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Foreword

Fueled by the continuous downscaling of transistors in the CMOS VLSI
technology, integrated electronic circuits are the cornerstone of most appli-
cations and devices we use in our daily lives today. From the radio and TV
to our smartphone, from our car to the dishwasher, from our laptop to the
heart rate monitor we use while jogging, just to name a few. Electronics add
intelligence and controllability to objects, and wireless connectivity adds on
top mobility and universal connectedness across the globe. But while digital
integrated systems are mostly designed in a highly automated manner at higher
abstraction levels starting from some form of language-based description,
analog and mixed-signal electronic circuits are still today mostly designed at
block and circuit level and with little or no automation, be it of course not
without individual CAD tools.

Such electronic circuit design is by far not an easy task, not easy to carry
out and not easy to learn. The main reasons are the many complex and often
conflicting relationships between design variables and circuit performances,
the underdetermined nature of the design problem at hand, and the impact of
internal and external variations. The many degrees of freedom in the design
and the sheer high-dimensional complexity challenge our human brain. As
a result, designing a circuit that is optimal in some desired sense and that
is guaranteed to meet the targeted requirements and specifications under all
fabrication and operational circumstances is not at all trivial. But although
it may look as an art to some, it’s a skill that actually can be mastered by
many by combining experience with analytic insight and systematic design
methodology.

While various widely used analog “circuit design” textbooks essentially
restrain themselves to presenting and analyzing circuit schematics, this book
goes way beyond that and actually presents design from a pragmatic design
viewpoint: it describes a systematic variation-aware approach to interactively
design fully functional circuits with the help of advanced CAD tools. While
EDA tool research is progressing continuously in academia and industry,
also for analog and mixed-signal circuits, fully automatic synthesis of analog

XIII



XIV Foreword

circuits in general is probably not to be expected soon as commercial offering.
Yet, powerful CAD tools for simulation/analysis as well as for optimization
have been developed over the last decades. In combination with a systematic
design strategy and the power of today’s computers, these can be used to
successfully crack the nut of designing a functional electronic circuit.

This book will show you how, and does that in a practical way with several
design examples. Large focus is on dealing with the impact of variations due
to the fabrication process as well as through the environment. Using advanced
statistics and going beyond classical corner and Gaussian analysis, the impact
of these variations is analyzed and circuits are optimized for robustness
and maximum yield. Though the CAD techniques used are state-of-the-art
commercial offerings, the authors are no blind tool believers, and clearly
pinpoint the limitations of the tools used. As always, the computer only gives
you what you ask for.

Considering its unique focus on a systematic variation-aware and tool-
supported approach for designing electronic circuits, this book is recom-
mended reading for practicing design engineers, electronic design engineering
students as well as EDAdevelopers.As such, the book illustrates in a pragmatic
way that circuit design in today’s world is so much more than magic, it is magic
that everyone can master!

Prof. Georges G. E. Gielen
University of Leuven, Belgium



Preface

Writing a book, you probably start with an outline, with collecting ideas,
with interesting chapters, etc. and if you write an introduction, you often end
up too many things, in something too long. So here is the two page, shortest
possible, introduction and preface. In the subsiding (long) chapter just read
further about “why” and “how”, about motivation, background information,
challenges, trends, etc. Then we really move over to real design, design
techniques, to their problems and to new techniques!

People are fascinated by beauty, which has often aspects of maximum
simplicity, and endless complexity: nature, arts, sports, technics, philosophy,
electronic circuits, and math! The authors really like circuits, but this book
is not so much about circuits itself; we focus on techniques, on connecting
these parts well: circuits and design techniques and math; and we will find
beautiful and ugly things. To some degree designers also love ugly things and
need to find workarounds, and sometimes, but not always, you again end up
in something elegant, something yours.

What is the status? Electronic devices are very complex and tricky, but
very cheap. This is because essentially they are just printed, like this book!
The manufacturing of chips is complex, but amazingly efficient and cheap, per
device or function even extremely cheap. The biggest invention in design itself
is the use of computers and software for simulations. So in modern designs
people work – usually together in a team – on virtual prototypes. And at some
point they need to become confident, that the product would also work in
reality. This is a challenging task, and many variables have an impact whether
a design (component, chip, board, system) fails or succeeds.

Circuit simulation is mathematically something quite special, solving a set
of nonlinear equations, like f (x) = 0. The real simulation breakthrough was
in the 1980s, so what is beyond pure simulation?

Dealing with variables and function helps to translate a problem into math
and algorithms, but unfortunately we have to deal with many variables, and
with functions we simply do not know so well. Usually special combinations
of variables are critical (like low supply voltage, high temperature, heavy

XV



XVI Preface

load capacitance, etc.); and having many variables, means having even more
combinations of them, so that at some point also simulation time matters or the
full simulation is becoming even unaffordable (like taking years). Imagine you
have a budget to run realistically n = 100,000 simulations, “which” simulations
you should execute to achieve a certain goal, like “Find the most critical
parameter combinations regarding all performances”.

On top of such verification tasks, designers want to find the “best” circuit
topology and the according component values to make sure that the design
works even under these difficult conditions. This is minimization of errors or
optimization; and mathematically it is basically the minimization of functions.

Dealing with all such problems is possible with modern design software,
and this has not only a combinatorial aspect, but also a statistical one. The latter
is just because many variable variations are not completely known, having a
statistical nature (e.g., production tolerances). Often design techniques are
directly related to statistics, like “Verify that simulated production yield is
above 99% for all valid environmental parameter combinations” or “Make
sure that the standard deviation of the offset voltage is below 10 mV”.

Having software for difficult statistical and optimization problems is
quite a second “revolution” which has taken place now in the industry.
Mathematically the step from simulation f (x) = 0 to function minimization
(e.g., via f’(x) = 0) is not so large, indeed there are many similarities, and also
statistical methods often pick up optimization algorithms. These beautiful
things in math help a bit to find consistency regarding the topics and new
methods we address in the book.

Not at all, this means that experienced designers have to through away old
“manual” techniques. Actually the opposite is true. Many times we will see
that basic math results fit very well to the designer’s intuition and how they act,
how we anticipate problems. However, often indeed we can further improve
amazingly. Two nice basic examples are corner analysis and Monte-Carlo.
To some degree these are “optimum” techniques already, but still modern
math offers further enhancements like adaptive worst-case corner finders and
low-discrepancy sampling. A third example is design tweaking: Often it is
done manually by parameter sweeps, but clearly more efficient optimization
techniques exist. Not only in math libs, but applicable to complex state-of-
the-art chip designs.

That is about 2016, so why many people have not heard about this
“revolution”, and what we can expect further? Important for researchers, for
young students, for investors! Often “time is ready” for certain innovations,
so actually many people presented the “first” telephone or “first” electric



Preface XVII

light bumb. Gary Nagel’s SPICE (Simulation program with integrated circuit
emphasis) was extremely successful; and his software picked up many ideas
which are available right now at this time, for the math part it was e.g., having
sparse matric solvers. SPICE was also easy to use, and the available models
were good enough, so everybody learned it, and the success was so large, that
even some bugs become a feature (even a reference). The “second revolution”
has not yet lead to a kind of “standard” program which designers have to
learn, so there is more to read than a manual. At the moment, there is even a
“war” on “high-sigma methods”; read why we think it is more a little banter,
because also the person in front of the computer screen makes a big impact.
However, what is needed for design, the “second revolution” little pieces, and
the bigger ones, they are all present already and will remain! This books is
for experienced circuit designers who want to dive deeper, but also for young
designers and student in circuits and software. Some will become the next
famous personalities in the big industry around electronics.

We have met people who are already working on the next “big thing” in
engineering, and what could be this, technically? Designers follow a strategy,
e.g., you need to solve the most critical problems first. However, sometimes
it happens that something unexpected occurs, and e.g., other effects become
important. So you need to change your strategy. You can also do so in math
and computer programs. “Learning” or “decision making” is maybe a bit too
much, but creating adaptive, more flexible algorithms is clearly a hot topic
since years in research, and it will find a way into real design software too,
enabling a true third revolution.

However, now, in this book, there is enough to say for transferring the
“second revolution’s” techniques to designers, giving a survey, a field guide
with many circuit-related examples. Keep yourself up-to-date! We go beyond
simulation, go for optimization and statistics; use them in circuit design! This
often means getting answers to urgent but difficult design questions, e.g.,
regarding sensitivities, nonlinearities, design risks quantification, etc. And
because already pure optimization, pure advanced statistics are sometimes a
bit difficult, we focus on the real interesting, the real circuit-related stuff. This
is unique and why we hope to find many readers.

Generic versus commercial. We present many examples and results,
and we also add few screenshots from commercial environments to be
authentic. This does not imply any judgments, e.g. on tool quality or
preferences; and in some cases we unfortunately haven’t received the
permission to publish our results.
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Sometimes the use of screenshots limits unfortunately the printing or
display quality a bit (e.g. compared to vector graphics), even if the shot
from the tools itself is perfect, but we still feel showing that a direct tool
output is available is sometimes important.

Of course, some presented algorithms are almost brand new and will
find application in hopefully near-future EDA tools. Often such new
methods itself are not that much “present” in the user interfaces; they
“are” just a click to enable a certain setting.

The real great advantage of modern design environments e.g. against
automation by batch files, is that many integrated debugging features
are available. If e.g. something gets wrong, you can often see it marked
red in a table, often with hyperlink to the source of problem, or with a
context-sensitive menu providing further options, like cross-probing to
schematic, getting a plot, creating a simulation subset related only to the
critical parameter combination, etc.

No Fear about Math

For the first time, we deliver circuit design methodology, math, and1 tools
in a well-aligned package. We try to do this according to the golden rule
that no scientific method can replace common sense. Actually, anyone has
a certain gut feeling e.g., on probabilities—like that p is equal to 1/6 for a
rolling dice. We want to extend this to treat more difficult problems, like
for yield cases with more extreme numbers, or problems with many more
variables, including non-uniform or non-normal random variables. We will
clarify about judgments on rare events and present techniques to treat them
correctly.

Besides the book and e-book, there are also two real-time applications,
which give you many more insights and a true “feeling” for both optimization
and statistics. Complex circuit design environments are simply not designed
to give the user a direct quick feedback on anything! Circuit simulations are
time-consuming, so learning on circuit examples purely based on SPICE in
an electronic design environment takes simply too long, and in addition, the
graphical tools are often too limited, just because they are optimized for design
purposes; and not for algorithm comparisons.

1In scientific papers, it is not common to highlight or underline important parts. We will not
follow this ill convention, because it makes the understanding harder.
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Of course, also the electronic design automation (EDA) R&D departments
do not only use the EDA products; of course they use dedicated math and
statistical software (such as Matlab� or R c©). On the other hand, as much as
possible, we will stick to real design-related examples, because they are sim-
ply more convincing compared to simplified, non-circuit simulation-related
spreadsheet examples.

Note: Searching for EDA and related keywords gives you often already
quite many hits, but CSE (computational science and engineering) is a more
general term.

A few words upfront to the math in our book: We try to keep it as simple
as possible, but not simpler, because as an engineer you should not rely too
much on hope; often you need hard numbers! Most designers are fully aware
of the fact that Monte-Carlo results have some randomness, often even some
systematic inaccuracies, but how large these errors are and which techniques
are best suited to minimize them is a key question. We focus on concepts,
prerequisites, intuition, pictures, examples, and rules of thumb truly linked to
circuit design, not on proving mathematical theorems. Logic merely sanctions
the conquests of the intuition (J. Hadamard)! So skilled intuition is our main
target.

On the other hand, it is important to know what is really proven and what
only a meaningful assumption is! Marketing material is usually not good in
this aspect, and even some mathematical techniques have fancy, a bit too
fancy, names: like maximum likelihood—can there be something better? or
confidence intervals—you do not trust them?

In quite many cases, we have to look to the real details; too many scientific
articles are not suited as true field guide: They may mention also difficult cases,
but why problems occur is too often unclear. Usually, this is exactly the most
interesting part: If a circuit does not work, you may choose another, but a better
idea is to repair, modify, and extend it! As designer in hardware or software,
you simply have to do so and to learn.

Engineers are luckily often pragmatic, and you need to be, because you
need to apply methods for solving non-trivial problems. People usually transfer
things they learned on simple cases to more difficult problems, but sometimes
really something essential changes if you move from a one-dimensional
problem to two dimensions or even to n dimensions. Examples are helpful,
but sometimes also misleading. Even experts can fall into this trap, and
simplifying concepts that work well in some cases (like assuming normally
distributed data or replacing true parameters by sample estimates, or using
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standard confidence interval formulas) can fail completely in other cases,
other theoretical cases, but also in real circuit design! This is because analog
circuit design can be very complex and highly nonlinear! Concepts working
well in one field may fail completely in others, and this triggers the creation
of more advanced theories; even when having such an advanced theory or
method—like maximum-likelihood estimation (MLE) or bootstrap—people
may be overenthusiastic, and limitations may be discovered later—we will
give examples for this. Just one is Latin hypercube sampling (LHS), which
has been implemented in many simulators for ten years or more. The idea is
good, and initial benchmarks had shown a significant speed-up. However, for
complex circuit designs, the advantage disappears too often—and there are
better methods. This book is not at all on benchmarking different algorithms or
tools from different vendors, but of course we do core algorithm comparisons;
usually on difficult but still easy-to-understand cases—often these are also
representative. Unfortunately, there is no single example test case on which
you can show everything—analog examples are often not as easy to scale as
digital ones. So, sometimes we also use mathematical examples on which you
can indeed prove certain algorithm characteristics, like quadratic convergence
of an optimizer.

In fact, this is not at all a mathematical book covering statistics and
optimization in general. Also we assume that the reader knows about key
circuits like amplifiers or filters, but the circuit topology is usually not the
primary interest. We need to focus on techniques that work for circuit design,
so you will not find detailed discussions onANOVA, hypotheses, Runge–Kutta
integration or linear simplex optimization, yet references will be provided for
the readers who need to revisit those concepts in more detail. We show also
methods dealing with non-statistical variables, because they are of course
important for circuit design and we will see many similarities, e.g., when
talking about coverage, sensitivity and correlations.

The authors have both a strong circuit and a mathematical background;
remember from school and university that statistics and matrices can be a very
boring topic. In this book and by the inclusion of auxiliary software, we want to
demonstrate the opposite. Also we always want to relate good manual design
techniques to the math background. Learning something challenging is often
difficult, but not if you really have to solve your own (hopefully) fascinating
highly motivating problems! For instance, what is a designer doing if he/she
follows a certain design strategy and how can a design software act in a
similar way? Tools can remove boring work from the designer, so that he/she
can focus on more fruitful topics, like on exploring different circuit or system
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topologies and for preparing your design for a perfect design review. The great
thing with computers is that you can often verify amazing things with little
setup effort, and you can also use software not only to your direct advantage
of solving a specific problem but also for becoming a better, more experienced
engineer! For this reason, we do not split the book content in a theory part
and examples; instead, we always want to apply algorithms immediately on
interesting realistic—often only slightly simplified—design tasks. You should
start with such basic understanding to build up more understanding and to be
able to explain what the general phenomena are. Actually, the source of all
great math is the special case, the concrete example; it is even frequent that
every instance of a concept of seemingly generality is in essence the same as
a small and concrete special case.

Educated application is one key for success, because there is no “best”
algorithm in general for complex tasks like circuit yield optimization. The
better the selected method fits to your problem structure, and the better you
set convergence parameters and starting points, the shorter the way to success.
Custom IC design, statistical analysis, and optimization are difficult topics,
so several highly automated and efficient methods have been already used
very successfully for more special topics like digital circuits (here you can
focus on timing and leakage) or memory circuits (here the focus is on read and
write capabilities), and here, we may use at least partially analytic expressions
instead of running full circuit simulations [Jiajing Wang]. Also in “SPICE
model fitting”, you can find very efficient algorithms, because you optimize
all the time very specific models with fixed parameter sets to fit for measured
data (having also a fixed structure, like IV and CV data) and using usually
the least-square criteria. Use such methods if possible, but here in the book
on analog variation-aware design, we typically need more flexibility and will
describe more generally applicable methods and tools.

In our examples, we need to make a balance: Real ASIC designs are often
very complex, and a big mix of techniques is required to solve all problems,
so we usually have to apply some simplifications to be able to directly apply
and demonstrate new techniques. For instance, the way an optimizer takes
in the parameter space is hard to visualize for more than two variables, but
luckily almost 99% of the optimization problems can be fully explained with
2-variable examples! Actually, the real advantages of an advanced optimizer
become often much more prominent if you apply it to more complex problems,
like with more than ten variables. In addition, we wish that the reader is
really able to follow and apply the key ideas—the limited book size and often
intellectual property (IP) issues unfortunately prevent us to showcase very
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complex examples. However, when e.g., looking at an optimizer log file, the
user can see that state-of-the art tools really use the described algorithms, and
he/she can observe in them the same problems as we demonstrate in our shorter
examples. The main difference is only that in big problems, you typically have
to fight against multiple problems and the runtimes are much longer!

Hi! This is us, the authors! This is a book, and learning from books
is often a bit more difficult, because in long sentences it might be not
clear where the key point is. In teaching, you can stress words, but in
scientific articles, it is not usual to use underlines. So we do not follow
this tradition! If we write, e.g., . . . almost accurate . . ., it could be quite
a difference if the focus is on accurate or on almost or even on both,
and if both in which sense? The context for us is usually circuit design,
but sometimes it is indeed up to you to decide whether 99% accuracy (or
yield) is good or not. Also in medicine, you do not need always a high
confidence level, and in urgent cases, better give a heart massage! Modern
statistical algorithm come of course with internal accuracy checks, but also
in a circuit simulator, the checks may be not done in the way you need.
In a transient simulation, you may want 0.1 dB accuracy for your FFT,
but that is seldom in sync with simulator settings like reltol. That is the
reason, why engineers do the work, and actually change the world with
chips, smartphones, and software—not that many designers, maybe many
in electrical engineering, quite many in IC design, some in EDA, and quite
a few in statistics and optimization. Luckily, these techniques are a hot
field also in other areas.

Front-End Design Flow

To follow this premise of circuit-oriented concept, let us start with a little sketch
on an analog design. “Analog design” can have different meanings—our focus
is analog design in its widest sense, including RF design and mixed-signal and
custom digital designs. In a single book, you cannot describe each aspect in
full detail from a bare semiconductor wafer to the final tested product. So we
focus on what is often called design “front-end” flow, the part that includes
defining the circuit in a schematic entry, setting up a simulation testbench,
verifying the circuit behavior and checking specifications, plus tweaking the
circuit component values; so in our methodological context, “front-end” has
not the same meaning as in RF (radio frequency) or sensor design. A very
typical approach in analog design is shown in Figure 1.
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Figure 1 General IC design steps.

Imagine an RF receiver has to be designed, and it might be part of a bigger
transceiver chip or even of a full system-on-chip (SoC) containing also bigger
digital parts, a PLL synthesizer, ADCs, DACs, etc.

• A system designer (team) has decided on the concept; for example,
based on experience and system specs (like IEEE802.11 for WLAN),
it has made a certain system partitioning into sub-blocks such as low-
noise amplifier (LNA), mixer, variable-gain amplifiers, several filters, an
demodulator.
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• Next, the system gets refined further, e.g., by creating a detailed frequency
plan; with system simulators, MATLAB� and spreadsheets, the system
designer will also create a level plan giving an overview of the ranges
for wanted signals, interferers, noise, etc. Step by step, the designer
can hopefully obtain a consistent and realistic set of sub-block specs
(such as gain, area, and power consumption) derived from the top-level
system specs. We need to make sure that the system works even in the
presence of many known imperfections, such as noise, filter tolerances,
group delay ripple, jitter, mismatch, and different kinds of nonlinearities
(compression, intermodulation, etc.).

• At some point, a circuit designer has to work on “his” block and related
sub-blocks, e.g., an operational amplifier (op-amp) being part of a bigger
filter. The block designer either will take an existing circuit or may
compose a new op-amp, e.g., based on the input and output voltage range,
the supply voltage, gain, speed and noise requirements, etc. For the latter,
he would execute several hand calculations for the different component
values in the circuit (e.g., based on power budget, gm, on-resistance, and
slew rate). In both cases, he/she needs to verify the circuit behavior in a
set of testbenches under all the different environmental conditions. For
instance, he/she would do sweeps on temperature, supply voltages, load
resistance, load capacitance, etc.

• Usually, some design weaknesses will become visible, like we consume
more power than allowed, so the circuit has to be modified, e.g., till the
variations are acceptable (like in sync with hand calculations) and till the
design is fulfilling all specifications (being “in-spec”).

• Of course, we should also perform simulations together with neighboring
blocks, like the usual bias generators—if available. At the very end we
could end up in a top-level simulation, which is often a mixed-signal
simulation (mix of transistor-level blocks and behavioral descriptions).

• Besides simple one-parameter sweeps, we may also do 2D sweeps to
account for correlations or pick certain critical corners (combinations
of parameters) directly for debugging and design tweaks. In those 2D
sweeps or critical corners, the design is often more stressed than in simple
sweeps, so tweaking becomes harder and maybe we need to extend the
circuit a bit or even need another circuit topology.

• To account for offset voltage, we may do a Monte Carlo (MC) analysis
and get a certain standard deviation for it. With corners and MC, we could
check the design quite well, and we can calculate the overall most extreme
behavior; for example, we can add the offset errors from systematical and
statistical imperfections (e.g., PSRR and random offset).
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• All in all, at some point we might be completely in spec with enough
margin and create a layout (“Back-end” part in Figure 1). From the
layout, we can calculate wiring parasitics and we can include them in
our simulations. If our initial design margins were large enough, also the
postlayout verification would indicate that our design is really “ready
for production” (tape-out). Hopefully, we included all important aspects
to our verification, so that indeed also the production samples work as
expected.

This “simple” flow shows that analog design can be quite efficient. We have
many well-established standard techniques, but also some key questions arise
immediately; we will address them in our book:

• Imagine your circuit simulations show good results in a corner run and
also in a short MC run: How much does this mean with respect to yield?
Is it really ready for tape-out?
This has many aspects, and we will guide you (e.g., on MC count) and
show you common pitfalls (like assuming normality). We will explain
how to get most out of your simulation results, more than just sigma and
a histogram!

• Imagine your specifications are very difficult and hard to achieve. What
should be the next steps? Which strategy should you follow?
We will create a systematic flow from design start to sign-off verification.
We give you an overview on the methods and explain which ones are
suited and how to set them up. This also includes optimization techniques
(Chapter 8); we tell you when they are useful.

• This leads to the often asked question: What is the best way to make a
design?
“Define best!” is probably a good answer. “Best” in the sense that it would
always work would lead to a big and very complex flow! “Best” in the
sense of efficiency would lead to a flow based on a lot of experience.
So “overall best” is for sure a mix of techniques, which makes it
sometimes difficult to see a systematic behind the flow. On the other
hand, we will show that even when you use methods with strange names
(like “high-yield estimation”), you are often still using something close to
the techniques you have applied manually from time to time! Generally,
there is no need for big changes in your habits.

Actually, one of the nicest questions I ever heard as consultant was this: How
much do I need to overdesign in Cadence to make it working in reality?
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Cadence� is indeed a synonym for custom IC design tools, so technically it
would be better to ask for “overdesign in simulation”! As analog designer,
you know the answer of most questions is “it depends.” If you know your
laboratory measurement equipment has an uncertainty of 0.5 dB, then you can
use this as safety margin and specify it in a datasheet. However, it is quite some
work to find out the margins for all the other effects like temperature drift,
aging, circuit tolerances, modeling, Monte Carlo variances, and simulator
inaccuracies! Ultimately, the whole concept of margins is very efficient but
leads to severe errors if applied in a too simplistic way. We will tell about the
risks and extend the concept!

Is overdesign a problem? Regarding verification, it is no problem, but
for being competitive it could be—especially when talking about bigger
key blocks and/or critical subsystems. Actually, it is quite hard to find out
whether you are overdesigning or not. You have to run the circuit under
extreme but still realistic conditions! Finding those is one key task in
variation-aware design, and optimizing the circuit to meet the specs and/or
improve on yield is a second key technique. Both are closely related, e.g.,
in both sensitivities, and search algorithms are important; the more you
read and learn about it, the more links you will find, and the more intuition
you will get, the better you can design by problem anticipation.

Actually, our op-amp and filter example is just one simple example, and
often each described step (or at least one) is far more difficult, especially
when designing critical blocks or using the newest silicon technologies. So
Figure 2 shows some major trends, and many of them can make circuit design
unfortunately more difficult.

One trend among many others [Graeb ITS] in modern IC design is that
already the blocks become more and more complex, e.g., to enable multimode
operation. In our amplifier/filter example, one may decide to put several
stages together—into a kind of subsystem, often including bias circuits and
calibration blocks. So the meaning of “block” design can be a bit fuzzy.

Design and Verification

In IC design, many individuals and teams are involved, and they often have
different opinions on what should be improved. For example, behavioral
modeling is a high-priority problem too, as variability. For both, the benefit
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Figure 2 Trends in IC design.

is larger, the earlier you use them. In software the creation of a “design” is
quite easy (e.g., due to availability of powerful libraries), but testing can be
difficult and very complex; and in digital design the situation is often similar,
because reliable standard cells and synthesis tools are already available. So in
these communities many people say only verification is a problem, we have a
“verification gap”. This is not completely true for analog and custom designs!
Verification is a difficult topic too, as almost all kinds of designs become more
and more complex and harder to test. So nowadays, there is pretty much talk
about the “verification gap” or “productivity gap.” Best don’t let you bother
and just take the best ideas coming up.

When digital designers talk about verification problems, they typically
have complexity in mind, like how to find input test vectors leading to a bug.
However, it does typically not mean that they cannot run the testbench with
that test vector anymore. However, in analog, mixed-signal and RF, indeed,
e.g., a single postlayout simulation pushes even a 1 TByte RAM multicore
compute server to the limits! However, there is seldom a verification problem
in the sense that you do not know what to simulate! On the other hand, for sure
also digital designers push their tools to the limits (especially when thinking of
HW-SW co-design). Also “new” digital techniques like randomized tests and



XXVIII Preface

coverage-drive verification can make highly sense in context of mixed-signal
or even full analog designs.

In analog, there is also a true “automation gap” in topology selection and
initial circuit design. Here, a mix of techniques is required. No single com-
mercial tool offers here “push button” solutions—quite opposite to simulation
and verification. However, some of these things are also the fun part of analog
design in general, so why automate? A tool needs to be really good to convince
in that domain! On the other hand, luckily, there are advanced design tools
plus powerful compute servers that still allow efficient design plus giving
the engineer a great cockpit for steering the design, implementation, and the
verification tasks. Further improvements like tool support for parasitic and
layout awareness are in trend, giving not only speed but more insights, thus
also making the designer better.

We are also not sure whether there is really something like a “productivity
gap” or if people need a new smartphone every six month. Software is a
big lever to improve your individual productivity, like just designing more
transistors (or lines of code) per day, but design difficulties are hard to quantify.
Terms like “transistors per hour” or “mm2 chip area per week” are only very
rough measures in both front-end design and layout. You can spend weeks on
an LNA or months on an RF PA having few transistors only and you might be
highly productive, because the person at the competition fails on this problem.
Especially in the field of statistical methods and optimization techniques, a
breakthrough is observable; so any engineer working in that area should have
an interest to become familiar with them. They help you to identify the critical
parameters in your design and quantify and minimize their impacts, till you
are confident enough to tape-out.

The biggest step forward in analog design in the last 30 years was clearly
the introduction of standard circuit simulators, allowing an almost virtual
verification, instead of pure breadbording and pure hand calculations. Also
some discussions in engineering are also quite old: If there would be “only”
a sign-off verification problem, people may say, why not going for a fast
production lot, wait four weeks and measure everything—only the silicon tells
the (full) truth!? The big problem with such approach is that the debugging
will not be much easier that way, and actually, it is far better to use advanced
verification tools, modeling techniques, etc., already from the beginning, for
the design phase, not only for sign-off verifications. This way you can improve
on product quality, design understanding, reuse IP, and reduce need for costly
iterations (especially long, time-consuming iteration loops). In addition, even
the silicon is not the truth, e.g., in RF or high-performance ADC design
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packaging, external matching networks, supply bypassing, etc., can have a
big impact! In addition, the more complex a design is, the more virtual the
design and the verification of it will be, naturally, just to reduce risks and costs.

Verification can be indeed treated quite well with systematic mathematical
methods, but we feel that this is a too narrow approach, because whether a
design is good or not can be often decided much earlier, so it is better to avoid
problems early, instead of finding them in a final verification phase. Plan for
this as early as possible. Explain how difficult things should be verified in
a verification plan, best in conjunction with the target datasheet. Iteration
is always required, but keep at least iteration loops short and improve your
understanding, and the understanding in the whole team.

Therefore, looking at the whole front-end flow as a pure verification
problem is a trap! Solving the “verification gap” is often much easier if you do
not split the flow into parts, better take a more unified approach and include
manual best practices for circuit design. A good way for solving complex
problems is to anticipate the “disturbing” influences on the design, to analyze
them; often the results from techniques already lead to solutions—step by
step, starting with the most urgent problems.

Let us pick up an op-amp example again: At the beginning, the design
is almost for sure not working as desired, at least not in the whole operating
range. You have to pamper up your baby design and make it work under DC
nominal conditions, making it work under wider conditions (over temperature
by deciding on a certain bias concept, or for constant performance over a
wider supply range by adding cascodes, etc.) and also for your typical input
signals, till you end up in a good and robust circuit that works also under
the most difficult allowed conditions. In such a flow, the design and your
knowledge about it grow in parallel with the verification! This way verification
or complexity becomes much less of a problem, and more design insight is a
further valuable output.

In digital or software design, there is a trend to split the parts of design
and verification, i.e., different people do it. This solves the problem that a
designer may “love” his “baby” too much. Actually, the idea that a verification
engineer should “hate” the design is good and can lead to better verification,
but for analog designs, it should be only a complementary concept. In critical
cases better create several “baby designs” and let the best “survive”; once
you have made them detailed enough for a fair comparison. Design is often
a fight of ideas! Often also a split between front-end design and layout—
usually seen in bigger companies—is critical, e.g., misunderstandings on
priorities or constraints can lead to unnecessary extra work or just bad layouts.
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Layout aspects (or more general the “physical implementation”) are important,
and the reader is highly encouraged to also read books on technology, layout,
and device modeling! Many of these topics will be referenced in our design
flow: Modeling is a limiting effect on verification accuracy, and the layout
part (unavoidable wiring parasitics and “bad” layouts, respectively) is often a
reason for design iterations—unfortunately.

Note: In this book, we concentrate mostly on front-end design not on physical
implementation aspects like layout and packaging (or ESD and latch-up), but
for sure you also need to include these extra-effects (plus sometimes others
like aging), and often, they are as essential as supply voltage or temperature
effects. So you should also include them, as soon as possible—not only in
final verifications. For some more details, read Chapter 10.

For sure, also simple bad design practices can let design projects fail or at
least delay, e.g., last-minute changes without careful re-verification, creating
different block versions but not making clear which one to use, hoping that
someone else has already verified something, not applying manual checks
(often automated run decks for DRC, ESD, latch-up, etc., are incomplete),
using models in extreme regions (breakdown, ultralow currents, etc.), or
typical interface problems, e.g., between blocks from different departments.
Actually, communication is a key part for success. Partly, it can be also
supported by EDA tools, e.g., via constraints. Table 1 presents some reasons
for re-designs which have been appeared over the years to the authors. Note,
that the table focused on first, almost immediate redesigns; in later stages,
after a more detailed analysis, problems introduced by variability are much
more typical.

At some point, it might be impossible to simulate the design, like a
postlayout simulation (maybe still excluding substrate, self-heating effects,
aging, ESD, latch-up, etc.) will take a month. In such cases, it would be better
to go for production, but being sure to apply at least careful manual checks and
calculations. On this, do not underestimate the human factor: We have seen
design fails and need for a redesign, just because designers claim “I checked
this in Monte Carlo,” but due to a small bug in the design kit, it was simply
completely impossible to run MC. So the designer was lying so and so.

You may think why everything is so difficult? It should be not a matter of
complexity, and it is more on following an important rule that says:

“Know what you want, and use what you have. Make no bullshit, do
not rely on hope or magic. Double-check your assumptions. There
are no stupid questions. Be an engineer!”
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Table 1 Few reasons for chip redesigns
Block Chip Class Comments
Logic part RF receiver Last minute

change
No full re-verification applied after
change.
Solution: FIB applied, logic
changed in redesign

Bandgap RF power
amplifier

Modeling Substrate transferred the RF output
signal to sensitive bandgap net
Solution: Non-Miller-cap frequency
compensation of the bandgap, better
shielding of pads, FIB and metal
redesign

Substrate
contacts

RF PA control
IC with
negative supply

Layout Contacts connected to gnd instead
of VEE.
Solution: Layout modified in metal
redesign

gmC filter IR remote
control

Variability Only corner simulation done, no
analysis for mismatch
Solution: Larger transistors in bias
part

Buck
converter

Hearing aid
chip

LVS Incorrect LVS setup for self-created
metal capacitors. So a short circuit
was not detected.
Solution: LVS run deck improved,
via causing the short removed

RF power
amp

RF power amp Modeling Amplifier had strong oscillation
tendency, modeling for package,
substrate, etc. too simplistic.
Solution: Modeling improvements
and concept change to a
narrow-band amplifier

Memory SoC Variability Circuit function correct, but yield
too low.
Solution: Yield improvement
redesign on critical parts.

This book wants to show and explain further advanced methods—
beyond simulation and verification—that work for creating analog designs.
When we talk about “analog”, we include also mixed-signal, high-speed, or
custom digital and RF designs—so all kinds of designs where typically a
highly flexible design strategy that is required. Not always mathematical and
automated techniques can be directly applied, especially for the art part of cir-
cuit design, but for sure the described techniques can help good designers and
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students to solve more difficult problems and to speed-up the design process in
several ways.

We feel also non-math experts, but engineers should know what they are
doing when using certain electronic design automation (EDA) software. Users
need be able to select and set up a suitable method, because (like circuit
simulators) also the new tools come with many options. This book will give
you guidance and an overview and should enable the reader to get in touch
also with more advanced original papers and more specialized mathematical
literatures. Those are clearly recommended if the reader wants to get highly
detailed information or creates his own algorithms. This marks also the point
where we need to stop in this book and we want to focus on the really important
concepts, algorithms, and tools.

The book is written for engineering students and engineers who have
already some background in standard techniques like just creating a little
design and simulating it, and knowing about technology variations. So we
address simulation techniques themselves only in aspects relevant to varia-
tions, statistical methods and optimization. We hope we can motivate you, as
the reader, to think more about the topics we cover, and you should be able to
understand, able to work, and probably also able to tell, to talk, and (at some
point) able to teach.

Actually, too often designers end up in SPICE monkeying, hoping the
simulator makes the design job. Sure, many things base heavily on models and
simulation, but at least you should do it in an efficient way, doing the really
required simulations, with some realistic margin and just some acceptable
overhead for confidence and understanding.

Often EDAvendors are asked: How much does this tool help to increase the
productivity? In some cases, you can indeed quantify this, but we feel—even in
the book—we partially focus too much on such a simplified view on engineer-
ing. For example, reducing the number of simulations can lead to a measurable
speed-up and reduced costs, but actually other aspects are of equal importance,
like being able to manage complexity of new system architectures or advanced
process nodes, and getting confidence and understanding of your design.

Organization of this Book

The topics we treat are both relevant to scientific researchers, EDA software
engineers, electrical engineering students, and circuit designers. You do not
need to be an expert in everything; we point you in each chapter also to the
literature available for further reading—to more basic and sometimes also to
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more advanced references. In the appendix, you can find an ordered list of all
references, and we think it is a good mix for getting a deeper introduction and
also for digging into the details.

Of course, unfortunately, we have to deal with many abbreviations and
special terms, and we collect them in a big list—many are very common, and
you should know them.

There is no eat-all-or-nothing, the book has a modular structure (Figure 3):
The advanced designer may skip the introduction and the chapter on manual
design methods and could jump to the advanced statistical techniques; or the

Figure 3 Design techniques and book chapters.
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statistics expert could directly go to the optimization chapter, but we think if
you read the book page by page, you will not miss clear guidance. Topics that
are interesting but not key for further reading are delivered in separate boxes.

We always start with the problem descriptions and discuss different meth-
ods to solve them, starting from one of the most straightforward approaches
and then moving to more advanced techniques that typically are more accurate
or more efficient in difficult cases. The examples we start with are typically
quite short because with too complex ones, we would lose the focus too
much. Therefore, we shifted several more complex examples into separate
subchapters. Of course, also our initial examples are often not so simple in
some aspects, e.g., for circuit design, it makes little sense to talk about “linear”
optimization, so starting with a quadratic function is quite native, and even
such an example can be simple like x² + y² (because here you can optimize
both parameters independently and even the simplest optimizer will work very
fine) or more difficult like x² – x · y + 100 y² (here, we have correlations and
highly different sensitivities).

The book starts with two chapters on circuit design and design flow, not so
much on circuits. We explain the most important design targets and measures,
like yield, corners, and worst-case and Monte Carlo analyses.

In Chapters 3–7 we discuss statistical methods in detail, starting with
Monte Carlo and basic result analysis for yield, sample variance, confidence
intervals, etc. Next, we extend the method in Chapter 4 to non-normal data
analysis, which includes a generalized process capability index CGPK. All
these analyses are possible for data obtained both from tests in the foundry or
laboratory or from MC simulations, but the simulator has really access to all
statistical variables in your design, so you can also do multivariate analysis
to obtain correlations or to fit complex models to MC data. This is the next
step, before we also address MC speed-up techniques and non-MC statistical
techniques like the worst-case distance method, which is often much more
efficient for high-yield verification. Chapter 7 is a long chapter, just because
there is no one-size-fits-all method, almost each method you can break, at least
in special difficult test case—and you should understand why.

Chapter 8 is explaining optimization methods. One key part in setting up an
optimization is the goal and constraint definition, because often optimizing the
circuit under typical conditions is not enough, and at best this could be used as a
starting point. Instead, you should really inspect the most critical conditions,
and for this, you have to treat both statistical variables and the ranges for
your operating conditions like supply and temperature, and then you have to
optimize on this. The difficulties and the benefits of such overall optimization
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approach are discussed in Chapter 9, together with further advanced front-
end design topics. To some degree, we leave here the area where most
design environments have fully built-in solutions; so some scripting or manual
interaction is required to perform very advanced tasks. Actually, assembling
worst-case analysis and optimization is a key part for obtaining a complete
and automated or at least a highly assisted variation-aware design flow.

The overall flow aspects, including layout, design-supporting tools, and IP
management, are described in Chapter 10. Variation-aware design is not at all
only about process variations, mismatch, temperature, and supply effects, and
the physical implementation can change the circuit performances sometimes
much more! This means layout effects, such as wiring parasitics, may be
substrate couplings and nowadays even the neighborhood of each critical
transistor matters, so you should include them as soon as possible. Our
summary (Chapter 11) includes also an outlook for upcoming further advanced
design methods and environments.

Real-Time Apps and Auxiliary Material

Please regard the software as an integral part of the book! This does not mean
that anything is really missing without these pieces of software, but to really
understand what the circuit design is, you have to do circuit design; to learn
what statistics can do and what not, you should look at statistical data, at best
from circuits!

In some way, EDA design environments are already quite good for
learning! The only pity is that circuit simulations can be very time-consuming,
so it is almost impossible to get a “feeling”, e.g., for how large the variations
from one MC run to another could be, just because already one “meaningful”
MC run can take a day!

How can you learn driving a curve with a speed of 1 mph? You cannot,
you need real-time speed to really get the feeling; and for statistics it is very
similar. The human eye and the brain has different mechanism to interpret
what we see; there is a static and a dynamic part. It is best to use both.

Both apps (see Figure 4) run under Microsoft Windows�, and a detailed
documentation is delivered as separate pdf files. With both programs, you
can make your own experiments on optimization and statistics, to learn
interactively and from many examples just much faster than is possible within
a design environment, and to some degree, also more details can be provided.

In the book, usually at the end of each chapter, we provide a collection of
questions and answers, and the two apps can support you to answer them.
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Figure 4 Screenshot of the two learning and design programs RealTime MC and Match.

When you could use one of the apps for solving problems,
we often add a little green hand in the book. The newest app
versions are available under http://www.riverpublishers.com

It could also make sense for more complex experiments to use
your IC design environment, and we mark this and connections
to further small design tools with a blue hand.At the River Web
page you can download supporting material.
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In addition, we prepared some statistical experiments with
Excel�. These you can also download at River Publisher.

In the last chapter, we talk about layout effects and intellectual property (IP),
and the creation of it. For that further design programs are available and
provided by the River Web page!

These books we highly recommend as a refresher on circuits, math, and
statistics:

• Willy. M. C. Sansen, Analog Design Essentials, Springer US, 2007.
• Tony C. Carusone, DavidA. Johns, KennethW. Martin,Analog Integrated

Circuit Design, John Wiley, 2012.
• R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Statistics

for Engineers & Scientists, 9th Edition, Prentice Hall, 2012.

In the different chapters, we point you of course to further, more specific
references. Note that especially for mathematical topics, there is a big amount
of free and great material available in the Internet, and in the appendix we
also give links to such highly valuable material. There you can also find links
to the homepages of several EDA vendors. Many of them offer a forum and
advanced material as download.

Software tools, Math, Statistics and Numerics? Doing math by dealing
with data and programming are the best approach to become an expert. In
our book we present many spreadsheet examples, not because such tools
are best, but because such tools can display data quite well, and the user
can see each step applied to the data. Of course, at some point you can
push a spreadsheet to the limits, like analyzing 10 million data points; here
true programming languages are best, like C, FreePascal or Java. Also in
these many libraries for charts and math are available, it is just some work
to put all together. The most elegant way for doing math is using math
environments like Matlab� or R c©. Matlab has the advantage that even
a graphical simulation environment is available. R is perfect for all who
need access to the true state-of-the-art in math and statistics. Both software
packages are quite easy to learn, some things are even easier than in
Excel�!
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1
Introduction: What Makes an Engineer

a Good Designer?

We present key measures, elements and problems in design. We discuss the
efforts for design and verification tasks; and the inputs and outputs.

In this Chapter 1 we describe the problems of being a design engineer from
a still quite general perspective, so many things appear in similar ways also in
other fields (like car design). Of course, we have circuit design in our mind,
and we describe the typical manual IC-specific design style in Chapter 2.

Design and circuit design is a fascinating topic, and it is a science and also
a kind of art—for many amateurs and professionals. There are systematic
approaches and there are physical foundations, but usually there is also
something “special”, especially when designing integrated circuits for high-
performance areas like high-speed, high-power, or radio frequencies, but also
smaller PCB (printed circuit board) designs, e.g., you often have to minimize
the number of components with some “tricks.” This is because—almost by
definition and in opposite to digital design—there are many more things that
matter (not only speed, area, and power consumption) and analog circuits are
inherently much less error-tolerant.
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4 Introduction: What Makes an Engineer a Good Designer?

Analog design is quite an art, because you need creativity to find the right
compromises to fulfill many specifications, written and non-written ones.
Due to more and more stringent requirements on minimizing size, power
consumption, and costs (of course), designs moved in 50 years from the
classical simple twenty-transistor op-amp to highly complex, multimode,
mixed-signal circuits with billions of transistors (actually memory design
is also very close to analog design). On the other hand, the basics have
not changed much! By far, not all problems are related to complexity, and
small circuits can be most tricky—a small amateur PCB design can fail for
similar reasons than a high-end smartphone. It is very tough to be prepared for
everything that could go wrong or just varies by nature, like transistor length
and width, threshold voltages, load impedances, and gate oxide thickness. Of
course, such complex designs are done by very experienced design teams, but
if something gets wrong, it is indeed very often due to such variations and/or
complexity (e.g., in interfaces and states).

We hope to show that also almost all numerical algorithms are based
on “common sense” (“gesunder Menschenverstand”)—and also dealing with
them, improving them, and even applying them is something creative and
fascinating! Common sense fails seldom, just some training is required, and
some clarifications.

Styling versus Design. In German these are foreign words, so often both
terms are misused. Adding a fancy chrome spoiler to a car, which is no
race car, is styling. So something between taste, bad taste and art. Doing
it because you need it for a perfect driving behavior is design. Design is
closer to science, real construction, problem solving, but of course there
is often still pretty much freedom. Also designers have personality, and
style; and the solutions from different designers may reflect this. However,
to a high degree it is indeed usually possible to clearly state, what is really
required or an even optimum solution, and which parts are nice to have.
Usually circuits contain not much styling elements, but incorporate quite
some art.

What are the key techniques every student, engineer, and designer should
know and apply? Of course, learning about circuit design is good, and doing
it is even better, but can we be more specific? Two sentences I remember from
my professors as a student were as follows:
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The most important skill to learn at a university is to learn how to
learn

In IC design you can create almost everything, the problem is always
making a reliable design that also works under varying parameters.

The first statement was to some degree a clear disappointment when I heard
it because I want to learn much more, but in our ever-changing environ-
ment, this is clearly an important point. It just takes some time to pick
that up.

The second quote was quite a surprise, because the technology in 1988
was by far not as advanced as it is today (e.g., most ICs use single metal layer
routing, and the bipolar processes had lateral pnp with very low speed and
gain)—and I did not have that much experience in how much tolerances can
really make your life difficult! As an amateur designer, soldering for an audio
amplifier or AM transmitter, you are typically done when the circuit is just
running, but that is not the case when giving the circuit to someone else! Often
optimism lacks in information.

Both sentences are very important, because as an engineer you make
important and costly decisions for your company, and overlooking something
can happen easily. Here, professionals are even under more pressure, because
you rely much more on virtual techniques; any simulation usually can only
answer the questions you prepare for—like “Is the amplifier stable?” In a
laboratory the amplifier circuit might just oscillate when you turn on the
supply—and you can immediately see it with an oscilloscope. However,
in IC design a dedicated testbench is needed, and often different options
are available, so a simple question like proving stability, can become quite
difficult, especially if you want to go to the limits (like achieving also a large
gain and high efficiency).

Just entering a design in a schematic editor and simulating it for a
kind of virtual verification is possible since 1970s for professionals (when
the circuit simulator SPICE becomes popular) and for amateurs since
1980s (PSpice� came up, running on PCs). In digital design, the flow
progress in the following years was amazing: Essentially, nowadays you
can create circuits and even whole digital systems with millions of tran-
sistors from software because clever programs can synthesize the whole
hardware in a given technology, based on few core libraries featuring the basic
logic cells.
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AVery Short History of Digital Synthesis. In the 1970s, digital designers
made designs in quite similar way as analog designers. So they drew
schematics with little standard cell sub-blocks (like NAND gates, flip-
flops,ALUs, and counters). In the 1980s, for simulation purposes and more
compact design description, co-called behavioral languages like VHDL
and Verilog have been created. This allowed more complex designs and
better documentation. In 1994, Synopsis� created a synthesizing program
that has been very quickly adopted by the industry. Recent developments
are e.g., regarding verification with new languages like “e” and System
Verilog.

Unfortunately, analog synthesis is much harder, because the way
from a unit element like a transistor or resistor to a whole block like
a programmable amplifier or even to its layout is much longer. Also
languages like Verilog-A are not very powerful, and better ones have
found no wide application and have no industry standard.

However, in analog, RF and mixed-signal automatic synthesis failed mostly—
at least commercially, although for some special areas like DAC or filter
design, some kind of synthesis makes indeed sense. On the other hand, further
techniques have arrived in real commercial tools and enabled engineers to do
things that analog designers dreamed for years. One is statistical design, and
the other is optimization—and doing it not only on small academic examples,
but also on real professional often highly nonlinear circuit designs!

People working in one area like EDA tools or circuit design can often
learn a lot from other fields, even from topics faraway like biology, stock
pricing, weather forecast, disaster prediction, or insurances. For instance, lot
of attention in many of these fields is on advanced Monte Carlo techniques,
whereas for most electrical engineers MC or corner analysis has not changed
much over the last 30 years!

Not all techniques presented in this book are brand new. For instance,
historically optimization is not a new topic, and some of the most important
algorithms have been developed in the late 1960s and have been applied to
electronic design in the 1970s, e.g., for passive RF filter design. However, the
option to use such advanced techniques was only present for few academic
institutes, and no user-friendly software was really available. One of the
earliest commercial successful optimization tools came up in the 1980s and
was Super-CompactTM, able to simulate and optimize linear RF circuits.
We used it intensively for transistor modeling and for wide-band amplifier
design. Generally optimization has found widest use in modeling, e.g., for
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semiconductor devices—but until now not really much for true complex
analog circuits, so we will discuss when optimization makes sense, and how
users can make circuits easier to optimize.

A situation perfect for learning is if something gets wrong! Of course
you can learn from “best practice” examples, but often the real difference
between two algorithms becomes visible if something becomes more difficult,
so that one fails, whereas the other methods may still work! That is a good
starting point for more thinking and for innovations—of course not only
for circuit designers, but also for CAD researchers, and for CAD managers.
Unfortunately, in EDA environments and in real design situations you have
seldom much time to inspect all difficulties regarding algorithms in detail. So
in case of problems clear guidance is needed.

Alast motivation for reading this book should be this:We all carry around in
our head rules and guidelines that give us a sense of intention. The topological
map of a big foreign metro will seem “obscure” to a casual visitor, but a
resident must understand its structure and some details to enable daily travel
by memory. Similar to this, engineers have to deal with numerous equations,
tools, models, etc., and they must be sorted in one’s mind for everyday work.
For instance, you do not need to have knowledge about Bessel’s function
directly in your mind, but should have a feeling for V BE and its behavior
versus temperature, versus current, etc., or you should know the meaningful
range for current densities in your used technology. Such issues must be at
your fingertips, and beyond that, they must be integrated into the instinctive
fabric—that is your core being. You will not get very far on the metro if you
need to consult the map each day as you travel to work! Engineers frequently
have to make journeys to places far from familiar landmarks. Returning from
such, we can return to the challenges of daily work with a new perspective, a
little better equipped to examine problems under a brighter light. Do not wait
to be told what to do: Do it anyway. Do it soon. Indeed, statistics can be as
interesting as circuit design! Optimization has an even closer relationship to
design and can be very helpful too. As often in engineering, there are many
better ways than “try the same but harder”!

1.1 Key Problems in Circuit Design

In a design project, engineers have to deal with many variables and we have
to treat them in a systematic way. Intuitively, you do it mostly, but sometimes
confusions can arise. So let us introduce some common simple notations and
conventions. In our book, we mark vectors in bold face, and we use bold
uppercase characters for matrices (like H for the Hessian matrix). For random
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variables, we follow the convention of using uppercase characters (like X ).As
performance functions, we use f (or f for multiple performances). For names
like resistor instance R2, we use the normal font, but for variables (usually
real or complex numbers), we use italics like A = gmRL. (the m stands for
mutual and the L for load—both are names, so no variables).

Note: Sometimes it is hard to say whether a threshold voltage or the supply
is fixed or a variable, so we follow our convention when it really matters for
understanding—like in flowcharts or equations—but not as slaves. On top of
the mentioned conventions, often just all symbols are written in italic style.
However, in the context of circuit design these are not always a good ideas.

Example: For an optimization, we usually need to vary multiple parameters
xi, and we can handle this easier by putting them into a vector x, e.g.,
x = (R1, C1, R2)T (T stands for transpose, turning the “horizontal” vector
into a vertical one. This is sometimes needed for matrix calculations).

Adesigner has to manage many kinds of parameters x which impact circuit
performances y = f (x):

• Design parameters xD: They are controllable to the designer, so can be
set dedicatedly.We assume they will not change during production, only
in the design phase. Examples are the value of resistor R1, the number
of resistor segments in parallel in R1, the capacitance of a capacitor
C1, and the width or the number of fingers of transistor N2, and on top
of these nominal design values, there can be of course variations from
process or mismatch!

• Statistical parameters xS: The resistor R1 may have a nominal value
of 1 kΩ set by Rsheet, length, and width, but in production you
may observe statistical variations. Usually, mathematical models are
available defining, e.g., the standard deviation of Rsheet. Elements can
vary, e.g., due to global statistical variations (like from wafer to wafer),
but also even two resistors constructed in the same way and on the same
wafer may have different values—within-die variation (WID)—due to
the so-called mismatch, so xS = (xP, xMM). Often the designer can
hardly influence global variations, but mismatch can usually be reduced
by increasing the device area. Even for a perfect layout, you have to
accept a certain mismatch, unfortunately.
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• Conditions, constraints, environmental or operational parameters, range
parameters xR: like temperature supply voltage, load resistance, etc. –
usually defined as parameter ranges.Also operating modes like temper-
ature, over-current or over-voltage shutdown, power-down, low-gain
mode, etc. might be part of xR.

Parameters, Variables, Constants. Often there is quite some confusion
about what is what! It actually depends on the context and the analysis you
apply. Surely, ε0 of vacuum is a physical constant, but for other materials
εr it might be a function of temperature or a statistical variable even!
Another example is this: We can treat statistics this way, that we assume
there is an ideal model from which we get random samples, e.g., in the
background there is a normal Gaussian distribution having a fix well-
defined mean μ and standard deviation σ. If we take a sample (via
measurements or simulations), we can calculate the mean of the sample
data, and it might be different from the ideal mean value, just due to
chance. So is μ a variable? Having a fix model in mind, it would be
no real variable. And what about the mean from the sample? A specific
sample is just a sample, it is as it is: once it is, it might be also regarded
as a (specific) constant set! Looks strange, but actually this is the way
we follow if we do a parameter estimation e.g., via maximum likelihood
method (ML). Here we take the data is given, so fix. And we search for
the model parameters (like μ and σ) which fit best to the data, so we treat
the parameters as variables. Although later we interpret them as fix, e.g.,
when using the model in a Monte-Carlo analyses.

In many cases it makes also sense to differentiate between (global)
variables (like sheet resistance) and e.g., instance-specific parameters
(like length of transistor #3 or its threshold variation against the ideal
value), but also this is a convention which is usually not followed strictly.

In IC design, there is quite a clear trend that the number of all kind of
parameters increases, i.e., design becomes more complex and also the models
(Figure 1.1).

In addition, also the impact of variations tends to increase, e.g., an IR
drop of 100 mV matters much more in modern low-voltage designs than in
older technologies.Also the changes of threshold voltages (e.g., from statistics
and temperature) in relation to supply or the absolute thresholds become
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Figure 1.1 MOS model complexity increase [Haase].

more critical (Figure 1.2)—besides several other problems like increased local
variations and layout-dependent effects (LDE).

Note: Unfortunately Figure 1.2 shows no units on the y-axis (we just found
none!), but the intention is to show that the speed improves by using modern
process nodes. This together with smaller area, lower costs and lower power
consumption is the major benefit of new technologies. However, unfortunately
also the relative performance spread becomes larger, so harder to manage. Of
course, the exact values depend also on technology features, devices sizes,
supply voltage tolerances, temperature, etc. What is also not easy to show in

Figure 1.2 Increasing process corner spread on CMOS speed.
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a picture, is that e.g., due to clever self-adaptive circuits the spread becomes
manageable. And there are tools which can address the problems of variations
accurately and efficiently.

In some design environments, and especially in older process development
kits (PDK) and model cards, global statistical variations are usually treated
not as statistical parameters, but only with fix sets of process corners,
like FastMOS (=best-case speed), SlowMOS (worst-case speed), MaxR,
MinC, and SlowNMOSFastPMOS (lowest threshold) or just nominal. This
is a simplification, because “slow” can only be the worst-case in dedicated
terms, like with respect to propagation delay time for a certain class of
circuits like CMOS logic but not for other circuits or other measures (like
bandwidth and phase margin). The major advantage of process corners
is that the designer can directly pick them, simulate, and get at least an
approximated worst or best case. In many design environments, you also
have different setups available, so you can decide whether you want to
treat process variations as corners or via MC. Best use both methods for
understanding and efficiency. Actually, also classical logic design was already
done in a variation-aware sense, but it excluded statistical variations almost
completely.

More Statistical Methods? In principle, we can treat statistical variables
xS with combinatorial methods—which makes sense with discrete random
variables, like coins—or we may use Monte Carlo.Actually, there are good
attempts to use statistical techniques also for range parameters (corners)
xR or for design variables xD. The idea of randomized verification for
corners is quite clever in cases where the number of directed tests would
be huge, like in big digital or software systems! Random methods for
design variables can make sense for difficult optimization problems to
achieve global convergence. In the near future, more and more statistical
methods will come up—also in analog design.

1.1.1 Brute-Force Design—No Way!

If you want to address the general problem of “design” mathematically and
want to describe it in high detail, we would have to deal with all performances
f collected in vector f as a function of all variables x = xD, xS, xR)T.

Note: This “art of design” is actually only a subtasks, although a very
important and time-consuming one. Usually, there is a kind of exploration
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phase upfront, which consists also of testing different circuits and composing/
extending circuits. And afterward, there is also a longer sign-off phase, and
there the focus is on verification (xD almost fix). However, often there is
no clear separation, neither in project time, nor in the tools; there are many
overlaps and iterations. This is almost a characteristic for analog design
(Figure 1.3).

Unfortunately, the performance function f (x) can be extremely complex.
In a clever testbench, we might be able to get all f with a single circuit
simulation like a transient analysis driving the circuit to all modes, but even
then we can typically only cover one single point f (x) (also called sample) of
that function; already this can take a minute or an hour. As circuit simulation
is often the most time-consuming (automated) part of the design, overall
efficiency can be often measured in many simulations needed to achieve the
targets. In fact, simulators are quite complex and have dozens of analyses and
hundreds of options, whereas the classical methods on top—like parameter
sweeps or Monte Carlo—have little internal runtime and a simpler setup.

Figure 1.3 Degree of freedom in digital and analog flows [Scheible2015].
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The major difference is probably that designers are very familiar with sim-
ulator options, because settings like gmin, reltol, or maxstep can be directly
linked to electrical measures, so the other tools on top often come sometimes
with something you are less familiar with.

To get a feeling for the circuit, designers usually apply many hand
calculations and do many sweeps. To cover nonlinearities accurately enough,
the sweeps should be dense enough. Especially temperature behavior is often
nonlinear, so you would set up a sweep with 10–100 points. Also for the
supply voltage, it is often good to hit the transition, when problem starts to
appear, accurately enough. Such sweeps are perfect for understanding, but
pure sweeps of one parameter at a time do not often show well the complete
behavior, because of correlations, or mathematical due to mixed terms like
x1 · x2 (here the impact of x1 on f depends on x2).

Example #1: CMOS logic delay usually increases with temperature due to
lower mobility μ. However, at low supplies VDD, this effect can change
because the negativeTC of the threshold VTO starts to become more important,
and at very low supplies (like for hearing aid applications), also the overall
TC might be negative, instead of positive! So the usually helpful picture of
increasing delay versus temperature gets wrong, just because delay, tempera-
ture, and supply are highly correlated and nonlinear. A one-parameter sweep
can be captured in a vector for input and output values, but two-parameter
correlations need to be captured in a matrix. If we look to 5 discrete values
for both parameters, we end up in 5 · 5 = 52 combinations.

Unfortunately, even if you would run all 25 two-parameter combinations,
you might still miss some critical cases, because more than two parameters
also can form such correlation group! And we do not know exactly which
parameter correlations to treat.

Example #2: If we would like to inspect all combinations in our design (like
an op-amp), we would have to treat 20 design parameters, 100 statistical
parameters, and 5 operational range parameters. For each parameter, we may
want to run 5 values, so to get a full picture, we end up in all-in-all 520 ·5100 ·55

combinations to simulate. Even if one simulation takes only a second to get
all f in f , we would end up in a simulation time of more than 7E79 years.
Doing this and looking at all results, we would have the guarantee to find the
best design values for the given circuit topology, and its behavior under all
conditions. For pure verification (i.e., for fix xD), we would only have to cover
the two last parts, so we need 5100·55 simulations or 7E65 years and even brute-
force verification (without exploiting any assumptions on the design) is almost
impossible.
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The biggest part in our example is the statistical part taking 5100 points,
so using a dedicated statistical technique like Monte-Carlo can already give
some speed-up! We will do so and will also discuss the risks. However,
even if we have a clever statistical method, we would have to run it for
all the range parameter combinations and for design also at each design
point. What about numbers? For verification using the sample yield being
in the order of 3σ or approximately 99.8%, we need rougly 3,000 MC
points for 95% confidence; so we still end up in 3,000 · 55 simulations
or 3.5 months for pure verification. Only such exhaustive or brute-force
methods would really give a kind of guarantee for any arbitrary complex
and nonlinear design. As this is hopelessly inefficient, we need better methods
which really exploit the structure of f by finding in which variables we have
high sensitivities, strong nonlinearities, and correlations. This way we can
avoid “uninteresting” simulations providing us almost redundant results. We
need to compose a clever search strategy that leads us quickly to the design
limits. Luckily, this is possible because many circuit design problems are
similar.

Of course any such efficient design strategy has both parts which can
be applied in general (like doing sweeps) but also adaptive parts (like we
need to find out which variables are important and form a group with strong
impact on a certain output f ). Usually, the variables with the highest nonlin-
earity cause most pain, e.g., temperature characteristics are often difficult,
but even more extreme cases can occur. For instance, you may want no
monotony errors in a DAC, but to check this, you may really need to
simulate each bit, because such errors may take place anywhere. In such
cases, best create a dedicated testbench, maybe one with autostop if we have
found a monotony error or using an algorithm which starts at a place with
the highest fail probability (e.g., around half-input, when the MSB would
toggle).

A Very Short History of Statistics and Numerics. Using statistical
methods to invest on card games and coin flipping is very old, but in
opposite to other mathematical areas like geometry, statistics as science
is quite young! For instance, a clear judgment why least-square tech-
niques should be used for fits, and when not, was just given in 1921 by
R. A. Fisher. The way statistics are often taught based on the axioms of
Kolmogorov dates to 1933! The correct confidence interval method for
the mean of a normal distribution was given in 1908 by W. S. Gosset,
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under pseudonym “Student”! Of course bigger breakthroughs are done
by C. F. Gauss in the nineteenth century, e.g., he solved many difficult
physical problems by applying least squares, problems on which, e.g.,
Leonhard Euler still failed. The central limit theorem has a longer history
starting in the eighteenth century, but proof has taken time as well. Monte
Carlo techniques came up in 1940s when numerical computers came up
more and more. First quasi-Newton optimization algorithms have been
invented in the late 1950s. Bootstrap techniques have been created in
the late 1970s. The popular latin hypercube sampling method has been
described in 1979 by McKay. Advanced worst-case distance methods
are even newer. Matrices are an elegant method to collect numbers and
equations, and the term came up in 1850 by J. J. Sylvester.

1.2 Engineering Techniques

Engineers are discoverers, hunters and gatherers, seldom dancers, or actors.
A first key technique—and maybe even the most important one—is knowing
what you want to do and being able to apply your knowledge.

1.2.1 Ground Work and Anticipation

The circuit behavior is usually defined by physical relations like the Ohm’s law
or the transfer characteristic of a MOSFET or an amplifier. For a block, this
usually ends up in a set of equations like the total gain is Atot =

∏
Astage with

Astage = gmRL. In nonlinear cases, such equations might be hard to solve for
obtaining the element values, so often simplifications are needed, e.g., based
on Taylor series. In an ideal op-amp-based amplifier (having an infinite open-
loop gain), the (closed-loop) voltage gain is defined by the feedback resistor
ratio, like Astage = −R2/R1 (Figure 1.4).

Obviously, a design is more robust if it relies on ratios instead of absolute
values, but sometimes it is not so clear, e.g., because the loop gain might be not
as high as desired, so that on top of the (resistor) ratio mismatch error, other
effects could be present, and even dominating—“bad luck.” Also “good luck”
is possible, e.g., you may find a clever bias concept to make gm proportional
to 1/RL to cancel out the absolute variations even in a simple transistor
amplifier stage. Via hand calculations, you can typically obtain only some
start values for the circuit elements, e.g., for those inside the amplifier or for
the RC values of a filter, and finding the really best-suited values requires
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Figure 1.4 Typical transistor amplifier stage and op-amp as inverting voltage amplifier.

some tweaking and resimulations or even multiple prototypes and redesigns,
respectively.

1.2.2 Iterative Refinement

Our example clearly shows that iterative refinement is a key technique
too: System design may start with simple budget sheets, often entered in
spreadsheet programs. At some point, you want to include more effects and
running quick simple simulations, e.g., in Mathworks� MATLAB�. Later, in
a real circuit design environment, you can switch part by part to more complex
models—based on Verilog-A—or to transistor-level circuits which also take
loading effects into account. Last you create full layouts, extract parasitic
elements, and run really time-consuming sign-off performance verifications,
whereas the functional verification and the testbench creation are usually done
at a much higher abstraction level. At the end, you can decide whether the
design is good enough to make tape-out, i.e., creating an expensive mask set
and fabricating the design.

Of course modeling is a key part of the design process and is partly
done by modeling experts. Modeling is very helpful in testbench creation,
in debugging, and also in the specification phase because having a testbench
with models is a kind of “executable specification.” It is very helpful for circuit
implementation to see how each block should act in the system context, like
what are the input signals and the desired outputs. Such “executable specs”
help a lot regarding team communication and give also a good status overview.
Ultimately, this gives high confidence already in early design stages, because it
allows to have always something that works and can be demonstrated.All these
points are often even more important than the simple simulation speed-up you
may get with simpler models compared to transistor-level simulations. For this
reason, start the modeling early in a project. Read a bit more about modeling in
Section 1.3.2.
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1.2.3 Composition in Design

Besides refinement, also composition is important: building of complex
systems or blocks by simpler elements. Analog circuit design is a bit like
Lego�, and digital is even almost 100% Lego! For instance, you may start
directly with a known op-amp circuit topology and optimize just the parameter
values, or you may construct a new op-amp:

• Decide on the input stage type according to the input common-mode
voltage range (for ground-sensing op-amps, you could use a PMOS input,
but no NMOS, and for rail-to-rail signals, you typically need both types
or a level shifter) and bandwidth requirements.

• Decide on the number of stages to fulfill the overall gain requirements.
• Choose an output stage based on drive requirements, technology limita-

tions, output voltage range, etc.
• Further decisions could be related to use either a simple class A con-

cept or more power-efficient class AB stages (or even switched-mode
amplifiers).

Construction often comes with decisions, and these might be tough to make,
because you have to work out each solution to some degree till you are
able to make decisions. Decisions are much harder to automate than pure
parameter refinements! And analog designers use a lot of different Lego
keystones—some are small like a differential pair, and others are complex
like a PLL or ADC.

Of course, design tweaking and composition methods are usually in
competition, but can also complement well. For instance, if you design a
second-order LC lowpass, you know you can get 40 dB/dec, so a certain
attenuation for the fifth harmonic. However, in reality, the elements have
self-resonances, and with good luck, you can exploit the series inductance of
your SMD capacitor and get a much better damping for HD5! In this case,
an optimizer might have found a similar solution, but designer’s knowledge
could outperform any optimizer in such simple case—but often not in more
complex case.

1.2.3.1 Construction vs. optimization
Exploiting the problem structure is usually the key for design efficiency.
Optimizers can partly act in this way, because they follow a certain strategy
which can be mathematically even quite optimal (see Chapter 8). In this
book, we address parameter optimization based on a fix circuit topology,
because we want to talk about methods that work in commercial EDA tools.
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In several academic papers, true synthesis techniques for analog have also
been reported. Usually, these are based on a circuit library and optimization
and construction techniques. Construction techniques, which are often rule or
knowledge-based, are important too and can be more efficient regarding the
number of simulations than pure optimization.

Note that there is, in principle, no clear difference between optimiza-
tion for component parameters only and optimization which would include
topology optimization. You could just give all of your circuits an integer
number, and let the optimizer optimize on both this integer and the usual
component parameters! However, this is (by far) not the best way, because
it just does not exploits the problem structure and nonlinear mixed real
integer optimization but is very difficult, thus creating a big burden for the
optimizer!

As mentioned, construction is often regarded as an alternative to optimiza-
tion, e.g., you could try to code [Berkely] your design strategy from spec to
circuit for each circuit type—like two-stage op-amp with Miller compensation,
NMOS input, folded cascade stage, and PMOS classAoutput—in a script (e.g.,
in a programming language like Perl or SKILL�), maybe even including the
layout. Unfortunately, such scripts are obviously much harder to create and
usually quite limited (at least without optimization), e.g., regarding the specs,
you can address as input, and maintenance is a problem too. In addition, it is
not easy to make such scripts technology-independent—although interesting
approaches at least exist, e.g., by doing the sizing according to gm/ID
technique and by the inclusion of optimization or lookup tables [Iskander2013]
(Table 1.1).

It is an interesting question if such fully automated methods will be
available in “analog”, would they be really well adopted by designers? And
what about competing methods which may focus on more design insight?
One current prominent example is the mismatch contribution analysis (see
Chapter 5)! Essentially, the whole idea of “awareness” is based not only on
“automation” but mainly on avoiding long iteration loops and for getting more
insights: for variations, for parasitics, for layout-dependent effects, electromi-
gration, etc.! Also tools like IP management systems have strong user-specific
aspect: Any IP system is only as good as the users and administrators are
in structuring and maintaining it. Analog designs will probably never be as
“simple” as logic design.

Already in existing environments, many companies have made clever
extensions to let the designers work in a convenient way, like offering property
editors not only for editing but also with immediate feedback for design
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Table 1.1 Construction versus optimization-supported flow
Construction-Based Design Optimization-Supported Design

Topology definition Typically in a script By designer in schematic
Parameters to design Defined in script Defined by designer, e.g.,

supported via contribution
analysis

Rules for sizing Defined in script, e.g.,
according to gm/ID method
and circuit-specific
calculations

To fulfill block performance,
support by sizing rules and
many other ones (see Chapter 2)

Flexibility Limited, need script changes High
Speed High, because circuit-specific

calculations can highly avoid
SPICE simulations

Low

Suitability for
high-performance
designs

Limited, especially if you
want to avoid SPICE
simulations

Yes

parameters, like for transistors you get immediately after entering width W
and length L also a value for the threshold voltage standard deviation based
on the process matching constants or for capacitors by setting W and L
you will get not only the capacitance but e.g., also the parasitic substrate
capacitance and the parasitic series resistor. Implementing more (like giving
a layout preview, or displaying key performances like fT, fres, Q factor,
S11, MAG, noise density, and maximum allowed current—whatever makes
sense) is often no big thing. Information at your fingertips is often just
work—or a talk with your CAD team! In modern design environments,
most customers use only roughly 65% of all tool features they buy for
and individuals often even less, so training and continuous improvement is
essential.

1.2.4 Team Work and Divide-and-Conquer

In bigger projects, many engineers work together. Usually, some experienced
system designers decide on system specs and system partitioning. Once the
system topology is defined, we can derive block specifications; however, there
is some flexibility in doing that like you can obtain an overall amplification
of 1,000 by using either 1 or 2 or 3 amplifiers in a chain. This limits
the application of the classical “divide-and-conquer” approach—as maybe
number one general design technique. Besides its limitations, in general, this
approach is extremely successful in chip design because it enables working on
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many blocks in parallel. Each of the blocks will then be designed in quite a
similar way, using similar tools. Also in block design, we often apply divide-
and-conquer, e.g., when we split the verification into corner runs, and for
treating mismatch we use MC.

1.2.5 Automation and Tools

Automation is an important method as well. Designers love their circuit
“babies”, and they love and hate tools. Designers hate repeating uninteresting
tasks, and usually, it pays out to automate things. I remember the old days
where you can just run a single simulation, look to the waveforms, take some
notes, and tweak the design. After some time, you inspected the more critical
corners on temperature T and supply voltage and made a little table on a sheet
of paper. Of course, a circuit is work in progress, so you changed it a bit
later, and so the table went out of date and becomes quickly inconsistent!
Already using a simulator was some kind of automation, and also setting up
a clever testbench is a key part of your everyday work. Nowadays, you can
also easily automate your result evaluation interactively with a “few” mouse
clicks, with built-in calculator and assistances—sent by heaven. This makes
also the application of more advanced techniques much easier, like Monte
Carlo analysis.

Automation is not only to support lazy people or just to enable design.
Being efficient, creating affordable products, and fighting not only for the
best but also for economic products are must for engineers. So automation
is a strong driver to reduce costs and becoming more and more important,
because the risk for failure is always present—redesigns are becoming even
more expensive in modern technologies (e.g., due to increasing mask costs),
and unexpected redesigns are one major reason for missing the design-in time
window.

You may anticipate many problems—maybe a dozen—like a chess player,
but surely at some point in design (still many), things may get wrong. Then,
you become a hunter for bugs and you have to debug and improve. In this case,
you typically do not know completely what is happening, but you should have a
working hypothesis and create tests to check it. In theory, there is no difference
between theory and practice, and in practice, there is. This is usually because
in “real” problems, we often just have a mix of problems.

In a design project, progress means removing the unknowns step-by-
step or at least quantifying their range and minimizing their impacts till
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you are confident enough that you can tape-out. This comes not only from
simulation and verification plans! You should understand what is causing the
limited PSSR of your circuit, and with analytical methods like small-signal
equivalent circuits, you can calculate your expectations and verify them using
power supply sweeps. The same you can often do for other parameters like
temperature as well as for other design metrics like offset voltage. Later you
will check for critical corner combinations like low-V DD and slow technology
corner, best with a sweep on temperature on top. Or you will set up an MC
analysis to check for the production yield. And if your yield target is high, you
may switch to special high-yield estimation techniques; and over-all analog
design bases also heavily on experience. For luck all many tools do not only
provide automation, but many can bring also much insight to the designer. So
it is not only “tool speed-up versus costs” that matters.

Last but not least: I remember, in a big tool demo provided by our leading
experts at the end, this question came up:

OK, we saw that great demo, but what else do you still need to do?
Can we use it already?

The answer was nice too:

Next step is to enable designers that they can do what I have shown!

Indeed, in making real EDA tools, this aspect is important as well, because
if something is difficult to use or confusing, analog designers will not use it.
This also points out well that education and training are indeed key points
in becoming and staying a good engineer! In fact, some techniques like
Monte Carlo are quite old, but still there is a lot of confusion in MC result
interpretation! So from time to time, engineers should stop in following the
usual habits and focus on things which may look boring or confusing at first
glance.

1.2.6 Re-Use in Designs

A last “last but not least” might be “do not reinvent the wheel.” If you
already know a good solution from experience, then it is often best to reuse
it and to focus on other problems. Why applying optimization on a low-
performance circuit with known design strategy and well-defined construction
steps? Luckily, a big part of design work can be already simplified by pure
reuse, e.g., using existingVerilog-Amodels or testbenches for standard circuits
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like bandgap, op-amp, ADCs, or voltage regulators. Also analog designs
can reuse some circuit blocks like digital gates and flip-flops, or you may
use layout macros for differential pairs or current mirrors, etc. Further
examples of reuse are the use of macro compilers (for scalable memory
blocks, etc.), sharing verification templates in the team which collect known
critical corner conditions. In Chapter 10 we will further describe IP and re-use
techniques.

1.2.7 Summary

The sweetspot of EDA tools is usually accuracy (like being able to treat very
detailed and complex models), and capacity (doing calculations fast). How-
ever, tools are not very good in following most of these manual approaches
(Figure 1.5). For instance, only slowly advanced partitioning techniques are
available in EDA tools, usually for becoming even faster and to enable
application to extremely complex systems. Simple examples are Fast-SPICE
simulators and parameter screening techniques in an optimizer for calculating
worst-case distances.

Figure 1.5 Engineering core competences.
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Figure 1.6 Simulation plots quickly created from a special calculator (EZWaveTM, Courtesy
Mentor Graphics).

Usually the decision about te next design step and which circuit should
be used is up to the designer, not to the tool. At best, an optimizer can
optimize multiple predefined circuits in parallel, and then it can hand out
the best solution found. Only in academic research, true circuit topology
optimization indeed exists already. Debugging of circuits and construction are
still almost beyond the scope of EDA tools, but of course all the software is
also designed to highly support these tasks. For instance, special calculators
are available to derive standard circuit performance measures (like 3dB-
bandwidth or 10%–90% risetime, and much more) quickly from simulation
data (Figure 1.6, not shown is the comfortable graphical stimuli editor). So,
since roughly 1985 IC design is a clever mix of manual and semi-automated
techniques.

All over the world, engineers have made tools to support you in solving
problems and these use the same engineering techniques as described. Often
you just have to read the software manuals or ask the EDAvendor for a product
update presentation.

1.3 Key Elements and Aspects in Circuit Design

Let us now take a look to further elements in design, specific to circuit and IC
design. A native starting point is of course a datasheet.
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1.3.1 Datasheets, Conditions, and Trade-Offs

The datasheet is the key document for any electrical device, as target datasheet
is often the base for future products and discussions. Here, you promise certain
functionality and characteristics. The circuit simulations during the design
phase help to find the best-suited circuit and also allow a virtual verification
based on simulation models, but for this we need clear guidance for efficient
work. Usually, the datasheet reports both the typical performance and the
guaranteed minimum performance; and it defines a bunch of testbenches.
Often a performance can be defined in different ways, e.g., in terms of power
in Watt or in dBm. Usually, the designer set up tests up in a convenient way,
e.g., fitting to measurement equipment and to get numbers easy to handle.
The latter is also important for numerical algorithms, e.g., the period of an
oscillator could be infinite, just in case that the oscillator does not work.
To avoid infinite numbers, better use the oscillator frequency f = 1/T .
Of course, terms of “pass” versus “fail” and for the yield, the unit does
not matter at all, but for other kind of data analysis or for optimization,
it does!

Of course, a circuit should not only work at nominal conditions but
also provide correct operation in a certain range of important environmental
parameters such as temperature, supply voltage, and load capacitance. In older
environments often designers spend many hours to collect simulation data and
to create spec compliance tables for reviews and for documentation, but since
several years this is a feature provided automatically (in the user interface
and e.g., as HTML as CSV file) in most EDA environments (Figure 1.7).
With context-sensitive menus or additional buttons also many more options
are available, such as backannotations to schematic, plotting window access,
sorting and filtering features, log file access, selection of a subset of corners
for debugging, automatic datasheet generation, etc.

Often there is confusion about which performances are required under
which conditions; a small change can have a big impact on whether the design
is easy to create or almost impossible! For instance, a small change in the input
voltage range of a DC–DC converter could impact the whole topology (buck
vs boost vs buck-boost) and pin-out. Clarify these points early and explicitly
in a verification plan, e.g., as appendix to the target datasheet.

When designing a product, you have to make many trade-offs, e.g.,
you can make a product cheaper using a simple process technology (like
pure digital CMOS process), but this can make the design (much) more
difficult, because older processes offer usually only moderate bandwidths.



1.3 Key Elements and Aspects in Circuit Design 25

F
ig

ur
e

1.
7

Ty
pi

ca
lc

om
pl

ia
nc

e
ta

bl
e

fo
r

a
co

rn
er

an
al

ys
is

(fi
rs

t6
co

rn
er

s
on

ly
).



26 Introduction: What Makes an Engineer a Good Designer?

For a given technology, you can often select a high-speed parallel architecture,
but that usually consumes more power and occupies a larger chip area. In many
cases, some overdesign with respect to performance is possible, so that you
will be on the safer side (e.g., on noise, offset, and distortion), but for critical
blocks, this is harder and leads usually to the use of more power consumption
and chip area, so your design will not be competitive! Underdesign is risky,
maybe you can still keep the specs, but the yield may drop significantly or
you will be out-of-spec and need a redesign.

1.3.1.1 Trade-off examples
In analog, mixed-signal, or RF, there are generally many compromises, requir-
ing much experience and careful well-organized work is required. Figure 1.8
shows the major trade-offs, but there can be even more (like costs and stability)
or some need to be split up (like distortion into odd and even order, or speed
into rise time, fall time, delay, bandwidth, and settling time).

Note: The green connections in Figure 1.8b show which performances have
positive correlation (like unity-gain frequency and power), and the red ones
show negative correlations (like phase margin versus gain). But look up, also
the positive correlations often compete, because it also matters whether we
have upper or lower spec limits.

Trade-off examples:

• Low noise is often a key requirement and is often directly related to bias
currents (so power) and device area (especially for flicker noise).

• Also linearity and output range are related to bias currents and of course
also to supply voltages.

• Low offset voltages (and good DC accuracy in general) require large
area devices to minimize mismatch, but this increases the chip area, and
it also leads to speed restrictions (or increasing power).

• Often high DC accuracy and low distortion come in sync, but at higher
frequencies, they can also compete due to reduced loop gains.

• If you want a certain output impedance (often required for RF circuits),
it may give severe restrictions on the supply voltage or your impedance
transformation networks, which unfortunately need some area, limit the
bandwidth, and reduce efficiency.

In Chapter 2, we pick up the trade-off topic when discussing the typical manual
design flow and transistor sizing.
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Figure 1.8 Typical design trade-offs (red=digital) and circuit-specific tool output (Courtesy
of MunEDA, red=fighting specs).
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Testing versus “Guaranteed by Design” Chips would be very expensive
if really everything would be tested in hardware under all environmental
conditions. Therefore, production tests are usually done only at room
temperature and some critical conditions. For this reason, most datasheets
are split, e.g., in a part describing the performance at 25◦C with usually
quite tight tolerances and parts for the characteristics over a wider range
of T, VDD, RL, etc. Detailed tests under these wider conditions are usually
done only from time to time, in laboratory, not during production.This way
many specs are not really guaranteed by 100% testing, but “by design.”
Only for very expensive components, it is affordable to really perform a
near-100% production test, like for military or spacecraft applications.

1.3.1.2 Datasheet contents
Datasheet for commercial products could also serve well as a reference for
blocks on an integrated circuit. Let us do so by inspecting the datasheet
of a commercial high-performance operational amplifier (excerpt, Courtesy
of Texas Instruments, for the complete information go to http://www.ti.com/
lit/ds/symlink/opa1612.pdf).

In the same way we can also create a design documentation e.g., of an
op-amp block in an ASIC. For instance, we can look to several commercial
examples, or we may use a datasheet template generator (see Figure 1.9).

An official target datasheet is usually quite complete from the pure
customer viewpoint (at least you have to convince the customer), but some
key characteristics for yourself are usually missing like yield and worst-case
corners. Also it is usually not defining chip area, block shapes, bonding
diagrams, and second-order effects like substrate noise. A real complete
datasheet in the “IC-design sense” is good for documentation purposes, but
also to support other designers in your team, to make a designer review or
just to learn. This way also the reuse of the block can be made much easier.
Some specs are typically not interesting for customers, but very important to
know internally. Actually, for the customers, maybe the guaranteed minimum
performance matters, just to fulfill system specs, but in other applications,
it may matter if your performance variations, e.g., in an ADC, are due to
temperature or supply voltage or due to mismatch, and for pure ADC design,
maybe just the total variation matters. However, if you want later to reuse the
design for a multichannel or IQADC application, the mismatch is usually more
critical, compared to temperature effects. For such reason, documentation can
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be hardly too good! Also it is convenient to see where improvements make
sense, e.g., where you have already followed best practices and reached the
state-of-the-art.

Often not all specs are fully confirmed by the customer, or you may want
to add internal specifications, for documentation purposes or to avoid design
iterations. For instance, in a system, only the overall offset or noise figure may
matter, but to understand the design, it could be also interesting to know about
the offset voltage generated in each amplifier stage. In addition, you may want
to limit layout-depending effects on offsets. Or you have a spec on bandwidth,
and by anticipating critical nets, you may want to limit the parasitics at several
internal nets.

1.3.2 Modeling Is Key

This is not a book about modeling or about simulation, but very often a
project failure is due to bad or even “lack” of modeling. Actually, if you
do “nothing”, assume “no model”, then you typically implicitly assume a
too ideal model, just a bad model. Even if you have no good model(s) e.g.,
for device mismatch or package inductance, it is a stupid idea to assume no
mismatch or no inductance! It is indeed a good method to start with something
almost ideal, but then also check the design with the use of realistic models;
do it soon, and step by step.

Already when started using simulation techniques in the 1960s, many
things rely on modeling (Table 1.2), and of course also for hand calcu-
lations you would use models. Actually, mathematically any function can
be interpreted as a model, there might be a strong physical background, like
for structural models, or even no direct meaning at all, just a fit. In this chapter,
we focus more on the first type of models, but for some design methods
like corner or sensitivity investigations also pure mathematical models, pure
response models have their benefits.

Luckily, the device models have been improved a lot over the years, and
partially, you can trust them more than measurements. On the other hand,
more and more things rely on modeling, not only the simulator results, but
also the way the outputs vary, e.g., in a Monte Carlo analysis. So not only
accurate IV + CV and noise modeling is essential, but also accurate statistical
modeling! Luckily, also the MC models have been improved a lot over the
years. In fact, the more physically based the model is, the easier the statistical
modeling will be, e.g., in the simple old bipolar Gummel–Poon model,
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Table 1.2 Different model type for circuit design
Type Tool Comment
Device models Circuit simulator e.g., classical SPICE models, built-in to the

simulator
Statistical models Circuit simulator

e.g., for
Monte-Carlo
simulation,
dedicated
statistical tool

Describing the parameter variations of the
device models

Behavioral models Circuit
simulator

e.g., Verilog-A models for blocks to get a
speed-up over transistor-level simulations or
to test ideas or system performance quickly
and without having a full implementation

Auxiliary models e.g., for substrate,
package, parasitics,
aging, etc.

e.g., SPICE subcircuits

the parameter “IS” is quite difficult to model because it is not related to a
single physical property! The opposite is true e.g., for the oxide thickness of a
MOSFET—here, we can expect much less impacts and correlations with other
parameters like doping concentration, bandgap voltage, or sheet resistances.
For this reason, the accuracy of most models found in modern PDKs is quite
good, although for sure some deviations to reality exist. For instance, often
a uniform, normal, or lognormal distribution is assumed. Often this fits to
a simplified physical theory, but frequently it is only a meaningful or just
acceptable fit to measurement data.

The foundries monitor the process continuously by making process control
measurements (PCM). The results will be double-checked in simulation
(Figure 1.10 from [Pieper2008]) by just using the same testbenches as in
the fab, e.g., on sheet resistance, capacitances, saturation currents, and small
circuits like ring oscillators. Based on PCM results the foundry can make sure
that only good wafers will be delivered to the customer. Often it is good to
be in tight contact with the technologists. I remember in a new process the
fab had problems with the current gain β of the new vertical pnp device, but
luckily our new circuit was robust enough to work accurate even with a very
low β. So instead of throwing away the wafers, we were able to deliver our
customer.

Variations may come for different physical reasons, so process variations in
general can be classified as random and non-random (e.g., temperature or age),
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and statistical effects are usually split into intra-die and inter-die variations.
For circuit designers, this level of classification is usually enough and models
for this are usually available from the foundry in the process development kit
PDK. Actually, for quality investigations, also a deeper split into lot-to-lot,
wafer-to-wafer, and die-to-die variations makes sense. Statistical variations
might be independent or correlated (Figure 1.11).

Usually, an additive law is assumed for parameters:

p = p0 + pprocess + pmismatch (1.1)

where p0 is the nominal value of the parameter (but it might be a function
of temperature), pprocess models the global variations and is shared among all
instances on your chip, and pmismatch is intra-die variation specific to instance.
Physically, the mismatch depends on the distance between the instances and
also on layout details, but as in front-end design, the layout is often not yet
defined and these details are typically ignored. They are also not that large if
you follow good layout practices, like having the same orientation for devices
which should match well.

Typically, process variations on threshold voltage VTO are not much
depending on device sizes and are often larger than mismatch variations,
but the latter become larger for smaller devices. Knowing this, designers
can create quite accurate circuits if they can manage that global process
variations cancel out! This is done in structures like differential pairs or
current mirrors, so that in these now the mismatch dominates. Another key
technique to reduce variations is calibration, e.g., one time (in production test),
dynamically (e.g., switching to a calibration mode), or sometimes even in the
background.

Figure 1.11 Typical classification for circuit design.
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Note: For some parameters like leakage currents, often a multiplicative law is
used and lognormal statistical parameters. This makes an analysis typically not
more difficult; it actually even helps because the voltage across a PN junction
follows typically a logarithmic law so that it would show a normal Gaussian
distribution because the exponential function in the lognormal distribution
and the logarithmic junction behavior would cancel each other! For external
components, it is usually more realistic to assume a uniform distribution,
not a Gaussian, although sometimes discrete elements have also very strange
distributions, e.g., if you buy ±5% SMD components, it is not unlikely that
the ±1% samples are sorted out and sold for a higher price!

Designers should check all models carefully, because sometimes one kind
of resistor or transistor is only “better” (e.g., on mismatch or temperature
coefficient) due to bad and too simple modeling! Usually, “special” things
like noise, mismatch, or breakdown are not treated well in seldom used or
special components (like native or low-V TO transistors or coils). A further
problem is often that more extreme devices like very small or very big
ones are modeled not as good as typical devices. One example for this
could be mismatch modeling, and often the simple

√
A-law is assumed and

implemented in the model files (Figure 1.12), more complex, more accurate
models are usually only available in advanced technologies like 28 nm CMOS
or lower (although of course highly advanced models could be also created
for older technologies).

Discrete versus Chip Design. In principle there is no big difference
between a discrete design, e.g., using SMD components, and IC design,
but if you really exploit the advantages of each you can end up in many
differences. If you need high accuracy elements, you can choose e.g.,
discrete components with tighter tolerances, spending a bit more money
for critical parts. In IC design you have to live with quite large process
variations and some area and component-type dependent mismatch. So
for discrete designs Equation (1.1) becomes easier: We have no real
process tracking for element tolerances, but of course we have absolute
tolerances causing also mismatch, e.g., between two SMD resistors. In
discrete designs, the manufacturer usually guarantees a certain maximum
tolerance (like ±5%), whereas e.g., in typical IC technologies we have
e.g., ±15% from technology and ±1% from mismatch (being usually
differential normal distributed). IC designers can often build very good



40 Introduction: What Makes an Engineer a Good Designer?

pair stages, whereas in discrete designs two packaged transistors (or
resistors, capacitors, etc.) never match very well. Of course discrete
designers have much more freedom regarding element choice, e.g., we
can choose a dual-transistor or a transistor array, or even a full op-amp in
an 8-pin package. In some aspects IC designers are much more limited,
e.g., on-chip inductors cannot really compete with SMD coils on Q-factor
or current handling capability. It is also hard to create IC technologies
which have both very small transistors (for optimum logic and memory
implementation with lowest costs) and e.g., power elements (e.g., able to
handle 40 Volts or more). At some point a very universal IC technology
would become too expensive, so that e.g., a multi-chip system make much
more sense, often also regarding design time, flexibility, time-to-market,
etc. Another aspect is design methodology: of course discrete designs are
quite easy to breadboard, but in IC design intensive simulations are almost
a MUST for verifications.

Figure 1.12 Transistor model card (typical older process, part for mismatch modeling marked
bold).
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Many outcomes rely on modeling, so often some small extra-margin might
be included for this (like make wires wider than needed according to EM and
IR drop requirements or let circuit work to 20% higher clock frequency)—this
helps a bit to be prepared for the unknown.

As mentioned, also circuits can be modeled, for example, we may create
simplified equation-based models and use these for early simulations and
planning on system behavior. In this book, we do not focus on modeling,
but using a modeling language clearly helps a designer to solve his problems
efficiently. Luckily, model reuse is often easier than circuit design reuse! For
instance, the same model might be used for an LNA, PA, or just any amplifier.
And even if you need a very complex and accurate model, you may still end up
in a single LNA model, and it can represent transistor-level models of many
kinds and many technologies. One advantage is that optimization with such
models is much faster, because less parameters are involved; you can directly
optimize on key parameters like gain, NF, and IP3, which is much easier then
tweaking the element values to achieve the desired performance. Figure 1.13
show a Verilog-A model of a voltage reference, also here we can define e.g.,
the noise level directly as parameter, without changing other parameters.

1.3.3 Design, Debugging, and Tools

A designer should have clear opinions on what he wants to achieve and how.
Coming to that point requires of course some discussions and experience, but
then there are still quite many things that could go wrong. One interesting
aspect in tools is that often they are useful for much more than only one
specific task—if you know them well.

Designers do experiments, collect data, and decide for further experiments
based on the results of the previous experiments. In circuit design, statistics
play a role, and also in math, such approach is known, the so-called design
of experiments (DOE). DOE covers techniques like parameter sweeps, corner
analysis, and Monte Carlo, but of course a big part of design is also intuition
and problem anticipation.

Good debugging capabilities (in laboratory and on computer) are very
essential, and using iterative refinement and divide and conquer helps a lot
because often the error is easiest to identify if you are at the transition from
something that works to something that does not work. Actually the word
“engineer” comes from the Latin word ingeniator, meaning a keen-witted
artificer. In the circuit tweaking phase, the designer learns a lot about the cir-
cuits, the system, the testbenches, and the technology by doing many parameter
sweeps. If you make the sweeps extreme enough, you always have to debug
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Figure 1.13 Verilog-A model for a bandgap reference cell.

something! Of course, sometimes, you also have to debug not only circuits,
e.g., you may need to check whether this is a model problem or a simulator
accuracy problem. For this, inspect log files and tighten the simulator accuracy.

Modeling is also perfect for debugging, e.g., the “assumption” that the
gain is lower due to package inductance by 1 dB is often meaningful, but of
course it is much better to include the package to your testbench. This way
your setup reflects the idea directly (even if you forget the assumption) and
even much more accurately!

Mistakes can be costly, so to be able to make decisions for difficult
problems, you need high trust.Agood technique is “always double-check.” Do
not rely too much on thinking or “obvious” things: Imagine there is a design
problem, and you measure ten samples in laboratory. Maybe the variations are
not large, but to conclude that the samples behave like in a nominal simulation
is risky. If your samples are from one production lot only, you may have
significant process deviations on top of the usual mismatch. So it still can
make sense to run, e.g., a short Monte Carlo process and mismatch analysis
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to clarify the performance problem; first get an overview before making
conclusions!

Also tools like simulators double-check things internally, e.g., by applying
multiple convergence criteria, and often you can double-check further by
making a “golden run” using very tight accuracy settings (like reltol =
1 e-9). Sometimes this is difficult (e.g., due to convergence problems, maybe
caused by floating nets, and high-Q elements) or time-consuming, so your
deep expertise is required, like treating not only reltol, but also tweak more
advanced options (like maxstep, minstep, the integration method or whatever).

In the advanced techniques described in the book, it is absolutely the
same, e.g., just run MC twice with different settings or inspect the reported
confidence intervals and inspect the log files in detail.

In statistics and optimization, there are luckily only a few icy places
where you need to look up carefully, probably confidence intervals are one
(Chapter 3.5) and we will tell you!Agood method is usually doing an analysis
in a different way, e.g., checking transient results against what you expect from
AC behavior or double-check yield calculated from sample yield and process
capability index CPK (Section 3.6.2).

Often you have to decide which to trust more—and that depends on many
things—e.g., phase margin PM gives you a number to quantify stability,
but a single number cannot fully represent all kind of instabilities in a
nonlinear system, so double-check with transient analysis, S-parameters,
manual calculations, waveform inspections, etc.—exploit what you have; and
try to get what is missing.

The good thing is that tool problems are often related to circuit problems!
So most designers apply such techniques anyway to some degree and extend it
hopefully. You should never really stop: Some outputs of analysis are for sure
almost trivial and check for what you directly want to verify, like that a unity-
gain buffer really reproduces the input signal—easy to check in a transient
analysis. The more experience you have, the more you can do: Check also
overshoot and distortions, and look maybe to the differential input voltage to
check whether the loop gain is high enough forcing a low difference. Check
the recovery behavior: Is your circuit coming back quickly to correct operation
in case of overdrive? It is hard to be aware upfront of everything, e.g., the filter
cutoff frequency sensitivity to RC elements should be one to one (like 10%
in R gives a shift of 10% in frequency), but in high-Q filters, this will change
even depending on topology. Also the sensitivity to other parameters is not
always easy to predict, e.g., because op-amp loop gain might not be really
large anymore at the frequency of interest.
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Maybe some problems remain, and you have to discuss them with an
expert and have to train yourself further. Do not only learn from your own
mistakes.

Almost all kinds of tools have a direct obvious output, like a histogram
from a Monte Carlo analysis or the performance variations in a corner analysis
or parameter sweep. However, there is often much more, unfortunately
sometimes “hidden” in log files or menus. If a design is bad, you may want
an optimization, but often other methods are more efficient: Many advanced
simulators feature an analysis to check the impact of mismatch (or transistor
parameters) to DC operating point. The result of such analysis could be a
ranking list of the instances causing the biggest performance changes and
the total variation, e.g., in the output voltage of a reference generator. A
designer can do a lot with that information: If, for example, the top 4 transistors
dominate the mismatch and we make their area 4× bigger and we can expect
an improvement of the overall mismatch by almost 2×! So we can improve
directly without using an optimizer!

Also automated optimizers and high-yield estimation (HYE) methods
provide much more benefits than just improving the circuit or verifying
the yield—in addition, you get valuable design information for your under-
standing and for more efficient work. We will tell you because this way
advanced designers have often even much more benefits from advanced
tools than less experienced ones. For instance, sensitivity analysis results
are available as a “by-product” of more advanced analysis like worst-case
corner search or just a Monte Carlo analysis. In opposite to simulator built-
in analysis, those have often the advantage of higher flexibility, like being
not limited to DC or AC behavior, but valid for any kind of output (like
noise figure (NF), total harmonic distortion (THD), or third-order intercept
point (IP3)).

To some degree, statistical analyses are often not done because statistics
is so interesting, but also because it is one important piece for enabling
sensitivity-driven design. But watch out, and this is not for free, e.g., it is quite
easy to calculate the sensitivity of a certain performance metric with respect
to a certain transistor width (like W1), but this does not mean that you as a
designer can do really much with it, because in a low-offset differential pair,
nobody would usually change the width W of only one of the two transistors
forming the pair! What you really need is the sensitivity to W1 being in synch
with W2 and that is no netlist information available to the simulator.Also many
simulators can provide sensitivities to many transistor parameters, but you as a
designer cannot really change the technology or just one individual transistor
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parameter like mobility or current gain β without compromising others (there
is, e.g., a trade-off between β and early voltage VEA).As a designer, you have to
formulate your questions in testbenches—and this is always some significant
work. In addition, there is also much design work beyond pure sensitivity in
general, because the sensitivity cannot catch circuit modifications like adding
a buffer chain or a cascade or a capacitor for more frequency compensation
flexibility.

In conclusion? In this book, we give you guidance on many methods, and
sometimes the very basic methods—like simply simulating really all variable
combinations or doing a huge Monte Carlo analysis—are extremely ineffi-
cient, so maybe we condemn them too often and we stress the disadvantages
too much in the readers mind? We are fully aware that sometimes only almost-
brute-force methods are completely foolproof, and indeed, you can always
construct test cases, where “too” clever methods would fail! Running all
combinations allows to find the worst-case safely, but an automated search
can be much faster. On the other hand, having really the results from all
combinations would also offer to find the best one, which is not of much help
for verification, but is indeed helpful for starting laboratory investigations or
for keeping your design alive and improving it further.

Murphy’s Law versus RTFM? Besides doing the setup and decision
making, designers are also challenged by tool bugs and limitations,
sometimes. For a transistor-level simulator, hundreds of options may
solve problems, or cause them. Luckily, most statistical or optimization
techniques feature much less options, e.g., for Monte-Carlo, you may need
to decide what do you want to save, which random seed you want, and how
many run points, but not much more!Also more advanced methods do not
need a big setup luckily, and mostly, this is because—even and especially
the most advanced—algorithms came with a lot of internal automatically
adjusted options. With the options available directly in the user interface,
you typically set a certain compromise between speed and accuracy, e.g.,
by setting stopping criteria.

However, of course something could go wrong like an optimization
gives no progress or a high-yield estimation algorithm is not able to
provide an accurate solution. In these cases, read the log files carefully, try
to follow the hints, and read the fantastic manual. Actually, 20 years ago,
software documentation was sometimes horrible, but nowadays the prod-
ucts are quite mature and well-documented, featuring many examples,
screenshots,
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and even demo databases or videos. Ask the service team, and often you
are not the first one having this problem. If something gets really wrong,
double-check not only for the direct tool output message window, but
look also to the general log window, to messages in the Unix shell, etc.
Best go back to an easier testbench till you get something that works.
From that, you can extend the setup again, step by step, till you narrow
down the problem and locate it—like problem happens with a certain
version or is only present in a certain device or type of distribution, etc.
Of course, there is a general problem in documentation: A manual is
typically focused on explaining all the different features, so it is often not
really solution-oriented! However, often there is further material like app
notes, videos and white papers giving more background explanations and
examples.

Also the simple methods may come with further options, e.g., the overhead
in running all combinations can be used to derive internal error limits, which
might be not available to that level in highly advanced methods which would
really only do the absolute minimum number of necessary simulations.

There is no free lunch! “Greedy” methods can fail, often in a quite
spectacular way! We will get some examples later. On the other hand, the
design challenges are often so large that indeed, brute-force methods would
be far too inefficient (like we would need more than one million simulations
to run) and too simple basic techniques (like doing only one-dimensional
sweeps and ignoring all correlations) would become highly inaccurate. Then,
mixed approaches and iterative techniques become attractive, but still it is
good to know what their benefits are and how they mitigate the remaining
risks.

Trust and Error Limit. Tools often report error limits, this gives trust.
And actually a pure point estimate is not enough, you should really have
also an error estimate. “Error Estimate”, seldom you can get more; and
such error estimates can have different quality! You would be in a perfect
situation, if someone gives you a true guarantee, like 900Ω < R < 1kΩ.
If you buy an SMD component, you get almost such hard limits. Unfortu-
nately, in statistics you typically have only statistical “limits”, like “The
chance that R is larger than 1kΩ is below 0.1%”. These kind of limits are
better than nothing, but not as good as hard limits. In addition, in many
cases estimations depend on model assumptions, but it is hard to say if a
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a model is really valid or not. There is a gray area! So not only the estimate
(e.g., on yield) but also the method to estimate its tolerance might be
not 100% correct. Try to understand how the error estimation works in
the specific algorithm. Using Taylor series is one general method, but
often you can hardly know how many terms you need to include for error
calculations; and usually error estimation works only with low risk for
interpolations, not for extrapolations.

Check if model assumptions are meaningful, do not misuse special
methods, e.g., check by eye inspection if the data is Gaussian if you use
confidence intervals on the mean based on the Student-t distribution. Of
course, multiple errors can be present, and they may add up significantly.
Here double-checking is best. If someone is promising that a certain
method is “trustable” and “verifiable”, he often promises too much (at
least in a mathematical or legal sense), or he forgets to mention the
prerequisites.

1.3.4 Simulation Aspects

Of course you need to be able to simulate your circuits, usually on transistor
level to design your circuits with computer support. This is standard since
1980s. For complex analysis, the runtime could unfortunately cause problems;
usually more in design automation and for advanced analysis, then e.g., for
pure interactive manual design and debugging plus waveform inspection.
Therefore, e.g., advanced statistical methods need to be efficient regarding the
number of simulations to get a certain output, like sensitivity or the standard
deviation of your circuit performances.

These aspects are quite obvious, like a 10-corner simulation may take 10×
more times than a 100-corner simulation. The good thing is that also most
advanced methods have still quite a moderate internal runtime, but one aspect
is often overlooked—accuracy! For instance, it can be already challenging to
get accurate enough transient results, e.g., for a DFT output with low-noise
floor or to get the overshoot really accurately. For instance, reading out the
maximum output voltage max(Vout) can be impact by tiny spikes or small shifts
in the simulation steps the simulator takes. Usually, designers can manage such
problems for their verifications, with careful testbench setup, but for some
advanced analysis, you need indeed truly a higher accuracy. This is mainly
the case for comparisons, like for gradient calculations by finite differences
for an optimization. Having a too large numerical noise could prevent to find
the best circuit solution, could prevent getting accurate sensitivity results.
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Later we will see that optimization is also one step for finding worst-case
distances (WCD), so also some advanced and very useful statistical techniques
need really a good testbench setup.

Not only transient analyses are critical regarding accuracy, but also an AC
analysis can create numerical noise (even if the related DC solution is already
very accurate), e.g., by using too few frequency points and when looking
to characteristics like bandwidth, peak frequency, deepness of a notch, or
filter passband ripple! Therefore, always inspect your results manually with a
waveform viewer and read out the performances manually; also double-check
the accuracy setting (like tighten the error limits and double the number of
points and check how much the results change).

All in all, quite a big part of engineers’ work is spent on making good
testbenches, universal testbenches, and tests for debugging, up to a full
optimization setup which really captures all performances correctly and
reliably.

1.3.5 Total Yield and Partial Yield

The sample yield is easy to calculate as the number of good samples npass
divided by the total sample count n. You can calculate it not only for each
specification, but also for all specifications together. In both cases, yield is
only well defined if you have enough pass and fail samples to guarantee a
“stable” statistic!

