Independent Model
CIT Computation Independent Test Model
CIV Computation Independent Viewpoint
CMMI Capability Maturity Model Integration
COCOMO Constructive Cost Model
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CS Critical System
CSP Constraint Satisfaction Problem
csp(FD) finite-domain CSP
CTC Central Traffic Control
Dako Andras, need your help here
DB Database
DI Digital Input
DMI Driver Machine Interface
DOORS Dynamic Object Oriented Requirements System
DSL Domain-Specific Language

xxxi

xxxii List of Abbreviations

Eclipse
RMF

Eclipse Requirement Management Framework

ECSS European Cooperation for Space Standardization
EER Enhanced Entity–Relationship
EN Européen Norme
ERTMS European Rail Traffic Management System
ESA European Space Agency
ETCS European Train Control System
ETH CAN to UDP protocol converter
FDIR Fault Detection, Isolation and Recovery
FI Fault Injection
FIR Fault Injection Runs
FIT Fault Injection Tool
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects and Criticality Analysis
FTA Fault Tree Analysis
FW Firmware
GA Generic Application
GB-PIT Grey Box Platform Independent Test Model
GP Generic Product
GR Golden Runs
GSM Global System for Mobile communications
HA Hazard analysis
HAN Home Area Network
HB HeartBeat signal
HIL Hardware-in-the-loop
HL Hazard log
HMI Human-Machine Interface
HSIA HW/SW interaction analysis
HW Hardware
HZ Hazard
IBD Internal Block Diagram
ICT Information and Communication Technology
IDEF Integration DEFinition
IEC International Electrotechnical Commission
IP Internet Protocol
IS Interlocking System
ISO International Organization for Standardization
ISVV Independent Software Verification and Validation

List of Abbreviations xxxiii

ISVV Independent Software/Systems Verification and Validation
JIF Relay Interface
JTAG Join Test Action Group
KLOC Thousands of lines of code
KPI Key Performance Indicator
LI Logic and Input
M2M Model-to-Model Transformation
M2T Model-to-Text Transformation
MBE Model-Based Engineering
MBSE Model-Based System Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
MDT Model-Driven Testing
MIL Model-in-the-loop
MoC Models of computation
MT Mitigation
NIST National Institute of Standards and Technology
OBU On-board Unit
OCD On-Chip Debugger
ODC Orthogonal Defect Classification
OMG Object Management Group
OS Operating System
OWL Web Ontology Language
OXF Object Execution Framework
PA Product Assurance
PAR Parameter Module
PB Prolan Block
PHA Preliminary Hazard Analysis
PIM Platform Independent Model
PIT Platform Independent Test Model
PIV Platform Independent Viewpoint
PM Prolan Monitor
PSDK Prosigma Diagnostic Center
PSM Platform Specific Model
PST Platform Specific Test Model
PSU Power Supply Unit
PSV Platform Specific Viewpoint
PTD ProSigma generic application

xxxiv List of Abbreviations

QA Quality Assurance
RAM Random Access Memory
RAMS Reliability, Availability, Maintainability, and Safety
RBC Radio Block Control
RCA Root Cause Analysis
RDF Resource Description Framework
ReqIF Requirements Interchange Format
RID Review Identified Discrepancy
RODIN Rigorous Open Development Environment for Complex

Systems
ROI Return on Investment
RPI UDP to X25 over IP protocol converter
SA Specific Application
SAM Specific Application Module
SCAMPI Standard CMMI Appraisal Method for Process

Improvement
SDLC Software Development Life Cycle
SDP Software Development Process
SHA System hazard analysis
SIL Safety Integrity Level
SME Small and medium-sized enterprise
SPICE Software Process Improvement and Capability

Determination
SSHA Subsystem hazard analysis
SST Safety Signal Transmitter
STECA Security Threats, Effects and Criticality Analysis
SUT System Under Test
SVF Software Validation Facility
SW Software
SW-FMEA Software Failure Modes and Effects Analysis
SXF Simple Execution Framework
SysML
OMG

Systems Modeling Language

TC Telecommand
TIU Train Interface Unit
TM Telemetry
TMR Triple Modular Redundancy
UDP User Datagram Protocol
UML Unified Modeling Language

List of Abbreviations xxxv

USB Universal Serial Bus
UTP UML Testing Profile
V&V Verification and Validation
W3C World Wide Web Consortium
WB-PST White Box Platform Specific Test Model
X25 ITU-T X.25 Protocol

http://taylorandfrancis.com

1
A Framework to Identify Companies Gaps

When Introducing New Standards
for Safety-Critical Software

Andrea Ceccarelli1,2 and Nuno Silva3

1Department of Mathematics and Informatics, University of Florence,
Florence, Italy
2CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy
3CRITICAL Software S.A., Coimbra, Portugal

1.1 Introduction

Companies working in safety-critical domains as the avionics or space have
mandatorily to comply with standards, regulating the lifecycle of the system
development, the techniques to be adopted and requirements to be fulfilled in
different lifecycle phases. Consequently, a company that develops systems or
products in compliance with a standard need skill to use the recommended
techniques, often with the support of tools developed within the company or
from third parties.

The variety of Information and Communications Technology (ICT) world
and applicable domains nowadays imply that several standards for safety-
critical systems exist, applied mandatorily and regulating the development
and operation of critical systems. As examples, the DO-178B/C [1, 2], DO-
254 [3] are the mandatory international standards for the avionics domain;
the CENELEC EN 50126 [4], 50128 [5] and 50129 [6] are the mandatory
standards for the European railway domain; the ECSS [7] is the set of
standards for the space domain in Europe.

When changing domain, a company needs to apply different standards
and can encounter several connected issues, such as different: (i) defini-
tions; (ii) level of expectations; (iii) level of details of the required tasks;

1

2 A Framework to Identify Companies Gaps

(iv) maturity level of processes, techniques, tools, customers, etc.; (v) require-
ments for tool qualification.

A company wanting to adopt a standard, e.g., as the consequence to the
decision to enter a new market, must necessarily (i) gain the skills, techniques
and tools necessary to appropriately operate in compliance with the stan-
dard, (ii) have a different mindset, and (iii) acquire the necessary expertise.
The question that is naturally raised is related to the effort, both in time
and cost, of introduction of a standard in a company. Such an effort can be
considerable, if the company never worked with similar standards or domains.

1.1.1 Contribution

We present an easy-to-use framework and a supporting methodology to
perform a rapid gap analysis on the usage of standards for safety-critical
software, being them new ones to be introduced or already applied. In other
words, the framework can be applied to reason in terms of “changing stan-
dard” or in terms of “introducing a new standard”. The ultimate objective
is to discover with limited effort how far a company is from acquiring a
level of knowledge sufficient to apply a specific standard. Our approach is
based on the concept of rating the knowledge available: it starts from an
understanding of the expertise of a company, and it rates the improvements,
in terms of training, needed to reach an adequate level of confidence with
the techniques and processes required in the standard. Our approach can be
applied to a whole standard, a part of it, or to individual techniques and
tools. Thus, our framework offers the possibility to depict the status of the
knowledge available in the company, which may offer valuable insights on the
areas that are mostly covered, and where potential improvements are possible.
The approach can indicate the introduction time, which estimates the overall
training time required to introduce a new standard.

In the case study, the framework and the supporting methodology are
applied to investigate the verification and validation phases of the DO-178B
standard in the company CRITICAL Software S.A.

We note that our framework cannot be dissociated from the personnel
operating in the company: in fact, the personnel are actually holding the
background knowledge and are in charge of acquiring new knowledge. Con-
sequently, the identification of the personnel in the company and their role,
together with an investigation of their skills, is part of our approach and
connected to the outcome of the analysis.

A relevant note is that we specifically target software companies, pre-
scriptive standards for software, and the safety-critical domains. Although

1.2 State of the Art on Gap Analysis in the ICT World 3

the framework may also be applicable to other kinds of companies, standards
(e.g., goal-based standards opposed to prescriptive ones [8]), and domains,
we explicitly remark that our investigations, use case and claims of validity
are exclusively related to the above targets. A preliminary version of the
framework and methodology appeared in [9].

The rest of this chapter is organized as follows. Section 1.2 presents the
state of the art. Section 1.3 illustrates the framework and the methodology.
Section 1.4 presents the structure of the dataset used, and how to populate it.
Section 1.5 presents the metrics for the qualitative and quantitative evaluation
of gaps. Section 1.6 presents the case study, Section 1.7 discusses relevant
arguments to exercise the framework, and Section 1.8 concludes the Chapter.

1.2 State of the Art on Gap Analysis in the ICT World

Gap analysis is a renowned concept that finds application in several fields
since many years; significant examples are in the fields of civil engineering
[10], biology [11], economics [12] and ICT [13–18].

In ICT, gap analysis is usually defined as the study of the differences
between two information systems or applications, often for the purpose of
determining how to get from one state to a new state. A gap can be presented
as the space between where we are and where we want to be; gap analysis
is undertaken as a mean of bridging that space. We report on most relevant
examples of gap analysis for safety-critical systems.

Gap analysis is part of the Software Process Improvement and Capability
Determination (SPICE, now an ISO/IEC standards set [14]) to afford the pro-
cess capability level evaluations of suppliers. SPICE can result useful to select
the cheapest supplier amongst those with adequate qualification, or to identify
gaps between the current capability of the supplier and the level required
by a potential customer. Similarly, the Automotive SPICE (ASPICE, [195])
starts from SPICE but is specific to the automotive industry. Furthermore, the
Capability Maturity Model Integration (CMMI, [13]) includes the Standard
CMMI Appraisal Method for Process Improvement (SCAMPI, [13]) that is
aimed to appraise organizations capability maturity; the SCAMPI approach
can result in a capability level profile, or also in benchmarking against other
organizations. However, evaluating performance lies out of its scope [20].
CMMI compliance is not a guarantee of good performance per se, i.e., there is
high variance in performance results within a maturity level [20]. According
to [21, 22], in general, these structured processes are widely applicable for
large organizations, while their suitability is more arguable for smaller ones.
For both large and small organizations, main concerns are the often elevated

4 A Framework to Identify Companies Gaps

costs, the highly complex recommendations, and the improvement projects
which involve a large investment in terms of money, time, resources and long
time to benefit.

There are several other examples of gap analysis in the ICT. The Inte-
gration DEFinition (IDEF, [15]) is a group of methods used to create a
model of a system, analyze the model, create a model of a desired version
of the system, and aid in the transition from one to the other. [16] defines
an index for measuring and analyzing the divide among countries in the
area of ICT infrastructure and access [17] develops a Skills Gap Analysis
study to respond to immediate inquiries for information on the needs for
ICT skills covering the local, regional, and global markets [18] explores the
determinants of cross-country disparities in personalcomputer and Internet
penetration, relating technology penetration rates with income, human capi-
tal, the youth dependency ratio, telephone density, legal quality, and banking
sector development.

Other related approaches can be identified in methods for evaluating the
cost of software development projects (e.g., COCOMO [23]), as well as sys-
tem engineering costs (e.g., COSYSMO [24]). Additionally, there have been
efforts in building frameworks to guide and support the design, assessment
and certification process, for example [25, 26].

Summarizing, overall a vast literature exists on gap analysis, introduction
time, and compliance to safety-critical standards. To the authors’ knowledge,
till today there are no publicly-available gap analysis for software safety
standards that are easy-to-use, easy-to-maintain, and that allows understand-
ing, with limited investment, the effort required to become confident with a
standard. Companies can benefit from our solution to evaluate their expertise
with a standard, measure how difficult it would be to introduce it, and define
an appropriate plan for such a standard.

1.3 Overview of the Framework and Methodology

The framework and the related methodology are presented in this Section.
They can be realized and executed with the support of a database and
tools for drafting questionnaires and data analysis tools. In fact, the whole
methodology was implemented and exercised using as supporting instru-
ments a MySQL database to store data, MySQL Workbench to ease database
management, the Google Docs suite to make questionnaire and reports, and
a few Java classes for data extraction and elaboration, and to implement the
decision tree of Section 1.5.

1.3 Overview of the Framework and Methodology 5

Figure 1.1 Overall view of the gap analysis framework.

In the following chapter, to include examples and to guide our case study,
we refer as background knowledge to [27] that classifies the main items,
techniques, and processes of aerospace software standards.

1.3.1 The Framework

We present the overall framework with the support of Figure 1.1. It is struc-
tured in three main blocks: Processes, Techniques, and Tools, and Personnel.
The input to the first two blocks is the standard under analysis.

1.3.1.1 Processes
This block is devoted to the identification and matching of the processes. It
contains internal processes and standard processes. Internal processes are
defined and applied in a company e.g., internal quality management systems,
or internal processes that are required for having certifications like ISO 9001
[28] or CMMI. Standard processes are instead the processes or requirements
defined in standards; examples at a macro level are design, development,
verification, validation, or integration processes.

For each standard, a corresponding traceability matrix must be created
and populated; it checks that internal processes are compliant to standard
processes. One or more internal processes should be matched to each process
of each individual standard. If the matching is not complete, there may be
the necessity to review internal processes; otherwise the applicability of the
standard may be compromised.

Although solutions to automate these checks exist [29, 30], we believe
that a visual inspection of the standard is sufficient to identify major incon-
sistencies. This claim is supported by the typically structured descriptions of
internal processes and standard processes.

The identification and matching of such processes are inputs to the block
Techniques and Tools.

6 A Framework to Identify Companies Gaps

1.3.1.2 Techniques and tools
Both standard processes and internal processes typically list recommended or
mandatory techniques.

A whole list of techniques in the standard (techniques in standard) and
techniques available in the company (techniques in company) is required. The
list of the techniques in standard needs to be compiled for each standard; the
list of techniques in company needs to be compiled only once, and updated
when a new technique is learnt.

A traceability matrix can match techniques in company and techniques
in standard, to identify the correspondence between the two or possible
mismatches. For example, a technique discussed in a standard that has no
correspondence among the techniques available in the company know-how.
One or more techniques in company may be matched to each technique
in standard. Techniques in standard and techniques in company are also
matched to, respectively, standard processes and internal process.

Tools are connected to the techniques in the company, because they can
support their execution (occasionally tools can support the whole process
[25, 26], although this possibility is not represented in Figure 1.1). Similarly,
training materials (e.g., slides from courses or tutorials), whenever available,
are enlisted and mapped to the company tools and techniques. Noteworthy,
techniques or tools not explicitly mentioned in internal processes may be
available in the company and useful to support the execution of such internal
processes: in this case, it is required to add such techniques or tools and create
the appropriate connections to the internal processes.

It is fundamental to understand the confidence in using a technique or a
tool; an option is to acquire this information through a questionnaire, as we
will discuss in later sections of this chapter. Obviously, this has not to be
done on individual basis to rate the single worker, but as a collective exercise
between expert workers.

1.3.1.3 Personnel
The personnel are actually holding the background knowledge of the com-
pany and are in charge of acquiring new knowledge. The block personnel
relate the company’s personnel to the know-how available on the listed
techniques and tools. The block contains information on the personnel as
the available roles, the desired aptitude skills for each specific role, and the
required competences. Roles are matched directly to the techniques, while
competences are matched to training. Aptitude skills [31] are instead soft
skills as behavioral skills; which have an ancillary role in the framework

1.3 Overview of the Framework and Methodology 7

but are included to present a complete characterization of personnel. More
information on the roles and skills are in Section 1.4.

1.3.2 The Methodology to Exercise the Framework

The overall methodology resulting from the execution of the framework is
hereby presented. The steps are the same for gap analysis of standards already
in use and for the introduction of a new standard. For simplicity of the
discussion, we refer here only to the last case. We assume that the standards
S1, . . . , Sn−1 are already part of the framework, and that data on internal
processes, techniques in the companies and personnel are already available.
This can be done iterating the below steps for the standards S1. . . Sn−1, until
the dataset is up-to-date.

When a new standard Sn is introduced, the approach is the following.
Step 1. The list of standards is updated with Sn, and the corresponding

traceability matrix of Sn w.r.t. internal processes is created. Table 1.1 presents
a sample extract of such traceability matrix.

Step 2. The list of techniques in standards is updated with techniques that
are mentioned in Sn; consequently, the match with techniques in company
is updated. For example, in Table 1.2, the techniques “reviews, inspections,
analysis” from the list in [27] are matched to several company techniques,
as reviews, inspections, HW/SW interaction analysis (HSIA), traceability
analysis. If in Sn there is a technique with no matches amongst the list of
techniques in company, it is sufficient to add the same exact name to such
list. As a result, a very low rating on the maturity in using such technique
will be assigned in Step 4; this will be further discussed also in Section 1.4

Table 1.1 A sample extract of the traceability matrix on processes
Standard Processes (Requirements) from DO-178B Internal Processes
SW high-level requirements comply with system requirements Verification Process
SW high-level requirements comply with system requirements Requirements Analysis
High-level requirements are accurate and consistent Requirements Analysis

Table 1.2 A sample extract of the traceability matrix on techniques
Techniques in Standard Techniques in Company

Reviews
Inspections

Reviews, inspections, analysis HW/SW interaction analysis (HSIA)
Traceability
Static analysis

8 A Framework to Identify Companies Gaps

and Section 1.5. Ultimately, tools are listed and matched to the techniques in
company.

Step 3. The data acquisition process gathers information on the confidence
in using each technique and tool.

Step 4. Data is analyzed, and gap analysis and learning time are computed.

1.4 Dataset Structure and Population

1.4.1 Dataset Structure

With the support of the Enhanced Entity–Relationship (EER) diagram in
Figure 1.2, we comment on the most relevant elements of the dataset that are

Figure 1.2 EER structure of the database.

1.4 Dataset Structure and Population 9

required to exercise the framework. The diagram is organized in three areas:
the first one (dashed line) contains information on the standards, the second
one (dotted line) discusses internal processes and the third one (dash-dotted
line) is dedicated to the definition and characterization of the personnel.

We start discussing the first area (dashed line). Table standards enlist the
standards in use in the company including general information, for example
release date, involved industrial domain, and emitting agency. Additional
tables can be linked to table standard to annotate concepts that differs from
a standard to another. As an example, the EER diagram includes the table
safety levels, which describes the different notion of safety levels across
standards. In fact, for example, safety levels are called “Software Levels” and
organized in five levels in the DO-178B/C, while they are called “Automotive
Software Integrity Levels” (ASILs) and organized in four levels in the ISO
26262. Other examples on safety levels can be found in [27]. Although
these annotations are not deemed fundamental for the successful execution
of the framework, they can simplify the execution of Step 1 and Step 2 of
Section 1.3.

Table requirements enlist the requirements, often expressed in terms of
steps of a process, described in each standard. Requirements usually suggest
specific techniques: table techniques in standards enlist the techniques named
in each standard. The table techniques in standards can specify if a technique
is a replacement or alterative to others that are mentioned in the standard.
This is useful for the mapping with the second area of Figure 1.2 (dotted
line), to favor the matching of techniques in standards with those applied in
a company. It is important to report recommendation level of each technique
for the considered standard.

The second area includes the table company processes, which describes
the processes available in the company. Usually, these are described in the
internal documentation of a company. Table techniques in company enlist
the techniques available. Again, such list can be extracted from the internal
documentation. To perform the gap analysis, it is required to score the rele-
vance of the technique in the daily work, its frequency of use, the complexity
from the point of view of the personnel, the experience of the team in using
such technique, the learning time (learning time indicates how much training
time and hands-on-the-job time is required to gather confidence in applying
a specific technique). Table tools contain the list of tools available in the
company. For the tools table, it is required to evaluate the same attributes
as above: relevance, frequency of use, complexity, team experience, learning
time of the tool. Section 1.4.2 discusses how to collect such values. Finally,
the table training enlists the training material available in the company.

10 A Framework to Identify Companies Gaps

The third area (dash-dotted line) is devoted to the identification of per-
sonnel. We propose the following minimum set of tables to describe the
personnel, although our approach is open to improvements or adjustments
in case companies offer different or enhanced characterizations of personnel.

Table roles enlist the different roles. Roles are related to the techniques
and tools, because it is expected that people having different roles are able
to apply different techniques and tools, or take responsibility over differ-
ent processes. Regarding table aptitude skills, we propose from [31]: (i)
behavioral skills e.g., personal integrity, interpersonal skills; (ii) underpinning
knowledge i.e., knowledge on the system, required to successfully applying a
technique; (iii) underpinning understanding that is general knowledge on the
area of work; (iv) statutory and legislation knowledge. Table competences,
instead, list the required competences as the number of years of experience,
or the expertise in a specific topic or domain. Intuitively, table competences
and aptitude skills are connected to table roles.

Relations between tables allow connecting and extracting the relevant
information from the dataset. For example, the dataset can be used to verify
the matching between the standards requirements and company processes.
The dataset is also able to differentiate techniques that are similar but used in
a different way from domain to domain; the relation of the technique to the
corresponding standard is in this case fundamental.

It should be noted that terms reported in the dataset may be very general
and several techniques can be matched e.g., requirements-based testing may
encompass a large part of the testing activities that are performed on a
system or component. The implication is that querying the dataset, different
techniques applied in a company can be matched to the same technique in a
standard. However this does not alter the methodology, because the different
techniques available in the company are first evaluated individually, and then
summarizing results are drafted, as explained in Section 1.5.

1.4.2 Population of the Dataset

We discuss hereafter how to collect the main data to populate the dataset.
Some data and especially those in the first area are acquired from the
documentation typically available in a company.

Regarding the second area, it is required to acquire information on
relevance, frequency of use, complexity, experience, and learning time of
techniques and tools. While different approaches may exist, in this chapter

1.4 Dataset Structure and Population 11

we propose a questionnaire that can be distributed between expert personnel
to acquire anonymous data.

In this chapter, we propose the following entries and scores to rate
techniques and tools applied in the company:

• Relevance: high relevance = 4, medium relevance = 3,
limited relevance = 2;

• Frequency of use: often = 4, rarely = 3, and never = 2;
• Complexity: complex = 4, affordable = 3, and easy = 2;
• Experience: high experience = 4, medium experience = 3,

low or no experience = 2;

• Learning time (the time requested by a low-experienced worker to
become able to apply a technique or tool with only periodic super-
vision): less than 1 month = 0.5, ∼1 month = 1, ∼2 months = 2,
∼3 months = 3, and more than 3 months = 4.

The possibility to select the option “unknown” is offered, meaning that the
person was unable to decide on a rating. This option should be selected
when the personnel feels that he is not able to comment on the technique
or tool despite being an expert in the specific area. Also, the questionnaire is
supposed to be filled only by personnel expert on safety-critical processes, so
that they can adequately judge on the techniques and tools, even when they
had limited opportunities to get confident with them. Ultimately, note that a
questionnaire for techniques in standards is not necessary, because at least
one corresponding technique in company is matched to each technique in a
standard (see also Step 2 in Section 1.3).

Once all questionnaires are filled, for each technique and tool we select
the following values to be computed and added in the dataset: average,
standard deviation, mode, and the number of unknowns (number of answers
in which the “unknown” option was selected). The mode can be selected
instead of the average if the number of questionnaires is small or the results do
not lead to a normal distribution. This may result useful in boundary cases,
for example when a small subset of the personnel is very skilled on a tool,
while the others do not know how to use it.

With respect to the third area (Figure 1.3) proposes a classification of the
main personnel roles requested in critical software standards that can be used
as reference to populate table roles in the dataset. Since our experience is
from the aerospace, Figure 1.3 is specifically drafted having aerospace soft-
ware standards in mind. The following blocks are here considered external

12 A Framework to Identify Companies Gaps

Figure 1.3 Example of roles organization in a critical software company.

to the company: Certification Agency, where the Designated Engineering
Representatives, or DER, is located, Hardware Manufacturer, Independent
Verification & Validation (V&V) engineer and Audit Team. This is common
although it is mandatory only for the Certification Agency. System integrators
are connected, because they need to interact closely for hardware–software
integration.

The V&V Team and the Independent V&V Team include Test Managers
and Test Engineers. The Auditor and the Lead Auditor should be included
when addressing services for Independent V&V. The Design and Devel-
opment Team should include also the Configuration Team, but we merge
this role with Integrators, Software Designers and Software Developers. The
Quality Assurance Team is in a separate group, which includes Software
Product Assurance Engineers. These roles can have different aggregations
on other organizations.

To verify the effectiveness of the roles subdivision, we examined the
involvement of each role in the most relevant aerospace standards. We iden-
tified the personnel roles involved in the different parts of each standard,
with sub-section granularity. In other words, we assigned one or more roles

1.4 Dataset Structure and Population 13

Figure 1.4 Involvement of the different roles in avionics standards.

to the requirements set contained in a subsection. We excluded introductory
sections, acronyms, glossary, references sections, and Annexes.

We start our analysis from the avionics standards DO-178B, DO-178C,
ED-153 [32] and ARP4754A [33]. The ED-153 applies to software that
forms part of an Air Navigation System, and ARP4754A is intended for
development of civil aircraft and systems, with emphasis on safety aspects.
Results are depicted in Figure 1.4, showing the percentage computed approx-
imating to the nearest integer. V&V and Independent V&V engineers are
considered together due to their similar responsibilities. The managerial roles
are omitted for readability as they have implicit involvement in every part of
the standards. We can note that, overall, the various standards present similar
percentage of involvement for the various roles. Especially, the surveyed stan-
dards have a similar percentage of V&V engineers, which ranges from 61 to
82%, and of DER. The three standards DO-178B, DO-178C and ED-153 are
exclusively related to software and highly correspond for the involvement of
software designers, software developers, and hardware-related roles. Instead
the ARP4754A is a system-level standard and considers mainly system
engineers, RAMS engineers, V&V engineers and DER, while software and
hardware designers and developers have a marginal role. Security engineers
are little or not considered in these standards.

We performed a similar analysis on most relevant space standards and
especially software-related ones. The standards analyzed are the Galileo

14 A Framework to Identify Companies Gaps

software standard GSWS [34], the EUROCAE Guidelines for ANS Software
Safety Assurance ED-153 [32], and ECSS standards that we deemed most
relevant for safety critical software design and V&V [35–38] and product
assurance [39–41]. All standards showed a similar behavior, with the excep-
tions of GSWS considering also System integrators, and of ED-153 giving
low relevance to security engineers. [36] targets mostly system engineers,
and to a lesser extent RAMS Engineers and V&V Engineers. [37] and [38]
instead are almost exclusively devoted to V&V Engineers. [39] and [40] are
intended for RAMS Engineers and V&V Engineers.

1.5 Metrics for Gap Analysis

Once the dataset is populated, qualitative, and quantitative approaches can
support the identification of the gaps and the estimation of the introduction
time.

1.5.1 Qualitative Indications

We propose a qualitative analysis for the rapid identification of poten-
tial weaknesses and get an overall grasp on the results achieved. Several
approaches can be identified; we propose in this chapter an intuitive one,
based on a simple binary tree that can be easily built for each technique
and tool.

The first four levels of the tree correspond to the attributes relevance,
experience, frequency of use, complexity. The fifth level is a comment in
natural language. Starting from the root, at each node, the left or right branch
is selected if the score assigned to the attribute is below a threshold or not.
The leaves of the tree include conclusive judgments on the technique or tool
under exam.

As example, we show in Table 1.3 the binary tree that we defined for our
case study. Thresholds are set as follows:

• relevance of the technique (for the target standard) = 3
• experience = 3
• frequency of use = 3
• complexity = 3

The final leaf includes a qualitative comment, resulting from the path of the
tree, which may suggest the necessity of further investigation.

Obviously, this approach can be easily extended in case of additional
attributes or different rating schemes that consider multiple thresholds.

1.5 Metrics for Gap Analysis 15

Table 1.3 The binary decision diagram
Frequency of

UsageRelevance Experience Complexity Qualitative Comment
≥3 ≥3 ≥3 any Relevant, applied, and experienced.
≥3 ≥3 <3 ≥3 Relevantand large experience, but

not applied.
≥3 ≥3 <3 <3 Relevant, simple, large experience,

but not applied. Requires further
investigation.

≥3 <3 ≥3 ≥3 Relevant and complex. Applied with
little experience. Requires further
investigation.

≥3 <3 ≥3 <3 Relevant and applied with little
experience. Requires further
investigation.

≥3 <3 <3 Any Relevant but not appliedand not
experienced.Requires further
investigation.

<3 ≥3 ≥3 Any Little relevance, large experience,
and applied.

<3 ≥3 <3 Any Little relevance, and not applied.
<3 <3 ≥3 Any Little relevance, but applied with

limited experience. Requires
further investigation.

<3 <3 <3 Any Little relevant, and not applied.

1.5.2 Quantitative Indication

The data acquired may contain information that is not grasped during the
qualitative analysis above. We define the quantities Q1, Q2, Q3, Q4 to relate
relevance, (team) experience, frequency of use (called also applied below for
simplicity), complexity, and to identify those techniques and tools that may
need particular attention. Obviously several other different quantities could be
identified and applied, without introducing any limitation to the methodology.

We select Q1, Q2, Q3, Q4 to seek the appropriate balance between
complexity, relevance, frequency of use and team experience. The score 0
represents a balance between the different attributes; the highest it is, the
highest is the necessity of further investigating the technique or tool.

Is complexity an issue? Q1= complexity2-applied × experience. This
quantity raises awareness of misalignment between difficulty and confidence.
Q1 is intended to heavily penalize complex techniques. A small Q1 means
that there is high confidence in the usage of a technique.

16 A Framework to Identify Companies Gaps

Is Experience Adequate? Q2 = (relevance + applied) – (experience × 2).
The objective of this quantity is to indicate that experience is sufficient w.r.t.
the relevance and application of a technique.

Is there an overall balancing? Q3 = (relevance × complexity) –
(applied × experience). Q3 compares the confidence in using a technique,
i.e., experience and frequency of application, to the relevance and complexity
of the technique. It is a summarizing quantity that relates all attributes used
up to now.

Is experience justified? Q4 = relevance – experience. Q4 indicates the
experience of the team w.r.t. the relevance of a technique or tool. Ideally, its
target score is 0, meaning for example that a very relevant tool is applied with
excellent skill; or on the opposite, that a tool recognized as almost irrelevant
is also almost unknown. If Q4 is a positive score, it indicates that a tool or
technique acknowledged as relevant is not known adequately.

The case study in Section 0 reports results of these metrics for the analysis
of DO-178B in a software company.

1.5.3 Driving Conclusions

The data and the results of the qualitative and quantitative analysis need to
be investigated to finalize conclusions. The optimal is that for each recom-
mended technique in the standard, one or more techniques in company are
frequently applied with good experience. However, we note that often the
techniques recommended in the standards can have replacement techniques,
or only a subset of such techniques is actually necessary: this is further
elaborated in Section 1.7.

Checks of paperwork or interviews can be a viable support to verify the
gaps resulting from the above analysis. This is especially true in two cases.
First, we should consider the case when different techniques can be used
as alternatives to meet requirements of the standard. A gap in a technique
may actually be irrelevant as far as other substitute techniques are applied
with good confidence. Second, it is required to prove that the techniques are
actually practiced with the skill level declared by the personnel. It is funda-
mental to know whether the personnel are really practicing in an effective
way as declared, matching the on-paper capability of the organization with
the as-practiced capability.

Whenever a gap is identified, the value of the learning time estimates the
time required to fill the gap. The learning time indicates the effort required to
train people on a technique or tool; the overall cost to cover the gap should
also include the cost of tools licenses, if needed.

1.6 Case Study and Gap Analysis for DO-178B 17

Finally, the introduction time of the standard can be estimated from all the
learning times from techniques and tools where a gap is identified.

1.6 Case Study and Gap Analysis for DO-178B

The framework and methodology were applied within CRITICAL Software
S.A.personnel for what concern the DO-178B standard for avionic systems.
To reduce complexity, the analysis of the DO-178B we performed was limited
to the sections devoted to verification and validation.

CRITICAL Software is an international information systems and software
company, headquartered in Coimbra, Portugal, where our experiment took
place. While CRITICAL Software works across several markets, in this work
we referred to the aerospace division, which is active since 1998. In fact,
it has to be noted that CRITICAL Software has relevant experience with
DO-178B, applied successfully in several projects for many years. Conse-
quently, it is evident that the objective of this case study is not to identify
possible lacks in CRITICAL Software processes or inadequate knowledge
about the required techniques, but it is to exercise the framework in a real
context and verify its applicability.

Relevant data on techniques in standard were acquired from [27]. Tech-
niques in company and tools were identified from material available at
CRITICAL Software and expert involvement: this ranged from short inter-
views/meetings, to training material, publications, and leaflets, V&V plans
for different projects, V&V reports, case studies and specific tools reports.
The engineering personnel were also interviewed in order to gather the list of
tools they typically use, and that may not necessarily be referred on written
reports. In total, 22 Verification & Validation techniques were identified; the
validation technique testing was further subdivided in 26 testing techniques.
The number of tools identified is instead 41.

1.6.1 Matching of DO-178B Techniques and Company’s
Techniques

Matching between standard’s and company’s processes was performed by
manual inspection of the standard and the company’s internal processes.

For each verification and validation technique in the standard, one or more
techniques were identified in CRITICAL Software processes, use cases, and
V&V plans.

18 A Framework to Identify Companies Gaps

We summarize main results. At least one technique in company was
assigned to each technique in standard. There were more than one in some
cases. For example the entry “reviews, inspections, analysis” from the table
technique in standard is matched to reviews, inspections, HW/SW interaction
analysis (HSIA), traceability, static analysis. Similarly, the requirements-
based testing amongst techniques in standard is matched to coding/unit test-
ing, system testing, functional testing and black box testing from techniques
in company.

General comments on the examples above are that i) such techniques
presents significant overlaps, e.g., between functional and system testing, and
ii) terms reported in the standards are often very general and several tech-
niques can fit them e.g., requirements-based testing may encompass a large
part of the testing activities that are performed on a system or component.

1.6.2 Acquire Data from Personnel

Questionnaires were filled independently by eight CRITICAL Software
workers, operating as V&V, RAMS engineers or having managerial respon-
sibilities, prevalently in the context of verification and validation and certi-
fication projects. The engineers had been selected with different experiences
and expertise in order to make the questionnaires results more representative
of the company level. The data were analyzed, and average, mode, standard
deviation, minimum value, maximum value and number of unknowns were
computed and added to the database.

1.6.3 Analyze the Data: Techniques

To favor understanding the structure of the results, an extract of the data sheets
we compiled is reported in Table 1.4.

For most techniques, the standard deviation was rather limited (below 0.5)
showing that despite the limited number of questionnaires, there was a good-
to-high convergence of answers. Thus we preferred to use the average rather
than the mode in our case study.

• Complexity. Less complex techniques were identified in reviews, inspec-
tions (e.g., Fagan, or walk-throughs), static analysis, traceability, code
analysis, HW/SW interaction, and almost all testing techniques. Instead
the most complex techniques were recognized in formal methods and
modeling, with an average complexity of 3.8 (we remember from

1.6 Case Study and Gap Analysis for DO-178B 19

T
ab

le
1.
4

A
n

ex
tr

ac
to

fo
ur

sh
ee

tf
or

da
ta

an
al

ys
is

;o
ve

ra
ll

it
co

nt
ai

ns
48

te
ch

ni
qu

es
an

d
41

to
ol

s.
T

he
w

ho
le

da
ta

se
ti

s
no

tr
ep

or
te

d
be

ca
us

e
of

its
di

m
en

si
on

an
d

no
n-

di
sc

lo
su

re
ag

re
em

en
ts

Te
ch

ni
qu

e
Fr

eq
ue

nc
y

of
U

sa
ge

B
in

ar
y

T
re

e
L

ea
rn

.
T

im
e

R
el

ev
an

ce
E

xp
er

ie
nc

e
C

om
pl

ex
ity

Q
1

Q
2

Q
3

Q
4

R
ev

ie
w

s
4

3.
75

4
2.

12
–1

0.
48

0.
50

–6
.5

0
0.

25
R

el
ev

an
t,

ap
pl

ie
d,

an
d

ex
pe

ri
en

ce
d

L
es

s
th

an
1

m
on

th

In
sp

ec
tio

ns
4

3.
65

4
2.

5
–8

.2
5

0.
75

–4
.5

0
0.

37
T

ra
ce

ab
ili

ty
an

al
ys

is
4

3.
5

3.
87

2.
25

–8
.5

0
0.

88
–4

.5
6

0.
5

St
at

ic
an

al
ys

is
3.

62
3.

62
3.

75
2.

25
–8

.5
3

0.
13

–5
.4

4
0

. . .
In

te
gr

at
io

n
te

st
in

g
3.

5
3.

25
3.

71
3.

12
–2

,3
1

0.
71

–1
,1

3
0.

25
R

el
ev

an
t,

ap
pl

ie
d,

an
d

ex
pe

ri
en

ce
d

∼
1

m
on

th

In
pu

t-
ba

se
d

te
st

in
g

3.
28

3.
71

3.
57

2.
28

–8
.0

4
–0

.5
7

–5
.7

6
–0

.4
3

le
ss

th
an

1
m

on
th

R
ob

us
tn

es
s

te
st

in
g

3.
62

3
3.

25
3.

37
1.

64
0.

88
2.

48
0.

62
∼

1
m

on
th

20 A Framework to Identify Companies Gaps

Table 1.3 that the maximum is 4). Overall, the unknowns were very
limited, with at the highest 3 for formal methods.

• Knowledge. Highest scores were assigned to reviews and inspections,
Fault Trees, Dependence diagrams, testing. In particular regarding test-
ing, although several kinds of testing are enlisted, a high score was
assigned to all of them.

• Relevance and Frequency of use. The smallest scores for these two
quantities were assigned to model checking/formal verification. In fact,
these techniques have not been considered very relevant for the company
business up to now. Amongst testing, security testing was considered
of little relevance and seldom applied. The reason is mostly due to the
standards in use, which only sparingly require security testing.

Overall, the execution of the binary tree suggested verifying 6 techniques.
The one who raised the most interesting discussion is safety analysis, which
resulted relevant and complex but little applied. The reason is that a proper
and unified process for safety analysis does not exist, although the companies
are constantly applying techniques that are part of the safety analysis. Other
two techniques that are worth noting are usability testing and use case testing:
they were rated relevant, and the personnel felt expert about them, but they
were seldom applied. This scarce usage of usability and use case testing
is not directly imputable to the will of the engineers but it is due to the
characteristics of their projects. The other three techniques were identified as
relevant but not applied and with limited experience; replacement techniques
are typically used in such cases.

Quantitative indicators. Q1 answers the question “is complexity an
issue?” Q1 score is 10.50 for formal methods and 10.87 for model checking,
resulting in the highest score for Q1. This is in line with all the above
observations. Similarly, and not surprisingly, the lowest scores are assigned to
reviews (–10.48) and inspections (below –10 in both cases), confirming that
they were considered techniques with low complexity.

Q2 answers the question “is experience adequate?” Q2 relates experience
to relevance and application of a technique. Most of the results are contained
within the interval [–1.5; +1.5], i.e., near 0. This means that there is a
good balance between the relevance and application of a technique, and the
experience in its usage, thus not raising any particular alarm. Few techniques
are slightly outside such interval. Although no techniques are significantly
exceeding the interval, the worst value is registered by safety analysis; this is
justified by the reason explained previously.

1.6 Case Study and Gap Analysis for DO-178B 21

Instead regarding Q3, which answer the question “is there an overall
balancing?” we noticed that most of the techniques are in the interval
[–7; +7]. For techniques outside such interval, relevant differences were
identified between the couples [relevance; complexity] and [frequency of
use; experience]. Most balanced scores, close to 0, are HW/SW interaction
analysis (HSIA) and functional analysis (FFPA), considered in general with
average scores around 3 for all attributes.

Most troublesome (high Q3 score) is obviously when the score is a
high positive value, suggesting that there is a bad feeling with a technique
acknowledged as relevant and complex. Worst values are assigned to secu-
rity assessment and safety analysis. Regarding safety analysis, the previous
considerations hold. A different reasoning is instead applied for security
assessment. Security assessment is (correctly) perceived as relevant, and
this is easily motivated with the increasing attention that security is gain-
ing nowadays. Also, security assessment is perceived as complex, because
widely-accepted methodologies or techniques for security assessment of
software-based systems are still failing to root in several industrial domains.
Finally, standards sparingly mention security assessment, and consequently it
is rarely applied in a company.

Finally, Q4 answers the question “is experience justified?” It resulted that
safety analysis has the highest score, meaning that although acknowledged
as relevant, the personnel interviewed expressed some doubts on their team
experience. This outcome is strictly connected to the previous considerations
on safety analysis. Values of Q4 significantly below 0 were not identified;
meaning that overall there is a good balance between relevance and frequency
of application of techniques.

Learning time. The shortest learning time was assigned i) amongst veri-
fication techniques, to reviews, inspections, traceability, static analysis, and
ii) amongst validation techniques, to coding/unit testing, regression test-
ing, input-based testing, boundary value analysis, smoke testing, ad hoc
testing. Longest learning time was assigned to formal methods and model
checking.

1.6.4 Analyze the Data: Tools

Tools connected to the above techniques were evaluated, although no specific
issues were identified. Some tools were identified as little relevant, not
applied, or largely unknown, but this was due to the fact that the tools list
included also obsolete tools.

22 A Framework to Identify Companies Gaps

As an example, the quantity Q4 resulted in almost all the tools as a
negative value, with a few exceptions. In all cases, the value was in the
interval [–1.1; 0.7]. Note that the best value, which is –1.1, was assigned
to a text editor tool: it is reasonable to believe that there is a good experience
in using it, although it is not fundamental because it can be easily replaced by
other products.

1.6.5 Conclusive Recommendations and Feedbacks

As expected, no issues can be identified from the analysis. In general, the
outcomes which suggest smaller confidence are those related to formal meth-
ods and model checking, although other replacement techniques are accepted
in DO-178B and this does not really constitutes a gap in what concerns the
DO-178B application.

It is worth observing that a long learning time (above 3 months) is
assigned to these techniques, meaning that it is considered not easy to acquire
proficiency with them. However, this is mostly due to the fact that the
company has a limited focus in such activities, thus having a limited number
of people skilled in the area.

The fact that Formal Methods and Modeling are not (for the particular
case study) well ranked has several reasons, and specifically: (i) engineers
are not prepared for these techniques from university and prior experience,
(ii) they are not yet widely accepted in industry, especially from customers,
(iii) they are more complex than others, and (iv) they lack appropriate tools
support.

A final remark is about the techniques in standard that are grouped as
number 11 in [27], that is, similarity, service experience, failure statistics.
The corresponding techniques in company were rated poorly, mostly showing
the entry “unknown” in the questionnaire for all attributes. A later analysis
with direct confrontation with personnel concluded that the terms used for
such techniques were unclear and confused the personnel involved. In fact,
the questionnaire was provided to the personnel but entries not discussed
in advance. The clarification allowed to verify the absence of any gap,
thus solving all issues on similarity-based approaches for the verification of
critical systems, with the only action of correcting techniques names in the
dataset.

Finally, it is important to note that the case study was performed in a short
time frame and its results might be interesting to plan ahead, estimate and

1.7 Discussion about the Gap Analysis Framework 23

have the company ready to tackle new domains and new certification chal-
lenges. It is relevant to mention that once these results have been presented to
the company personnel, CRITICAL Software has taken actions to fill these
gaps, and, in the frame of the European project FP7-2012-324334-CECRIS
[42], processes, techniques and training material for safety analysis and for
security assessments were developed. This outcome shows the direct impact
that these types of analysis can have in prioritizing Research & Development
within an organization. A more detailed discussion on this aspect, which we
rate an important outcome of our work, is in Section 1.7.

1.7 Discussion about the Gap Analysis Framework

1.7.1 An Application to the Moving Process

This work represents a formalization of what is usually done by industries
when tackling a new domain of expertise, but not always in a structure way
and not always with all the required information to make sound decisions and
appropriate plans. The results of this framework help to determine the actual
level of knowledge and resources that can be reused instead of doing it in an
ad hoc and less supported manner.

Discussing the specific moving process is not part of the paper but we
cannot ignore it. Moving from one existing standard into a standard from
another domain involves different factors. For example, the switch between
space, avionics, railway or automotive domains involves at least cultural
implications, domains specific adaptations, and a large learning process.
We provide the basis to support this moving process, by identifying clear
gaps, improvements and adaptations, and by providing an estimation of the
effort of moving from one domain to the other based on what the company
is already applying and the maturity associated to the application of those
standards.

For the gap analysis or determination of where a certain company is
before entering a specific new domain, it is essential to be able to properly and
precisely model the new standards i.e., extracting the requirements, phases,
techniques, outputs, etc. This is one of the main tasks of our work and it
consists in studying the standards and modeling their contents. Then, it is also
extremely important for a company to hold an internal knowledge base about
their processes (e.g., in an internal quality management database), techniques
(e.g., detailed plans) and tools (e.g., in the form of Software Development
Plans and Verification and Validation Plans).

24 A Framework to Identify Companies Gaps

1.7.2 Time and Cost

Gap analysis processes are typically executed sparingly because of the
required time, overall complexity, and cost. Consequently, we present an
approach that can be executed with little time, effort and cost, provided that
personnel with a strong background on safety-critical systems are available.
As example, let us consider our case study. Once the framework and the
methodology were ready, the whole case study including the population of
the dataset was completed in a short time frame. Considering only time-
consuming activities, the analysis of the DO-178B standard to fill table
techniques in standard required 2 days, and the analysis of techniques and
tools to fill table techniques in company and table tools required instead 4
days. It should be noted that these two tables will require only minor updates
whenever the framework is exercised on a different standard. Two days
were instead necessary to build relations between all tables. The question-
naires were filled in less than two hours each. Drafting conclusions, making
interviews and presenting results required four more days.

Our analyses were carried out with a small number of supporting
tools: the tools we used in our case study are a database, a spreadsheet
tool, a text editor, and Java applications we developed in less than 600
lines of code. These Java applications allowed parsing the questionnaire,
interfacing to the dataset, and building the binary tree. The artifacts pro-
duced by the framework, including those used in this work, are totally
reusable for future analysis; this can be achieved simply maintaining the
dataset.

1.7.3 Effectiveness and Reactions

Benefits of recovering a gap are usually acquired only after the introduction of
the new standard is completed and the new market penetrated, or when novel
services are sold thanks to the new skills acquired. This process is typically
long and consequently the return on investment for covering a gap or applying
a systematic quality assurance process is typically considered on the medium-
long term [21].

However, since the benefits are evident, in all cases the identification
of gaps should be the trigger of recovery plans. As an example, let us
consider our case study. Although overall no problems were identified in the
application of DO-178B, our analysis led the Research & Development of
CRITICAL Software to focus on the topics of Safety Analysis procedures
and Security Assessment techniques. In particular, two main actions were
taken, partially supported by the project FP7-2012-324334-CECRIS [42].

1.7 Discussion about the Gap Analysis Framework 25

First, research on approaches for safety analyses was started. We cite two
published works that underline this research direction [43] discuss a mea-
surable approach to fulfill the standard requirements but with an acceptable
level of effort and within a reasonable timeframe [44] focus on techniques
selection for safety analysis, aiming to provide to industries a ranked list of
techniques that avoid specific types of issues.

Second, research on the interplay between safety and security was carried
on, studying how security issues may impact safety [45] and walking towards
the identification of threat assessment methodologies [46, 47]. A new security
assessment process named STECA “Security Threats, Effects and Criticality
Analysis” is currently under research, with the objective of making the
company more competitive and more prepared to provide related services
to the industry.

1.7.4 Replacement Techniques

It is important to consider that the standards, mostly based on a waterfall
traditional V model, have requirements usually divided by lifecycle phases.
For each of these phases there are proposed or recommended techniques,
actions, and analysis, but not all of the listed techniques need to be applied
in order to fulfill the standards requirements. We are aware that this situation
has an impact on our framework, especially when determining gaps between
standards: some gaps might be mitigated by other replacement techniques.

As future work, the most relevant foreseen improvement is to introduce
the concept of minimum set of recommended techniques. Generally, the
standards provide recommendations to several techniques but only a few are
really required: several are proposed as alternatives. A company needs to
be knowledgeable only with a set of such techniques. For example, formal
methods are barely used, but all systems can get certified even without formal
methods, and a similar reasoning can be carried out for fault injection. In
this framework we are addressing this problem only in Step 4, once that
all techniques have been evaluated individually. The future improvements
of the framework will include solutions to automatically deal with this
problem, introducing groups of techniques in the dataset, and adapting the
questionnaires to rate the groups and not only the individual technique.

1.7.5 Different Approaches to Compliance

It should be remarked that compliance with standards may take place in two
different ways: by sticking to what is recommended or by following tailoring
rules. The framework usage applied in our case study directly fits the first

26 A Framework to Identify Companies Gaps

approach. The second approach is also followed in practice, especially in
the case that standards requirements are unclear and open to interpretations.
In several cases, certification authorities’ engineers or auditors supports this
approach, helping the companies to adapt and accomplish the certification
evidences.

In these cases, our framework can be successfully applied only after the
tailoring rules are translated into requirements and are added to the dataset.
Once this operation is completed, the framework can be exercised as usual.

1.7.6 Questionnaire Assessment and Bias

We want to depict the status of the company and the feeling of workers
towards specific techniques and standards in general, considering that also
most of the time the workers themselves are in charge of training personnel
and transfer knowledge. The personnel are expected to have a general, broad
knowledge of the techniques that are executed and on their usual relevance.
In other words, as far as personnel skilled in certification of safety-critical
software is available, our framework will be able to rate techniques event if
personnel is not familiar with them.

However, a relevant concern is the risk of a bias in the outputs due to
the personnel perception of their expertise and experience. It is intuitive to
expect that engineers will report higher scores for the techniques they have
experience with and actually use, and that the analysis may underemphasize
important techniques that the company is unfamiliar with. This reflects a
simplification from an engineering perspective, as we tend to apply only
one technique or a simpler tool if it is accepted for the certification or for
completing the job.

These considerations require that, when interviewing the personnel, a
good assessor, or an expert engineer that deeply studied the considered
standard, is present. Otherwise, the process and self-image of competence,
for example personnel feeling they are much more skilled than they actually
are, may introduce significant bias in the results.

1.8 Conclusions

This chapter proposed an easy-to-use framework and a supporting method-
ology to perform a rapid gap analysis on the usage of standards for safety-
critical software. The methodology can be applied to new standards to be
introduced or to standards that are already applied in the company as long

References 27

as skilled personnel are available. The ultimate objective is to discover with
reduced effort and minimal supporting tools how far a company is from
having a sufficient level of knowledge to apply a specific standard. Also,
the framework allows estimating the time required to cover the gaps. Our
case study was executed in a short time frame, proving evidence of the
intuitiveness of our solution. Results have been presented to a larger audience
at the company CRITICAL Software SA, where the audience agreed that
they reflect the global feeling about strengths and weaknesses, and recovery
actions were taken by the Research & Development team.

References

[1] RTCA. (1992). Software Considerations in Airborne Systems and
Equipment Certification (DO-178B/EUROCAE ED-12B).

[2] RTCA. (2011). Software Considerations in Airborne Systems and
Equipment Certification (DO-178C/EUROCAE ED-12C).

[3] RTCA. (2000). Design Assurance Guidance for Airborne Electronic
Hardware. (DO-254/EUROCAE ED-80).

[4] CENELEC. (2006). Railway applications: The specification and demon-
stration of Reliability, Availability, Maintainability and Safety (RAMS)
Part 1: Basic requirements and generic process (EN 50126-1/EC:
2006-05).

[5] CENELEC. (2002). Railway applications: Communications, signalling
and processing systems – Software for railway control and protection
systems, EN 50128.

[6] CENELEC. (2004). Railway applications: Communication, signalling
and processing systems – Safety related electronic systems for signal-
ling, EN 50129.

[7] European Cooperation on Space Standardization (ECSS). (2014).
Available at: http://www.ecss.nl/ (last accessed 11 November 2014).

[8] Penny, J., et al. (2001). The practicalities of goal-based safety regula-
tion.” Aspects of Safety Management. London: Springer, 35–48.

[9] Ceccarelli, A., and Silva, N. (2015). “Analysis of companies gaps in
the application of standards for safety-critical software,” in RESA4CI
workshop, Computer Safety, Reliability, and Security. London: Springer
International Publishing, 303–313.

[10] Karbhari, V. M., et al. (2003). Durability gap analysis for fiber-
reinforced polymer composites in civil infrastructure. J Compos. Con-
struct. 7.3, 238–247.

28 A Framework to Identify Companies Gaps

[11] Powell, G. V. N., Barborak, J., and Rodriguez, M. S. (2000). Assessing
representativeness of protected natural areas in Costa Rica for con-
serving biodiversity: a preliminary gap analysis. Biol. Conserv. 93.1,
35–41.

[12] Brown, S. W., and Swartz, T. A. (1989). A gap analysis of professional
service quality. J. Market. 53, 92–98.

[13] CMMI Product Team. (2010). “CMMI for Development”. Technical
Report, Software Engineering Institute, CMU, Pennsylvania.

[14] ISO/IEC 15504. (2004). Information technology – Process assessment
2004.

[15] Hanrahan, R. P. (1995). “The IDEF process modeling methodology,” in
Software Technology Support Center, New York, NY: IEEE 1995.

[16] Hanafizadeh, M. R., Saghaei, A., and Hanafizadeh, P. (2009). An index
for cross-country analysis of ICT infrastructure and access. Telecom-
mun. Policy 33, 385–405.

[17] El-Gabaly, M., and Majidi, M. (2003). ICT Penetration and skills gap
analysis. Egypt: US AID’s Mission in Egypt.

[18] Chinn, M. D., and Fairlie, R. W. (2010). ICT use in the developing
world: an analysis of differences in computer and internet penetration.
Rev. Int. Econ. 18.1, 153–167.

[19] Verband der Automobilindustrie (VDA). Automotive SPICE – Process
Assessment Model, 1st edn, 2008.

[20] Margarido, I. L., Faria, J. P., Vidal, R. M., and Vieira, M. (2012).
“Towards a framework to evaluate and improve the quality of imple-
mentation of CMMI® practices”. Product-Focused Software Process
Improvement. Berlin: Springer, 361–365.

[21] Pino, F. J., Pardo, C., Garcı́a, F., and Piattini, M. (2010). Assessment
methodology for software process improvement in small organizations.
Inf. Softw. Technol. 52, 1044–1061.

[22] Mark, S., et al. (2007). An exploratory study of why organizations do
not adopt CMMI. J. Syst. Softw. 80.6, 883–895.

[23] Kemerer, C. F. (1987). An empirical validation of software cost estima-
tion models. Commun. ACM 30.5, 416–429.

[24] Valerdi, R., Boehm, B., Reifer, D. (2003). “Cosysmo: a constructive
systems engineering cost model coming age,” in Proceedings of the 13th
Annual International INCOSE Symposium (pp. 70–82). New York, NY:
IEEE.

[25] Ceccarelli, A., Vinerbi, L., Falai, L., and Bondavalli, A. (2011).
“RACME: A Framework to Support V&V and Certification,” in 5th

References 29

Latin-American Symposium on Dependable Computing (LADC), 116,
125, 25–29.

[26] Rezabal, M. I., Elorza, L. E., Letona, X. E. (2013). “Reuse in Safety
Critical Systems: Educational Use Case,” in 39th EUROMICRO Con-
ference on Software Engineering and Advanced Applications (SEAA),
402, 407.

[27] Ceccarelli, A., and Silva, N. (2013). “Qualitative comparison of
aerospace standards: An objective approach,” in 2013 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW), 331, 336. New York, NY: IEEE.

[28] ISO 9001:2008 Quality Management Systems.
[29] Deeptimahanti, D. K., and Sanyal, R. (2011). “Semi-automatic genera-

tion of UML models from natural language requirements,” in Proceed-
ings of the 4th India Software Engineering Conference. New York, NY:
ACM.

[30] Kof, L. (2009). “Translation of textual specifications to automata by
means of discourse context modelling,” in Requirements Engineering:
Foundation for Software Quality. Berlin: Springer, pp. 197–211.

[31] IET. (2007). Competence Criteria for Safety-related system
practitioners.

[32] EUROCAE. (2009). EUROCAE ED-153 – Guidelines for ANS Software
Safety Assurance.

[33] SAE. (2010). ARP4754A/EUROCAE ED-79 – Guidelines for develop-
ment of civil aircraft and systems-Revision A.

[34] Galileo industries. (2004). GAL-SPE-GLI-SYST-A/0092 – Galileo Soft-
ware Standard (GSWS).