Of course, changing one design parameter like resistor R1 may improve
the regarding performance A but may make performance B worse; not only
performance matters, and with respect to costs, the production yield has similar
importance as performance itself.

Note: The real production yield is also impacted by layout defects like
broken vias. Here, in the book we focus on what the front-end designer
can do to improve the yield. The term “design for yield” or “design for
manufacturing” (DFM) can be used in different ways. In layout, yield
improvements are possible too, e.g., by avoiding single vias, following more
rigid design rules, etc. Also note that in statistics and in production, the term
“sample” often has slightly different meanings: In production, a sample is
usually a single piece, but in statistics, also a certain set of samples (or
several MC points) are regarded as sample. Note, because also such sets
of random samples are random samples, not fully representing the whole
statistic.
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To simulate the production yield of our design (defined by xD) in a
computer, we can mimic the fabrication and its production tolerances (defined
by xS) with a Monte Carlo simulation. For instance, we can generate a set of
n = 1,000 designs, each having different statistical parameters. To be in spec,
we need to run many simulations on each design to cover all combinations of
operating (range) parameters xR like temperature, load resistance, and supply.
If we want to verify at least three values for each of the r range parameters,
we need to do three-corner simulations. For realistic designs, this may lead
quickly to >250-corner simulations, to be executed on each MC sample
(coming from our virtual production), so overall to >250,000 simulations.
This is a simple but very time-consuming way to check the design. If you
want to improve your design on yield with given performance specs you
even need to tweak your design and the step with >250,000 simulations is
required for each individual design, which ends-up in a very slow over-all
progress!

On the other hand, truly only this extremely exhaustive flow has no
systematic errors. In general, the Monte-Carlo simulation effort for design
is given by:

#simulation = #design combinations to inspect · #tests/simulations

per test · #cornerssweep-points for each corner · MC points (1.2)

Note: If you as a designer make a very clever testbench setup, you might be
able to treat multiple corners already in one simulation. This is often done
for important parameters, like doing a DC sweep on temperature or supply
voltage! However, “too clever” testbenches are often harder to manage, to
extend or less handy for debugging.

Mathematically (see Chapter 3), the overall yield is defined as volume
integral over the product of the indicator function and the joint pdf. The
indicator function gives a 1 in the pass (or acceptability) region (the region
where all performances are in-spec) and 0 in the fail regions.

Even if we exclude the condition parameters, it is typically a very difficult
and highly nonlinear function of a huge number of statistical variables; the
more performances we have to check, the more difficult the spec-to-failure
boarder (and the yield integral) will look like. Later we will give you some
pictures and equations.
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Do you hate buzz words? Like “new,” “breakthrough„” “brute-force
MC”? You are right, e.g., why taking a stupid brute-force method as
“reference”? In this case, however, there are indeed good reasons to do so.
One is that using fancy adaptive or empirical methods as reference would
lead to very fuzzy comparisons.Also there is often no better standard way,
and new adaptive methods are often simply not available to all authors!
In addition, e.g., a full-factorial analysis is a brute-force “stupid” method,
but it leads to very well-defined measures: If the number of variables is
given and the individual values, you can directly calculate the total number
of all combinations and your simulation effort. Also for MC, something
like this is possible. On top, you can also often quantify the remaining
inaccuracies of such methods. Often the user has to decide for the setup
of two different more advanced statistical methods, which might be hard
to understand and unfortunately not really well documented. In this case,
go one step back and inspect MC as reference; then relate both advanced
algorithm against MC for the manifold aspects. Whenever possible, we
try to give also references to manual best practices for design, but there is
unfortunately no “gold standard” for more advanced methods including
those based on design experience, intuition, and common sense!

When checking production samples against the spec limits, we can cal-
culate the yield; each performance leads to a certain partial yield. Only if a
sample is in-spec for all performances, we can ship that sample to the customer
as a good sample. The total or overall yield is lower or equal to the lowest
partial yield. It is well known that the partial yield for spec1 and spec2 can
be 50%, but the overall yield might be 0 to 50%—depending on correlations.
Typically, we have both “fighting” specs (often bandwidth or rise time versus
phase margin—see Figure 1.14), where we have almost to add the yield losses
and almost redundant specs (like bandwidth and rise time), where we can
almost just use the minimum partial yield. So the “compromise” of assuming
no correlation, giving 25% is often not so unrealistic, luckily.

Of course, for too difficult and too many competing specs, the design
becomes completely infeasible! Luckily, for high yields (and you typically
aim for this), the total yield uncertainty from correlation relaxes a lot: e.g.,
Y 1 = Y2 = 99.8% can lead to Ytot = 99.6% . . . 99.8% which is often
an acceptable accuracy. In such cases, the non-correlated case (99.6004%)
is anyway very close to the worst-case. In Chapter 5, we will address the
difficulty of performance correlations in more detail.
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Figure 1.14 Yield for two fighting performances (phase margin and rise time).

Big chips should be still fabricated with a high yield like 90%, but to
guarantee this, each block needs to have a much higher yield like 99.9%. If
we have replicated blocks in our design, like digital standard cells, memory
cells, or subcells of a high-resolution DAC or ADC, we need even much
higher block yields, which often cannot be verified efficiently with standard
MC methods (Figure 1.14).

As you can see, dealing with yield numbers can be a bit difficult, especially
if we want to address yield yields, like 99.999%. For this reason, it is very
common to express the yield in terms of sigma for a yield-equivalent normal
Gaussian distribution.

One problem is unfortunately that sometimes we have single-sided spec
and sometimes double-sided ones, and for a single spec placed at 3sigma,
the equivalent yield would be app. 99.85%, but for a double-sided spec ±3
sigma, we would have two times the loss, so Y = 99.7%. The latter number
is used a bit more frequently, but most real specs are single-sided, e.g., for
the yield or for PSRR, you are only interested in avoiding production samples
with a too low yield or PSRR! Instead of using “sigma”, you can also use the
CPK, and we will discuss it in detail in Chapter 3. The CPK is only valid for
normal Gaussian data, and in Chapter 4, we extend the idea and explain the
generalized CPK.

Figure 1.15 shows the pdf of a normal distribution with readouts for yield.
If the sigma of a design is fix, then one good way to improve on yield is to
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Figure 1.15 Yield parts for a normal Gaussian distribution.

Table 1.3 Yield in terms of sigma and CPK

Spec Setting*
or Yield in
Sigma CPK Rule of Thumb

Single-Sided
Yield Loss

Double-Sided
Yield Loss

0 sigma 0 50% fails 50% 100%
1 sigma 0.33 about 1 failure in 6 15.9% 31.8%
2 sigma 0.67 about 1 failure in 50 2.3% 4.6%
3 sigma 1 about 1 in 700 0.14% 0.27%
4 sigma 1.33 1 in 30 thousand 0.003% 0.006%
5 sigma 1.67 1/3 in a million 290 ppb 590 ppb
6 sigma 2 1 in a billion 1 ppb 2 ppb

*Distance of spec to mean for using a normal Gaussian distribution.

“center” the design. This way you can minimize the total loss according to
upper and lower spec limits; better have a balance than too much loss on one
of both spec limits. Another way is of course to try to make the design more
robust and to reduce the sigma, so yield optimization is more than only design
centering (Table 1.3).

How many sigmas do you need? Please start to like “sigma”, it allows
dealing with less extreme numbers, and it provides you a better feeling for
statistics. If your plan a high-volume production, a good chip-level yield
makes life (e.g., testing) much easier (and cheaper). So maybe Y = 95%
is a realistic target, maybe even 99%. However, if your design contains
1,000,000 memory cells or more, then we need for each cell a real high
yield, easily six sigma. For blocks which are placed only once on the
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chip the situation is more relaxed, but still a chip can contain easily a
hundred blocks, and already one block fail can lead to a bad chip sample;
so each block should still have a yield in the order of 4 to 5 sigma.
So to some degree we have applications where high-yield verification
is a must, and also cases where low-yield methods like Monte-Carlo fit
well. However, as shown, also the intermediate region is important, and
already for 4 sigma Monte-Carlo might be impractical (read the chapter on
confidence intervals and yield verification), at least if your circuit requires
time-consuming simulations.

A further important question is also how accurate your MC estimates
(for yield, mean, standard deviation, etc.) should be. Usually it does not
matter so much if the standard deviation of your offset voltage is 5 mV or
6 mV, so sometimes 20% error in terms of sigma might be still acceptable.
However, for anADC or DAC too large mismatch can quickly cause severe
errors like missing codes or non-monotonic behavior. In pure Monte-
Carlo analysis all estimates have a certain tolerance; and tighter tolerances
require more simulation effort. Find more details in Chapter 3.

1.3.6 Robust Designs

You are typically happy if your design is in specification over the full operating
region. But how to achieve it? By far the best way is to make the design
robust by construction and not to rely on pure simulation and verification
techniques!

In analog circuit, we represent signals directly by physical natures (I, V, C,
etc.), so they are much more sensitive to manufacturing process and envi-
ronmental parameter than digital circuits. Design robustness requires the
systematic elimination (or at least minimization) of sensitivities to all those
parameters. This is only possible by careful choice of the circuit and system
architecture, circuit topology, and very careful implementation. This is time-
consuming and requires accurate device modeling, and good understanding
for the circuit operation and the technology behind. Many problems need
to be anticipated, so that a timely project execution and verification are
feasible.

A big trend in making analog circuits robust is using clever mixed-signal
techniques, e.g., ΣΔ ADC and PLLs. Those were only a first step and a lot
of innovations can be further expected, because pure analog techniques tend
to become more difficult or just too expensive compared to clever mixed
techniques.
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In analog circuits, some old tricks may not work so well anymore,
e.g., due to reduced supply voltages, or you may need to use a technology
optimized for digital, giving less flexibility as an analog-oriented BiCMOS
process. Often innovations are coming from both: new restrictions and new
opportunities. In Chapter 2, we will give several examples. More complex
examples and an excellent overview on ADC design (but not only this) can be
found in [Murmann]. Performance gains in circuits are not only coming from
CMOS scaling (triggered by the down-sizing of transistor dimensions in new
technologies), but also coming from great innovations and surprising concepts.
Sometimes the improvement is not in making a better op-amp but just using no
op-amp anymore (like replacing them by oscillators or comparators or charge
multipliers).

Some of the general techniques for yield improvement are visualized in
Figure 1.16; (a) shows a non-optimized design which is “in spec” at nominal
conditions, but it fails on performance f2 at the worst-case corner. In (b), we
accepted the variations, but we improved overall performance, and this might
be difficult but often possible by spending more area or current (assuming a big
spec margin here). In (c), we reduced the variations in performance f2, but it

Figure 1.16 Different yield improvement strategies for two performances f1 and f2.
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often comes with sacrificing other performances or the performances spread in
other performances! What is also often possible is to ask for a spec relaxation
(Figure 1.16(d)). The ideal case of reducing the variations in general (so that
it is not needed to make the nominal performance extremely good) is usually
also quite difficult to realize; e.g., you may need more chip area to reduce
mismatch variations. Sometimes there is no other solution then just spending
more area or current, often this is the case for critical parts, and e.g., we may
need to compensate the area increase by using smaller transistors in less critical
parts. Later we will give further examples, and one solution is of course just
to try another circuit variant.

Note: Worst-case (WC) refers not only to environmental conditions, also to
statistical variations. A nice circuit example is a Butterworth filter, having a
maximum flat passband gain. If we design a Butterworth gmC filter at nominal
conditions and process corner (NN) it can happen, that e.g., far too many
Monte-Carlo samples have a large undesired filter ripple. So if we really
need a flat response for almost all samples and conditions, we actually should
design our filter this way that also these extreme MC samples—also being
a kind of worst-case corner – are in spec. And this is usually only possible
by limiting the mismatch impacts and by reducing the filter Q factors. So at
the WC we would get a Butterworth behavior (quite high Q factors) and
at nominal we get a filter closer to a Bessel filter (quite low Q factors).
Having an eye on nominal performance for understanding and on WC for
being in spec is the perfect method for achieving robust designs efficiently.
Doing this we could see early enough that our filter is almost impossible to
design, and we may need indeed another circuit, e.g., and to increase the filter
order.

1.4 Design Flow Inputs and Outputs

Some elements in the custom IC design flow we already mentioned, beside
schematic, specifications, testbenches, layouts, etc., there are also many other
documents important for you and your customers, like a guarantee for a certain
life time or a limited number of bad devices in the delivery.

Especially for reuse purposes, a (much) more detailed design-oriented
datasheet—more a real design documentation—is usually desirable. In addi-
tion, make a presentation to your colleagues, and describe well the circuit and
its tricks (Table 1.4).
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Table 1.4 Custom IC elements
What Requirements Created by Comment
Datasheet Product idea, electrical

and mechanical
specifications

Designer,
marketing,
customer

Design
documentation

Datasheet plus additional
information (e.g., on tricky
parts, on sensitivities)

Designer

Process
developments
kit PDK

Featuring component
libraries, simulation models,
layout cells, run decks
to check design rules, etc.

Foundry Is technology-
specific, and number
of rules and
complexity increases
more and more

System
topology

Datasheet System
designer

e.g., checked with
Excel� and
MATLAB�

Floorplan Datasheet, chip size estimate,
pin positions, block size
estimations

Lead designer,
lead layouter

Schematics Inputs and outputs, circuit
function

Designers,
using a
schematic entry

For circuits and
testbenches

Netlists Schematic Automatic,
triggered by
designer

Usually in SPICE
format or a similar
one

Postlayout
netlists

Layout, LVS results Automatic,
triggered by
layouter

Tools offer also table
outputs,
backannotation of
parasitics into
schematic, etc.

Layouts Schematic, layout hints, e.g.,
in OA format

Layouter or
designers, using
a layout editor

Hints can be provided
verbally, as comments
or as constraints

Bond plan Package and die drawing Lead designer To be send to fab
LVS report Schematic and layout, LVS

run decks to extract devices
Layouter To make sure that

what you layouted is
fit to schematic

DRC report DRC run deck, layouts Layouter To check that design
can be manufactured

GDS Layout Layouter Defining the
coordinates for all
elements to be
created at each layer

(Continued))
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Table 1.4 (Continued)
What Requirements Created by Comment
Evaluation
board

Laboratory test hardware
(and software)

Designers and
application
engineer

Test
circuit/program

Production test hardware
and software

Designers and
test engineers

Test is usually related
to production tests,
but verification is
usually referred as
part of design

Quality
plan/report

Checklists, etc. Designers and
quality
engineers, etc.

This is clearly a team
effort. Often it is
required to follow
certain norms like
ISO 9000 on quality
management

Third-party IP Usually, you get only a
minimum on documentation
on files, like GDS, SPICE
netlist, and datasheet

IP vendor,
foundry, etc.

Often used for digital
standard cells,
memories, IO cells,
etc., but can be also a
major part like ADC,
PLL, DDR3
interface, etc.

Figure 1.17 is giving a picture for different design and analysis methods
according to the different variable types. For circuit simulations, all three types
matter, whereas some other techniques like DRC and LVS run are usually
only done for a fix design defined by xD. Note, that the complete space x =
(xR, xS, xD)T can be huge and the performance functions f depend on all
three types, so doing a special analysis, like a corner run is capturing only a
little subspace, which might be not fully representative. So mathematically,
doing only these basic analysis is working without really having the eyes fully
open. Actually doing only isolated analyses in one kind of variable, would be
mathematically only acceptable if the circuit would be have according to
Equation (1.3).

f (x) = f R(xR) + f S(xS) + f D(xD) (1.3)

In this case e.g., the sensitivities δf/δxD would not depend on xS and xR, but
this is clearly unrealistic.

Let us see in Chapter 2 how open the eyes are in a typical manual IC
design flow.
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Figure 1.17 Flow input and outputs.

What is in a PDK? To make real designs to be manufactured, you need
library elements, These represent the chosen technology, and coming
usually from your foundry. So in modern complex technologies, a process
development kit contains quite a bunch of material. From the technology
library, like cmos90rf, you can pick cells (actually the symbol e.g., for
a certain NMOS transistor, a certain resistor type, etc.) and create your
circuit blocks in a schematic entry. To run simulations, the process devel-
opment kit also includes simulator models, like Gummel-Poon models for
bipolar transistors.

Also layout views are part of the PDK, and such layout cells are
usually parametrizable, because in opposite to a SMD transistor, chip
designers can e.g., choose the width and length of their elements in a quite
large range to optimize circuit characteristics. Such layout cells are called
programmable cells (pcells), and each contains the geometric construction
statements for the different chip layers to form a specific component (like
a high-voltage transistor).

Also available are e.g., rule decks. Using them we can make sure
that the design becomes really manufacturable, e.g., all designed element
need to be separated by at least a certain minimum distance, to avoid e.g.,
problems with short circuits, leakage, etc.

The tools picking up the PDK content are typically coming from an
EDAvendor. Some required tools are even available for free, like the orig-
inal old SPICE simulator. However, usually commercial implementation
offer more features (like special analysis types) or higher performance
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(like faster matrix solution, parallel processing, etc.), plus service (not only
around the tools itself, but e.g., also regarding design IP, methodology,
hosting, etc.).

1.5 Questions and Answers

1. How complete should a datasheet be?
In the style of official datasheets, there are huge variations, some
provide only the absolute minimum, and some are readable like a
book on learning circuit design! For good examples, look to the
old datasheets of OP-07, the famous PMI low-noise high-precision
operational amplifier or to newer products of leading manufacturers.
Often the devil is in the details, e.g., some performance specs require
an accurate testbench description. For instance, the distortion might
be small as inverting amplifier, but much larger in unity-gain configu-
ration due to common-mode distortion. In addition, load and frequency
will have a significant impact.

2. Assume the error in your yield calculation is 0.3σ, and
what is the error in yield loss?
The relationship is highly nonlinear, e.g., 2.3 × loss
error at 3σ, 6 × at 6σ.

3. Could it happen that in a full MC analysis the sigma of a reference
voltage is 2× smaller than from a production?
This can happen as it also can happen that two results of an MC
analysis are not identical! For instance check whether at least the
MC simulation confidence interval hit what you get in production. In
addition, the production in one fab and few lots (see Figure 1.18)
might not show all the allowed tolerances, which you may see over
the whole product lifetime or at other fabs using the same process
technology! Usually, the limits a fab has to guarantee also come with
some margin, and bad wafers will be thrown away, so often process
parameter distributions look Gaussian, but with cuts or like multiple
narrow Gaussian distributions shifted against each other. Of course,
you should design for high long-term yield!

4. Look at the Texas Instruments op-amp datasheet, and how many specs
are included? Is this typical? Compare to Figure 1.6!
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There are more than twenty specs, which are quite a lot for a simple
block with seven pins. Few important characteristics like saturation
voltages, and recovery times are not included.

5. Discuss when a design is “good”!
This is an important question, because only when we can formulate
this, we could think of a true design automation.

Figure 1.18 Typical short-term and long-term distributions in a fab [Pieper2008].
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2
Manual Analog-Centric Design Style(s)

We collect now the most important best practices for efficient design and
verification, the typical analog flow. We introduce briefly the concepts of
specification margins, corner simulations, worst-case and Monte-Carlo.
Corner and MC simulations are two standard approaches to discover the design
behaviors, and both are simple in essence, because you just run a certain fix
scenario, a fix “design” of experiments (DOE). Both methods act like a simple
signal chain, without feedback; you as user have to inspect the results, and you
have to decide on further simulations, if needed. To succeed in analog design
a lot of experience and anticipation is required, but also the more systematical
you work, the higher the chance for being in time and making a successful
tape-out.

In this chapter, we also introduce the concept of worst-case corners (WCC),
and discuss how to find them. Basically this is a simple task: Just run the
simulations and look which ones are most critical. However, actually here we
could apply also a more “mathematical” approach, like trying to find how the
corner variables influence the corner results. This is (multivariate) modeling
in terms of (performance) functions. Note, as in this chapter the focus is more
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on manual best-practices, we discuss here on the basic math, and later when
multivariate techniques are required for more difficult statistical techniques
we pick up the topic in more details (Chapter 5).

We end with a little “benchmark” on “men versus machine”! Sometimes
men wins, sometimes it is really good to have clever adaptive methods, because
worst-case search is a highly nonlinear problem; and with brute-force methods
this task would be often very time-consuming.

So this chapter is also important as a starting point, and because we
discover some ideas to improve the flow and to compose a more assisted
overall flow. An important outcome for a making a design is learning about
design, e.g., you should understand why a design fails; in fact, even the yield is
not the only thing you need to care about, e.g., you may sell non-perfect devices
for reduced temperature range or reduced clock frequency. To showcase the
impact of variability we present at the end of the chapter a small CMOS
RF PA circuit, this also opens a series which we have named “Design with
Pictures”—math, pictorial design techniques, and circuits, going slightly
beyond purely introductionary examples.

One can learn a lot from looking to other fields of engineering, math, or
science in general. The problem is usually that project time is limited, and
designers have to focus too much on everyday problems and cannot care so
much about flow problems, unfortunately. Actually, in the old days, designers
typically focussed and spent probably more time on circuit functionality, for
analysis and deep understanding, besides pure verification. During the design
phase, designers collect a lot of know-how and invent new circuits and system
solutions. The collection is step by step, design, testbenches, and verification
coverage grow in parallel, and trust in your design comes also step by step,
not in a final sign-off verification (this is maybe true only for LVS).

Let us pick up again the op-amp design example and similar ones:
Afirst step is usually picking a meaningful circuit topology (often with partially
ideal sources and elements—resistor, capacitors, etc.) and making an initial
testbench (e.g., for DC behavior). The circuit selection is an essential step,
but it usually does not stop early (only in case of hard IP reuse). Often many
refinements are needed, like outputs have to be extended, cascodes have to
be added for high PSRR, and maybe you need protection circuits. Sometimes
also little concept changes are needed because the full requirements have been
available too late, and one concept might be if you need only one block (like
a bias block), but if you need multiple ones, another implementation might be
preferable. Often we can decide early how trustable and robust a design is, like
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a CMOS Schmitt trigger is usually much more technology dependent (e.g.,
thresholds differ significantly for SF vs. FS corner, the 1st letter stand for the
NMOS corner, the 2nd one for the PMOS, so SF means the combination of slow
NMOS and fast PMOS) than one based on a differential pair (voltage accuracy
depends almost only on mismatch and of course reference voltage accuracy).
However, exactly how many differences exist depends on many things like
spec ranges, technology, temperature, and supply range—and on additional
circuit tricks like calibration or replica parts. In this circuit “finding” phase, a
lot of interactive work and many simulations are required, so tool speed and
usability often matter much more than automation. If done effectively, this
“SPICE monkeying” phase is not so bad and you can learn a lot. Typically, if
something goes wrong, you even learn more, e.g., you may be able to exclude
bad solutions or improve existing ones for your specific application and for
effects that might be not important in an older application of the predecessor
block.

For Further Reading:
There are many good books available on analog design. As mentioned, we
focus an analog in a wide sense, so we do not cover in much detail digital or
mixed signal aspects, layout topics or modeling aspects, but in the following
list some top references also on these topics are included. Have fun reading
them!

• Willy, M. C. Sansen, Analog Design Essentials, Springer US, 2007.
• R. A. Pease, Troubleshooting Analog Circuits, Butterworth-Heinemann,

1991. R. A. Hastings, The Art of Analog Layout, Pearson Prentice Hall,
2006.

• J. Chen, M. Henrie, M. F. Mar, M. Nizic, Mixed-Signal Methodology
Guide, Cadence Design Systems, 2012.

• W. H. Press, Numerical Recipes in C: The Art of Scientific Computing,
Cambridge University Press, 1992.

• H. E. Graeb, Analog Design Centering and Sizing, Springer Netherlands,
2007.

• H. Graeb, ITRS 2011Analog EDAChallenges andApproaches, in Design,
Automation Test in Europe Conference Exhibition (DATE’2012),
Dresden, Mar 2012, pp. 1150–1155.

• W. K. Chen, ComputerAided Design and DesignAutomation, CRC Press,
2009.

• R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits, Imperial
College Press, 1997.
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2.1 Biasing and Transistor Sizing

Unfortunately, not all variations can be minimized easily, e.g., a single transis-
tor amplifier stage will have a certain specific temperature variation for gain,
output power, noise, and distortion. For obtaining a constant transconductance
gm and gain, usually proportional-to-absolute-temperature (PTAT) biasing is
well suited (Figure 2.1), but (for sure) this lowers the intermodulation point
IP3 and the slew rate at low temperatures. The latter can be stabilized with
a constant bias current instead of PTAT, but this can e.g., lead to severe
phase margin problems at low temperatures in feedback circuits—although
feedback has certainly many benefits. For instance, negative feedback can
make performances generally more stable (usually at the cost of larger noise
and lower gain). Another method is using class-AB circuits (which are
unfortunately more complex and often have limited common-mode voltage
ranges); these can offer more constant gm over the input voltage, and more
current drive capabilities.

Besides the bias concept, also the transistor intrinsic behavior is a key fac-
tor, and not only one measure like transconductance gm matters. The first deci-
sion is usually almost trivial and is on the operating region like off-state, ohmic
region, or saturation region. In the later, for a given transistor current ID (or

Figure 2.1 Typical MOS gm and ID behavior for PTAT, constant current, and constant–
voltage biasing.
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IC)—e.g., set according to experience, total current budget, noise level, slew
rate, and output power—we can influence many kinds of measures in different
ways, just by sizing the transistor width W and length L differently [Binkley]:

1. gm-based sizing makes sense for the MOS saturation region and requires
mainly a certain W /L ratio. Maximum gm requires minimum length L, but
that could be non-optimum regarding matching, flicker noise, or output
conductance gDS.

2. To make a circuit functional, maybe the VDsat is most important. Again,
the W /L ratio matters mainly.

3. White-noise-based sizing requires a large transconductance and thus a
certain minimum current and large W /L for voltage-amplifying stages,
whereas for current sources you should not use too short transistors due
to their bad matching and larger current noise.

4. Flicker-noise-based sizing requires usually larger gate areas than pure
white-noise-based sizing. Also it could be that PMOS transistors are
significantly better than NMOS in some technologies.

5. C in-based sizing matters if you use MOS transistors as capacitors, but
also in charge amplifiers, the optimum noise performance is reached if the
transistor input capacitance is roughly equal to the generator capacitance.

6. Matching-driven sizing might be needed for low-offset amplifiers and
requires a certain minimum area A = W ·L.

7. IDsat-based sizing makes sense in logic circuits and also in bandgap
start-up transistors. W /L matters most. When looking to the maximum
transistor current not only the silicon part transistor performance matters,
for high-current applications also reliability, metallization and vias needs
to be checked carefully.

8. Ron-based sizing is useful for switches and depends also on W /L. For
lowest Ron, we need minimum L. Larger L makes sense if a certain
matching accuracy is needed and is mainly useful for non-switching
applications (like variable-gain amplifiers).

9. f T-based sizing makes sense for many high-speed circuits. Typically, this
requires a certain minimum current density, low gate capacitance, and
short transistors. Unfortunately, it comes with bad DC characteristics like
low voltage gain per stage and large mismatch. Of course in an op-amp,
the stages should have a fT beyond the GBWP—though you typically
do not exactly know how much, because this depends also on layout
parasitics.

10. TC-based sizing is often used in discrete designs or when temperature
stability is of high priority. The idea is that in a MOSFET, there is a
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certain VGS in which the TC of ID is zero, because the effects of VTO and
mobility cancel. Also a stable on-resistance can be obtained. The only
pity is that this point is corner dependent and it does not lead to constant
gm; in addition, the area might be quite large, which matters most in
power circuits.

11. In rare cases, you might be able to even tweak on technology parameters
(like epitaxi thickness or substrate doping), but there will be still many
compromises. For instance, high speed comes for sure with lower break-
down voltage for given semiconductor material (like silicon or GaAs).
Also a BJT with high current gain β will have low early voltage VEA.

Overall (and this list is not complete), no single method alone fits! For
uncritical transistors, you may only need few seconds to select ID, W, and
L, but for critical ones, you need a mix of methods and many hours plus a full
inspection of the full block performance (often even including Monte Carlo
and corners). So overall, you have to check almost all the listed characteristics.
For true RF circuits, also other electrical parameters (such as fmax and k-
factor) and the layout matters, like number of fingers and metallization. Only
really unimportant “near-digital” transistors can be regarded as uncritical;
and we can use any small L > Lmin and any meaningful width. For something
in between RF and simple digital, designers often follow a little flowchart that
takes step by step at least the major measures like ID, gm, and f T into account
(see, e.g., [Sansen2]).

Besides the pure sizing, also a careful type selection is needed for all
components like resistors (like poly versus well) and capacitors (like MIM
caps versus MOS caps, with big differences according to substrate parasitics,
quality factor Q, linearity, and breakdown voltage) and of course transistors
(low VTO versus high-VTO, deep N-well, thick gate versus thin gate according
to maximum terminal voltages, etc.). Even if we would follow all the men-
tioned rules, it may still happen that also other rules like on electromigration
dictate us a change, e.g., increasing the transistor width to a certain minimum
width like 100 um, although for electrical performance maybe 50 um would
be better.

Note: For many circuits, figure of merits (FOM) are available, which describe
the power-performance trade-off, like for ADCs, PAs, or VCOs. Check how
close your circuit is to the best-designed circuits in similar technology to get a
feeling how difficult your design and transistor sizing will be. Of course often
such FOMs are only related to the core circuit and exclude bias generators,
voltage reference generation, additional buffers, etc. In addition, you need
some margins for production tolerances, temperature variations, etc.
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Knowing about the circuit details and dependencies is of course still the
key competence, and luckily with the support of computers, it is bit easier
to obtain all the performances than with breadboarding. So when a designer
wants to understand e.g., the region of stability for an op-amp or how the
operating point for a transistor is defined by the bias circuit, he/she can still
make it based on equations and datasheet plots, etc. And of course also doing
parameter sweeps and minimizing TC, improving PSRR, etc. are important
steps to make a design robust. Many problems have to be solved, and often
graphical methods are very helpful (e.g., the load-line method or the Smith
chart). They can help a lot to understand circuits, but later we will also see that
the same is true for many advanced numerical methods. In this context and
in our book, “manual” design should not mean “without computer” but using
techniques already available in older EDA environments, i.e., design by the
use of a schematic entry and a simulator, being able to do a corner analysis
and Monte Carlo—but not “more.”

There is no single most efficient best flow applicable to all kind of blocks.
And one consequence of applying a mix of techniques and dealing with difficult
problems is that almost always some iteration is required.

Good judgement is the result of experience. Experience is the result of bad
judgement! By experience and working in a systematic way you can usually
avoid too much stupid brute-force verification and too much trial-and-error.
There are several examples which show that manual design can outperform
computer simulations—and a clever mix is often the best. For instance,
computer programs usually work completely numerical, whereas designers
can apply analytical hand calculations to find at least an approximate solution
(which is often good enough). This typically leads also to deeper design
understanding, e.g., regarding sensitivities. For a computer, sometimes even
the simplest things may become time-consuming: A designer often knows
from symmetry reasons that the sensitivity to two parameters is the same, or
he/she knows that the sensitivity on differential gain to many bias components
is very low because they only have an influence on common-mode signals or
that certain sensitivities are even zero because related transistors are not active
in the current operation mode.

Such insights also lead to efficient design strategies. One example is that
you typically first need to make sure that your analog circuit is having the
correct DC operating point and e.g., achieving a certain gain, before thinking
about other characteristics such as noise performance, speed, and distortion.
So circuit design is often “pampering up” a circuit step by step, whereas a
pure verification engineer could be already happy with finding one condition
in which the design breaks.
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In design, this translates usually to solving the most urgent problems
first, before solving second-order problems. Of course, what is major and
what is second order is not always so easy to know upfront and requires
some experiments and experience. For instance, if reverse isolation is critical
for your amplifier, you should consider using a cascode stage, but that
might be harder to implement at low supply voltages. So you often need
to inspect both variants: normal common-source stage versus cascode stage.
Once you “pampered up” your design, the next step should be testing it
under more difficult situations, like check whether it still works at extreme
temperatures, or at minimum or maximum load and supply voltage. In this
phase, designers do a lot of parameter sweeps and typically tweak their design
further.

2.2 Specification Margin Approach: Fast but Risky

As explained, the brute-force simulation effort to maximize the overall yield
is usually far too huge. One way to divide and conquer and for better design
understanding is to focus on partial yields, because often the designer has
an idea what to change if the power consumption is too large, what else
is to do for better bandwidth, etc. Looking only to the overall yield would
mean ignoring important information! In fact, also just looking to the partial
yields is still a method with big waste of information, because looking only
for yield means that we would act as a 1-bit ADC, just because when we
calculate the sample yield we only check for pass or fail, but ignore e.g., the
information on how much we fail! Let us go back to our op-amp example
in more detail and analyze what could go wrong if we follow a very fast
approach.

An approach with really huge speed-up would be doing just a nominal
analysis and tightening the specs (see Figure 2.2). If you know from previous
designs, circuit topology, reading the technology documentation, or swept
simulations that sheet resistance is your major impact on supply current, and
you know it is varying by ±15%, you should tighten the current consumption
spec by 15%! To get some safety margin, you may use 20% (so 80% of the
original spec) to also include second-order effects like TC of the resistance
and reference voltage variations. This safety margin can be called specifica-
tion margin or performance margin, because it is related to the worst-case
performance and the spec limit. For comparisons, it is often good to define it
not as absolute measures, but in percent.
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In our op-amp example, mentioned a similar margin approach when simply
adding the worst-cases from the MC analysis and the corner analysis. In MC,
the performance delta from average performance to the WC corner can be
often expressed in terms of standard deviation sigma σ, and later we pick up
the margin method when discussing the process capability index CPK.

Also the structure of many datasheets supports a margin approach, like
defining a tight spec at 27◦C and a relaxed spec for full temperature range.
Also for PCB designs the developer starts typically with spec margin methods,
just because the tolerances are often well-documented, and executing sweeps
on temperature, supply, etc. is quite time-consuming. However, there are also
problems with specification margin approaches:

• You need to determine the design sensitivities quite carefully, either by
hand calculations or by simulations.

• The approach usually only works fine with almost linear relationships
and if no strong correlations (so-called mixed terms) are present.

• If many effects are important, they can add up too much, like close to
±100%. In such cases, the margin approach is too conservative, but in
other cases, it is often too optimistic!

• You cannot directly debug the design at the point of spec violation!
• The margin approach might be suitable to center a design on specs, but

making the design really better and reducing the performance spreads is
difficult. Here, and for asymmetric tolerances a corner approach can be
much better.

In conclusion, the margin approach works fine only for few performances
like current consumption or maybe bandwidth or noise figure, but seldom
for difficult specs like phase margin, settling time, or IP3. So you should use
it mainly in the planning phase or in the starting phase of circuit design,
but not for careful verifications. For instance, an RF designer may know
from experience that gain is typically 1 dB worse than simulated without
layout parasitics. Here, a good way to go is to improve the modeling,
e.g., to include at least expected or hand-calculated wiring, package, and
substrate parasitics! Maybe this degrades the gain by 0.7 dB—so that you
can safely reduce the “fear” design margin to 0.3 dB to be protected against
the “unknown.”

One big advantage of modeling enhancement is better debugging, and
another is that you can also improve on other unwanted effects, e.g., the
parasitics may also cause stability problems or can cause cross talk.
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How to treat tolerances? This is a big problem in the spec margin
approach, and doing it wrong, it could fail. However, unfortunately doing
it right often ends up in over-pessimism! If we simply do sweeps and add
the magnitudes of the ranges, like

∑|Δyi|, it only looks as if we would do
a worst-case analysis! This is because we typically do the sweeps of one
parameter with the other parameters kept fix, like at nominal. However,
it could easily happen that putting such a fix parameter to another value
ends up in a bigger Δyi! In conclusion, this is actually no WC method. If
a sensitivity analysis is simple or if the sensitivity S is just known quite
well, e.g., current is PTAT or TC of a BJT VBE is app. –1.8 mV/K, then
we could also estimate Δy as SΔx. However, again we would need to find
the maximum sensitivity! Actually, doing it this way, the whole approach
tends to become both more complex and also often far too pessimistic,
unfortunately. So better use the spec margin approach if you are allowed to
overdesign (like spending quite a lot of area and current) and if your design
is not too nonlinear. Unfortunately, we have seen that even for a classical
linear circuit like an op-amp, OFAT can fail for WC finding for that
reasons.

For statistical variables, the classical approach is to add quadratic,
so add the variances V = σ2 and then take the square root. This leads
to quite a realistic error propagation. It should be mentioned that the
approach is correct if there are no correlations and if you really only
aim for standard deviations. For real worst-cases, it is only suited if you
have pure Gaussian distributions. Statements like “beyond μ + 6σ there
are only 1ppb samples” are critical, because if you do not have found a 6σ

sample by simulation, you actually make a risky extrapolations [Schmid].
Beside all these problems, it is also extremely important to clearly state,
what is meant when e.g., writing ±10%. Clearify if it is a hard limit or only
±1sigma!

Besides all the criticism in the concept of design margin, it is a good starting
point. For instance, one outcome from a swept analysis is the sensitivity,
but another one could be the point in which the design starts to “break.”
Understanding the design behavior in this “breaking” point (e.g., caused by
saturation or breakdown) helps usually a lot in finding where and how to
improve the circuit! Figure 2.3 gives a design example; for the sketched
transistor stack, we need VDD > VGS + 2VDsat, but you need to do a similar
analysis also for many other stacks, like to obtain the range for the input
common-mode voltage and for the output voltage.
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Figure 2.3 Typical transistor stack in an analog circuit to show the worst-case on saturation.

In conclusion, this method of doing parameter sweeps till the design
really breaks should apply intensively in early in design stages, but not
only. Of course, as extension, you can also apply combined sweeps or
execute the sweeps around an expected worst-case like temperature sweep
at Low VDD+SS corner for saturation-critical specs.

Note: Shifting the break points more and more to the true wanted spec ranges
(and beyond) is also a method to make difficult optimizations feasible! It acts
like gmin or source ramping in the DC analysis by a circuit simulator! In
difficult circuits and DC simulations, it may happen that the circuit equations
are too hard to solve for supply VDD = 3 V, so the idea is to start with a simpler
problem, like finding the circuit solution for a smaller value (like 1 V or even
0 V; in these the nonlinearities are often lower) and then increasing VDD till
we reach the full value. Also in the laboratory do not directly apply the full
supply voltage immediately after building the prototype.

If the simple but also very efficient spec margin strategy can be successful
depends on the design itself, e.g., phase margin PM is usually uncritical for
one-stage op-amps, but might be difficult topic for multistage amps. Such
performances can never be treated by spec margins, here we really need to
simulate additional critical corner cases!

Also a mixed approach can be created for reducing the set of worst-case
corners, the “stretched parameter” method: Often different parameters can
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change the circuit operation in a very similar way like a decrease of 100 mV in
VDD or ΔT= –100◦C, or switching from FF process corner to SS, could have a
similar impact on saturation effects and minimum possible supply voltage! So
instead of combining all sweeps (giving unfortunately many combinations!),
we can also pick one variable only and make its range more extreme! In
automotive designs, often the temperature effect is the strongest one, so we
can make it e.g., 25 K wider and cover this way also smaller effects like
threshold voltages & VDD tolerance! Often you know that VTO changes over
process by 100 mV and the TC is –1.5 mV/K, so (for a given circuit) you
can directly “translate” it to a change in temperature. This way the designer
has still a good overview and can focus on the most important problems, e.g.,
debugging the circuit at the breakpoint (now in a simple temperature sweep).
Problems can appear if there are multiple failure mechanisms, so again this
method is typically used in earlier design stages.

In conclusion, if we would know about the set of “worst-case conditions,”
i.e., the combination giving the worst performance within allowed (valid)
parameter ranges, we could easily check against the specification directly
(without margin) and we could also speed-up design, verification, and maybe
also the production test dramatically, with much less risk than in using the
specification margin approach! We have to pay a very little price: It cannot be
as fast as an approach purely based on design margins, but it can treat quite
strong nonlinearities and correlations.

A general compromise for design is also to do design tweaks not at typical
conditions but already at an expected worst-case corner, like minVDD,WC load
for stability and total harmonic distortion THD, and highest clock frequency.
This way the performance margins and the errors in estimating them becomes
smaller. Of course, at some point like when moving to layout using the real
worst-case corners is much better.

2.3 The Worst-Case Approach

Checking the design at the most extreme parameter combinations is intuitively
a good verification method as it is (much) less risky than spec margin
approaches. Finding the worst-cases is also a method to speed-up the whole
design flow against the exhaustive method with running full corners and
full MC. Figure 2.4 shows such flow in alignment with sensitivity-driven
design.

The testbench setup can be done in the same way as in any flow, like the
brute-force flow. Such testbenches run in a circuit simulator, and typically, an
automated calculator tool can extract key performances (like bandwidth, rise
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Figure 2.4 Flowchart for efficient circuit design.

time, and phase margin) from the simulation raw data (like voltage signals
versus frequency or time usually saved in a binary format).

Finding the critical conditions (represented by xS · xR) is helpful for
both spec checking and debugging. To improve the design, we usually have
to identify which parameters xD are influencing and critical and tune them.
Typically, the designer knows quite well about the major sensitivities, but
often only qualitatively, and also surprises are possible, caused by unwanted
resonances, “dirty” circuit tricks, etc. Once the designer is happy, he can
proceed with more detailed sign-off simulations, layout, etc.

Looking only to the set of deterministic parameters xR: The worst-case
is given by the worst performance f defined by a certain value combination
of environmental parameters xR, each being in its valid parameter range,
whereas the design parameters xD are fix. Note that we do not need exact
specifications, and the decision whether an upper or a lower spec limit would
be set is enough.

This way finding the worst-case (WC) is possible with a simple grid-
based approach and is similar to parameter search or an optimization. Often the
worst-case occurs at the most extreme parameter settings, but not always (e.g.,
for a bandgap output voltage, having a quadratic behavior). We can expect at
least one WC combination for each performance, and of course sometimes
WC for different specs appears at the same condition (at least approximately).
Due to correlations, also the overall worst-case is often not simply the
combination of the individual worst-cases obtained from individual parameter
sweeps!

If we want to include statistical parameters xS, the definition of worst-
case becomes more difficult; because parameters following a normal Gaussian
distribution do not have a finite “allowed” range, they may vary (theoretically)
from −∞ to ∞! What we can do is to assign a certain minimum yield



2.3 The Worst-Case Approach 77

(like 99.85%) to our “worst-case.” And this way we can calculate also the
worst-case statistical parameter sets.

The major problem is that many older design environments have no support
for this, and unlike normal environmental range parameters xR, designers have
no way to even set the statistical parameters directly—even if we know the
worst-case combination on xS.

Interval Analysis. There would be also other mathematical ways to treat
that problem, e.g., the so-called interval analysis assumes finite ranges
for parameters and tries to calculate from that the variations of circuit
performances. However, unfortunately, this approach tends to be far too
conservative, leading to strong much overdesign, and it is hard to apply
for nonlinear circuits, and many variables, or even statistical variables.

Looking to the overall variations in a design, the performance f, e.g., DC gain,
delay, or bandwidth, is usually quite amazingly good at nominal conditions
and without mismatch. However, process variations cause significant degra-
dations, like 20%. To reach the worst-case across all corners (Figure 2.5),
you have to accumulate also all environmental variations like supply voltage
and temperature (classical PVT analysis). For CMOS logic, the individual
variations are usually in a similar range. In analog design, it depends highly
on circuit type, but with a few tricks, the supply changes can often be reduced
quite a lot compared to logic design. On the other hand, quite some effort
is needed to make analog functions stable against mismatch, e.g., because in
modern technologies you often need to operate at quite small supply voltages,
so that the ratio between offsets and V DD is not so small as one might expect.

Figure 2.5 Design based on worst-case corners.
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2.4 Worst-Case Corner Finding

Solving the problem about the worst-case is a key point in design, and the
other one is finding ways to improve the design efficiently. Modern design
environments offer several methods beyond pure corner analysis and Monte
Carlo (next subchapter), and the worst-case corner creation is a good
starting point to inspect advanced automated design techniques. Based on
manual techniques we compose some worst-case search strategies, and let
them run against standard methods, and adaptive methods in modern EDA
environments.

Let us start with observations from typical design situations. Often it
is possible to make a design running well at nominal conditions, and often
even for all points in a sweep, like design is in-spec for both a temperature
and a supply sweep. However, this does not guarantee that the design
works also if we combine the environmental variations. It is also not sure
that the worst-case is already given by the individual worst-case for each
variable! Designers address this difficulty usually by not only performing
single parameter sweeps but also running multidimensional sweeps and the
so-called corner simulations. A corner is a set of parameter values, usu-
ally including environmental variables but often also technology parameters
Rsheet = (minRsheet, nomRsheet, maxRsheet).

The key problems are unfortunately also quite manifold, e.g., there is no
single worst-case like the combination of maximum temperature, minimum
supply, and maximum load capacitance—almost for sure it is different for each
key performance f ! Also it can easily happen that the worst-case conditions
change if you change the design, which means that design tweaking and
verification at worst-case conditions are tasks that influence each other!

So how designers typically solve that problem of finding the worst-case
set of corners and variables? Let us do it now at least for the deterministic
variables like temperature T, supply voltage VDD, and load resistance RL.
We also include technology corners like slowNMOSfastPMOS (SF) and
fastNMOSfastPMOS (FF), and such process corners are usually predefined
by the foundry and cover some worst-case combinations (e.g., regarding
CMOS speed, important to avoid timing violations in digital circuits).
The user can access them usually by setting a string variable. In opposite
to the typical range variables xR (like T or VDD), they are discrete, and often
there is no real ordering or ranking on the process corner string variables
(e.g., FS vs. SF).

If we have only one variable, then the WC search problem is the problem of
a (absolute) minimum or maximum search regarding the performance function
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f under inspection. And basic math shows that such extreme value is either at
the end points of an interval or at a point with zero derivative—if the relation
between parameter x and performance f is continuously differentiable. If the
variable x is discrete like a (binary) bus value (e.g., with eight values or for
process corners) and if the relationship is highly nonlinear, then we would
indeed need to run a full sweep of all values and sort the results to find the
most extreme values. However, if f is fully linear, then the WC will be always
at an extreme corner, and never somewhere in the middle. For nonlinear cases,
we should have at least 3 levels for the variable! The more values we take, the
more time we need, but a benefit would be that this way some error estimations
become possible.

A further problem is that we usually have to deal with multiple operational
range parameters xR = (xR1, xR2. . . xRn). A simplified overall worst-case
finding algorithm would be to sweep each of the n parameters (so-called
factors) alone, look for the individual worst-cases, and then just combine the
individual ones to compose the overall worst-case set. This method is called
OFAT, one factor at time, and it needs 2n + 1 combinations to simulate (if
we use three values for each variable of the n variables: minimum, nominal,
and maximum). As mentioned, unfortunately there is (by far) no guarantee
that we will really find the true overall WC with this technique; even if
you use more than 3 levels! If the circuit behavior is highly nonlinear and
has strong parameter interactions, then OFAT can easily fail! Experiences
show that OFAT typically can only find perhaps roughly 50% of the true WC
combinations (or e.g. with other combinations, like all extreme pairs, as done
in Table 2.1). So more robust algorithms are desirable, especially if you need
to treat many corner variables. Of course, almost all these advanced methods
unfortunately require some more variable combinations to run compared to
OFAT. The exhaustive brute-force approach is just running all combinations
and is called full-factorial method. It guarantees ending up in the true worst-
case (if the sweeps are dense enough), but it is not efficient at all. Typically,
you switch back to this only in small corner sets, fast-running testbenches, for
a golden sign-off run, if you have a bad feeling regarding some aspects of the
design or if you have anyway enough time (e.g., executing an overnight run).

Is WC finding an optimization problem? Mathematically a clear yes,
because both are minimization or maximization! Just the goals and
variables differ compared to a circuit optimization.

On the other hand, there are quite many differences in the problem
characteristics and on how designers treat corners and circuit optimization.
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The optimum value of a resistor or a capacitor is often somewhere
in the middle of the interval of the possible values, whereas the WC
circuit behavior appears much more often at the interval ends, like at
maximum temperature or minimum VDD. In both cases, there are of
course also counter examples, but these are less likely. For instance, the
maximum bandgap voltage occurs usually somewhere at moderate tem-
peratures, or also L = Lmin is often an optimum value, when only looking
for speed.

In addition, it is quite native to treat corners with a quite raw grid,
whereas for optimization, e.g., on filters, few percent changes in a
parameter are very critical. So often designers just check for three variable
values in a corner analysis, but do really dense sweeps for parameter
optimizations. A further difference is that the number of corner variables
is quite fix and often all combinations have really to be verified, but
for optimization the designer can simply decide whether he/she wants
to optimize it or not.

Therefore, also numerically the optimizers for both tasks differ a lot,
e.g., WC corner search is focused on quite few discrete variables (like 3 to
10) and on the global extremum for each performance fi. Actually, in both
applications finding the global extremum is desirable, but in WC search
finding it is even more important.

Circuit optimization, is usually more challenging in other aspects,
because we need to treat all the different spec-relevant performances
simultaneously, and often there are much more variables, more corre-
lations, and quite flat goal functions (small gradients make the optimum
usually harder to find). So, often already finding some improvement in
overall performance, just finding a better trade-off is enough. More in
Chapter 8.

Actually the situation is a bit strange: If f is linear, than OFAT would surely
find the WC with linear rising effort nOFAT = 2·n+1. However, for the
3-level full factorial corner set (in math, any such combination is a so-called
“design”) we need n3full−fac =3n (+1 point for including the nominal case). So
people invented also further fix or adaptive algorithms (see Table 2.1, showing
a 3× speed-up of an automatic method against full-factorial [Weber2015]).
Those algorithms are typically regarding speed and accuracy essentially in
between OFAT and full-factorial (see Figure 2.5).

One example of such a fix algorithm is named 2-level full-factorial, and it
uses all possible parameter combinations, but only the most extreme value
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Table 2.1 Automatic worst-case corner search for an op-amp [Weber2015]

(so we skip the combinations with nominal values). For linear functions,
this would still work fine, but not for significant second-order nonlinearity
(because here the WC is often somewhere in the middle of the interval).
Another classical method is called central-composite CC, It is combining the
OFATsweeps e.g., with a 2-level full factorial (or e.g. with other combinations,
like all extreme pairs, as done in Table 2.1). Later we will also discuss even
more advanced methods, but for now let us check how we can improve the
fastest method, OFAT.

2.4.1 Worst-Case Corner Example and Heuristics

As mentioned, the simple, intuitive OFAT method can easily fail for circuits
with strong nonlinearities and/or strong parameter interactions. For complex
designs or already for an op-amp, this is not always easy to anticipate from
circuit understanding. Luckily, there is one nice example showing some
difficulties immediately: Already for a basic CMOS inverter and looking for
its delay, you can see one major reason why OFAT fails surprisingly often.

The major corners for inverters are process corners (SS, NN, FF, FS, SF),
temperature T, and supply voltage VDD. In most of our cases, designers are
intuitively right: Beside maximum load capacitance, the usual WC combina-
tion on speed is maximum temperature (due to mobility degradation), minimum
VDD, and of course the slow corner SS. However, if VDDmin is really very small,
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Figure 2.6 Visualization of different frequently used corner methods (s = 3 dimensions).

like for hearing aid applications, it could happen that the gate-overdrive V DD-
V TO, and thus the speed, becomes very small, especially at low temperatures!
This is because |VTO| has a negative TC, close to the famous –2 mV/K.

Actually, the same circuit could have the WC corner combination either
at Tmin (as shown in Figure 2.7) or at Tmax (as usual for large VDD—so when
the upper blue curve is not of interest) just the ranges for VDD and T matter
mostly (and a bit also the transistor sizes and the technology)!

So let us inspect the more difficult case of a very low minimum V DD and
how OFAT would act on this scenario:

Plain OFAT would make three sweeps around the nominal values, and
we would find that the individual worst-cases are at SS and minimum VDD,
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Figure 2.7 CMOS inverter delay versus temperature T for different VDD at SS corner.

but on temperature OFAT would still get maximum T (look at the middle
green curve of Figure 2.7)! So the composed overall WC by OFAT is simply
wrong, and only two parameters (VDD and process) are correctly treated!
The OFAT-WC on T is wrong due to nonlinearities (in his case mostly
quadratic) and correlations (mixed functional terms)! What bothers also is
that the WC combination could indeed “jump” in circuit designs, even if
the design is robust and meaningful. This is also the case for many other
circuits besides CMOS inverters. What helps is that the “jump” is not very
critical regarding performance f (the y-value might be still quite similar even
between Tmin and Tmax). To some extent, such difficulties could also happen
in other tasks like finding the worst-case for statistical corners or during
an optimization.

One question is of course:

How would a clever designer address this problem?

And another one is:

Are there clever mathematical algorithms with both: proven effici-
ency and reliability?

Which options to improve, e.g., the setup, do we have? EDAtools have usually
only access to information about the design if potentially time-consuming
simulations have been done, and if the results are available in suitable form.
The designer has also his experience and know-how, e.g., from remembering
the problems in older often similar circuit designs or from reading the
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technology manual. He/she can influence the analysis setup and can exploit
this by making an educated guess for the worst-case corners, like:

• Worst-case for leakage current is almost for sure at fast technology corner
and high temperatures and supply voltages.

• Lower worst-case on RC filter cutoff frequency is usually given at slow-
resistor and slow-capacitor corner.

• Worst-case on CMOS gate delay is at slow MOS corner and minimum
supply, and at least usually at maximum temperature. However, we have
seen that there is an exception for ultralow supply voltages, because here
also minimum temperature can be critical! So just check both of them,
which is still better than running all PVT combinations.

• Analog circuits suffer from saturation mostly at minimum supply and
slow MOS corner. Again the most critical temperature is often harder to
predict (e.g., depending on bias scheme and transistor sizes).

• Of course static performances such as leakage current or DC gain are not
impacted by corners from load capacitance or package inductance.

• Worst-case on noise is usually at high temperature and sensitivities on
supply or load are usually small.

Following these assumptions may come with some risks, and by far, not in all
cases, you can completely determine the full WC combination by experience,
but often you can reduce the simulation effort significantly, e.g., ending up in
a short sweep instead of running many combinations. Table 2.2. gives some
more examples on typical worst-case corners; you should inspect them early
in the design phase.

2.4.2 Advanced OFAT Methods

There are many options to improve searches, e.g., exploring the space adap-
tively or exploiting a-priori knowledge. Just making an educated guess for the
WC corners and simply taking them is (very) risky. However, we can also try
to find out more general concepts of taking designer know-how into account.
One simple method for combining a-priori knowledge with a mathematical
algorithm is this: A WC corner search is typically faster if you have a good
starting point. So OFAT around the nominal conditions has usually a bigger
chance to fail than doing OFAT around the “expected a priori estimate” worst-
case! For the ultra-low supply CMOS inverter, plain OFAT can fail as we have
already seen, but let us inspect what will happen if we “expect” the WC is at
minVDD, process at SS, and e.g., maximum T (which is wrong for the ultra-low
VDD application!). We would indeed find in the sweeps around this “expected
WC” the correct over-all WC! The formerly critical sweep on T would be
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Table 2.2 Typical overall WC corner combinations for some circuit classes

Circuit Performance
Range
Parameters

Process/
Statistical
Parameters Comments

CMOS
inverter

Delay minVDD,
maxT or
minT

SS Might be difficult to find by
standard OFAT

Leakage current maxVDD,
maxT

FF Easy to find or anticipate

Dynamic current maxVDD,
minT

FF Easy to find or anticipate

Threshold Depends on
application

SF, FS Easy to overlook the mixed
corners

Op-amp Speed lowBias SS
Stability FF Often load impedance is

critical too, but it is hard to
anticipate the WC. Low
temperatures critical for
constant current biasing.

Supply current highT,
highBias

FF

Offset highT Often the offset increases
with T

DC gain highT gm drops via T, and with
PTAT bias you often get no
100% compensation

Noise highT SS FF might be critical regarding
current noise

Saturation minVDD SS WC for T is hard to predict
Wide-band
amplifiers
(resistive load)

DC gain highT SS + lowR Due to A = gmR. In CML
gates, this might be critical
too

BW lowBias SS, highC,
highR

Quite obvious, but stability
problems can cause
deviations

Distortion lowT,
lowVDD

SS, lowT,
lowR

The WC may differ for
different distortion
mechnisms.

LNA Supply current highT lowR If PTAT biasing
Gain minVDD,

highT
SS

IP3, P1dB minVDD For PTAT bias lowT gives
often bad linearity

NF maxT SS
Stability maxVDD Hard to predict further
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now at minVDD and SS (instead of nomVDD and TT), and we would nicely
find the correct worst-case temperature, with even no more simulations to
execute.

Another very fast OFAT variant would be to do OFAT, but to start in the
direction of the expected WC; if the expected WC is indeed worse than the
starting point (like nominal conditions), there is usually no need to run the
opposite OFAT points, because the later would at least typically give the best
case, not the worst-case! Such “OFAT with shortcuts” would give a speed
between pure guessing and normal OFAT, but it would be not much more
accurate than OFAT, and so it would be still risky (e.g., if strong second-order
nonlinearities are present).

A good variant that reduces the OFAT risk is doing a “preordered stepwise
OFAT.” Let us try to solve the CMOS inverter WC problems manually:
As mentioned, the delay WC on VDD and process is almost trivial (even
OFAT would have no problems!), but the temperature characteristic is (quite
often) more difficult, and here, two effects (TC of mobility and TC threshold
voltage) can “reverse” the overall sensitivity; so we have a sign change of the
TC, resulting in a strong quadratic behavior. We can modify OFAT further:
we should start with low-sensitivity and almost linearly behaving variables,
because here the WC is almost trivial, i.e. we should run a sweep on VDD,
finding min VDD as WC. Then, we should take this setting and run the sweep
on process corners, finding SS as most critical. Last we should sweep T with
VDD = VDDmin and process corner set to SS. We will find the correct WC on
T and also the overall WC as desired!

The consequence for the general case is that OFAT is more successful if
we do it stepwise, with using the currently found WC combination, and we
should sweep difficult variables in late sweeps!

Actually, the stepwise OFAT is exactly what designers do in the circuit
construction phase, and they just follow the golden rule of only changing one
parameter at the time; if the change was good (i.e., we moved indeed a bit to
the worst-case), then keep it, think a bit, and consider the next improvement
step! It would be usually no good idea to consider the next improvement, but
not taking already the first improvement!

Note: The resulting algorithm works like a very simple coordinate-based
optimizer, and it would be only a local optimization algorithm. Keep this
only in mind, we discuss optimization in Chapter 8 in much more detail.

A small disadvantage of these enhanced OFAT methods is that the setup
effort is a bit higher, because the user needs to decide upfront which variables
are critical (large sensitivities, high nonlinearity, strong correlations) and/or
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what the expected WC corner combinations are. In addition, if we use “too”
clever shortcuts, we may take too much risk. An extreme speed-up example
would be making a step Δx and using it immediately, just if it makes indeed
the behavior worse. Of course, it is more fool-proof to double-check with
an opposite step like −Δx, although it might be “waste” of time in quite
many cases. Better avoid risky assumptions in circuit verification. In statistics,
one example for a large-risk method is using the CPK without checking for
normality. Also in corner analysis there are several well-known critical cases:

• Actually, it is quite typical that temperature is often the most critical
parameter, especially for circuits which should work over a big tempera-
ture range (like automotive designs).This is also because circuit designers
apply usually some “tricks” to make the circuit robust against temperature
changes, e.g., by implementing a clever bias scheme (bandgaps, PTAT
current generators, replica circuits, resistors with opposite TC, etc.).
This often ends up in nonlinear behavior, like the well-known quadratic
bandgap voltage characteristic.

• Another difficult parameter might be load impedance, e.g., an op-amp
might be (quite) stable for both very small and very big load capac-
itances, but truly unstable for moderately large capacitances, and this
characteristic might be also related to other parameters like load current
or the ESR of the output capacitor.

• A third example could be the gain setting parameter in a variable-gain
amplifier VGA; if the circuit is tricky, maybe the WC (e.g., on third-order
intermodulation point IP3) is at an intermediate position where you may
not expect it. Such difficult variables should be treated with quite dense
sweeps. For an ordered OFAT such variables should be treated in late
sweeps, because they decide mostly on the overall WC, whereas the
more linear or less sensitive variables should be set earlier to the WC
search.

Of course, if the designer would know that his design is indeed brand-new
or difficult, he/she would go indeed for a full-factorial analysis, and by
sorting the results table, you can manually find all WC combinations correctly.
Unfortunately, for many corner variables, this is not efficient and much slower
than OFAT.

2.4.3 Advanced Fitting Methods and Adaptive Search Methods

Fix sampling schemes can provide only a certain compromise between speed
and accuracy, and one way to improve was to include a-priori know-how.
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There are some similarities to fully adaptive algorithms; e.g., we could just
run OFAT and use the obtained information as knowledge to decide on the
next sampling points to be simulated. Actually our stepwise OFAT is already
adaptive, but we can do even better, and such advanced adaptive methods have
been implemented very successfully in several custom-design environments
already.

Figure 2.8 gives an overview on different worst-case corner search
methods. Note that we just show the typical behaviors. The enhanced OFAT
methods are not shown there to provide a better overview: they could maintain
or even exceed the OFAT speed, in addition, due to the a-priori know-how
reflected in the setup, the risk compared to pure OFAT can be even reduced
significantly (if the setup is done well).

All methods have in common that designers can get rid of boring repetitive
work!You need specs, and you just have to define the variables and their values
(like in a normal corner analysis) and press the run button!

Automatic methods usually offer a very good compromise between speed
and accuracy. They usually start with the OFAT method to identify the most
important variables; and then more detailed search and space exploration
methods are used, e.g., with the inclusion of correlations on these more
important variables. Internally, a kind of model-based search algorithm is
performed, e.g., from OFAT results, we can create a linear model.

Figure 2.8 Comparison of some important worst-case corner finding methods.
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If you think of the next better method beyond linear interpolation and
extrapolation; then probably splines are a good choice. Splines also act piece-
wise, so if we make a local change (e.g., adding new simulation points), only
a local recalculation is needed. Splines also “behave” better than high-order
polynomials; the later tend to generate severe “oscillations” (even much more
than cubic splines, see Figure 2.10a). However, interestingly also somewhat
even better methods are available! Indeed, splines very popular and easy
to calculate for 1D to 3D cases, but at higher dimensions (so more corner
variables) several positive characteristics get lost [Neamtu2001]. Look at
Figure 2.9 (from [Erikson 2012]) for a difficult 2D application of so-called
thin-plate splines. Here the “overshooting” problem is so severe that the spline
fit is not bijective anymore.

With splines we assume that a low-order polynomials fits well to data, and
we e.g., force certain continuity characteristics (like continuity in f and first
derivative f ′). This way different splines can be defined, like cubic splines
or Akima splines. Even smoothing splines, which can fit to noisy, statistical
data, can be used. However, there is actually little theoretical foundation
for the use of splines, and on several functions we can outperform splines.
At the truly simulated points (and using a good model, e.g., splines, high-
order polynomials [Daems2002] or so-called Gaussian process models (GPM)
[Jones2001, McConaghy]), we can make the fitting error ε arbitrary small, but
in the “simulation gaps”, any model is surely less accurate. So having not only
a fit, but also an error indication (a kind of confidence interval, see Chapter 3)
would be a clear advantage.

Figure 2.9 Bijective and non-bijective result from spline fitting [Erikson 2012].
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Figure 2.10 Comparison different fitting methods on a nonlinear ramp function (data sampled
with Δx = 1) and for a sine function of two different frequencies (10 samples per period).

Note: WC search has aspects of optimization, interpolation and model fitting,
but actually also to learning! The available simulation points are a kind of
training for our model generation, and when we run further simulations we
actually test the model, and our learning success.
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Splines use low-order polynoms, but what is a Gaussian process model
GPM? GPMs use no piece-wise approach, but we try to maintain the advan-
tages of acting quite local at least to some degree.And this near-local behavior,
using the Gaussian bell-shape function e−x2

, allows also fits to almost any
data. GPM are also very flexible in other aspects, e.g., there is no need that
the sampling points are on a certain grid; even random placements would be
allowed.

fGPM(X) = a(X) +
∑

bi · exp(−|x − xi|/ci)2 (2.1)

Note: In the statistical part of the book we come back to Gaussian distributions
in more detail. Here this formula is currently not much more than just a
mathematical attempt, just an approach: We start with it, and are just happy
that it works quite fine, like splines. For now there is not much to understand,
which will become quite different in statistics!

The 2nd term in Equation (2.1) is the Gaussian part, and because the
Gaussian pdf diminishes for large Δx, we can make the local approximation
at xi very good, without impacting much the fit at the other sampling points,
and we generate no oscillations (as high-order polynomial would do). For
more flexibility often the exponent is not set to p = 2 but is allowed to be
fitted within 1 and 2. The function e−jxj is a peaky function; and this will also
allow fits to true peaks; this would be much harder for splines. Also the first
part m(X) might be different in different GPMs, e.g., it could be a constant or
e.g., a linear function. One nice GPM feature is that these little Gaussian peaks
look a bit like a landscape with little mountains. And knowing the height h
at one point xi obviously helps us to make estimations for the height in the
neighborhood; and the correlation between (xi) to h(xi + Δx) is obviously the
higher the smaller |Δ x| is.And this is also the case for our Gaussian functions.
Interestingly, the whole idea has been created for “earth modeling”, and these
and similar methods are called kriging.

One simple model fit verification method is cross-validation by splitting
the data into two equal parts and double check the estimates (ffit1(Xi) versus
ffit2(Xi)). An often used variant is “leave-out-one”: We can fit a model to n
points, and then we compare the model predictions from this full model to
models just using one point less. This way an error estimation is possible,
actually for all fitting methods. With such an error indication, e.g., an adaptive
auto-stop for the WC corner search can be implemented, so that the worst-case
combinations can be found in a reliable and quite fast way. Gaussian process
models are nowadays often preferred, because for statistical applications
they have a certain foundation, and offer basic built-in error estimation
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capabilities. The latter is desirable, because cross-validation and “leave-out-
one” can be time-consuming and surprisingly inaccurate (see also Chapter 6 on
bootstrap).

However, look up! How can statistics help in computer corner simula-
tions? In WC corner search we have the situation, that indeed our simulated
points are fully reproducible, so there are almost no further (statistical) errors
on top (in opposite to lab measurements)! Here the GPM advantage regarding
better error estimation would not matter so much! However, in the corner
simulation gaps there is a “risk”, a model error, which we should limit; and
that makes the good GPM error estimation also for corner analysis useful,
although such error estimate is not the same as the true error.

Actually the situation is tricky: In a normal least-square fit (like linear regres-
sion, see Chapter 5), we have a unknown errors, and we assume that typically
the error is everywhere (independent on X), with the same distribution and
standard deviation, but here in corner performance modeling, we have an error
ε = ε(X), which is zero for all X = Xi (ith simulated point = sampling value).

So to some degree it is often a matter of taste to use GPM or splines, in
many cases the results will be very similar (see Figure 2.11). Just having a
solid concept with GPM, and at least the option to include statistical errors, is
a certain advantage. For instance, you can see in Figure 2.10b that the GPM
fit is not perfect, actually the Akima spline works better here. This is because
the hyper parameter p is set to 1.5 as in the other examples, but due to the
sharp edge (at x = 5, when the sine wave frequency is increased by 10×),
e.g., p = 1.1 would give a much better fit. Using GPM and solid estimation
methods such “mistakes” are very rare, and actually not necessary. In addition,
our 1D example is not 100% representative for complex situations; in many
dimensions all methods become more difficult, but spline fitting degrade faster
regarding calculation time and accuracy than GPMs! That is an important
factor when you need to treat 3 to 20 corner variables.

It is often said that GPM come without prerequisites, but actually this is
not completely true, usually some internal so-called hyper parameters have to
be tweak for an optimum fit (in advanced GPMs it is not only the exponent p).
However, indeed the GPM assumptions are very mild ones, i.e. just having
(tweaked) Gaussian error distributions; so there are usually applicable with
very low risks.

With splines we more or less let the data “speak”, and we “only” interpolate
when we talk about range parameters xR. In this aspect GPM is very similar,
and therefore both work quite well in the circuit design context! This is no
big surprise, because many similar algorithms have been even developed
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since years for problems which are even more difficult than most IC blocks,
e.g., for geostatistical applications or earth modeling. Almost any kind of
nonlinearity and number of parameters can be treated with such (almost) non-
parametric methods.

So-called kernel density estimation (KDE) is a further example for such a
“parameter-free” method (see Chapter 3), but actually any method comes at
least with some assumptions. One tricky part KDE is the “bandwidth” setting,
the setting on how smooth the fitting result should be; and for GPM there are
similar issues. In low dimensions, GPMs are harder to calculate than splines,
but for more complex corner setups this situation reverses. Generally runtime
is not a big issue anymore; and usually the circuit simulation times are still
much larger. Several benchmarks are available on different GPM algorithms,
in [Guerra-Gomez2015] you can even find a circuit-related benchmark. In the
examples, the rms error was in the order of 2%–10% for the better modeling
algorithms. This sounds good, because the rms error at the training points
would be even almost zero, so we talk about the error in the testing points. On
the other hand, the local peak errors might be much larger. In GPM we can at
best say that such cases are very rare, statistically. Typically the model creation
times are in the order of seconds to minutes, whereas the model evaluation
times (just executing Equation (2.1)) are much shorter.

In theory, you can always construct extremely difficult cases where only
full-factorial would be reliable, but modern mathematical algorithms almost
act with almost proven efficiency and high reliability; actually, as these
methods can detect the internal errors (Figure 2.12), they will simply switch
back to full-factorial in such rare cases, but keeping good speed in most real
cases!

Note: The error estimate ε(x) is zero at the sampling points xi, and ε is quite
large in regions with low sampling density. In addition, ε is rising quickly
in extrapolation regions, so GPM’s offer directly what designers would also
assume. To some degree, the GPM error estimation is similar to the error
estimation with Taylor polynomials, so it is not really magic that such error
estimations are possible. If the data itself has uncertainties (right Figure 2.12),
its variance V can be just add to the model tolerance ε2.

What does this all mean to circuit design? Indeed, such adaptive “pure
mathematical” algorithms are in competition to clever “heuristic” methods,
like expected WC or parameter rankings to the setup and following a certain
“strategy”. As usual, with a clever testbench setup, more speed is possible too,
e.g., if we divide our tests into fast and time-consuming ones, we could run
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Figure 2.12 GPM applied to non-noisy and non-noisy data (Matlab� tutorial on GPM)
[Matlab].

a fast method for the slow tests, but use a more intensive search method for
the fast ones. However, in conclusion, the WC corner searching problem in
xR = [xRmin, xRmax] can be regarded as almost solved. Doing it manually
can be a time-consuming and boring work, and unfortunately, it is needed
from time to time after circuit changes or for testbench extensions. So let
the computer do it for you! In [Woods2015] you can find a further bench-
mark on mathematical examples, and (more important) detailed descriptions
for combining sampling methods with parameter screening and modeling
techniques.

As mentioned, finding the worst-case among statistical variables xS
for given yield is important as well, but it is significantly more difficult.
So let us soon inspect the statistical behavior of designs in more detail
(Chapters 3 to 7). In Chapter 9, we will come back to the worst-case
topic again, when we combine it with optimization techniques. Some basic
local optimization techniques look similar to our different OFAT variants,
whereas global optimizers often have elements of a full factorial analy-
sis, but for efficient circuit optimization we will improve the algorithms
further.

Too much praise for mathematical WCD search methods? Check out our
little men versus machine showdown in subsection 2.8.2.
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2.5 Monte Carlo and Mismatch

Even many corner simulations do not cover the full worst-case condition
and also give usually no good yield indication. This is because there are not
only variations in global parameters (like temperature or Rsheet), but also
parameters could vary from instance to instance (like the two transistors
in a differential pair, e.g., on threshold voltage). In digital designs with
older technologies, typically the process variations dominate, but in analog
designs and when using ultra-deep submicron technologies, also the mismatch
becomes very critical. Due to this and lower supply voltages, all kinds of circuit
design become more and more difficult. Even for a perfect layout, you have to
accept a certain mismatch, unfortunately; actually, the statistical models even
assume that you indeed strictly follow best-practice layout rules [Hastings].
Physical reasons for such statistical variations are variations in channel doping
concentration, gate oxide thickness, or line roughness.

Putting all global and all instance parameters together, you often have
thousands or more parameters in a single real-world block. Simulating all
parameter combinations is usually simply impossible, so a 100% verification
becomes extremely hard. Usually, statistical methods jump in here! The easiest
and also most general form of statistical analysis is a Monte Carlo simulation.
MC requires a statistical model for each variable, and based on that, random
samples will be created and each parameter set will be simulated. Actually,
this is similar to a corner simulation, just the parameter changes are now
random in MC. MC is one method to capture the performance dispersions
from statistical parameter variations. One key problem with MC is that all
results depend on chance, so finding the true parameters, like the sigma σ of a
normal Gaussian distribution from MC data, can be tricky. A typical situation
comparing multiple MC runs is shown in Figure 2.13; for a large MC count,
we can expect that most MC results will be in a very small tolerance region,
hopefully close to the true value. However, for lower MC counts, the variations
are wider, so our estimation is more uncertain. On top of that there is even no
guarantee at all that the average from MC runs with a moderate count is really
identical to the one taken from a huge MC runs! There could be a general
bias and a bias for finite samples. A famous example (checkout Google) is
that 1/(n − 1)

∑
(x − xm)2 (with sample mean xm) is a so-called unbiased

estimator for the variance V, but actually
√

(1/(n − 1)
∑

(x − xm)2) is no
such “beautiful” unbiased estimator for standard deviation σ! In addition, it
is seldom that your distributions look so nicely bell-shaped and symmetrical;
they could be even discrete and highly asymmetric!
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Figure 2.13 Typical behavior of MC estimates for different MC counts N.

For luck, as engineer, you can often relax and accept an error of 10% in
sigma (like you do not care much whether the offset standard deviation is
5 mV or 5.5 mV); often such errors are on that level already for moderate MC
counts (like n = 100). However, there are several examples where you need a
much higher precision (like for verifying a yield loss on 0.01%) and/or even
with 1000 samples, the bias is well above several percentages. In Chapter 3,
we care more about the foundations of Monte Carlo and statistics.

Both process and mismatch parameters are basically statistical parameters
xS. And the verification has to run on these plus the usual operational range
parameters xR (like temperature and supply voltage). However, in older IC
technologies, usually the technology parameters are often split into process
parameters treated by corners only, and mismatch parameters treated by
MC. So to limit the modeling effort and to speed-up the verification, the
foundries supplied full technology corner sets like “nominal,” “fast,” “slow,”
or “slowNMOS-fastPMOS” to address the worst-case on global process
parameters. For this reason, it would be (in principle) enough to run a PVT
corner analysis and a mismatch-only MC analysis to take mismatch into
account. Luckily, mismatch is often quite independent from PVT parameters,
so often it is good enough if you run the MC mismatch analysis at nominal
PVT conditions.
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A more severe problem is that usually the foundry-provided process
corners often do not fit well for analog designs. In fact, they are only composed
to address the worst-case speed for CMOS logic cells! From a foundry, you
will simply never get a worst-case process set for IP3 or noise figure or phase
margin! Even the meaning of FF or SS for analog circuit is not fully clear,
e.g., fast NMOS transistors have typically a lower threshold and thinner gate
oxide (leading to larger IDSAT), but the thinner oxide would also lead to a
larger gate capacitance C if we use such NMOS as a filter capacitor. However,
larger capacitance means lower bandwidth and thus slow—but the corner
is named “fast”! Similar problems arise in many kinds of circuits, even in
logic circuits. In current-mode logic (CML), we use NMOS differential pairs
and resistive loads, and the worst-case on gain gmRL is for slowNMOS and
fastR, so a foundry-provided “worst-case” corner set with fast transistors
and fast resistors would not hit the gain worst-case. So you may create
your own “expected analog” critical corners to improve the situation, but
whatever you do, you would need (quite many) more corners, so (much) more
verification time.

In addition, you have to check to which yield such process corners are
related, and it could happen that the corners are set to a 5σ limit, but in your
design, you may aim for 3σ yield. In such cases, a PVT simulation would
stress your design too much, and in other cases, the PVT simulation will still
show less variations than the real production!

A solution is only possible if you have access to full statistical models
for both process and mismatch, as in all modern PDKs. This would enable
you to find the correct statistical worst-case sets for your circuit and for your
performances of interest in your operating range!

This way statistical techniques enable full-yield verification, but one pity
remains: MC results depend on chance, so in addition to model errors and
numerical inaccuracies, we also have to deal with a statistical sampling error.
MC has the advantage that statistical variance becomes smaller and usually
acceptable if you just increase the MC sample count enough (e.g., to 1,000),
and it can provide a direct yield estimate. The pity is that sometimes you may
really need quite a large MC count, so a lot of time.

For luck, MC is by far not the only technique to evaluate the statistical
behavior of a design. In the remaining chapters, we also talk about more
advanced, more complex methods. For special cases, like pure DC analysis,
advanced simulators with built-in methods to address mismatch can be used.
They work similar to noise analysis or statistical hand calculations – in both
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Figure 2.14 Pelgrom’s scatter plot obtained from measurements in 90 nm [Tuinhout].

the individual effects add up quadratically, for noise you work with the spectral
noise densities and for statistics you work with the standard deviations e.g.,
described by Pelgrom’s area law for mismatch. Such analysis is typically much
faster, but often less accurate compared to a full MC analysis.

Pelgrom’s law (Figure 2.14):

sVT = k/
√

A

with mismatch constant k[V m] (2.2)

Example: Mismatch calculation by hand
To fit an analog circuit into the supply rails, you need to keep an eye on
the MOS transistor saturation voltages. To achieve a certain V DSAT for
a given technology and current, you may need a certain minimum W/L
ratio of r = W/L ≥ 10, so W = 10 · L at the limit case. The question
is still how large should be W and L, and often you can obtain both
according to the desired threshold voltage accuracy like σVT ≤ 10 mV
and this is related to the device area A = W · L and to the process
and device-specific mismatch constant k (e.g., it is highly impacted by the
oxide thickness). A typical value is k = 5 mVum (quite valid for 180 nm
CMOS, modern processes are better due to lower gate oxide thickness, e.g.,
giving 2.5 mVum, but older processes like 1 um CMOS are worse, e.g.,
showing 20 mVum). So for A = 1 um2, we get σVTO = 5 mV, and with
Amin = 0.25 um2 = W · L = 10 · L2, we would be at the spec limit of
10 mV; and we can now calculate the desired Lopt =

√
(Amin/10) = 0.158 um

and W opt = 10 Lopt.
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Note: It looks that already a small MOS transistor can give a good matching,
but actually multiple transistors can have an impact on the overall mismatch,
and also your spec limit on offset voltage is usually not just one sigma,
but for instance 5σ—all this leads quickly to quite large transistors. The
consequence? The very newest technologies offer extremely small transis-
tors; this which might be translated to big area savings, but due to the
matching problems this advantage is hard to realize in analog blocks. This
does not mean that no area improvements are possible anymore, but design
becomes harder and “going” digital or mixed-signal is more and more a
native choice.

How about finding statistical WC corners from MC? What we can do in
several design environments is “picking” a certain MC sample like the most
extreme point in a MC analysis (e.g., on offset or supply current) and using
it as an approximate statistical WC corner. Next, we can even put them into
the set of WC corners on range parameters xR to form a set of approximated
WC overall corners. In Chapter 3, we explain MC in much more detail, and
in Chapter 7, we put several techniques together to be able to effectively
find statistical worst-case corners with well-defined sigma level with good
accuracy, so-called worst-case distances (WCD).

Note: If we pick, e.g., after a 100-point MC run, just the worst sample, then
such sample might be equivalent to maybe 2.8σ or 3.1σ, so it would depend
pretty much on chance. And the chance to get a 5σ sample is very low.
To get such extreme sample, we may need millions of points, so pure MC
is not efficient for this task.

Mismatch on single transistor or pairs? To measure the mismatch in
the laboratory, it is good to use transistor pairs, because using pairs the
global variations and temperature gradients will cancel out. It is best to
use many such pairs for a stable statistic. So many people think mismatch
simulation has also to be done on pairs or you even need to “define” pairs
of transistor instances. This is not really true!Also for one single transistor,
you can have a certain mismatch likeσ(V TO) = 10mV. Having two such
transistors in a differential pair gives a total sigma that is

√
2 higher, so you

have to look up carefully when looking for the concrete values. Almost all
tools work with instance-specific mismatch constants, but in your circuit
the measured mismatch for a certain output may depend on multiple
devices.
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2.6 Moving to a Robust Circuit Design

Once you found the overall worst-case on deterministic and statistical
variables—with manual methods you typically can only approximately reach
it—you can be in different situations like the design passes all specs even at
all worst-cases or not. In the latter case, the design should be improved, but
how can we do it? You need to minimize the sensitivities to many parameters
by carefully choosing the circuit topology and by carefully sizing the circuit.
Many techniques can and should be applied in general, not only if the specs
are very tight.

From the circuit viewpoint, these are the major techniques for a robust
design:

1. Avoid dependence on absolute parameters, e.g., by the use of current
mirrors, differential pairs, and feedback.
Choose suited topology, reduce systematic errors, increase loop gain, etc.

2. Reduce the variations caused by mismatch
e.g., by increasing the component sizes and by applying dynamic
matching techniques.

3. Apply calibration techniques
e.g., using replica circuits in the bias part and putting VCO in a PLL
loop.

4. Reduce variations
by adding a voltage regulator, by using special bias schemes (e.g.,
PTAT bias gives near-constant gm) or by the addition of cascade stages
(for better PSRR or CMRR), etc.

5. Use of components with higher stability
e.g., use certain resistor combinations to cancel TC and reduce statistical
variations and use external references (like crystals or high-accuracy
resistors).

6. Relax block specs, which may lead to more difficult specs in other blocks
e.g., often a function can be easily implemented with spending more
supply current.

7. To optimize the yield, you should “center” the design
e.g., try to tweak the design so that spec violations appear with similar
probability for competing specs.

8. Even in case of spec failures, the design should be still functional, and
small changes in parameters (like temperature) should only cause small
variations in circuit behavior (like gain).
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Use less risky, well-proven circuits, and avoid “dirty” tricks (like relying
on second-order effects as the TC of a certain resistor type).

9. Of course also digital designers have their tricks, like the use of dynamic
voltage and frequency scaling, dynamic body bias, and using redundant
circuits.

Obviously, some design techniques can be automated by using parameter
optimizers (e.g., let the optimizer tweak W & L to find a combination giving
a good compromise on speed and matching), whereas others (like using
clever mixed-signal techniques) are much more difficult to automate. State-
of-the-art EDA tools are suited for parameter optimizations, but true topology
optimization is still at an academic level and limited to quite simple blocks.

Fighting Mismatch? The Pelgrom’s law puts quite strong constraints on
many analog designs. For instance, in a flash ADC, the input capacitance
is a critical factor, because 2n−1 comparators are connected in parallel at
the input. So getting one bit more requires 2× smaller offset voltages, and
this leads to 4× more area. For the same speed, we end up in (roughly)
4× more power! What can we do in such situations? And how else can
we fight against mismatch, doing more than just spending more area?
This is not a book on advanced circuits, and we mentioned already some
general techniques. Especially suited for fighting against mismatch are
chopping, correlated double-sampling, and dynamic matching. All this
is very popular in sensor design, but also switching techniques have
their limitations, e.g., due to nonlinear charge injection and kT/C noise.
A less well-known method is this: Instead of using two transistors for
a diff pair input stage, we could simply insert eight transistors in the
layout. In a calibration phase, using switches we can try each pairwise
combination (there are 28) and measure the offset. Then, just use the
best one! One can easily show that this minimum pairwise offset is
significantly better than a 2 × 4 transistor diff pair! Also the input
capacitance is lower, so this technique is not bad for high speed too.
The major effort is of course the implementation of switches and the
calibration part. Other statistical circuit tricks? Yes, e.g., on-chip resistors
may have a tolerance of ±20%, but if you combine two resistor types
which are statistically independent, then the overall tolerance reduces
a bit. The worst-case would be the same, but it has now a lower
probability!
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2.7 An Efficient General Design Strategy

As mentioned, a simple but extremely time-consuming way to check the design
for yield would be to run a large enough Monte Carlo analysis including all
testbenches at all (environmental) corner combinations. The huge effort is
usually only acceptable for a final sign-off verification or for simple circuits.
Even looking at the huge amount of created data requires quite some time
to display and to interpret the results, whereas “direct” inspection methods
usually give immediately a better understanding.

Efficient design (i.e., search in xD)—in opposite to pure verification (fix
xD)—requires several simplifying strategies, mainly based on divide and
conquer. So let us reinvestigate our op-amp design example and refine the
flow further.

At the end, we will see that we obtain a flow with high efficiency, but also
with some risk and this will be quantified and minimized in the following
chapters.

Let us inspect the extended flow proposal in more detail (Figure 2.15);
of course in each step there is some iteration, and also overall, and there is
some overlap among the tasks. For instance, it makes a lot of sense to include
parasitics as soon as possible to your simulations (especially in RF, high-speed
or low-power designs), not just when a full layout is already available. This
can highly reduce the number of iterations, even if the estimated parasitics are
not 100% correct. Also modern layout tools allow us to run LVS checks and
DRC much earlier, or offer design rule-driven layout creation. In addition,
there is also a lot of work on preparations, e.g., we assume that the design
team received a process development kit (typically from the foundry) and
has installed all tools, auxiliary libraries, etc. Also making a small testdesign
upfront, and running through all phases makes highly sense.

Besides these preparations, also in testbench creation and modeling is
truly a big part of the work too! The hand-sizing is usually done by formulas
and tools such as Smith chart, math toolboxes, linear equivalent circuits,
scattering parameters, CMOS quadratic IV law, filter catalogs, and symbolic
calculations. For many standard circuits like LNAs, op-amps, bandgaps,
and OTA, you will find several step-by-step instruction guides for design.
Parasitics may come from package models, or derived from rough formulas
like L= 1 nH/mm or microstrip transmission line formulas. More on this topic
and related design tools is presented in Chapter 10.

One difference to the basic flow is that we do a split, i.e., we decide
for a design phase with focus on speed (using few corners, like 3–10) and
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Figure 2.15 Typical manual analog flow and main challenges.
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understanding (doing sweeps), and we have a sign-off verification step with
focus on coverage and reliability. This way we can reduce the simulation
effort in the tweaking phase. For instance, the most critical corner in analog
designs is often lowVdd+slowMOS+fastR+Tsweep, for stability, it might
be fastMOS+lowT+CLsweep, and for speed, it is often slowMOS+highT+
maxCL. The sweep phase is done not only on range parameters xR, but
typically also on design parameters xD (usually a subset of the most important
variables).Also model parameters might be swept, e.g., the ground inductance
of a package model and the wiring capacitance on critical nets for checking the
design robustness. Especially in RF designs, it is not so clear which parameters
can be assumed as given and fix (like lead frame inductances) or are actually
design parameters.

In the “design” loop, where we modify xD, we have a lot of iterations. For
understanding, it is best to use parameter sweeps intensively. One problem
is that by tweaking the design, we can also change the critical corner
combinations, so we need an update on them from time to time.

Mismatch (MM) is typically not much corner-dependent, so we can do the
MC-MM analysis at typical corner (or expected WC). This analysis should
be done early, because in the pure sweeps done before maybe the circuit is
optimized too much for speed, so that the transistors might be too small for
low offset. One advantage is that often a good interpretation of MC-MM
results is possible, and usually 100 points are often enough, so quite a short
MC analysis can help a lot in tweaking the design. Unfortunately, a PVT run
together with such a MC-MM analysis can only give rough yield estimations.
So if available, you should also do a MC analysis with “process only” for
additional insights and also a MC analysis with all parameters—on the most
critical VT corner. The later can also give good yield estimates, or at least an
option to double-check the results.

Many modern design environments allow to save the worst MC sample as
a statistical corner. Instead of (or in addition to) only making a hand calculation
(like on ±3σ offset), you can just put such statistical corner into the set of the
usual PVT corners and size the design over it. This is a good technique and
should be done for the most impacted specs and for those with significant
variations from mismatch (like offset or CMRR, but usually not for phase
margin or NF).

Note that some additional design margins are needed, because foundry-
provided corners like SS, FS, and FF usually do not cover well analog
worst-cases like phase margin PM and IP3.
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The simulation effort is quite moderate, and both corner and MC analyses
can run in parallel on a compute server. This is often only partially possible
for more complex algorithms like gradient optimizers or worst-case distance
methods (Chapter 7).

A more detailed PVT and MC analysis is usually possible for a fix design.
It is usually very time-consuming on the postlayout netlist, so best include
expected parasitics as soon as possible and do the postlayout simulations only
at typical and few critical corners (like those on speed and stability). The
technique is simple: The layout parasitics have usually no strong statistical
variation, so usually you get a shift in the absolute offset voltage, but
the sigma remains, and the bandwidth gets reduced maybe by some ten
percent. With that qualitative a priori knowledge and your prelayout result,
you could just compose the total postlayout behavior with few postlayout
simulations only (in extreme cases just a nominal simulation). By “borrowing”
information, you can get quite reliable information with much lower effort. Of
course, you cannot do this for effects highly dominated by parasitics, such as
cross talk.

Over-all, we need to pamper up our design, so starting the simulation
part at nominal conditions is a native choice. Incrementally, add all types of
variation (process, voltage, temperature, parasitics, etc.) that may matter to
get an understanding. As design tweaking for optimum yield and performance
requires many re-simulations, it has to be done in an efficient way with focus
on the worst-case combinations.

2.7.1 Desirable Improvements

The described flow can be applied in many commercial design environ-
ments for some years, but it has also its limitations. If we do only a PVT
and MC-MM analysis, we ignore that foundry-provided corners typically
only cover the WC on CMOS speed, but not typical analog measures and
circuits!

Options to improve:

• Extend the foundry corner set, e.g., to include more complex cases like
FF slowRslowC. Use them for complex cases like analog filters. Another
example is having mixed MOS corners for thin and thick gate (high-
voltage) MOS transistors, using them is often need in pad cells or level-
shifters.
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• Consider PDK and model extensions, e.g., to be able to set the desired
yield value (in sigma) for the PVT corners.

• Provide corner templates for all designers in the project to ensure a
minimum coverage.

We do a short MC analysis on mismatch only, and usually, the output
performances will be normally distributed, but not always. Using ±3σ and
combining the PVTand MC-MM results is essentially an extrapolation method
with some risks. The risk is often too large for high-sigma yield targets!

Options to improve:

• Extend the MC analysis to get also high accuracy for the yield estimation;
unfortunately, this may require many more MC samples. Check out
Chapter 3 for more background information and examples. An easy-
to-apply MC speed-up method is low-discrepancy sampling LDS (see
Chapter 6).

• Even no change in simulation setup is needed, if you use enhanced
mathematical methods to address also non-normal cases, as described
in Chapter 4.

If we run a MC analysis and create statistical corners, we cannot know how
accurate these corners will be. In addition, to get a 4σ sample, we would also
need a very large MC count!

Options to improve:
Consider to create really accurate statistical corners to get rid of the extrapo-
lation risk as shown in Chapter 7. Such statistical corners have the advantage
that they can be (almost) accurate for your circuit and performances, so they
do not lead to under- or overdesign as the standard foundry corners. Also they
can include mismatch.

Such a flow is not only for design and verification; it can also provide
additional design insights.

Options to improve:
Apply multivariate analysis to obtain sensitivities from MC results. Chapter 5
describes the methods and many examples, e.g., we can apply a mismatch
contribution analysis with minimum overhead on simulation time.

Do correlation analysis to understand trade-off and to better estimate the
total yield from the partial yields (Chapter 5).

This flow requires of course some experience and careful setting of design
margins.
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Options to improve:
To get an overview and concrete numbers, let the design environment do
a sensitivity analysis, and this is often easier than doing sweeps manually.
Many environments also support corner-dependent spec settings, so we can
include design margins if we want.

As mentioned, modeling is better than margins. Modern tools offer support
to add estimated parasitics to your design and can also calculate layout-
dependent effects and quite accurate parasitics estimates from a partial layout.

Having a complete verification setup is also a perfect preparation for an
automatic optimization.

Options to improve:
Define which parameters to tweak and let an optimizer do the sizing job. This
is more efficient than optimization by plain sweeps (see Chapter 8).

When is a design good? When is a flow optimum? We will care for
optimization in Chapters 7 and 8, but with a strong focus on circuits.
A general question is indeed what we want to achieve! For instance, if
we treat in a layout each individual wire length as important and want
to minimize it, we can hardly reach an optimum. At best you can reach
something called a Pareto optimum. Such Pareto optimum point is already
reached if you have a situation where you can only improve one goal if
you get worse on another goal. Obviously, in such situations, a certain
Pareto optimum can be far away from your ultimate design goal where
it is more important to minimize just the length of the real critical nets
or maximize the amplifier bandwidth. Luckily, most optimum conditions
are quite flat naturally, so spending too much time to exactly reach an
optimum makes little sense. So often you need to be pragmatic, like “A
design is good if you cannot improve it significantly anymore, if it is in
spec, and if your boss likes it.”

An optimum flow is also difficult to implement; it is possible only for
simple problems like finding the optimum for a parabola. The worst-case
might be found by running all parameter combinations and searching for
the most extreme result. This is good for small problems, but often it is
better to exploit your design know-how and use a slightly riskier but much
faster method. In conclusion, your responsibility as designer is mostly
on setting the right goals, choosing efficient methods, and improving
the design step by step, e.g., starting with ideal current sources, then
implementing a real MOS current mirror, adding auxiliary functions,
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and aligning with other blocks. At best you have always “something that
works.” For sure, an optimum design execution is almost only possible
if you would know the result in advance! So realistically many things
depend on anticipation, on experience and on your capability to exploit
the information you already have—as good as possible! Plus, you should
avoid redundant work or even dead ends.

2.7.2 Mr. Murphy and Mr. Beckmesser

Sometimes specific person stands for something quite specific, like Mr.
Giacomo Casanova for womanizers, Robinson Crusoe for a lonesome person
disconnected to the world, Mr. Edward Murphy is often made responsible if
something gets wrong; and Mr. Sixtus Beckmesser is an annoying person,
someone who knows everything better, without really being able to do it.
However, in math and engineering, you should have some sympathy to
Beckmesser, because we hope in some sentences so far some of the readers
get almost a heart attack.

We devided our variables into three catagories, and we one of them is the
range variable category xR, another one the statistical parameters xS, and last
not least the design variables xD. So far so good, but when explaining corner
analysis we but the technology corners like FF or SS into the xR category. Is
this correct, just because SS is obviously neither pat of xS nor xD, and because
the design environments let us do so?

Let us go for a simple example:
If you pick a sample from production and run the temperature corners
according to your spec limits, then a sample needs to be in spec for all 3
temperature values to really pass the spec. If all samples pass, we have 100%
yield. And if we get a fail e.g., only at Tmin, the yield would already zero!

However, if we simulate three technology corners, like slow, typ, fast, and
we have one fail e.g., at slow. What is then the yield? It is obviously not 100%,
but realistically it is also not 0%! If we assume a uniform distribution we may
apply the rule of proportion (leading to a kind of margin approach). Or we
may simply assign each category to 33%? Or we may simply say that it is
simply not possible from a corner analysis to conclude on the yield?!?

Indeed at some point we need to be a bit pragmatic: Following the classical
corner approach, we would say, that one fail over xR could already to a fail.
However, realistically this is a bit too conservative, and we may overdesign
a bit!
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Better than nothing? But what about this: If we say a corner is standing
for 5σ, but we want 7σ yield for our block. Are we then still overdesigning?
Obviously not really, but what is realistic? Actually the 100% correct way
would be to model the process tolerances parameters as belonging to xS, so
they would require a statistical distribution, a pdf. Typically the pdf would be
neither uniform, but often also not 100% normal Gaussian! This is because,
if the process parameters are too bad, then the foundry would not process the
chips further, so these samples would be sorted out! This typically leads to cut
distributions, like a normal distribution which pdf is zero, e.g., beyond 5σ (or
whatever).All these things may lead to some extra margin for you as designer,
but better do not exploit this too much.

In addition, we mentioned that we can cover the statistical variables xS
by statistical models, which are known to the design environment and the
simulator. Also this is not 100% true, e.g., also simulation errors e.g., due
to rounding, time step limitations, etc. have a statistical nature, but they are
not so easy to quantify. Uncertainty and risk quantification is a nice topic on
which you should know the basics. Read the next chapters, check out further
literature, have a talk with your quality and technology experts.

2.8 Design with Pictures Part One

In the past, graphical methods have been intensively used for design, like the
load-line method for power amplifiers or the Smith chart for matching network
design. Nowadays, there is a trend to use numerical methods, simulators, and
more advanced models, but thinking in pictures often helps a lot to understand
the design (e.g., its limitations, like matching network design becomes difficult
if you need to start far away from the Smith chart center) and also to understand
numerical algorithms (e.g., for yield analysis or for finding a DC operating
point).

We will pick up the idea of designing with pictures, because “thinking in
pictures” is very helpful also for understanding many statistical methods like
worst-case distances (WCD). These have also a straightforward geometrical
interpretation! Also normality can be easily checked graphically in a so-called
normal quantile plot. For a first design example with pictures let us focus on
a power amplifier (PA).

2.8.1 CMOS RF-PA Example

So, what is really important in a radio frequency PA design? Well, it is
important that the PA can provide a given output power with a constant
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gain at a particular frequency range. The application essentially dictates
these parameters, i.e., most systems have a predefined power range and
frequency allocation that the transmitters should comply. For instance, a
Bluetooth transmitter should be able to operate between approximately 2.40
and 2.48 GHz and should not exceed 20 dBm (100 mW) of output power.
Usually also a certain minimum output power level is required, because with
too small energy no reliable transmission is possible.

In fact, although only one transistor is needed to perform the required
DC-to-RF conversion in a PA, the difficulties arise on doing it efficiently and,
at the same time, in a linear enough way. There is a classical compromise
between power efficiency and linearity, and how much linearity is really
required depends also on the modulation scheme. Bluetooth has no very high
demands, so usually a class AB amplifier fits. The frequency of operation
should not be an issue here as a 45-nm CMOS process node will be used
in our simulations. As target, we specify an operating frequency of 1.2 GHz
and the 1 dB compression point at 15 dBm. Design for larger output power
will often trigger a lot of problems, e.g., thermal problems, gain and stability
degradation by ground and package inductances, reliability problems caused
by breakdown mechanisms and electromigration, etc. In our starting example
we want to avoid having one specification much more difficult to satisfy
than others! Table 2.3 summarizes a small list of specifications for the
design.

For the design of a class PA, a designer needs to know at least some RF
basics, e.g., that an RF choke is used to provide the DC current, which will
be modulated by the MOSFET. At the limit of class AB, i.e., class B, the
resulting drain current should be half sinusoidal (transistor active during 180◦
out of the full 360◦ cycle) with some peak value Ip.So, a first step in assessing
the design would be inspecting on the IV characteristics of the transistor and
relating them to the output power. For the present example, we will make use

Table 2.3 Specifications for our RF PA design
Symbol Description Value Unit
f c Operating center frequency 1.20 GHz
Δf Bandwidth >20.0 MHz
P1dB Compression point >15 dBm
G Gain >30 dB
OIP3 Third-order interception point >15 dBm
VDD,nom power supply voltage 2.2 V
ηpk drain efficiency the P1dB >15.0 %
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of external inductors to simplify the design, although the pad models and bond
wires need to be considered also.

For an ideal switching transistor (no saturation voltage, i.e. VDSsat = 0)
the drain-source voltage would be between 0 and 2VDD,nom = 2.2 V; and the
maximum voltage is important for reliability reasons and it will often restrict
our choice for a certain transistor type (like thin vs thick gate transistor). A
finite VDSsat helps actually a bit on voltage stress, but not much. Modern
CMOS technologies have unfortunately quite low breakdown voltages, so
usually the question arises if a cascode topology or a single transistor should be
used. We can also think if special combinations, like a cascode with thick-gate
device at the top and a thin-gate oxide device at the bottom. Such combination
guarantees a high gain and can treat large output voltage swings, but has of
course a saturation voltage given by the sum of both devices; and a large
VDSsat degrades the efficiency. So there are some trade-offs in each option
that a designer should consider, for instance, thick-gate devices allow you to
improve the voltage capability and reliability, but the f T is reduced because,
in general, the minimum length Lmin is larger than the Lmin of thin-oxide
devices for the same process node. What about increasing L? This would
typically improve on output conductance, but for an RF PA it makes little
sense, because power, gain, and efficiency matter much more. To find a good
design we must optimize each solution as much as possible, or we need to
exclude solutions which are impractical. So the designer must know whether
a certain issue (like breakdown) is in fact restrictive in the application or if
it is merely a minor side effect. For instance, our frequency of operation is
relatively low, so using thick-gate transistors cannot be excluded. Also some
effects might be not fully covered by the target spec. For instance, isolation
is not part of the spec yet, and to improve the isolation between input and
output, the designer may adopt a cascode topology, maybe using thin-gate
oxide devices only.

Here and in many other design aspects, the simulator can assist the
designer on deciding the values of some parameters. Obviously, that needs
basic understanding of what is really in play, at least at a qualitative point
of view. Sometimes by visual inspection with some rough calculations, one
can get a very feasible starting point, leaving the fine-tuning for a later
procedure. To determine the transistor dimensions, a designer can perform
a quick DC sweep and obtain the iDS of a (now chosen) cascode circuit—
Figure 2.16. We assume L = Lmin to achieve the highest f T possible and start
by guessing a plausible device width based on experience (at least on the order
of magnitude).
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Figure 2.16 Cascode cell for DC sweeping of power supply and gate voltage at the common
source.

To find the required iDS, a designer can change the width in a linear way,
i.e., supposing it is needed 2.5 times more current, they just increase the width
of your device by the same factor. For instance, one may assume the IV of
the cascode circuit in Figure 2.16 in which the transistors are equal sized—
other possible solutions with unequal sizes may be explored afterward, in
optimization.

Figure 2.17 shows the output of the DC simulation. If we consider the
knee voltage VK as the VDS,sat (obtained from the BSIM output), in this
case around 600 mV, we can assume iDS,max � 14 mA for a class B PA.

Figure 2.17 DC sweep simulation results for the cascode cell.
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Under these conditions, we can get roughly the peak power Pmax = Vo,pk ×
Io,pk/2 = 5.6 mW(7.5 dBm), with Vo,pk = VDD − VK = 1.6 V and
Io,pk = iDS,max/2 = 7 mA. This means we can estimate a large signal load
RL = 1.6 V/7 mA � 229 Ω. Note, that this approach is quite different from
small-signal design techniques, required e.g., for low-noise amplifier (LNA)
design, where you focus on small-signal S-parameters and noise.

Figure 2.17 shows the draft load line (in dashed black) for the class B at
7.5 dBm output power. If we want to achieve a given peak power Pmax that
is ρ times higher than the present peak power, we need to improve the current
by about ρ times, so we will need ρ MOSFETs in parallel (in both transistors
of the cascode) to see whether we can achieve such peak power. The load
will need to be reduced accordingly, RL = 229 Ω/ρ. For a peak power of
15 dBm, ρ should be in the order of 6, implying RL � 38 Ω. However, for
such a case, the peak power is already at some compression level. So, a better
option is to give an extra-margin of Pmax to P1 dB, for instance ρ = 10. Based
on these numbers, one can at least roughly predict the drain efficiency (η).
Other non-ideal elements will come, but at least to have a reference, one can
estimate whether it will be too far from the specifications. Taking into account
the knee voltage, η = (π/4)×(VDD,nom −VK)/V DD,nom � 57% (with VK = 0
we get the famous theoretical optimum of 78.5%).

One can quickly set up a circuit like in Figure 2.18, which is a simplified
approach to validate the targeted power and load, just using an ideal input

Figure 2.18 Circuit for studying basic parameters.
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drive (no matching input matching network). The designer can start building
a list of formulas to define some parameters—some may even be kept until
the end of the design. For second order parameters we can often apply a rule
of thumb. Consider for instance Table 2.4 where we listed several parameter
values and respective equations. There we assumed the choke impedance as
50 times larger than the optimum load, whereas for the RF coupling capacitor,
the impedance was considered 100 times smaller. Other derivations are at
somehow related to specifications, e.g., the loaded quality factor (QL) of the
output RLC network was assumed as 5. Also here the absolute value does not
matter much as long QL � Qspec = f c/Δf.

It is advised to include some non-ideal aspects already from the early start.
For instance, the use of finite unloaded quality factors for the inductors gives
a more realistic performance (e.g., in output power and efficiency) and also
helps the simulator to converge. For the present example, we will assume
external inductors, so we can assume intrinsic quality factors (Qu) in the
order of 60 to 80; furthermore, it is not difficult to find inductors with a self-
resonating frequency much higher than 1.2 GHz. Hence, for each inductor,
one can include at least a series resistor-valued ESR = ω0L/Qu (the ESR is
not seen in schematic as a component because it is included in the inductor
definition).Another important value to take into account is the bias level of the
transistor. At the gate, the voltage should be above VT0 to achieve a class AB
operation. A DC analysis will be sufficient to obtain this parameter. Note, that

Table 2.4 Parameter definition for studying the performance of the class AB PA
Parameter Equation Value Unit
VBIAS >VT0 575 mV
VK – 0.6 V
Vo VDD –V K 1.6 V
RL,opt Vo

2/ (2 Pmax) 38.0 Ω
QL (arbitrated) 5.0 –
ω0 2π f c 7.540 Grad/s
L0 RL,opt/(ω0 QL) 1.0 nH
C0 1/(ω0

2 L0) 17.4 pF
Lchk 50 · RL,opt/ω0 252.0 nH
Cbig 100/(RL,optω0) 349.0 nF
Rbig (arbitrated) 10 kΩ
Qu(Lchk) (arbitrated) 80 –
Qu(L0) (arbitrated) 60 –
ESR(Lchk) ω0 Lchk/Qu(Lchk) 23.7 Ω
ESR(L0) ω0 L0/Qu(L0) 127 mΩ
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it also a good method to build up the testbench step by step, to immediately see
if one change has a surprisingly large impact (e.g., in the package inductance
at the source is not yet included, and it would have some impact on the
PA gain).

Once all the parameters have been established, the PA circuit can be
simulated using transient analysis or periodic steady-state simulations (PSS).
Figure 2.19 shows the results from a single-tone continuous-wave (CW) test
using a PSS simulation. It depicts two time-domain representations of the PA
signals, one for the current through the channel of the transistor iDS and the
output voltage at the load. This time domain allows to see whether everything
is as expected, e.g., whether the iDS is nearly a half-sine waveform (50%
conduction over the period) and the output is sinusoidal, although the spectral
analysis output will provide more accurate information. In the present case,
there is some influence of the triode operation, but still if one simulates the
circuit with infinite and finite quality factors, one gets an output power of
14.7 and 13.4 dBm, respectively, and an efficiency of 49.5 in the ideal case
against 40% with finite Q, i.e., one can identify already some performance
degradation. Naturally, the circuit requires some optimization, but at least the
designer can predict some rough numbers for a quick start.

Even though one can use transistor width scaling to set your peak power,
such does not assure you that a different load value could in fact benefit the cir-
cuit performance, so often we require a kind of multi-parameter optimization

Figure 2.19 Testing the output voltage (top) and maximum iDS of amplifier (bottom).
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for circuits. A typical design technique for PAs is the “load pull” method, in
which the complex load impedance is swept in terms of both real and imaginary
part. This allows the designer to get an idea of the performance under different
loads, and helps finding the optimum load. In discrete implementations, load-
pull techniques (based on output tuners to vary the load) are very useful,
because we would include all the parasitic elements as they are, such as lead
inductance or other parasitics resultant from interconnections. However, when
it comes to IC design, the simulator gets a hard job, because we need one
simulation for each complex impedance! The post-processing and the plot
looks the same in real world and simulation. Figure 2.20 shows the contour
plots from a load-pull simulation. In Figure 2.20(a), each contour represents
the load values for a given constant power level, whereas Figure 2.20(b)
depicts constant PAE contours. In both cases, the lower the radius of the load
locus, the higher the power (or the PAE).

As shown in Figure 2.20, to achieve the peak power and peak PAE, com-
pletely different load values are required, implying a noticeable performance
trade-off. Also, the drive strength must be properly analyzed, so that the
power gain can be optimized. Source-pull simulations can be also included
to this end, but a very complex simulation setup must be implemented (4D
sweeps instead of 2D sweeps). Moreover, corner analysis can also provide
additional information, but the time required to perform load pull is in fact an
issue. In terms of simulation, load- and source-pull techniques are excessively
time expensive because the parameter sweep domain is quite vast. If we
decide for a certain “compromised load” impedance, we could extend our

Figure 2.20 Load pull (a) constant PAE contours and (b) constant power contours.
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Figure 2.21 Simulations for the nominal conditions—(a) power efficiency and (b) gain.

PA design, and include a matching network, e.g., from 50 Ω standard antenna
impedance to this selected impedance. Another design option would be to
select a flexible enough matching network topology, and to directly tweak the
component values in the network (together with other relevant parameters,
such as transistor width), instead of tweaking the complex impedances.
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Figure 2.22 MC results for (a) IP3, (b) |S21|, and (c) |S11|.

After some efforts on manual tuning, a solution arises. Some nominal
results such as efficiency and gain, are shown in Figure 2.16.

Nonetheless, when subject to process variations, the performance differs
a lot, unfortunately! For the present example, the VT0 value depends on
the process corner, and if we assume a constant gate bias, in some cases
the operation can be class C (for instance in SS corner, because the VT0 is
higher) or in less-deep class AB (e.g., in FF). So, the signal excursion will be
different and will have e.g., some impact on Pout and PAE. One can choose
SS to establish the starting point with some margin, or give some adequate
performance margins, having in mind a yield optimization to be performed
later. A sweep with different sizes of the cascode (equal widths always for
the common gate and common source transistors), with the gate bias kept
fixed will indicate that the number of fingers of the transistor above 20 is
required. It turns out that the compression point differs in about 4.5 dB for FF
and nominal.

Figure 2.17 depicts Monte Carlo results for a first manual design of the PA
for some performance metrics. Although most of the samples fall in the safe
side, there is still room for yield improvement. That will eventually sacrifice
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some performance parameters for others in order to have multiple specifica-
tions with higher yield. Such optimization procedure will be addressed in later
chapters.

2.8.2 Worst-Case Search Showdown

When we introduced different algorithms, we used a CMOS inverter as
example. We could be easily extend it and include further specs, like on
leakage current, dynamic average current, static cross-current, area, input
capacitance, output resistance, jitter, and DC gain. So even such a simple
inverter can have quite many specs and many different WC combinations.
And we could easily extend further, e.g., for a CMOS Schmitt trigger, we
would have the same problem plus a big interest for the input switching
threshold voltage and hysteresis. Also the corner set might be extended for
inclusion of generator resistance and load capacitance. Or we may add a second
inverter or a level shifter. In the later case, we should add the second supply
as further corner variable. In an uplevel shifter, it could easily happen that not
the min Vlow + min Vhi case is most critical but min Vlow + max Vhi case;
mixed cases are often overlooked.

As we mentioned, sometimes simple circuits like an inverter can be difficult
for WC finding. However, we do not want to focus so much on near-digital
circuits, so for our showdown on worst-case search methods, we picked a
second difficult example. It is a CMOS op-amp, the one which we will use
later also for a statistical analysis (see Chapter 4). Actually, it is often not
so clear whether “difficulty” is in the circuit complexity or because of other
tricky things. For normal WC corner search, OFAT typically fails in roughly
20–60% of the specs, and one tricky performance in amplifiers is often the
closed-loop gain peaking, because it is critical to several variables (like load
capacitance, frequency compensation elements, etc.) and many dependencies
are highly nonlinear. On stability, our dedicated example op-amp circuit itself
is indeed tricky, because the frequency compensation scheme of this amplifier
works with an advanced pole-zero cancellation to achieve a bandwidth as high
as possible (in MC, you can also see issues, e.g., the histogram is becoming
bimodal (see Figure 4.14).

To check how good the different methods work, we run the different WC
corner search algorithms on this op-amp, for all specs and five corner variables.
Table 2.5 shows the results of different methods applied to the closed-loop
gain peaking (as very difficult measure). As expected, the fast OFAT method
is also the least accurate one. Luckily, the user gets at least a warning:
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Internally, OFAT is just composing the overall WC combination from the
individual worst-cases, and using a linear model, it can also estimate the
performance value (2.93 dB) for this combination. In a verification step, this
can be verified by just executing this composed WC combination: We get
10.32 dB which indicates that the (actually linear) extrapolation was not really
accurate. One surprising result is that on this performance also OFAT around
an expected WC does not work well, although it worked fine in our also
quite difficult CMOS inverter example! If we e.g., start the search around
VDDnom, Tmin, CLnom, Ibiasmax, FF, which is a meaningful set for many op-
amp designs, we get almost 0 dB as worst-case, which is completely wrong!
Of course, the method could also work fine, so for another meaningful start
set we get e.g., 13.33 dB, which is now indeed better than the standard OFAT
method around nominal. However, although OFAT around an expected WC
should work better, also for good theoretical reasons, it does not really provide
high robustness.

Table 2.6 shows the corner analysis results (324 corners, nominal process
corner NN was only simulated in combination with the other variables at
nominal), and based on that (best by using the xls file provided at the River
webpage), you can try for yourself to find the worst-cases with your own
methods; you can truly double-check why certain methods do not provide the
absolute worst-case.

One problem in the gain peaking behavior is that it is simply constant at
zero for many corner combinations, because the op-amp is very stable and
behaves like a first-order low-pass filter. Another difficulty is that peaking
is quite sensitive to small parameter changes for certain parameter regions.
All these special characteristics, mathematically equivalent to high-order
functions, are the reason why OFAT (being not tool-specific) fails significantly
and also older automatic search algorithms do not fully end up in the true
absolute WC (although being much better than OFAT!). Fur luck, all the other
op-amp performances (actually more than ten) indeed caused almost no such
severe difficulties.

As a further example let us check in detail our stepwise preordered
OFAT search method. The user would need to define which parameters are
most critical, so the accuracy depends also on user-provided settings. Let
us assume that process corners will be regarded as most important, then
temperature, then load capacitance (as we know this op-amp is tricky on
frequency compensation), then bias current, and last supply voltage (because
analog circuits often have good PSRR). In addition, we can take an estimated
WC combination into account, and for op-amp, stability this is usually FF,
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Table 2.6 Op-amp corner results to showcase different WC search methods
CL/F Iref/A VDD/V Process T/◦C Peaking/dB trise/s IDD/A

Nominal 1p 10u 1.5 NN 27 2.092 1.87E–08 1.43E–04
Spec – – – – – < 3 < 30n < 250u
Corner-ID
0 10f 9u 1.5 SS –40 0 1.56E–08 1.27E–04
1 10f 9u 1.5 SS 27 0 1.77E–08 1.26E–04
2 10f 9u 1.5 SS 100 9.66E–16 1.95E–08 1.25E–04
79 1p 11u 1.7 SS 27 5.07 8.02E–09 1.57E–04
80 1p 11u 1.7 SS 100 6.193 7.48E–09 1.55E–04
81 10f 9u 1.5 FF –40 0 1.78E–08 1.36E–04
105 10f 11u 1.7 FF –40 0 1.42E–08 1.72E–04
106 10f 11u 1.7 FF 27 0 1.54E–08 1.69E–04
107 10f 11u 1.7 FF 100 0 1.70E–08 1.66E–04
132 100f 11u 1.7 FF –40 0 1.42E–08 1.72E–04
133 100f 11u 1.7 FF 27 9.58E–16 1.53E–08 1.69E–04
134 100f 11u 1.7 FF 100 0 1.69E–08 1.66E–04
141 1p 9u 1.7 FF –40 0 1.62E–08 1.44E–04
142 1p 9u 1.7 FF 27 1.43E–01 1.87E–08 1.40E–04
143 1p 9u 1.7 FF 100 1.315 2.20E–08 1.38E–04
150 1p 10u 1.7 FF –40 2.91E–15 1.45E–08 1.58E–04
151 1p 10u 1.7 FF 27 3.41E–01 1.71E–08 1.54E–04
152 1p 10u 1.7 FF 100 1.427 2.03E–08 1.52E–04
153 1p 11u 1.5 FF –40 0 1.56E–08 1.64E–04
154 1p 11u 1.5 FF 27 4.32E–01 1.74E–08 1.62E–04
155 1p 11u 1.5 FF 100 1.727 1.95E–08 1.60E–04
156 1p 11u 1.6 FF –40 0 1.47E–08 1.68E–04
157 1p 11u 1.6 FF 27 4.06E–01 1.68E–08 1.65E–04
158 1p 11u 1.6 FF 100 1.599 1.94E–08 1.63E–04
159 1p 11u 1.7 FF –40 0 1.34E–08 1.72E–04
160 1p 11u 1.7 FF 27 6.07E–01 1.54E–08 1.69E–04
161 1p 11u 1.7 FF 100 1.73 1.91E–08 1.66E–04
162 10f 9u 1.5 SF –40 3.87E–15 1.61E–08 1.33E–04
235 1p 11u 1.5 SF 27 11.88 1.65E–08 1.59E–04
236 1p 11u 1.5 SF 100 15.61 1.80E–08 1.58E–04
237 1p 11u 1.6 SF –40 8.786 1.43E–08 1.64E–04
238 1p 11u 1.6 SF 27 11.24 1.67E–08 1.62E–04
239 1p 11u 1.6 SF 100 13.33 8.06E–09 1.60E–04
240 1p 11u 1.7 SF –40 8.802 1.41E–08 1.68E–04
241 1p 11u 1.7 SF 27 9.88 1.68E–08 1.65E–04
242 1p 11u 1.7 SF 100 12.74 7.37E–09 1.62E–04
243 10f 9u 1.5 FS –40 0 1.70E–08 1.29E–04
322 1p 11u 1.7 FS 27 0 1.14E–08 1.59E–04
323 1p 11u 1.7 FS 100 0 1.19E–08 1.58E–04
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maximum Ibias, and maximum CL, whereas for other variables it is hard to
say, so keep them at nominal (like in standard OFAT). The search would start
now with a VDD sweep (least important variable), with the other parameters
at the expected WC. Putting the full-factorial data into Excel and using the
filtering option, you can do this by hand (see Table 2.5). In a similar way you
can create any WC finder you can think of, and test it! The VDD sweep is
picking the points #154, #157, and #160, and the WC on peaking is maximum
VDD. With this, we would next sweep on bias current, so running points #142,
#151, and #160. The last one is redundant, so we could skip now the simulation
that point. We would find now maximum Ibias as current WC.

Now, we go for CL and run points #106, #133, and #160 (again available
from cache).As our WCC guess on CL was correct, still #160 remains the WC,
and we continue with a T sweep. Here, we run #159 and #161 and get Tmax as
WC, and last, we run the process corners (#80, #242, and #323 as new points).
And ultimately, we found #242 and SF as WC giving a peak of 12.74 dB.
We used 12 simulations only (speed-up 27×), and the result is in between the
standard OFAT (10.32 dB) and the true WC (15.61 dB). Looking to the corner
combination, we are only wrong regarding supply voltage, whereas OFAT is
wrong on two further variables! Actually, also this result is no real surprise,
because the VDD WCC was already in the first sweep, so it has the highest
chance to fail; an obvious improvement would be to re-iterate: Running points
#236 and #239 would end up in the correct overall WC of 15.61 dB—in only
14 simulations (speed-up 23×)! (Table 2.6).

A further nice experiment is to check how much the result depends on
user-provided WC guess. If we assume the same variable ranking, but make
no assumptions on WCC, we would get still the correct WCC! Of course, this is
no proof, but shows at least to some degree the robustness of the stepwise OFAT
method, especially with iteration. The reliability might be further improved
at the expense of some speed reduction, by checking for multiple expected
WCC or just the expected WCC and nominal settings (Table 2.7).

Overall, the op-amp example nicely shows that it is indeed extremely
difficult for a designer to make a good educated guess for the worst-cases!
Designers typically either follow the OFAT idea (which is wrong on three of
five variables!) or rely on experience (which maybe does not help much for
new designs and new technologies). In the stepwise preordered OFAT method,
the designer can at least partially include his know-how, and we can improve
accuracy and speed significantly.

Note, that also this method does not pick up all information being available
from simulations: If each performance simulation would run individually,
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Table 2.7 Excel screenshot for the last step in ordered OFAT plus refinement

we can hardly improve it further, but usually several performances can be
obtained from one test and one simulation, e.g., you can easily get static and
dynamic supply current in one simulation. So when looking to the WC for the
different specs step by step, e.g., starting with gain-peaking spec, we could
use the previously obtained results (in this case from peaking WC search)
for the remaining WC searches on rise time or supply current! Having this
information and putting it into a performance model, we can improve speed
and accuracy further. For instance, it makes sense to start the WC search with
the most linear and least correlated performance. In that, the risk for finding
the wrong WC combination is low, and the gathered information could be
used later for the more critical specs—as it was the case for gain peaking in
this example op-amp.

These are indeed the principles of work in most modern design environ-
ments! They follow an idea called “design of experiments” (DOE); circuit
designers would probably call it “testbench setup”. DOE aims for gaining a
maximum of information for a performance model (relating the inputs, like
corner variables xR, to our outputs f ) with minimum effort. Actually DOE
covers also lab experiments, and e.g., dealing with measurement errors. In
computer simulations, nowadays often “replacing” breadboarding, the errors
are much smaller, or at least the repeatability is much better, so there is even
a new scientific field for such methods, so-called DACE, design and analysis
of computer experiments! Here the focus is e.g., more on complexity and
space filling, not so much on making stable estimations in the presence of
measurement errors.

Several reliable and efficient standard DOE methods exist, and most
require only a minimum user input. For instance, note that the stepwise
OFAT relies mainly on ranking only, not on true quantitative modeling; so
at some point, clever mathematical methods can indeed exploit the obtained
simulation results better than humans, and advanced algorithms will usually
outperform manual approaches; especially if the problems get really complex
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(large number of variables, high degree of nonlinearity, strong correlations).
Actually, this situation for worst-case finding is a nice similarity to circuit
optimization (see Chapter 7)! Also DOE has become a wide field in math,
including many more methods than corner analysis and Monte-Carlo. For
instance, for linear model fitting we need to run two points, if we know the
relationship is linear, but to check linearity we need at least three points; and
these should be placed not too close, if there are influences like numerical
noise or nonlinearities. This means better go early to the extremes; and this
is what designers do since years in corner analyses! Another classical result
is that for a polynomial fit over a fix interval the optimum point placement
is often related to Chebyshev polynoms. So to some degree DOE and math
can also help designers in testbench design; and some further DOE results
will be presented in the chapter on Monte-Carlo sampling methods, where
we go beyond pure random MC. In Chapter 6 we will see that DOE is
also useful for statistics, but note, there is no free lunch: If we optimize
a set of points for a certain task, like modeling of a second order system,
then we may have to make some trade-offs regarding other goals, like yield
analysis.

Note that unfortunately any adaptive or stepwise ordered approach will
take overall, for many specs, more points than standard OFAT. Also the OFAT
speed-advantages will reduce if we have many performances, and if want to
hit their worst-cases. This is just because for different performances we will
usually find different WC combinations. This is obvious, but it does happen
quite slowly, e.g., in realistic corner setup we can easily have hundreds of
corner combinations, so even if we have 30 specs and maybe 20 different WC
combinations this “fill-in” effect will be quite moderate.

In OFAT you actually make a (linear) model around a center point, and
some worst-cases might be far away from that. This leads to difficulties
because for the modeling of large deviations (starting from the center) you
really need high-order models, and all kinds of models for this task have a
larger “extrapolation” risk than a model which starts already a point close to
the worst-case. Also here, we will find similarities in the following chapters,
like when comparing response surface models and the WCD methodology
(Chapter 7). The most advanced methods are adaptive, so the previously
obtained simulation results are used to make decisions for the next simulations.
This gives many more options for better speed and accuracy, like you have
more design options when using feedback techniques or other clever circuit
design concepts!
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2.9 Questions and Answers

1. Compare your typical design approach with the one shown in
Figures 2.1, 2.4 and 2.9. In which parts do you spend most of the time?
Where is reuse possible?
The answer to these questions depend probably highly on block type and
technology. Sometimes 50% is in testbenches and finding a topology and
sometimes 90% in design tweaking an almost fix topology, and you need
a lot of experience to quantify this upfront. Often there is a trade-off,
like you can set up complex testbenches more efficiently by first running
them with Verilog-A models, but the model creation also takes some
time.

2. We mentioned that verification is only a subproblem of design: Which
design is better suited for operating from 0◦C to 85◦C: one that works till
105◦C and then fails completely for strange reasons, or one that works
fine till 95◦C and then slightly leaving spec, but still being acceptable
till 175◦C?
Obviously, pure verification at corners is not enough, e.g., if you run
your simulations from 0◦C to 85◦C, you would never ever have found
a problem!

3. Discuss the typical analog design trade-offs on different examples like
ADC, op-amp, or just a single common-source stage!
Look at subchapter on biasing and transistor sizing.

4. If you see a certain mismatch in a MC analysis, can you improve it with
a better layout?
Usually not, the mismatch constants are already obtained from an
almost perfect layout, using best practices like dummies and common-
centroid placement! So you can hardly improve it further.

5. Can you “beat” Pelgrom’s law on mismatch?
Yes, with a DAC and a digital calibration unit, you can compensate
any offset. Or you can apply switched capacitor or dynamic matching
techniques! A nice new method is “combinatorial matching,” e.g., split
your diff pair into 2x4 subtransistors, using all 2x4 devices gives you
the usual 2× offset improvement, but using the best 3-tuple out of four
gives an even lower offset (like 20% beyond Pelgrom)! Extending this
to 8 out of 12 can give you an even larger improvement rate!

6. How much speed-up can you expect by using modern adaptive worst-
case corner finding methods?
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The more complex the problem, the more room for improvements, so
speed-up depends mainly on the number of variables and the number
of points for each variable, but also on the variable and performance
behavior and on correlations. OFAT is the fastest and riskiest strategy,
and it is often 100× faster than full-factorial; so adaptive algorithms
give typically a speed-up against full-factorial of 2× to 20×. High
nonlinearity can slow down advanced methods, so avoid. binary outputs
(they are also bad regarding optimization (see Chapter 7).

7. Discuss design trade-off in different circuits like op-amps, active filters,
or ADCs. Which trade-offs are very hard, for which you may find a
workaround typically?
Usually things related to power, noise, and speed have hard physical
limits, but technologies with higher breakdown voltages and mobilities
would still give an improvement. Search in IEEE papers for figure of
merits!

8. Discuss the transistor sizing approach for our RF PA design. Which
sizing criteria make sense, which not?
If your technology is slow, and you have to go to the limits, then probably
inspecting fT is the best starting point. Make the transistor large enough
a achieve an on-resistor low enough for good efficiency, but making
the width larger, will often lower the fT, so you need to find a good
compromise. As wT is gm/Cin this type of sizing is also highly connected
to capacitance and gm based biasing; and, as mentioned, the starting
point is clearly Ron based sizing. Flicker noise or mismatch can be often
ignored, but mismatch has an impact on the design of the bias network,
at least if no power control loop is available.

9. Try to visualize and understand the different corner setting methods.
Checkout literature on design of experiments (DOE). Are there (beside
OFAT) designs which show no exponential rise in number of points
regarding the corner variables?
If you need to model a polynomial behavior, then the number of corner
points should rise with the number of coefficients, so quadratic for
2nd order functions. One design doing so is the Box-Benken design
(Figure 2.23). Here we create block-wise variable combinations and
have indeed a quadratic effort.
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Figure 2.23 Box-Benken point set for three variables.

2.10 Rules for Corner Analysis

We described typical manual semi-automated design flow approaches. Later,
we will pick up many of these ideas, and in the next chapters, we dig into
the details, because also the simple-looking individual tasks like MC analysis
have different faces and are far from trivial.

Rules for Corner Analysis:

• Remember the limitations that a corner analysis cannot really give a
yield estimate. It cannot treat mismatch, and it cannot replace statistical
analysis like Monte Carlo.

• Try to get a full overview of circuit performances and influencing
parameters ASAP. Solve problems step by step, best starting with the
most critical ones.

• Use OFAT sweeps for circuit understanding and debugging, but also
consider sweeps with the remaining other parameters not at their
nominal values, but at the real critical ones.

• Consider using sweep features directly offered by simulator analysis;
this reduces the netlisting overhead and sometimes it also leads to better
convergence.

• Do not forget variables to sweep, and use enough values, especially for
difficult variables like temperature. Note that still such one-dimensional
sweeps do not cover correlations! For this, a more detailed corner
analysis, beyond OFAT, is required.
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• Also sweep circuit parameters to check how much you can influence the
circuit performances.Also check for variations in external components,
like SMD elements. Sometimes (like for AC or DC performances) you
can use also the simulator sensitivity analysis for this task.

• Make the ranges extreme enough to really let the circuit fail. Try to
understand why the circuit stops to work, like “transistor N8 goes out
of saturation.”

• Make sure that all specs are fully understood and that all designers in the
team use the same (minimum) ranges on temperature, supply voltage,
etc.

• Include known important worst-case combinations ASAP, like
lowVDD+SlowMOS+fastR which are often most critical for saturation.

• In case of convergence problems, consider a transient analysis and
sweep the parameter over time (like temperature or supply voltage).
Sometimes you need special features to do so, the so-called dynamic
parameter or Verilog-A models.

• Make your testbenches as realistic as possible, but step by step, e.g.,
include neighboring blocks, add a package model, and insert estimated
wiring capacitances.

2.11 Summary on Worst-Case Corner Search

In subsection 2.8.2 we described methods which combine designer’s knowl-
edge with standard techniques, and we get some improvements on speed and
reliability, e.g., demonstrate on a CMOS inverter. However, also these methods
can fail, e.g., in difficult cases, like our op-amp gain peaking example. In
this example, we have also nicely seen that too greedy methods (like OFAT
or OFAT around an expected WC) can fail even quite dramatically, whereas
modern adaptive methods work (at least) almost satisfactorily. So for the topic
of WC finding, tools can outperform designer’s anticipation capabilities; that
is just why we have them.

On the other hand we have seen that clever tool setup can provide big
improvements on time and accuracy. So if the circuit simulation runtimes
are long, such methods “inspired by manual techniques” make still sense,
because in some cases methods without any a-priori knowledge cannot really
compete on speed, even if they are adaptive. Related to simulation effort, we
have a linear grows with number of parameters for OFAT methods, whereas
the reliable full-factorial method has an exponential effort. For moderately
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difficult problems, we can expect that advanced, adaptive methods have
roughly a quadratic behavior; so the advantages over full-factorial become
larger the higher the complexity. This is again a strong argument of just using
such methods.

Of course, one can think of performing a much bigger, more representative
benchmark [Guerra-Gomez2015], but the result would not be so much differ-
ent compared to our few examples; and also the criteria weightings might
be different. For instance, if your company has a huge compute server, the
speed in terms of number of simulations of a WC search algorithm would not
matter so much. Here, the ability to run the simulations in parallel matters
more, and in this case, fix (non-adaptive) algorithms like full-factorial have
clear advantages. When the problem is extended to include also the statistical
worst-case (Chapter 7), also big servers will be pushed to their limits—even
more with the inclusion of circuit optimization. Only fix strategy algorithms
have the advantage of full parallelization capability for simulations, so with
a huge compute server full-factorial would be even faster than the fanciest
adaptive algorithm. However, usually practical reasons prevent using the full-
factorial method, e.g., you typically do not want to bother your colleagues too
much by taking the exhaustive approach and occupying the full server for a
“stupid” block verification.

In Chapter 11 we will give an outlook on further techniques, not yet
available in commercial design environments, but the question is usually:
Aren’t the universal, pragmatic solutions we have already good enough?
Or is the problem so difficult to design and to simulate (like finite element
simulations) that more specific methods are worth thinking?

For circuit design the already available WC corner methods are indeed
fine for all pragmatic engineers. Therefore probably more research and deve-
lopment efforts will go into other directions, for dealing with more complex
problems!



PART II

Basic Statistical Design Techniques
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3
Classical Monte-Carlo and Data Analysis

for Yield

Agood statistical method can give a speed-up against running all combinations
of parameters. Monte-Carlo is so such a technique and practically the most
general one. For this reason, most designers use it since many years, but we
also want to give clarifications on which uncertainties are usually involved
with the different methods. First we focus on MC estimation methods for
single real values, like the partial yield or the mean or standard deviation of a
certain performance.

Statistics is often regarded as a boring topic. The statistical theory seems
to come with a wild bunch of concepts and special terms. Without computers

135
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many people would probably agree on this. However, having a computer
enables you to do virtual experiments, and running those many times, till you
got the feeling “now the results are indeed quite stable.” This way there is no
need to do any special calculation: Just setup your problem in a kind of virtual
testbench, run it, and collect the data. This way you can build up a very good
feeling for statistical data and the uncertainty coming with it.

Unfortunately, too often in real design work it is the other way round: You
set up your Monte-Carlo analysis, wait for some hours, inspect the results
briefly, and you are done—without much reflection and without detailed and
critical result interpretations. Figure 3.1 shows how different even a simple
uniform (rectangular) distribution can look like. It also shows nicely how
random MC can be. In Chapter 6 we will also check for randomness in
higher dimension, with further surprising results. Of course, also in Gaussian
distributions there is such randomness intrinsic to the sampling process!

On the other hand, in spite of runtime problems and special statistical
terms, there are good reasons to do problem solving in a statistical way, and
surprisingly sometimes MC can be quite efficient! It can be much faster than
some people claim and also some speed-up techniques can be applied further—
some with very low risks, some with more, some with big speed-up, some
with speed-up only in certain cases. We will tell you how to get as much
as possible from MC step by step. In Chapters 3–5, we use classical MC
techniques available in all circuit simulators, no need for expensive tools!

Our goal is: You should get a feeling for statistics, as you have a
feeling for circuits!

This is important, because we have to go beyond pure descriptive statistics,
and statements like “The proportion of fail samples is 2% in our current
MC run”! “Speed-up” sounds good, but is sometimes risky! Sometimes
speed-up methods work straight forward, but in other cases there is no one-
to-one comparison possible, because two algorithms come with different
prerequisites. All-in-all, we as designers have many options and for sure,
in reality you have to deal with uncertainties, probability, and statistics, so in
the first chapters we focus on the consequences of this for design verification,
e.g., yield analysis. Later we extend this to multi-variate analysis, addressing
the correlations between performances and statistical variables. This is a bit
more complex but can also lead to deeper design understanding! It is also
more difficult but doing it efficiently has triggered the invention of several
advanced techniques beyond random Monte-Carlo. Later we also extend the
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Table 3.1 When to use what regarding basic statistical techniques
Class Analysis Limitations Applications
MC univariate
analysis

Classical diagrams
(histogram, cumulated
histogram, quantile plots)

Your eye has to decide First inspection if the
design works
meaningful, debugging

Sample yield Need a lot of points for
stable statistic

Yield verification

CPK Data has to be normal
distributed

Yield verification. Use
the generalized CPK

for non-normal data.
MC
multi-variate
analysis

Classical diagrams
(scatter plots)

Your eye has to decide Check if parameters
are correlated or not

Correlations,
contributions,
performance model
coefficients

Usually many points
needed for stable
results

Understand
relationships between
statistical variables and
performances

techniques to support not only yield analysis, but also design optimization for
yield improvements.

Some math should not be skipped, so we want to build up intuition about
probability density functions (pdf), Monte-Carlo, yield estimation, confidence
intervals, etc., but also some terms and measures—less well known in the
circuit design community—are also very useful and basically simple, like
percentiles, sampling methods, estimates, cumulative distribution function
(cdf), worst-case distances, normal quantile plots, etc.

What do we want from numerical algorithms in general and statistical
methods in specific?

• Of course speed matters, but usually the time spent is highly dominated
by circuit simulation times (including netlisting and extraction of perfor-
mances) and not by internal runtimes of the statistical parts. This means
we need trustable results with a moderate count of simulations. Otherwise
we cannot use the methods during the design tweaking phase or in an
optimization loop.

• Accuracy matters as well, the results from a MC analysis depend on
chance and vary statistically. Usually there is a trade-off between speed
and accuracy, but algorithms have also some numerical and systematic
errors. Such errors should not increase much for nonlinear problems, at
high yields or non-normal distributions.

• For application to complex real-world designs, we also need scalability.
Algorithms with strong increase in simulation effort for complex designs
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featuring many variables (like >1,000) are usually quite limited in
application.

• We also need robustness, because circuits often work in a highly nonlinear
way. Random data can contain outliers, and also simulations can fail
due to nonconvergence. To be scalable, efficient, and robust we often
need adaptive algorithms and models. For instance, ranking methods are
usually much more robust than classical least-square methods, but this
comes with the price of lower efficiency.

• The results should be easy to understand and come with an accuracy
indication. For instance, trusting results based on strong assumptions
(like data is normal) or extrapolation is riskier than results based on mild
assumptions (like pdf has finite variance) and interpolation.

• The setup should be easy, and the results should not depend too much on
user settings. Bad settings should be reported including suggestions for
an improved setup.

Note [Keynes]: We will deal with many formulas and definitions. From school
you may remember that probability itself has been often introduced a bit
arbitrarily by the axioms of Kolmogorov, similar to the geometry axioms
from Euclid! There are meaningful other interpretations on what probability
or geometry “is,” but luckily very often for engineers such philosophical
details do not matter much! As we can use in our computer near-ideal random
number generators we have almost no limitations, whereas in reality often the
concept of probability as a kind of limit “frequency of occurrence” is not so
easily applicable, because some unknown parameters change the probabilities
over time.

For Further Reading:
Around Monte-Carlo there is a lot of literature. As a starting point, best pick
the references related to circuit design, but actually it is very interesting to
see also MC working in other fields of science and engineering. Note: If you
search for “yield estimation” you will often find pure electrical engineering
papers, in general or for math literature it is better to search for “percentiles.”

• R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Statistics
for Engineers & Scientists, 9th Edition, Prentice Hall, 2012.

• D. M. Lane, Online Statistics Education: An Interactive Multimedia Co-
urse of Study, (http://onlinestatbook.com/2/estimation/confidence.html).

• H. Schmid and A. Huber, Measuring a Small Number of Samples, and
the 3σ Fallacy: Shedding Light on Confidence and Error Intervals, IEEE
Solid-State Circuits Magazine, vol. 6, no. 2, pp. 52–58, 2014.
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• S. Kotz and N. Johnson, Process Capability Indices, Taylor & Francis,
1993.

3.1 Corners vs. Monte-Carlo

In a corner analysis the design is stressed at well-defined critical parameter
combinations, and this is quite a straightforward scheme. However, what is
really Monte-Carlo? How general is it? Besides that Monte-Carlo is a city in
the south of Europe, we found no single best definition.

This is the nicest statement about Monte-Carlo I ever heard:
One single Monte-Carlo point can tell you more about the circuit, then

hundred nominal simulations.
In MC we mimic our real-world system in a computer and use statistical

models to include production variations. Even if models are not accurate, MC
is useful because we can check our design on robustness. So even one MC
sample result is much closer to real world production samples than a nominal
simulation, which is actually (partly) an artificial best case (e.g., regarding
mismatch)—a kind of Potemkin village. So do not fool yourself and skip
doing a MC analysis! A nominal simulation is actually simply not so much
“nominal” as you may think! It is more a concept for testing ideas, and to
put the design in an almost ideal state. If designers create a real prototype,
e.g., on a PCB, they will not create something close to a nominal simulation,
they will create one Monte-Carlo sample!

One important measure for robustness is the production yield, but also
others (like mean and standard deviation sigma of our output performances)
can be of designer’s and quality engineer’s interest. Therefore, MC has found
a huge number of applications, like in weather forecasting, chart analysis,
biology, etc.

However, mathematicians have another view on MC; here you find things
like “Monte-Carlo integration has this and that characteristics,” so basically it
works “amazingly well,” e.g., completely independent on shape and dimen-
sions and correlations! So MC is integration? The good thing with math is
you can really prove something under certain well-defined prerequisites. And
indeed the yield can be related to an integral, and we can prove accurate
convergence of the sample yield to the true yield. In a wider sense MC is any
technique making use of random numbers for solving problems! The problem
itself might have no real relation to random numbers, e.g., integration is a
perfect example (see Figure 3.2), like also possible with many other methods
(like Simson’s rule, etc.).
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Figure 3.2 Monte-Carlo integration on a circle for calculating π.

Note: The mathematicians seem to “love” integrals and the yield, because
there we have proven convergence! You cannot prove that the sample mean,
standard deviation, median, etc. will converge in general! In addition: The
simplest way of doing MC would be just to run it and look to the performances
plots graphically, just to get a feeling how large the performance spreads
are, e.g., by placing markers. However, to get histograms you also need
an automated performance evaluation (e.g., to get the 3dB-bandwidth BW).
For yield analysis you also need specifications (like BW > 20 MHz). These
additional entries are almost a prerequisite for all automated methods, so we
will not always mention them (Figure 3.2).

One can really prove under very mild assumptions (namely that the samples
are identically and independently distributed—i.i.d.) that the MC convergence
speed is 1/

√
n for the yield integral! This sounds that MC speed is quite

moderate compared to algorithms like Newton-Raphson having quadratic
convergence. For example integration by Riemann’s sum (giving 1/n speed)
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or even by Simpson rule is significantly faster, but amazingly not if you do
that in higher dimensions (each random variable gives one new dimension) as
we have in real circuit problems!

Note that the good behavior of Monte-Carlo also in cases of high com-
plexity is a huge advantage over practically all other algorithms! A corner
analysis becomes more difficult if you need to treat many variables, but MC
yield estimation not! This problem of “dimensionality” comes back to us
and to anybody if we want to improve Monte-Carlo or just replace it by
something faster!

For its general applicability, we should see in MC not only integration,
more something like an art of dealing with statistics in a numerical way. In a
computer we have many more options and access to variables than we would
have in statistical data coming from a vote or from a fab! And we can also take
ideas from analytical and combinatorial approaches to tailor the algorithm to
our problem structure.

It looks like MC is inaccurate due to slow convergence, but it can be
even worse. For more difficult estimates than the sample yield, we may need
many more quite fuzzy prerequisites and maybe we cannot prove that the
distribution is normal but only asymptotically normal or we simply cannot
easily tell the 1/

√
n convergence starts with a low n like 20 or with a large n

like 200,000. In some cases, already simple estimates like the sample mean
will not even converge at all (inconsistent estimates)! On the other hand,
advanced MC schemes may give a much higher convergence rate, but only
under restrictions and it may happen that also the convergence stops at some
point, like beyond 20,000!

Luckily MC can often be done this way that some self-checking for
accuracy is possible (beside just to make a “golden” run with 1000× more
points). A simple way is splitting the data in two equal parts, evaluate them
separately, and then compare the results.This kind of cross-correlation analysis
is the simplest, not the most efficient one, and many other ways exist. A very
crafty method is “bootstrap,” which we will discuss in Chapter 5.

As mentioned, behind the scenery MC uses statistical models (see
Figure 3.3), so each statistical parameter is described by its probability density
function (pdf); in many of the cases as normal Gaussian distribution given by
a certain mean μ and standard deviation σ.

However, the designer’s real interest is usually in the performance vari-
ations, and in between both there is a long often highly nonlinear circuit
simulation. So there is usually a kind of curtain between the user getting just
the MC results and the true population defined by the statistical models and
the often very complex circuit behavior! In MC (but not in a production)
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Figure 3.3 Statistical section of a simulator model card for a typical ultra-deep sub-um
process.
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we can inspect the statistical models and can obtain the exact value of
mean and sigma for all statistical parameters, but we cannot do that for the
circuit performances. It is not even clear what kind of distribution the circuit
performances follow! As circuits often act nonlinear, the originally Gaussian
distributions usually appear “distorted,” so becoming non-Gaussian at the
output!

To give a first summary of corner vs. MC and statistics:

• Verification using foundry-provided corner combined with environmen-
tal corners is only leading to a trustable verification if your design is pure
CMOS logic and if mismatch has almost no impact!

• Foundry-corner-based verification is inaccurate for typical analog cir-
cuits and performances, so it can lead to under-design. It might also lead
to over-design, e.g., if the foundry corners are related to 6σ, but you design
a high-performance circuit and you are already happy with 2σ yield.

• For yield analysis you need statistical techniques, but by only inspecting
the sample yield you need many MC samples, especially for high-yield
verification .

• The corner method may become time-consuming too if you have to cover
many variables and performances.

Is “Worst-Case” a precise term? Indeed if something is bad, you can
probably make it still even worse, but of course if our design spec is for a
certain temperature range like –40–125°C, it makes not much sense add
too much further margins. Only some margin can be usually justified due
to model inaccuracies. When we talk about WC it is something like a
“realistic” WC, i.e., we search for the WC parameter combination within
the specified environmental ranges and with a certain (minimum) yield.
Pure “digital” WC corners sets like FF, SS, FS, and SF will only represent
the speed WC for CMOS logic (for a certain yield like 5σ). To extend
the corner idea for analog many PDK model set-ups come with further
corners, like slowR, fastR, slowC, and fastC. So in principle including
also these and all combinations in a corner verification gives you a further
insurance. However, the effort increases a lot and you can still not treat
well mismatch and correlations. Also on “sigma” you will typically over-
design, when combining the 5σ slowR with 5σ-FF and 5σ-slowC corner.
Quantifying the overall sigma of such combination is not easy and would
rely on further assumptions. Better directly use statistical methods and use
corners more to test design improvements and ideas, from time to time,
and as small double-check.
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Table 3.2 Overview on corner analysis vs. Monte-Carlo
Corners Process MC

Simulation effort for pure CMOS Low Medium
Simulation effort for large # of device types High Medium
Check timing for full-custom digital designs Yes Not efficient
Correct device correlation No Yes
Check operating conditions of analog designs Yes Yes, but harder to analyze
Check analog performance variability Inaccurate Yes
Estimate production yield No Yes
Estimate for worst-case performance Inaccurate Yield-related
Obtaining process parameter sensitivities Too inaccurate Yes1)

Obtaining parameter & performance
correlations

No Yes1)

1)See Chapter 5.

With MC methods or gathering and analyzing measured data, you can
almost never prove anything, at best only disprove. For instance, your analysis
based on assuming a normal Gaussian distribution might be completely
meaningful, but this does not mean that the data is really coming from a
normal Gaussian pdf, it might be probably also from a Gaussian mix or
from a Gaussian distribution with cut at ±9σ, or from a Student-100, etc.
Only if you would fully disprove all such alternatives, you might be able to
convince other people that in this case assuming a normal Gaussian is really
the only correct method. Typically at some point you have to take the risk
of relying on statistical methods, as you also take some risk in relying on
models, etc.

Note: We named this subsection “Corners vs. Monte-Carlo,” but later (in
Chapters 7 and 9) we will see that both methods can be combined, which
means we can make the—native and quite fast—corner verification method-
ology more accurate by fully adapting it to our analog problems and to
include mismatch. This way we get better understanding and can also
solve difficult problems efficiently like the verification of high yield targets
(like 6σ or 1 ppb).

3.2 Questions and Answers:Test Yourself

There are some limitations to MC and also other questions come up, especially
as many designers have at least some basic knowledge about statistics which
they may remember:
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1. What would happen if all our element parameter distributions would
be uniform instead of Gaussian? How would that change the histogram
of PSRR or IDD?
It would usually change not much, so the histograms may still look quite
Gaussian! This is due to “central limit theorem” CLT. The uniform pdf
has a clear cut (roughly at 1.5σ, whereas the normal pdf has no limit),
these cuts would almost disappear. For instance, a differential pair
could give 3σ maximum offset roughly, because one transistor could
be at 1.5σ in the worst-case and the other too, giving 3σ in total. And
the more variables are involved the less the cuts have an impact!
Already summing e.g., ten uniform variables will give a distribution
which is very similar to a true (uncut) normal Gaussian distribution!

2. The “central limit theorem CLT” tells us that if we add the samples
from many different statistical variables we will anyway approach
the normal distribution to a high degree—even independently on the
distribution shape of the original variates! So also a MC analysis on a
circuit design should give normal histograms?
No, because the CLT comes with further restrictions like need for finite
sigmas of the individual distributions. Also in circuit design we often
do not add up enough statistical variables to obtain really a good
approximation; and circuits do not always simply add variables, also
multiplication and division appear!

3. Assume the requirements for the CLT are fulfilled, how
fast will we approach the normal distribution?
Also this depends on several factors: If we add samples
from a uniform distribution, then a good approximation
is often already reached if adding just 10 samples. However, this
approximation is usually only good in the distribution center, like
μ ±2σ, but not at 5σ!

4. MC is an almost universal method if you are inter-
ested in the yield—that is mathematically proven. And
another assumption is usually that if we extend the
number of MC points, we can always improve accuracy
on estimates like the mean.
Even this assumption is not correct, it is not true for the mean on a
Pareto distribution or for the standard deviation of a Student-2! In
both cases we would observe that the sample variations grow instead
of becoming smaller.
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5. Is MC working correctly if we have an infinite number of statistical
variables in our design? Can we allow a random number of random
variables?
Good news, random MC will still converge, e.g., the yield estimation
would be not impacted at all, but unfortunately many MC extensions
run into problems (e.g., LHS and LDS, see Chapter 6).

6. If the distribution of a certain output performance is not
Gaussian, can we still make estimations (e.g., on yield)
from this MC data?
Also here MC is flexible and reliable! For instance you
may assume another specific distribution (like lognormal or Weibull)
or use more general theorems like Chebyshev theorem (which makes
no pdf shape assumptions, only the variance has to exist)!

Chebyshev’s theorem states that the proportion of observations
falling within k standard deviations σ of the mean μ is at least 1 – (1/k2)
(for k > 1), so the ±3σ area covers at least only 90% (much less than
99.7% for a normal distribution!).

3.3 Important Definitions and Concepts

To prepare a MC analysis, the design environment or the simulator needs
access to statistical models (see Figure 3.3). And typically the technology
parameters follow a continuous probability density function pdf (x), e.g., they
show a normal or lognormal behavior but there are also many other well-
known distributions and all have their meaning and application. pdf(x)dx gives
us the probability P that the random variable is within the interval (x, x + dx),
so the pdf is related to the frequency of occurrence.

When taking random samples (X1, X2, X3, . . . Xn) from the pdf we can put
the data into a histogram and get a staircase approximation to the probability
density function pdf. The cumulated histogram, showing the yield, is giving
an approximation to the cdf—the cumulated distribution function (sometimes
also called integrated distribution function). This approximation is called
the empirical cdf and is a staircase-shape monotonous function, like the cdf
starting from y (first sample) = 0 to y (last sample) = 1.

Figure 3.4 shows the Cauchy distribution, not the normal distribution!
This gives an example that it is quite easy to choose the wrong distribution.
Actually many distributions have a center and tail regions (featuring the rare
events causing pain); and look bell-shaped.
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Figure 3.4 Pdf and cdf of a typical continuous distribution.

Also discrete pdfs exist, e.g., the sample yield or dice can only take discrete
values. Mathematically the differences often do not matter, e.g., both kinds can
be displayed in a histogram, and we use the same formulas for yield estimation,
mean, standard deviation, etc. Only the concept of density is more difficult in
the discrete case, because mathematically we require Dirac pulse functions;
the cdf is a staircase function for discrete distributions (like the empirical cdf,
Figure 3.5d.).

Manipulating Histograms? To visualize MC data the histogram is a good
starting point, but one big question is how to choose the number of bins.
If you want high resolution you need to select a large bin count (like 30
for 200 MC points). This gives quite a noisy histogram with many small
peaks, so if you want to demonstrate that your MC data depends highly
on chance this is a good method! If you want to demonstrate that you
can trust the MC data a lot better use a very small bin count. Actually
the optimum number of bins depends on MC count and on distribution
type. For normal data and not too small counts, Sturges formula might be
used bin = log2(n) + 1, but it smoothes quite much, so you will probably
not see if your distribution has two or more modes! Many programs use
bin =

√
n or 2n0.33 (Rice’s rule). Note, that the cumulated histogram has

several advantages: You can directly readout the yield and the binning
does not matter so much, as even with bin count = n you would still get
a monotonic plot, i.e., actually there is no need for binning! A general
problem with histograms is that the tail region that dominates the yield
is hard to check in the cumulated plot just the deviation from 1.0 counts,
and 0.1% is almost impossible to read out.
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The cdf behaves like the yield, so it starts at y = 0, ends at y = 1. Often
the x-range is from –∞ to ∞, but sometimes it is limited (as for the uniform),
to positive values or a certain range.

cdf (s) =

s∫

−∞
pdf dx (3.1)

The cdf and pdf are programmed into the random generators of the simulator,
and the parameters (like mean and standard deviation for a normal distribution)
are read from model files. Often the reverse task is required, like you want to
hit a certain yield Y = 90% so the cdf is 0.9, and now you want to search which
spec-setting is required to hit this point. This requires the inverse function to
the cdf; the cdf−1 is usually just called the percentile function. For the uniform
distribution, the pdf is constant and the cdf (or cdf−1) is a linear ramp. For
a normal Gaussian distribution the cdf or cdf−1 is nonlinear, but if we have
uniform random variables between 0 and 1 we can generate any other kind
of distribution by using the cdf−1 as transformation. This is not necessarily
the easiest way to practically generate random numbers for a certain wanted
distribution (like normal, Cauchy, exponential, lognormal, etc.), but for the-
oretical analysis this can be helpful, so later in the chapter about advanced
Monte-Carlo sampling methods we focus often on uniform distributions.

Prometheus – Johann Wolfgang von Goethe:

Bedecke deinen Himmel, Zeuss, Cover thy spacious heavens,
Mit Wolkendunst. Zeus, With clouds of mist.

It looks that Zeus followed Prometheus “advise”, and covered not only the
sky but many other things too. Statistics can be interpreted in different ways,
like talking about “frequencies of occurrence” or use it in where we have a
“lack of information”.

Note, the parameters defining a certain distribution are fix numbers—
sometimes known (if you inspect the model setup files), sometimes unknown
(if the sampling involves a nonlinear circuit simulation)! We need “tricky”
inference techniques to obtain such true fix parameters, if we only have the
random samples available, and the accuracy of such inference can be quite
limited.

Many things rely on modeling—not only MC models—so designers often
need to add some extra-margin for this, like make wires wider than needed acc.
to electro-migration or IR drop requirements or let circuit work to 20% higher
fclk than needed or add 0.25 dB because of some test equipment limitations.
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Also, MC analysis requires margins due to confidence interval widths.
Fortunately, even if the models are not perfect, using them is the best you
can do and they can help to make a design robust against changes (like in T,
in VDD or from mismatch). Truly at some points designers have to trust or
make a decision how much they trust (like defining a confidence level) or use
another algorithm, run more MC points, etc.

Many variables follow a normal Gaussian distribution, and the pdf of the
standard normal distribution is given by:

N(x, 0, 1) =
1√
2π

e−x2
(3.2)

“Standard” means its mean is zero and the standard deviation is unity. The cdf
of a normal distribution is related to the error function, which is unfortunately
not easy to express in terms of simpler functions; it is just a new function like
Bessel functions, etc.

If we have a sample Y from N (0, 1), we can get normal distribution with
mean μ and standard deviation σ N (μ, σ) by this linear transformation:

Y ′ = μ + σY (3.3)

μ is a measure of location and σ a measure of scale.
Moreover, note that this transformation can be applied also for many

non-Gaussian distributions, so the concept of location and scale can be used
quite generally. Not only the mean is a measure of location, and the standard
deviation is not the only measure of scale. For each class of distribution fitting
to the concept of location-scale there is an optimum estimator, for instance for
the Cauchy distribution the median is stable, but the sample mean would not
even converge!

Linear circuits like amplifiers perform the same linear transformation
(often unfortunately we often do not know the parameters). So if we look
to linear measures in an amplifier (like voltage and current, but not power or
level in dB), also the output measures will be normally distributed, just scaled,
and shifted. A diode characteristic is often an almost exponential function that
would lead to lognormal data. Leakage currents often follow this kind of
distribution.

Normal or Gaussian? Should we call the discussed famous distribution
the “normal” distribution or “Gaussian” distribution? Normal fits a bit
better because also several generalizations of the “normal Gaussian”
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distribution are called Gaussian as well! In opposite to the normal Gaussian
distributions, these feature more parameters, so they are more “flexible,”
e.g., can also be tweaked to fit for asymmetric or long tail data. The
simplest and most important “generalized” Gaussian is the Student’s t
distribution (so it’s not called according to Carl Friedrich Gauss, but
another famous statistician who has published a work on it under the
pseudonym “Student”).

3.4 Expected Values

One major outcome from a MC analysis is getting sample values—usually
displayed in a histogram—for the different circuit performances. These sam-
ples, either a single MC result or the whole collection, depend on chance,
but what the user wants to know are the real distribution parameters behind
them. Besides the distribution parameters itself (like mean μ and sigma σ for
a normal Gaussian distribution), also other characteristics are very essential
and can be accurately calculated if we know the pdf analytically. This is often
not the case unfortunately, so we aim for a statistical estimate, which is an
estimate of a property of a distribution, calculated from given samples from
the distribution. It is quite important to realize that the parameter μ is not
something dependent on chance, but a sample estimate like the sample mean
m depends on chance, as the whole data set depends on chance.

Let us start with an example: If we roll dices, we are often interested in
the expected value E (or mean value or average value), when betting on dices.
It can be easily calculated; the pdf is discrete and we assume a fair dice with
pdf(i) = 1/6.

E (X) = 1 · 1/6+2 · 1/6+3 · 1/6+4 · 1/6+5 · 1/6+6 · 1/6 = 3.5 (3.4)

We can easily generalize this example to make it applicable for other cases:

Expected value E (X) = x1P1 + x2P2 + ... or ∫ x · p · dx
Remember: ∫ p · dx = 1 (3.5)

Mean μ =
∫ ∞

−∞
xpdx = E (X) (3.6)

Lookup: The mean can be calculated for most random distributions in general.
The same name μ is often also used for the location parameter for a normal
distribution, but there is a function parameter.Also for lognormal distributions
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we often use a parameter named μ, but in this case it is not identical to the
expected value!

Another measure of location is the median or the mid-point, and a measure
for the width of a distribution is e.g., the spread or the standard variation σ.

In the general case, the expected value is an integral, and we can express
other important definitions by using integrals or expected values:

Variance V = E([X − μ]2) =:
∫ ∞

−∞
(X − μ)2 · p · dx (3.7)

Standard deviation σ =
√

V (3.8)

YieldY = E(δ (x)) = ∫ δ (x) pdx with δ (x) = 1 if circuit pass else 0
(3.9)

As mentioned, mathematically the overall yield is given as the full parameter
space volume integral over the product of the indicator function δ and the
joint pdf (note: in almost all real cases we have more than one statistical
variable, so the pdf is a function of multiple variables x). For independent
random variables the joint pdf is given as the product of the individual pdfs.
However, taking correlations into account is actually also easy, because you
can usually decompose the overall distribution into independent “principal”
variables (using so-called principal component analysis PCA), and in fact this
is often done in the model files anyway.

The indicator function gives a 1 in the pass (or acceptability) region
(the region where all performances are in-spec) and 0 in the fail regions.
As the indicator function is 0 in the fail regions, we can alternatively also
calculate the yield as volume integral over the joint pdf only over the pass
region.

All these measures like mean, standard variation, yield, etc. rely on the
true distribution pdf (and their integrals), but as circuit designers we usually
do not know the pdf of our outputs and usually we cannot accurately integrate
(only finite sums)! Actually, all the formulas look similar, and we can indeed
use the same methods for integration, but not all methods converge equally
well and a method may work fast and accurate on the mean and variance, but
not on the yield. The reason is simply that the pdf is often a smooth and easy
to integrate function; and this is often also true for many circuit performances
like offset voltage. However, the indicator function needed for yield analysis
is nonsmooth, so we can expect more difficulties. So especially for yield and
high-yield analysis many special techniques have been developed, whereas
for getting the mean or variance just Monte-Carlo integration is often good
enough (although not perfect, regarding speed).
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3.5 Estimates, Bias Error, and Confidence Intervals

Remember: Usually the real measures of the circuit performances (pdf, mean,
variance, etc.) are not available analytically, we can only estimate them from
our actual MC result. This means that any estimate (e.g., the mean of the MC
data) depends on chance! The circuit is actually doing a mapping from the
(element) parameter space (often containing thousands of variables) to the
performance space (often a dozen).

Some important estimators for the measures we discussed in the previous
chapter are:

Sample yield = npass/n (3.10)

Sample mean m = 1/n
∑

xi (3.11)

Sample variance V = 1/(n − 1)
∑

(xi − m)2 (3.12)

Sample standard deviation σ =
√

V (3.13)

Sample median (50% point): cdfemp(p50) = 0.5 (3.14)

Estimates are not the same as the true distribution values or expected values,
actually even different names should be used, like mean μ vs. sample mean
μ, but often this is not done due to laziness, unfortunately. Often the laziness
comes with small risks only, because s and σ might differ by only 5%, but in
other cases, like yield analysis, the differences can be much larger.

The big question is: If mean and sample mean are not the same, how
much can we trust such so-called statistical estimates? Actually, we can even
use different estimators for the inference on the mean μ, e.g., for a Gaussian
distribution the mean and the median are identical, so should we use the sample
mean or the sample median for inference on parameter μ?

As an engineer you know it is often not good enough to have only a point
estimate, you also need an error estimation. Usually there are two kinds of
errors:

1. Uncertainty due to statistical variance

• Reduce it as much as you want by increasing the number of MC
samples

2. Systematic errors (bias)

• 1/n
∑

(xi – μ)2 is also converging to variance but has finite-sample
bias

• Outliers impact the mean much more than the median
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Systematical errors often cannot be reduced so easily by just increasing the MC
count. However, if you can indeed run a huge MC analysis you can estimate
the error in yield estimation quite well (because the sample yield has no bias
error). We can also do many MC analyses and look to the variations in the
estimates from one MC analysis to the other. By running many thousands of
MC analyses, we can “easily” find out in which interval 90% of the estimates
are in, but unfortunately this is very time-consuming. Indeed such statistical
variations can be treated by so-called confidence intervals; in many cases
you can calculate confidence intervals giving a lower and upper confidence
bound CI = [LCB, UCB] also without doing such huge repeated MC analysis.
However, the user must be aware of the fact that also confidence intervals are
derived from the available MC data depending on chance, which means that
also confidence intervals depend on chance and are nothing else than estimates
[Hoekstra]! In addition, you almost never get 100% confidence that the true
measure (yield, mean, standard deviation, etc.) is in a certain range. Such
statistical uncertainties lead to the need of a kind of statistical design margin,
e.g., even if your sample yield and your yield target is 99%, you still should
not fully trust it! What you can trust (more) is the lower confidence bound
LCB, which might be only 97%. So actually you need some amount of over-
design, because only if your design is a bit better giving 99.7% then the lower
confidence bound (LCB) might be indeed equal or above your 99% target. So
in this case we actually work with 0.7% over-design; how large this statistical
over-design margin is depends on the used estimator (like sample yield, CPK,
etc.) and the number of MC points. Later, in Chapter 5 when discussing worst-
case distances WCD, we will also learn about statistical methods without such
sampling error—so in theory without need for statistical design margins and
so potentially less or even zero over-design.

There are also many other aspects in our inference, like: Can we guarantee
that for an almost infinite number of MC points the error will really approach
zero, or will there be a remaining bias error? How much will the calculation
be impacted by outliers? In many cases the mean is more efficient than the
median, but the median is far more robust against outliers!

Truly these aspects are important for EDA software implementations and
need careful tweaking. There is simply no best estimator regarding efficiency,
bias, robustness, and calculation effort. Only for a certain class of distributions
some algorithms may outperform others, but usually you can always provide
counter example cases, so only quite complex algorithms are flexible enough
to deal with difficult real-world problems. In effect the progress in EDA tools
is often in such details, not directly observable by the user.
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A MC key problem is that the variance in the estimates is often quite large.
More advanced techniques, beyond MC, are typically much better in this
aspect, but they may come with more assumptions and if these assumptions
are not valid such advanced methods often introduce a significant bias error!
For this reason designers using such advanced methods should be clearly aware
of which underlying assumptions have been taken and if that is compatible to
the design under investigation and the wishes on accuracy.

How to measure “speed-up” and “design efficiency”? EDA vendors
are often asked how large efficiency improvements are in a new software
version or by using a new feature. In math this is interestingly by far not
so easy to tell compared to the use of a faster compute server. “Speed-up”
sounds always good, but is sometimes risky! And the risk is sometimes
hard or impossible to quantify. In the statistical sense speed-up often
means “variance reduction”. Lowering the standard deviation by 2×
usually translates to the option to use 4× less simulation points, but only if
the variance reduction can be achieved without adding a systematic (bias)
error. In addition, one assumption often used is that we have the “normal”
1/

√
n relationship, which is also not always the case.
Sometimes variance reduction methods work straight forward: If you

measure something in lab, you hope that your single measurement value
x1 is close to the real value. Of course doing the measurement again can
lead to another value, and e.g., always taking the last value is not a too bad
approach, but if noise is present we can expect quite significant variations
still. To get a more stable estimate we could take the average value; and
another approach would be to ignore all extreme values, so taking the
median value. However, not all cases are simple like this, and not always
it is so easy to see (or even calculate) the gain in accuracy, to check for
prerequisites, and to clarify the advantages and disadvantages.

In circuit design you can do even more than a clever data analysis,
e.g., you can inspect the statistical model parameters, you can create
clever testbenches and do hand calculations on offsets; or we can run not
only random sets for the setting of statistical variables, but set them in a
systematic way. Some methods are based on sampling and with confidence
intervals, we can tell about accuracy, but we cannot easily quantify if an
assumption like “data is Gaussian” is valid! Also we sometimes need to
compare statistical and non-statistical methods, and hard error limits like
ε < εmax should be treated differently than statements about variance, and
the choice of test cases has a big impact on statements about speed-up too.
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If one estimate has 1/
√

n convergence and second one has [log(n)]s/n,
then the speed-up of the second one might be impressive, but actually it
depends on which settings of n (e.g., representing number of simulations)
and s (e.g., number of statistical parameters) is regarded as meaningful.
Of course, we hope that we pick realistic values, like designers can
effort running n = 500 points, but seldom 500M ones. Also the type of
circuits can vary a lot (having s ranging e.g., from 1 to 30 or more). In
addition, during the design tweaking phase we may take more risks than for
sign-off.

Last not least, sometimes the speed-up is a bit theoretical, e.g., maybe
you simply do not really need to know the sigma of an offset voltage with
0.5% accuracy which may require indeed 10,000 simulations using an old
standard method; or a new method needs 10 times less simulation points,
but it cannot run all these in parallel like the other old-fashioned “slow”
method.

3.6 Basic Data Analysis for Normal Gaussian Data

If the data is normally distributed you can make quite easily a detailed data
analysis, using many school book techniques, but how to check for normality?
The easiest way is an eye inspection of the histogram, which provides a picture
approximating the probability density pdf of the performance data. Here the
problem arises on how many bins you should set: More bins leads to more
noise, but too few bins can make an inspection also difficult. Most difficult
is to decide whether the data follows a normal distribution also regarding
tail shape, because here you have often only few data points and also it is not
easy to decide if a certain curvature is normal Gaussian (i.e., according to
e−x2) or not. So looking to many histogram examples is a good training, but
we can do even better.

Indeed, the so-called normal quantile plot solves the problem of curvature
inspection, because it shows a kind of transformed cdf plot (actually the x-axis
is the inverse normal cdf, also named z-score, and the y-axis is the sorted data).

For normal distributions the data should fit to a straight line in the (normal)
quantile plot. Also an interpretation for nonstraight lines is quite easy. For
instance if there is a clear lower limit the quantile plot will start horizontally
(see Figure 3.6).

If data is long-tailed, the quantile plot gets shaped like arctan, for short
tails it would look like hyperbolic tangent (like IC(Vin) of a differential pair),
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Figure 3.6 (a) Histogram and (b) normal quantile plot from an op-amp – tail region marked
in yellow.

for asymmetric (skewed) data we get a kind of J or reversed J shape. For
more details, look at Figure 3.7; it also shows the relation to the kurtosis k
(normalized central 4th order moment of the distribution, more in Chapter 4
when we discuss non-normal data).

The “trick” is usually how to know if a deviation in the quantile plot
is just a random effect or really a systematic non-normality. For this reason

Figure 3.7 How to interpret normal quantile plots.
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some tools (like RealTime MC) add (sample yield) confidence intervals to
the quantile plot, but if the non-normality is only mild, then a decision is
usually still difficult. In particular, in the tail regions, a decision is often tough
to make because there we have usually only a few samples, so any statistic
will not be very stable. In Chapter 4 we will discuss non-normal distribu-
tions in more detail, and we also demonstrate numerical tests for normality
(Figure 3.8).

If we are sure that the data follows a normal distribution, then we can
calculate also confidence intervals (CI) quite easily, because the normal cdf
and pdf is analytically tractable. Due to this, like we can calculate the sample
mean directly from the data, we can also calculate CI from the data. Note that
we calculate the CI for the sample estimate like sample mean m, not for the fix
(but often unknown) distribution parameter μ! Like the sample estimate also
the CI depend on chance! We can only expect that in average it will correct,
according to its confidence level. If our assumption on normality is violated,
then also the CI calculation will get wrong. In such cases confidence intervals
from a normal approximation can be at best approximated CI and usually
better methods exist (like bootstrap, Chapter 6).

Another method to get a confidence interval would be just doing our MC
analysis again and again. For instance to calculate the CI on sample mean
m, we can do a MC analysis very often, with different seeds but with the
same count n. And we will observe that also the sample mean m will be
approximately normally distributed.

In this case the standard error (SE) as the standard deviation of the sampling
distribution of a statistic (most commonly of the mean) is given by SE = s/

√
n

(with standard deviation s). And the confidence interval for a confidence level

Figure 3.8 Excel steps to show normal quantile plot.
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of 95% will be around the mean with ±1.96SE = ±1.96s/
√

n; so ±2s/
√

n is
a good rule of thumb for the 95% confidence interval (for the sample mean of
a normal distribution)—compare this to Figure 1.11.

Note : Often we are only interested in single-sided specs or single-sided
CIs, so only the upper “outliers” degrade the yield, so the risk for being out of
desired range like >2σ is actually only app. 2.5% not 5%. If you are already
happy with lower confidence then the CI becomes narrower, but you take
more risk, so usual confidence levels range from 75% to 99%. The higher the
confidence level, the lower the risk making a wrong decision, but actually
already small deviation in the model can lead to severe errors also in the
confidence intervals!

A detailed analysis has been done by William Sealy Gosset on normal
distributions. He derived that the confidence interval on the sample mean m is
related to the Student’s t distribution, and the factor 2 in our formula is slightly
a function of the sample count n. In older days engineers used lookup tables,
now almost all statistical tools and EDA software directly provide the user
the confidence intervals based on Student’s t distribution; “Student” was the
pseudonym which Mr. Gosset used for his article.

Also the CI for the standard deviation can be calculated analytically,
and again we could double-check it by repeated MC (like in Figure 3.9).

Figure 3.9 50 MC results on the sample yield (log(1 – Y ) in red) for a Gaussian distribution.
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The CI for s is related to the chi2 distribution. As a rule of thumb, for n = 200
the 95% CI on s is app. ±10%.Actually the distribution is slightly asymmetric,
so the real value is +11/–9%. This is no surprise, because upper “outliers” are
more likely than lower ones (there will be no negative values).

Note: You can find an incredible number of papers on confidence intervals
CI, but most of them are related to the mean. However, circuit designers are
usually most interested in the standard deviation, like for offset voltage, or
in the yield. CIs on these are a bit more difficult, but usually also available
in design environments. In particular, the tail region of a distribution is of
high interest and here different CI methods can really give different results. In
tail regions like beyond 99% any statistic will rely on quite few samples, so
CI become wide, maybe too wide to make design decisions! This is a major
motivation for the advanced methods in Chapters 6 and 7.

Functions and Distributions. Most people think of the probability density
function pdf when talking about distributions like the normal or uniform
ones. This is just because the pdf looks like the most important graph, the
histogram, giving the frequency of occurrence. The histogram is also good
for identifying distributions by eye inspection. However, we have seen that
for check on normality, for yield estimation or confidence intervals also
other functions matter. Maybe go through this chapter again, and look
up what function is for what! Often indeed the cumulated distribution
function cdf (the integral of the pdf) is even more helpful, because it is
directly related to yield and to the probability that a variable X falls into a
certain interval [a, b]. The reason why the cdf is not so famous is just that it
often looks not so characteristic, because the integration e.g., smooth out
edges, and the point of highest density is much harder to see. Also the
inverse cdf (the percentile function) matters. For instance, the factor “2”
used in our approximation for the 95% confidence interval is coming
from the Student-t distribution, but not its pdf but from the inverse cdf.
Actually knowing this (and not much more) is already extremely helpful
when doing statistics.

3.6.1 The Yield Estimation Problem

We discussed basic estimates and confidence intervals. And one outcome was
that for simple estimates like sample mean or standard deviation we usually
do not need many MC points—often 200 points are enough to decide if offset
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voltage is small enough, but how many points are needed to verify the yield
with a certain significance?

Using the sample yield the accuracy (e.g., Y confidence interval) depends
on Y itself and on the sample count n. For ±1% absolute accuracy ΔY and a
yield of 50% app. 11000 points are needed (confidence level at 95%—quite
a typical value), and at 98% yield we need roughly 800 points. Unfortunately
also 800 simulations is not that low, and 1% absolute error in yield is not that
accurate, because it matters much if your loss is 1% or 3%, or even 0.1%
vs. 2.1%! Actually looking to the yield loss or to the error in terms of sigma
yield estimation is generally more stable in the distribution center than for tail
regions.

Focusing on the relative yield loss error we would need to look at
log(1 – Y ), and Figure 3.9 is showing this for a repeated MC run. Looking to
the spread in y-direction gives quite a native feeling on how “instable” MC
results can be (a constant Δy in this plot is related to a certain fix relative
error, due to the log y-axis).

Note: In this plot the spec is set to 3.0 giving a true yield of 4σ. Therefore, we
almost never get a fail within n = 1024 MC points, so at some point we reach
Y = 1.0 and log(1 – Y ) becomes infinite (the red curve plot stops there). The
green curve is an extrapolation, and in the extrapolation region the variations
are even larger.

If your circuit is well designed, then often a short MC run shows no fails, so
the sample yield becomes 100%, but of course this is typically too optimistic.
To be on the safe side you may ask again for a confidence interval. The yield
confidence interval problem has been solved by Clopper-Pearson, resulting in
a quite complex formula using the beta function, but if you have no fails, then
already the “Rule of Three” is a very good approximation for the 95% CI:

CI(Y) = [1 − 3/n, 1.0] (3.15)

This way we can also easily calculate how many points the MC run should
include till we can decide with 95% confidence if the design fulfills a certain
desired yield:

n ≥ 3/(1 − Ytarget) (3.16)

Already this simple formula demonstrates very well our verification problems,
because it will lead to the fact that high yield verification needs a lot of MC
points, usually much more than for obtaining stable values for sample mean
and standard deviation of the performance values! Look at Table 3.3 for more
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Table 3.3 Verification with sample yield according to the rule of three
Yield in True Single-sided Number of MC
Sigma CPK Yield Loss Points (if No Fails) Comment
0 sigma 0 50% 4 is of low interest
1 sigma 0.33 15.9% 17 is of low interest
2 sigma 0.67 2.3% 130 the minimum realistic yield target
3 sigma 1 0.14% 2200 often used as target
4 sigma 1.33 0.003% 95K often the limit for pure MC sample yield
5 sigma 1.67 290 ppb 10M typical for blocks in high-volume chips
6 sigma 2 1 ppb 3G typical for memory

details, it includes also the process capability index CPK which has a strong
connection to the “yield in sigma” (see next Section 3.6.2).Also note that there
is no simple reciprocal relation between yield loss (failure rate) and sigma; it
is a special nonlinear relation you have to be aware of. For instance from 2σ

to 3σ we have roughly to divide by 20 to treat the loss, but from 5σ to 6σ it is
already 290 (look also at Table 1.3).

A distribution with a constant failure rate is the exponential distribution,
playing a key role in radioactivity. One distribution with such tail behavior
but a “Gaussian center” is the so-called logistic distribution; if you want
a power law tail instead, you would end up in the Student’s t distribu-
tion. Actually many distributions exists, and all have their meaning and
application.

Already these numbers will typically lead to long simulation runs, but if
you have indeed failed samples the lower yield confidence limit will be even
lower and we need even more MC samples (see Figure 3.10, some more details
and further screenshots can be found at [Iastate]), and the convergence rate
will be 1/

√
n – not 1/n as the simple rule of 3 may suggest!

Note : The are many confidence interval approximations in the mathematical
literature. Look up that the interval from a normal approximation can be
very bad [Schmid], because the sample yield distribution can be highly non-
normal! Do not use it, better use Clopper-Pearson or Agresti-Coull (both are
slightly on the pessimistic side compared to the “Rule of Three”).

If the design is perfect (like >6σ, giving almost no fails) and we want to
ensure just 3σ only we will need typically app. 2000 points, but if the design
is truly only 3.15σ we need app. 16,000 points to make an accurate enough
decision based on counting failed samples. If we use the CPK (next chapter)
we would need only approximately 1100 points. However, if we allow no
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Figure 3.10 Required random MC count to verify a 4σ design based on sample yield vs.
CPK [Iastate].

design margin both sample yield and CPK would require an infinite number
of points. So we have an over-design vs. speed trade-off.

The Binomial Distribution. Looking to yield means dealing with pass
and fail only, i.e., doing investigations on a binomial distribution. Its
“accurate” confidence interval has been first calculated by C.J. Clopper
and E.S. Pearson, in 1934. Although many laws exists which give the
normal Gaussian distribution a strong preference, especially for a large
number of samples, it is by far not the only important distribution.
If we use the normal approximation to the binomial distribution for the
confidence interval, we get the simpler so-called Wald interval. It is easier
to calculate and often used, but unfortunately it can be far too optimistic.
For instance, having a CPK of 1.5 and a huge set of 100,000 MC points
the CI from the normal approximation would be still 3× too optimistic on
yield loss, for IC design better forget the Wald interval (even the “Rule of
3” is better in this case).

The reason for the large number of points at high yields is that such yield
analysis based on outer samples, the tail samples—and these are rare; any
statistics based on them will have quite large variations and will be quite
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unstable. When looking just to 3σ verification, one may still accept to run
2,000 to 16,000 samples at least for fast-running testbenches, but during the
design phase you typically need many such runs, and remember already for a
failure rate of 1000 ppb (0.0001% or 4.75σ) the numbers get huge: we need
1,000,000 samples as a real minimum giving us hope just only to observe a
fail (no confidence interval included!); having no fails (so the design should
be even much better than 4.75σ) the 95% confidence limit would dictate
us 3,500,000 samples, and for a design margin like 0.33σ (roughly 5× less
loss) we would typically need 6,000,000 MC points, and for less over-design
even more!

There are many known attempts to solve this general yield verification
problem. One is to go back to the original yield definition and solving the
yield integral by other means than MC. For instance, a numerical integration
by Riemann’s sum would have 1/n convergence rate if we would only have
one statistical variable, and Simpsons’s rule would be even faster! However,
both methods will slow down in higher dimensions – and may become even
slower than MC. On the other hand, we will also demonstrate methods which
require theoretically even no such “design margin,” so coming in theory with
almost no need for over-design.

3.6.2 Sample Yield vs. CPK

If we can assume a normal distribution, we can solve the problem of verifying
the partial yield also in another way (Figure 3.11). We can calculate a much less
quantized estimation by creating a Gaussian fit to the data and we can calculate
a yield estimate from this fit by using the cdf of the normal distribution, which
is related to the error function. The process capability index method is exactly
doing this, and the big advantage of the CPK is that we can even get a realistic
yield estimate (so below 100%) if there are no fail samples! This way we can
obtain a yield estimate with tighter confidence interval, but the user should be
aware of potential systematic errors.

Note: To get the total yield from the different CPKs for each spec we
need multi-variate techniques and correlations. This will be discussed in
Chapter 5.

The CPK is given as:

CPK = |USL − μ|/3σ (for single-sided upper spec limit)
CPK = |μ − LSL|/3σ (for single-sided lower spec limit) (3.17)

CPK = min(|μ − LSL|/3σ, |USL − μ|/3σ) (for double-sided specs)
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Figure 3.11 CPK flow (prerequisite is of course a stable process).

Note: From the mathematical view point the use of the min function is a
horrible approach, because there would be no sensitivity to the nondominating
spec-side till we reach the balance. A much better approach—also in conjunc-
tion with optimization—is to calculate two CPKs for both spec-sides and then
calculating back to yield for both. To combine them into one we just have to
add the yield loss and can again transform back from yield to CPK via inverse
error function! Later we will have a similar problem for the worst-case distance
(WCD) approach, and we can solve it similarly.

The CPK formula is actually a kind of normalized spec margin or
performance margin approach. The normalization is done in terms of
sigma of the output distribution, this sigma and the “yield in sigma” are
only the same if we really have a normal Gaussian output (performance)
distribution, which often cannot be assured so easily. The whole approach
is a continuous one, whereas the sample yield is more a yes/no or 1-bit
ADC approach. From circuit design you know 1-bit ADCs have higher
quantization noise but no nonlinearity, whereas multi-bit ADC have much
better SNR, so the CPK method is more similar to analog or multi-bitADC
style!Also for optimization and debugging avoid binary specs; it is simple
waste of information! Sometimes it might be indeed “native” to use a spec
like “power-up circuit OK”, but in such case better look to start-up time
directly and create an “analog” spec!

The CPK measures the relative performance variation (e.g., due to mismatch
and process variations); actually by putting the distance of spec limit vs. mean
in relation to the standard deviation, for double-sided specs it also takes the
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spec-centering into account. One practical advantage in using the CPK instead
of yield values is that the CPK values are more manageable, e.g., CPK = 1
means 0.135% loss and is equivalent to a spec distance of 3σ. A CPK of 2
means 1ppb loss, which is already a very small value. Usually you require at
least a CPK beyond unity.

As the CPK depends on μ and σ, we can also easily calculate a CPK
variance V = σ2 and the CPK confidence interval (±2σ for 95% confidence).

σ C2
PK1/9n + C2

PK/2n (3.18)

e.g., σ CPK ∼= 5% at n = 250 & CPK = 1

Even for CPK = 2 the variance of the CPK (σCPK in Equation (3.18)) is quite
small for already moderate MC counts. This means that using the CPK we only
need MC counts in the order of hundreds, even for high-yield verification!
Whereas yield estimation by sample yield Y = npass/n would require often
billions of points (Figure 3.12).

One may wonder whether the CPK method—equivalent to a Gaussian
fit—is the “best” method. In fact, it really is, in some way, but only if it is
really sure that the data comes from a normal Gaussian distribution! In this
case also the method for determining the two parameters, mean and sigma,

Figure 3.12 Classical split flow using CPK for normal data and sample yield as backup
(in addition we can use most advanced methods described in following chapters) (courtesy:
MunEDA).
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by the well-known estimates sample mean and sample standard deviation is
optimum, e.g., more efficient than the use of the median instead of the mean.
The underlying theory is fundamentally given by the concept of maximum
likelihood (ML). In MLestimation (MLE) we determine the parameters so that
the probability to get the given data is maximized.At this point we recommend
looking to dedicated mathematical literature, and we also want to mention that
although the concept of maximum likelihood sounds so general, there are still
some cases in which it should be complemented with further techniques. For
instance, ML parameter estimation is often quite sensitive to outliers and often
also not the easiest method (e.g., it is hard to apply for a tri-angular or a Cauchy
distribution).

The Moment Method. To categorize distributions we can e.g., look to
the pdf or to the quantile plot, but we can also do it based on the so-called
distribution moments. Look at the equations for mean and variance; these
are the first and second moment of the distribution. We can simply extend
the idea by using higher exponents. The 3rd moment is called skew s
and measures the asymmetry, and the 4th order moment is the kurtosis
k, measuring the tail behavior (to some degree). Usually the moment
are taken around the mean (central moments), also the higher moments
are usually normalized to the standard deviation. This avoids getting too
extreme numbers, and makes the “shape” measurement independent from
the distribution scale. For instance a Gaussian distribution has a kurtosis
of 3.0 and zero skew. In the past, moment fitting was the most commonly
chosen method for data fitting, but MLE is even more general (e.g., it can
be applied even if the higher moments are infinite, like for the Cauchy
distribution).

Table 3.4 lists also other methods for yield estimation, as a non-normal
distribution can be non-normal in many different ways there is almost no
single best method. Also the result interpretation is usually more difficult than
for the normal case: For the CPK we have to deal with the two distribution
parameters for location and scale plus the spec limit; for non-normal cases
things become more complicated.

3.6.3 Confidence Interval-Based Autostop for MC

The user is interested in MC results having a certain minimum accuracy, which
is related to the width of the confidence intervals. As confidence interval
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Table 3.4 MC yield estimation techniques
Name Method Limitations Comment
Sample yield Nonparametric yield

estimation
Large variance, so wide
CI

Standard method in
design
environments, no
bias error

CPK Gaussian fit Only accurate for
normal distributions

Standard in QA

Kernel density
estimation
(KDE)

Kernel density fit
(almost nonparametric)

Limited extrapolation
capabilities, so hardly
suited for high-yield
estimation

Difficult setting for
smoothing
bandwidth,
available in math
packages

Multi-
parameter
fit

e.g., [Lange] using
generalized lambda
distributions

Bad fit e.g., for
multimodal
distributions or for long
tails with cuts

Available in
advanced design
environments

Nonparametric
fit plus tail
modeling

e.g., KDE and Pareto fit
to tail

Limited accuracy for
Gaussian distributions
or for long tails with
cuts

No easy
interpretation of
parameters,

Generalized
CPK

See Chapter 4 and
[Weber]

Limited accuracy e.g.,
for long tails with cuts

Available in
RealTime MC

calculation for the sample yield is quite simple, this has been exploited in
many design environments to implement a kind of MC autostop feature. This
could reduce the setup effort for the designer, e.g., he/she only has to set a
certain minimum and maximum number of points, a certain yield target to be
verified, and the simulator “decides” when to stop.

Figure 3.13 show the MC run of a very good design with no spec fails, so
the yield and the lower CI limit always increases. This way we will cross the
desired yield level at some count n.

A spec-fail would push down Y and CI limits (see Figure 3.14).
The position for spec fails of course depends on the random MC walk, so

on MC seed value. In this case the design is too bad to achieve desired yield
target; so even the upper yield confidence bound UCB is worse than the yield
target! If your design is really bad, like giving a fail already in the first five MC
points, the autostop could come very early. Here the 95% CI is approximately
[0.08,0.90], so if your target yield is 90% or higher, the MC autostop would
be triggered. Statistically this is correct and you would save a lot of time. On
the other hand, it might be inconvenient, maybe the yield is low due to quite
an uninteresting spec that is not fully confirmed or you are also interested
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Figure 3.13 Sample yield confidence limits for a MC run with no fails.

Figure 3.14 Sample yield confidence limits for a MC run containing fails.
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in looking to histograms, for which you should have many more points. It
could also happen that the autostop comes very late, just because your target
yield and your actual design yield are close together. In such cases, autostop
does not help on speed but of course on accuracy. For these reasons, even
when using autostop, the specification of a minimum and maximum count (or
runtime) makes sense.

An autostop feature might be also implemented based on other confidence
intervals, like on sample standard deviation s (Figure 3.15) or when reaching
a certain accuracy level for a contribution analysis (Chapter 5). Usually also
plots for checking how stable the mean estimation is are available, but often
the MC mean m is of lower interest, because it is for Gaussian distributions
close to the nominal simulation (Figure 3.16). As you know how stable m is
depends on σ.

CI width follows the chi2 distribution and approximately a 1/
√

n law.
Also you can see that it is quite symmetric if it is tight enough (like for large n).
With larger confidence level (like 99%) the CI would be larger. A meaningful
autostop criteria could be e.g., obtained from the relative error on the standard
deviation, like |UCB(s) – LCB(s)|/s < 0.05. Note: Often CI calculations
for mean and sigma are based on normal approximations, so you may add
some safety margin to be prepared for non-normal distributions (see next
chapter).

Figure 3.15 Sample standard deviation confidence limits for typical MC run.
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Figure 3.16 Sample mean confidence limits for typical MC run (same circuit as in
Figure 3.15).

Essentially all most advanced statistical analyses typically feature such
autostop (although they may execute much more steps than a pure MC
analysis). This way the user does not need to know in advance how many
simulations are needed; instead he/she sets a certain accuracy level for a
certain estimate, like sample yield or standard deviation, or maybe more
advanced estimates like CPK or generalized CPK (see Chapter 4) or
correlations (see Chapter 5).

Testing in Quality Assurance. In MC with autostop, we do basically
one test and decide whether we should continue our analysis or not. In
quality assurance this is a standard technique too, but often reality creates
more problems. Imagine that e.g., the testing of chip is costly or even
destructive. How should a company check if a delivery e.g., of 1,000,000
parts, is fine or not? For cost reasons, it makes sense to test only a small
subset, and if e.g., all chosen samples are fine, we could extend the testing
(more samples, more costly tests). This is called sequential testing, and in
principle designers or EDA tools can do the same, e.g., going beyond
simple MC autostop. For instance, it may make sense to exploit that some
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tests in the MC setup run quickly (e.g., simple DC or AC simulations),
but others take much more simulation time (transient noise analysis, load-
pull analysis, etc.).

3.7 Questions and Answers

1. In PDK’s normal distributions often have cuts for the process param-
eters, e.g., at 5σ (so you will never get samples for these variables
beyond ±5σ). Can you still use the CPK and sample yield?
Yes, the sample yield works for all kinds of distributions anyway!
The CPK is slightly too pessimistic if your distribution is a normal
distribution with cuts.

2. Can MC handle correlations correctly?
Yes, there is no problem at all on this. For some advanced non-
MC statistical analyses correlations might cause problems, but not
in random MC.

3. How many points do you need to get a stable sample
standard deviation and CPK, like ±10%?
There is no hard limit; it depends on confidence
level. For near-normal data, you typically need only
about 200 samples to make the CI ±10% with 95%
confidence. For very long-tail data the CI might be much wider!

4. How many points do you need roughly to get in your
MC result a sample that is as extreme as +3σ or –3σ?
There is again no hard limit for a uniform distribution
you would never get a sample 3σ off from the mean! For
a normal distribution you may need 100 to 300 samples typically, it
depends (pretty much) on chance. Unfortunately you need many more
points for 6σ!

5. Imagine you get 1,000,000 result samples like the height of a good, so
you can calculate mean and sigma, maybe to 1.70m and 0.1m, respec-
tively. So we can also calculate the approximated 95% confidence
interval to 1.70m ± 2 · 0.1/

√
1, 000, 000 = 1.70m ± 0.0002m! This

means the CI is very tight! Imagine you ask 1,000,000 people about
the height of the emperor of China, and you would get these numbers,
do you believe you can get the height this way to an accuracy of
0.0002m = 0.2mm?
Think a bit before you check out Google!
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6. How can I calculate the spec setting for a certain yield?
Via CPK you only have to solve the CPK formula for
the spec limit, so it is easy, but only correct if you really
have a normal distribution. Via sample yield you can do so too, but the
result is much more quantized and only acceptable for low yields, like
90% for a MC run with 100 points.

7. Imagine you are in a certain city and you know all
taxis are numbered from 1 to n with no gaps. You
take a trip and from time to time you see a taxi. How
can you estimate the total number of taxis from your
observations?
We can expect that all numbers appear with the same probability, so
we do estimations on a discrete uniform distribution. One method is to
calculate the mean value and multiply it by 2, but this is not the best
way to do it. Do you have ideas for faster convergence? What about
taking the maximum?

8. Figure 3.10 shows an almost flat curve for the sample
yield at high yield levels. Please look at it and explain
why this makes sense!
For high design yields we will get fails only with a very
low probability, and it matters not much anymore if the design is 5σ

or 6σ if you want to verify only 3σ. For the CPK this is not the case,
because it really exploits the spec margin.

9. We use the term spec or performance margin; and we use differences;
why not ratios? For which type of distributions it would be better
using ratios? With ratios you run into problems with performances
which can have both signs. For lognormal distributions using ratios
would be optimums!

10. Imagine you have an outlier in your almost Gaussian
data and you are using the CPK method for yield
estimation? What happens if you have an upper spec
only, but an outlier at the negative (non-spec) side?
Indeed the mean and even more the sigma would be impacted, so a large
sigma could decrease the CPK, although the outlier would be a pass
sample! Also look at cpk.xls from the River webpage for experiments.



4
Monte Carlo and Non-Normal Data

We extend the basic methods to address also non-normal data, because using
the normal approximation will often lead to severe over- or underdesign for
circuits. Distribution-free estimations are also possible, but usually lead to
much wider confidence intervals. One example of an advanced non-normal
yield analysis is the application of the new generalized process capability
index CGPK.

If we have no normal distribution, what else can we assume? And how
accurate can our estimates, e.g., on yield be with a limited number of samples?

Indeed, having a good guess on what type the distribution is (such as
lognormal, uniform, and Gaussian mix) always helps to improve estimation
accuracy. If we assume “nothing”, then we can use distribution-free estimates
like the sample yield and have to live with its wide confidence interval and
there is a need for large n [Schmid]!

If we assume no specific shape but have a good estimate for the standard
deviation, we can use the Chebyshev theorem, so actually even for non-normal
distributions, there is a clear theoretical foundation of the spec distance method

175
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for yield estimation. However, unfortunately, the Chebyshev method leads to
wide confidence limits (see Figure 4.6), whereas the Gaussian fit may lead to
severe systematic error. So you can try to fit the data to another model (instead
of a normal Gaussian one).

For Further Reading:
Older and basic statistical literature focuses (too) often on normal distributions,
but nowadays also non-normal analysis has found a huge interest. Also, the
topic of which model to choose is a hot one, and new techniques like model
selection or model averaging (or fusion) have been created.

• Lange, C. Sohrmann, R. Jancke, J. Haase, B. Cheng, A. Asenov,
U. Schlichtmann, Multivariate Modeling of Variability Supporting
Non-Gaussian and Correlated Parameters, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 35,
No. 2, pp. 197–210, Feb. 2016.

• Yield Prediction with a New Generalized Process Capability Index
Applicable to Non-Normal Data, Weber, S.; Ressurreicao, T.; Duarte,
C., IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 35, No. 6, June 2016, p. 931ff.

4.1 Examples of Non-Normal Distributions

A simple non-normal case is the uniform distribution (e.g., fitting often well
for many discrete components), and if this is the case, we can get even 1/n
convergence instead of 1/

√
n. If we add samples from multiple uniform

distributions, the result is not again a uniform distribution, but actually a good
approximation of the normal Gaussian distribution. This is due to the central
limit theorem, so sometimes nature helps us to apply well-known Gaussian
approximations! However, circuits not only do summations or differences!The
sum of normal variates is again normal, but actually the sum of two uniform
variables is giving a triangular distribution, and the sum of two lognormal
variables is not lognormal!

Of course, MC results can look more difficult, e.g., having two modes
(“peaks”)—here we may better assume a mix of two normal distributions
(having already five parameters in total). In such cases, we may need 10×
more samples compared to the fully normal case and in extreme cases may be
even 1000× more (depending on yield, mix ratio, etc.). Gaussian mixes can
be highly non-normal (in opposite to summing normal variates, which still
gives normal Gaussian distributions), and in circuit design, they can occur
if our circuit has different modes (or states) of operation, like a multiplexer
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giving Gaussian outputs in both cases, but overall providing a mix of both due
to duty cycle. In subsection 4.8.2 we give some more examples.

Non-normal methods are needed because circuits really create such non-
normal distributions more or less all the time! And whatever we assume is
almost never the true distribution type! With statistics only, you can select a
type which gives a good fit and good prediction. The only thing we can have
“confidence” in is that at least the data might come from our model, and based
on that, we do estimations with a certain confidence level. Unfortunately,
even if the data pass a normality test, it might be still non-normal or a non-
normal model might fit even better. In a MC analysis, many of the technology
parameter distributions might be indeed normal or lognormal or uniform, but
not your output—for many reasons:

• You have a measurement in dB
• You look for filter passband ripple or settling time
• You have a circuit with 2 modes, often giving a mix of 2 distributions
• DNL of a flash-ADC is defined by max (Voffset)
• Delay of a CMOS gate ∼1/(VGS − VTO)
• Looking to leakage current
• Using |x| in a specification (e.g., |V o| is half-normal)

This list shows quite nicely that if something “special” happens in your design
or just only in your test bench setup, easily non-normal performance data will
be generated! However, unfortunately, it is not always easy to understand
which of the causes have actually taken place. Non-normal data are a frequent
case, and only sometimes strange distributions indeed clearly indicate design
weaknesses.

Experience shows that roughly 35% of all analog measures are so non-
normal (look at Figures 4.12 to 4.14 for examples), and even for a moderate
yield (like 99.8%), estimations based on the normal assumption may become
significantly biased. Only sometimes, the user can easily avoid non-normal
data (e.g., by not using a spec in dB). Often, it is the circuit itself creating
a certain nonlinearity leading to non-normal data. Of course, even circuits
regarded as linear (like passive filters) can create non-normal MC data, if you
inspect performances such as overshoot, phase margin, and poles and zeroes.
It does not mean that it will always happen and you can never trust specific
methods and you would always need to stick to pure random MC and sample
yield: often indeed, the Gaussian approximation is not so bad, and usually,
there is a fix part and the statistical variation is something small on top, like
1 + Δ, with Δ � 1. If we would apply a nonlinear operation like f = 1/x,
we would end up in f = 1 − Δ + Δ2 + . . . and still in a very mild form
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Figure 4.1 (a) Overdesign, (b) optimum design, and (c) design fail.

of nonlinearity due to Δ � Δ2! Unfortunately, there is no guarantee for
this smooth behavior, because there might be stronger nonlinearities, many
variables, many correlations, etc.—or you have to go more in the direction of
not so small Δ due to circuit specification and technology limitations.

Actually, there is no clear limit, protecting you from making a non-robust
design, to be out-of-spec and to have no need for non-normal techniques—
there is a smooth transition, a slippery gray area (Figure 4.1)!

What is an outlier? This is a sample that would destroy your fit to the
model you “assume”, so actually you have to decide! It is best to inspect
simulation results of the related MC point manually! The usual rules, like
remove points “beyond 6σ”, are only useful if you can assume near-normal
data. The sample yield is quite insensitive to outliers, and they just lower
the overall yield a bit, whereas the CPK could heavily impact even by one
outlier. For the generalized CPK, you can use the method recommended in
[Weber]. The decision if a certain sample is an outlier is not always easy to
made, and it could happen that just this “outlier” is truly an indicator that
the currently used model is too simple, actually even wrong! In physics, a
new model can be a real revolution, and some examples are the quantum
Hall effect found in 1980 and the prediction of outer planets.

So if you feel your MC run contains an outlier, then debug it and try to
understand and to “repair” the circuit! However, it could be that it is too
much effort. If you keep all data including outliers you may overdesign
this way. If you completely ignore an outlier you may underdesign, so
another method called winsorization is sometimes also usefull: If e.g., the
outlier is too extreme (like 1E100) just cut it back at least to the 2nd most
extreme sample. This way you can also make sure that e.g., the mean
calculation becomes more robust against outliers.
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In Chapter 7, we will address the problem of extreme samples to some
degree again and in an accurate way by introducing worst-case distances—
generation of corner samples with dedicated yield level!

4.2 Identification of Non-Normal Distributions

With the normal quantile plot, we can identify a normal distribution, in less
critical cases even with a histogram. Also, numerical tests are available, but
any test based on sampled data has its uncertainty. Already small deviations
to normal behavior can lead to significant yield errors, so you should get a
feeling when the normal assumption might be still applied with acceptable
errors and when not.

Check for Normality? In addition to the normal quantile plot, also pure
numerical tests for normality are available, e.g., the Jarque–Bera test (JB
based on skew s and kurtosis k).

JB = n/6 · (s2 + (k − 3)2/4)

JB is quite a powerful test, and it combines two measures which can also
be easily interpreted by themselves: skew s is a measure of asymmetry,
and kurtosis k is a measure of the relationship between inner and outer
samples. Symmetric distributions have a skew close to zero, and the
normal Gaussian distribution has a kurtosis of 3. If JB is large (like
beyond 7), we can usually assume that the data are significantly non-
normal. In such cases, we do not use the CPK. Please also inspect the
spreadsheet example Figure 4.10 for JB calculation.

Identification also for other distributions can be useful, because often the
circuit performances do not follow a normal distribution. Leakage current
follows often an exponential law, so assuming here a lognormal behavior is
much more meaningful than assuming normal data. So a good analysis for this
special case is making a fit to a lognormal distribution and using it for yield
estimation. Such approach will typically lead to more accurate estimations
in terms of variance and systematic errors. However, in the general case one
problem is that it is often hard to say which law we should assume, e.g.,
multiple effects can have an impact, or already the transistor models use very
complex functions. Another interesting problem is how can we treat such
mixed cases, e.g., a weighted sum of normal and lognormal variates that can
vary smoothly from a perfect normal distribution to a full lognormal behavior.
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Figure 4.2 Two typical normal quantile plots taken from a normal Gaussian distribution
(n = 256).

For statistical problems with one variable, we always have a 1-to-1 relation
from xS to f, but unfortunately that would not be the case for multiple variables
xS = (xS1, xS2, . . . )T. The problem of treating multiple statistical variables will
be covered in this Chapter 4.

Figure 4.2 shows how difficult it can be to identify a normal distribution
via quantile plot; with 256 points, it can be still hard to decide whether the
behavior at ±2.5σ is Gaussian or not. Figure 4.3(b) shows the quantile plot
for a Student-4 distribution (look also to subsection 4.8.1); the yield error in
sigma (indicated by the blue arrow) is already roughly 0.5σ, but the quantile
plot is just starting to become distinct.

Let us now investigate how we can improve our estimations when dealing
directly with an arbitrary output distribution.

4.3 Non-Normal Data Analysis via Generalized CPK

We have already inspected two different yield estimation methods, but only
the sample yield has no systematic error for non-normal data. On the other
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Figure 4.3 (a) Log (1 – Y ) for Student-4 and normal distribution fit (averaged MC run with
n = 4 K, CPK = 1, but true CPK = 0.82) and (b) quantile plot for Student-4 (n = 256, not
averaged).
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hand, the CPK allows us to interpret also small MC data sets efficiently, and
a lower MC count gives the designer a speed-up in making design decisions
(Figure 4.4).

The question is: can we obtain a similar speed-up also in the general
non-normal case, e.g., by making a more detailed result evaluation?

The old state of the art on process capability index is to make a Gaussian
fit, thus extracting the two distribution parameters μ and s, and the normalized
spec distance (USL-μ)/σ gives us a yield estimation. This is a distance method,
and the good thing is that intuitively the yield is indeed well correlated with
the spec distance—although it is not the only measure!

To address this problem, a new generalized CPK has been developed
[Weber], which features one more parameter “t” to describe also the tail behav-
ior. This way, the generalized CPK is quite accurate also for non-normal data,
whereas the CPK can be easily systematically wrong by 50%, in cases where
the bias of new is only 5%.

Instead of fitting a normal Gaussian pdf, we fit a “generalized Gaussian”
pdf. Also, the fit is not done on the whole data, but only to the spec-sided
part—starting at the distribution mode (instead of the mean).

Figure 4.4 Method of the generalized CPK (Gaussian fit is shown as blue curve; it is obviously
bad).
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Some distributions have multiple modes; here, the CGPK would start at
the spec-sided mode. Doing the parametric fit on spec-sided samples has
several advantages; for example, non-spec-sided outliers will have no impact,
and our fitting function can be formulated much easier, so that indeed, one
more parameter (namely t) compared to the “old” CPK gives a dramatic
improvement (Figures 4.5 and 4.6).

With the tail parameter t, we can model a much wider range of shapes
(Table 4.1).

Note: Some of these distributions are exactly included in the model, and others
are only approximated. The parameter t is actually a parameter of the model
cdf (see [Weber]); and there is no simple formula as e.g., for the standard
deviation, but we can apply MLE or moment fitting. However, Table 4.1
shows that t can be still easily interpreted, just as a normalized tail parameter;
complementing the location and scale parameters.

Of course, there is no free lunch: as the CGPK has one more parameter to
fit, the statistical variance becomes larger in near-normal cases compared to

Figure 4.5 Comparison of CPK versus CGPK – CPK bias error for symmetrical cases (CGPK

error is zero): as the CGPK is also a distance method, we can also calculate the spec limit for
a given target yield.
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Figure 4.6 Calculating back to spec with different methods (lognormal data used as example).

Table 4.1 Distributions and tail parameter
Distribution Tail Parameter t Comment
Uniform –1 short-tail, low kurtosis
Triangular –1 ≤ t < 0
Parabolic
Typical bimodal distributions like
staggered Gaussian

Gaussian 0 e−x2
tail, k = 3

Peaky distributions like stacked
Gaussian

1 ≥ t > 0

Student-t, logistic, etc.
Cauchy +1 1/x2 tail, infinite k

the CPK. This can be nicely seen if we look to the correlation between yield,
CPK and CGPK (look at the scatter plot, Figure 4.7).

As expected, there is a strong correlation with the yield, but the CPK
is more stable than the CGPK. So the CPK is still preferable for clearly
normal distributions, but for already small deviations, the CPK advantage
of lower variance is compensated by its much larger bias error. This bias–
variance trade-off is very typical and almost impossible to avoid. Actually,
the CGPK is a clever mix of parametric and nonparametric methods, and in
opposite to a pure nonparametric modeling (e.g., using the empirical cdf),
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Figure 4.7 Correlation between yield, CPK and CGPK (normal data, n = 512, CPK = 1.0,
256 MC runs).

nonparametric and tail modeling [MacDonald], or just using a more complex
model [Lange], we can efficiently model many difficult distributions like bi-
or multimodal distributions and we still fully include the normal Gaussian
distribution.

Figure 4.8 compares the sample yield, CPK and CGPK sample count for
verification as a function of the true guaranteed CPK (by 95% confidence

Figure 4.8 Random MC yield verification count for different estimators (design margin
0.375σ).
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interval). It shows that the sample yield is highly inefficient especially for
high yields, but as mentioned, using it requires no extra-margin for any bias
errors due to model limitations (look at the horizontal arrows in Figure 4.8).
It can easily happen that the CPK is wrong by more than 1σ, whereas the
CGPK bias is usually 5–10× lower. Note that the green curve for the CGPK is
only an average, as it depends also slightly on the distribution type (vertical
arrows). In the succeeding subchapters, we will give some concrete examples
(for measured production data and for certain mathematical distributions).

Alternative Distribution Fitting Methods. There are indeed many ways
to fit data to a certain distribution (we mentioned MLE and moment
fitting). Instead of using the CGPK concept we could also do it a bit
differently [Weber]. We could also try to fit over the entire data (like the
CPK does), or we could also only model the tail (Table 3.3). For instance,
we could assume a triple Gaussian mix to model distributions with up
to three modes, but obviously a high flexibility comes with the price of
many parameters. The advantage of modeling only the tail is some more
flexibility and potentially high accuracy in this region of interest! But
one big question is where to “start” the fit and where the tail begins?
Having enough data, it is indeed possible to answer that question, but
to some degree, it results in a model which depends on the fit for quite
few data points, just the tail points. So the price for low-bias errors is
typically having quite large confidence intervals. For the tail modeling,
typically the generalized Pareto or generalized extreme value distribution
is assumed.Also when using the CGPK concept, we could plug-in different
distributions, or we may extend the concept with one more parameter to
be able to model the shape of the mode and the one for tail independently.
Also almost completely nonparametric fits are possible, e.g., based on
KDE, but typically they are not well suited for high-yield estimation.

4.4 Analyzing Real Production Data

Of course many statistical methods are not only applicable to MC results, but
also applicable to real data measured in production. The data in this example
(Figure 4.9) have been taken from [Shinde] and come from a USB2 squelch
circuit: trip point has been measured on n = 3,999 silicon samples.

Let us do two analyses: according to [Shinde], let us inspect what we
can estimate if we do not use the full measured data, but only a subset of
25 samples. This is often regarded as minimum requirement for a normal
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Figure 4.9 Data from a fabricated USB interface [Shinde].

data analysis. In many such cases, designers can expect near-normal data for
good reasons, because usually the trip point of a comparator is dominated
by device mismatch—and mismatch can usually modeled well with normal
distributions. Later, let us check this analysis against an analysis taking the
full statistical data into account (Figure 4.10).

The original Intel conference paper exemplified already a yield estimation
on a subset of n = 25 samples. The authors obtain a sample CPK of 2.04
(6.12σ). By visual inspection of the histogram, the authors regarded the data
as normally distributed and they predict 4σ as lower yield 95% confidence
limit. This means although the sample CPK is 2.04—indicating a very good
design—a statistical analysis based on the assumption of normality can only
guarantee a CPK of 4/3 = 1.333. The difference between 4σ lower CI limit
and 6.12σ sample CPK would go to zero for n → ∞.