[35] ECSS. (2009). ECSS-E-ST-40C – Space engineering – Software.
[36] ECSS. (2009). ECSS-E-ST-10C – Space engineering – System enginee-

ring general requirements.
[37] ECSS. (2009). ECSS-E-ST-10-02C: Space engineering – Verification.
[38] ECSS. (2012). ECSS-E-ST-10-03C: Space engineering – Testing.
[39] ECSS. (2009). ECSS-Q-ST-30C: Space product assurance –

Dependability.
[40] ECSS. (2009). ECSS-Q-ST-40C: Space product assurance – Safety.
[41] ECSS. (2009). ECSS-Q-ST-80C: Space product assurance-Sw product

assurance.
[42] CECRIS. (2016). FP7-2012-324334-CECRIS: CErtification of Critical

Systems. Available at: http://www.cecris-project.eu/

30 A Framework to Identify Companies Gaps

[43] Silva, N., and Vieira, M. (2013). “Certification of embedded systems:
Quantitative analysis and irrefutable evidences,” in 2013 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW). New York, NY: IEEE.

[44] Silva, N. and Vieira, M. (2014). Towards making safety-critical systems
safer: learning from mistakes,” in 2014 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), vol., no.,
162–167.

[45] Nostro, N., Bondavalli, A., Silva, N. (2014). Adding Security Concerns
to Safety Critical Certification. ISSRE Workshops, 521–526. New York,
NY: IEEE.

[46] Nostro, N., Ceccarelli, A., Bondavalli, A., and Brancati, F. (2014).
Insider threat assessment: a model-based methodology. SIGOPS Oper.
Syst. Rev. 48, 3–12.

[47] Nostro, N., Ceccarelli, A., Bondavalli, A., and Brancati, F. (2013). “A
methodology and supporting techniques for the quantitative assessment
of insider threats,” in Proceedings of the 2nd International Workshop on
Dependability Issues in Cloud Computing – DISCCO ’13, 1–6, Braga
(Portugal).

2
Experiencing Model-Driven Engineering

for Railway Interlocking Systems

Fabio Scippacercola1,2, András Zentai3 and Stefano Russo1,2

1DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125
Napoli, Italy
2CINI-Consorzio Interuniversitario Nazionale per l’Informatica,
Italy
3Prolan Process Control Co., Szentendrei út 1-3, H-2011 Budakalász,
Hungary

2.1 Introduction

For a company to be competitive in the market, following technologies and
being updated with new trends and practices, is essential. In safety-critical
domains, the introduction of new practices and methodologies is slower
than in other engineering fields, since safety standards and long established
practices tend to defer the adoption of new emerging technologies, until
assessments and time reveal them mature and safe. Slow introduction of new
methods is especially characterizing the railway domain, where the lifespan
of products could easily reach decades or even a century. Now it is long
time that Model-Driven Engineering (MDE) techniques and tools have been
proposed, but their maturity – especially for safety-critical systems – is still
debated.

Some recent surveys investigated the adoption of MDE methodologies
and technologies in practice [1, 2]. They revealed the increasing adoption of
MDE in industry. The technology is attractive for the development of critical
systems, since it can speed up the activities of Verification and Validation
(V&V), and it enables the early verification of systems, through techniques
such as model reviews, guideline checkers, Rapid Control Prototyping (RCP)
and Model- and Software-in-the-Loop Tests. These techniques shift the cost

31

32 Experiencing Model-Driven Engineering for Railway Interlocking Systems

of development from the phases of V&V to the ones of requirement analysis
and design, thus leading to benefits in terms of residual errors. Companies
not performing model-in-the-loop testing find almost 30% more errors during
module test [3].

Prolan Co. is a Hungarian company, which develops certified products for
safety critical process control and rail signaling systems. Prolan joined the
European project “CErtification of CRItical Systems” (CECRIS [4]); in its
framework, Prolan started an industrial-academic partnership for the transfer
of knowledge of MDE techniques from the academy to the company, with the
goal of assessing their level of maturity for industrial adoption.

During this activity, it emerged the lack of well-defined processes for the
development of a CENELEC SIL-4 safety critical signaling system that was
suited for the real industrial needs.

2.2 Background: MDE

As for most engineering branches, advances in software engineering have
always resulted from increases in the level of abstraction. Let us consider,
for instance, one of the most peculiar activities of this discipline, namely
computer programming: the first abstraction, i.e., the second generation
programming languages – or assembly languages – were born soon after
programmers had struggled with binary machine code; then came the third
generation programming languages (procedural and object-oriented), that
freed the programmers from low-level details of the machine, and then fourth
generation languages, which added more facilities and masked recurrent
problems, such as the representation of data and the interworking between
heterogeneous systems. The same holds in other areas, such as operating
systems, middleware technologies, and network protocols. In this perspective,
MDE aims at raising the level of abstraction in software design and verifica-
tion [5], and promises to change the traditional methodologies of software
development.

Model-driven approaches focus on a model, i.e., on a set of specifications
or representations of a system that neglect aspects that are not of interest at
the current stage in a software process; the process advances transforming the
model in documents, intermediate artifacts, or in the final product. The result
is that MDE shifts the traditional development paradigm, based on different
kinds of artifacts composed by domain experts in multiple formats, to a
common formalism – the model – by which the artifacts are obtained through
computer-assisted transformations. This model-centric paradigm provides

2.2 Background: MDE 33

several benefits, leading to increased productivity and quality of artifacts,
shorter development time, and enhanced automation, which includes auto-
matic code generation and automatic support to the software engineering
activities.

Since models have always been applied at different extents in engineering
problems and activities, there are many acronyms with fuzzy borders in the
universe of software engineering. We refer to the terminology of Brambilla
et al. [6].

When processes exploit models as support for their goals they are part
of Model-Based Engineering (MBE), and we call the activities document-
centric, since models are only a means to achieve the targets, but there
is no particular emphasis on them. Therefore, MBE is the broadest term,
encompassing all the methodologies and activities that employ models.

Model-Driven Engineering focuses on the processes where models are
key artifacts of the activities (model-centric). When we restrict to considering
MDE for supporting the development of systems, we can use the more spe-
cific term of Model-Driven Development (MDD). One approach of MDD is
the Model-Driven Architecture (MDA), proposed by the Object Management
Group (OMG) [7]. The Model-Driven Testing (MDT) is a theory of software
testing that introduces concepts enabling to transform models in test-cases in
order to support V&V activities. Even though MDT is not an OMG standard,
it uses an OMG’s standard profile, the UML-Testing Profile (UTP) [8, 9].

Model-Driven Engineering is founded on concepts of models and trans-
formations: instead of producing (textual) documents as artifacts – require-
ments, design, code, test artifacts – engineers focus on models as primary
artifacts.

Models are defined in (semi-)formal languages, which are typically
machine-understandable and drawn with the support of tools. Other artifacts
are derived through defined transformations, be they: Model-to-Model trans-
formations (M2M) or Model-to-Text transformations (M2T) from models to
textual documents, source code or testing artifacts (such as test cases and test
scripts).

As argued by Kent [10], MDE can identify different levels of decompo-
sition and can employ ad hoc or domain-specific languages for models and
transformations, whereas MDA is bound to OMG’s standards.

The OMG is an international open membership not-for-profit consortium
grouping many IT companies and organizations around the globe. OMG first
conceived MDA as a technology to overcome the interoperability problems of
applications partially addressed by the CORBA standard [11]. Indeed, even
if CORBA provided a good solution for the interoperability of applications,

34 Experiencing Model-Driven Engineering for Railway Interlocking Systems

it became soon clear how it is difficult for large enterprises to standardize
on different middleware platforms: enterprises have applications on differ-
ent middleware, that have to be integrated even though this process turned
out to be expensive and time-consuming. Furthermore, middleware systems
continue to evolve and even CORBA could not be a guarantee for next
decades. Therefore, MDA was proposed as a better way to reach portability,
interoperability and reusability through architectural separation of concerns
in the OMG vision that postulates how the myth of a standalone application
or standard for developing software as well as for data interchange died.

The recent version 2.0 of the Guide to the standard [7] defines MDA as
an approach for deriving value from models and architecture in support of
the full life cycle of physical, organizational and IT systems. MDA became
an approach to deal with complexity and interdependences in large systems,
namely to derive value from modeling by defining the structure, semantics,
and notations of models using industry standards.

In order to enable (automatic) transformations of models, mechanisms
were introduced to reason on the models themselves: this has been done
through the concept of meta-modeling, namely introducing models for
modeling languages. These concepts are commons to MDE, but MDA
standardized the formalisms to use, so as to have four layers of abstractions:

• M0 is the user data layer, it is the layer at lowest abstraction and the
elements are concrete objects of the problem domain.

• M1 is the layer of modeling concepts. Here are the UML models of
entities that abstract the user data layer, like UML classes or association.
At this level are models defined by software engineers to define the
requirements or architecture of the system.

• M2 is UML Metamodel, i.e., M2 defines, through UML, the syntax of
UML models in M1, as well as their semantic. For instance, M2 will
constraint you to do not use UML links for connecting classes but UML
objects. M1 models can be seen as instances of concepts of M2 layer
and, by M2, you can check consistence of your UML models.

• M3 is most abstract layer defined by OMG. At this level is Meta-
Object Facility (MOF) language. By MOF OMG can define syntax
and semantic for meta-languages. In the MDA, MOF enables to define
transformation rules among different models (of M1 layers) that are
compliant to different meta-models (of M2 layers).

Using its modeling infrastructure, it is possible to define rules to transform
models into other models (M2M) or model into text (M2T). With M2T

2.2 Background: MDE 35

transformation, MDE refers specifically to that kind of transformation that
produces source code (or other textual documents) from models.

2.2.1 MDA Viewpoints and Views

Model-Driven Architecture starts with the well-known and long-established
idea of separating the specification of the operation of a system from the
details on how that system uses the capabilities of its platform. MDA enables
to specify a system independently from the platform that supports it, and to
transform the system specification into one for a particular platform.

A viewpoint specifies a reusable set of criteria for the construction,
selection, and presentation of a portion of the information about a system,
addressing stakeholder concerns [7]; in other words, a viewpoint defines the
abstractions to adopt to focus on particular concerns within the system. A
view is a representation of a system that conforms to a viewpoint [7].

In MDA terms, abstraction eliminates certain elements from the defined
scope and may result in introducing a higher-level viewpoint at the expense
of removing detail. A more abstract model encompasses a broader set of
systems, whereas a less abstract model is more specific to a single system or
restricted set of systems. One important capability of MDA is the automation
that provides for the transformation between levels of abstraction by the use
of patterns.

Model-Driven Architecture specifies three viewpoints, which offer levels
of separation of concerns to realize a system. The three viewpoints are:

Computation Independent Viewpoint (CIV). The computation inde-
pendent viewpoint focuses on the environment of the system, and the
requirements for the system; the details of the structure and processing of
the system are hidden or as yet undetermined;

Platform Independent Viewpoint (PIV). The platform independent
viewpoint focuses on the operation of a system while hiding the details
necessary for a particular platform;

Platform Specific Viewpoint (PSV). The platform specific viewpoint
combines the platform independent viewpoint with an additional focus on
the detail of the use of a specific platform by a system.

The recent version of MDA standard [7] reduces the emphasis on the CIV,
and defines a platform as a set of resources on which a system is realized. This
set of resources is used to implement or support the system. For instance, a
platform can be the organizational structure or a set of buildings and machines

36 Experiencing Model-Driven Engineering for Railway Interlocking Systems

(in case of business or domain platform types); or operating systems, pro-
gramming libraries, and CPUs (when considering computer hardware and
software platform types).

A platform model also specifies requirements on the connection and use
of parts of the platform, and the connections of an application to the platform.
Example: OMG has specified a model of a portion of the CORBA platform
in the UML profile for CORBA. This profile provides a language to use when
specifying CORBA systems. The stereotypes of the profile can function as a
set of markings. A generic platform model can amount to a specification of a
particular architectural style.

Considering the previous views, MDA defines the Computation indepen-
dent Model (CIM), the Platform Independent Model (PIM), and the Platform
Specific Model (PSM). MDA refines CIM in PIM and in PSM using model
transformations during development process.

2.3 The Maturity of MDE

Several surveys analyzed the diffusion and the benefits of Model-Based and
Model-Driven techniques and technologies into industrial practices, after
30 years from the introduction of the first MD tools on the market. However,
these analyses are still not enough to get a complete picture about the state of
the MD practices. Indeed, an aspect that is often neglected by these surveys
is that the utilization of MD techniques is tightly dependent on the domain,
which influences the demands of the users as well as the stability of the envi-
ronment and the availability and maturity of the supporting tools. The domain
of embedded systems, for instance, has seen the diffusion of sophisticated
MD tools such as Matlab Simulink or SCADE, that keep evolving in the
offered functionalities since they were introduced on the market, many years
ago. However, if we consider all other domains, we can see that the adoption
of MDE in software companies differs from that in the domain of embedded
systems: although MDE is always perceived beneficial, the benefits are not as
evident as in the embedded system industry.

In general MDE seems not completely mature yet, and the feasibility of
its adoption partially debated, with tools not enough stable integrated, and
much of the MDE potential yet to be demonstrated. Summarizing the various
observations in the surveys of past years in industry, we may conclude that:

• MDE is spreading in industry, but it is still far to be pervasive. It
followed the concurrent evolution of modeling languages (such as UML)

2.3 The Maturity of MDE 37

and of related tools: in 2005 practitioners were using MBE for concep-
tual modeling [12], in 2008 model-centric approaches were perceived
better than code-centric ones in most of tasks [13], in 2010 and 2011
MDE has been observed in a wide range of application domains
[14–21], despite there are many problems and no general and common
consensus on these approaches;

• Models are mainly used for design and documentation, while the
benefits of advanced techniques (such as code generation, test case gen-
eration, or model animation) are lowly exploited: models are introduced
mostly as an enabling technology inside the process, to enable business
that otherwise would not be possible [14–16];

• UML is gaining popularity, but support tools are not enough mature
yet to build toolchains meeting the specific needs of companies: they
are considered one of the biggest problem by the industry, that is
worried about ease of their usage, the vendor lock-in problem, and the
interoperability among different tools [18–21];

Model-Driven Engineering depends on the business domain and on organi-
zational factors, and its adoption requires changes in the personnel skills, the
software processes, and the company practices. MDE demands for special
skills and for changes in the roles of developers and software engineers:
retraining programmers to think at a higher level of abstraction can reveal
a difficult task. These aspects have not been well addressed so far, and the
current approaches do not adequate to the people, but the people have to adapt
to them.

A partially different scenario is observed in the domain of embedded
systems, where we can draw the following picture:

• Model-based techniques are widely adopted (almost pervasive in auto-
motive domain), and models are used not only for informative and doc-
umentation purposes but they were the key artifacts of the development
processes [1, 2].

• The needs for introducing models was mainly for shorter development
time, and to improve reusability and quality, whereas less than half had
the need to introduce models to exploit formal methods, or because they
were required by the standards [1, 2].

• The activities of V&V had a huge impact by their adoption in the
automotive domain [3]: the automotive industry was used to exploit
model-driven approaches for the early verification of the systems,
by techniques such as model reviews, guideline checkers, RCP and

38 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Model- and Software-in-the-Loop Tests, that lead to better quality,
reduced development time, due to the shifting of the costs to the phases
of requirement analysis and design;

• According to [22], UML is not used widely due to short lead-time
for the software development, or lack of understanding or knowledge
of UML models; however this survey, limited to MDE/MDA in the
Brazilian industry, does not agree with [1, 2] targeting the European
industries of embedded systems. These authors found that the majority
of survey participants were using Matlab/Simulink/Stateflow, followed
by Eclipse-based tools. The most used modeling languages were the
OMGs ones (UML and SysML);

• As for generic software companies, in the top shortcomings identified
there are the scarce interoperability and usability of tools, and the high
(initial) effort to train developers [1, 2].

Why was the diffusion of MB and MD techniques different in the embedded
systems domain with respect to other application areas? We claim that this is
due to:

i. The different weight of the activities in the development process (more
emphasis on design and implementation for generic software systems;
more emphasis on analysis and V&V for embedded systems);

ii. The parallel evolution of the code-centric technologies that are available
for the development, which raised even more the level of abstraction
during the design, and simplified the way the systems are implemented.
The hypothesis partially reflects the different focus on the adoption of
models in the two domains, since there is more emphasis on design and
documentation in the general market, and on the V&V techniques for
the embedded systems.

The cited surveys identify the current state of the adoption of MD techniques
in industry by collecting the opinions of the practitioners on the benefits and
drawbacks of model-based and model-driven techniques. However, besides
these quantitative data, there is the need of empirical studies that analyze
qualitatively and critically the merits and faults of model-driven approaches.
Indeed, the success or failing factors of MDE are still unclear, and more
research is needed [23].

A systematic review of empirical studies on MDE from 2000 up to June
2007 was performed by Mohagheghi and Dehlen [24]. They show that MDE
can effectively reduce the cost and development time, however this depends
on the grade of adoption in the development process: a success story is the

2.3 The Maturity of MDE 39

one of Motorola [25, 26], that used MDE for more than 15 years in a wide
spectrum of activities, ranging from protocol implementations up to handheld
devices or network controllers; they experienced an increase in quality and
productivity (ranging from 1.2× to 8×) and an approximately 33% reduction
in the effort required to develop test cases.

Motorola could achieve these results within a mature process that was
supported by own-made translators and tools for the model exploitation.
Indeed, one common issue of MDE is the absence of well-defined processes
[24, 27, 28], as the application of MDE requires changes in the activities,
corporate culture and skills of the employees: many software engineering
methods are not fitted to use models as main artifacts, and the environments
seems not mature enough. Some previous studies attempted to apply pre-
existing processes to MDE, or to create own ones, but MDE shifts the
importance of many activities to (automatic) transformation rules, and change
consolidated development process is not a naive task. The study [29] reports a
successful introduction of a MBE process after 4 years and three projects had
been defined and consolidated: there is the need to look beyond the technical
benefits of a particular approach to MDE and instead concentrate on social
and organizational issues [16].

Moreover, the process becomes a more difficult problem in safety-critical
domain, where compliance with certification standards poses additional
requirements on the methodologies for product life cycle. For these kind of
systems, the major part of costs are for the activities of V&V, so rigorous
and well-assessed techniques have to be integrated within the development
process for the early detection of faults and to guarantee the quality of the
product. In addition, non-functional requirements, such as safety, reliabi-
lity and timing requirements, are a primary concern that have to be taken
into account by these processes: current MDE methodologies do not cope
with stringent functional requirements and qualities in current systems, i.e.,
the ability of these approaches to adapt to rapidly changing hardware and
implementation platforms that are highly complex [23].

Parallel to the challenge of the product life cycle, there is the open prob-
lem of the supporting tools: they are not mature yet, and influence most of the
adoption of MDE. Moreover, the vendor lock-in problem is also perceived
as a problem, and the companies prefer to adopt open source solutions or
to develop their own tools. Indeed, the tools are not well usable, do not
interoperate between themselves, do not keep in synchronization the models
at different level of abstractions, are not flexible to collaborative working,
and are not suited with the adoption of different models and modeling

40 Experiencing Model-Driven Engineering for Railway Interlocking Systems

notations [23]. Thus, model-driven processes have to carefully consider the
problem of defining the toolchain for supporting the activities.

2.4 A Model-Driven Methodology for Prolan

In the period when CECRIS started, Prolan was developing the next gener-
ation of railway interlocking systems, and in particular the first product of
this generation, the Prolan Block (PB), a safety-critical system for railway
interlocking that must be CENELEC EN 50126, EN 50128 and EN 50129
SIL-4 certified.

The system is deployed alongside railway segments, which are named
blocks. Each block is equipped with a PB, with sensors for detecting incoming
and outgoing trains (these sensors are the axle counters), and with semaphores
that are part of the signaling system. The PB manages the block (Figure 2.1),
receiving data from sensors, and properly setting the semaphores according
to its internal state.

The interlocking is realized by the overall distributed system that consists
of interacting PBs, which must ensure that no collision will happen on the
railway, directing the train movements by proper sequences of signals. For
instance, according to the specific regulations, the yellow lamps can indicate
that the next block’s semaphore is red because there is an obstacle (e.g., a
train) in the block after the next (e.g., there is a train two semaphores ahead).

Figure 2.1 A representation of the Prolan Block and its operating environment.

2.4 A Model-Driven Methodology for Prolan 41

Prolan was interested in understanding the potentialities that model-
driven technologies could give for the development of the PB and for the
other products of the same generation. Indeed, small and medium size enter-
prises like Prolan are interested in model-driven technologies but there are
barriers to their introduction, for the deep changes that these require into the
organization and in the current industrial practices. Indeed, for the adoption
of MDE Prolan needs to carefully rethink and redesign its current product
development life cycle, that currently complies with the railway standards
CENELEC EN 50126, EN 50128 and EN 50129, as well as the skills of the
employees, even if no proven-in-use model-driven lifecycle for this domain
is available and supported by long-term evidence.

The traditional Prolan development life cycle follows the V-Model and
is compliant with the European railway standard EN 50128. The activities
of the CENELEC V-Model process can be grouped in those concerning
development, that are on the left side of the ‘V’, and those focusing on
V&V, that are on the opposite side as it can be seen in Figure 2.2. The
activities of V&V require planning stages that are performed before their
actual execution: these planning stages are carried out during design.

Besides the activities in the V-Model, CENELEC EN 50128 also pre-
scribes requirements on the documents produced at each stage, as well as
on the project organization. For instance, if we consider the highest integrity
level (SIL-4), distinct people have to test, verify and validate the product, in
order to cross-check their work. The phases adjacent to the ‘V’, the Software
Planning and Software Assessment, aim at tuning and assessing the activities
of the life cycle, defining the tasks to be performed during the process and
checking that the product and all artifacts satisfy the requirements and comply
with the standard.

To gain experience on model-driven technologies, Prolan started a col-
laboration with CINI in the framework of the CECRIS Project to develop a
development process enhanced with model-driven approaches.

Since Prolan wanted a concrete and feasible option for replacing its
current methodology, the researcher proposed a development process backed
to Prolan’s traditional process. This solution minimizes the impact of the
change on the organization, and is also compatible with the safety standards
pursued by the company. The adaptation of the development processes of
Prolan to MDE focused on core phases of the CENELEC V-Model, starting
from the System Development Phase up to the Software Validation Phase,
i.e., on the Software Development Life Cycle (SDLC).

42 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.2 Software Development Life Cycle according to EN 50128.

The proposed model-driven V-Model lifecycle is shown in Figure 2.3: it is
composed of a left, center and a right part; the title lines of the boxes refer to
the SDLC activities performed by Prolan, according to CENELEC EN 50128
standard. For each activity, the boxes contain the models produced, and the
formalisms used. Arrows represent dependency between the artifacts. The
Component Design also depends on the Component Verification Design if it
exploits the test model to early detect faults.

2.4 A Model-Driven Methodology for Prolan 43

Figure 2.3 The adapted model-driven V-Model life cycle for Prolan [31].

On the left there are forward engineering activities (system analysis,
design and implementation); the phases in the center are for V&V planning,
while on the right side there are the activities of V&V execution. The
CENELEC V-Model life cycle adopts implicitly different viewpoints on the
system for each level of the ‘V’: the top level focuses on the system as a
whole, the level below uses a viewpoint on the system architecture, then it
considers the components and their internal design; finally, the lowest level
of the ‘V’ sees source code details. These abstractions are used on both sides
of the V-Model, for development and V&V.

The activities are assigned to a number of roles that comply with
the CENELEC EN 50128 standard. We consider the following roles and
responsibilities:

• The Requirements Manager is responsible for specifying the software
requirements. (S)he shall be competent in requirements engineering and
be experienced in application’s domain (as well as in safety attributes);

• The Designer transforms software requirements into a solution, defining
the system architecture and developing component specifications. (S)he
has be competent in the application area, and in safety design principles;

• The Implementer transforms design solutions into data, source code or
other representations to create the product software artifacts. (S)he has to
be competent in engineering of the application area and implementation
languages and supporting tools;

• The Tester develops the test specifications, and performs the test exe-
cution. (S)he has to be competent in the domain where testing is
carried out;

44 Experiencing Model-Driven Engineering for Railway Interlocking Systems

• The Integrator manages the integration process using the software
baselines, developing the integration test specification. (S)he has to be
competent in the domain where component integration is carried out.

All these roles require advanced modeling skills, and experience with MDE,
as well as with the adopted formalisms and tools.

The process starts with System Requirements Specification, by defining
the system environment and software requirements. Then, System Design and
Component Design are carried out. The former defines a high-level system
architecture, identifying the hardware-software interface, and the components
interfaces. Requirements are then allocated to components, and the Designer
specifies their responsibilities and expected interactions. Finally, in Compo-
nent Design the Designer completes the components with the internal design,
and the Implementation concludes the development.

For enabling forward engineering to model-driven technologies, we
define in three stages a CIM, a PIM, and PSM, following the MDA principles.

The V&V planning activities (Validation Design, Integration Verification
Design, and Component Verification Design) have been isolated at the center
of the V-Model. They are followed by the ones of V&V execution that are
performed on the right side of the ‘V’, i.e., Validation, Integration Verification
and Component Verification. For instance, Validation Design produces the
Overall Software Test Specification after the System Requirement Specifi-
cation. Then, the actual validation is performed in the Validation activity,
at the end of the ‘V’, after Integration Verification, to assess the product
conformance to requirements.

For the phases of V&V, we propose a model-driven methodology based
on the MDA abstractions: the planning phases use Platform Independent Test
Models, whereas the execution phases build Platform-Specific Test Models.
In fact, the V&V execution phases on the right side of the ‘V’ benefit from
the availability of the implementation, which constrains the technological
platform.

Using this methodology, Prolan aims at improving the reuse of artifacts of
design and V&V, supporting most of activities of the life cycle with model-
driven approaches. Prolan wanted to evaluate the adoption of OMG standards,
i.e., SysML [30] and UML, to be open to multiple tools and promote the
interoperability of the models. It is worth to note that custom profiles can be
introduced in the process to potentiate the automatic generation of artifacts
throughout the whole SDLC, thus reducing the manual efforts.

We remark that since Prolan’s products must undergo safety certification,
one of the main requirements of the methodology is to exploit model-driven

2.4 A Model-Driven Methodology for Prolan 45

technologies for supporting multiple activities of V&V. Indeed, the proposed
process is open to multiple forms of V&V, and includes techniques of early
system validation, through the definition of the Computation Independent
Test (CIT) model.

2.4.1 Experimentation within A Pilot Project

Prolan started a pilot project on a subset of requirements for the Prolan
Block, in order to assess the benefits and drawbacks of the model-driven
technologies.

2.4.2 System Requirements Specification

At this phase, the Requirements Manager defines the system and the speci-
fication of software requirements. We defined a CIM starting from the high-
level system specification.

The CIM models requirements, and the relations between them, in
SysML, because the language turns out particularly suited in this phase due
to the Requirement diagram, the Use Case Diagram, and the Block Definition
Diagram. In particular, SysML Requirement Diagram is useful to display
textual requirements, and their relationships, and to trace them with other
modeling elements.

Prolan built in the pilot project a CIM using MagicDraw [32], a modeling
tool created by No Magic. Functional and non-functional requirements of the
system were described using requirement diagrams meanwhile the system
context was described with block definition diagrams. Modeling using the
MagicDraw tool was introduced in an earlier phase of the CECRIS project
in the framework of the knowledge transfer with Budapest University of
Technology and Economics. Using models to capture requirements increased
requirement quality significantly because the graphical representation made
it possible to overview complex systems as well as the constraints of the mod-
eling environment forced the engineers to create consistent requirements. We
found it convenient to separate functional and non-functional requirements in
different groups as well as to mark derived requirements using the refinement
relationship.

An example of functional and non-functional requirements modeling can
be seen in Figures 2.4 and 2.5. As it can be seen from Figure 2.6, the PB
system is connected to a Radio Block Center (RBC) to a PB Human Machine
Interface (HMI) to a Station Interlocking System and to track occupancy

46 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.4 Prolan Block (PB) functional requirements.

Figure 2.5 PB non-functional requirements.

2.4 A Model-Driven Methodology for Prolan 47

Figure 2.6 BDD diagram showing the environment of the PB.

detectors. In the BDD diagram not only the related components but also
the multiplicity as well as the exchanged information and signals could be
visualized.

Not only other actors, but also their relations and compositions were
modeled with the BDD. Use case diagrams were created to describe in which
functionalities the actors are involved (Figure 2.7).

One use case of the PB HMI is to receive the status of the PB and display
it. Another use case is to reset the track occupancy detectors in case the
operator activates the axle counter reset.

High-level functionalities of the system defined by functional require-
ments and use cases are further detailed by behavioral diagrams: state
machine diagrams, activity diagrams and sequence diagrams. Requirements
coming from the railway domain like the description of the semaphore’s
behavior (in Figure 2.8) are primarily introduced into the CIM.

Active support from the CINI side was necessary in modeling the CIM,
because the technology was relatively new to the requirement engineers
of the company. During this phase 6 SysML Requirement diagrams; 12
SysML Block Definition diagrams; 41 Use Cases diagrams; 6 State Machines
diagrams; 29 Activity diagrams; and 33 Sequence diagrams were created.

48 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.7 Computation Independent Model (CIM) use case diagram for the Prolan Block.

2.4.3 System Design

In System Design, the Software Designer builds the Platform Independent
Model to define the software architecture, the interfaces between the com-
ponents, and between the components and the overall software. To this end,
(s)he uses structural diagrams, such as Component and Class Diagrams, and
assigns the requirements to the system components. Since the viewpoint is
platform independent, the interfaces are independent of any technological
platform.

In the pilot project, Prolan used UML component and class diagrams to
model the high-level architecture of the PB.

The PB design comprises five components (Figure 2.9): Prolan Block
Core Logic, Track Occupancy Detector, Network Communicator, IS Con-
troller, and HMI Controller.

By communicating with the axle counters, the Track Occupancy Detector
notifies to the system events such as “a train entered the block” or “a train
has left the block”. It also manages device failures, notifying exceptional
conditions.

2.4 A Model-Driven Methodology for Prolan 49

Figure 2.8 State machine diagram of the semaphore behavior [31].

The IS Controller interacts with the semaphore, setting the proper aspect
and coping with malfunctionings. Similarly, the NetworkCommunicator uses
the network, for interacting with adjacent PBs, and the HMIController
manages the human-machine interface.

Finally, the ProlanBlockCoreLogic sets the interlocking systems accord-
ing to its internal status and by collaborating with the other four components.

The components’ interfaces were defined following guidelines to keep
them as much as possible UML standard and platform-independent. For

50 Experiencing Model-Driven Engineering for Railway Interlocking Systems

PBObjects

:ProlanBlockCoreLogic1

HMIControllerReq

IHMIControllerListener IHMIController

IConventionalISListener

IConventionalISController

ConvISReq

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManagerListener

INetworkManager

NetworkPortReq

IHMIControllerIHMIControllerListener

HMIControllerReq

ConvISReq

IConventionalISController

IConventionalISListener

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManager

NetworkPortReq

INetworkManagerListener

:TrackOccupancyDetector1
ITrackOccupancyDetector

ITrackOccupanyListener

TrackOccPro

ITrackOccupancyDetector

TrackOccPro

ITrackOccupanyListener

:ISController1IConventionalISController

IConventionalISListener

ConvISPro

IConventionalISController

ConvISPro

IConventionalISListener

:NetworkCommunicat1

INetworkManager

INetworkManagerListener

NetworkPortPro

INetworkManager

INetworkManagerListener

NetworkPortPro

:HMIController1

IHMIController

IHMIControllerListener

HMIControllerPro

IHMIController

IHMIControllerListener

HMIControllerPro

Figure 2.9 High-level system architecture [31].

instance the services of any middleware or library have been defined in
terms of abstract interfaces, and the data types of the variables neglected one
specific programming language.

2.4.4 Component Design

The next phase is Component Design: here the Designer refines the PIM, to
specify the internal design of the components. (S)he identifies all lowest soft-
ware units, fully detailing their input and output, and specifying algorithms
and data structure. The PIM becomes complete, and can be runnable and
object of simulation.

In the pilot project, Prolan defined the PIM using IBM Rhapsody Deve-
loper [33] (hereinafter: Rhapsody), but following the guidelines to build a
model platform-independent. Indeed, the tool does not allow a clear separa-
tion between a PIM and a PSM, thus we avoided to insert C++ code, and
adopted UML compliant syntax where possible.

2.4 A Model-Driven Methodology for Prolan 51

Only few parts could not be specified in a platform-independent style.
However, these parts were specified in C++, to exploit the model anima-
tion feature of Rhapsody. Indeed, Prolan was interested in this feature as a
technique of early fault detection: Rhapsody’s model animation generates an
instrumented implementation of the model that allows to observe at runtime
the program execution. This feature was useful and valuable for getting an
immediate feedback on the design.

By Rhapsody Panel Diagrams, we drew a graphical user interface bound
to the model that enabled to generate and receive model events at runtime. Of
course, the execution can be also followed on behavioral diagrams, e.g., state
machines or sequence diagrams.

2.4.4.1 Implementation
Implementation phase deals with the production of software that is analy-
zable, testable, verifiable and maintainable. Following MDA, the PIM is
refined into one (or more) Platform Specific Models that are bound to target
platforms. The PSM adds low-level implementation details. For instance, a
PSM binds data and interfaces to the target OS and middleware chosen for
the instantiation of the PIM.

Using IBM Rhapsody, Prolan set tagged values and other parameters to
enrich the PIM with information platform-specific details, to specify how to
translate the association (e.g., by static or dynamic arrays), what is the clock
for the scheduler of the state machines’ event queues, and other parameters.
These are used by Rhapsody for the automatic translation of PSM into code.

Considering the requirements of the PB, Prolan specified that the gen-
erated code cannot use dynamic memory and that the variables have to be
initialized at runtime, due to the lack of memory isolation on Prosigma, the
technological platform for the PB. The platform specific code can also exploit
the round-trip code feature of MDE tools:

1. By automatic code generation, packages, code skeletons, make files and
other artifacts are automatically model-to-text produced;

2. The Implementer fills the code skeletons with platform-specific details,
using the support of modern development environments (such as
Eclipse);

3. By code round-trip, the model is automatically augmented with the
information written manually by the Implementer in the source code.

According to the requirements, there are many options for the translator
that include the execution framework at runtime. For instance, Rhapsody

52 Experiencing Model-Driven Engineering for Railway Interlocking Systems

offers two C/C++ frameworks: IBM Rhapsody Object Execution Framework
(OXF), and IBM Rhapsody Simple Execution Framework (SXF). The latter is
dedicated to embedded systems and safety-related development: qualification
kits support the certification of the automatic generated code for several
standard (including ISO 26262, EN 50128 and recently DO-178B).

The translation of our PSM in C++ source code generated around 7.5
thousands of lines of code for a platform using a conventional OS, 7.3 thou-
sands for target platform using a commercial Real Time Operating System
(VxWorks), and 5.9 thousands C lines of code for an embedded systems not
using an OS. We used the SXF framework in the last code generation.

2.4.5 Validation Design

For Validation Design, we propose a model, named CIT Model, to specify the
behavior of the actors and of the environment. CIT can be used for designing
validation tests, e.g., as UTP sequence diagrams representing the interactions
of the actors with the system.

Prolan decided to does not build a CIT model for the Prolan Block, and
the benefits of CIT modeling have been experimented on another system, the
Prolan Monitor, that is discussed in the next section.

2.4.6 Integration Verification Design

During Integration Verification Design, the Integrator realizes integration
tests to show that components behave correctly when integrated together. The
expected behavior of the components is independent from their inner design,
thus we refer to this model is named Black Box Platform Independent Test
Model (BB-PIT).

BB-PIT provides static and dynamic views of the system’s compo-
nents, and supports functional testing for unit/integration/system verification
(Figure 2.10). The static description supports the generation of test harness,
such as stubs and drivers for unit and integration testing. The dynamic
description supports the generation of test suites and test cases.

The components’ behavior seems modeled twice, in PIM and BB-PIT.
However, the two models have different purposes: the first specifies how to
build the system, and represents the specification that an actual implementa-
tion must comply with; the second describes the expected behavior in a way
to verify its correspondence between requirements and implementation (e.g.,
by test cases).

2.4 A Model-Driven Methodology for Prolan 53

Figure 2.10 The transformations of the BB-PIT.

For tests specification, UML-UTP Sequence diagrams are less error-
prone than textual notations, and it is easier to derive test cases for multiple
target platforms (such as TTCN-3 and JUnit), enhancing reusability and
maintainability.

In the pilot project, Prolan adopted Conformiq Designer (from here
onward: Conformiq) [34] to generate automatically test cases from the
BB-PIT. However, since Conformiq is not fully compliant with UML, the
behavior was specified in QML, the language used by the tool. As ade-
quacy criterion we used the requirement coverage, using the requirement
traceability offered by the model-driven tools.

In total, Prolan achieved the full coverage of requirements generating 21
test cases for the ProlanBlockCoreLogic. Test cases were exported to JUnit
from sequence diagrams (Figure 2.11), and the tool also provided us with
the traceability matrix correlating test cases with the structural features they
cover (states, transitions, requirements).

We also assessed the test harness generation from BB-PIT. Conformiq
required to write the SUT adapter to let the testing framework interact
with the system. Instead, Rhapsody offers the Test Conductor Add On [35],
that automatically generates the testing harness (including the drivers and
stubs), starting from model design diagrams. Within Test Conductor we could
execute test cases directly in Rhapsody, observing the effects, and following
the behavior of the SUT by means of sequence diagrams.

2.4.7 Component Verification Design

In Component Verification Design tests have to confirm that components
perform their intended functions. Here, we define the Grey Box Plat-
form Independent Test (GB-PIT) Model, which is used for verification
by the internal view of the components. Following this flow, engineers

54 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.11 A test case automatically generated from the BB-PIT by Conformiq.

focus on a functional V&V modeling in the Integration Verification Design,
whereas they focus on functional and structural V&V modeling at this
stage.

Prolan assessed the IBM Rhapsody Automatic Test Generator (ATG) [36]
for the structural verification of the ProlanBlockCoreLogic. ATG generated
ten test cases (Figure 2.11) achieving the 91% coverage of the structural
features of the model (they covered 19/21 states and 22/24 transitions).
However, it was not able to reach the complete coverage.

2.4.8 Model-Driven V&V Subprocess

The activities on the right side of the V-Model concern V&V execution: we
propose to use in these phases the models built during the Design activities,
but after they have been refined with the new details added in PSM during
implementation.

2.5 Environment System Validation 55

Thus, in Component Verification we named the model White Box Plat-
form Specific Model (WB-PST), and the Tester adds new test cases consider-
ing the details of the target platform. The WB-PST can be used to calculate
the test coverage on the basis of the final system code, as well as to support
any kind of verification of the actual code, such as to derive consistent and
efficient code review plans by considering the component software metrics
and implementation details.

Similarly, during Integration Verification phase the BB-PIT model is
refined in the Black Box Platform Specific Test Model (BB-PST), where plat-
form specific details complete the integration test specification. For instance,
the BB-PST can be exploited to perform interface testing, a technique that is
highly recommended by CENELEC EN 50128: interface testing is executed
knowing the actual domain of all interface variables, and selecting particular
input to assess the behavior of the (integrated) components (e.g., at their
normal, boundary, or invalid values).

Finally, in Validation phase, the Tester assesses that system and software
requirements are met. To this end, (s)he executes the overall system tests
defined in the CIT. Moreover, if the CIT is executable, the Tester can put
the CIT and the software in-a-loop, to perform software-in-the-loop and
hardware-in-the-loop testing.

2.5 Environment System Validation

Our methodology also exploits MDE for validation, by defining an environ-
mental model during Validation Design to analyze the actors’ behavior. This
model, named CIT Model, specifies the expected behavior of the environment
when interacting with the system by behavioral diagrams (e.g., Sequence,
State Machine or Activity diagrams) that are used to derive validation
test case.

The CIT also appears in other studies [37] but our definition differs
from the previous ones, since we define the CIT a model for validation
that abstracts from the computation details of the system under analysis
(SUT), and also propose to develop the CIT as an executable model of the
environment, with interfaces specular to those of the PIM. This definition
supports multiple forms of V&V during the product life cycle.

Since the CIT has an interface specular to the one of the PIM, we can put
the two models in-a-loop and the CIT can be used to perform model-in-the-
loop test (since it is runnable), enabling to:

56 Experiencing Model-Driven Engineering for Railway Interlocking Systems

• Validate the system against its expected interactions with external actors;
• Create a simulated environment to reason about the operational aspects

of the system in its environment (also through model animation).

Model-in-the-loop (MIL) testing can be performed as soon as the PIM is
available, i.e., during the Component Design, enabling to an early fault detec-
tion. Moreover, if the Tester can use additional/external sources of knowledge
to model the actors’ behavior (such as domain knowledge or historical data),
MIL testing can also be useful to detect missed software requirements, by
assessing the behavior in a simulated environment.

Then, when a system implementation is available, the Tester can build an
adapter to allow the CIT to interact with the actual SUT, allowing Software-
and Hardware-in-the-loop Testing.

CIT also enables to performance testing, generally adopted for the assess-
ment of critical systems, as it is recommended by the safety standards. Indeed,
the CIT can generate inputs representative of the operational profile.

Other forms of verification allowed by the CIT are:
Model-checking through the in-the-loop model. This can assess the

absence of undesired conditions during the operation, analyzing the states
of the PIM and CIT.

Back-to-back testing, a special case is when the CIT can be seen as
another PIM, for instance when we consider systems that act as client and
server at the same time. For this kind of systems, we can instantiate two PIMs,
putting in-a-loop each other, to perform back-to-back testing.

2.6 Experimenting the CIT

The benefits of the CIT and of environmental modeling have been assessed
in another part of the interlocking system with which Prolan Block interacts,
the Prolan Monitor.

The Prolan Monitor (PM) shares with the PB the Prosigma hardware and
middleware platform, which is the basis of the next generation of Prolan’s
products.

The purpose of the PM is to send signals generated by legacy inter-
locking devices to modern interlocking systems that communicate through
protocols based on IP networks (such as via X.25 over TCP/IP). More
specifically, PM monitors railway objects: each object is associated to one
bit of information, which is encoded by one couple of valent and antivalent
physical signal values. The PM transmits the bit of information to other
devices, detecting invalid values for the couple of electric signals. Indeed,

2.6 Experimenting the CIT 57

the input can suffer of special unstable states during which the signals
quickly alternate in their value for a transient time, called bounce time: the
PM must properly filter the signals, separating transient noise from invalid
inputs.

To assess the benefits of the CIT, Prolan made an executable model of the
PM’s environment. The CIT is composed of two CIT Railway Objects: each
CIT Railway Object controls the couple of logical signals associated with the
binary information that they encapsulate; from the CIT point of view, the PM
is an actor.

The CIT Railway Objects are implemented by a Signal Generator and
an Event Generator: the Event Generator determines the next output to
be triggered (including transient and invalid states), as specified by a user-
defined operational profile, whereas the Signal Generator sets the couple of
output signals and manages the duration of the transients.

A panel diagram makes the CIT interactive: a couple of knobs allow to set
the event generation period and to customize the duration of transient states.

Linking together with an adapter simulating a physical relay the CIT and
the PIM, we preliminarily performed Model-in-the-loop testing. Only chang-
ing the adapter with a real hardware card forwarding the events to the actual
SUT, we could also perform Hardware in-the-loop testing (Figure 2.12).

Figure 2.12 The configuration of the PM for HIL Testing.

58 Experiencing Model-Driven Engineering for Railway Interlocking Systems

2.7 Lesson Learned

The CECRIS knowledge transfer activities allowed assessing the maturity
of MDE for railway interlocking systems. The project managers became
acquainted with MDE methodologies and tools, and Prolan started to consider
their introduction into the development processes.

Indeed, the pilot project showed that MDE is a mature technology, which
supports the whole development process. Using SysML for requirements
specification helped to produce better artifacts, reasoning formally on incon-
gruences and missing specifications than with the current document-centric
approach. Also, fast prototyping, early fault detection, automatic test gener-
ation, and other MDE features revealed a gain of productivity and quality
during design and V&V phases than current methodology.

However, even for SME companies as Prolan that have limited engi-
neering capacity, it is not easy to change current development process and
practices. MDE requires for a technological and knowledge transfer. While
the former can be addressed with personnel trainings, the latter is more subtle,
long, and expensive. Therefore, Prolan submitted a joint tender proposal
together with the Hungarian University, partner of CECRIS project, aiming
at getting active support in their introduction during the next safety critical
project, and to investigate model-driven technologies further.

Indeed, still an extensive experimentation of model-driven methodologies
is needed. By the pilot project on the Prolan Block we qualitatively assessed
MDE: even if the benefits of model-driven approaches turned out to be
evident, we could not easily evaluate how much time is needed for Prolan to
have a return of investment. This tender would introduce the academic know-
how and support in the planning, design and implementation for a complete
Railway Interlocking System project.

However, the current experience has been saved by Prolan, and if the
tender is rejected then the enhancement of the current development lifecycle
of Prolan with the one proposed in the framework of the pilot project will be
applied. The innovation is planned to be applied gradually, through several
stages expected to last several years.

At the first stage, Prolan targets to introduce models for supporting the
current activities, starting to use MBE than MDE approaches. For instance,
it is expected to adopt modelling tools for system requirement specification
and system design phases. The current document-based system requirements
specification and the the requirement management system will be replaced
with software using SysML models, taking benefits of the improved model
traceability.

References 59

These first changes already raise knowledge and technologies issues: we
still have not decided if to adopt exclusively SysML for describing the system
requirements, because we could be not able to teach satisfactorily modeling
and SysML to all the team members; moreover, we have not completed the
tool selection process. Among the selection criteria it is required that new
tools be stable, and easily interoperable with the other software suites already
in use at Prolan. The fully compliance with standards, and the vendor lock-in
problem are also of interest for the tool selection. The relatively high price
of licenses and the difficulty of using these modeling tools have an adverse
effect on the introduction of model-driven methodologies.

The CECRIS experience revealed that model-driven technologies can
really improve the development, enhancing quality of the product and of
the development life cycle. Despite these advantages, the management of
the railway product development decided to pursue a conservative approach
towards the introduction of model based tools and development methods: the
big issues of MDE concern skills and organization. The learning curve of
these technologies is long and difficult to quantify, and the relevance of roles
during the development will change, deeply impacting human-organizational
factors. The innovation must be introduced gradually, taking into account
these factors.

The benefits of cooperating with academic partners within the CECRIS
project were manifold, as it was demonstrated by the pilot project: the
experience in the methodologies and tools enabled Prolan to receive active
tutoring and support for the full product lifecycle, shortening the learning
curves and reducing the number of errors caused by the lack of knowledge,
method, and experience with the tools. Moreover, the broad knowledge of
the emerging new technologies in the field enabled the academic partners to
suggest the criteria in selecting the appropriate tools and methodologies.

References

[1] Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson J. (2014).
“Assessing the State-of-Practice of Model-Based Engineering in the
Embedded Systems Domain,” in Proceedings of the 7th International
Conference on Model-Driven Engineering Languages and Systems
(MODELS), eds. J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E.
Insfran (Berlin: Springer International Publishing), 166–182.

[2] Marko, N., Liebel, G., Sauter, D., Lodwich, A., Tichy, M., Leitner, A.,
and Hansson J. (2014). Model-based engineering for embedded systems

60 Experiencing Model-Driven Engineering for Railway Interlocking Systems

in practice. Research Reports in Software Engineering and Management,
Technical report, University of Gothenburg, Gothenburg.

[3] Broy, M., Kirstan, S., Krcmar, H., Schätz, B., and Zimmermann, J.
(2013). “What is the benefit of a model-based design of embedded soft-
ware systems in the car industry” in Emerging Technologies for the Evo-
lution and Maintenance of Software Models (Hershey, PA: IGI Global),
343–369.

[4] CECRIS. (2016). EU Project CECRIS, CErtification of CRItical
Systems. Available at: http://www.cecris-project.eu

[5] Schmidt, D. C. (2006). “Guest Editor’s Introduction: Model-Driven
Engineering,” in: Computer 39.2, 25–31. Lecture Notes in Computer
Science (Berlin: Springer).

[6] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-Driven Soft-
ware Engineering in Practice. San Rafael, CA: Morgan & Claypool
Publishers.

[7] Object Management Group (OMG). (2014). MDA Guide (Version 2.0).
Available at: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (accessed
on 2016-03).

[8] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I.,
and Williams, C. (2007). Model-Driven Testing: Using the UML Testing
Profile (New York, NY: Springer-Verlag New York, Inc.).

[9] Dai, Z. R. (2004). “Model-driven testing with UML 2.0,” in Proceedings
of the 2nd European Workshop on Model Driven Architecture (MDA)
with an emphasis on Methodologies and Transformations (EWMDA),
eds D. Akehurst, 179–187. Tech. rep. 17-04, University of Kent,
Canterbury.

[10] Kent, S. (2002). “Model Driven Engineering,” in the Proceedings of the
Third International Conference on Integrated Formal Methods (IFM),
286–298. Berlin: Springer-Verlag.

[11] Object Management Group (OMG). (2003). MDA Guide (Version 1.0.1).
Available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed
on 2016-03).

[12] Davies, I., Green, P., Rosemann, M., Indulska, M., and Gallo, S. (2006).
How do practitioners use conceptual modeling in practice? Data Knowl.
Eng. 58.3, 358–380.

[13] Forward, A. and Lethbridge, T. C. (2008). “Problems and Opportunities
for Model-centric Versus Code-centric Software Development: A Sur-
vey of Software Professionals,” in Proc. of the International Workshop
on Models in Software Engineering (MISE) (New York, NY: ACM),
27–32.

References 61

[14] Hutchinson, J., Rouncefield, M., and Whittle, J. (2011). “Model-driven
engineering practices in industry,” in Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE) (New York, NY:
IEEE), 633–642.

[15] Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S.
(2011). “Empirical Assessment of MDE in Industry,” in Proceedings
of the 33rd International Conference on Software Engineering (ICSE)
(New York, NY: ACM), 471–480.

[16] Hutchinson, J., Whittle, J., and Rouncefield, M. (2014). “Model-driven
engineering practices in industry: social, organizational and manage-
rial factors that lead to success or failure,” in Science of Computer
Programming 89, Part B (Amsterdam: Elsevier), 144–161.

[17] Whittle, J., Hutchinson, J., and Rouncefield, M. (2014). “The state of
practice in model-driven engineering,” in IEEE Software 31.3 (New
York, NY: IEEE), 79–85.

[18] Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., and Reggio, G. (2012).
“Maturity of software modelling and model driven engineering: A sur-
vey in the Italian industry,” in Proceedings of the 16th International
Conference on Evaluation Assessment in Software Engineering (EASE)
(New York, NY: ACM), pp. 91–100.

[19] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G. (2011).
“Preliminary Findings from a Survey on the MD State of the Practice,”
in Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM) (New York, NY: ACM),
372–375.

[20] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G.
(2012). “Benefits from modelling and MDD adoption: expectations and
achievements,” in Proceedings of the 2nd International Workshop on
Experiences and Empirical Studies in Software Modelling (EESSMod)
(New York, NY: ACM), 1–6.

[21] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G. (2013).
Relevance, benefits, and problems of software modelling and model
driven techniques – A survey in the Italian industry. J. Syst. Softw. 86.8,
2110–2126.

[22] Agner, L. T. W., Soares, I. W., Stadzisz, P. C., and Simo, J. M. (2013).
A Brazilian survey on UML and model-driven practices for embedded
software development. J. Syst. Softw. 86.4, 997–1005.

[23] Mussbacher, G., Amyot, D., Breu, R., Bruel, J. M., Cheng, B. H.
C., Collet, P., Combemale, B., France, R. B., Heldal, R., Hill, J.,

62 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Kienzle, J., Schöttle, M., Steimann, F., Stikkolorum, D., and Whittle, J.
(2014). “The relevance of model-driven engineering thirty years from
now,” in Proceedings of the 17th International Conference on Model-
Driven Engineering Languages and Systems (MODELS) eds. J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran (New York, NY:
Springer International Publishing), 183–200.

[24] Mohagheghi, P. and Dehlen, V. (2008). “Where Is the Proof? A Review
of Experiences from Applying MDE in Industry,” in Proceedings of
4th European Conference on the Model Driven Architecture – Founda-
tions and Applications (ECMDA-FA), Vol. 5095, ed. I. Schiefer-decker
and A. Hartman. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 432–443.

[25] Baker, P., Loh, S., and Weil, F. (2005). “Model-Driven Engineering in
a Large Industrial Context – Motorola Case Study,” in Proceedings of
the 8th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), eds. L. Briand and C. Williams (Berlin:
Springer), 476–491.

[26] Weigert, T. and Weil, F. (2006). “Practical experiences in using model-
driven engineering to develop trustworthy computing systems,” in Proc.
of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, Vol. 1 (New York: IEEE), 208–215.

[27] Huhn, M. and Hungar, H. (2010). “8 UML for software safety and
certification,” in Model-Based Engineering of Embedded Real-Time Sys-
tems: International Dagstuhl Workshop. Revised Selected Papers, eds.
H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz (Berlin: Springer),
201–237.

[28] Pettit, R., Mezcciani, N., and Fant, J. (2014). “On the needs and
challenges of model-based engineering for spaceflight software sys-
tems,” in Proceedings of the IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC) (New York: IEEE), 25–31.

[29] Ferrari, A., Fantechi, A., and Gnesi, S. (2012). “Lessons learnt from
the adoption of formal model-based development,” in Proc. of 4th Inter-
national Symposium on the NASA Formal Methods (NFM), eds. A. E.
Goodloe and S. Person (Berlin: Springer), 24–38.

[30] Object Management Group (OMG). (2008). Systems modeling language
(SysML). Available at: http://www.omg.org/docs/formal/08-11-02.pdf
(accessed on 2016-03).

References 63

[31] Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A. (2015).
“Model-driven engineering of a railway interlocking system,” in Pro-
ceedings of the 3rd International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD 2015) (Setúbal:
SCITEPRESS), 509–519.

[32] No Magic, Inc. (2016). Magic Draw. MagicDraw. Available at: http://
www.nomagic.com/products/magic-draw.html (accessed on 2016-03).

[33] IBM Corp. (2016). Rationalr Rhapsodyr Developer. Available
at: http://www-03.ibm.com/software/products/it/ratirhap (accessed on
2016-03).

[34] Conformiq Inc. Conformiq Designer. http://www.conformiq.com/
products/conformiq-designer, (accessed on 2016-03).

[35] IBM Corp. (2016). Rationalr Rhapsodyr Test Conductor Add On. User
Guide. Available at: http://pic.dhe.ibm.com/infocenter/rhaphlp/v7r6/
topic/com.ibm.rhp.oem.pdf.doc/pdf/RTCUserGuide.pdf (accessed on
2016-03).

[36] IBM Corp. (2016). Rationalr Rhapsodyr Automatic Test Generator
Add On. User Guide. Available at: http://pic.dhe.ibm.com/infocenter/
rhaphlp/v7r5/topic/com.ibm.rhapsody.oem.pdf.doc/pdf/ATG-UserGuid
e.pdf (accessed on 2016-03).

[37] Schieferdecker, I. (2005). “The UML 2.0 Test Profile as a Basis for
Integrated System and Test Development,” in Proceedings of Köllen
Druck+Verlag GmbH, Jahrestagung der Gesellschaft für Informatik
(Germany: Köllen Druck & Verlag GmbH), Vol. 35, pp. 395–399.

http://taylorandfrancis.com

3
SYSML-UML Like Modeling Environment
Based on Google Blockly Customization

Arun Babu Puthuparambil1, Francesco Brancati2, Andrea Bondavalli3,4

and Andrea Ceccarelli3,4

1Robert Bosch Center for Cyber Physical Systems, Indian Institute
of Science, Bangalore, India
2Resiltech s.r.l., Pontedera (PI), Italy
3Department of Mathematics and Informatics, University of Florence,
Florence, Italy
4CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

3.1 Introduction

In industries, it is often observed that system designers may not be
CS/OO/SysML experts and often required lot of training and support to
use the modeling tools. Ideally, designers should spend all their effort on
modeling and nothing else. However, existing modeling tools have lot of
issues related to installation and plug-ins.

The use of Google Blockly was envisaged for use of modeling and
simulation of systems. Blockly is a visual programming library, used to
model/program using interlocked blocks (Figure 3.1). Each of the blocks also
support traditional input widgets such as labels, images, textbox, checkbox,
combo box, etc. It can be configured in such a way that only compatible
blocks can be connected together (i.e. can be made “valid by design”).
Blockly supports code and XML generation, and requires only a modern web
browser which can be run on any device or operating system.

However, Blockly was not readily useable for modeling SysML/UML like
models. A lot of changes and customizations were made in Blockly to make
it more suitable for such type of modeling.

65

66 SYSML-UML Like Modeling Environment

Figure 3.1 Various types of blocks in Blockly.1

3.1.1 Goal

To create a tool to create object diagrams based on a UML/SysML profile,
which is simple, intuitive, fast, and reduce cognitive complexity. Also, the
tool must support rapid modeling and code-generation. On a whole, the goal
was to design a tool to model, validate, query, and support simulation.

3.1.2 Blockly Customization

Below is the list of customization performed on Blockly to make it more suit-
able to create SysML/UML like models. (i) support constraints; (ii) support
behaviors; (iii) support links; (iv) support viewpoints; (v) support intuitive
maximize, collapse, and semi-collapse; (vi) support requirements manage-
ment; (vii) guide user to select compatible blocks; (viii) Blockly to PlantUML
conversion; (ix) Blockly to Python code generation; (x) Blockly to graph
conversion and graph querying; (xi) support sequence diagrams; (xii) custom
minification of JavaScript for faster loading; and (xiii) support cardinality and
singleton blocks.

3.1.3 Model Transformation

A SysML/UML profile can be given as an input to the tool, which will
be converted to an intermediately format in PlantUML. As PlantUML is a
simple textual language,2 conversion to PlantUML makes it easier to debug
model transformation. This also makes possible to edit and add any extra
features/statements in the converted PlantUML by hand/tool if the earlier
format did not support certain features.

1https://blockly-games.appspot.com/puzzle
2http://plantuml.com/PlantUML Language Reference Guide.pdf

3.1 Introduction 67

Figure 3.2 An example of a vending machine profile in PlantUML.

Figures 3.2 and 3.3 show a simple example of a vending machine system.
The profile in PlantUML is given as input and the tool transforms it into
interconnectable blocks.

3.1.4 Requirements Management

In the tool, each block can satisfy a set of requirements and a requirement can
be satisfied by a set of blocks (Figure 3.4).

3.1.5 MDE Flow

The model-driven engineering (MDE) flow with the tool is shown in
Figure 3.5. First, a profile expert provides a domain specific profile in
SysML/UML. This profile restricts what a designer can design and which
blocks are compatible with each other. The profile is then converted
automatically to PlantUML and is imported into the Blockly format.

68 SYSML-UML Like Modeling Environment

Figure 3.3 An exampleof a vending machine model under construction.

Figure 3.4 An example of requirements management.

3.1 Introduction 69

Figure 3.5 MDE flow.

The designer now uses the tool to model and validate the design. After
validation code can be generated in Python programming language, which
can be used for simulation/testing. After testing the results can be analyzed
and changes can be made in the model if necessary. This cycle continues till
the model is refined as necessary.

3.1.6 Guiding and Warning Users

The tool guides the designer in two ways: (i) Suggestions for the list of
compatible blocks (Figure 3.6); and (ii) Using the type-Indicator plugin3

(Figure 3.7).

3https://github.com/SPE-Systemhaus/blockly-type-indicator/wiki/Type-Indicator

70 SYSML-UML Like Modeling Environment

Figure 3.6 An Example of guiding users with compatible blocks (for Transitions).

Figure 3.7 An example of type indicator plugin (Shows which blocks are compatible with
the current selected block “Transition/t4” with yellow color).

Constraints make a model more precise, hence design time constraints are
supported to warn designers when they make mistakes. These constraints are
written in JavaScript and are evaluated at every on change event of a block
(Figure 3.8).

3.1 Introduction 71

Figure 3.8 An example of constraints.

3.1.7 Modular Design and Viewpoints

Meaningful groups can be formed to modularize design and links can be
used instead of lines to connect two blocks which are away from each other.
Use of groups and links avoid the spaghetti diagrams in large models (see
Figure 3.9).

72 SYSML-UML Like Modeling Environment

Figure 3.9 An example of groups and links.

Figure 3.10 Enabling and disabling viewpoints in model.

Viewpoints are used in profile to reduce cognitive complexity for the
designers. Viewpoints allow users to focus on one aspect of the model, e.g.:
Architecture/Communication etc. Usually viewpoints do not exist in isola-
tion; various viewpoints have relationships between each other. Figure 3.10 is
an example of viewpoints in the tool; the viewpoints can be enabled/disabled.

3.1 Introduction 73

3.1.8 Model Querying

On large models, it is important to query for blocks satisfying certain con-
ditions. Thus, support for model querying in JavaScript was provided in the
tool. The user provides a filter function, which is checked with all blocks. If
the condition is satisfied, then it is highlighted, else it is not. Figure 3.11 is an
example of the query “return true;” query, i.e., does not apply any filter and
show all blocks. In Figure 3.12, instead, a filter is applied: it selects all blocks
of type “RUMI” (return block.of type == ‘RUMI’).

Figure 3.11 Model query without any filter (return true;).

74 SYSML-UML Like Modeling Environment

Figure 3.12 Example of model query to select all blocks of type “RUMI” (return
block.of type == ‘RUMI’).

3.1.9 Code Generation and Export to PlantUML

From the model, code can be generated to Python automatically. Python
was chosen as it is one of the simplest object oriented programming lan-
guage. However, other programming languages can easily be supported in
Blockly.4

Also, as the model is available in .xml format and PlantUML format,
custom code5 and other programming languages can be supported in future.

Blockly models can be exported to PlantUML (Figure 3.13). The
PlantUML version of model consist of two type of diagrams (i) the whole

4https://developers.google.com/blockly/guides/configure/web/code-generators
5https://developers.google.com/blockly/guides/create-custom-blocks/generating-code

3.1 Introduction 75

F
ig
ur
e
3.
13

T
he

su
bs

et
of

ex
am

pl
e

m
od

el
of

“V
en

di
ng

m
ac

hi
ne

”
ex

po
rt

ed
to

Pl
an

tU
M

L
.

76 SYSML-UML Like Modeling Environment

model without viewpoints; and (ii) model divided into separate files with
grouped as viewpoints. These PlantUML models can be used for further
refinement or be used with other tools.6

3.1.10 Simulation

Simulation of scenarios is supported using sequence diagrams and simu-
lation related blocks custom code in Python. Domain specific sequence dia-
grams blocks are supportedto make design easier and error-free. As opposed
to traditional generic sequence diagrams, these domain specific blocks are
non-ambiguous and it allows correct code generation. Figure 3.14 shows
an example of a sequence diagram containing domain specific blocks. Each
sequence diagram can consist of sub-sequence, which in turn can consist of
simple blocks such as: if, while, parallel, etc., and may also contain custom
domain specific blocks.

The sequence diagram drawn using blocks can also be automatically
converted to classical sequence diagram view as shown in Figure 3.15.

Custom code to be run before starting and after ending simulation
can also be added using the simulation related blocks (Figure 3.16).
These blocks can be used in initializing variables before simulation, pre-
processing of data before simulation, and post-processing of results after
simulation.

3.1.11 Conclusion and Future Work

This chapter has introduced an intuitive and simple semi-formal tool to be
used to model, validate, query and simulate systems based on a SysML/UML
profile. There is always scope to improve upon the approaches proposed
in the chapter especially to make semi-formal methods popular among
non-experts.

Some of the possible future research areas are: (i) Blocks with images or
blocks shaped as images could make a great feature to make the design more
intuitive (Figure 3.17); (ii) Currently, a transformation from Eclipse/Papyrus
to PlantUML is available and can be readily used by the tool, however
many more transformations can be written to PlantUML; and (iii) More
programming languages support could be added in future.

6http://plantuml.com/running

3.1 Introduction 77

Figure 3.14 Example sequence diagram in Blockly.

78 SYSML-UML Like Modeling Environment

F
ig
ur
e
3.
15

C
la

ss
ic

al
vi

ew
of

se
qu

en
ce

di
ag

ra
m

(s
ub

se
t)

.

3.1 Introduction 79

Figure 3.16 Blocks to support custom simulation initialization and code to execute when
simulation ends.

Figure 3.17 Blocks with images.

http://taylorandfrancis.com

4
A Process for Finding and Tackling
the Main Root Causes that Affect

Critical Systems Quality

Nuno Silva1, Francisco Moreira1, João Carlos Cunha2,3

and Marco Vieira3

1CRITICAL Software S.A., Coimbra, Portugal
2ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal
3CISUC, Department of Informatics Engineering, University of Coimbra,
Portugal

4.1 Introduction

Following standards and applying good engineering practices during software
development is not enough to guarantee defects free software, thus additional
processes, such as Independent Software Verification and Validation (ISVV),
are required in critical projects. The objective of ISVV is to provide comple-
mentary and independent assessments of the software artifacts in order to find
residual defects and allow their correction in a timely manner. Independence
is the most important concept of ISVV and it has been referred to and used
in safety-critical domains such as civil aviation (DO-178B [1]), railway sig-
nalling systems (CENELEC [2]), and space missions (European Cooperation
for Space Standardization (ECSS), e.g., [3, 4]). However, such systems are
still far from being perfect and it is common to hear about software bugs in
aeronautics, train accidents caused by software problems, satellite systems
that need to be patched after launch, and so on.

Previous studies have analysed the results of ISVV activities [5, 7],
looked into consolidated ISVV metrics [8] and studied the importance of
independent test verification [9], showing that existing standards and good
engineering practices are not enough to guarantee the required levels of safety

81

82 A Process for Finding and Tackling the Main Root Causes

and dependability of critical systems (CSs). Independence of Verification and
Validation (V&V) avoids author bias and is often more effective at finding
defects and failures. Independence can be managerial, financial or technical,
brings separation of concerns, complementarity, second/alternative opinions,
and also has the merit of pushing development and in-house V&V teams
to focus on the quality of their work. The role of independence at early
development phases is highlighted in EasterBrook [10] and clearly stated
in the requirements of several standards such as CENELEC [2] (depending
on the SIL level), and DO-178 [1] (where, for example, for the most critical
level – Level A – 33 out of the 71 objectives/requirements of the standard
must be satisfied with full independence).

The Orthogonal Defect Classification (ODC) [11] is a generic classifica-
tion technique that turns semantic information in the software defect stream
into a measurement on the process where defects have been caused, enabling
an efficient root cause analysis. ODC [11] can be applied to the defects
identified during ISVV in order to study their classifications (namely: type,
the fix that removed the defect; trigger, the defect identification activity/
condition; and impact, the effect of the defect if not corrected). ODC is the
most commonly used defect classification scheme, but it was not specifically
developed for CSs, or for systems that need to fulfil specific certification
requirements.

The application of ODC to the defects identified during ISVV has been
described in Silva and Vieira [12]. In that work, we used ODC to classify
a dataset of 1070 development, validation, and operation defects from space
applications that followed ECSS standards. The conclusions were that most of
the defect types found are related to: (i) documentation issues (this is logical
since the ECSS processes are heavily based on documentation evidences);
(ii) functionality issues (generally related to requirements understanding and
source code bugs that compromise the foreseen functionalities); and (iii)
defective implementations of the planned functions (algorithms). The classi-
fication has also shown that the main defect triggers are related to document
consistency, traceability activities, and test activities. Also, the main impacts
include system capability, reliability, maintainability, and documentation
quality. However, the key conclusion is that a large number of issues could
not be classified due to unfit taxonomy of defect types, triggers and impacts,
causing many doubts in the classifications (more that 30% of the cases).

In order to enhance ODC for better applicability to CSs, thus covering
all ISVV defects and easing the classification for industry, as in Silva and
Vieira [13, 29], we proposed specific adaptations of the taxonomies of three

4.2 Background 83

classification attributes: Type, Trigger, and Impact. The enhanced classifi-
cation enabled the full coverage of the defects in the dataset, providing
more precision and a sounder root cause analysis support. The adaptation
has been defined after conducting the classification of the 1070 defects
with the original ODC (presented in Silva and Vieira [12]) and by carefully
analysing the classification gaps. To validate the modifications, this enhanced
version of ODC was used to reclassify the entire dataset, allowing its full
classification. However, the work presented in Silva and Vieira [13] does not
concretely contribute to understanding the problems that lead to the defects,
which motivates the root cause analysis and the suggestions for improvements
performed in the present work. The work described in this chapter represents
the definition of a defects assessment process and the results of the application
of this process to a space systems defects dataset.

This chapter presents an analysis on trends, common (and uncommon)
problems and their causes, and look at the general picture of critical defects
within the software development lifecycle of space systems, considering
our dataset of 1070 defects. The results are intended to help engineers
in tackling the problems starting from the most frequent ones, instead of
dealing with them one by one, as is traditionally done in industry nowadays.
In practice, this work brings to light the main root causes of issues in
space projects, which were identified, based on the defects classification and
on relevant expert knowledge about those defects and about the software
development process, contributing toward proposing improvements to the
processes, methodologies, tools, standards, and industry culture.

The ultimate objective of this work is to enable, through a proposed
assessment process, a detailed analysis of the defects and identification of
their sources (common root causes) in order to: (i) avoid their introduction
(by tackling the main deficiencies in software engineering); and (ii) allow a
more efficient detection of the remaining defects during the software deve-
lopment lifecycle (by identifying appropriate V&V methods and techniques).
To support our work, the results of the enhanced ODC taxonomy proposed in
Silva and Vieira [13] are used as input and analysed in detail to support the
root cause analysis.

4.2 Background

This section presents some background concepts, namely in what concerns
the Orthogonal Defect Classification (ODC), ISVV, and previous relevant
works.

84 A Process for Finding and Tackling the Main Root Causes

4.2.1 Orthogonal Defect Classification

The ODC, originally proposed by IBM (Chillarege et al. [11]), is one of
the most used defects classification approaches. It is intended to be generic
and applicable to different technology domains, but it is mostly oriented to
design, code and testing defects. ODC defines eight attributes for defects
classification, divided into two main groups: (i) opener, and (ii) closer. Three
attributes (Activity, Trigger, and Impact) classify the defect when it has
been discovered and so they are part of the opener group. The other five
attributes (Target, Type, Qualifier, Age, and Source) are used when the defect
is resolved, being thus part of the closer group. The full taxonomies for
each attribute can be obtained from the ODC v5.2 specification and are not
included here for brevity. Nevertheless, a description of ODC attributes is
summarized in Table 4.1.

In addition to ODC, several other classification taxonomies exist,
including Beizer’s [14], and IEEE Standard Classification for Software
Anomalies [15]. Although ODC comprises some questionable attributes
(8 dimensions), making it also somehow complex to classify, we have
selected this taxonomy due to its generic nature, its orthogonality, its com-
prehensiveness and the level of usage in industry that seemed higher than for
all the others. Also, it is important to emphasize that ODC has been used in
the past as a starting point for developing new and focused defect taxonomies

Table 4.1 Orthogonal defect classification attributes description
ODC Attribute Description
Activity The actual activity that was being performed at the time the defect

was discovered. The main activities applicable to this work are:
Requirements verification, design verification, code verification, test
verification and test execution.

Trigger A trigger represents the environment or condition that had to exist
for the defect to surface.

Impact The impact is the effect that the team who is classifying the defect
thinks it would have on the system if not corrected.

Target Represents the high level identity of the entity that was fixed.
Type The defect type is defined according to the fix that is necessary to

remove it from the system. For that reason, it is best classified by a
team/person who applied the fix to the defect.

Qualifier Captures the element of a non-existent, wrong or irrelevant
implementation.

Age Categorizes the age of the defect, whether if it is new or surfaced
from a previous defect.

Source Describes the source of the defect in terms of its developmental
history.

4.2 Background 85

for different domains. A few examples were presented by Leszak et al. [16]
and Lopes Margarido et al. [17], which used ODC for studying, building and
validating defect categorization schemes. In practice, the focus of ODC is to
support the analysis and feedback of defect data targeting quality issues from
different phases of the engineering lifecycle.

4.2.2 Independent Software Verification and Validation (ISVV)

Independent Software Verification and Validation is a set of structured engi-
neering activities and tools that allow independent analysts to evaluate the
quality of the software engineering artifacts produced at each phase of the
development lifecycle. ISVV is performed on mature artifacts, which follow
a strict engineering standard and that have been previously verified and
validated as part of the development process. It provides an additional layer
of confidence and is not expected to find a large number of severe defects.

Independent Software Verification and Validation produces evidences that
support measuring the quality of the software and related processes and
is referenced in several international standards: (i) ISVV guide from the
European Space Agency (ESA) [18]; (ii) ISO Software Lifecycle Processes
(ISO/IEC 12207) [19]; and (iii) IEEE Software V&V (IEEE 1012) [20].

Independent Software Verification and Validation includes six phases
(Figure 4.1) that can be executed sequentially or selected/adapted as the result
of a tailoring process based on a criticality analysis [18].

Figure 4.1 ISVV phases.

86 A Process for Finding and Tackling the Main Root Causes

According to the ESA ISVV Guide [18], ISVV engineers classify defects
considering three severity levels: (i) Major (defect with a significant impact
in the system dependability, quality or safety); (ii) Minor (defect with
a minimum impact on the artifacts quality but not in the end system);
and (iii) Comment (an improvement suggestion). Each ISVV defect is also
classified according to an ISVV defect type (e.g., External Consistency,
Internal Consistency, Correctness, Technical Feasibility, Completeness,
Readability, and Maintainability).

4.2.3 Related Work

Some studies in the literature have analysed metrics, efficiency and efficacy
of the techniques used within ISVV to identify the defects in critical projects
[5–8]. However, none of these studies considered their observations and
results to classify the defects and improve the development processes, tech-
niques, tools, or standards. Furthermore, we could not find in the research
literature any complete study focused on defects in mission- and safety-
critical systems, nor an extensive and complete classification or root cause
analysis that relates the results of ISVV with the development lifecycle
parameters of the systems under study. For space systems, Jones [21] has
provided a small study about space failures in the frame of the European
Space Agency missions, but simply concluded that the main cause for all the
accidents was lack of testing. A more in-depth analysis is necessary as testing
is not the cause but one of the detection methods.

Several researchers have looked into the analysis of failures in safety-
critical systems during different life-cycle phases (from requirements to
operations) and performed empirical studies and root cause analysis [22–24].
For example, Seaman et al. [25] used historical datasets with defects data
from reviews and inspections and applied different categorization schemes
to the defects. However, none of the mentioned studies covers all the life-
cycle phases for the used defects dataset, nor bases the root cause analysis
and the defects avoidance measures in a sound orthogonal classification of
the defects.

Regarding the root cause analysis topic, it is worth mentioning some
works that relate and somehow present results that are connected to the work
presented in this chapter. Neufelder [26] collects data from field defects since
1993 and correlates that data to find the process properties that generate more
defects; however, she is not focusing on CSs or systems developed under

4.3 Defects Assessment Process 87

strict requirements and standards. Rao [27] has made an industry study about
root cause defect classification for documentation defects, analysing only a
few dozen defects on a monthly basis. Kumaresh et al. [28] conducted a study
with data from a few hundreds of collected defects, where these defects have
been classified and the corresponding root causes have been proposed to the
learning of the projects as preventive ideas. No work has been performed for
CSs nor with such a complete assessment and coverage of so many defect
types (as shown by the ODC defect type results), as we did in our work.

4.3 Defects Assessment Process

Based on the analysis that we conducted and the lessons learned, we propose
a general approach for root cause analysis of critical software, enabling the
continuous improvement of implementation and V&V at all levels (pro-
cesses, techniques, tools, personnel, application of standards, organization,
and so on). Although our dataset and our experience are mainly from space
software, we believe that this generalization is able to support the evalua-
tion and root cause analysis of any critical system, independently from the
domain. Figure 4.2 shows the general approach of a defects assessment pro-
cedure, which includes a root-cause analysis and a continuous improvement
procedure, described hereafter.

Figure 4.2 Generalized defect assessment procedure.

88 A Process for Finding and Tackling the Main Root Causes

4.3.1 Procedure Prerequisites

The approach is based on data analysis and software engineering knowledge
that require some prerequisites to be fulfilled for the correct application of the
process:

0. Start:
In order to successfully perform the defects analysis, it is necessary that
the collected data (A. Defects Data and B. Other Project Data) contain
the necessary information. This includes basic requirements such as: (i)
detailed information about each defect and its fix; (ii) knowledge of defect
environment conditions, such as tools, personnel and constraints; (iii) engi-
neers’ assessment of the defect causes; and (iv) phase when the defect was
introduced and when it was detected.

Some prerequisites are necessary to successfully apply the process. The
first one includes training on the involved techniques, such as defects classi-
fication (e.g. ODC) and root cause analysis. The second includes rules and
guidelines (or a template) for defects description or defect data collection.

1. Data preparation and clean-up:
Once we have the necessary data it is important to organize it and perform
some anonymization if required. Data organization is essential for the next
steps, since it is important to have the data in a searchable and manageable
manner.

4.3.2 Defects Classification

In order to efficiently and concretely tackle the important problems of critical
software engineering, the first set of activities shall focus on an orthogonal
classification of the sets of defects:

2. ODC:
Perform the ODC classification on the organized dataset. Enhancements and
adaptations to the ODC taxonomy can be useful depending on the nature of
the defects and the domain; however, these enhancements should be quite
precise. For examples, see Silva and Vieira [12, 13].

3. ODC Analysis:
Provide a summary of the ODC analysis. This information gives the first hints
about the quality of the dataset, which can provide some feedback to the
implementation and V&V teams. For examples, Silva and Vieira [12, 13].

4.3 Defects Assessment Process 89

4.3.3 Defects Root Cause Analysis

The root cause analysis is composed by several steps that include analysis of
the defects types, the triggers allowing defect detection, the defects that could
have been detected earlier, and then prioritization and consolidation of these
root causes leading to concrete proposed improvements:

4. Defect Type RCA:
Based on the different defect types, identify the possible generic root causes.
This list of causes shall come from experience and expert judgement or a
dedicated database where defect types are mapped to root causes. The list of
root causes might be reduced or harmonized in step (8) below.

5. Defect Trigger RCA:
Based on the classified defect triggers identify the causes and V&V tech-
niques (or triggers) that allowed the defects detection at the current defect
detection stage. This list of causes shall come from experience and expert
judgement or a dedicated database where defect triggers are mapped to root
causes. The list of root causes might be reduced or harmonized in step (8)
below.

6. Late Detection RCA:
With the list of defects that have slipped more than one lifecycle phase
milestone identify the causes of the failures in the V&V and ISVV techniques
that allowed the defects to propagate until a later stage in the development
lifecycle. This list of causes shall be added/harmonized with the list from
step (5) Defect trigger RCA.

7. Defects prioritization:
If required (for example to tackle the defects with high impact on the system,
or due to the large amount of defects and respective causes) list of defect types
and triggers can be prioritized according to a defined severity (for example,
based on the main impact of those defects) and the respective root causes can
be filtered according to the prioritized type and trigger.

8. RCA consolidation:
The list of root causes obtained in the previous steps (4–6) is consolidated
according to the prioritization done in step (7). This consolidation can also
contribute to reduce to an essential and more concrete list of causes.

90 A Process for Finding and Tackling the Main Root Causes

9. Improvements Suggestions:
For all the root causes, define solutions or modifications to the processes,
techniques, tools, training, resources, environment or application of stan-
dards. The solutions must cover the development activities to avoid the
creation of defects and also the defect detection activities in order to identify
the defects as soon as possible.

4.3.4 Improvements and Validation

The suggested improvements might be difficult to implement, and their
effectiveness can vary from team to team. They shall contribute to improve
the software quality and reduce the amount of defects, different defects can
then surface, and this is why this process shall have a consistent process
improvement in place:

10. Improvements Implementation:
The development and V&V teams must be informed about the required
changes or adjustments (9. Improvements Suggestions), and the organiza-
tion, management and quality planning shall decide on the improvements to
implement for future projects.

11. Process Validation and Improvements:
At every step, it is possible to derive improvements to the process. Such
improvements can be set to adjust to the company culture, to the project envi-
ronment, to the customer requirements, etc. However, it is essential to mea-
sure the effectiveness of the implementation of the results (9. Improvements
Suggestions and 10. Improvements Implementation) once the suggestions
have been implemented and new defects (or no defects) have been collected.
Note that Improvement can and shall also be about the current process, the
defects classification scheme, the root cause analysis techniques and so on.
The presented process shall be able to adapt and help in improving itself and
the related techniques that compose it.

4.4 Results

This section presents the dataset case studies description and the results of
application of the process described in the Section 4.3.

4.4 Results 91

4.4.1 Characterization of the Systems

Our analysis is based on a set of real defects from ISVV activities in space
projects. The projects include subsystems that compose satellite systems for
three different domains (i) scientific exploration; (ii) earth observation; and
(iii) telecommunications; covering different types of software, such as start-
up or boot software, on-board application software, command and control
units, payload software, and attitude and orbit control units. The engineering
processes used in the selected missions were driven by the ECSS standards,
namely the space engineering standard E-ST-40 [3] and the quality standard
Q-ST-80 [4] which has a comparable lifecycle and similar strict requirements
imposed by the European Space Agency.

The subsystems were developed according to functional and non-
functional requirements mandated from ECSS and mission specifics. They
were characterized by the following needs/objectives, which are common
to space CSs, that were collected from the ECCS standards [3, 4] and
the corresponding engineering interpretations of the specification documents
from several missions:

• No crash or hang shall happen at any time;
• No dynamic memory allocation is allowed;
• Communication – Telemetry (TM)/Telecommands (TC) – must always

be possible between ground control and the satellite;
• The system must implement a Safe Mode (with basic communications,

patch and dump functionalities);
• Most systems shall have a very simple and stable start-up software (also

called boot software);
• There must be a watchdog (Hardware and/or Software) or an alive

signal;
• Systems are built with redundancy (at least Hardware);
• Most systems must include FDIR (Fault Detection Isolation and Reco-

very) functionalities to account for the environment and external faults;
• The systems must have high autonomy and some self-correction proce-

dures;
• Systems are categorized with a criticality level related to the impact or

consequences of system failures (in this case, the ECSS defined levels
are: Catastrophic, Critical, Major and Minor or Negligible).

92 A Process for Finding and Tackling the Main Root Causes

The projects are also characterized by:

• Requirements written in natural language (structured), highly based on
documentation and non-formal processes and languages;

• Documentation in UML/SysML and PDF, with limited possibilities of
automated verification and formal analysis;

• Programming languages such as C, Ada and Assembly, that are quite
mature and low level languages;

• Unit tests performed in commercial tools (e.g. Cantata++, VectorCast,
LDRA), commonly developed and adapted for the specific projects
embedded systems and environments;

• Integration and system testing performed in specific validation environ-
ment (Software Validation Facility – SVF) developed for this purpose
on a case by case situation, with HW emulation and HW in-the-loop,
simulated instruments, etc.

4.4.2 Defects in the Dataset

Table 4.2 summarizes the 1070 defects in the dataset, divided by severity
(having a major or minor impact in the system, or just being comments to
improve the engineering) and considering the ISVV activities in which they
were found. The defects have been originated from the analysis of more than
10,000 software requirements, more than 1 million lines of code (mostly C,
Ada95 and some Assembly), and over 3,000 tests1 (some unit tests, some
integration tests). In practice, the objective of ISVV was to find issues in the
project artifacts, report and classify them in a clear and consistent way for the
customer to act upon.

4.4.3 Enhanced ODC Results

The results of the application of the enhanced ODC for space defects are
summarized in Table 4.2 showing the five top types, triggers and impacts
cover about 90% of the issues analysed. This observation suggests that actions
can be taken to quickly improve the quality of systems, by tackling a limited
amount of properties.

1The 3,000 tests correspond to only part of the requirements and code referred, as not all
ISVV activities cover the full set of artifacts, e.g., for some projects only source code analysis
was performed, no tests related to that specific codehave been assessed.

4.4 Results 93

T
ab

le
4.
2

E
nh

an
ce

d
O

D
C

cl
as

si
fic

at
io

n
re

su
lts

D
ef

ec
tT

yp
e

Q
ty

%
D

ef
ec

tT
ri

gg
er

Q
ty

%
D

ef
ec

tI
m

pa
ct

Q
ty

%

D
oc

um
en

ta
tio

n
51

5
48

.1
%

T
ra

ce
ab

ili
ty

/C
om

pa
tib

ili
ty

30
9

28
.9

%
C

ap
ab

ili
ty

30
8

28
.8

%

Fu
nc

tio
n/

C
la

ss
/O

bj
ec

t
20

3
19

.0
%

Te
st

C
ov

er
ag

e
22

7
21

.2
%

M
ai

nt
en

an
ce

26
4

24
.7

%

A
lg

or
ith

m
/M

et
ho

d
96

9.
0%

C
on

si
st

en
cy

/C
om

pl
et

en
es

s
20

6
19

.3
%

R
el

ia
bi

lit
y

25
2

23
.6

%

C
he

ck
in

g
69

6.
4%

L
og

ic
/F

lo
w

11
9

11
.1

%
D

oc
um

en
ta

tio
n

15
7

14
.7

%

In
te

rf
ac

e
56

5.
2%

D
es

ig
n

C
on

fo
rm

an
ce

11
9

11
.1

%
Pe

rf
or

m
an

ce
39

3.
6%

B
ui

ld
/P

ac
ka

ge
/E

nv
ir

on
m

en
t

52
4.

9%
R

ar
e

Si
tu

at
io

n
26

2.
4%

U
sa

bi
lit

y
28

2.
6%

A
ss

ig
nm

en
t/I

ni
tia

liz
at

io
n

46
4.

3%
Te

st
Se

qu
en

ci
ng

16
1.

5%
R

eq
ui

re
m

en
ts

9
0.

8%

T
im

in
g/

Se
ri

al
iz

at
io

n
33

3.
1%

St
an

da
rd

s
C

on
fo

rm
an

ce
14

1.
3%

M
ig

ra
tio

n
8

0.
7%

H
W

/S
W

C
on

fig
ur

at
io

n
13

1.
2%

St
an

da
rd

s
4

0.
4%

R
ec

ov
er

y/
E

xc
ep

tio
n

10
0.

9%
In

st
al

la
bi

lit
y

1
0.

1%

O
th

er
T

ri
gg

er
s

11
1.

0%

To
ta

l
10

70
10

0%
To

ta
l

10
70

10
0%

To
ta

l
10

70
10

0%

94 A Process for Finding and Tackling the Main Root Causes

The ‘Documentation’ defect type represents almost half of the defects
and ‘Function/Class/Object’ represents almost 20% of the defects. This can
be justified by the fact that CSs highly depend on documentation and docu-
mented evidences to prove the accomplishment of requirements and standards
and to ensure qualification/certification of the systems by external entities.
‘Function/Class/Object’ identifies functionality implementation deficiencies,
especially at implementation level.

‘Traceability/Compatibility’ is the most frequent trigger, although ‘Test
Coverage’ and ‘Consistency/Completeness’ are quite frequent. This suggests
that the most efficient defect triggers are the simplest and most logical
ones, namely those related to traceability, reviews and testing activities. This
is due to the nature of the artifacts under analysis that require extensive
documentation and creation of evidences that are developed over lifecycle
phases depending on the previous phases artifacts.

In terms of the impacts, four of them are very important, namely: ‘Capa-
bility’, ‘Maintenance’, ‘Reliability’ and ‘Documentation’ (in this order). It is
normal that Capability (i.e. functionality) is the most affected property but,
in such space CSs, maintenance has a significant importance as well as the
reliability requirements (see Section 4.4.1 regarding the needs/objectives of
the target systems).

4.4.4 Enhanced ODC Defect Impact Analysis

The ODC Impact analysis can be used to prioritize the defect types/triggers
to identify the development and V&V activities that might conduct to the
defects with a high impact in the system. As “high impact”, we consider
equally the impacts in Capability, Reliability, and Maintenance, as they are
the most severe since they represent three essential requirements of critical
space systems: functional quality, non-functional reliability assurance, and
maintainability. Though, for the purpose of this work, we have considered
the importance of impact as the frequency that the defects affect system
capability, reliability, or maintenance.

The following graphs in this section represent the defect impacts as they
have been originated by specific defect types, and also as they have been
uncovered by specific defect triggers. The graphs provide an idea of the
importance of defect types (related to root causes) and how defects that lead
to specific impacts have been detected with specific triggers.

4.4 Results 95

4.4.4.1 Type vs. Impact
Figure 4.3 shows the defect types that have a high impact in the system
(affecting Capability, Reliability and Maintenance). Defects with impact in
Capability (blue dashed line) are mainly related with Function/Class/Object,
Documentation and Algorithm/Method types, confirming that the function-
ality specification/implementation, the documented artifacts and the design
decision in what concerns algorithms and methods to apply are the main
contributors to defects that influence the system capability.

Defects with impact in Reliability (orange dotted line) are originated
from Documentation, Checking, Function/Class/Object and also Algorithm/
Method defect types. In this case, there is a new defect type that contributes
significantly to reliability issues: Checking. It is clear that reliability (includ-
ing redundancy, fault detection/monitoring, isolation and recovery) is often
implemented with checks and verifications and so the importance of avoiding
this type of defects to guarantee higher reliability.

Defects with impact in Maintenance (gray line) originate essentially
from Documentation defect type. This is an expected result due to the fact
that maintenance depends on documented artifacts that include installation
and download instructions, user and developer manuals, and maintenance
procedures.

The prioritization related with the three impacts is presented in the
Section 4.4.5, namely in Table 4.3.

Figure 4.3 Defect type vs. defect impact.

96 A Process for Finding and Tackling the Main Root Causes

Table 4.3 Summary of root causes for main defect types
Root Cause Defect Types
Inefficient/insufficient reviews Documentation;

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Ambiguous/missing/incorrect artifacts
(documentation, requirements, design, tests)

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Insufficient/Wrong tests (unit, integration, system,
fault injection)

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Limitations of the tools or toolsets that deal with
documentation

Documentation

Lack of Completeness and consistency of system
level (or previous phases) documentation

Documentation;
Function/Class/Object;
Algorithm/Method

Oversimplified documentation planning procedures
Lack of time to produce, review and accept
documentation artifacts
Lack of importance given to some documentation
artifacts
Simplification of the product assurance processes
related to documentation artifacts

Documentation

Limited engineers domain knowledge – lack of
appropriate skills

Function/Class/Object;
Algorithm/Method

Incomplete specifications in what concerns FDIR
and erroneous situations

Checking

Lack of reliability and safety culture Checking
Incomplete specifications in what concerns
interfaces, environment and communications

Interface

Limited definition of the operation, usability,
maintainability requirements

Interface

Lack of tools knowledge, programming languages,
design languages

Function/Class/Object;
Algorithm/Method

Version and configuration management procedures
inappropriately implemented

Build/Package/Environment

4.4.4.2 Trigger vs. Impact
Figure 4.4 shows the defect triggers that allow detection of the defects
with a high impact. The graph reinforces the importance of the 3 main
triggers: a) Consistency/Completeness, b) Test Coverage, and c) Traceability/
Compatibility as the most important (frequent) triggers (overall they allowed
the detection of 77.0% of the issues). For this particular case, Reliability can

4.4 Results 97

Figure 4.4 Defect trigger vs. defect impact.

be ensured with better Traceability/Compatibility analysis, Test Coverage and
Logic/Flow analysis. Capability shall be assessed more efficiently with Test
Coverage, Traceability/Compatibility assessment and Design Conformance
Analysis. Maintenance defect impact can be mitigated with Traceability/
Compatibility and Consistency/Completeness analysis.

The results of the prioritization related with these three impacts are
presented in Section 4.4.5, Table 4.4.

4.4.5 Consolidation of the Root Cause Analysis
and Proposed Improvements

The defects with impact on capability, reliability, and maintenance, identified
in Section 4.4, represent 77% of the total dataset. From these, we considered
the top 6 defect types and the top 5 defect triggers (Table 4.2) because they
account for more than 90% of the defects with high impact. Then we were
able to identify the main root causes for the most important defect types
(Table 4.3) and the most important defect triggers (Table 4.4).

This analysis results on a list of the most important causes of the defects
identified during ISVV, and for the most important causes of failure in the
verification and validation activities during the development lifecycle. For
high defects with impact, the listed causes show that software engineering
processes, methods and tools require some adjustments in order to become
more efficient to produce more dependable and safe systems. The identi-
fied root causes are all related to existing development and V&V activities
that require more careful application, especially in what concerns schedule

98 A Process for Finding and Tackling the Main Root Causes

Table 4.4 Summary of root causes for main defect triggers
Root Cause Defect Trigger
Lack of traceability verification culture Traceability/Compatibility
Lack or inefficient usage of tools that support
traceability across lifecycle phases
Lack of appropriate test planning and test strategy
definition

Test Coverage

Lack or inefficient testing tool and testing
environment support
Incomplete tests specification and execution
Review process related root causes Document Consistency/

Completeness (Internal
Document)

Documentation related root causes Document Consistency/
Completeness (Internal
Document)

Deficient usage of tools and applicable processes Document Consistency/
Completeness (Internal
Document)

Unclear or missing/incomplete specifications Document Consistency/
Completeness (Internal
Document); Logic/Flow

Ambiguous or unclear architecture definition Logic/Flow
Lack of usage of tools that support data and control
flow analysis

Logic/Flow

Inappropriate architecture support tools or tool
usage

Design Conformance

Deficient specification or design artifacts Design Conformance

and planning pressures (or we can call it strategies as well), rigor and caution
on the application of engineering processes, and V&V activities importance.
The quality/product assurance strategies and the guidance from applicable
processes and required standards are essential to ensure that these root causes
are minimized.

The root causes presented (in Tables 4.3 and 4.4) have been ordered
according to expert knowledge and experience applicable to the high impact
defects, and intend to provide a preliminary ordering in what concerns their
contribution to the high defect impacts.

The identified root causes for defect triggers indicate that improvements
to the current processes, both development (to avoid the introduction of
defects) and V&V (to detect the defects within the phase they are introduced)
might be possible. At a higher level, the leading safety standards might

4.4 Results 99

require additional guidance to support development and V&V in order to
reinforce that the product/quality assurance (PA/QA), and safety and depend-
ability assessments should be properly realized, reducing the amount of
defects caught by ISVV. The proposed improvements are guidelines derived
directly from the root causes summarized in Tables 4.3 and 4.4 and from
domain and expert knowledge of the authors and industrial contributors to
this work. Their intent is to fulfil the needs of the development and V&V
processes in order to avoid the most important and more frequent defects as
those in our dataset.

From the development perspective, based on Table 4.3, the following
measures should be considered:

• Define/redefine appropriate review methods, processes and tools and
enforce their application at every stage of the SDP;

• Implement automated documentation generation processes and tools to
avoid inconsistencies between artifacts/lifecycle phases;

• Use tools that integrate and manage all the phases of the lifecycle, such
as concept specifications, requirements, architecture, source code, tests,
etc.;

• Introduce/use tools with automatic validations (documentation com-
pleteness, design consistency, code analysis, control and data flow
analysis);

• Provide training to the engineering teams, to improve the domain
knowledge, the system or interfacing systems knowledge, standards
knowledge and techniques and tools practice;

• Promote workshops or meetings to present the specifications/require-
ments, to discuss and clarify them before advancing to the following
phase;

• Introduce additional guidelines or even specific requirements (e.g., by
defining and specifying the reasoning behind the standards requirements
and how to achieve them in full conformance) in the applicable standards
(PA/QA, version and configuration control and development).

From the V&V perspective, based on the results in Table 4.4, the following
measures should be considered:

• Define appropriate test plans and strategies, especially unit and integra-
tion tests. The soundness of the test plans and strategies will reflect in
the success of the validation;

• Ensure appropriate (or automated) traceability analysis at every stage of
the development lifecycle;

100 A Process for Finding and Tackling the Main Root Causes

• Improve the testing completeness, coverage and reviews;
• Implement non-functional tests (fault detection, fault injection, redun-

dancy, etc.);
• Apply or develop tools to verify and validate the implementation and

design compliance.

4.5 Conclusions

This chapter presented a defects assessment process based on a field study on
root cause analysis of 1070 defects in space software projects.

We proposed a general procedure to derive improvement suggestions
for the systems and the analysis process itself applying an improved ODC
taxonomy and examining the defect types, triggers and impacts. We have
also prioritized the root causes based on their importance by considering
the impact of the defects on capability, reliability, and maintainability, and
proposed generic solutions to implementation (to prevent defects) and V&V
(to effectively detect defects) in order to avoid these defects in future
projects.

The outcomes of the field study show that, although CSs are already
guided by appropriate development and V&V techniques and processes, most
of the defects are caused by an inefficient usage or implementation of these
techniques and processes. Appropriate guidance, additional requirements
and constraints, better test strategies and tools that are able to help in the
application of the techniques and processes would be essential to obtain better
results (less defects). ISVV was originally able to detect the 1070 defects but
could still be enriched by applying the proposed V&V actions in order to
avoid defects slippage.

References

[1] RTCA DO-178B. (1992). (EUROCAE ED-12B), Software Considera-
tions in Airborne Systems and Equipment Certification. RTCA Inc.,
Washington, DC.

[2] Sai Global. (2011). CENELEC EN 50128: Railway applications –
Communication, signalling and processing systems – Software for
railway control and protection systems.

[3] ECSS. (2009). ECSS-E-ST-40C, Space engineering – Software.
[4] ECSS. (2009). ECSS-Q-ST-80, Space Product Assurance – Software

Product Assurance.

References 101

[5] Silva, N., Lopes, R. (2012). “Overview of 10 Years of ISVV Findings in
Safety-Critical Systems,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Work-shops (ISSREW) (New York,
NY: IEEE), 83.

[6] Silva, N., Lopes, R. (2012). “Independent Assessment of Safety-Critical
Systems: We Bring Data!” in IEEE 23rd International Symposium on
Software Reliability Engineering Workshops (ISSREW) (New York, NY:
IEEE), 84.

[7] Silva, N., Lopes, R. (2012).“10 Years of ISVV: What’s Next?” in 2012
IEEE 23rd International Symposium on Software Reliability Enginee-
ring Workshops (ISSREW)(New York, NY: IEEE), 361–366.

[8] Silva, N., Lopes, R. (2011). “Independent Test Verification: What
Metrics Have a Word to Say”, in 1st International Workshop on Soft-
ware Certification (WoSoCER), ISSRE, Hiroshima, Japan (New York,
NY: IEEE).

[9] Silva, N., Lopes, R., Esper, A., Barbosa, R. (2013). “Results from an
independent view on the validation of safety critical space system,” in
DASIA 2013, 14–16 May, Oporto, Portugal.

[10] EasterBrook, S. (1996). “The Role of Independent V&V in Upstream
Software Development Processes”, in Proceedings of 2nd World Con-
ference on Integrated Design and Process Technology (IDPT), Austin,
Texas, December 1–4.

[11] Chillarege et al. (2013). Orthogonal Defect Classification v 5.2 for
Software Design and Code IBM.

[12] Silva, N., and Vieira, M. (2014). “Towards Making Safety-Critical
Systems Safer: Learning from Mistakes,” in ISSRE2014, Naples, Italy.

[13] Silva, N., and Vieira, M. (2016). “Software for Embedded Systems: A
Quality Assessment based on improved ODC taxonomy,” in SAC 2016,
Pisa, Italy.

[14] Copeland, L. “Software Defect Taxonomies”. Available at: http://flylib.
com/books/en/2.156.1.108/1/

[15] IEEE. (2010). IEEE 1044-2009 Standard Classification for Soft-
ware Anomalies. Institute of Electrical and Electronics Engineers,
New York, NY.

[16] Leszak, M., Perry, D. E., and Stoll, D. (2002). Classification and
evaluation of defects in a project retrospective. J. Syst. Softw. 61,
173–187.

[17] Margarido, I. L., Faria, J. P., Vidal, R. M., Vieira M. (2011). “Classifica-
tion of Defect Types in Requirements Specifications: Literature Review,
Proposal and Assessment.” 2011 6th Iberian Conference on Information

102 A Process for Finding and Tackling the Main Root Causes

Systems and Technologies (CISTI) (New York, NY: IEEE), 1–6. Avail-
able at: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5974237

[18] ESA ISVV Guide, issue 2.0, 29/12/2008, European Space Agency.
[19] ISO/IEC 12207:2008 Systems and software engineering – Software life

cycle processes.
[20] IEEE 1012-2004 – IEEE Standard for Software Verification and Valida-

tion. IEEE Computer Society.
[21] Jones, M. (2005). Software Engineering: Are we getting better at it?

ESA Bulletin 121, 52–57.
[22] Leszak, M., Perry, D. E., Stoll, D. (2002). “A Case Study in Root Cause

Defect Analysis,” in Proceedings of 22nd Intl Conf SW Eng (ICSE’OO)
(New York, NY: IEEE), IEEE CS Press, Los Alamitos, CA, 428–437.

[23] Lutz, R. (1993). “Analyzing Software Requirements Errors in Safety-
Critical,” in Embedded Systems, Proc IEEE Intl Symp Req Eng
(New York, NY: IEEE CS Press), 126–133.

[24] Weiss, K. A., Leveson, N., Lundqvist, K., Farid, N., Stringfellow, M.
(2001) “An Analysis of Causation in Aerospace Accidents,” in Digi-
tal Avionics Systems, 2001. DASC. 20th Conference (New York, NY:
IEEE).

[25] Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L.,
Guo, Y., and Godfrey, S. (2008). “Defect Categorization: Making Use
of a Decade of Widely Varying Historical Data,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (New York, NY: ACM), 149–57.
Available at: http://dl.acm.org/citation.cfm?id=1414030

[26] Neufelder, A. M. (2012). The top ten things that have been proven to
impact software reliability. Available at: http://www.softrel.com/downlo
ads/TopTen.pdf

[27] Rao, R. (2014). Root Cause Defect Classification (RCDC) for Documen-
tation Defects. Available at: http://www.stc-india.org/conferences/2014/
presentations/Root%20Cause%20and%20Defect%20Classification%20
for%20Documentation%20Bugs%20-%20Ramaa%20Rao.pdf

[28] Kumaresh, S. and Baskaran, R. (2010). Defect Analysis and Preven-
tion for Software Process Quality Improvement. Int J. Comput. Appl.
(0975–8887), 8.

[29] Silva, N., Vieira, M., Ricci, D., Cotroneo, D. (2015). “Assessment of
Defect Type influence in Complex and Integrated Space Systems: Ana-
lysis Based on ODC and ISVV Issues,” in 2015 IEEE International
Conference on Dependable Systems and Networks Workshops (DSN-W)
(New York, NY: IEEE), 63–68.

5
Framework for Automation of Hazard Log

Management on Large Critical Projects

Lorenzo Vinerbi1 and Arun Babu Puthuparambil2

1Resiltech s.r.l., Pontedera (PI), Italy
2Robert Bosch Center for Cyber Physical Systems, Indian Institute
of Science, Bangalore, India

5.1 Introduction

A hazard (HZ) is any situation that could cause harm to the system or lives.
HZ depends on the system and its environment, and the probability of the HZ
to cause harm is known as risk. HZs are analyzed by identifying their causes
and the possible negative consequences that might ensue. For example, the
dangerous failure of a traffic signal could be caused by a logic error in the
traffic signaling controller’s software program. The consequence could be
conflicting traffic flows simultaneously receiving green signals.

A hazard log (HL) is a database of all risk management activities in a
project. Maintaining its correctness and consistency on large safety/mission
critical projects involving multiple vendors, suppliers, and partners is critical
and challenging. IBM DOORS [1, 2] is one of the popular tool used for HZ
management in mission critical applications. However, not all stake-holders
are familiar with it. Also, it may not always feasible for all stake-holders to
provide correct, well structured, and consistent HZ data. IBM DOORS have
been reported to be useful in managing DO-178 compliance for avionics [3].
Also, HL in DOORS allows capabilities for tracing requirements and test
results. However, DOORS has steeper learning curve and is difficult to use by
common people and beginners [4]. Also, they lack validation capabilities [5].
Custom checks may require difficult to use plug-ins which are not generic.
This complexity makes it difficult to maintain the rules; preventing reuse in
other projects.

103

104 Framework for Automation of Hazard Log Management

This chapter demonstrates a modular and extensible way to specify rules
for checks locally at the stake-holder side, as well as while combining data
from various parties to form the HL. The HZ-LOG automatization tool
simplifies the process of HZ data collection on large projects to form the
HL, while ensuring data consistency and correctness. The data provided by
all parties are collected using a template containing scripts. The scripts check
for mistakes/errors based on internal standards of company in charge of the
HZ management. The collected data is then subjected to merging in DOORS,
which also contain scripts to check and import data to form the HL.

The requirements of HL tool are:

(i) Perform checks of incoming data from vendors and partners;
(ii) It shall allow to collect and keep log for all information related to iden-

tified HZs (and related identified mitigations), structuring information
accordingly;

(iii) It shall be possible to manage the status of the HZs and related mitiga-
tions, allowing for the control of risk. Only allowed HZ status transitions
shall be possible and logging of the related status transition activity shall
be kept in the tool for traceability purposes;

(iv) Only RAMS specialist are allowed to manage HZs being necessary no
different user profiles for the management of HZs in the tool;

(v) A function of the tool shall allow to extract the “current” status of the
project system HL by allowing the creation of documentary reports
containing the set of necessary information about the predicted HZs,
mitigations identified, and the status of all related risk control activities.

5.1.1 Brief Introduction on DOORS

IBM Rational DOORS is an enterprise-wide requirements management tool,
designed to link and manage diverse textual and graphical information to
ensure a project’s compliance to specified requirements and standards. It
represents a layer to perform:

(i) Import documentation into a DB in order to convert free text into
requirements;

(ii) Maintain such requirements during the time;
(iii) Relate requirements belonging to different documents (or level of

detail);
(iv) Relate requirements to other artefact (e.g., test specification or report).

Due to its features, it is widely adopted in different domain as reference tool
to manage requirements and HL.

5.2 Approach 105

5.2 Approach

All the activities described in the previous sections lead to a set of HZs and
mitigations; which in the end allow to guarantee the safety all along the
lifecycle (see Figure 5.1).

The mitigations identified in PHA [6] and SHA [7] shall be evaluated,
along with design changes, on a continuing basis, to ensure that risk associ-
ated to HZs has been eliminated or lowered to an acceptable or practicable
level. The result of this activity shall be stored in the Hazard Log Tool. Some
other activities may provide results to be logged, e.g. design implementation
schemes, design analyses, test specifications and test reports etc. Whilst main
HZ analyses are planned by the project’s safety plan, [7] other safety analyses
and project activities providing results to be logged in the HL have no plan.
It is the Safety Organization’s responsibility to log the outcome of safety
activities when resulting new HZs as well as to record all the information
necessary to provide final evidence of safety.

A template with configuration and script is created and sent to all partic-
ipants in the project. Template fields are listed and explained in Table 5.1.
Table 5.2 reports possible configurations for mapping DOORS fields into
excel ones, while Table 5.3 is an example of configuration for excel template
that specifies allowed combination of hazard frequency, severity, and risk

PHA: Preliminary

Hazard Analysis

SHA: System Hazard

Analysis

Hazard

LOG

External

Hazards

Sources

SSHA: Subystem

Hazard Analysis

Figure 5.1 Populating the hazard log (HL).

106 Framework for Automation of Hazard Log Management
T
ab

le
5.
1

H
az

ar
d

an
al

ys
is

te
m

pl
at

e
H

L
S

ID
Fi

el
d

N
am

e
Fo

rm
at

D
es

cr
ip

tio
n

1
H

az
ar

d
ID

A
sp

ec
ifi

c
fo

rm
at

ha
s

to
be

de
fin

ed
It

is
th

e
un

iq
ue

id
en

tifi
er

fo
r

a
ha

za
rd

.
2

H
az

ar
d

O
pe

ni
ng

D
at

e
A

sp
ec

ifi
c

fo
rm

at
ha

s
to

be
de

fin
ed

T
hi

s
fie

ld
co

nt
ai

ns
th

e
da

te
in

w
hi

ch
th

e
ha

za
rd

ha
s

be
en

op
en

ed
.

3
H

az
ar

d
C

lo
su

re
D

at
e

A
sp

ec
ifi

c
fo

rm
at

ha
s

to
be

de
fin

ed
T

hi
s

fie
ld

w
ill

co
nt

ai
n

th
e

da
te

in
w

hi
ch

th
e

ha
za

rd
cl

os
es

.
4

H
az

ar
d

So
ur

ce
Te

xt
In

iti
al

ge
ne

ri
c

so
ur

ce
fr

om
w

hi
ch

th
e

ha
za

rd
w

as
id

en
tifi

ed
.

5
H

az
ar

d
D

es
cr

ip
tio

n
Te

xt
A

co
m

pl
et

e
ex

ha
us

tiv
e

de
sc

ri
pt

io
n

of
th

e
ha

za
rd

.
6

H
az

ar
d

C
au

se
Te

xt
A

ll
po

ss
ib

le
fa

ilu
re

m
od

es
of

fu
nc

tio
ns

/s
ub

sy
st

em
s/

eq
ui

pm
en

t/c
om

po
ne

nt
s

w
hi

ch
co

ul
d

le
ad

to
th

e
ha

za
rd

.
7

H
az

ar
d

C
on

se
qu

en
ce

Te
xt

It
is

th
e

po
ss

ib
le

ac
ci

de
nt

s
to

w
hi

ch
th

e
ha

za
rd

co
ul

d
le

ad
.

8
H

az
ar

d
E

ve
nt

U
su

al
ly

ea
ch

ha
za

rd
is

ca
te

go
ri

ze
d

fo
llo

w
in

g
a

lim
ite

d
lis

to
f

po
ss

ib
le

ha
za

rd
ev

en
t,

in
or

de
r

to
ea

se
m

ai
nt

en
an

ce
an

d
an

al
ys

is
of

th
e

re
su

lts

T
hi

s
fie

ld
re

po
rt

s
th

e
to

p
le

ve
le

ve
nt

(o
r

a
co

m
bi

na
tio

n
of

ev
en

ts
)

re
su

lti
ng

fr
om

th
e

ha
za

rd
.

9
H

az
ar

d
In

iti
al

Fr
eq

ue
nc

y
O

ne
ou

to
f

#
po

ss
ib

le
va

lu
es

(t
he

y
de

pe
nd

s
on

th
e

pr
oj

ec
t,

e.
g.

,
“I

nc
re

di
bl

e”
,“

Im
pr

ob
ab

le
”,

“R
em

ot
e”

,“
O

cc
as

io
na

l”
,

“P
ro

ba
bl

e,
”

or
“F

re
qu

en
t”

)

T
hi

s
fie

ld
ev

al
ua

te
s

th
e

in
iti

al
fr

eq
ue

nc
y

of
th

e
ha

za
rd

,
ba

se
d

on
pr

ev
io

us
ex

pe
ri

en
ce

s,
pr

ev
io

us
ev

al
ua

tio
ns

,
ex

pe
rt

ju
dg

m
en

t,
st

at
is

tic
al

an
al

ys
is

an
d

by
co

ns
id

er
in

g
th

e
ex

is
tin

g
m

iti
ga

tio
ns

of
le

ga
cy

sy
st

em
an

d
so

it
w

ill
be

ba
se

d
on

th
e

da
ta

/in
fo

rm
at

io
n

al
re

ad
y

av
ai

la
bl

e.
10

H
az

ar
d

In
iti

al
Se

ve
ri

ty
L

ev
el

O
ne

ou
to

f
#

po
ss

ib
le

va
lu

es
(t

he
y

de
pe

nd
s

on
th

e
pr

oj
ec

t,
e.

g.
,

“C
at

as
tr

op
hi

c”
,“

C
ri

tic
al

”,
“M

ar
gi

na
l”

or
“I

ns
ig

ni
fic

an
t”

)

T
hi

s
fie

ld
ev

al
ua

te
s

th
e

se
ve

ri
ty

of
th

e
co

ns
eq

ue
nc

es
re

la
te

d
to

th
e

ha
za

rd
,b

as
ed

on
pr

ev
io

us
ex

pe
ri

en
ce

s,
pr

ev
io

us
ev

al
ua

tio
ns

,e
xp

er
tj

ud
gm

en
t,

st
at

is
tic

al
an

al
ys

is
an

d
by

co
ns

id
er

in
g

th
e

ex
is

tin
g

m
iti

ga
tio

ns
of

le
ga

cy
sy

st
em

an
d

so
it

w
ill

be
ba

se
d

on
th

e
da

ta
/in

fo
rm

at
io

n
al

re
ad

y
av

ai
la

bl
e.