This difference looks like a good “safety margin”, but this simple analysis
does not take some important aspects into account: sample skew is s = 0.71,
and the critical specification limit is at the long-tail side. This leads to a
too optimistic CPK yield prediction! If we apply the Jarque–Bera normality
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Figure 4.10 Spreadsheet example for the calculation of the Jarque–Bera normality test.

test for the whole data set, we can obtain a value for JB beyond 200, which
clearly indicates non-normal data, but for n = 25 JB is only 2.2 (indicating only
very mild non-normality). A large JB value indicates that we should not apply
a Gaussian fit, but better apply the new generalized CPK.Thispredicts a true
CPK of 1.30—instead of 2.04! And of course also the CI for the generalized
CPK would be even lower, being at 1.20. Overall, the designer’s conclusion
should be that the design definitely needs significant improvements. And
it is unfortunately not enough just to measure more samples to tighten the
confidence interval!

Note: In this example, the sample yield is still 100%, because there is no
fail even in 3999 points! The sample yield confidence limit is approximately
99.88% and is equivalent to a true CPK of 1.02, which is worse than the CI
of the generalized CPK (which is at 1.20). The Clopper–Pearson yield limit
(also used in most EDA tools for yield confidence intervals) for 1 fail in 3999
samples would be 98.6% only (equivalent to a true CPK of 0.73!). Also look
up: Jarque–Bera is one of many normality tests, neither the best, nor the worst.
It is actually quite powerful which means that it needs usually not that many
points to make a decision. On the other hand, there is simply no best normality
test, because deviations to normal data can be of many kinds.
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4.5 Yield Estimation for Non-Normal MC Data via CGPK

In the previous example, we inspected measured production data, and let
us now inspect MC data from an operational amplifier. Such amplifier is
basically a linear circuit, where most designers would expect to find quite
normal histograms. However, we will see that also such classical analog circuit
can easily create non-normal data (Figure 4.11).

A complete CMOS op-amp with tricky feed-forward frequency compen-
sation has been designed (but not fully optimized) and verified for almost all
common specifications in a big MC run for mismatch only (n = 1500). The
PDK does not offer global variations, but these would of course lead to wider
variations and potentially even more non-normal data.

Many histograms are indeed near-normal (like the one for current con-
sumption and offset voltage), but here are also some interesting non-normal
histograms, where we really need the CGPK. In the Figures 4.12 to 4.14 you
will find some examples taken from [Weber2016], e.g., Figure 4.12 shows
HD3 data, where the CPK is too pessimistic.

Figure 4.13 shows a second example, looking to the peaking of the closed
loop gain; here, the CPK is too optimistic.

Athird example is shown in Figure 4.14, the 3-dB-BW (the graph of ampli-
fication versus frequency has two peaks due to the feedforward scheme—and
the circuit is really functional, no bug).

Figure 4.11 Inspected op-amp circuit.
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Figure 4.12 Third-order distortion in dB (CPK too pessimistic due to spec at short tail)
[Weber2016].

Figure 4.13 Gain peaking in dB (CPK too optimistic, spec on long tail) [Weber2016].

Figure 4.14 3 dB bandwidth (CPK too pessimistic) [Weber2016].



4.6 Questions and Answers 191

4.6 Questions and Answers

1. How can I check my MC data if it is following a normal Gaussian
distribution?
Inspect the normal quantile plot or apply a numerical test like
the one according to Jarque–Bera. JB = n/6(s² +(k – 3)²/4).

2. What is the distribution for the output voltage of a two-resistor voltage
divider made of discrete resistors?
For discrete elements, it is not realistic to assume a Gaussian distribu-
tion, and a uniform distribution is usually more realistic. The sum of two
uniform variables gives a triangular distribution! Actually, the output
voltage is a nonlinear function of the two resistors, but the nonlinearity
is not that large, so indeed we can expect a near-triangular distribution.

3. Is the generalized CPK having a systematic error?
The CGPK includes a much wider class of distributions without
such bias error, but if the data are not part of the model pdf, we get some
bias. Usually, it is only 10% of the normal CPK bias, like for a lognormal
distribution. In such cases, and also on a uniform distribution, the CGPK
bias makes the yield estimation a bit too pessimistic—so you are on the
safe side, but overdesign a bit.

4. Is the CGPK method an interpolation or extrapolation method?
It is both, depending on the yield level! In opposite to many other extrap-
olation schemes, the CGPK makes a very meaningful extrapolation.Also
the CGPK method might be combined with WCD methods to get rid of
the extrapolation risk.

5. ±3σ around mean is equivalent to capturing approximately 99.73% of
the distribution if the data are normal, but how much is it for a Student-5
(which looks very similar to a Gaussian distribution, look at subsection
4.8.1)?
Although the kurtosis k is still moderate for the Stundent5 distribution,
and the normal quantile plot indicates no strong non-normality, the
yield is pretty much less, approximately 98.8%—so only approximately
±2.5σ. So the error in terms of sigma is approximately 20%, thus often
much larger than the confidence interval reports! Remember, confidence
intervals do not quantify such systematic errors.

6. Can we extend the CPK and CGPK concept also to multiple perfor-
mance?
Yes, this is possible and for multivariate pure normal distributions,
several solutions exist. These are usually good enough for process
monitoring, but in circuit design you have very often to deal with
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non-normal distributions. In Chapter 5, we present a good approxi-
mated solution.

7. Can it happen that running one more point in MC, which gives a pass,
leads still to a decrease CPK for a spec like CMRR >40dB?
Yes, it is possible, and assume we have a short 50-point MC run with
sample standard deviation of 2 dB and mean 60 dB, so CPK was 10.
Imagine the next MC point is at 100 dB—it would shift the mean down,
but the standard deviation would increase even more, so overall the
CPK could become worse! In pure Gaussian outputs, such event would
be extremely rare, but non-normal data can give such surprises.

8. Imagine you have a Gaussian output y for a certain performance in a
MC run. Now you take this in dB, which kind of distribution will you
get?
It will be a new distribution, and it is not the lognormal distribution!

9. If we add many samples from independent uniform distributions, we
end up by central limit theorem with a normal distribution. Would this
also be the case for other distributions?
For instance, even when adding exponential distributions, we would
lose the asymmetry; and the left side short would become longer,
whereas the longer right tail would become shorter (e−x2

instead of
e−x)! However, e.g. the Pareto distribution is asymmetric too, but has
infinite variance, so here the CLT would not work.

10. Discuss which kind of problems can be solved with pure random MC
and sample yield?
Check runtimes, accuracy, design improvements, inclusion of corners,
which additional analysis should be done, etc.

11. Imagine you have a Gaussian distribution with mean = 0 V, so we get
in a nominal simulation usually also 0 V. Now we apply the exponen-
tial function to this output, leading to exp(0) = 1 at the new output.
However, what happens in MC? Will the mean be also at 1?
No! The median will be there; and it is now different from the mean
(average) value! If our nonlinear function is non-monotomic even the
median will usually not preserved.

4.7 Rules You Have to Know for Monte Carlo

When setting up a MC analysis, one big general question is how to decide on
required number of points for certain target accuracy? Actually this problem
is not only related to MC but to taking statistical samples in general, like
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Table 4.2 Overview on basic normal and non-normal MC techniques
Analysis #points Comment
MC for checking mean and
standard deviation of
performances

e.g., 100 Some mild non-normality allowed.
For extreme distributions, bad or no
convergence

MC for checking sample yield app. 2K for
3σ

See Table 3.2

MC for yield via CPK app. 200 Data should be highly normal,
especially for high-yield targets

MC for yield via generalized
CPK

app. 500 The number of points depends slightly
on yield level and distribution type

MC for checking distribution
type

>50 Depend on how accurate you want to
model modes and tails; to differentiate
between similar distributions, you
may need >1K points

MC for correlation analysis 100 – >1000 Dependent on number of variables
involved

for production data inspections. It essentially depends also on what kind of
estimate you are interested, e.g., 1% yield accuracy is good if the design has a
yield of 50%, but it is not good enough if the target is 99.7%! Many measures
also depend on distribution shape, and this can never be fully known upfront
(Table 4.2).

So best know some basic rules and their prerequisites and make a
MC test run, check histograms, and look to confidence intervals. If the CI
is 2× too wide, then increase the number of points by approximately 4×.

Rules for any kind of data:

1. You can trust the sample yield Y = npass/n (because it is a distribution-
free estimate).

2. But CI of Y is large. If there are no fails, then CI limit is approx. given
as 3/n.

3. In random MC, there is no dependency on number of statistical variables
for estimates like Y, μ, or σ, but of course it might be the case for
correlations (Chapter 5).

Basic rules for near-normal case:

1. Most frequently used: 95% confidence interval
(so 5% risk of false decision)

+ assuming a normal Gaussian distribution
+ assuming n � 1 (like 50)
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2. Then, e.g., the 95%-CI of the mean μ becomes roughly ±2σ/
√

n. This
is two times the standard error SE = σ/

√
n.

3. So to know variance on mean μ, you need to know σ.
4. Also σ has a variance: ∼1/

√
2n, e.g.,

n = 50 gives 10%, so if σVoffset = 10 mV, it is typically within 8. . . 12 mV
with 95% confidence => not so bad
n = 200 gives 5% => often good enough

5. Other measures (such as correlations or the mode) may need more points
(like 1000).

Rules for significant non-normality:

1. Apply tests, e.g., via Jarque–Bera and normal quantile plot.
2. σ might not converge for long-tail distributions!
3. σ variance is usually (roughly) proportional to

√
kurtosis (4th moment).

4. Do not trust the CPK! Use CGPK, sample yield or the methods from
Chapter 7.

5. If data is not very non-normal, then CI width and sigma follow still
often follow the 1/

√
n law. But bias errors can follow any law, and

even for infinite n they might be an error (e.g., using the CPK for yield
estimation on non-normal data).

4.8 Design with Pictures Part Two

The non-normal distribution examples in this Chapter 4 were quite obvious;
that is, by careful visual inspection, it was quite clear that the data are not
normal and that a data analysis based on normality would lead to bad results.
However, sometimes it is not so easy to decide whether data are normal or not.
And in high-yield cases, even small deviations can lead to significant errors,
because a Gaussian fit and the CPK based on that are kinds of extrapolation
method. An interesting question is how large is the risk that a deviation to the
normal distribution can be seen “late”?

In our USB fab data example, the Jarque–Bera JB value was huge for
n = 3,999, but for the same skew s and kurtosis k with lower MC count, JB
will drop and there is a “gray” area (like JB = 1..4) where it is quite likely that
the data is indeed normal, but the confidence is still quite low, or vice versa
the data is non-normal, but too close to normal, so that most people would
apply methods based on the normal assumptions, mistakenly.

One further problem with JB and many other normality tests is that they
do not take the yield level into account! So the risk of “seeing” non-normality
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late and the error in yield prediction depend on how big the non-normality is
but also on how much you “extrapolate”. For instance, to “see” the difference
between a Student-100 and a normal distribution, you may need 100,000
samples, but between Gaussian and uniform maybe only 50–100 samples.
There is even no such thing like a confidence level for such investigation,
but at least we can provide guidelines and train ourselves with examples. In
statistics and yield verification just multiplying the sigma is risky, actually
even when using normality tests.

Note: With the RealTime MC program that complements the book, you can
do such investigations in a very short time, because a much faster simulator
is built-in, than just plain SPICE.

4.8.1 Normal versus Student-t versus IH Distribution

The normal distribution has a kurtosis of 3 (note Excel gives 0, because the 3
is subtracted internally), whereas the other two distributions which we have
chosen as example, the Student-t and the Irwin–Hall IH distribution, feature
a parameter to adjust the kurtosis. In our RealTime app, we can tweak this
parameter to obtain a kurtosis of 3.3 for the Student-t and 2.7 for the Irwin–Hall
distribution.

Actually, the Student-t is a very important distribution, e.g., for confidence
interval calculations, but also the IH has a relationship to the normal distribu-
tion. It is composed of the sum of uniform distributions, and if we would add up
an infinite number, we would end up in the normal distribution (Figure 4.15).
Note that many distributions (even discontinuous ones) can be connected to
the Gaussian distribution this way, just due to central limit theorem (CLT)!
You can also extend the normal distribution, by adding parameters to adjust the
shape and to introduce an asymmetry. Actually, there is no single “best” way
to do this, and many such generalized Gaussian distributions exist. There are
also distribution families with no tight connection to the normal distribution,
but in spite of that, they can be still very similar (e.g., the logistic distribution).

Looking to the (smoothed) histograms of all our three examples, you can
hardly see any difference (Figure 4.16), just because even for n = 1024 the tails
are very hard to inspect visually. Even in the normal quantile plots (Figure 4.17)
you really need a huge number of points to identify the distributions.

The JB value for checking normality is approx. 4.5 (pretty close to the gray
zone), and if we set the spec for a CPK at 1.0, we get the standard deviation
of only 2.5%, i.e., n is large enough to really get a stable CPK.
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Figure 4.16 Histograms for the three inspected distributions (averaged).
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The question is now how large is the systematical CPK error, especially at
higher yields. This can e.g., be checked by running a very long MC analysis
using 64 K points and using the generalized CPK, which has a highly reduced
bias error. We set the spec limit to obtain a CPK of 1.5, and for the Student-t
distribution (Figure 4.18), the CPK yield loss prediction is too optimistic by
2.5 orders of magnitude (whereas the CGPK has no bias error in this case)! For
the IH distribution, it is vice versa and the CPK estimation is too pessimistic
by approx. 30× (Figure 4.19).

Notes: At some point, the red curve (showing the sample yield) drops to
infinity, because it is still 100% even for N = 64 K. The green curve is the result
of yield estimation by the generalized CPK, which makes a very meaningful
extrapolation.

In conclusion, an MC run with 1024 giving normal data according to
standard tests and applying the CPK can give still give big yield errors for
CPK > 1.5. Having no fails, the Clopper–Pearson lower confidence bound
LCB would be only at 99.64% (equivalent to CPK = 0.896). The CGPK LCB
for the Gaussian case is approximately 1.2—and this is (without stronger
assumptions) what you can “guarantee” at best. The CPK LCB is 1.43 for
normal data, but even this (and not only the point estimate of 1.5) is still too
optimistic compared to the true yield and true CPK being at 1.235.

Figure 4.18 Plot of log(1 – Y ) = f (spec) for Student-t distribution.
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Figure 4.19 Plot of log(1 – Y ) = f (spec) for Irwin–Hall distribution.

4.8.2 Calculations with Random Numbers

Can we calculate with random numbers, like we do with real or complex
numbers? Yes, you can, but indeed some rules will change, and only few
will remain the same. For instance, taking a random variable X with normal
distribution and multiplying it by 2 gives a normal distribution with doubled σ.
However, adding two independent normal random variables (of same σ) gives
only

√
2·σ, so X+X is not always equal to 2X. Also taking the difference is

special, because X−X gives us the same distribution as X+X for independent
standard normal variables! Also note that also the rule X+X =

√
2X would

only work for Gaussian variables, not for uniform or lognormal ones (here we
would get a change in the distribution type); (only) for Cauchy variable we
would indeed observe X+X = 2X.

Taking exp(X ) gives us the lognormal distribution, but adding two inde-
pendent lognormal variables gives no lognormal distribution again! However,
interestingly adding two Cauchy distributions gives us a Cauchy distribution,
so to some degree the normal and the Cauchy distribution are special. Taking
the absolute value of a standard normal distribution gives us a half-normal
distribution, but taking the difference from these would give us again a normal
distribution.
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What about more difficult operations such as multiplication and division?
For instance, dividing two normal independent normal variables gives another
distribution, which is the Cauchy distribution! Actually the division spreads
the distribution a lot, so the result (the Cauchy distribution) has much stronger
tails than the normal distribution. The Cauchy tails are so strong that even
mean and sigma does not exists; it looks a bit like a normal distribution with
many outliers.

Adding two independent uniform variables gives us a triangle distribution;
and adding really many independent uniform variables gives us a very good
approximation to the normal distribution; and this is true for even any infinite
sum of random variables; just finite variances are required. So even adding e.g.,
lognormal variables (being quite asymmetric) would end up more and more

Table 4.3 Overview on calculations with independent random variables
X1 X2 Operation Result Comment
Std-Normal – –X Std-Normal μ = 0, σ = 1
Normal – exp(X) Lognormal Log(X) is not

lognormal
Std-Normal – |X| Half-normal μ = 0, σ = 1
Normal – |X| Folded-normal Appear for

performances like
|Voffset|

Std-Normal – X2 χ1² Chi-square,
important for
confidence intervals

Normal Normal X1 – X2 Normal Mean substracts,
variance adds up
still

Uniform Uniform X1 + X2 Triangle Mean and variance
added

Triangle Uniform X1 + X2 Quadratic Mean and variance
added

Cauchy Cauchy X1 + X2 Cauchy Location and scale
add up

Std-Normal Std-Normal X1/X2 Std-Cauchy Very wide tails
Half-normal Half-normal X1 – X2 Normal
Lognormal Lognormal X1 + X2 Not lognormal New distribution,

looking slightly
more normal

Std-Normal Chi X1/X2 Student-T important for
confidence intervals

Std-Uniform Std-Normal X1/X2 Slash Similar to Cauchy
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in a normal distribution (which is symmetric). Again the Cauchy distribution
is special, because it has no finite variance. The central limit theorem CLT
will tell us even more, because if we know the mean values and variance of
the original distributions, we can calculate the over-all mean and variance just
as the sum of the “input” distributions. And the normal distribution with that
parameters will often give an excellent fit to the sum distribution. However,
this fit is usually only good near the distribution center, not in the tail regions.

Actually on all these things there is quite nice material available in the
internet! By creating little testbenches and running MC analysis can find
such relationships directly from circuit simulations. For instance, simulating
a multiplexer with two inputs driven by normal distributions, you can obtain
a Gaussian mix. Such mixes are often multimodal, so not normal Gaussian at
all. With Verilog-Ayou can perform almost anything you want, because it also
supports random number generation, even for “very” special distributions, and
of course it also supports many math functions. Although Verilog-A does not
support so many distributions (e.g., no Cauchy distribution), you can often
easily create whatever you want with moderate effort by calculations with
random variables (see Table 4.3).



PART III

Advanced Statistical Design Techniques
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5
Multivariate Statistical Analysis

for Design Insights

In this chapter we discuss how we can treat and analyze multiple variables
and outputs in statistical analyses. Important applications are the calculation
of sensitivities and correlations from MC results. Such techniques are also
in use for more advanced yield verification methods, which we will discuss
in Chapters 6 and 7. In design modeling is often a key task, and it could fill
books on its own, so we will focus on an overview and several specific methods
related to variation-aware design. Univariate performance analysis is a kind
of blackbox modelling; it might be very good, but a multivariate analysis can
turn blackbox to whitebox modelling, giving more insights, more speed and
accuracy.

If we would just add (or subtract) the sample values from two or more
simple normal Gaussian distributions, we would still end up in a normal
Gaussian distribution. So we simply cannot tell from MC output data that
the histogram was created by one, two, or whatever many variables! Also if
our design would act as divider on normal variates giving Cauchy variates

205
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(see Figure 3.4), we cannot tell whether our circuit is a univariate Cauchy
random generator or whether it acts as divider on two normal variables.
So what could be the benefit of a multivariate analysis? Two good examples
are sensitivity analysis and finding performance correlations to understand the
design trade-offs. A third application is performance modeling, in this we try
model e.g., a certain output performance (like power-supply rejection ratio
PSRR) as a function of the (statistical and/or non-statistical) input variables.

Note: Up to now all estimates and the convergence speed and variance are
not impacted by the number of statistical variables and design complexity, so
random MC sample yield verification for 90% yield and a certain CI is as fast
for a simple diff-pair as for huge blocks—in terms of simulation count (not in
time of course)! This independence on complexity will not be the case for the
more advanced analysis!

Designers often ask for the sensitivities (actually a linear performance
model) of the different performances to the different “design” variables, like
transistor width of M1 or to sheet resistance or temperature, etc. Sometimes
you are lucky because the simulator itself might have a built-in sensitivity
analysis, which runs typically quite fast, but unfortunately this is too often not
the case. As a workaround, you can do a short sweep Δx (e.g., 1% or 0.1σ)
of the individual parameter of interest and look to the change in performance
Δy. This one-factor-at-time parameter varying technique (OFAT) is not only
accurate, but also quite slow if you have to inspect many parameters.

In school you have been taught:

“If you have n parameters, you need n equations.”

One obvious problem is that if you want to analyze the sensitivities of
your circuit to all statistical parameters, the OFAT method becomes slow,
because real designs often have thousands of statistical parameters describing
mismatch. If you have 50 transistors in your design and each has two mismatch
parameter (like for modeling of threshold voltage and mobility), you would
end up in 100 mismatch parameters in total, plus “some” more for process
variations like further hundred. In modern process nodes (below 40 nm) you
find typically even many more variables, like more than thousand for process
and e.g., six for mismatch for each transistor. Couldn’t we use MC techniques
to obtain sensitivities in a “smart” way? As MC is applying little changes Δx
and we collect the circuit response, then a correlation analysis could give us
the desired sensitivities! One obvious problem is that if you have thousands of
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statistical parameters, but only 200 MC samples, how we can obtain thousands
of sensitivities? But you can determine at least quite accurately statistical
estimates for the maybe top-5 sensitivities, and that is often 99% of what the
designer really wants to know (Figure 5.1 and Figure 5.10)!

The simplest multivariate analysis is a linear regression, so the result allows
a linear approximation of the circuit behavior; in good cases such a model can
explain 99% of the true circuit behavior and only 1% remains as model error
e. Such basic regression is possible if more or equal data points are available
than variables, then just a best fit is the result. Best fit means lowest error e, and
different criteria could be used like minimum worst-case error or minimum
average quadratic error (rms).Actually the minimization could be done by any
optimization algorithm (see Chapter 8), but exploiting the special structure of
the error function could give a significant speed-up compared to universal
optimizers.

The general modeling flow is shown in Figure 5.2. In modern design
environments, advanced options exist e.g., to extend the model to become
quadratic. Such techniques are usually called response-surface modeling
(RSM). In addition, sparse approximation methods exist, which can be applied
if too few MC samples are available. There are also algorithms that focus
directly on the relative importance of parameters [Groemping]; these are quite
robust even for highly nonlinear problems, if many parameters exist and only
a moderate sample count is available. Such response (output variable f (x))
model is usually not based on physics or structures, like a SPICE transistor
model, it is usually a pure empirical model.

If no good model can be found, you can at least apply non-parametric
multivariate methods, e.g., based on ranking, and you will be still able to
make a correlation analysis. Also, the well-known median (“50% point”) is
a rank estimate, and the idea of sorting and ranking can be applied quite
generally. Advanced research [W. Zhang] and commercial implementations
typically use mixed methods and include clever error control mechanisms.

Another clever technique is to collect the impact (contribution) of the
different statistical variables, e.g., all the ones coming from one transistor or
a certain sub-block (like bandgap or LNA), then providing a combined output
for this group, like for transistor N4 or LNA1! Truly the number of variables
decreases this way, and we can still make a reasonable, accurate contribution
and correlation analysis for complex circuits [Li].

What would happen if the design is so nonlinear that no good model
can be found? This can happen in many such correlation analysis or model
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Figure 5.2 Typical modeling flow.

building whereas pure random MC yield verification even works in the case
of infinite number of variables, or when the number of random variables is
also random! In such truly special cases, any multivariate analysis is indeed
very difficult, and we may better switch to the more basic techniques. A
further difficulty occurs if the simulator and statistical algorithms simply
have no access to many statistical variables, which might be the case in a
transient noise analysis or in the presence of strong numerical noise. Here
we would have performance variations from statistical variables in the circuit
(like those describing mismatch, e.g., causing excessive DNL) and further
variables acting as random noise generators in resistors and active elements
or in the simulation algorithm itself.

Another example for a multivariate analysis is to inspect the relations
between different outputs, like leakage current and speed. The total yield
depends on the correlation between the partial yields, so if we know the
partial yield (e.g., from CGPK or another dedicated method like WCD, see
Chapter 7) and the correlation, we can make a better total yield estimation.
Or we can better understand our design, like if there is room for improvement
or if we already have a good balance between competing performances
and specs.
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In conclusion, several kinds of multivariate analysis are possible and are
of high interest, but it could also happen that such analysis can become quite
time-consuming, e.g., an MC analysis itself has a linear rising effort according
to the number of samples n—and you can even run the circuit simulations in
parallel. The effort for obtaining model parameters for a multi-dimensional
nonlinear model relating m statistical parameters and k outputs based on given
MC data with n points is often very big, and it often rises approximately
quadratic with m. Clever methods are required to limit the effort by focusing
on the real important correlations, like looking to those performances and
parameters with really significant changes and critical specs.

For Further Reading:

• Xin Li and Hongzhou Liu, “Statistical regression for efficient high-
dimensional modeling of analog and mixed-signal performance varia-
tions,” 45th ACM/IEEE Design Automation Conference (DAC’2008),
Anaheim, CA, 2008, pp. 38–43.

• Andre Lange, Christoph Sohrmann, Roland Jancke, Joachim Haase,
Binjie Cheng, Asen Asenov, Ulf Schlichtmann, “Multivariate Modeling
of Variability Supporting Non-Gaussian and Correlated Parameters,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 2, pp. 197–210, Feb. 2016.

• W. Zhang, T. H. Chen, M.Y. Ting and X. Li, “Toward efficient large-scale
performance modeling of integrated circuits via multi-mode/multi-corner
sparse regression,” 47th ACM/IEEE Design Automation Conference
(DAC’2010), Anaheim, CA, 2010, pp. 897–902.

5.1 Multivariate Probability Density Functions

To lean about multivariate statistics, we should start on how to describe their
probability density function. As for single variable statistics, let us start with
a normal (Gaussian) distribution, just with two variables. One variable could
be the differential offset voltage of an amplifier and the second variable could
be the offset in common-mode voltage. Both are often normally distributed
and in a circuit we may have the case that some transistors causing the
differential offset are the same as those causing the common-mode offset,
so we can expect some correlation (|c| > 0). In other circuits, the effects might
be almost independent, so we can expect little or no correlation (|c| � 1).
How can we mathematically capture this effect? Instead of generating a set
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of single random numbers, we generate two variables x1 and x2, and the
distribution is now according to a 2-variable density function. Looking only
to the samples of X 1, we would find a certain mean and standard deviation, and
accordingly for X 2. As for the univariate case, we can start from a standard-
normal distribution (having zero mean and a standard deviation of unity), and
interpret mean and standard deviation as linear transformation (m makes a
shift and s makes a scaling operation); for the two variables, we can just take
again such linear transformation, but now it is a linear matrix transformation.
This we can apply on samples coming from a multi-dimensional standard-
normal distribution, just to get any multi-dimensional normal distribution—of
arbitrary mean, standard deviation, and correlation. In such matrix trans-
formation, the shift by the mean (now a vector μ) is easy to interpret, so
most analysis is around the matrix part B doing a scaling and also usually
a rotation.

Z ∼ N(0, I)
X = ZB + μ

(5.1)

where B is a n × n matrix, and one can show that the multivariate pdf can be
written according to Equation (5.2).

pdf
(
x, m,

∑)
= (2π)−n/2(BBT)−0.5 exp

(

−1
2

· (x − μ)T BBT(x − μ)
)

with
∑

= BBT (5.2)

Σ is called the covariance matrix, and it is a symmetric positive semidefinite
n × n matrix (one row and column for each parameter). Therefore, we
can interpret such multivariate normal pdf always as a kind of bell-shaped
distribution, just in n dimensions. More picture we present in chapter “Design
with Pictures Three” (and in part six, together with optimization – there the
Hessian matrix H has a similar importance). If Σ is a pure diagonal matrix,
we have no correlations and the bell shape is axially symmetrical. If we have
nonzero nondiagonal entries, we have correlations and the bell shape is rotated
to some degree.

Like the variance or standard deviation, we can also estimate the covari-
ance matrix from statistical data. The problem is usually that the matrix can be
very big, so many coefficients have to be calculated, and that requires usually
many points, more points than for a univariate analysis!
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Note that the matrix entries of Σ do not directly represent the correlations
ρ, but there is a close relation. For the 2-dimensional case we can write:

Σ =

(
V1 V12

V12 V12

)

=

(
σ2

1 σ2
12

σ2
12 σ2

12

)

(5.3)

ρ2 =
σ2

12
σ1σ2

with |ρ| ≤ 1 (Pearson correlation coefficient) (5.4)

Note: In our book we use ρ for the Pearson correlation coefficient (many
programs use ρ to avoid display problems), whereas c is used for correlation
in general (e.g., also non-parametric measures).

The formula to estimate the covariance COV = V12 from data is very
similar to the one for the variance V:

COV = 1/(n − 1)
∑

(xi1 − μ1)(xi2 − μ2) (5.5)

We can also estimate ρ directly (instead of using Equation (5.4)):

ρ = 1/σ1σ2 ·
∑

(x1 − μ1) · (x2 − μ2) (5.6)

With some additional math, one can prove that contours of constant prob-
abilities lie on concentric ellipses. For ρ = 0 the ellipsoid axes will be in
parallel with the coordinate system axis. The Pearson correlation coefficient
r is ranging (like correlations c in general) between −1 and +1, and linear
transformations will not change its value. For r = |ρ|2 we have full correlation
among the two variables, so knowing one of them gives us also the other
accurately. If the offset voltage Voff and the threshold voltage of transistor N1
have ρ = 0.5, then r2 = 0.25 = 25% of the variance in Voff can be explained
by V TO(N1)! So a correlation analysis is very useful to find out how much
each statistical contributes to the total variation (contribution analysis).

From basic statistics, it is known that the sum of two normal variables X
and Y is still normally distributed. This is also the case for nonzero correlation.
Without correlation the variances just add up, whereas with correlation we get

V (X + Y ) = V (X) + V (Y ) + 2ρ
√

V (X)V (Y ) (5.7)

So, whenever ρ < 0, then the variance is less than the sum of the variances of
X and Y. For full correlation ρ = +1 we can just add the standard deviations
(like we add up for non-statistical tolerances in the worst-case).
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Such multivariate analysis could be extended to non-normal distribu-
tions, but usually anyway most of our statistical variables in the SPICE
models are normally distributed. So, very often calculations are done with
normal distributions, and if needed a transformation can be applied. In the
statistical variable space, often such transformation can be found easily (in
opposite to the performance domain), because the underlying physics is
usually known.

5.2 Correlation

From public opinion polls or from inspections like “Should I become a pipe
smoker because they live longer than nonsmokers?” you know that correlation
does not directly mean that there is a true causal relationship! If we have no
correlation among two random variables, then knowing one variable cannot
help to make more accurate estimations on the other one. However, in case
of correlation we could indeed improve our estimations! Also in older design
environments getting correlation tables was available; and the problem on
how to interpret correlations tends to be less difficult for circuit design than
for medicine, because designers can setup their testbenches distinctly (and
anyway everything relies on simulation models).

There are actually many different ways to measure and quantify corre-
lations, e.g., we may inspect the yield on leakage current and speed in a
logic circuit. Usually the parts having high speed unfortunately also have high
leakage, so if the yield loss on both specs is 10%, the total loss might be indeed
close to the worst-case of 20%, because we have a strong negative correlation
on yield. One obvious problem here is that if you have relaxed specs and/or
a low MC count, then maybe one or both partial yield losses are zero, so we
cannot obtain the “yield correlation”, and usually we want that the correlation
is a measure on the design, on the relationship of variables, and not really on
the spec limits. What we could do is relating the two performance variables
leakage and speed in a model, e.g., a linear model, and this way correlation
becomes just a coefficient in this (multivariable) model! This leads to the co-
variance matrix for normal Gaussian distributions, and these kinds of methods
are called parametric correlation.

Unfortunately, in circuit design linear models might be very inaccurate,
and if you apply a linear model to a nonlinear system you may find no
significant correlation although strong correlations are present! You may try
in such cases more complex models like quadratic models or you can apply
transformations, but this is time-consuming (which transformation to take?)



214 Multivariate Statistical Analysis for Design Insights

and already a quadratic fit takes more time and is usually less stable. For these
reasons, also nonparametric correlation measures have been created. These
are not based on a certain model, but usually on ranking, so we do not apply
the correlation analysis directly to the performances, but first rank one variable
and inspect how similar the data points are ranked in the other variable. This
way all nonlinearities have no impact at least as long as the relationships
are monotonic. So this is a quite robust method for parameter classifications,
and often used as starting point for further investigations, like on parametric
correlation, model selection, etc. Figure 5.3 gives an example, note that with
lower correlation |c| the point cloud would look much less like a “string”, more
like a wide cloud.

The effort in model creation depends highly on the number of variables
(but not all may really matter) and nonlinearities. The accuracy requirements
may differ a lot, e.g., often for just getting a ranking it does not matter if a
certain variable contribution is 30% or 33%, but e.g., for an optimization on
the sensitivity you typically need a higher accuracy. The accuracy is often high
in areas where many simulation results exist (like in the distribution center),
but it is often much lower for the distribution tails, which is very critical for
yield and failure rate estimations! So for simple cases 50 simulation points
are often regarded as a kind of minimum, for more complex cases we can
expect a linear rise according to the number of statistical variables, but for
very complex circuits (typically with more than 50 transistors) usually some
effort reduction is possible, because simply not all variables are important, but

Figure 5.3 Pearson and Spearman (ranking-based) correlation coefficient for different
2D data.
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maybe only 10%. Of course, for real circuits we usually need many models,
one for each performance.

The higher the accuracy requirements to achieve not only a ranking but
e.g., also a high yield estimation, the larger the model generation effort, but
still there is usually some extrapolation risk that you have to be aware of. A
concept reducing such extrapolation risks for yield estimation is worst-case
distances WCD (see Chapter 7): Here the model fitting is around the fail region
(and not the distribution center), and the model pass-fail border is linear. So if
the true circuit pass-fail border is also linear, there would be no (local) model
error regarding yield estimation!

In modern design environments, also classical response surface models
(RSM) become better and better, due to more experiences, more computation
power, and careful algorithm tweaking. For instance, high-order polynomial
models can be used very efficiently. In approximations around a fix point,
Taylor polynomials are best suited; for approximations in a fix interval, Cheby-
shev polynomials are best for given maximum error limit; in conjunction with
statistics and normal distributions, so-called Hermite polynomials are best
suited and used intensively.

We have seen that correlations can cause difficulties in finding the overall
variance or the total yield, but powerful algorithms exist to decompose
the problem into one without correlations: Principal components analysis
(PCA) is a technique that starts with correlated variables and ends with
uncorrelated variables, the principal components, which are in descending
order of importance and preserve the total variability. PCA is of high interest
for semiconductor foundries and their modeling teams, because from PCA
results you can find out which and how many variables are required to create
accurate statistical models for circuit design.

Correlation vs. Dependency. If we have one random variable x1 and
set x2 = f(x1), then also x2 becomes a random variable. However,
x2 is fully dependent on x1. For linear f we would also get a Pearson
correlation factor of either +1 or −1. However, for nonlinear functions,
like a quadratic one, the linear correlation factor might be much smaller,
although we would still have fully dependent variables. So correlation is
mainly a measure of linear dependence. In conclusion: Zero correlation
is no guarantee for independency, but if there are no dependencies the
correlation must be zero!
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Now imagine, you get some data and calculate the Pearson correlation
factor from it, like ρ = 0.15. Does this mean we have indeed such
correlation and also some dependency? Actually not 100%, because for
small sample counts we would have also significant random variations,
so also two completely independent random variables may have some
random correlations. This is similar too many other situations, e.g., a
normal Gaussian distribution might show some skew, just by chance.

Unfortunately, the situation could become even more difficult for more
than two variables. In principle, we could look also for correlation among
matrices, but even this would not cover all kind of dependencies. It is a
bit like when moving from real numbers x to complex numbers z. We can
do a lot more, but we lose also something because we cannot even say if
the imaginary unit i is larger or smaller than zero.

5.3 Regression and Multivariate Modeling

A so-called linear regression can be regarded as the origin of many modeling
methods. The easiest example is fitting a straight line, so a linear model with
one variable x, to data pairs (xi, yi). Having two points we could just directly
calculate the two parameters a1 (slope) and a0 of our model f (x) = a1x + a0.
However, in a MC simulation or from measurements we have usually many
points to fit, so our set of equations becomes over-determined. Unfortunately
it is usually impossible to reduce the model error εi to zero for each point,
so starting with an attempt like f (xi) = a1xi + a0 + εi is a more realistic
approach.

The simplest way would be to ignore many points and to select the
two “best” ones, but this would often lead to quite arbitrary results; and in
the presence of measurement errors, like noise, we would also throw away
valuable information, which would lead to reduced accuracy. So one way
to go is to define an error critera, and to minimize the error ε. One popular
criteria is the average quadratic error, or the square-root of it, the rms error.
This way bigger deviations εi = f(xi) − yi would have more impact on the
fit than small errors. So outliers could have quite a significant impact. Even
more critical would be using the maximum error as criteria, and a more robust
method would be to minimize the mean absolute deviation. So over-all the rms
criteria is a often a good compromise; and it also leads to a simpler parameter
estimation!
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This was the situation till the end of the 19th century, so people used it
because it was the easiest method. However, indeed there are further good
arguments to minimize the quadratic error, and e.g., not the maximum error!
One key reason is that if we assume a normal distribution for the error ε, then
indeed the minimization of the rms error leads to the best-possible result! And
in this case the model coefficients are almost directly related to the mean and
variance of the data, which appear almost all the time in conjunction with
Gaussian distributions. If no outliers are present, then also the assumptions
of a normal Gaussian error distribution is quite native, e.g., because due to
the central limit theorem ε would always approach a normal distribution if the
error arises from summing many small errors (of finite variance). If we assume
a normal error distribution then also the very general method of maximum
likelihood (ML) would give us the same formulas, and the solution would be
the most likely one, the one with maximum probability.

The obtain the solution for the model parameters (so-called regression
coefficients) a1 and a0, calculate first the two sample means of x and y, and
then use these equations:

a1 = COVxy/Vx = Σ(xi − xm)(yi − ym)/Σ(xi − xm)2 (5.8a)

a0 = ym − a1 · xm (5.8b)

These equations can be found by calculating ε2 and minimizing it by setting
its partial derivatives δε2/δε1 and δε2/δε0 to zero. Indeed the formula for the
slope parameter look similar to the one for correlation, and you can double-
check them for yourself by inspecting special cases.

Using these equations is straightforward, so let us inspect one typical and
one example with some difficulties.

In Figure 5.4a we fit a linear model to well-behaving MC data, whereas
in Figure 5.4b there are some difficulties. In both cases the data might be e.g.,
the output voltage of an amplifier versus the input voltage, so we model a
performance y = Vout as a function of a variable x = Vin, actually it does
not matter if the variable is a design variable or e.g., a statistical variable
(like VTO). One obviously special behavior in Figure 5.4b is that the noise
increases with x, so its variance is by far not constant. Note, that our approach
was “having an error ε on top of y”, but we assume that x is known, having no
error. And we assumed that the error is an additive term. Maybe here another
approach could fit better, e.g., a multiplicative error behavior?Asecond critical
point is the data in the lower left corner, which seems to be slightly clipped!
Maybe the measurements get wrong because the equipment was not suited
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for negative values? Also in non-technical real world statistical examples we
have sometimes to deal with so-called censored data. For instance, we want
to calculate the distribution of travel expenses, but the report systems reports
the exact numbers only for expenses if they are above 100$, for all lower
ones we only know the number of these. Luckily such problems are seldom in
MC, but not impossible, e.g., if you measure a delay time, and your simulator
stop time is too short. Interestingly even for such difficult situations clever
well-founded statistical methods are available.

What about having the error in y versus in x? Indeed assuming an additive
error in y fits much better to real-world, simulations and MC problems. For
instance, in MC we use random samples e.g., for VTO or Rsheet, but still these
random samples values are fully known to the simulator!

On top of all these issues, we may also ask why we only look to the error
in y = f(x), not e.g., regarding the first derivative? Also for such problems
solutions are available, but again this usually less relevant for circuit design,
because unfortunately from most simulations we do not get the derivatives
will little effort. And if the errors are significant, then the derivatives are often
even less accurate.

An interesting question is what could be the origin of the remaining the
model error ε. In our amplifier, it could e.g., be pure electrical noise, or it could
be that we forget to measure and include further influencing parameters, like
supply voltage or load changes. In the latter case we can improve the fit with
a multi-dimensional performance (response) model. Such generalization to
n-dimensional linear functions f (x, A) is possible by using matrix techniques,
and also polynomials could be used as model in a similar way. In MC we are
even in a better situation than a designer in a lab, because here measurements
errors are much smaller (no error from measurement equipment, but only much
smaller numerical errors), and also the influencing parameters are well-known.

In our case of an amplifier using a linear model was meaningful, but if we
would also like to model the nonlinear behavior, like compression, an extended
model is required. Indeed Figure 5.4 seems to indicate that there is some
gain reduction at high input values, so e.g., a quadratic model could capture
this effect. Arbitrary nonlinear models require iterative methods (“nonlinear
least-squares”), just optimizers to minimize the error (see Chapter 8).

One interesting thing in models is that they allow better design under-
standing, e.g., knowing about the sensitivities (our coefficient a1 in the
linear model) can help us to improve the design or at least to understand
its limitations. If our simulations are accurate, if we include all important
parameters and if we can find an accurate enough form of the model, then
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the model would give us almost the same performances as the simulations
done for calibrating the model. And in addition, we could use the model for
interpolations, extrapolations, and searches, e.g., for worst-cases or optimum
behavior! A main advantage is often that e.g., such model-based optimization
or search could run much faster because model equations are typically much
faster to evaluate than performing true circuit simulations, this is even true for
highly complex models, which may include dozens of parameters and many
nonlinear terms. Later, we will pick up modeling techniques several times for
advanced tasks, but now let us also discuss some further modeling tricks and
direct applications.

Why we need “tricks”? We mentioned that “in MC . . . the influencing
parameters are well-known”, but this “well-known” only means that we know
all the model input parameter names, just all parameters in the netlist (and in
the simulator models) can influence the simulated performance of our system.
In addition, the all values are available in principle too, but of course a model
based on all parameters will be too complex by far, and for extraction (model
calibration) we would need to run a huge number of time-consuming circuit
simulations.

5.3.1 Variable Screening and Model Choice

A more complex model can typically give a better fit to the data, but the more
the variables, the harder the estimation. Often MC data is so “noisy” that it
just looks like only a high-order model can give a good fit. However, using
too many model parameters can end up in a fit following the randomness
too much. This is called over-fitting; and it should be avoided, because the
model would become unsuitable for predictions, unsuitable sometimes even
for interpolations, and even more for extrapolations! If you look to real-world
data, like from fabrication or from looking to nature, it is often uncertain
which kind of model should be used; e.g., in medicine, we simply do not
know how many parameters are present and what the dependencies are! A
good guideline is following the law of parsimony (sparingness) and only
introduce as many parameters as really needed as a minimum—physical laws
are typically simple!

This is a key problem for any researcher! However, doing a MC analysis
we often have the opposite problem: We know the simulation setup and
have to deal with many parameters and highly nonlinear models and circuits!
However, which model should we create to understand, to simplify and
speed-up the design process? In a first step, we can run a linear regression
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on all parameters, but then the problem is to make the algorithms adaptive
enough to give a good balance between model bias (systematic error) and
(statistical) variance. This can be done by adding a parameter screening step
before we continue with modeling.

In this second step of modeling, we need to decide to apply only a simple
linear model or e.g., a quadratic model. With a pure linear model, we have the
risk that the model does not fit well, because maybe the circuit has also strong
quadratic characteristics, and if we just generally apply quadratic modeling,
we have more parameters to determine and need more MC points for the
same accuracy. So often we should create an adaptive model that is linear
in some variables, quadratic in few important variables, and even ignoring
many less important parameters [Shan2011, Moon]. Actually the goal is to be
accurate enough for making performance predictions for saving simulation
time and to allow the designer the interpretation of the circuit behavior, not
to create a model that is as accurate as possible—for this better stick to the
netlist! As also the netlist-based simulation gives us a model, and we would
create a new simplified performance model, the whole process is often called
meta-modeling.

The problem of model selection occurs also in yield estimation, e.g.,
whether we should use the sample yield, the CPK or the generalized CPK.
For instance, we could either choose the most promising approach (model
selection) or we may even try to combine the different results (model averag-
ing). Both have their application, and for both some mathematical foundations
exist, but unfortunately the problem is harder than simple confidence intervals.
Check out e.g., papers or books on decision theory and Bayesian statistics
[Jaynes1995]. In most design environments the user get some feedback of the
model accuracy, the goodness of fit (GOF). One numerical criterion for the
GOF is the coefficient of determination r. It measures the fraction of variation
in the data which is captured by the response model.

r2 = 1 − 1/((n − 1)V ) · Σ(f(xi) − yi)2 (5.9)

Note: r is constructed like a correlation coefficient, but a model fit will never
give negative values, and also things like covariance make little sense here.

r2 is zero if the model has an average quadratic error ε2 identical to the
variance V of the data. Remembering that the variance is average quadratic
error regarding the mean ym, we can say that in this case we would just
assume a model of zero order (just f (xi) = ym). For simple performances
like offset voltage we can expect that already going for a linear (first order)
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model would improve r2 e.g., from 0 to roughly 0.9 or higher. This means the
model “explains” 90% of the variation in the data. With no model or with a zero
order model, we would need to capture all the variance with pure statistical
methods, and we would e.g., need to accept a certain uncertainty represented
by confidence intervals. With a good model we can reduce this uncertainty
(and often quite dramatically), which means that modeling is to some degree
a kind of noise reduction method! In Chapter 6 we will use MC and modeling
together for a more stable yield estimation. This is one method to enables
Monte-Carlo analysis for regions of higher yields (like 4−6σ, depending on
complexity) with acceptable simulation effort.

A simple single criteria like r2 could be sometimes misleading, so it is
usually best to inspect the fit directly in a scatter plot. Even if r2 is low, there
could be still an option for model generation, just obviously the currently
applied model fit is not good. However, inspecting other model parameters or
another form could lead to improvements.

Another disadvantage of r2 is that it does not take the model complexity
into account. This means you cannot use r2 directly as a criterion for model
selection or parameter filtering, because in most cases r2 would become
higher and higher by making the model more complex, till you may end
up in fitting to “noise” (over-fitting). A better model selection with the
purpose of performance predictions is possible with other numerical criteria
like the AIC (Akaike information criterion) or BIC (Bayesian information
criterion, e.g., [Jaynes1995]). Both combine the goodness of fit with the
number of parameters into one value. This allows a quite solid compari-
son of models with different complexity, and e.g., when to stop modeling
refinements.

5.3.2 Variance Contribution Analysis

An immediate application of a multivariate analysis is finding the sensitivities
and the (relative) contributions of a design. For statistical variables, we are
usually interested in the different contributions of each statistical variable (or
a variable group) to circuit behavior, like “mismatch in VTO of M2 creating
30% of the total offset”. This is the primary application, and it is also a
perfect example on how Monte-Carlo can give additional insight to the design,
by identifying the critical devices (like transistor N3 or resistor R5) with
largest impact on performances. For this analysis, no specs are required, so
it can be done at a very early stage of the design (in opposite to a full yield
analysis).
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The first step for such contribution analysis is to assume a certain model—
being a function of the statistical parameter—and compare it to the data. Of
course we aim for finding the optimum coefficients in our model that minimize
the model prediction errors (often the rms error is used). Once we found the
model, we can check how much impact each parameter has and provide a
sorted list as analysis output (Figure 5.5).

Of course a model, created via linear regression, would usually not have
zero error, so some uncertainty is still present, and the sensitivity results can
be trusted only if the goodness of fit is high enough. If e.g., the coefficient
of determination r2 is too small, then the model might be not good enough
(see Table 5.1 for a case where a linear model is applied mistakenly) or the
results are too noisy. However, look up: r2 is often still close to unity (like
0.91, which means that 9% of variation is not explained by the model) even if
the fit in the tail region is bad. This can happen because r is usually dominated
by the mass of samples in the center region. For pure contribution analysis,
this is only a small problem, but later we use such multivariate models also for
other purposes like yield estimation, and here the tail region is very important
because it contains the rare events causing problems.

To get more stable results (especially for mismatch variables), often some
tricks are applied, like we can put instances in parallel together, and also for
full subcircuits we can obtain the contributions, and they are of course also
more stable than the contributions on individual instances.

Figure 5.5 Flow for an advanced variance contribution analysis [Liu2015].
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Table 5.1 Variance analysis results on a nonlinear testcase using different models1 and MC
count [Liu2015]

Golden Result (n = 2000) Proposed Method (n = 500) Linear Model (n = 500)

Fit r2 = 0.900 r2 = 0.901 r2 = 0.247
/I0/M2A:
deltoxn

43% /I0/M2B:
deltoxn

40% /I0/M2B:
deltoxn

0%

/I0/M4A:
deltoxp

38% /I0/M2A:
deltoxn

39% /I0/M2A:
deltoxn

3%

/10/M4B:
deltoxp

5% /I0/M4B:
deltoxp

6% /I0/M4B:
deltoxp

0%

/I0/M1A:
deltoxp

5% /I0/M4A:
deltoxp

5% /I0/M4A:
deltoxp

5%

/I0/M1B:
deltoxp

1% /I0/I1/M6:
delvthn

1% /I0/I1/M6:
delvthn

0%

/I0/M7A:
deltoxn

1% /I0/I1/M7:
delvthn

1% /I0/I1/M7:
delvthn

0%

/I0/M 7B:
deltoxn

1% /I0/I4/M1:
delvthp

1% /I0/I4/M1:
delvthp

1%

/I0/I1/M1:
deltoxp

0% /I0/I4/M2:
deltoxp

1% /I0/14/M2:
deltoxp

3%

/I0/I1/M1:
deloxp

0% /I0/M7A:
deltoxn

1% /I0/M7A:
deltoxn

0%

/I0/I1/M1:
delvthp

0% /I0/M7B:
deltoxn

1% /I0/M7B:
deltoxn

3%

1The data was achieved with setting non documented internal environment variables. A normal user
would use the automatic mode and would never see the bad results from pure linear fit as output.

The classical application of such contribution analysis is inspecting the
“bad guys” in a circuit, e.g., those responsible for most of the offset voltage.
In a non-optimized design, often a few transistors dominate the offset, so if you
make their area 4× larger you can halve their offset, and if these transistors
are really the dominating ones, then also the overall circuit offset would be
reduced to almost 50%. To double check this, you can run MC again and also
the contribution analysis.

Note that there is no restriction to DC performances, and you may also
look to the contributions of a filter characteristic or any transient behavior! In
principle no full re-run of the MC is needed: If you keep the same seed value
of the pseudo-random number generator and only change parameter values
(but not circuit topology), then it would be theoretically enough to re-simulate
just a few extreme corner samples, because also these should show the offset
reduction. This way we approach the idea of statistical corners and worst-case
distances (see Chapter 7).
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In modern processes and complex circuits, it can easily happen that it
becomes hard to make the number of MC points larger than the number
of statistical variables and the model parameters, so classical (linear or
nonlinear) regression cannot be applied. Besides nonlinearity and the problem
of which kind of model should be used, this becomes a further problem.
One approach to maintain efficiency is using so-called orthogonal matching
pursuit OMP [Tropp2007, Liu2015] and advanced ranking methods [Moon]
(Figure 5.6).

The idea is to focus on the most important relationships, so that we can
find with a moderate number of simulations (like 100) still at least the top-5
contributions. This way it is indeed possible to provide useful design insights
in a very efficient way: Imagine you have a big series connection of resistors
of two types, e.g., 400 pieces of 1 Ω and 4 pieces of 100 Ω, all having
1% mismatch tolerance. The 100 Ω resistors dominate the overall tolerance
behavior, but with simple OFAT simulations you would need at least 405
simulations to verify this! With OMP and a 40-point MC run, you would also
identify the four big contributors correctly. The price we have to pay is that
the accuracy would be limited, e.g., actually all four 100 Ω resistors need to
have the same contributions, but due to the randomness of MC it would be
not the case, and the errors might be e.g., 30%. However, this would be still
enough to identify the top contributor correctly, and you can now run OFAT
only on these, so overall you need with this trick only 40 + 5 = 45 simulations
to actually get an accurate result. Of course, for resistor circuits any designer
could easily apply some hand calculations, so we will later demonstrate this
technique in much less trivial nonlinear circuits.

In [Moon] further (quite nonlinear) engineering examples of moderate
complexity could be found, and also the problem of false discoveries (unim-
portant variables not filtered out unfortunately) and false non-discoveries
(strong variables will be screened out accidently) is addressed. To optimize
the screening the algorithms need to be carefully tweaked to find a good
compromise between screening accuracy and speed. As rule of thumb the
total number of sampling point has been set (in a quite conservative way) to
n = n1 + n2 = 5 · s + 2 · p (s = total variable count, p = active, dominating
variables). The worst-case on screening errors happens usually if there are
many parameters with small effects “in the same direction”. Then there is
a strong risk that almost all such parameters will be regarded as inactive,
but this way also there significant over-all effect gets ignored. This is quite
a severe problem, because also in circuit designs such cases are not rare.
Think e.g., of a voltage divider built with many small resistors in series,



226 Multivariate Statistical Analysis for Design Insights

F
ig

ur
e

5.
6

Ty
pi

ca
lfl

ow
ch

ar
to

f
an

ad
va

nc
ed

co
nt

ri
bu

tio
n

an
al

ys
is

[L
iu

20
15

] .



5.4 Adaptive Sampling and High-Dimensional Models 227

or of a flash ADC where each offset can cause DNL errors, but the offset
may come from quite many parameters. Exploiting structural or hierarchical
information we could improve further (even with automated recognition
techniques, see Section 9.4.5). In addition, we can add another iteration after
the second last step in Figure 5.5, or by using adaptive sampling methods.
More on advanced sampling methods beyond grids and random sampling in
general can be found in Chapter 6.

5.4 Adaptive Sampling and High-Dimensional Models

In 5.4 we end up with a two-step approach of MC plus OFAT for an accurate
mismatch contribution analysis. This is actually suggesting the next step of
automation in future tools; and this will be “adaptive” sampling. This would
also enable to extract more complex models with an affordable number of
simulations. Such complex models are often called high-dimensional model
representations HDMR, and they have the form (5.6).

f(X) = f(x1, x2, . . ., xn) = fo + Σ fi(xi) + Σ fij(xi, xj) + . . .

+f1..n(x1, . . . xn) (5.10)

Notes:

• The 1st and last entry are unique, so no need for the sum symbol here.
• Usually we expect the model is valid for a certain finite parameter space,

e.g., 0 ≤ xi < 1 (box space).
• In the modeling task we fit first the low-order terms, so that the higher-

order terms are only used to model the remaining low-order model errors
εi. So we start the fit for f0, the move on with 1st order terms, 2nd order
terms, etc. (often using a recursion).

• The functions can take any form, no need to restrict e.g., to polynomials
• This representation is also often used to check different sampling

algorithms [Kocsis1997]. If high-order terms are significant, then
the variance reduction e.g., via low-discrepancy sampling is limited
(Chapter 6).

Example: Using 2nd order polynomials

f(X) = fo + Σai · xi + ΣΣbij · xi · xj + · · · + Σci · x2
i (5.11)
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Sensitivity-driven design and other methods sensitivity analysis.
Variation-awareness and sensitivity-driven design have a strong connec-
tion. We mentioned two so-called perturbation-based techniques to obtain
sensitivities; one is OFAT the other is a Monte-Carlo-based. Both have
their limitations, so one may wonder for more options. Indeed, a simulator
performing a sensitivity analysis is often doing something different, using
the so-called adjoint network method. This allows a faster analysis by
reusing the results of a DC or AC analysis. This method is also very
accurate, but the major problem is that it works not (well) for transient
analysis.

Notes:

• This form is often used, also in the matrix form (see Chapter 8 on
optimization)

• Only f0 can model a constant term, so we can estimate fo =
∫

f(X)dX,
then we can continue the estimation in a similar way for the other terms.

This approach is used successfully in many areas of engineering, because on
the one hand it is very general but also in many real applications the influences
of high-order terms is quite small, so we can keep the numerical effort still quite
moderate. In addition, following (5.6) mathematicians have proven some nice
statements about sampling and modeling. The optimum “simulation points”
to extract the model depends on the model characteristics, but often these are
not fully known, e.g., we often do not know exactly if a linear model would
fit, or which variables give a quadratic contribution. So adaptive sampling is
becoming a very native solution. If, on the other hand, we know that we have
to apply a e.g., linear model, we could ask now indeed for the best simulation
points.Actually different definitions of “best” exists, but looking for minimum
variance is the most popular choice, and that leads to point sets with “large
coverage”. For example, we could sample x1 at 0, 0.5, 1 and ask which point
should we skip to still have a variance as low as possible? The mathematical
solution is that you should skip the middle point(s) to span a covered “volume”
as large as possible; and this is in synch to what designers also do anyway in
corner simulations.

Actually, very often math gives us a good backup for our manual design
methods, but also the limitations become often more clear. In this case, we
could also take another model, like a pure second order model, and indeed
the optimum point set could change, so indeed the approach of only covering
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the extreme points would not always be the best one. It is “practically” the
best one, because in reality most designs behave quite linear, or at least
more linear than pure quadratic. This is also the reason for the success of
advanced (but still fix) sampling methods, which we describe in Chapter 6.
Also note: The best point set for extraction depends on the model, so if we
do not know the model we cannot choose the best points. This looks like a
“chicken and egg” problem, but it is not that bad, because also starting from a
non-optimum set of simulated points gives us useful information about how
the model should look like, so iteratively we can solve also such difficult
problems mathematically, step by step, like designers do. In [Woods2015]
you can find some detailed algorithm descriptions combining advanced
sampling, screening, and modeling techniques; and it includes a small
benchmark.

5.5 Multivariate CPKs

The classical process capability index CPK and the generalized CGPK treat
one specification and one output data set at a time. Usually a datasheet
contains many specifications, but often only a few of them cause the biggest
headache for designers. With the new CGPK they can treat the specifications
efficiently, but sometimes there are cases in which the yields of the individual
performances are quite easy to fulfill, but the overall yield might still be
surprisingly quite low, because the performance characteristics compete and
are difficult to fulfill on the same time. The so-called multivariate CPK can be
calculated and will take correlations into account.

In the univariate case, there is a one-to-one relation between the yield and
the specification limit (acc. to inverse cdf, i.e., the percentile function), whereas
for the general case infinite specification combinations exist to obtain a certain
total yield! For one dimension a spec is always a simple interval like [LSL,
USL], whereas in multiple dimensions not only both boxes (mathematically
spoken hypercubes) but also ellipsoids could make sense.

These issues and several others (like treating non-normality) make the
application and even the definition of multivariate CPK’s more difficult,
especially as in the design phase not all specifications might be fully clear.
Therefore, there is yet no standard on multivariate CPKs.

Note: If you search for “yield estimation” you will often find pure EE papers,
in general or for math literature it is better to search for “percentiles”.
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5.5.1 Total CPK Estimation via Correlations

Having no standard method does not mean that you cannot do anything. As
mentioned, if we have the CPKs or CGPKs for all our performances, we can
approximate the total yield and so the overall CPK by just taking the minimum
(worst-case) among CPKi, i.e., we would simply ignore all correlations. This
calculation would be identical to just assuming positive correlation c = +1,
so non-fighting specs. An alternative method would be to calculate the related
yield loss for each CPK and to add all losses to be on the safe side, so
assuming fighting specs. A compromise would be assuming no correlation,
just to multiply the individual yields, but also this tends to be (a bit) too
pessimistic.

As we now know well how to deal with correlations, we can even do better,
and without additional time-consuming calculations or simulations, even for
moderately high yield targets.

Example: If you have a single upper spec limit and CPK = 1.0(3σ), this is
equivalent to a yield loss of 0.135%. If a second CPK on another performance
is CPK2 = 2.0(6σ), then the total yield is highly dominated by the smaller
CPK, so also the total yield is very close to 3σ or the total loss is 0.135%, so
taking min (CPKi) is a good approximation for the total yield. However, if the
2nd CPK is also 1.0, then the total loss depends on correlation, and the total
loss may range from 0.135% to 0.27% (2x uncertainty)! In terms of sigma (or
CPK) the error is equivalent to approximately 10%.

Note: Such calculation could be done quite easily also for correlations different
from −1, 0 or +1, but also the measurement of correlation would have an
impact, because the correlation might be nonlinear and different for tail and
center regions of the distribution.

Of course, for more performances and specs this kind of error could
grow significantly. What helps is that often few CPKs dominate anyway, so
usually the systematic yield loss error is well below the maximum of 2×, like
only 10–20% (e.g., on the 0.135%). On the other hand, it could also happen
that especially in a well-optimized design the spec margins are quite well
balanced, so that not just one spec dominates. A good rule of thumb (look at
Table 5.2) for CPK > 1 (equivalent to >3σ or <0.17% loss) and only two
performances is this: If the second worst CPK is + 0.15 larger than min(CPK),
then the correlation effect is below 20% in terms of yield loss and smaller
than 0.06σ.
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Table 5.2 Total yield for two CPKs or WCDs and different correlation factors
Y1 CPK1 Y2 CPK2 Correlation Total Yield Comment
3σ 1 3σ 1 –1 2.781σ Worst-case
3σ 1 3σ 1 –0.5 2.781σ Very close to worst-case
3σ 1 3σ 1 0 2.784σ Close to worst-case
3σ 1 3σ 1 0.5 2.793σ Close to best case
3σ 1 3σ 1 1 3σ Best case, identical to

min(WCD) but usually too
optimistic

3σ 1 4σ 1.33 –1 2.994s Worst-case, not far from
best-case

3σ 1 4σ 1.33 0 2.994s Close to worst-case
3σ 1 4σ 1.33 1 3σ Best case

Note, all these errors are also present in many advanced methods like
worst-case distances (WCD = 3CPK for Gaussian distributions), because
they also only address the partial yield problem, not the total yield.

Several methods are known to address the problem, but many of them are
rather complex and usually unnecessarily compute-intensive such as principal
component analysis (PCA). A simpler general solution could look as follows:
The total yield is a function of the two partial yields Y 1 and Y 2 and the
correlation factor c, being between –1 and +1. The cases c = –1, 0, 1 are easy
to solve:

Y (c = 0) = Ynocor = Y1 · Y2 (5.12)

Y (c = 1) = Ybc = min(Y1, Y2)
Y (c = −1) = Ywc = max(0, Y1 + Y2 − 1)

Note: The min or max function would work for Y in sigma or e.g., in percent,
but in these equations better use the Y in absolute terms like Y = 0.997 (look
at Table 3.2 for the relation between sigma and percentage loss).

For arbitrary c, we can simply interpolate using a power function fit through
these three known combinations. The correlation c might be calculated as
Kendall’s tau (non-parametric correlation measure, see Wikipedia), or we
could also exploit the fact that our power fit allows an inversion (look at
Figure 5.7), so if we tighten the specs artificially till each partial yield is 90%,
we could get all partial and the total sample yields directly by counting, and
this way we could also calculate back to the correlation c. Note: If one method
gives c = –0.9 and another –0.95 this has usually not much effect on total Y (see
Table 5.1); and the results could be used for further internal error calculations.
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Example:
Y1 = Y2 = 90% => Y(1) = 90%,
Y(0) = 81%,Y(−1) = 80%,
e.g., Y(c = 0.5) gives 83.85% yield
Y1 = Y2 = 99% => Y(1) = 99%,Y(0) = 98.01%, Y(−1) = 98%,
e.g., c = 0.5 gives 98.15% yield

An extension to an arbitrary number of partial yields is possible too, but as
mentioned often one or two CPK’s dominate anyway—and only among these
the correlation has a certain impact (Table 5.3). If the difference in partial
yield is > 1σ, the error from correlation is typically below 0.006σ, which
means that even if we had this error multiple times, the overall impact would
be still small, compared to the sampling error (or other errors, see end of
Chapter 7). In addition, we could repeat the correlation calculation multiple
times till the overall best case and worst-case would be close enough together.
Table 5.3 gives some examples for higher dimensions and for 3σ, note that for
higher yields the impact of correlation becomes smaller (in terms of sigma),
which is a side effect of the

∫
e−x2

law between CPK and yield.

Note: It looks that by neglecting some high partial yield results we would
always be (a bit) too optimistic on the total yield, but actually there are also
effects leading to some pessimism. For instance, taking the minimum CPK (or
CGPK or WCD) creates some negative bias, if we deal with sample estimates
instead of true values. This is because the minimum function is nonlinear,
having a negative curvature.

So once we have calculated the total yield and “overall sigma,” we
could easily add the required correlation-dependent margins in sigma or
terms of (generalized) CPK to the partial yields. This way we can optimize

Table 5.3 Total yield for multiple CPK’s of 1 and different correlation factors (case c = −1
is close to 0)

Total Loss
Dimension Correlation CPK Error Comment
2 –1 0.927 2× Minimum CPK to get 1.0 overall is 1.068
2 1 1.000 0
3 –1 0.883 3× Minimum CPK to get 1.0 overall is 1.107
3 1 1.000 0
4 –1 0.850 4× Minimum CPK to get 1.0 overall is 1.133
4 1 1.000 0
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meaningfully not only on partial yield(s), but also on the total yield, without the
requirement for huge MC counts, and even for cases with strong correlations
and non-normal distributions.

5.5.2 Total CPK Estimation via Blocking Min

Simply using min(CPK) as estimate for the total yield can be quite inaccurate
because it ignores correlations. But instead of using the performance correla-
tions, we can also combine the MC data for different performances in another
way, by using the so-called “blocking min” approach. Remember, for the total
sample yield we simply check each MC sample if it fails at any of our specs,
and one fail is enough, i.e., the worst-case counts. On the other hand, we
know that using only pass-fail information leads to wide confidence intervals
as we simply remove information! So what about making a kind of “overall
spec-margin” approach, a kind of “analog” overall pass-fail in the style of the
CPK? Following the approach from [McConaghy] we can first normalize all
performances like zero means performance hits exactly the spec, <0 means
spec violation and >0 means pass, and the larger the spec margin the larger the
relative spec margin m. For instance, for a sample x and an upper spec limit
we could use m(x) = (USL – x)/σ. We can do this for one MC sample for each
spec, e.g., BW may give m = 0.5, PM gives m = 0.2, etc. Now we can apply
the min-function (giving the worst-case) in the same way as we do for total
yield for each MC sample, but as we have now a continuous measure we can
expect tighter confidence intervals, and we can better treat cases with no or
few fails! This way we nicely include all correlations in a very native way. In
[McConaghy] the authors claim that this method is reliable and trustable, but
actually there are also weaknesses: To treat all the different specs correctly,
we really need a correct normalization, but unfortunately using the standard
deviation sigma σ is only acceptable for near-normal data. Having long-tailed
data (like for a Student’s, Pareto or Cauchy distribution) it could happen that the
sample standard deviation becomes inconsistent and would never converge to
a finite value. This way one difficult performance may corrupt the whole yield
calculation.

Another problem is this: we get a new distribution from min(m) and this
distribution is quite non-normal even if the original MC data is normal,
so using the CPK for it would create further inaccuracies. [McConaghy]
proposes the use of kernel densities; Figure 5.8 gives an example of mod-
erate difficulty: One performance gives normal data, one is lognormal,
and both have the same partial yield (for specs set to 2.5 in Figure 5.8).
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Figure 5.8 Blocking-min histogram and KDE fit for one normal and one log-normal
distribution (using the standard deviation for normalization) leading to an overall difficult
to handle distribution.

The long tail of the lognormal distribution leads to a “kink”, but thanks to
the use of 16K points and well-set KDE bandwidth the fit looks meaningful.
However, in reality you are seldom in such a comfortable situation, because
having less points leads to much more noisy data and increasing the KDE
smoothing interval leads to a significant bias error at the spec value, where
just the “knee” is! In general, KDE is also not good at all for extrapolations,
and the error from potentially bad normalizations is not treated at all by
KDE. Please also look at Figure 5.18 for further KDE examples, and to
Figure 7.13 in chapter on k-sigma corners. The later shows the KDE appli-
cation for yield estimation in comparison to other methods like CPK, sample
yield, etc.

A better idea would be to use the CGPK (Chapter 4) for the total yield
estimation based on min(m), plus an improved normalization among the
different specs. A more robust, less bias-generating scale measure would be
using percentile differences like p97−p50 (p97 gives the point on the x-axis
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giving 97% yield or cdf = 0.97) instead of σ or to perform the scaling based
on pdf estimates. This way we can normalize at least almost correctly, so
that the “kink” would disappear almost, even for the sketched critical case
of long-tailed or asymmetric distributions, and based on that, we can indeed
obtain similar good results as by using the correlation method explained in
the previous subsection, even with lower effort.

A small advantage for using correlations is that they usually also help on
understanding the design and the trade-offs, but a correlation analysis takes
(slightly) more time (usually still much less than circuit simulations).

We could also combine the two methods, using the blocking min method
to get an estimate, then using the correlation method and include only as many
correlations till we get a certain yield accuracy. This way the designer could
also immediately see how important the correlations are and which of them
are relevant.

5.6 Design with Pictures Part Three

Let us now inspect a more difficult circuit example. A contribution analysis
is often helpful for design insights, especially doing it for mismatch effects,
because as a designer you can influence mismatch to some degree (more
than e.g., global process variations). Sometimes the results are more or less
trivial, e.g., the offset voltage is usually dominated by the input transistors,
but actually this was true only in older technologies. For instance, in bipolar
or BiCMOS you have transistors with high gain like 40 dB, so indeed the
2nd stage has only a very small impact, but in modern CMOS you are
in a more difficult situation, and you need to keep an eye on many more
transistors!

Of course, still some circuits are only critical in a few aspects, like for
a bandgap reference usually DC accuracy matters most, so it is easy to
overdesign for other characteristics (like by spending a lot of chip area). Also
for many special blocks a solid theory is available, like for sensitivities of
LC filters.

An interesting block is a comparator, because it is often equally critical in
several aspects like area (if you need many, like in an ADC), speed, accuracy,
kick-back, noise, metastability, etc. In particular, a latched comparator is also
very critical on layout parasitics too, so let us take such a block as DUT for
our advanced techniques like correlations, (mismatch) contribution and (later)
worst-case distances WCD and optimization.
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5.6.1 Latched Comparator Sensitivity Analysis

Some things are hard to demonstrate, e.g., in digital circuits mismatch often has
only a minor impact. And some circuits (like CMOS NAND) almost always
work—almost independent on sizing and technology. However, this is not
true for typical analog circuits; only a few very basic circuits like maybe a 10-
transistor OTA are uncritical, so let us also choose a more difficult comparator
topology, being not so easy to design by hand (Figure 5.9).

The components usually come by default already with MC models, but as
the comparator is critical to layout capacitances too (see [Geiger] for a detailed
offset analysis on a similar comparator), we have added rough parasitic esti-
mates with a certain sigma (like 10%) to the schematic. Now we can run a ran-
dom MC analysis, and a contribution analysis for sensitivities (on roughly 100
parameters) from the MC data, after it [Weber2015]. It is also possible to run a
sensitivity analysis by simple OFAT techniques (e.g., we can shift each param-
eter by Δx = 0.1σ to get S = Δy/Δx), so we can compare both methods.
Doing so in Figure 5.10 we can see some inaccuracy in the mismatch
contribution results; this is typical. Besides increasing the MC count, we will
present in Chapter 6 methods to improve the accuracy without more runtime
(e.g., using so-called low-discrepancy sampling LDS).

We can sort on sensitivities, and of course small variations in a performance
usually indicate low sensitivity and a stable design, whereas big variations may
indicate potential problems or point to instances which are just natively critical
(like input transistors are usually critical on offset).

To check for nonlinearities, we should look to Voffset and to |Voffset|, for
the latter we get non-normal data and we expect that the contribution analysis
becomes more difficult, because here at least a quadratic model needs to be
fit. We can also expect more difficulties for performances which are impacted
by many transistors or for those where the simulation accuracy is not perfect
(like effective input capacitance in our specific example).

Running 200 samples is usually acceptable for such small blocks; using
only 50 points would lead to a really inaccurate contribution result for |Voffset|
(indicated from the tool by r2 not available). For n = 200 we get a kind of
just acceptable accuracy for difficult measures (e. g. we get r2 = 0.9) and for
well-behaving outputs even quite an accurate fit (r2 > 0.99). In the latter, we
see that instances which should have identical contributions (e.g., input diff-
pair on offset) have at least very similar contributions (like 20% vs. 18%). The
results for hysteresis are similar (40% vs. 42%). Figure 5.10 shows a typical
instance-related output.
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Figure 5.10 Typical contribution table with instance-related output [Deepchip2014].

Once you inspected the instances (like N1, P2, R3, etc.) on their contribu-
tions, you can often also switch the hierarchy level in the environment to e.g.
the contributions on the (transistor) parameters itself. This allows to check
whether VTO or mobility or area w · l is more critical. In many cases designers
have a good feeling about this, but in current sources it might be not so clear if
VTO or mobility is more critical. Knowing such relations can help to improve
the circuit, by thinking instead of trial and error.

In Figure 5.11 an according typical table regarding the statistical parame-
ters is shown. In our circuit, we can e.g. observe that for hysteresis the VTO
matters much less than wl-parameter.

To get a good overview also in complex designs often several spreadsheet-
like filtering and sorting options are available.

Relating the contribution results to real circuit design problems, the most
interesting results are here probably on offset (because this is a key factor on
most comparator designs) and on hysteresis. The latter can be often made very
small, due to reset transistors. However, actually the hysteresis in our circuit
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Figure 5.11 Typical contribution result regarding statistical parameters [Deepchip2014].

was not that small, even under nominal conditions. To really find the root
cause we needed a mix of trial and error, thinking, manual sweep techniques
and contribution analysis: Interestingly the output NOR latch is introducing a
significant amount of hysteresis and that is the third amplifier stage! Already
this is a nice result, because typically offset and hysteresis are regarded as a
problem for the design of the first stages only! So the circuit has been extended
by two “dummy” MOS transistors around the output latch (Figure 5.9). This
gives us some control on adjusting the hysteresis.

Another interesting part is often the sensitivity to the parasitic capacitances
at the different nets, because this can serve as layout guidance. Here the results
were as expected, the first stage output net is most sensitive, and based on
that we may setup later a layout constraint (look at Chapter 10 for more about
constraints) for the net capacitance, to allow only a certain amount of mismatch
like 1% (Figure 5.12). Actually this result is no big surprise, because high-
impedance near-input nets are usually critical, but having numbers on how
much offset comes from transistor mismatch and how much from layout is
again very helpful.
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Note, that in other designs, like those without pre-amplifier in front of the
latch, might be much more sensitive to layout asymmetries than our a bit more
“tricky”, more complex comparator. One example of such more basic dynamic
comparator would be a pure so-called “strong-ARM” latch [Kobayashi].

If you want to get rid of contribution inaccuracies due to MC sam-
pling, we could also run an OFAT-based contribution analysis. Here the
contributions from the differential pair transistors are indeed really identical
(Figure 5.13). However, such OFAT analysis needs as many simulations as
statistical parameters; so if the circuit is more complex, the MC method is more
efficient.

Acorrelation analysis among the outputs is interesting too. We could check
if measures like offset and or delay (PSRR, hysteresis, etc.) and are correlated
or not. A good starting point is looking to scatter plots. Figure 5.14 shows that
hysteresis and offset are not much correlated, so we can hope that we are able
to optimize both quite independently.

The nominal performance is usually close to the MC histogram center or
close to the sample mean, but there are also exceptions, e.g., a stable op-amp
design has 90◦ phase-margin and but even best designs would hardly exceed
95◦, but of course “outliers” might be well below 60◦, so the scatter plots

Figure 5.13 OFAT-sweep based contribution result (sorted for Vhys).
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become quite unsymmetrical, and a histogram would be highly non-normal!
In our comparator a similar effect comes from defining the offset spec in a
nonlinear way as |Voffset| <3 mV, giving also highly skewed statistical data
(Figure 5.14, left histogram). Sometimes this non-normality is introduced a
bit artificially, but sometimes this even helps: For instance we can expect
no strong linear correlation of PSRR to linear offset, e.g., even for strong
physical correlation we can usually expect that a sample with –10 mV is as
bad on PSRR as one with +10 mV. So if we use |Voffset| as spec, instead of
V offset, we will find this type of correlations easier. However, there is no free
lunch because the mismatch contribution is more accurate on Voffset (get r2

in the order of 0.99) than on |Voffset| (delivers only about 0.9).
There are many more examples for nonlinear correlation, e.g., between

phase margin and overshoot (in a second order system you can even calcu-
late one from the other) or between rise time and bandwidth (the relation
BW3 dB = 0.35/tr is quite accurate for any filter order and type; it does not
matter much if you have a Butterworth or Chebyshev filter or if the filter is
RC, LC or transmission line based!) (Figure 5.15).

Figure 5.14 Correlation results.
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5.6.2 More on Covariance & Co.

This chapter started with many formulas, even with matrices. So let use
present here some more pictures to get a better understanding for correlations.
As mentioned, correlation is a difficult topic, so let us focus on the bi-
variate normal case. If you are not sure if such an analysis would fit,
then always plot your data, inspect scatter plots before doing blindly some
calculations.

In the bi-variate case we get pairs of samples, like X1, X2, X3, . . ., Xn
with X = (x, y). x might be the total amplifier offset voltage and y e.g.,
the offset in the 1st stage only, so it is meaningful to assume Gaussian
distributions. From the data we can directly calculate the estimates for the
variances, Vx and Vy, and for the covariance COV = Vxy. Maybe we find
a negative correlation, because one of our amplifier stages is inverting. So
we can put the calculate estimates into Σ, our covariance matrix. Note,
V would be here not in Volt or mV, but in V2 or mV2. For numerical
investigations it usually a good idea first to divide the data e.g., by 1 mV
to get numbers easier to handle, e.g., Vx = 4, Vy = 2, Vxy = –2. This would
be equivalent to standard deviations of 2 mV (total offset) and 1.414 mV
(1st stage).

Hred =
(

4 −2
−2 2

)

(5.13)

ρ =
σ12

σ1σ2
= −2/

√
8 = 0.707

Let us now really put example data into a scatter plot, and inspect how
everything is related. For this purpose you can download an Excel file corr.xls
at the River webpage. There we created uniform random variables, converted
them to Gaussian, and made a scatter plot. To let the example follow our
theoretical investigations close enough, the sample count is chosen to a quite
large value of n = 1000 (see Figure 5.16).

What we can see immediately is that there is no 100% correlation, just
because not only the first stage (y-axis) has an impact on the total offset
(x-axis). What we get is a point cloud, fitting to a rotated ellipse. Actually the
contours for constant pdf(x, y) are ellipses.

In the sheet we just programmed the 1st stage as normal distribution with
standard deviation σ =

√
2 (J2). For generating the total voltage we take –J2

and add a 2nd normal distribution with the same sigma, so actually also the
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remaining stages have the same standard deviation as the 1st stage. As result,
both parts have the same contribution, which is also indicated by r2 = 0.5. Note
that editing the spreadsheet the random values will be regenerated, and with
n = 1000, there is still significant uncertainty e.g., in the sample correlation
factor.

The angle of rotation of the ellipse depends on the scales, but e.g., with an
eigenvalue analysis we can calculate actually all the properties of the ellipse.
So what are the eigenvectors and eigenvalues? You may get them using a
math package or even from a Web page, the eigenvalues are all real due to
the symmetry of Σ. Generally, the eigenvalues of a matrix A are defined by
Ax = λx. This equation leads for a 2 × 2 matrix to a quadratic equation for λ
which can be solved analytically.

λ2 − λ(a11 + a22) + (a11 · a22 − a12 · a21) = 0

l = 3 ± √
(9 − (8 − 4)) = 3 ± √

5)

The value in calculating such ellipses is that these are directly related to
probabilities. They are a kind of equi-potential lines for the (two-dimensional)
pdf, and when looking to the area inside we get a direct relation to the yield. So
e.g., having the ellipses for different yield levels (in percent or sigma) gives
us direct feedback on how wide-spread the distribution is. The eigenvalues
and eigenvectors of Σ are:

λ1 = 0.7639320225: (0.618033988749895; 1)T

λ2 = 5.2360679775: (−1.618033988749895; 1)T

Note: In the appendix you can find a web-based tools for this task.

The rotation angle of the ellipse principal axis against the coordinate
system isα = arctan(1.618/1.0) = 58◦, which can be checked in Figure 5.17,
where we applied the same axis scales. The square-root of ratio of the
eigenvalues is 0.382, which also gives the ratio of the ellipse axis lengths,
so for the least and most sensitive direction.

The good thing is that even without these calculations, correlations can be
understood quite well. However, knowing these basic things quite well can also
help for other tasks. For instance, we can continue our analysis and calculate
the covariance error ellipses according to a certain confidence level. Note, in
our case the ellipses are not related to design yield, because we have no specs
in our example! Our calculation is similar to the confidence interval analysis
on variance or standard deviation, and this is related to the chi2 distribution
(see Section 3.5 on confidence intervals).
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Figure 5.17 Scatter plot with the principal axis overlaid.

5.7 Questions and Answers

1. Taking an extreme sample from a MC run, like the one with maximum
offset. Can we expect a strong correlation to the joint pdf?
Not really! Usually few variables dominate the circuit behavior for
a certain performance, and the others often have little impact. So
the many nonimportant variables (e.g., mismatch on power-down
transistors) will have an almost random setting in such extreme MC
sample!

2. How many points do we need to get a stable mismatch contribution
analysis?
This depends on circuit nonlinearity and number of statistical vari-
ables, so it is hard to give concrete numbers. This is because you are
typically most interested in finding e.g., the top-5 components with
major impact on performances. So accuracy depends also on how
much few variable dominate above others, and also nonlinearity has
an impact. For typical analog circuits you should use 500 points and
LDS (see Chapter 6). In many EDA implementations you could just let
the algorithm itself select the count automatically (e.g., based on r2).



5.7 Questions and Answers 249

3. Designers expect for good reasons that often there is a correlation
between offset and common-mode rejection. However, it comes out
that your tool does not report a significant correlation. What should
you do?
Best inspect the scatter plot directly. Tools usually report the linear
correlation factor only, but it is not unrealistic that we have low linear
correlation, but strong non-linear correlation. If the scatter plot has no
really shape or pattern, we probably have indeed no kind of correlation.
Look to Figure 5.3 for examples.

4. Could it happen that 3 statistical variables like a, b, c have no pair-wise
(mutual) correlation at all, but among all 3 there is 100% correlation?
Yes, statistically this is possible, and an indication how complex the
topic of correlation can be – and how much intuition can fail. One
consequence of this fact is that the correlation tables you get presented
are often better than analysis which ignore correlation, but still such
2D tables can be far from presenting a whole picture. Here is an
example: Have two standard uniform variables U1 and U2. Create
a 3rd variable U3 = (U1 + U2) mod 1. U3 is also a standard uniform
variable, and of course it is fully dependent on the other
two, but actually U1 vs. U2 and also U1 vs. U3 and U2
vs. U3 are not correlated at all. All mutual scatter plots
look like a 2D uniform box. In verilogA you can easily
run this example in many circuit simulators; or check
out corr.xls at the River webpage.

5. What would happen if we ran a contribution analysis on a transient
noise testbench?
The contribution analysis can only take into account the statistical
variables belonging to model and instance parameters, but not the
current and voltage noise sources. So it can only calculate and rank a
part of the variances! Mathematically you can see this from the quite
low r² values in such analysis, if 50% of the output voltage variation is
from pure electrical noise, the r² is limited to 0.5 (it might be lower due
to other limitations like nonlinearities which are not 100% correctly
modeled.

6. Kernel density estimation (KDE) is often used to perform a “non-
parametric” fit to a histogram, but actually there is some freedom in
selecting the kernel functions and the bandwidth. Only if we know that
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the data is e.g., Gaussian, we can really achieve good fits with fix rules.
Check out further literature and look at Figure 5.18. For distributions
with edges or multiple modes you cannot apply much smoothing. For
too less smoothing it can happen that the fit becomes bimodal although
the true distribution is unimodal!

7. We use often the offset voltage of an amplifier as example for a
contribution analysis, but of course there are actually many more
applications.The good basic feature is that we can reuse our MC results.
So if you can simulate something, you can get the contributions. Give
some more complex examples and alternatives.
Looking to op-amps, e.g. also the behavior of class-AB stages can be
significantly impacted by mismatch, also the operation of rail-to-rail
input stages. For OTA’s the gm could be impacted, which would e.g.
have an impact on filter time-constants and Q-factors. A more complex
example could be the current mismatch of a charge-pump, which
often impacts the spurious response of a PLL. Another classical is a
bandgap reference; here designers need to know where improvements
are needed, e.g. in the current mirrors, for the resistors or e.g. in the
loop amplifier. Some simulator have built-in mismatch analysis, so if
your performance is e.g. directly a DC or AC output current or voltage,
such analysis can be an alternative.

8. Imagine you transfer a circuit from an older technology to a new one,
like a FinFET process. What can we expect regarding the contribution
of each transistor?
New processes come typically with many more statistical variables
for each instance, so the sensitivity of each is harder to estimate, and
we require more simulation points. In a contribution analysis these
individual contributions are collected for each device instance, so the
results become more stable again. However, over-all definitely more
runtime is required. Also some accuracy loss is realistic, e.g. because
modeling and filtering becomes more difficult.
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Figure 5.18 Ideal data and MC data with n = 512 samples, and KDE fits with different
bandwidth settings.
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6
Advanced Sampling Methods

In this chapter, we discuss how we can speed-up yield verification, and MC in
general, by using advanced sampling techniques. For the user, the setup effort
for such techniques is very small. We will also discuss two further ideas:
one is using a multivariate model to estimate the circuit performance before
actually running the circuit simulations, and the other is complete “synthetic”
Monte-Carlo, so-called bootstrap.

Interestingly in school children learn about statistics without Monte-Carlo
and apply basic analytical calculus instead and use combinatorial approaches.

253
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Direct calculations are obviously much faster, so can we apply similar
techniques also to circuit design? Unfortunately a combinatorial approach
would lead to huge efforts, like requiring a corner analysis with thousands of
variables. We mentioned that one key point for Monte-Carlo success is that
it simply mimics the production variations, but actually in the simulation we
have even more access to the variables and also more control on setting them,
so we should exploit this! First we do this in a “static” way, i.e., we decide
upfront on which points to simulate.

A further extension is running a short “pilot” MC analysis to gather
information; and next we can construct a model to predict circuit performance
(so without further time-consuming circuit simulations). Now you may simply
take this response-model-based estimate for your design decisions or (much
better) you could double-check e.g., the pass-fail yield estimation by simply
running the circuit simulation with the model-selected points. For instance, we
could skip the simulations for samples far away from the spec limits! With the
executed simulations we can obtain an error estimate; and we can improve our
performance model further. If the model assumptions are valid, we can expect
a big speed-up, whereas if the assumptions are invalid such flow may fail
or it would go back from “intelligent” Monte-Carlo to simple Monte-Carlo!
To some degree such advanced statistical methods give us the best of both
worlds: MC robustness and flexibility, plus speed-up by applying iterative
techniques and avoiding unnecessary simulations. Actually such “sorted” MC
can be regarded already as a big step in the direction of dedicated high-yield
methods, which will be discussed in Chapter 7, but before this we explain
so-called bootstrap techniques, because bootstrap is often used in many such
advanced statistical algorithms.

For Further Reading:

Monte-Carlo is a very general approach, but also advanced methods become
more and more popular, so a lot of materials are available, especially in relation
to circuit design, but also search e.g., for design of experiments, discrepancy,
sampling, statistical blockade, bootstrap.

• Digital Nets and Sequences: Discrepancy Theory and Quasi–Monte
Carlo, J. Dick, F. Pillichshammer, 2014, Cambridge University Press.

• J. Jaffari and M.Anis, “On Efficient LHS-BasedYieldAnalysis ofAnalog
Circuits,” in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 1, pp. 159–163, Jan. 2011.
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• M. Sobol’, D. Asotsky, A. Kreinin, S. Kucherenko, “Construction and
Comparison of High-Dimensional Sobol’ Generators,” in Wilmott, John
Wiley & Sons, Ltd., no. 56, pp. 64–79, Nov 2011.

• A. Singhee and R. A. Rutenbar, “Why Quasi-Monte Carlo is Better Than
Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analy-
sis,” in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 11, pp. 1763–1776, Nov. 2010.

• A. Singhee and R. A. Rutenbar, “Statistical Blockade: A Novel Method
for Very Fast Monte Carlo Simulation of Rare Circuit Events, and its
Application,” 11th DATE Conference, March 10–14, 2007.

• Efficient Trimmed-sample Monte Carlo Methodology and Yield-aware
Design Flow for Analog Circuits, Chin-Cheng Kuo et al., DAC 2012,
June 3–7, 2012, San Francisco, California, USA.

6.1 When to Use What?

Table 6.1 gives an overview on the described statistical methods in both
Chapter 6 and 7, including hints when to use them. Note, if we state something
like “. . . limited to approximately 3σ” it does not mean that the algorithm will
completely fail above 3σ, but it is likely that there are e.g., more efficient

Table 6.1 Overview on basic and advanced statistical techniques for circuit design
Analysis/Methods Outcome Limitations Applications
MC & picking
worst sample

Very rough worst
sample + all usual
MC outputs

Not really accurate
& limited to
app. 3σ

Quick tweaks, but
double-check with further
MC analysis

MC and sample
yield
(optionally with
LDS or similar
methods)

Yield estimate
and confidence
interval + all
usual MC outputs

Time-consuming
for high yield
targets

Verify low yields,
creating a golden
reference if able to run
long MC analysis

Solve yield
integral with
numerical
integration

Accurate yield,
spec pass-fail
hyper planes

Extremely
time-consuming for
high dimensions
(>20)

Creating a golden
reference, no commercial
tool available

MC and CGPK

(or other CDF
fitting methods
like tail
modeling)

Yield estimate
and confidence
interval + all
usual MC outputs

Some extrapolation
error (e.g., too
pessimistic for
Gaussian data with
cuts)

Verify yields up to app.
5–6σ, creating a silver
reference with moderate
MC analysis

(Continued )
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Table 6.1 Continued
Analysis/Methods Outcome Limitations Applications
Bootstrap Generation of

synthetic MC
results, relying on
resampling with
replacement

Initial data must be
large enough. Error
increases for
estimates which
rely on few tail
samples (like high
yields, kurtosis)

Confidence interval
generation is the major
application, also often
used internally to check
accuracy of other
algorithms

(Mismatch)
Contribution
analysis

Get contribution
of each instance
(transistor,
resistor, block,
etc.) to output
performance
variations

With moderate MC
count only accurate
for the major
variables

Get insights to circuit
behavior, do it to identify
the most important
parameter to be
optimized, most useful
for mismatch, because
this can be easily tweaked
by designers (in opposite
to process behavior)

Sensitivity
analysis based
on OFAT

Get sensitivities
directly by
sweeping each
parameter
individually, e.g.,
by 1% or 1σ.

Correlations need
more complex
sweeps. Large
simulation effort if
many parameters
need to be
inspected.

Get accurate insights to
circuit behavior, do it to
identify parameter to be
optimized.

(Model-based)
Sorted MC for
yield
verification

Yield Accurate enough
for design phase &
limited to app.
3σ–5σ

Efficient yield
verification, with relaxed
accuracy or higher effort
also for higher sigma

(Model-based)
Sorted MC for
corner
generation

approximated
WC distance

Accurate enough
for design phase &
limited to app.
3σ–5σ

Approximate statistical
corner generation, with
relaxed accuracy or
higher effort also for
higher sigma)

Worst-case
distance WCD

Yield and
accurate WC
distance

Very accurate (no
sampling error) up
to high σ values
like 6–9, speed
limited for low σ

Sign-off verification for
high yield, statistical
corner generation for
optimization

Sigma-scaled
sampling SSS

Yield and
approximated
WC distance

Accurate enough
for design phase &
limited to app.
4–6σ,
recommended for
complex designs

Verification for high
yield, with relaxed
accuracy or higher effort
also for higher sigma
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Figure 6.1 Statistical design for different applications.

methods, so using it for 4σ makes probably only sense for small blocks where
the simulation times are short. In addition, real EDA tools often use a mix of
methods to get overall a higher speed-up which could enable the verification
of higher yields (Figures 6.1 and 6.2).

6.2 Advanced Monte-Carlo Sampling Schemes

Actually, this chapter is not really about classical Monte-Carlo! To find
out how a design behaves under parameter (statistical and/or deterministic)
changes, we can follow several different strategies of taking samples and
run simulations on them, like one-factor-at-time (OFAT), full-factorial or
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Figure 6.2 Overview on major sampling techniques.
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just random (classical MC), and each has its advantages and limitations.
Initially we wanted to keep that chapter much shorter, because in circuit design
environments the enablement of a certain sampling method is often just not
more than a mouse click in the usual Monte-Carlo setup window! However,
for good reasons, there is a mass of reports and resources available on this
topic, and most of them promote big accuracy benefits over classical random
Monte-Carlo.

The topic of sampling creates also a nice bridge between MC and corner
techniques, because both (and many other advanced techniques) are adressed
by so-called design of experiments methods (DoE). On the other hand, we
have to mention clearly, the advantages of pure static sampling methods
regarding variance reduction in real complex circuit designs are often quite
limited !

So what could be the reasons for that mismatch in research papers and
practice? And can we expect some further improvements in the future?

Up to now we assume that we run a MC analysis and look to the
result data, trying to do a “clever” analysis. If we run MC many times and
average, we can reduce statistical errors dramatically, so what about averaging
“up-front,” directly on the statistical parameters itself, instead on the MC
results?

When doing a MC analysis, we typically assume that we work like nature
does, e.g., that the samples are truly random. So internally pseudo-random
generators are used to generate almost ideal random sample points, and such
sets of random points are used in the MC simulations. In very old MC
environments, no good random number generators have been used, so that also
random MC was sometimes not as good as expected. However, those days are
gone, and modern pseudo-random number generators are almost perfect and
have huge period lengths like 219937 − 1 or higher. The only key difference
of pseudo-random versus ideal random sampling is that for pseudo-random,
we can define a seed value which makes the sequence reproducible (e.g., for
debugging) without need to store all points.

However, indeed we can often improve the convergence speed (variance
reduction) and the accuracy if we do not use purely random or pseudo-random
variables—switching from random-MC to quasi-MC!

Yield is an integral, and we mentioned already that integration by Rie-
mann’s sum has usually 1/n convergence (Simpson’s rule is often even much
faster, but is quite dependent on the smoothness of the integrand), instead
of 1/

√
n. The reason is that in random (or pseudo-random) methods often

some (random) crowding effects appear, so it can happen that the statistical
space is not as well covered as one might “expect”! The idea of quasi-MC
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sampling methods is to improve the coverage by a kind of “optimum spread-
ing” technique. Such point sets are a topic in design of experiments (DOE);
and in this context often the point sets are called a “design”. So math can help
in testbench design as well! To avoid confusions we prefer the term point set
over “design”.

Nonrandom sampling schemes can lead to more stable estimates, e.g.,
for sample mean and standard deviation of the performances or for the
correlations in a multivariate analysis! And vice-versa, for the same level
of accuracy you need less sampling points, less simulations, so you are able
to make design decisions in shorter time! Of course, there is no free lunch
and we will also discuss in which cases the speed-up from such advanced
“quasi-random,” more “well-spread” sampling schemes is limited. For getting
literature, search e.g., for low-discrepancy sampling, phrases like “optimum
spreading” are inventions by marketing people, but it indicates the idea
quite nice.

Note:An alternative to just sampling the s-dimensional statistical space would
be a direct search. For smooth problems, the effort grows often only according
to s² (and not exponentially).

Monte-Carlo Tricks like “Averaging Upfront”? If we ask someone to
do a sketch for a uniform distribution, we will probably get a histogram
which looks like a rectangular box. However, what you get by sampling
from a uniform distribution is different, really different (look at Figure 3.1,
which compares different samples)! So why using such random samples?
Why not “ideal” numbers like equally-spaced samples. This idea, also
arising from solving integration problems, will lead us later to so-called
low-discrepancy sampling LDS!

However, also other improvements are possible: If we take such “bad”
truly random samples, we could still improve with another little trick:
For instance, an ideal amplifier should have zero offset, so if the sample
points have zero mean, we should get this in simulation too. However,
unfortunately i.i.d. random samples do not have zero mean, usually. So
we could simply shift our random numbers by this amount to correct
the error on mean! Cool? We could also scale our point set to get the
correct standard deviation! These ideas are very similar to so-called latin
hypercube sampling, which is even a bit more tricky.

However, with all such tricks you will not solve all problems, and the
improvements will become smaller and smaller the more dimensions we
have, and the more nonlinear our circuit performances become! This one
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works perfect in one dimension and also two dimensions (See Figure 6.13),
but at some point (depending on algorithm details, nonlinearity, number
of points and dimensions) the problems start again. Users have to be aware
of this! Luckily, in many cases such “tricks” work also in circuit design,
but not always? and sometimes there are further risk, not present in slow
random methods.

6.2.1 Cartesian Grid Sampling

A random sampler gives only a 1/
√

n integration convergence. A clearly better
set of points for one-dimensional integration is an equidistant set, as for
integration with rectangular or trapezoidal rule giving 1/n convergence. So far
so easy, but interestingly a simple rectangular grid—similar to a typical full-
factorial corner analysis—is not optimum at all for two dimensions already!
Figure 6.3 is showing why: A simple rectangular grid aligned with the axis
variables (Cartesian or regular grid or lattice) is good for simplifying algo-
rithms like reducing memory consumption, applying fast Fourier transform,
etc., but it is not “covering well” difficult functions, and only for slowly varying
functions (maybe like VDD or T over a short range) such grid approach is fine.
Amazingly a random grid can be clearly better, the only pity is that a random
approach cannot give a guarantee, and indeed with so-called quasi-random
numbers we can further improve.

Note that this “special” advantage of random sampling is quite substantial,
and if we think a bit more it will be not so much a surprise anymore: In the grid
scheme we treat each variable in the same way, like in a chessboard of 8 × 8
points. However, in real designs often few variables dominate, and having
only 8 distinct values instead of 64 for such important variables is a clear
disadvantage of the grid against random sampling! Actually the 1/n speed in
1D went down to 1/

√
n due to the square-root-law chessboard relationship,

which means in 2D the rectangular rule gives no guarantee on being faster than
random MC anymore! In 3D or higher dimensions s the slowdown will even
go on further according to 1/n1/s. This is called “the curse of dimensionality”,
which appears in many facets. The situation is not only critical for simple
grids, but also if we e.g., inspect multivariate Gaussian distributions. With
non-Cartesian grids we can improve, sometimes significantly, sometimes only
a bit, but general limitations remain for high dimensions!

In special test cases a simple grid approach can even fail almost completely
(Figure 6.4).
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Figure 6.3 2D sampling by using a rectangular grid vs. random numbers. x1 is an important
parameter, and x2 is a noncritical one.

We already noticed that the gaps in 2D grids become much larger than
in one dimension; we have only

√
n points to cover each variable, instead

of n (like 8 versus 64). And in higher dimensions everything would become
worse, e.g., in 8 dimensions and with 10,000 points we would only get roughly
3 points in each dimension! This problem of dimensionality can be reduced by
using other sampling schemes, but it cannot be 100% solved for nonrandom
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Figure 6.4 2D integration on special functions can fail completely while using a rectangular
grid.

schemes. So high-dimensional problems remain difficult, whatever fancy
tricks or mature math algorithms you apply!

Figure 6.5 shows the convergence of random MC sampling vs. grid
sampling in one dimension; as expected random is much slower. However, if
we use the grid approach on our MC introduction example on the unit circle
(Figure 3.2), we see that already in two dimensions the grid method loses its
speed advantage compared to random (Figure 6.6)!

Figure 6.5 Integration speed for pure random MC (any dimension) and for grid sampling
(d = 1 only).
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Figure 6.6 Integration speed slowdown for grid sampling in two dimensions.

A nice method extension, which could relax some problems at least, is
so-called jittered sampling (JS). In this we use still the grid of hyperboxes,
but inside each one we put the samples randomly (Figure 6.7). Something
similar is also done usually in the even more popular latin hypercube sampling
(Figure 6.8).

6.2.2 Latin Hypercube Sampling LHS

A simple orthogonal grid approach is limited, and a pure random approach
has slow general convergence. What about a mix? One well-known quasi-MC
sampling scheme doing so is latin hypercube sampling (LHS), sometimes also

Figure 6.7 Random sampling, grid sampling, and jittered sampling (grid-based stratification).
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Figure 6.8 Random sampling and three different kinds of stratified sampling.

called n-rooks random sampling (which is actually the better name!). The idea
is to do random sampling but with making sure that the points give somewhat
less gaps and crowdings as pure random sampling. In LHS this is achieved by
placing the points similar to n rooks on a chessboard which do not threaten
each other, so in each row and column we have one rook, but only one! Such
LHS configuration can be directly used instead of a random set (centered LHS)
or we can apply also a random jitter inside each cell (randomized or jittered
LHS).

Note: Here in the book we usually present formulas or pic-
tures from non-jittered LHS, but in simulators often jittering
is applied. The differences are usually minor. At the River
webpage you can download a spreadsheet example lhs.xls
with examples of jittered and non-jittered LHS data and plots.

If we would take samples from a pure random uniform statistical variable,
and if we split its range into equal histogram bins, it could happen that in
some bins just more (or less) samples fall than into others. This is causing
gaps and crowdings, and this causes the slow 1/

√
n convergence. At least to

some degree, LHS is avoiding this kind of bad coverage by using a grid of n
intervals for each variable. This is the trick: For 2D and e.g., n = 64 we get
only 8 boxes in a Cartesian grid, but in LHS we divide just each variable in n
boxes—avoiding gaps in each variable pretty well.

As mentioned, MC is basically integration, but integration by rectangular
rule is much faster, and with LHS we just make MC a bit closer to a grid
and faster on convergence. LHS guarantees indeed quite a good distribution
within each dimension individually, and e.g., simple statistics like the sample
mean often converge much faster than in random MC. However, it comes out
that such LHS or n-rooks scheme is unfortunately far too simple to speed up
also on difficult test cases, with many dimensions, strong nonlinearities and



266 Advanced Sampling Methods

Figure 6.9 Two 10-points-LHS sets (non-jittered) in 2D with quite different 2D coverage
(no randomization inside boxes for easier comparison).

correlations. Figure 6.9 is showing why: two different two-dimensional LHS
point sets are shown, but LHS set b is not covering well the 2D space; only
for each individual 1D dimensions, both sets are good by construction.

For these reasons, LHS may give a good speed-up for simple cases, like if
in a filter the cutoff frequency is mainly impacted by Rsheet, but not in many
other more complex circuit design cases.

Asecond LHS problem is this: From the algorithm, LHS is based on a kind
of prebinned random number generator, and only a full set of latin hypercube
n points gives really the beneficial, somewhat better coverage. If we would
stop our simulations earlier (See subsection 3.6.3 on MC auto-stop), then the
equal binning structure would get lost, and we would have no speed-up against
full random MC anymore. Also if we would decide that we need more MC
points, LHS runs into problems, because an extension of the grid with re-use
of the existing MC results becomes difficult.

Figure 6.10 shows this aspect of LHS behavior: the right plot shows that
after executing all 512 points the LHS error is indeed significantly smaller
(small y-variations in multiple runs), but for a stop after half of the points
the advantage is much smaller. The left plot shows the random sampling
behavior: Due to the multiplication by

√
n the error envelope is almost

constant, according to the usual 1/
√

n convergence, as expected. Comparing
Figure 6.10a and b, it looks that if stopping at n = 512 LHS is indeed much
better (like >90% less variations), this is mainly due to the very simple test
case in which just one statistical variable is dominating (so it is basically a
1D problem). LHS is a near-random scheme which provides well-distributed
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Figure 6.10 Error of the mean (multiplied by
√

n) for random and LHS.

samples for each individual statistical variable, but LHS is not good enough in
multi-dimensional problems.

Note: If we apply jitter sampling on top of the LH set, the speed-up show in
Figure 6.10 would slightly decrease, but we get also one advantage: Without
jitter, the most extreme point in the interval (0,1) is just defined by 1/(n + 1),
so we never get a 6σ sample in a 1D 100-point LH set. However, with jitter
this problem disappears like in random MC.

In a bad LHS implementation, we may even get biased LHS results if
stopping early. Modern LHS algorithms feature internal randomizations to
avoid such bias, but some limitations exist and in many benchmarks LHS
has been outperformed by so-called low-discrepancy sampling (LDS) (e.g.,
[Kuche2011]). At least in principle LDS solves indeed some problems which
still exist in LHS: First, LHS results have still a statistical nature, so at best
we only achieve a variance reduction but we cannot tell anything about hard
error bounds. Second, actually LHS is a one-dimensional LDS method, but
not more; with LDS we have an option translating the benefits of LHS also to
(somewhat) higher-dimensional problems.