5.2 Approach 107

11
H

az
ar

d
In

iti
al

R
is

k
V

al
ua

tio
n

O
ne

ou
to

f
#

po
ss

ib
le

va
lu

es
(t

he
y

de
pe

nd
s

on
th

e
pr

oj
ec

t,
e.

g.
,

“U
nd

es
ir

ab
le

”,
“I

nt
ol

er
ab

le
”,

“T
ol

er
ab

le
”

or
“N

eg
lig

ib
le

”)

It
is

th
e

co
m

bi
na

tio
n

of
in

iti
al

co
ns

eq
ue

nc
e

an
d

in
iti

al
fr

eq
ue

nc
y.

It
es

ta
bl

is
he

s
th

e
le

ve
lo

f
ri

sk
ge

ne
ra

te
d

by
th

e
ha

za
rd

ou
s

ev
en

t.

12
H

az
ar

d
Fi

na
lF

re
qu

en
cy

O
ne

ou
to

f
#

po
ss

ib
le

va
lu

es
(t

he
y

de
pe

nd
s

on
th

e
pr

oj
ec

t.
e.

g.
,

“I
nc

re
di

bl
e”

,“
Im

pr
ob

ab
le

”,
“R

em
ot

e”
,

“O
cc

as
io

na
l”

,“
Pr

ob
ab

le
”

or
“F

re
qu

en
t”

)

In
th

is
fie

ld
w

e
re

po
rt

th
e

fin
al

re
si

du
al

fr
eq

ue
nc

y
of

th
e

ha
za

rd
.

13
H

az
ar

d
Fi

na
lS

ev
er

ity
L

ev
el

O
ne

ou
to

f
#

po
ss

ib
le

va
lu

es
(t

he
y

de
pe

nd
s

on
th

e
pr

oj
ec

t.
e.

g.
,

“C
at

as
tr

op
hi

c”
,“

C
ri

tic
al

”,
“M

ar
gi

na
l”

or
“I

ns
ig

ni
fic

an
t”

.)

T
hi

s
fie

ld
ev

al
ua

te
s

th
e

fin
al

re
si

du
al

se
ve

ri
ty

of
th

e
co

ns
eq

ue
nc

es
re

la
te

d
to

th
e

ha
za

rd
.

14
H

az
ar

d
Fi

na
lR

is
k

E
va

lu
at

io
n

O
ne

ou
to

f
#

po
ss

ib
le

va
lu

es
(t

he
y

de
pe

nd
s

on
th

e
pr

oj
ec

t.
e.

g.
,

“U
nd

es
ir

ab
le

”,
“I

nt
ol

er
ab

le
”,

“T
ol

er
ab

le
”

or
“N

eg
lig

ib
le

”)

It
is

th
e

fin
al

co
m

bi
na

tio
n

of
re

si
du

al
co

ns
eq

ue
nc

e
an

d
fr

eq
ue

nc
y.

15
H

az
ar

d
St

at
us

O
ne

ou
to

f
fo

ur
po

ss
ib

le
va

lu
es

:
“O

pe
n”

,“
So

lv
ed

”,
“D

el
et

ed
”

or
“C

lo
se

d”
.

It
is

th
e

st
at

us
of

ha
za

rd
.

108 Framework for Automation of Hazard Log Management

Table 5.2 An example configuration of hazard log tool (“Hazard Log Field” are the fields in
DOORS, “HA” is the fields in Excel, and “Type” indicates where the field can be found (HZ,
‘hazard’; MT, ‘mitigation’; BH, ‘can be found in both’)

Hazard Log (HL) Field Type HA Id
Hazard Log Id BH Hazard Log Id 1
Hazard Opening Date HZ Hazard Opening Date 2
Hazard Revision Id HZ Hazard Revision Id 3
Hazard Closure date HZ Hazard Closure date 4
Hazard Consequence HZ Hazard Consequence 5
Hazard Frequency Pre Mitigation HZ Hazard Frequency Pre Mitigation 6
Hazard Status HZ Hazard Status 7
Mitigation Id BH Mitigation Id 8
Mitigation status MT Mitigation status 9

Table 5.3 Example configuration for Excel scripts
Hazard Frequency
Pre Mitigation

Hazard Severity Level
Pre Mitigation

Hazard Risk Evaluation
Pre Mitigation

Allowed Words
F0-Frequent S4-Disastrous Intolerable
F1-Probable S3-Catastrophic Undesirable
F2-Occational S2-Critical Tolerable
F3-Remote S1-Marginal Negligible

evaluation tool. This template is designed in MS-Excel, which allows running
of scripts/macros. These macros are written considering requirements of the
project.

The database consists of a collection of HZ records (one record for each
identified HZ) and a collection of the mitigation action records related to
the identified HZs. Each HZ record contains the information regarding the
HZ such as: Hazard identification, Hazard Revision Number, Identified in
phase, Hazard originator’s code, Operating mode, Hazard description, etc.,
as per the company and project specific standard. Also, the systems and
subsystems have to identify all necessary mitigations to the identified HZs so
the associated risk is eliminated or ALARP (as low as reasonably practicable)
according to the risk categories definitions and as explained in the safety
cases. For each HZ, mitigation actions are specified to control the risk to
ALARP. Each mitigation record contains information such as: Mitigation
ID, Mitigation Revision, Mitigation Revision date, Mitigation Description,
Applied to phase, Mitigation Status, etc. Since, each project has different
needs, check of data consistency and correctness rules are needed to generate

5.2 Approach 109

correct HL. Hence, a template and set of rules are created in MS-Excel.
The rules are based on high-level requirements of standards of company in
charge of HZ management, written in the form of scripts [8]. Each participant
receives the template, and it is filled out with HZ data and it is thoroughly
checked with Excel scripts (Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5).
Once all checks are passed, it is compliant with the company and project
standards. It is then sent to a central place to merge and form the HL. The
merging of data from Excel format to DOORS is done through custom
scripts which validates the data columns for correctness and consistency
(Figure 5.6). Each HZ data from a participant is checked for consistency using
scripts in DOORS and are integrated to form HL if no errors are found. Often
Excel file consist of more fields than that of DOORS, they are either discarded
or used for computation. A second script checks if a previous version of the
file was uploaded yet, in such case HL is updated. Finally, the HZ log sheet is
produced containing: Hazard identification, Hazard revision number, Hazard
originator’s Code, Hazard description, Hazard Owner, Party to act, Hazard
Comments, Mitigation Comments, etc. Several fields are marked as NULL;
as they will be entered during the lifetime of the system.

The cost-effectiveness of the HL management process has been achieved
by the following scripts:

(i) Scripts to be used jointly with MS Office tool suite in order to make
simple checks, and to reduce the number of errors introduced into the
DOORS DB;

(ii) Scripts to be used in DOORS in order to ease import from excel file,
update and export. Concerning the support for MS Office, the scripts
were created implementing the following checks of interest for an HL:

• Concerning the hazards:

• each hazard shall have a unique identifier;
• each hazard shall have a non-empty “consequences”, “causes”, and

“status”;
• each not cancelled hazard shall have a risk evaluation pre-

mitigation;
• each not cancelled hazard having a risk level pre-mitigation higher

than tolerable shall have a risk evaluation post-mitigation;
• when risk evaluation is applied the risk matrix shall be respected;
• each hazard having status different from “cancelled” or “open”

shall have a mitigation.

110 Framework for Automation of Hazard Log Management

• Concerning the mitigations:

• each mitigation shall have a unique identifier;
• each mitigation shall have a non-empty “description”, “assigned

to”, “status”.

• Concerning the traceability:

• if “Mitigation Implementation (reference)” field is not empty,
check trace on document list;

• if “SRAC” field is not empty, check trace on SRAC list;
• if “RTM” field is not empty, check trace on RTM list;
• in case of structured HL (i.e. HZ and mitigation separated tables) –

coherence checks like:

• Does the mitigation referred in HZ table have at least an
existing HZ?

• Does all the mitigations referred in HZ table exists in the
mitigation table?

5.3 Case Study

The proposed approach has been applied to four different critical projects
where each project has 6–10 suppliers, and each supplier produced HZ
analysis with 200–400 rows and the merged HL of ∼2000 rows for each
project.

In order to evaluate the correctness and the improvement given by the
scripts, we used them in different real project in order to appreciate how it is
used by different teams working on different contexts. In particular we used
four projects related to the Railway domain, concerning metro lines to be
installed in different cities.

The main characteristic of the different project are shown in the below
table.

Metro Line
Team
Size

No. of Involved
Subsystems Project Duration

No. of Hazards
Composing the HL

Metro X01 3 9 2015–2016 ∼1600
Metro X02 4 10 2015–on going ∼2000
Metro X03 3 8 2015–on going ∼1400
Metro X04 5 10 2014–on going ∼2500

Scripts have been used during the different phases of the safety lifecycle.
The scripts related to MS Office have used in the early stages to evaluate first

5.4 Conclusion 111

drafts (/releases) of the files coming from suppliers. The feedbacks from the
different teams are quite similar:

(i) No. of syntactic errors contained in the files given by the suppliers are
drastically reduced (90%);

(ii) Time spent in reviewing (just from syntactic point of view) is drastically
reduced (70%);

(iii) This goal has not been reached in a single step, indeed most of the sup-
pliers complained on the low usability of the scripts. This is something
we expected indeed they are just first releases to have feedback “from
the field”, so the user interface was not good enough to be reasonably
used without some initial difficulties.

Scripts related to MS Office have been then used to verify correctness of the
integrated HL (the one composed joining the different HAs from suppliers).
Scripts related to DOORS have been used to import system HL in DOORS.
In this case, feedbacks from the different teams differs. Most of the teams
noticed a real improvement in using such scripts, since they:

(i) reduce time related to import activities;
(ii) make people, who are not familiar with DOORS, capable to easily use

it; and
(iii) reported a real decrease in time connected with import activities (up to

80%).
(iv) One team reported no real improvement in using such scripts. This is

because:

(a) people present in the team are very skilled on DOORS (they
already have their own processes to easily import HAs on it);

(b) the presence of template for HA are really hard to be managed.
This led a lot of error related to configuration of the script, which
took more time to be solved.

Scripts related to DOORS have also been used to update HL. In this case,
feedbacks from the teams were not so good. Indeed, most of them reported
difficulties in applying the process to be used in order to correctly keep track
of the different change in HL. This has led us to re-consider this phase from
the scratch and changing such approach in the future projects.

5.4 Conclusion

As HL is the database for all HZ/risk information and is updated throughout
the project life-cycle, it is critical that the HZ analysis data is correctly and

112 Framework for Automation of Hazard Log Management

consistently merged. Especially, in large projects having multiple partners/
vendors. In the current study, the proposed approach has been found to be
useful in reducing mistakes in HZ analysis. Also, it has been found to reduce
the amount taken to create the HL. The use of automatic checks paves the
way for correct tracking of risk and HZ analysis activities for large critical
projects. More specifically:

(i) All the excel sheets from all participants have been automatically
imported into the DOORS tool;

(ii) It has been observed that a significant reduction in the number of
non-conformities presents in the document provided by the different
suppliers.

(iii) The time required to merge data to form HL is reduced by ∼30%.
(iv) Engineers in the main company are now more likely to use DOORS,

since the offered framework, allowing them to easily interact with it.
This also resulted in increase in quality of the project. The proposed
approach has been found to be generic and suitable to all critical
systems.

5.5 Tool Screenshots

Figure 5.2 Excel sheet of one of the participants.

5.5 Tool Screenshots 113

Figure 5.3 Checking of HA data through MS Excel scripts.

Figure 5.4 Dialogue boxes of MS Excel scripts.

114 Framework for Automation of Hazard Log Management

Figure 5.5 Errors caught in HZ analysis by scripts.

Figure 5.6 Excel sheet imported and merged in DOORS to form HL.

References 115

References

[1] IBM. (s.d.). (Rational DOORS Family). Available at: http://www-03.
ibm.com/software/products/en/ratidoorfami (accessed on 15 February
2016).

[2] Dave, H., and Saeed, B. (2009). “Hazard Management with DOORS:
Rail Infrastructure Projects,” in Safety-Critical Systems: Problems, Pro-
cess and Practice (London: Springer), 71–93.

[3] Çakmak, K. M. (2013). Managing DO-178 Compliance with IBM
Rational Platform. J. KONBiN, 25, 59–74.

[4] Lööf, R., and Pussinen, K. (2014). Visualisation of requirements and
their relations in embedded systems. Uppsala University. Sweden.

[5] Dibbern, J., Geisser, M., Hildenbrand, T., and Heinzl, T. (2009).
Design, implementation, and evaluation of an ICT-supported collabora-
tion methodology for distributed requirements determination. Working
paper.

[6] Pasquale, T., Rosaria, E., Pietro, M., Antonio, O., and Segnalamento
Ferroviario, A. (2003). “Hazard analysis of complex distributed railway
systems,” in Proceedings of 22nd International Symposium on Reli-
able Distributed Systems, 2003, 283–292. doi: 10.1109/RELDIS.2003.
1238078

[7] Chapra, S. (2003). Power Programming with VBA/Excel. Upper Saddle
River, NJ: Prentice Hall.

[8] Gowen, L. D., Collofello, J. S., and Calliss, F. W. (1992). “Preliminary
hazard analysis for safety-critical software systems,” in Eleventh Annual
International Phoenix Conference on Computers and Communication
[1992 Conference Proceedings], Scottsdale, AZ, USA, 1992, 501–508.
doi: 10.1109/PCCC.1992.200597

http://taylorandfrancis.com

6
Cost Estimation for Independent

Systems Verification
and Validation

András Pataricza1, László Gönczy1, Francesco Brancati2,
Francisco Moreira3, Nuno Silva3, Rosaria Esposito2,

Andrea Bondavalli4,5 and Alexandre Esper3

1Dept. of Measurement and Information Systems, Budapest University
of Technology and Economics, Budapest, Hungary
2Resiltech s.r.l., Pontedera (PI), Italy
3CRITICAL Software S.A., Coimbra, Portugal
4Department of Mathematics and Informatics, University of Florence,
Florence, Italy
5CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Validation, verification, and especially certification are skill and effort
demanding activities. Typically, specialized small and medium enterprises
perform the independent assessment of safety critical applications. Prediction
of the work needed to accomplish them is crucial for the management of
such projects, which is by nature heavily dependent on the implementation
of the V&V process and its support. Process management widely uses cost
estimators in planning of software development projects for resource allo-
cation. Cost estimators use the scoring of a set of cost influencing factors,
as input. They use extrapolation functions calibrated previously on measures
extracted from a set of representative historical project records. These predic-
tors do not provide reliable measures for the separate phases of verification,
validation and certification in safety critical projects. The current chapter

117

118 Cost Estimation for Independent Systems Verification and Validation

summarizes the main use cases and results of a project focusing on these
particular phases.

6.1 Introduction

Verification and validation (V&V), and Independent Software and System
Verification and Validation (ISVV) are crucial in critical system development.
However, the execution of such activities underlies strict time and budget
limits and depends on input elements delivered by the entity performing the
design and implementation of surprisingly changing quality.

Our research (described in details in CECRIS [1, 2]) focused on synthetiz-
ing a method for estimating the cost and focusing the effort of V&V activities
in order to make these critical steps more managed and foreseeable in terms
of time and cost aspects.

This necessitated an appropriate, organized, and scientifically well-
founded working methodology.

The traditional software and system design industry has well-elaborated
methods for the assessment of the aspects of efficiency and quality w.r.t. the
human actors, technology used and project management background of the
companies. Cost estimators (CEs) use the scoring of a set of cost influencing
factors, as input. Their respective predictor uses extrapolation functions cali-
brated previously on measures extracted from a set of representative historical
project records.

6.1.1 ISVV Workflow

The domain standards [3–8] define the project lifecycle and forms part of the
design workflow and its phases. They envisage a purely top-down process
starting with the requirements for implementation and checks. The individ-
ual phases are self-contained in the terms of design and V&V. Figure 6.1
presents a schematic view on the interoperation of the development and V&V
phases.

However, the practice indicates, that in many cases there are deviances of
this idealistic model. For instance, changes in the specification triggered by
the end user during the design may result in iterations.

Constraints related to delivery time force occasionally corrections exe-
cuted in parallel in phases intended to be sequential by the idealistic
process model. We suppose a typical “waterfall” development, which, how-
ever, has its disadvantage that decisions taken in the project are often not

6.1 Introduction 119

Figure 6.1 Schematic view on V&V activities.

reflected by artifacts (e.g., design documentation) created in an earlier project
phase.

Even in critical projects, due to resource constraints, early deliverables
are often not updated which may result in inconsistent documentation.

Note that the Figure 6.1 shows a simplified partial view of the process
presented in Pataricza et al. [9].

Verification and validation activities of a particular phase and design
activities in the successor phase frequently show a similar temporal overlap,
for instance, coding starts before the completion of design verification.

If design verification detects faults later, feedforward change management
has to take care to correct the design and update the specification of the
already ongoing coding activity.

Furthermore, latent faults escaping the V&V of their respective earlier
phase trigger feedback loops and multi-phase correction actions affecting
preceding project deliverables as well.

Review Item Discrepancy (RID) is the output measure of a V&V activity.
A RID is an issue, identified by a reviewer who is uncompliant with a
requirement, a review objective or a design goal.

120 Cost Estimation for Independent Systems Verification and Validation

Our suggestion is to facilitate effort estimation and “spot out” problematic
parts of the target artifact of verification by applying complexity/quality
metrics. These metrics can be retrieved right at the beginning of verification;
also, such metrics for previous project deliverables (e.g., code metrics in the
case of test verification) are reusable.

6.1.2 Objectives

Cost estimators are fundamental elements all along the lifecycle of a
project from the proposal definition through the project execution and
a posteriori evaluation. Their main purpose is assuring a timely execution
of the target project without overspending. A variety of general-purpose
CE methodologies exists supporting the project management activities
by predicting Key Performance Indicators (KPI), such as time/effort/cost/
quality/risk.

Similarly, different measures assure the compliance of an ISVV or certifi-
cation process with the standards. However, the objective of an assessor is an
effective V&V and certification process among the standard-compliant ones.
Effectivity means here both productivity and quality.

Rough estimates, and rules of thumbs like approximating testing related
costs as by around 40% of the overall development project costs, as typ-
ical for non-critical applications do not deliver reliable results for safety-
critical ones.

Academic experts performed a thorough going evaluation of the current
practice of the ISVV companies performed for third parties. They analyzed
numerous historical project logs with a particular focus on the cost aspects
to identify the main factors influencing the efficiency of the projects and
the dominant quality and productivity bottlenecks. One main observation
was that automatic quality checking of incoming project artifacts has a high
priority, as this is the core factor determining the efficiency of the entire
assessment projects.

The primary objective of the research based on the results of the analysis
was checking the validity of the original approach of creating general-purpose
CEs for the purpose of ISVV-related effort prediction.

The most important use case is the improvement of the ISVV process.
Accordingly, the focus of the evaluation was on the “what-if” – like analysis
of the impacts of factor-by-factor changes in the process factors. This
way, sensitivity analysis can predict the relative improvement expected, for
instance, by the introduction of a new technology.

6.2 Construction of the ISVV Specific Cost Estimator 121

6.1.3 Approach

The enrichment of the ISVV workflow design by effort metrics necessitates
a proper cost predictor. The literature refers to a large number of general-
purpose and dedicated approaches.

Flexibility, understandability and possible accuracy were the main selec-
tion criteria in designing a CE specific for V&V.

The COCOMO family of CEs served as the starting point, as this is
popular and relies on an open model. Note that the different versions of
the CEs covering different use cases take nearly twenty factors as input to
generate a cost estimate (as detailed in the next section).

The moderate number of historical project log does not even adequately
sample this vast parameter space allowing the generation of an entirely new
CE dedicated to ISVV.

Accordingly, our approach consisted of the following main steps:

• estimation of those general factors related to software development
processes which are independent of the peculiarities of ISVV;

• cross-validation of the measured predicted by the general-purpose CE
and the logged efforts in the ISVV sample set;

• checking the set of input factors for completeness and potential revision
of the definition according to ISVV.

6.2 Construction of the ISVV Specific Cost Estimator

Software project management offers a huge variety of approaches and tools
for cost estimation. As no single one is detailed enough to describe the
specific V&V processes related to critical systems, we started the elaboration
of an ISVV-specific CE model referred further as CECRISMO [10].

The COCOMO family of CEs served [11–13] as the starting point of
the designated CECRISMO. The COCOMO family of CE has a widespread
industrial acceptance and use including (embedded) system design. Members
of it support different project types and process models including mixed
hardware–software development, component reuse, and integration-based
system design, etc. All COCOMO styled predictors rely on an open model.
Thus, the adaptation can follow the usual process of the creation of a new
member of this family. Most members of the family have an open source tool
support.

122 Cost Estimation for Independent Systems Verification and Validation

6.2.1 Structure of the Cost Predictor

Figure 6.2 COSYSMO 2.0: Size Drivers/Effort Multipliers.

All the members of the COCOMO family (incl. COSYSMO) share a
similar formula for cost prediction (see Figure 6.2).

Person MonthsNominal Schedule = A(cost driver)E
∏

effort multiplier,

where

• Person MonthsNominal Schedule is the estimated effort in man-months
needed for the end-to-end execution of the project (nominal schedule),

6.2 Construction of the ISVV Specific Cost Estimator 123

• “size driver” is an estimated metrics (a single real number) of the size
and complexity of the target of the project (“What is the output of the
development project?”).

• For instance, early COCOMO cost predictors used the estimated number
of source line of codes or function points as size estimators in pure
coding projects. As not all elements within a particular category result in
the same amount of efforts, difficulty categories express the differences
in efforts and the total numbers are calculated as weighted sums. These
weights are in the range of one order of magnitude for each step of
a difficulty category. Similarly, the decreased efforts due to reuse of
already existing artifacts is weighted by a reduction factor.

• “effort multiplier” expresses the efficiency of the development pro-
cess from technology, skills, development infrastructure and organiza-
tional aspects (“How effective is the output of the development project
elaborated?”);

• The evaluator expert assigns to each individual effort influencing factor
a grade (an ordinal measure) Very low/Low/Nominal/High/Very high,
which in turn is converted with an aspect dependent empirical constant
vector into a relative effort multiplier (for instance an effort multiplier
metric less than 1 corresponds to a speedup w.r.t. to the nominal case).

• A and E are calibration constants estimated during curve fitting to the
data in the calibration set.

6.2.2 Cost Drivers

COSYSMO targeted the entire system development process in the large.
When designing a new member of the COCOMO family, the standard pro-
cedure is an analysis and if necessary of the original model simultaneously
keeping the core of its original factors and prediction methodology.

The following evaluation targets the creation of a CE corresponding to
ISVV in focus. This analysis addresses the following central questions:

• How appropriate are the input factors defined originally for the end-to-
end process for ISVV (completeness and scoring methodology)?

• Is there a necessity for the re-interpretation of the factors originally
defined for end-to-end development to the peculiarities of ISVV?

6.2.3 Focal Problems in Predicting Costs for ISVV

The primary reason of the non-existence of ISVV specific CEs is the lack of
a sufficient number of available project logs and other processable artifacts
supporting statistically justified generalized statements.

124 Cost Estimation for Independent Systems Verification and Validation

In addition, the efforts needed for ISVV heavily depend on the quality
of the input artefacts supplied by the separate design entity. This way, the
input quality has an at least equally important influence, like the size and
complexity of the system under assessment.

These important interdependencies necessitate a re-interpretation of the
individual factors.

General-purpose CEs have to cover a broad spectrum of human skill
levels ranging from a post-secondary level programmer to domain experts.
Accordingly, they apply a rough-granular scoring range covering this wide
set. ISVV, a highly demanding task is typically carried out by SMEs having
a well-educated staff frequently having a higher academy degree and a long
industrial expertise. This way, the staff in ISVV belongs to the top few scores
related to human factors in general-purpose CEs, and the expressive power of
these factors becomes insufficient due to the low resolution.

6.2.4 Factor Reusability for ISVV-Related CE

The size drivers express the scale of the system under development ade-
quately, but the size alone is insufficient to determine or approximate the
efforts necessary for ISVV.

In the case of system requirements and artifacts corresponding to them,
the impact of safety criticality on ISVV-related efforts needs refined weight-
ing methods and scores. Critical requirements, components, etc., necessitate
a thoroughgoing analysis as defined in the standards.

Moreover, standards define variation points in the checking process.
Accordingly, here the weight of the factor needs a fitting to the actual process
instance chosen for the actual object of ISVV instead of a global weight used
in the original CE.

Similarly, as ISVV is a follow-up activity of a design phase the design
quality heavily influences the amount of work to its execution.

The quality of the outputs of some V&V preliminary activities (e.g.,
design the V&V Plan, Requirement Verification, and Hazard Analysis) are
major effort drivers for rest of the V&V cycle. Modeling this behavior will
also allow to perform ROI analyses at early stage of the V&V process and/or
continuously monitoring the cost-quality tradeoff of the overall V&V cycle.

The notion of quality has a double meaning here. On the one hand, it
refers to the care of the preparation of the ISVV input artifacts (how well is a
design document structured and formulated). The quality of the input artifacts

6.2 Construction of the ISVV Specific Cost Estimator 125

has a direct impact on the problem size (how many items needs the review
report to detail).

On the other hand, it covers technical aspects (like the testability of code).
The expressive power of the grading system is insufficient, and this issue is
subject to a detailed analysis in a subsequent section.

6.2.5 Human and Organizational Factors

An important obstacle originates in the difference regarding the organiza-
tional background.

Companies developing non-critical applications typically follow an end-
to-end in-house approach. Mono-company development assures indepen-
dence at the team-level within the company boundaries, if required by the
standards, at all. Both the development and V&V teams share the same
enterprise culture regarding skills, organizational and technology aspects in
case an entirely in-house process. This way the assumption of having a
nearly homogenous culture and quality along the entire process is highly
probable. Experts performing the scoring of the individual organizational and
technology-related cost factors can typically do it at the level of the company.

On the contrary, ISVV relies on two organizationally independent, but
to a given extent collaborative partners each having his separate culture.
Moreover, ISVV performed for different clients faces different cultures at
the side of the designer companies.

The group of team factors has nearly the same semantics as in the original
model.

However, ISVV is typically a much more complex activity using differ-
ent methods and tools as a traditional development process. This way, for
instance, human and technical factors are related to the individual activities
instead of using flat, global grading. If an ISVV process consists of a mix
of peer review and formal analysis, tool support, personal experience, etc. all
have to be evaluated at the resolution of these individual activities instead of
a single approach based scoring. Mostly SMEs having a limited number of
experts perform ISVV. Occasionally, the proper level of assessment is that of
individuals instead of “average programmer at the company.”

The evaluation of cooperation related factors needs adaptation, as well
(multisite coordination, stakeholder team cohesion). These aspects cover
namely two kinds of teams: Intra-team communication at the unit performing
ISVV where the interpretation is identical with that in the design organiza-
tion; inter-team communication between the design entity and the ISVV site.
A good approximate solution is a simple logic taking a pessimistic approach

126 Cost Estimation for Independent Systems Verification and Validation

by assigning the minimum score of the two particular scores to these two
communication-related aspects.

6.2.6 Motivating Example: Testing

One of the core issues is the dependency of ISVV related costs on the quality
of the input artifacts (like software source code), while the output of the
process has to comply with the strict quality requirements formulated in the
standards.

This dichotomy in the requirements has non-trivial consequences on cost
estimation.

• Testing of non-critical applications has as input typically a moderate
quality code. It has to reach an acceptable, but not an extremely high
fault coverage.

• Testing of safety-critical applications however, always targets high-fault
coverage.

According to numerous observations, the detection rate drastically drops
along the progress of the testing process after an initial peak (the testing time
to detection rate distribution usually corresponds to a long-tailed Rayleigh
distribution as shown in Figure 6.3, see [14]).

• This way effort estimation (the time to finish testing by reaching
the required coverage) has to cope in case non-critical applications
dominantly with the initial bulk of faults (which is relatively easy to
estimate).

• Regarding safety-critical objects under test this termination time
instance lies on the long flat tail resulting in a potentially large estimation
error.

Figure 6.3 Rayleigh distribution by different parameters (a) fault detection rate (b) fault
coverage (source: wikipedia.org).

6.3 Experimental Results 127

This way the scoring scheme of traditional CEs is inappropriate, as a score
corresponding to a “High input quality” would mean, that fault coverage is
above a threshold. However, this corresponds in testing time to an interval
between the threshold and infinity.

However, input characterization may improve estimation accuracy by
substituting the original grade-like scores with continuous metrics. We used
mainly visual Exploratory Data Analysis methods in order to find and validate
main correlations and interdependencies on project data. During CECRIS,
some typical and “atypical’ projects were examined in order to see what
connections and measureable characteristics can be set up between outputs
and inputs of ISVV activities.

6.3 Experimental Results

Even the initial experiments delivered some highly valuable conclusions for
prioritizing the individual goals in CECRIS.

Note that the low number of cases presented here is apparently insufficient
to draw any conclusions with a sound mathematical foundation but they serve
as an orientation for the further experiments.

6.3.1 Faithfulness of the Results

Figure 6.4 shows the effort estimated by COSYSMO compared to the real
effort spent by the V&V activities for each pilot project.

Figure 6.4 COSYSMO estimation compared to real V&V effort.

128 Cost Estimation for Independent Systems Verification and Validation

The ratio of the logged and predicted efforts is for the entire four projects
4 ± 10%. The correlation coefficient is 0.99, which means a strict propor-
tionality. (It is well visible in the figure that the two curves have a similar
shape.)

This way, the first impression is that the direct application of COSYSMO
to pure V&V phases delivers a qualitatively correct, but in absolute numbers
wrong estimation. The main reason is that COSYSMO accounts for the
efforts of the entire development process (starting with requirement analysis
and including the entire code development and in-production testing phases,
as well). The reference values from project logs cover only a smaller set of
sub-activities of this process, V&V, accounting for 22–28% of the global
project efforts.

The ratio of V&V efforts w.r.t. to global efforts is in a narrow interval
over all the pilot projects.

Expert’s estimations predict in general 30–35% share for V&V in the
industrial practice depending on the project and product in contrary to the
observed ∼25% in the pilot calibration set. This better than average produc-
tivity originates in the very highly skilled and experienced personal typical in
university close spin-offs.

Note that while the observed ∼25% holds in the pilot calibration set,
but this value should be further validated on a larger data set. It presents
a further problem that the independent V&V and certification organizations
have no exact data on the ratio to the total effort, while CECRISMO explicitly
estimates effort for these phases.

COSYSMO can serve this way as a comparison base if the ratio of a
particular V&V and certification activity can be properly approximated.

V&V efforts can be taken as a constant fraction of the predicted total
development costs if only a rough estimate is targeted. Some COSYSMO
implementations rely on the assumption on a constant ratio, which is valid if
the entire project is carried out completely in-house.

However; the assumption has globally no proper justification in the case
of an external accessor. The total effort estimation mixes activities carried
out at the product manufacturer (3/4 share) and V&V carried out at the
independent accessor. A rigid subdivision cannot properly predict V&V
related efforts in general, as all factors may differ in the two actor enter-
prises.

However; such a first estimate is a candidate for a rough relative
comparison of two solutions of V&V tasks carried out by the same company.

6.3 Experimental Results 129

6.3.2 Sensitivity Analysis

Sensitivity analysis is widely used in order to estimate the impact of changing
some input value or values onto the output of a function or a system.

The corresponding inputs are the size drivers and the effort multipliers in
the case of cost estimation.

Sensitivity analysis forms the basis of answering numerous critical
questions:

• Impact prediction for process changes: Process improvement neces-
sitates always investments like the introduction of new tools into
technology, improvement of team cohesion by teamwork support or
investment into the human capital by training. While it is generally true
that such investments has a beneficial impact onto the productivity and
cost, sensitivity calculation is able to predict their impact in quantitative
terms, as well.

• Adaptive project management: Sensitivity to the size drivers is a main
characteristic to describe scalability of a project. Here the breakdown
of the different size drivers into qualitative categories and taking the
individual sensitivity values for instance delivers a good indicator of
system specification modifications during the process.

• Estimation of the impacts of misscoring: The different effort multi-
pliers need a special care from the point of view of sensitivity analysis.
These are all categorical variables with assigned ordinals as domain (the
effort multipliers take their score values from an ordered enumerated
list).

By the very nature of the scoring by an expert judgment guided by an informal
description is somewhat subjective.

The evaluator can score a particular factor by one score up or down.
Sensitivity analysis here answers the question what are the impacts if the
evaluation expert puts a score to a wrong value (typically some of the
neighboring values of the proper one).

The estimation of the impacts of such scoring errors assures that a range
of uncertainty can be provided in addition to the single effort estimate as
the final result. (Some cost estimation methods apply a non-deterministic
simulation around the expected scoring to deliver such an uncertainty
estimate.)

The V&V focus of CECRIS necessitated this analysis, as the focus
of the original COSYSMO description was not completely identical with

130 Cost Estimation for Independent Systems Verification and Validation

the CECRIS objectives; this way, miscategorizations may occur. Another
problem was that the scope of COSYSMO is essentially wider than that of
CECRIS. This way, a significant part of the large domain of effort multipliers
is irrelevant in the cases of CECRIS (for instance, no staff of very low skills
and novice to certification will be involved into V&V activities despite the
fact that a this is a valid score allocation in COSYSMO).

Accordingly; only a subdomain of the COSYSMO’s score space is rele-
vant for CECRIS and this raises the question of applying a narrower but finer
granular set of candidate scores.

A sensitivity analysis of all the individual cost drivers was performed
in order to estimate the potential impact of miscategorization and a refined
scoring system.

This is basically performed by taking the nearest lower and higher score
of an input factor. If the mismatch between the observed value and the
predicted one drastically changes, thus the cost is highly sensitive to the
particular factor than the scoring rules have to be revised.

If the observed values typically lie between the two predictor values
corresponding to neighboring score settings, than a refinement of the input
scoring (introduction of an intermediate value) may increase the resolution
and accuracy.

The Figure 6.5 shows the relative impact of three cost drivers, Require-
ment Understanding, Architecture Understanding, and Personnel Expe-
rience/Continuity, on the cost estimator. Only these three cost drivers are
analyzed for the sake of simplicity and without lose generality. As shown
in Figure 6.5, increasing cost driver scores (x-axis), decreases the cost esti-
mate (y-axis) nearly in a linear way. Requirements Understanding has a
higher impact on the cost like Architecture Understanding and Personnel
Experience/Continuity.

Even this small example indicates the importance of sensitivity analysis
from the point of view of project- and process management.

If the quality of the requirement set specification is improved by a score
than ∼20% can be reached in the terms of cost saving. If for instance, the
traditional textual specification is substituted with an unambiguous formal
model in an easy to understand form like the mathematically precise but well
readable controlled natural language, then a significant cost saving can be
reached with relatively low effort in training.

Naturally, multiple cost factors change in the case of the introduction of a
new technology.

6.3 Experimental Results 131

Figure 6.5 Cost drivers sensitivity analysis.

6.3.3 Pilot Use Case for Project Management

As pilot case for what-if analysis the core CECRIS action line was selected: In
a company dealing with V&V/certification of critical ES advanced academic
approaches are introduced. The skills of the local personnel would be at
the beginning moderate and may only gradually reach the level of profes-
sional expertise. As a special case we investigated what happens if intensive
coaching was provided by senior experts to help the transition. One of the
previously analyzed projects was selected to carry out the what-if analysis.

COSYSMO calculator was taken and factors were determined as summa-
rized by Table 6.1. Concentrating only on factors (taking values from Very
Low through Nominal to Very High) where significant impact is expected,
leaving other multipliers unchanged.

Our pilot calculation showed that a project introducing formal methods
without experience (“Introductory”) has approximately the same cost as a

Table 6.1 Pilot use case for introducing formal methods in verification
Factors Orig. Introductory Final Intermediate
Requirements understanding H N VH VH
Personal experience N L N N
Tool support VL H VH H
H, high; L, low; N, nominal; VH, very high.

132 Cost Estimation for Independent Systems Verification and Validation

project working with traditional, mostly human checks. Due to increased
uncertainty, real costs (and technology related risk) may even be higher in
this case. On the other hand, a guided “coaching” may result almost the same
cost/effort saving as the ideal “final” stage, due to the reduced risk of novel
technology and lack of experience (50 vs. 60%). Although these factors were
not primarily calibrated for V&V (nor for embedded systems), such overall
project management considerations also hold in this area.

6.4 Case Studies

In this chapter we present case studies to illustrate how the estimation method
can be used on real-life data. During this analysis, we were also validating our
assumptions about the process model.

6.4.1 Complexity Factors

Complexity is an essential factor, used both in COSYSMO and in ad-hoc
effort estimations for ISVV. As we described in Section 6.1, one overall
scoring for projects cannot describe the overall difficulty of the problem,
therefore a more fine-grained estimation is needed. Scaling/rating of the
input may also depend on the problem or domain, so this estimation should
be calibrated to the domain and the nature of the problem as well (e.g.,
boot software, a communication submodule or a computationally intensive
software component may be different). Note that this complexity is expressed
also in the COCOMO family as “algorithmic complexity”. In case of ISVV,
we can rely on the advantage that the software to be checked is already
available, so metrics which are typically measurable on the outcome of a
traditional development project can be used for input characterization.

Although the interpretation and calculation of complexity differs across
domains and development steps, we took some examples which are easy to
calculate. Here we introduce complexity in the sense of code complexity.

Code complexity is measured usually on the source code of components.
It concentrates on measuring the structure of the code (which do not nec-
essarily correlates with the actual complexity of the problem solved by the
particular software component, which is the main criticism wrt. complexity
measurements).

One of the most widely used metrics is McCabe complexity:

#of linearly independent paths in CFG =
#Edges− #Nodes+ 2× ∗#ConnectedComponents

6.4 Case Studies 133

This metric fits well with problems which are control dominated, captured
by the structure of their Control Flow Graph (CFG).

The above definition is independent from the programming language but
is influenced by the coding convention, therefore its application may be
limited for domains/teams. It should be quantized (e.g. low-medium-big).
A typical upper threshold for “low” complexity may be five for instance in
embedded software.

Another important metric is the Halstead metric concentrating on the
“language” of the software, measured in the number of terms used.

Halstead metrics are concentrating on the “size” of the software measured
in the number of “operators” and “operands” in software.

Let n1 be the number of unique operators and n2 the number of unique
operands, while N1 denotes the total number of operators and N2 stands for
total number of operands.

Vocabulary(n) = n1 + n2
Length(N) = N1 + N2
Volume(V) = N *log2n

Difficulty(D) = (n1/2)*(N2/n2)
Effort(E) = D*V

Delivered Bugs(B) = V/3000

It is important to note that the latter two derived metrics are highly domain-
dependent. Effort refers to actual effort creating the software while “Deliv-
ered Bugs” is a rough estimation of “faults inserted”. E.g., the number of
Delivered bugs is known to be an underestimate in general-purpose C/C++
programs but is in the range of ISVV found bugs, since ISVV deals with
“residual” bugs not detected by in-house testing and other means of fault
detection.

The programming language itself has a trivial impact on these metrics,
especially the Halstead length of a program.

These metrics can also be applied at the model level since most of their
concepts are already captured by (detailed) software models. Similarly to
McCabe metrics, Halstead (derived) metrics can be used to calculate size
drivers for COCOMO-like estimations.

We have recently experimented (among others) with C, Java, Python,
JavaScript and found that these metrics may be used on only for input
characterization, but also for finding outliers. For instance, in the examined
subset, there were different solutions available for a computationally intensive

134 Cost Estimation for Independent Systems Verification and Validation

problem written in the same programming language with drastically different
complexity metrics. It turned out that one naı̈ve solution is inefficient, but
simple iteration logic while the other solution relied on specialties of the
problem. This second component would be trivially harder to maintain but
runs with less execution time for the majority of the inputs. However, this is
such a difference which could not have been found only by looking at the
requirements or test cases of the given software component.

These examples also illustrate that the COCOMO family is too high
granular when talking about factors, basic estimations should be supported
by more detailed metrics. Most of the effort multipliers, however, will remain
similar. These methods can also be used to select the appropriate level and
target of the application of (semi) automated formal methods.

6.4.2 Cost Impact of Requirement Management

Taking the example of a breakdown of a difficult requirement to five simple
ones, the difference is 50% (2.5 vs. 5) in nominal difficulty. Of course,
these numbers represent more rules of thumb than exact calculation, but
still they express industrial best practice in project planning. Structuring of
requirements is therefore a crucial part of project design. Although this can
be done in any textual tool or in Excel (the most widespread requirement
definition tool), a structured, object-oriented approach can help requirement
refactoring and reuse by introducing typed interdependencies and domain
specific notation in requirement specification.

As requirements have a specific “lifecycle”, changes and modifications
have significant impact on overall project difficulty, and therefore affect
related ISVV activities.

Table 6.2 shows, for instance, that a requirement of “Nominal” diffi-
culty has a 30% less effort implications if it is reused from an existing
requirement set.

Table 6.2 Effect of requirement lifecycle
No. of System Requirements Easy Nominal Diff.
New 0.5 1.0 5.0
Design for Reuse 0.7 1.4 6.9
Modified 0.3 0.7 3.3
Deleted 0.3 0.5 2.6
Adopted 0.2 0.4 2.2
Managed 0.1 0.2 0.8

6.4 Case Studies 135

Requirements here are measured in a uniform way, however, from safety
critical point of view, there can be huge differences even between require-
ments of same category (e.g., change in a “nominal” requirement related to
emergency shutdown may have larger impact on software testing).

Also there are interdependencies among the requirement set, which may
override the above numbers.

6.4.3 Automated Analysis for Factor Selection

Besides exploratory analysis methods, a wide selection of automated analysis
technique is available in “algorithm as a service tools” like IBM Watson
Analytics, Microsoft Cortana or other evolving services. These tools typically
support data cleansing and evaluation by combining a selection of well-
known statistical algorithms with heuristics and other (e.g., text mining
based) methods in order to find correspondences between input variables of
datasets.

These tools return with a number of suggestions which in turn can be
justified, refined (or even invalidated) by a profound analysis and check
of human experts. These automated methods can not only speed up the
initial steps of data analysis, but also systematically reduce the chance of
overlooking factors or biasing analysis by false assumptions.

We analyzed 7 different ISVV projects with source code files in the
range of 500 from the aerospace domain and submitted input information
(complexity measurements, number of requirements/files to check, etc.) and
output evaluation (number of RIDs found, information about these RIDs w.r.t.
input artifacts, overall effort estimation) and performed automated analysis
in order to see what correspondences and implications are derived. We were
using IBM Watson Analytics. Our findings were the following:

Input quality. As expected, data quality was very heterogeneous across
projects. The tool pointed out factors where the number of missing entries
(NAs) or constant data may distort the analysis. Input quality information is
important as filtering out irrelevant or partially missing factors can prevent
later analysis methods from generating false/not interpretable results.

Categorization. Without any previous domain knowledge, some inter-
esting categorization suggestions (expressed in the form of automatically
derived decision tree) were found. The categorization returned by the tool
was approximately the same as returned by experts. Such information might
be used in qualitative “labelling” of projects.

136 Cost Estimation for Independent Systems Verification and Validation

Heat map on frequent combination of factors. When selecting input
factors, it is important to know which combination of values (intervals)
appear in data to see how realistic/relevant the scaling of factors is. Anal-
ysis methods returned some important suggestions, for instance on how to
combine readability metrics and file size to find a rough estimator for input
quality (fault density measured in the “frequency” of RIDs).

Derived factors. The analysis tool was also able to derive estimators
(based on partial linear regression) which can take the project characteris-
tics into account and return function-like closed formula predictors where
parametrization may depend on project nature (which may be derived from
the same metrics as used for project categorization).

Of course, the above estimations/predictions do not hold for all V&V
projects, but such automated analysis results may speed up the domain
specific estimation and quality improvement process by inserting systematic
analysis into today’s mostly ad-hoc method.

6.4.4 Quality Maintenance Across Project Phases

In order to see the effects of multiple-phase development (and, therefore,
multiple-phase ISVV activities), we took two examples from the aerospace
domain [9].

Our research questions were the following:

• How does the “coding style” (i.e., structuring the code in smaller/bigger
files with corresponding “header/specification” information) affect the
quality of the code?

• How do the number if iteration and the timespan of the project (and,
therefore, the ISVV activities) influence the quality?

As Figure 6.1 shows, quality of artefacts may affect subsequent project
phases, and thus, the input of the corresponding V&V activity. In critical
projects, traces among phases are typically available and support the identi-
fication of engineering decisions (e.g., how many classes will implement a
certain requirement).

We also tried to introduce metrics to support the evaluation of dependency
between phases in a quantitative way; the number of requirements/KLOC is
such a candidate.

Main findings of this experiment were the following:

• Although traceability is assured by the development process and tools,
the effect of a fault inserted in an early phase (e.g., in a requirement) is
not always corrected, especially during re-iteration.

6.4 Case Studies 137

• Mainly due to the mostly human work during verification phases, RIDs
are often recorded in a way which does not help later analysis: typical
faults (e.g., in coding style, comments, or even implementation not fully
consistent with design documents) may be reported once but may refer
to multiple artefacts. Moreover, this also underlines that the number of
RIDs may not be a precise characterization of ISVV project output, since
the granularity of RIDs might move on a wide scale.

• The timespan of the original project heavily influences the “lifecycle”
of artifacts and also the quality assurance. We concentrated mostly on
completeness and correctness faults, as during the re-iteration phase
of ISVV, these get a special emphasis. We measured the fault ratio
per KLOC in the source code. In the case of an “incremental” project
with shorter iteration times (see the left part of Figure 6.6), the project
converges and the ratio of faulty input items drastically decreases. In
the case of long iterations and multiple changes in requirements, both
the completeness and correctness of the software code got significantly
worse. Note that these relatively small fault rates (when compared to a
rule of thumb of 5 faults/KLOC) are detected after the code has been
approved by in-house checks.

This experiment also underlines that measuring only the characteristics of
input artefacts is not enough without the organizational and human factors,

Figure 6.6 Trends of fault in multi-phased ISVV projects.

138 Cost Estimation for Independent Systems Verification and Validation

which obviously have a huge impact on project effort both at the customer
side and at the ISVV company.

6.4.5 Fault Density and Input Complexity

In the following section, we present an analysis example which tries to set up
high level correspondence between fault density (measured post-mortem, at
the end of closed ISVV project phases) and complexity metrics (measurable
at project planning stage).

A simplified and cleaned set of data has been loaded to Microsoft Power
BI tool used for data analysis and visualization. Results presented here do not
depend on the particular tool of choice. Besides basic “BI” visualizations,
some R code was used to generate the plots. A part of the dashboard is shown
on Figure 6.7.

The left figure shows the number of RIDs (indicated by the size of
circles) and their correspondence with the complexity metrics (McCabe and
maximum nesting). The figure suggests that there is a more direct influence of
complexity on fault number than the maximum nesting value. The figure on
the right shows the distribution of RIDs according to their severity. Besides
other findings, our experiment also showed that there is a clear negative
correlation between comment to code ratio and code complexity.

Some high level conclusions on RIDs found in this project:

1. Comment RIDS (which are often neglected by the customer, especially
if a project is close to mission start) may have been found by ISVV or
prevented during development if basic formal methods and automated,
“template-like” check were used.

2. In the case of Minor and Major RIDs, requirement traceability is a key
factor in efficient V&V. These result in more objective RIDs which are

Figure 6.7 Complexity metrics and fault density.

6.5 Conclusions 139

also easier to validate and accept by the customer, while their correction
can also be better traced.

Major RIDs may include a wide variety of discrepancies, from potential dead-
locks caused by obsolete code to using wrong data types which may result in
buffer overflow. Some of these faults are hard to find using manual methods,
but are supported by formal tools which also return counter examples repre-
senting (potentially) wrong behavior. Major RIDs also require peer review,
and are mostly accepted by the customers. Introducing Behavior-Driven
Design technologies in the development may also help focusing testing
and V&V effort and eliminating faults caused by inconsistent development
phases.

6.5 Conclusions

Cost estimation is a fundamental pillar stone of all project management
activities. Traditional systems and software engineering can rely on a variety
of CEs providing sufficiently accurate predictors on the efforts needed to
a particular application development. Independent systems verification and
validation of safety critical applications is a crucial activity in assuring the
compliance with the standards.

The current chapter evaluated the possibilities of creating a cost estimator
dedicated to the V&V phase of system design. The creation of such an esti-
mator is feasible currently primarily due to the unavailability of a sufficiently
large calibration dataset. However, a proper adaptation of traditional software
CEs has proven its usefulness in process improvements and what-if style
evaluation on changes in the workflow.

The adaptation of software cost predictors is not a mechanical process.
Differences in assigning a metrics to the complexity of the target project, the
scoring of the highly skilled personnel, the impact analysis of the introduction
of sophisticated tools, etc. all need a domain expert.

As ISVV is a follow-up activity of a design phase, the design quality
heavily influences the amount of work to its execution. The quality of outputs
of the previous activities (e.g., design in the V&V Plan, Requirement Verifi-
cation, Hazard Analysis) are major Effort drivers for rest of the V&V cycle.
Modeling this behavior will also allow to perform ROI analyses at early stage
of the V&V process and/or continuously monitoring the cost-quality tradeoff
of the overall V&V cycle.

A major innovation of the approach is the use of advanced exploratory
data analysis techniques [15] to get deep insights into the ISVV process.

140 Cost Estimation for Independent Systems Verification and Validation

Finally, the chapter pinpoints that minimal dataset which is a recommended
target of project logging to support future process improvement.

References

[1] CECRIS. FP7-PEOPLE-IAPP-CECRIS-324334 D2.1 Assessment meth-
odology for analysis of companies V&V processes.

[2] CECRIS. FP7-PEOPLE-IAPP-CECRIS-324334 D2.5 Definition of Cer-
tification Oriented V&V Processes.

[3] CENELEC. (1999). EN 50126: Railway Applications – The Specifica-
tion and Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS). Brussels: CENELEC.

[4] CENELEC. (2011). EN 50128: Railway applications – Communication,
signalling and processing systems – Software for railway control and
protection systems. Brussels: CENELEC.

[5] CENELEC. (2003). EN 50129: Railway applications – Communication,
signalling and processing systems – Safety related electronic systems for
signaling. Brussels: CENELEC.

[6] ISO. (2011). ISO26262 – Road vehicles – functional safety, Interna-
tional Organization for Standardization.

[7] ISO (International Organisation for Standardisation) and IEC (Inter-
national Electrotechnical Commission). (2009). “Software Product
Quality,” in ISO/IEC 9126, November 2009.

[8] RTCA. (2012). RTCA/DO-178C, Software Considerations in Airborne
Systems and Equipment Certification.

[9] Pataricza, A., Gönczy, L., Brancati, F., Moreira, F., Silva, N., Esposito,
R., Salánki, Á., Bondavalli A. (2016). “Towards an analysis framework
for cost & quality estimation of V&V project,” in DASIA 2016, Tallin,
Estonia.

[10] Brancati, F., Pataricza, A., Silva, N., Hegedüs, Á., Gönczy, L., Bon-
davalli, A., and Esposito, R. (2015). “Cost Prediction for V&V and
Certification Processes,” in 2015 IEEE International Conference on
Dependable Systems and Networks Workshops (DSN-W) (New York,
NY: IEEE), 57–62.

[11] COCOMO. (2015). COCOMO II – Constructive Cost Model. University
of Southern California.

[12] Constructive System Engineering Cost Model (COSYSMO). Available
at: http://cosysmo.mit.edu/

References 141

[13] Fortune, J., Valerdi, R., Boehm, B. W., and Stan Settles, F. (2009).
“Estimating Systems Engineering Reuse.” MITLibraries. Available at:
http://dspace.mit.edu/handle/1721.1/84088.

[14] Kan, S. H. (2002). Metrics and Models in Software Quality Engineering,
2nd ed. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

[15] Pataricza A., Kocsis I., Salánki Á., Gönczy L. (2013) “Empirical Assess-
ment of Resilience,” in Software Engineering for Resilient Systems.
SERENE 2013, eds A. Gorbenko, A. Romanovsky, V. Kharchenko. Lec-
ture Notes in Computer Science, vol. 8166. Springer, Berlin, Heidelberg.

http://taylorandfrancis.com

7
Lightweight Formal Analysis

of Requirements

András Pataricza1, Imre Kocsis1, Francesco Brancati2,
Lorenzo Vinerbi2 and Andrea Bondavalli3,4

1Dept. of Measurement and Information Systems, Budapest University
of Technology and Economics, Budapest, Hungary
2Resiltech s.r.l., Pontedera (PI), Italy
3Department of Mathematics and Informatics, University of Florence,
Florence, Italy
4CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

Requirements are the core work items of the design and checking work-
flow target safety critical systems. Accordingly, their completeness, com-
pliance with the standards and understandability is a dominant factor in
the subsequent steps. Requirements review is a special kind of Independent
Software/Systems Verification and Validation (ISVV). The current chapter
presents methodologies to use lightweight formal methods supporting experts
in a peer review based ISVV.

7.1 Introduction

The quality of requirements dominates the efforts of a design process especi-
ally in the case of safety-critical applications (see Chapter 6). As described
in the previous chapter in details, the effort and quality of the ISVV heavily
depend on the input quality of the work items submitted for review by the
customer. Frequently a significant part of the efforts is wasted to basic activi-
ties similar to the data cleansing phase in the field of data analysis regarding
their level and ratio (which can reach a few tens of percents). For instance, ill-
structured documents, inconsequent and non-conformant with the standards

143

144 Lightweight Formal Analysis of Requirements

use of terminology all require expert effort to be checked although they do
not form the essence of the assessment.

Correspondingly, the exhaustiveness of the checks performed has a major
impact on all the activities relying on the completeness, standards com-
pliance and integrity of them. This way, requirement review has to be as
thoroughgoing as possible. However, this part of the workflow benefits only
to a moderate extent of the advantages of Model-Based System Engineering
(MBSE) and formal methods due to the typically conservative (informal) or
at most semi-structured text based formulation used mostly in the industry.

The objective of the current chapter is the presentation of an approach
targeting a gradual introduction of MBSE and formal methods to requirement
checking. The introduction of easy-to-use methods simultaneously assures
an increased productivity and quality without the need of a single step
introduction of a complete framework or specialized skills in formal methods.

The chapter introduces the basic modeling concepts as defined by stan-
dards. The subsequent section presents techniques carrying out extended
syntactic analysis over the requirement documents. After addressing change
management in iterative requirement design/modification-checking work-
flows the closing section deals with the integration of the measures described
into the ISVV.

7.2 Objective

Our objective is supporting dominantly peer review based ISVV executed
by SMEs. Typically, highly-qualified experts constitute the personal of such
companies. Reviewers usually are very familiar and knowledgeable of the
application domain without deep skills in advanced formal methods.

Accordingly, our evolutionary approach is less ambitious, than a revolu-
tionary one exploiting the full potential of mathematical proof of correctness
methods. It follows the paradigm of hidden formal methods in which
the user of the tool gets the support from a built-in intelligence, but the
working environment has no or very moderate changes compared to the
traditional one.

Our approach does assume either an end-to-end MBSE or a complete
automation of the workflow; however, it can contribute to a significant effort
saving by reducing the overhead originating in document cleaning, managing
the progress of the assessment including checking its completeness.

This way, the efforts of the experts can be focused on the hardcore
problems related to technical evaluation deliberated of the majority of the
pure mechanical tasks not requiring their expertise.

7.3 ReqIF and Modeling 145

The subsequent sections address the three major questions in improving
ISVV:

• How to create interchangeable and well-structured documents out of
traditional unstructured ones?

• How to create a domain-specific working environment out of a tradi-
tional one by adding quality improvement and checking measures based
on hidden formal methods?

• How to improve the convergence of requirements by change manage-
ment in iterative design-ISVV workflows?

7.3 ReqIF and Modeling

The requirements play an important role in cooperating between final product
manufacturers and part suppliers, as these provide the basis of outsourcing
and acceptance tests between them. This way, the exchange of requirement
between cooperating partners is a crucial part for instance in the automotive
industry demanding relatively low interaction times.

The Object Management Group (OMG) developed an open standard [1]
called Requirements Interchange Format (ReqIF) to assure interoperability
between cooperating partners (see Figure 7.1). This standard is open toward
different design and checking technologies thus it is a natural candidate to
information exchange between designer and independent software/system

Figure 7.1 ReqIF based information exchange.

146 Lightweight Formal Analysis of Requirements

verification and validation (ISVV). OMG ReqIF provides a well-regulated
set of rules and protocols for cooperation.