Simple LHS is often indeed inferior to LDS, but also optimized LHS
algorithms exist [Affair2011, Joseph2008], partially picking up LDS ideas,
sometimes going even well beyond that. Also note that LDS is a very general
term (see next subsections), and speeific LDS algorithms can differ a lot, in
how they work (e.g., optimization vs construction-based), and in which level
of “quality” they achieve [Lemieux2008]. The simplest approach to improve
LHS, LDS, or any sampling scheme would be to generate many point sets
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and to filter-out all the bad sets, like those having significant (linear and
quadratic) correlations or showing patterns or gaps. However, in many
dimensions this would be an extremely wasteful approach.

One aspect in multi-dimensional sets is the correlation between the
different variables. As we know, correlation means reduced variance, so two
heavily correlated variables behave almost like only one statistical variable,
i.e., the effective dimension and the coverage of the statistical space gets
reduced. For ideal random variables or LHS we should have no correlation,
because all dimensions are independent, but for too low n and large s we can
have quite large correlations just by chance, in our point current set.

One further negative side-effect of correlation is this: If we add two
independent standard normal variantes, we get again a normal distribution,
just with sigma of

√
2. However, in case of significant correlations we get a

wrong value for the standard variation, so overall we could get MC results
with significant errors in variance and regarding CPK.

On the other hand, correlations are only just one factor that matters;
knowing that the sample standard deviation is correct does not make sure
that yield integration is correct or that the statistical space is covered well. For
this, the so-called discrepancy D matters.

6.2.3 Discrepancy of Point Sets

We have seen that for difficult, highly varying functions the integration error
becomes large, but the function and its variation V is related to our circuit
analysis, and often we cannot change it. The second factor regarding (absolute)
integration error ΔI is related to the sampling itself. This second key factor
is the so-called discrepancy D; the theoretical basis for this is the Koksma-
Hlawka (HK) inequality [Dick2014], giving an integration error bound.

ΔI =
∣
∣
∣
∣

∫

fdx − 1/n ·
∑

f

∣
∣
∣
∣ ≤ D(x1, x2 . . . xn) · VHK(f) (6.1)

Note: The concept of total variation V over a certain interval is easy to capture
in one dimension by integrating |df /dx|, but for higher dimensions many
integration paths are possible, and multiple V definitions exist. VHK stands
for variation “in the sense of Hardy and Krause.” One problem is that for
some important functions VHK is not bounded, so the error limit provided
by Equation (6.1) would become useless. Luckily this does not automatically
mean that the error would become indeed infinite, but it is one factor which
could reduce the advantage of advanced MC sampling schemes. Actually,
other variation definitions exists (e.g., by Vitali, Frechet, or Arzela), but they
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are often harder to connect with integration error bounds and discrepancy,
or they may give less tight bounds (similar to Gaussian approximation vs.
Chebycev limit). Also note that all sample values have the same weight in the
summation, like in the sample yield evaluation or for simple integration by
rectangular rule. So in theory by introducing some weighting we may improve
further—an idea similar to techniques we discuss later (e.g., importance
sampling or sigma-scaled sampling).

It is quite intuitive that redundant simulations, so crowdings in the
statistical space, should be avoided; also gaps, because they would lead to
bad verification coverage. So how can we describe this mathematically? As
we can generate any distribution (like a normal Gaussian) from a standard
uniform U01 via transformation (using the inverse cdf, so-called percentile
function), people defined also the discrepancy D for simplicity on uniform
numbers between 0 and 1. Other cases can be derived from that easily.

In such unit box of dimension s (we use s to avoid confusions with
discrepancy D), the volume is just unity, so the ideal point density (points
per “volume” in 3D) would be 1/n. If we would check the point density of
a pure random set generated by a an ideal standard uniform random number
generator, we would find that only for the whole (0,1)s-box we trivially and
surely get the desired density, but doing the density check for subregions we
would find random deviations! And the worst-case deviation is commonly
defined as discrepancy D. So for an “optimum spread” point set we want such
homogeneity for all kinds of sub-boxes B = (ai,bi)s.

D = max|(points in B)/n − Volume(B)|
= 1/n · max|points in B − n · Volume(B)| (6.2)

Note: Like there are different measures for variation V, there are also different
ones for discrepancy D. One other popular definition is to restrict the boxes
to (0, ai)s, so that we always start at the origin (so-called star discrepancy),
or instead of rectangles (boxes) we may also use circles (spheres). Also the
boundary treatment can be different, e.g., 0.999 and 0.001 are highly separated
if we only have the uniform distribution itself in mind, but if we apply a variable
transformation this may change. Also for applying a transformation according
to the inverse normal cdf it makes a difference if we inspect D e.g., in (0,1)
or [0,1]. Star discrepancy is often used because it is just easier to handle, but
the general discrepancy theory even deals with many more topics related to
the problem of discreteness (like rounding errors, sets for color coding, etc.)
(Figure 6.11).
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Figure 6.11 Sketch for box-based discrepancy evaluations on 2D point sets.

In one dimension s = 1 we can quite easily calculate D: Taking a set with
n = 4, like 0.2, 0.4, 0.6, 0.8, we could set our testing “box” B just in a “gap”
with “volume” of almost 0.2, so the number of points in B would be still zero
and we get D = |0–4 · 0.2|/4 = 0.2. Is this the worst-case? We could also
check the box from 0.2 to 0.8, and we get |4–4 · 0.6|/4 = 0.4. Indeed the best
4-element set would be 0.125, 0.375, 0.625, 0.875 with D = 1/4 = 0.25. So
such an equidistant set can have a discrepancy in the order of 1/n, which is an
excellent low value; and for large n we can reduce it to a value as small as we
want. This also means (acc. to Equation (6.1)) that we can make the worst-case
integration error as small as we want. Real random numbers are much worse
on D (e.g., 6× larger in one dimension). Unfortunately, checking D in high
dimensions is much more difficult than in one dimension, because we have
to inspect all point sub-boxes with to find the one with highest discrepancy.
Already in 2D this is a difficult task for typical n like 500. For large n only
iterative algorithms are practical, and so their runtime depends on accuracy
too [Thiemard2001].

Also the construction of sets with low discrepancy is difficult in high
dimensions (but possible). In principle, for each value of n in the s-dimensional
hypercube, there exists a point set with the lowest discrepancy of all point sets.
That discrepancy must be larger than the so-called Roth bound. This means
that LDS is often better than random, but especially for large s the accuracy
benefit and the resulting speed-up is limited.

Roth bound: n · D8 ≥ Cs · (log n)(s−1)/2 (6.3)
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In conclusion, using sets with low discrepancy D would be helpful for
improvements on integration by Monte-Carlo. On the other hand, notice that
also D is only one criterion with impact on accuracy, and it is a worst-case
criterion. The positive aspect is that Equation (6.1) gives a stronger limit
than the pure statistical limits for random sampling, but note two sets might
be similar on the worst-case discrepancy and one might be still better in
average (e.g., if applied to a bigger benchmark set) on integration accuracy.
Figure 6.12 shows two sets of similar 1D discrepancy: a random set on the
right (with its typical crowdings) and a set created by so-called Poisson disk
sampling on the left. The worst 1D gaps are marked with yellow lines, and
they are not really pronounced, but of course the more homogeneous Poisson
set gives typically more accurate estimations. Note that of course also the 2D
discrepancy is different, but that is very hard to check due to exponentially
rising calculation effort. Poisson sampling makes sure that a minimum distance
to the nearest neighbor is guaranteed (so we observe no crowdings!), but the
creation is based on a random process still (e.g., based on “dart throwing”).
One problem in Poisson set creation is that you can easily manage to guarantee
a minimum neighboring distance (e.g., by ignoring points which violate this

Figure 6.12 Poisson and random set of similar 1D discrepancy, but obviously different
homogeneity and 2D discrepancy.
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condition), but you cannot guarantee good coverage of the whole (0,1)s box
for a given number of points n, so the sampling has to stop once the coverage
is reached, and you just have to use that number of points you have at that
point in time.

6.2.4 Low-Discrepancy Sampling LDS

LHS is still quite random; with LDS we go further away from randomness,
and also instead of MC we should talk about quasi-MC. The core idea is
to minimize the discrepancy of point sets even further, by construction!
Within some limitations, LDS is very successful, and one reason for the many
literature available on quasi-random numbers is that they are not only used for
Monte-Carlo. Other applications include sampling of 2D or 3D pictures and
scenes, design of experiments, and optimization.Also nature “invented” kinds
off “optimum well-spread” sampling: The retina of an eye is not a rectangular
grid of light receptors (like in a CCD chip of a digital camera), and it is also not
uniform random. It is something in between; and this helps to get both a good
resolution and almost no artifacts (like Moiré patterns). The retina pattern is
similar to so-called Poisson sets. Also when looking to throwing darts (or
making a snapshot of raindrops falling down to earth) the assumption of a true
uniform random distribution is not the best one, because the finite diameter
of the darts prevents too tight neighboring positions (or at least lower the
probability for this) and the events are not independent if we do not remove
previously thrown darts. Figure 6.13 compare a uniform random point set with
LHS and LDS. Note, that LHS is not much different from random, already in
2D examples! In the scatter plots we marked the coverage “gaps” in yellow,
good LDS sequences have almost no gaps and crowdings.

Figure 6.13 Gaussian 2D scatter plots from different sampling schemes (n = 512: random,
LHS, LDS).
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In one dimension we know the optimum sequence, so what about two
dimensions? In two dimensions some near-optimum discrepancy sets are
indeed already known (look at Figures 6.14 and 6.15), and they look like
(slightly shifted) lattices or crystals. Note that in higher dimensions we
can define “distances” or “volumes” in different ways, so also the defini-
tion of discrepancy becomes more complex, i.e., different papers may treat
discrepancy in different ways and also what an “optimum” discrepancy is
becomes a difficult task. In 1Δ the gap is just Δx = x2 – x1, but in higher
dimensions we can measure the length of Δx using different norms; the

Figure 6.14 Optimum 2D grids for L∞ and L1 discrepancy, n = 33 [van Dam].

Figure 6.15 L2-near-optimum grid for n = 17 [van Dam].
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Eucledian norm l2 = Δx2 + Δy2 is only one option among others. Adding
the magnitudes, so setting the exponent equal to one, gives the so-called
Manhattan norm (adding each co-coordinate), and using a large exponent
would give the largest entry the biggest contribution, leading ultimately to
l = max(|Δx|, |Δy|).

One measure that is helpful too is entropy; like in nature optimizing on
entropy leads to a state in which the points have a certain minimum distance,
thus keeping the potential energy low.

Do you feel discrepancy is something difficult? Yes, it is. What we
have marked in Figure 6.12 are the widest gaps in the projections to the
axis. So for a uniform distribution, to get good coverage we should place
the samples in a way that makes the largest uncovered space as small as
possible. This means we minimize the so-called dispersion δ, which is
somewhat different to discrepancy δ. Only low discrepancy guarantees
low integration errors, low d alone does not! However, for luck, low
discrepancy always implies low dispersion (but not vice versa). Note that
the HK error bound gives us directly the sampling error of the empirical
cdf to the true integral.

Another option to look how “similar” distributions are, and also at
“disorder” in general, is using the Kullback-Leibler divergence and the
(relative) entropy! Optimizing on entropy (follows Σ p log p) gives also
lattice-like point sets, and entropy has also a strong link to other statistical
concepts such as maximum likelihood estimation (MLE). Interestingly
entropy is also strongly related to the so-called minimum spanning tree
MST, which provides the shortest connection of all points. If the MST
is long and has small variations, we reach a kind of equivalent to an
energy or entropy optimum! The MST is luckily easier to calculate then
the discrepancy, so it is very practical. At the chapter intro we presented
a scatter plot from a near optimum 2D point set, generated by the use of
the golden ratio, and giving a near-optimum MST!
For graphical applications also other criteria are popular based on spectral
characteristics. Based on that we would e.g., find that a so-called Poisson
spectrum contains more high-frequency parts (so-called blue noise) than
pure random sets.

Indeed Fourier transform is not only good for complex number
calculations and for filter design; it is also about sampling, patterns and
reconstruction of signals, so there is a strong connection to statistics too
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[Pilleboue]! For instance a translation of Fourier series (using sine and
cosine) to discrete series is the so-called Walsh series which can help
to construct space-filling point sets. In circuit design and Monte-Carlo
the link to Fourier series is not so obvious, but LDS is also used in ray
tracing, picture data construction, rendering and compression. In normal
ADC design we use ideal (non-random) uniform sampling and linear filters
for reconstruction. Clever statisticians extend this to advanced sampling
schemes with less problems on aliasing, ringing, etc.

Using Fourier analysis results we can also explain MC convergence
rates nicely, like the 1/

√
N behavior for random MC or the improvements

with LDS. For instance, accurate yield integration is often very difficult
because the indicator function (giving 1 for a spec pass and 0 for a
fail) is non-smooth and therefore difficult to reconstruct with use of few
sample points. This is especially true if the circuit performance includes
many difficult functions (equivalent to high bandwidth signals), because
sampling all of them accurately is a very hard problem in general.

Anative extension beyond random and quasi-random sampling would
be adaptive sampling by putting more samples in the critical regions
(where the integrand changes mostly), and indeed we do so in the chapter
on high-yield estimation. Also other techniques are possible and quite
similar: For instance, in MC integration we give each pass/fail result
the same “weight” 1/N, but advanced integration methods like Gauss
integration can obtain faster convergence on smooth integrands by using
non-constant weights. So there is no stop in aiming for a faster, more
intelligent MC!

The discrepancy of pure random sets (or sequence, see next subsection))
is quite large (Equation (6.4)), and if a set follows Equation (6.5) it is called
a low-discrepancy set (or sequence).

For random: D∞ = O(
√

[1/n · log(log n)]) (6.4)

For LDS: D∞ = O(1/n · [log n]s) (6.5)

Some things should be noted:

• Defining LDS by Equation (6.5) does not tell anything about whether it is
random or deterministic; indeed simple LDS generators are not random
anymore at all, but others indeed include some randomization.
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• Note that for random sampling the dimension s has no impact, but for LDS
(and LHS) it does have one (although not as strong as for a simple grid).

• Unfortunately, Equation (6.5) is only about the limit behavior for large
n, it makes no statement about accuracy for low or moderate counts.

• For the simple Cartesian grid D depends also on s, for s = 1 we can
achieve a discrepancy in order of 1/n, but for s = 2 we are at the same
level as random MC (order 1/

√
n). Generally D follows 1/n(0.5+0.5/s).

If you know up-front, that your quasi-MC analysis requires 100 points, then we
know already a method for optimum 1D discrepancy: Just use an equidistant
set of points (which is also a 1D non-jittered LHS)! However, also using
also for the second statistical variable the same 1D-optimum set is very bad
(Figure 6.16 showing a “collapsing” 2D point set, composed from two identical
equidistant set, plus transformation to a normal distribution); it is even worse
than the simple Cartesian grid; we would get no correct statistics for the

Figure 6.16 64-points Gaussian 1D set and an attempt to use it in 2D.
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difference X2 − X1, so it would not work for designs in which correlations
are significant!

Note: Figure 6.16 could be a random LHS as well, similar to Figure 6.9, but
for luck such cases are extremely seldom for realistic run counts like n > 50.
However, in principle this would the (almost the only) disadvantage of simple
non-jittered random LHS; we could really have full correlation c = 1, which
would be less likely in pure random sampling.

Already in the 1950s these problems have been discussed, and one nice
LDS solution comes with the use of different prime numbers in each dimension
(Halton set). One drawback is that this does not fully avoid “patterns” in higher
dimensions, and a full coverage also requires a certain minimum number of
points, just because in high dimensions also the prime numbers become larger
and larger. So-called nets or lattices are an alternative approach, but another
problem, and a more general one is e.g., this: If we want to cover the whole
s-dimensional space, we should have at least in each dimension a point
below and above the mean (so-called binning optimality), and this also in
combination with all the other (s − 1) variables. However, as the number of
combinations is 2s, we actually need this as “minimum” number of points
n = nmin = 2s at least if we want to be “prepared” for truly full s-
dimensional behavior (our section with questions and answer give a short
example). Again, in this context even pure random MC with its typical 1/

√
n

accuracy dependence looks not so bad anymore. In Figure 6.17 we observe
good space filling for the first dimensions using the Halton sequence, but at
higher dimensions we see a strong degradation in 2D space filling for this

Figure 6.17 Halton set based on prime numbers in two dimensions.
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quite old method. Modern methods behave better, but actually the minimum
number of points to achieve a certain discrepancy level increases roughly
linearly with the number of dimensions.

What helps is that usually not so many variables impact each different per-
formance, just by intentional circuit construction, where dedicated elements
have dedicated functions (like R and C set the filter bandwidth, but hopefully
not many other elements). So it could make much more sense to optimize not
so much the full s-dimensional discrepancy, but the discrepancy in low-order
subspaces. This could often work better in many realistic test cases, but of
course the HK error limit would not be fully applicable anymore and also
finding a construction method becomes harder.

Hint: At the River webpage you can download a spreadsheet
example quasi random.xls with examples of Halton, Faure and
other sampling methods. Inspecting these sets you can out
quickly for yourself how much you can trust the different
schemes.

Modern LDS generators use several different advanced techniques to
avoid patterns and to maintain a speed-up over random-MC [Lemieux2008].
However, as mentioned theoretical limits exist and also LDS suffers on
the problem of dimensionality, so it could happen that in some design
cases LDS offers a clear speed-up like 4×, whereas in others (maybe
just another performance of the same circuit even) any benefit is hard to
measure.

An example for an LDS failure? We mentioned that a Cartesian grid
can be a bad approach, even worse than random MC, but isn’t the almost
perfect LDS set of Figure 6.15 much different? If we rotate the set (being
a kind of lattice) a bit we would run into the very similar problems as for a
Cartesian grid! The only advantage is that our design would be quite special,
e.g., being sensitive to a certain linear combination of random variables. You
can see that in the worst-case also in LDS almost nothing is guaranteed.
Actually minimum angle dependency would favor more randomized schemes
like Poisson disk sampling, etc., instead of pure optimization on discrepancy
(Figure 6.18). In [MacCalman2012] similar angle investigations has been
made regarding LHS, confirming Figure 6.18b also for (linear) model
parameter estimations.

In very rare cases you might be even worse than with pure random MC.
In graphical rendering applications, there are several examples. Here also so-
called aliasing effects are critical; e.g., if rendering a diagonal chessboard. If
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Figure 6.18 1D-discrepancy of different point sets vs. angle.

Figure 6.19 Modern, but unscrambled LDS generator in higher dimensions (7 vs. 8 and 512
points).

optimizing too much on D, we end up in visible artifacts, and to avoid them
other criteria need to be included for the sample generation.

Fortunately, not many circuit problems have so strong variations as such
chessboard examples, but even for realistic circuit design cases some general
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Figure 6.20 Sum vs. difference of uniform LDS samples may show bad discrepancy in
x2-direction.

LDS problems exist: in Figure 6.20a and b we built the sum and the difference
of two dimensions (Figure 6.19) and get triangular distributed data, and this
has a clearly non-optimum discrepancy! Actually the gaps increase similarly
to Cartesian grid sampling, like we sample not with a density according to 1/n
(as in one dimension or with LHS in each dimension) but only as 1/

√
n.

In a real circuit we have usually normal distributions, so if we convert
the uniform LDS points to normal variables, and build the difference—as
a simple differential pair would do—then this difference should be also a
normal variable. Therefore, we could simply transform it back to uniform and
check again the 1D discrepancy! We would typically find that this discrepancy
is again worse than the 1D discrepancy of the original, individual quasi-
random numbers for each dimension itself! So we usually can only “hope”
that this degradation is moderate, and that we are better than a pure random
sampler. Modern LDS generators have indeed clever algorithms to avoid such
problems, at least as much as possible. This is a complex topic because several
criteria count, e.g., low correlation correlates with low discrepancy, but only
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Figure 6.21 Multi-class LDS set, suitable for error calculations or extending the MC run.

weakly, i.e., low correlation does not guarantee low discrepancy and vice versa
[Joseph]. Many reports only investigate on uniform sets, but some problems
(like tail characteristics) are even much more critical when looking to Gaussian
data than to the raw uniform data.

In addition, some things will not work well with quasi-MC in general,
e.g., accuracy checks are more difficult, like splitting the MC results into
two parts and doing a cross-correlation analysis for variance investigations.
This is because quasi-random numbers are not random (also not even pseudo-
random) and they would not pass some tests for randomness—they are just
“too good.” To be able to do splitting and cross-correlation you would need
multi-class or sliced LDS sets, having low discrepancy inside each class (or
slice), and aligning all together in a big LDS set. In other application domains
(like imaging or LHS generation with the inclusion of discrete variables) such
techniques have been already introduced, but again it is not a trivial task for
high dimensions.



282 Advanced Sampling Methods

6.2.5 Sequences versus Sets

In random MC the samples should be independent, so we can stop it at any
time, but in a 1D-optimum LDS set with equidistant samples or in LHS this
would be not the case.

For instance, the set 1/3, 2/3 is optimum in one dimension and for n = 2 (in
[0,1]), but if we want to extend it to n = 3 we would need to shift all points, so
we need to re-run all simulations! So an extendable scheme, a true sequence,
is preferable if you are not fully sure about the required total number of points!
Mathematicians get rid of that problem by inventing not only optimum LDS
sets, but LDS sequences which have low discrepancy even if we stop earlier,
or if we need to extend them. A simple 1D example is this sequence:

n = 1 : 0.5
n = 3 : 0.5, 0.25, 0.75
n = 7 : 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, 0.875

This sequence (so-called van der Corput sequence of base 2) has the advantage,
over the set generation methods for known n, that we can fully re-use existing
simulation points! The only pity is that for n = 4 or 5, etc., we need to accept
some coverage compromises, and also the mean is not exactly 0.5 (as it should,
and as it would be for LHS).

The sequence idea can be extended to higher dimensions, and because such
LDS sequences allow an autostop capability, such enhanced quasi-random
sequence generators are now standard in modern design environments and
simulators. The problem is of course that any sequence generator can never
be as good as a full set generator. So in principle it can even happen that the
“older” LHS method could outperform LDS, like for estimation of the mean
of a certain performance, on a design with moderate complexity. Interestingly,
one can also show that a sequence with dimension s behaves (almost) like a set
with dimension s – 1, so the benefit on discrepancy D is a dimension reduction
by one. Using the Roth bound or the bounds for discrepancy for known LDS
schemes (like Halton), we can also quantify in which order we would improve
with the set; it is actually a factor of roughly log(n), that is the “free lunch”
for throwing away an anytime autostop feature.

In [Matousek98] you can find a benchmark for different LDS schemes,
different dimensions s and total point count n. One result is that the higher
the dimension s, the higher the minimum point count to see an advantage
of LDS against random; actually already for moderate s like 10 we need at
least roughly 1000 points to see a speed-up in the order of 2. This result is
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fully in sync with the discrepancy theory, but the latter typically only gives
asymptotical results, which can (in absolute terms) differ to the concrete low-
count behavior of certain LDS methods. The degradation for large s is also in
sync with the mentioned patterns appearing in classical LDS schemes (Halton,
Faure, Sobol, etc.), and these effects can only be reduced in more advanced
algorithms (e.g., by smearing out the patterns by randomization), but not fully
avoided.

6.2.6 Summary and Comparison of Sampling Methods

Teaching electrical engineers, we received many questions on latin hypercube
and low discrepancy sampling, like “is LHS always better than random?”, or
“what happens if we stop a MC run manually, can we still trust the results?”
We hope these things become much more clear now; if not check out our list
of questions and answers.

Since some years, LHS and improved LDS algorithms have been devel-
oped and implemented into EDA tools and simulators [Cools]. Using them
is usually very easy; and designers can benefit from reaching the same level
of accuracy already with a lower number of samples, so with shorter overall
simulation times. That is the promise, but we have seen there are several
difficulties and many different criteria (See Tables 6.2 and 6.3), also inspect
the excellent summary on the state-of-the-art in [Pronzato2012]. Notice that
to some degree in the future the differences between LDS and LHS will gray
out, and actually e.g., orthogonal LHS picks up many LDS ideas [Rainville
2012]. So classical LHS is no true low-discrepancy method at all, but enhanced
LHS often feature this property and could outperform many LDS schemes.
For instance, in [Viana2006] an algorithm is presented which starts with an
LHS set, but becoming extended picking up the “originally” LDS idea of
lattice construction. However, most modern algorithms are a combination
of construction and optimization (e.g., [Ebert2015]—presenting also detailed
benchmark results).

As mentioned, many LDS problems also appear in LHS. LHS starts with a
grid and uniform sampling, so to use them in a normal design environment they
will be usually converted to normal Gaussian distributions. If we inspect each
statistical variable individually, we would find more stable values compared
to normal Gaussian random sampling for simple statistics such as mean, to
a smaller amount also for higher moments like variance, skew, and kurtosis;
this is desired. However, when we built differences (or sums or products,
etc.) this “stabilization” of estimates will get almost lost. In opposite to basic
LD schemes (like Halton or Faure) this is not so easy to observe visually
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aspatterns, but just in a statistical way. Looking to each dimension individually
would get maybe in few percent of the sample sets, e.g., moment deviations
(against an ideal normal distribution) beyond ±1σ, whereas for variable
differences (still theoretically Gaussian distributions!) we would get e.g., 50%
of such deviations! This is close to pure random sampling, so in designs where
such variable differences matter (random) LHS loses the speed advantages.
For good LDS schemes this degradation is usually smaller.

We started the chapter with 2D scatter plot pictures to give the reader
a feeling for what is what, but how can we see this in circuit designs?
Here we often look to histograms, and unfortunately the binning count has
a significant impact on how “good” a histogram looks, on top of all potential
other imperfections. So let us inspect Table 6.2 showing us the data itself, in
a kind of “string”, without binning. In picture 2a) LHS data is shown for each
Gaussian variable, and picture 2b) shows all differences of Gaussian variables
(scaled by 1/

√
2). The number of dimensions is set to d = 4, so that we get 6

combinations, plus the four dimensions itself.
Note, that n is set to 10 to simplify the visual inspection, but in combination

with d = 4 we are in a similar situation as in circuit design, i.e., the advanced
methods work, but not perfectly. For larger n bigger improvements are
possible, but often the available runtime is too limited to enter that region.
And for higher complexity (large number of dimensions) we would have
more problems; and actually not only second order terms would matter, also
high-order mixed terms (which are hard to visualize).

With a better “smoother,” more equidistant distribution of the sampling
points—a set with lower discrepancy—we can improve the coverage; and
in many benchmarks LDS has already demonstrated a speed-up of roughly
2× to 8× in real circuit designs (whereas standard LHS usually degrades
earlier, especially in cases with higher complexity or stronger correlations)
[Singhee2010]. We also showed that integration via Cartesian grid sampling
slows down a lot already on simple 2D cases like our “π example.” In this,
LHS and LDS would behave significantly better, but already for 45◦ line as
spec border at least LHS would already show some further slowdown.

Look-up: Enabling a certain method like LDS or LHS just with a click in
the design environment also means that the user usually has no real further
options to influence the performance; this is quite in contrast to other more
advanced methods, which we inspect later!

Overall often LDS is a cheap lunch, but be aware of these limitations
[Sobol]:
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• For a certain sample size n there is no guarantee that low-discrepancy
sequences will outperform random MC, so there is also no guarantee
on shorter confidence intervals. The HK error bound is only valid under
some very hard to check restrictions. If the prerequisites are not fulfilled,
then typically only some (beneficial) variance reduction is provided.

• Error estimation is difficult with LDS in general. And even if someone
can mathematically prove faster convergence (like log(n)/n instead of
1/

√
n) under certain prerequisites it does not guarantee a speed-up also

for low and more realistic MC counts.
• LDS speed-up is limited for the sample yield, because sample yield as

estimator with discrete character generates a kind of additional “quanti-
zation noise.” Another view is that the integration error depends on the
function variation V and the discrepancy D, but the pass-fail indication
function has a large variation.

• Competing requirements are forcing compromises, e.g., a sequence with
option for auto-stop is less optimum regarding discrepancy than a set for
given known number of points.

• Simple LDS generators create significant artifacts in higher dimensions
s, and real circuits may have hundreds of statistical variables! This will
reduce the LDS speed-up and can even cause systematic errors (at least in
rare cases). A workaround to get back the theoretical advantages would
be sort the variables [Singhee2010], i.e., to treat the most important
variables with low-order sequences with no such artifacts! However,
still the LDS speed-up is limited if n is not much larger than the effective
dimension seff (and this is a fuzzy term—not well known and depending
on circuit, model complexity and specification). As mentioned, complex
circuits can have over-all still many important variables, especially when
looking to many performances!

Remember, low discrepancy is only one criterion, and the cure of high
dimensionality comes with many faces. In opposite to random MC the required
LDS sample count n increases with the number of dimensions s, i.e., a too
low count may come with artifacts like patterns, correlations, bad coverage
in sub-spaces, and potentially also with bias errors—at best you switch back
to random sampling. If you want too much from a method, you take a strong
risk to fail.

Often you can expect that in larger sample sets you can find more “extreme”
statistics, but for correlations and some other measures it is the other way
round: Generating a 32-dimensional random (or LHS) set of 64 points, you
will find that the worst-case correlation factor is quite large (roughly 0.4
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in average), but for n = 512 cmax went down to about 0.12 only! In a Halton
LDS set the increase in worst-case correlation is much stronger, e.g., for the
same n and worst-case correlations the problem has the same severity already
for s = 13 (instead of 32)! As mentioned, there is actually a trade-off between
criteria like discrepancy D and correlation c (or good spectral performance,
effort in sample generation, etc.), and even for discrepancy or correlation there
are several measures which you could optimize.

In addition, most mathematical proofs on LDS are related to integration,
which was also our starting point, but users do much more than pure integration
with MC data. Parameter estimation by maximum likelihood is one important
example, so for such tasks we leave clear mathematical grounds to some
degree.Also note high-yield estimation (like >6σ) gets not immediately faster
with LHS or LDS, just because both aim only for more stable statistics and
more accurate integration, not for getting more fail samples with less MC
points. Interestingly, beside mean estimation this is also one of the cases
where LHS sometimes indeed outperforms LDS: For a random MC run with
500 points we can expect in average roughly a sample spread of 6.1σ, but
of course we can also get runs which much less variation, like 4.7σ. In LHS
this gets highly improved for the statistical variables itself, like roughly to
6.2σ±0.2σ, whereas in many LDS generators less improvements are available.
So if the problem is so simple that such simple statistics matters, LHS
would win.

Figure 6.22 is giving an example of a practical LDS generator: we get
some small but at least visible numerical artifacts in dimensions higher than
100. Simple LDS generators show such problems already for dimensions
like ten!

At the River Publisher website we uploaded an Excel file
which allows to make some basic LDS experiments using a
simple type of sequence generator (Halton sequence). There,
the problem of unwanted patterns occurs much earlier.

Besides all these findings and restrictions, all methods have one key advan-
tage: We can simply combine the discussed sampling schemes with further
“speed-up” methods, like using them inside a sorted Monte-Carlo analysis
(next subsection), or in conjunction with the CGPK (Section 4). In addition, we
can expect further improvements in the near future regarding “built-in” error
calculation, stronger suppression of artifacts in high dimensions, exploiting
circuit hierarchy and parameter rankings, etc. Figures 6.23 and 6.24 show the
state-of-the-art regarding LDS for some realistic testcases.
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Figure 6.23 LDS integration speed-up for a simple case and a difficult one.

Figure 6.24 LDS variance reduction versus yield [Hassan].

Note, that LHS and LDS are designed for improving the accuracy for
the integration of functions. In Chapter 2 we mentioned other sampling
methods for corner analysis; for this the focus is finding the worst-case, design
understanding, sensitivity investigations, actually performance modeling. In
Table 6.4 you can find a comparison of several methods. There are also many
other methods, like so-called D-optimal designs (created to minimize the
variance in modeling), but those are beyond the scope of this book, and often
a mix of these basic methods.

6.3 Design with Pictures Part Four

Using our 2D example for getting π by Monte-Carlo integration, we would
observe that both LDS and LHS are much superior to random. Figure 6.25
shows that for an error of 10−3 we would obtain a speed-up in the order of
100× for large but still realistic MC counts, for larger errors like 10−2 and
lower counts still 10× is clearly realistic.
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Table 6.4 Different sampling methods and their applications
Method Application Comment
Random
sampling

Mimic nature, work with
statistical confidence
intervals, etc.

Most universal method, slow 1/
√

n
convergence

LHS Integration Accuracy improvements only if the
variation of one variable dominates

Optimized LHS
or LDS

Integration, Space-filling Accuracy improvements if effective
dimension is not too large in relation to
sample count n

OFAT Linear models, design
understanding

Linear effort, not suitable for addressing
mixed terms like x1 · x2

Full-factorial Space-filling, worst-case
analysis, modeling

Exponential rise in effort regarding
number of variables (dimension s)

Figure 6.25 Random (gray), LHS (red) and LDS (yellow) behavior on simple 2D integration
problem.

6.3.1 Experiments on Small Testcases

For more complex examples, we can indeed see at some point the log(n)s

dependence regarding dimension s which is limiting the speed-up. So if we
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e.g., use a high-Q 8-element LC bandpass as DUT and watch for a difficult
performance like passband ripple, we would observe at best only a moderate
reduction of the standard deviation by LHS and LDS, like 1.52×. Table 6.5
gives some examples looking to CPK and CGPK (on which LHS and LDS
work better than on the sample yield). For a simple one-variable case (does
not matter if Gaussian or not) and n = 512 we can achieve an LHS speed-
up beyond 100×. In using an optimized LH set, we can achieve roughly
5× for a 3-variable Gaussian mix, but almost no speed-up for the difficult
LC filter.

As expected, the speed-up usually larger for simple statistics (like CPK
or standard deviation) compared to the more complex CGPK, but also this
is to some degree an example how much the devil can be in the details: In
the table we report the speed-up based on pure variance reduction, and for the
filter and the CGPK this speed-up is 0.5, so LHS was worse regarding standard
deviation. However, the CGPK distribution is asymmetric (like also for sample
yield), so if looking to the lower confidence interval limit, the situation would
be significantly better [Weber2016], like giving a speed-up of 1.1×.

The optimized LH set had lower correlations than standard pure n-rook
LHS, and good LD sets would behave similar. For realistic, even more complex
examples (like a gmC version of the bandpass or an ADC) the speed-up
against random would unfortunately disappear for n = 512, and only be
present for very large n (only for these (log n)s/n would become smaller than
1/surdn).

Table 6.5 Speed-up on CPK and CGPK by using near-orthogonal LHS for different test cases
Sampling CPK CGPK

Gaussian mix (3 variables)
mean Random 0.86 1.01
sigma 3.19% 7.05%
mean Optimized LHS 0.86 1.02
sigma 0.88% 4.23%
σ-Speed-up LHS vs. rnd 13.2 2.8

LC bandpass (8 variables)
mean Random 1.41 0.99

sigma 4.74% 6.79%
mean Optimized LHS 1.44 1.04
sigma 2.00% 9.59%
σ-Speed-up LHS vs. rnd 5.6 0.5
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6.3.2 LHS and LDS for Contribution Analysis

Besides the mentioned LDS and LHS limitations, there are also several cases in
circuit design where e.g., LDS is indeed useful, giving a significant speed-up.
Looking just to histograms you can often not immediately see the advantages
against random sampling, but one positive example is often the contribution
analysis (See Chapter 5): with random MC the contribution result for each
variable or circuit component will be quite noisy, e.g., with 800 MC points
you may get the top-5 contributions accurately enough, but with LDS you may
achieve the same accuracy often with already 200–400 points.This speed-up—
coming here with almost no negative side-effects—is really helpful because
it could mean a time saving of one hour or more.

We mentioned it already, for the sample mean the LHS or LDS speed-up
is often even larger, but in most situations designers are much more interested
in the standard deviation and extreme samples than in the mean (the mean
would be anyway shifted already in a corner analysis, and the MC mean is
often close to the nominal simulation).

Concrete numbers from a typical example run are given in Table 6.6 for
our 32-transistor CMOS latched comparator.

We see that contributions which should be identical (e.g., input diff-pair)
have at least very similar contributions and indeed LDS and LHS give for
the same count somewhat more stable results. So here the LHS/LDS trick of
hoping for a simple low-order problem structure works quite fine.

6.4 Synthetic Monte-Carlo: Bootstrap

In statistics, bootstrap (BS) is something different but in some way also
similar to what it is in circuit design. The idea is this: A statistic from MC
gets usually better if more data points are available. Could this be exploited

Table 6.6 Check for speed-up by LDS and LHS against random MC for a contribu-
tion analysis on latched comparator (n = 200, asymmetry in symmetrical contributions in
percent)

Random
Sampling LDS LHS

Linear offset contribution from:
most sensitive parasitic cap 3% <1% 1%
VTO of input transistors 4.4% 0.4% 1%
Hysteresis contribution from:
Dummy transistor wl parameter 2.8% 0.8% 0.4%
Latch NMOS wl parameter 0.9% 1.2% 0.4%
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without doing new time-consuming simulations? Can we do more with the data
than calculating simple estimates like sample mean, sample median, sample
standard deviation, sample yield, etc.? Can we generate artificial “new” data
in a clever way to improve our estimations magically or get further results?
Yes, we can! At least we can try, in fact the majority of such nowadays quite
popular techniques falls in the class of “bootstrap,” being a kind of virtual
or synthetic Monte-Carlo: generating new synthetic data from existing data
(e.g., from MC simulation or from experiments).

For sure one thing would not work as expected: if we have data samples like
x1, x2, x3 . . . . x9, x10 and we want now to generate “new” data by putting them
in an urn and picking them out randomly, step by step; this would only lead
to a new sequence but of the same data! So sample mean standard deviation
would be completely unchanged! The assumption of having a certain pdf leads
to samples that are identical, and independently distributed. However, if we
pick out samples from an urn step by step, this would be not the case. What

Figure 6.26 Bootstrap in Excel� (columns D to G, look at boot.xls at the River webpage).
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we would need to do is picking the sample out (randomly!), make a notice on
result and then putting it back! This is called “resampling with replacement,”
and it is the core of generating bootstrap samples (actually sets)! Note that
this kind of bootstrap does not explicitly assumes a certain “model,” so it is
called nonparametric bootstrap; and it works quite general. In our book we
focus on nonparametric univariate bootstrap, but even much more complex
schemes like multivariate parametric BS are possible.

Bootstrap via resampling with replacement:
Original MC data: e.g., x1, x2, x3, x4, x5
Resampled data set (bootstrap data): e.g., x2, x5, x3, x2, x4
Another bootstrap run: e.g., x4, x1, x3, x2, x4

Note: We can have multiple identical values and some original samples may
get lost. Also note that we can do the bootstrap as often we want with little
effort! Figure 6.26 shows that even a bootstrap implementation in a spreadsheet
program is possible. The only limitation is that it is not so fast anymore if you
want to apply bootstrap e.g., 100 times on thousands of data points. Another
method to generate “new” data sets is the leave-out-one method. Also this
can be used to check how much variation exists in the data or how stable our
estimations are, but unfortunately leave-out-one, or a variant like leave-out-
10%, works not as good as BS, re-sampling with replacement!

Bootstrap looks tricky, but as bootstrapping in circuits, it has its clear
benefits, its pro and cons. Actually, bootstrap only sounds tricky, but is very
simple to do, it is very crafty, and it has a solid fundament:

• Bootstrap is not limited to purely normal Gaussian distributions!
• In a bootstrap sample the sample mean will be often slightly different

compared to the original data, but that difference is indeed a good
indication for the real variation from one MC run to another one!
For these reasons bootstrap is a good method to estimate confidence
intervals!

• Bootstrap works well if the data are large enough, so that the statistic you
are looking for (mean, standard deviation, etc.) does not depend much
on few values. If this is not the case, and you look for a statistic like
the maximum (which often depends on a single sample) then bootstrap
could fail.

For these reasons—and as it is easy to run them on a computer—bootstrap
techniques are nowadays incorporated in many kind of algorithms, as internal
error prediction element, helping to decide internally if we can stop an iterative
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algorithm or not. Of course also bootstrap techniques get improvements over
the years, to get internal error predictions or to apply it to more than just
confidence intervals. For instance, resampling by replacement can be made
directly on the samples, so actually nonparametric, but we could also make a
parametric fit and generate artificial samples from the model, instead by sample
resampling. This is called parametric bootstrap. Also it comes out the simple
bootstrap typically underestimates the variations a bit, so by adding additional
“noise” we can reduce that kind of bias error. Mathematically, bootstrap is the
same as sampling from the empirical cdf (which has a staircase form), so the
smoothing actually makes the empirical cdf closer to the usually more realistic
smooth real cdf (which is unfortunately unknown).

How much time does bootstrap take? Originally, i.e., in the 1970s, boot-
strap was called a “computation-intensive” method. Indeed using boot-
strap for confidence intervals needs more computation power than using
classical formulas, like those based on Student’s t or chi2 distribution.
However, nowadays this effort is not really large anymore. For instance,
bootstrap may take a second instead of a ms, but this does not matter
compared to the time to run circuit simulations being often in the order of
minutes.

6.4.1 Bootstrap Application Examples

The classical bootstrap (BS) application is confidence interval estimation. For
normal data and simple estimates like mean and sigma well-known formulas
are available, but as mentioned confidence intervals are harder to derive for
non-normal data, especially if you even do not know of which type your data
is (e.g., your MC data is coming from a difficult circuit) or if your estimate is
quite difficult (like the generalized CPK).

So for simple estimates on normal distributions we can easily compare
bootstrap CIs against the classical ones (e.g., based on Student’s t or chi²).
Actually many such benchmarks exist, and BS is quite accurate if the number
of samples is large enough (like >50). Also many methods exist to make the
BS more accurate (we mentioned the addition of noise). With such extensions
BS become really useful and are often applied internally as sub-algorithm to
other methods like those for high-yield estimation. So BS acts often in the
background, and you can do it for yourself in Excel�. So maybe it is most
interesting just to know well when it works not so perfect. Table 6.7 shows the
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Table 6.7 Accumulated errors of simple bootstrap on normal distribution (b = 512, true
CPK = 1.5)

Error in

n Mean Sigma Kurtosis CPK CGPK

256 <σ/50 –12% –0.661 +0.21 >1.75
512 <σ/50 –9% –0.505 +0.14 +1.26

results of an experiment:We run a big MC analysis on a certain distribution and
extract estimates for mean, sigma, and kurtosis. Now we generate BS samples
many times and report the same estimates, but now from the synthetic BS
data. Actually you will see that BS is quite accurate on mean and sigma, but
on kurtosis the error is significant. If we do now the BS again, but not from the
original MC data, but from the BS data, the BS errors would accumulate—like
the noise or distortions from an analog tape copy taken from a copy. We do
this BS experiment 10 times, so that the errors become nicely visible. Besides
kurtosis, the CGPK bootstrap error is also significant, so the simple BS should
be enhanced to make it work well for the generalized CPK [Weber].

6.5 Fast Monte-Carlo by Sample Sorting

Beside contribution analysis, a second nice application based on a multi-
variate MC analysis is to use the created multivariate model to predict how
extreme a certain combination of the statistical variables is regarding circuit
performance. In older software packages such response surface model (RSM)
has been directly used to predict the yield. However, such approach is risky.
Even if the goodness of fit is high (like r2 > 0.98), still the yield estimation
could be misleading, e.g., because the pdf tail behavior might be difficult.
So these tools have not reached popularity in circuit design. A better way
is to use the model and to double check the pass-fail estimation from the
model with further real circuit simulations. By re-ordering the MC samples
we can actually create a kind of “high-sigma MC” by “blocking” simulations
of low interest! You may also call it sorted MC or model-based statistical
blockade. If the model indicates an offset voltage close to the typical behavior,
then the simulation will probably give not much new insight compared to a
nominal simulation, which is usually done already many times by the designer!
However, if the model predicts an offset voltage of e.g., > 3σ, then this can be
a sample close to the spec limit or beyond, and it can be very interesting for
debugging purposes and for yield verification. Actually running simulations
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with parameter combinations ending up in the distribution center is quite some
waste of time, because it is almost redundant. Removing this “redundancy”
can speed-up the verification significantly (like 10× for 3σ and blocks of
moderate size, more at higher sigma levels), by doing a kind of 2-step sorted
MC analysis (Figure 6.27).

Following this idea, we do not apply pure random MC anymore, i.e., not
only a random number generator is driving the simulation. This MC speed-up
technique is something beyond pure result evaluation, like using the CPK, and
we can also combine the sorted MC or CGPK with other clever techniques.
One limitation remains: Also when using sorted MC, we still have to deal
with the confidence intervals related to the sampling process, but the speed-
up from skipping non-spec-critical simulations usually allows using a (quite)
large sample count n and this way we can achieve (much) tighter confidence
intervals CI = [LCB,UCB] with moderate simulation effort. Like for LDS or
LHS, one problem is to define if and how much you really improve on CI
width and if we create a certain, undesired bias error.

Figure 6.27 Flow for sorted MC, it might be extended by a model-refinement step.
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For very high yield targets, like 6σ or more, the sorted MC speed-up would
increase further (like >100×) but more advanced methods (like worst-case
distances WCD) may offer even more. And for low yield targets like <99%
the sorting speed-up is very limited, because with few MC samples like 100
you can hardly create an accurate multi-dimensional model, and there would
be not many remaining MC samples to be sorted!

Different stopping criteria could be defined; e.g., instead of inspecting the
sample yield confidence interval, we could also stop on reaching a certain
“sigma corner level.” So we could sort and simulate so many samples till we
hit the 3σ or 5σ limit of all performances with a certain accuracy like ±5%.
These statistical corner samples can be used by the designer for debugging,
circuit improvements, etc.

In the next chapter, we will discuss other options for moving further away
from MC and getting a speed-up also by other means. Also note that sorted
MC is not a dedicated method for finding true statistical worst-case corners,
in opposite to worst-case distances (see next subsections).

On the other hand the sample reordering idea is bright and several com-
mercial and non-commercial solutions already exist and have demonstrated
its usefulness very successfully.

6.5.1 Advanced Features and Example Run

A detailed description and many results of MC with reordering can be
found in [Singhee2007], [Kuo] or [McConaghy]; the sorted MC speed-up
depends not only on yield level but of course also on how good the generated
multi-dimensional model is. [Kuo] proposes the use of a linear model only, and
using only the important variables.This reduces the internal computation times
and improves the efficiency already significantly, but to some degree at the cost
of reliability. However, an interesting feature is that the sorted MC method is
quite robust, at least to some kind of errors [McConaghy]: If the model predicts
no fail samples, then we could just increase the MC sample count till we get
fail samples also in the model prediction. If the model is too pessimistic, then
mainly the speed-up is reduced, but the results are still quite trustable due to
the double-check mechanism. On the other hand, there is also some risk that
the model does not predict “difficult” fail areas, so some systematic yield over-
estimation might happen still (but seldom). In [Singhee2007]—representing
an older but already advanced implementation—you will find an example that
even a model from 30,000 initial MC points might be not accurate enough!
As the sorting is related to each performance and spec, the risk for such errors
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Figure 6.28 Typical probability relationships in a MC analysis [Kuo].

might be not that small, especially for real-world designs with significant
complexity, many partially complicated specs, high nonlinearity, etc. Also
note that unfortunately such model inaccuracies always lead to too optimistic
yield estimations, so you are on the risky side.

In modern commercial tools you find several enhancements [Kuo,
McConaghy] e.g., the algorithm might be modified to use already for the model
creation more extreme MC samples (problem: the joint pdf is not really a good
indicator for extreme performance values) or by doing a grid-based search
(e.g., in Cartesian or polar coordinates; problem: quite inefficient for complex
problems, points cannot be really used for other purposes like histograms,
confidence intervals, etc.). Such improvements give some but limited accuracy
improvements, and we need extra calculation time, so we may reduce the
overall speed. On the latter, we may improve further by checking for redundant
samples in the critical near-spec regions (Figure 6.29). Unfortunately, such
cloud analysis for sample grouping and cutting out redundant samples will
never speed-up much, because such samples are simply seldom for high yield
targets (Figure 6.30).

As mentioned, the model extrapolation risk increases for higher sigma
levels—a nice method to avoid this effect is introduced in a later chapter by
using upscaled sigmas for the statistical element variables. Certainly also the
modeling techniques itself are becoming better and better regarding speed
and accuracy. On the other hand, the EDA vendors just have to improve on
this, and on reliability, to really keep pace with increasing design complexity
present in circuits, technology, and systems!

“Keep pace with increasing design complexity”—too much marketing
speak?Actually not! Indeed some methods are quite old and working well
in older technologies since some years, but on comparing e.g., mismatch



6.5 Fast Monte-Carlo by Sample Sorting 303

Figure 6.29 Categories in output distribution and their treatment [Kuo].

contribution results in older whereas newer program versions will often
show good progress. Also other well-established features like WCD
(see next chapter) have been continuously improved, by using better
optimization algorithms or by providing automated setting for the initial
MC count. Often users get big improvements, but in the user interface it
is just one more checkbox.

On the other hand, sometimes the math behind the design problems is
very difficult. For instance in sorted MC the model creation is challenging;
having an exponential rise with the number of statistical variables. So
often we need to restrict the search space to maybe few dominant factors,
e.g., by setting thresholds which unfortunately introduce some model
inaccuracies. And also the set of model base functions must be tractable,
but our real circuit design might behave more special. And even if this



304 Advanced Sampling Methods

model creation part works fine, we still have to create all the MC sampling
points, also, for using the sample yield, with exponentially rising effort
on the yield target in sigma! All these samples have to be applied to the
performance models, so even if one model evaluation takes only a second
(instead of minutes or hours for true circuit simulations), we could still
have runtime problems (remember 6σ is roughly 1 fail in 109, and 109

seconds are roughly 300 years). So we usually need several further speed-
up methods like parallel computing and e.g., pdf estimations based of
further assumptions. This is one example and just one solution of fight
of mathematicians and engineers against the “cure of dimensionality”.
In the next chapter we will also inspect further intelligent methods, e.g.,
sigma-scaled sampling. This avoids the need for multi-dimensional model
creation, and it also breaks down to exponential MC count law to only a
linear relationship.

The easiest way to reduce the extrapolation risk is surely to update the
models from to time, just to take also the simulated points from sorting
into account. We mentioned that for each output such performance model
is required, so often these models have different accuracy, e.g., it might be
easy to create a model for offset voltage but difficult for overshoot. A good
method is to use what you have and first use the most accurate model (e.g.,
indicated by r²), so we could sort on this and run these MC points for which the
model predicts the worst performance (lowest yield). This way we get more
data to allow also improving the fit for the difficult outputs, step by step. So
overall the designer gets with sorted MC an almost fool-proof method, almost
as easy to use as pure random MC!

Figure 6.31 shows the setup and Figure 6.32 a typical histogram from MC
analysis with sample reordering (done on a LC bandpass filter). The yield
target is 99.99%, so a normal MC run may require more than approximately
30 K points. In sorted MC 50 points will be run, then a model will be created,
and then only roughly further 20 sorted points will be simulated. This way
the histogram looks bimodal (having two “peaks”), which is a bit artificial
because the true histogram is unimodal in our test case (Figure 6.32b, from a
1200-points random MC analysis). Actually this “strange” histogram helps to
understand how MC with sample reordering works.

In this example the speed-up looks really big, like 70 points vs. 30 K, so
428×. The total runtime was not that much faster because the model generation
and the sorting takes some time (like few minutes), but the speed-up is still
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Figure 6.31 MC with sample reordering, setup in an artificial UI offering further speed-up
options.

very significant. However, look-up: In this example case we had 7 fail samples
so that the sorted MC run actually proved that even the upper CI limit is below
the yield target. For 99.87% we would approximately hit the edge, and the real
speed-up would be now 2K/70 ≈ 28×. For classical analog blocks like OTAs,
op-amps or bandgaps you would often find similar speed-ups although these
are often more complex. You may wonder why the speed-up with modified
yield target was lower? Look into our chapter on questions and answers; the
result is within expectations, and speed-up still amazing.

The CPK speed-up would be in similar regions (See Chapter 3), but the
CPK has a large bias error because our MC data is non-normal, so we would
require the generalized CPK, giving a somewhat lower speed-up of maybe
5×. Of course the internal calculation time is much lower for both CPK
and CGPK.

For higher yield targets (like >5σ) the advantage of sorted MC and CGPK
would be even larger, whereas for low yield targets (like 2σ) the speed-up
would almost disappear, and actually the artificial bimodality in Figure 6.31
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Figure 6.32 Normalized MC histograms for bandpass ripple (full and sorted run).

would also disappear, because the sorted samples would overlap a lot with the
initial MC run.

Besides looking to the histogram, we can also inspect the output perfor-
mance vs. MC sample (Figure 6.33): Sorted MC starts as normal MC, so we see
the typical variations, approximately 68% of the points are within μ±1σ, so we
observe a moderate number of both good and bad design samples. However,
“unfortunately” we see only few or no extreme samples (because here the
first part of the flow according to Figure 6.26 stops after 50 points already).
Then the model will be created and only the sorted samples will be really
simulated, starting indeed correctly with the true worst-case sample detected
by the model! Then the 2nd worst, 3rd worst, etc. point will be simulated;
and from this data the yield confidence interval via Clopper-Pearson can be
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Figure 6.33 Performance plot vs. MC iteration for a typical sorted MC run (spec at 2.75 dB).

calculated as usual; and we get a yield verification as usual, just faster. Again
looking to the details is interesting: point #55 is going up a bit, and #57 is
not extreme as the model predicts! So actually the model is not 100% correct
(see also #82). Fortunately, by simulating just some more points than actually
needed we could still get quite sure regarding yield verification. And the
algorithm can internally check its own accuracy quite nicely and use the new
simulation point results to update the model if needed. So this type of error
can be reduced to an acceptable level. Many details can be also found by
inspecting the log file (Figure 6.34).

If something works in a random fashion, we can usually expect that doing
it in a systematic way would be even faster! Such non-random way has not
been found in all kind of problems, but luckily this is not the case for yield
analysis!

Actually the sorted MC analysis still pushes random (or e.g., LDS quasi-
random) variables to the simulator, so we could further speed-up if we not
only sort the samples, but even set them. This is one key idea behind many
truly high-yield algorithms—learn more about them in the next chapter.
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Figure 6.34 Example run of sorted Monte-Carlo executing the flow in 6.30.

6.6 Questions and Answers on Sampling
and Sorted Monte-Carlo

As mentioned, the first parts of this chapter are related to advanced MC
methods, still based on sampling. Often you can combine advanced sampling
methods with general analysis (like contribution analysis) or further speed-
up techniques (e.g., for high-yield estimation by sigma-scaled sampling or
worst-case distances—see next chapter).

1. What is the typical speed-up against random MC by LDS? On what
does it depend?
The speed-up can be large, like >10×, but for realistic circuit designs
it is usually much lower, it can degrade highly for problems with larger
number of statistical variables. Also if the measure itself is “noisy”—
like the sample yield—the LDS speed-up is only moderate. Often the
LHS variance reduction is lower than that of LDS.

2. Check out Figures 6.5 to 6.7 showing the integration error of random
vs. grid sampling. How would the error plot look like for LDS or LHS
set of a fix length like 1024?
For an LDS sequence it could look quite similar, with hopefully
lower variation in general. For a single latin hypercube set it
would 1st slowly improve, then went down quickly when reaching 1024.
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Check Figure 6.13 on LHS vs. random for a further understanding.
This plot is similar but just slightly differently “scaled.”

3. What do you think of this method? Why using advanced
statistical methods in case I need 0.01% yield resolution
or 99.99% yield I could just run MC with 10 K points
for verification!
10 K is usually only possible for smaller circuits, also the yield lower
confidence interval limit is much worse than 99.99%. Advanced
methods (CGPK, worst-case distances WCD, etc.) can achieve the
verification task in shorter time and WCD can also give accurate
corners suited for an optimization.

4. Explain the differences between LHS and LDS. What
is the general problem in higher dimensions?
LHS is still close to random, only regarding the one-
dimensional projections it is improved. LD sets are
typically quasi-random, looking like lattices or crystals. In addition
most LD methods are extendable, so-called sequences. Also check
out Google! You will be surprised to see how many nice articles you
will find, often to completely different topics! Also our help inside the
RealTime app is a good starting point.

5. In random MC you can combine two results into one to get more stable
estimates, e.g. for yield. However, can you do so also for LHS or LDS?
Actually this is a bit risky. In random MC you need two different seed
settings to make sure that the data is independent and really different.
For randomized LHS the method should also work, but not e.g., for
using the simple Halton LDS generator and randomizing only across
the dimensions (at least in some cases like for sample yield, low MC
count and a high yield level).

6. LHS is always at least as fast as pure random, at least in average.
However, is this true for LDS as well?
Usually yes, but although LDS often outperforms basic LHS, in circuit
design cases there is no real guarantee. One problem is that (by
definition!) LDS wants just to guarantee a certain convergence speed
for larger MC count n. So for low n we may have no speed-up, and the
minimum n depends on the “effective” dimension of your testbench
and nmin can be large, like 10.000 for difficult cases. Also almost no
LDS generator is really perfect, often patterns occur, and some circuits
might be sensitive to such artifacts.
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7. We mentioned that for full s-dimensional coverage the number of
samples n would rise exponentially with s, like n > 2s. Can you give
an example function which is really so difficult?
To sample simple functions like f( X ) = x1 + x2/10 + x3/100 we need
only good coverage for the dominating term, so LHS would work
almost perfect. For more balanced weighting factors, LHS would run
into problems, but LDS might still work if s is moderate. For real
difficult functions like φ max(0,xi) also LDS would not work well for
realistic sample counts. The worst-case of such functions is hard to hit,
because at least all individual random variables need to be positive,
the chance for this and for s = 20 variables is p = 1/220 ≈ 1ppm.

8. LH sets can be created with little effort, you can get them by construc-
tion. However, is it also possible to create a latin hypercube set from an
existing set?

Yes, this is possible and called latinization. So you may generate a
e.g., low-discrepancy set and transfer it to a LHS. Unfortunately, the
originally low discrepancy would be increased, but usually only by
an acceptable amount. So if you look at Figure 6.18 for projected 1D
discrepancy vs angle, then you can always improve D for 0◦ and 90◦,
but it is unfortunately more difficult to improve in regions of large
discrepancy.

9. LHS (or LDS) is not as general as random sampling; there are simply
more random combinations than LH sets. Isn’t LHS this way missing
some effects?
Not really, also the number of LH sets rises almost exponentially with n
and number of dimensions s; actually there are (n!)s−1/(s−1)different
LH designs. This makes unfortunately the optimization of LHS quite
time-consuming.

10. Create a testbench e.g., with five equal resistors having Gaussian
distributions. Setup outputs for the individual resistor values, and e.g.,
for R1 + R2 and for the sum of all resistors. Now run MC on mismatch
only with LHS. What do you expect regarding the histograms?
The histograms for the individual resistors should look closer to an
ideal Gaussian distribution. This is because the stratification by LHS
should work best for this case, especially if in your models only one
statistical variable is used for resistor mismatch. For outputs impacted
by many variables, the LHS advantage often disappears quickly.
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11. Look to the different pictures comparing random, LHS and LDS. What
do you expect regarding LHS and LDS versus number of MC points?
Indeed that a set is LHS and not random can be seen easier for low MC
counts, so one can expect already for low n some kind of stabilization
in the estimates. For large n the MC results are anyway quite stable,
so already random could be accurate enough. For many LDS patterns
are visible, these disappear mostly for large n. In rare cases LHS can
outperform LDS, but this is not likely for complex cases and large n.

12. We mentioned that in LDS the inverse discrepancy (giving a count n to
achieve a certain discrepancy) rises roughly linearly with the number
of dimensions s. However, we also mentioned that to cover and s-
dimensional space at all corners we need at least 2s points. Is this a
contradiction?
Not really! If we can achieve a certain discrepancy D we can bound
the integration error, but also the function variation V has an impact,
and often more complex, high-dimensional problems have a larger V.
So over-all the integration error could rise e.g. quadratic (or more).

13. In our sorted MC example the obtained speed-up was dependent on
yield target. Can you explain this?
The speed-up was lower for the lower yield target, and for a low
target also normal MC needs less points. In addition if the yield target
and the true circuit yield are close together we need really accurate
estimations, so the algorithm is tweaked to give that desired accuracy
at the cost of a slightly reduced speed.
Discuss this idea: We know about many different sampling techniques
like OFAT, full-factorial and LDS. Each is almost optimum for a certain
application. Would it make sense to combine these methods, e.g., for
yield analysis or modeling?

Look-up that for yield verification we need to check both environmental
range variables xR and statistical variables xS! Therefore a direct mix
of e.g., full-factorial and LDS makes not much sense.

14. What is bootstrap good for?
The primary application is generation of confidence intervals. BS
allows this also for non-normal data and with no further circuit
simulations. BS is often part of the internal error checking in advanced
statistical methods (such as sigma-scaled sampling SSS, see next
subsection).
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15. LDS or LHS can reduce the variance of MC results from run to run.
Can this be captured by bootstrap?
No BS is like doing random sampling from the empirical cdf, from the
pure data.

16. In many statistical algorithms there is a trade-off between variance and
bias error. Give some examples.
Using n–1 instead of n reduces the finite-sample bias for the sample
variance calculation, but it increases the variance (a bit). In LHS
without jittering we get slightly more stable estimates (less variance),
but some bias error will be present, especially in estimates like sample
yield and kurtosis. With jittered LHS we can reduce the bias, at the
expense of (slightly) larger variance.
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7
Fast and High-Yield Estimation

Techniques

Now, we focus on dedicated high-yield methods giving a further speed-up and
we extend the concept of worst-case corners to statistical variables, leading
to worst-case distances. The idea of corners (and worst-case corners) and
relating the “spec distance” to the yield is quite old. This idea and the use
of non random or mixed methods are the base for these more advanced yield
verification concepts. These are required because we know that using the CPK
comes often with a too large extrapolation risk, especially when addressing
high-yield problems.

315
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Here, we will again also talk about methods giving real design insights,
e.g., such statistical corners can be related to a certain yield and are perfect
for circuit debugging, design tweaks, and optimizations. In addition, there is a
strong link to a multi-variate sensitivity and contribution analysis (Chapter 5).
With LHS and LDS, we apply to some degree just a nice simple trick, like a
lever in mechanics, and it is just useful because many designs have a structure
that fits well to these sampling techniques, such as few variables and first-order
relationships dominate. This works also quite well, just because designers
create their circuits in that way that a certain transistor (single or structure) has
a certain function; and the others should not disturb that function! However, as
usually with tricks (although indeed with mathematical “backup,” remember
the Koksma-Hlawka theorem Equation 7.1), the benefit is sometimes limited;
so you need further “tricks” like a steam engine, like feedback, or the advanced
methods in this chapter.

One powerful method already described was sorted MC, sorting based
on modeling to predict circuit performance. However, why not improving
further? The simplest technique we already applied intuitively for MC result
interpretation was the CPK. We applied a two-parameter fit to the MC data for
a normal Gaussian fit and hoped that such Gaussian model would predict well
the true yield. Using the CPK, we completely ignore that in the real design,
there are typically thousands of statistical parameters—although when doing
the MC analysis, we could indeed gather the information about all these
statistical parameters and their impact on the circuit performances! In sorted
MC, we already do so, but instead of generating MC samples and applying
the quite time-consuming sorting, we could also directly search, e.g., with
optimizers (see Chapter 8) for critical combinations of the statistical input
parameters! This way we can realize one further key idea for “intelligent”
Monte-Carlo: Get tail samples faster than in normal MC.

Are these further advanced statistical methods providing a free lunch? Like
for sorted MC, actually for the designer the answer is often yes! However, such
gala dinner has to be served by the EDAvendors, and the implementation effort
is indeed much larger than for random Monte-Carlo! For instance, MC can treat
any kind of statistical distribution, like normal, lognormal, uniform, etc., and
also correlations can be included; also, most advanced methods can do so too
but whereas in MC, it is enough to have just random number generators for the
distributions, you need now much more behind the scenery, like computation
functions for pdf, cdf, inverse cdf, and methods such as matrix inversion,
eigenvalue analysis, principal component analysis, and optimizers.
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How to enhance Monte-Carlo? In the MC methods described before we
can run the simulations and then simply make an analysis, so we acted
like a straight signal chain system. You know that one of the greatest
innovations in design is feedback. Using sample yield and CPK is like a
system with 1-bit ADC (=pass/fail) vs multi-bit ADC. The latter can often
do better as we have seen, but actually you know the story about ADC has
not stopped at Nyquist-rate ADCs: We have also sigma-delta ADCs, and
they use feedback to get higher linearity and lower quantization noise!

So we may ask: How would feedback look in statistical analysis?
Mathematically it is just iteration, so we run MC and then do an analysis
(e.g., based on sample yield, CPK, CGPK or multivariate analysis), then
feedback these result to the “sampling“ algorithm, which now has to
decide which further samples to simulate. Actually numerical experts
use quite similar methods (e.g., in WCD), more than mixed-signal or
analog designers! Innovation is in circuits, numerics and technology—
More than Moore! Like SPICE with its adaptive step size setting, many
of such advanced techniques come with clever internal self-calibrating
techniques to reduce the user setup effort.

There are many criteria for ADCs such as resolution, area, power
consumption, bandwidth, delay, need for accurate elements, design risk,
etc., so actually all kinds of ADC (flash, half-flash, SAR,

∑
Δ, dual-

slope, pipeline, interleaving, etc.) make sense and have their sweet spot, so
also many numerical techniques makes sense and are good to know; they
just differ regarding systematic errors, variance, treatment of nonlinearity,
simulation count, etc.! Some are very universal and are often part of bigger
analysis (like bootstrap or just random MC). Direct MC gives you 1/

√
n

speed or 3 dB/oct, and other algorithms can beat this—often with com-
promising a few other parameters and with being slightly more complex.
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7.1 Worst-Case Distance (WCD) Analysis

With the CPK, we just simply fit a normal Gaussian pdf to the MC result
performance data and “hope” for a enough good fit, but with worst-case
distances (WCDs), we really aim for truly finding the (multi-dimensional)
point in the statistical variable space xS where the spec fail happens with
highest probability. For this reason, such methods are not only well-suited to
reduce the extrapolation risk, but also give insight to the design behavior, i.e.,
the detailed dependencies of the design regarding the statistical variables!
Actually, this way advanced statistical methods also become a valuable,
accurate debugging and design tool. In principle, we can also get rid of
confidence intervals because the tolerance of a worst-case search (using a
very accurate optimizer) can be usually made much smaller than the standard
deviation from the MC sampling process. In addition, such advanced methods
can be (much) faster than pure MC, especially for high yields.

For the case of only one statistical variable x (representing, e.g., a threshold
voltage VTO), the basic WCD idea is extremely simple: We run a nominal
simulation (x = 0) and get for example an output voltage of, e.g., 1.0 V. Now,
we set x to 1σ and get 1070 mV. This may come because the sigma of x is
1 mV and the gain of the amplifier is 70. Assume the spec limit is 1210 mV, so
we could sweep on x till we hit the spec violation point. This would happen
at 3σ in this case, if the amplifier is linear, and the yield would be now 3σ

(as you can check using the CPK). And the method would even work for
nonlinear circuits; a differential pair shows some compression on gain (like
Vout ∼ tanh(x)) and so we may need 3.1σ to reach the 1210 mV spec!

To see the full power of WCDs, we could inspect Figure 7.1 showing
two independent statistical variables: The design works usually well if we
are at nominal parameter settings, so when having no elongations and being
at the origin. However, if we change one or both parameters too much, then
the design may start to fail. The vector length from origin to the point of
interest is related to the probability density and follows for normal Gaussian
distributions the e−β2

law (β2 = x1
2 + x2

2). The most critical point is the one
having highest fail probability, so it is the shortest distance to the fail boundary
and we call it worst-case distance (WCD).

As mentioned, there are similarities to the CPK, and if the statistical
parameters follow a normal distribution, we can even use the same formula to
calculate the yield from the (normalized) worst-case distance, but in opposite
to the CPK, WCD methods can also address problems with non-normal
performance distributions (remember the nonlinear amplifier example!).



7.1 Worst-Case Distance (WCD) Analysis 319

Figure 7.1 General WCD example with two statistical variables xS = (x1, x2).

To treat non-normal performances, the WCD method [Graeb] works not
directly in the performance space (as CPK and generalized CPK), but directly
in the original statistical parameter space xS. In this space, we know the pdfs
and often they are indeed just normal distributions—if not we could apply a
parameter transformation, e.g., to treat also lognormal element distributions.

Y ≈
∫ WCD

−∞
e−t2dt =

1
2
[1 + erf(WCD/

√
2)] (7.1)

Like CPK or the generalized CPK, the WCD concept is designed to basi-
cally address the partial yield estimation problem only, not the total yield.
Usually, we have many specs, so we get a WCD for each. The total yield is
usually roughly approximated by the worst-case, smallest WCD, so given as
min (WCDi).

From the mathematical view point, the use of the minimum function
is a very bad approach, because there would be no sensitivity to the non-
dominating WCDs till we reach the equality point. As described in Chapter 5
for multivariate CPK, a better approach is, e.g., to calculate from each WCD
the partial yields, find the correlations, calculate the total yield, and then
calculating back the overall WCD. For instance, leakage and speed often
lead to competing specs in digital designs; e.g., the correlation is in the order
of –0.8 to –0.95, so that assuming the worst-case where we have to add the
yield losses is a good approach. However, if we have many redundant specs
such as phase margin PM and overshoot or slew-rate SR and rise time, this
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approach would lead to over-pessimism. Some redundancy often makes sense
for difficult specs, like on stability (here you need to get 100% sure), or for
informational reasons (maybe 60 Hz PSSR is by far most important, but you
get much more design insights if you also know about DC (can be, e.g.,
improved by using a cascode) and high-frequency PSRR (often dominated by
capacitors).

On the other hand, there are also some high-yield estimation methods that
can take correlations into account, so we will also describe further methods
beyond classical WCD.

7.1.1 Worst-Case Distance Analysis by Hand

Let us now apply worst-case distances to a simple circuit and discuss the links
to typical manual design techniques in detail. Actually, there are two major
outcomes from such WCD analysis:

1. We can verify the yield efficiently and even for high-yield targets (like
6σ or 1ppb = 1E-9 loss)

2. And we obtain a set of statistical parameters, similar to what is offered in
most PDK as process corner, such as slow, fast, nominal, but now we can
include mismatch and make it correct for any performance specification!
Also we can set the sigma level according our requirements.

The foundry-provided corners can never fully represent your actual worst-case
circuit behavior:

1. You are often interested in a certain yield, but foundry corners are usually
setup only for a “standard” yield level like 6σ.

2. If you run a process corner analysis and a MC analysis for process
variations, you often find contradictions, especially if your circuit differs
a lot from CMOS logic and if your goals are not speed-related!

Figure 7.2 gives a typical example for these problems. The scatter plot shows
two performances rise time and phase margin of an op-amp, both usually
compete against each other. Usually tr has an upper spec limit and PM a lower
limit. The plot shows the situation for a design done for given foundry corners,
and we just pass the specs. However, it could happen that the true situation
according to a MC analysis is different, like you may over-design on PM, but
under-design on trise!

Often the situation is even more difficult, like the MC plot is more rotated
(this also depends on axis scaling) or much wider or denser or not symmetric.
Only for CMOS logic-style circuit speed specs (and when mismatch does not
matter), you can expect that MC and foundry corners are in sync!
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Figure 7.2 Corner result and Monte-Carlo scatter plot for rise time and phase margin.

What the designer needs for analog design are tailored corners, specific
to each performance, and set according to target yield, as shown in Figure 7.3
Also note: In the performance space, the data are usually non-normal, so we
need also a clever way to treat non-normality, and WCD does it.

How would such a statistical corner set look like? Indeed, in simple cases,
you can calculate it by hand, for a diff-pair (see Figure 7.4) or current mirror.

If you know that the threshold voltage (for a BJT just the VBE for given
collector current IC) of a single transistor has a sigma of 0.71 mV, you can
calculate the total amplifier offset voltage sigma to

√
2 · 0.71 mV = 1 mV. If

the spec limit is 6 mV, we can accurately expect a yield of 6σ (1 ppb loss) or
CPK = 2.0.

So what is now the 6σ-WCD? Actually, we need to find the statistical
parameter combination that gives us an offset of 6 mV with maximum
probability, and that is for sure +3 mV and –3 mV, so each transistor is set
to 3 mV/0.71 mV = 4.22σ. Instead of repeating a big MC analysis to obtain
the overall statistical behavior, we can focus on the WCD and use this WCD
parameter combination alone xWCD = (+4.22σ, –4.22σ). In very old days,
designers just inserted a small DC voltage source in series to the transistors to
mimic this mismatch behavior manually, so WCD is a near-perfect “substitute”
for a big MC analysis.

Modern EDA tools do such WCD analysis not by hand calculation, but
numerically. And they can do so also for non-normal performances, and of
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Figure 7.3 Monte-Carlo scatter plot with more accurate worst-case corners.

Figure 7.4 Differential pair circuit for offset-WCD calculation example.

course for all your transistors in the circuit! For the simple linear 2-variable
example, it may take only 15 simulations to find even a 6σ-WCD accurately
(no confidence interval, no extrapolation risk—we just know the component
sigmas from the model files and exploit that). This is something normal MC
does not. However, for more complex circuits, maybe 1000 simulation points
can be regarded as a minimum, but only 1000 points for 6σ verification is a
huge improvement; the sample yield confidence interval would only guarantee
roughly 3σ, and that with limited confidence!

One good further property of WCDs is that you also can really see which
parameters have a strong influence and which one has almost no impact.
The latter simple stick to their mean values (so xWCD = 0). Doing a ranking
on the sigma values, the designer can easily identify which transistors are
critical, e.g., he/she can decide to make specific transistors larger to improve
on offset. Also, the interpretation for multiple transistor stages is easy, or
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for the statistical parameters causing the mismatch within one transistor. For
instance, mismatch may come from mobility mismatch or VTO mismatch—
often the 2nd part dominates—and the WCD will give you exact numbers for
this. If VTO dominates, the transistor is in “voltage mode” and you can usually
better improve it by increasing the width; if mobility dominates, consider an
increase in length.

For a two-stage amplifier, the second-stage mismatch is usually less criti-
cal, and how much can be also readout from the WCD set. So a WCD analysis
is also a very useful and very accurate statistical sensitivity analysis. It offers
even somewhat more information than a contribution analysis can provide.

An interesting question is would the WCD change if we change the
design when tweaking the circuit? Yes, unfortunately it would change, but
for moderate changes, the WCDs can be quite stable, so the concept is also
very useful in combination with optimizers (Chapter 8)!

Note: For WCD search in the statistical variable space xS, we can actually use
optimizers, whereas for circuit optimization, we would optimize the design
parameters xD. Mathematically, there is little difference, often even the same
optimization algorithm can be used! In conclusion, optimization is also useful
for circuit analysis. If we optimize on range parameters xR, we could also
perform a circuit calibration via optimization.

One key advantage of WCD for yield estimation over plain MC is that—as
our example calculation has shown—we can calculate the WCD accurately,
i.e., without the usual sampling error, present in all MC results! You just
have to know about the distribution parameters of the statistical variables and
the simulator has indeed access to them! So, whereas normal MC methods
(using sample yield or CPK, etc.) always have a certain inaccuracy (quantified
as confidence interval), the WCD concept has in theory no need for such
statistical extra margins! On the other hand and as usual: There is no free
lunch, and we have also discussed the WCD limitations.

The question is usually which errors are more critical—the MC sampling
error or the WCD errors? There is no simple answer, but in general, WCD is
usually more efficient and more accurate for mildly nonlinear systems (like a
robust design) and moderate variable counts (like for typical analog blocks),
and especially for high-yield verification (see Table 7.1). Where exactly MC
and WCD are head to head is hard to say—maybe 3σ is a good rule of thumb—
some later examples can give you a gut feeling.
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Table 7.1 Comparison of MC against advanced statistical methods
Monte-Carlo High-Yield Analysis

Variants: Random, LHS, LDS sampling,
yield estimation via sample
yield of fitting methods such as
CPK, sorted MC

Fast k · sigma, SSS, IS

Problem structure:
Large number of
variables

Causing no slowdown on yield
verification (slowdown only in
sorted MC)

Slowdown, e.g., variable
screening needed

Large number of
performances

Causing almost no slowdown
(slowdown only in sorted MC)

Slowdown, e.g., variable
screening needed

Nonlinearity No slowdown for sample yield,
fitting methods may become
less accurate (slowdown only in
sorted MC)

Slowdown, more iteration
needed

Stochastic No slow down for sample yield,
fitting methods may become
less accurate (slowdown only in
sorted MC)

Not really suited

Systematic error:
Total yield None if using sample yield,

fitting methods require same
approximation as WCD

Roughly approximated (e.g.,
using min (WCD))

Partial yield None if using sample yield,
some error if model fits not well
to real data

Approximated, some error from
spec border shape or if multiple
fail regions become important

Statistical error
(variance):
Yield Large for high yields, moderate

for fitting methods, easy to
reduce in sorted MC

Generally small

Results:
Histogram, QQ,
mean, sigma, etc.

Yes (partially in sorted MC) Only from initial MC

Yield Yes Yes
WC distance corner Rough approximation Yes
Effort:
For moderate yield Moderate using sample yield,

low using fitting techniques
Moderate, low using SSS or
fast k · sigma

For high yield Huge using sample yield,
moderate using fitting
techniques

Moderate

Parallelization Possible (only partially for
sorted MC)

Limited (e.g., for initial MC
part and for gradient calculation
in optimization phase)
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7.1.2 Worst-Case Distances for Yield Approximation

For now, we have not exactly explained in the general case how we can
obtain WCDs for our design and what the risks are! For simple problems like
our differential pair you can do it by hand, but the key idea for a general
numerical solution is to use not plain MC but to combine a short MC run with
optimization methods. The optimization target and the concept of WCD can
be easily visualized. And this visualization also helps us to understand the
limitations of the WCD concept.

If we would have only one variable, then there is a one-to-one relation
from the statistical variable space to the performance space (although it might
be nonlinear), but this is not true anymore for two or more variables. In our
example hand calculation for the WCD on a differential pair, we derived the
parameter combination (+4.22σ, –4.22σ) as our 6σ-WCD, but (+4σ, –4.44σ)
or even (0, +8.44σ) is giving the same offset voltage—but is not a true WCD!
So the optimization criterion is to hit the fail point and to minimize the WCD
Euclidian scale (

√
(x1

2 + x2
2) for two variables), because this maximizes

the probability following the e−x2
law! The further criterion is on the angle

between the WCD vector and the pass-fail border; it must be 90◦ for a true
WCD (Figure 7.5, note that the vertical axis represents −x2

to have the fail
boundary in the 1st quadrant as in most WCD examples).

In normal MC, we have to accept a certain variance of our estimations,
whereas the WCD allows us to accurately finding the point in the statistical
variable space xS where the spec fail happens, and which is closest to the

Figure 7.5 6σ-WCD example for linear offset of a differential pair.
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origin. However, by doing this, we also accept a certain systematic error,
which is related to the shape of the failure region. The WCD is indeed
100% accurate on yield in our linear example for offset voltage, and here the
spec border is a straight line. This way the yield integral is easy to manage
(remember our hand calculation), but if the design is highly nonlinear, we
often end up in a nonlinear spec border and the WCD indicates either a too
low (being too pessimistic, leading to over-design) or to small yield (being too
optimistic on yield)! We discuss now how the classical WCD analysis works
before coming back to a more detailed errors discussion.

7.1.3 Classical WCD Analysis

The classical WCD analysis uses a short MC run and then optimization
techniques to find the WCD point efficiently (see Figure 7.6). One key problem
is that the initial MC analysis should be large enough to give the optimizer a
good starting point. A second key problem is that any optimization becomes
slow if too many variables have to be optimized. For luck, most real designs
are dominated by not so many variables, e.g., a certain performance like offset
of PSRR is often dominated by maybe 20 variables, even for a bigger design,
featuring maybe more than 1000 statistical variables. So it is a native step to
do after the MC analysis a parameter screening step. The optimization step
has to be done for each specification, whereas the MC run is usually jointly
done for all performances.

Actually only very simple things like the CPK are as simple for 3σ as for
6σ, but luckily also the WCD effort increases only moderately with the yield
level! This is because actually only the way the optimizer has to go to find
the spec border becomes longer for high-yield targets, so maybe we need 200
points for 3σ and 300 for 6σ; the exact ratio depends on the optimizer, on
correlations, and on nonlinearity.

Figure 7.7 shows the log file from a commercial design environment of a
3σ WCD run with 8 statistical variables. Of course the initial MC run inside
the WCD analysis should be large enough to allow the variable filtering, so for
typical blocks having 20 important variables, we should have at least much
more than 20 samples, so with 1000 MC samples, you might be already on
the conservative side (especially if the design is not too nonlinear). As our
LC filter DUT has only 8 variables the WCD algorithm choses a small MC
sample count of actually only 18!

Already based on that, a filtering is possible, so the optimization is done
only for the six dominating variables. The optimizer has taken three iterations
to find the WCD point. For a less nonlinear design, we would need a lower



7.1 Worst-Case Distance (WCD) Analysis 327

count, so less additional simulations. The WCD length is 3.047σ, which fits
well to the CGPK result or to the sample yield of a golden MC run with many
points.

Figure 7.6 Flow for WCD analysis using MC and optimization.
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Figure 7.7 Execution of a WCD analysis on a LC bandpass filter with eight statistical
variables [Liu2013].
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7.1.4 Problems in Worst-Case Distances

To some degree, it looks magic that a single WCD can represent the full design
worst-case behavior for a certain performance. We mentioned already some
inherent systematic errors of the WCD concept if applying it for yield analysis.
On top, there are the numerical errors because the algorithms to find a WCD
are not perfect (e.g., stopping tolerance of the internal optimizer).

One basic error appears if you want to calculate the total yield from
multiple WCDs, because these are related to partial yield and a certain
performance only. If you have a single WCD at 3σ, this is equivalent to a
yield loss of 0.135%. If a second WCD on another performance is 6σ, then
the total yield is highly dominated by the smaller WCD, so also the total
yield is 3σ or the total loss is 0.135%. However, if the second WCD is also
3σ, then the total loss depends significantly on correlation, and the total loss
may range from 0.135% to 0.27%! In terms of sigma (or CPK), the error in
loss is equivalent up to roughly 10%. We discussed a significant improvement
already in Chapter 5 for the multivariate CPK.

However, the problem can appear again in WCD and in a slightly different
fashion. A simple example case is offset voltage: Usually, you have two specs
on offset like Voffset ≤ 6 mV and Voffset ≥ –6 mV, so we would need to find
two WCDs for the offset specs. A native approach to this problem would
be combining both specs into one |Voffset| < 6 mV, but that already causes
another problem! This is because a further WCD error appears if the pass
region has gaps, and this can happen even for a single spec! For a simple
spec like Voffset < 6 mV, there is (at least usually) a single fail region, so the
WCD concept fits well, but for a spec like |Voffset| < 6 mV, there would be
(almost fore sure) two fail regions in the statistical variable space, and the
yield error would be similar to what we have found for the total yield, i.e.,
for two fail regions, the error could be 2× in yield loss or roughly 10% at
3σ! Luckily, at higher yields this 2× error would go down both in terms of
absolute and relative sigma error, e.g., at 6σ it would be only roughly 0.1σ.
So for luck, this type of error becomes quite acceptable if you aim for high-
yield targets like 6σ, but on the other hand, typical WCD algorithms do not
check well for such type of errors, so often you get no warning on them
(Figure 7.8)!

A good approach might be to avoid such kind of result evaluation setup,
i.e., just not using functions like |x| or x2 in specs. However, this is quite a
limitation, and functions such as minimum, maximum, and rms are indeed
intensively used by analog or digital designers:
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Figure 7.8 WCD plot for a spec like |Voffset|< 6 mV.

• When looking to filter characteristics
• When looking to worst-case timing problems
• When using decibel, because log(x) is actually doing log|x|!
• The circuit itself may create functions like x2 or max(x)!

Figure 7.9 shows a further example of WCD errors in the two-variable case;
comparing the WCD plots, you can see that the yield related to the fail area is

Figure 7.9 WCD plot for performance related to max(|Voffset|) – like ADC DNL.
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different, although the WCD is identical in value! A nice circuit example
in which the WCD error is huge and the whole concept becomes almost
obsolete is a DAC or flash ADC. In the later, the differential nonlinearity
(DNL) depends on the comparator offset voltages. These typically follow a
normal distribution, but theADC DNLdepends on the maximum offset voltage
among all comparators (like 255 for 8 bits), and the maximum function causes
here severe problems. The maximum function is only sensitive to the largest
variable, so if WCD finding starts from a certain point in the statistical space, it
would adjust the current largest variable to find the DNL spec violation point.
And to maximize the joint pdf, the optimizer would set the other comparator
mismatch variables to zero! This way the yield estimation becomes completely
wrong, and the obtained WCD point has nothing to do regarding what happens
in production; actually, you would tweak your design in a highly artificial
“corner” point. For an 8-bit flash ADC, the WCD yield error is already in the
order of 1σ, so really significant and maybe in the same order or above the
MC sample yield confidence interval width!

People who overlook that problem and argue that in two dimensions the
error is typically well below few percent simply trap into the false assumption
that the 2D case is essentially already showing all kind of problems you may
have in n dimensions—this is not true, but unfortunately, it is difficult to
visualize and hard to understand from pictures!

In general, WCD cannot handle well such stochastic behavior, whereas
random MC can even deal with distributions with infinite number of variables,
or even if the count of statistical variables is not fixed, but itself a random
number. Other examples for stochastic behavior are bit-error-rate BER,
effective number of bits ENOB, results from transient noise analysis, etc.
In these (quite special) cases, it is better to use no WCD but multiple extreme
samples from MC. We discuss this problem later in some more detail in
Chapter 9.

You may think, OK if I have no very special digital random circuit problem
I can safely use the WCD concept, but actually also classical analog problems
can lead to similar problems! For instance, simple linear filters have poles
and zeroes, and e.g., a Butterworth filter may show a ripple causing a 1 dB
deviation in production. This can happen in many different ways like the peak
ripple may appear quite well-distributed over the frequency range like for a
Chebyshev filter or it may be at the upper or lower filter edge—this often
cannot be captured in a single WCD.

Another systematic WCD error arises from the specification border shape.
If it is linear (like for offset voltages from mismatch), WCD is accurate, but
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Figure 7.10 WCD yield error in case of nonlinear spec border.

for some curvature, the WCD might be too small or too large. The problem
is again that this error is difficult to quantify, because when calculating the
WCD numerically you do not really aim for checking the spec border shape, as
this would slow down the WCD calculation. Some papers report that this type
of WCD error is quite small, usually below 1% in terms of σ for high-yield
designs. So it is justified to regard the WCD as a kind of “realistic” worst-
case, but for sure this is not true for the general case with high nonlinearity
and many statistical variables (Figure 7.10).

In principle, we could extend the WCD concept to model also the spec
border not only as linear, but as quadratic. However, this would lead to
much higher simulation effort, so it is seldom used. Actually, in most cases,
there is luckily no need to choose a difficult model because we anyway
“start” our modeling already at the most interesting point, which is the spec
violation point! This is a clear advantage over response models, usually
applied in sorted MC and in contribution analysis. In all the latter, we
would indeed need (quite) high-order nonlinear models because in those we
usually “start” the modeling at the distribution center! Actually, a linear model
around the spec border (as in WCD) can be more accurate than a third-order
overall fit.

What can bend spec borders? That is an important question because
this makes WCD inaccurate. Obviously circuit nonlinearity is an
important factor, but for luck actually there are also several important
kinds of nonlinearities that cause no such “bending” errors. If we look to
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a Gaussian circuit response and then apply decibel, we may distort the
histogram significantly and the CPK becomes inaccurate. This problem
could arise even from two reasons: Of course you get a bias error, and 2nd
also the variance may increase significantly if the distribution becomes
more long tailed. Such errors are completely uncritical for WCD! Mostly,
different in nonlinearities in different statistical variables (like Vth1 and
Vth2) makes spec borders nonlinear. At the end of this chapter, we look to
some more examples and compare the major different methods.

Our presented examples are still quite linear: So doubling the WCD from 3σ to
6σ is also geometrically doubling the WCD length, and in a linear design, also
the spec border would be shifted according to this factor. The first statement is
even true for nonlinear designs, because the WCD method works directly in the
statistical variable space xS, but in a nonlinear design, the spec border would
not shift by the same amount. Actually, doubling a 2σ-WCD to get a 4σ-WCD
is not correct for nonlinear designs, due to arising spec-border nonlinearity,
but WCD itself as a method is still acting correctly because it really aims for
hitting the spec violation (4σ-point in this example). Such nonlinearity (see
Figure 7.11) is present in a CMOS inverter chain at low supply voltages: If
VTO is close to the supply VDD, the gate overdrive would almost disappear,
so that the transistors are not in strong inversion anymore, but in subthreshold

Figure 7.11 WCD with nonlinear circuit response at high-σ in x1 and x2.



334 Fast and High-Yield Estimation Techniques

region, whereas other statistical variables may still have a linear impact, like
mobility.

An extreme example, where WCD works almost perfectly but other
methods often fail, is a calibrated circuit: think of an oscillator with frequency
calibration; such unit has a certain trim range and can “push” back samples
with large technology variations into the spec range. However, for too large
variations, the calibration would fail, and the histogram would be a big center
bar with the good samples plus a few “outliers.” Such extremely nonlinear
behavior is hard to model, but it is quite manageable if the model is around
the calibration point! This does not mean that sorted MC will fail, but the
job gets much harder than for WCD. On the other hand, it is also a nice
example where manual divide-and-conquer will be successful too, and also
just picking the MC worst sample can help enough for circuit understanding
and improvements.

In general, WCD effort and accuracy depend highly on the number
of variables, mostly on the number of really important variables, and the
nonlinearity of the system. The problem is if we filter out too many statistical
variables after the initial MC run (see flow in Figure 7.6), we could end up in
a severe WCD error! If we filter out too few, the optimization may take much
more time than if using the optimum number; so a compromise is needed, and
advanced algorithms use clever methods to find a good balance between the
effort spent in the initial MC run and in the optimization part.

For a mildly nonlinear system with many statistical variables, we typically
assume such behavior: If we move a statistical variable from 1σ to 2σ, we can
identify which variables are important, and if we have one (or multiple) of
these important variables at 5σ, the design may start to fail. So the usual
assumption is that the variable ranking we find from low sigma changes (e.g.,
via OFAT or a small MC run and a contribution analysis) does not change
much for higher sigma levels. However, this assumption might be violated
in nonlinear designs, e.g., one variable might appear in the denominator and
could cause a pole in the performance response, so its sensitivity might be
indeed low around 2σ, but 10× larger at 5σ. Unfortunately, it is hard to make
sure that such variables with “progressive” sensitivity will not be filtered out.
Such variables might be “hidden” within a storm of numerical noise from
hundreds of other variables!

For speed reasons, often local optimizers are used to find the WCD, but
we are interested in the global optimum. Luckily, most robust designs are
quite well-behaved and usually the optimization starting point based on the
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initial MC run is quite good, so the risk of trapping into a local minimum is
small—although not zero. Setting the initial MC count too low can indeed end
up in WCD to fail, due to too much filtering or due to local minima.

A last type of WCD error we want to mention is of course that it might
be simply not easy to calculate a WCD point numerically with high accuracy
(see Figure 7.12). We typically need optimization techniques and we can
only achieve a certain accuracy with a given amount of numerical effort. For
instance, in our WCD example run log (Figure 6), a small error in angle of
only 0.6◦ is reported and a spec value error of 0.057%. In most designs, this
level of accuracy is fully acceptable, but in very complex and highly nonlinear
designs, it may indeed happen that the WCD optimization fails in finding the
worst-case setting, especially for difficult, progressive variables, just due to
numerical noise and simulation accuracy limitations. A quite general solution
for many of these problems will be discussed in chapter on sigma-scaled
sampling SSS.

An interesting question is also how much WCD accuracy we actually
need in conjunction with a circuit optimization? This will be discussed in
Chapters 8 and 9; we discuss there what could happen if we use too inaccurate
WCDs and how much the WCD will change if you (or the optimizer) modifies
the design component values.

All in all, the WCD method often gives a huge speed-up for real high-
yield verification, but as in several other advanced methods, scalability can be
a problem, and it needs to be addressed with clever algorithm extensions—
here is some room for improvements.

Figure 7.12 PASCAL source code for WCD calculation.
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7.1.5 Contribution Analysis versus WCD

A very useful analysis has been described in Chapter 5: The (mismatch)
contribution analysis MMC; it supports finding the most critical instances on
speed or offset, and based on that, you can often quickly improve your design
manually! How is this linked to WCD results? For a linear circuit and Gaussian
distributions, there is indeed a one-to-one relation, and the parameters with
highest contribution are those with largest deviation (in sigma) in WCD! WCD
is even a bit more, because it is also valid for non-normal distributions and it has
a direct relation to yield. It could happen that the effect of a statistical variable
is very nonlinear, but the contribution analysis does not take this nonlinearity
very well into account; the contribution based on a kind of average. And even
if a nonlinear model is fitted, the mismatch contribution model is typically
fit well around the distribution center, so usually the accuracy in the tail
regions is limited. In WCD analysis, however, the model is really around the
worst-case position and we try to hit the pass-fail boundary accurately. This
is possible because in the WCD analysis, the specs are available as input, and
that is not required for MMC analysis. Also WCD has in theory no confidence
interval, whereas for an accurate mismatch contribution result you typically
need quite many MC points (much more than for stable sample sigma on offset
voltage).

So all in all, the WCD analysis results are as useful for designers as the
ones from a contribution analysis, but often more accurate in the critical region
of the design, especially in non-normal cases. In addition, you can find in the
WCD also the direction for the worst-case shifts, so from the signs of each
component, you can see in which way the individual impacts add-up.

Let us go back to our initial WCD example on a differential pair and
compare WCD and mismatch contribution in detail. Having a linear design
and Gaussian distributions, the ratio between the statistical variables would
not change on the sigma level and the spec setting, so if the 3σ-WCD is (2.1σ1,
2.1σ2) then the 6σ-WCD would just double everything. This corresponds to
the fact that the contribution analysis does not depend on specs. In the diff-
pair, we have σ1 = σ2 = σ and the contribution of each transistor would be
of course 50%. For transistors with no impact on offset (like common-mode
circuitry or power-down transistors), the contribution would be zero and the
WCD entry would also be 0. To find the accurate relation between contribution
and WCD entry, we could inspect a slightly more difficult case, like inspecting
the total resistance of two resistors in series of different mismatch accuracy.
Let R1 = R2 = 10 Ω but σ1 = 1 Ω and σ2 = 3 Ω. Then, the total R is Rtot = 20 Ω
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and σtot =
√

10 Ω = 3.162 Ω, and the mismatch contribution is (94.1%,
5.9%). The 1σ-WCD is a vector giving 3.162 Ω for magnitude in absolute
terms or (0.97σ, 0.243σ) as vector (in terms of sigma). In both cases (as
well known), the resistor with the larger tolerance clearly dominates, and the
relation between WCD and MCC is WCD/σ =

√
contribution/%. This fits also

to the well-known fact that n identical resistors give
√

n as overall standard
deviation.

7.2 Fast k · Sigma Corner Estimation

The described classical worst-case distance method has not only its sweet
points, but also its weaknesses. It is very efficient for high-yield cases, but for
low-sigma yield targets, the speed-up against pure MC is only moderate. One
reason is that the classical WCD flow is designed for an almost accurate WCD
calculation, but we have also many applications where a reduced accuracy
can be accepted (e.g., in early design stages), so this can be exploited to create
faster algorithms. For instance, we can do just a one-dimensional sweep on a
scaling parameter instead of a full n-dimensional optimization (see WCD flow
in Figure 7.13). This way we cannot correct on the WCD direction anymore,
but this would be usually only needed at higher sigma levels. If the model is a
quadratic one, then even this sweep part might be skipped [Zhang2009] with

Figure 7.13 Flow for fast k · sigma analysis.
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minor loss of accuracy (in Chapter 8, we will show that a Newton-optimizer
based on a second-order approximation needs in principle no step size control).

The scale factor is checked against the yield prediction, which might be
based on kernel densities estimation KDE. KDE is quite popular because it
allows to fit almost any kind of distribution, but it has usually the problem
that it is well suited for interpolation, but not at all for larger extrapolations.
In Figure 7.14, the KDE bandwidth parameter is chosen large enough to get
a smooth fit to the true pdf, but the extrapolation capabilities are still very
limited. If we would smooth more, then the fit on more complex distributions
(like Laplace or Gaussian mixes) would become worse with still only moderate
improvements in extrapolation.

Such fast k · sigma technique can be modified in different ways. Actually,
the simplest method is just running MC and using the worst sample as statistical
corner for further design tweaks. However, this is not very accurate, neither on
length, nor on direction! For a 200-point MC run, the worst sample might be
2.7σ or 3.2σ or whatever. However, we know that the CI for sample standard
deviation is already quite small for n = 200 (sigma is then 5% only), so if

Figure 7.14 Kernel density fit vs. CGPK fit (normal distribution, averaged MC run,
256 points).
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we just divide our worst sample by the sample sigma and scale it up (like we
get 2.7σ as worst sample, but we aim for 4σ) or down, we could significantly
improve on the length of our corner sample! The problem is that for non-
normal data, the scaling is more difficult, but using the CGPK (Chapter 4)
or KDE, it is still feasible. Further improvements are possible by using not
only the single worst sample, but e.g., the worst four samples, scale them, and
average across them. By doing so, you actually would end up in multivariate
methods, as described in Chapter 5.

As a last step of the fast k · sigma flow, we run a simulation sweep for
the scale factor as shown in Figure 7.13; this way we double-check our initial
estimation (e.g., from KDE or CGPK). All the estimations from the simpler
preceding steps might be used as backup for cases where the multi-dimensional
modeling fails (e.g., due to too strong nonlinearities) or for internal error
checking.

All in all, there are also some similarities for sorted MC with a corner
stopping criteria, but fast k · sigma is faster, because in a pure sorted MC, we
would have only the sorting speed up, not the speed-up of the direct search
step! For small designs, fast k · sigma can give 3σ-corners already with 50
to 200 simulated points. The effort increases moderately with the number of
specs due to execution of the sweeps, but for mildly non-normal behavior,
each sweep may take only three simulations, and even for strong non-normal
data, it would typically take no more than ten steps. Note that fast k · sigma
is in most implementations no dedicated high-yield method, for instance if
KDE is used for data fitting, the typical verification level is approximately 2σ

to 4σ. However, we can expect improvements in the near future, just because
designers highly need fast and reliable methods in general, especially when
dealing with long simulation times, like for PLL, ADC, RF circuits, etc. In
such cases, even a 100-point MC run can take a day, but the sample yield
confidence interval would only give a guarantee for roughly 1.75σ, so you
need advanced methods even if you only design for 3σ.

7.3 Importance Sampling IS

Monte-Carlo integration is not very efficient in general as we know. It is even
very inefficient if we are interested in the distribution tails which is often the
case in circuit design when aiming for high-sigma corners or for debugging.
This is because you need to wait long to get samples in the tail area, so any
statistic on this has a large variance, so high-yield verification takes many
simulations.
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We discussed several ways to improve it, like LDS or searching the WCD
directly via optimizers. However, if we would have already many points in
the tail, we would actually have much less problems and would often not need
the additional search part! This is the idea of importance sampling (IS). We
do not use the original pdf directly, but we apply a variable transform to “lift
up” the tail region! This is similar to a normal substitution in manual integral
calculations (which you learned in school), so actually we combine analytical
methods to improve numerical integration for yield via MC sampling.

IS is quite popular in other fields of engineering, but not so much anymore
in circuit design, because this “trick” is hard to apply for problems with
large number of statistical variables, so you will not find it in many EDA
environments currently. Also it is not a true corner-generating method and
WCD generation based on pure IS would be usually less accurate and less
efficient than the classical WCD search method. However, the idea of IS
is still appealing and may receive a comeback! For instance, importance
sampling is the core part of the IBM in-house tool “Rambo” [Kuang2012,
Joshi2012], which is specific to static memory (SRAM) design. For 4.75σ

yield verification, 2,500 simulations are required, giving a reported speed-up
of 7360× against random MC. As for WCD, the simulation effort rises only
very slowly with the sigma level. Like in parameter estimation, also in memory
design, highly tailored tools make sense, because exploiting the problem
structure (low variable count, but large variations, nonlinear performances)
is almost a prerequisite for maximum efficiency and accuracy. In addition,
memory design is a good example that also in digital design analog aspects
can be very important.

7.4 Sigma-Scaling Method SSS

A problem in classical WCD analysis is that the number of statistical variables
is often very large in typical state-of-the-art blocks. This is usually addressed
by parameter screening, but that step also comes with risks. To some degree,
scaled-sigma sampling (SSS) [Sun] picks up the idea of importance sampling
IS, so it is also aiming for getting extreme tail samples earlier to speed-up
yield verification. The idea is to run multiple MC analysis, first a normal MC
one and then further MC analysis, but with upscaled sigmas! As desired, this
way we immediately get just more tail samples, and the failure rate can be
predicted quite accurately, because now we can create a statistic based on
more samples as usually available in normal (direct, unscaled) MC!
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Like IS also SSS does not really aim for WCDs, and we have still to live
with confidence intervals, but SSS has the advantage that we do not need
an extra simulation step for each performance spec anymore. The parameter
screening step in classical WCD search by optimization is not needed too,
just because there is no optimization step; so overall SSS is well-suited for
complex, nonlinear designs with many specs. Further principal advantages
are that SSS runs not in trouble if the spec border is nonlinear (Figure 7.15).
SSS can also treat correlations among the outputs, and so in principle, it is
also suited for total yield estimation.

Another way of looking to SSS is regarding it as a kind of combination of
OFAT sweep and Monte-Carlo. We demonstrated that OFAT is a risky method
for worst-case finding, but as we sweep in all “directions” given by the MC
samples, the OFAT risk went down a lot, practically (Figure 7.16).

Also in SSS, you can think of several refinements like adjusting the number
of scaled sigma runs and its ranges adaptively. In principle, there is also no need
to run all MC samples again with their upscaled version; you may select just the
extreme samples only (“sub set simulation”). For internal yield estimation, we
may use the sample yield or uses kernel density estimation KDE, but also other
techniques are suitable. The accuracy of SSS is typically checked internally
by bootstrap techniques or cross-correlation.

In addition, you may receive further results, like the failure rates. The
results for the different upscaling factors can be related into a unified model
failure rate with good accuracy (Figure 7.17), but like in other methods,

Figure 7.15 Flow for sigma-scaled sampling (SSS).
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Figure 7.16 SSS with original MC run and with 1.9× upscaling.

Figure 7.17 SSS yield estimation from three upscaling factors s (linear case, normal
variables).

actually at such place, additional assumptions (e.g., which laws of nonlinearity
are addressed) can influence the yield estimation.

Following [Sun] we can translate the SSS core part quite quickly to a R
program. R features many powerful routines, so without the sampling part,
just using the ideal fail rates, the code is very compact (Figure 7.17a).

Figure 7.17 may indicate that SSS is an extrapolation method (like CPK),
but it is not, because we really hit the fail area.

Note that also the yields from the upscaled MC runs have a meaning:
Having no functional errors even in the upscaled MC runs is a good indication
for a truly robust design. Due to upscaling, there is no real need to increase the
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Figure 7.17a R code for SSS yield estimation in the Gaussian case (Y = 4σ).

number of MC samples much with yield sigma level from 4σ to 6σ; usually
2,000 to 10,000 samples in total are often enough. This behavior is quite
similar to other high yield methods (like WCD) and other methods like CPK
or CGPK and in big contrast to yield estimation by direct MC and the sample
yield. 1000 points can be regarded as a kind of minimum for SSS, because
with low sample counts the confidence intervals are still quite wide.

Note that SSS is aiming for yield verification, not for WCDs. This avoids
some WCD weaknesses, but makes corner generation from SSS less accurate.
Corner generation is still possible via multivariate modeling or by picking
just the worst sample. In opposite to fast k · sigma flow, there is no need
for additional sweeps on scaling factors. In principle, we could also use
multivariate techniques in SSS for the yield estimations, but it would make SSS
less applicable on large circuits. In Figure 7.18, you see a plot derived from the
SSS run regarding the yield for op-amp power supply rejection (PSRR). The
sample yield drops with the maximum scale factor, of s = 5.82 below 50%,
so below 0σ; whereas for low scaling factors, we get 100% sample yield, so
actually an infinite sigma, but in the plot we cut at 7σ. In the gray area of
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Figure 7.18 SSS yield estimation plot form (yield in sigma versus 1/s).

low scaling factors, the variance in yield is quite large, so we see quite some
randomness in the points.