Requirements Interchange Format has wide support regarding open and
commercial requirement design and management tools. Also, leading vendors
put requirements as the core entity of the entire design and checking work-
flow. Advanced MBSE based frameworks integrate requirement management
with design and test. Traceability is a priority concept in ReqIF.

The following summary presents the main benefits of ReqIF as an
exchange model language for ISVV based on the top-level constructs in its
meta-model.

Requirements Interchange Format supports the exchange of core content
labeled by a header sufficiently detailed to identify the document itself and
optionally tool specific extensions from other information sources, like results
of evaluation (Figure 7.2).

The specification is the core content of a ReqIF instance associated with
specification types, objects and the relations between them (Figure 7.3). The
notion of links (called here “SpecRelations”) assures the traceability of the
requirement model to other artifacts. The metamodel supports hierarchical
composition of requirement sets, like a well-structured description of safety
cases derived by specialization from a standard, e.g., as an evidence list and
interlinked supportive arguments.

Figure 7.2 Exchange document structure.

7.3 ReqIF and Modeling 147

Figure 7.3 Specifications, requirements, and attributes.

The most popular infrastructure for ReqIF is Eclipse RMF (Require-
ment Management Framework) [2]. ProR [3] an open-source editor to edit
structured requirement documents.

Definition of data types, including enumeration types, supports the
creation of a domain-specific MBSE-styled model representation.

For instance, the different Safety Integrity Levels form a core enumeration
datatype of the form of {SIL0. . . SIL4}. Traditional type checking assures the
avoidance of omissions or ill-specified values in the corresponding field.

Syntax-driven editors constrain the designer to use only such values in the
field, that comply with the datatype definition.

However, turning a column in an Excel worksheet from the general
string type to one out of the predefined values forming the enumerated
data type implements simply the same principle. Such constraints simply
prohibit entering a wrong value into the instance model corresponding to the
application under development.

Moreover, this tiny example indicates a further opportunity in separating
the duties: If a domain and modeling specialist designs the Excel template, he
could embed the terminology, structure, etc., from the standards, as well. The
application designer filling out the template with the content corresponding to
the particular application under development will face his traditional working

148 Lightweight Formal Analysis of Requirements

environment with the hidden type model and check already embedded by the
expert.

At the same time, the example pinpoints the limitations of a pure ReqIF-
based working environment design approach, as well. Implementation of
complex relations necessitates low-level (e.g., VisualBasic) programming and
it benefits of modeling only by starting from a proper blueprint, which implies
all the drawbacks of traditional programming.

Bidirectional communication between cooperating partners was a pri-
mary design objective of the OMG ReqIF standard. In the context of ISVV,
this offers the opportunity of using it in the ISVV-to-developer communica-
tion for feeding back the review results in an entirely standards compliant
way. This way, the iterative process can benefit from the rich navigation and
traceability supporting features of ReqIf.

7.3.1 Domain Conceptualization

The industrial success of ReqIF in the inter-party communication in product
design makes it a natural candidate in developer-to-assessor cooperation
and model-based ISVV, as well. Moreover, as ReqIF documents carry both
the instance model and its respective metamodel, they can harmonize of
requirement design and ISVV.

At the top end, ReqIF-based requirement modeling serves as the starting
point of sophisticated methodologies aiming at correctness by design (like
RODIN – Rigorous Open Development Environment for Complex Systems
[12] transforming specifications into formal Event-B models). However, the
introduction of heavyweight formal methods into ISVV, a single phase of
the product development process faces serious obstacles regarding skills, and
in the overwhelming majority of ISVV tasks, it has an improper modeling
effort/benefit ratio.

Our approach uses ReqIF similarly for information exchange, as this
assures a well-structured requirement set. Lightweight modeling should
complement the methodology of customization of the ReqIF metamodel
and work environment of the requirement composer to a particular prod-
uct or product family using MBSE. Finally, the customized work envi-
ronment accommodates traditional, manual, design, and V&V methods,
as well.

Ontologies serve as primary candidates for semantics based unification
and conceptually clean metamodel design [4]. Ontologies are formalized

7.3 ReqIF and Modeling 149

vocabularies of terms covering a specific domain. They define the meaning
of terms by describing their relationships with other terms in the ontol-
ogy. They classify the terms that can be used in a particular application,
characterize possible relationships, and define possible constraints on their
use by providing formal naming and definition of the types, properties, and
interrelationships [5].

Knowledge organization, complexity reduction, and problem solution all
use ontologies for a variety of fields ranging from the Semantic Web, through
systems and software engineering to such non-technical fields, as library
science. The main use case of ontologies is conceptual data integration.

The driving force behind their standardization of formats (RDF and RDF
Schemas, OWL) is the World Wide Web Consortium (W3C). The formats
support interoperability, information fusion, and interchange.

MBSE largely depends on metamodeling (UML and derivatives). Meta-
modeling and ontologies are two different, but mutually transformable
approaches1 to modeling language and model construction. Both paradigms
focus on the description of the relations between concepts, checking of the
compliance of instances (individual models) with their respective parent
metamodel or upper ontology.

In contrary of usual metamodels, ontologies have a precise semantics
regarding mathematical logic, for instance in ISO/IEC Common Logic [6].
Ontology tools have built-in functions checking the completeness and con-
sistency of the models, and the correspondence of subontologies (speciali-
zations) and instances to their upper ontology (subsumption check).

The gradual introduction of hierarchical and relational elements into
the model following a vocabulary–taxonomy–ontology process results in
an ontology corresponding to a particular standard. Such an ISVV ontol-
ogy consolidates notions and their mutual relations defined in standards as
concepts.

Ontology processing has supportive mechanisms for information fusion
by virtually merging multiple, physically separate ontologies. Starting from
multiple ontologies representing different viewpoints facilitates aspect-
oriented modeling.

1Theoretically, not all ontologies have an explicit metamodel counterpart, but the subclass
of ontologies referred in the current chapter is subject of metamodeling based design. For
instance, the Object Management Group (OMG) offers a bridge in the form of an “Ontology
Definition Metamodel” [13].

150 Lightweight Formal Analysis of Requirements

The requirement set related to a particular application (legacy documen-
tation, source code, and comments, etc.) are then instances of this ontology.
This way the interdependence of entities and V&V steps managing them is
explicit.

7.3.2 Integration with Existing Practice of ISVV

A (slightly simplified and obfuscated) real-life example taken from a railway
hazard analysis project serves as motivating example.

The railway is a safety-critical domain; various safety measures designed
into the system address the hazards that pose an unacceptable risk; these have
to be proven to mitigate the various risks to an acceptable level.

The assignment of so-called Safety Integrity Levels ranging from 0 to 4
classify safety instrumented systems and functions. Each level has an associ-
ated interval of probability of failure on demand of the safety function, what
translates to an overall risk reduction capability.

Designers of the original documentation used a plain, unstructured list
of hazards as the input for risk analysis (Figure 7.4). However, structuring
the potential causes indicates clearly its flaws. At first, the introduction of
the abstract concepts “Subject” and “Impact” separates the different aspects
related to a hazard event (Figure 7.4).

Aspect weaving in the form of interrelating them derives the individual
categories, like “Line Controller Death.” The inclusion of “No Hazard Event”
and “Fire” do not fit into the scheme. The list of hazards is still incomplete
w.r.t cardinality constraints. For instance, the standard may require the com-
plete coverage of all potential hazard events by evaluating all “Subject” and
“Impact” combinations. Automated reasoning reveals that the “Staff OnBoard
Death” category lacks the considerations.

Figure 7.4 Unstructured and structured model.

7.3 ReqIF and Modeling 151

At the same time, this model is easy to maintain. For instance, after the
introduction of the notion of a “Driver” as a separate category, inherence
mechanisms can derive the two subcases “Driver Death” and “Driver Injury”
without touching other parts of the model.

Moreover, the design and ISVV workflows may rely on external infor-
mation sources, as well. Information fusion necessitates the unification of
the concepts of the different data sources by establishing the correspondence
between their notions.

For instance, risk analysis should cover all the hazards above a given fre-
quency of occurrence, which necessitates the inclusion of historical statistical
data from external data sources (like [14] in Figure 7.5). Their integration
into the ontology can follow the same unification approach, as in [7] based
on mapping the notions in different models after some elementary operation
(like calculating totals when aggregating overly fine granular statistical data).

Note, that the process of information fusion is an important engineering
task and not a pure semantic matching of two models. Apparently, resolution
of the two models differ merging different categories in the statistics into a
single concept in the model of hazard events assumes a similarity in their
occurrence and impacts. Aggregation of categories is at the same time an
input specification for the underlying summation of frequencies of their
occurrence.

Figure 7.5 Causality statistics structure.

152 Lightweight Formal Analysis of Requirements

Such an interrelation of statistical data and the input model of hazard
analysis support augmentative maintenance of the model. The appearance of a
new category in the statistics (e.g., security) with no counterpart in the hazard
event ontology pinpoints that the later one is not up-to-date.

7.4 Requirement Change Propagation

Our motivational example comes from the railway domain loosely based
on an actual change scenario, similarly as the example above. It highlights
the importance of lightweight formal methods from a further aspect, change
management. For didactical as well as legal reasons, the case presented here
is very heavily simplified and sanitized from multiple aspects.

The SIL of a function has a fundamental impact on its development cost
and time, as higher levels require increasingly sophisticated V&V activi-
ties. Consequently, during requirement change impact analysis it is essential
to correctly identify whether a requirement change indirectly causes SIL
changes in a specification through change propagation.

7.4.1 Original Specification

Our example demonstrates how the changes in the requirement set of a
Central Traffic Control system have a propagation effect in the whole
specification.

Keeping station area traffic safe is a complex problem involving many
tracks and switches in a complex manner, and the risks stemming from a
significant number of hazardous situations have to be mitigated. Trackside
signals regulate station area traffic allowing or denying entry to a track or
(switching) point. Classically, the control of the traffic through the signals
has been performed by local personnel and systems. The main means of
risk mitigation is signal interlocking: a separate system overrides any traffic
control command that would lead to a hazardous signal configuration. (For
instance, giving a “clear” signal at the same time at two entry points of an
interlocking.) Signal interlocking can be overridden in the local traffic control
system under strict operational rules, e.g., a switch with broken switch state
monitoring correctly halts traffic; however, to resume traffic, local personnel
has the situational awareness and authority of a temporal override of the
associated signal interlocking.

Traffic control has been and is being centralized worldwide To increase
operational efficiency, a Central Traffic Control (CTC) system manages the

7.4 Requirement Change Propagation 153

traffic at multiple stations. CTC can be an overlay to the existing systems
without substituting the local traffic control and the remote CTC “pushes
its buttons” instead of local personnel. Local signal interlocking is left
unchanged, too.

The “original” specification on Figure 7.6 represents a simplified excerpt
from the specification of such a system. Importantly, the CTC does not
have the full authority of local personnel; it is not allowed to issue signal

Figure 7.6 The original and changed specification in our example.

154 Lightweight Formal Analysis of Requirements

interlocking override (more generally, safety-critical) commands. As a result,
the process of setting up safety goals, decomposing them into safety require-
ments and mapping those onto elements of the functional architecture
identifies that it is SIL0 (not safety critical). On the other hand, notice how
the high-risk mitigation capability requirement (SIL4) is carried over from
the safety goal to the interlocking system.

7.4.2 Changed Specification

This specification has the chance to lead to a highly safe system that conforms
to the legal requirements on safety. However, an operator is also concerned
about operational efficiency. Let us assume that the operator finds the above
specification too restrictive; in many circumstances, override situations can be
managed acceptably safely, even if the override command is issued remotely.
However, some characteristic hazards have to be avoided [8]; one of them is
the CTC issuing override commands unintentionally. (The CTC is usually a
complex, software-based system, where operators manage multiple stations
of a geographical region with reduced situational awareness due to their
remote location.) This leads to the specification excerpt depicted in Figure 7.6
as the changed specification.

The key difference between the two specifications from change impact
analysis is that the central traffic control became a safety-critical component.
Risk mitigation assumes the absence of override commands issued by the
central traffic control unintentionally.2 This change in SIL has further propa-
gating effects; the V&V activities associated with the architecture, interfaces
and implementing components of central traffic control have to be revisited.

7.4.3 The Change Impact Propagation Method

Requirement engineers have to evaluate the propagating effect of changes and
rework the specification accordingly. This task involves two major phases.

• Suspicion marking through change impact propagation. The directed
dependency graph of the specification is traversed starting from the
initial changes introduced into the specification. Dependencies and
requirements that may have to be changed as an effect of the original
change are marked as SUSPICIOUS. After that, specification objects

2There are many ways to ensure this, regarding the operators as well as the software/hard-
ware system; discussing these is not in the scope of this chapter.

7.4 Requirement Change Propagation 155

that are connected to SUSPICIOUS ones are evaluated and poten-
tially marked, too in a transitive manner. Effectively, the SUSPICIOUS
marking is “propagated” in the reachability subgraph of the originally
changed elements. The resulting change impact cover – the subgraph
defined by the vertices marked SUSPICIOUS – is passed on to marking
processing.

• Processing marking. One by one, the suspicion-marking of the marked
dependencies and requirements has to be either accepted or refuted. If
accepted, the appropriate specification change has to be designed and
performed.

We are mainly concerned here with the first phase, although the value-
based change impact propagation we introduce gives guidance to the second
one, too.

• In practice, manually performing the first activity is a repetitive, time-
consuming and error-prone task even for moderate size specifications.

• The best of breed modern requirement management tools support
topology-based propagation: anything that is connected to a specifica-
tion element marked SUSPICOUS is SUSPICIOUS, too.

• Some modern tools begin to support type-based propagation. In this
case, marking is propagated only along the configured types of depen-
dencies and only upon the configured types of requirement attributes
becoming SUSPICIOUS.

Type-based propagation is a powerful tool to reduce the extent of the
change impact cover in the specification. Observe that on Figure 7.6, textual
description change along the <SG2, SR2, FA2, HW1> trace does not
propagate into the functional architecture due to the safety requirement
mapping nature of the (SR2, FA2) link. On the other hand, SIL change
does propagate, as FA2 got connected to a new safety requirement; thus, its
SIL has to be potentially (and in this case, also actually) modified.

Value-based propagation can further reduce the extent of the change
impact cover. In addition to types, it also takes into account the nature
of the propagating changes as well as the current values captured in each
requirement. Notice that HW1 has not to be changed, although FA2 has
been mapped to it. The reason is that although it got newly connected to
a (newly) high-SIL function, it already has the highest SIL level. Thus,
during marking, propagation can safely stop here. Figure 7.7 demonstrates
the relationship between the change impact cover extents and the resolution of
propagation.

156 Lightweight Formal Analysis of Requirements

Figure 7.7 Propagation resolution and computed change impact cover extent.

Independently of the category, we have to note that propagation does
not necessarily happen only “forward” or “downstream”. The change of a
requirement may impact its parent (containment-wise), not just its children;
and it may impact the sources of its incoming traceability links, not just
the targets of its outgoing ones. Tooling supports the user to configure the
directionality of propagation; this is a largely orthogonal concern to the
propagation resolution. For the sake of simplicity, in the following, we focus
on the forward direction unless otherwise noted.

7.5 Abstraction Levels of Impact Propagation

We have argued informally that there are three major categories of change
impact propagation from resolution. In this section, we describe and compare
these categories using a simple example.

Let us consider the rich requirement structure in Figure 7.8. In addition
to an SIL attribute, our requirements can have a priority attribute, too. In the
context of this example, priority expresses the importance of overall oper-
ational efficiency with the levels HIGH, MEDIUM and LOW. It aggregates

7.5 Abstraction Levels of Impact Propagation 157

Figure 7.8 Example rich requirement structure for propagation categorization.

some concepts, including maintainability, time to repair and cost of operation.
This priority concept is largely independent of SIL, and while the safety level
is an absolute requirement, priorities are subject to business considerations
and not critical to meet.

The example requirement model uses

• containment (parent relationship, denoted by P),
• SIL-mapping traceability links (denoted by S) and
• SIL and priority level attributes for the requirements.

For the purposes our example, we assume that the following consistency rules
are applied during requirement management.

• Rule 1. Any requirement that has an incoming “safety mapping” (S)
traceability link has an SIL attribute, and its value is the maximum of the
SIL values at the source requirements. For codification, the requirement
engineer should be able to derive this rule from the process definition
and the safety standards that have to be applied.

• Rule 2. A prioritized requirement must have only prioritized descen-
dants. This value can be only less or equal than that of the parent. For
codification, the requirement engineer should be able to formulate this
rule as a locally used and observed rule.

158 Lightweight Formal Analysis of Requirements

Let us emphasize that these rules are for demonstration purposes. SIL value
constraints along traceability links can be much more complicated in the
general case. The handling of priorities also represents only one possible
choice; among others, even its exact reverse may be justified in a specific
project. Our modeling approach and the subsequently introduced solution
method can support almost arbitrary rules. We also handle the potential
non-determinism of the rules.

The change we will be concerned with is modifying the priority of REQ3
from HIGH to MEDIUM. Figure 7.9 demonstrates propagation for the three
categories.

7.5.1 Topology-Based Propagation

We can propagate the change along the outgoing dependencies (containment
and traceability links) of the requirement, marking requirements transitively
as SUSPICIOUS. This approach is commonly referred to as topology-based
change propagation. In addition to attribute changes, the creation of new
dependencies as well as deletion of existing ones (through deleting the
source/target requirement or otherwise) is seamlessly supported.

7.5.2 Type-Based Propagation

The next level is type-based propagation. Dependencies have types, as well
as the attribute of the originally changed requirement that is changed. We
can filter propagation for dependency type as well as changed attribute
type. We reflect the changes that are allowed to propagate into the first-
level dependents by marking the dependents or some of their own attributes
as SUSPICIOUS. We can then perform propagation from this first level
transitively by propagating the requirement or attribute SUSPICIOUS mark-
ing using the same configurable filtering and configurable attribute marking
mapping mechanism. In the context of the example of Figure 7.8: for priority
changes, we propagate the SUSPICIOUS marking only along the descendants
of the changed requirement. Priority attribute markings are mapped into
priority attribute markings, as there is no logical dependency between the
two attributes in this case. Note that in addition to the orthogonal analysis of
attributes, this as well as the next category supports conjoint analysis – we
can express when the change of an attribute propagates to another.

Dependency changes are handled similarly to topology-based
propagation.

7.5 Abstraction Levels of Impact Propagation 159

Figure 7.9 Change impact propagation categories.

160 Lightweight Formal Analysis of Requirements

7.5.3 Value-Based Propagation

Type-based propagation is a powerful tool for controlling the extent of
change propagation in specifications that have a dense dependency structure;
however, it still does not take into account the kind of the change in the value
domain. Change can be described either qualitatively or in specific terms;
a qualitative description for priorities would be e.g. declaring its increase
or decrease, while the specific description is either the new value or the
old-new value pair. We establish the category of value-based change impact
propagation with these two subcategories.

In the qualitative case, observe that if Rule 2 is known, it means that the
priority increase change of a parent does not need SUSPICIOUS-marking
on the children. However, when it decreases, priorities in the children may
have to be revisited. We can say even more: when the priority at the next
level is HIGH, we are certain that changes are necessary; conversely when
it’s LOW, we are certain that propagation stops here. A somewhat similar
qualitative logic exists for the SIL mapping in our case; at level 4, any
increase upstream will not have any impact, while a decrease may require
requirement reconsideration.

The downside is that the rule set that is to be used has to be defined;
however, with predefined templates, this promises to be a manageable
overhead.

The next logical step is to consider propagating the specific change and
computing the specific local changes that may be necessary to be made. We
call this approach specific value based change propagation. On paper, this
idea seems not too far-fetched (see the example in Figure 7.9). However, it
requires formulating explicit, value-specific consistency rules. More specifi-
cally, propagation needs value change consistency rules that connect allowed
changes in localized requirement contexts (in the simplest, the allowed
attribute co-changes at the two ends of a typed link). However, it is easy
to see that the most of such change consistency rules can be transformed into
value-specific specification consistency rules and vice versa. In this last case,
the line between propagation and marking processing becomes very blurred,
as essentially specific change candidates are computed as a marking during
propagation.

We treat this last category as a theoretically interesting option; however, it
is one that has little immediate value to the practice in an industry that doesn’t
even use type-based change propagation in a widespread way yet.

7.6 Resolution Modeling with CSP 161

We have conducted an analysis of a sample of the best-of-breed require-
ment management solutions, to determine the extent and sophistication to
which they support assessing the propagation of requirement change impacts.
Topology-based propagation seems becoming available. Type-based prop-
agation is still a novel feature, available, e.g., in Rational DOORS Next
Generation. Value based propagation (qualitative or otherwise) is practically
non-existent yet.

7.6 Resolution Modeling with CSP

To establish a common, computable framework for the first three categories
above, we define them declaratively as finite-domain Constraint Satisfaction
Problems (CSPs) [9]. The motivation is that many sensitivity analysis tasks
in error propagation assessment and test generation are known to be definable
and also solvable this way – and tracking the propagating effect of require-
ment changes is very similar to tracking the potential effects of faults in a
system.

In CSPs, a finite set of variables, each with a nonempty domain, is
subjected to a set of constraints. Each constraint is a relation that specifies
the permissible value combinations for a subset of the variables; a solution
of the CSP is such a value-assignment of the variables that satisfies each
constraint. An important category of such problems is finite-domain CSP, or
csp(FD); in this case, the variables are discrete and have finite domains. This
way, csp(FD) expresses combinatorial search style problems.

The power of csp(FD) is that it can be used to declaratively specify a
problem and letting one of the mature, optimized and very sophisticated
existing tools to look for a solution (or enumerate all solutions). Tools widely
recognize a standard set of composable “simple” constraints (linear arith-
metic equalities and inequalities, Boolean arithmetic, etc. over the declared
variables) and so-called global constraints, too. The latter involve a poten-
tially large number of variables and need specific algorithmic optimization
(for an exhaustive list, see the Global Constraint Catalog [10]). Constraint
problems have a widely recognized standard representational language in the
form of XCSP3 [11].

Change impact propagation problems can be easily represented as a
CSP. We declare the marking of each requirement, attribute and dependency
(containment and traceability links) as a variable; define the possible marking
value set for each; describe propagation as constraints and lastly introduce
the constraints for the performed changes. Table 7.1 gives an outline of this
process.

162 Lightweight Formal Analysis of Requirements

Table 7.1 Comparison of change impact propagation categories

Constraints for the Dependencies

Cat

Requirement/
Dependency Marking
Literals

If Dependency d
with Type t is then

Further
Constraints

1. Reqs:
CHANGED,
SUSPICIOUS,
INTACT

Not DELETED
or ADDED

Target of d not
INTACT

Only the actual
changes can be
CHANGED,
DELETED,
ADDEDAttributes: N/A

the source of d is
not INTACT

d is
SUSPICION
LINK Maximize the

number of
INTACT
markings

Dependencies:
DELETED, ADDED,
SUSPICION LINK,
INTACT

Not INTACT Target of d is
not INTACT

2. Reqs: N/A not DELETED or
ADDED

Attributes
declared as
a-propagation
target for t at
the target of d
not INTACT

Only the actual
changes can be
CHANGED,
DELETED,
ADDEDAttributes:

CHANGED,
INTACT,
SUSPICIOUS

attribute a at the
source not
INTACT

d is
SUSPICION
LINK

Maximize the
number of
INTACT
markingsDependencies:

DELETED, ADDED,
SUSPICION LINK,

a declared
propagation
source for t

INTACT DELETED or
ADDED

Attributes at the
target declared
for t creation or
deletion
propagation not
INTACT

3a. Reqs: N/A Rule set that for each
dependency type t, encodes the
relation expressing the together
permissible (or ruled out)

Only the actual
changes can be
CHANGED,
DELETED,
ADDED

7.7 Conclusions 163

Table 7.1 Continued

For each attribute:
NOCHANGE,
SUSPICIOUS CHTYPE1,
SUSPICIOUS
CHTYPE2, . . .

• source-side attribute marking values,
• target-side attribute marking values,
• dependency markings.

Dependencies:
DELETED, ADDED,
SUSPICION LINK,
INTACT

Rules allowed also to incorporate
current attribute values.

A few things have to be noted on this framework. For topology- and type-
based propagation, the table describes only rules for forward propagation;
however, backward propagation rules can be introduced similarly. Notice that
type-based propagation introduces attribute marking and discards require-
ment marking; the latter can be incorporated (with some complexity increase)
or emulated by declaring all attributes suspicious.

For qualitative value-based propagation, due to the variability of the
rules (that is the intended goal), we can’t characterize propagation rules in
the same manner. Still, all practically important propagation intentions can
be formulated using standard CSP expressions. For instance, propagation
of priority increase suspicion for requirement R1 and R2 interconnected
through a link type t can be expressed e.g. as t connected (R1 p
marking, R2 p marking) AND R1 p marking == SUSPICIOUS
INCREASE AND R2 p current <HIGH→ R2 p marking == SUS
PICIOUS INCREASE.3 That said, our ongoing work addresses creating a
domain-specific language that simplifies the creation of the sets of rules.

7.7 Conclusions

The OMG Requirements Interchange Format (ReqIF) assures interoperabi-
lity between cooperating partners. This standard is a natural candidate to
information exchange between designer and independent software/system
verification and validation (ISVV).

Using ReqIF facilitates (which is occasionally only the question of
asking the developers using top-end requirement design tools for providing

3Variables are typeset bold, value-literals are typeset italic and t connected is a
constraint that we defined based on the specification.

164 Lightweight Formal Analysis of Requirements

the native ReqIF model in addition to the derived documentation not contai-
ning the model) an immediate entry to the benefits of lightweight formal
models.

At the same time, OMG ReqIF provides a well-regulated set of rules for
the developer-ISVV interoperation and the communication of the assessment
results.

Traceability is a priority concept in ReqIF. The option of defining the
structure the document, introducing types and well-formedness constraints
are all major means to introduce the main concepts of domain-specific MBSE.

Similarly to development, where advanced tools can generate traditional
office-like documentation out of their internal ReqIFmodels, ISVV can highly
benefit from using RequIF as the core model for communicating ISVV
results.

Ontologies provide an easy way to overcome the limitations of
ReqIF regarding conceptual modeling. Ontology-based metamodel design
is a modern model development paradigm, as its standardized language
and development tools implement all the main concepts of complexity
management, like the composition of complex ontologies out of simpler
ones, hierarchical modeling and aspect weaving. At the same time, their
well-defined semantics allows using reasoners.

The simple mathematical background of ontologies, set theory results in
a low entry threshold related to skills. The built-in logic reasoners can check
the contradiction freedom of a requirement set (by a satisfiability test), and
its well-formedness (by a subsumption check), thus deliberating the ISVV of
tedious manual checks.

Ontologies are highly standardized. Model formats assure interoperabi-
lity; moreover, standard transformations exist to the world of metamodeling.
As ontologies provide an abstract representation of knowledge, automated
export and import tools exist between ontologies and knowledge storage
tools like structured semi-formal representations (Excel), relational, object-
oriented and graph databases.

Classically, requirement changes involve a significant effort and quality
cost, especially if the tooling provides no proper guidance for the reassess-
ment. Intelligent change impact analysis helps properly focusing the
assessment after a change by evaluating the propagating effects of the intro-
duced changes. In a properly structured requirement specification with a rich
traceability structure, algorithmic analysis can significantly reduce the extent
of the change impact propagation cover that analysts have to check.

References 165

References

[1] Object Management Group. (2017). Requirement Interchange Format
(ReqIF). Available at: http://www.omg.org/spec/ReqIF/ (accessed on
1 March 2017).

[2] Requirements Management for Eclipse. Available at: https://eclipse.org/
rmf/ (accessed on 1 March 2017).

[3] Eclipse. (2017). ProR Requirements Engineering Platform. Available at:
http://www.eclipse.org/rmf/pror/ (accessed on 1 March 2017).

[4] Knublauch, H. (2004). “Ontology-driven software development in the
context of the semantic web: An example scenario with Protege/OWL,”
in 1st International Workshop on the Model-Driven Semantic Web
(MDSW2004) (New York, NY: IEEE), pp. 381–401.

[5] W3C. (2009). W3C: OWL 2 Web Ontology Language Document
Overview. Available at: https://www.w3.org/2009/pdf/REC-owl2-over
view-20091027.pdf (accessed on 1 March 2017).

[6] ISO. (2007). ISO/IEC 24707:2007: Information technology – Common
Logic (CL): a framework for a family of logic-based languages.

[7] Pataricza, A., Gönczy, L., Kövi, A., and Szatmári Z. (2011). “A Method-
ology for Stand-ards-Driven Metamodel Fusion,” in Model and Data
Engineering: First International Conference, MEDI 2011 (Berlin:
Springer), 270–277, Óbidos, Portugal, September 28–30, 2011. Eds L.
Bel-latreche and F. Mota Pinto.

[8] Tarnai, G., and Sághi, B. (2006). “Hazard and Risk Analysis of Human-
Machine Interfaces of Railway Interlocking Systems,” in 7th World
Congress on Railway Research, Montral, Canada, 4–8 June.

[9] Brailsford, S. C., Potts, C. N., and Smith, B. M. (1999). Constraint
satisfaction problems: algorithms and applications. Eur. J. Operat. Res.
119.3, 557–581.

[10] Beldiceanu, N., Carlsson, M., and Rampon, J.-X. (2012). “Global
Constraint Catalog, (revision a).” Available at: http://www.diva-
portal.org/smash/record.jsf?pid=diva2:1043063 (accessed on 1 March
2017).

[11] Frédéric, B., Lecoutre, C., and Piette, C. (2016). “XCSP3 Specifica-
tions – Version 3.0.” Available at: http://www.xcsp.org (accessed on
1 March 2017).

[12] RODIN. (2017). Rigorous Open Development Environment for Complex
Systems. Available at: http://rodin.cs.ncl.ac.uk/ (accessed on 1 March
2017)

166 Lightweight Formal Analysis of Requirements

[13] Object Management Group. (2017). Ontology Definition Metamodel
(ODM). Available at: http://www.omg.org/spec/ODM/ (accessed on
1 March 2017).

[14] Government of the United Kingdom, Department of Transport.
(2017). Rail Accidents and Safety Statistics Tables. Available at:
https://www.gov.uk/government/statistical-data-sets/rai05-rail-accidents-
and-safety (accessed on 1 March 2017).

8
STECA – Security Threats, Effects
and Criticality Analysis: Definition

and Application to Smart Grids

Mario Rui Baptista1, Nuno Silva1, Nicola Nostro2,
Tommaso Zoppi3,4 and Andrea Ceccarelli3,4

1CRITICAL Software S.A., Coimbra, Portugal
2Resiltech s.r.l., Pontedera (PI), Italy
3Department of Mathematics and Informatics, University of Florence,
Florence, Italy
4CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy

8.1 Introduction

The reliability of electrical power systems, since their first use, has been
addressed focusing on ensuring the continuous power supply and on the
management of critical situations in order to avoid electrical disruption due
to potential failures. In the last decade, we are witnessing the increasing
development of Smart Grids, with e3.15 billion investment in Smart Grids
projects amongst the EU-28 Member States only in the period 2002–2014 [1].
Smart Grids enhance the classical electrical systems by introducing opti-
mization of grid management, both from transmission and quick reaction to
power disruption through real-time and automated technologies; deploying
and integrating of large-scale renewable energy systems; reducing manage-
ment and power costs, for final users; and introducing and integrating of
smart appliances and consumer devices. While these new aspects make the
electrical systems effective, they become more and more interconnected thus
making them vulnerable to cyber and physical attacks [2–4]. Indeed, it is
possible to remotely perform changes (e.g., to instructions, commands and
configurations), disabling actions, shut down or in general interfere with the

167

168 STECA – Security Threats, Effects and Criticality Analysis

proper functioning of the system, thus causing in the worst case significant
damages and safety issues [3, 5].

In the Smart Grid domain, security threats can be originated by several
agents: consumers, insiders, and terrorists [3]. Customers could be interested
in falsifying smart meters data in order to steal electrical power. Similarly
to attacks performed to broadband modems, customers may try to attempts
attacks to smart meters aiming at modifying the firmware controlling the
reporting operation, thus decreasing the usage of electricity [3]. Terrorist
attacks to smart grids may lead to unprecedented black-outs, from the point of
view of spatial and time extension [4]. This calls for a fundamental attention
to the identification and management of potential security threats.

This chapter proposes the STECA (STECA – Security Threats, Effects
and Criticality Analysis) approach to perform security assessment of Smart
Grids. The hereby proposed process describes a way in which to identify
vulnerabilities, their related threats, and proposes a risk assessment approach
and a path to identify appropriate countermeasures. This process is based
on the same principles used for the Failure Mode and Effect Analysis
(FMEA)/FMECA process, which is a technique widely used for safety critical
analysis and is highly regarded by the majority of international standards [6].
STECA starts from a vulnerability point of view and moves on towards threat
analysis and criticality assessment. Following the guidelines defined in [7],
the approach is instantiated on a Smart Grid use case, resulting in a set
of precise guidelines and a systematic way to perform security assessment
including vulnerability evaluation and attack impact analysis.

8.2 Motivation

8.2.1 Motivating Concerns in Industry

A fundamental aspect that has to be considered in the implementation of
Smart Grids and that is currently under the stakeholders’ spotlight is related
to the security issues yet to unveil in the overall Smart Grid or at the
connected devices [3, 8], and the consequent impact on safety. Among the
impact situations of a service disruption due to a cyber or physical attack,
property/financial damage and human life hazard should be kept in closer
consideration, as the time for recovering is currently unpredictable.

Previous works on Smart Meters qualification revealed potential security
weakness and exposed some of the equipment vulnerabilities [3]. This can
present a great risk for the future implementation of Smart Grids. It is also
true that, due to the ground-breaking character of this technology and the

8.2 Motivation 169

quantity of interfaces that are made available, the security requirements of
the components that will operate in the grid and the grid system itself are not
yet sufficiently accurate (either they are not studied or implemented/tested,
not analysed or imposed yet at a larger scale). This is also strengthened if we
consider these systems general exposure in terms of pervasive interfaces.

In fact, in an informal industrial security assessment of Smart Grid
components, the company CRITICAL Software identified security prob-
lems that are usually disregarded by traditional assessment approaches if
performed without a proper process or tools. Examples of these problems
included: (i) denial of service possibility, (ii) proscribed access to equipment;
(iii) physical security deficiencies; (iv) unintended access to systems para-
meters that should be read-only; and (v) communication protocol implemen-
tation and specification weakness. The experience of CRITICAL Software’s
industrial assessment projects ended up providing most of the incentive
for the development of the STECA process due to the gaps found. First,
CRITICAL Software was providing a security assessment to substantiate a
test framework being developed at the time. Security issues were observed
in the assessed Smart Grid components, both on requirement analysis and
actual component functional tests, despite the work was focused only on a
limited part of the target Smart Grid equipment. In yet another case only
the communications protocols were under test on a preliminary stage. For
instance, it was identified that it is possible without much trouble to generate
conditions that force the interruption of energy supply to a user on the grid.
Either by simulating excessive energy demand or by tampering with billing
contract parameters, it is also possible to provoke a Denial of Service. This
form of service disruption by hacking the metering equipment is a commonly
acknowledged threat, but the impact is largely underestimated. Several other
ways of generating conditions that will switch off the Load Control Switch
can also be identified. It was also clear from the functional testing that
the meter’s communication ports could easily be disabled by setting its
timeout parameter to zero, rendering the equipment incommunicable and thus
impossible to be reconfigured remotely.

Though this experience identified serious security impact scenarios that
justified the need of security assessment, the support available today to
security assessment is limited. There is no history on the components usage
and thus no clear way to understand the attack trends or attacker profiles,
the attacker objectives and the effects of the attacks. It is extremely difficult
to rate the likelihood of a threat, on which to perform a risk or hazard
assessment. Summarizing, there are no real data to work on, which obstacles
the possibility to create a solid base to build a security assessment upon. Also,

170 STECA – Security Threats, Effects and Criticality Analysis

as there is no relevant history of these analyses, it is impossible to even start
by using previous knowledge, checklists, pre-defined lists, etc.

One should also consider the constant struggle that resides in identifying
the vulnerabilities and security threats. On a system of this sort the number
and diversity of security threats could be huge. An undertaking of this
magnitude should inevitably find trouble when aiming to achieve complete-
ness: to claim that all vulnerabilities have been identified and all security
threats analysed will prove to be a nearly impossible task. Even an expert
experience based approach to identify a procedure to tackle this problem is
not a straightforward exercise.

8.2.2 State of the Art and Background

Standards such as [9–11] propose general, high level methodologies to guide
the security assessment of systems. However, standards typically present the
main steps but they do not describe the techniques that can be exploited to
realize these steps. This calls for solutions that, still maintaining compatibility
with the standards, are able to provide an adequate support to the security
engineers. Additionally, several challenges are still open, such as verifying
the completeness of an analysis or compute likelihood and impact of a given
threat.

Several works target techniques for security assessment, also considering
interdependencies between security and safety. The work presented in [12]
proposes an extension of the FMEA safety analysis technique, aiming to ana-
lyse likelihood and impact of cyber-attacks to embedded multicore systems in
the automotive industry. Another contribution, still related to the automotive
domain [13] aims at proposing a novel approach to deal with both safety
hazard and security threat analysis combining the Hazard Analysis and Risk
Assessment with the security STRIDE approach for the automotive battery
management [14] proposes a framework for quantitative security analysis
used to identify potential attack points and paths, thus to recognize those
that are feasible from the perspective of an attacker and finally proposing
meaningful countermeasures to the system. In [7] the authors propose a
general methodology to understand issues’ criticality and the difficulties in
finding a proper solution able to deal with interdependencies between safety
and security. To this purpose, in their work a general security threats library
has been developed, which can be updated over the time and has been
mapped to the NIST security controls [8]. Other contributions evaluating the
effects of security breaches exploits exist as the work in [15], which states a

8.3 STECA Process Description 171

comprehensive and practical framework for electric smart grid cyber-attack
impact analysis using graph-theoretic dynamical systems paradigm.

The STECA process presented in this chapter is specifically focused on
Smart Grids. It naturally includes the objective of detecting potential secu-
rity threats and providing efficient mitigations, and it translates the concept
of FMEA to a vulnerability-oriented security assessment where reference
categories are extracted from supporting threat libraries. Additionally, it
guarantees compatibility with main standards [9–11]: in fact, the reference
data to build the threat libraries are extracted from the standard [10], and it
is easy to define a correspondence between the main steps of the STECA
process and the steps of methodologies in [9, 11].

8.3 STECA Process Description

This section presents a detailed description of the STECA process, along with
a running example to illustrate the application of the process to an actual
industry problem related to the main theme of this publication.

8.3.1 The High Level STECA

The hereby proposed process (Figure 8.1) describes a way to identify vul-
nerabilities, their related threats, proposing both a risk assessment approach

Figure 8.1 High level view of the STEC process.

172 STECA – Security Threats, Effects and Criticality Analysis

and a path to identify appropriate countermeasures. Four high-level steps are
identified.

This process is based on the same principles used for the FMEA/FMECA
process [12] which is widely used for safety critical analysis, and is highly
regarded by the majority of international standards. Subsequently, the high
level steps depicted in Figure 8.1 will be described in closer detail.

8.3.2 STECA Inputs

In order to efficiently apply the process several inputs are required and need
to be collected. The input set includes, but is not limited to:

1. The Architecture Diagrams. These, along with the Functional Analysis,
will be used to identify the system’s vulnerabilities.

2. The Interface Control Documents. These will allow a better threat
identification while analysing vulnerabilities.

3. A Functional Analysis. This, along with the Architecture Diagrams, will
be used to identify the system’s vulnerabilities.

4. Other useful input information. Typical security attacks, history data,
system requirements, environment conditions, requirements, etc.

For the running example we’re using the diagram in Figure 8.2 – an energy
industry Smart Grid, focusing on the Smart Meter Home Area Network
(HAN) – the most widespread case of user connected to the Smart Grid,
also a high vulnerability spot as it exposes the metering devices to the internet
through the Consumer HAN.

8.3.3 Security Vulnerabilities

With the STECA inputs we can identify possible intrusion and attack loca-
tions considering the system weak spots listed in Table 8.1. For each of
them, we reported an extended description and the links to the consolidated
ISO/IEC 27005 [6] vulnerability classification which lists the hardware,
network and software vulnerability categories. Additional vulnerability clas-
sifications are the Microsoft Security envelopment Lifecycle (SDL) [16] and
the CWE3 (Common Weakness Enumeration [17]), which is a detailed and
community-developed list of common software weaknesses.

Traditionally, the vulnerability assessment [2, 11] of architectures such as
the one in Figure 8.2 are performed by (i) cataloguing assets and capabilities
(resources) in a system, (ii) assigning quantifiable value (or at least rank
order) and importance to those resources, (iii) identifying the vulnerabilities

8.3 STECA Process Description 173

Figure 8.2 Example from the Energy industry showing the architecture of a Smart Grid.

or potential threats to each resource and, (iv) mitigating or eliminating the
most dangerous vulnerabilities for the most valuable resources.

The first three steps are required to be performed in order to obtain
a vulnerability list. Also, by assigning an order (value) to the resource
(vulnerability) we are simplifying the threat severity definition described in
Section 8.3.5.

Each component (system resource) should be classified with a value (as
of an asset) which could simply be a traditional High, Medium or Low grade
according to the associated monetary replacement cost – to be defined by the
system/subsystem owner; and a severity grade based on the impact that its
failure would inflict on the system. To do this, the catalogue depicted later in
Section 8.3.5 is proposed to be used.

Continuing the running example, and focusing on the Communications
Hub (in the Smart Meter HAN) as it is a gateway to the metering devices, and

174 STECA – Security Threats, Effects and Criticality Analysis

Table 8.1 Vulnerabilities, weak spots, and security threats
Vulnerabilities Weak Spots Weak Spots Security Threats
Network CH

communications
protocol

CH
communications
protocol

Message Modification
Man in the middle
Footprinting

Smart Meter access
control

Software CH
communications
protocol
Smart Meter access
control
Smart Meter
functions

Smart Meter access
control

Unauthorized access
Password cracking
Disclosure of
confidential data

Hardware Smart Meter
functions

Smart Meter
functions

Conduct cyber-physical
attacks on
organizational facilities
Arbitrary code
execution

the electricity Smart Meter itself, as it is a big concern in the motivation, we
obtain the following:

• Communication Hub: Value: Low; Severity: Minor;
• Electricity Smart Meter: Value Low; Severity: Critical/Catastrophic.

8.3.4 Threats Map

In this step of the process the security threats shall be identified and
catalogued by performing the following sub-steps:

• Identify the threats for each vulnerability. Following the list produced in
the previous step, we list the threats that may exploit each vulnerability.
This operation will produce a list of threats per vulnerability.

• Catalogue Threats (NIST classes). Identified threats will most likely be
found in the known threats list, thus having associated countermeasures.
Most possibly, the gathered threats have already been identified in differ-
ent contexts and catalogued in a generic fashion in existing documents,
thus a set of countermeasures and preventive actions might already be
available. For this purpose, already existing classification taxonomy may
be used. For this process we’re using the threat library already created in
[7], which will help to catalogue the threats to the NIST classes and the
suggested countermeasures.

8.3 STECA Process Description 175

• Threat Classification Completeness Check. If unlisted threats arise,
countermeasures should be suggested to mitigate them and the threat
library should be complemented by adding this new information to the
respective taxonomy class.

Next in the running example, the weak spots are identified and respective
Vulnerability categories. Some examples are reported in Table 8.2.

Following through with the running example and mapping these threats
to the Threat Library it is possible to catalogue almost all of them to the NIST
classes and gather the respective countermeasures to mitigate them. The NIST
7628 [9] states, in more than one occasion, that its focus is cyber-security and
therefore “The requirements related to emergency lighting, fire protection,
temperature and humidity controls, water damage, power equipment and
power cabling, and lockout/tag-out are important requirements for safety.
These are outside the scope of cyber security and are not included in this
report. However, these requirements must be addressed by each organization

Table 8.2 Linking weak spots and ISO/IEC 27005 vulnerability categories

Weak Spots Description
ISO/IEC 27005
[6] Categories Threat Example

Component
interfaces,
communica-
tions ports/
protocols

These are usually the
targets to corrupt
communications
either to attain
disruption or
impersonating
another party.

Network

Software

Man in the middle packet
sniffing conducted between
the smart meter and the
Energy Management
Gateway
Inject malicious code into
the USB device controller
(BadUSB, [18])

Memory and
Storage Units

These may be used to
store malicious code
for later execution or
even altered firmware
when system
reconfiguration is
required.

Software

Hardware

Installation of a malware
which damages user data or
key memory areas
Damaging the Hard Drives
(i.e., putting a magnetic
source near the storage rack
servers)

Processing
Units

These, of course, may
be used to execute the
malicious code.

Software Inserting malicious code
that calls for ALU
operations slow downing
the whole execution

Hardware Malicious hardware module
targeting the performance
of the cache accesses or
generating power faults

176 STECA – Security Threats, Effects and Criticality Analysis

in accordance with local, state, federal, and organizational regulations, poli-
cies, and procedures.” In this example, the “Conduct cyber-physical attacks
on organizational facilities” threat could be the example stated in the motiva-
tion section where an Electricity Smart Meter is rendered inoperative and
incommunicable, inducing a denial of service occurrence with potentially
catastrophic impact, and will be the focus of the running example in the
following sections.

8.3.5 Risk Assessment and Attack Severity

For this step, similar to the Cause and Effects analysis, there are two things
that need to be accounted for when considering each threat event: probability
and impact.

Probability: (Attack Profit – Motivation). In several contexts the param-
eters used to calculate the probability of an attack are based on a likelihood
extracted from existing data. In general, there are no “reasonable” approaches
to compute the likelihood of an attack, apart using past history, meaning that
this specific approach is applicable only for few systems. As in this case there
is no such data, we propose to use the estimated benefit that the attacker
may obtain due to a successful attack. This can be seen as a combination of
(i) Cost: availability of resources to perform the attack (time, money, state of
the art hardware), (ii) Risk of detection (to what extent can the attacker hide
his actions and how much does he care about being detected) and (iii) Payoff
(the benefit that an attacker expects from exploiting a vulnerability). These
three components can be considered separately or grouped together to build
a unique likelihood score that can be obtained depending on the specific
needs. One possible likelihood example could be an index that represents
the cost/benefit trade-off, calculated as the fraction of Payoff over Cost but,
for this purpose, we propose a form of calculation using the three variables
as shown in Figure 8.3.

Having the lowest values on the origin (0,0,0) and increasing each vari-
able in each of the respective axis. Colour code (green, yellow and red)
represents the likelihood of an attack as depicted (unlikely, moderate and
likely, respectively).

The Attack Probability assigned values are just an example and, when
applied, should be adapted to the respective domain requirements. If it is
considered that a system exposure to attack is less dependent on payoff than
the other variables, more red and yellow dots should be reflected on the
graph.

8.3 STECA Process Description 177

Figure 8.3 Attack probability graph.

Impact: (Attack Damage). The extent to which an attack may cause
damage. This should include all harmful consequences. It may be calculated
based on the individual resources involved (associated value and severity),
the effects produced by a general failure of the resources involved and the
derivate pernicious effects from the aftermath. The worst case scenario should
be considered for the Impact calculation.

The Risk of a given Threat Event used in this case is based on a traditional
Criticality approach. The values used in this example have a higher weight on
the Impact rather than the Probability.

The values in Figure 8.4 were calculated by multiplying the grades
assigned to the respective probability and impact ranks. A green code was
assigned to values lesser than or equal to 3, yellow to values between 4
and 9 inclusive and red to values greater than or equal to 10. Again, this
is an illustrative example and the colour code should be adapted to the

Figure 8.4 Threat Event Risk Matrix.

178 STECA – Security Threats, Effects and Criticality Analysis

Figure 8.5 Description of impact categories.

domain requirements. Higher a criticality is inherent the intervals should slide
accordingly.

As for the Severity categories, the consequences were gathered from the
NIST Threat Events Impact Assessment Scale but, once again, they should be
dependent on the domain requirements. Discrimination goes as in Figure 8.5.

Picking up the running example, to assess a likelihood value for the
“Conduct cyber-physical attacks . . . ” threat by using the suggested process,
we would come out with the following result: Cost: low, Risk: Medium,
Payoff: Medium/High.

In the case of the Payoff the assigned grade may depend on the objective
of attacker. If the objective is the actual denial of service, the Payoff could be
considered High – the worst case scenario. This would produce a Probability
result of Moderate to Likely (2 or 3 in Figure 8.5). Moving to the Threat
Event Risk calculation, and considering the Smart Meter asset severity grade
of Critical/Catastrophic (4 or 5 in Figure 8.5), the result would come out in
the range of 8 to 15 (mostly Red).

8.3.6 STECA Recommendations

After all vulnerabilities and respective threats are considered and analysed,
countermeasures and preventive actions should be suggested for each of them.

8.3 STECA Process Description 179

Either from the existing documentation and standards and the educated analy-
sis performed where the vulnerabilities are yet to be acknowledged. Counter-
measures should be suggested according to their respective mitigation type,
as in:

• Vulnerability: the optimal option if possible. If a vulnerability may be
avoided all the associated threats will be cleared.

• Threat Event: if a treat event may be prevented, the associated security
threat will be cleared.

• Threat probability/impact: If it is impossible to avoid a threat, con-
sideration should be given to reducing its impact. By downsizing the
probability and/or the impact its risk will be downgraded making the
system a bit safer. The priority will be set according to the domain and/or
system requirements.

The countermeasures are not mutually exclusive and more than one might be
applied for each threat. There are, of course, a number of considerations while
selecting from the available options, most typically the trade-off between
the countermeasure implementation costs vs. its effective security improve-
ment. For a better evaluation in this regard, further iterations of the process
including the countermeasures implementations should be performed.

To aid and formalize the process of the security threats analysis, a
STECA report depicted in Figure 8.6 should be produced based on the
proposed template. For each security threat one of these entries should be
included (the fields should be self-explanatory once one is acquainted with the
process):

Figure 8.6 STECA report example.

180 STECA – Security Threats, Effects and Criticality Analysis

1: STECA ID – Unique identifier of a security threat;
2: Architecture Diagram/Model – Relevant Model and/or Diagram files for

the process;
3: Domain – Domain to which the process will adapt (Space, Automotive,

Railway, Energy. . .);
4: Weak Spot (Vulnerability) – A mark on the Diagram/Model to signal a

weak spot on a component (as in Table 8.1);
5: Vulnerability (ISO/IEC 27005 connected categories);
6: Security Threats – Threat on a vulnerable component (weak spot);
7: Threat Library Mapping – Respective threat in the Threat Library;
8: NIST Proposed Countermeasures – Countermeasure info from the

Threat Library;
9: Countermeasure Effectiveness – Applicability of the Threat Library

proposed countermeasure to this specific security threat;
10: Attack probability – Calculated as described in Section 8.3.5;
11: Impact Severity – Calculated as described in Section 8.3.5;
12: Treat Event Risk – Calculated as described in Section 8.3.5;
13: Alternative Countermeasures – Countermeasure suggestion if none are

available or are considered ineffective;
14: Recommendations – Further considerations to be kept in mind;
15: Assumptions – Assumptions to security threat or regarding information

if any;

Notes: Any additional information that might be relevant and does not fit any
of the previous.

Note that some of the columns in Figure 8.6 are hidden considering only
the most relevant ones for the example. After the report is concluded, meaning
all the threats in all the weak spots are analysed and addressed, the STECA
process iteration is finished.

To conclude the running example, and as far as countermeasures are
concerned (apart from the ones suggested by the Threat Library as shown
in Figure 8.6), the suggestions could be something along the lines of the
physical countermeasures referred in Section 8.2, filling in the gap in the
Threat Library:

• Dumb Meter Bypass
• Smart Meter Black Box

Even if cyber security issues are addressed by threat and risk assessment
processes, the STECA can help to identify unaddressed high impact security
issues, and support a security/safety report to deliver to the proper authorities.

References 181

Based on the STECA results new security requirements may be derived or the
existing ones may be improved; those new/updated requirements will lead to
improvements in the system safety architecture and design.

8.4 Conclusion

In this chapter, we presented the STECA (Security Threats Effects and Criti-
cality Analysis) process to help formalizing the security analysis of complex
systems such as Smart Grids. The necessity of devising STECA stems from
the direct experience of engineers working in the security assessment of the
Smart Grid domain. The proposed process is established on a similar mature
technique used for safety critical systems for decades (FMEA/FMECA) and
maps to the well-known NIST taxonomy for the security vulnerabilities and
threats analysis. We demonstrated that STECA application is straightforward
and useful for security assessment.

References

[1] European Commission. (2014). JRC Science and Policy Reports, Smart
Grids projects outlook.

[2] European Union Agency for Network and Information Security
(ENISA). (2013). Smart Grid Threat Landscape and Good Practice
Guide.

[3] Parks, R.C. (2007). Advanced Metering Infrastructure Security Consid-
erations. Sandia Report SAND2007-7327.

[4] National Research Council. (2012). Terrorism and the Electric Power
Delivery System. Washington, DC: The National Academies Press.

[5] NIST. (2011). NIST Special Publication 800-82, Guide to Industrial
Control Systems (ICS) Security.

[6] International Organization for Standardization (ISO). (2008). ISO/IEC
27005, Information technology – Security techniques – Information
security risk management.

[7] Nostro, N., Bondavalli, A., and Silva, N. (2014). Adding Security
Concerns to Safety Critical Certification,” in Software Reliability Engi-
neering Workshops (ISSREW) (New York, NY: IEEE), 521–526.

[8] NIST. (2013). Joint Task Force Transformation Initiative, Security and
privacy controls for federal information systems and organizations NIST
SP 800-53r4.

182 STECA – Security Threats, Effects and Criticality Analysis

[9] NISTIR. (2014). NISTIR 7628: Guidelines for smart grid cyber security
strategy and requirements.

[10] NIST. (2013). NIST Special Publication 800-53 Revision 4: Security and
Privacy Controls for Federal Information Systems and Organizations.

[11] NIST. (2012). Special Publication 800-30 Revision 1: Guide for Con-
ducting Risk Assessment.

[12] Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E. (2014) “Security
Application of Failure Mode and Effect Analysis (FMEA),” in Computer
Safety, Reliability, and Security, eds A. Bondavalli, F. Di Giandomenico.
SAFECOMP 2014. Lecture Notes in Computer Science, Vol. 8666.
Springer, Cham.

[13] Macher, G., Höller, A., Sporer, H., Armengaud E., and Kreiner C. (2015)
A Combined Safety-Hazards and Security-Threat Analysis Method for
Automotive Systems, in Computer Safety, Reliability, and Security, eds
Koornneef, F. and van Gulijk, C. Lecture Notes in Computer Science,
Vol. 9338. Springer, Cham.

[14] Nostro, N., Matteucci, I., Ceccarelli, A., Di Giandomenico, F., Mar-
tinelli, F., and Bondavalli, A. (2014) On Security Countermeasures
Ranking through Threat Analysis,” in Computer Safety, Reliability, and
Security, eds A. Bondavalli, A. Ceccarelli, F. Ortmeier. SAFECOMP
2014. Lecture Notes in Computer Science, Vol. 8696. Springer, Cham.

[15] Kundur, D., et al. (2010). “Towards a framework for cyber attack impact
analysis of the electric smart grid,” in Smart Grid Communications
(SmartGridComm) (New York, NY: IEEE).

[16] Microsoft. (2010). Security Development Lifecycle.
[17] Common Weakness Enumeration. (2017) A Community-Developed Dic-

tionary of Software Weakness Types. Available at: https://cwe.mitre.org/
index.html

[18] Kaspersky Lab. (2014). Release of Attack Code Raises Stakes for
USB Security. Available at: https://threatpost.com/badusb-attack-code-
publicly-disclosed/108663/ (accessed on 2 October 2014).

9
Composable Framework Support

for Software-FMEA through
Model Execution

Valentina Bonfiglio1, Francesco Brancati1, Francesco Rossi1, Andrea
Bondavalli2,3, Leonardo Montecchi2,3, András Pataricza4,

Imre Kocsis4 and Vince Molnár4

1Resiltech s.r.l., Pontedera (PI), Italy
2Department of Mathematics and Informatics, University of Florence,
Florence, Italy
3CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy
4Dept. of Measurement and Information Systems, Budapest University of
Technology and Economics, Budapest, Hungary

9.1 Introduction

Performing Failure Mode and Effects Analysis (FMEA) during software
architecture design is becoming a basic requirement in an increasing number
of domains. However, due to the lack of standardized early design-phase
model execution, classic Software-FMEA (SW-FMEA) approaches carry
significant risks and are human effort-intensive even in processes that use
Model-Driven Engineering (MDE).

From a dependability-critical development process point of view,
FMEA – more generally, the identification of hazards and planning their
mitigation – should be performed in the early phases of system design; for
software, this usually translates to the architecture design phase [1]. Addition-
ally, for some domains, standards prescribe the safety analysis of the software
architecture – as is the case, e.g., with ISO 26262 in the automotive domain.

However, historically, software architecture specifications in the most
widely used modelling languages either do not represent behaviour, only
structure, or the behavioural models do not have standardized operational

183

184 Composable Framework Support for Software-FMEA

semantics. This is a major problem for SW-FMEA; in contrast to hardware,
relatively small changes of “internals” of a software component (essentially
the program logic) can lead to wide variations in the response of executed
software components to various external and internal faults. This means that
in addition to computing error propagation from component to component,
the sensitivity of each component for internal and external faults has to
be explored on a case by case basis, and this can be done only by using
specifications of behaviour.

In the absence of this capability, the system modeller has to either make
strong guarantees in advance (“this component will be fail-silent under all
circumstances”), or make too pessimistic assumptions (e.g., “all kinds of
output failures are possible”). Significant risk is introduced by the fact that
the error propagation assumptions made at this stage have to hold for the
final system – otherwise the constructed hazard mitigation arguments will not
hold, either. Thus, without rolling back the development process, we run the
risk of having to enforce not easily enforceable guarantees, or having to use
dependability mechanisms that are actually superfluous in the given system.

This chapter addresses the aforementioned problem on the basis of a new
standard for the UML 2 modelling language. Throughout the next sections,
we will introduce the reader to advances in standardized model execution
semantics, the outline of a composable framework built on top of executable
software architecture models to help SW-FMEA, as well as a realization of
such a framework applied on a case study from the railway domain.

9.2 Software-FMEA Using fUML/ALF

For UML 2, the status quo of not having standardized operational semantics
has changed with the standardization of “Foundational UML” (fUML) [2]:
a core subset of UML 2 has been given standardized execution semantics.
Although fUML mainly contains facilities for describing structured activities
of communicating, typed objects, in theory, the whole UML 2 language can
be mapped to it. To facilitate practical application, fUML also has an action
language called Alf, the “Action Language for Foundational UML” [3].

Alf is a quasi-imperative, Java-like programming language. As a “surface
language” for fUML, its structure and execution is directly and unambigu-
ously mapped to fUML. Whole programs can be written purely in Alf, but
it can be also used to define specific behaviours in an encompassing UML 2
model. However, in this case, the operational semantics of the embedding
model containing the Alf code snippets also has to be specified, e.g., by trans-
lating the whole model to pure Alf. This is not necessarily a shortcoming; our

9.2 Software-FMEA Using fUML/ALF 185

approach actively exploits the partially “underdefined” composite structure
semantics. That said, it is worth to note that the newly finalized standard
“Precise Semantics of UML Composite Structures” (PSCS) [4] addresses
exactly this issue.

9.2.1 Tooling for fUML and Alf

Due to the novelty of the languages, fUML and Alf tooling is still maturing,
but the progress is steady. For both fUML and Alf, reference interpreters
exist [5]; for fUML, additional execution engines are also available [6].
Papyrus, the popular Eclipse-based modelling environment includes an Alf
editor for UML 2 language elements and supports direct compilation of Alf
code into UML 2 [7].

The compilation of fUML/Alf to other languages and the formal anal-
ysis of fUML/Alf specifications are much less developed, with no directly
(re)usable solutions known. That said, notably [8] presents a full Model-
Driven Engineering approach where Alf code is translated into an interme-
diate model that, in turn, is translated to C++. On the formal analysis side,
initial progress has been made both for theorem proving [9] and classic model
checking [10].

9.2.2 Software-FMEA through Alf Execution

Earlier work performed in the CECRIS project (“Certification of Critical
Systems”) [11] has proposed an approach for the SW-FMEA of component-
based systems through Alf execution (using an interpreter) [12]. The main
idea of the approach is summarized in the following three steps.

1. Components as well as their Alf code are translated into a single Alf
program. During translation, the code for a cyclic scheduler component
is also woven into the Alf source (with a simple logical clock). The static
component activation schedule is determined by the modeller.

2. As a form of model-level fault injection, the translation can inject some
simple errors into the scheduler as well as replace output/input port
behaviours with “programmed” error behaviours.

3. Error propagation is analyzed by comparing simulation runs of the fault-
free case to various fault activations.

In general, simulation certainly has its drawbacks; e.g., it is hard to ensure that
all execution paths have been exercised in a nondeterministic system, though
this is not a major issue for three reasons. First, the reference simulator per-
forms sequential execution with deterministic choices (a semantic variation

186 Composable Framework Support for Software-FMEA

that the fUML standard fully allows). Second, although the embedded system
models we apply our approach to do not exhibit parallelism at either the micro
or the macro level, there is at least one fUML virtual machine called moliz
that supports very fine-grained external control of model execution [13].
This means that if the need arises, the various interleaving executions can
be tracked, accounted for and controlled. Thirdly, we do expect solutions for
the application of formal methods (at least model checking) on fUML/Alf
models to appear in the near future; these, by their nature, cover the entire
state space of models.

These considerations demonstrate an important strength of the approach
proposed in Bonfiglio et al. [12] and provides one of the main motivations
for the framework presented in this chapter. If, during the translation of the
component model to pure Alf, we are able to equip the Alf code with all
the facilities that transform model execution into explicit error propagation
execution, then we can reap the benefits of advances in fUML/Alf tooling
without additional effort.

9.2.3 Framework Support for Executable Error Propagation

Along the previous consideration, we describe the design of a model trans-
formation framework that transforms component models with Alf behaviour
specifications into a pure Alf program that simulates error propagation by
passing error tokens between the components and computing (or approximat-
ing) the input-output error transformation that a potentially faulty software
component exhibits upon (erroneous or correct) activation (Figure 9.1). As
the user-supplied Alf code cannot always be used to compute error propaga-
tion (e.g., the component itself might have an active internal fault), in some
cases, error transformation draws on a library of behavioural patterns (e.g.,
“fail-silent”).

The orchestration of the execution of components is broken into a number
of configurable, cooperating functions. These functions have generic variants;
these are drawn from a framework library of options (Figure 9.2).

9.2.4 Error Tokens, Component Activation

The composite error tokens passed between components carry a reference
value – the object that should be seen during the interaction in a fault free
system – as well as error information. The error being passed is either a
standard category (succinctly introduced, e.g., in TanjaMayerhofer [14]), a
refinement thereof, or a specific one (e.g., a specific erroneous value that is
late by a known amount of time).

9.2 Software-FMEA Using fUML/ALF 187

Figure 9.1 Composite error token passing during execution and component activation.

188 Composable Framework Support for Software-FMEA

Framework library (Alf code)

Component1

Normal

behavior: Alf

Component2

Normal

behavior: Alf

Port Port

Model of

Computa!on

(MoC)

Port
Port

Port

Component

ac!va!on

sequence logic

Token delivery

logic

Fault Ac!va!on

logic

Behavioral

dependability

pa"erns

Error

specializa!on

taxonomy

UML MARTE component model with Alf behavioral specifica!on

Framework

configura!on

Woven into single, self-contained Alf program

Model clock

Figure 9.2 Framework components for program composition.

Component activation computes the output error tokens of the component
based on the input ones. The logic for producing the error outputs depends
on numerous, but mostly straightforward factors (Figure 9.2); to note is that
for computing the error output when the specific error is not known, only the
category, the modeller may decide to either run the user-supplied Alf code
on a sample from the class or use a predefined error category transformation
logic from a library of dependability behavioural patterns.

9.2.5 Execution Orchestration

Component models in UML 2 do not have standard execution semantics;
the cyclic execution logic with a static schedule in Bonfiglio et al. [12]
(summarized in Section 9.2.2) came from the domain of the modelled system.
As a matter of fact, the overall approach is able to support numerous models
of computation (MoC) – rules defining the semantics of control, concurrency,
communications and time. Synchronous data flow networks, discrete events,
static scheduling, and workflow-like execution all fit the approach through
configurable, reusable implementations in Alf (with varying complexity,

9.3 Case Study: Application of Software-FMEA through Model Execution 189

of course). In order to be able to account for orchestration errors, the
framework is also intended to support runtime fault injection on the MoC
implementations.

9.2.6 Fault Injection

Fault injection is performed by configurable fault activation logic implemen-
tations. These determine active faults of the various components (including
orchestration) at various points in time (if the MoC defines a notion of time).

9.3 Case Study: Application of Software-FMEA
through Model Execution

The case study used for the Software FMEA process was based on the railway
domain, more specifically the European Rail Traffic Management System
(ERTMS) and its Control Command part European Train Control System
(ETCS) [15]. ERTMS/ERTCS is an automatic train protection system, and
as such, a safety-critical system. ERTMS is composed of trackside units (e.g.
beacons for positioning and information reporting) and on-board units. The
full system is rather complex, thus in the case study only a small, simplified
part of the specification was modelled. The focus of the modelling was on
the safety function of receiving and consistency checking of messages from
trackside beacons called balises.

9.3.1 Definition of the Modelled System

The case study system was based on the balise-related basic functionality
of ERTMS/ETCS. The system was modelled using UML and Alf (Action
Language for Foundational UML) [16]. The static structure part of the system
was also described with the textual syntax of Alf; however, some of these will
be represented on graphical diagrams for convenience.

As the envisioned Software-FMEA approach should be applied early
in the design phase, no actual implementation or detailed design model is
available in this stage. Therefore, in order to exercise the behaviour defined
in the executable model, the “environment” of the modelled system had to be
simulated. This scaffolding was also developed in Alf, thus the model consists
of two main parts.

• Target system: the On-board Unit (OBU) of ETCS, the core software
running in the train.

• Environment: simulation of the track, trackside equipment and move-
ment of the train.

190 Composable Framework Support for Software-FMEA

Figure 9.3 Parts of the simulated environment in the case study (figure based on European
Railway Agency [15]).

Note that to reduce the complexity, the simulation of the environment
focuses only on the necessary details to support the modelled functionality.
Hence, the simulation is based on discrete events, and speed, distance and
braking are all abstracted.

The main elements in the environment of the system are depicted on
Figure 9.3 (based on Figure 2.6 in ETCS Subsection 026 Chapter 2 [15])
and are briefly explained below.

• Track. The train is moving on a track (the actual physical dimensions of
the track are abstracted in the case study).

• Segment. The track is composed of neighboring segments. The train can
move from one segment to another neighboring one.

• Train. The train can move in forward or backward one segment in each
simulation step (the actual speed of the train is abstracted).

• Balise. A passive beacon deployed onto the track. When the train passes
over a balise, it powers it up remotely via radio waves, causing the balise
to send a so called telegram to the train.

• Balise Group. Balises can be organized in balise groups. A balise group
can contain up to 8 balises. By giving position numbers to individual
balises inside a group, the train can identify direction and detect missed
balises.

The modelled target system consists of the main parts depicted on Figure 9.4
and explained below.

9.3 Case Study: Application of Software-FMEA through Model Execution 191

Figure 9.4 Main components of the modelled system.

• Balise Transmission Module (BTM). Responsible for receiving raw,
individual telegrams from the balises, checking and then forwarding
them to the Kernel.

• Kernel. Responsible for the core functionality in ETCS. In the current
case study, it collects telegrams from different balises to form and
analyze balise group messages. If an error is detected, it can notify the
driver through DMI or control the train through TIU.

• Driver Machine Interface (DMI). Can display information on the driver
interface.

• Train Interface Unit (TIU). Can control the train. In the current case
study, it can apply breaking.

The simulated environment and the target OBU system is connected by
sending and receiving balise telegrams. The structure of a telegram is defined
in Chapter 8 of the ETCS Subset 26 (SRS) [15], and is summarized in
Figure 9.5.

The telegram itself was modelled using data types in Alf. The simulated
balise and the BTM module directly work on this data structure, while the
Kernel receives an object structure built by the BTM based on the telegrams.

The modelled behaviour is attached to the active classes in the system.
Basically, they are all waiting for signals to receive, and then perform the
signal handler behaviour specified in Alf. For example, upon receiving a raw
telegram, the BTM checks the consistency of the header fields. This was
implemented in the Alf activity presented in Figure 9.6.

The model and the modelled scenarios were executed in the Alf Reference
Implementation [17]. The model includes logging to create execution traces.
For example, the output in Figure 9.7 shows a simple, valid execution trace
where the OBU receives a consistent telegram from a single balise. The same

192 Composable Framework Support for Software-FMEA

 GENERAL FORMAT OF BALISE TELEGRAM

Field No. VARIABLE Length (bits) Remarks

1 Q_UPDOWN 1 Defines the direction of the information:

Down-link telegram (train to track) (0)

Up-link telegram (track to train) (1)

2 M_VERSION 7 Version of the ERTMS/ETCS system.

3 Q_MEDIA 1 Defines the type of media: Balise (0)

4 N_PIG 3 Position in the group. Defines the position of the

balise in the balise group.

5 N_TOTAL 3 Total number of balises in the balise group.

6 M_DUP 2 Used to indicate whether the information of the

balise is a duplicate of the balise before or after

this one.

7 M_MCOUNT 8 Message counter (M_MCOUNT) – 8 bits.

To enable detection of a change of balise group

message duringpassage of the balise group.

8 NID_C 10 Country or region.

9 NID_BG 14 Identity of the balise group.

10 Q_LINK 1 Marks the balise group as linked (Q_LINK = 1) or

unlinked (Q_LINK = 0).

 Packet 0

(optional)

14 Virtual Balise Cover marker.

 Information Variable This information is composed according to the

rules applicable to packets.

 Packet 255 8 Finishing flag of the telegram.

Figure 9.5 Structure of a balise telegram [15].

privateactivityCheckTelegramConsistency(in t : Telegram) : Boolean {

let consistent: Boolean = true;

if (t.Q_UPDOWN != UpDown.Up || t.Q_MEDIA != Media.Balise ||

t.N_PIG<0 || t.N_PIG>7 ||

t.N_TOTAL<0 || t.N_TOTAL>7) {

 consistent = false;

 }

//further checks ...

return consistent;

}

Figure 9.6 Alf implementation of a BTM behaviour.

9.3 Case Study: Application of Software-FMEA through Model Execution 193

[test] SingleBalise_Valid_ReceiveTelegram

[train] Received MoveForward

[train] Moved to segment s2

[train] train -> s2 : TelePower

[s2] Received TelePower from train

[s2] s2 -> b1 : TelePower

[b1] Received TelePower from train

[b1] b1 -> BTM : TelegramReceived

[BTM] Received Telegram from Balise with position 0 in BG 2

[BTM] BTM -> KERNEL : TelegramReceived

[KERNEL] Received Telegram from Balise 1 in BG 2, consistent:

true

Figure 9.7 Log trace of a fault-free execution of the case study model.

Figure 9.8 Visualization of a fault-free execution tree of the case study model.

trace can be visualised by PlantUML as a sequence diagram (Figure 9.8). In
the modelled environment, there is a train, a track with two segments (s1, s2)
and a balise (b1). The train initially stands on the first segment (s1) and it
moves to the second (s2) as the first step of the test case. Note that for the
sake of simplicity, the component representing the train in the case study is
not associated with the balise component, so powering up a balise is mediated
by the segment component.

9.3.2 Process Evaluation

As the discussion in section “Software-FMEA Using fUML/ALF” pointed
out, the fundamental tenet of our method is to perform SW-FMEA on
component-based systems through Alf execution (as of now, using an
interpreter).

194 Composable Framework Support for Software-FMEA

Based on the presented use case, process-wise, it is apparent that the
SW-FMEA approach can be used in a “drop-in” fashion in existing safety
processes, replacing classic approaches during software architecture analysis.
The major added value is delivering much tighter bounds on error propagation
characteristics (certainly not probabilities!) at the point in design where the
major dependability mechanisms are most probably decided upon. While
much more sophisticated than classic FMEA (and even such composable
methods as HiP-HOPS [18]), the approach largely remains an FME(C)A –
and thus there is no real reason it cannot be a candidate method in virtually
all safety processes where SW-FMEA is necessary.

Importantly, the ability to “mix and match” specific errors and error cate-
gories in evaluating and propagating errors may enable new process patterns.
Refinement of our knowledge of the error propagation characteristics in the
system is a definite (and largely new) option in this setting; thus, in theory,
safety arguments could very well evolve cooperatively with the refinement of
system and software design. Future research will explore this possibility.

Certainly, there are some apparent drawbacks, too.

• Modelling overhead. The least significant drawback that nevertheless
has to be mentioned is that the whole approach assumes that the system
under design is created in an appropriate Model-Driven System Design
(MDSD) workflow. Although MDSD is becoming the default in many
industries where SW-FMEA has to be performed, it is not necessarily
used in all settings.

• Early definition of behaviour. Executable models such as Alf give us
the possibility to model behaviour early on in the design process – but
this does not automatically mean that it is convenient or feasible at all.
Further studies are necessary to evaluate this aspect.

• Proof of behavioural equivalence. When executable behavior is speci-
fied early on in the development process and it is the basis of safety argu-
ments, behavioural equivalence of the final system (and components)
with this early specification has to be maintained during development.

• Simulation. As of now, we use simulation for model evaluation. Sim-
ulation has its drawbacks; e.g., it is hard to assure that all execution
paths have been exercised in a nondeterministic system. We argued in
chapter “Software-FMEA through Alf execution” that in our case this
is not a major issue. In fact, the proposed approach does not rely on
any specific simulation technique; all the facilities that transform model
execution into explicit error propagation execution are included in the
model. This way, we will be able to reap the benefits of advances in
fUML/Alf tooling without additional effort.

9.4 Implementation in a Blockly-based Modelling Tool 195

9.4 Implementation in a Blockly-based Modelling Tool

To demonstrate the general applicability of the approach presented so far, the
main points of the framework were also implemented for the modelling tool
introduced in “Chapter 4 – SYSML-UML like modeling environment based
on Google Blockly customization”.

The tool supports the modelling of static and dynamic aspects of
component-based systems by using blocks, interfaces and connections to
model structure, as well as sequence diagrams to model the collective
behaviour of the whole system. The former aspect defines the participants and
their relations, while the latter describes their interactions and the exchanged
data. The basic block of behaviour is a Service, which may have a specific
implementation in Python. Interactions then consist of Service Requests and
control logic (e.g. decisions). Once modelled, the tool can visualize the
connections in the system, as well as the sequence diagram defined for the
global behaviour. One of the strongest aspects of the tool is the ability to
generate a Python program for the simulation of the system. With small
modifications, the generated code is an appropriate candidate for the methods
defined in the previous sections.

9.4.1 Preparation of the Model

The case study model was again based on the balise-related basic functional-
ity of ERTMS/ETCS (Figures 9.3 and 9.4 for the structure and Figure 9.7 for
the behaviour). A bird’s eye view of the model itself is presented in Figure 9.9.

The generated code has been augmented with logging: values of parame-
ters and variables after assignment result of decisions and assertions as well
as service requests were all output to build an execution trace.

As before, faults activation was done by injected, configurable logic that
would determine which faults are activated during execution. In practice,
this involves the replacement of certain constructs (e.g., expressions) with
a function call that either performs the original behaviour (e.g., returns the
value of the original expression) or alters the behaviour in some way (e.g.,
negates a condition). In the current case study, faults affected the assignment
of Boolean and integer values (altering the value of the right-hand-side
expression), the conditions in decisions and the sending of service requests
(causing an omission fault).

The fault activation logic can be fine-tuned by setting the maximum num-
ber of active faults as well as if the faults are transient of permanent. In case of
permanent faults, fault distribution is balanced by an initialization logic that
randomly selects a configured number of faults, which may then activate if

196 Composable Framework Support for Software-FMEA

Figure 9.9 Blockly-based model of the case study system and its environment.

the affected statements are executed (i.e. the injected fault activation function
is called). In this case study, the logic was configured to activate at most one
permanent fault.

Faults were injected in the relevant parts of the control logic of the train
(i.e. the Kernel and the Balise Transmission Module), but message omissions
were also included in the code simulating the powering of the balise to
emulate failure of equipment. Every time a fault activated, its type and the
affected line were logged, but not the specific value used to modify the
original expression.

Two test cases were used for the simulations: in the first one, the balise
sends a consistent telegram, while in the second; the balise has corrupted data
(it has an invalid position value). Thus, according to the specified behaviour,
correct reactions of the system would be to acknowledge the reception of
the telegram in the first case, and applying emergency brake in the second.
Assertions in the model checked if the produced behaviour was in accordance
with the balise data, as well as if a telegram was successfully processed in

9.4 Implementation in a Blockly-based Modelling Tool 197

a given time frame (in more complex settings, this could be detected and
handled when reaching the next balise).

9.4.2 Aggregation and Analysis of Traces

A single simulation of the fault-free model and 1000 simulations with random
faults in each test case provided a satisfying number of traces to conduct a
probabilistic analysis. The traces were processed through the following steps:

1. Error traces: Every faulty trace was compared to the reference (fault-
free) trace to obtain the differences, i.e. to identify the chain of errors
that led from a single fault activation to a failed assertion. Corresponding
to the injected faults, the errors could be Parameter errors, Data errors,
Control errors and Missing calls.

2. Superposition of traces: The error traces were merged to obtain a graph.
An arc in this graph from A to B means that in some trace, error A was
immediately followed by error B.

3. Annotation with occurrences: Arcs of the graph were then annotated by
the ratio of the number of traces in which B has eventually occurred after
A to the total number of traces in which A has occurred. This value cor-
responds to the conditional probability of eventually seeing B if A has
occurred. This way, a probability of 1 means there is a strong correlation
between errors A and B, which in this case may also suggest a causal
relationship. Hence, these cases are visually distinguished by using a
solid line for the potential causalities and a dashed line otherwise.

4. Reducing noise: Various techniques were employed to remove arcs that
were the consequences of other relationships. It is worth to note that,
this part of the process is the most theoretic and has a lot of room for
improvements. The more efficient the techniques used here are, the more
meaningful the results of the process can be.

Nodes of the graph (fault activations, errors and assertion failures) were
grouped by the component which logged them. The output for the test case
with the valid telegram can be seen on Figure 9.10. Things to node about the
figure are the following.

• In an FMEA terminology, each box corresponding to a component con-
tains the internal faults and the failure modes (errors) of the component.
Arcs entering the box denote external failure modes that affect this
component, while outgoing arcs denote failure modes of the component
that affect others.

• In the case study model, omission of service requests always results in a
failure to handle the balise.

198 Composable Framework Support for Software-FMEA

Figure 9.10 Error propagation in the case study model when input is consistent.

• On the other hand, corruption of data causes a system-level failure only
if the value of the Boolean flag “Consistent” gets corrupted. Once this
happens, there is no way to avoid failure, but only some corruption of
the other values leads to the corruption of the flag.

• A fault affecting the value of “Consistent” does not always cause a data
error, because always returning True is considered a correct answer in
this scenario.

Analysis of the test case with the invalid telegram showed similar results.

References 199

9.5 Concluding Remarks

In the chapter, the reader was introduced to the main ideas of a novel
approach to SW-FMEA for component-based systems that can be composed
with existing safety processes. The method can replace or augment classic
approaches during software architecture analysis and automating much of the
traditional FMEA techniques.

The work transfers techniques well-known in academia into the SW-
FMEA of safety-critical embedded systems, with strong potential appli-
cability in other dependability-critical domains. These techniques include
explicitly embedding fault activation logic and operational semantics into
the interpreted model and constructing error automata from the specification
of normal and abnormal behaviours (see e.g., [19]). At the same time, the
presented approach promises to have a low effort overhead over producing the
base models (that are produced in a model-driven process even in the absence
of SW-FMEA); something that is sorely missing from manually performing
SW-FMEA.

References

[1] Pataricza, A. (2007). “Systematic Generation of Dependability Cases
from Functional Models,” in Proceedings of the Symposium FORMS/
FORMAT – Formal Methods for Automation and Safety in Railway and
Automotive Systems, Budapest, Hungary.

[2] Object Management Group. (2016). Semantics of a Foundational Subset
for Executable UML Models (fUML), version 1.2.1.

[3] Object Management Group. (2013). Action Language for Foundational
UML (Alf), version 1.0.1.

[4] Object Management Group. (2015). Precise Semantics of UML Com-
posite Structures (PSCS), version 1.0.

[5] GitHub. (2016). Foundational UML Reference Implementation. [Online].
Available at: https://github.com/ModelDriven/fUML-Reference-Implem
entation (accessed on 1 February 2016).

[6] GitHub. (2016). moliz – Model Execution Based on fUML [Online].
Available at: https://github.com/moliz (accessed on 1 February 2016).

[7] Seidewitz, E, and Tatibouet, J. (2015). “Combining Alf and UML in
Modeling Tools – An Example with Papyrus,” in OCL 2015 – 15th Inter-
national Workshop on OCL and Textual Modeling: Tools and Textual
Model Transformations Workshop Proceedings, 105–119.

200 Composable Framework Support for Software-FMEA

[8] Ciccozzi, F. (2014). From Models to Code and Back: A Round-trip
Approach for Model-driven Engineering of Embedded Systems. Doctoral
thesis, Mälardalen University, Sweden.

[9] Romero, G., Schneider, K., and Ferreira, M. G. V. (2014). “Using
the base semantics given by fUML for verification,” in 2014 2nd
International Conference on Model-Driven Engineering and Software
Development (MODELSWARD) (New York, NY: IEEE), 5–16.

[10] Schneider, A. S. and Treharne, H. (2011). “Towards a Practical
Approach to Check UML/fUML Models Consistency Using CSP,” in
Formal Methods and Software Engineering, eds S. Qin and Z. Qiu
(Berlin: Springer), 33–48.

[11] CECRIS. (2016). CECRIS – Certification of Critical Systems, Grant
Agreement no.: 324334, IAPP Marie Curie Action, 7th Frame-
work Program. Available at: http://www.cecris-project.eu (accessed on
16 January 2016).

[12] Bonfiglio, V., Montecchi, L., Rossi, F., Lollini, P., Pataricza, A., and
Bondavalli, A. (2015). “Executable Models to Support Automated
Software FMEA,” in 2015 IEEE 16th International Symposium on
High Assurance Systems Engineering (HASE) (New York, NY: IEEE),
pp. 189–196.

[13] Object Management Group. (2011). UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems, version 1.1.

[14] Mayerhofer, T. (2014). Defining Executable Modeling Languages with
fUML. Doctoral thesis, Vienna University of Technology.

[15] European Railway Agency. (2014). “ERTMS/ETCS System Require-
ments Specification”, SUBSET-26.

[16] Object Management Group. (2013). Semantics of a Foundational Subset
for Executable UML Models (fUML).

[17] ModelDriven. (2016). ModelDriven.org: Action language for UML (Alf)
open source implementation. Available at: http://modeldriven.github.io/
Alf-Reference-Implementation/

[18] Papadopoulos, Y., McDermid, J., Sasse, R., and Heiner G. (2001). Anal-
ysis and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure. Reliabil. Eng. Syst. Safety 71, 229–247.

[19] Gallina, B., and Punnekkat, S. (2011). “FI4FA: A Formalism for Incom-
pletion, Inconsistency, Interference and Impermanence Failures’ Analy-
sis,” in 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA) (New York, NY: IEEE), 493–500.

10
A Monitoring and Testing Framework
for Critical Off-the-Shelf Applications

and Services

Nuno Antunes1, Francesco Brancati2, Andrea Ceccarelli3,4,
Andrea Bondavalli3,4 and Marco Vieira1

1CISUC, Department of Informatics Engineering, University of Coimbra,
Portugal
2Resiltech s.r.l., Pontedera (PI), Italy
3Department of Mathematics and Informatics, University of Florence,
Florence, Italy
4CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence

One of the biggest verification and validation challenges is the definition of
approaches and tools to support systems assessment while minimizing costs
and delivery time. Such tools reduce the time and cost of assessing Off-The-
Shelf (OTS) software components that must undergo proper certification or
approval processes to be used in critical scenarios. In the case of testing,
due to the particularities of components, developers often build ad hoc and
poorly-reusable testing tools, which results in increased time and costs. This
chapter introduces a framework for testing and monitoring of critical OTS
applications and services. The framework includes (i) a box instrumented for
monitoring OS and application level variables, (ii) a toolset for testing the
target components, and (iii) tools for data storing, retrieval and analysis. We
present an implementation of the framework that allows applying, in a cost-
effective fashion, functional testing, robustness testing and penetration testing
to web services. Finally, the framework usability and utility is demonstrated
based on two different case studies that also show its flexibility.

201

202 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.1 Introduction

Verification and Validation (V&V) has been largely applied in scenarios that
involve life and mission critical embedded systems, and is dominantly used
as a design-time quality control process for the purpose of evaluation of the
compliance between of a product, service, or system [1]. Checking a system
using traditional V&V methods frequently exceeds the effort needed for the
core development time. In fact, rigorous V&V in on the fundaments of critical
applications and has been applied in several domains as the railway [2] and
space [3], and recently a strong effort has been made to standardize these
practices for automotive [4].

Although the industry rapidly turns to system integration based on the
reuse of hardware and software components, also known as off-the-shelf
(OTS) components, it is still necessary to apply rigorous V&V techniques to
assess the applications. While hardware OTS are nowadays widely accepted,
and used (they have their own certification), software OTS still creates serious
difficulties to companies, which are on one hand constrained to meet prede-
fined quality goals, whereas, on the other hand, are required to deliver systems
at acceptable cost and time to market. Large companies mainly follow a
brute-force approach by focusing large volume investment into tooling and
in-house training, but even high-tech SMEs are highly vulnerable to the new
challenges.

In this context, one of the biggest challenges to the V&V community is to
define methods, strategies and tools able to validate a system adequately,
while simultaneously keeping the cost and delivery time reasonably low.
The key part of the challenge is to establish a proper balance between
achievable quality with a particular technique (in terms of RAMS attributes)
and the costs required for achieving such quality. The problem grows when
it is necessary to include COTS components in a critical system that must
be certified. As a matter of fact, although modern standards consider the
possibility of assessing products, which encompass COTS software, this is
still considered a challenge [5].

In industrial practices, integration and usage of OTS software compo-
nents in critical systems is generally supported by two different assessment
processes, both to understand the behaviour of the component and to assess
that it does not introduce hazards in the system. In the first, whenever
applicable, the activity is limited to assess the integration, verifying that
the OTS component is properly wrapped in the system without affecting
system’s safety. In the second, a complete assessment of the OTS component
is performed; this may include activities as production of documentation,

10.1 Introduction 203

reverse engineering, and static analysis, among others. For companies, this
usually means a reasonable amount of effort in developing a specific tool
that can support the testing of a specific OTS component to be integrated in a
certain critical system.

This chapter presents a framework for testing and monitoring critical
applications and services. The framework monitors the variables of the sys-
tem while applying diverse forms of testing over the applications. This way,
it is possible to better detect problems in the applications as well as better
diagnosing them, maximizing the effectiveness of the tests. The framework
is based on an application independent and reusable core infrastructure,
allowing the user to apply cost effective practices. The proposed framework
consists of two main components, as follows.

The first, named Instrumented System is a monitoring environment
where the applications or services can be executed and monitored. The kernel
of the operating system is instrumented to monitor all the variables that are
representative for V&V process. The environment also includes middleware
that is also instrumented to provide values of the all the variables representa-
tive for V&V at this level. The second component named Test and Collect
contains a set of tools for application testing and, data storage and analysis.
The testing tools included should be able to generate different types of testing
including functional testing, robustness testing, security testing, etc. For data
storage the framework includes a database management system and tools to
allow the user, in a semi-automated way, to generate a schema able to store
the values of the monitored variables.

The use of this kind of analysis is essential for the conscious use of
OTS components. By testing the OTS, it is also possible to use wrapping
strategies [6, 7] around the identified problematic parts of the component. An
important part of the implementation is that one instance of this component
can be connected to multiple instrumented systems. This way, the framework
is prepared to be extended for other purposes, as in the case of monitoring a
large scale system with multiple nodes, as it is possible to correlate data from
multiple sources and also analyse more complex systems.

Several works have shown the usefulness of system monitoring to detect
anomalies in the system. Statistical analysis algorithms have been used in
the past for on-line fault detection [8]. This technique overcomes some of
the limitations of static threshold analysis, that for instance in [9] monitoring
techniques are used to detect application hangs. Works towards certifying
OTS components are also not new. The technique [10] tries to determine the
quality of OTS components using black box and fault injection in two phases:
first, the component is tested to make sure it works properly, and second, the

204 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

system is tested to make sure that the system works even if the component
presents an incorrect behaviour.

The chapter also presents a prototype implementation and demonstration
of the framework. The implementation includes tools that allow the user
to apply to the web services different types of testing: functional, stress,
robustness and penetration testing. During the different testing processes, the
system variables are monitored both at middleware level and at operating
system level. Two different case studies were devised to demonstrate and
evaluate the framework.

The first case study is focused on the services of the Life ray Portal,
an enterprise web platform project that aims for immediate delivery of
robust business solutions for organizations. This case study allowed us to
demonstrate the flexibility, usability and utility of the framework. The results
revealed the services under test performing quite well in the situations
tested. Obviously, the quality of the tests performed depends on the testing
tools used, but this discussion is out of the scope of this work, as the
merits of each tool were evaluated and discussed in different works by their
authors [11, 12].

The second case study is focused on simulator of a railway environment
that includes a system that should detect anomalous and hazardous situations
on the trains running on that line. The stringent requirements of the system
that should be tested and validated exactly in the same setup as it will operate
demonstrated the flexibility of the toolbox, which was able to be easily ported
into such environment.

The chapter is organized as follows. Section 10.2 describes the concepts
behind the framework, while Section 10.3 presents the implementation
details. Section 10.4 presents the case studies used to demonstrate the frame-
work and the respective details. Section 10.5 concludes the section and puts
forward relevant future work.

10.2 Framework Architecture

Our proposal is an advanced framework for testing and monitoring critical
applications and services. Despite the most common approach for testing
OTS web services is the “black box”, the tool has been designed to take
advantages of any piece of information available. The overall architecture
of the proposed framework is depicted in Figure 10.1. As it is possible to
observe, the framework is based on two main components: i) Instrumented
System, which the system in which the web service is running, and ii) Test and
Collect, which is used to stimulated the web service and to collect evidences

10.2 Framework Architecture 205

Figure 10.1 Framework architecture: overall view and interactions.

of its behaviour. Although the current implementation focuses on Java Web
Services running over a Tomcat 7 Application Server (AS) and a Linux
CentOS 6 Operative System (OS), the proposed solution can be evolved to
different platforms and Web Services Middleware (AS).

As we can observe, Figure 10.1 also shows the interactions between
the two systems of the framework: the testing tool invokes methods of the
web service triggering specific functionalities, and at the same time the
analysis tools read information on the overall status of the operative system
and service middleware. The next sections present the concepts behind each
component.

10.2.1 Instrumented System (IS)

The Instrumented System is a monitoring environment where the applications
or services can be executed and tested. Considering that weaknesses can
affect the middleware layer (e.g., depleting available free memory in the heap)
and the operating system layer (e.g., exchanging a huge amount of data or
delaying the overall system), both are object of monitoring.

Figure 10.2 represents the monitored components (Operating System,
Middleware, Applications) and data flows. The key innovation is to monitor
both the variables of the OS and of the Middleware (when applicable) at
the same time the application is being tested. This provides detailed data on
the behaviour of the OTS component, thus going beyond the mere collection

206 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

Figure 10.2 Detailed functioning of the Instrumented System.

of inputs and outputs or the monitoring of specific functions of the underlying
system that the OTS component uses. To achieve this, it is necessary to
instrument the kernel of the OS introducing monitoring probes that report the
value of the selected variables per unit of time. These values should be stored
in a standard format to later be externalized through the Dataflow Out (DO).

As example of middleware, the environment may include an application
server where the user can run the web applications and services that are
necessary to be tested. Also, the application server includes monitoring of the
values of relevant variables that are also stored in a standard format for later
use of the DO. Due to the emerging role that web applications and services
have in critical systems, the inclusion of a monitored application server is a
very important requirement, as this allows gathering the values of variables
that are closer to the applications under test.

The Dataflow In (DI) is necessary to perform the test in the applications.
In the case of web applications and services, which have an interface available
over the network, the DI In is constituted by the ports used to perform
the tests together with OTS components that can execute the tests through
these ports. The environment should also be ready to support the testing of
other applications, with the Dataflow having the responsibility of translating
the tests created by the testing tools in a form that can be executed in the
target application. In practice, the Dataflow In represents the only part of
Instrumented System that the user should implement in order to have his
application tested.

10.2.2 Test and Collect

Test and Collect includes a set of extensible tools that should support the user
in two main activities: (i) testing, and (ii) storage and analysis. The testing

10.2 Framework Architecture 207

component controls the execution of the testing tools. Although the frame-
work is designed to be fully automated, the human interaction cannot be
completely avoided at least for the test execution.

The level of human interaction can vary from test to test; thus, each
testing tool should provide its own interaction interface. It is mandatory that
the testing tool communicates with the storage and analysis module to trace
testing activity, providing information as test input/output, and executions
results and durations that should be logged by the storage module to match
the results provided by the IS during the execution of these tests. Figure 10.3
depicts this relationship, which is detailed below.

The storage and analysis module is also in charge of harvesting data
from the IS probes and of structuring and storing them to facilitate the subs-
equent data analysis. The storage component is made up of three modules:
(i) Probes Collector (PC), (ii) Data Manager (DM), and (iii) Database (DB).

The PC is responsible of reading data from IS probes and due to the
different sources (middleware or OS) it needs to use different policies to
respect the data availability and probe servers’ constraints. Data read are
then managed by the DM component that organizes the data coming from
middleware structuring it to provide the state of the monitored system from a
specific point of view.

Finally, data is stored in the underlying database. To provide more effi-
cient data analysis capabilities, the template schema follows the model of
a star schema from OLAP. In fact, a well-structured data repository and
OLAP analysis can be very useful for analysis of results from dependability
evaluation experiments [13]. Additionally, it makes possible to share and
compare the results of multiple different experimental evaluations [13].

Figure 10.3 Detailed functioning of the Test and Collect.

208 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

The testing tools included should be able to generate different types of
testing including functional testing, stress testing, robustness testing, penetra-
tion testing, security testing, etc. The definition of tests is always dependent
on the type of application as well as specific to the domain of the application
(e.g., testing requirements from standards). In the case of web applications
and services, where the interfaces are usually well defined, the test generating
tools usually require only minor configuration. However, in the case of other
applications the user may be requested to configure or even extend the
testing tools. To cope with this, the tools included are prepared to be easily
extensible to accommodate the user needs. As the tools are easy to modify
or replace, the framework provides high flexibility and makes it easier to test
applications.

Functional testing is a black box testing technique that tries to find
discrepancies between the program and the external specification [14] and
it is based on a set of test cases derived from the analysis of the specification.
Stress testing subjects the program to heavy loads or stresses [14]. In this case,
the testing application must submit loads that match (or even surpass) the load
that the application under test is specified to sustain over a period of time. This
is particularly useful in web-based applications where you want to ensure
that your application can handle a specific volume of concurrent users or
requests. Robustness testing is a specific form of black-box testing. The goal
is to characterize the behaviour of a system in presence of erroneous input
conditions. Robustness testing stimulates the system in a way that triggers
internal errors, exposing programming and design errors both in the error
detection and recovery mechanisms. Penetration testing is a specialization
of robustness testing that consists of the analysis of the program execution
in the presence of malicious inputs, searching for potential vulnerabilities.
Penetration testing tools provide an automatic way to search for vulnerabi-
lities avoiding the repetitive and tedious task of doing hundreds or even
thousands of tests by hand for each vulnerability type.

Finally, the toolset should be allowed to be used several data analysis
algorithms; including fault detection mechanisms based in static threshold
analysis algorithms and also statistical analysis algorithms. However, the
main idea is to leave to the user the conditions to perform the analysis using
the algorithms that he is more experienced with and, above of all, that are
most adequate to his business domain. In fact, one strength of the use OLAP
analysis techniques is the optimization of their schema for the use of ad-hoc
queries [13].

10.3 Implementation Details 209

10.3 Implementation Details

To show the applicability of the approach and perform an experimental
evaluation, a prototype was designed and is currently under development.
For cost reduction and to allow bigger flexibility, effort was made to use
low licensing cost solutions resulting many times in preference for free or
open source software. It is important that, in many cases, the selection of
one technology to use impacts the technologies for other layers. The next
sections detail the status of implementation of each one of the components of
the framework as well as the technologies selected to use.

10.3.1 Instrumented System (IS) Implementation

The node component was implemented in a virtual machine. This option for
virtualization provides flexibility as can be easily replicated and maintained.
This will allow the deployment of the node ready to use in any number
necessary for the system. The operating system selected to implement the
prototype was CentOS [15]. First we narrowed our options to Linux based
distributions due to the cost advantage and to the diversity of monitoring
options to monitor the kernel events. From the multitude of options available,
CentOS provides a free enterprise class OS.

The instrumentation of the operating system was implemented in the form
of a loadable kernel module using the SystemTap tool [16]. This tool builds on
and extends the capabilities of the kprobes [17] kernel debugging infrastruc-
ture and allows to program breakpoint handlers using a high-level scripting
language that is later translated into C code. This way, SystemTap simplifies
the development of system instrumentation and also improves the reuse of
existing instrumentations, thus allowing building up on the expertise of oth-
ers. The developers of SystemTap also took into consideration the portability
and safety concerns, both of which have major importance in this work.

The prototype implementation of Instrumented System includes, as exam-
ple of middleware, an application server with monitoring capabilities to allow
testing the web applications and services. The selection of choice was JBoss
Application Server (JBoss AS) [18], an application server that implements
the Java Platform, Enterprise Edition (Java EE). It is free and open source
software available under the terms of the GNU LGPL and it is written in Java
and as such is cross-platform: usable on any operating system that supports
Java. JBoss represents the industry de facto standard for deploying Java-
based Web applications, it has a wide community acceptance, and support

210 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

subscriptions can be purchased. For monitoring the values of the applications
running inside the app server, it is used Java Management Extensions (JMX)
Technology. JMX provides the tools for building distributed, modular and
dynamic solutions for monitoring devices or applications. It is designed to
provide high flexibility both for legacy systems and for the future. JMX
is supported by the most relevant Java application servers. This will allow
in the future, porting the monitoring solution to other application servers,
and it was one of the requirements as it is planned to add other servers
to the prototype to provide a broader range of options and compatibility to
the user.

The implementation of the Dataflow In depends greatly on the applica-
tions to be tested. For the case of web applications and web services, OTS
components together with the ports that allow the network traffic constitute
the Dataflow In. For instance, in the case of web services, the toolset includes
the open source tool soapui [19], that is the visible part of the Dataflow In
for the user. This tool allows to easily executing user-defined tests in the
web services under test. In other cases, where the test execution such be
from inside the testing machine, it is under development a daemon to run in
background accepting communication through TPC sockets and performing
the required tests.

Finally, the dataflow out was implemented as folder where the monitoring
systems can write the files and from where the Test and Collect can pool the
files periodically. The data is split in chunks, each file containing the data
respecting to a certain period of time that is identified in the filename. There
are many ways to extract the files from the exterior, but the solution currently
adopted consists of using secure copy (scp), is a protocol to securely transfer
files between two hosts, based on the SSH protocol. This is a preliminary
implementation that will be enough for experimental evaluation but as a
more automated solution is under development and should replace it in a near
future.

10.3.2 Test and Collect Implementation

The Test and Collect includes a set of testing tools ready to use. Most of
these tools are black-box tools, and as the name shows, these tools view the
program as a black box and are completely unconcerned about its internal
behaviour. Our framework by analysing the values of the monitored variables
uses information about the behaviour of the application in a transparent fash-
ion to the testing tools. Most of the tools included also target web services,
one of the main targets of the framework, as they are increasingly used

10.3 Implementation Details 211

in business-critical systems. They provide always a well-defined interface,
allowing an easy use of automated tools. Other types of tools and also targe-
ting other will be added in future versions of the framework. In very specific
domains, the user will need to write the necessary tests and implement the
necessary tools to use them.

The testing tools currently available allow performing functional and
stress test, penetration test and robustness test. The testing framework has
been developed minimizing the human interaction especially during the
testing activities. With the present tools, the human interaction is indeed
focused in the configuration phase, which must be performed one time for
each tool. Such tools can provide common configurations as well as they can
propose a configuration that suits the testing needs.

10.3.2.1 Functional and stress testing
Functional test is a quality assurance process based on black-box approach
that aims to provide a proof of implementation correctness regarding the
specifications of the software under test. The test is performed feeding
the software under test with well-known values and examining the output
produced.

Although common functional tests involve the test of single methods,
within this context, it has been followed an approach which tackles high-
level functionalities. The approach consists of a set of workflows that mimic
the behaviour of a software user for executing specific high-level tasks, which
in turn can comprise the invocation of a huge variety of methods [20].

The workflows definition is a cornerstone of this approach and it must
be defined specifically for each service under test considering its interface
and the software specification. Workflows define how and when the service
interface of the software under test should be questioned and, also, they
provide the information needed for the subsequent phase of result validation.
Following the black-box approach the verification is done invoking specific
methods of the service for checking its internal status.

The importance of these workflows is further emphasized since they can
be used as bricks for compound and complex workflows for Stress testing.
Stress testing is a form of deliberately intense testing used to determine the
stability of a given system. The tool developed for functional test, properly
configured with suitable workflows, can stimulate the system under test to
provide evidence of stability. Workflows for Stress testing have been defined
from the high-level tasks identified for the functional tests by parallelizing
multiple high-level tasks invoked from a variety of users and abbreviating to
the minimum the delay between sequential invocations.

212 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.3.2.2 Robustness testing and penetration testing
Robustness testing is a specific form of black-box testing that attempts to
characterize the behaviour of a system in the presence of erroneous or unex-
pected input conditions [21]. The tool instrumented in the testing framework
implements the technique proposed in [22]. The approach consists of a set of
robustness tests that is applied during execution to disclose both programming
and design problems.

The set of robustness tests is automatically generated by applying a
set of predefined rules (see detailed list in [22]) to the parameters of each
operation of the web service during the workload execution. An important
aspect is that rules focus difficult input validation aspects, such as: null and
empty values, valid values with special characteristics, invalid values with
special characteristics, maximum and minimum valid values in the domain,
values exceeding the maximum and minimum valid values in the domain,
and values that cause data type overflow. The robustness of the web services
is characterized according to the failure modes adapted from the CRASH
scale.

Penetration testing is nowadays one of the most used techniques by web
developers to detect vulnerabilities in their applications and services. This
technique assumes particular relevance in the web services environment,
as many times clients and providers need to test services without having
access to the source code (e.g. when testing third-party services), which
prevents the use of more effective techniques that require that access. The
tool instrumented in the testing framework implements a technique targeting
the detection of SQL Injection vulnerabilities in web services. The tool was
originally presented in [11].

10.3.2.3 Data storage and analysis tools
A tool is under development for the generation of the star schema according
to the needs of the user. This tool, based on the template star schema provided,
and after some configuration by the user, generates the schema that will store
the monitored data. This tool will also include capabilities to perform the
extraction, transformation and load (ETL) of the data. It will allow the user
to retrieve the data from the Instrumented Systems using the Dataflow Out
channel and insert the data in the schema. With a wide range of options for
ETL software available, the option for developing a new tool comes from
simplicity reasons: it would be an exaggeration to use a heavy ETL tool
while our toolset only needs for a very specific and simple tool that designed

10.4 Demonstration 213

to work based on a the configuration that the user provides when creating
the star schema for the DBMS. Also, the use of third party ETL tools would
most probably require the user to have knowledge on how to operate them.

A myriad of solutions are available to implement the data storage.
PostgreSQL1 is an open source solution with a long history of development
a proven architecture with recognized reputation for reliability, data integrity,
and correctness. It gives to the framework great flexibility as it runs on all
major operating systems, including Linux, UNIX, and Windows. A lot of
tools from the community support PostgreSQL, and it is also widely sup-
ported by open source business intelligence tools as SpagoBI2 and Pentaho
community edition3.

As aforementioned, in terms of data analysis, the main goal is to provide
the user the best conditions for the execution of the analysis of his preference.
With this goal, the tool set includes basis tools for data visualization and
query execution. The toolset will also include the more advanced tools as
the mentioned BI tools (SpagoBI and Pentaho CE) as well as other options
that are also considered to be included in the toolset [23]. For better analysis,
it is necessary that the data is correlated to the tests executed, and this is
a very important part of the ETL process. Finally, the toolset will include
ready to use tools that use some more specific algorithms targeting fault
detection, proposed by research community. Examples of these works are
static threshold analysis [9] and statistical analysis algorithms for on-line fault
detection [8].

10.4 Demonstration

Two case studies were devised to demonstrate the applicability and feasibility
of the approach.

The first case study is presented in Section 10.4.1 and uses the Life ray
Portal [24], which is an enterprise web platform project that aims for immedi-
ate delivery of robust business solutions for organizations. An API based on
SOAP web services is provided, containing a diverse range of functionalities.
These services are an interesting case for testing the framework, after the
framework is deployed on top of the instrumented JBoss AS middleware.

1www.postgresql.org
2www.spagobi.org
3http://community.pentaho.com

214 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

The second case study, presented in Section 10.4.2, is based on the
PMF simulator. SHAPE is a system installed along a specific railway line.
The main purpose of the system is to automatically detect anomalous and
hazardous situations on the trains running on that line. SHAPE aims at
detecting two specific situations: i) SHAPE can detect fires on board a train,
through reading at a distance of the temperature of the external surface of
the trains; ii) it is able to detect possible violations of the reference shape,
through specific laser scanners, in order to identify any dangerous protruding
part of the train.

10.4.1 Case Study: Life Ray Web Services

Life ray is free and open sourced Java software that was initially developed
to provide an open source enterprise quality portal. Since the early stages of
development, Life ray has been widely adopted for intranet as well as extranet
enterprise solution. Eventually, it brought Life ray to have a big supporting
community, which, together with the Life ray foundation, contributed to
define a generic and extendible product.

Life ray Portal is an enterprise web platform project that aims for imme-
diate delivery of robust business solutions for organizations. It includes
features that are usually necessary for the development of websites and
portals, as built-in web content and document management system. Life ray
is developed using Java technologies and it is ready to work in a large set
of web/application servers. In fact, the community edition is free and open
source software available under Licensed under the terms of the GNU LGPL.
It follows an extendible architecture by plugins that, in turn, encompass col-
laboration, social networking, and single sign on, per-component privileges
policy as well as e-commerce tools. Third-party plugins are also available
to provide more advanced feature such as Microsoft office integration. A
plugin can be seen as a J2EE-Servlet and is referred to as a portlet. Portlets
communicate with each other using the services that each one exposes that, in
turn perform the portlets business logic. Our installation of Life ray includes
the version 6.0 of the portal and 83 deployed SOAP (Simple Object Access
Protocol) web services. More details on Life ray can be found in [24].

10.4.1.1 Tests performed
During this case study, different types of tests were applied: Functional,
Stress, Penetration and Robustness tests. To verify the correctness of Liferay
services, a study on its plugins interaction has been conducted. The necessity

10.4 Demonstration 215

for the preliminary study has been felt because of the strictly correlated
invocations among methods exposed by web services.

The preliminary study has been exploited to define workloads that could
mimic the behavior of Life ray internal interactions, which correspond to
functional tests. Even simple activity, like posting a message on the blog
by UI interface, could involve a plethora of plugins including authentication,
user information retrieving, permission checking and finally messaging ser-
vice. To stimulate Life ray in a way that could resemble human activities,
many Workloads have been defined to cover Life ray functionalities by
mimicking the behavior of human interaction. Mimicked actions encom-
pass posting a message in the blog and in the forum, creating an event in
the calendar, creating a directory-tree in the file repository and uploading
a file in it.

These workloads have been used to define other workloads for stress
tests, to highlight possible weakness in terms of concurrency management.
Those tests have been designed from the workloads defined for functional
tests to evaluate Life ray behavior under a heavy load. For each workload,
that mimics a specific action, a new one is defined as a composition of many
copies of the same workload; these copies differ just for the user. The purpose
of this approach is to simulate multiple users’ activities on Life ray, that
stimulate the same services and some shared data. The stress test, as it is
designed, suits especially well when there isn’t a sound knowledge of web
services internal mechanism; the deeper is the knowledge of web service
internals the more effective workloads can be designed.

Regarding robustness testing, due to the preliminary study performed for
the functional test, a generic knowledge of methods invocation was available
to configure the tool to generate better tests. This knowledge was especially
important for the tool to use values that exercise the code of the web service
under test in a more complete way. After the configuration of the tool it
submits the robustness tests in an automated way and reports the robustness
problems found.

As for penetration testing, the available knowledge of methods invo-
cation was a key to configure the tool to generate better workloads and
attack loads. This is especially relevant for this tool as its effectiveness is
depending on the completeness of its workloads. After this configuration, the
test execution is a straightforward process in which the tool submits its work-
load and attack load to the web service and then reports the vulnerabilities
found.

216 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.4.1.2 Tests results
Experiment execution is made up of three phases, where just the final one is
specific for the kind of test to be conducted. The phases are:

1. Set up Service Under Test (SUT),
2. Data Logger execution,
3. Testing tool execution.

On the first phase the service under test is started up. This phase includes also
the startup of middleware and OS probes. The second phase can be launched
simultaneously, as it does not read information from OS or middleware
probes: it just prepares the structures needed for logging. During test exe-
cution, the testing framework logs raw tests results and prints on the console
information on the tests execution (test currently running, test duration, etc.).
This information is useful to monitoring the tests execution. Test results are
collected during test execution; at the tests termination, collected data are
flushed into a database.

Different tools that range from very specific tools such as R or MatLab to
commonly available and general-purpose tool such as OpenOffice-Calc are
installed on the Test and Collect system, connected to the database, and can
be used to retrieve and analyze data.

Due to the wide usage and the extended support that Life ray received
from its community since its development started, it was expected that Life
ray passed all the functional tests defined.

Figure 10.4 shows an extract of the workload (set of services invocations)
used for creating a new event on a calendar (it includes logging in to the
system, listing the available/subscribed calendars, choose to first one and
listing all the events of February, adding the new item then logging out; sub-
sequently further invocations checks that the event was correctly recorded).
The invocation correctness is verified by a visual inspection of Life ray
services.

The output produced during the execution of the test is displayed on the
screen of the Test and Collect system and consists of a sequence of services
methods invocations. For each one of these, the HTTP response code is
printed out. Being a functional test is mandatory that the HTTP response
code would match with the expected one.

The aim of this stress testing is to assess the ability to resist against a
workload which leverage on high frequency of requests, and the results can
be evaluated in term of system loads and resource usage. Table 10.1 shows
the average CPU usage and memory usage; the former one is furthermore

10.4 Demonstration 217

Figure 10.4 An extract of the workload to set a New Calendar Event.

Table 10.1 Extract test results for New Calendar Event
Parallel System System Free Non IO Written/

Requests Process CPU CPU Load Free Heap Heap Read
(nr) Load (%) Load (%) Average Memory (B) Mem (B) Data (B)

5 0.3031 0.38245 1.54 100128920 24899588 5959
10 0.1254 0.651 1.195 86411094 22482534 77344

100 0.1342 0.999 2.34 84833658 21993838 184244

detailed distinguishing between process CPU load and system CPU load, with
system CPU load that encompasses any task running on the system. Memory
usage is furthermore detailed as well distinguishing between heap memory,
used for java objects and non-heap memory.

The table encompasses the experiments of 5, 10 and 100 simultaneous
execution of the “New Calendar Event” workload. Data are collected 1 times
per second. Table 10.1 shows that the CPU usage of service process remains
quite stable despite the increase of the number of requests. Process CPU
load, the system load as well as memory usage vary as the number of
parallel requests increase. The table shows that system resources usage
clearly increases due to the waits for Disk Output activities, which rise.

218 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

Figure 10.5 shows an extract of the robustness test report, in which
all the tests reported robustness problems. This would suggest weakness
in the services, but a manual inspection revealed that while tool reports
“PROBLEM”, the service correctly identify and discard the invalid request.
We explain this with the help of Figure 10.6.

Figure 10.5 Extract from robustness test results.