At some point, here for s = 1.8, the yield drops to a finite effective sigma;
and the real behavior is indeed similar to our sketch in Figure 7.17. To see the
random variations, the values from a second run (with other MC seed) have
been added to the log in parentheses. However, for higher scaling factors, we
get really stable results. In addition, the SSS confidence interval is provided.
The lower confidence bound is still quite low due to chosen low sample count
of n = 1000, but against the CI from sample yield, we get an improvement
by roughly 0.6σ; on top of the SSS other benefits (hitting the spec boarder,
getting samples in the fail region for debugging, etc.).

In several circuit designs, SSS has outperformed IS [Sun2015]; also an
implementation of SSS in R is quite straight forward. Table 7.2 shows the
SSS results for a mathematical 6σ 5D-test case, which is quite nonlinear (the
CPK is already roughly 3σ too optimistic!). Also the classical WCD method
would be quite inaccurate due to multiple fail regions and nonlinear spec
shapes. Actually, this test case is difficult for many model-based algorithms,
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Table 7.2 6σ test case result using SSS and different number of simulation points

Number
of Samples

Estimated
Yield

Bootstrap
90% Interval
(in σ)

90% Interval from
Repeated SSS Runs
(in σ)

90% LCB Using
Sample Yield*

7000 6.23σ (5.47, 7.21) (5.36, 7.15) 3.354σ

14000 6.23σ (5.63, 6.98) (5.64, 6.96) 3.54σ

21000 6.21σ (5.69, 6.86) (5.51, 6.91) 3.72σ

*Assuming no fails and using Clopper-Pearson limit.

just because obviously a simple linear model would not fit well. On the other
hand, it is also a nice example showing that systematic errors could cancel, at
least partially: WCD tends to be too optimistic on yield estimation if there
are multiple fail regions, but is too pessimistic for concave pass regions
(Figure 7.19, some more details you can read in the question and answer
Section 7.6).

Synthetic data with function:

r = |x1| −
5∑

i=2

x2
i /20 (7.2)

Actually, SSS shows some moderate bias of +0.23σ. For a fair comparison to
the sample yield we should subtract this from the LCB for 7000 points, so
we would obtain 5.24σ (or 76 ppb loss). If we want to guarantee this with the
sample yield method we need roughly 30 million simulation points, so overall

Figure 7.19 Testcase with near-parabolic fail boundary. a) sketch of a 2D sub-space plot,
b) SSS run with 3x upscaling.
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the SSS speed-up is 4000; it is a beyond the typical CGPK speed-up. The CPK
speed-up would be even beyond 200,000, but only available for highly normal
distributions (remember our example Student’s t vs. Irwin-Hall showing how
risky the CPK is). In [Jallepalli2016], a slightly improved version of SSS has
been presented, giving less bias and tighter confidence intervals.

As usual, it is not easy to find out algorithm limitations by reading
the original papers, but like for WCD, many examples and pictures are
only working really well if the statistical variables itself follow a normal
distribution. If you would try the WCD or SSS method on multivariate
uniform distributions, then pictures like Figure 7.5 or Figure 7.16 would look
quite strange, and indeed, the results will become inaccurate (although not
completely wrong). However, in conclusion, SSS is a very useful and quite
robust method, and even more improvements can be highly expected in the
near future, e.g., by picking up the idea of sorted MC, we can improve the
corner generation and speed-up the yield estimation further by simulating only
the potentially critical samples with upscaled sigmas [Sun2]. Also Bayesian
techniques have been included to SSS, giving some further speed-up.

Are you confused on high-yield estimation, sample-re-ordering,
WCD, fast kσ, sigma-scaling, LDS? Actually most methods have the
same goal, just making MC a faster. The more you exploit, like whether the
system is dominated by a few variables, the more speed (or accuracy) you
can get. There is no one-fits-all, you can always give test cases where one
method beats the other! Random MC is slow but most reliable, and well
implemented in almost all design environments. LDS is also a low-risk
easy-to-use method, only for highly complex designs and high yields, the
speed-up is limited, but we may expect some improvements in the future.
The other methods are more advanced and follow the idea of focusing on
the worst-case which is in the outer tail regions and usually they combine
MC and iteration techniques. The goal is usually the same, focus on WC
instead of doing a huge MC analysis, just the methods just differ a bit,
like in fast kσ only a simple sweep is done, instead of a full optimization.

7.5 Design with Pictures Part Five

With pure MC results, you can do a lot as described in Chapters 3–5; some
things are common and an almost immediate output for all the advanced
analysis of Chapter 6—like yield reporting. Often histograms are missing as
outputs, but you will often get not only higher accuracy but other valuable



7.5 Design with Pictures Part Five 347

insights. Let us now inspect our latch comparator as a more difficult example
with respect to worst-case distances.

7.5.1 Contribution versus WCD for a Comparator

We mentioned the tight relations between a (mismatch) contribution analysis
MMC and worst-case distances WCD, so we made both on mismatch only for
our complex latched comparator block. Table 7.3 gives a direct comparison for
the (absolute) total offset voltage and the most interesting statistical variables.

Table 7.3 Latched comparator 1.5σ-WCD, worst-sample vs. relative parameter contributions
for |Voffset| (major parameters only, full xls file available at River webpage)

Statistical
Parameter MMC Result CommentWorst Sample WCD Entry
COMP0/C0 0.019155 0.822434 0.195323 Parasitic wiring

capacitances,
C0/C0x are at
located 1st stage
output

COMP0/C0x 0 −2.06674 −0.245877
COMP0/N10.pvt 0.00358664 1.53747 0.0114896
COMP0/N13.pltw 0 −0.33717 0
COMP0/N13.pu0 0.0118747 1.19616 0
COMP0/N1.pltw 0 −1.15992 −0.0413625 NMOS for diff-pair

bias, minor impact
because
common-mode
transistor

COMP0/N1.pu0 0.00395791 2.5611 −0.00689375
COMP0/N1.pvt 0 0.886413 −0.0206812
COMP0/N5.pltw 0.00178266 0.21779 0.126385 Input diff-pair, is

dominating the
offset

COMP0/N5.pu0 0.00243737 −1.29853 0.0459583
COMP0/N5.pvt 0.235319 1.50624 0.744525
COMP0/N6.pltw 0 0.698224 −0.15396
COMP0/N6.pu0 0 0.467513 −0.0919167
COMP0/N6.pvt 0.248905 −1.9733 –0.792781
COMP0/N8.pltw 0.00346528 −0.240356 −0.379156 2nd stage NMOS,

quite significant
impact

COMP0/N8.pu0 0.0310793 0.224258 −0.00689375

(Continued )
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Table 7.3 Continued
Statistical
Parameter MMC Result CommentWorst Sample WCD Entry
COMP0/NM1.pltw 0 0.53319 0.0367667 Input charge

cancellation
NMOS, negligible
impact

COMP0/NM1.pu0 0 −0.239264 0
COMP0/NM3.pltw 0.00351871 −0.563122 0 NMOS output

inverter, negligible
impact

COMP0/NM3.pu0 0.0186326 0.848688 0
COMP0/NM6.pltw 0 −0.559429 0.167748 Reset NMOS

transistors
COMP0/NM7.pltw 0 −0.692203 −0.17694
COMP0/NM7.pvt 0.0037437 −0.166839 −0.137875
COMP0/NM8.pltw 0 0.606616 −0.027575 Hysteresis

compensation
NMOS, negligible
impact

COMP0/NM8.pu0 0 −1.82869 0
COMP0/P10.pltw 0 1.17276 −0.027575
COMP0/P13.pltw 0 −1.09653 0.00229792
COMP0/P13.pu0 0.00722655 1.06833 0
COMP0/P1.pltw 0.00374428 0.374136 0.0413625 PMOS load of 1st

stage, surprisingly
small impact

COMP0/P1.pu0 0.0171627 −0.471267 0
COMP0/P2.pu0 0.00540636 –2.28249 0
COMP0/P2.pvt 0 2.86687 −0.0137875
COMP0/P5.pvt 0 −0.122529 −0.103406 2nd stage PMOS,

significant impact
COMP0/P7.pltw 0.00632563 −0.871859 −0.353879
COMP0/P7.pu0 0 −1.49746 −0.105704
COMP0/P7.pvt 0.00732191 1.1915 0.278048
COMP0/P8.pltw 0.0172066 1.40118 0.326304
COMP0/PM6.pltw 0.00470468 1.10965 0.00229792 PMOS output

inverter, negligible
impact

COMP0/PM7.pltw 0.0189103 −0.690735 0
COMP0/PM7.pu0 0.0100838 −1.34689 0
R0.R0.pres 0.000722049 −1.10588 0.0436604 Generator

resistances, small
impact

R3.R0.pres 0.0182012 −0.893763 −0.082725
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For instance, it is nice to see that in MMC some clearly non important
instances, (like the output inverter NMOS NM3) still may have some small
impact like 3%, whereas WCD is more accurate, giving really zero if no
impact on offset exists. On the other hand, there is of course some overhead in
WCD, because we made the MMC on the WCD-MC run having 400 random
points, and the WCD optimization part took further 602 simulations. Also
note, just picking the worst sample (it was #119 giving 37 mV, equivalent to
approximately 3.5σ) is even much less accurate compared to both methods.
For parameters (such as those related to P10 or P13) with low sensitivity, the
worst-sample is typically at random values, like ±1σ.

The spec is nonlinear and the histogram for |Voffset| is non-normal, but still
both methods work quite well. We also calculated WCD and MMC for Voffset,
and indeed the results are more stable (r2 of 0.99 vs. 0.90). The design was
not fully optimized (yield only of 86.5%), so the offset was quite large and
dominated by the NMOS input diff-pair N5 and N6, as often the VTO mismatch
dominates. The overall WCD was 1.501σ, and the two major variables (among
102 in total) give already 0.7445σ and –0.7928σ (so together 1.08σ). This
corresponds well to the MMC results.

Actually in the WCD analysis, we manually limited the initial MC count
to 400 samples, and for the optimization part, we limited the number of
iterations to three; so the optimizer started at roughly 0.3σ for the two
dominating variables, till we almost converge to approximately 0.77σ. On
the less important variables, the optimizer job was almost the opposite, e.g.,
for a noncritical transistor N13 in the output latch, the mobility variable was
at 0.467σ, but the optimizer pushed it back to zero. In the last iterations, it
is also nice to observe that the symmetry of our circuit corresponds well to
the symmetry in the WCD entries—on this MMC is less accurate (but we
may improve with low effort by using LDS instead of random). The WCD
search stops with hitting Voffset = 0.014862 V (spec limit was 0.015 V) and the
gradient direction error was 6.76◦. With extending the number of iterations,
we could further improve the accuracy down to ≤1◦.

Without looking to the other performances, an optimization by hand would
be now very easy: Just make the critical transistors N5 and N6 larger, but of
course this will impact input capacitance and speed negatively, so a realistic
optimization is not so easy.

7.5.2 WCD in a Complex Filter

As mentioned and for luck, many difficulties present for WCD in theoretical
mathematical examples will not really occur in typical robust circuit designs.
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Note, that from the circuit perspective, a latched comparator is something
heavily nonlinear, but from a statistical view point, it behaves quite linear!
However, there is no guarantee that only difficult circuits such as DACs
or ADCs cause WCD problems. After the quite complex but quite “linear”
comparator let us now increase the level of nonlinearity; actually, nonlinearity
regarding statistical parameters has nothing to do with circuit linearity! Here
we have a real pure analog example on which WCD works quite fine, but
just not 100% accurate. As DUT, we chose an eight-element LC bandpass
filter.

Note: This filter is also fully integrated to our real-time opti-
mization app. It has eight statistical variables, so the design
is still quite tractable (like we could run a big MC analysis
as near-golden reference); and of course you can transfer the
results also to (much) more complex implementations of that
filter as gmC or an op-amp RC active filter.

Typically filters should have a flat passband region, but also have high good
stopband attenuation. This usually defines a certain minimum filter order and
a number of filter elements. Once this is chosen, there is some more flexibility
on setting filter poles and zeroes, like using a Butterworth or Chebyshev filter.
From filter synthesis programs or catalogs you may find that, e.g., an eight-
element Butterworth filter fits to your specs, hopefully with some margin. In
our example, we focus on a few key specs like the (passband) filter gain ripple
in a certain frequency range. By definition, a Butterworth filter has no true
ripple (it is maximum flat), but of course we have some attenuation (like 1 dB)
at the two corner frequencies of the bandpass. In an MC analysis, the elements
will vary (σ set to 2.3% for each element) and the filter total ripple (including
the drop at cutoff) will often become larger (like 3 dB), but sometimes it might
be even smaller (like 0.8 dB). The histogram of the filter ripple is typically
significantly skewed, so that the CPK is not suited and other yield analysis
methods should be used, like WCD or the CGPK. In general, the latter is
much easier to apply, but the WCD can give some further design insights and
accurate statistical worst-case corners (helpful for finding the most critical
elements and for doing optimizations) (Figure 7.20).

If we run a big MC analysis (e.g., 32K points) and save the waveforms, we
can learn more about the circuit behavior. A spec like (Amax – Amin) between
f Lower and f Upper ≤ x dB can be violated in many different ways (like the
actual violation in gain might be located at f Lower, f Upper or somewhere
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Figure 7.20 LC filter circuit and its nominal Butterworth behavior (note: frequency axis is
linear).

in between), but at least ultimately you and your customer are usually only
interested in the worst-case, and just avoiding the production of too many bad
samples.

On the other hand, inspecting the MC waveforms indeed different kinds
of spec violations occur (like at lower or upper passband edge), so what does
it mean regarding yield and WCDs? (Figure 7.21).

In many design environments, you can select the most extreme MC
samples and save a statistical corner set for this MC point. If you do this for
the ten most extreme samples of a big MC analysis, you will usually observe
some “clustering.”Actually you will typically get one cluster regarding critical
variables for simple cases like offset voltage, but in our filter (or other complex
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Figure 7.21 Plot of voltage gain for the 4 most extreme MC samples, the WCD, and nominal
point with logarithmic frequency axis.

examples), we will indeed have several clusters! What typically helps is that
even if you have three clusters, usually one cluster will dominate, like in cluster
no. 1 there are maybe 6 samples of 10, and in no. 2 and 3 only 2 or less. Of
course, most WCD algorithms will find correct WCD point according to the
largest cluster. For two balanced clusters, we would have a WCD error of 2×
in yield loss, and we run in a situation similar to the problem of partial yield
vs. total yield (discussed in Chapter 5) (Figure 7.22).

In Table 7.5, we compare some extreme samples against the WCD.
The most extreme MC sample regarding spec violation is #834 and has
an overall pdf of 4.772σ (for a multi-variate normal distribution we have
pdf(x) ∼∏e−x2

= e− ∑
x2

), so we use this sigma level for the WCD as well.
Actually, the WCD algorithm filtered out two variables (elements C1 and C3)
as less important, although both are set to quite extreme values in the worst
sample, which is no surprise—just a limitation of the worst-sample picking
method! Also the most important variables for WCD (C2 and L2) are only
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Figure 7.22 Histogram with zoom-in to fail area (for passband loss).

Table 7.4 Four most extreme MC samples out of 1200 and 4.772σ-WCD in comparison
WCD Max

Corner Seq 834 Seq 792 Seq 470 Seq 703 Passband Loss
mismatch:C1 −2.05791 −2.25753 3.16688 0.731617 –
mismatch:C2 −2.77369 −1.93971 1.17822 −1.31317 −3.4336
mismatch:C3 1.03959 −1.01327 −0.33884 −0.13460 –
mismatch:C4 −2.68008 −0.28853 1.76989 −0.65692 −0.23812
mismatch:L1 0.037479 0.175438 1.07004 −0.92655 1.20529
mismatch:L2 −1.12574 −1.70383 0.7316 −2.45219 3.0754
mismatch:L3 −1.13393 −0.089535 0.059932 0.87793 0.069232
mismatch:L4 0.159214 −1.03981 −0.97871 −1.7757 0.098982

Table 7.5 Performances for all points in Figure 7.21 and nominal (xS = 0)
Corner Max (Passband Loss) Pass/Fail
Nominal 1.093 dB pass
Seq 470 2.376 dB pass
Seq 703 2.329 dB pass
Seq 792 2.405 dB Pass
Seq 834 2.604 dB fail
WCD 3.506 dB fail

moderately in sync with the worst sample. This indicates that the worst sample
is not a very good approximation to the true WCD: Although the joint pdf is
the same, the WCD gives a (much) worse performance (see Table 7.4), so the
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optimizer has really made a good and important job on finding the correct
direction! Such large deviations between sample joint pdf and performance
are quite typical; even for pure normal distributions and linear circuits, they
are intrinsic to the multi-dimensional characteristic of the problem! Clear
one-to-one relation are only available for one-dimensional cases.

Interestingly, the WCD components are also quite small for L3 and L4,
so actually also these could be filtered out maybe, and the decision on which
variables will be filtered out depends a bit on chance. In more complex test
cases, maybe only 1 to 10% of the variables are really significant, and this helps
to apply WCD also to cases with large number of variables. Mathematically,
we say the “effective” dimension seff is typically much lower than the nominal
dimension s ( = number of statistical variables forming xS).

Another interesting effect can be found if looking to MC sample #470,
giving us another fail mechanism: The WCD and the other extreme samples
fail on upper cutoff limit, whereas #470 fails at lower edge (Figure 7.21) and
indeed #470 is to belonging to another cluster, as can be seen in Table 7.4:
The entries for C1, C2, C4, L1, L4 differ a lot.

What would help in finding a WCD approximation manually by simple
means is averaging among the samples of the dominating cluster; if we do
this, we would get the vector (–1.195, –2.01, –0.036, –1.21, –0.24, –1.76,
–0.12, –0.89), which is slightly better in sync to the WCD. Further averaging
would mean to include also less extreme samples (thus lower sigma values),
and those should be upscaled before doing the averaging. Of course averaging
can only give moderate direction improvements according to the

√
n random

MC law, and we have to look up carefully to average only within the same
cluster.

To improve also on the vector length, we could use the generalized CPK. In
this example, WCD and CGPK are quite close together (4.772σ—WCD being
too optimistic on yield—vs. 3.993σ from CGPK being a bit conservative;
its bootstrap lower confidence limit is 3.564σ; this is only 11% below the
sample point estimate, so the CGPK accuracy is quite good), whereas the
effective sigma for #834 is significantly lower (actually only at 3.006σ using
the CGPK), which means that we need to upscale (by 1.5875) it to get a
better approximation to a 4.77σ-WCD. This is in synch with our simpler
qualitative inspections; and the re-simulation of the upscaled version of #834
gives actually 3.874 dB so it is now really close to the classical WCD! Note:
We got this excellent result although we actually used no compute-intensive
multivariate methods. So the CGPK can also help to get approximations to
worst-case distances. It is also a nice example of a kind of feedback method:
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The direct CPK or CGPK application to MC data is a mix of interpolation
and extrapolation, leading to some risk, but in this example, we use the yield
estimation for a scaling on the statistical parameters, and we re-simulate, so
we get this way more information which allows a verification.

Note: The upscaled joint pdf of the approximated WCD from #834 is signifi-
cantly larger than the one for the true WCD, but having unimportant variables
at nonzero is no problem because they make any way no big impact, and also
the worst sample #834 is the sample with most extreme performance, not the
one with largest overall sigma, thus the most extreme probability (this sample
was actually #980 but giving only 1.445 dB).

How many “fail clusters” exist in the statistical space? Even for a fix
design and spec this is not so easy to say, because if you take into account
only clusters within 0.5σ there are surely less than if you would increase
the spread to 1σ. However, a cluster 1σ below the WCD would usually
have only little impact on yield (roughly 5% in terms of sigma). On the
other hand, many such clusters could add up—not only theoretically. An
extreme example is the maximum function, which is used e.g., in ADC or
DAC DNL specs. It could lead to hundreds of clusters (actually even one
for each quantization step so 2Number of Bits) of even identical sigma level,
so ending up in to huge WCD errors! Also our LC filter can be made more
critical on WCD error, by a small change in specs or in the nominal design
points we will change the yield impact of the clusters, so that two clusters
become almost balanced, making WCD more inaccurate. Actually our
example looks fully symmetric and centered, but the LC bandpass itself is
actually asymmetric: the highpass transition is smoother than the lowpass
edge, leading almost to a single dominating WCD. Matlab (and other
math packages) feature basic analysis for such problems, like so-called
k-means clustering. Of course, it does not mean that one Matlab function
can do the full job, a lot of pre processing is needed, and also further
improved algorithms exists. We made such analysis from an MC analysis
with 32K points, picking all samples beyond 2.5 dB (giving 3σ). This way
we obtained 42 extreme samples, and a two-cluster analysis indicated that
7 belong to the fail area close to sample #470, and the WCD fail area
contained 35 samples, so it is really dominating. So here the WCD error
on yield loss is approximately +16% (or 0.04σ). This is an excellent WCD
result, for using less than 50 simulations. The CPK standard deviation
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would be 11%, but the data is non-normal, making the normal Gaussian fit
1.2σ too optimistic! The CGPK would be slightly too pessimistic and has
a sigma of 4.9% even for 1K samples (LCB = 0.915 or 2.7σ). Therefore
here WCD works like a clever manual hand calculation, treating the
non-normality very accurately. The only (moderate) problem is that the
WCD effort would rise for more complex circuits (e.g., when we want to
address an OTA-C filter), whereas complexity has no impact regarding
number of simulations for random MC and using the CGPK or the sample
yield.

Besides inspecting the gain vs. frequency behavior, we could also inspect
the filter behavior in a Smith chart or look for the filter poles and zeroes.
Which method gives you most insights depends highly on the circuit, so the
filter poles and zeros depend on the element values, but we have no one-to-
one component value to pole zer relation; whereas one transforming trace
in the Smith chart is indeed highly related to each corresponding individual
component. For inspecting the filter quality factors or cutoff frequencies you
are typically in an intermediate situation, e.g., the Q-factor of depends mainly
on component ratios and is quite insensitive to process changes, but very
sensitive to mismatch. Unfortunately, a Smith chart is not very useful for
most active filters (it might be used of some gmC or gyrator-based filters, but
not really for biquad or Sallen-Key filters). However, as we deal with an LC
filter, let us try the Smith chart: A first step should be the inspection of the
pure nominal behavior, which is already not so easy to understand for non-RF
experts due to high filter order (Figure 7.23).

For the passband cut off frequencies, the chart becomes much more
difficult to interpret; the end point gives now r = 0.42 (for nominal circuit
values) (Figures 7.24–7.26).

Using these corner frequencies, and even entering the component values of
an extreme MC sample, the situation will change further. The last impedance
point showing the reflection coefficient r is related to the overall gain |S21| = 1–
|r|2, and that is of course impacted by all the eight elements. In the passband,
the changes against nominal are not large, so the filter is quite robust, but the
situation changes quite dramatically if we select a frequency close to cutoff
where the filter shows some ripple.

In such cases, the individual impedance translations add up in a certain
extreme way, and for different extreme MC samples the “random walk” in the
Smith chart may look quite different (Figure 7.26).
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Figure 7.24 Smith chart at passband limits (657 MHz and 1.523 GHz).

Figure 7.25 Scatter plot for output at 1 GHz (center) and at 657 MHz (more critical spec
limit).

So far we found that our methods for WCD and even simply picking the
worst sample plus scaling it via CGPK work fine. What about using them
for circuit tweaks for performance improvements? In the very simple case of
just reducing the statistical variations on all components simultaneously no
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Figure 7.26 Transformation of two extreme MC samples one at 657 MHz and another at
1.523 GHz.

problems will arise, even for nonperfect approximations to WCD. How-
ever, if the WCD indicates, e.g., low sensitivity on L1, and you decide
not to optimize it (e.g., to save money or area), you may still end up in
a nonoptimum design! Maybe in the (currently) nondominating cluster, L1
might be indeed a critical variable, indicating another optimization strategy!
All in all, a mixed method would be reliable, using multiple “worst”-case
distances instead of only one, even for one specification. Typically, the
situation will be further relaxed because in real designs you would have
anyway more specs and according WCDs, so the risk to miss critical fail
areas during verification and optimization will be often significantly reduced
further.

By the way, why treating an optimization as extra step? Also our MC
analysis is helpful; we just should inspect not only the worst-case MC samples,
but the best case! Indeed, some of the MC samples have a very good spec
margin, even much better than the nominal design! This is possible because
“accidently” MC found filter versions close to a Chebyshev filter; and those can
indeed give wider bandwidth than a Butterworth filter! Inspect Figure 7.27 for
detailed results, e.g., you can see that the wider bandwidth comes with some
in-band ripple which might be not desired. In the Smith chart, you would find
that such near-Chebyshev filter would also have higher quality factors, which
typically lead to larger tolerances in frequency response.
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Figure 7.27 Best-case samples from MC analysis and the nominal behavior (red).

7.5.3 Sorted MC in a Complex Filter

Beside so many investigations on WCD, you may ask about MC with sample
re-ordering? Indeed it would also work quite nice on the filter test case. If you
run our 1200-points MC run with identical setup, but turn-on the sorting, then
50 points will be taken to generate the 8-dimensional model (takes <1 min,
would be larger for complex circuits), then the model will be applied to all
remaining MC samples (takes <1 min, would increase for higher complexity
and also for higher yield levels!) and then the really critical, near-spec samples
according to our model will be simulated. Actually, only further 20 samples
are needed to decide that the yield is beyond 99.75% with 95% confidence
level! The worst sample is simulated 1st, the 2nd worst one as 2nd, etc., so
by comparing the sorted MC results, we can also find out if the sorting from
the internal model is really in synch to the true circuit simulations; Table 7.6
shows that the correspondence is amazing, although not 100% perfect: for
instance, sample #703 is critical, but is in an area not detected by the model
(leading here to minor errors well below the CI width).
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Table 7.6 Full MC results vs. model-based sorted run
Max (Passband Loss) in dB

MC Point Full Sorted
834 2.604 2.604
792 2.405 2.504
470 2.376 2.376
703 2.329 2.299
540 2.320 2.261
375 2.305 2.252
778 2.299 2.213
1081 2.273 2.195
526 2.261 2.189
468 2.252 2.164
912 2.213 2.157

7.6 Questions and Answers on Advanced Statistical
Methods

1. What should I do if something gets wrong in an advanced statistical
analysis?
Try to run a MC analysis and double-check the results, by using the
CGPK. Also advanced methods may start with MC internally; this MC
run count should not be too small!

2. How accurate is the worst sample in a big MC analysis compared to a
true WCD?
As mentioned the worst sample can vary a lot (even for a fix count
like 200 points), like giving 2.7σ or 3.2σ or whatever, but even if you
normalize it by the sample standard deviation to 3σ there will be still
some errors. These depend mainly on the number of variables, the
nonlinearities, the sigma level and the MC count. For moderate sigma
levels and only one dimension the difference is very small, just given
by the confidence interval of the standard deviation (Gaussian case).
For higher dimensions there is mainly a certain angle error, and we
can expect quite a good accuracy in the dominating variables, but
high randomness in the worst sample for the less important variables.
So actually not the total number of variables matters, but also how
many variables are really important. To treat non-normal cases you can
use the CGPK for normalization instead of using the sample standard
deviation!
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3. Which method for high-yield verification is best in case of strong
nonlinearity but only few statistical variables?
Often classical worst-case distance methods fit well. They base on MC
and optimization techniques. For more complex problems this method
is usually only fast if a parameter screening is applied, but it comes
with risks and some accuracy degradation.

4. Can I use the WCD if change all my transistors by 20% in W and L?
If the nonlinearities changes not much yes! With 20% larger W and L
the mismatch would reduce by 20%, so the 3σ-WCD for offset would go
down from maybe 10 mV to 8 mV. So it looks that the WCD has changed,
but actually almost all PDK’s are setup in a clever way to reflect the
scaling by W and L correctly, because we actually save the statistical
variable itself (like 3) and not the offset voltage directly!

5. Can we deal with WCD also in performances with poles? E.g., an
oscillator it would give infinite period if it stops to work.
Yes, WCD is quite robust on such nonlinearities, because it works in the
statistical variable space. The CPK shows quite the opposite behavior.
The only WCD difficulty might be that the optimization part becomes a
bit more difficult.

6. Is it possible to have a normal Gaussian histogram, but still problems
to find WCDs?
In theory yes! You may compose a Gaussian output from multiple
Gaussian variables combined in a nonlinear way, like sign(x1) · |x2|.
The sign function is not continuous, which causes classical WCD meth-
ods to fail although the output is perfectly Gaussian! The distribution
given by |x1| – |x2| is less nonlinear (at 1st glance) and actually normal,
but WCD fails too; the reason is again nonlinear spec border and
multiple fail regions. Luckily this is not typical for good circuit designs!

7. Can we apply the WCD concepts also to lognormal or uniform element
distributions?
In principle yes, and almost all WCD papers include sentences such as
“Without loss of generality we can assume that the statistical variables
can be described by independent normal distributions.” However, the
nice pictures often presented as well would look quite strange, e.g.,
the lines of constant probability would be no circles for a uniform
distribution! We mentioned that WCD becomes slower if we need to
treat many statistical variables, but in case of non-normal variables
the CLT would help us again, beside the many uniform variables the
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overall behavior would usually be quite similar to the normal Gaussian
behavior.

8. Can we apply WCDs to discrete probability density functions?
In principle, but optimizer has a hard job in such cases. For luck there
is usually no need for this in circuit design.

9. How would a classical WCD algorithm work on a completely “circular”
spec border (see Table 7.6)?
The MC run would give a certain starting point for the WCD optimizer,
but all fail points have an equal distance to the origin the WCD direction
(the angle) would not matter. So a gradient optimizer would have no
reason to change it, so the final reported angle would depend on the
initial MC, so on chance.

10. Check-out the scaled-sigma chapter: If we compare the unscaled MC
run with an upscaled run using the same seed value, can we expect
that the most extreme samples in the first one are identical to the
second one?
No, not completely, if e.g., the different statistical variables behave
much different, like odd vs even order nonlinearity, it could easily
happen that the ranking would not be the same. However SSS could
still work fine.

11. Discuss the differences in effort, accuracy, design insights between
WCD and the simpler CPK or CGPK methods! Which kind of non-
normality is difficult for each technique? What is the impact of design
complexity? What can happen if we skip the MC part in WCD
calculation and start an optimizer directly from the origin?
WCD is a multivariate technique so its speed degrade for complex
cases. If e.g., the origine is a local minimum, then a local optimizer
would not start! WCD has the big advantage that it offers statistical
corners, and this way also sensitivity information.

12. Figure 7.19 shows a five-dimensional test case. Try to interpret the 2D
plot and to calculate a WCD.
Actually the 2D plot is a strong simplification, because there is no hard
fail boundary in any 2D projection! The simplest attempt is to regard
the sum term as a small, almost constant value, which would lead to a
linear spec boarder at both sides. Looking more to the details would
show that the true spec boarder looks more like a parabola, as sketched
in Figure 7.18. In addition, the sum of squares is actually leading to
a chi2 distribution with degree of freedom equal to 4, which is quite
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manageable. So we can indeed easily reduce the 5D problem to a 2D
problem! The WCD is even easier to calculate, because we just need
to find the shortest way to the fail boundary; and for this we need x2 =
0. If we would add the sum of square instead of subtraction, we would
get convex fail boarders, and the testcase would look more similar to
the memory example in Figure 7.30.

7.7 Summary of Advanced Statistical Analysis for Yield

We presented methods to evaluate Monte-Carlo simulation results with focus
on yield, by using the sample yield, the CPK and the generalized CPK. Also
multivariate analysis has its value, giving insights to sensitivities and trade-
offs. All these are often pure MC post-processing, whereas for real advanced
analysis, we really “drive” the simulator according to the results of a short
initial MC run.

In the Subsections 7.7.1 and 7.7.2, we present now again a small “show-
down” like we did for pure worst-case corners, but actually statistical problems
are so difficult in circuit design, that clever manual methods are hardly
practical. However, still the person on front of the computer matters too.
A “golden reference”, like full-factorial for corner analysis, is much harder
to provide for statistical problems. Making Monte-Carlo “golden” requires a
huge number of samples for the verification of higher yields.

One example for an adaptive statistical method is sorted MC; it gets a
speed-up by avoiding simulations with high chance to pass specs anyway.
It is based on a multivariate model and it can give a significant speed-up.
It has quite a low risk, e.g., if the model is bad it would typically only
observe a degradation of the speed-up by sample re-ordering. In the extreme
case, it may snap back to simple MC without sorting. As in other advanced
methods, a speed-up (against random MC and the sample yield) is typically
only possible for higher yield targets (like >2.5σ to 3σ) and the speed depends
on further factors like number of statistical variables, number of specs, degree
of nonlinearity, correlations, etc.; for most methods, 1000 points are a kind
of minimum (single spec, small block, simple statistical models). In most
advanced methods, the speed depends not much on sigma level, for pure
linear case in WCD just the optimization part takes a few more points; for a
linear circuit and moderate complexity, the effort would be almost flat, i.e., the
number of required simulations would increase just by few percent, e.g., from
3σ to 7σ (Figure 7.28). The WCD concept comes with some slightly stronger
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Figure 7.28 Typical yield verification count for different univariate and multi-variate
methods.

assumptions, like that there is a single failure region or at least a dominating
region plus making assumptions on the spec border at WCD point.

When there are multiple outputs, MC naturally accounts for overlapping
or disjunctive failure regions, but almost all advanced methods like sorted MC
and IS or WCD focus on partial yield estimation only. As demonstrated, using
min(Y partial) is only a rough approximation for the total yield; it is better to
exploit knowledge about correlations to obtain a better estimate.

As mentioned, beside many differences, one key idea of modern statistical
yield verification is the generation of statistical corners and especially worst-
case distances, because that gives further insights and the option for yield
optimization.

The plots in Figure 7.29 depict different approaches that all have their
application for good reasons in modern custom IC design environments.
Usually, a combination is used, especially for high-σ targets.

7.7.1 Different Methods on Difficult Mathematical Cases

Circuits can be difficult for many reasons, such as complexity, correlations, or
nonlinearity; let us now first focus on low-dimensional problems and later
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Figure 7.29 Different methods to find worst-case distances.

1)The starting point for optimization is usually obtained from another method, leading to the classical
WCD search method.
2)Upscaling is usually needed for higher sigmas, like beyond 3σ.
3)The modeling allows a more stable estimation compared to worst-sample method; it includes usually
also some kind of upscaling; a variant is the fast k · sigma flow.

extend to higher complexity. Some of these problems look “too special,”
but actually each has also some strong circuit design connection! Circuit
design is simply sometimes difficult; analog designers indeed stress numerical
algorithms more than others, although not always. So in real designs with some
complexity, indeed algorithms can fail for quite similar reasons. In many cases,
it is unfortunately often harder to find out why problems appear from time to
time. Regard these tricky examples as “forerunners,” as precursors for real
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circuit design problems. In compact mathematical examples, the problem is
more often already in the method, not so much in the tool implementation.
So this is no tool benchmark, but clearly a method comparison. In theory, one
could even create more “critical” test cases, but in circuit design, we have
indeed almost always the case that the design is in-spec at nominal (xS = 0);
and being not far from the origin, the circuits is also typically in spec. So we
have a large, usually dominating pass area in the coordinate system center part.
Other cases would be no robust designs, and of course, high-yield methods
are not needed to “prove” a low yield. For instance, already the WCD or SSS
first MC part would show this!

To detect problems, the algorithms have usually some built-in internal
error criteria, which might be also formulated in different ways, e.g., as rms
or maximum error. In new generation, EDA tools luckily the quality of error
checking is quite high already.

Actually, you can easily find circuits in which one method works better
than the other, and you can also find examples where even all existing
algorithms work much worse than their inventors think! For luck, you are
sitting in the designer’s seat and, in most modern environments, you can decide
what to use and what your priorities are: more on design or on verification,
more on speed or on coverage, more on high yields or moderate yields,
big designs, nonlinear designs, etc. You should know now quite well the
difficulties, the trade-offs and that there is simply no free lunch! You should
not get foolish anymore!

Table 7.13 gives an overview for the systematical and statistical errors of
some major yield estimation methods and different simple, low-dimensional
test cases. In all of them, we generate non-normal output data (which is typical
for nonlinear circuits), but all statistical input variables are purely Gaussian
(like most variables in PDKs). Note that this setup favors SSS and WCD to
some degree, whereas the sample yield, CPK, and CGPK do not depend on
this at all.

The (true) WCD—so the distance from origin to the shortest fail boundary
point—is 3.35σ (0.04% loss or true CPK = 1.167) for all test cases, and the
WCD estimation itself has been tweaked for high accuracy; actually in this
small testbench, WCD is already statistically accurate by using a few hundred
simulation points. Let us start our little benchmark with a discussion of the
error of WCD regarding yield estimation. In the multivariate normal case,
WCD is an accurate method, but in our more difficult examples, WCD has
a bias error arising from spec border nonlinearity (see Figure 7.10), and that
might be surprisingly large unfortunately. In opposite to WCD, the sample
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yield has no bias at all, but a significant variance. The 95% lower confidence
bound for a 3.35σ yield and n = 10,000 is approximately 99.88% (0.12%
loss or true CPK = 1.1013 or 3.04σ) and the standard error is approximately
150 ppm (0.015%)—so overall the sample yield error is in the order of 10%
in terms of sigma, which is a quite low value thanks to the high MC count.

As we know, the sample yield is accurate to this value for both normal and
non-normal cases, but WCD has bias errors listed in the table, and these are
up to 0.65σ! To defend the WCD concept, we should mention that for many
simpler non-normal cases, also the WCD would be correct. So on the one hand,
the listed WCD errors are a kind of worst-case for most practical circuit design
applications, but on the other hand, with more statistical variables, you could
even create worse examples, in which WCD would fail almost completely
(e.g., we mention the flash ADC DNL example already).

The CPK is the third method we inspect: Its bias errors are usually larger
than the WCD errors, which is expected for non-normal data anyway. Overall,
the CGPK as fourth method behaves best in such mid-yield scenarios—but as
CPK, it cannot give accurate statistical corners as direct output.

This is also a limitation for the sample yield method, having also a good
ranking in the table. However, if we would reduce the circuit simulation effort,
e.g., from 10,000 to 1000 points, the ranking among the different methods
would change significantly (due to

√
n law for standard error and confidence

interval), because the CI width in terms of sigma would grow a lot for the
sample yield, but not that much for the other methods, and almost not at all
for WCD!

We also run sorted MC as fifth method (with yield-based auto-stop on
these examples); the speed-up from sorting depends on nonlinearity. On the
overall yield, the reported speed-up was 3.5× and the auto-stop occurs after
265 simulated points (out of 950). If we would only run sorted MC on the
one-dimensional pure normal case and same yield level, sorted MC would be
(of course) faster, using only 50 points instead of 265 (speed-up 20×). Only
WCD has a near-zero CI width, but WCD-internal the bias error is very hard
to quantify in complex design cases.

The sorted MC auto-stop can be also done based on reaching statistical
corners (instead of yield confidence interval). This allows to compare the
statistical corners from classical high-yield estimation WCD and sorted MC.
Interestingly, sorted MC can indeed find almost the same samples as worst
samples as if you would run the full MC (without sorting) and doing the
sorting (ranking) manually after the simulation. So the sorting based on the
multi-dimensional model is done quite well, using only 110 simulated points
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in total (for ≥99.65% corners). On the one hand, this is no surprise because
in the simple examples, we have just to deal with two statistical variables; on
the other hand, the nonlinearities are quite strong.

Besides classical WCD, we could also have used SSS as 6th method, but
look up the sweet spot of SSS are cases with many statistical variables and
many specs! Interestingly, the SSS yield results are quite different from the
classical algorithm results. SSS uses more points by default; 2000 are chosen
manually to stay close to more complex realistic circuit designs. Classical
optimization-based WCD has to run MC only one times, not several times
with multiple scaling factors. Actually, reported yields from SSS were always
too pessimistic (even for the normal distribution), and the absolute value of
the bias error is typically comparable to the classical WCD (but in WCD,
they tend to be too optimistic, not too pessimistic). In further examples with
higher yield targets (like 5.5σ), the SSS bias went down significantly (but in
these examples not the one for classical WCD). The reported SSS confidence
interval is quite large (it would of course reduce for n = 10000 instead of
2000). Also note that in [Jallepalli2016], some improvements in SSS have
been described which are (probably) not yet part of commercial products.

According to Table 7.8, there is always at least one method that works fine,
and the CGPK method is overall the “best” one. For very high-yield targets
(like 5σ instead of 3.3σ), the dedicated high-yield methods would gain some
ground as the CGPK is based on extrapolation (at least in the simple form
applied here). One example showing this effect would be normal data with
cut at a certain sigma level. If the cut is a 3σ and the spec is at 4σ, the yield
would be 100%, but the CGPK would “only” give approximately 4.5σ. The
CPK is even more pessimistic giving 4σ only; to get 4.5σ from CPK, we would
need to cut at 1.5σ! This sounds bad, but using the sample yield you would
need to run a huge MC analysis with approximately one million points (for
95% confidence). So here the winner would be (often) WCD, but in advance
it is not easy to know which method is best for general circuit design!

7.7.2 Different Methods on Circuits

Looking to the math examples, the big arising question is of course how
“general” the results are. Well known and for sure: For lower MC counts
or higher yield targets, the variance errors would grow, especially for using
the sample yield this is a severe problem, which is a well-known fact and
as mentioned essentially the driver for inventing all the advanced methods!
For higher complexity the WCD, fast k · σ and sorted MC would lose speed,
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unfortunately. However, as WCD needs often only few hundred simulations,
there is quite some margin for higher complexity up to a typical block level.
Also, all methods could be combined with LDS to get a moderate additional
speed-up, at least for not too complex cases (see Chapter 6 on advanced
Monte-Carlo sampling schemes).

As mentioned, a big benefit for WCD is getting a true worst-case direction,
but many of the mathematical benchmark examples are too difficult, and
actually only in the simplest case, the direction is well defined! If we would
pick the worst sample among the 10,000 MC points, we would typically also
get a useful statistical corner, suited for optimizations. For less nonlinear exam-
ples (like op-amps, bandgaps or comparators, etc.) the WCD behavior would
improve significantly, making it (together with scaling the worst-sample) a
very attractive method again [Bűrmen].

Let us now inspect some real-world circuits. A major change we can
expect is that for complex problems not only the method counts, but also
the implementation (e.g., [McConaghy2013, Zhang2016]). For instance, quite
many numerical algorithms come with a few “magic” numbers, like “first run
a MC analysis with 50 points”? 50 might be good in eight of ten examples, but
combining the problems of the two critical test cases needs maybe 250 points
(or more)! Actually, sometimes the EDA vendors are in a dilemma: On the
one hand, they want to provide a fool-proof tool, with little setup effort, but on
the other hand, playing with such settings can indeed give a somewhat better
compromise between accuracy, robustness, and speed. So like in a simulator,
also the designer’s skill has some impact.

In [Gu], a memory cell example is given; actually, the example is sim-
plified, because statistical problems with hundreds of variables are hard to
visualize, but if you compare the fail region in Figure 7.30, you will observe
indeed some similarity to our mathematical examples, and the memory cell
is something in between the Gaussian case and the “circular” case (on which
WCD is significantly inaccurate). Actually, the spec border is approximately
L-shaped, leading to a too optimistic yield estimation by WCD. Luckily, the
error is (by far) not as extreme as for the mathematical examples, because the
“second worst” distance point (at the “nose” in Figure 7.30) has not the same
length as the real WCD, maybe there is a difference of roughly one sigma; and
this reduces the WCD bias error to quite an well-acceptable level (like from
0.2σ down to 0.02σ). In addition, the graphical plot tends to give a (far) too
pessimistic impression: The outer fail areas are large (actually infinite!), but
do not contribute much to yield loss and error on it! This is due to the e−x2
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Figure 7.30 Pass-fail region for the two major variables of a memory cell [Gu].

pdf law of the Gaussian distribution, which has to be integrated. For large |x|,
the contribution to the integral becomes almost negligible.

Let us modify the example figure and inspect another difficult situation:
Assume that the second WC point at the “nose” would dominate, i.e., WCD2
becoming shorter than the initial drawn WCD. Imagine further that now this
nose would be very thin and peaky in direction to the origin: In such cases, the
“peak” of the “nose” would be hard to find for an optimizer, so the optimization
may fail and would not find this global minimum but typically stopping at a
local minimum still pointing to the initial WCD, having larger length in our
modified example, so this WCD would indicate a too large yield! Actually,
the optimizer may not work fully reliable and the obtained WCD may jump
(e.g., if we tweak some WCD-internal parameters or the circuit) like the WC
corner set in our example on the CMOS inverter.

For luck, these kinds of problems tend to be quite artificial for most circuit
designs. For instance, in the same reference, also a ring oscillator is analyzed
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in detail, but without showing such problems and having even very linear spec
borders, so very small WCD bias. There are also mechanisms which would
cancel out the WCD error to some degree: If the optimizer would find the thin
nose accurately, we would obtain the WCD correctly, but the yield estimate
from it would be too pessimistic, due to the (locally) concave fail border. If on
the other hand, the optimizer would find the original WCD (now second worst)
the yield estimation would be too optimistic, and for intermediate results, the
yield prediction would be even quite accurate.

One other interesting characteristic of Figure 7.30 is also that there are
no fails for small vth1 and vth2! This is because the plot shows only one
performance (access time). For a full block verification, you have further
checks (such as leakage current power consumption) and further WCDs,
in classical WCD all require a dedicated optimization run with additional
simulation points to find the accurate WCD points via optimization. This is
some overhead compared to CGPK or SSS.

Interestingly, for a circuit optimization on yield, we need to combine
different specs to formulate an overall best compromise in some way. Doing
so for WCD is no good idea: If you would re-organize the testbench to check
many or even all performances in a combined spec like x ≤ 0 with x = max(0,
IDD – Imax)/uA + max(0, taccess – accessmax)/ns, then the fail region would
deviate more and more from the WCD assumption and becoming extremely
difficult! So it is better to avoid such “spec tricks,” they do not fit, neither
to many nice fast yield methods, nor to the goal of getting wishful design
insights! Unfortunately, you cannot always avoid difficulties, e.g., the SNDR
of an ADC might be impacted by several effects such as mismatch, integral
nonlinearity, and thermal noise, which could lead to difficult fail regions and
worst-case conditions. It is best to complement such complex specs with more
specific performance checks which measure effects more individually.

Of course, what we state is related to year 2016 state-of-the-art design
tools; in research several enhancements have been already proposed (e.g.,
nonlinear surface sampling in [Gu] or just you as user take the pilot seat as
usual and, e.g., run WCD, but double-check the results with CGPK or k-means
cluster analysis). We can highly expect that in the near future, advanced and
more adaptive statistical analysis will be almost as easy to handle as standard
Monte-Carlo, but offering both higher accuracy, speed, and better reliability,
e.g., methods which inspect the spec border and the yield volume in more
detail. The idea of such boundary search methods is to find not only one
distinct worst-case point, but the whole failure boundary [Gu] or at least all the
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dominating parts [Roos]. Looking at the fail boundary instead of the full yield
integral looks promising regarding efficiency. However, again, it is difficult to
make such methods working for complex cases; the speed-up looks dramatic
when going from a 2D integral to a piece wise linear approximation (enabling
the use of analytical formulas), but in n dimensions, we would only reduce the
effort from 100 dimensions to still 99 dimensions. A somewhat more detailed
outlook will be presented in Chapter 11.

Too much hype on “variation-aware design”? Sometimes you can
get the impression that there is a kind of “war” for the best yield
estimation method or something like a “high-sigma showdown” (cite from
a newsletter I received every day!) —So one company promotes WCD as
the Holy Grail, whereas another pushes their version of sorted MC as the
High-Sigma Monte-Carlo (google for “deepchip muneda solido cadence
worst-case distances”). There are many papers around promoting huge
improvement rates like “100× over Monte-Carlo,” but now you know
many alternatives to pure random Monte-Carlo, just counting fails and
using Clopper-Pearson confidence intervals, so can you really trust such
marketing promises?

A good recommendation is clearly Audiatur et altera pars – Listen to
the other side; and being not afraid to ask; yield estimation is about math,
so don’t worry and stop only if you are really satisfied.

An interesting comparison is looking to the progress in ADC design
[Murmann], in 15 years the performance has been improved by 60×,
but the pure CMOS scaling has provided only a 10× gain in speed
and power. So roughly 6× has been found by other means like circuit
innovations, more careful design tweaking, etc., but partially maybe also
by “paper tuning,” like using selected parts, ignoring power consumption
of supporting blocks like reference generators, buffers, etc. Actually
[Murmann], we can expect also a saturation in performance in roughly
2027. There are of course also some clear limits in computation power
and numerical algorithms, not only in ADCs! Paper tuning in statistics?
One clear example is only comparing the number of circuit simulations.
Often indeed simulation time dominates, but the circuit simulations in MC
can run fully in parallel, which is not possible for WCD or sorted MC.
On top: Only because MC has little internal simulation time, the circuit
simulation dominates, whereas in sorted MC, also the model creation and
application takes also significant amount of time.
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In the next chapters, we will discuss optimization techniques in detail and
we will also link them to statistics. The core idea of making any statistical
optimization (a complex topic!) efficient is exploiting the problem structure
and focusing on corners—corners as much representative as possible—instead
of running MC for large sample counts.



PART IV

Optimization and Advanced Flow
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8
Optimization Techniques for Circuit Design

In this chapter, we discuss when optimization is beneficial, and how the
most important optimizers work. We show the best practices for setting up
an optimization and how to respond in case of problems.

Optimization is the act of obtaining the best results under given circum-
stances. This sounds simple, but optimizers seem to be special, much more
special than simulators, for circuit designers. This is because optimization is
almost always something “on top,” it comes usually quite short in school and
university lessons.

Luckily, optimization can be translated to math easily; quite often, there
is something to minimize (like noise figure) or to maximize (like bandwidth,
ENOB). Also hitting a certain performance target yo as accurate as possible
can be described easily, e.g., minimize (f ) with f = (p(x) − yo)2. If you
have a minimization program, then you can also solve all the other problems,

379
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e.g., minimize f is the same as maximize (−f ). Therefore, optimization is
simply just minimization. It also does not matter how the goal function is
calculated; there could be a circuit simulator involved, or instead, you may
speed-up by using hard-coded simplified design equations. Using a circuit
simulator is just more flexible, because the extra work to derive the circuit
performances is quite low compared to a full hand calculation.

The formulation of the goal function can be simple in many cases, but it
might be more difficult sometimes. It is also a key point, because the result of
the optimization and also the difficulty highly depend on goal definition. Key
targets are time-to-market, costs, yield, or electrical performances—but some
goal might be tough to capture and to balance against other targets. Examples
also show that optimization is quite hard to standardize. Optimizers need to be
more flexible than circuit simulators. Later, you can always use, e.g., modified
nodal analysis and the element equations to formulate the system behaviour;
then, you can solve it via Newton–Raphson (NR). Another classic method
for solving equations is bi-section, bracketing the solution. The equivalent for
optimization and minimum search needs three points for bracketing, and the
best method is the so-called golden section search method. However, actually
we can create much faster methods with little effort.

The simplest function with a minimum is a quadratic function f = ax2 +
bx + c(a > 0), and the minimum is the apex, where f ′ = df/dx = 2ax +
b = 0. Indeed, many ideas to minimize any general function can be borrowed
from the ideas to minimize a parabola! For instance, we can calculate f if we
have 3 points or if we have the function value plus the first and the second
derivative. This way we can calculate the coefficients a, b, and c and solve
f ′ = 0 for x leading to xopt = −b/2a. Using matrices we can also extend
this scheme easily to more than one parameter.

Already in the one-dimensional case, several things can prevent us to
find a solution; for example, if a is 0 or negative, then we will simply have no
minimum. In multiple dimensions, some more things can go wrong, but luckily
almost all tricky things can be well explained if we look to the two-dimensional
case x = (x1, x2).Actually, you only have to deal with nothing more complex
than a 2 × 2 matrix to understand almost all optimization schemes!

Because optimization is highly related to quadratic functions, the simula-
tion effort typically rises in a quadratic way with the number of parameters
to optimize, whereas the number of goals or the allowed step-size matters
much less. For n = 10 parameters, you can expect that a good optimizer gives
you a significantly improved circuit after, e.g., 100–200 simulation points. Of
course, it depends on how good the quadratic approximation is and whether
there is indeed enough room for improvement.
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If you would tweak ten parameters manually just by sweeps, the effort
would even grow much faster, namely exponentially! So although optimizers
have no a priori knowledge about the design, they can be still very efficient.

Optimization can be applied in many ways like on system level or on
block level. It can be done in numerical ways or—often easier—if you have
analytical formulas for the performances. Some classical optimization results
are quite popular:

• How many inverters and which driver strengths do you need for optimum
speed driving a large load capacitance?

• What should be the receiver bandwidth in relation to the signal bandwidth
for optimum signal transfer?

Optimization is also useful as subalgorithm in other problems, e.g., for
obtaining WCDs (Chapter 7). If you have a little optimizer in C or Pascal, then
you can also write your little design programs. We put a program ANPASS
to this book, to optimize many kinds of RF-matching networks. Internally, a
BFGS optimizer is used, and also a global optimization example is included,
which is solved via simulated annealing (Figure 8.1).

Remember the chapter on transistor biasing and sizing; you may put the
different approaches like gm over ID in a difficult flow chart, but actually
optimization is almost the most native approach to solve this problem. An
optimizer can easily act as transistor sizer for W and L based on given
technology parameters, drain current, VDS, etc., plus targets, e.g., on gm, fT
or noise behaviour (Figures 8.2 and 8.3).

8.1 When to Use What?

Look at Table 8.1 to get an overview on different optimizers.

For Further Reading:
There is a lot of literature available on optimization, starting in the late
70s also for circuit design. A lot of material is related to RF design and
model fitting—here optimization is a highly desirable method, and being used
intensively. Note searching for yield or statistical optimization gives not that
many hits, also search e.g., for reliability optimization.

• McKeown, An Introduction to Unconstrained Optimization, ISBN-10:
0750300256

• M. J. Box, A comparison of several current optimization methods,
Computer Journal No. 9, 1966—really a good benchmark!
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Figure 8.2 Transistor sizer testbench.

Figure 8.3 Transistor sizing via optimization.
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Table 8.1 When to use what—local vs. global
Optimization Algorithms Limitations Applications
Local optimizers
(will only find
the next local
minimum),
typically a fix
algorithm, like

Coordinate
search

Very slow Use it only if the number
of variables is very low
and minor correlations,
useful if the gradient
evaluation is difficult

Hill-climbing
based, e.g.,
Nelder-Mead

Usually slow in
the case of many
variables

Use it only if the number
of variables is moderate,
useful if the gradient
evaluation is difficult

Steepest-
gradient

Goal function
behavior should
be smooth,
usually slow

Never use it, as there are
better gradient methods!

Conjugate
gradient

Goal function
behavior should
be smooth,
moderate speed

Use it only if number of
variables is moderate

Quasi-Newton Goal function
behavior should
be smooth

Generally a good choice

Newton Goal function
behavior should
be smooth

Make only sense if the
effort for calculating the
2nd order derivatives is
low enough.

Global
optimization,
typically multiple
techniques will
be combined

For example
evolutionary
algorithms,
simulated
annealing or
using local
optimizers with
different
starting points

Really finding the
global optimum
requires more
time, so if you are
sure the local and
global optimum
is identical will
need typically
more runtime.

Use it if you are not able
to provide a good starting
point and if your problem
is highly nonlinear

• J. W. Bandler, An automatic decomposition approach to optimiza-
tion of large microwave systems, Microwave theory & techniques,
No. 12, 1987—good ideas to enable hierarchical optimization of complex
systems.

• Comparing Results of 31 Algorithms from the Black-Box Optimization
Benchmarking BBOB-2009, Nikolaus Hansen et al.!
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• D. Agnew, Efficient use of the hessian matrix for circuit optimization,
Circuit & systems, no. 8, 1978—good article showing how valuable the
Hessian matrix is, with good examples.

• An Evolutionary Algorithm-Based Approach to Automated Design of
Analog and RF Circuits Using Adaptive Normalized Cost Functions,
Abhishek Somani et al.—explaining goal function graphs.

• ARandom and Pseudo-GradientApproach forAnalog Circuit Sizing with
Non-Uniformly Discretized Parameters, Michael Pehl, Tobias Massier,
Helmut Graeb, and Ulf Schlichtmann.

• The Sizing Rules Method for CMOS and Bipolar Analog Integrated
Circuit Synthesis, Tobias Massier, Helmut Graeb, and Ulf Schlichtmann,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 12, Dec 2008.

8.2 Introduction to Optimization; When to Optimize?

A few years ago, I was asked “We need an optimizer demo. Our customer has
problems with VCO phase noise, can you do it?”

I actually run first a periodic noise simulation to check the circuit—and
the noise summary told me most of the noise comes from the bias part and
not from the VCO! So in this case, a more “directed” solution was much more
efficient than running “blindly” an optimization. Another example would be
an LC oscillator which operates so well that the phase noise is already close to
the theoretical minimum, given by the Leeson formula, which relates the phase
noise to the Q factor of the oscillator tank circuit and the power consumption.

Often, it is indeed possible to achieve the desired performance with
some hand calculations and purely manual parameter tweakings or you may
construct the circuit step by step. Also in such cases, an optimization can be
unnecessary, although some improvements are usually always desirable, e.g.,
a smaller layout area, lower noise, better PSRR, or lower-power consumption.
So sometimes even for circuits “in spec” optimization can be useful.Also very
often such manual design only leads to full spec achievements at most corners,
but not all of them. In this case, e.g., a worst-case corner or yield optimization
makes sense, but a nominal optimization is not necessary. Of course, advanced
numerical techniques, like a contribution analysis or an automated WC corner
set search, are very helpful also for those “non-optimization sweet-spot types”
of design problems.

Over-optimization at typical may also lead to nonoptimum results over
corners! Quite obvious is this, e.g., in LNA design, if you only optimize
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on noise and gain, without taking bandwidth, and production tolerances into
account. The result of a pure nominal optimization could have a high gain, but
to small bandwidth and too bad tolerance behavior. Another typical problem
appears often in linear amplifiers like op-amps. For good PSSR or gain at
nominal conditions, you would need to go quite close to the limits regarding
saturation voltages (e.g., using long transistor to minimize current mismatch),
but at certain conditions like slow MOS corner combined with minimum
supply voltage we can easily end up in headroom problems for current sources
or the amplifying transistors.A third example could be stability, even a perfect
90◦ phase margin PM at typical conditions cannot guarantee a good phase
margin over corners, e.g., including large variations in load impedances. In
conclusion, be careful with pure nominal optimizations, the best thing is
probably that you can setup it up and run it quickly; and switching to more
realistic scenarios (e.g., inclusion of environmental or statistical corners) is
usually very easy.

Beside these facts, there are also some prejudices about optimization.
Of course, people like to learn about circuits and are happy when (or if?)
finding out how a circuit can be improved; e.g., why it was bad to use a
minimum L for a certain transistor? On the other hand, it is simply not true
to think of optimization as a black box algorithm; measures like sensitivity
information are actually also used internally by optimizers, and they often
report this “somewhere.” So as the contribution analysis is an almost free
lunch for getting sensitivity information regarding statistical parameters, you
can also get a nice sensitivity report regarding design parameters—after the
optimization, without further simulation runs.

Areal need for optimization occurs if the manual design fails due to difficult
specs. In this case, the question is often whether the specs for chosen topology
can ever be achieved in the given technology or whether we need to change
the circuit topology (problems: new topologies can come with further design
risks and major changes are time-consuming too) or to relax the specs. Often
the latter is possible, but with impacts on the system design.

Optimization is also a good choice for real high-performance designs
and for RF designs, where usually the device limitations have very severe
impacts. RF designs are also good candidates, because here you seldom
have near-ideal elements to which simple design formulas fit well; and often
changing one parameter like transistor width or bias current can influence
many performances, like gain, input impedance, noise, linearity, stability,
and area. For humans, treating many relationships is difficult, but software
can do! Table 8.2 gives an overview on manual sizing versus optimization,
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Table 8.2 Comparison of manual sizing vs. optimization
Manual Sizing Is Easy, As Long As Examples and Comments
Symbolic small-signal approximations are
sufficiently accurate

If big parts of the designs can be treated
well via small-signal equivalent circuits
(e.g., amplifiers), then MOS-square law
fits well (like in older technologies).

There are no tough trade-offs between
multiple difficult specs

Bandgap without area hard area
requirements

Process variation and mismatch can be
compensated by safety margins and
structural solutions (feedback, symmetry,
calibration, etc.)

Op-amp amplifier design at low
frequencies.

There are only few design variables, best
with a 1:1 relationship to specs or at least
clear step-by-step sizing instruction

Low-order filters or simple amplifiers

Manual Sizing Becomes Difficult If Examples and Comments
Your design is not as easy as an analog
textbook example

Many “tricky” designs are harder to size
than most classical circuits.

Large impact of second-order effects,
parasitics, etc.

RF PA, high-Q filters, etc.

Specs on highly nonlinear performances
with no good or difficult symbolic
estimate

e.g., filter ripple or ADC DNL, frequency
compensation for 3- or 4-stage op-amp

Impact of PVT variation and mismatch is
so large that it adding them up leads to
over-pessimism

Low-voltage ultra-deep sub-um designs,
circuits for wide temperature ranges

Tight specs, multiple trade-offs High-performance and/or low-power
designs, e.g., RF, ADC, DAC

Many design variables Many circuits like VGAs and PLLs.
Consider an iterated hierarchical
approach.

One parameter would already change
many performances

RF designs, like LNA, PA, but also filters.

e.g., op-amp design is often easy by hand, but for subtasks (like finding a
perfect frequency compensation or to improve the common feedback part)
optimization can be very helpful still.Also having prepared an optimization, by
setting up specs and making a parametrization, manual tweaks and sensitivity
analysis can be made much easier!

Actually, all these examples show that also optimization is not a push-
button solution for bad designers, it is interactive, like manual design, but
just often faster and being able to go deeper. Figure 8.4 gives an overview
on different optimization techniques and scenarios. Of course, there are
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Figure 8.4 Optimization accuracy–speed trade-offs.

also several mixed optimization scenarios possible, like instead of adding
performance safety margins we may use “expected” worst-case corners, or
instead of using more reliable adaptive WC finders we may use the faster
OFAT method, at least in the sizing loop.

Such ideas can give some further speed-up, but without double checks it
typically ends up in lower accuracy and harder to estimate risks.

8.2.1 Optimization Pre-requisites and Limitations

In analog design, including RF and mixed signal, there is almost no automated
synthesis available, so designers define the circuit topology based on experi-
ence plus exploiting basic transistor behavior (e.g., gain can be set by gm or
gDS, which could be exploited for a variable gain stage) and then they have
to determine the component values like transistor width and resistor values.
Since many years parameter optimizers can do the second job, at least if the
problem is not too complex, not too nonlinear.

Optimization is done by tweaking the parameters—just as the designer
would make a little change in the schematic, e.g., on transistor length—and by
keeping an eye on the circuit performances.Afirst prerequisite for optimization
is a fully automated verification setup (typically based on simulations) with
specs. And the second prerequisite is the definition of the parameters to be
optimized, e.g., their ranges and step sizes.

In principle, also a circuit topology optimization is possible, but practically
not for complex circuits. One reason is that the mathematical problems become
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much higher than for pure parameter optimization, so that runtimes would
become impractical for real-world systems. The runtime is typically highly
dominated by circuit simulations, just to obtain the performance for each of
the tweaked circuits, whereas the internal optimizer runtime is much lower
(like < 1 second).Asuccessful optimization of 10 parameters usually requires
the simulation of roughly 500 design points, and this means optimization can
be 500 times more compute-intensive than the pure verification!

Obviously, a designer has the advantage of having experience, but any pure
manual process of changing parameters, re-running the simulations, deciding
which solution is best is time-consuming too, so automated optimizers can
remove the burden of doing that stupid task; with an optimizer the designer
has just to decide which parameters to tweak and in which range, plus giving
criteria on circuit performance.

The availability of optimization does not mean that anybody will become
immediately a good analog circuit designer, because still the topology choice,
the starting values, the circuit goal setting, the testbench setup, etc., based on
classical skills like experience and circuit understanding.

So one may wonder: Can optimization beat manual design? Indeed,
there are optimization sweet spots and also difficult optimization problems.
Mathematically or circuit-wise you can construct cases to “prove” almost
anything, like “current optimizers are far too bad for difficult problems” or
“optimization is 100× faster.” So often the question is different: Can I apply
optimization in my current design case to my advantage? Often the answer is
yes, so when it might be “no”?

The main indicators for optimization difficulties are as follows:

• The specifications are not complete! This can cause the optimizer to
provide a design that is not suited.

• A starting point is hard to provide, maybe it is even impossible to make
such circuit in given technology, or there are even physical reasons
against it (e.g., you cannot achieve simultaneous power match on a
two-port with stability factor below unity).

• The problem is too complex, too nonlinear, and numerically too noisy,
respectively. If simulation accuracy is only 0.5% due to numerical noise,
then it is difficult to obtain accurate gradient information for an optimizer
(Table 8.3).

To understand why these points are critical, the designer should understand
how optimizers work.Actually different kinds of optimizers are available, and
there is no single best algorithm.
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Table 8.3 Inputs and outputs for an optimization
What Why Comment
Inputs
Models Prerequisite for verification Usually from foundry
Testbench and Conditions Prerequisite for verification Usually already done early
Performance evaluation Otherwise the optimizer

would not know about the
circuit

Usually already done for
automating MC and corner
runs

Specifications To set optimization targets Do not overlook one! Often
weights can be applied

Optimization options To select and control
optimizer

Might be optimizer-specific

Parameter setup Otherwise the optimizer
would not know which
parameters to tweak

e.g., range of parameters, step
size

Starting point Needed for all local
optimizers

Usually the schematic values

Outputs
Optimized circuit
parameters

This is the major output Backannotate to your
schematic to make the
improvement permanent

Optimizer log file To check in case of problems Giving, e.g., a history, reason
for termination

Sensitivity results Usually a by-product Often as table and with plots
Plots, e.g., on parameters
and performances

To check optimization
progress and for
understanding

Often not all waves will be
saved to reduce amount of
data

Performance models Support for quick manual
tweaks

Are often created internally
anyway, but not always the
designer has access to them.

The mathematical input for an optimizer is typically only the set of
parameters and the so-called goal function, so it does not matter much if
the performance results are obtained from one testbench or multiple ones,
from a schematic simulation or if it already includes layout parasitics. The
only difference is that post-layout simulations simply take longer due to
larger netlist content. The opposite way would be running no SPICE-like
circuit simulations at all, and using e.g., symbolic, hand or tool-generated,
performance formulas instead (as our RealTime apps do). This pushes time-
consuming circuit simulations completely out of the sizing loop, and due to the
large achievable speed-up it was very popular in the past. Nowadays, “SPICE-
in-the-loop” is usually preferred because symbolic solutions take much time
for preparation, are less flexible and are often not accurate enough, anymore.
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8.2.2 Classifications of Optimization

There are different kinds of optimization algorithms for the task of finding the
optimum. Such optimum can be either at the ends of an interval, or somewhere
in the middle. Two major categories are global and local optimization (see
Figure 8.5). Global optimizers can solve problems with multiple local optima
and can work even if the starting point is bad. Local optimizers require usually
a good enough starting point (like point 2 in Figure 8.5) from manual design
techniques, but are often much faster. For a local optimizer, we usually want
monotonuous improvements; i.e., the next best-accepted point should be really
better than the previous one. However, for a global optimizer it could be
required to accept a nonmonotonic behavior to get out of local minima (see
Figure 8.5 for starting at point 1).

Note: For histograms, the mode is the value that appears most often in a set
of data, so it is the point of maximum probability density. Many distributions
(like the uniform or normal one) have only one mode and are called unimodal,
but mixed distributions are often multimodal. We can regard functions with
multiple minimums as multimodal too.

The simplest type of optimizer can typically already deal with multiple
parameters but treats the performances in a single real-valued goal function.
Usually multiple competing goals exist like maximize (S21) till S21 > 10,
maximize (BW) till BW >1 GHz, minimize (NF) to the possible optimum.
So the most integrated design solutions combine the different individual goals
into a single-goal function like f = w1(S − 21) − w2(BW) + w3 (NF).
Usually this is even done automatically and the user just has to set the weights.

Figure 8.5 Local versus global minimum search.
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Optimizers able to treat the individual performances directly are also available,
but require even more runtime.

A further classification can be made by looking to the type of variables.
Usually we are interested in optimization of real-valued parameters, like
transistor width or capacitor value. However, in several cases also integer
parameters are of interest (like for the number of transistors in parallel, e.g.,
in a bandgap circuit). Interestingly, integer or even mixed optimizations can
be very hard. For instance, in the case of real-valued parameters, the gradient
can be often calculated and used for deciding in quite a reliable way in which
search direction the optimization should progress. However, integer problems
tend to be much more nonlinear and no true gradient information is available.
Mainly for mildly nonlinear problems existing methods can be quite easily
extended [Pehl] by using finite differences also for integers.

Here is a simple but difficult integer optimization problem:
Imagine a gear system for which you want to obtain certain transfer ratio,

but of course the number of teeth for each wheel must be an integer. A well-
known example is this for finding a certain ratio:

Min: f = (1/6.931 − x1x2/(x3x4))2 with 12 < xi < 60 (8.1)

A good set is 19, 16, 43, 49 giving f = 2.7 · 10−12

This optimization problem has no ideal optimum (f = 0) and it has multiple
local optima! For fix value of the other x and sweeping only one x, f is quite
smooth, but sweeping in other directions shows that f is having significant
steps. Therefore, this kind of function needs efficient global optimization
algorithms to be optimized. In principle, this optimization can be done in
brute-force style by simple evaluating all 484 = 5308416 combinations, but
this is not efficient.

What we have presented so far is called unconstrained optimization. Often
real problems come with further restrictions to define a solution; e.g., all
widths and lengths need to be positive (leading to inequality constraints)
or for some parameters you may want to force a certain ratio (leading to
equality constraints). The solution of such constrained optimization problems
is mathematically a bit more difficult, but in circuit design this often causes
only minor headache anyway; e.g., often both kinds of constraint can be often
removed by a simple transformation or by substitution of variables; e.g., by
setting R1(x1) = Rmin + ΔR · (1 + tanh(x1))/2, you can force physical
values in a certain range (Rmin, Rmin + ΔR).
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For these reasons, we focus on unconstraint optimization in this book. On
the other hand, it shows well that also the user has some responsibilities to
setup the problem to let it fit well to the available algorithms!

From the user’s perspective, they are also further kinds of optimizations.
As mentioned, some designs are so difficult that you may first need a
nominal optimization, then, e.g., a corner optimization and last a statistical
optimization. Luckily, all optimizers usually allow, in principle, the treatment
of such different “optimization scenarios,” like optimization on a single corner
or at multiple corners, or yield optimizations including Monte Carlo runs
(Table 8.4).

Table 8.4 Different types of optimization problems
No. Type of Problem Example Comment
1 Real variables,

single-goal function
Many (BFGS,
conjugate gradient, but
also nongradient
methods like
Nelder-Mead)

Simplest type, but often
used

2 Real variables,
single-goal function
and constraints

Optimizers based on
quadratic programming

You may use #1 and
transformations or
“penalty” functions
which give an increase
in goal function when
constrants gets violated

3 Mixed real-integer
variables

Few, e.g., using a
gradient optimizer and
approximate gradients
by finite differences
also for the integer
parameters

Optimizers which are
natively acting as
global optimizer can
often be used directly.

4 Multiple goal functions Pareto optimization
(e.g., weighting based
or constraint based)

You may use #1 and
adjust the weights to
get different solutions
of the Pareto front.

5 Statistical variables
included

Yield optimization,
e.g., using WCDs

If combined with other
problems, this is the
most complex task

6 Surrogate-based
optimization
(using meta model)

Often applied in
difficult cases, like
yield optimization or
3D-FEM designs
[Bo Liu2011].

If the goal function
evaluation is very noisy
or very time-consuming
it makes sense to create
a surrogate model, and
to optimize on this
instead.
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Nowadays, several commercial design cockpits features all these and also
other advanced techniques like adaptive-set multi-corner optimization with
built-in worst-case corner selection (sizing over adaptive corner sets). We will
come back to such complex scenarios in Chapter 9.

In a corner or MC analysis we perform a design (or variable) space
exploration (DSE), this has similarities, but also differences to design automa-
tion (DO); Table 8.5 gives an overview and Figure 8.6 give pictures for a
two-dimensional example.

Note: If we perform a DSE, we can create (approximated) performance models
f (x). And instead of running further circuit simulations in the optimization
loop, we could just use such the much simpler models for goal function
evaluations. This is called surrogate-based optimization (SBO), and if you
have already performed a design analysis, it is an elegant way to speed-
up optimizations! Sometimes this method is also used to make optimization
feasible (e.g., using a gradient optimizer although the original simulations are
noisy, or performing a global optimization with a split of surrogate and direct
optimization). For instance, in [Bo Liu2011] surrogate-based optimization is
compared to direct techniques for on-chip inductor and transformer design.
Both designs have only four parameters, but the EM simulations takes hours
to run. Due to SBO roughly 75% of the optimization time could be saved.

Table 8.5 Design optimization versus exploration
Design Optimization (DO) Design Space Exploration (DSE)
Converging-iterative process; aims for the
optimum design.

Diverging, sometimes iterative process.
Aims for characterizing the design, e.g.,
for modeling or worst-case finding.

Runtime for well-behaved problems
typically quadratic on the number of
variables.

Runtime could rise exponentially with the
number of variables (using full-factorial
method).

Optimization has two distinct parts;
formulate the problem (e.g., as goal
function) and converge to the solution.

Once we know the design space, a better
design solution can then be found e.g.,
through surrogate-based optimization.

Depends on a well-posed problem
formulation (starting point, tolerances, etc).

We do not need a well formulated
problem; only the performance evaluation
is required.

Moderate effort, e.g., quadratic Larger effort, like quadratic to exponential
Can be done stand-alone, but picking up
results from DSE can improve convergence
and speed significantly

Can be done standalone. Simpler
sensitivity results might be also derived
from an optimization run (but hardly
more, because DO does not aim for space
filling).
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Figure 8.6 Typical samples setting for an optimization versus for design space evaluation,
and a meta-model contour plot derived from the space evaluation.
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Global optimization has generally some more elements of space explo-
ration, whereas local optimizers try to find the shortest way to the optimum,
ignoring huge parts of the variable space. So in the bottom picture of Figure 8.6
you see the points a typical local optimization algorithm would take. In
SBO we would sample the space (e.g., using LDS), create a meta-model,
and then we could e.g., run a first optimizer from the best-suited LDS
point using now the meta-model, i.e., the model would gives us a kind of
emulator for the true design. And optionally we can double check or refine
our solution (and the meta-model) further with direct simulations with a second
optimizer.

8.3 How Successful Optimizers Work

A good optimizer should be robust and fast, because the result should not
depend much on the starting point and circuit simulations are very time
consuming. Why should we aim for “robustness”? Simply because real-world
optimization goal functions may not behave like simple quadratic function
with a unique optimum! You may have to deal with strong nonlinearities (like
exponential functions) or even discontinuities (like absolute value function,
minimum function, and reciprocal function) or multiple optimums (likex3−x)
or very flat optimum (like x4)!

Unfortunately, making an optimizer robust comes usually with some speed
penalty; e.g., to avoid trapping into a local minimum, the optimizer has
to apply also larger parameter steps, but such bigger steps have usually a
lower chance of being successful than well-directed steps based on gradient
information.

Beside the internal optimization algorithm structure, also the optimization
setup by the designer has an important impact on optimization speed! And
when talking about speed, obviously one important question is: Is there a
theoretical limit on optimization speed?

One key point is the number of parameters, not so much the number
of steps for each parameter, because good optimizers have an adaptive
step control algorithm. For efficient optimization, it is best to minimize
the number of variable parameters, e.g., by exploiting matchings, like
W(N1) = W(N2).

Often user gets direct support in the schematic entry tool for definition of
1:1 or 1:x matching (Figure 8.7). Such assistants can also help on managing
different optimization parameter sets, to do comparisons, e.g., between current
optimization setup and last-saved schematic.
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It is best to focus on the major parameters with largest impact on perfor-
mance, but also make sure not to optimize too few parameters, because this
would limit the optimizer too much to obtain a good solution. The performance
goals should vary smoothly regarding the parameters, so it is often best
to optimize on the minimum average or rms and not on the minimum (or
maximum) of a certain performance, because the minimum function is like
the absolute value function, a nondifferentiable function. If the goal is to hit
a single value like Vout = 1V, then terms like (Vout − Voutwanted)2 would be
typically used.

People often think that their problem is something special. Many things
in optimization can be indeed special, but on the other hand, internally most
optimizers work in quite similar way (Figure 8.8).

Probably, our starting point x0 is usually not the optimum xopt, but a
Δx = xopt − x0 exists, so the key is how to determine this Δx. Usually we
want to achieve at least a certain reduction in f.

8.3.1 Newton and Quasi-Newton

Taking a brute-force grid-based strategy to find a minimum of a n-dimensional
goal function f(x1, x2, . . ., xn), the number of points would be in the order
of 10n (e.g., for taking 10 values for each xi). For a small optimization with
n = 5, this would mean already 100,000 points or more, which is by far too
much for most nontrivial circuits.

Figure 8.8 General flow chart for an optimizer.
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A better way is to remember basic math and looking for the point where
the gradient g = df/dx becomes 0. That leads to a set of equations to be
solved iteratively and the order of points needed is often roughly n2 which is
obviously much lower than 10n.

So let us follow this powerful approach, and let us approximate the function
f with a Taylor series, like f(x + Δx) = fo + gΔx. That speeds up well,
because it allows optimization along a search path with direction s with biggest
(local) improvement (Gradient optimizers) by setting s = −g.

Obviously using a second-order approximation, f (x +Δx) = fo +gΔx +
1/2ΔxHΔx is even better, for two reasons: First, the second-order approxi-
mation is valid over a wider area, then the first-order one. Secondly, it is easy
to directly calculate the minimum of a second-order polynomial (Newton’s
method); by using the second derivative, we can obtain not only a good search
direction, but also the search step length.

The basic idea of Newton’s method is to (iteratively) find the point x+Δx
with g = 0 and approximating the function f by its second-order Taylor
series. In one dimension, a parabola can be defined by 3 points or by one
point + first + second order derivative. Newton’s method is doing the later
in all n dimensions; in this case, the second derivative is the Hessian matrix
H = d2f/dx2

ij :

Newton step:

g(x + Δx) = g(x) + H(x)Δx = 0

=> Δx = −gH−1 => xopt = xS − gH−1 (8.2)

Example: assume f = 2x2
1 − 2x1x2 + x2

2 + x2
3—the optimizer does not

know this formula!

Start point: all xiS = 1

Basic math gives:

g = (4x1 − 2x2,−2x1 + 2x2, 2x3), so g(xS) = (2, 0, 2) (8.3)

and a constant Hessian matrix

H =

⎛

⎝
4 −2 0

−2 2 0
0 0 2

⎞

⎠

=> −gH−1 = (−1,−1,−1) => xopt = 0—which is only easy to see if
you know the formula!
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As we can see, the gradient g is a vector with dimension n and it collects
the n first (partial) derivate δf/δxDi). H is just a matrix collecting the 2nd
(partial) derivatives and is of dimension n × n.

Note: We get the exact result in just one single step (once we know g and H)!
For pure quadratic functions, this is possible for any arbitrary starting point,
which means that the Newton method has a proven quadratic convergence:
All kinds of problems with quadratic behavior can be solved with a simulation
effort of approximately n2 points! For more nonlinear functions, more steps
are needed, but often not that many (about 5 to 10 iterations).

So for near-quadratic examples the Newton algorithm is an extremely
powerful algorithm. Interestingly, the gradient component on x2 is zero in
our example, but the Newton step is still correcting this variable as well, as
required—although a simple linear sensitivity analysis would not indicate this!
This is one reason why Newton’s method often highly outperforms simpler
optimization algorithms, like searching along the steepest descent direction
s = –g (instead of –gH−1). Steepest gradient is often taking quite short steps
and needs therefore many more iterations (compared to Figure 8.9). Often
steepest gradient is not much faster than even simpler algorithms using no
derivatives at all (e.g., just bracketing the optimum).

Remark: As well-known g can be approximated with finite differences
Δf/Δx. That is also possible for the Hessian matrix: H = fxy = δ2f/δxdy ≈
Δ2f/ΔxΔy. Gradient calculation has an effort of approximately n simula-
tions, whereas H calculation requires roughly n2 simulations. The exact value
depends on the method, e.g., if you use single-sided gradients gSSG = (f(x+
Δx) − f(x))/Δx or the more accurate double-sided gradient approximation
gDSG = (f(x + Δx) − f(x − Δx))/2Δx.

As mentioned, usually the simulation part to obtain f (x) is the most time
consuming, and the internal optimizer calculations take typically less than
seconds; e.g., even the matrix inversion to get H−1 from H takes not much
time at all, because H is much smaller than the Jacobian matrix used within
circuit simulations.

To some degree, most advanced optimization algorithms use the Newton
idea. A very important class is so-called quasi-Newton optimizer (e.g., the
Davidon-Fletcher-Powell DFP and the Broydon-Fletcher-Goldfarb-Shanno
BFGS methods, both named according to names of their inventors). They
avoid the need to calculate the Hessian matrix upfront, before being able to
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Figure 8.9 Contour plot showing the optimization of 2x2
1 − 2x1x2 + x2

2.

make to the parameter step in the direction of the minimum. Instead, they
perform a minimum search along the search direction(s) and compose the
inverse Hessian matrix iteratively (actually they do this directly without really
doing a matrix inversion). This looks like a disadvantage because of course the
linear minimum searches also need some circuit simulations to decide on step
length, but there are also some advantages. For instance, the Newton method
may fail in cases where using s = –g would at least lead to an improved
design! Calculating g and H from the starting point then doing a potentially
big step is a riskier strategy, more impacted by higher-order derivatives than
just making smaller steps (Figure 8.10).

8.3.2 Parameter Setup Hints and Stopping Criteria

The user has to define which parameters should be tweaked for the circuit
optimization. Usually it is a subset of all possible variables xD. In principle, we
can even optimize on range parameters xR; then, we would use the optimizer
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Figure 8.10 Flow chart for a gradient-based, quasi-Newton optimizer like BFGS.

not for circuit sizing but for a kind of calibration; e.g., we may find the best
bias current or the values for digital trim bus to hit a certain performance (like
filter cut-off frequencies).

Usually, designers have a good gut feeling about which parameters should
be optimized. In addition, you can run a sensitivity analysis, e.g., to get the
mismatch contributions of each instance and decide in a parameter screening
step for which parameters an optimization makes sense.

For instance, you may want that all W s, Ls, and Rs are positive and
in a meaningful range suited for layout. Some optimizers require to setup
only parameter ranges, but others may also need a step size. The need to
stay on a grid might be a requirement also for other reasons like layout
restrictions. Usually having a grid decreases the optimizer performance a
bit—especially for gradient-based optimizers. For too large grid steps Δx,
the optimizer may tend to stop too early! That is an important to know:
typically a user would think that if we use, e.g., Δx = 0.01 grid, then the
optimizer finds the best x within 10−2 accuracy—but, that is usually too
optimistic.

Sometimes designers claim that optimization results are not well suited for
layout reasons. One problem is often that some goals are simply not set up, such
as the block area; another reason could be the style of parameterization. For
transistors, you typically have the option to tweak either the finger width or the
finger count, or the m-factor (plus gate length). However, for applications at
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moderate frequencies there is little difference between two transistors having,
e.g., 8 fingers, wf = 5 μm and m = 2 or 2 fingers, wf = 2.5 μm and m = 16.
If you only need a local optimization and expect that your starting value is
close to the optimum, it is better to set up only wf as real-valued parameter
to be optimized. This makes the optimization much faster, and if wf becomes
too large you can still consider to select, e.g., a higher m-factor after the
optimization.

One general question is also whether we should optimize on all parameters
just present in the design or only on a subset of really important ones. The
latter is faster, but a bit more risky.Agradient optimizer would simply not shift
parameters having no impact on performance, so regarding the optimization
result there are no disadvantages, only on speed. Internally, clever optimizers
could focus first on the most important variables, which would speed-up the
optimization on many variables, with quite low internal effort. So the user
would not gain much by treating the optimization variables set xD adaptively.

Another part for an optimization setup is to define when to stop. Usually
you can select and combine different criteria like:

• Stop when all performances are in spec;
• Stop if a time limit is reached, like 60 minutes;
• Stop after a certain number of simulated design points, like 1000; and
• Stop when there is no improvement in, e.g., the 200 last points.

In addition, most optimizers have also internal stopping criteria, e.g., if the
gradient or the parameter step sizes become too small. It is best to look for the
optimizer log file to get more information!

Note: Stopping when all performances are in spec looks meaningful, but quite
often it makes sense to continue a bit, e.g., to make the block area or power
consumption even lower.

Here the optimizer is doing a gradient calculation (Figure 8.11).

8.3.3 Hill Climbing Techniques and Global Optimization

We can also get inspiration for solving optimization problems from other
areas than a quadratic function; e.g., we can look to the problem of finding
the highest (or lowest) point (x, y) in a landscape. These techniques are
called “hill climbing,” and one quick approach for finding the highest point
could be moving just in the direction of steepest gradient, e.g., till we get
no improvement anymore. At this point, we can recalculate the gradient and
repeat our step length search.
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Figure 8.11 Typical optimization-run with BFGS optimizer (3 performances vs. points).

A less efficient but even simpler method would be just walking in x-
direction to the highest point, then changing the direction to y and repeating
the local search again and again till the height differences become very small,
indicating convergence.

Not only water would take a way along the gradient directions, but also
other mechanisms in nature work like an optimizer, e.g., crystal building (here
energy is minimized) or evolution. Some of these are also suited to address
the global optimization problem directly. For instance, simulated annealing
works fine on most combinatorial optimization problems like the traveling
salesman problem (check out our RealTime app for matching networks). It
has no real internal memory or model building, but as it allows up-hill steps
randomly it can solve problems with local minima. The runtime is typically
in the order of (An + Bn²) · log(n), and usually still much better than a brute-
force approach (often requiring n! simulations).

An alternative way to form a global optimizer is using a local optimizer
(e.g., Newton’s method or steepest gradient) with multiple starting points
[Shutao Li].
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Table 8.6 Some popular global optimization methods
Type Algorithm Comment
Local optimizer on
multiple start points

Check sensitivity and create a
starting grid at least for the
major parameters, then run,
e.g., BFGS

Goal function should be
smooth enough to let local
optimizers work efficiently

Genetic optimizers Treat the parameters as genes.
Create a start generation and
emulate evolution (mutation,
inheritance)

One tricky part is setting the
number of childs in each
generation. Using too many
or having too much mutation
slows down the optimization.

Simulated annealing Works like hill-climbing but
with some randomness on top
to allow also up-hill steps to
get rid of local minimums.
The closer you are to the final
solution, the less randomness.

The tricky part is to control
the randomness. If it is too
large you optimization will be
slow. If it is too small you
may still stop at a local
optimum.

One interesting point is to compare all these different methods like simple
coordinate search, steepest gradient, Newton’s parabola method, and a genetic
optimizer (using mutation, crossover and selection to create new generations).
Actually many such benchmarks have been done.

Note: It seems that global optimizers (Table 8.6) are superceeding local
optimizers, but beside longer runtime in smooth, near-quadratic problems
there are also few negative side effects. For instance, if we parameterize
elements with almost zero sensitivity, then a local optimizer would usu-
ally stick to your (hopefully meaningful set) of start parameters, but a
global optimizer may shift them a lot without having a benefit. In a sim-
ilar situation you would be, if your specification setup would not be fully
complete, such as a bandgap to be optimized without area limit. A global
optimizer may adjust all parameters far away to get just some improvements—
but the achieved set of parameters might be not satisfying (like far to
large area).

Is There a Best Optimizer in General? For quadratic problems the
Newton or quasi-Newton methods are almost perfect; no significant
improvements are really possible. However, an optimizer that always
works as fast as possible and always finds the global optimum is much
harder to construct!
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In principle, we would require that a good optimizer would use all
information it has to decide on the next steps. However, there is also a
problem if doing so, because circuit problems can be so nonlinear that it
makes even sense to ignore from time-to-time too old information.

All optimization problems are to some degree similar, but can be also
be much different in some details. Regarding local optimizers and smooth
problems (continuous parameters and near-quadratic relations between
goals and parameters), the BFGS algorithm as derivative of the Newton
algorithm is for most problems a very good choice. It is well-proven, fast
and reliable. For such problems, the number of points is in the order of
n2, i.e., if we double the number of parameters we need usually 4× more
points. If the problems are more nonlinear, e.g., because the starting point
is not a good one, then the number of points will increase, e.g., to typically
10n2. So for a typical nontrivial optimization task with 10 variables, we
can expect a solution in 1000 points.

If we would do a plain n-dimensional sweep instead (brute-force
optimization) we would require, e.g., 1010 points! In both cases, getting a
solution would not mean that the circuit is in spec, it only means that we can
be quite sure that the optimizers reach a (local) minimum. If the problem
has few multiple minima, it is best to use multiple different starting points
for the BFGS run. If the problem has indeed many multiple minima, it is
best to directly use a global optimizer.

8.3.4 Do Real-World Circuit Designs Have Local Minima?

The short answer is “‘Yes,” but it really depends on the circuit problem and
starting point if a local minimum can disturb the optimization progress or not.
Other problems such as small gradients, parameters at the edge of their range
(like L = Lmin), nonsmooth/nonparabolic goal functions (such as minimum
or maximum), or parameter redundancy can cause even more difficulties.

Example #1: In a fourth-order filter composed of two second-order filters
in series, there can be easily two solutions giving exactly the same gain
vs. frequency; which one is found may depend on chance or starting point!
The noise figure, input impedance, or nonlinear behavior might be slightly
different, so that one solution could be (slightly) better than the other one—
looking at the full set of specs. This way one optimum becomes only local, but
it can be still preferably found by a local optimizer unfortunately, if the starting
point is bad. For a fourth-order LC ladder filter usually a single solution is
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optimum already from pure gain vs. f specs, but if, e.g., a sixth-order filter
should be optimized to give a gain possible to achieve with already fourth
order, then it could happen that one L and C values are “optimized” to zero—
an example of parameter redundancy, but it could also happen that only one
parameter becomes zero and maybe two inductors lie in series—and only the
sum of both becomes well defined.

Example #2: An ideal bandgap design depends mainly on area and resistor
ratios, so the optimum W/L might come out of the optimization due to
restrictions on supply voltage, whereas W·L can be at any value. If mismatch
comes into the game, then certainly W·L matters, and a certain minimum
area is required for achieving a low output voltage tolerance. For many other
real circuit problems, such situation will not really happen, because typical
constraints (like parameter ranges), more specs, etc., restrict the design space
more and more, so leading more and more to the desired global solution
(Figure 8.12).

Example #3: If the circuit uses on-chip inductors and if we introduce the
number of turns as optimization parameter, then the quasi-integer nature
can introduce local minima too. It is better to optimize on the inductance L
directly (e.g., assuming a fix quality factor) and later looking for the physical
implementation (number of turns, diameter, width, metal layers, etc., fitting
to optimized L and assumed Q). Similar effects can occur in transistors, e.g.,
if a model binning boarder is crossed.

Figure 8.12 Typical behavior of optimization goal functions.
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Example #4: A buffer amplifier testbench with a pseudi-random bit-generator
(PRBS) has been created to analyze jitter. The main source of jitter was inter
symbol interference (ISI), and this was dominated by filter capacitances,
bondwire inductance, etc. So a native question is how to minimize the
jitter, e.g., by tweaking the capacitances, inductances, etc. One result was
no surprise: The capacitance has to be minimized. However, interestingly, a
minimum inductance was not best, the optimum was somewhere in the middle
of a realistic range for L. So we run different optimizers, and find a solution,
but when checking this solution with a big dense sweep, we found that actually
our optimizers stopped at a local minimum! There was a second, slightly better
jitter minimum, just a bit more away from the starting point. Interestingly also
the global optimizer stopped to early, because we just set the number of point
limit to rigid. Inspecting now the testbench in more detail we found set our
PRBS sequence was quite (too) short (just to save runtime), with more cycles
the two optimums smoothed out more and more. Also our initial optimization
was done a nominal conditions only (just for speed reasons, and because C and
L are not much corner dependant). Going for a true corner optimization, again
the two minimums smoothed out. So in conclusion, making things too simple,
being too greedy, can cause problems, which luckily disappear when making
the problem more realistic.Also when adding futher optimization criteria (like
power, noise, area, etc.), we can expect that some local optimums are simply
giving too bad performance on these other criteria (leading to a somewhat
larger over-all goal function).

8.3.5 Advanced Techniques Beyond (Quasi-)Newton

We mentioned the different kinds of optimizers, and actually for special
problems more tailored optimizers could work more efficient. However, let
us first inspect if it possible to make a faster optimizer than e.g., BFGS or
Newton for pure quadratic problems.

These types of optimizers treat the goal function as a single real-valued
function. Some optimizers are designed to optimize on sum of squares (rms
error), so if the problem (the goal function f ) is of that type we can create
faster algorithms by exploiting this special mathematical structure even better.
For instance, the Gauss–Newton GN optimizer can optimize the famous
Rosenbrock function (also a sum of squares) very efficiently, faster than
any other optimizer even. Pure GN cannot guarantee a strictly monotonic
minimization of the goal function—so it is quite risky to use it. Therefore using



8.3 How Successful Optimizers Work 409

a damped version with stepsize control is standard. The Levenberg-Marquard
optimizer is also a kind of damped GN, and for least squares problems it works
sometimes faster than BFGS. The pity is that we would loose flexibility in
defining the goal function with such special optimizers. However, for model
parameter fitting applications Levenberg-Marquard (LM) is actually a kind of
standard optimizer, because e.g., for fitting of transistor or package parameters
we natively have to minimize the rms error between model and measurement
results.

Note: You may ask what is so special in the Rosenbrock
function, that is is so much harder to optimize than a similar
looking 2D quadratic function. Indeed the Rosenbrock function
looks like a steep narrow valley with small down-gradient. At
the River webpage you can download a spreadsheet example rosenbrock.xls
a contour plot which is visualizing this behavior nicely. The narrow valley
dictates the downhill way to go, and because the gradient is small, only very
small deviations are allowed, so that over-all we need many small steps.

A further aspect in advanced optimization is large-scale optimization,
indeed if the number of parameters is large (like � 100), then classical quasi-
Newton optimizers are not best-suited.This is because often large optimization
problems tend to be sparse, e.g., the Hessian matrix contains many entries close
to zero, and unfortunately BFGS is not preserving the sparsity. For circuit
design this is luckily seldom a problem.

A more important problem related to optimization is how we treat con-
straints like xD1 = L(N1) ≥ Lmin = 180 nm. As mentioned, for such simple
linear inequality constraints we can apply (even automatically) a parameter
transformation, and we still end up in a fast and reliable optimization. For non-
linear relations this method becomes sometimes more difficult, and actually we
can ask is optimization always needed, and is it really always “minimization”?
Indeed, going back to Chapter 2.1 on transistor sizing, most design goals are
defined as constraints (not as minimization or maximization), e.g., fT ≥ fTgoal
and Vnoise ≤ VnoiseTarget. Remember our example calculation for offset
voltage to obtain width and length for a given W/L ratio. In this found that
for a given technology a certain W and L (or larger values) can guarantee
a certain maximum offset standard standard deviation. If the offset spec is
relaxed we can maybe even use minimum-L transistors, so that the constraint
on L becomes active. For current mirrors often the opposite is the case,
because we anyway need long transistor for good current matching, high
output impedance, etc. So here the minimum-L constraint would be inactive.
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Note, that functions like f = x3
1 + x2 would have no global optimum for the

unconstrained case, but adding constraints like g1: x1 ≤ x2 and g2: x2 ≤ 1 can
define a problem with a clearly defined global optimum. Sometimes already
the constraints restrict the feasible region so much that they are more important
than the minimization part.

In general performances, or design measures like area, could appear as
objective or in constraints. Mathematically constraints would be hard design
targets, whereas the minimization target would be a soft target. It may look, that
often designers need no full optimization. In addition, optimizers, dedicately
designed for constrained minimization problems (see Table 8.2), can work
more efficient than e.g., BFGS. However, if we only look to constraints, then
the price we have to pay is that we would get a feasible design solution, but
maybe not the optimum solution. For instance, maybe a PSRR of 120 dB
is possible, but the constraint (just the spec) was only 80 dB. Often this is
acceptable, but if a better performance is indeed possible, we could obviously
improve our chip design further, and maybe we could relax the spec on other
blocks (which could e.g., lead to small chip area or lower power consumption)
or on other performances (like CMRR). Hard and soft are indeed quite fuzzy
terms, e.g., of course, the efficiency is a very important target in almost all
high-power designs, and also in extremely low-power systems, so from the
customer side η ≥ 90% would be a hard spec. However, as designer you
often want to over-fullfil such critical targets to some degree, and truly opti-
mizing η. And interestingly, this would require mathematically to treat η as a
soft spec!

All this flexibility is possible with constrained optimization, which works
a bit like a combination of e.g., quasi-Newton and our hand calculation
for constraints! A very good circuit example can be found at [Allen2008]
for matching network design. Mathematically a classical general approach
is using so-called Langrange multipliers λ, one for each constraint. The
calculation effort is not only depending on the number of variables n, but
to n plus the number of constraints nc.

An alternative method is to “transform” a constrained optimization
problem into an unconstrained problem (and using a well-known standard
unconstrained optimizer). For instance, we can just make the goal function
f very large if we violate a constraint. This technique is called penalty
function method. Unfortunately it works sometimes not so well: If we increase
f too much, the problem is not well-behaved, e.g., having highly different
eigenvalues (see Section 8.5.1), or being not close-to-quadratic anymore; and
if we increase f only a bit, we may still have some constraint violations.
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To avoid this weights are typically introduced, and only in simple cases it is
possible to set these penalty weights in a meaningful way upfront. To avoid
this problem an adaptive weighting procedure can be implemented. If e.g.,
one constraint is still violated obviously its weight needs to be increased.
Unfortunately such weight change will change the goal function, which
could slow down the optimization loop, e.g., because the Hessian matrix
would also change, more than in comparable truly uncontrained optimization
cases.

So if possible it makes much sense to reduce the number of constraints,
or making sure that they are anyway fulfilled, e.g., to force g1: x2

1 + x2
2 = 1

and g2 : x2 ≥ 0, we can solve this equation, and replace everywhere x2 by
sqrt(1 − x2

1). This way both the number of variables would be reduced, and
also the number of constraints, so the optimization would become much easier!
For an inequality constraint like x2

1 + x2
2 ≤ 1 one clever way could be using

x1 = r · sin(ϕ) and x2 = r · cos(j), giving r · sin2(ϕ) + r · cos2(ϕ) = r ≤ 1.
And with r = 1/2 + 1/2 cos(ρ) we would have translated the complete problem
into a simpler unconstrained optimization task.

These examples also show again that the problem definition and testbench
design has quite a significant impact on how good any optimizer could work,
i.e., obtaining a really feasible solution in acceptable time.With a bad testbench
you sometimes “debug” effects, which simply do not exist. Two classical
examples are bandgap start-up circuit or is testing a Schmitt-trigger only in
pure DC simulations. Some topologies have multiple loops and can give you
glitches in DC sweeps, although in a transient (and reality) analysis everything
might be clean.

Another aspect is that from the pure math view point hard and soft
contraints are very different, but for a designer the specs might be not so
hard. For instance, of course your receiver must work in a WLAN system
defined by an IEEE norm, but the block specs might be still a bit fuzzy, so
some “specs” might be violated; they might be specs, but no hard constraints
in the mathematical sense. Here the idea of spec or performance margins could
jump in, and they would find a mathematical place e.g., as weighting factors
in the optimizer goal function (and not as hard contstraints).

8.4 How to Support Optimization

An optimization usually requires much more simulation effort than a pure
verification, because many different design parameterizations must be simu-
lated till the optimizer reaches really an optimized version. In a transistor-level
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testbench and running simulation, you have many options to decide how to
check stability, like via transient analysis or with an AC loop gain analysis.
For optimization, it is preferable to choose the one which is fastest and
smoothest.

In DC or transient analysis, you as user can help the simulator with a
good testbench setup or by providing initial conditions, tweaking the options
carefully, etc. Similarly and even more this is true for optimizations! We
mentioned already that a certain minimum accuracy is required to enable
advanced analysis, and this accuracy is a bit higher than the minimum for
pure verification. Another aspect is to make the testbench realistic using
realistic bias generators, correct load and source impedances, maybe package
models, etc. The more realistic the testbench is, the higher the chance that the
optimization result is exactly what you are looking for.

Testbench setups can be also quite different, so you may create one single
big testbench, or follow a more modular concept. So the questions arises on
how should we organize the testbenches for an efficient optimization? In older
days, many environments can only run one testbench at a time. Therefore,
designer often tried to make one big testbench which can check many or even
all performances. This usually also reduces the time for netlisting, simulator
start-up, etc. However, there are also disadvantages: such complex testbenches
may become too hard to maintain and to debug. In addition, some optimization
environments can exploit a more modular testbench structure, e.g., by not
running all performances for optimization points which are already bad in
other performances. Such split is also better for optimizations over worst-case
corners. Also you can often run multiple testbenches in parallel, so faster than
one big testbench. All in all, a compromise is usually best.

8.4.1 Goal Definition

In pure analytical calculations, a goal function like f1 = x2
1 + 0.001x2

2 is as
easy to minimize as f2 = x2

1 + x2
2—but numerically f1 is usually harder

to treat. The optimization environment has to deal with highly different
parameters—varying by orders of magnitude, and also the performances can
have highly different numbers, like pF vs. MOhms. For this reason, the
optimizer core is usually isolated from the direct design values and deals
internally only with normalized values. For this reason, it is not good to let
the optimizer start from xi = 0 and giving no parameter range and no grid.
Preferably, use realistic parameter ranges and also realistic spec targets. Of
course you aim for noise figure zero, but that makes the job for an optimizer
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more difficult—it is better to set a realistic goal like 0.2 dB. Also do not to
overlook essential specs, it is preferable to use detailed specification templates
or look to good spec examples, e.g., for commercial products or coming from
IP tools (Chapter 9).

We already mention that most optimizers work best if the goal function
can be well approximated by a quadratic function. However, it is often not so
obvious which kind of function your goal function follows. For instance in
filter or matching network or amplifier design often maximum flat passband
response is desired. To define “what” an optimum is, different goal functions f
can be defined. Their characteristics can have significant impact on optimizer
performance. For instance, f should:

1. be always defined (bad 1/x)
2. be continuous (bad sign(x))
3. be continuous in df /dx (bad |x|)
4. be not too nonlinear (bad exp(50x))
5. close to optimum it should be well approximated by a second-order

polynominal (bad x4)
6. have no local optima (bad sin(x))

An optimizer may stop too early if the goal function is too flat, but also
using functions like |x| or square root or maximum—“somewhere” in the goal
function—can lead to problems. If we take, e.g., a six-parameter quadratic
function and place square root on top or square, it will lead to a |x| or x4-like
minimum. Both modifications make optimization harder, and BFGS takes in
both cases roughly 30 iterations instead of 8 iterations; i.e., we have to accept
a 3.5× slowdown.

Anative definition—often found in datasheets—is “maximum deviation is
±0.5 dB.” That so-called max-norm L∞ leads to nondifferentiable functions,
in opposite to using sum of squares (L2 norm or rms) or the average. Another
well-known norm is L1 (sum of absolute deviations), which leads to robust
parameter results. However, also L1-norm is more difficult to optimize than
L2 norm, and for circuit optimization it is usually of lower interest.

There are algorithms available to optimize well also for max-norm or L1-
norm-like problems. However, in general it is not clear if the problem to be
optimized is indeed of that special type.

Often there is also a compromise needed between good optimization
capabilities and easy definition; e.g., the max-norm allows simple goal
function definition from user side, and the customer is usually on the safe
side if he has the guarantee that the maximum error is below a certain limit.
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Using a weighted-average (as an alternative) could lead to the same optimum,
but numerically faster—at the expense that good weights are not known
upfront. For instance, for typical filters getting flat response is more dif-
ficult at the transition(s) from passband to stopband, so larger weights are
needed there.

Also the readout of the bandwidth in a testbench from AC simulation can
cause optimization problems. Figure 8.13 shows such bandwidth evaluation;
we made a sweep on frequency with 101 and 501 steps and on top we swept
the BW tuning parameter. With the dense f -sweep we get a perfectly linear
relationship (red curve), but with too few AC points we generate numerical
noise, which could stop an optimization quite early. In this case, the DUT was
a Butterworth bandpass, with more difficult filters (like those having a ripple)
the effects might be even stronger.

Of course, similar noise is also critical in transient simulations for over-
shoot or settling time. So sometimes it is not so much the DUT that is hard to
optimize; sometimes the devil is in the testbench setup; and optimization is
natively more sensitive to testbench inaccuracies. In a separate pdf and in our

Figure 8.13 1 dB-bandwidth in kHz result of a trimmable gmC-filter (sweep on tuning
parameter) from two different AC simulations.
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RealTime app, you can do some experiments on such issues (e.g., selecting
either single- or double-sided gradients).

8.4.2 Worst-Case Corners and Worst-Case Distance
in Optimization

As mentioned pure nominal optimization is often not needed, but a corner
optimization is often highly desirable. One problem is that the WCD and
also the WCC will change as we change the design essentially during an
optimization! But luckily for moderate changes both are often be quite stable.
Let us pick up the differential pair example in Chapter 7 on WCD.

The true 6σ WCD for offset of our diff-pair design was at (+4.22σ,
−4.22σ), but maybe our algorithm is too inaccurate and delivers, e.g., (+4σ,
−4.44σ). This point has a certain error in angle but it gives the same offset
voltage; it is not true WCD because the joint pdf is a bit lower. So what
does it mean for the design task on minimizing offset voltage? If we would
make the transistors 4× larger, the offset would decrease by 2×. This is
correct in full MC and also in the WCD analysis, leading to (+2.11σ,
−2.11σ). For the approximated WCD, we would get (+2σ, −2.22σ), i.e.,
both corners give us the same total offset. In conclusion, our sizing would
still work quite independently whether we use the true or an approximated
WCD! So if the WCD gets less accurate because we basically change the
design during the optimization it would not cause big optimization problems;
i.e., the WCD and also WCC concept are quite robust. This is true at least
in simple cases. For complex cases with essential nonlinearity or many
more variables too bad WCC or WCC settings will indeed slow down the
optimization process or the optimizer stops earlier then for using a true WCD.
In conclusion, you need to update the WCC and WCD from time to time.
We discuss such adaptive corner optimization for yield improvements in
Chapters 9 and 10.

As mentioned, more variables or more nonlinearity can cause problems in
the WCD method, but even if we have many variables which model the MOS
transistor mismatch (maybe one or two in old PDKs, but maybe many more
in 14 nm CMOS), an approximated WCD can be still very helpful, because
what counts is usually the effective offset voltage shift, e.g., composed from
threshold voltages, mobility, tox, L, and W variations—to which weighting
ratio does not matter so much. If you increase the transistor area, you would
anyway shift all of them in sync, so that an optimization would still work
pretty well.
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Imagine we get an approximated WCD directly from a MC analysis (like
picking the worst sample), and then we tweak the circuit on this statistical
corner. If we would run again the “same” MC analysis (same seed and number
of points, no change in topology, only in sizes), we would typically get almost
the same analysis with just the improved circuit—and the statistical errors
in MC (which are normally significant due to 1/

√
n law) would usually not

add up significantly (due to same MC seed). One reason why this relation
could be destroyed is stochastic behavior, like having a random generator or
if doing a transient noise analysis, but in most cases analog circuits are quite
well behaved by construction.

However, besides this good news, there are also problems! For example,
if we look to a two-stage amplifier and its offset, then the 1st stage contributes
to offset and also the 2nd stage, but usually the 1st one dominates. If we
rely on a too bad WCD, being correct on the total overall offset voltage,
but not on the WCD direction, then we may have problems at some point
of WCD inaccuracy, due to the multi-dimensional characteristic of designs:
If in true 3σ-WCD the offset error is 2.5 mV from 1st stage and 0.5 mV
from 2nd stage, and if our approximation gives 2.75 mV and 0.25 mV, we
would have still little problems, but if the direction error is large, like having
3.5 mV and (–0.5 mV) a numerical optimization could be easily in trouble!
You as designer would see the overall offset +3 mV and you would think
“OK, I need to improve the offset, and the 1st stage dominates, so let us
make the area, e.g., 4× bigger”—you would often not touch the 2nd stage
(because you are lazy?), and actually it works out—you get already the desired
improvement because the 3.5 mV 1st stage impact would go down to 1.75 mV,
so overall we get 1.75–0.5 mV = 1.25 mV, which is maybe even beyond
expectations! However, an optimizer could also recognize that if we decrease
the area in the 2nd stage, the offset would go there from –0.5 to –1 mV, and the
overall offset would improve accordingly. However, overall like when double-
checking the result in a new big MC analysis this numerical “optimization”
would not give a better yield on offset, no lower standard deviation. So the
optimizer may improve on the selected statistical corner from 3σ to 5σ but
the real yield improvement is only from 3σ to 4σ—just due to relying on a
too bad WCD!

How often you may find such bad WCD approximations via worst-sample
depends on several factors, you get into trouble if using a too small MC count
(like only 50–200 points) or if the sensitivities are too different (like 2nd stage
has only 10% impact—instead of 33% in our example). In MC example runs
with 100-points on such 2-stage amplifier, such severe direction error in the
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worst samples on |V offset| was present for roughly 11% of the runs, so this
happens not so seldom! It would even increase when having more statistical
variables. And the error rate would only reduce slowly by using higher MC
counts.

We also mentioned that in some special cases the WCD method can
completely fail or it can be very compute-intensive to find them; here a
reliable workaround is using multiple such approximated WCDs from scaled
worst samples (requiring much fewer simulations than a full WCD search in
complex designs).As shown, picking one bad worse sample can lead to under-
optimization, but using a (not too small) set quite can safely prevent this—at
the expense of more simulations (and thus runtime) in the optimization loop.
Actually you would typically over-optimize a little bit, like with the true WCD
the optimizer would hit the same specs (e.g., on offset) and yield targets with
5% less area.

As demonstrated earlier, if the optimization really would work signifi-
cantly, suboptimal depends also on the parameters you choose for optimiza-
tion. If we would only optimize for a global scaler variable in transistor width
of both 1st and 2nd stages, then all kinds of numerical optimization would
still work fine, even with such bad WCD. Further techniques with the goal to
help on optimization can be quite systematically applied and are often called
sizing rules.

8.4.3 Sizing Rules

One reason why a WCD or WCC with moderate accuracy is still usefull
for optimization is that designers typically follow certain sizing rules almost
intuitively. Benchmarks show that if your optimization starting point is bad,
optimizers will quite often fail and will simply not find an optimum solution.
One problem is often that the goal setup is simply incomplete. For instance,
for an op-amp you may set up many goals like BW, IDD, DC Gain, Voffset,
PM, SR, noise. But still this may not define a “good” circuit! For instance,
it could happen that even some transistors are not in their desired operating
regions like “saturation” (usually for active transistors and current sources)
or “ohmic region” (e.g., in a triode-region common-mode feedback circuit).
This could cause a bad PSRR or CMRR, but if both are not in our set of goals
you may end up in a real bad design! Maybe also the DC gain will be bad
by such bad op-region, but often the sensitivity on VDS to DC gain ADC is
quite low—compared to the sensitivity to CMRR or PSRR! Sometimes also
the specs might be simply too relaxed, like even with op-region violation
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ADC = 60 dB is possible, just because the op-amp topology could even give
100 dB!

Everybody knows that in a diff-pair we should have identical transistors,
so it is native to only parametrize one transistor as master and to let the second
transistor follow as slave. This speeds up the optimization due to using less
variables, although in principle also the optimizer could find by itself that both
transistors have to match! However, even if Voffset is among our goals this is
surely not a good idea to do so—it is better to follow the sizing rules you know
for diff-pairs, current mirrors, etc.—it also helps to be able to make a good
layout after the optimization!

In benchmarks, it has been shown that auxiliary goals like “for M11
we want VDS − VDSsat > 20 mV” are indeed helpful. There are even
circuit recognition tools (Figure 8.14) that identify typical circuit structures,
and many PDKs provide built-in support for them [TowervJazz]. If a finder
recognized a certain structure or characteristic, we can use this information
e.g., for layout purposes, e.g., large instances (typically output transistors or
capacitances) should be placed early in the layout process, or if a symmetry

Figure 8.14 Finder application for our 3-stage op-amp circuit.
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axis is found, we can translate this also layout, either manually or by using
constraints.

Based on the found structures design goals can be set even automatically
from a template [Massier]. If, for instance, a differential pair or current mirror
is recognized, then an auxilliary goal like VDS > VDSsat could be created.
This technique is helpful in front-end optimizations, e.g., if no good starting
point is available. If you already have a good starting point (and a complete
spec setup), the auxilliary goals will usually give no contribution to the goal
function and are not necessary (but still a good backup, if e.g., during a global
optimization something gets wrong).

Note:Auxilliary goals like VDS −VDSsat > x or VGS −VTO > x can be easily
generated automatically and the user can also adjust the safety margins. On
the other hand, we can easily create such saftey margin in a slightly different
way, like by extending our corner spread on supply a bit; e.g., if the customer
spec is VDD = 3.0−3.6 V, then you could just internally optimize across
2.7–3.9 V—this method requires actually less effort and has the advantage that
you would be able to tell the customer “Yes we can meet the specs at 3V, and
we test it even down to 2.7 V.” Using arbitrary margins in the auxilliary goals
could end up in the problem that some constraints are too hard or others still too
restricting. Also a full automatic setup is quite difficult to obtain, often it leads
to “false errors” and also checking many such goals in a transient simulation
may lead to a big overhead. So the best method would be a combination of
both, like optimizing over a slightly extended range (on suppy, temperature,
etc.) plus monotoring the auxilliary rules.

Keeping sizing rules is important for successful optimizations. What also
helps to keep them and to get a good overview during optimizations is to
optimize not only at the worst-case corners, but also to include at least one
corner that you know very well (like nominal) or that gives many insights (like
min VDD)! If you do something wrong in the parametrization (like creating
an asymmetry in a diff-pair), you can often see this immediately this way.

8.4.4 Optimization Shortcuts

The concept of having a goal function is quite native, but indeed if we
would know its structure in more detail we could obtain some valuable
speed-up. In simple optimizers, the simulator and the optimizer core are
highly decoupled, which is surely an advantage for flexibility, but more
“communication” could be beneficial. Some simple methods are indeed often
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implemented in design environments and can speed-up significantly especially
for global optimization. One simple example is “conditional simulation”
(Figure 8.15).

A variant would be to simulate first those performances that require only
short simulation times (like DC performances and operating points), and doing
the compute-intensive simulations only if really a good design point has found
(at least according to the 1st simulation group results).

One way to further speed-up optimization is exploiting hierarchical infor-
mation, in the design itself or with respect to performances. For instance,
we may not use a single-goal function combining all performances; instead,
we may treat the individual performance goals separately and introduce a
ranking of them. This way the optimization effort rises according to n2

might be reduced. Of course, doing such spec ranking (in analogy to typical
manual approaches, like optimize first on DC operating point, gain and
maybe bandwidth, later include also supply current and noise, etc., see
Section 2.1) or doing similar for parameters comes with some effort and
risks. For instance, if the users decides on ranking upfront, but having wrong
assumptions we may slow down the optimization. And if we let the optimizer
decide it needs to run additional simulations to collect such information, e.g.,
at least from time to time a full-gradient calculation makes sense to double-
check if the ranking still makes sense. Several such techniques have been
already suggested like so-called hierarchical cost graph or target cascading
[Somani]—for problems with a fix structure (like model parameter extraction),
the idea is used since many years.

Figure 8.15 Flow for conditional simulation.
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8.5 Design with Pictures Part Six

Basic optimization techniques are easy to visualize with 2D or 3D plots,
but for more variables this becomes much harder [Kammara], e.g., for f :
|R3 → |R giving quadruples you may end up in 3D color plots (Figure 8.16),
and numerical techniques are usually required to get a full understanding.

As mentioned, usually the goal function f to be optimized behaves close
to the optimum as a quadratic function featuring the Hessian matrix H, and
this gives ellipsoidal contour plots. Let us inspect quadratic functions in more
detail before we treat in part six with our latched comparator circuit example.
Actually we will do there even a statistical yield optimization, because for a
comparator a pure nominal optimization (without mismatch) makes seldom
sense.

8.5.1 Deeper Dive on Quadratic Problems

The most interesting characteristics of such ellipses—being the “contour lines”
of a quadratic function—are the principal directions. Having correlations,

Figure 8.16 Visualization of f = 2x2
1 − 2x1x2 + x2

2 + x2
3 (dark and big balloons stand for

low f ).
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these directions are usually not simply the coordinate axis! Optimization
becomes more difficult if strong correlations are present (because then no inde-
pendent step-by-step parameter optimization is efficient) and if the different
variables have highly different sensitivities. An analysis to characterize this is
a so-called eigenvalue analysis for H, and actually BFGS uses the (inverse) H
matrix internally for finding the best-suited optimization directions! For pure
quadratic problems, the Hessian matrix is fixed, so it really contains almost
all information we need to understand the optimization.

Let us went back to our 3D quadratic example for introducing optimization,
for f = 2x2

1 − 2x1x2 + x2
2 + x2

3 the Hessian matrix was:

H =

⎛

⎝
4 −2 0

−2 2 0
0 0 2

⎞

⎠

Generally, the eigenvalues of a matrix A are defined by Ax = λx. In our
case, the eigenvalues are all real due to the symmetry of H. For difficult
designs, the ratio between the smallest and the largest eigenvalues can be
very large, indicating highly different sensitivities and second-order derivates.
Numerically it can even happen that some eigenvalues are negative; in such
case, BFGS has to modify the Newton search direction, because the quadratic
approximation has actually no minimum at all!
The eigenvalues λi and eigenvectors of H are:

λ1 = 0.7639320225: (0.618033988749895; 1; 0)T

λ2 = 2: (0; 0; 1)T

λ3 = 5.2360679775: (−1.618033988749895; 1; 0)T

Note: All distinct eigenvectors of a symmetric matrix are perpendicular.
The sum of eigenvalues is equal to the sum of diagonal elements. In the
appendix we list some internet online tools for such tasks. In addition you
can you e.g., the R environment with command eigen(cbind(c(4,-2,0),
c(-2,2,0),c(0,0,2))).

From a step along the coordinates, we can approximate the (partial)
derivatives, and if we do a step along the largest eigenvector we would
find the directional derivative in this direction, which would be here the
largest (quadratic) sensitivity. So an eigenvalue analysis is highly related
to optimization; if the maximum over minimum eigenvalue ratio (so-called
condition number) is large, then we have parameters with highly different
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sensitivity, and often in complex optimizations several parameters have only
a minor impact; i.e., we may disable them to speed-up the optimization. If
the condition number is large, also simpler optimizers like steepest descent
slow down significantly, even if the problem is quadratic! However, for BFGS
large condition numbers are only a mild numerical problem, but of course if
an eigenvalue analysis is done the results could be used to give the user a
warning, and often by re-scaling the variables significant improvements are
possible. For instance, it makes little sense to optimize a parameter from e.g.,
xi from 1 fA to 1 mA; here it is much better to use x′

i = log10(xi/1nA).
The eigenvalues are also related to the optimization accuracy for the

parameters to be optimized. At the optimum, the goal function is almost flat
we have f ≈ f0 + fxx · x2, so accepting a small Δf like 0.01 leads to
parameter inaccuracy of Δx =

√
(2Δf/fxx), for small fxx this might lead

to large uncertainties. To capture the whole situation, you have to look for
derivates not only along the coordinate axis but along the eigenvalues! The
existence of small eigenvalues indicates that the parameters are not really well
defined—even if all the fxx itself might be large.

Doing the calculation with worst-case eigenvalue instead of fxx leads in
real circuit often to large Δx, i.e., to get accurate parameters via optimization
you need really a very high accuracy on f !

One further aspect is also interesting: From these eigenvalue analysis
results and inspection of H, you can see that variable x3 is not correlated with
the others. So the optimizer can minimize f with a plain x3-sweep, and the
minimum found from this is also the absolute minimum—this is not true for the
other variables! We can also exploit this and just set x3 to the optimum x3 = 0
and reduce the complexity to two variables only, which allows a visualization
easier to interpret.
fred = 2x2

1 − 2x1x2 + x2
2 and the Hessian matrix is now:

Hred =
(

4 −2
−2 2

)

The eigenvalues and eigenvectors of Hred are now:
λ1 = 0.7639320225: (0.618033988749895; 1)T

λ2 = 5.2360679775: (–1.618033988749895; 1)T

Note: In the appendix you can find a web-based tools for this task.

In a contour plot, you can interpret the eigenvalues and vectors. The only
little tricky thing is that in most references on quadratic functions and ellipses
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you typically find a form f = xAx, but for optimization it is more convenient
to use the Hessian matrix and f = ½xHx. So actually the ellipse and contour
plot interpretation is usually done according to A = ½H.

A =
(

2 −1
−1 1

)

In the 2D case Ax = λx leads to quadratic equations, so also a solution by
hand is possible; the eigenvalues are now just halved, whereas the vectors are
scaling-invariant:

λ1 = 0.381967,
√

λ1 = 0.61803 =: (0.618033988749895; 1)T (8.4)

λ2 = 2.618034,
√

λ2 = 1.61803: (−1.618033988749895; 1)T (8.5)

The rotation angle is α = arctan(1.618/1.0) = 58◦.
In the appendix, we give a real LC circuit example with 8 parameters, and

you can run analyses on this with the RealTime apps available to the book (the
results of the eigenvalue analysis are presented in the log file opt.txt of the
matching network app). It can happen that at the start point of an optimization
the behavior is highly nonquadratic and the quadratic approximation may even
have negative eigenvalues. One classical BFGS solution is to switch back to
steepest gradient and another one is to shift the eigenvalues (thus to modify
the Hessian matrix) (Figure 8.17).

How can we influence eigenvalues? In this chapter we analyzed difficult
optimization problems mathematically, but how can we exploit this?
Indeed some options exist. The very first option is to scale the variables,
so that their values are e.g., not too far from unity, but often this is done
anyway internally, by the optimization environment. A next step would
be to also normalize the sensitivities. However, this is more difficult,
because natively the parameter sensitivities can be quite different. So the
next option would be to try to influence the curvature, the second order
derivatives in a positive way, like reducing the non-diagonal elements!
Such mixed terms occur often, e.g., to reduce offset designers would
increase the area A = W · L, but to keep e.g., the saturation voltage we
should keep k = W/L constant for our change. Indeed, if we introduce
A and k as parameters, the optimization would often run faster! Similar
methods are possible for filters; here we should use e.g., ω0 and Q, instead
of the element values.
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Figure 8.17 Contour plot of our 2D quadratic function and eigenvalues.

8.5.2 Men versus Machine? Construction versus Optimization?

All in all, advanced optimizers use techniques an experienced designer
would also apply for circuit sizing, like the concept of sensitivities and even
correlations. Of course, other advanced tasks are much harder to automate,
like debugging, testbench extensions, circuit modifications—for this and many
other tasks, designers also need fantasy and intelligence.

The a priori design insights a good designer usually has lead to the situation
that an initial design can be usually made much quicker manually. However,
at some point, if many variables, goals, and corners need to be treated, the
systematic algorithmic work of an optimizer and its high accuracy pays out:
Imagine you sit in a laboratory and you have to trim two pots for wanted
output at 4 mA and 20 mA input. Often if you trim one pot, you usually
have to readjust back also the 2nd pot; i.e., there is some correlation between
them—which makes the trimming harder. A human designer can recognize
such influences, but only to some degree and he/she would probably fail to
apply a clever strategy also for five or ten of such interacting parameters!
Good optimizers such as the BFGS algorithm have no such limitations, and
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thus, the more complex the cases are, the more advantages for BFGS. Step
by step it collects more information on the design by running more and more
simulations and “composes” an efficient strategy. The latter is mainly in the
gradients g and Hessian matrix H and in the optimization algorithm itself (like
conjugate gradient, BFGS, DFP, or Newton).

In the initial design phase, designers typically apply direct solution meth-
ods, execute small parameter sweeps, and use no optimization. For instance,
if you have to design a voltage divider with several taps, you can use Ohm’s
law and the voltage divider rule –Vout = VinR2/(R1 + R2). This becomes
obviously a bit more difficult if you have many output taps and maybe also
nonfix ΔV in between each pair of taps. However, with some effort you can
often solve the set of design equations step by step. For instance, the output
easiest to calculate is usually the one above ground because it is only impacted
by one resistor and the divider current. Having this you can move to the
2nd tap, 3rd tap, etc., till you are done. Usually the number of equations n
is equal to the number of unknowns x, and the calculation effort is in the
order of n = x.

We can solve the problem also by formulating it as an optimization, but
the effort would be typically in the order of n²! So we have some price to
pay for our “laziness,” but one advantage is often that optimization setups
are usually much easier to extend for further goals (like on noise or area or
output impedance) or more complex circuits (like loading the R-divider with
a diode)!

Another example can give further insights: What about the results of a
mismatch contribution analysis and using it for a manual re-sizing vs. an
optimization at WCD? We already explained the close relationship between
contributions and WCD; in both, we can find out which instances impact
the offset mostly. So if I need to reduce the offset by 1.4× the design could
increase the area of the important elements (like two transistor pairs) by 2×
with keeping the W/L ratio for transistors to maintain gm, VDsat. This way
the designer needs just one re-simulation using the WCD to double check the
improved sizing! A gradient optimizer, however, would need to calculate the
gradient according to all design parameters that the user defines. So actually
also the optimizer speed depends to some degree on user know-how. This
way an optimizer can find out the direction with best improvement rate with
maybe nine simulations. Next usually a step-size search is done, which needs
roughly five simulations. This sequence of about fourteen simulations needs to
be done several times, till the design is in spec, so overall we may need about
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50 simulations—and more if we simply ignore the mismatch contribution
results and just optimize on many more (unimportant) parameters.

Ultimately the manual design and the optimizer could end up in almost
the same result, but the designer was much more efficient regarding number
of simulations. This was possible by exploiting pretty much know-how:

1. You exploit the ranking provided by the contribution analysis
2. You know that an area increase helps to minimize mismatch
3. You exploit the Pelgrom’s law by applying the factor of two for W and L
4. You know about basic sizing rules, like if keeping W/L many transistor

characteristics remain almost constant (like VDsat and gm) to make sure
that our sizing has no big negative side effects (beside larger area and
larger capacitance)

Step by step also the optimizer is gathering this information (e.g., by cal-
culating gradients and composing the inverse Hessian matrix) and exploits
this (applying the Newton step). In manual design, you may need some
iterations, and also the optimizer is doing so in his internal step-size setting
algorithm.

Again, the manual approach becomes more difficult when you need to start
looking to other performances in fight with offset (like bandwidth, stability,
area, power consumption). Typically designers are able to include maybe one,
two, or three more specs, but at some point and especially if the circuit or
the sizing rules become difficult (e.g., because in your technology the MOS
transistors do not follow the simple MOS square law model), other methods
are helpful—and that is often optimization, or asking a colleague or using
another circuit or SPICE monkeying or catching an enlighting idea during
sleep.

8.6 Questions and Answers

1. How many simulation points are typically required for
the optimization of ten parameters?
This depends on the nonlinearity of your problem! If
the quadratic fit done inside many optimizers fits well
you can expect good progress in n2 = 102 = 100
points. Of course, the optimizer also needs enough freedom to be able
to optimize, so you should optimize the right parameters in the right
range. To identify the best parameters consider to run a sensitivity or
contribution analysis.
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2. Can you expect to get the same final solution when
starting from significantly different reference points?
Only sometimes this is realistic! If there is one such
unique solution it could happen, at least with accept-
able accuracy. However, if you have many goals like
performance < limit, and the optimizer is set to stop at “All spec met,”
then actually it would be possible to be even better—just by chance
and for sure dependent on starting values. For extreme case, it could
happen that a local optimizer stops too early at a local minimum. Then
better use a global optimizer.

3. What should I do if something gets wrong in an optimization?
This can happen for many reasons, best inspect the log file. Also
sweep some parameters manually, does the circuit respond to such
sweeps, are you able to improve by hand? Also inspect your goal
setup: Avoid zero as spec limit, zero as parameter values, and
strong nonlinearities in specs (like output which can only take binary
results).

4. You modify your optimization setup, instead of 10 parameters, you
now optimize on 20 parameters. What do you expect in runtime?
Typically the optimization effort rises quadratic, but maybe 10 a
parameter optimization was giving not enough freedom, so it stops
too early. So maybe it is really worth to spend this time. For global
optimizers, the increase in runtime might be also beyond the quadratic
law. The actual number of points depends also on the nonlinearity of
the optimization problem.

5. Setup an optimization and run it. Often you will observe that the
optimizer is changing some parameters not much, at least at the
beginning? What do you expect e.g., regarding parameters with low
and higher sensitivity?
Typically optimizers do not “touch” unimportant parameters, having
low sensitivity. Instead optimizers typically optimize first the major
parameters. This is actually similar to the manual design process.
Here you typically also look to the most important parameters and
effects!

For instance, in a PA design the primary goals like power and
efficiency are mostly related to the output stage. So you design first the
transistor stage connected to the load, then go “back” to the driver
stages, step-by-step. For an LNA it is vice versa: Here the input specs
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are more critical like noise figure, so you start with the stage directly
connected to the antenna, then looking to the other stages.

6. We can use optimizers for circuit sizing, and what else is possible?
You may use it also for performing a calibration or even an optimization
in which a calibration is applied. Of course, it does not mean that opti-
mization is the fastest technique for calibration problems. Optimizers
are also key parts for other methods like for finding WC distances or
WC corners. In addition, many optimizers provide many further results,
e.g., in the log file or in special results tables; one such by-product is
often a sensitivity analysis!.

7. You want to reduce the sigma of the offset voltage (or improve on
other performances highly impacted by statistical parameters). Instead
of doing a big MC analysis within the optimization loop, you want
to exploit the idea of statistical corners and worst-case distances.
However, because you are not so familiar with WCD methods you
just run MC and pick the worst-sample and optimize on this corner.
What are the problems?
This idea could work quite well, especially for low-yield targets like 3σ,
because then MC effort is moderate and WCD methods would be hardly
much faster. However, such MC worst-samples are seldom accurate
on direction. Of course, the true WCD has the largest probability,
so also the worst-sample should be not far away, but actually your
“protection” on limiting the direction error is quite small, just the
little higher probability of the true WCD vs. errorness WCD. So it is
realistic that in 5 to 15% of such MC analysis, the worst-sample has
such big direction error against the true WCD!

8. Can I use my circuit simulator as optimizer?
Yes, indeed in simple cases you can do so. For instance, you may
remember how old analog computers work. Then create a testbench
reproducing this optimization problem (e.g., by using VerilogA) and
run a transient analysis in the simulator.

9. Which kind of optimizer is realized in Figure 8.18?
The idea is following steepest gradient, but actually real software
implementation of steepest gradient work slightly different! In the
schematic the gradient g is calculated continuously, but in software
we usually calculate g and then do a step-size search with fix direction
s = −g. Calculating g all the time (so even after a very small step Δx)
would usually take (far) too much time!
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10. If you can program your optimization goal function
e.g., in Excel, then you can use the built-in solver for
this task.
Try to run it for yourself or use the file rosenbrock.xls
from the River webpage (last tab sheet).

11. In Section 8.3.4 we gave sample circuit examples with local minima,
but optimization can be also used for maximum likelihood estimations
or worst-case distance search. What about local minimums in these
applications?
Indeed for symmetric WCD problems and starting at the origin, we
would run into problems, because often the origin would be a local
optimum. In MLE for a triangular distribution the goal function looks
also not like a nice quadratic function at all.

8.7 Summary: Why Optimization Was So Hard?

We mentioned already several problems and indeed you may ask why is sim-
ulation available since almost 50 years—able to find thousands of unknowns

Figure 8.18 Testbench acting as “analog computer” for a two-parameter optimization (goal
function defined with VerilogA block).
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quite efficiently—whereas optimization of real complex circuits—maybe
featuring 30 parameters of major interest—is still regarded challenging?

There are several reasons:

• Getting the equations to solve for simulation is quite a regular task due
to Kirchhoff’s Law and the element equations.
In optimization there is no real standard method for this! So historically
optimization has been indeed applied successfully on problems for goal
formulation was easy, e.g., by using least-square criteria for modeling
purposes!

• In circuit simulation, the element equations standardized and even the
partial derivatives are usually fully available to enable Newton–Raphson
method (NR).
The gradients for an optimization are harder to provide (requiring further
simulations, sensitive to rounding errors, etc.). For yield optimization,
the goal function and its gradient are even very difficult to calculate!

• The equations for simulation and optimization can be both very nonlinear.
However, in circuit simulation you know this upfront. For instance, a BJT
has an exponential characteristic, which can cause Newton–Raphson to
fail, but luckily you can implement dedicated supporting algorithms to
get rid of such difficulties.
This is more difficult for optimization, basically you as the user has
sometimes to pamper up your design and also your optimization!

• In circuit simulation, you may fight with multiple possible operating
points, and you may apply few nodesets or initial conditions to force the
desired state.
You typically know well where to apply nodeset; good candidates are
latches, start-up circuits, etc. In optimization, you may try different
starting points to get rid of local minima, but this is not so easy to do;
e.g., a too bad starting point may stop the optimization completely.

• Optimization is something on top of simulation, so if the optimizer takes
a set of parameters which make the simulation difficult (e.g., circuit
becomes unstable), then this immediately effects the optimization.
So optimization requires usually very careful numerical implementations.
For instance, the gradient calculation is much more difficult in optimiza-
tion! In circuit simulators, the derivatives are typically hard-coded, so
very accurate.

• For circuit simulation, the equation to solve is something like f (x) = 0,
whereas for optimization it is f ′(x) = 0.
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This sounds so similar but in reality Newton–Raphson often takes only few
iterations (like 5) to find a solution, whereas an optimizer (e.g., Newton’s
method) often needs more iterations, even for much lower number of
parameters. And also one iteration itself takes more runtime because
almost always full circuit simulations are required. One Newton iteration
would require simulations in the order of n2.

• A big question is whether we can formulate mathematically what a good
design is!
This is a key point for design automation. We showed how to translate a
datasheet into a minimization problem, but the weighting factors might
be a bit arbitrary. Also “soft” factors are difficult to include. Surely a
good circuit is one which cannot be improved! This can be checked in a
designer review, but is hard to program—and the same problem occurs
also in layout automating tools!

Table 8.7 Do’s and Don’ts for optimization
Do’s Don’ts Comment
Define all performance
specs which matter

Be lazy and forget specs If your specs are incomplete
the optimized design may not
fit, e.g., regarding layout

Make sure that
performances vary
smoothly with circuit
parameters

Make life difficult for
an optimizer and define
binary outputs, like
Hi or Lo!

Optimizer run faster with
smooth outputs

Choose a suited optimizer Stick to an unsuited
optimizer

Sometimes you should really
try multiple, global
optimizers are usually more
robust but slower on smooth
problems

Exploit what you have
find a good starting point

Waste time in using
a bad starting point

Define parameters and
ranges carefully

Do not optimize all
or too few parameters

For too many variables the
optimization becomes slow,
but maybe you can do it in an
overnight run

In difficult cases optimize
1st with ideal elements or
just an input stage

Optimize a big system
without having good
sub–blocks

Divide-and-conquer can save
a lot of time also in
optimization, check if ever a
certain target can be achieved,
like NF < 0.9 dB at 5 GHz or
BW > 1 GHz in a matching
network from 50 Ω to 1 kΩ
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The key points to make optimization tractable in spite of high complexity are
working in a systematic way using some key speed-up techniques:

• Reduce complexity on statistical and environmental variables by using
statistical and environmental corners.

• Focus on the important parameters, but do not overlook parameters to
optimize. For this, check design on sensitivities. Look-up that often the
optimization effort rises quadratic with number of parameters. Set up
parameter ranges to achieve meaningful values also suited for layout.

• Define realistic goals; the optimizer will collect them into an overall
goal function. The user can typically set weights to tune the optimization
further. Sometimes users have anyway a good feeling on how to set the
sets, like 0.1 dB in noise figure as critical as 1 dB in gain, but sometimes
this is not the case. In the future, we can expect even more powerful
algorithms, like Pareto optimizers, which create full sets of optimized
designs (so-called “Pareto front”) with different optimization trade-offs
(more in the last book chapter).

• Optimization has beneficial by-products like giving a sensitivity report
after the optimization. This helps for manual tweaks or for doing the next
optimization. Optimization is no push-button solution! (Table 8.7).
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9
Advanced Front-End Design Methods

Now we put the discussed techniques together, but we still focus on front-
end design topics; e.g., to enable yield optimization, we combine optimizers
and overall worst-case finders. We also discuss options for further analysis
methods for higher speed, more automation, and more design insights. You
typically cannot find built-in features addressing all these advanced methods,
but most environments offer powerful scripting capabilities.

Let us pick up the front-end design flow proposal from Chapter 2 and
inspect which methods are available for different difficult tasks and which
can be merged to an even more advanced analysis. Figure 9.1 shows a merger
(“Improve Yield”) for the worst-case search and the circuit optimization. Such
option is available in advanced design environments, and it makes sense
because the worst-case corners (either for deterministic range variables or
statistical variables, or for both) may change during the optimization.

We have to solve truly complex, very difficult mathematical problems to
make yield optimization feasible, but beside this, as usual, you should first get

435
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Figure 9.1 Circuit design flow chart and methods.

an overview on the status of your design before deciding for an optimization.
Doing an optimization at typical conditions is sometimes waste of time, even
if the design might be improved significantly (like you can increase the op-
amp open-loop gain from 60 to 100 dB) and easily by an optimizer (like in
an hour), because it may still show severe problems under specific conditions
(like gain drops to –10 dB at minimum supply)! It may happen that a design
optimized at typical conditions still shows the same problems, sometimes
even in a more severe way! Better anticipate, identify, and solve the urgent
problems first before fighting for the last decibel on other things. Beside this,
many less difficult design problems can be still (almost) solved with classical
divide-and-conquer.

Often it makes sense to optimize up front on already-known (or easier to
find) difficult conditions. We could first do separately a WCD analysis and a
WCC analysis and look which kind of variables, statistical or deterministic
range variables, causes more pain (Figure 9.2). Then we should optimize
on the more problematic case—before applying a full flow, while taking
both range parameters and statistical parameters into account. Such classical
divide-and-conquer has the advantage to be faster at the beginning, and the
methods for that are available out-of-the-box in many modern design envi-
ronments. Note, in some cases, we may have problems: Yield improvement
by combining optimization and corner finding might be difficult, e.g., if
the direct combination of statistical WCD and worst-case corners does not
represent the full overall worst-cases or if the WCDs give no accurate yield
estimation.
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Figure 9.2 Fast preparing optimizations to provide a good starting point.

9.1 Task-Driven Adaptive Statistical Analysis

Agood statistical analysis is pretty much more complex than a SPICE transient
analysis. Yield analysis or even a full statistical analysis (e.g., also addressing
corners and contributions) is more like fast-SPICE or mixed-signal simulation,
in which also many clever speed-up techniques are integrated. In Chapters 5,
6 and 7, we described many useful statistical techniques, but actually no single
one is as universal as random Monte Carlo, and MC is not well-suited, e.g., for
high-sigma corner generation or yield optimization. If we connect different
techniques, we can compensate weaknesses—by still having a significant
speed and accuracy advantage over pure MC (rando, LDS, etc.). In principle,
we just need to arrange the manual statistical analysis steps (Figure 5.2). Some
decisions are done based on yield target, because some methods are natively
better suited for high-yield estimations than others. Also inside each sub-task
there is room for improvement. For instance, we can speed-up the MC parts
by applying LDS or e.g., optimized LHS. This works best if the number of
important statistical variable is not too large. For larger circuits it makes sense
to apply the better sampling scheme at east to these important variables. You
may find these iteratively, or from experiences. Usually mismatch is dominated
by the threshold voltage parameters, and for filters or current generators also
process variables like sheet resistance are important.
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Figure 9.3 Example for a task-driven user interface.

One problem in pure algorithm selection is to decide on the crossover
point; because seldom we have a clear separation, usually there is a smooth
transition and overlaps. So, instead of selecting a certain “best-suited” method,
we can also regard the different methods as a continuum: WCD is clearly
optimization based, but if we aim for statistical corners with SSS or sorted
MC the act not much different, just the type of optimizer is different (like
gradient vs random), is also the type of information used and the target differs
(slightly). Also almost all advanced methods start with pure MC anyway,
and some extensions like creating a multivariate model (as in sorted MC),
up-scaling sigmas (SSS), or starting a direct search for WCD are not really
contradicting. Imagine we start with MC and classical WCD search, maybe
supported by SSS to improve on the starting point for the optimization part. If
WCD converges, we may double-check the results (e.g., via CGPK and pure
SSS, or via sorted MC) and stop, but if WCD looks inaccurate (e.g., due to
numerical problems or nonlinear fail boundary) or too slow (due to too many
variables), then the results could be still used, e.g., for creating or refining
a multidimensional model and applying sorted Monte Carlo or (if we need
maximum speed) by we could just rescale the current worst samples, maybe
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with additional cluster analysis and averaging for accuracy improvements.
So we obtain a good solution even in the extreme case where no WCD even
exists (typically only for a certain difficult circuits and output measures) by
switching back to basic MC plus using (a set of scaled) statistical extreme
samples—actually this can be very efficient and often accurate enough.

This way we end up in a very robust, reliable, and still efficient algorithm,
able to deal with all kinds of nonlinearity and complexity.

Note in this analysis we still focus on statistical variables only; i.e.,
we run it at nominal conditions or an expected critical corner. For a true
yield optimization (next sub-chapter), we would need the full WC corner
combination, and we need to update these corners from time to time. In this
context, the optimum corner generation method might also depend on the
currently achieved yield level.

9.2 Yield Optimization and Overall Worst-Case Search

The simple divide-and-conquer approach of pure corner optimization plus
optimization at pure statistical corners is non-optimum in the general case,
and especially for more difficult designs. We actually underdesign, because
the true overall WC would be not captured explicitly; and we could end
up in “oscillations.” An example could be an op-amp critical on offset due
to mismatch but being more critical on other performances regarding PVT
corners. If we would first optimize on corners (as proposed in Figure 9.2),
e.g., to improve on speed, we may make the offset even worse! And vice versa
tweaking for lower offset could worsen the speed unfortunately. A certain
improvement could be to “take an eye” to the non-optimized performances,
e.g., just by constraining the size of the input transistors. With design know-
how, small experiments and sensitivity investigations, designers are usually
able to anticipate such problems, but such approach comes with the risk of
over-constraining, leading still to a non-optimum final design. In addition, it
becomes difficult for treating more than a few specs. For uncritical designs,
you may solve many problems this way, but ultimately a true overall worst-
case optimization is the more elegant way because it treats many problems
directly.

The difficult yield optimization case is having a design with significant
nonlinearity, so that the simple OFAT method, of just directly combining
WCC and WCD and doing no further checks or refinements, often would
fail. The extreme opposite way would be switching back to (an almost) full-
factorial method; like doing a (bigger) MC analysis at all corners inside the
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Figure 9.4 Brute-force design via MC and all corners inside the optimization loop.

optimization loop (Figure 9.4), here we would address all kinds of variables
simultaneously and we have no such “oscillation” problems, but the speed for
design would be hopelessly slow.

Can math help us again? We formulated the yield and optimization
mathematically, so what is yield optimization? We are looking for the design
defined by xD = xD

∗ (being in the valid range of design parameters) which is
minimizing our performance goal function f with keeping the yield loss (fail
probability pfail = 1–Y) below our target yield loss (e.g., 6σ). And we need to
do that for all environmental conditions defined by the xR ranges.

xD
∗ = arg min f(x) subject to pfail(xD, xR) < pfailTarget (9.1)

Often, we may have to include further constraints. One not so nice property
of Equation (9.1) is that the WC corners do not appear! These would be the
quantiles, coming from the inverse cdf, e.g., at 6σ we would need to calculate
q = cdf−1(1–10−9), and we would get the spec setting for this situation. Again
the key problem is that the yield integral and the cdf is hard to evaluate, because
the yield integral fail regions are only defined implicitely; and sampling efforts
time-consuming circuit simulations. As the quantile function is monotonic we
can reformulate yield optimization as:

xD
∗ = arg min f(x) subject to q(xD,xR) < qspec (9.2)

Using full corner sets and MC in the design tweaking phase is not only highly
inefficient, but it has also the disadvantage that the MC analysis with its
confidence intervals would make an optimization very difficult. In MC, it
can happen that a worse design gives a (slightly) better yield just by chance!
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If we want to optimize on the standard deviation σ of the offset voltage,
then we could use the sample standard deviation s in the optimization goal
function—but s depends on chance (the more the lower the MC count)! So an
optimization goal function based on s (or any other MC results) would present
quite noisy data to the optimizer, which could prevent an efficient and accurate
optimization (especially if using a fast gradient optimizer like BFGS).

At best, the brute-force method might be used as “golden” reference for
benchmarks. [Brayton1980] and [Javid2007] propose geometrical approaches
and advanced optimization techniques to solve the problem more efficiently.
Actually, some moderate speed improvements are possible without losing
much of generality; e.g., we could do the MC analysis at all corners by first
using only a moderate MC count (like 50, and using the CPK), and then
we could extend it only for the worst deterministic corner combination(s)
for each spec, e.g., to 500 (for a sample yield around 3σ–4σ and using the
CGPK, or more points plus using the sample yield). Another approach would
be remembering, e.g., the latin hypercube idea: We can indeed generate LH
sets which address both statistical variables and our environmental range
parameters, but typically also the LH Monte-Carlo variations would be
still critical for an optimization (and of course hardly suited for high-yield
optimizations).

Therefore, and for speed reasons, we propose design tweaking based on
overall worst-case corners, because this way we can substitute the full mix
of “MC plus corners” by a compact set of overall corners which treat both
statistical and deterministic variables. To some degree this is still a kind of
(iterative) divide-and-conquer approach with some limitations, but it is a
realistic approach which can be followed in modern design environments.
At the end of the chapter, we also present some algorithms, which go beyond
this and merge the optimization and variable space evaluation part.

9.2.1 Methods for Overall Worst-Case Search

We already presented reliable and efficient methods for worst-case finding in a
set of corners xR and also for statistical parameters xS, so what is the best way
to find the overall worst-cases among (xR, xS)? We mentioned OFAT is often
not reliable enough, and full factorial is far too slow. In addition, we should
also get a feeling for how accurate do we need to find the overall worst-cases.
Some algorithms are optimized for finding the true worst-case very accurately,
but may require quite a lot of runtime (like classical WCD analysis applied
to very big designs), whereas others may exploit some extra assumptions and
are more optimized for speed (like fast k·sigma flow or the CPK). If you are
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in the sign-off phase, you should better use the first kind of algorithm to avoid
any risk—if feasible. However, if you are in the design tweaking phase and if
your specs are not fully confirmed, better choose a fast algorithm.

9.2.1.1 Example and heuristics for overall worst-case search
To understand the requirements and the general problems for finding the
combined worst-case on both range and statistical variables, let us start with
a mixed example, with two statistical variables representing the threshold
voltage variations (often a dominating effect in analog design) and two range
parameters temperature T and supply voltage VDD. Let us pick up the CMOS
inverter of Chapter 2, but let us now use no process corners like SS and FF
but treat the process variations as statistical variables on thresholds VTOn and
VTOp (which is also a more realistic assumption). Let us again focus first on
delay and on one-parameter sweeps.

Usually the WCC on speed is maxT (due to mobility degradation) and
minVDD, but if VDDmin is very small, like for ultra-low-power applications,
it could be that the gate-overdrive becomes very small, leading to a strong
increase in on-resistance, especially at low temperatures, because |VTO| has
a negative TC. If we now tweak the design, it could happen that the WCC
is either at Tmin (as shown in Figure 9.5a) or at Tmax (as usual for moderate
and large VDD). As we have seen in Chapter 2, the WCC can actually even
“jump,” during the optimization, which makes the job for the optimizer very
hard! To prevent this, a meaningful workaround would be not only to focus on
the worst-case but just to simply use more corners combinations, like second
worst combination or a critical setting in opposite to the found WCC—at least
for critical variables, such as temperature. This can be understood in more
detail looking to full-factorial corner and to the MC results. Figure 9.5b to
9.5d display the varying responses over a range of conditions and variables
(sometimes called shmoo plots).

The detection of this “oscillation” condition is quite easy here: The final
sweep (done on the expected most critical variable, here it was temperature
T) has given another WC than a sweep around nominal conditions.

The “jumping” worst-case the inverter example might be regarded as a bit
special, but actually similar problems can happen in many designs, and also the
testbench and corner setup have an impact. If we have circuits like a bandgap
or variable gain amplifier VGA, we may include temperature T or tuning
voltage sweeps directly into the tests, so having them not directly as corner
variables anymore. This way the whole verification might be faster, but exactly
that clever arrangement could also cause such jumping worst-cases; e.g., the
VGA linearity might be impacted at different tuning voltages by completely
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Figure 9.5 Principle inverter delay behavior: a) Temperature behavior for different VDD,

b) Threshold voltage impact (VDD = VDDnom, T = Tnom), c) for VT corners (process at SS),
d) Monte-Carlo yield vs VT corners.

different circuit mechanisms! Or the bandgap may show difficult behavior
at maximum temperature and special process variable combinations, but is
sensitive to quite different variables at other temperatures. The good thing
is that having such examples in mind typically designers can identify such
problems quite quickly, even more when using “dirty” design or testbench
“tricks.” For instance, due to channel length modulation a voltage regulator
has usually a finite power supply rejection PSRR like 1 mV/1 V (60 dB);
you may improve this easily by just adding a little negative compensation
voltage of –1 mV/V, e.g., via a resistor divider. However, it is likely that the
compensation is not perfect, so you may get –0.1 mV/V (80 dB). This sounds
uncritical, but exactly these “too clever” methods will often cause larger, more
nonlinear variations, and difficult WC behaviors!

To find the overall worst-cases efficiently, we can actually borrow a lot of
ideas we applied for pure statistical WC distances and WC corner finding. A
starting point, we may remember the OFAT method, would be just to “com-
pose” an overall worst-case corner set according to Figure 9.6 [Schwencker].
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Figure 9.6 Design flow proposal with WCC and WCD in the optimization loop [Schwenker].

In many design environments, you can just follow this approach by hand;
step by step, Figure 9.7 is showing an example successfully executed in
WiCkeDTM from MunEDA for a memory cell design.

Would this user approach work in general? First searching for WCC then
for WCD, so doing a kind of ordered OFAT? Or should we better do the
statistical analysis first? The answer is quite easy: For symmetric circuits,
a corner analysis would give no offset voltage (maybe also infinite CMRR,
PSRR, HD3, etc.)—so any WC corner search would completely fail! So here it

Figure 9.7 Stepwise manual worst-case finding in a commercial design environment
(Courtesy of MunEDA).



9.2 Yield Optimization and Overall Worst-Case Search 445

is obviously much better to run first a statistical analysis for statistical corners,
like WCD. In this case, we can obtain a WCD for offset voltage (and other
performances), and in the subsequent WC corner search we would find out the
WC appears at maximum temperature, and maybe maximum (or minimum)
supply (due to channel length modulation).

A second (strong?) argument against inspecting first environmental corner
is simple: Doing so would be in contradiction to what happens in reality!
Of course, first the fabrication needs to be done (setting the statistical param-
eters); then, the devices have to be tested at the environmental corners. Then
finding the first case has a better chance if we use the bad production samples!

This leads to a flow with “improved” order (Figure 9.8). A third argument
to treat statistics first is that often mismatches (and process variations) are
very critical, so it makes sense to care first for the first-order effects (and in
many analog designs, mismatch is a major effect!); this makes sure that the
design will not behave in an artificial ideal way. In the questions and answers
section we also discuss a more mathematical “proof”.

If such “well-ordered” OFAT-oriented method would work in general
is again a more difficult problem! We can expect that if there are strong
correlations between statistical parameters and deterministic ones, also such
enhanced “well-ordered” OFAT approach could fail. Luckily “fail” might be
not so critical anymore because it would just mean you get a certain combined
WC corner, which is unfortunately not as extreme as the true WC corner.
So if you add by hand some small safety-margin, you may accept the risk
even for sign-off. In addition, you can improve the flow by adding expected
WC corners manually. Because in the proposed corner-based flows the sizing

Figure 9.8 Improved design flow with WCD first and then WCD.
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is done in a fast loop without full MC analysis, it is best to double-check
the optimization result in a succeeding separate verification. For efficiency,
such split between a fast sizing loop and a final verification makes generally
sense.

Let us check the flow (inspired by the op-amp example) in our inverter
example (Figure 8.10) and try to solve the WCD problem manually: As
mentioned, the delay-WC on VDD and process is almost trivial (even OFAT
would have no problems), but the temperature characteristic is (quite often)
more difficult, because the mobility drops at higher temperatures (so the MOS
on-resistance increases), but the threshold voltage also gets smaller there. The
later leads to a larger gate-voltage overdrive, and thus lower on-resistance.
These two effects can cancel or reverse the overall TC. As a result, for very
low supplies the threshold voltage effect can dominate and the WC can shift
from maximum temperature to minimum temperature.

Mathematically we can model the problem as followed:

tpd = kT/(VDD − VTOp − VTOn)
withVTO (T ) = VTO (Tnom) − 2 mV/K (9.3)

Note: This is a simplified description, just to make the difficult statistical
optimization problem tracktable. On the other hand, it is quite meaningful and
even a bit more nonlinear than the true relationship (having no pole due to
subthreshold onset in real CMOS transistors).

As already mentioned, it is often better to treat first the statistical variables,
e.g., in a WCD analysis for 3σ as yield target. In the inverter case, the
threshold matters and we would obtain VTOn = VTOnnom + 3σ/

√
2 and

VTOp = VTOpnom + 3σ/
√

2.
Now we need to find the WC among the normal corner variables, and we

can do it via preordered stepwise OFAT (see Chapter 2). So next we can sweep
VDD and would find for sure that VDDmin is the WC for delay. And last we
would sweep T (with VDD = VDDmin) and get the desired overall WCC set. As
already mentioned, this way a clever applied OFAT method would still give
the correct solution, very efficiently. However, how can we generalize this and
how can we avoid “oscillations”?

As mentioned, difficult variables (with strong and nonlinear impact) should
be treated with quite dense sweeps, and—as we described in Chapter 2—they
should be treated in late sweeps (if using OFAT, for full-factorial there is
anyway no problem, but it is very slow method), because they decide mostly
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on the overall WC—whereas the more linear or less sensitive variables could
be set earlier in the WC search. This is also in synch on how we treat statistical
corners; we treat them first, and indeed most process parameters like sheet
resistance luckily anyway only vary by maybe ±15 to 20%, also mismatch
effects rarely change the bias point significantly. In such ranges, the design
should of course behave well—often in opposite to temperature behavior. In
the inverter example actually also the process behavior can be regarded as
critical or dominant, but it still does not matter whether you sweep first VDD
or on process.

You think inverter speed or op-amp offset are special, or maybe the other
way round: Too simple to be representative? Actually, everything in custom
design can be regarded as special, but there are also quite many common
problems; e.g., many analog blocks show similar difficulties: At low supplies,
most circuits become challenging due to transistor saturation, so especially
at slow corner (SS) the DC gain may drop significantly, but usually not at
fast corner (FF). This is normal behavior most designers anticipate anyway.
However, if you choose for that reason quite short values for the transistor
lengths to lower VDsat, then usually also the FF corner may show a somewhat
lower DC gain. So sometimes at VDDnom or VDDmax the FF corner might be
the worst-case on DC gain, whereas at VDDmin it is usually still the expected
SS corner. In our flow proposal, we sweep first on simple variables like VDD
and almost for sure we get VDDmin as WC for DC gain, so doing later the sweep
on process corners would give indeed the correct overall WC combination.
Unfortunately, this approach becomes more difficult if we want to treat process
variations as statistical variables, because we also proposed to vary statistical
parameters first—to treat mismatch there is actually no alternative, as we have
shown! Solving this conflict is possible in several ways; one obvious solution
would be to split the MC run into two, and running the MC process analysis
after setting of the less critical variables, as proposed. And a second solution
would be of course to run the MC simulation already at an expected WC,
which is luckily SS, and this is easy to anticipate.

Note: To some degree, good designs are usually also mathematically “better
behaving,” which means that bad designs are usually harder to optimize over
WC corners. That stresses actually the importance of applying well-known
manual best practices and sizing rules! Avoid dirty tricks (like hoping that the
TC of a threshold voltage and a sheet resistance would cancel) and try to be
on the conservative side!
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Figure 9.9 Heuristic preordered OFAT for overall worst-case corner searches.

Summary and further possible improvements:

• For overall WC finding focus first on statistical variables then on
deterministic range parameters. In the later, you may apply adaptive
WCC methods or full-factorial but stepwise preordered OFAT search
maximizes the speed and comes with little risk because the sensitivity
and nonlinearity of the range and statistical variables is taken into account
during setup.

• Optionally, we could iterate; i.e., after WCD and WCC, we could go back
to WCD (and WCC).

• Remembering the design pampering idea, we can also adjust the yield
target over the optimization loop, like starting with 3σ-WCDs then
moving to the actual yield target like 5σ. One advantage in doing so is
that finding a low-σ WCD is possible with lower number of simulations!

• As mentioned WCDs can only address the partial yield to optimize on
total yield, you can use the approach explained in Chapter 4 for finding
the overall CPK based on correlations or via blocking-min. This optional
step takes only very short time and is usually only needed if you need
high accuracy and if many goals exist (because here min(WCD) can lead
to too optimistic total yield estimation).

9.2.1.2 Worst-case corner effort reduction methods
Using corners instead of MC runs provides a big speed-up, but further
speed-up in conjunction with optimization is still desirable, and it is often
possible by reducing the number of overall WC corners. In principle, we would
need one overall WCC for each spec, at least, so the number of WCCs can be
quite large (like twenty or more). Therefore, a reduction, exploiting correla-
tions, is desirable, at least for the optimization phase. Often this also helps to
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really understand a complex design, just because too many corner cases are
extremely hard to manage.

Indeed, we can often merge environmental WC corners in xR (due to spec
redundancies), but can we do so also for WCDs and the overall WCC? Yes and
no! Merging in range parameter corners is often easy because for simplicity we
treat each variable with discrete values, like VDDmin, VDDnom and VDDmax, but
for WCDs we work on continuous variables xS. For designs with a minimum
count of specs, there is a low chance that we can merge WCDs, but the more
specs we have the more redundancy can be expected, surely, e.g., in specs
like power supply rejection: PSRR(DC) > 100 dB, PSRR(50 Hz) > 80 dB,
PSRR(1 MHz) > 50 dB (or similarly for rise time and bandwidth, phase
margin and overshoot, DNL, and effective number of bits).

Corner merging could be even done adaptively during the optimization;
e.g., if design is far from the optimum point we can apply more corner
mergings, to optimize faster. For an optimum verification coverage in late
stages, we can stop on merging and also extend the set with “second-worst”
corners.

The merging might be done based on correlations coefficients between the
outputs, which may come from a parametric model fit or from nonparametric
ranking methods (Chapter 5). As mentioned, at the beginning of an optimiza-
tion or for low-yield targets, the worst-sample method can give an acceptable
approximation to the true WCD. So we could rank the MC sample points for
each spec directly: For instance, MC sample #109 may have rank number 1
(= worst-case sample in this MC analysis) on Voffset, rank 4 in THD and 3 in
PSRR—so overall average rank is (1+4+3)/3 = 3. We can do this also for the
other MC points, and pick as wanted “compromise WC” corner the one with
lowest average rank.

An alternative method would be inspecting the (nonparametric) correlation
coefficients among the outputs, which reach from c = –1 to +1. Based on that
we could merge statistical corners which have a correlation |c| ≥ 0.9. Note
that this method is a bit riskier, because most correlation measures take the
whole dataset into account to get a low variance in the correlation estimates.
However, for worst-case inspections it could be better to focus on tail samples,
because actually the correlation might be impacted by nonlinearities, which
could cause that the correlation across tail samples is different to a correlation
obtained from the all samples.

Besides pure merging we can also use other speed-up techniques; e.g., if
one spec is totally uncritical we may simply skip simulating its related WCD.
This makes sense at least if such performances have a long simulation time and
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if the WCD performance on this spec is similar to the nominal performance.
In addition, we may generate no WCD, e.g., if the standard deviation of this
performance is very small (leading to a large CGPK), and similarly we can do
for WCCs. Actually, a designer works in the same way: He/she runs sweeps
and focuses the work on things that matter, not wasting time on things that
work anyway.

After the WC mergings, we would ideally end up with a moderately large
set of merged worst-case corners. And the number of corners in this set would
be the number of fighting spec groups! We could do it also do vice versa:
Given we want six balanced near-WCC (compare to Figure 1.7), so we could
adjust the ranking or correlation criteria till we reach that number. Or we may
set the correlation limits to a value giving us, e.g., a corner count reduction
by 50%.

For low-sigma designs and at the beginning of a circuit optimization, it
could also make sense to reduce the effort inside the search for statistical
corners: Doing a full WCD search for each spec at an expected WCC is
usually nice to have. Unfortunately there is no single WC condition for all
specs and doing a MC analysis or a full WCD analysis on all these different
conditions would be a significant effort. Therefore, a MC or WCD analysis at
nominal conditions or only at the expected most-critical overall WC makes
sense. For analog circuits, this is usually the combination of minimum supply
and slow MOS corner, because here many key performances (like distortion,
output power, PSRR, CMRR, gain) become critical, whereas on performances
with almost opposite behavior (such as breakdown or leakage) often some
overdesign is usually easier to apply. Of course, the design should be robust
enough to not fail completely on other specs like stability.

9.2.2 Fast Full-Yield Optimization with Heuristics

Let us now pick up the overall worst-case corner yield optimization concept
(Figure 9.10) and extend it with the discussed searching heuristics. We already
mentioned that design is “pampering,” so for final verification we need to set
the yield target according to our desired production yield; this might be a
high-yield target like 4.5 or 6σ. However, in the design tweaking phase the
circuit may show bad behavior for such extreme statistical corners. Maybe the
circuit is not even functional at such high-sigma WCD, because it may cause
a strong nonlinear behavior and big problems for an optimizer (maybe also
for circuit simulators and output evaluations). Therefore it could make sense
to increase the yield target step by step during the optimization. In addition,
the WCCs and WCDs may change during the optimization (next subchapter).
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Figure 9.10 Concept of fast yield optimization based on overall worst-case corners.

Also note: Ultimately, the sigma level should be set (finally) according to
your desired total yield. Indeed, maybe only for some specs a high yield target
like 6σ is really needed, whereas for power consumption 3σ might be regarded
as good enough. However, a consistent yield spec is surely less confusing;
having some “uncritical” specs at low sigma level lead to nice and tight specs,
but actually you foolish yourself and add room for misunderstandings. Better
make clear statements and demonstrate consistent spec limits!

Actually the key concept for fast yield optimization is quite straight
forward (Figure 9.11), but we can plug-in quite many advanced mathematical
and heuristic methods:

1. Using expected worst-case corners, e.g., at the beginning or for speed-up
the searches.

2. Apply fast stepwise preordered OFAT at the beginning but later go for
deep adaptive search methods, optionally denser sweeps, tighter internal
tolerance settings.

3. Apply corner mergings in case of strong correlations, especially in
case of long simulation times, many specs and in early optimization
stages.

4. Consider to skip WCD generation for performances with large CGPK, or
to skip totally uncritical specs and variables in next iterations.

5. For reliable convergence and better monitoring includes expected WCC
(like VDDmin + SS) and nominal corner (without mismatch).
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Figure 9.11 Yield optimization with overall worst-case corners and adaptive yield target.

6. Reuse performance models created for WC search, instead of generating
them always from scratch, reuse internal optimizer data (e.g., inverse
Hessian if using quasi-Newton).

7. In late stages, check also for total yield (based on correlation and partial
yields) to update WCD sigma levels of the individual specs.

8. Extend the pampering idea if there is too little progress, like consider to
relax specs on power or area.

Which mix is best depended on many things like how time-consuming the
circuit simulations are, how the testbench structure looks like, how complex
and nonlinear the optimization goal function becomes, and how much compute
power and simulation licenses are available. In our chapter “Design in Pictures
Six,” we give some examples.

9.2.2.1 How the worst-cases may change during
an optimization

We mentioned that from time to time during the optimization, an update on
the worst-case corner set is required. If we do not, we may slow down the
optimization, but how much actually depends on several parameters, and of
course some slow-down might be fully acceptable, because we would save
simulations for worst-case finding. In the simplest WCD cases, like for offset
on a differential pair, even no update is needed, but we cannot expect this
in more difficult cases. So let us inspect a typical analog optimization, like a
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two-stage amplifier and looking again to offset and, e.g., area (or speed) as
conflicting goals. One advantage is that we can directly calculate the WCD by
Pelgrom’s square-root law. Assume a gain of 2 (6 dB) of the 1st stage, so here
the matching matters two times more than for the 2nd stage. For instance, for
the starting point of the optimization, let us assume an area of 1 um² (for each
stage) and a matching constant of 1 mV/um (related to a diff-pair). We get an
output offset sigma of 2 mV from 1st stage, and 1 mV from the 1st stage, so
in total we see

√
5 mV = 2.236 mV. If the spec is at 4.472 mV, we would get

a 2σ yield only (CPK = 0.667).
To improve on offset and yield, we should obviously increase the area,

and best with focus on the 1st stage. So let us increase the area by 4×, to
get an output offset of 1 mV from 1st state, and now 1.414 mV in total. It
is not unrealistic that the optimizer would stop here (e.g., because the area
limit is reached or because bandwidth is now significantly lower). The partial
yield on offset is now 4.472/1.414σ = 3.163σ (CPK = 1.054) which could be
regarded as a significant improvement! Look up, this is an accurate analysis,
but actually we have not used the WCD concept, so what does it mean for a
WCD-based optimization?

For simplicity, let us assume 3.163σ is also the target yield, so it would be
native to use this sigma level for the WCD! We know that the 1σ-WCD gives
us 2.236 mV at the starting point of the optimization, so the 3.163σ-WCD
gives 7.072 mV. For this we need now the setting for the mismatch variable
at each of the two amplifier stages, which are 2.83σ and 1.41σ; this gives at
the output indeed 2.83 mV·2+1.41 mV = 7.07 mV.

Looking now to the optimized result with doubled input area, we would
get for the WCD an output offset of 4.26 mV (which is slightly too optimistic),
not exactly 4.472 mV. This small mismatch to our initial accurate hand
calculation is because the circuit and the WCD have been changed during
the optimization.

It is interesting to check (Figure 9.12) how large the WCD change really
is, e.g., regarding the angle or the component ratio of the initial WCD (before
optimization it was a ratio of 2) and the one for the optimized circuit (here the
ratio is 2.27/1.575 = 1.414).

The angle change is 18◦ which looks maybe not that small, but the error
in WCD magnitude is related to 1-cos(Δϕ) which is still small (5%).

The scenario looks simple, but it can be easily extended, e.g., maybe
our optimization setup on parameters gives the optimizer more room for
improvements. In this case, it is realistic that maybe also the 1st stage voltage
gain increases (e.g., from 2 to 20) during the optimization, so that this way
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Figure 9.12 WCD for 2-stage amplifier before and after 1st stage area optimization.

the 2nd stage offset has much less impact. Of course, also here the WCD
situation would change during optimization, just in another way (the spec
boarder angle would change on first stage gain: with higher gain the second
stage offset would become less critical).

Also for constant gain, further scenarios are possible; like of course, instead
of changing only the 1st stage area, we could apply an even more aggressive
area increase on it, but compensating the total area increase by making
the 2nd stage area smaller. Or we may increase the area of both stages by
some amount. In most cases, the WCD would change a bit and in a slightly
different way.

What we also see is that the WCD changes can limit the optimization
progress a bit, so a native workaround would be to overoptimize a bit by spec
tightening. This would lead to some (small) over-design, which indeed could
be probably only reduced further by updating the WCD often enough. And
this is of course exactly what advanced yield optimizers will do.

How much will normal WC corners change? Actually there is no real
difference, and of course also classical VT corners may change; and process
variations can be anyway often treated with either process corners or statistical
models! Some corners might be very stable, because the optimizer just has no
option to change the design significantly on leakage current corner behavior
or supply current behavior. However, this is no guarantee: If the TC of a bias
current can be optimized, then a constant current vs T may give a significantly
different behavior than a PTAT biasing. With constant current usually the
phase margin PM becomes critical at low temperatures, whereas for PTAT
bias it might be almost temperature-independent.
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9.2.3 Advanced Yield and Surrogate-Based Optimization

A too heuristic method often leaves a bad feeling, and indeed we mentioned
some case, where a unique, well-defined WCD simply does not exist. As
described, the sizing on over-all WC corners is a very efficient method,
applicable to most circuits, but what about the real difficult cases and even
more adaptive methods?

We mentioned already that e.g., LHS could be used to treat not only the
statistical variables xS, but also the environmental range variables xR. And
of course, we could even include the design variables xD; variables are just
numbers. Simply sampling across x = (xS, xR, xD)T would be similar to
brute-force design style; and applying LHS or LDS would be not much better.
However, indeed there are also interesting adaptive methods available in
research, acting in more general way e.g., compared to sorted MC or WCD. In
addition, there are methods which combine to some degree space exploration
methods, multi-variate modeling and optimization.

Let us start with the latter; if we apply a space exploration, we can just take
the best goal function point xD as optimization result. If we do the exploration
with standard random MC we would work like a pure random optimizer, and
with an effordable sample count, we would at best come somewhat nearby
the true optimum design solution. An improvement would be to generate a
multi-variate model (called meta-model, because it is based on simulations)
regarding xD and to run further optimization steps (e.g., via BFGS). This way
the model would provide some interpolation, and we could come much closer
to the solution. The good thing is that for these optimization steps there is no
need to run true time-consuming circuit simulations. We just need to evaluate
the model, and this is orders of magnitudes faster.

This basic idea of using a model as surrogate is called surrogate-based
optimization (SBO). The advantage is a huge speed-up in optimization, at
least if we exclude the model creation part. In addition, the modeling part can
help to make the optimization easier, e.g., we can create a smoothed model,
although e.g., the original simulation suffer from some numerical noise. In
yield optimization this point is important, and SBO is a quite native choice,
because the natural unbiased estimator for the yield, the sample yield from a
MC analysis, is indeed quite “noisy”!

So optimization e.g., based on the CPK or CGPK or WCD is a kind of
surrogate-based optimization, at least in a wider sense.

In addition, we can use the SBO idea iteratively. Many such approaches are
similar to a step-wise “MC-across-corners” approach: Start with a (relatively)
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small sampling set x = x1 (e.g., n = 500 points) and then extend the sampling
for the most interesting regions, with focus on the variables with largest and
most nonlinear design impact [Shan2011]. This way the optimization (for
WCD or sizing) is not a separated part anymore; and e.g., compared to sorted
MC the internal simulation effort is reduced too.

In [Wang2003] a method is described which picks up latin hypercube
sampling and adaptive response surface modeling methods, plus the use
of simulated annealing for global optimization. This way the method can
adapt itself to the complete problem structure efficiently, ending up in a quite
acceptable number of circuit simulations, even for highly nonlinear problems
with multiple local minima.

So you may ask, how can I use it? Unfortunately, commercial imple-
mentations are still missing. And also in research the problem of high-yield
estimation is often excluded.

9.3 Connecting Design Methods

More advanced analysis methods can be created by linking several basic
analyses (like Monte Carlo and sensitivity or optimization and corner finding).
This can be done manually or by scripts; the later makes sense for standard
tasks often required during design and verification.

Typically, designers try to solve the problems directly, e.g., by improving
the schematic or (if necessary) the testbenches or even go back to system design
plus considering spec changes.These tasks are extremely hard to automize, and
a fully automated approach for circuit design might be either very limited (like
to very special circuit classes) or very complex. In Figure 9.4, we excluded
the debugging and setup parts, and in general it is probably very hard to have
more automation, because it is complicated to provide all the many inputs
up front, and to forsee many decisions (like which parameters to optimize, in
which range, with which weights).

On the other hand, there are many further design tasks to be solved
and there are also many references discussing really highly advanced topics,
like yield optimization including stress-induced aging effects [Pan2012], or
optimization including a topology selection step. In commercial tools, this is
partially possible too by creating user-defined scripts.

To some degree, this means “back to the roots,” because (roughly in the
90ies) before graphical user interfaces become popular, designers use scripts
quite intensively, and many simulators have built-in analysis capabilities too.
For instance, the PSpiceTM plotting tool ProbeTM has a great macro-recorder
to just do the evaluation one time manually, and having it immediately
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automated for all succeeding runs. Also some older commercial (like
AptiviaTM fromAntrim, bought by Cadence Design Systems in 2002) or some
in-house graphical design tools offer similar features, plus control blocks like
loops or conditional execution.

User scripts are often in competition with built-in features of the design
environment; in some aspects, built-in functions are preferable. For instance,
optimization is not only for improving a design, but it could also provide
detailed sensitivity information—almost “for free.” Something similar is
possible by running a contribution analysis based on existing MC results.
Actually such “by-products” are highly desirable and unfortunately harder to
obtain via user-scripts.

A second advantage for built-in methods is that most advanced methods
work with a kind of internal model or memory; e.g., the BFGS optimizer
uses the inverse Hessian matrix, or classical WCD uses parameter screening
methods, and also the starting and endpoints for the WCD optimization
step could be reused. Reusing and/or extending this memory could speed-up
the execution significantly; e.g., if we have already executed a sensitivity
analysis, why should the optimization start “from scratch,” without taking
earlier simulation results into account? In fix problems like circuit simulation
or MOS transistor parameter estimation (e.g., for a BSIM model), such reuse
methods can be applied easily, but unfortunately in circuit design there is also
a risk that the design is subject to changes (like adding a cascode, changing a
resistor), so such reused information might be unfortunately too old, so maybe
misleading.

What makes highly sense is putting obtained worst-case corners in a
database. Those corner combinations which appear very often should be put,
e.g., in a corner template so that all designers in a team can quickly check their
circuits at known difficult conditions. Some combinations are of course quite
trivial, like the worst-case on leakage current (being at maximum supply and
temperature), but others may give indeed new insights into your designs. Also
of course a worst-case corner search could reuse older worst-case results—
even if the design has changed a bit, the fundamental trade-offs will usually
not change much. High-yield techniques (like sorted MC or WCD) might be
improved in similar ways; e.g., information on fail boundaries and critical
variables could be reused or even specified up front (designers often know
well about critical nets or instances, like from design tweaks, intuition, or
earlier sensitivity analysis).

Data mining and “big data” are hot topics, maybe also for future IC design.
We can expect more in that direction and surprising results. Designers often
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Figure 9.13 Scripts as integral part of circuit design, also in graphical environments
[Klevbrink2005].

exploit their knowledge of the circuit, and often for a certain task (like change
in a capacitance) there is no need to run the whole verification again from
scratch. This idea could be applied in many ways, like for speed-up of post-
layout analysis [Wang] or for speeding up optimizations. The math behind
such techniques, like Bayesian statistics [Jaynes2003], is quite well founded;
just commercial EDA implementations are missing.

In this subsection, we discuss some further advanced front-end design and
analysis tasks. One already established link was putting worst-case search and
sizing by optimization together in an iteration loop for yield improvement.This
is one key step in automated variation-aware design. What about linking other
typical design tasks? Or applying reuse techniques between analyses?

9.3.1 Script-Supported Design

Design flows based on optimizers are executable in many modern design
environments, further automation—even a kind of synthesis—is possible
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by capturing design steps in a script [Crossley2013]. Such synthesis scripts
may, e.g., even include design calculations, checking for conditions, con-
struction steps or even a topology selection. At the extreme, the designers
output would be such script instead of just a single-sized circuit! Maybe this
will become a future fun part in the analog designers work, but currently
there is only little infrastructure supporting it, e.g., in making it technology-
independent, offering a GUI, and an object-oriented circuit programming
language. Of course, such scripts have to be created, maintained, etc.—
usually all these have to be done by hand. For sure, such scripts are (much)
harder to read then schematics, unfortunately. We pick up such IP topics
in Chapter 10.

In general, often even simple design-supporting scripts, which just collect
simple tasks like documentation and datasheet creation, can make the desig-
ners work easier. As mentioned, such script-based approach is always a bit in
competition with methods anyway built-in to design environments. Datasheet
creation for a design review is a good example. If simulation data are already
available, the datasheet creation task is nothing else than data collection, e.g.,
in a HTML file. In many design environments, you can create simple scripts,
which run, e.g., a nominal simulation and a corner analysis up-front and then
create an HTML datasheet. A native environment extension would be just to
offer different kind of datasheet creation, with running up front some standard
analysis (like sweeps on supply and temperature, corners, Monte Carlo); plus
supporting further options, e.g., on including schematics, testbenches, setting
the level of details in compliance tables.

In the past, scripting comes often with learning about special programming
languages like SKILL r©, Perl or Tcl, but nowadays most environments offer
also graphical script creation (see Figure 9.13, design description for sensor
front-end and

∑
Δ ADC at [Osman2016]).

9.3.2 The Split Monte Carlo Method

Designers often prefer MC with mismatch only or process only, because this
gives more design insights compared to a MC run with all statistical variables.
This technique is also often used in memory design, so can this idea be
exploited in general to speed-up e.g., the WCD search? Or are there other
advantages?

A typical situation is this: Some performances are strongly impacted by
mismatch, but not much by (global) process variations, like offset voltage,
maybe also PSSR and CMRR. Of course, there are also performances with
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Table 9.1 MC results for mismatch only and process only of a typical analog block
Mismatch MM Process P

σVoffset 10 mV 1 mV
σILeak <1% 20%
σIDD 5% 5%

almost the opposite behavior, like leakage current, delay or filter cut-off
frequency, and several outputs are usually impacted from both, like supply
current IDD. Table 9.1 gives an overview on such a typical design.

How can we combine the results or compose WCDs from such results?
Actually the larger variance counts much more, so is dominating the WCD by
far, only for “balanced” outputs like IDD we really have a mix and for 50–50%
a 3σ-WCD would be composed (assuming normal Gaussian behavior) as 3σ-
WCDMM/

√
2 + 3σ-WCDP/

√
2! However, we should notice that in difficult

cases the method may fail; e.g., offset or PSRR might be perfect in a MC
process-only analysis, but not for mismatch, so the WC samples on process
can never be found correctly!

One further problem is that such two MC analyses just take two times more
simulation time theoretically, so the major advantage is the WCD speed-up
from having a lower count of variables, offering slightly higher accuracy, and
lower internal runtimes. In random MC, the speed disadvantage for doing two
runs is usually still significant, whereas with LDS the negative impact of high
dimensionality could be reduced with the split method.

What designers also often do is that they speed-up the MC–MM run by
only doing a fast DC analysis, e.g., for offset, IDD and DC PSRR, so they
use their knowledge that, e.g., the WCD on MM for leakage (or, e.g., phase
margin, slew-rate) often anyway does not really matter!

To let a tool follow this manual approach, a kind of plan is needed; e.g.,
in this it can be decided in which way the WCD (and, e.g., the closely related
contributions) has to be found. Modern analog design environments allow the
execution of such verification plans.

So all-in-all, this split MC method is useful for design insight and also
for finding small effects, and even further splits may make sense, like on
wiring parasitics (as we have done for our latch comparator) or for only chip-
external components (e.g., to decide how much tolerance can be accepted in
these elements).

How to combine statistical results? It is well known, and we mentioned
it already, that for calculating an over-all sigma we have to add up



9.3 Connecting Design Methods 461

quadratically. The same approach is also good for combining statistical
and bias errors into an overall rms error:

ε2tot = σ2 + ε2bias

Now let us extend the scenario a bit. Imagine you have two results (e.g.,
from MC or from a laboratory measurement), and you know the result
should be the same, but actually both results differ due to statistical
variations. How can we combine the two individual results into one
hopefully more accurate overall result? If we would have the same
accuracy for the two measured results, it would be native to take the
arithmetic mean (average) as overall estimate! And the overall standard
deviation would go down by

√
2. This method is correct if we have no

correlations and Gaussian distributions, and the idea can be extended
ending up in a general theory! To some degree, it is even possible to treat
your designers a priori know as information with a certain tolerance, and to
combine this with simulation results following certain model assumptions.
Or we can combine results from a previous simulation run (like an older
big MC analysis) and a new one (maybe a shorter one), instead of making
one big analysis from scratch, without information reuse.

9.3.3 The Eye Opener

Maybe the most important thing for you as designer is to understand “where”
the design currently is, plus “where” and how you can improve—with respect
to statistical variables, design variables, and corners.

RF PA engineers do not only use small-signal S-parameters but also large-
signal S-parameters.With sensitivities we can do almost the same. Sensitivities
S = Δy/Δx are useful for design understanding, and they are also a native
starting point for WCC finding.

The best way to get the design status and sensitivity information is to run
OFAT sweeps (with 3 or more points) on corner and design variables to get
spread of all performances, e.g., for temperature, VDD, CL. In addition you
should run two short MC analyses—one on mismatch, one process only—to
get, e.g., the ±3σ spread for all performances. A table with sorting option can
give you a perfect overview, e.g., to check which performance improvements
are needed and also how you can improve, e.g., by reducing mismatch or
more by improving on PSRR (reducing VDD-spread) or by changing the bias
concept (PTAT, constant current, replica biasing, calibration, etc.) for lower
temperature coefficients, etc.
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Such performance analyzer could be even extended by creating perfor-
mance models from these “large-signal” sensitivity analysis results, support-
ing what-if analysis or, e.g., giving warnings in case of strong nonlinear
behavior (like bandgap output voltage having a significant curvature) or non-
normal data where the split MC method may fail. A further output easy to
create would be, e.g., to show at which (extrapolated or interpolated) parameter
value the design would start to fail on each spec. So you would, e.g., see that
over –40 to +100◦C the design fails, but using interpolation methods you
may get that it works within 0 to 80◦C. Or if the design is fine the targeted
environmental conditions, you would, e.g., get that the design starts to fail at
+150◦C. By doing mixed sweeps or a full WC corner search (as described in
Chapter 2) also correlations and the impact of the other parameters could be
included.

Most design environments support automatic datasheet generation, a
worst-case corner analysis and as by-product you can often get also sensitivity
tables, correlation plots, regression results, etc. Check-out the documentation,
often just clicking a special menu item is needed. With scripting features
you can extended and automate such analysis further. Figure 9.14 gives an
example: The contribution table reported that the dominating variables on
Voffset are VCC (24% contribution) and temperature (69%). So it is native to
plot them for more circuit understanding. Indeed the correlation coefficients
are large (beyond 0.5) and the relationships are quite linear (as it should be
for a robust design).

One outcome could be also how wrong you would treat the design if you
would only look to OFAT results and if you would ignore correlations. If you
see difficulties, then you are often in a situation where circuit optimization
makes sense.

9.3.4 The Spec Inverter

Spec negotiations can be hard, and it is good to have concrete numbers and
more than a gut feeling. Usually we think specification are given, but actually
many block specs are “soft,” and a designer should be aware which require-
ments are really “a must,” and which are more a kind of recommendation
or guideline (e.g., the current consumption for a block which is anyway
consuming not much power or the area of an anyway small block, used only
once in the chip). In principle, you can run, e.g., a MC analysis with specs set
to current knowledge and obtain the sample yield—but you can also adjust the
specs and check how the yield would change! Using a less quantized estimator
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Figure 9.14 Sensitivity plots obtained from our 3-stage CMOS op-amp WC corner analysis.

like the CPK (in case of normal data) or the generalized CPK (also valid for
non-normal data) you can even find the specs quite accurately (and even if
sample yield is 100%). Such spec-yield trade-off analysis could be useful
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Figure 9.15 Silvaco’s high-sigma performance limit analysis [SilvacoVM].

Note: The blue bars represent the confidence interval.

for discussions with system designers, quality experts, and customers. Most
statistical analysis packages support such yield vs spec analysis, so once you
have exported the MC results, e.g., as comma-separated value files (CSV) it is
mathematically quite a simple task; we have to use the inverse cdf (percentile
function).

Some design environments have already some built-in features for this
task (Figure 9.15).

9.3.5 The Automatic Optimization Parametrizer

In many cases, we can assume that for any given circuit structure designers
know anyway quite well which components need to be tweaked, but there is
some risk that some parameters are overlooked, especially in new circuits.
So even if a designer follows many best practices for an optimization setup,
the design result could still depend significantly on the designer’s expertise.
So instead of purely relying on the designer’s decisions which parameters
to optimize, we may run systematically a full sensitivity analysis (e.g., a
mismatch contribution analysis) and optimize the top-10 parameters with
biggest impact. Unfortunately, there are also some key problems: These
top-n components do not really lead automatically to a good optimization
setup! For symmetric circuits, we can expect a parameterization exploiting
the symmetry is much better than one just directly optimizing on the top-n



9.3 Connecting Design Methods 465

components! Usually the designer has such and further constraints, like on
current mirror ratios. Also it can be almost trivial that, e.g., the transistor
length has a significant impact for speed reasons, but the best transistor size
might be anyway the minimum length (e.g., if this transistor is not critical
regarding mismatch or voltage breakdown), so there is no need for optimi-
zation on it.

Another problem is that such mismatch-based optimization setup would
be to often exclude critical transistors which are large, thus having only small
mismatch. For instance, a big output transistor or a switch could be still critical,
e.g., due to absolute tolerances. To include them it makes sense to use the
mismatch results again, but to normalize on

√
area. This way can obtain a

second ranking table and find the optimization “candidates” which would be
overlooked in a non-weighted contribution analysis.

Many of such rules might be collected e.g., as constraints (see Chapter 10).
In EDA tools you can also use structure-based constraint finder or “circuit
prospector” (Figure 9.16 [Dennison2010]), and even fully automated methods
are available [Eick2011].

Ultimately all these together could be arranged to obtain an almost fully
automated or at least highly assisted parameterization setup for optimization.
This automation makes sense depends of course on how familiar the designer
is with applying the parameterization just quickly by hand—and how much
support he/she gets anyway from the environment, e.g., via assistants. In
addition, when doing such automatic parameterization, we could in principle
easily pass further information to the optimizer, like which parameters are the
most sensitive ones. If many variables have to be optimized, the optimizer
could focus first on these parameters and speed-up the optimization compared
to an optimization on (too) many parameters.

9.3.6 The Circuit Terminator

Most analyses presented in the book are for design purposes, but if you are
only interested to find design weaknesses, e.g., for pure verification or for a
design review, you can organize, e.g., WCD and WCC search in a slightly
different way—with focus on “breaking“ design “efficiently”! Such analysis
might be part of a big regression run, and the people triggering it might be not
the same who will fix the circuits.

We can pick-up many WCC search ideas, like running OFAT sweeps, but
for instance, instead of terminating the search loop when all WC combinations
have been found we may already stop once we found the first (usually most
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Figure 9.16 Flow for automated circuit parameterization.

critical) worst-case and spec violation! Of course, in the design phase on a
non-optimized circuit such analysis may stop early, maybe already at nominal
conditions, but for sign-off it can be very helpful, also for intermediate
debuggings.

We can even extend the whole idea in other direction: If the design passes
the specs even at all WC corners, we may extended the range parameter limits
further, e.g., the temperature range till we reach the “break” point. Or we can
speed-up our search by starting from an expected WC or giving a ranking on
parameters to let the search start with the most critical ones, like temperature
or process corners.
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9.4 Design with Pictures Seven

As we have treated worst-case distances and corners, and also optimization in
detail, let us now combine both for a yield optimization. Doing, e.g., a pure
nominal optimization for a comparator makes little sense, because without
inclusion of mismatch important characteristics (like offset) would not be
addressed—and also not their trade-offs with other targets (like speed)!

Instead of doing a MC analysis at all corners in the circuit sizing loop,
we should use overall worst-case corners to treat both range and statistical
variables simultanously. So let us start with examples on this subtask.

9.4.1 Overall Worst-Case Search in Action

Using our CMOS inverter becomes a bit boring; we extend it now a bit and
apply the flow described in Figure 9.19. One aspect we want to show is the
corner merging, so we keep the design itself simple enough to be able to
understand all nonlinear effects but we need to make the variable and spec
setup already quite complex and realistic enough.

Assume we need to design a clock buffer using two CMOS inverters; we
have specs for these performances:

• Speed-related: tpdLH, tpdHL, tr, tf
• Input-related: C in, Vth > Vmin, Vth < Vmax
• Output-related: RoutH, RoutL
• Transfer-related: DC Gain
• Noise-related: jitter
• Power: leakage current, dynamic average current
• Other design goals: area, target yield, etc.—do not depend on xR

The corner variables xR could be, e.g., process corners, temperature, supply
voltage, load capacitance, and generator impedance.

Due to given specs, we can assume in the extreme case one worst-case
corner for each of the specs (15 in total), but we can also expect some strong
correlations across the specs, like among the speed-related specs, but also,
e.g., C in and area could be redundant specs. For a single inverter circuit, the
correlation would be even close to 100%, but for a more complex design this
is not so clear. For instance, in an op-amp highly optimized for low offset the
input stage transistor area may dominate, so both specs would be still highly
correlated, but in an op-amp designed for high-output drive capability the
correlation may drop to an unimportant level.
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We can expect also several other strong correlations, e.g., if our speed specs
are very challenging, we should use minimum length transistors, and this way
there would be a strong positive correlation, e.g., between leakage current and
C in (also for area and Rout). In analog circuits, we have, e.g., usually multiple
speed-related specs such as rise time, settling time, slew-rate, and small-signal
bandwidth; and also here we can expect strong correlations, so there is a good
chance for some WC mergings.

Such corner mergings are usually already done by default in many design
environments, so the output shown in Figure 8.21 shows overall 8 WC
corners although we have 13 specification limits. In this simple voltage
buffer circuit and for the moderate range parameter variations also the
OFAT method works quite good (only one difference to full-factorial) and
it needs only 13 simulation points, whereas full-factorial requires 405 points.
One “big” joint corner is for rise/fall time, Lo-to-Hi/Hi-to-Lo delay, and
RoutH/RoutL.

We can also modify our setup a bit; e.g., if we only have temperature,
supply voltage, and process as corners, we could even merge our WC set
further. We end up in now only seven merged corners.

On the other hand, if we use, e.g., more temperature steps and have a
circuit with difficult temperature characteristic, we may end up in more overall
corners and cannot merge much anymore.

Running a MC mismatch analysis on this buffer would show that mainly
the DC gain and the offset voltage would vary significantly, but both actually
still significantly less than within the pure corner analysis. For instance, the
corner spread on relative threshold is 17%, whereas ±3σ is only 2%! However,
gain and threshold are not much correlated, so we should not merge them.

Note: For more advanced technologies and very small transistors we can
expect that the standard deviation from mismatch will grow, so that can reach
the regions of the process (corner) variations.

9.4.2 Comparator Yield Optimization

For our latched comparator, we already inspected WCDs and mismatch
contributions. Both can already help a lot for setting up an optimization. This
is usually more reliable than just only making an educated guess on which
parameters we should optimize; it is of course also more efficient than just
optimizing everything. One example is the output CMOS latch part: Without
sensitivity analysis, many designers would have overlooked it and would not
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optimize the latch transistors at all—ending up in a non-optimum circuit.
Our DUT is also a nice example of combining construction and optimization,
because based on the sensitivity and a bit trial-and-error we actually extended
the circuit a bit to give the optimizer enough freedom to really end up in
a good circuit. In more complex circuits like a multi-stage op-amps or in a
high-precision bandgap, even cleverer construction techniques (like adding
a cascode stage or introduce a clever frequency compensation scheme) can
often nicely complement optimization.

On the other hand, our DUT is still quite compact, a more complex circuit
would have also more elements where optimization is simply an over-kill (like
for some bias parts or shut-down or mode selection transistors). In opposite to
our LC band-pass filter, we should optimize many transistors in synch, just for
symmetry reasons! This makes sure to keep important sizing rules, reduces the
number of parameters, and increases the optimization speed. In some cases, it
is a bit arbitrary how much matching between different transistors we should
really apply: In the output latch, we may match not only for symmetry, but
also, e.g., across the lower and upper transistors of the series PMOS transistors.
This is usually better for layout reasons and should still allow a near-optimum
circuit and it can give further optimization speed.

As we have already inspected the comparator statistical behavior, let us
also inspect, e.g., temperature and supply behavior and run a worst-case corner
analysis on them, best on top of the statistical corner results to get the overall
worst-cases (Table 9.2).

Note: A further range parameter xR could be the input common-mode voltage
Vcm. Indeed, the optimum circuit would depend on Vcm, but on the other
hand this makes most sense if you would have a clear application in mind,
like using a fix reference voltage of, e.g., 0.6 V±5% or using VDD/2 as
reference or whatever (like selling an universal comparator with wide-range
inputs)—and the principle methodology would not change anyway. In fact,
in defining such details and in setting up good testbenches is quite a lot
of work to actually prepare manual circuit tweaks and optimization! The
testbench setup can have also big impact on optimization results, e.g., in
our comparator testbench actually the output rising edge matters, but the
falling edge not, so if we optimize the NMOS and PMOS width of the
comparator the PMOS will become quite large to drive the load capacitance
fast enough, whereas the NMOS becomes smaller and smaller during the
optimization to decrease its input capacitance! If this is undesired, we may
either extend the testbench or link the NMOS and PMOS width to get
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Table 9.2 Latched comparator over-all WC corner results for Voffset from a statistical corner
VCC/V Process Temperature/C Pass/Fail Voffset/V
Corner results:

1.4 FS –40 fail 0.0212
1.4 FS 27 fail 0.0200
1.4 FF –40 fail 0.0200
1.4 FF 27 fail 0.0190
1.4 FS 100 fail 0.0189
1.4 NN –40 fail 0.0186
1.4 FF 100 fail 0.0177
1.4 NN 27 fail 0.0174
1.2 FS –40 fail 0.0169
1.2 FF –40 fail 0.0163
1.4 SS –40 fail 0.0162
1.4 NN 100 fail 0.0162
1.2 FS 27 fail 0.0161
1.2 FF 27 pass 0.0154
1.2 FS 100 pass 0.0153
1.4 SS 27 pass 0.0149
. . . . . . . . . . . . . . .
1 SS 27 pass 0.0084
1 SS 100 pass 0.0081
1 SF 27 pass 0.0080
1 SF 100 pass 0.0075

Relative contribution:
76% 9% 15% – –

a usual width ratio between both transistors. A similar effect happens on
the first stage PMOS load: These transistors are not that critical, so they
become quite small during optimization (which minimizes their impact on
decision speed). On the other hand, these transistors have a reset function,
and for a moderate clock period of 5 ns it is indeed possible to make these
transistors quite small, but if you want to use later a faster clock (or a lower
supply) the comparator might become completely non-functional! So you
should really use the worst-case also on clock frequency for the optimization
(maybe even with 20% margin) or even treat fclk as further range parameter. Of
course, such “findings” from the optimization can also trigger manual circuit
modifications; e.g., we may optimize the timing for the NMOS diff-pair and the
PMOS load by having a separate clock driver for each. This higher complexity
could make sense if you cannot fulfill the specs but have some margin
on area.
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Figure 9.17 Latched comparator testbench.

Spec setting is critical too: It could easily happen that from system
design highly contradicting specs are setup, e.g., a low-input capacitance is
desirable, but having too hard specs on this may lead to too large offsets.
Also speed, power, and noise are usually in competition—and it could happen
that your circuit topology or even your technology can never fulfill all specs
simultaneously. For high-performance designs some trial-and-error is hard to
avoid.

Another aspect is, e.g., to include the surrounding circuitry correctly, like
load capacitances and generator impedances; without the latter we would
not cover kick-back effects correctly and with RG = 0 we may design a
comparators with far too large input capacitance and charge kick-back! It
can easily happen that you end up in multiple testbenches to really cover all
effects, so for an op-amp you may want to have a testbench for closed-loop
and one for open-loop analysis.

In opposite to simpler examples (CMOS buffer and op-amp peaking) for
the latched comparator, both statistical variables and range parameters are
quite important. To get an offset at all we need to create first a statistical
corner regarding mismatch, then we can run a WC corner search for supply,
temperature and process corner. Table 9.2 shows that indeed the PSRR is
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the main problem, because VCC has the largest contribution. Compared the
nominal conditions the deterministic corners give an increase in offset from
17.4 mV to 21.2 mV, so roughly 20%. This is a good relation for comparators.
For op-amps which are often less speed-critical, we could maybe optimize
a bit more (e.g., to improve on PSRR), and the op-amps the offset is often
more critical at higher temperatures. However, for our comparator it looks
different, the WC is at minimum temperature; also the FS corner is most
critical. This could be an indication that the circuit shows some weaknesses
at slow PMOS, and an explanation is that the first stage PMOS load might
be critical. So it can make much sense to inspect all the results which
are now available almost for free can lead to further design insights. For
instance, the speed and power consumption performances are much more
impacted by PVT corners, than by mismatch; e.g., the WC delay, at the
combination minimum VDD, maximum T and SS, is 81% larger than the
nominal delay. Actually the speed WC combination is no surprise at all.
The supply dominates here, which is also typical for CMOS-style circuit.
However, these details depend on how large the environmental ranges are.
Improvements by pure element sizing are difficult for comparators, so here
we can only just make the performance better by spending more power (see
Figure 1.16c).

9.4.3 What to Do after an Optimization?

Of course, you can start the next one (e.g., with some changes in the weighting
factors), or you might be happy and move to layout, but actually beside
improving circuits most optimizers give you also interesting circuit design
insights like a sensitivity report—just almost for free, i.e., without additional
time-consuming simulations!

Also the need for further optimizations is typical: A complete spec is
often essential and it is quite easy to overlook something, e.g., without
spec on clock input capacitance the optimizer may make the related tran-
sistor very wide for high speed, but this could become inconvenient for
system integration due to high clock load. Often it is not easy to really
set all specs meaningfully, so typically some system design, trials, and
calculations are required before becoming confident on specs and design
partitioning—and after a pure block optimization further system fine-tuning
might be required, like a second optimization with DUT and neighboring
blocks.
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Sensitivities and contributions are often a free by-product from an opti-
mization run. Actually we can expect zero sensitivity to the overall goal
function f for an optimum circuit, so the linear sensitivity might be not
of the highest interest anymore. However, of course it is also interesting
to check the curvature which gives you a feeling how quickly deviations
from the optimum lead to performance degradations. Although the gradient
to the goal function should be close to zero; still the individual performances
may have a clearly nonzero linear sensitivity! So a detailed sensitivity report
could help to understand the design or for doing further optimizations.
For example, the sensitivity report may show very low sensitivity to some
performances, which could mean that maybe some important parameters
are just not yet setup for optimization. Figure 9.20 shows some examples
from our latched comparator example; a global corner optimization has been
executed, but we stopped it interactively to understand the design a bit
better. Also table reports are available. For normal environmental corners
(like nominal) the offset voltage is almost zero, so also the sensitivities are
small and hard to extract (r2 small), but for the large-offset statistical corner
can find the expected linear dependencies. For the total gate capacitance the
behavior is different: It depends almost only on one transistor and is almost
corner-independent.

The sensitivity results can also support quick manual tweaks, e.g., if one
parameter just has a high impact on a certain important performance you want
to adjust, just do a manual sweep on the identified parameter to find a good
compromise by hand.

Lookup: This does not mean that the normal sensitivity analysis, e.g., based on
mismatch contribution or OFAT would be waste of time! Of course the sense
report after an optimization can only be related to the parameters which are
part of the optimization setup—whereas the other methods can even identify
“unexpected” important parameters!

We already mentioned that for really hitting the optimum with high
accuracy we really need a very high accuracy on the goal function f. A
small deviation Δf can lead to quite different sets of optimized parameters.
This is important when using different starting points, e.g., we checked our
optimized parameters against another optimization run using just minimum
length and minimum width transistors as starting point. Indeed, the lower
the sensitivity, the less accurate the optimizer accuracy—which is fitting to
theoretical investigations and is also not really a problem for circuit design,
just showing that the design is quite robust, as it should.
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Figure 9.18 Typical sensitivity plots as by-product of an optimization.
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9.4.4 Optimization with Inaccurate Worst-Case Distances

For a perfect yield optimization true WCDs are helpful, but what hap-
pens, e.g., during an offset optimization, if we use a worst-sample instead?
We run a global optimization using the true WCD in the goal function,
but simulate both statistical corners. This way we can look to the offset
voltage of both samples during the optimization. Actually there are some
differences, but generally if the optimizer makes a parameter change, both
true WCD and the chosen worst sample go up and down quite in synch,
but not always.

The small differences are also present in the optimization results
(Figure 9.19): At start, the worst sample was 10% worse than the WCD, so for
having the same spec the optimizer puts more effort in improving on worst
sample. So at the end the worst sample was even less extreme than the WCD
by roughly 10%. If there would be no direction error in the worst sample, then
both samples would be improved almost in synch, so the change from +10%
to –10% is the result of the worst-sample direction error, and an indication
how much accuracy you may lose by using it instead of the true WCD! In
many cases, it could be acceptable, because a design with σ = 5 mV is not so
much better than one with 5.5 mV. So in this specific example run it has made
not so much difference whether you put more effort in WCD search or in the
optimization.

When dealing with many variables such direction errors are hard to
visualize, so Figure 9.20 presents a simpler 2D case, two variables x1 and x2 are
present in the input domain. Let us also inspect also two output performances
f 1 and f 2; here the scatter plot might be not elliptic, but distorted. This is
because in our example f 2 has an exponential characteristic (which would
cause problems if we use the CPK). In our example f 2 depends only on x2, so
the ideal WCD has only an entry for x2.

Note that the worst-sample is not exactly 3σ, so we need to scale it a bit,
but the direction error of roughly 30 degrees cannot be corrected so easily; it
would require e.g., multi-dimensional techniques or more samples and some
averaging.

Also note, during the optimization the performance value of, e.g., a
3σ-WCD would change of course, as we want a performance and yield
improvement, so also the direction will change a bit. How much depends,
e.g., on how bad your starting design is, if e.g., the input transistors are far
too small at the beginning, the optimizer would make them larger and their
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WCD entry would lower. If already the initial design has a good balance, the
optimizer would, e.g., increase several offset-critical transistors in synch, and
there would be only a small WCD direction change.

Figure 9.19 Absolute offset vs. optimization points for WCD (red) and worst sample (blue).
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Figure 9.20 WCD versus approximation from scaled worst samples.

9.5 Questions and Answers

1. Discuss these two methods to find the overall worst-cases: 1st approach:
find the worst-case (environmental) corners, then at each found corner
run a worst-case distance analysis, 2nd approach: Run WCD first, then
for each WCD execute a worst-case corner search.
Both approaches have their limitations, but due to the special structure
of many circuits, the “statistics first” method works much better. For
instance, the nominal offset voltage of an amplifier is often (near) zero. It
depends usually strongly on mismatch, i.e., it is following the difference
of two statistical variables ΔxS. On top of that there are of course also
other effects like process variations or temperature, etc. These effects
might be linear or quadratic, or whatever. However, all these have
(almost) no impact if ΔxS = 0 (as in a pure corner analysis). So offset fol-
low typically a 1(k1+xR1+xR1

2 . . . )·(k1+xR2+xR2
2 . . . ) . . . ·ΔxS;

and whatever you do with ΔxS = 0 there is no way to make inferences
on the environmental effects, because this product is zero! Of course,
for some other performances like phase margin or bandwidth the
dependency would not be proportional to DxS, but e.g., to (k + ΔxS),
maybe even with k � ΔxS, so that also a “corners first” flow
could work.
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Another nice examples is looking to offset, but for a bad op-amp with
large systematic offset (like +5 mV, e.g., caused by VDS asymmetries)
and bad PSRR (like –10 mV/V, e.g., due to use short-channel transistors
and no cascodes). Assume a supply range of 2 V to 4.5 V with VDDnom =
2.5 V. If the mismatch is small (like ±4 mV), then a spec like |Voff |<
10mV would be critical only for one side, here +10 mV. Taking only
this spec side into account would be risky, because e.g., with a +2 V
increase in VDD we would shift the offset down by 20 mV, so to roughly
–15 mV, so that now the lower spec side is more critical. In conclusion,
it is no good idea to use too greedy search methods in such cases, or if
e.g., strong quadratic effects are present.

2. Imagine an optimization like this: Execute an MC analysis, find yield,
and maximize the yield, e.g., with the BFGS algorithm. Which problems
will pop-up, and how can you solve them?
The MC yield estimation has some uncertainty, like random noise. This
causes big problems for any gradient-based optimizer. To reduce the
noise we would need a very high MC count, so the overall optimization
becomes very slow.

3. How can you calculate the required spec setting for a certain yield, e.g.,
based on a MC run with 200 points? What to do in case of having no
fails? Or if you want a very high yield like 99.99%?
Consider using the sample yield or the CPK formula.
What are the advantages of the CPK, and what are the
limitations?



10
The Fully Assisted Variation-Aware

Design Flow

Here we extend our view on design and address further custom design flow
aspects, like the treatment of layout influences, or intellectual property (IP)
creation and management. We discuss design environment aspects and how to
arrange all techniques for an assisted, constraint-aware, semi-automated flow,
starting with a target datasheet and ending up in an optimized circuit with
layout that is “ready-for-production.”

Still full analog circuit synthesis through commercial tools is almost
science fiction. Even advanced research projects concentrate on special topics
like maybe op-amps, filters, bandgaps, certain types of ADC/DAC, or very
regular and well-tested blocks. So the aim for EDA vendors is usually to
support a good mix of methods, among which the designer has still to choose.
So users apply different methods according to the current design status, like
exploration phase, sizing loop, or sign-off verification. In this chapter, we
look at the overall flow and remaining aspects, like treatment of IP and the
transition from front-end to layout. More circuit reuse and use of advanced
tools, which are able to treat layout effects very early, are reality. Of course,
this short chapter can only give an introduction and an overview, but a book
on variation-aware design would be hardly complete without it.

For Further Reading:
Some references go even beyond what we discuss in the book (like topology
optimization or Pareto optimization), because we treat techniques really
available in commercial design environments.

• ITRS 2011 Analog EDA Challenges and Approaches, Graeb, invited
paper.

• Design for Manufacturability and Statistical Design: A Constructive
Approach, Michael Orshansky, Sani Nassif, Duane Bonin.

479
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• J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, K. Jung, L.
Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. and Sangiovanni-
Vincentelli, E. Alon, BAG: A Designer-Oriented Integrated Framework
for the Development of AMS Circuit Generators, IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’2013), Nov
2013, pp. 74–81.

• Ramy Iskander and Marie-Minerve Louërat, and A. Kaiser, Hierarchical
Sizing and Biasing of Analog Firm Intellectual Properties, Integration,
the VLSI Journal, vol. 46, no. 2, pp. 172–188, 2013.

• (Invited Designer Track Paper), J. Crossley, A. Puggelli, H.-P. Le, B.
Yang, R. Nancollas, K. Jung, L. Kong, N. Narevsky, Y. Lu, N. Sutardja,
E. J.An,A. L. Sangiovanni-Vincentelli, E.Alon, Department of Electrical
Engineering and Computer Science, University of California, Berkeley

• Yield Model Characterization For Analog Integrated, Circuit Using
Pareto-Optimal Surface, Sawal Ali, Reuben Wilcock, Peter Wilson,
Andrew Brown, 2008, IEEE.

10.1 IP Reuse and Design Support

Classical custom design environments are centered around schematic, sim-
ulation setup, and plotting tools. However, in a new chip, often much more
than 50% of the blocks are reused, just because the easiest way to save design
time and to reduce risks is reusing what you have. A high reuse is usually
possible for behavioral models, because these are almost by definition tech-
nology independent, and also there are widely accepted language standards
like Verilog-A and Verilog-AMS. This way system design becomes quite
easy, because you can often reuse models and just combine them for your
design.

Such models allow also a fast testbench setup, and also the testbenches with
its stimuli, loads, and performance equations can be often reused efficiently.
A bit later, models pin-compatible to your circuit blocks can also help a lot to
speed-up top-level verification. Often, it is desirable to have even different
levels of models, like a simple one for first-order effects (e.g., excluding
loading effects and dynamic power consumption), maximum simulation
speed, and a more complex one, e.g., for subsystem performance trade-off
investigations. The earlier you have such model, the more beneficial!

Besides modeling tools, also software for entering specifications and for
design management (data mining, status checking, etc.) is helpful.
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10.1.1 IP Tools

Intellectual property (IP) is quite a general term, so an IP tool can be almost
everything. In this subsection, the focus is on IP management and reuse,
whereas we address classical design supporting tools (Smith chart, filter pro-
grams, etc.) addressed later—although there are some links. Both often require
the entering of specifications, so sometimes you can find combined tools.

Direct circuit reuse is often difficult, because circuits are complex and
technology dependent; e.g., for going down in supply voltage, significant
circuit modifications are often required. On the other hand, having a certain
starting point for design is always an advantage, and the access is usually
easy: just pick a circuit library and a circuit similar to the one you need to
design. For some kind of blocks, the options for reuse might be manifold, like
for bandgaps, op-amps, OTAs, and LNAs, because those are needed in almost
all kinds of analogs or RF designs. Here a good naming convention or even
some kind of IP managing tool makes sense (besides good documentation).
This could also act as a starting point for the design in general. For instance,
once you specify the block’s function (like op-amp, LNA, bandgap, and
comparator), the environmental range parameters, and the performance specs,
you can easily automate the testbench creation and the documentation. In
addition, you may create a behavioral model just by giving the specs, e.g., at
nominal or worst-case conditions, with few clicks. Such tools could be used
to track the design status, like “Ready for first design review” and “Layout
available for post-layout simulation.”

This way you can generate quickly a kind of “executable spec,” and you
would have always something that works! The IP managing tool may help you
in finding exactly what you need or you simply do it from scratch—but with
some tool support (e.g. at least getting just a symbol according to the pins you
defined in the spec).

For op-amp design, this could be a detailed specification template, a cal-
culator for noise performance, matching, frequency compensation, different
op-amp circuits, etc.—or maybe even a step-by-step instruction or a whole
circuit synthesis script (Figures 10.1 and 10.2). This means not only the circuit
could be reused, but also the design strategy for it. Whether this is a key
advantage or not depends of course also on how similar your existing IPblocks
are: If existing IP is close to your specs, then often already simple scaling rules
(like “double all width” to double the output power at same supply voltage)
or sometimes even direct optimization could lead to the final circuit quickly
(like for using a 800 MHz LNA at 950 MHz).
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Figure 10.1 User interface of IP selection tool (prototype).

Figure 10.2 Block spec entries to generate documentation, testbench, symbol, and a pin-
compatible model (Prototype).
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10.1.2 Technology-Independent Design

One way to make the complex task of analog design more efficient is IP reuse.
However, a limiting factor is that often you might be able to find a “similar”
design, but often not with the same specs and in the same technology. For minor
spec changes, we may apply optimization methods directly, but for bigger
changes or even for major technology changes, more tool support is desirable,
e.g., via migration scripts. Sometimes even an advanced support is already
available from foundry-side (e.g. XFAB). For instance, in [Boos2011] you can
find an embedded migration frame work which offers structure-recognition for
an initial sizing, based on look-up tables for the transistor IV characteristics,
and constraints for the voltage stacks (similar to Figure 2.3). Figure 10.3
shows an example setup; the output is just the sized circuit, in which the
transistors work in the intended voltage and current ranges, also matching
specs are included. This way a robust starting point for further performance
optimizations is achieved.

Analog design is never technology-independent; at best, you can get
support for technology migration and for design methods based on few key
characteristics. For instance, a classical way for a bipolar op-amp design from
scratch (and for synthesis even) is to start with the overall gain requirement;
finding the number of required stages according to beta, early voltage, and
load resistance. Then you can set noise and input bias constraints to define
bias currents.

To support an almost technology-independent design, the most elegant
way would be, if the semiconductor foundries would offer a kind of really
universal process development kit (PDK). Unfortunately, this can be hardly
expected between competing foundries, and it could also cause a severe
overhead. Some universities have created experimental PDKs for technologies
which even not yet exist, e.g., to check how to do designs with such future
technologies. In addition, there is also an initiative on so-called interoperable
PDKs, but actually this stops much earlier, being still far away from true
technology independence! For this reason, most EDA environments give only
some support for setting up technology migration scripts quickly. Usually a
mapping for components and parameters is needed. And in addition, simple
calculations are possible during the transfer. Migrating from 180 nm to 90 nm
makes sense in logic blocks to simply scale all lengths and widths by 0.5×.
This would treat the saturation voltages and drive strength quite meaningful,
and we would even take advantage of the higher speed in 90 nm. However,
mismatch and flicker noise would suffer significantly for such 4× shrink in
area, so this aggressive scaling is often not suited for classical analog blocks.
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Figure 10.3 Sizing tool based on exploring transistor stacks and structures.
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If the scaling rules become more complex or if a lot of tweaking is needed,
then at some point even full script-based design (not only migration) becomes
an option. Full script-based design comes with even more difficulties, e.g.,
layout generation is hard too. Even if the circuit topology is fixed, a layout
construction up-front is not easy, because for an op-amp, the best values of
widths and lengths depend a lot on how much you optimize for noise (leading
for big input transistors) or output power (output stage will dominate the
total area).

The traditional manual flow fails often to incorporate complex data that
is readily available, e.g. in the technology process design kit (PDK), like the
detailed transistor models. The tool ID-Xplore (from Intento Design) sup-
ports automatic constraint-driven sizing, based on so-called bipartite graphs
(Figure 10.6), is offering a design acceleration. The design entering is
schematic and constraint-based, and basically technology-independent, only
the calculated sizing solutions are of course technology-related. For a technol-
ogy migration, the user would just need to redirect the PDK paths. Different
trade-offs can be selectedand an automatic back annotation of transistor size
data to the schematic is available; allowing a smooth integration to any
traditional flow.

Design Support. Among the many topics we mention, there are always
both: “hot” and “also-ran” topics. I remember in my first design project, a
simple thing as the (full-chip) LVS check took days and real expert know-
how, although all our blocks itself were already clean! Some short circuits
were very hard to find, and the debug tool looked like coming from the
Flintstones.

Another wall-flower is usually the undo feature. If an undo exists, then
often the capabilities are quite limited, so you might switch back to an
older parameter setting in a simulation setup, but this will not help much
if the underlying circuit has been modified already. Also simply making
a backup in complex environments can also cause problems. Often it is
a challenge to let other experts (like those from hotline) re-run a certain
configuration of testbench views, tool versions, etc.

In fact being good at the “also-ran” features is often quite important
for convenient work! This is one big part the major EDA vendors need
to do—besides fancy stuff like Pareto optimization, circuit synthesis, or
whatever the next “cool” topic is—and over the years, they were quite
successful on this.
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Figure 10.5 Advanced script-based analog circuit design [Crossley2013].

10.2 Cockpit Number One: Augmented Schematic

Of course, one key element in analog design was, is, and will be the schematic
entry, and another one is the circuit simulator (actually multiple, like for
analog blocks and systems and one for mixed analog–digital systems) and the
related setup and result evaluation tools (for analysis selection, result plotting,
printing, cross-probing, and backannotation to schematic, etc.). This will not
change, but becomes more and more augmented. Opposite to digital design
in analog, a schematic has simply so many advantages that it will remain:

1. A well-organized schematic is easy to pick up for other designers, for
re-use, getting design ideas, or for making a design review.

2. You can enter your design quickly, often with efficient partial copy and
paste.

3. You can arrange the elements to reflect your intentions or the circuit
operation, like the signal flow direction.

4. You can prepare the physical implementation, e.g., guiding the layout
for symmetry and by grouping elements.

5. Many layout tools offer a kind of “place as in schematic” and give support
for schematic-driven layout (via flight wires and cross-probing).

6. In modern environments, you can augment it with performance graphs
and tables, for documentation and debugging.

7. Your schematic editor is also your tool for navigation across the whole
design.

8. It is a perfect debugging tool, e.g., by using backannotation for gm, ID,
VDsat, of transistors or by highlighting all transistors in saturation.
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Figure 10.6 Technology-independent schematic-centric design (Courtesy Intento Design).
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9. A schematic is often a superior representation of a certain function.
For instance, filters can be described by poles and zeroes or by coef-
ficients, but a ladder network has much better behavior with respect to
tolerances and it is well – linked to implementation—without becoming
inflexible.

10. Drawing a nice schematic is often leading to new ideas for improvements.
Thus, well-established standard functions can be often plug-in easily, like
a little trim-DAC or simply a power-down switch.

11. Schematics allow an easy mix of techniques, like analog and digital, real
PDK components, and idealized models. Often additional flexibility is
possible with a configuration (or hierarchy) editor.

12. Even highly advanced analog synthesis tools offer typically a schematic
as output, because this way the designer gets an immediate impression
whether the design result is trustworthy [McConaghy2011].

In conclusion, a schematic editor is a very important tool, and analog designers
almost think in terms of schematic structures (like diff-pairs, transconductors,
and control loops) and performance curves (like filter characteristics).

Until now, we focused on describing key techniques to solve specific
problems. Each step often contains many substeps, and the overall flow is
usually iterative—the more unknowns, the more iteration.Actually many steps
in the overall flow may take much time, but experience, application of hand
calculations, and reuse can shorten some steps a lot (like reuse of a spec
or circuit topology or testbench or behavioral model, or experience in the
estimation of parasitics or in setting MOS widths and lengths). Usually only
some parts are “hard” and need most time—although it is difficult to know in
advance which ones.

We have not talked much about top-down vs bottom-up! Ultimately most
custom designs and design flows are still much more bottom-up and quite
tightly bound to foundry PDK and technology, but there is no clear separation
anyway, because for any top-down approach, you need many good sub-blocks
like VCO, PFD, filters, and counters for a PLL frequency synthesizer—or
just transistors, resistors, and capacitors. For instance, many environments
claim years to enable “spec-driven” design, but actually you have to compose
all things up front like DUT, testbench, and measurements, and once you
have done all this details, you can set specifications. In conclusion, almost all
designs are done in a kind of “meet-in-the-middle” style [Chen]. In addition,
also the concept of “constraints” leads to a very pragmatic design style which
is neither top-down or bottom-up (see next subsection).
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Most tool solutions address sub-problems and have to jump-in to the
general flow. So they need to be flexible for enabling a (highly) assisted
flow. A key problem is that high-automation methods often do not support
well “flexibility.” It is often easier to create a construction (or placement)
tool that follows a fix built-in strategy, compared to the one that is able
to also pick up an intermediate manually created solution (e.g. for some
critical parts)! In conclusion, there is yet no perfect efficient flow. What
helps us regarding front-end design is that we can assume that at least our
target is a robust design, which works well at least at nominal conditions and
having (due to application of design best-practices, sizing rules, etc.) relatively
smooth responses to conditional changes. For such “realistic” designs, we can
define an assisted flow that works quite efficient in almost all real design
cases.

Actually combining all different methods into one environment is a huge
challenge. For instance, many reported analog circuit synthesis tools are set
up quite differently to the usual analog flow, e.g., with respect to testbench
setup or regarding extensions on the block-under-design—unfortunately.

In addition, there is also a strong pressure from technology and market side:
Tools simply need to be able to manage the higher block complexity, higher
transistor counts, etc. Thus, further improvements in the algorithm details are
required; e.g., EDAvendors need to make sure that statistical methods, like the
mismatch contribution analysis, will not only work for typical block in 45 nm,
but also for advanced Fin-FET-based designs, which have usually many more
transistors, so many more statistical mismatch variables.

The decision whether tool assistance or IP re-use makes sense is up to the
designer, and the decision depends highly on the following:

• The designer’s skills (e.g., circuit understanding helps for design tweaks
and optimization setup). This includes tool usage; e.g. a sensitivity
analysis can support debugging and can give valuable insights for further
decisions on design next steps!

• The circuit status (for a good manual design, we need no nominal
optimization and can directly go to size over corners)

• Tool capabilities (is the optimizer able to improve the circuit, e.g., even
with a bad starting point)

• Available compute power and time (the more you have, the less tricks you
need, but realistically difficult problems can seldom be solved in brute-
force style, better use the day for manual tweaks and get understanding
and run automated parts overnight)
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10.2.1 Designing with Constraints

A general big problem preventing full automation in many cases is that
the general custom IC design flow has a huge number of inputs, and it
is very difficult to provide them all up front (like accurate specs for all
blocks). Actually, something more is needed than pure target datasheet-
oriented design. A best-practice design requires also inputs hard to provide up
front and better entered as so-called constraints. Making decisions step-by-
step is anyway a natural method and compliant to many classical construction
methods. For these reasons, many modern design environments allow the
definition of constraints at many levels, and they can nicely state the designer’s
intentions. This way, any team member can define constraints to improve
teamwork, documentation, and design quality (see Figure 10.7 as an example
for a CMOS PDK and design environment with built-in constraint support).
A major advantage is their flexibility compared to setting all goals up front,
and often tools can pick them up or check them automatically.

Constraints can work top-down (like “layout should be symmetrical” or
“high proximity required”—e.g., set in schematic entry or floorplanner) or
bottom-up (like “clock lines should not cross this sensitive area”—e.g., set in
layout editor). This way, the specialist in each tool can set up constraints in
the best way.

We mentioned that it is quite typical that some specifications are not really
written.Also the specs in a datasheet may not have equal strictness. In addition,
customers and designers simply assume that besides the written specs also
general design rules and best practices (like using common-centroid layout for
critical parts) will be applied. Constraints complement the hard specs written
in a datasheet and strict design rules like those on layer distances, minimum
and maximum width (DRC), electromigration (Table 10.1).

Table 10.1 Overview on design inputs
What Source Comment
Design rules Foundry In most cases, you can run automatic checks,

e.g., w.r.t DRC, and electromigration.
Datasheet Customer/Designer See Chapter 1. Typically you need to “translate”

the content into testbenches, simulator setups, etc.
Constraints Designer, Layouter Define internal requirements, e.g., to assure

properties not possible to simulate.
Soft factors Manifold Hints and design strategies from books, manual

checks, inputs during a design reviews and
discussions, etc.
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Typically, constraints will be set step by step during the design (see
Figure 10.7); they are often layout related, used to improve team commu-
nication and just to not forget anything important or helpful. For instance,
a constraint on symmetry makes sense for a critical differential pair, or
sometimes you want the same orientation of two block instantiations in a
design to improve matching. Here the definition of a constraint makes sense,
because often you simply cannot simulate what would happen if a temperature
gradient causes on offset voltage, so better try your best “by construction.”

A certain problem is to standardize constraints, defining a meaningful set
without overhead and gaps, implementing constraint checkers, etc. So setting
up constraints looks easy, but to let the tools pick up them correctly (e.g.,
checking if a constraint is fulfilled or driving an automation tool to keep the
constraint) is a hard task for the EDA vendors, and there is no standard set of
constraints for analog design so far. Also, it could easily happen that we end
up in too many constraints, or even contradicting constraints (like wanting
symmetry and same orientation, wanting to keep too many wires shorter than
10 um). For that reason also a kind of severity classification is often required
for constraints; and also on that some thinking is needed to get an over-all
priority, because constraints can be anywhere in the design hierarchy.

As often, in analog design, the devil is in many details. The state-of-the-
art for design environments is that designers are able to enter already many
kinds of constraints at different levels (either manually or by having assistants
for it) and that some tools pick them up for checking them or to allow an
autoplacement or routing based on it. What is typically missing yet is that all
the (front-end and back-end) tools make efficient use of constraints, and also,
a mix of manual and constraint-driven design is often difficult to realize. For
instance, some auto-placers indeed pick up many constraints, but they cannot
start from a meaningful manual placement.

As many of these limitations are already identified, we can expect more
and more improvements in the near future—no-one-fits-all solutions, but
embedded pragmatic improvements to make also layout a bit a fun part of
design, e.g. comfortable wire routers with high flexibility, bus, and advanced
power routing capabilities. Such semiautomated methods have the advantage
of direct graphical feedback, and the user can still decide in which sequence
he/she wants to progress.

10.2.2 Design Tools

One starting point for design could be IP reuse, and also in an IP management
system (or in a design and verification environment linked to it), we may get
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Figure 10.8 ADC FOMs and trend [converterpassion.wordpress.com].

access to some design tools, like for topology selection hints (e.g., whichADC
to use according to technology and requirements on speed, power, and area)
or for doing basic calculations like getting the expected power consumption
from a FOM (Figure 10.8).

Several such tools are usually available embedded in your circuit design
environment, like a calculator (with built-in functions for all the classical
analog performances like rise time, phase margin, THD, FFT) or a basic Smith
chart. Some tools may directly come from your EDAvendor, and others might
be created by your CAD department (Figure 10.11 showing a transistor sizer,
to find the best-suited width to obtain a certain gm for given length, VGS
overdrive, etc.), 3rd party vendors, or experienced designers.Typical examples
are MATLAB� toolboxes (e.g., for PLL design), but there are also many
tools available free of charge like Excel� sheets, calculators for two ports,
and for dealing with linear equivalent circuits, S-parameters, or programs and
catalogs for all kind of filters. Actually, there is a whole bunch of such free
or almost tools, and even special simulators for symbolic circuit analysis are
available, such as Symbolic SPICE (SSpice). Two good Smith chart programs
are CSmith and WinSmith, and two great tool collections are AppCAD and
AdLabPlus (Figure 10.9).
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Figure 10.9 Free circuit design tool collection AdLabPlus (available at River webpage).

10.3 Cockpit Number Two: Variation-Aware Driver Seat

Besides the design entry, the analysis setup tool connected to it is the core
element in the designer’s everyday work. In modern custom IC design
environments, you are able to address almost all kinds of problems. Beyond
the basic circuit analysis (DC, AC, transient, noise, sensitivities, etc.), you can
run corner and Monte-Carlos analysis, plus most of the mentioned advanced
methods (like different types of optimizations and worst-case searches). In
addition, you can check for layout effects, like running post-layout analysis
with wiring or even substrate parasitics included. Verification is a key task and
a complex one, and also IP aspects and verification plans are tightly linked.
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Figure 10.10 Design calculations embedded in IP managing tool—here for noise
calculations.

Decisions and tool requirements depend highly on how far the design
is from being finished—or at least from moving to the layout phase.
Optimization—manually or automated—comes before sign-off verification.
And at the beginning, we typically need to pamper our design, and there
is no need to really accurately find the worst-case for each performance.
So actually designers spent a lot of time not only in schematics, but also
in driving their simulations—hopefully not too much by pure “SPICE
monkeying.” Some simulators already offer advanced built-in features like
optimization or mismatch analysis, but usually more flexibility is possible in
doing these more complex tasks in the design environment and by driving
the simulator from a graphical user interface. This way it is usually easier
to support multiple testbenches, easy maintenance, comfortable interactive
debugging, very complex results evaluations, etc. (and actually also multiple
simulators).

A verification engineer has almost the opposite job: He should “hate” the
design and try to break it; and he/she has no need to sweep design parameters
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Figure 10.11 Micronas transistor sizing tool (MOST3 c© Micronas, Courtesy of Micronas
Germany).
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xD. However, there are also many similarities, like both optimization and
verification can be speeded up by knowing the WC corners. In real-world
designs, a verification worst-case corner setup may contain almost hundred
corners, whereas for optimization, you want no more than maybe a dozen
corners.

In digital design, there is often a split: designers create the system, and
verification engineers try to find bugs. This is good for design quality, and
more specialization is a trend for analog design too—also because design
teams become bigger and bigger; most modern designs are mixed-signal
chips anyway. In such big chips, planning and monitoring of design and
verification progress is a challenge too, and some tool support is now indeed
available in modern design environments to support true spec-driven design,
from the beginning and during the whole design process. Figure 10.12
sketches the user interface of such a tool; the main features are import and
export capabilities to spreadsheet programs and databases and a GUI for
connecting the requirements to the testbenches. These kinds of tools support
full automation of regression runs (e.g., daily and weekly execution plans),
reporting on verification coverage, found inconsistencies (e.g., due to spec
changes), etc. Of course, requirement trackers and spreadsheets are also used
in the past, but having a clear connection to the design environment helps a
lot to keep everything up-to-date and to avoid inconsistencies.

Figure 10.12 Verification tools enabling chip-level top-down design and verification
[Venkatakrishnan2014].
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Figure 10.13 Major elements of an augmented variation-aware design environment.

In Figure 10.13, we show most of the tools required for variation-aware
custom IC design; only few special ones are sometimes kept out (like EM
solvers or MEMS simulators), and also some basic tools like netlisters or
auxiliary tools like netlist reducers or a file versioning system.

10.3.1 Task-Driven Design Flow

In Chapter 2, we describe the typical manual (custom IC) circuit design flow.
The designer picks the required tools and collects data for his design decisions.
However, it is not so clear which method is the best for a dedicated task like
finding critical devices. Almost always you have different options, and often
a dedicated analysis has no single output; for instance, sensitivities are often
also a by-product of a statistical analysis or an optimization.
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In Chapter 8, we describe a task-driven statistical analysis, and we use it
for complex yield optimization scenarios. If clear specs exist and if the design
is at least functional, then further automation and more speed-up by reuse
is possible, and there is no real need that the designer himself decides for a
certain statistical, corner search or optimization method—a more data- and
design-oriented setup instead of a pure algorithm-oriented setup would be a
desirable complement in general. As mentioned, “classical” algorithms like
worst-case distances or gradient-based optimization may fail, although they
are very efficient in many other cases. Such task-oriented or even “design-
oriented” setup would be not only an analysis setup, because it could also
include optimizations, sensitivity analysis or modeling tasks, so being actually
a designing setup! Mathematically this is not completely new, we would
just combine the techniques for space exploration (modeling, sensitivity,
worst-case corner, etc.) with design optimization (direct optimization,
surrogate-based optimization [Bo Liu2011, Moustapha2016]). All this is
DACE, design and analysis of computer experiments.

Actually, modern EDA environments offer already quite a lot of support
for such integral approach, like for statistical yield and corner analysis, or for
switching the design representation from pre-layout to estimated parasitics
and to full post-layout with a single switch. Unfortunately, sometimes user-
interfaces only look task-oriented, e.g., users can select run modes like
“Optimization” or “Sensitivity Analysis,” but usually still designers have to
select specific methods (like local optimization by BFGS or sensitivity analysis
via OFAT sweeps), and users can only run one task at the time. In the future, we

Figure 10.14 Flow chart and algorithms for circuit design.
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can surely expect more task orientation and automation; with scripts, users can
already do now quite a lot (e.g., via oceanXLin CadenceVirtuoso�). However,
for really “merging” e.g., space exploration and optimization, common data
formats are needed to transfer information like parameter setups and model
coefficients. In such scenario, the designer and the environment would be
the true ruler about all variables and functions; and the schematic entry
or a hierarchy editor would act like (very comfortable) property editors.
And the simulator with the plotting tools would act as debugger. All this
is not complete science fiction, and similar to digital and software design
flows.

10.3.2 Physical Aspects and Sign-Off

In older design environments, there is often a split between front-end design
and layout (being of course a key part of design). In bigger companies, often
different people work on the schematics and on the layouts, because learning
the complex tools takes some time, and using them blindly and efficiently takes
even more time. However, for dealing with advanced technology problems,
there is also a trend that both fields, front-end and back-end, will be treated
by joint or highly connected tools, e.g., with extensions in both schematic and
layout editor. So actually, the variation-aware design cockpit gets extended
and will also cover variations due to many kinds of layout effects!

The physical implementation and actually the layout are often regarded as
something that “follows automatically” after system and front-end design, but
actually this is not really true. Packaging and floor planning should be done
ASAP! In addition, circuits for which advanced statistical and optimization
techniques make most sense are also often very sensitive to the physical
implementation and parasitics. So experienced designers have the layout
aspects in their mind, like “Is a certain inductance value and quality factor
realizable in the given technology?” or “Can we effort the chip area for
filter capacitors required to implement a certain filter with certain noise
properties?”

Modern PDKs include detailed MOS models to cover even the surrounding
neighborhood of a transistor to its electrical characteristics. This means such
layout-dependent effects (LDE) can be simulated nowadays, and it works
actually in a similar way to the inclusion of normal RC wiring parasitics. If
e.g., a well (e.g., from another transistor or a guard ring) is close (e.g., distance
d = 1um) to a transistor (like P1), then the electrical behavior (like threshold
voltage VTO(P1)) changes a bit compared to the default value (e.g., assuming
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Figure 10.15 Task and design driven setup.

d>>10um). In modern PDKs the function VTO(d ) is part of the models, so
once the layout positions are known (at least the placement, not necessarily
the routing) we can run a more LDE-correct circuit simulation (regarding VTO
and other parameters). Physically such LDE changes are mainly the result of
mechanical stress during the fabrication. The extraction of the LDE model
parameters is done by the foundry based on test chip measurements and 3D
field solvers.As usual, the normal designer is just using these complex models
in his circuit simulator, in the background.
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Doing such analysis late, i.e., when you have the full block layout, and
recognizing in post-layout simulations that the block does not work as intended
anymore, could mean that a lot of time and work has been “wasted”! Especially
for high-speed and high-accuracy circuits, it would be a very bad approach to
check temperature and supply effects in very high detail, just because it is so
easy, and to overlook that already the wiring capacitances degrade the speed
or stability by 30%.

For this reason, modern PDKs and advanced custom IC design envi-
ronments even support doing an early analysis, already on partial layouts
(so-called “electrically-aware design” EAD) [White], or by adding at least
estimated (not necessarily layout-based) parasitics. Using such tools (e.g.
the EAD option in Cadence� Virtuoso� Analog Design Environment and
Virtuoso� Layout Editor), the designer could quickly make a layout for the
most critical parts and get at least for this part all the layout parasitics. In
such flow, the simulator netlist is created from the pure schematic netlist
plus a stitched-in part of the partial layout with extracted parasitics and
layout-dependent effects (LDE). With wiring (or even substrate parasitics),
the netlist becomes often much larger, and also LDE can extend the netlist
a lot, because for maximum accuracy, even each transistor finger has to be
treated individually.

Note: In true RF or microwave design environments, such parasitics awareness
is standard since many years, but in these, the approach is often easier
to implement, because RF designers are skilled to work almost directly in
the layout view—instead of using schematics. In addition, RF designs have
usually a much lower complexity.

Corners in Parasitics. In the very old days designers were happy to
have models just for the nominal conditions and for the typical average
behavior. Nowadays having corner models and MC parameters for process
and mismatch is standard. However, also the chip interconnections have
not only a performance impact, they can also vary significantly. Changes
in the different oxide and metal layer thicknesses lead to variations of
series resistances and wiring capacitances, so it could makes sense to
work with corners as maxR, minR, maxC, and minC. However, like
in transistors also some correlations are present, e.g., it is less likely
to have at the same time both very thin metal and oxide layers. So
using designing for the combination Rmax, Cmax could lead to some
over-design. Therefore, again fix mixed corner combinations are standard
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in most advanced technologies; and ultimately also a statistical anal-
ysis for parasitics could make sense. To keep the level of intra-die
variations at an acceptable level strict layout rules need to be maintained,
e.g., regarding layer filling. For this task usually metal fill run sets are
available, but of course such metal fill elements can impact the circuit
performance, and there are places (e.g., near on-chip inductors) where the
filling is not desirable.

Once a layout (partial or full) is available, also further checks will be typically
applied like design-rule checks (DRC) or an electromigration and voltage drop
analysis (IR drop). Of course, the full production yield is not only determined
by what you can observe in front-end MC simulations, catastrophic failures
due to layout effects will be on top, so also layout optimizations in that
direction, like using double vias can be important too, especially in advanced
technologies and high-reliability applications [Yu2016]. For this also so-called
Design-for-Yield, Manufacturing or Reliability tools are available too.

10.3.2.1 Advanced layout techniques
Like EDA vendors try to optimize the front-end flow, they also created
many tools to do high-quality placement and routing, e.g., assisted or even
automatically, based on constraints. Also this area is a field of continuous
improvements; perfect automating tools are not really available now—neither
in commercial tools nor in research. Also here composition and optimization
techniques are meaningful attempts, and the problems to solve are quite
complex and nonlinear as well.

One problem for automated tools is that you often end up in “eat-all-or-
nothing”. A schematic sized automatically, but ending up in a non-optimum
circuit might be “repaired” sometimes, at least by an expert. A layout proposal
from an auto-placer is often really difficult to improve, e.g., because the
proposal is often a very dense layout, so that it could be often easier just
to make everything by hand—almost as usual. Figure 10.16 gives an example
for an automatically generated placement based on user-defined constraints.
Unfortunately some parts of the layout look not acceptable, which could be at
least partly explained by some potentially missing constraints.

On the other hand, automated tools can give you at least a reference point —
much better than nothing, but usually not as good as the hints an experienced
designer can give. One trend helps: Newest technologies have so complex
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Figure 10.16 Comprehensive design driven analysis outputs.

design rules, e.g., regarding densities and orientation, that a kind of “Lego”
approach makes sense. This leads to a layout in a kind of “matrix” style, which
is easier to automate; and the potential loss regarding performance or area is
often quite acceptable.

In addition, also fully automatic constraint generation is possible nowa-
days [Eick2011], often even generating more constraints than designers
typically find. This leads, together with an enhanced set for constraint options
plus supporting hierarchy and constraint priorities, to significant improve-
ments in auto-placers. Figure 10.17 shows the fully automatically constraint
and synthesized layout of an amplifier, which has indeed only very minor
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Figure 10.17 State-of-the-art synthesized layout with automatic constraint generation
[Eick2011].

weaknesses. Comparing this layout to an older version, e.g., a weakness on
placement for N10,11,13 is now gone. Of course, also manually created layouts
are usually not perfect, and actually usually a good compromise is enough and
a much more realistic goal.

10.3.2.2 Parasitic analysis
The layout influences circuit performances often significantly, like maybe 10
to 30% on speed and bandwidth, so indirectly also on power or more difficult
measures like stability or gain flatness. So it is important to include layout
parasitics, like wiring capacitances and resistances ASAP to your simulations
(Figure 10.18), sometimes even self- and mutual inductances matter, and for
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Figure 10.18 Generic parasitic and layout-aware design user interface.

crosstalk and RF behavior, even the substrate characteristics. The standard
technique is just to check the layout netlist of the circuit against the schematic
source on correctness doing an LVS run and to run a parasitic extraction tool
to calculate the wiring parasitics from layout geometries and technology data
(like wire and isolation layer thickness, and oxide permittivity). However,
such post-layout simulation alone gives no direct design insights beyond the
pure performance shifts. Designer need to know which parasitics are most
critical and where a real good layout is a must!

The mismatch contribution analysis is a very powerful method; we have
seen that statistical methods are amazingly efficient in finding the most
sensitive parameters even among thousands of parameters! Once you have
obtained estimates for your wiring capacitances at each net (either by pure
estimation through transmission line formulas or through direct parasitics
extraction on the layout), you can easily run a mismatch contribution analysis
also for these parasitics elements and find the most critical nets quickly, e.g.,
w.r.t bandwidth, stability, and delay. This is a perfect guide for doing a suited
layout, and the effort is just a MC analysis on a speed-critical performance;
in analog designs, it could be often a fast AC analysis.
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Figure 10.19 LDE from shallow trench isolation (STI) in HV MOS transistors of an older
0.35-um technology [Wei].

In addition, of course also parasitic tables and the classical backannotation
of parasitics into the schematic are helpful; especially if you compare the actual
parasitics with your earlier estimates. This way you can often learn a lot and
transfer also your findings to other blocks.

10.3.2.3 Layout-dependent effects LDE
Wiring parasitics are not the only important reason for deviations between a
schematic-based simulation and reality. In addition, you may need to analyze
also for package influences, substrate effects, and so-called layout-dependent
effects (LDEs). LDE is becoming more and more critical, especially in new
advanced technologies nodes, because in these, the transistor parameters like
VTO or mobility μ depend quite significantly on the transistor neighborhood,
like distance to wells. Interestingly, early papers on LDE are related to even
0.35-um technologies, but in these, the effects are typically quite manage-
able by classical “over-design,” e.g., just keeping enough safety margin to
other wells, or only relevant for special structures (like power transistors or
extremely matching-critical instances).

In 28 nm or below, a detailed early LDE analysis, even on partial layouts,
is usually possible, so there is much less need for over-design or working just
blindly. Actually it is a good idea that both front-end designers and layouters
care for LDE. The designers are interested for block performance impacts and
they want to set constraints for the layouters (Figure 10.20). The layouters
are more interested in making the layout of individual transistors correct, and
according to constraints in the layout-centric flow, there is no real need for a
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Figure 10.20 Typical tasks required to address layout-awareness.

block testbench, and an LDE analysis tool users can just analyze each transistor
individually (and automatically in the background) and check for unexpected
changes in threshold voltage VTO, saturation current Dsat or on-resistance
Ron, etc.

Advanced custom IC environments offer several assistants to give the
designer a quick feedback to potential LDE problems in the circuit, even
suggestions on how to reduce the different layout effects (like well-proximity
effect WPE and poly spacing effect PSE). This way the layouter can quickly
inspect different layout improvements, even graphically; and he/she can chose
the best compromise between accuracy, area, and routability. Figure 10.21
shows such a plot for 20nm NMOS transistors placed in different ways.
The manually optimized layout has variations below 2mV in VTO between
each transistor finger, whereas the compact layout gives a 13mV worst-case
spread. Of course, also the full block-level behavior can be simulated with the
correct LDE parameters, even if only a partial layout is available.
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Figure 10.21 Result plot from layout-aware design flow (Courtesy ST Microelectronics,
France).

10.3.2.4 Post-layout speed-up techniques
One general problem in all post-layout analysis is that the simulation times
can be much larger, like 2× to 30× – with full RCLK extraction and
FinFET technology even up to 100×! So, parasitic reduction techniques will
become more and more essential. Many simulators have built-in parasitic RC
reduction, but speed-up is usually limited, and more techniques are needed to
be still able to simulate complex RF circuits in FinFET technologies. Some
reduction techniques are also available in the parasitic extraction tool itself,
to merge fingers in MOS transistors or to filter out very small capacitors and
resistors, but in the future, we can expect more techniques, which combine
extraction, accuracy constraints, and simulation.

Post-layout simulations and design come also with several special ques-
tions and techniques. For instance, it is quite native that the performances
get a “shift” after the layout, so we may want to apply optimization also on
the post-layout netlist. This sounds simple as the simulator and the optimizer
work anyway just with numbers, but unfortunately, the post-layout netlist may
differ in structure from the one generated from the schematic, but the designer
wants of course still to work with the parameterization, which he/she has used
in the schematic! In addition, the new optimized values should be sent back
to get an optimized schematic and layout. This is actually possible, but causes
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a lot of programming work at the EDA vendors to make this possible and to
let the flow run smoothly and in an easy-to-understand way!

The mentioned performance shift can be found by just comparing the
pre- and post-layout simulation results, but the designer typically also wants
to understand and know which parasitic elements are causing which effect.
This kind of sensitivity analysis is far from trivial! For instance, many (like
dozens or even hundreds) capacitances might be present at each net, and
the sensitivity to the total capacitance is giving not always the full picture,
like it might be accurate enough for pure loading or speed effects, but not
for difficult analog effects like cross-talk, stability, changes in filter poles,
and zeroes. For instance, in a latched comparator, a capacitance asymmetry
of few % can create a very significant offset voltage—which is simply not
present at all in pre-layout simulations. Again a mix of techniques is needed
like estimating parasitics ASAP, e.g., by doing a partial layout quickly for the
most critical parts and of course just by knowing what matters in which kind of
circuit.

Also new and amazing statistical techniques can help to manage com-
plexity in post-layout: They pick up the idea of having a performance shift.
Just assuming there is a pure shift and adding x decibel to the pre-layout
performance is a risky method. However, this idea of “borrowing” information
can be automated and further improved [Wang, Sun] by using so-called
Bayesian techniques [Jaynes2003] for model fusion. So in advanced fully
automated tools, multiple performance shifting models can be applied and
verified to “transfer” all the accurate pre-layout results we already have (like
MC performance results, and sensitivities) by running just a small number of
post-layout simulations. For instance, the tool could combine the results from
a big pre-layout MC analysis with 1000 points and a 40-point post-layout MC
run into a post-layout MC result and yield estimation almost as accurate as a
1000 point post-layout MC analysis, with low internal computing time and of
course highly reduced overall runtimes.

10.4 Summary

Many algorithms for a highly automated circuit design flow exist already.
However, it is a big effort to put all the elements together, and some are highly
technology-related, so it is tough for an EDA vendor to provide them. Due to
software complexity, it is also a big challenge to implement such environment
with high user friendliness (and low number of bugs), but actually such design
environments with very high degree of assistance exist already.
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How much automation we will ever get? Prediction is very difficult,
especially about the future! IP reuse to enable a kind of Lego system
as we have in digital is a hot topic, but what about real new designs?
We have seen that more adaptive methods are a clear trend, but will they
be ever foolproof? At some point always some expert know-how and tool
training is needed. For instance, a latch simulation can give three different
solutions, and the designer has to manage them correctly circuit-wise by
using a reset or simulator-wise via initial conditions.

Sometimes, it is easier to make tape-out or you just have to really
see the bug in your laboratory, because what you may see is so strange
that you simply would have not trusted your simulations! Systematic
work, problem anticipation, and simply experience will be always the top
methods for engineers. However, sometimes, you just have to remember
“OMG, an input-stage in 709-style can show a phase-reversal in case of
exceeding the common-mode range.” or “Upps, my 1st IC design needs
a focus-ion-beam (FIB) modification before going to customer, because I
made a last-minute change without detailed re-simulation.”

Business as usual: Some mistakes can be avoided by experience,
some by anticipation, some by detailed verification, some by automated
methods, and some bugs will usually present in your first silicon samples.
However, due to increasing complexity, you should be good in all these
areas, according to the Olympic Motto: Citius–Altius–Fortius.

10.5 Design with Pictures Eight

Let us now go back to our power amplifier from “Design with Pictures One”.
A PA operating in class AB was addressed, with a tuned driver. RF-PAs in
CMOS are not easy to design, due to substrate issues and numerous loss
mechanisms when compared with other technologies. For instance, GaAs or
SiGe offer better performance, but are usually more expensive, so mainly
for high-volume, low-cost designs in CMOS make sense; and having a good
optimization flow can really help. We placed this PA example in Chapter 10,
because we discuss here also layout effects; and an RF PAis a perfect example
where optimization makes sense, and even post-layout optimization.

In order to achieve multiple specifications, multi-objective optimization
automation is required. Adding a driver and respective input matching net-
work, we redefine the parameters to be used along the optimization procedure.
An initial solution should be provided as described, based on previous
analyses, so that the optimization tool can search in nearby regions to the
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Figure 10.22 Finger sweep for multiple corners and its impact on P1dB.

reference point, hopefully determining a set of parameters that meets all the
criteria. Some parameters can be initially swept to get an idea how they behave
among all set of corners and to establish an adequate range of values for
the optimization. For instance, in Figure 10.22 the number of fingers of the
transistors in the output stage is swept to see the minimum at which the P1dB
specification is respected. In sync with the basic PA theory we can improve
the output power by lowering the on resistance and having just more gate
fingers.

BFGS can be employed to provide a local optimization with the reference
point early mentioned, and then we can run a global optimization to check if
there are other interesting solutions not considered before. Moreover, during
the optimization process there might be some useful information along a
significant number of iterations in which some correlation can be seen between
parameters. Figure 10.23 shows the values for three specifications along
several iterations in a local optimization process. Unfortunately the graph is not
so easy to interpret, e.g., we see and expect no high correlation between gain
and output related performances like OIP3 and P1dB. The two output measure
should be somewhat correlated, but a better statistical analysis should show
this in a better way.

For instance, we can directly obtain a table for the correlation factors as
depicted in Table 10.2. Such tables are available for the correlation between
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Figure 10.23 Example of (a) local optimization with iteration points for OIP3 (top), P1dB

(middle) and gain (bottom).

component parameters and performance metrics, or between different perfor-
mances. For instance, forward gain |S21| and input reflection |S11| are highly
correlated because e.g., a bad input match immediately causes a lower gain.
The strongest correlation between stability factor k and any other performance
is to |S21|, which is also no surprise, because a high gain comes often
unfortunately with a low stability factor.

However, some results in the table provided directly are hard to interpret,
e.g. we readout a negative correlation for intercept point and compression
point. Actually, some such non-intuitive results can be expected, because the
table based on optimization data points, not e.g. on MC data (as usual). And
the output correlations simply depend also on which parameters you vary! If
we e.g. look only to variations in the matching network, we would observe
no correlation between DC current and output power, but if we e.g. vary the
transistor widths we would obtain a significant positive correlation. Further
“error” sources are that e.g. a local optimizer s not designed to cover the whole
variable space (see Figure 8.6), also nonlinearities can lead to results which
are harder to interpret.

The local BFGS optimizer has taken about 300 simulation points, whereas
about three times more simulations are required to meet all specifications
when using global optimizers. These optimizations can be done for all
corners at the same time, or identifying the worst-case to help improving
speed. Figure 10.24 shows MC results for three major specifications,
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Figure 10.24 MC simulation results after optimization for (a) OIP3, (b) P1dB, (c) gain.
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namely OIP3, P1dB, and gain. These results represent a considerable yield
improvement over the first manual design earlier presented.

An interesting graphical representation to see is the one depicted in
Figure 10.25. It gives some insight about the MC dispersion of results in
specific parameters relatively to corners SS and FF.

Table 10.3 shows a comparison between results from local and global
optimizations with some significant differences on the parameter values. As
mentioned the differences can be quite significant, which is no real problem,
but just a consequence that an optimum is typically quite flat, just indicating
robustness and (relatively) low sensitivities.

Following the schematic level simulations, post layout simulations can
take place, with parasitics included. At this phase, slight deviations are

Figure 10.25 Comparison between Monte Carlo results and two corners (SS and FF) for (a)
|S21| vs. P1dB.

Table 10.3 Comparison between results from optimization
Parameter Local Opt. Global Opt. Unit
Vb,pa 597.4 659.0 mV
Vb,drv 743.0 758.2 mV
Ldrv 8 2 nH
mcs 26 22 –
Cm1 22.63 18.42 pF
Cm2 15.26 13.68 pF
Lm 1.711 1.789 nH
mcg 21 21 –
mdrv 5 9 –
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Table 10.4 Correction in the parameters from optimization in extracted view
Parameter Vb,pa Vb,drv Ldrv Cm1 Cm2 Lm ηdrain

Correction –2% +1% +0.5% +0.8% +3% +2% –1.5%

introduced due to resistive and capacitive parasitic elements caused by the
interconnects. To compensate for this, one could go back to schematic and
make adequate changes, change the layout accordingly, and perform new
postlayout simulations. However, an interesting alternative is to perform a
(local) optimization directly on the extracted cell view. As such, for a given
number of fingers and multiplication factors, e.g., the widths of the transistors
can be re-adjusted to accommodate performance variations, and also other
parameters as well, such as the matching network elements.After a postlayout
(extracted cell) optimization new parameter values can be obtained to satisfy
all corners – Table 10.4 summarizes some results after optimization overall
corners. Actually there are no big differences, i.e., the parameter changes are
in the same order of magnitude as the usual production tolerances. However,
there is no clear limit if post-layout optimization is a must or not. For instance,
in a 25 dBm RF PA at 5 GHz in SiGe most of the design time was even spent
in post-layout state! Sometimes, it can even happen that you need to change
e.g., your matching network topology to address the impedance changes from
layout effects. So in such cases, parasitic extraction as accurate as possible,
post-layout simulation, and optimization often even saved a re-design.



11
Conclusion and Outlook

Our book’s focus is not only the state-of-the-art of variation-aware design,
but also technologies which have become more and more complex and the
available techniques for circuit designs as well. We give now an overview on
what can be expected in near future on our core topics like optimization and
statistics, but we also take a more general look to (front-end) circuit design
environments and related topics. Indeed one bigger trend is to connect all these
tasks more and more, because also mathematically they belong to each other
and they can benefit from each other.

The problems in modern custom IC design are not due to a single law (like
Pelgroms’ law, or Moore’s law or the end of it), single parameter (like going
down to 7 nm Gate length), or single technique (having FinFETs and mixed-
signal). So we can expect that statistics on re-designs (Figure 11.1) will not
change so much in the future. Regarding variations, there is really a bunch of
problems and solutions, and we provided many examples, the underlying key
theory, and a lot of background information. Designers need to find and will
find new clever circuits that can work even at 0.7 V supply, subsystems that
are accurate enough, although the process tolerances become more and more
severe, and they will deal with growing transistor counts, growing number
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Figure 11.1 Re-spin statistic for large communication IC design [DAC 2002].

of variables to enable multi-mode, multi-system, multi-SoC design with low
power, and for low costs; all this almost without expensive high-accuracy
elements.

Obviously, there is still and always a gap in engineers thinking and wishes
compared to what design tools can really offer, but the key for successfully
managing all significant variations is to be able to pair a suited variation-
aware methodology with the current design situation. Sometimes even a
bit more, just to organize and partion your work in such a way that all
tasks become feasible. In the book, we show the different options (with
their prerequisites, advantages, and limitations), and in modern custom IC
environments, designers have comfortable access to them. Many methods
come with the typical variance in the results involved with statistical samples,
some come without these inaccuracies, but rely on additional assumptions, so
as usual there is no free lunch. Designers who are aware of this can clearly
work more efficiently and accurately.

Looking to the math behind design problems, there are many useful proven
theorems, but actually still many unproven propositions also! In this book, we
showed that statistics can be treated by many different techniques and not
only by Monte-Carlo. Many of such advanced techniques have faster con-
vergence, but some still degrade significantly if applied in a straight forward
way to really complex problems. We also demonstrated the advantages of using
optimizers for circuit sizing, also here global convergence and efficiency is
dependent on how good the designer managed the setup, and such setups can
be complex. So we provided guidelines for analyses regarding corners and
statistics, and for optimization.
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Solving the specific design problems step-by-step is the focus of current
state-of-the-art mathematical investigations, and the integration to real com-
mercial EDA tools is always a bit behind. There are also many funny parts, in
creating faster, highly adaptive, more “intelligent” algorithms, to get higher
speed with acceptable risks; and also the user-interface part is essential, for
general acceptance and for robustness, like having some protection against
non-optimum setups.

For further reading:
Here is a list of literature on advanced topics, like analog synthesis or
hierarchical optimization. However, look up that often you have to search
for other keywords than you think of, e.g., there is a lot of material about
multidisciplinary design optimization (MDO), but much less on hierarchical
circuit optimization.

• Fast Statistical Analysis of Rare Circuit Failure Events via Subset Simu-
lation in High-Dimensional Variation Space, Shupeng Sun and Xin Li, . . .

• H. Graeb, ITRS 2011 Analog EDA Challenges and Approaches, in
Design,AutomationTest in Europe Conference Exhibition (DATE’2012),
Dresden, Mar. 2012, pp. 1150–1155.

• J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, K. Jung, L.
Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. and Sangiovanni-
Vincentelli, E. Alon, BAG: A Designer-Oriented Integrated Framework
for the Development of AMS Circuit Generators, IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’2013), Nov.
2013, pp. 74–81.

• Ramy Iskander and Marie-Minerve Louërat, and A. Kaiser, Hierarchical
Sizing and Biasing of Analog Firm Intellectual Properties, Integration,
the VLSI Journal, Vol. 46, No. 2, pp. 172–188, 2013.

• Automation of Analog IC Layout – Challenges and Solutions, Juergen
Scheible, Jens Lienig, ISPD’15, March 29–April 1, 2015, Monterey,
CA, USA.

• IEEE Transactions on Evolutionary Computation, Vol. 15, No. 4, August
2011 557, Trustworthy Genetic Programming-Based Synthesis of Ana-
log Circuit Topologies Using Hierarchical Domain-Specific Building
Blocks, Trent McConaghy, Member, Pieter Palmers, Michiel Steyaert,
Georges G. E. Gielen.

• Analog Layout Synthesis – Recent Advances in Topological Approaches,
H. Graeb, F. Balasa, R. Castro-Lopez,Y.-W. Chang, F. V. Fernandez, P.-H.
Lin, M. Strasser, Date 2009.
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• Multidisciplinary Design Optimization: A Survey of Architectures, J. R.
R. A. Martins, Andrew B. Lambey, American Institute of Aeronautics
and Astronautics.

• Framework for sequential approximate optimization, J. H. Jacobs, L. F. P.
Etman, F. van Keulen, and J. E. Rooda, Structured Multidisciplinary
Optimization 27, pages 384–400 (2004).

11.1 Advances in Corner Analysis and Modeling

The worst-case corner analysis was the first advanced method we discussed,
and we found that reliable and efficient solutions are already available, so
what can we expect in the future?

• Surely improvements e.g., on step-size control (to avoid “blind spots”
not well-covered by the model); this makes sense for variables with
potentially strong nonlinear impact, like temperature.

• Further new algorithms: adaptive mathematical algorithms can do tricky
things like fully combining heuristics, designer’s a priori knowledge,
earlier corner simulation results, and advanced sampling and modeling
methods. Exploiting existing information is indeed possible, e.g., by
applying so-called Bayesian techniques, coming from the statistical field
[Jaynes].

• No 100% parallel execution is possible for adaptive methods, but some
over-all runtime speed-up is indeed possible if the algorithms will
be optimized for at least some parallelization. Actually, modern EDA
software is usually at least partially optimized on this already, but there
is often room for improvement.

Beside specific improvements, we can see that almost all our book topics are
highly connected to one key technique: Modeling! WC corner search accuracy
checks, optimization strategies, the worst-case distance method, etc. – all this
depends on modeling [Martens2008], but note, one general problem remains:
Whatever we do, like spline interpolation or Gaussian process modeling, we
apply almost by definition a model which is not at all 100% correct. This way,
e.g., in WC corner analysis, also the model parameter estimation part becomes
fuzzy; so from the pure math view point we do here something ugly. So again,
actually only with somewhat more information regarding the system under
investigation we can improve further. That is often the reason why dedicated
algorithms can outperform general, easy-to-use methods. A dedicated method
might be e.g., a circuit-specific design script which takes e.g., corner variations
directly into account.
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A cool thing is that today’s general methods (GPM, machine learning,
etc.) can be quite easily modified for this, e.g., in GPM we could plug-in an
analytical model (e.g., exponential function or a certain multiplicative law) for
the general trend, and remaining fitting part by the Gaussian functions becomes
easier (so-called universal kriging). Here we are close to the state-of-the-art
in math!

We authors remember that many engineers where enthusiastic on deriving
formulas for circuits because programs like Mathematica� allow symbolic
analysis, so why using only numerical simulators like SPICE? Symbolic
circuit analysis would be indeed one attempt to improve modeling by using
true theoretically founded functional equations (e.g., based on small-signal
equivalent circuits, transistor equations, etc.). Another approach is to use a
big set of such typical “circuit design” functions (like polynomials, rational
functions, ex,

√
x, min(x), etc.), and then to perform a symbolic regression

(SR), ending up in using the best-suited formula for each performance.
Actually it seems that this second method is much easier to apply [Guerra-
Gomez2015], because it natively fits to numerical circuit simulations; and
there is no need to do a real circuit and performance-specific symbolic analysis.
Magically also such fitting methods would indeed often deliver meaningful
functional results, like risetime behaves reciprocal to the bias current, and
maybe linear with temperature, like trise = 3.267 (1 + T/5.4e4)/ib (ib in
uA, T in ◦C, and trise in ns). The only advantage of the fully symbolic
method would be that the constant(s) could be also related to other parameters
(like Miller capacitance Cm, TCs of resistors, or current mirror ratios). With
pure fitting we can only include the variables which are tweaked. In a WC
corner analysis and an related performance model these variables are typically
only the corner variables xR, but in principle we could also extend the
performance models to other parameters, e.g., those from xD (for modeling
and design purposes, including optimization) or even xS (for yield analysis,
statistical corner creation, etc.). Of course, such symbolic fitting could not only
deliver one solution, usually multiple output formulas are available. The more
complex ones just typically give a somewhat better fit, whereas the simpler
ones are easier to interpret.

Note that such performance models could be used for any fix circuit
topology in design scripts by solving the performance expressions for the
design variables, but we can also use them directly in a ultra-fast surrogate-
based global optimization. However, optimization is another Subsection 11.3,
so let us stay for a moment for more basic topics like verification and statistics.
In all these topics we can definitely expect more modeling-based, more
sensitivity-driven design techniques in the near future.
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11.2 Advances in Verification and Statistics

Regarding verification, there is a lot of news from the digital and software
domain. Here one focus is finding bugs. You may run so-called directed tests
to find such problems “as usual”, or you could also run randomized tests!
It is proven that this style of verification helps to find design mistakes quite
efficiently, especially bugs difficult to anticipate! So one trend is picking up the
verification concepts from these domains, like coverage-driven verification
or even formal verification. The latter is still at the research level for ana-
log applications, whereas coverage-driven, assertion-based techniques may
quickly swap over from the digital area to mixed-signal and analog design.
The main problem is the definition of functional analog assertions, it is a
very complex task to describe analog input and output waveforms accurately,
including their relationships. So at the moment, it is the best complementing
concept for analog applications.

Disproving that the design is correct is quite an easy task for automated
tools, but a positive proof is more difficult. With respect to verification, finding
the worst-case parameter set consisting of both deterministic and statistical
parameters is generally a key task. Finding the worst-case for one type of
variable (either statistical or deterministic) can be regarded as solved, and it
is available in many modern EDA tools. We can just recommend to use these
methods, because they give a good balance between efficiency and accuracy,
and are not difficult to setup anymore. However, putting deterministic and
statistical variables together (see Chapter 9) could end up in a really complex
and highly nonlinear problem.

In addition, especially the problem of increasing complexity of both
models and circuits make the handling statistical variables more and more
difficult. In old PDKs (like ≥130 nm), mismatch has been modeled by usually
just one or two variables; in modern processes, it could be a dozen, and on top
of that, the mismatch impacts are growing too due to shrinking geometries—
even in digital circuits, mismatch effects have become severe!Also the number
of transistors per block and per subsystems increased, so overall the same
problem becomes easily 20× more complex in new designs.

All in all, we could apply advanced model techniques also to the extended
variable space (xR, xS); the algorithms exist, mainly managing the complexity
is the key challenge.

This higher general complexity problem is often preventing the user of
brute-force methods like running Monte-Carlo over all corners; and often we
have on top higher quality requirements. Having a verification gap is no good
idea in contexts such as medicine or autonomous cars.
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One way to improve dealing with complexity is to exploit hierarchy; in
optimizations, designers often do so.Also in statistical analysis, we can exploit
the hierarchical structure of our design. When analyzing correlations, you will
typically find out that variables in the same block have stronger correlations
than variables in different blocks. In addition, the correlations or WCDs will
reflect the system structure, e.g., design symmetries or repeated structures
(e.g., in ADCs). This way we can predict the approximate structure of the
correlation matrix much faster directly from the circuit topology, avoiding
too many time-consuming simulations. Several of our discussed techniques,
like low-discrepancy sampling LDS, have weaknesses [Dick2014], but with
exploiting hierarchy, we can work around some limitations. For instance, in
analog low-power designs, usually the threshold variations are most important,
and if we use for these high-quality low-discrepancy points, we can reduce
the variance in our MC results significantly.

A big trend in statistics is also the application of robust methods, able to
deal with high nonlinearities and outliers. Indeed, we have seen that in some
cases already the idea that a worst-case corner can “represent” well the worst-
case behavior of a circuit is not valid at all! A fall-back solution is here, e.g.,
using multiple MC worse samples. So the corner set idea could be still used
to speed-up design, but the corner finding becomes a bit more complex—and
some speed loss is sometime unavoidable in favor for robustness.

In many cases, we demonstrated that even if using advanced numerical
techniques, still the user knowledge has significant impact, e.g., an optimiza-
tion becomes easier with good starting point. Actually exploiting “a priori”
knowledge is also possible for statistical analyses! Most people have been
taught that probability is either something defined by axioms or is just
“frequency of occurrence”, but a third way is to regard probabilities as “limited
knowledge”. Taking experimental data in to account (like MC results) we can
obtain a more precise “a posterio” knowledge (e.g., about variances, model
parameters, or percentiles). Such approaches are called Bayesian techniques,
according to Thomas Bayes (1761–1701). Such methods can lead to better
results regarding speed and accuracy than assuming “nothing” and purely
relying on data only. Note, that defining probability as “frequency” is not so
native as it seems, and it creates many further questions, e.g., what is defining
the frequency or is that frequency really a constant? So what “probability”
really “is” is quite a philosophical question! However, in MC we have usually
anyway already translated a whole physical problem into a mathematical
model, so that we just have to find an elegant solution, within the model, and
its limitations. However, indeed advanced Bayesian techniques have reached
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nowadays pretty much popularity, just because they often lead, following
a systematic flow, to good results. Actually the whole way of getting more
knowledge about our universe is about getting more precise knowledge from
experimental results, and existing know-how.

A nice example [Wang] for Bayesian techniques is reusing pre-layout
simulation results to improve on the typically very time-consuming post-
layout analysis, e.g., by creating a Bayesian scaled-sigma analysis (BSSS).
Bayesian techniques are also popular in the field of decision making, learning,
and artificial intelligence (AI). Actually quite many papers pick up such
ideas also for circuit design, but we personally expect there are much more
fruitful applications for such techniques—especially in a commercial sense,
and regarding generally available software tools. In SSS we have not reached
the limits at all, e.g., subset simulation extends the idea for further speed
improvements [Sun], e.g., we can run MC ones, and then sample again around
the critical regions found in the first run, even repeatedly. However, doing
this we would lose the advantage of being independent on the number of
specifications.

Random, LHS, LDS, and now Super Sampling? Again, it is very
interesting to see how many overlap exists between things with not much
in common at first glance. Could super-sampling SS, a very successful
method in graphics also help in statistical analyses? Looking to old CRT
displays, old flat screens, and then to modern 4K screens the progress
is impressive. Actually the 4K looks like an analog dream, with good
material almost no artefacts, no “aliasing” effects at sharp edges, etc. This
is because of the high definition resolution, but also thanks to SS, not to
marketing. The artefacts can be avoided by a clever 2D over-sampling
scheme, picking up ideas from techniques we explained (LHS, LDS,
Poisson disk sampling). The only pity is that e.g., in MC simulations
designers are often not in such comfortable situation, we often have not
so many points as we want and as a 4K screen simply has. So for us over-
sampling looks often unreachable. However, one method we mentioned
could enable it, and this is (meta) modeling, using a fast to evaluate
mathematical model, instead of long-running simulations, would enable
“over-sampling”; and e.g., in a surrogate-based simulation SS might be
picked up. An excellent article on synthetic imaging can be found at
[Laine2006].
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11.3 Advances in Optimization and Synthesis

Luckily in some aspects the future lies not so much in the dark. Currently
most commercial optimization tools can treat multiple specs, many also allow
a yield optimization, but usually they actually optimize a single real-valued
overall goal function using weights for the different performance targets
or similar constructs. If a circuit is highly optimized, then improvement
in one performance is usually only possible by relaxing another spec (see
Figure 11.2). If this is the case, then such point is called “Pareto optimum”.
Mathematically we are interested in solutions which “dominate” others.
Imagine we look at two solutions x1 and x2, and we have two performances f1
and f2 to be minimized. If f1(x1) < f1(x2) then x1 is preferable, and if also
f2(x1) ≤ f2(x2) then x1 is indeed dominating x2, and if no other solution
dominates x1 we call x1 a Pareto optimum.

Actually a whole set of Pareto-optimal solutions usually exists (so-called
Pareto front, dark green line in Figure 11.2); and one side of the front we
have less good solutions, and the other side is empty (the impossible region,
“utopia”); no “better-than-Pareto” solutions are possible. However, current
commercial optimizers typically only provide one “best” solution, which is
e.g., defined by assigned spec-weighting factors of the over-all goal function
f(x) = Σ wifi(x).

In research, such Pareto optimizers have been already developed over
years; and also applied to smaller circuits, but their application lacks due to
large compute power requirements when applied to more complex problems.
This is not because Pareto optimizers are not powerful, but just due to the

Figure 11.2 Pareto optimization and the relationship between parameter and performance
space for 2D case (goal is to minimize f 1 and f 2, e.g., representing risetime and noise figure).
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fact that such whole front of solutions is generally requiring more effort,
e.g., one meaningful attempt for Pareto optimization is to run many standard
optimizations on f just with different weights, so the weights would act like a
seesaw for the dark green dots in Figure 11.2. Having Pareto optimizers and
even Pareto yield optimizers is clearly desirable, because it would remove
the tedious task of setting weight factors upfront to the optimization, or
even to re-run an optimization multiple times. Once you have found the
Pareto front, you can get many different Pareto-optimum solutions—with
different trade-offs—in few seconds without further time-consuming circuit
simulations. To run a Pareto optimization we would need in principle no spec
limits at all, only the direction (upper or lower specs). You can even get trade-
off plots like overall yield versus spec limit or total CPK versus bandwidth or
power consumption, etc. [Holmes]. The iterative scalar weighting method will
not always work well, so in advanced Pareto optimizers often other techniques
are also implemented, e.g., converting the Pareto multi-objective problem into
a constrained single-target optimization task, just by picking one function f
out of f, and constraining the others to be below a certain εi.

Another region of improvement regarding optimization is mixed (real-
integer) optimization. The concepts for optimizing a function with real-valued
parameters are very old, and advanced variants are dated to the 60s, so
here there is little room for improvement. However, when optimizing mixed
problems, like the m-factor in a bandgap and the transistor widths and lengths,
it is not clear at all how to do it in the best way. If we do it sequentially, we
may end up in a non-optimum solution.

Is there a third way, beyond single and multi-objective optimization?
By putting our performance targets into one over-all goal function as
weighted sum we can manage the optimization task efficiently by using
standard optimizer. However multi-objective optimization would be easier
from the user perspective, because there would be no need to select the
weights upfront, and we can choose any Pareto optimum quickly from
the set of optimization results. However, is this “all” what is possible?
What about another intuitive scheme: If we optimize all performances
individually, we could directly see what would be a theoretical ultimate
optimum, the “utopia”. For instance, without looking to other specs we
can achieve a noise figure of 0.5 dB, and a risetime of 1.2 ns. A natural
best point would be the one which is just closest to this uptopia fu =
(0.5 dB, 1.2 ns). Having this in mind we could actually move away from
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the tedious weighting method! However, whatever we do we can only
improve to some degree! Using the linear weighted sum method is just
equivalent to the L1 (or Manhatten) norm regarding f0 = (0, 0). Using fu
instead of f0 is somewhat an improvement, and one more improvement is
possible. Instead of using the L1 norm we could also use e.g., the Euclidian
norm L2 or the maximum norm L∞; and one can prove that actually using
the max norm would be the somewhat more correct method, the one which
would really allow to hit all Pareto optimums. However, still the weighting
is important too, and over-all there is no such “third way”. Only nice
guidelines to remove the scalarization problems a bit.

11.3.1 Hierarchical Optimization

Optimization is time-consuming, and Pareto optimization is even more
complicated, but, in principle, we could just collect all testbenches, goal
functions and constraints, and run a single huge optimization. However, when
using classical optimizers, we would need to fully simulate all testbenches
for each optimization point (“all-at-once”, see [Martins]). So for industries
(automotive, aircraft, etc.) with many optimization tasks more advanced
so-called multidisciplinary optimizer structures have been developed.

Some ideas can be also picked up manually; one way to speed-up system
optimization is exploiting hierarchical information, e.g., by using multiple
abstraction levels for simulation and design. It is actually often done for more
complex blocks like PLLs,ADCs, or RF transceivers. For instance, on demand
designers can switch blocks to a behavioral description to speed-up simulation
and doing design tweaks (e.g., on PLL loop filter). Something similar could
be even automated in general; for instance, for a full optimization of a critical
transistor, you need to tweak the finger length and width, but also the number
of fingers and/or the multiplication factor—so you have to set four parameters
to define the layout. On the other hand, to the first order, only the total width
counts wtot = wf · m · nf , and only for few performances the individual
full-four-parameter setting has an impact at all (like noise or stability in the
RF region). So a clever optimizer should first optimize on L and wtot, and
only in a later stage, it should switch to the full set of all four parameters. A
similar technique could be also applied for subcircuits like the OTAs in a gmC
filter, the elements of a PLL, or for passive elements like critical capacitors or
inductors.

In true multidisciplinary design optimization (MDO) also other, more
mathematically inspired, algorithms have been created to avoid the
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inefficiency of an “all-at-once” approach. In Figure 11.3 there is an example
[Martins].

Besides all improvements, pure optimization is not efficient for all kind
of problems. It may work out well for migration between foundries having a
similar process, but for bigger changes in technology or specs (re-targeting),
optimization should be augmented with migration scripts. Several kinds of
circuits (like op-amps or bandgaps) natively fit better to construction than to
optimization. So enhanced, script-based synthesis techniques may lead to very
acceptable designs and no need for optimization anymore—at least for non-
high-performance applications. Script-based design is often not very flexible,
but with a better, more technology-independent infrastructure, it may pay off
quickly.

On the other hand, also optimizers become better and better. With effi-
cient mixed optimizers and enough compute power, also multiple circuit
topologies can be optimized, so that actually also the problem of topology
selection and definition can be addressed automatically. In some areas like
RF and EM design and simulation, such techniques have been developed
and applied already—at least by some universities. In this context, of course
also highly hierarchical techniques make sense; an optimizer would almost
act like a human designer. An example of a very successful mix of scripting
and optimization is transistor model parameter estimation. Here we can extract
hundreds of parameters, dealing with many kinds of testbenches, thousands of
measurement results and goals. This is possible because such problems have
an almost fixed problem structure, so spending a high effort to setup a clever
fully automated flow makes much sense.

Figure 11.4 gives an example optimization flow transferred to circuit
design which might be called multi-level semi-automatic.

11.3.2 Circuit Synthesis

There are different ways of exploiting hierarchy in design; and this helps to
address not only transistor modeling, but also true synthesis of analog building
blocks, like operational amplifiers, bandgaps, etc., also here the specifications
are very clear and well-known. One critics on optimization is whether it leads
to trustworthy designs. If we even optimize the circuit topology, we can expect
that some “synthesized” structures may not behave well regarding process or
environmental changes. However, if using classified trustable building blocks
(like diff-pairs, different current-mirrors, OTA’s, etc.) the problem can be
relaxed and could be manageable with use of robust optimizers and enough
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Figure 11.4 Semi-automated hierarchical optimization.

compute power [McConaghy2011]. Maybe we can even expect commercial
implementations in the near future. An interesting outcome from such “Pareto
synthesizer” would be not only getting performance trade-off curves as in
Figure 11.2, but also circuit topology trade-off information (Figure 11.5).

[McConaghy2011] includes also one comparison to a manual design
showing that the optimizer achieved a better performance (Figure 11.6).
Actually, six specs have been taken into account, namely DC gain, bandwidth,
supply current, area, phase-margin, dynamic range and slew-rate.

Actually, this result is expected, because often human designers have
further goals in their mind (like offset voltage, noise, power-supply and
common-mode rejection, distortion, suitability for layout, etc.) and are often
a bit lazy or reluctant in really going to the limits.

Afurther advanced field is layout-aware design optimization and synthesis
[Graeb2009], i.e., the inclusion of layout parasitics and layout generation in
the sizing loop (controlled by an optimizer). This offers further automation,
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Figure 11.6 Synthesis performance results (2-D cross-section of the 6-D Pareto front).

beyond existing assisted flows, which offer “only” awareness for layout
parasitics, design rule violations (e.g., regarding IR drop and electromigra-
tion), and for changes of electrical parameters related to layout (so-called
layout-dependant effects LDE).

We mentioned, the “fight” between construction and optimization is mostly
related to front-end design, but in layout we have a similar situation. Actually
parametrizable cells (pcells) are part of all PDK’s in the world, and contain
sets of layout instructions. However, most pcells are specific to components
of lower complexity, like a transistor or resistor. Having augmented pcells
e.g., for full op-amps could be one helpful part for really addressing analog
synthesis; and indeed powerful object-oriented tools are already available
since some years. Unfortunately there is no established standard yet, especially
not for dealing efficiently and user-friendly with hierarchy, arrayed structures,
constraints, or real complex structures.

11.4 Business Drivers and Trends

Actually both circuit design and EDA software have a bright past and a
hopefully bright future. Often the software was actually leading, and it has
taken some time to pick up new techniques; and sometimes EDA it was quite
behind, at least related to research results.
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Einer nur freie die Braut, For only one shall win the bride,

der freier als ich der Gott. one freer than I, the God!

These are the words from the Nordic God Wotan in Richard Wagner’s
“Ring of the Nibelungs”; and the billion-Dollar EDA industry is in a similar
situation as Wotan, having many duties, and limited resources! EDA is also
infrastructure, and it has often longer cycles than products, and many more
old “stuff” in it. Actually, the SPICE simulator was a huge success, so that
even the bugs become an industry standard, but it has still taken some time
to convince the design community. So even in the early 1980s, many custom
IC designs have been made without circuit simulations, just by thinking, by
anticipating, and by analyzing all problems almost manually. In Table 11.1 you
can see about the progress in IC design and software, with cordless telephone
chips as example. At the end you can see that the “revolution devours its
children”! On the other hand, in software many things will still remain, have
to remain, just because users want compatibility, and no changes in habits.
On the other hand, guess what the product experts for wireless have to do to
survive?

What Figure 11.2 also clearly shows, is that one clear direction for design
is mixed-signal. And here several techniques from the digital flow swap over,
e.g., the use of digital verification and modeling techniques. Actually also
digital designers pick up formerly typical analog techniques like self-adaptive
voltage scaling. However, for the other direction, the way to go is not so easy.
Different options exist, and there is no one-fits-all. For instance, randomized
tests can clearly help on verification and debugging, but analog assertions are
harder to define; they can become very complex. And we are still far away
from enabling analog synthesis: design by scripts is one of the most realistic
options.

In most parts of the book, we take the view of an engineer, so actually it
does not matter much whether 10,000 people in the world do analog design or
less or more—you have to do your job, at best like it and improve yourself! So
in our book we looked not much at non-technical trends. The world is indeed
sometimes dramatically and quickly changing, not only technically. The pure
number of tape-outs went down because chips become larger and larger—and
more expensive. So “Go big, or go home” seems to be a trend! It is difficult
for small startups to make a difference, but on the other hand, designing chips
can make sense to get competitive advantages for companies never thought
of engaging in IC design!
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Table 11.1 Cordless telephone technology and EDA software over time
Year Design Methods
1985 Plan for a new European digital telephone

standard
Corners, MC

Status: Old analog cordless telephones based
on CT1
Discrete PA, SAW IF IF filter, LNA, ICs for RX,
TX, PLL

1992 DECT as new digital cordless telephone standard

1993 1st consumer products RF simulation, 1st WCD
Discrete PA, SAW IF IF filter, LNA, ICs for RX
(Dual-Heterodyne), TX, CMOS PLL

papers related to circuit
optimization

1996 2nd generation telephones
Discrete PA, SAW IF filter, Bipolar ICs
for LNA/RX (Single Conversion), TX/PLL

1997 3rd generation
Integrated Bipolar PA, BiCMOS Low-IF RX,
TX/PLL
GAP as DECT standard extension

2000 4th generation
Integrated PA, Low-IF TRX/PLL

2008 5th generation
130 nm CMOS SoC TRX incl. major digital
parts & PA

Yield estimation by
statistical blockade

2010 No new products, because DECT telephones
has become ultra-low-cost, widely displaced
by WLAN, Bluetooth, smartphones, software
solutions like WhatsApp

2011 DECT extensions e.g., on ultra-low energy ULE Early papers on
sigma-scaled sampling
for yield analysis

All this will certainly have some impacts on which good features and new
techniques will be implemented, and what may take much longer.

11.4.1 Design and IP

Even in big growing markets, there are many options to fail and few to become
a champion; one example was mobile communication and another is IP. The
bigger the chips become, the higher the chance to be able to reuse something;
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and the probability rises that you simply cannot do it in your team. For these
reasons, digital block reuse is standard since over 40 years—the CMOS gates
look 100% the same since a long time, also more complex blocks like flipflops,
IO cells, memory, interface standards are highly standardized. On top of that
also more and more complex digital systems can be synthesized. Also most
digital systems can be package as IP. For analog blocks, this is not yet true, for
many reasons, analog blocks do not only feature NMOS and PMOS transistors,
but also special process elements—and they can differ in several ways. The
biggest impact on analog designs comes usually from the supply voltage. That
dictates how many transistors you can stack and which type of transistors you
can use or which design tricks you need.

One further problem in IP (on top of the technical challenges) is making a
real business out of it! Mergers and acquisitions are a trend with bounces over
the years (e.g.,>100 billion $ in 2015), but still some small companies engaged
with analog synthesis were unfortunately not bought by the big players and
died. They were partially too much ahead.

How many analog designs will be made by IP-providing companies?
This will surely have an impact on design tools and methodology, but which
kind is not easy to say. Of course, there will be IP companies trying to offer
a wide portfolio—having a high need for tools perfectly supporting technology
migration. However, there are also IP companies, with focus only on newest
deep submicron technologies—which anyway only few foundries can provide.
Interestingly, due to high costs the trend for real immediate wide use of
newest technologies has been stopped in the last years. CMOS 350 nm or
180 nm have survived much longer than expected—and will be even present
for further twenty years—of course with reduced presence but still used in
big “niches” like SMART power, sensors, automotive. All in common is that
IP buyers expect robust high-quality designs (best “silicon-proven”), so that
also statistical verification methods will be a key element. For migrations
to similar technologies or for minor re-targeting, optimization can often be
directly applied. For larger changes, some rule-based scalings and mappings
should be applied up front in migration scripts to give a better starting point for
optimizations. Of course, the more clever migration or even synthesis script or
the less challenging the design, the less need for optimization, but if the initial
design is done in a systematical spec-driven way, then optimization becomes
almost push button.

An ultimate form of “reuse” in digital design is using an FPGA (Field
Programmable Gate Array). As technology allows higher and higher integra-
tion, the FPGA concept becomes indeed more and more attractive, compared
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to a full application-specific IC (ASIC). There are also some attempts for
analog programmable designs. Currently they have only a very small market
share, but some analog blocks are indeed so essential that the chance of really
using them in the analog FPGA is very high (like for ADCs, DACs, supply
monitoring blocks, etc.). On the other hand, there are also many applications
(e.g., related to the Internet-of-Things IoT) where analog performance and
low power consumption has a dramatic impact on product success.

An alternative method for cost reduction is outsourcing, and it is often
done for the layout parts. Indeed, it is worth to think where to invest: in tools
or directly in work, maybe in India or even all over the world with something
like “My eHammer”? To some degree it would be even easier than using this
platform for getting a house cleaned, just because ultimately only a virtual
connection is required.

Besides optimization also construction methods can be extended; e.g.,
circuit and layout might be codified in scripts to generate highly scalable
and portable blocks. This technique is of course in competition with other
techniques, like reusing hard IP and apply simple migration scripts. A full
script-based flow would require even more changes in habits than using an
optimizer on top of what you do anyway. And of course IP protection is
a difficult topic too; often hard to align with modeling and documentation
requirements.

11.4.2 Computing Trends

In the 1980s, computer software (like SPICE) runs on 16-bit CPUs with
Megabytes of memory at tens of MHz, and over the years, we reached the
TByte and GHz domain. However, some of these positive developments seem
to stop! That a modern computing server is more powerful than its predecessor
is nowadays highly related to parallel computing and multi-core techniques,
but not much due to higher clock frequencies. This constraint will definitely
have impacts on EDA tools and partially it already has.

With respect to variation-aware design, it has consequences as well,
because typically just the older, more brute-force style techniques (like full-
factorial corner analysis or random Monte-Carlo) are easier to parallelize!
Many implementations of optimizers or advanced statistical methods need
to be improved to exploit modern hardware in an optimum way and to
adopt them for more and more complex designs and technologies. In the
early 1980s, a central computer was standard for a development department.
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Later, workstations and PC’s became popular; whereas now, working from a
PC with connection to the company cloud server is standard. Using encryption
techniques, it would be obvious to just go for general cloud computing, at least
for challenging compute tasks and for smaller companies. Of course, for some
interactive tasks, like manual layouting, but often also for debugging circuits,
there is also a general need for low latency.

11.5 Future Analog Design

Up to now we looked to realistic improvements in optimization and statistics,
to trends, but of course there are also other topics, needs and ideas to improve
the custom design flow. So here is just a list; and many topics are of course
connected to variability.

• Actually the hype on IP and FinFETs will remain, even FinFETs are not
the ultimate solution (e.g., also nano-wire FETs, even in complementary
form or vertical FETs, are under investigation), but the driver will be of
course digital design. Also the foundries have a big interest to push these
topics; it is a self-“runner” if these technologies become mature enough
at acceptable costs.

• Even the most advanced EDA tools have gaps, actually designers
usually take the decisions, and tools are not that good in decision
making. However, in software engineering, decision making and machine
learning are hot topics! You as engineer are in the driver seat and
you have to formulate your questions before you can expect good
answers.

• One key point in successful software design is problem analysis, and
exploiting everything which is available this could be supported by
having a full constraint-driven flow. This way design intentions can
be collected systematically, and as tool-readable constraints, this can
simplify tool setup, and it can help to avoid overlooking important design
aspects. Having a standard on constraints would be clearly helpful, but
it does not exist yet. From the tool perspective it is of course easier to
have specific setups.

• Connecting point tools to a full flow is essential, especially for bringing
circuit design (“front-end”) and layout much closer together. In ultra-deep
sub-micron technologies this is required not only in high-performance
analog, but also in digital circuits. Actually, there is already a name for
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such techniques, electrically-aware design EAD. It can help to reduce
the number of time-consuming iterations during the design flow—and
it can also lead to a better understanding of physical implementation
effects (like performance impacts of wiring parasitics or proximity effects
between neighboring transistors). So what we described in Chapter 10
is only the (impressive) beginning, actually here it looks again that the
EDA tools lead.

• Although designers have become more powerful nowadays computer
servers than ten years ago, it can easily happen that things which went
fine for many years, like doing a post-layout simulation for sign-off,
become almost impossible! For instance, if you apply RCLK parasitic
extraction on a high-performance RF 14-nm chip, it can easily happen
that the number of netlist instances is 30× above older generations! So
old topics such as parasitic reduction move much more into the focus;
and techniques need to be extended. The whole topic is not only about
modeling and simulation runtimes, of course also aspects like variation-
awareness and sensitivity matter.

• We mentioned it already, automatic techniques which exploit hierarchy
will become more important in the future. For instance, a simple flat
netlist does not contain the design hierarchy anymore, so using this netlist
as the only input might limit speed and accuracy of many algorithms
significantly. Implementing efficient divide-and-conquer strategies can
help to adopt algorithms (like statistical corner generation) for more and
more complex systems [Zou2009].

• Of course, variation-awareness is not only about analog design, also in
digital, mixed-signal and system design. It is only realistic to expect in
these wider fields much more innovation and tools. However, an first
requirement is just to connect IC design to other areas like software,
MEMS, printed circuit board (PCB) or package design, e.g., to treat
more effects like electromagnetics or self-heating, and to enable multi-
disciplinary design, variation-awareness, and optimization.

Have you ever heard this:

Problem too big, market too small!

Unfortunately, analog is often regarded as this! And indeed besides the recent
achievements, many presented in this book, one may ask whether there will
be a further real breakthrough in the next years? What could that create? And
which of the improvements are desirable?
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Improvements in Simulators. Actually this topic is not really a core
topic for variation-aware designs, but there is some progress! Several
of the newer techniques have been implemented since years, and some
of them are similar to what we can expect e.g., in statistical tools and
optimizers. For instance, matrix inversion is an n3 process—so time-
consuming, but large circuit matrix tend to be sparse, i.e., containing
many zeroes. Exploiting that, the rise in simulation time drops typically
to n1.5. In some places, life is easier for simulators, because they deal
with a limited number of device types, and the device models are usually
hardcoded. This way, the derivatives and good initial guesses for oper-
ating points are available internally—for simulators but not for circuit
optimizers. In so-called fast-SPICE simulators, adaptive modeling and
partitioning techniques have been implemented very successfully. For less
accuracy-critical digital parts, we can use simpler device models, and with
event-driven simulation, we can improve further. For regular structures
like memories, we can also speed-up by simulating one cell and take this
as representative for the other cells.

11.5.1 Enabling the Next Revolution

Inspecting all our topics again, we may ask what is in common. And what
was the reason for success e.g., for the digital design revolution, and for the
success of analog simulation? In addition, what would be the ultimate way,
the best way to work?

• Having always something that works, i.e., lowering risks.
• Knowing what to do, having clear guidance, knowing the current design

situation.
• Being able to try new ideas, being flexible!
• Do not waste time with doing almost redundant tasks again and again.

This has many similarities to what designers do anyway in existing design
environments, but also software design and object-orientation. Of course,
analog design has also these aspects and concepts already, but (historically)
there are quite many limiting factors. For instance, you can program some
of the described techniques like the CPK or Monte-Carlo with sigma-scaling
(SSS) just in very few lines of code in MATLAB or statistical packages such
as R, but translating it to a real circuit design is a big effort!

In a math package or in advanced programming languages you can treat all
numbers or even complex objects as you want, almost independent whether
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something is a number, a vector or a matrix, or a constant, a global variable,
or a parameter. Actually having full (read-write) access to all variables would
be a progress, best in combination with methods to copy or clone variables. In
addition we also need good structures or categories (like variable belongs to
class xS or to amplifier TOP.VAG.A1, or variable is user-editable or is derived
from another variable in back-end flow, etc.). Variables may have to be on a
certain grid for manufacturing (like 10 nm), have a certain valid range (like
90 nm≤L≤10 um) or a certain statistic, sometimes even constraints involving
other variables, even across the hierarchy (like OTA1.L1 = 4 · OTA2.L2). Also
some categorization based on design priorities makes sense, e.g., variable
T is important, should be part of the corner set and being checked on
sensitivity by default, or parameter wf should be optimized within ±50%
by default.

In standard design environments the flexibility is much lower, mainly
because the different tools offer different capabilities, just to execute specific
tasks, like circuit simulation, corner analysis, Monte-Carlo, etc. Often the
wheel is implemented twice, e.g., the simulator needs transistor models, but
also a sizing tool (see Figure 10.10) could use it directly as well; maybe even
with different accuracy levels like full-BSIM4 vs quadratic MOS2 vs table-
model. Having standards would make maintenance, for technology updates
much easier. Interestingly, one IEEE standard, Verilog-A/AMS, offers already
quite a nice structure for disciplines, signals, units, etc., so there is not so much
to do on top.

In the end, often the EDA infrastructure is a clear bottleneck, both the
data structures and the programming interfaces. The open-access database
OA (standard set by SI2 group [SI2]) was a step forward some years ago,
but due to the big challenges of CMOS designs below 25 nm (FinFETs,
double patterning, variability, etc.) and many others (complexity, system
design enablement), this is by far not enough. Actually a large number of
auxiliary setup files exist in parallel.

Especially the interfaces between environment and simulators are quite
limited, namely the variable setting. Actually the term “simulator” should
be treated more general, it should better stand for “solver”. Actually in a
“variation-aware centric” flow the simulator is only one solver among others.
Currently the human designer makes not only the design decisions, he/she is
also the only one who “knows” the data. Only he/she has a “good” memory,
whereas in most tools these things do not exists or they are very limited. A tool
owning the data, the variables x, and the simulation results f (x), could perform
MC, worst-case searches or optimization, etc. more efficiently, with more
re-use. It is quite realistic that future “big data” engines exploit the collected
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information even better than humans. Such tool, actually the environment,
could also “own” the status information (like design is “in-spec at nominal
conditions” or “LVS-clean and ready for postlayout verification”) and the
strategy, and in a circuit synthesis it would also make or propose decisions. At
least these advanced topics are quite hard to solve in general with point tools
only, but an environment of that complexity needs for sure a good modularity
and standards.

Due to the first EDA revolution by SPICE we have quite some standards
for models (unfortunately not well-structured) and on netlisting formats, but
already for result evaluation there is none (or too many). On its own this
is no big problem: designers just have to learn several methods instead of
one globally applicable. However, regarding further automation techniques
this, and limited tool interfaces, are a clear burden, at least for someone who
want to become a power user, or for design environment architects, who need
sometimes to go beyond the standard, like

• doing parameter fits (e.g., for process monitoring, see Figure 1.10),
• applying matrix analyses (e.g., for eigenvalues, see Figures 5.16

and 8.16),
• executing special kinds of spectral analyses (for communication

systems),
• creating special statistical plots (for risk quantification), etc.

Another requirement is for sure having more automation for these things, like
running a verification, and starting an optimizer if needed, or creating a certain
well-defined graph and putting it into a document.

A similar problem for designers, but even more for programmers, is
netlisting. There are well-defined formats, but depending on design source and
simulator capabilities the work can be cumbersome; and in the background
tricky things can happen. For instance, changing the number of segments of
a resistor can lead to a different netlist structure, and multiple parameters
(like segment length), not only the segmentation number parameter itself,
could change. These modifications are applied by callback functions, and in
some cases, like optimization or sensitivity analysis, these changes can cause
consistency problems if you forget to trigger these callbacks. Netlisting is also
a perfect example showing the limitations of pure tool-centric improvements:
Simulators can perform parameter sweeps much faster than any tool on top of
the simulator, e.g., because the simulator can directly re-use the results from the
previous simulation as starting point for the current one; and in addition there
is no file generation overhead. However, callbacks for netlisting or parameter



544 Conclusion and Outlook

constraints limit the application of simulator-internal capabilities often. So
over-all, having “variables everywhere” in a true variation-aware design flow
is very challenging.

The challenge is often in the fight between efficiency, flexibility and
user-friendliness. For instance, of course, current simulators can do a Monte-
Carlo analysis efficiently, and the setup is easy, but having more flexibility,
like applying advanced techniques (auto-stop, multivariate modeling, sorting,
worst-case distances, optimizations with restart capabilities, etc.), there is
unfortunately no standard interface at all! Actually, often analog designers
need both: very high efficiency for being able to treat many blocks and complex
problems, but they also need to be able to dig into the real details; and following
a kind of standard could be also a significant burden regarding speed. For
the CGPK or for SSS the implementation effort is quite moderate, because
simulators have built-in random number generators, but for other algorithms
(like multi-variate modeling or for using more advanced sampling methods)
efficient interfaces are often missing, and the workarounds to be taken are often
non-optimum regarding runtime and implementation effort. So whatever you
do, you often end up in a highly tool and technology specific solution, with
limited application range and performance. A more clever solution would be
having e.g., more flexible sample generators already in the general design
environment, and fast, non-file-based communication channels between the
different tools and solvers.

Actually, one way to go would be eliminating tool limitations step-by-step.
Indeed internal improvements are usually possible; e.g., often LDS generators
are applied to all included statistical variables in a PDK, but often a specific
testbench only uses a small subset. This leads to a reduced LDS speed-up,
especially in advanced technologies. Also typical environment features like
scripting by run plans are clearly helpful. Indeed beside some limitations,
plans offer a good compromise regarding user guidance, self-documentation,
and flexibility!

However, for other issues, and for solving more challenging problems,
it might be even easier to pick up directly best-practices from other fields,
like math programs or software environments. For instance, math packages
or even spreadsheet programs are already good or even perfect for comparing
different MC results, whereas EDA environments are seldom good in this,
just because this is not really a standard design task. However, limited GUI
(graphical user interface) capabilities are often indeed a problem, e.g., different
optimization results often need to be compared, even very carefully, e.g.,
regarding parameter settings and achieved performances. How else could be
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decided for the best solution? Of course, one could e.g., extend the MC features
in a certain tool, like allowing better comparisons and merging of MC results.
This way the user could for instance combine the results from two MC runs,
instead of spending much time to run a new even larger analysis from scratch.
However, in a space exploration tool owning the variables and results, these
tasks, or the merger of corner analysis results, would be a much more native
task, something available out-of-the-box without any real programming effort.
In an object-oriented environment such result merger would be as simple as
copy paste in a schematic or in a spreadsheet program, or like concatenation
in R ( just x<-c(run1,run2).

One key problem is surely that in custom design many things matter
and the programmers of EDA tools can be hardly experts in all fields, like
numerics, statistics, analog design, user interfaces, programming interfaces,
databases, versioning and issue tracking systems, distributed computing, etc.
Of course, also the pure software architecture itself is challenging for a design
environment with full variation-awareness and even synthesis capabilities.
Users need nowadays compute server support, multi-tasking, etc. for conve-
nient work, not always, but frequently. Nobody wants that the plotting window
popping up stops all other works, or that a crash due to division-by-zero leads
to data losses and a full environment restart, because nobody owns the data.

Interestingly some tasks were often easier in older environments with only
minor GUI support or even full setup by text files, e.g., it is often easier to
comment out a parameter in a textual optimization setup than doing the same
in a graphical environment. This is because in the text file, you can keep your
old setup in parallel, as comment, but in a GUI such features often require a
lot of programming by the EDA vendor. Here having more object-orientation,
powerful property editors (well-aligned with the schematic entry), profilers
and debuggers, and “information at your finger-tipps” would help a lot.

Problem too big. . . .? It would be indeed a great thing to have clearly more
joint work among researchers, between universities and EDA vendors, and
more joint company initiatives to find solutions – for a connected world, in
which IC design is definitely an essential part. Probably no more initiatives
are needed, but more long-term co-operations. Making connections is not
so easy as it looks, e.g., there are standards for postlayout simulation, but
beyond netlisting many more features are desirable, like support for design
hierarchy, re-use of simulation results (extending a MC run, applying Bayesian
techniques, etc.), selective stitching capabilities regarding EAD and LDE or
regarding different blocks, sensitivity analysis, backannotation to schematics,
cross-probing to layout, global standardized support for constraints, e.g.,
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related to layout style, electromigration and IR drop, treating technology
corners and statistics, etc.

Currently, often you can still rely on experience and anticipation, just
take the risk or accept a non-optimum design, and tape-out. However, as
the challenges are manifold, we can expect many interesting things to come.
Indeed, having synthesis in mind, or just only all the great specific IC design
techniques, it looks that, to some degree, the “automatic gap” mentioned in
our introduction, is by far not only in IC design, it is in IC design environments
too. Sometimes existing standard techniques only work to some point, and all
further features will only work with a very specific tool set. This is also because
custom IC design problems are often much more complex than anything people
do in classical math or programming environments. Often a big team needs
to work efficiently, so the focus on all EDA tools is typically much more on
achieving short enough runtimes, not so much really on flexibility, and not
that much on variation-awareness or even optimization.

However, do we really have a classical chicken and egg problem, or
too big problems? Actually not, because math is compact, powerful, and
elegant. There is no huge wild bunch which has to be implemented till
anything works. Math in itself is something quite modular, e.g., one more
math and optimization-centric environment is presented in [Jacobs2004], see
Figure 11.7.

A more recent activity from Sandia is “Dakota” (Design and Analysis
Kit for Terascale Applications, https://software.sandia.gov/trac/dakota), an
extendable environment for design exploration and optimization. It offers

Figure 11.7 Layered UML-based framework for design optimization.
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parallel-computing and many built-in algorithms, e.g., including quasi-
Newton, Pareto and surrogate-based optimizers, plus a bunch of model
generators and sampling methods for design space exploration. Obviously,
such platform is also a good attempt for system integration and for documen-
tation or reuse purposes; although of course still the devil can be in the details.
For instance, in big designs not only the simulations should run in parallel,
sometimes also the pre-processing or the pure result evaluation can take much
time.

11.6 Last Words

We expect that many described techniques, being part of a kind of “second
EDA revolution”, will remain as core algorithms, but the design environment
and tool vendors will be kept busy just to make sure that all methods work in
nowadays complex context.

We think from time to time it is interesting to check how much progress
(in research and in productive environments) we really have in analog and
mixed-signal EDA environments (Table 11.2), or e.g., in astronautics and
space flight (no table). Note, that this table is only according to the author’s
best knowledge and many features cannot be simply represented by yes
or no, e.g., yield optimization becomes more difficult if the environmental
variables are included or if the yield level is high. Also layout-awareness can
have many levels, like fully automated layout generation, inclusion of aging,
LDE and electromigration, or (practical, but much simpler) just only treating
RC parasitics without updating them in the sizing loop. For instance, already
in [Choudhury1993] an efficient method for parasitic-aware constraint-based
design has been implemented. There the layout constraints are not only
applied in simple terms like Cp< 2fF or (Cp1 – Cp2)/Cp1 < 5% (see
Section 10.3.2), but really circuit performance-based, which requires efficient
sensitivity calculations (Figure 11.8). In this flow difficult tasks can be fully
automated: critical couplings (e.g., from clock nets to an amplifier input) can
be identified, then they will be constrained, and a place and route tool can
be driven so that the constraints are kept; even shieldings can be inserted
automatically. Topology selection might be a pure selection process (easy to
program, but requiring a huge library) or could be trial-and-error (leading to
many unnecessary simulations and long runtimes), or may include advanced
construction methods.

For commercial application, the users would be typically different from
the EDA tool programmers, so many more aspects become important.
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Figure 11.8 PARCAR flow described in [Choudhury1993].

For real-world application it also makes a difference if the design is a
small 9-transistor op-amp or a real product like the 30-element LM 709 or
the uA 741, which was already the state-of-the-art in 1969! Major practi-
cal commercial problems are reliability, IP issues, user-friendliness, license
model, etc.

We have little doubt that a satisfying general analog synthesis solution is
technically possible, but the decision on how to make a business out of it is
difficult too. Should it be sold as tool, or should there be also a fee for the
output, the generated IP? Or is (only) a service model suited? [Iskander2013]
demonstrates a basically technology-independent approach at least for circuit
sizing, but having a true non-vendor-specific standard (like in the digital
domain) would be clearly helpful, because also in this schematic-centric flow
several topics are still critical, like who should be able to make adoptions for
different IC technologies and devices, for building blocks used in synthesis,
for additional performance tests, new sizing strategies, etc.?

All-in-all, realistically, there is little chance for a real breakthrough
“event” in analog synthesis, as the introduction of SPICE was for circuit
simulation, or as the availability of advanced variation-aware environments
is (e.g., [McConaghy2013, Zhang2016]). People like great operas, stories and
personalities, but actually it is more realistic that no hero or good-talented
individual, but a long or mid-term hard working team will enable the next
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bigger step, plus picking up many ideas and implementations available in the
industry (not necessarily the silicon industry).

Wer meines Speeres Spitze fürchtet, Whosoever fears the tip of my spear

der durchschreite das Feuer nie! shall never pass through the fire!

In military, any mistake at the beginning, means dead people at the end. So
IC designers are anyway already now in a much more comfortable situation;
it is mostly only about time and money. Of course scientists are fearless, and
mathematicians even more, so some people will probably pass the wall, the
ring of fire, created by the loopy demigod Loge.

Problem too big? Or not urgent enough? Indeed chip design is a 50-year
success story. Often it is a matter of just doing it, take all your experiences,
anticipate the challenges, specify, and execute. If something becomes too
difficult, you often have fallback solutions, or just a certain feature will
not be implemented. So chip design is often more about dealing with
complexity, and following rules, but not so much about optimize, and
optimize again. So there are frameworks for advanced multidisciplinary
optimization, but even in this context construction methods are often
working fine, i.e., optimization or even co-optimization (like thermal and
electrical) of different parts like chip, packaging, and board is usually quite
an exception, related to the most challenging parts. Regarding variations
the situation is similar: There are standard techniques like corner and MC
analysis, high yield methods, contribution analysis, etc., so the benefit of
having “more” is limited for many parts of the design.

In conclusion, there are also good reasons for a big diversity in EDA
tools, for advanced techniques and addressing a variety of applications,
and actually having many highly optimized software solutions, instead of
one-fits-all.
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Web Resources

We present here only a short list, which does not reflect any preferences.
Although such list of links can be hardly complete, we feel that indeed a lot of
useful technical material is accessible this way, from non-commercial pages,
but also from the EDA vendors, and others. Note, that deep links may change
from time to time, but in such cases it is usually still to get the data with a
search engine.

For math topics Wikipedia is generally a good starting point, here are few
examples regarding optimization and kernel density fitting:

BFGS: http://en.wikipedia.org/wiki/BFGS method
Conjugate Gradient: http://en.wikipedia.org/wiki/Conjugate gradient
method
Brent-Powell: http://en.wikipedia.org/wiki/Powell%27s method
Hooke-Jeeves: http://en.wikipedia.org/wiki/Pattern search (optimization)
KDE: https://en.wikipedia.org/wiki/Kernel density estimation

General Design Resources

General Circuit Design, Design IP, etc.:
https://www.semiwiki.com
https://www.semiwiki.com/forum/content/1673-brief-history-rtl-design.html
https://www.chipestimate.com/
http://www.design-reuse.com

Design in New Technologies, Layout-Awareness, etc.
http://www.techdesignforums.com/practice/technique/lde-layout-dependent-
effects-fly
http://www.techdesignforums.com/practice/technique/five-key-challenges-20nm-
custom-design/
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http://www.analog-eetimes.com/news/electrically-aware-design-can-speed-ic-
design-flow/page/0/1
http://www.eetimes.com/document.asp?doc id=1280068

Silicon Foundries:
[TowerJazz], e.g., for material on constraint http://towerjazz.com/pdf/Cadence
TGS.pdf
Taiwan Semiconductor Manufacturing Company: http://www.tsmc.com/
United Microelectronics Corporation: http://www.umc.com
Ams: http://asic.ams.com/
xfab: http://www.xfab.com/
GLOBALFOUNDRIES: www.globalfoundries.com

Synopsis:
http://http://www.synopsys.com
http://www.synopsys.com/Community/SNUG

Silvaco:
[SilvacoVM] http://www.silvaco.com

Cadence Design Systems:
https://www.cadence.com
https://community.cadence.com
https://www.cadence.com/content/cadence-www/global/en US/home/services/
cadence-academic-network.html

Material Directly Related to Custom Design:
[Dennison2010] Ian C. Dennison, M. Baker, B. Arsintescu, D. J. O’Riordan,
System and method enabling circuit topology recognition with auto-
interactive constraint application and smart checking, US Patent 7735036 B2,
published 2010.
[Cadence2014]
https://community.cadence.com/cadence blogs 8/b/cic/archive/2014/04/02/
mismatch-contribution-analysis-in-ade-gxl
[CadenceVVO]
https://www.cadence.com/content/dam/cadence-www/global/en US/documents/
tools/custom-ic-analog-rf-design/virtuoso-variation-option-ds.pdf
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[CadenceAdvNodes]
https://www.cadence.com/content/dam/cadence-www/global/en US/documents/
tools/custom-ic-analog-rf-design/monte-carlo-analysis-at-advanced-nodes-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en US/documents/
tools/custom-ic-analog-rf-design/virtuoso-plan-based-analog-verification-wp.pdf
[CadenceVerif]
https://www.cadence.com/content/dam/cadence-www/global/en US/documents/
tools/custom-ic-analog-rf-design/virtuoso-plan-based-analog-verification-wp.pdf
[Liu2015] Hongzhou Liu, Wangyang Zhang, Device mismatch contribution
computation with nonlinear effects, US Patent 8954910 B1, published 2015.
[Liu2013] Hongzhou Liu, Hui Zhang, Statistical corner extraction using
worst-case distance, US Patent 8589852 B1, published 2013.
[CadenceWCC]
https://community.cadence.com/cadence blogs 8/b/cic/archive/2014/02/24/what-s-
the-worst-that-could-happen

MunEDA:
https://www.muneda.com
https://www.muneda.com/User-Group-Meetings

Solido:
http://www.solidodesign.com

Mentor Graphics:
https://www.mentor.com
https://www.mentor.com/products/ic nanometer design/blog

Intento Design:
http://www.intento-design.com

Thalia Design Automation:
http://www.thalia-da.com/

Miscellaneous, Universities, Organizations, etc.:
[Iastate]
https://wikis.ece.iastate.edu/vlsi/index.php/MonteCarlo Simulations using
ADE XL
[VeronA] https://www.edacentrum.de/projekte/VeronA
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[SI2] http://projects.si2.org/?page=621
[Deepchip2014] http://www.deepchip.com/items/0541-07.html

Math Resources

General Math:
R Archive: https://cran.r-project.org/
Online Statistics Education: http://onlinestatbook.com/2/estimation/
confidence.html
http://www.wolframalpha.com/input/?i=3d+plot
http://www.mathopenref.com/quadraticexplorer.html
http://www.math.uri.edu/∼bkaskosz/flashmo/contours/combo.html

General Statistics and Confidence Intervals:
http://ion.chem.usu.edu/∼sbialkow/Classes/3600/Overheads/Stat%20Narrative/
statistical.html
http://statpages.org/confint.html
http://www.danielsoper.com/statcalc3/calc.aspx?id=85
https://www.coursehero.com/sitemap/schools/2623-University-of-Toronto-Toronto/
departments/451922-STATS/

Eigenvalue Analysis and Correlation:
http://www.arndt-bruenner.de/mathe/scripts/engl eigenwert2.htm
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Sampling Techniques and Misc:
Nice articles and downloads related to sampling methods like Poisson sam-
pling are available e.g., under http://www.coderhaus.com/?p=11, at http://
devmag.org.za/2009/05/03/poisson-disk-sampling and https://www.jasondavies.
com/poisson-disc

A lecture on sampling & rendering (Computer Graphics, CMU 15-462/
15-662, Spring 2016): https://www.cs.cmu.edu/∼15462

Here you can find links and resources related to advanced sampling methods:
http://marcoagd.usuarios.rdc.puc-rio.br/quasi mc.html
https://spacefillingdesigns.nl

Here is a Matlab tutorial on Gaussian process modeling, suitable for
performance modeling, worst-case searches, global optimization, etc.
https://www.mathworks.com/help/stats/gaussian-process-regression-models.html
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Optimization:
Evolutionary Multiobjective Optimization: http://delta.cs.cinvestav.mx/∼ccoello
/EMOO/

Universities with Excellent Online Material:
University of Florida, Prof. Dr. Nam-Ho Kim: http://www2.mae.ufl.edu/nkim/
Courant Institute of Mathematical Sciences: https://www.cims.nyu.edu/
MIT Engineering Systems Division: https://esd.mit.edu/about.html

Miscellaneous Math-Related Webpages:
JMP (popular general statistical software): http://www.jmp.com
Vose Software (risk analysis): http://vosesoftware.com
Mathworks/Matlab (popular math software): http://www.mathworks.com
Sandia Dakota (a Design and Analysis Kit for Terascale Applications):
https://software.sandia.gov/trac/dakota
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Software to the Book

For educational purpose, we add two free RealTime applications to comple-
ment our book. For instance, in a book, we can usually explain something,
present a formula, and give an example, maybe some numbers, as table or
graph. However, often you would need other example parameters or the
formula might include a function which is not part of your pocket calculator.
For such case and also to explain Monte-Carlo and optimization in general,
you can start the apps on your Windows PC and get a kick-start to both topics.
This way you can also get support for the questions and answers we present
in several chapters—interactively and in real time.

Experience is helpful in analog design! Doing simulations can also extend
experiences, but unfortunately both statistical analysis and optimizations can
be very time-consuming. Therefore, often designers are just happy to run a
100-point MC analysis on a bigger testbench, inspect the results quickly, but
often they are not aware on how large the statistical variations really are! Here
it would be extremely helpful a run, e.g., 50 further MC analyses with 100
points, each with different seed values, and just to compare the different MC
results quickly. Unfortunately, in real-world designs and design systems, this
is usually impractical because often already a single 100-point MC analysis
may take some hours; often you get no support at all for calculation across
many different MC results!

Actually, each of your circuits is a kind of “distribution generator,” or
even a distribution inventor! And you can collect much experience by running
different circuits and looking to different performances. Also the inspection
of different just “mathematically” defined distributions (like log-normal,
Student-t, Weibull, Cauchy, Gaussian mixes), e.g., with different number of
MC points or different distribution parameters (like the degree of freedom as
parameter of the Student-t distribution), is helpful and makes some fun. So
supporting this kind of learning-by-doing is one key feature of our auxiliary
software to the book! For instance, we explained that estimates for yield,
mean, and sigma do not depend on design complexity, and this means you
can transfer your experience on how many number of MC points you need
one-to-one to any real design setup!

The 2nd RealTime app addresses optimization, and here we have a similar
problem. In addition, it is sometimes hard for a designer to understand what
an optimizer is really doing or to get a feeling how long an optimization will
take. So we created an app executing some optimizations using the famous
BFGS quasi-Newton algorithm, most of the built-in examples are related
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to RF design, and we optimize for up to eight variables. We also included
some classical optimization problems like on a pure quadratic function or on
Rosenbrook’s “banana” function. You can execute the optimization, e.g., for
a matching network, and inspect many optimization details to really see how
the optimizer works, like how quickly the gradient becomes smaller, or which
variables get optimized first or how different starting point impact the final
solution—and much more. Also global optimization is demonstrated on the
famous problem of the traveling salesman. Here simulated annealing is used
and the user can even start a Monte-Carlo analysis on top of the optimization.
This makes sense, because the result of such a stochastic optimization depends
a little bit on chance. For global optimization, there is almost no guarantee to
find the true optimum!

Disclaimer: Both apps run on Windows PCs and are tested under
Windows XP, Windows 7, and Windows 8. You should have admin
permissions and also read—write permissions for the working directory.
The programs include algorithms very similar to the one found in many
benchmarks, being integrated to EDA custom IC design environments,
math packages, etc. They are created for educational purpose, and we
give no warranty on the results.

The newest program versions are available under http://www.riverpublishers.com.
Download the zip-file and unzip in your target directory. No need for an
installation program.

Statistical Program RealTime MC

The program file name is MC.EXE, and you can start it via double-click from
the Windows Explorer. A detailed documentation with tutorial is available as
separate PDF file.

Optimization Program RealTime Match

The program file name is ANPASS.EXE and you can start it via double-
click from the Windows Explorer. A detailed documentation with tutorial is
available as separate PDF file.
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