(a)

(b)

Figure 10.6 Example of robustness test: (a) request; (b) response.

10.4 Demonstration 219

Figure 10.6(a) shows an extract of a robustness test involving the Poll
Service, in particular the “add Question” method. Life ray, relying on Axis2
for parsing values, automatically manages the invalid value for the parameter
“expiration DateMonth” rejecting the request and without passing it to the
“actual” service. The rejection causes an HTTP 533 (which belongs to the
“internal error” family): the tool used for robustness testing, operating at
black-box, can’t distinguished this answer from any other internal error, and
consequently the “PROBLEM” code is displayed in Figure 10.6(b) which
shows the response that Life ray produces for the request.

Life ray uses Axis2 for service publishing and interface, Axis2 is respon-
sible for parsing values passed by SOAP as well as for invoking the actual
Java method which was remotely requested. The parsing phase consists also
of a validation phase in which the parsed values are validate against their
destination types constraints. The failure of this phase implies the subsequent
rejection of the request and thus the generation of a response with HTTP
code 500.

Figure 10.7 shows an extract of the results of the penetration tests
applied to Life ray Calendar Service. The extracted data, as well as the entire
test results, show the robustness of Life ray against penetration attacks. All the
potentially risky requests are identified and discarded by the Axis2 Layer for
services interface, by the Object Relational Mapping (ORM) layer for objects
persistency and by the permission checking mechanism, which constitute a
cornerstone for Life ray services interoperability.

In fact, Life ray exposes its services using Axis2, which validates the
invocation parameters before passing the request to the “actual” service.
Additionally, Life ray relays upon Hibernate (the ORM used) which provides
an SQL parameter sanitizing service, which in turn it uses named queries
that work on top of statements of the JDBC API; all those layers operate
the necessary actions to avoid risks from malicious requests. Finally, the
invocations that include items the user is not authorized to use are identified
by the Life ray Permission Service.

Figure 10.7 Calendar Service penetration tests result.

220 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.4.2 Case Study: SHAPE

We used a second use case to show the flexibility of the approach and also to
demonstrate that the approach is not depending on the concrete technological
implementation. This use case was based on SHAPE, which is a system
installed along a specific railway line. SHAPE has the requirement that the
all the tests to be performed must be done in an environment certified as
equivalent to the target environment.

The main purpose of the system is to automatically detect anomalous and
hazardous situations on the trains running on that line. In particular, SHAPE
aims at detecting two specific situations: i) SHAPE is able to detect fires on
board a train, through reading at a distance of the temperature of the external
surface of the trains; ii) it is able to detect possible violations of the reference
shape, through specific laser scanners, in order to identify any dangerous
protruding part of the train.

SHAPE was designed to be suitable for interfacing with existing signal-
ling systems, thus to send possible alarms useful to safely stop the train and
to properly manage the critical detected event, according to the foreseen
recovery actions. SHAPE is composed by the components: Scanner, Init &
Diagnosis, Data Acquisition, Data Aggregator, Data Analyser and Monitor,
System State.

• Init & Diagnosis – communicates with the scanner in order to collect
diagnostic data and to trigger scanner activation.

• Data Acquisition – receives raw data from scanners.
• Data Aggregator – receives train data from Data Acquisition (e.g. images

produced by the scanner) and aggregates such information, to be sent to
the Monitor component.

• Data Analyser – receives aggregated data from the Data Aggregator and
send analysis results to the Monitor component.

• Monitor – manages all the system states phases according to the data
received from the Shape Component.

• System State – acquires information regarding the system state from
each component and sends them to the WaySide component.

10.4.2.1 Monitoring environment adaptation
SHAPE has stringent requirements whichneeds to be tested in the same
operating system, configuration, and equivalent hardware that it is supposed
to be used in the future. Therefore, to be able to use the monitoring and testing

10.4 Demonstration 221

approach in together with SHAPE, it was necessary to port the monitoring
facilities to the target system and configuration.

The new system uses a different operating system and due to criticality
restrictions, it cannot have new packages installed, as the system moni-
toring tools (SystemTAP) required by used in the implementation of the
Instrumented System. Therefore, the challenge was to implement similar
monitoring functionalities with less intrusive solutions.

The solution used the following tools, which are present in most of unix
and linux distributions:

• top – provides data about cpu and memory usage;
• mpstat – provides data about system load;
• iostat – provides data about I/O usage;

Another tool was necessary because the SHAPE simulator involves a set of
processes and subprocesses that are continuously evolving.

• pstree – allows to track the processes and the respective process tree,
so it is possible to gather data about all the processes relevant for the
monitoring system.

The downside of this solution is the performance. In practice, although less
intrusive than the SystemTAP solution, it takes much more time to obtain
data, and therefore it does not allow small gathering windows. However, we
believe that the window is still small enough to do fine grained analysis of the
system behavior.

10.4.2.2 Tests performed
To demonstrate the solution, we executed the SHAPE simulator during 24h
while monitoring the relevant variables of the system. During this period, the
simulator was exercised using the test cases available to test the correctness
of his responses. At the same time, the newly included probes seamlessly
monitored the variables of interest. Table 10.2 contains the summary of the
most relevant variables monitored during the period.

All the variables were analyzed are stored for each sampling instance.
This allows us to do temporal analysis of the variables. Figure 10.8
presents the evolution of one specific variable over time, in this case the
“Number of SHAPE processes”. As we can observe, the amount of CPU
usage keeps increasing throughout the collection period, but still in relatively
short values.

222 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

Table 10.2 Summary of the variables monitored
Variable AVG STDV MIN MAX
Total User CPU 0.14 0.08 0.00 0.30
Total System CPU 0.24 0.12 0.00 0.50
Average User CPU 0.14 0.07 0.02 0.26
Average System CPU 0.25 0.12 0.03 0.45
Average IO Wait CPU 0.11 0.00 0.11 0.12
Memory Used 837945 32356 782680 903032
Memory Free 1031399 32356 966312 1086664
Memory Cached 188067 10077 168972 205268
Swap Used 0.00 0.00 0.00 0.00
Swap Cached 582445 20468 547568 618732
IO Disk Read Per Sec 1.78 0.03 1.74 1.83
IO Disk Write Per Sec 7.15 0.22 6.50 7.52
IO Disk Read 2913344 30 2913256 2913424
IO Disk Write 11674444 527703 10347224 12589656
of SHAPE Processes 2.98 0.17 1.00 4.00
Number of Samples 151146

Figure 10.8 Evolution of Number of working processes in SHAPE.

10.5 Conclusion

In a context where OTS components are increasingly used on critical
scenarios, companies need tools that help them to understand the quality of
these components. In specific cases of testing, rather than using their own
developed ad-hoc and poorly-reusable testing tools, these companies can
benefit from using cost effective techniques and tools.

References 223

This chapter presented a reusable and adaptable framework for testing
and monitoring of critical OTS applications and services that includes an
instrumented box for monitoring OS and application level variables, a testing
toolset that is adaptable for testing the target components, and tools for data
storage and analysis. The architecture of the framework was described as well
as the status of its implementation.

The framework allows users to easily apply functional testing, stress
testing, robustness testing and penetration testing to their web services. The
procedure to use the framework is described and its usability is illustrated
with a case study that uses the Life ray platform, composed of several web
services. The case study shows how flexible is the framework, allowing
integration of multiple third party tools seamlessly. Obviously, in the case
of functional testing, it is necessary to conduct some preliminary study to
emulate its use cases, but this is expected due to the nature of the tests. The
framework can orchestrate the use of the tools and reduce the human effort
by reutilizing the information provided at configuration time within multiple
tools.

The concepts behind the framework can also be extended to setups that
differ from the ones defined in the framework implementation. This was
demonstrated in the second use case, in which the concepts.

Future work includes the integration of failure detection and prediction
algorithms in the box. Additionally, the framework can be modified to use
more than one Instrumented System at the same time, allows testing more
complex systems. Finally, it can be extended to take advantage of other kinds
of information monitoring.

References

[1] Tran, E. (1999). “Verification/Validation/Certification,” in: Topics in
Dependable Embedded Systems, ed. P. Koopman. Carnegie Mellon
University, Pittsburgh, PA.

[2] IEC. (1998). IEC 61508 TC: IEC 61508, Functional Safety of Electrical/
Electronic/Programmable Electronic (E/E/PE) Safety Related Systems,
Part 3: Software Requirements. IEC, Geneva, Swiss (1998).

[3] RTCA. (2011). RTCA: RTCA DO-178C/EUROCAE ED-12C – Software
Considerations in Airborne Systems and Equipment Certification.

[4] ISO. (2011). ISO: Road vehicles – Functional safety – Part 6: Product
development at the software level.

224 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

[5] IEEE Computer Society. (2012). Software & Systems Engineering Stan-
dards Committee: 1012–2012 – IEEE Standard for System and Software
Verification and Validation.

[6] Ghosh, A. K., Schmid, M., and Hill, F. (1999). “Wrapping Windows NT
software for robustness. In: Fault-Tolerant Computing,” in Twenty-Ninth
Annual International Symposium on Digest of Papers (New York, NY:
IEEE), 344–347.

[7] Popov, P., Strigini, L., Riddle, S., and Romanovsky, A. (2001). “Pro-
tective Wrapping of OTS components,” in Proc. 4th ICSE Workshop on
Component-Based Software Engineering: Component Certification and
System Prediction, Toronto.

[8] Brancati, F. (2012). Adaptive and Safe Estimation of Different Sources
of Uncertainty to Improve Dependability of Highly Dynamic Systems
Through Online Monitoring Analysis (New York, NY: IEEE).

[9] Carrozza, G., Cinque, M., Cotroneo, D., and Natella, R. (2008). “Opera-
ting system support to detect application hangs,” in International
Workshop on Verification and Evaluation of Computer and Communi-
cation Systems, VECoS, Leeds, UK.

[10] Voas, J. M. (1998). Certifying off-the-shelf software components.
Computer 31, 53–59.

[11] Antunes, N., and Vieira, M. (2009). “Detecting SQL Injection Vulner-
abilities in Web Services,” in Fourth Latin-American Symposium on
Dependable Computing (LADC ’09), 17–24. IEEE Computer Society,
Joao Pessoa, Brazil.

[12] Laranjeiro, N., Canelas, S., and Vieira, M. (2008). “wsrbench: An
On-Line Tool for Robustness Benchmarking,” in IEEE International
Conference on Services Computing, 2008 SCC ’08 (New York, NY:
IEEE), 187–194.

[13] Madeira, H., Costa, J., and Vieira, M. (2003). “The OLAP and data
warehousing approaches for analysis and sharing of results from
dependability evaluation experiments,” in Proc. of 2003 Interna-
tional Conference on Dependable Systems and Networks (DSN 2003)
(New York, NY: IEEE), 86–91.

[14] Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software
testing. Hoboken, NJ: John Wiley & Sons.

[15] CentOS Project. The Community ENTerprise Operating System. Avail-
able at: http://www.centos.org/

References 225

[16] Prasad, V., Cohen, W., Eigler, F. C., Hunt, M., Keniston, J., and Chen, B.
(2005). “Locating system problems using dynamic instrumentation,” in
2005 Ottawa Linux Symposium (New York, NY: IEEE), 49–64 (2005).

[17] Moore, R. J. (2001). “A Universal Dynamic Trace for Linux and
Other Operating Systems,” in USENIX Annual Technical Conference,
FREENIX Track, Boston, MA, USA, 297–308.

[18] Red Hat. JBoss Application Server. Available at: https://www.jboss.org/
jbossas/

[19] eviware: soapUI. Available at: http://www.soapui.org/
[20] Ceccarelli, A., Zoppi, T., Bondavalli, A., Duchi, F., and Vella, G. (2014).

“A testbed for evaluating anomaly detection monitors through fault
injection,” in 5th IEEE Workshop on self-organizing real-time systems
(SORT 2014), Reno, Nevada, USA.

[21] Koopman, P., and DeVale, J. (1999). “Comparing the robustness of
POSIX operating systems,” in Twenty-Ninth Annual International Sym-
posium on Fault-Tolerant Computing Digest of Papers (New York, NY:
IEEE), 30–37.

[22] Vieira, M., Laranjeiro, N., and Madeira, H. (2007). “Benchmarking
the Robustness of Web Services,” in 13th Pacific Rim International
Symposium on Dependable Computing, 2007 PRDC 2007 (New York,
NY: IEEE), 322–329.

[23] Golfarelli, M. (2009). “Open source BI platforms: a functional
and architectural comparison,” in Data Warehousing and Knowledge
Discovery (Berlin: Springer), 287–297.

[24] Liferay, Inc. Liferay Portal. Available at: http://www.liferay.com/

http://taylorandfrancis.com

11
Validating a Safety Critical Railway
Application Using Fault Injection

Ivano Irrera1, András Zentai2, João Carlos Cunha1,3

and Henrique Madeira1

1CISUC, Department of Informatics Engineering, University of Coimbra,
Portugal
2Prolan Process Control Co., Szentendrei út 1-3, H-2011 Budakalász,
Hungary
3ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

The need for safety assurance in critical systems demand for new tools and
techniques which are able to provide the required confidence while main-
taining the costs relatively at a low level. Fault Injection (FI) is a technique
extensively used in several domains, such as space, but sporadically used in
the railways. In this chapter, we present a fault-injection tool able to com-
plement the traditional verification and validation procedures, to validate the
safety of ProSigma, a Safety Integrity Level (SIL) 4 safety-critical system for
railway signaling, implementing a Triple Modular Redundancy (TMR) archi-
tecture. This tool is based on the Joint Test Action Group (JTAG) technology,
and allows emulating the effects of hardware faults. Results from the FI
campaigns show the ProSigma system exhibiting a high degree of tolerance
to most of the injected faults, and unexpected behavior in some cases. The
results also confirm the efficacy of the proposed technique to help understand
worst-case scenarios for validating safety of such a critical system.

11.1 Introduction

The products in all technical and societal domains are required to be certified
against hidden design and implementation defects that may induce malfunc-
tioning, which may cause critical damage to the system itself, including

227

228 Validating a Safety Critical Railway Application Using Fault Injection

the environment and humans. Several accidents caused by malfunctioning
systems are sadly known, going along with the human technological rise.

A safe system is a system that will not cause harm to its users and
the environment, in case a malfunctioning occurs. Safety, thus, comes to
be an attribute of systems, which corresponds to guarantee the absence of
catastrophic consequences on the user(s) and the environment to a certain
extent. A system whose malfunctioning is likely to cause harm to users or the
environment is named a safety-critical system.

Since their first realization, railway system fall into the class of safety-
critical systems. For assuring the safety of such systems, best practices
and standards have been proposed and used along with their technological
evolution. In the last decades, a new series of standards have been proposed,
namely the CENELEC standards (e.g., EN 50126, EN 50128, EN 50129, EN
50159), for regulating the development and safety assessment of software and
hardware. In particular, the EN 50128 describes methods to be used in order
to provide software that meet the demands for safety integrity. Although not
directly referring fault-injection as a possible technique for verification and
validation (V&V) processes, this is an approach extensively used in other
domains, such as space.

Fault injection (FI) consists of the deliberate insertion of faults (i.e.,
realistic perturbations) in computer systems components in order to evaluate
the dependability and safety properties of systems or to validate specific
fault handling mechanisms. As typically FI tools perform FI campaigns
with minimal user intervention (ideally, the process is fully automatic), it is
possible to perform very large number of experiments (very often thousands
or even millions), which makes FI a valuable method to anticipate worst-case
scenarios or rare failure modes that are very hard to anticipate using analytical
modeling or simulations techniques.

In this chapter, we present a FI tool and report some preliminary results
meant to validate a TMR system for railway signaling. In the field of railway
interlocking systems copper-based, long-distance connections exists between
relay switches and remote equipment. In the case of constructing a new
system, such as the one reported in this paper, the state-of-the-art solution is
to apply Internet Protocol (IP) based signal transmission using Global System
for Mobile communications (GSM) or fiber-optic communication. These new
technologies pose significant safety challenges, which constitutes a relevant
scenario for using FI.

The rest of the chapter is organized as followed: Section 11.2 presents
background on V&V processes, certification and standards of railway sys-
tems, and FI; Section 11.3 presents the ProSigma system railway signaling

11.2 Fault Injection for V&V and Certification 229

system; the proposed FI tool-based on On-Chip Debugging (OCD) tech-
nology is described in Section 11.4. The experimental application of the
proposed FI tool for the validation of the safety of the ProSigma signaling
system is presented in Section 11.5, where results obtained are discussed.
Section 11.6 concludes the chapter.

11.2 Fault Injection for V&V and Certification

Several approaches have been proposed to assess and guarantee the correct
functioning of a given product. Among these systems V&V are activities that
allow verifying whether a product meets its own requirements (Verification),
and that the product does what is expected to be done (Validation). How-
ever, the application of V&V is challenging, as the definition of methods,
strategies, and tools for verifying and validating a system adequately, while
simultaneously keeping the cost and delivery time reasonably low, is inher-
ently complex. Companies, in fact, are often, on one hand, pushed towards
meeting predefined quality goals, and on the other hand, required to deliver
systems at acceptable cost and time to market. It is not rare to find companies
following a brute-force approach, by focusing large volume investments
into tooling and in-house training, especially when coming down to the
development of mission- and safety-critical systems.

Validation and verification are time-consuming activities in traditional
software engineering even for non-critical applications. In the case of safety-
critical systems, which are often embedded, the complexity of V&V and
certification procedures are exacerbated by the need of keeping properties
such as safety or availability, and by involving custom and Commercial Off-
The-Shelf (COTS) hardware elements and application dependent-interfaces,
resulting in an extremely large number of potential factors.

Safety-critical systems also required, over time, the creation of a field
of study particularly aimed at focusing on safety-related issues: safety engi-
neering. Safety engineering is a well-established field, including several tech-
niques for the assurance and assessment of safety in a system. Among these,
Failure Modes and Effects Analysis (FMEA), Preliminary Hazard Analysis
(PHA), and Fault-Tree Analysis (FTA) are some of the most used techniques.
In particular, FMEA is a technique that aims at collecting the known system’s
failure modes, and studying its propagation paths through the system and its
effects. Failure Modes, Effects and Criticality Analysis (FMECA) is a version
of FMEA in which criticality is taken into account, aiming to identify all
critical and catastrophic subsystem or system failure modes.

230 Validating a Safety Critical Railway Application Using Fault Injection

FMEA is performed mainly manually, even though several works for an
automated FMEA have been proposed [1].

Such techniques are expected to be part of the V&V process of a safety-
critical system, and even be mandatory. In this direction, standards started to
rise with the aim of reducing risks related to the use of safety-critical systems.

11.2.1 Standards for Safety-critical Railway Applications

Standards have been proposed for developing safety-critical systems, both
general and domain specific and suggesting strategies, processes, and tech-
niques to adopt along the entire development cycle.

The specification, design and validation of dependability-related aspects
concerning railway applications are regulated by the CENELEC standards.
The most important European standard concerning robustness in this field is
the standard EN 50128:2011 – Railway applications – Communication, sig-
naling, and processing systems – Software for railway control and protection
systems (EN 50128) [2]. The EN 50128 gives indication about the lifecycle
that has to be followed, the techniques and measures to be applied, the
necessary competences, and the expected documents and their content. The
Software Requirements Specification shall express the required properties of
the software being developed. These properties, which are all (except safety)
defined in ISO/IEC 9126 series, shall include (among others) robustness
and maintainability. The Software Verification Plan shall address (among
other properties) the evaluation of the safety and robustness requirements
(defined in the Software Requirements Specification). Several techniques
and methodologies are also indicated for ensuring the software robustness
properties, as Software Error Effect Analysis (i.e., SW-FMEA).

Furthermore, the EN 50128 concentrates on methods that need to be used
in order to provide software that meet the demands for safety integrity. The
EN 50128 defines robustness as the “ability of an item to detect and handle
abnormal situations”. The most important of software techniques to assess
and increase the robustness are the following: Defensive Programming, Infor-
mation Encapsulation, Fault Detection and Diagnosis, Error Detecting and
Correcting Codes, Diverse Programming, Software Error Effect Analysis,
Control Flow Analysis, Common Cause Failure Analysis, FI, Boundary Value
Analysis, and Coding Standard.

Generally, Railway Safety Cases shall provide evidences that the consid-
eration of Robustness (error cases, abnormal inputs, etc.) is provided together
with the system validation and verification.

11.2 Fault Injection for V&V and Certification 231

According to the standard CENELEC EN 50129:2003 [15], safety-related
software has been classified into five safety integrity levels, where 0 is
the lowest and 4 is the highest. To be conforming to SIL 4 requirements,
the safety availability of the equipment must be over 99.999%. From the
safety functionality point of view (CENELEC EN 50129:2003 [15]), SIL is
a number that indicates the required degree of confidence that a system will
meet its specified safety functions with respect to systematic failures. From
the software point of view, CENELEC EN 50128:2011 [14] defines software
safety integrity level as a classification number that determines the techniques
and measures that have to be applied to software.

11.2.2 Fault Injection

Fault injection is a technique consisting in deliberately injecting faults (e.g.,
bombarding devices with radiations) or modifying parts of the system in a
way that emulates the presence of such faults.

Fault injection has been used extensively in research and also already
recommended by several standards, such as space [3] and automotive [4]
industry standards, in addition to Information and Communication Technol-
ogy (ICT) industry in general [5]. The space industry, in particular, has a long
tradition of using FI as part of the V&V activities, namely to simulate the
effects of cosmic radiation in on-board systems. As mere examples, here are
some references for the interested reader [6–8]. There are also some examples
of the use of FI in the railway industry [9, 10].

Faults are the hypothesized cause of an error (an unexpected internal
state of a system) that can lead to a system failure (e.g., crash, performance
degradation, or any interruption of the service provided by the system) [11].
Hardware faults, such as bit-flip and stuck-at, occur in hardware components,
while software faults are defects in a piece of software that exist due to some
issue during the development phase, such as a missing system specification
or poor testing. FI consists of deliberately inserting faults into a system in a
way that emulates real faults [12]. It is a well-known approach used in many
works, where the observation of systems in the presence of faults is needed,
such as for fault tolerance and dependability validation [13, 14], estimation
of fault-tolerance parameters [12], and benchmarking [15].

The type of faults injected typically fall into three kinds: hardware faults
(e.g., bit flips), software faults (i.e., bugs), or input corruption at component
interface level (often named as robustness testing). Although the initial FI
tools are used to hardware approaches to inject (hardware) faults, including
pin-level, heavy-ion radiation, and electromagnetic disturbances, modern FI

232 Validating a Safety Critical Railway Application Using Fault Injection

tools use software approaches to inject the faults (actually, faults are emulated
by software by mimicking the fault effects through the injection of errors).
As modern FI tools use software to inject/emulate the faults, a key issue is the
precision of the fault models. That is, the injected faults should be represen-
tative of the real faults that affect systems in the field. This is not a problem
for the hardware faults, as the classic bit-flip or bit stuck-at models (at the
processor register or memory level) are widely accepted, but the injection
of realistic software faults (i.e., bugs) is far more complex. In software FI,
the goal is to inject software faults (bugs) in a given software component
to emulate the erroneous behavior that may result from the activation of
residual bugs that may exist in that component. In this way it is possible
to evaluate whether the system can cope up with the failures in the target
software component or not, or to perform an experimental estimation of the
risk of (re-) using software components.

An example of a survey of the earlier FI methods can be found in [16]
and a very recent and extensive survey (57 pages) covering software FI is in
[17], where the issue of defining realistic software fault models is explained
in detail.

11.3 The ProSigma Safety-critical Railway
Interlocking System

ProSigma [18] is a versatile Hardware–Software (HW–SW) system designed
primarily for railway trackside signaling and communication purposes. It
is a Safety Signal Transmitter (SST), which provides fail-safe signal trans-
mission with high availability. It captures the analog signal outputs of the
railway interlocking system, processes and transmits this information to a
remote control center (DaKo). The ProSigma system is designed to be SIL
4 certified according to CENELEC EN 50126-1, 50126-2, 50128, and 50129
standards [12–15].

In case of disconnection or system failure, the outputs move into a safety
position. The system is built from modular cards installed in racks, which
enables system designers to scale the system according to the application
needs.

11.3.1 Concepts of Generic Product, Generic Application
and Specific Application

To ease the certification process, the system software is designed to have a
three-layered architecture as it can be seen in Figure 11.1.

11.3 The ProSigma Safety-critical Railway Interlocking System 233

Figure 11.1 The ProSigma abstraction layers.

The bottom layer, called Generic Product (GP), implements the common
functionalities of the system, including time synchronization, handling Con-
troller Area Network (CAN) communication and other HW interfaces. The
GP is quite complex, but it has to be certified only once, as it is common to
all applications.

The middle layer, called Generic Application (GA), is a lightweight soft-
ware component running on the top of the GP. Each GA handles one railway
object (e.g. railway traffic signal, switch, etc.). Because of the simplicity of
the code, the certification process of GA is relatively easy.

In the deployment phase of the system the GAs has to be parameterized
with the actual values of the specific environment (e.g., voltage comparator
thresholds, sampling frequency, etc.), which result in Specific Applications
(SAs), which are the top layer of the software architecture. In the ProSigma
system, the Logic and Input (LI) cards implement these three-layers design
architecture.

11.3.2 The System Architecture and Functionality

A ProSigma test system was built in a pilot project to assess the benefits and
drawbacks of FI, whose experimental results are presented in this chapter. The
system has identical functionality but limited number of components com-
pared to the one which is deployed trackside. The system adds a networking
layer on top of a conventional relay based interlocking system. This network
layer transmits the railway object states – represented by the relay outputs –
to a remote control center (DaKo). The system architecture (Figure 11.2)
consists of the following components:

234 Validating a Safety Critical Railway Application Using Fault Injection

Figure 11.2 System architecture.

• Power Supply Unit (PSU), which supply 3.3 and 24 V of DC voltage to
the cards;

• An analog signal conditioning unit (JIF) which filters and down-scales
the relay output voltages from 0–48 V to 0–3 V range.

• Logic and Input card (LI) which are sampling the input voltages. They
also contain the railway logic.

• CAN to UDP protocol converter cards (ETH), which convert CAN
messages to UDP packets.

• UDP to X25 over IP protocol converter cards (RPI), which convert UDP
packets to X25 over IP telegrams.

• Two diagnostic centers, which are responsible to log status and commu-
nication information and to provide diagnostic data to the operator.

11.3.2.1 Logic and Input (LI) card
The input signals of the system are the analog output voltage signals of a
relay-based railway interlocking system: “Domino 70”. These voltage signals
are passed through a relay interface unit (JIF), which performs the voltage

11.3 The ProSigma Safety-critical Railway Interlocking System 235

level interfacing for the Digital Inputs (DI) of the LI card. The Logic and
Input (LI) card is a TMR system composed of three microcontrollers from dif-
ferent controller families. Red, Green and Blue (R, G, B) are the codenames
for the three channels.

The Logic and Input (LI) cards are reading the analogous input signals
and interpret them according to the rules of the specific railway object, which
they are connected to. Finally LI cards transmit the status of the railway object
states via CAN bus. The three channels (R, G, B) communicate on separate
CAN buses, which are located on the back-panel of the mounting rack. See
Figure 11.3 for the LI card.

The firmware (FW) of the controllers has been developed by different SW
teams to avoid common mode faults. LI cards follow the three layered SW
architecture described before consisting of two different FWs: GP and GA are
parameters for the SA. On each channel, the FW of GP and GA are running
on the microcontroller in a time and space partitioning architecture. On all
channels, FW of the GPs handle the A/D conversion of the input signals. The
raw data of the converted signals are filtered with a SW implemented de-
bouncing algorithm in the GP to filter out the high frequency glitches of the
relays. The GP FW calls the GA FW every 32 ms and the de-bounced values
of the input signals are passed to the GA. The GA implements the railway
object.

The railway object used in this case study is called block direction, which
contains the information of the direction of traffic on the actual railway

Figure 11.3 LI card interfaces.

236 Validating a Safety Critical Railway Application Using Fault Injection

Table 11.1 Railway object outputs
Valent Input Antivalent Input Meaning in Case P1 = 0 Meaning in Case P1 = 1

0 0 Transient (0 × 20) or
invalid (0 × 80) state

Transient (0 × 20) or
invalid (0 × 80) state

0 1 Direction = Exit (0 × 02) Direction = Entry
(0 × 01)

1 0 Direction = Entry
(0 × 01)

Direction = Exit (0 × 02)

1 1 Transient (0 × 20) or
invalid (0 × 80) state

Transient (0 × 20) or
invalid (0 × 80) state

segment. The object has one input encoded by a pair of valent-antivalent
input signals. Depending on the input signals and the value of parameter P1
the meaning of the direction could be entry, exit, transient or invalid as it
is described in Table 11.1. The valent-antivalent signal pair does not change
simultaneously so for a short period of time invalid input patterns (00 or 11)
are accepted as transients. After that time period is passed, the signals became
invalid.

The interpreted railway object state, encoded in the hexadecimal numbers
indicated in Table 11.1, is transmitted on the CAN bus. The Sigma bus in
Figure 11.3 indicates a proprietary application layer protocol implemented
on top of the CAN bus. Specific Application Module (SAM) contains the
parameters for the Generic Application. In the SAM module, 3 Flash memory
chips contain the parameters for the three channels R, G, B. The LI card
reads the parameter values from the memory via Serial Peripheral Interface
(SPI) bus.

Interfaces of a LI card can be seen in Figure 11.3.
Up to 10 railway object modules could be inserted in one rack. In case

there are more than 10 railway objects in a system, then the extra object
modules are inserted into multiple racks. The racks are connected together
to form a Local Area Network (LAN) using ETH cards.

11.3.2.2 ETH card
Primary function of the CAN to UDP protocol converter (ETH) card is to
collect the railway object state information of the three channels from the
CAN bus and transmit these messages as UDP datagrams on the Ethernet
network. As it can be seen from Figure 11.4, ETH cards are connected to
the CAN buses of all the three channels of the LI cards. This connection
is physically realized through the back panel of the modular racks. Each
ETH card contains two identical HWs. The inputs from both HWs are the

11.3 The ProSigma Safety-critical Railway Interlocking System 237

Figure 11.4 ETH card architecture.

same CAN channels, while the outputs are connected to two distinct LAN
networks.

11.3.2.3 RPI card
The UDP messages are transmitted to the UDP to X25 over IP protocol
converter unit (RPI). RPI architecture is depicted in Figure 11.5. This unit
is responsible for converting the UDP packages to X25 over IP telegrams and
sending these to the data receiver (DaKo), which is not part of the system.

The RPI module also performs a voting on the data collected from the
three channels (extracted from the UDP packets), thus being central to the
correct functioning of the TMR schema. Moreover, it provides two times
2-out-of-2 fault tolerance schema applied to both received data and voting
result: the information is analyzed from two separated nodes (here named
node 0 and node 1), and differences among data cause the entire RPI node to
fail. Each node has a 2-out-of-2 architecture.

The underlying hardware of the UDP to X25 over IP protocol converter
card/RBC-Prolan Interface (RPI) card is identical to the ETH card.

The functionality of the RPI card includes:

• Managing X25 connection with the Radio Block Center;
• Voting about the object states;
• Transmitting object states to the RBC;
• Exchanging Heartbeat (HB) signals both on active and on the potentially

active channel.

11.3.2.4 Power Supply Units
In each rack, three Power SUpply (PSU) cards provide the necessary energy
for the operation of the system.

238 Validating a Safety Critical Railway Application Using Fault Injection

Figure 11.5 RPI card architecture.

11.3.2.5 Diagnostic centers
Two diagnostic centres (PSDK1 and PSDK2) are monitoring and logging the
traffic on the internal and external networks.

11.3.2.6 Parameter modules
The parameter modules (PAR) contain the parameters of the GP and GA,
which are required for the operation of the system.

11.3.3 System’s Critical Aspects Worth to Study Using FI

Considering the block direction railway object, a dangerous situation occurs
when the DaKo system’s block direction information is the opposite direction
than the actual block direction. This situation could occur when an opposite
block direction information is sent to the DaKo or when the block direction
changes but the system does not transmit this information to the DaKo. Thus
the critical parts of the system are the input processing parts of the LI cards
and the voting part of the RPIs. These are the parts where fault-injection
should be applied to assess the system’s robustness.

11.4 The ProSigma FI Framework

Hardware and software failures may both occur with non-negligible prob-
ability, especially in a complex safety-critical system operating in harsh
environments, and both types have a potentially huge impact on the system
and on the application (railway signaling in the ProSigma case). As presented,
the FI technique aims at emulating situations in which the system and its fault
tolerance mechanisms face the activation of hardware and software faults,

11.4 The ProSigma FI Framework 239

and, at the same time, collecting information on the fault activation, errors
and failures caused.

The proposed FI framework has been designed to inject hardware and
software faults, taking advantage of on-board scan-chain circuitry (or OCD),
to emulate faults with controlled intrusiveness. The proposed framework also
provides the infrastructure for collecting the experiment results automatically,
allowing posterior validation of system safety requirements. In particular, the
FI framework is based on the JTAG scan-chain circuitry, a de-facto standard
implemented on a large variety of microcontrollers, including those used
in safety-critical scenarios. The JTAG allows, for instance, reading values
in RAM without interrupting the controller execution, and writing values in
local controller registries. These are key features to both inject the faults and
collect direct impact at CPU level. As an example, a bit-flip fault is injected
by stopping the controller execution, reading the value of a CPU register,
changing the value of a given bit (or bits), and writing back the new value
to the register. The intrusiveness of such injection operation is just a few
operation cycles.

11.4.1 Fault Injector Framework Architecture and Functionalities

The architecture of the FI framework, shown in Figure 11.6, is made up of
several components, distributed on a host system and on the target system,
namely:

TARGET
SYSTEM

DATA
COLLECTOR

DATA ANALYZER

CONTROLLER

FAULT
LIBRARY

MONITOR WORKLOAD

GENERATOR

FAULT

INJECTOR

WORKLOAD
LIBRARY

FA
U

LT
 I

N
JE

C
T

IO
N

 E
N

V
IR

O
N

M
E

N
T

WORKLOAD

LIBRARY

ON-CHIP DEBUGGING (OCD)

HOST SYSTEM HOST SYSTEM

CONFIGURATION
PROFILES

TA
R

G
E

T

E
N

V
IR

O
N

M
E

N
T

Figure 11.6 Fault injection structure and environment.

240 Validating a Safety Critical Railway Application Using Fault Injection

• the fault injector component, executing a set of instructions directly
on the target system, using the OCD interface of the target system. The
fault to be injected are defined in a specific module of the injector, called
fault library;

• the workload generator, controlling the inputs to the target system. The
stimuli are stored in a workload library;

• the monitor, which collects information about the correct functioning
of the target system from the target system and its environment. The
data is stored in a collection module, including a data analyzer for
the user;

• the controller module, which orchestrates the several modules of the
FI tool according to parameters specified in the form of configuration
profiles.

Fault Injection campaigns consist of five phases, ranging from the definition
of the faults to their injection, ending in the analysis of the results. In details:

• Definition phase: the user defines the faults to inject and their locations,
the workload details and profiles, and the information to be monitored;

• Set-up phase: in this phase the user connects the FI environment
installed in the host system to the target system, configure the profile
of the FI campaign(s), and defines the target system requirements to be
validated automatically by the system;

• Execution phase: in this phase the user launches one FI campaign at a
time, which can be paused and resumed at any moment. A FI campaign
is made of several runs, each run executing the target system (in this
context the ProSigma system, or part of it) and injecting a fault (FI run,
or FIR). Alternatively, runs with no fault injected are called Golden runs
(GR), which are useful to observe the nominal behavior of the system;

• Analysis phase: this phase serves for analyzing the data collected for
possible errors and failure events collected. Depending on the target
system, a huge variety of analysis can be carried out;

• Validation phase, finally, correlating the errors and failure events, if
any, to the target system requirements defined.

11.4.2 The ProSigma FI Tool (ProSigma-FIT)

The proposed framework was implemented into the ProSigma FI tool for
the ProSigma system (ProSigma-FIT). A representation of the implemented
FI environment is depicted in Figure 11.7. The tool can inject “bit-flips”
hardware faults, i.e., emulating the flip from 0 to 1 or viceversa, in one of

11.5 ProSigma Safety Assessment Through FI: Experiments and Results 241

Figure 11.7 Fault injection structure and environment.

the positions of a given registers, These kinds of faults are usually caused
by environmental conditions, as charged particles passing through the cir-
cuitry. ProSigma-FIT injects faults in the microcontrollers that constitute the
ProSigma system, using a host system running Windows 7. The host performs
the injection using a debugger communicating through USB port, an external
electronic board equipped with circuitry for communicating with a given set
of microcontrollers using an OCD port (JTAG in the current case).

ProSigma-FIT is developed as a Java application, and it uses an external
library named OpenOCD, which eases the use of JTAG protocol by offering a
set of high-level command to a user of the host system. OpenOCD is a project
developed at University of Applied Sciences Augsburg [19]. The tool is made
of core classes, which include objects for injecting faults and saving data into
a MySQL database (Fault Injector package), a package for managing the FI
environment and the target environment (ProSigma Environment package),
and objects for monitoring the status of the target system and its environment
(Monitor package).

11.5 ProSigma Safety Assessment Through FI:
Experiments and Results

The ProSigma-FIT was used to assess the safety mechanisms implemented
by the ProSigma system, both at hardware and software level, as a whole.
The ProSigma-FIT was setup to target both CPU registers and RAM memory

242 Validating a Safety Critical Railway Application Using Fault Injection

locations of both the targets locations (G channel of the LI card and RPI), and
to performed several FI campaigns.

11.5.1 Safety Assessment of the Prosigma System:
Experimental Setup

We injected hardware bit flips in the ProSigma system, namely in the G chan-
nel of the LI card (target system: TI LM3S2948 microcontroller), which is
one of the TMR channels, and in the RPI, node 0 (target: TI TMS570LS3137
microcontroller), which is one of the two modules contained in a RPI card
performing the voting functionality. The faults are injected using two JTAG
debuggers, namely the Texas Instruments LM3S8962 and the Texas Instru-
ments XDS100. Figure 11.8 shows a photo of the complete experimental
setup.

11.5.2 Results

The ProSigma-FIT injected a total of 10,702 faults in few days. Table 11.2
presents the failure modes (system’s modules level) monitored by the
observers in the LI and the RPI cards. Table 11.3 shows the FI campaigns
performed and presents a summary of key results. Figure 11.9 shows the
distribution of the failure modes in each FI campaign.

As an example, we selected one of the ProSigma system requirements
(R1) to be at validated. Due to the page limit, this chapter does not address the
validation of other requirements. The requirement selected is the following:

R1 – AFTER the INPUT status is set, the system’s client must
EVENTUALLY receive a message indicating the SWITCHING
STATE and the CORRECT OBJECT STATE.

Most of the faults injected in the channel G of the LI card (i.e., one of
the channels of the TMR) caused effects in the ProSigma system, as shown
in Table 11.3. However, as expected, the system managed to tolerate all the
faults injected in the LI card. In addition to the more detailed analysis of the
fault effects (especially for the ones that caused Crashes and Performance
Failures) in the LI card, more comprehensive FI campaigns are needed to
gain additional confidence in the system. Previous FI experiments performed
for space application [3] have shown that unexpected error propagation due
to shared resources such as memory may cause common mode failures.

11.5 ProSigma Safety Assessment Through FI: Experiments and Results 243

Figure 11.8 The ProSigma system and the FI tool and environment.

Table 11.2 Failure modes
Target Observer Failure Mode Conditions
LI card, G channel CAN bus No PIT* messages

(NPm)
No PIT messages from the G
channel on the CAN bus for
more than 3 seconds

LI card, G channel CAN bus No CONN**
messages (NCm)

No CONN messages from the
G channel on the CAN bus
for more than 3 sec.

LI card, G channel CAN bus Performance
failure (P)

PIT or CONN messages
appear late on the CAN bus
(latency between 1 and 3
seconds)

LI card, G channel CAN bus Crash (C) No PIT and CONN messages
for more than 3 sec.

RPI card, module 0 CAN bus All the same failure modes defined for the
LI card

*PIT is a high-level protocol implemented by the ProSigma system in the LI card.
**CONN is a low-level protocol (right above the CAN messages) implemented by the
ProSigma system in the LI card.

Concerning the faults injected in the RPI (voting) card, a single campaign
was enough to observe Crash failures that caused the system to stop working,
entering in a fail-safe state. Next FI campaigns will be focused on the
comprehensive evaluation of the SW voting elements.

As shown in Figure 11.9, the faults injected caused a significant per-
centage of failures in the target (G channel and RPI). In particular, faults
injected in the LI card caused failures in the G channel in about 30% of the

244 Validating a Safety Critical Railway Application Using Fault Injection

Table 11.3 Summary of FI campaign results
Target Failures

Campaign # FI Runs NCm NPm P C ProSigma Behavior
#1 (LI, registers) 674 0 15 5 152 Failure tolerated
#2 (LI, registers) 618 0 2 0 159 Failure tolerated
#3 (LI, registers) 720 0 5 1 172 Failure tolerated
#4 (LI, registers) 721 0 6 0 171 Failure tolerated
#5 (LI, RAM) 2,116 0 10 0 828 Failure tolerated
#6 (LI, RAM) 2,950 0 0 0 854 Failure tolerated
#7 (LI, RAM) 2,150 0 23 1 828 Failure tolerated
#8 (RPI, registers) 753 0 28 1 472 Safety state (Crash)
Total 10,702 0 61 7 3164

Figure 11.9 Fault injection campaign: failure modes distribution.

times, with “Crash” failures being the most frequent type, followed by “No
PIT messages” and “Performance”, and with “No CONN messages” failures
only occurred when a Crash occurred, without any isolated occurrence. Con-
versely, more than 60% of the faults injected in the RPI card caused failures,
most of which were “Crash”-type. We believe that such behavior is due
to additional fault tolerance mechanisms contained in the TMS570LS3137
microcontroller, as the lock-step schema.

Finally, during the campaigns we measured an average injection time
below 1ms (round-trip-time host-controller-host). The injection operation
is hence quite invasive, being the period of the fastest microcontroller of
6.25 ns. However, the impact of the introduced latency can be tolerated by
the single target system. We aim at implementing dedicated module to reduce
the injection time in a future work.

References 245

11.6 Conclusion

This chapter presented a FI tool based on the JTAG technology proposed for
validating a safety-critical railway signaling system, called ProSigma, a TMR
system for railway trackside signaling and communication purposes. The
ProSigma system has been developed at Prolan Zrt., and has been designed
for being certified by the CENELEC standards as SIL 4, the most demanding
level in terms of Safety availability.

The FI tool demonstrated to potentially reduce costs related to V&V
activities, as it is able to highlight critical situations in which the system under
test acts in a hazardous manner. The use of automated FI campaigns, focused
on several components of the target system, allows to expose the system to
a very large number of fault scenarios, helping gaining confidence in the
safety properties of the system under validation. Results from a thorough FI
campaigns are presented, illustrating the effectiveness of the FI tool and the
approach in general, which confirms to be a valid instrument to help on the
V&V of safety-critical system.

References

[1] Bonfiglio, V., Montecchi, L., Irrera, I., Rossi, F., Lollini, P., and
Bondavalli, A. (2015). “Software Faults Emulation at Model-Level:
Towards Automated Software FMEA,” in Proceedings of 2015 IEEE
International Conference on Dependable Systems and Networks Work-
shops (DSN-W) (New York. NY: IEEE), 133–140.

[2] European Committee for Standardization. Available at: www.cen.eu
[3] NASA. (2004). NASA Software Safety Guidebook, NASA-GB-8719.13.
[4] ISO. (2011). Product development: software level. ISO 26262: Road

vehicles – Functional safety 6.
[5] Microsoft Corporation. (2014). Resilience by design for cloud services.
[6] Barbosa, R., Costa, D., and Madeira, H. (2006). “An empirical approach

to assess software off-the-shelf components using fault injection,” in
International Conference on Data Systems in Aerospace, DASIA 2006,
Berlin, Germany.

[7] Madeira, H., Some, R. (NASA), Moreira, F., Costa, D., (Critical Soft-
ware), and Rennels, D. (UCLA). “Experimental evaluation of a COTS
system for space applications,” in IEEE/IFIP Int. Conf. on Depend-
able Systems and Networks (New York. NY: IEEE), DSN, USA, June
2002.

246 Validating a Safety Critical Railway Application Using Fault Injection

[8] Silva, A., Sánchez, S., Polo, O. R., and Parra, P. (2014). Injecting faults
to succeed. Verification of the boot software on-board solar orbiter’s
energetic particle detector. Acta Astronautica, 95.

[9] Wei, S., Cai Bai-gen, Chen-xi, G., Jian, W., Jing-jing, W. (2010).
“Research on reliability evaluation of high-speed railway train control
system based on fault injection,” in Int. Conf. Environmental Science and
Information Application Technology (ESIAT), Vol. 3, 288–293, Wuhan,
China, 17–18 July.

[10] Benso, A., and Prinetto, P. (2006). Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation. Berlin: Springer Science
& Business Media.

[11] http://www.prolan.hu/en/divisions/railway-automation/prosigma/
[12] CENELEC. (1999). EN 50126-1:1999 Railway application, The speci-

fication and demonstration of Reliability. Availability, Maintainability
and Safety (RAMS), Part 1: Basic requirements and generic process.

[13] CENELEC. (2007). EN 50126-2:2007 Railway applications. The speci-
fication and demonstration of Reliability, Availability, Maintainability
and Safety (RAMS) – Part 2: Guide to the application of EN 50126-1 for
safety.

[14] CENELEC. (2011). EN 50128:2011 Railway applications: Communi-
cation, signaling and processing systems – Software for railway control
and protection systems.

[15] CENELEC. (2003). EN 50129:2003 Railway applications: Communi-
cation, signaling and processing systems – Safety related electronic
systems for signaling.

[16] Hsueh, M. C., Tsai, T. K., and Iyer, R. K. (1997). Fault injection
techniques and tools. IEEE Comput. J. 30, 75–82.

[17] Natella, R., Cotroneo, D., and Madeira, H. (2016). “Assessing depend-
ability with software fault injection: a survey”, in ACM Computing
Surveys (ACM: New York, NY), Vol. 48.

[18] ProSigma. Prolan Process Control Co. Available at: http://www.prolan.
hu/en/divisions/railway-automation/prosigma/

[19] OpenODC. University of Applied Sciences Augsburg. Available at:
http://openocd.org/documentation/

12
Robustness and Fault Injection

for the Validation of Critical Systems

Nuno Laranjeiro1, Gonçalo Pereira1, Seyma Nur Soydemir1,
Raul Barbosa1, Jorge Bernardino1,2, Cristiana Areias1,2,
Nuno Antunes1, João Carlos Cunha1,2, Marco Vieira1

and Henrique Madeira1

1CISUC, Department of Informatics Engineering, University of Coimbra,
Portugal
2ISEC – Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,
Portugal

Critical systems are nowadays being deployed as services or web applica-
tions, and are being used to provide enterprise-level business-critical opera-
tions. These systems are supported by complex middleware, which often links
different systems, and where a failure can bring in disastrous consequences
for both clients and service providers. In this chapter we present a toolset
that can be used to evaluate the robustness of a given system, under the
following two different perspectives: i) executing robustness tests against the
service’s external interface (e.g., the interface with business clients) and also
inner interfaces (e.g., the application-database interface); ii) emulating the
presence of source code defects, on the service middleware, to understand
how the presence of a defect can affect the robustness of the overall system.
The toolset has been demonstrated on a set of web services, an Enterprise
Resource Planning web application, and on the popular Apache HTTP server.
Results show that the toolset can be easily used to disclose critical problems in
web applications and to support middleware, helping developers in building
and validating more reliable services.

12.1 Introduction

Web applications and services are nowadays used as the interface of many
businesses to the outside world, providing services that are frequently sup-
ported by web servers and back-end databases. In these environments, a

247

248 Robustness and Fault Injection for the Validation of Critical Systems

service failure can damage the complete business, potentially bringing in
considerable losses for service providers. These losses might be due to lost
business transactions, but can also refer to other kinds of financial losses (e.g.,
time to repair, human resources used to recover systems), including reputation
losses [1].

The need for practical means to assess the robustness of Web-based
systems (e.g., web applications or services) is supported by several stud-
ies, which show the predominance of software faults (i.e., program defects
or bugs) [2–4] as the root cause of computer failures. If we consider the
huge complexity of modern software, the weight of these faults will tend
to increase. Web services and applications are certainly no exception, as
they are normally quite complex software applications, supported by several
components of also high complexity. Moreover, the current tendency of fast-
paced development of software leads developers to focus on functionality, and
this means that non-functional requirements, such as application robustness,
are many times overlooked [5] leading to the deployment of applications
holding residual bugs.

Considering the typical structure of an application built for the Web and
including supporting software, we identify the following three key issues
to be handled: (i) how the application behaves in the presence of external
interface faults (e.g., invalid client inputs); (ii) how the application behaves
in the presence of inner interface faults (e.g., invalid database data, delivered
to the application); and (iii) how residual software faults on the supporting
middleware can affect the overall system. These obviously are not exhaus-
tive, but represent an integrative and comprehensive view that relates to the
robustness of an overall web-based system and that many works tend to
overlook.

Interface faults, which relate to issues in the interaction among different
software components/modules [6] are quite relevant in service environments,
in particular external interface faults, as services are highly exposed to
heterogeneous or malicious clients on the Web and must be able to provide
robust service to clients, even when facing invalid inputs (generated by bugs
in client applications, corruptions caused by silent failures in the network, or
even security attacks).

From a robustness perspective, the problem regarding interface faults is
generally tackled from an external point-of-view, typically with robustness
tests targeting the public interface. However, industry reports suggest that
the way applications handle incoming data at the application–database
interface is an aspect that is many times disregarded. In fact, developers
many times assume that the data being handled by the application is correct,

12.1 Introduction 249

which experience shows that is not always the case. This is corroborated
by industry reports [1], where the presence of poor quality data has led to
severe system failures and/or huge financial losses. As mentioned, this kind
of problem at the interface level is relatively well-known in the robustness
testing domain, where tests using invalid inputs applied on external interfaces
of many different systems have been successfully used [5, 7, 8]. However, the
definition of tests at the inner interfaces (e.g., application-database) has been
largely overlooked.

In general, web applications or services rely on a web server, which in
practice is a software container that supports the whole application. This kind
of middleware component is subject to change (as any software component
nowadays built for the Web), as providers want to deploy the latest versions,
where usually a number of software bugs are corrected but, at the same time,
the new code brings in the potential for more bugs. Despite the popularity of
this kind of component there is still little information of the behavior of web
applications in the presence of residual software faults in the web servers.
Thus, the absence of practical means to assess the behavior of web-based
applications in this kind of scenario is a strong limitation for deployments
where dependability is of critical importance.

In this chapter we present a toolset, summarized in the next paragraphs,
that targets the three above mentioned issues and is composed of the follow-
ing tools:(i) wsrbench – a tool for testing the robustness of web services;
(ii) PDInjector – a tool for testing the behavior of web applications and
services in presence of poor quality data; (iii) ucXception – a tool for the
practical injection of software faults, demonstrated on a popular web server.

wsrbench generates and applies external-interface robustness tests to
SOAP web services. The goal is to understand the behavior of the system
being tested in the presence of invalid inputs or stressful conditions [7],
possibly exposing internal errors and allowing developers to solve the iden-
tified problems. This kind of technique can be used to distinguish systems
according to the number and severity of the problems disclosed, from a black-
box perspective [7, 8]. wsrbench has been used, for the first time, to test the
web services of a Diagnostic Centre for a Locomotive On-board Computer,
with the results revealing problems that required urgent developer attention.

PDInjector was built based on an approach whose main concept revolves
around the idea of injecting poor quality data at the application–storage
interface. We inject mutated data on returning result sets from the database.
The mutated data is based on typical data quality problems, which were
identified in a survey of the state of the art in dirty data [9]. In short,

250 Robustness and Fault Injection for the Validation of Critical Systems

PDInjector replaces valid data coming from the database with poor quality
data (that should be correctly handled by the application) and observe the
application behavior. The tool was used to show how a major open-source
Enterprise Resource Planning web application would handle invalid inputs,
and was able to disclose serious bugs, not only in the code being tested, but
also issues in the Object Relational Mapping (ORM) framework, and JDBC
driver used by the web application.

Finally, ucXception formally describes a set of software fault injection
operators, and includes a comprehensive test suite to apply these operators to
emulate faults in the software and to verify its correctness. The performance
of the fault injection process is optimized by compiling only the file in which
a fault is injected and linking/installing that file. We illustrate the use of
the tool by carrying out an experimental evaluation using the currently most
popular web server, the Apache web server. The results revealed issues that
require developer’s attention, including potential security problems.

The structure of this chapter is as follows. Section 12.2 presents related
work on robustness testing and software fault injection and Section 12.3
describes in detail our toolset for robustness testing and fault injection
of services. Section 12.4 describes the operating mode of our toolset and
Section 12.5 illustrates the use of the toolset in 3 case studies. Finally,
Section 12.6 concludes this chapter.

12.2 Related Work

Robustness testing is a technique that allows understanding the behavior
of a system when in presence of invalid input or stressful conditions [7].
The objective is to stimulate a particular system to expose possible internal
errors, which will then allow developers to solve the identified problems.
The technique can be used to distinguish systems according to the number
and severity of the issues uncovered and has been mostly applied to exter-
nal (i.e., public) interface of several systems, from a black-box perspective
[7, 8]. Using robustness tests on the inner interfaces of different independent
systems is something that has been largely overlooked in previous research.

Ballista [7] is a tool for robustness testing that uses a combination of
acceptable and exceptional values on calls to kernel functions of operating
systems. The values that are used in each call are randomly extracted from
a predefined set of tests that apply to the particular data type involved in the
call. The robustness of the system being tested is classified according to the
CRASH scale [7], which distinguishes five failure modes. MAFALDA [8]

12.2 Related Work 251

is also a robustness testing tool that targets microkernels. In previous work
we defined an approach to assess the behavior of web services in presence of
mutated SOAP messages [5], which are used on web services call parameters.
The services are classified according to the failures observed during the tests,
using an adapted version of the CRASH scale.

Fuzzers are tools that can be used to disclose security problems in appli-
cations. In short, from a code perspective, these problems, essentially refer
to the presence of code vulnerabilities (i.e., bugs in lato senso) or to the use
of bad programming practices [10]. Although the domain is security, it is
common for these tools to operate by providing erroneous data (originally
random) to the applications’ interfaces. Our toolset includes a robustness
testing tool, wsrbench, which essentially operates by generating wrong data
that is used on call parameters for web service operations.

Data quality has been defined in a huge number of different ways in the
literature [11]. The ISO/IEC 25012 standard defines it as “the degree to which
a set of characteristics of data fulfills requirements” [12]. A few examples
of such characteristics are completeness, accuracy, or consistency [9]. The
requirements mentioned in the definition express the needs and constraints
that contribute to the solution of a problem [13].

Industry reports have shown the severe damage caused by the presence
of poor quality data in many different contexts [14–17], with the Gartner
Group identifying bad data as the main cause of failure in CRM systems
[18]. The growth of the volume of data can also increase its management
complexity, which can result in a higher probability of generating poor
data. The current fast-changing dynamics of the Web environment can also
lead to the degeneration of customer data (e.g., due to the update software
components holding bugs) and this is something has actually been reported
in real systems [18].

Activities such as analysis or improvement of data quality have gathered
much of the attention (e.g., to perform data cleaning) of researchers and
practitioners [16, 19–23]. In fact, the impact of poor data in business critical
systems [24] is quite well-known. Despite this, understanding how well an
application is prepared to handle the inevitable appearance of poor data
has been largely disregarded. To achieve this goal, it is essential to identify
representative data quality problems and to understand how to integrate them
in test cases. We researched the state of the art in data quality classification
and data quality problems in previous work [9], precisely to support the
definition of these test cases.

252 Robustness and Fault Injection for the Validation of Critical Systems

The impact of erroneous data on the reliability of web services has studied
in [25]. The approach includes creating an architecture view of the system
under test; assessing the data quality or validity with a tool; assessing the
reliability of the data and software components; defining a state machine
using the architecture as basis; and calculating the system reliability. The
invalid types used in the work are limited to seven issues that are already
present. So the approach is limited to reliability estimation based on identified
and already present issues. In previous work [26], we created a preliminary
view for a testing approach using data quality problems. PDInjector uses the
above reasoning to generate faults, that emulate the presence of dirty data in
the database that are delivered to a running application. The complete tool
uses a comprehensive set of data quality problems [9] and is based on the
approach presented in [27].

Software fault injection is currently a quite mature topic, after emerging
from the general area of fault injection, and gained the interest of researchers
as a specific category of fault injection technique and related tools. A survey
presenting a quite comprehensive perspective on software fault injection can
be found in [28].

In general, the goal of injecting software faults (i.e., realistically mim-
icking software defects or bugs) is to assess the impact that the activation
of residual bugs in specific software components (the target component) has
in the rest of the system. This is useful for different purposes. For instance,
software fault injection experiments can be used to provide feedback to the
development process of fault-tolerant systems [29], to validate software fault
tolerance mechanisms [30], to analyze how error propagates in component-
based software [31], to perform dependability benchmarking of operating
systems [32], to experimentally assess the risk of using legacy software
components [33], or to assess recovery features in virtualized environments
[8, 34].

An important question in software fault injection is how to represent
(i.e., model) software faults (bugs). The concept that a software bug has
unique features and is very difficult to emulate by a fault injection tool has
persisted for a long time. Actually, the early works on software fault injection
assume rather simple software fault models, extracted from educated guesses
of developers and testers [29, 30].

A first work that tried to emulate realistic software faults based on field
studies on real bugs is presented in [35]. However, the assumption in this
early work on software fault injection representativeness was that real data
on residual bugs found in the target system was available, in order to generate

12.2 Related Work 253

accurate fault models. Unfortunately, in general there is no data on real bugs
previously found in the target systems, so the technique proposed in [35] was
of limited use.

A field study on real software faults was presented in [36]. This work
concluded that there is a quite short list of software fault types that represent
the most frequent types of bugs found in deployed software. Actually, it was
found that more than 60% of the software faults found in the field fall in just
13 fault types. This finding opened the possibility of creating a fault injection
tool (G-SWIFIT) that injects the most frequent types of faults, knowing that
even with a small number of fault injection operators (a fault operator injects
a given fault type) it is possible to achieve a reasonably good coverage of the
software faults universe.

A recent work [32] researched whether software faults injected according
to the fault types identified in [36] are really representative of residual elusive
software faults. The results show that in some cases a significant share (up
to 72%) of injected faults cannot be considered representative of residual
software faults.

Concerning the technology of fault injection tools, the tool proposed in
[36] (G-SWIFIT) injects faults at the executable code level. This has the
advantage of being able to inject faults in any software component, even
without access to its source code. However, the precision of the fault injection
operators is not ideal, as the information available at assembly level (the
G-SWIFIT tool creates an assembly version from the target executable code)
does not allow a perfect identification of all the code patterns where a given
fault type can be injected. Despite this, G-SWIFIT has the advantage of being
quite fast, as the injection process consists of changing just a few bytes in the
executable code.

The tool used in [32] assumes that there is access to the source code of
the target software. This allows a more precise emulation of the faults but
incurs on the extra cost of requiring the compilation and linking of the target
code after the injection of each fault, which can take a considerable amount
of time. The ucXception tool discussed in this chapter also assumes that the
source code is available but considerably optimizes the process of injecting
the faults.

In the context of this chapter, it is relevant to overview some fault injection
tools that can inject software faults (in fact, most of the fault injection tools
found in the literature only emulate hardware faults).

JACA [37] is a source-code independent tool that has been designed to
validate Java applications. It injects high-level software faults and is based

254 Robustness and Fault Injection for the Validation of Critical Systems

on reflection to inject interface faults in Java applications at the bytecode
level [38]. The goal of this tool is to use high-level programming features to
corrupt attribute values, methods parameters or return values during runtime.
The Java Software Fault Injection Tool [39] does not need the source code to
perform the injection because it can directly mutate compiled code and it is
based on the G-SWFIT [36].

The SAFE tool [32] is an application that uses Software Implemented
Fault Injection (SWIFI) technique to inject realistic software faults in pro-
grams coded in C and C++. This tool uses MCPP as parser, to get the tree of
code and then applies some variations to the original files (code with simple
mutations) with the selected operators. SAFE implements thirteen operators,
the same number as in G-SWIFT [36]. However, while SAFE implements
these operators at the source code level, G-SWIFT implements them at the
binary level.

The third tool described in this chapter, the ucXception software fault
injection tool, and it follows an approach similar to SAFE [40] in terms of
output, which consists of producing the source code files with changes made
in it. However, the proposed tool was designed to optimize the maintainability
and easiness of using the fault injector, which is an essential aspect to
disseminate the use of software fault injection tools.

12.3 Robustness Testing and Fault Injection
for the Robustness Evaluation of Services

In this section, we explain the concepts implemented by our toolset that allow
the evaluation of services, based on robustness testing and fault injection.
Figure 12.1 overviews our target scenario by depicting a runtime interaction
between a client and a service application. The service is supported by an
HTTP server and also makes use of a database. We highlight in red critical
points where our tools inject faults. Faults in the client request are set by our

Figure 12.1 Scenario for service robustness evaluation using wsrbench, PDInjector and
ucXception.

12.3 Robustness Testing and Fault Injection 255

robustness testing tool for external interfaces (SOAP interfaces) – wsrbench;
faults in result sets that are delivered to the application are injected by our
robustness testing tool for inner interfaces (application-database interfaces)
– PDInjector; and finally, we emulate the presence of software faults in the
underlying middleware being used with our third tool – ucXception, which
is capable of injecting such faults offline. As wsrbench and PDInjector are,
in practice, separated by small details, we merge the explanation of both
tools in the next paragraphs, explaining the differences whenever appropriate.
ucXception is overviewed in the last part of this section.

12.3.1 Robustness Testing with wsrbench and PDInjector

wsrbench is a web-based tool for external interface testing of web services
and is available at wsrbench.dei.uc.pt. In summary, it operates by sending
invalid calls to web service operations. For this, the tool user must provide a
WSDL document location, which describes all service operations, including
input and output parameters (and data types). The tool then generates random
calls based on the operation arguments data types and also domains (when
provided by the user). These random calls are then sent to the service without
further changes (to understand its behavior without the presence of invalid
inputs). The remaining calls are mutated to include the invalid parameters
that typically form the robustness tests. These mutated calls will eventually
be sent to the service, so that its behavior can be assessed.

PDInjector is the tool used for testing the internal interfaces. It is based on
the presence of an instrumented data access driver (e.g., a JDBC driver) that
should be placed between the application, generically designated by service
application, and the data storage system. This instrumented driver has the
exact same interface of a regular data access driver, which essentially means
that to use the tool, no changes to the service code, database management
system, or database are required. The main idea is that the driver intercepts all
calls to the database management system and, at specific moments, simulates
the presence of poor quality data, by replacing the original data coming
from the database with poor quality data. The goal is to understand if the
application can handle the mutated data coming from the database in a robust
manner or if, otherwise the service is poorly built and cannot tolerate the
presence of dirty data (e.g., by becoming unavailable or throwing unexpected
exceptions when processing the data).

Both tools wsrbench and PDInjector are prepared to operate according to
the following sequential phases:

256 Robustness and Fault Injection for the Validation of Critical Systems

1. Warm-up: Valid client requests are issued to the service application
and the goal is just to warm-up the system to reach typical operational
conditions;

2. Injection: Invalid inputs are injected before the application code is
reached(invalid inputs are generated at the client by wsrbench, and at
the driver by PDInjector);

3. Analysis: The service behavior is analyzed by examining the responses
produced by the system.

During the first two phases, PDInjector assumes there is a workload gen-
eration client that is able to place valid requests on the system, as requests
must be generated by some outside entity. Since wsrbench is placed at the
client-side, it is able to generate those valid requests. These requests are then
used as basis to perform different functions according to the phase being
executed.

During the warm-up phase all calls pass from the client and reach
the server and there is no injection of invalid data by wsrbench. Similarly,
PDInjector intercepts all data access calls, but does not inject any mutated
data during this phase. As mentioned, the goal is to let the system warm-up
and reach typical working conditions.

During the injection phase, we replace genuine data generated by the
client in wsrbench, or coming from the database in PDInjector, with data that,
for the particular data type and value being handled, represents a robustness
problem. The types of problems that should be emulated by our tools were
based on previous studies on robustness testing for wsrbench and also on a
survey in data quality classification, where we identified representative data
quality problems (e.g., misspellings, abbreviations, empty data, extraneous
data) associated with common data types (e.g., text, numbers) [9]. The total
number of mutations is quite large and, as such, we present a subset in
Table 12.1 (detailed versions can be consulted in [5] and [41]).

The injection of invalid/mutated data can be performed once per each
client call, since the goal is to understand how faulty data can affect the
execution of that particular operation. Despite this, it is also possible to inject
a given number of faults during the execution of a service operation (which
we have followed in our experiments with PDInjector). Although injecting
several faults may lead to difficulties in understanding the exact causes of a
failure, it is frequently the typical choice in the robustness testing domain due
to its simplicity and ability to disclose problems.

It is desirable that all public operations should be tested, but this obviously
depends on the test being executed. For instance, a developer may be only

12.3 Robustness Testing and Fault Injection 257

Table 12.1 Examples of Robustness and poor data quality mutations
Data Type Robustness Mutations Data Quality Mutations
String Replace by null Replace by null

Replace by empty Replace by empty
Replace by string with
nonprintable characters

Replace a word by a misspelled
word (Dictionary-based) or, if no
match, use a random single edit
operation (insertion; deletion;
substitution of a single character;
or transposition of two adjacent
characters) over a randomly
selected word

Add nonprintable
characters to the string

Add whitespace in a leading or
trailing position, or between
words (random choice)

Replace by
alphanumeric string

Add extraneous data in leading,
trailing, or random position
(random choice)

Integer Replace by
MAX INTEGER

Add one numeric character

Replace by
MAX INTEGER – 1

Set to zero

Replace by
MAX DOMAIN + 1

Remove one random numeric
character

Subtract 1 Flip sign
. . .

interested in testing a few operations). In any case, for each operation being
tested, each of the operation parameters (wsrbench) or of the data access
points (PDInjector) present in the code should also be tested in this phase.
This desirable execution profile of the injection phase is represented in
Figure 12.2.

Figure 12.2 Basic execution profile of the tests.

258 Robustness and Fault Injection for the Validation of Critical Systems

Covering all data access points naturally depends on the client workload,
which must provide adequate coverage. This aspect is currently out of the
scope of our toolset. In some cases, data access points may be shared by
different service operations. Even in such cases, it is desirable to invoke the
different service operations, as it will exercise different areas of the code, thus
having the ability to disclose different problems. Each data access point (or
operation parameter, in the case of wsrbench) should be tested by PDInjector
with all predefined poor data faults.

The injection phase could be automatically configured to stop when
a given number of data access points (or operations/parameters) has been
covered by the tests. After starting a test, wsrbench stops when all opera-
tions/parameters have been tested. In the case of PDInjector, we currently
determine that a test should stop when either the client action has concluded
(i.e., a response is delivered to the client) or when a failure is detected.

The last phase refers to the analysis of the tests results, which includes
classifying any observed failures (e.g., using a failure mode scale, such as
CRASH [7]) and also understanding the location and origin of the problems
disclosed during the tests. Performing this analysis step requires source code
access to understand if the output of the tests is a bug, what is the exact
location (note that an value delivered to a specific point in the code may only
be improperly used in another part of the code) and why it is a problem (so
that it is corrected). If the developers want to classify the service behavior it
is possible to use the CRASH scale, which classifies the severity of failures in
Catastrophic, Restart, Abort, Silent, or Hindering. This kind of classification
is only necessary if the developer needs to, for instance, prioritize bug fixing.

12.3.2 Emulating Software Faults with ucXception

This section describes the operating mode of the ucXception software fault
injection tool, which aims at simplifying and generalizing the process of
emulating software faults. ucXception modifies the source code of programs
by applying software fault emulation operators over abstract syntax tree and
produces software patches in an automated way. The existing specifications
of emulation operators in the literature, target the emulation of software faults
in binary code, and source-level operators have not been properly specified.
ucXception currently uses a refined and adapted version of the existing
specifications to work at the source-level.

This fault injector tool injects faults in code and the emulated faults
resemble real software faults made by actual developers, which might lead to
bugs. This tool was created in Java, using Eclipse CDT Plugin, and is able to

12.3 Robustness Testing and Fault Injection 259

inject faults in C code by following the Software Implemented Fault Injection
(SWIFI) technique.

Table 12.2 shows the most important fault operators of ucXception. To
apply each of these operators, there is a set of rules, which we name con-
straints, that assure the realism of the injected faults. These constraints were
created based on the observation of real bugs [10]. The injection is location-
based, because only the code locations that validate all constraints related to
each of the operator, can be used to inject faults realistically. Table 12.3 shows
all the constraints that are used with the operators. Each of the operators
can use one or more constraints and an important aspect is that all related
constraints of a given operator must be valid so that it can be applied in some
location of the code.

The main tasks performed by the ucXception software fault injection tool
are as follows:

1. Read source code;
2. Create the Abstract Syntax Tree (AST);
3. Verify all constraints related to the current operator;
4. Apply the operator in the AST (if the validity of the constraints is

verified);
5. Create the patch with the modifications, comparing modified code with

the initially source code.

Table 12.2 Fault emulation operators
Operators Description
MFC Missing function call
MIA Missing if construct around statements
MIEB Missing if construct plus statements plus else

before statements
MIFS Missing if construct and surrounded statements
MLAC Missing and sub-expr. in logical expression used

in branch condition
MLOC Missing or sub-expr. in logical expression used in

branch condition
MLPA Missing localized part of the algorithm
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WAEP Wrong arithmetic expression in parameters of

function call
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to a variable

260 Robustness and Fault Injection for the Validation of Critical Systems

Table 12.3 Fault emulation constraints
Constraints Description
C01 Return value of the function must not be used
C02 Call/Assignment/The if construct/The statements

must not be the only statement in the block
C03 Variable must be inside stack frame
C04 Must be the first assignment for that variable in the

module
C05 Assignment must not be inside a loop
C06 Assignment must not be part of a for construct
C07 Must not be the first assignment for that variable in

the module
C08 The if construct must not be associated to an else

construct
C09 Statements must not include more than five

statements and not include loops
C10 Statements are in the same block, do not include more

than five statements, nor loops
C11 There must be at least two variables in this module
C12 Must have at least two branch conditions
C13 The if construct must be associated to an else

construct

The fault injector beings by reading the source code, which consists of files
typically coded in C or C++. The code is then analyzed by the Eclipse CDT
plugin and an AST tree is built. In order to inject a fault, the injector searches
for the node where it can be injected (it evaluates the truthfulness of all
constraints of the particular operator), and modifies it, according to operator
specification. After that, the AST is rewritten, by reading the modified code.
The output of the ucXception tool is a set of individual patches, with each
patch corresponding to the emulation of a particular bug. Thus, each patch
can be applied in an experimental evaluation to emulate the presence of a bug
at a particular code location.

12.4 Case Studies

In this section we describe three case studies that illustrate the application
of our toolset. The first case study illustrates the usefulness of wsrbench in
testing the public interface of web services that serve to diagnose a Loco-
motive On-board computer; the second case study focuses on inner interface
testing of a web based Enterprise Resource Planning system with the use

12.4 Case Studies 261

of PDInjector; and finally, the third case study illustrates the ucXception
software fault injection tool by targeting popular middleware for web-based
systems – the Apache HTTP server.

12.4.1 External Interface Testing: Case Study #1

MFB is a Locomotive On-board Computer (LOC) used for data acquisition.
The on-board computer continuously provides data to the dispatching center
regarding current position, operation status and mechanical parameters of the
traction vehicle. The functions of the device are the following.

• Automatically connect to the main supervisory system of traction
vehicles and engine drivers.

• Management of the electronic logbook.
• Supervise of the electric traction energy on diesel and electric locomo-

tives.
• Automatically measure the fuel flowing to and from the feeder, sending

reports to the dispatch center in case of unaccounted fuel consumption.
• Supervise the engine’s activity, support the engine’s diagnostic and

maintenance, collect digital signals supplied by the relay contactors, and
count the operating hours of the mechanical machinery.

The MFB Diagnostic Centre is composed of a set of SOAP web services,
implemented in PHP, that run on an Debian Linux server and use a Post-
greSQL database. We used wsrbench to perform robustness tests on the web
services of the MFB Diagnostic Centre. The robustness tests of the tool were
complemented with manual code inspection, which focused on the analysis
of the code in terms of robustness and also security.

Results for case study #1
In total, 6 services and 53 inputs were tested with the wsrbench tool, which
resulted in a total of 473 tests performed. The following items highlight the
main findings:

• 37 tests disclosed robustness problems.
• 7 tests results were inconclusive and were checked manually.
• 15 out of the 47 inconclusive test cases revealed the presence of real

problems, requiring developer attention.
• The final results showed robustness problems in ∼38% of the inputs (20

out of 53).

262 Robustness and Fault Injection for the Validation of Critical Systems

Not all the revealed issues led directly to hang or crash failures, but these
issues show that inputs are incorrectly handled, and therefore represent bug
prone code. These issues also mean that there was improper preparation of the
code to deal with unexpected inputs. Such cases may lead to severe problems
under special operational conditions, and also hinder the maintainability of
the system.

12.4.2 Inner Interface Testing: Case Study #2

In this case study, we opted to test a business-critical pure web-based applica-
tion for Enterprise Resource Planning [27]. We selected a well-known widely
used commercial open source ERP business solution for enterprises. This
ERP is a world leader in its category, with, at the time of writing, about 2.5
million downloads. It allows managing a whole business, and supports typical
business processes such as sales, manufacturing, or finance. As we are not
allowed to disclose the name of the tool, we name it ERPx. ERPx requires a
database, which we opted to be PostgreSQL 9.3, and a web server for which
we chose the popular Apache Tomcat 7.0.68. As we had the intention to
repeat the tests, besides using a web browser, we recorded and later replayed
user operations on the browser (when interacting with ERPx) with SikuliX
1.1.0.

ERPx is a very large application and, as such, we opted to select a few
test cases, which should suffice to illustrate the usefulness of PDInjector.
We considered the CRUD model [42] for selecting operations with different
profiles: CREATE, READ, UPDATE and DELETE. An important aspect is
that all the selected test cases are quite complex and are mostly composed
of read operations, but we classified them according to their main goal. Our
intention was to obtain a good mix between operations that potentially have
distinct data access patterns or are built in differently. Table 12.4 presents the
operations that we selected for testing, how they map to the CRUD model,
and a letter (A, B, C, D, and E) that identifies a type of failure uncovered
during testing. The uncovered failures are discussed in the next section.

Results for case study #2
As we can see in Table 12.4, we were able to disclose failures in all oper-
ations tested. The uncovered issues were discovered at the following three
distinct parts of the system: (i) the application code; (ii) in the widely used
Object-Relational Mapping framework used by ERPx; and (iii) in the popular
PostgreSQL driver code.

12.4 Case Studies 263

Table 12.4 Overview of the tests and results for case study #2
Failure Reference

Operation Name Type (CRUD) (See Table V)
Login R A, B, C, D
Create Organization C A, C, D
Create a new User C A, B, C, D
Create a new Role C A, B, C, D
Create Product C A, B, C, D, E
Delete Product D A, B, C, D
Update Product U A, B, C, D
Export Product Categories R A, B, D

Table 12.5 presents an excerpt of the issues uncovered during the tests,
which were selected due to their manifestation in different forms and due
to their location in different structural parts of the system (as visible in
Table 12.4). All of these examples are problematic, even in those cases where
no message was shown to the user, as eventually the application became
unusable.

Failure A mostly occurred whenever the data was mutated to null. How-
ever, in the case of the example, it is a mutated variable value (variable
referenceID) that causes an access to the database to return null. This null
value is then used without being checked, triggering a NullPointerException
(the developer could first check the value to avoid the exception). This internal
exception triggers a TemplateModelException that becomes visible to the user
in an alert box.

Table 12.5 Selected cases from case study #2
Root Exception

Ref Triggered Location Last Mutation External Behavior
A NullPointerException Application changeToOppositeCase TemplateModelException

reported to the user
B ClassNotFoundException Application add Extraneous No message displayed

to the user
C PSQLException Application replaceBySQLString Application error

message disclosing
table row contents

D StringIndexOutOfBounds JPA
Middleware

replaceByEmptyString Application error
message stating String
index out of range

E ArrayIndexOutOfBounds JDBC Driver addCharactersToString No message displayed
to the user

264 Robustness and Fault Injection for the Validation of Critical Systems

ERPx loads a few classes dynamically, and Failure B occurs when one
of the class names is incorrect (due to the injection of a mutation). We
do not have enough information to state if this is the right design choice
(i.e., having dynamic loading of classes), however disclosing this issue can
actually help programmers understanding if this is a good design decision
and especially how the application is prepared to handle this kind of situation.
Anyway, the user should be informed in the event of an error (especially if
it renders the application unusable), which did not happen during our tests.
This suggests that the application’s error handling mechanisms have space
for improvement.

Failure C is a critical example. It actually is a second order SQL Injection
problem, where malicious data present in the database is improperly used
to build an SQL query. A malicious user might be able to obtain sensitive
information, as the information coming from the database is not sanitized
by the service. This shows the potential of PDInjector to disclose security
problems. In addition to this, and although the error messaging system of
the service was correctly triggered, the actual message displayed to the user
discloses the contents of an entire database table row, which should not
happen.

Failure D is an interesting case, where the tool disclosed fragility in the
implementation of the Object-Relational Mapping framework used by ERPx.
In this particular case, the ORM framework accesses the first character of a
string and fails as the string had turned empty due to the mutation applied. It is
interesting because the framework previously checks if the string is null, but it
does not check if it is empty and then immediately accesses the first character.
This triggers a StringIndexOutOfBoundsException. This is an implementation
flaw, quite similar to the one described in the next paragraph (which already
received a correction from the developer community).

Failure E is triggered when adding characters that include a single quote
to a string. This is a bug in the driver being used in the experiments (Post-
greSQL JDBC Driver 9.4–1201) that has been reported [43] and fixed in
version 9.4–1204. In summary, the code fails to find the closing single quote
and returns the position of the last character in the query as the end of the
string. The issue here is that in another part of the driver, the code does not
expect this behavior, and the outcome is an access to a position that is one
place after the end.

Before executing the tests we were expecting to find a few application-
level issues, but PDInjector was able to find issues at the middleware level

12.4 Case Studies 265

(in fact at two middleware levels – ORM framework and JDBC driver). The
fact that the middleware is widely used and also tested highlights the useful-
ness of the tool in disclosing issues in applications experiencing unexpected
conditions. Moreover, the potential to find problems that go beyond aborted
executions with exceptions (or wrong messages presented to the user) and
that can actually represent security problems, further emphasizes value of
this type of testing for application architects and developers.

12.4.3 Injecting Software Faults in Service Middleware:
Case Study #3

In this case study, we illustrate the application of the ucXception software
fault injection tool to the Apache Web server [44]. The main idea is to
have the Apache Web server installed, allowing the use of HTML and PHP
pages. For this, along with specific typical configurations, we installed the
Apache2 HTTP Server (version 2.4.12); the Apache Portable Runtime; Perl
Compatible Regular Expressions (PCRE); and PHP: Hypertext Preprocessor
(PHP5, including the package libapache2-mod-php5).

We are also using the APache eXtenSion tool (APXS), so that we can
install new modules (e.g., patched modules) without the need to recompile
the complete Apache server. As a result, APXS makes it possible to execute
a large number of experiments in a reasonable amount of time. The experi-
ments were carried out in a specific environment, with faults being injected
mod rewrite. The goal is to demonstrate that the fault injector tool really
works and that the injected faults produce effects on the Apache Web Server.

To verify the integrity of the target environment after the injection of each
fault we perform the following tests:

• Apache: This is the most basic test that should be done at Apache
after installation and consists of sending an HTTP request to index.html.
The response is normally a page with information about the Apache
installation, with the string: “It works”;

• PHPInfo: This test is carried out to check the operation of PHP. It pro-
vides a large amount of information to the user, including configuration
settings, PHP version, OS version;

• Out: Request holding parameters that will be shown at the response;
• PHPBench: Verify and measure the time that certain PHP functions take

related with the manipulation of strings and arrays;.

266 Robustness and Fault Injection for the Validation of Critical Systems

12.4.4 Results for Case Study #3

In order to inject faults, our injection tool analyses the source code nodes
to identify where each fault operator can be applied (as mentioned, all
constraints associated with a particular fault emulation operator need to be
valid at a particular location). After evaluating the code of the Apache module
“mod rewrite”, the tool identified 1474 locations in this component where
faults could be injected. As previously mentioned, ucXception produces one
patch file each time a software fault emulation operator is injected. Thus, the
output of the tool is a set of patch files, each of which is applied to the original
source code file in order to generate a version with the target program with
the software fault. Table 12.6 shows the number of patch files that the tool
produced for mod rewrite.

It is important to refer that the number of patches created by the appli-
cation of the MLPA operator is quite large, as it removes a small part of the
algorithm, consisting of any combination of up to five function calls and/or
statements. As a result, the application of this operator produced over one
third of the patch files. Also, it is worth mentioning that only one patch was
created through the application of operator WPFV. This operator consists
of the replacement of a function parameter by another that must be of the
same type. This restriction is related to the environment in which the fault is
injected, since its lack could trigger compilation errors. Thus, the existence of
only one patch is related to the need of the changed parameter to be exactly
of the same type of the initial parameter. In C and C++ languages, developers
typically create their own structures of a specific type, to be easier to represent
the data in the application. Due to this, the types of variables used are quite
different in a function and their number of occurrence is low.

The injected faults produced anomalous effects in 213 trials, corre-
sponding to 14.45% of injected faults. In our context, a fault has no effect
whenever the output is equal to the one in a fault-free program. The fault
has effect if there is no output, if the output is incorrect, or if the output
is corrupted. In our experiments, the output refers to the HTTP responses
received from the Apache web server. The number of experiments is a result
of the constraints that need to be evaluated at each potential location in the

Table 12.6 Number of patches for mod rewrite
Operator MIFS MLAC MFC MIA MLOC MLPA MVAE MVAV MIEB MVIV WVAV WAEP WPFV Total
Nr. of
Patches

239 79 162 260 41 526 25 15 54 14 24 34 1 1474

12.4 Case Studies 267

code. If all the constraints of one operator are valid, then the operator will be
applied.

The behaviors observed during the different tests were evaluated in three
steps. In the first step we selected only unique behaviors, in the second step
we analyzed and compared the selected behaviors to create a classification
scheme, and in the final step, a script evaluated all the behaviors, one by
one, through the classification. The behaviors observed were grouped in the
following three categories (failure modes):

• Correct: The Web server shows a correct behavior;
• Wrong output: The Web server returns incorrect information, or no

information at all;
• Apache error: Refers to the errors directly related with the behavior of

apache2, such as bad request, not found with/without correct url, Internal
Server Error, Ok, and Forbidden. After classifying each experiment, we
further divided the initial set of Apache errors into 9 distinct categories,
in order to understand, in a more comprehensive manner, the diverse
failure modes of the Apache web server in the presence of software
faults. Table 12.7 shows each of the nine identified categories and their
respective numeric reference.

Table 12.8 summarizes the results obtained during our experimental cam-
paign, highlighting and counting the different anomalous behaviors found
during the experiments. C, W, and A in the table, respectively correspond
to Correct, Wrong output, and Apache error.

We can see that even the basic Apache operation is affected by the
introduced faults. However, there is no rule for rewriting of files when they
are available in the directory, which is the case of Apache “It works!”.

Table 12.7 Types of observed behaviors
Description
1 Bad request
2 Empty
3 Forbidden
4 Found
5 Internal Server

Error
6 Not found – url OK
7 Not found – wrong

url
8 Apache error – Ok
9 Wrong output

268 Robustness and Fault Injection for the Validation of Critical Systems

Table 12.8 Results by behavior
Apache PHPInfo Out PHPBench Number
1 W W W W 86
2 C C A C 61
3 A A A A 25
4 C C W C 19
5 W W C W 19
6 C W A W 1
7 A W W W 1
8 A A A C 1

A, Apache Error; C, Correct; W, Wrong Output.

Figure 12.3 shows the number of anomalous effects produced by patch
type, and according to the type of test executed.

It is quite visible in Figure 12.3 that the operator that causes the most
failures is MLPA, but this is a result of the relatively higher number of patch
files created, as explained earlier. Figure 12.4 shows a detailed view of the
number of different effects observed during the tests, with respect to the
different types of tests executed.

As we can see in Figure 12.4, the most frequent behavior is an Empty
response, which occurs when the Apache web server responds with an empty
HTML body. The remaining most frequent behaviors are Internal Server
Error and Wrong output. There are 2 anomalous behaviors that occur with
a quite low frequency, in particular Forbidden and a Not found - wrong url

Figure 12.3 Anomalous effects by type of patch.

12.4 Case Studies 269

Figure 12.4 Effects by behavior.

(having an absolute frequency of two and one, respectively). Internal server
errors are sent by Web servers to signal errors occurring at the server-side,
while a wrong output consists of an incorrect result being sent to the user in
the HTML body.

As a side note, the results obtained in PHPInfo and PHPBench tests were
similar. This occurs because the PHPInfo and the PHPBench tests are based
in two pages with different PHP code, but the rewriting process for both is the
same. Thus, these two tests involve the same principles, the same workflow
in Apache. Regarding the results of tests with some parameters, we observed
that four anomalous behaviors just occur in this test, Not found - url ok, Bad
Request, OK and Found. As might be expected, these are the tests where there
are more errors due to a greater use of module “mod rewrite”. All the requests
are rewritten, and the parameters are presented on a page in PHP.

The highest number of anomalous behaviors was observed during the Out
test. Moreover, we should note that the error Not found - url ok occurs often.
This behavior means that the request is done correctly, and received properly
by the Apache server, but actually it is not rewritten correctly, and because
there is no file with that name and in that directory, returns Not Found.

As a final note, in some cases, instead of obtaining the right result, it is
possible to obtain the exact path where the HTML or PHP files are located,
the DocumentRoot of Apache. This can be a serious security problem and
it occurred with, for example, one application of operator MIEB and one
of MIFS. There are also two cases, applying the operator MIA, where it is

270 Robustness and Fault Injection for the Validation of Critical Systems

possible to see a page with PHP code, instead of the result of the execution of
code. More than suggesting that a problem has occurred during the loading
of the PHP module, it may represent a potential security problem, as a user
will have access to internal code details. This also shows that a single fault
introduced into the Apache module can affect the operation of other, as is the
case of the PHP module.

12.5 Conclusion

In this chapter, we presented a toolset, composed of three tools: wsrbench and
PDInjector, for robustness testing of external and inner interfaces, respec-
tively; and ucXception for the injection of software faults. The tools were
described from a functional perspective and their use was illustrated in three
case studies. In particular, wsrbench was used to assess the robustness of a set
of web services used in a safety-critical environment, PDInjector was used to
assess the robustness of a web application used in business-critical environ-
ments, and finally ucXception was used to inject software faults in the very
popular web server Apache HTTP server. The tests disclosed several different
failures, including bugs at the application-level and supporting middleware
for database access (i.e., JPA implementation and the JDBC driver used) and
also in the web server tested. Some of the issues found were related with
security problems. In future work we intend to further integrate the tools and
research ways of automating the tests, possibly resorting to machine learning
algorithms to analyze the behavior of the systems being tested.

References

[1] Loshin, D. (2011). Evaluating Business Impacts of Poor Data Quality.
Inform. Quality J.

[2] Lee, I., and Iyer, R. K. (1995). Software Dependability in the Tandem
GUARDIAN System. IEEE Trans. Softw. Eng. 21, 455–467.

[3] Kalyanakrishnam, M., Kalbarczyk, Z., and Iyer, R. (1999). “Failure Data
Analysis of a LAN of Windows NT Based Computers,” in Proceedings
of the 18th IEEE Symposium on Reliable Distributed Systems, 178, IEEE
Computer Society.

[4] Rodrı́guez, M., Albinet, A., and Arlat, J. (2002). “MAFALDA-RT: A
Tool for Dependability Assessment of Real-Time Systems,” in The 2002

References 271

International Conference on Dependable Systems and Networks (DSN
2002), 267–272, IEEE Computer Society.

[5] Laranjeiro, N., Vieira, M., and Madeira, H. (2012). A Robustness
Testing Approach for SOAP Web Services. JISA 3, 215–232.

[6] Weyuker, E.J. (1998). Testing component-based software: a cautionary
tale. Softw. IEEE 15, 54–59.

[7] Koopman, P., and DeVale, J. (1999). “Comparing the robustness of
POSIX operating systems,” in Twenty-Ninth Annual International Sym-
posium on Fault-Tolerant Computing, 30–37.

[8] Rodrı́guez, M., Salles, F., Fabre, J.-C., and Arlat, J. (1999).
“MAFALDA: Microkernel Assessment by Fault Injection and Design
Aid,” in The Third European Dependable Computing Conference on
Dependable Computing (Berlin: Springer-Verlag), pp. 143–160.

[9] Laranjeiro, N., Nur Soydemir, S., and Bernardino, J. (2015). “A Survey
on Data Quality: Classifying Poor Data,” in The 21st IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2015),
IEEE Computer Society, Zhangjiajie, China.

[10] Antunes, J. and Neves, N. (2012). “Recycling Test Cases to Detect Secu-
rity Vulnerabilities,” in IEEE 23rd International Symposium on Software
Reliability Engineering (ISSRE 2012), pp. 231–240, IEEE Computer
Society, Washington, DC, USA.

[11] Batini, C., Palmonari, M., Viscusi, G. (2014). Opening thande Closed
World: A Survey of Information Quality Research in the Wild, in
The Philosophy of Information Quality (Berlin: Springer International
Publishing), 43–73.

[12] ISO/IEC (2008). Software engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Data quality model. ISO/IEC.

[13] SWEBOK V3 Guide IEEE Computer Society.
[14] Ge, M. and Helfert, M. (2007). “A Review of Information Qual-

ity Research – Develop a Research Agenda,” in 12th International
Conference on Information Quality, pp. 76–91, Cambridge, MA, USA.

[15] Pipino, L. L., Lee, Y. W., and Wang, R. Y. (2002). Data quality
assessment. Commun. ACM 45, 211–218.

[16] Loshin, D. (2010). The practitioner’s guide to data quality improvement.
Burlington, MA: Morgan Kaufmann.

[17] Quality, E. D. (2015). The data quality benchmark report. Experian Data
Quality.

272 Robustness and Fault Injection for the Validation of Critical Systems

[18] Marsh, R. (2005). Drowning in dirty data It’s time to sink or swim: A
four-stage methodology for total data quality management. J. Database
Market. Cust. Strat. Manage. 12, 105–112.

[19] Caro, A., Calero, C., Mendes, E., and Piattini, M. (2007). A Probabilistic
Approach to Web Portal’s Data Quality Evaluation, in 6th Interna-
tional Conference on the Quality of Information and Communications
Technology, 2007, QUATIC 2007 (New York, NY: IEEE). 143–153.

[20] Xiaojuan, B., Shurong, N., Zhaolin, X., and Peng, C. (2008). Novel
method for the evaluation of data quality based on fuzzy control. J. Syst.
Eng. Electron. 19, 606–610.

[21] Bergdahl, M., Ehling, M., Elvers, E., Földesi, E., Körner, T., Kron, A.,
Lohauß, P., Mag, K., Morais, V., and Nimmergut, A. (2007). Handbook
on Data Quality Assessment Methods and Tools, Wiesbaden.

[22] Choi, O.-H., Lim, J.-E., Na, H.-S., Seong, K.-J., and Baik, D.-K. (2008).
“An Efficient Method of Data Quality Evaluation Using Metadata Reg-
istry,” in Advanced Software Engineering and Its Applications, 2008,
ASEA 2008 (New York, NY: IEEE), 9–12.

[23] Galhardas, H., Florescu, D., and Shasha, D. (2001). “Declarative Data
Cleaning: Language, Model, and Algorithms,” in In VLDB (New York,
NY: IEEE), pp. 371–380.

[24] Haug, A., Zachariassen, F., Liempd, D. van (2011). The costs of poor
data quality. J. Ind. Eng. Manage. 4.

[25] Musial, E. and Chen, M.-H. (2012). “Effect of Data Validity on the
Reliability of Data-centric Web Service,” in IEEE 19th International
Conference onWeb Services (ICWS), 2012, Honolulu, HI, USA.

[26] Ivaki, N., Laranjeiro, N., and Vieira, M. (2013). “Towards Evaluating
the Impact of Data Quality on Service Applications,” in Workshop on
Reliability and Security Data Analysis (RSDA 2013) co-located with
The 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2013), IEEE Computer Society, Budapest,
Hungary.

[27] Laranjeiro, N., Soydemir, S. N., and Bernardino, J. (2016). Testing Web
Applications Using Poor Quality Data,” in Latin-American Symposium
on Dependable Computing (LADC 2016). IEEE Computer Society, Cali,
Colombia.

[28] Natella, R., Cotroneo, D., and Madeira, H. S. (2016). Assessing Depend-
ability with Software Fault Injection: a Survey. ACM Comput. Surv. 48,
44:1–44:55.

[29] Ng, W.T., and Chen, P.M. (2001). The Design and Verification of the Rio
File Cache. IEEE Trans. Comput. 50, 322–337.

References 273

[30] Voas, E., Charron, F., McGraw, G., Miller, K., and Friedman, M. (1997).
Predicting how badly “good” software can behave. IEEE Softw. 14,
73–83.

[31] Hiller, M., Jhumka, A., Suri, N. (2001). “An approach for analysing the
propagation of data errors in software,” in 2001 International Confer-
ence on Dependable Systems and Networks (New York, NY: IEEE),
161–170.

[32] Natella, R., Cotroneo, D., Duraes, J. A., and Madeira, H.S. (2013). On
Fault Representativeness of Software Fault Injection. IEEE Trans. Softw.
Eng. 39, 80–96.

[33] Moraes, R., Duraes, J., Barbosa, R., Martins, E., and Madeira, H.
(2007). “Experimental risk assessment and comparison using software
fault injection,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07) (New York, NY: IEEE),
512–521.

[34] Cerveira, F., Barbosa, R., Madeira, H., and Araujo, F. (2015). “Recov-
ery for Virtualized Environments,” in 2015 11th European Dependable
Computing Conference (EDCC) (New York, NY: IEEE), pp. 25–36.

[35] Christmansson, J., and Chillarege, R. (1996). “Generation of an error
set that emulates software faults based on field data,” in Proceedings
of Annual Symposium on Fault Tolerant Computing (New York, NY:
IEEE), 304–313. IEEE.

[36] Durães, J. and Madeira, H. (2006). Emulation of software faults: a
field data study and a practical approach. IEEE Trans. Softw. Eng. 32,
849–867.

[37] Moraes, R. L. de O., and Martins, E. (2003). “Jaca – a software
fault injection tool,” in Proceedings 2003 International Conference on
Dependable Systems and Networks (New York, NY: IEEE), 667–667.

[38] Martins, E., Rubira, C. M. F., and Leme, N. G. M. (2002). “Jaca: a
reflective fault injection tool based on patterns,” in Proceedings Inter-
national Conference on Dependable Systems and Networks (New York,
NY: IEEE), pp. 483–487.

[39] Sanches, B. P., Basso, T., and Moraes, R. (2011). “J-SWFIT: A Java
Software Fault Injection Tool,” in 2011 5th Latin-American Symposium
on Dependable Computing (New York, NY: ACM Library), pp. 106–
115.

[40] Natella, R. (2011). Achieving Representative Faultloads in Software
Fault Injection.

274 Robustness and Fault Injection for the Validation of Critical Systems

[41] Laranjeiro, N., Seyma, N. S., and Jorge, B. (2016) Poor Data Injector
Toolset. Available at: http://eden.dei.uc.pt/∼cnl/papers/2016-ladc.zip

[42] Martin, J. (1983). Managing the Data Base Environment. Upper Saddle
River, NJ: Prentice Hall PTR.

[43] PostgreSQL (2017). JDBC Driver – GitHub. Available at: https://github.
com/pgjdbc/pgjdbc/issues/369

[44] Pereira, G., Barbosa, R., and Madeira, H. (2016). “Practical Emula-
tion of Software Defects in Source Code,” in 2016 12th European
Dependable Computing Conference (EDCC), Gothenburg, Sweden.

Index

A
Aerospace 5, 11, 17, 136
ALF 184, 193
Assessment 4, 26, 87, 176

B
Blockly 65, 74, 195, 196

C
CECRISMO 121, 128
Certification 26, 94, 130, 229
Change impact

propagation 154, 159,
161, 164

Classification 83, 88, 93, 267
Constraint satisfaction

problems 161
Cost estimation 117, 121,

126, 139
Critical systems 32, 81,

112, 247

D
Data analysis 19, 88, 127, 207
Defect 83, 89, 97, 247
Dependability 86, 183,

207, 252
Design and

implementations 38, 58,
118, 227

Domain conceptualization 148

F
Fault Tolerance 231, 238,

244, 252

G
Gap analysis 3, 17, 23, 26

J
JTAG 227, 229, 241, 245

M
Model transformation 33, 36,

66, 186
Model-based software

engineering 33
Model-driven

architecture 33, 35
Model-driven

design 194
Model-driven

Engineering 31, 37, 67, 183
Model-driven testing 33
Modeling 22, 65, 145, 161
Monitoring 201, 220, 223, 241

O
ODC 82, 88, 93, 94
Ontologies 148, 149, 164

P
ProSigma 51, 227, 232, 240

275

276 Index

R
Railway interlocking

system 31, 58, 232, 234
Railways 227, 228
Requirement

analysis 32, 38, 128, 169
Requirement

modeling 146, 148, 157
Robustness

testing 19, 201, 212, 254
Root cause

analysis 82, 89, 97, 100

S
Safety 1, 105, 227, 241
Safety critical

system 3, 143, 227, 238
SIL 82, 152, 227, 231
Skills 96, 123, 144, 164
Software 1, 85, 183, 258

Software defects 82, 252
Software fault

injection 250, 252, 259, 261
Software faults 231, 248,

258, 265
Standards 1, 99, 157, 230
STECA 25, 167, 171, 178
SW-FMEA 183, 193, 194, 199
SysML 38, 65, 92, 195

T
Testing 126, 201, 211, 254
TMR 227, 237, 242, 245

U
UML 34, 65, 149, 189

V
V&V 12, 54, 229, 245
V&V process 99, 117, 121, 228

About the Editors

Andrea Bondavalli is a Full Professor of Computer Science at the University
of Firenze. Previously he has been a researcher and a senior researcher of
the Italian National Research Council, working at the CNUCE Institute in
Pisa. His research activity is focused on Dependability and Resilience of
critical systems and infrastructures. In particular he has been working on
safety, security, fault tolerance, evaluation of attributes such as reliabi-
lity, availability and performability. His scientific activities have originated
more than 220 papers appeared in international Journals and Conferences.
Andrea Bondavalli supports as an expert the European Commission in
the selection and evaluation of project proposals and regularly consultes
companies in the application field. Andrea Bondavalli led various national
and European projects such as the Italian MIUR PRIN “DOTS-LCCI” and
“TENACE” and the European projects ESPRIT BRA 3092 PDCS, 6362
PDCS-2, ESPRIT 20716 GUARDS, ESPRIT 27439 HIDE, IST-FP6-STREP-
26979 HIDENETS, TST5-CT-2006-031413 SAFEDMI e FP7 – 216295
CA AMBER, FP7 SST-2008-234088 ALARP, the ARTEMIS-2012-1-
333053 “CONCERTO”, the POR CReO 2007-2013, linea di intervento
1.5.a – 1.6 “SECURE”, the FP7-ICT-2013-10-610535 “AMADEOS”
(coordinator), the FP7-PEOPLE-2012-IAPP-324334 “CECRIS” (Coordina-
tor) and the PIRSES-GA-2013-612569 “DEVASSES”. Andrea Bondavalli
participates to (and has been chairing) the program committee in several
International Conferences such as IEEE FTCS, IEEE SRDS, EDCC, IEEE
HASE, IEEE ISORC, IEEE ISADS, IEEE DSN, SAFECOMP. He is the
chair of the Steering Committees of IEEE SRDS and a member of the edito-
rial board of the International Journal of Critical Computer-Based Systems.
Andrea Bondavalli is a member of the IEEE, the IFIP W.G. 10.4 Working
Group on “Dependable Computing and Fault-Tolerance”.

Francesco Brancati took his Master degree in Computer Science at the
University of Firenze in 2008 and his Ph.D. degree in Computer Science at
the Resilient Computing Lab – University of Firenze in 2012. His research

277

278 About the Editors

activity mainly focused on adaptive and safe estimation of different sources
of uncertainty to improve dependability of highly dynamic systems through
online monitoring analysis. During his Ph.D. he participated in the national
project DOTS-LCCI (Funded by MIUR) and in the European funded project
FP7-STREP-234088 ALARP) where he was mainly involved within the
Architecture Design WPs, and where he worked also as Resiltech on
system integration activities. Currently he works at Resiltech as Innova-
tion Manager and SW Solution Expert, he led ResilTech participation in
AMADEOS (FP7-ICT-610535) and in the CECRIS (FP7-PEOPLE-IAPP-
324334) projects and he is leading the participation in the STORM project
(H2020-DRS-2015-700191).

	Cover������������
	Half Title�����������������
	Series Page������������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents������������������������
	Preface��������������
	List of Contributors���������������������������
	List of Figures����������������������
	List of Tables���������������������
	List of Abbreviations����������������������������
	1: A Framework to Identify Companies Gaps When Introducing New Standards for Safety-Critical Software��
	1.1 Introduction�����������������������
	1.1.1 Contribution�������������������������

	1.2 State of the Art on Gap Analysis in the ICT World��
	1.3 Overview of the Framework and Methodology��
	1.3.1 The Framework��������������������������
	1.3.1.1 Processes������������������������
	1.3.1.2 Techniques and Tools�����������������������������������
	1.3.1.3 Personnel������������������������

	1.3.2 The Methodology to Exercise the Framework��

	1.4 Dataset Structure and Population���
	1.4.1 Dataset Structure������������������������������
	1.4.2 Population of the Dataset��������������������������������������

	1.5 Metrics for Gap Analysis�����������������������������������
	1.5.1 Qualitative Indications������������������������������������
	1.5.2 Quantitative Indication������������������������������������
	1.5.3 Driving Conclusions��������������������������������

	1.6 Case Study and Gap Analysis for DO-178B��
	1.6.1 Matching of DO-178B Techniques and Company’s Techniques��
	1.6.2 Acquire Data from Personnel��
	1.6.3 Analyze the Data: Techniques���
	1.6.4 Analyze the Data: Tools������������������������������������
	1.6.5 Conclusive Recommendations and Feedbacks���

	1.7 Discussion about the Gap Analysis Framework��
	1.7.1 An Application to the Moving Process���
	1.7.2 Time and Cost��������������������������
	1.7.3 Effectiveness and Reactions��
	1.7.4 Replacement Techniques�����������������������������������
	1.7.5 Different Approaches to Compliance���
	1.7.6 Questionnaire Assessment and Bias��

	1.8 Conclusions����������������������
	References�����������������

	2: Experiencing Model-Driven Engineering for Railway Interlocking Systems��
	2.1 Introduction�����������������������
	2.2 Background: MDE��������������������������
	2.2.1 MDA Viewpoints and Views�������������������������������������

	2.3 The Maturity of MDE������������������������������
	2.4 A Model-Driven Methodology for Prolan��
	2.4.1 Experimentation within a Pilot Project
	2.4.2 System Requirements Specification��
	2.4.3 System Design��������������������������
	2.4.4 Component Design�����������������������������
	2.4.4.1 Implementation�����������������������������

	2.4.5 Validation Design������������������������������
	2.4.6 Integration Verification Design��
	2.4.7 Component Verification Design��
	2.4.8 Model-Driven V&V Subprocess��

	2.5 Environment System Validation��
	2.6 Experimenting the CIT��������������������������������
	2.7 Lesson Learned�������������������������
	References�����������������

	3: SYSML-UML Like Modeling Environment Based on Google Blockly Customization���
	3.1 Introduction�����������������������
	3.1.1 Goal�����������������
	3.1.2 Blockly Customization����������������������������������
	3.1.3 Model Transformation���������������������������������
	3.1.4 Requirements Management������������������������������������
	3.1.5 MDE Flow���������������������
	3.1.6 Guiding and Warning Users��������������������������������������
	3.1.7 Modular Design and Viewpoints��
	3.1.8 Model Querying���������������������������
	3.1.9 Code Generation and Export to PlantUML���
	3.1.10 Simulation������������������������
	3.1.11 Conclusion and Future Work��

	4: A Process for Finding and Tackling the Main Root Causes that Affect Critical Systems Quality��
	4.1 Introduction�����������������������
	4.2 Background���������������������
	4.2.1 Orthogonal Defect Classification���
	4.2.2 Independent Software Verification and Validation (ISVV)��
	4.2.3 Related Work�������������������������

	4.3 Defects Assessment Process�������������������������������������
	4.3.1 Procedure Prerequisites������������������������������������
	4.3.3 Defects Root Cause Analysis��
	4.3.4 Improvements and Validation��

	4.4 Results������������������
	4.4.1 Characterization of the Systems��
	4.4.2 Defects in the Dataset�����������������������������������
	4.4.3 Enhanced ODC Results���������������������������������
	4.4.4 Enhanced ODC Defect Impact Analysis��
	4.4.4.1 Type vs. Impact������������������������������
	4.4.4.2 Trigger vs. Impact���������������������������������

	4.4.5 Consolidation of the Root Cause Analysis and Proposed Improvements���

	4.5 Conclusions����������������������
	References�����������������

	5: Framework for Automation of Hazard Log Management on Large Critical Projects��
	5.1 Introduction�����������������������
	5.1.1 Brief Introduction on DOORS��

	5.2 Approach�������������������
	5.3 Case Study���������������������
	5.4 Conclusion���������������������
	5.5 Tool Screenshots���������������������������
	References�����������������

	6: Cost Estimation for Independent Systems Verification and Validation���
	6.1 Introduction�����������������������
	6.1.1 ISVV Workflow��������������������������
	6.1.2 Objectives�����������������������
	6.1.3 Approach���������������������

	6.2 Construction of the ISVV Specific Cost Estimator���
	6.2.1 Structure of the Cost Predictor��
	6.2.2 Cost Drivers�������������������������
	6.2.3 Focal Problems in Predicting Costs for ISVV��
	6.2.4 Factor Reusability for ISVV-Related CE���
	6.2.5 Human and Organizational Factors���
	6.2.6 Motivating Example: Testing��

	6.3 Experimental Results�������������������������������
	6.3.1 Faithfulness of the Results��
	6.3.2 Sensitivity Analysis���������������������������������
	6.3.3 Pilot Use Case for Project Management��

	6.4 Case Studies�����������������������
	6.4.1 Complexity Factors�������������������������������
	6.4.2 Cost Impact of Requirement Management��
	6.4.3 Automated Analysis for Factor Selection��
	6.4.4 Quality Maintenance Across Project Phases��
	6.4.5 Fault Density and Input Complexity���

	6.5 Conclusions����������������������
	References�����������������

	7: Lightweight Formal Analysis of Requirements���
	7.1 Introduction�����������������������
	7.2 Objective��������������������
	7.3 ReqIF and Modeling�����������������������������
	7.3.1 Domain Conceptualization�������������������������������������
	7.3.2 Integration with Existing Practice of ISVV���

	7.4 Requirement Change Propagation���
	7.4.1 Original Specification�����������������������������������
	7.4.2 Changed Specification����������������������������������
	7.4.3 The Change Impact Propagation Method���

	7.5 Abstraction Levels of Impact Propagation���
	7.5.1 Topology-Based Propagation���������������������������������������
	7.5.2 Type-Based Propagation�����������������������������������
	7.5.3 Value-Based Propagation������������������������������������

	7.6 Resolution Modeling with CSP���������������������������������������
	7.7 Conclusions����������������������
	References�����������������

	8: STECA – Security Threats, Effects and Criticality Analysis: Definition and Application to Smart Grids���
	8.1 Introduction�����������������������
	8.2 Motivation���������������������
	8.2.1 Motivating Concerns in Industry��
	8.2.2 State of the Art and Background��

	8.3 STECA Process Description������������������������������������
	8.3.1 The High Level STECA���������������������������������
	8.3.2 STECA Inputs�������������������������
	8.3.3 Security Vulnerabilities�������������������������������������
	8.3.4 Threats Map������������������������
	8.3.5 Risk Assessment and Attack Severity��
	8.3.6 STECA Recommendations����������������������������������

	8.4 Conclusion���������������������
	References�����������������

	9: Composable Framework Support for Software-FMEA through Model Execution��
	9.1 Introduction�����������������������
	9.2 Software-FMEA Using fUML/ALF���������������������������������������
	9.2.1 Tooling for fUML and Alf�������������������������������������
	9.2.2 Software-FMEA through Alf Execution��
	9.2.3 Framework Support for Executable Error Propagation���
	9.2.4 Error Tokens, Component Activation���
	9.2.5 Execution Orchestration������������������������������������
	9.2.6 Fault Injection����������������������������

	9.3 Case Study: Application of Software-FMEA Through Model Execution���
	9.3.1 Definition of the Modelled System��
	9.3.2 Process Evaluation�������������������������������

	9.4 Implementation in a Blockly-Based Modelling Tool���
	9.4.1 Preparation of the Model�������������������������������������
	9.4.2 Aggregation and Analysis of Traces���

	9.5 Concluding Remarks�����������������������������
	References�����������������

	10: A Monitoring and Testing Framework for Critical Off-the-Shelf Applications and Services���
	10.1 Introduction������������������������
	10.2 Framework Architecture����������������������������������
	10.2.1 Instrumented System (IS)��������������������������������������
	10.2.2 Test and Collect������������������������������

	10.3 Implementation Details����������������������������������
	10.3.1 Instrumented System (IS) Implementation���
	10.3.2 Test and Collect Implementation���
	10.3.2.1 Functional and Stress Testing���
	10.3.2.2 Robustness Testing and Penetration Testing��
	10.3.2.3 Data Storage and Analysis Tools���

	10.4 Demonstration�������������������������
	10.4.1 Case Study: Life Ray Web Services���
	10.4.1.1 Tests Performed�������������������������������
	10.4.1.2 Tests Results�����������������������������

	10.4.2 Case Study: SHAPE�������������������������������
	10.4.2.1 Monitoring Environment Adaptation���
	10.4.2.2 Tests Performed�������������������������������

	10.5 Conclusion����������������������
	References�����������������

	11: Validating a Safety Critical Railway Application Using Fault Injection���
	11.1 Introduction������������������������
	11.2 Fault Injection for V&V and Certification���
	11.2.1 Standards for Safety-critical Railway Applications��
	11.2.2 Fault Injection�����������������������������

	11.3 The ProSigma Safety-critical Railway Interlocking System��
	11.3.1 Concepts of Generic Product, Generic Application and Specific Application���
	11.3.2 The System Architecture and Functionality���
	11.3.2.1 Logic and Input (LI) Card���
	11.3.2.2 ETH Card������������������������
	11.3.2.3 RPI Card������������������������
	11.3.2.4 Power Supply Units����������������������������������
	11.3.2.5 Diagnostic Centers����������������������������������
	11.3.2.6 Parameter Modules���������������������������������

	11.3.3 System’s Critical Aspects Worth to Study Using FI���

	11.4 The ProSigma FI Framework�������������������������������������
	11.4.1 Fault Injector Framework Architecture and Functionalities���
	11.4.2 The ProSigma FI Tool (ProSigma-FIT)���

	11.5 ProSigma Safety Assessment Through FI: Experiments and Results��
	11.5.1 Safety Assessment of the Prosigma System: Experimental Setup��
	11.5.2 Results���������������������

	11.6 Conclusion����������������������
	References�����������������

	12: Robustness and Fault Injection for the Validation of Critical Systems��
	12.1 Introduction������������������������
	12.2 Related Work������������������������
	12.3 Robustness Testing and Fault Injection for the Robustness Evaluation of Services��
	12.3.1 Robustness Testing with wsrbench and PDInjector���
	12.3.2 Emulating Software Faults with ucXception���

	12.4 Case Studies������������������������
	12.4.1 External Interface Testing: Case Study #1���
	12.4.2 Inner Interface Testing: Case Study #2��
	12.4.3 Injecting Software Faults in Service Middleware: Case Study #3��
	12.4.4 Results for Case Study #3���������������������������������������

	12.5 Conclusion����������������������
	References�����������������

	Index������������
	About the Editors������������������������

