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Preface

Artificial Intelligence for Digitising Industry – Applications

Industry 4.0 has revolutionised the manufacturing sector by integrating
several technologies, including cloud computing, big data, and cyber-physical
systems. The goal of Industry 4.0 is to make the manufacturing industry
“smart” by integrating machines and equipment that can be monitored and
controlled throughout the life cycle.

Industry 5.0 extends technological advances to further facilitate
intelligent machine-machine and human-machine collaboration. The goal
is to combine the speed, precision, repeatability, and replicability of the
operation of machines with the vision, decision-making, and critical and
cognitive thinking of human beings. Industry 5.0 can significantly increase
the efficiency of manufacturing by extending the use of AI technologies
to create a versatile connection between humans and machines, enabling
constant monitoring and interaction. This collaboration will enhance the
speed and the quality of production by assigning repetitive tasks to intelligent
robots and other machines and fostering critical thinking by human beings.
Industry 5.0 is characterized by the convergence of technologies and
integrates the industrial internet of things (IIoT) with AI-based solutions and
digital twins to connect physical and virtual manufacturing environments.
This convergence makes possible physical and virtual simulations and
operating environments in which models based on predictive analytics and
managed intelligence enable faster, more accurate and precise, and more
reliable decisions. This approach may also provide greener solutions than
those of current industrial facilities: end-to-end, environmentally friendly
manufacturing solutions with a minimal CO2 footprint.

AI is transforming industrial environments. Edge-based AI technologies
mitigate operational risk, improve the safety and efficiency of manufacturing,
optimise processes, and form more reliable and sustainable manufacturing
facilities. Adopting AI technology across industrial sectors enables more
accurate prediction of anomalies and malfunctions, better management of

xix



xx Preface

resource consumption, and optimising of manufacturing processes. Artificial
intelligence is expected to significantly impact global manufacturing and
industrial development. Integrated with other technologies - like intelligent
sensors, IIoT, digital twins, edge computing, augmented reality, intelligent
wireless and cellular connectivity - AI optimises production in real time and
facilitates vertical, horizontal, and end-to-end integration.

AI industrial applications harness artificial intelligence to enhance
efficiency and sustainability while expediting digital transformations. By
applying AI, machine learning, and deep learning, manufacturers can
advance operational efficiency, dynamically control, and adapt product lines,
customise product designs, and plan technological developments.

This book explores the research, practical results, and exchange of
ideas between the representatives of forty-one organisations participating in
the AI4DI project to develop the technological community. The concepts
presented herein reflect interaction with other European and international
projects addressing the research, development, and deployment of AI, IIoT,
edge computing, digital twins, and robotics in industrial environments to
strengthen and sustain a dynamic AI technology ecosystem. These concepts
and research results shed light on steps in the evolutionary transition to
Industry 5.0. The focus is on five industries: the automotive, semiconductor,
industrial machinery, food and beverage, and transportation industries.

The AI4DI project is part of the Electronic Components and Systems for
European Leadership Joint Undertaking (ECSEL JU) programme, and the
applications and technologies developed by the project partners support the
digital transformation of the industry. They are aligned with the priorities of
the new European partnership for Key Digital Technologies (KDT). KDT
aims to provide innovative electronic components and systems, software,
and smart integration to digital value chains, providing secure and trusted
technologies tailored to the needs of user industries and citizens to support
and reinforce Europe’s potential to innovate. The goal is to develop and apply
these technologies to address significant global challenges in mobility, health,
energy, security, manufacturing, and digital communications.

The alignment between research, innovation, and industrial policies
by using collaborative approaches in mastering the drivers of innovation
contributes to and strengthens Europe’s scientific and technological bases.
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1.0
AI Reshaping the Automotive Industry

Daniel Plorin

AUDI AG, Germany

Abstract

This introductory article opens the section by giving an overview of
the state-of-the-art Artificial Intelligence (AI) technologies in automotive
manufacturing and the current AI development in areas such as quality
optimisation and analytics and predictive maintenance. It presents future
potential and opportunities for AI in the automotive manufacturing sector,
covering trends of using AI, industrial internet of things (IIoT) and
robotics technologies in production and logistics optimisation, quality,
and maintenance. Finally, the article introduces the five contributions to
this section, highlighting the use of AI and IIoT in various scenarios
in automotive manufacturing processes and challenges and technological
advancements.

Keywords: artificial intelligence (AI), industrial internet of things
(IIoT), automotive production, automotive logistic, optimisation, predictive
maintenance.

1.0.1 Introduction and Background

The automotive industry and its production and logistics processes
are a complex network that must implement high planning, operation,
quality, and security processes. To handle this complexity and ensure
high productivity, processes have been optimised for several decades of
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technological developments. The development of highly networked systems
and intelligently supported processes offer a new era in automation
and process optimisation. With the more recent developments in AI,
new opportunities are being established to implement productions more
efficiently, humanely, and with higher quality. Finally, AI also helps to make
the processes and production systems more flexible and modular because the
intelligence of the control system is implemented deeper into the individual
production processes [1].

1.0.2 AI Developments and Future Trends for AI
Technologies in Automotive Industry

The weak and light AI process already supports planning and production.
Bots can trigger demand mediation; camera systems ensure the quality of the
products, or intelligent algorithms optimise the demand control for the line
supply. With the consistent implementation of sensors at the plant level, their
intelligent and fast networking via service bus systems and the analysis of
relevant data and AI algorithms, a new quality of data transparency and value
is created. The development of core functions in the automotive industry
processes through AI capabilities is presented in Figure 1.0.1.

Figure 1.0.1 Further development of core functions in the processes of the automotive
industry through AI capabilities [1].
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This makes it possible to react to process and quality problems earlier or
to automate the right decisions for the next process steps proactively. The use
of new systems that automate routine tasks allows people to concentrate on
the actual competencies of their function in the production system and being
assisted by the intelligent system. In the past few years and during the AI4DI
project, three essential AI topics have frequently emerged in the automotive
industry: operational, prediction and detection intelligence. These topics are
currently primarily developed and used in the productions and logistics of the
automotive industry. A short description of these topics is given below.

• Operational intelligence relates to real-time dynamic process analytics
that delivers visibility and insight into machines, process-generated data,
streaming events, and business operations. These solutions run queries
against streaming data feeds and event data to deliver analytic results
as operational instructions. This provides the ability to make decisions
and immediately act on these analytical insights through manual or
automated actions.

• Prediction intelligence refers to solutions that use the knowledge gained
from operational intelligence to determine the effects of real-time data
using autonomous methods in forward-looking time series. Predictions
are made regarding the behaviour of the process, or the product based
on the learned historical comparisons.

• Detection intelligence addresses solutions that autonomously show
deviations and abnormalities to defined as well as learned target states.
These use various sensor technology options such as camera systems,
sound sensors or other proximity sensors to detect objects, compare
them with the system, and make statements about their condition.
Sensing for object and status detection can be done by different senses –
e.g., visually, acoustically, and sensitive.

Relevant AI technologies and methods for the implementation are
suitable data clustering processes, neural networks, and intelligent sensing.
Accordingly, ML and deep learning are essential areas of development,
whereby physical objects play a significant role and process data that predict
system behaviour. Therefore, pre-processing of the data with clustering
algorithms (Gaussian mixture / K-Means) and time series prediction and
anomaly detection with neural networks are primary fields of action to
be further developed and implemented. However, the greatest challenge
in the implementation is the secure integration in the clocked and
complex processes, which must not be interrupted under any circumstances.
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Implementing this in a wide-ranging legacy systems environment requires
extensive protection and standardisation of the interfaces needed to
source systems and sensor levels. Predictive maintenance and quality
management represent an essential field of currently practical and efficient
AI solutions.

1.0.3 AI-Based Applications

AI4DI project partners are developing AI and IIoT technologies with
applications in different areas of the automotive industry sector, as illustrated
in Figure 1.0.2.

The articles included in this section cover several demonstrators and
actionable insights into how AI and IIoT are used in the automotive process
and product applications. A brief overview of the articles in this section are
presented in the following paragraphs.

The article “AI for Inbound Logistics Optimisation in Automotive
Industry” addresses the challenges of the inbound supply process on
production sites in the automotive industry (such as volatile supply chains)
and argues for the use of AI- technology to manage its complexity and ensure
the making of the right decisions in critical areas. A demonstrator use case of
design and implementation of a Material Planning Decision Support System
is presented, operating in the production site and attempting to optimise the
complete inbound logistics process. The challenge is to fuse information
dynamically from all sources into a single dataset and integrate it with user

Figure 1.0.2 AI4DI – Development of AI solutions addressing different approaches [2].
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requirements specified as short user journeys and label and integrate human
experience-based knowledge for alternative courses of action.

The article “State of Health Estimation using a Temporal Convolutional
Network for an Efficient Use of Retired Electric Vehicle Batteries within
Second-Life Applications” addresses the need for state-of-health estimation
algorithms to ensure safe and efficient usage of retired electric vehicle
batteries (lithium-ion batteries) within second-life applications and proposes
a data-driven approach, capable of overcoming the drawbacks of traditional
less-robust estimation algorithms. The novel machine learning algorithm
is based on a temporal convolution network and can deal with the highly
nonlinear dependence on the changes of environment and working conditions
during the operation. The network has been trained and tested with data
gathered from commercial industry applications in energy storage, and the
results show that it can predict the state of health with high accuracy.

The article “Optimising Trajectories in Simulations with Deep
Reinforcement Learning for Industrial Robots in Automotive Manufacturing”
presents a proof of concept for the applicability of reinforcement learning for
industrial robotics by demonstrating a use case on automatic generation and
optimisation of trajectories for applying the sealant material on car bodies (to
prevent water intrusion and hence corrosion) using industrial manipulators.
The Markov Decision Process (MDP) formalisation of an agent to reduce the
amount of manual work involved in offline programming shows promising
results. The methodology is yet to be verified and validated by comparing
the agent solution with the hand-crafted trajectories and various degrees of
involvement of human experts.

The article “Foundations of Real Time Predictive Maintenance with
Root Cause Analysis” addresses the importance of autonomous systems to
be equipped with a detection system to observe faulty behaviour in real
time and predict failing operations. To avoid critical scenarios, finding the
corresponding root cause is essential; hence, the focus of the article is on
discussing the foundations behind diagnosis, i.e., the detection of failures and
the identification of their root causes in the context of predictive maintenance.
The article also explores the applicability of various diagnostic algorithms
in real-time simulation environments, particularly artificial intelligence
methods, including model-based diagnosis, machine learning and neural
networks.

The article “Real-Time Predictive Maintenance – Model-Based,
Simulation-Based and Machine Learning Based Diagnosis” addresses the
importance of autonomous systems to be equipped with a detection system
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to observe faulty behaviour in real time and outline its root cause. The
underlying background is presented in a previous article “Foundations
of Real Time Predictive Maintenance with Root Cause Analysis”. This
article explores the applicability of various diagnostic algorithms in
real-time simulation environments. A simplified DC motor model with
fault injection capability was developed, and three diagnostic methods
(model-based, simulation-based and machine learning) were employed. The
measurements have been compared, limitations identified and conclusions
drawn. Preliminary results are promising, but more work is needed to address
the challenges of efficiency and reliability of the diagnostic solutions.

The article “Real-Time Predictive Maintenance – Artificial Neural
Network Based Diagnosis” addresses the importance of autonomous systems
to be equipped with a detection system to observe faulty behaviour in real
time and outline its root cause. The underlying background is presented in
a previous article “Foundations of Real Time Predictive Maintenance with
Root Cause Analysis”. A second article “Real-Time Predictive Maintenance
– Model-Based, Simulation-Based and Machine Learning Based Diagnosis”
explores the applicability of three diagnostic methods in particular (model-
based, simulation-based and machine learning) on a simplified DC motor
model with fault injection capability. This article explores yet another method
– artificial neural network (ANN) diagnostics – and its applicability with
two use cases, one using an acausal six-phase e-motor model to simulate
faults and the other for fault detection based on vibration measurements. Both
simulation and measurement data are used for the ANN training. Two ANNs
were designed, one for behaviour diagnosis and the other for the vibration
sensor’s microcontroller. Preliminary results are promising; the method can
be applied to edge devices and can be implemented in real-time predictive
maintenance applications.
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1.1
AI for Inbound Logistics Optimisation in

Automotive Industry

Nikolaos Evangeliou1, George Stamatis1, George Bravos1,
Daniel Plorin2 and Dominik Stark2

1Information Technology for Market Leadership, Greece
2Audi AG, Germany

Abstract

Artificial intelligence (AI) is playing an increasing role in the logistical
aspects of a production site in an automotive industry. The pre-calculation
of critical situations in the delivery of parts to the supplier network faces
increasing disruptions which have an impact on delivery reliability. The
planning and control processes are currently implemented by employees
and consequently causes a lot of effort and sometimes incorrect decisions
which are mostly based on the experiences of employees. The processing
and learning AI component will assess the disruption risk caused by natural
disasters such as earthquakes, hurricanes or through manmade political
or social actions such as strikes and propose countermeasures and assure
material availability. Automatic and permanent screening of external sources
(newsfeed, weather forecast, traffic situation) determine potential influence
of road conditions, natural disasters, strikes etc. on the expected reliability
of material replenishment. Finally, the processing and learning component
will assess different countermeasures based on a machine learning algorithm,
which will be feed with data collected from the sensing component.

Keywords: artificial intelligence (AI), inbound logistics, optimisation,
machine learning, real time analytics, data fusion bus, decision support
system, scikit-learn.
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1.1.1 Introduction and Background

The focus of demonstrator use case in AI4DI is the design and
implementation of a Material Planning Decision Support System (MPDSS)
that operates in an automotive production site and aims to optimize the
complete inbound logistics process. Towards this direction, the work centres
around the employment of advanced data-driven methods to collect and
consolidate all relevant information and to use it for the identification of
critical parts in the supply of AUDI’s production lines.

This information refers to AUDI’s internal data and information, AUDI’s
partner data and information (e.g., OEM’s supplier’s stock levels), public
data information (e.g. weather conditions/forecast, road condition), as well
as historical decisions and recommendations in similar situations. Finally,
the MPDSS evaluates all possible measures for securing part supply via
assessing all available data and collecting decisions and recommendations,
and autonomously prioritises the applicable measures. Part autonomy is
only delivered during decision on any critical part, as the user can always
take the final decision of which countermeasure to apply based on given
assessment parameters (e.g., cost, efficiency, CO2 footprint, etc.). While the
data collection (from local and publicly available sites) occurs at the edge,
decision support offered by the MPDSS occurs at the cloud side. Training
and inference of the ML algorithms happens centrally in the cloud. The AI
methodology to follow is supervised training, with the main challenges being
the learning prediction.

1.1.2 Requirements – User Journeys

The user requirements of the MPDSS will be presented below as short user
journeys.

Data Collection and Consolidation: The MPDSS should make use of
all available information to identify critical parts, while minimising the
necessary actions for the manual collection and consolidation of data.

This is achieved by collecting (i) AUDI’s internal data and information;
(ii) AUDI’s partner data and information; (iii) Public data and information
(e.g. weather information, political situations affecting road conditions, etc);
and (iv) decisions and recommendations.

Identification of critical parts: The MPDSS should show only those parts
that are critical enough to cause a supply bottleneck in the production line.
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To achieve this, the system should provide the best possible assessment of
criticality by (i) categorising parts and determine critical ones; (ii) prioritising
them according to supply capability (how probably it is to obtain this part
on time); (iii) visualising critical parts and relevant background information
(based on historical data).

Recommendation of measures: The MPDSS should leverage optimisation
algorithms to prioritise the different applicable measures for securing part
supply and recommend the best-suited measure, taking into consideration
certain parameters (e.g., cost, effectiveness, CO2 footprint).

Autonomous decision making: The MPDSS should autonomously decide
which measures are applicable based on given conditions that can be defined
by the user either in advance or after the user visualises the suggested
countermeasures (partly autonomous decision making). This feature gives a
flexible definition of conditions.

Continuous improvement: The user should be able to rate the
recommendations given by the MPDSS and this rating should be used to
improve the AI routines of the system in the future. This is achieved by
comparing user’s decision with MPDSS best-fit recommendation (when part
autonomous operation).

1.1.3 Data Flow Principles and Architecture of the MPDSS

In this envisioned MPDSS, the data flow is depicted [1] in the following data
flow diagram. A streaming platform collects information from AUDI internal
data sources (such as warehouse databases) and external data streams (such
as weather APIs, traffic condition APIs etc), and all information is fused

Figure 1.1.1 High level data flow diagram.
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dynamically in a single dataset. To account for emergency situations such
as traffic conditions or natural disasters, this dataset should be updated and
queried continuously, so that decision support and alerting is provided in a
real-time manner.

The Data Fusion Bus (DFB) is well-suited to account for the need of
providing real time Machine Learning analytics. Brief reference to DFB and
its rationale has been made below. DFB enables organizations in developing,
deploying, operating, and managing a big data environment with emphasis on
real-time applications. It combines the features and capabilities of several big
data applications and utilities within a single platform.

The key capabilities of DFB [2] are:

• Real-time monitoring and event-processing, semantic fusion of events
not coinciding in time.

• Data aggregation from heterogeneous data sources and data stores.
• Real time analytics, offering ready to use Machine Learning algorithms

for classification, clustering, regression, anomaly detection.
• An extendable and highly customizable Interface REST API (and

web app) for configuring analytics, manipulation, and filtering. It also
includes functionality for managing the platform.

The technical architecture of MPDSS [3] will be a combination of well-
known opensource tools and proprietary modules. ITML will leverage its
in-house developed Data Fusion Bus, as depicted in Figure 1.1.2 below.

The main building blocks of the architecture are:

• Support for multiple data streams and data stores: Readily available
interfaces are in place that allow for data acquisition for all well-
established Relational Database Management System (RDBMSs), data
streams (using MQTT), NoSQL databases, shared filesystems (HDFS
Hadoop [4]. This functionality is supported by Kafka [5].

• Data Fusion Bus, comprised of the following sub-modules: (i) The
Streaming Core of the platform is Apache Kafka. It relies on Kafka ‘s
distributed messaging system to provide high fault-tolerance (Resiliency
to node failures and support of automatic recovery) and elasticity - high
scalability; (ii) Internal Store and Search Engine: When persistence of
data within the platform is required, the Elastic stack (Elasticsearch and
Logstash) is utilized. Data may flow either through Kafka connectors
(usually in cases of stream data) or may be directly imported to
Elasticsearch [6]. Elasticsearch also provides provide high fault-
tolerance and scalability; and (iii) Identity management, authentication,



1.1.4 Preliminary Analysis of Data and Dataset 15

Figure 1.1.2 MPDSS architectural diagram.

authorization and accounting mechanisms that enhance the security
of the platform. Moreover, the security mechanism includes dataset
encryption and anonymization.

• DFB Analytics Engine supports batch processing and stream
processing with Apache Spark [7], Kafka Streams & KSQL, Spark
Streaming and python scikit-learn [8]. DFB can be used to perform
supervised (classification and regression with algorithms such as
RandomForest or neural networks) and unsupervised Machine Learning
algorithms (e.g Clustering with Kmeans).

• DFB Core is responsible for providing business logic and managing
all the data flows. It is a custom REST API (based on Java Spring).
It exposes a configurable set of web services for providing Decision
Support to external systems and managing/monitoring the whole
platform.

1.1.4 Preliminary Analysis of Data and Dataset

Advanced data analysis will be applied in a dataset to detect critical parts
(using a binary classification algorithm that return “1” when a part is critical
and “0” when it is not), then assess and recommend countermeasures again
based on calculations from input data, and finally perform decision making
and take into consideration the final decision of the user for continuous
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improvement. There is also consideration into extending the classification of
parts into three classes: non-critical, critical and very critical part.

A preliminary analysis of that dataset to explore possible correlations
among the various fields and the suitability of different machine learning
algorithms has been performed. While this dataset is considered too small for
reliable outcomes, some initial results and the methodology used is presented
below.

1.1.4.1 Data Pre-processing and Visualisation

Data Understanding using descriptive statistics: Quantitative summary of
raw data received as input using measures of central tendency and measures
of variability. This process allows the identification of distinct values for each
field and the distribution for the numeric values.

Handling missing values: If missing values are not handled properly an
inaccurate inference about data might be drawn. Columns which had no
values were removed.

Feature selection: Processing of input variables to select features with
optimal contribution to the target variable. Removing redundant data helps
in reducing data noise and improves model accuracy. This step is achieved
with visualisation tools aiming at the detection of highly correlated variables.

Continuous vs categorical feature detection: Automatically identify which
features are categorical and convert original values to category indices. This
process improves the efficiency of the machine learning algorithms.

Categorical feature encoding: Transforming categorical variables to
numbers by mapping each category to a binary vector denoting the presence
or absence of the feature. This process also improves the efficiency of the
machine learning algorithms.

1.1.4.2 Classification Models

Four different machine learning algorithms (Multilayer Perceptron Neural
Network, Random Forest, Gradient Boosted Tree and Decision Tree) were
used on the sample data. In every case 70% of the dataset was used for the
training of the algorithm and 30% for testing. The model using the multilayer
perceptron neural network had the higher accuracy. Other algorithms
can be used in the future if needed as well. The results are presented
below [9].
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Figure 1.1.3 Multilayer perceptron neural network results.

Figure 1.1.4 Random forest results.

Multilayer Perceptron Neural Network achieved an accuracy score of
over 90% based on cross-validation results (Figure 1.1.3 and Figure 1.1.4).
The confusion matrix that summarizes the proportion of correct vs incorrect
classifications is as follows:

Figure 1.1.5 Gradient boosted tree results.
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Figure 1.1.6 Decision tree results.

Gradient Boosted Tree achieved an accuracy score based on cross-validation
results (Figure 1.1.5). The confusion matrix that summarizes the proportion
of correct vs incorrect classifications is as follows:

Decision Tree achieved an accuracy score based on cross-validation results
(Figure 1.1.6). The confusion matrix that summarizes the proportion of
correct vs incorrect classifications is as follows:

1.1.5 Conclusion

The inbound supply process in the automotive industry is a complex structure
of the availability of required material, calculable risks and unpredictable
events which have a direct influence on the entire value added in the
production of the vehicles but also on the supporting value creation processes.
Dealing with these events and making the right decisions poses major
challenges for every automotive manufacturer and supplier, especially since
the supply chains in an international network of manufacturing units are very
volatile. In this big data environment, artificial intelligence offers excellent
technology to make this complexity manageable and to make the right
decisions in critical areas. With the MPDSS system and the underlying
architecture, the first major progress can be achieved at an early stage
of implementation. The greatest challenge here is the integration of the
right data with all the requirements described as well as the labelling and
integration of human experience-based knowledge for alternative courses of
action.
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Abstract

This paper presents an accurate state of health (SOH) estimation algorithm
using a temporal convolutional neural network (TCN) for lithium-ion
batteries (LIB). With its self-learning ability, this data-driven approach can
model the highly non-linear behaviour of LIB due to changes of environment
and working conditions all along the battery lifetime. The precise SOH
predictions of the TCN are especially needed to ensure a safe and efficient
usage of retired electric vehicle batteries within second-life applications. The
provided network is trained and tested with data gathered from commercial
industry applications in the domain of energy storage. It is shown, that even
for dynamic load profiles, the TCN achieves a mean squared error (MSE) of
less than 1.0 %. Using this approach, the uncertainty of the heterogeneous
performances and characteristics of retired electric vehicle batteries can be
drastically reduced.

Keywords: lithium-ion battery, battery management system, state of health,
second-life, artificial intelligence, temporal convolutional neural network,
retired electric vehicle battery, stationary battery system.
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1.2.1 Retired Electric Vehicle Batteries for Second-Life
Applications

According to the Paris Agreement signed in 2016, over 190 countries
agreed to reduce their greenhouse gas emissions by at least 40 % until
2030 compared to 1990. To attain this objective, the usage of fossil
fuels has to be drastically reduced, which is one reason why renewable
energies are coming to the fore. For efficient and sustainable utilization
of these intermittent energy sources, reliable and safe energy storage is an
indispensable prerequisite. The lithium-ion battery (LIB) technology, with
its high conversion efficiency, provides an efficient solution as dynamic
energy storage. Thus, lithium-ion battery technology is a promising solution
for sustainable transportation if the required energy comes from renewable
energy resources. However, due to demanding operating conditions, an
electric vehicle (EV) battery loses capacity and power over its lifetime.
Typically, after 8 to 10 years of service, those batteries are retired due to
capacity fade and power output that fails to meet range and performance
requirements of modern EVs. In general, a retired battery of an EV can
still provide 60-70 % of its initial energy storage capability at the end of its
vehicular life. In Figure 1.2.1, three prognoses of retired EV battery packs are
shown.

Figure 1.2.1 Retired electric vehicle (EV) battery packs prognosis in GWh per year [2][3].
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According to IDTechEx research [2], by 2030 there will be over 6
million battery packs retiring from EVs per year. Since those batteries could
contain 60-70 % of their initial energy storage capability, they can be further
utilized in less-demanding applications such as stationary energy storage.
However, there are still many challenges that have to be tackled in order
to ensure a safe and economically valuable usage of retired EV batteries in
second-life applications. In the following, four main challenges of second-life
applications are described according to [1].

First, the competitiveness of second-life batteries with new generations
of batteries is a big challenge. It is likely that when the worn-out EV
batteries that are taken out of the car and could be used for second-life
applications, there will be new generations of batteries with better quality
and performance and at a lower price. Thus, the economical exploitation
of second-life batteries will become even more challenging, while the CO2

footprint of the battery manufacturing industry will have to be considered
globally over the whole life-cycle. As a result, the cost competitiveness and
the attractiveness of second-life batteries would be decreased, but the impact
on the environment could become worse.

In addition, different regulations are a critical point. Second-life batteries
are still not defined in the regulation in many countries. Since batteries are
considered hazardous goods, the transportation requires special care and is,
therefore, more expensive. Moreover, since the regulations of the electricity
market in most countries are not fully open and transparent, the regulations
of the battery storage for the energy market are not clear.

Another challenge is the design of the battery packs themselves. Battery
packs are designed to optimally fulfill the requirements of the primary
application they are used in, and that often requires technical and economical
optimizations for the highest competitiveness on the market. Unfortunately,
these optimizations are not optimal for repurposing the battery pack. Now, the
vehicle manufacturers design and optimize the batteries only for being used in
the vehicle, over 7-8 years. Battery repurposing cost is significantly affected
by how the battery packs were initially designed. If components inside
the battery pack are not compatible with stationary storage applications,
additional costs for battery repurposing will result. For example, a car is
designed for 300,000 km over 15 years and 10,000 h operation, while
a stationary application is mostly requiring electronics supporting 24 h
operation during 7 days in a week. A systemic design thinking that integrates
the process of second-life repurposing into the initial battery pack design
would simplify the repurposing procedure and reduce the repurposing costs
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but would add with certitude costs on the implementation for the primary-life.
Based on these considerations, it results that a regulatory way may be at least
one enabler for second-life battery applications since the competitiveness in
the primary application could be reduced significantly.

Finally, the spread and the uncertainty in the remaining battery lifetime
and performance degradation in various energy storage applications is
another main challenge. The lifetime and degradation of second-life batteries
are quite heterogeneous and depending on a whole set of parameters
(e.g., temperature, depth of discharge, current rates, mechanical vibrations),
depending on how they were used in EVs and how they are going to be used
during their second-life within stationary applications. Since each battery
shows a different aging behavior depending on its chemistry (including the
types and quantities of additives to the electrolyte), on its construction or its
historical operating conditions within the vehicles, it is challenging to predict
systematically the ageing behavior of the batteries during their second-life. A
suitable evaluation and prediction of the second-life battery performance is
essential for a safe and economically viable usage of retired EV batteries.

In the AI4DI project and with the demonstrator “autonomous
reconfigurable battery system”, the challenge of uncertain second-life battery
performance is tackled. Retired batteries (i.e., modules of packs) with very
heterogeneous performances and characteristics are combined within a single
battery system [18]. For this purpose, it is essential to determine the state
parameters, like the state of health (SOH) of each battery accurately.

In this paper, it is shown how a temporal convolutional network (TCN)
can be used for accurately predicting the state of health of a lithium-ion
battery. In the following section, the fundamentals of SOH of lithium-ion
batteries are recapitulated. Subsequently, the data measurement using the
open-source battery management system foxBMS is covered. Afterward the
TCN is introduced, and its building blocks are explained. In the subsequent
chapter, the results of the SOH prediction using a TCN are presented and
analyzed. Finally, the conclusion and outline of this work are given.

1.2.2 State of Health of Lithium-Ion Batteries

The performance of lithium-ion batteries is decreasing with time (i.e.,
calendric aging) and with utilization (i.e., cyclic aging). The two most char-
acteristic parameters for measuring the current performance capabilities are
the total battery capacity and the internal series resistance of the battery. The
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capacity is decreasing, and the internal resistance is increasing due to unw-
anted side reactions and structural deterioration. As a result, an aged LIB can
store less energy and deliver less power compared to a new LIB of the same
type. The current aging status, also known as the state of health (SOH), is def-
ined from 0 % to 100 %, where the SOH of a new LIB is defined to be 100 %.

This work focuses on the SOH derived from the energy capacity fade of
a LIB as stated in Equation 1.2.1.

SOH_Qi=
Qi

Q0
(1.2.1)

where SOH_Qi is the SOH after the i-th cycle, Qi is the capacity after the
ith cycle and Q0 is the initial capacity at the lithium-ion battery’s start of
life. The capacities Q0 and Qi are determined using Coulomb Counting. The
Coulomb Counting approach is a straightforward method that uses current
integration. The capacity is computed by integrating the charge or discharge
current over time. In order to realize the capacity computation and thus the
SOH determination, the battery management system has to be introduced and
how it is used for measuring battery usage data like the voltage, temperature,
and current.

1.2.3 Data Measurement Using the Open-Source Battery
Management System foxBMS

The battery management system (BMS) consists of the electronics and
the embedded software to fulfil all tasks that ensure a safe, reliable and
application specific optimal operation of the battery system. This includes
measurement of all battery cell voltages in the battery pack, a use-case
specific number of cell temperatures per battery module, and the battery
pack current. Furthermore, additional measurement data can be used as input
to ensure an optimal battery system operation, like e.g., pressure sensors
or electrochemical impedance spectroscopy (EIS) measurements, with or
without an additional sensor [8]. The BMS switches the electric power
contactors of the battery system to ensure that the battery cells are not used
outside of their safe operating limits. Pyro-fuses or electromagnetic fuses are
used as last resort safety elements in the battery system to interrupt the battery
current in case of a strong overcurrent or a short circuit. While the pyro-
fuses are mostly actively controlled by the BMS, the electromagnetic fuses
are triggered automatically by an overcurrent to ensure a shutdown if the
battery is exposed to hazardous conditions.
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In order to run a battery system in an application specific optimal
operating window, battery models, ranging from cell to module and up to
system models (e.g., equivalent circuit, physical- or heuristics-based ones)
need to calculate battery state parameters, e.g., the previously mentioned
SOH. The battery system must be able to perform the required model
calculations and predict their output in real-time. Based on its own acquired
measurement data, the implement application logic and the inputs from the
higher-level control unit, the BMS can safely and optimal control the battery
usage in the application.

To empower our partners and customers to build beyond state-of-the-
art battery management systems, the Fraunhofer IISB has established a
free, open and flexible Battery Management System R&D platform called
foxBMS in 2016 [4, 5, 9]. In 2020, Fraunhofer IISB publicly announced that
there is going to be the second generation of foxBMS [6] with enhanced
safety and more data generation and connectivity possibilities, which then
became available in 2021 [7]. foxBMS is a research and develop platform,
which allows to rapidly development prototypes in the field of battery
applications. These prototypes start from the simple implementation of
drivers for innovative sensors, testing and benchmarking modern battery
models on an embedded platform up to developing a full-customized battery
system for a preproduction system, but also as starting point for advanced
mobile and stationary battery powered products.

Whether battery usage data is generated in research projects, e.g., for an
academic purpose for creating the most sophisticated and accurate models,
or in a product, e.g., to increase the lifetime before end-of-life (EOL), it
is mandatory to make the acquired measurement data available outside of
the embedded system to learn from it, and feedback the gained knowledge.
Figure 1.2.2 shows the information flow of the data pipeline.

Figure 1.2.2 Measurement and data pipeline and the feedback loop into the BMS.
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First, the measurement data is acquired by the BMS in the application.
This raw data is then transferred and further processed in an ETL-process
(Extract, Transform, Load) and stored in a database. This ETL-process is
necessary, since the logged data stream in such a low-level system (e.g.,
CAN, Ethernet) cannot be directly used for modelling activities. Therefore,
the output is converted and pre-processed in a data format that is reasonable
for data analysis and model training.

After covering the fundamentals of the SOH and describing the data
measurement using the open-source battery management system foxBMS,
the data-driven approach for SOH prediction is introduced next.

1.2.4 Temporal Convolutional Neural Network for State of
Health Prediction

Since the success of Deepmind’s WaveNet [12], a so-called deep neural
network (DNN), similar but simplified networks have been successfully
applied to more and more problems. This architecture family was first named
temporal convolutional network (TCN) by Lea et al. [13]. A TCN can be
differentiated by the following characteristics:

1) Causal convolutions are used to prevent the “leakage” of information
from the future to the past.

2) The output sequence has the same length as the input sequence.

1.2.4.1 Causal Convolutions and Receptive Field

In contrast to 1D convolutions, the TCN uses causal convolutions. These are
convolutions that only consider the [t - k+ 1, t] data at time t, where k is the
kernel size. To ensure that the output sequence will have the same length as
the input sequence, (k - 1) data points have to be padded into the “past”.

Figure 1.2.3 Comparison of a standard 1D convolution and a causal convolution.
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The receptive field is the length of the input sequence of the TCN. When
creating the model, the kernel size k and the receptive field R have to be
specified. These two parameters then determine how many layers l are needed
as it can be seen in Equation 1.2.2.

R = 2l (k − 1) (1.2.2)

1.2.4.2 Dilated Convolutions

The use of causal convolutions has the consequence that the network becomes
deeper and deeper as the receptive field increases. As a result, not only the
training duration but also the memory requirement increases. To counteract
this problem, dilated convolutions are used. A dilation factor d indicates
whether every data point is used (d = 1), only every second data point
(d = 2), and so on. A too large dilation factor creates sparsity in the data,
while a too small dilation factor does not solve the problems mentioned
above. Therefore, the dilation factor is increased by a factor of two with each
layer [12].

1.2.4.3 Residual Block

An additional method that ensures the stability and performance of deep
networks is skip connections [14]. A skip connection does nothing more
than adding the input to the output. In order to have a skip connection in
a meaningful and useful way, a so-called residual block can be implemented.
A residual block represents a layer of the network and ensures that local
regeneration of a LIB can be captured [15] as it can be seen in Figure 1.2.5 at
week 20.

Figure 1.2.4 Dilated convolutions visualised [12].
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Figure 1.2.5 A residual block [12].

1.2.5 Results

In this chapter, it is shown how well the TCN performs the SOH prediction
for a LIB. The TCN model was written in Python 3.8 and PyTorch 1.8.
The training and experiments were run on a desktop PC with the following
configuration: the CPU is AMD Ryzen 7 3700X, and the GPU NVIDIA
GeForce RTX 3070. The TCN was trained on the public randomized battery
usage data set from NASA Prognostics Center of Excellence [17]. This
data set contains the data of 28 18650 lithium-cobalt-oxide cells with an
initial capacity of 2.1 Ah. The battery cells are divided into seven groups
of four cells each. Every group of cells was cycled with a different profile.
A reference charge and discharge were carried out at regular intervals. Since
the data set only contains time, current, voltage, and temperature the capacity
and the resulting SOH were computed for each reference discharge. Then the
calculated capacity and SOH were used to train the model. As input, the last
100 capacity values of a reference discharge were used and as output, the
corresponding SOH was predicted. 22 cells were randomly picked as training
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Figure 1.2.6 Constant current discharge profiles of a LIB [17].

data and the remaining six cells were used for testing purposes. The used
model hyper parameters are a kernel size of 5, a dropout value of 0.2 and a
batch size of 128. The model was trained for 2000 epochs.

In Figure 1.2.6, the reference discharge profiles are shown of a LIB is
shown. The initial capacity of the LIB with 100 % SOH is 2.1 Ah. With
increasing aging, the capacity and thus the SOH decreases. The neural
network used in this work consists of three layers with seven neurons each.
Furthermore, the TCN is trained by using Adam’s optimizer, which is an
adaptive learning rate optimization algorithm that is specifically designed for
deep learning applications [10]. The input for the TCN contains the capacity
profile of the LIB.

In Figure 1.2.7, the SOH estimated by the TCN, and the reference
measurement are plotted. The TCN predicts the SOH very accurately for the
whole lifespan of the LIB. The integral mean squared error (MSE) for all
predictions is approximately 0.9 %.

Here the high adaptability and self-learning ability from neural networks
are coming to the fore, especially for real-world data with dynamically
changing environment and operating conditions. Therefore, the TCN can
provide reliable SOH estimations for the whole lifetime of LIB.
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Figure 1.2.7 SOH prediction using a TCN with a reference measurement for the whole
lifetime of a LIB.

1.2.6 Conclusion

For a safe, economically, and energetically efficient and sustainable
utilization of retired EV batteries, reliable and accurate state parameter
predictions are an indispensable prerequisite. To ensure a safe operation,
an accurate prediction of the LIBs state of health (SOH) is essential.
Traditionally, physical based SOH estimators are often limited due to
their poor robustness regarding the highly non-linear dependence of the
SOH on the changes of environment and working conditions during the
operation. Data-driven approaches have shown their potential to overcome
the drawbacks of traditional SOH estimation algorithms [16]. In the AI4DI
project and its demonstrator “autonomous reconfigurable battery system”,
a novel machine learning algorithm called TCN was implemented that
combines beneficial properties of long-short term memory recurrent neural
networks while being computationally more efficient [17]. In this paper, it has
been shown that using a TCN the SOH of a LIB can be accurately predicted
with an MSE error over the whole LIB lifetime with less than 1%. As a result,
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with this approach, the uncertainty of the heterogeneous performances and
characteristics of retired electric vehicle batteries can be drastically reduced.
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Abstract

This paper outlines the concept of optimising trajectories for industrial robots
by applying deep reinforcement learning in simulations. An application
of high technical relevance is considered in a production line of an
autmotive manufacturer (AUDI AG), where industrial manipulators apply
sealant on a car body to prevent water intrusion and hence corrosion. A
methodology is proposed that supports the human expert in the tedious task
of programming the robot trajectories. A deep reinforcement learning agent
generates trajectories in virtual instances where the use case is simulated.
By making use of the automatically generated trajectories, the expert’s
task is reduced to minor changes instead of developing the trajectory from
scratch. This paper describes an appropriate way to model the agent in the
context of Markov decision processes and gives an overview of the employed
technologies. The use case outlined in this paper is a proof of concept
to demonstrate the applicability of reinforcement learning for industrial
robotics.

Keywords: deep reinforcement learning, automotive manufacturing,
simulation, industrial robotics, virtual learning platform, trajectory
optimisation, motion planning, offline programming, robot learning.
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Video: A video clip demonstrating the proposed methodology is available at:
https://vimeo.com/562948911.

1.3.1 Introduction

A concept for the automatic generation of trajectories for the control of
industrial robots is presented in this work. Data-based robotic control has
the potential to address two major shortcomings of conventional robot
programming [1]:

(i) The classic programming of industrial robots is done manually by a
specialist who precisely specifies the trajectory of the robotic arm Tool
Center Point (TCP). To this end, the programmer is in close contact with
the responsible plant engineer as well as the product owner to fulfill all
demands, restrictions, and requirements.

(ii) Conventional programming is deterministic and thus prevents the
flexible adaptation of the robot to changing environments (like varying
products). A variable control that adapts to different conditions cannot
be realized with classical programming.

Both shortcomings are addressed in this work by introducing a self-taught
and automated method for robot control programming. By adopting the
reinforcement learning methodology [2, 3], the control is learned based
on sampled experience from the interaction with a virtual environment.
In this context, a predefined reward function is optimised that steers the
action policy towards the desired outcome of the robotic manipulation.
Reinforcement learning combined with non-linear function approximators
(e.g., neural networks – referred to as Deep Reinforcement Learning DRL)
can generalize action policies on experience to solve problems with large
and complex state spaces (e.g., learning from unstructured data such as a
camera signal). Further advancements in the field of reinforcement learning
are algorithms that can deal with continuous action spaces enabling robotic
control [4, 5]. These developments have recently led to interesting milestones,
such as learning the locomotion of a four-legged robot [6] or robots that
have learned to open doors [7]. Well-known achievements in the field of
reinforcement learning are based on environments that allow the efficient
generation of an abundant amount of experience (e.g., video games [8] or
board games [9, 10]). However, robots require physical interaction with the
environment whereas training the agent in the real world is exceptionally
resource intense. As mentioned in [11], an agent that learns a simple
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grasping task requires experience from 800,000 episodes. The application of
reinforcement learning to industrial robotics requires a significant amount of
data due to the following two characteristics: (i) complex spaces for the state
(e.g., learning based on unstructured data such as images) and action spaces
(e.g., controlling the torques of each axis), and (ii) industrial requirements
regarding safety and precision of the robotic control.

An appealing alternative to real-world training is to simulate the agent-
environment interaction and transfer the control to the real world. For the use
case described by Rusu et al., a considerable speed increase by the factor of
50 could be achieved when a robot is trained in parallel virtual environments
instead of the real world [12]. Another advantage in the use of virtual methods
is the avoidance of accidents that could occur during the training of robots in
the real world [13].

In this work, DRL is employed to find the optimal trajectory of a robot
that is applying PVC sealant on a door frame of a car body to prevent
water intrusion and hence corrosion. Moreover, the robotic trajectory will be
optimised with respect to the following aspects: (i) providing smooth velocity
of the end effector, (ii) ensuring the optimal orientation of the end effector’s
nozzle to the car body surface, and (iii) avoiding collisions. Related work
from other groups in which DRL is used for trajectory planning exists. In
[14], a DRL agent learns to control a robot with six axes to solve the hot
wire game that is seen as the first step towards industrial applications like
welding, gluing, or cutting. A more practical application can be found in [15]
where the authors propose a simulated environment for learning the optimal
trajectories for applying paint on a car body. Besides learning a concrete task,
DRL can also be used for the online optimisation of trajectories for robots
with unknown/partially known dynamics that usually lead to control jumps
[15–17].

Beyond the application to manipulators, DRL can also be used to generate
trajectories for mobile robotics. The path planning for mobile robots with a
known map can be found in [18], whereas the navigation with simultaneous
map generation is proposed in [19–21]. The application of DRL to optimise
the data collection for an agent that explores the environment can be found
in [22]. Moreover, DRL to evaluate optimal trajectories for Unmanned Air
Vehicles (UAVs) providing access points to end-users is presented in [23].

A unique feature of this work is the advanced simulation environment
that can simulate the car body and robot with detailed geometry considering
realistic physical behavior and a high-end rendering pipeline. In addition,
the close collaboration with the industrial partner imposes high industrial
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Figure 1.3.1 (a) Manually predefined geometric model of the seam, (b) the path editor and
the robot jog in tecnomatix process simulate for manual trajectory programming, (c) multiple
training environments running in parallel and optimising the trajectory for a car door, and (d)
the robot following the learned trajectory.

requirements on this approach, and thus exceeds the usual academic proof-
of-concept state.

1.3.2 Background

AUDI AG employs a fully automated process for applying the sealant
material on car bodies using industrial manipulators. To program the
manipulator, a conventional procedure is adopted in which fixed trajectories
are specified by an expert. To this end, the creation of trajectories for the
automation of a new car body requires the following steps: (i) A three-
dimensional model of the seam that is supposed to be applied to the car body
is designed manually (see the green markers in Figure 1.3.1a). (ii) The expert
programs the final robot trajectories in a way that the manually predefined
geometric model of the seam will be followed by the manipulator. It is worth
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noting that there is a multitude of different nozzles and end effectors that
vary according to the task and need to be specified before starting to program
the robot. To create the robotic trajectory, the offline programming expert
manually defines a sequence of parameterized motions using software tools
(see Figure 1.3.1b). Two different ways are typically used to specify the
movement of the end-effector along a free or constrained path towards a
specific target. The first type is called Point-to-Point (PTP) motion that is used
when the target pose should be reached as fast as possible by maximizing
joint-level rotational speeds without specifying the TCP path. The second
option is referred to as Linear (LIN) motion and is used whenever the target
pose should be reached along a straight line with a specified velocity and
acceleration. PTP motions are mainly used in two scenarios: (i) The robot’s
TCP should be moved to an initial pose configuration that is a suitable starting
point and (ii) whenever there is a need to relocate or reorient the robot’s TCP
between the seam segments. The LIN motions are used whenever the nozzle
tool is applying the sealant material as the priority is on accurate motions to
guarantee a straight and uniform line.

It is worth noting that manual programming is a tedious and resource-
consuming process as time-optimal and collision-free trajectories are
complex and rely on many different parameters such as (i) quantitative
metrics (e.g., how much time it takes to complete the seaming process), (ii)
qualitative aspects (e.g., straight and uniform appearance of the seam), or (iii)
expert-subjective considerations that are based on experience.

To reduce the complexity and workload of the task, the programmer can
start with an existing trajectory from a different but similar scenario in which
a solution already exists. An existing case from which the trajectory can
be reused is called a brown field. By adopting a brown field, the manual
effort is typically reduced tremendously as only minor modifications are
necessary in most cases. In the so-called green field scenario, the car body
is significantly different from any existing scenarios with the implication
that the programmer must manually define the trajectories from scratch. In
the following section, a procedure is described in which brown fields are
generated by a DRL agent.

1.3.3 Methodology

The described problem is addressed by a DRL agent that finds an optimised
trajectory in simulation. Figure 1.3.2 depicts the agent’s state and action
spaces as well as the reward function in the context of a Markov Decision
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Figure 1.3.2 DRL agent in the MDP formalization for optimising a TCP trajectory by
minimizing the distance to a predefined moving target.

Process (MDP). The geometric model of the targeted seam is given in the
process as described in the previous section. An imaginary target location
is modeled that travels along the predefined path at a specified velocity
~vtrgt. The first term of the reward R is modeled as the negative distance

from the TCP to the target location
∥∥∥~det∥∥∥. By maximizing this term,

the agent controls the robot’s TCP to follow the target. When applying
the sealant, the predefined target velocity ~vtrgt is required to be at a
specific constant velocity to guarantee an optimally applied sealant. The
application of the sealant is required to occur in an orientation that is
orthogonal to the surface while aligned with the direction of the sealant
line. Based on this, a reference end-effector orientation can be defined;
the second term of the reward function penalizes the difference between
the actual and the reference orientation of the end-effector (namely, the
orientation error ~ooe, calculated based on the orientation of the target
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surface normal w.r.t. the end-effector ~oet). The third term of the reward R
measures the minimum distance of the manipulator to the car body to avoid
collisions. Moreover, three weights (a, b, c) are used to balance each term
individually.

Two different ways to define the action space are considered: (i) The
robot is controlled on the joint level with the agent controlling the speed (or
torque) of each joint individually. This results in a six-dimensional action
space (action space A0) for a robot that has six Degrees of Freedom (DoF).
(ii) By employing kinematics, the TCP can be controlled directly in the
operational space, e.g., by specifying a target delta for each Cartesian space
dimension dtcp,1, dtcp,2, dtcp,3 and for each orientation axis do1, do2, do3 (see
action space A1). The state description comprises the relative position and
orientation of the end-effector with respect to the current target point and
the angles of all joints θ1, θ2, . . . , θ6 of the manipulator. To simulate the
robot interacting with the environment, a simulation developed with the
commercial game engine Unity3D [24] is used (Figure 1.3.1c and d). Unity3D
is a suitable choice for the planned undertaking as it provides advanced
rendering capabilities (to potentially learn from pixels), the opportunity to
write user-defined functions, and it comes with an efficient GPU-accelerated
physics engine (Nvidia PhysX [25]).

To solve the MDP described above, the algorithm Proximal Policy
Optimization [26] (PPO) is employed. PPO is a policy gradient method that
trains both an actor and a critic function, whereas the policy update gradient is
clipped to prevent stability issues. An important feature of PPO is the support
of continuous action spaces that is achieved by training probability density
functions instead of discrete actions. In this work, the PPO implementation
of the Stable Baselines library is used (referred to as PPO2 [27]) that
allows running multiple workers updating the same policies. Each simulation
instance runs several robots at the same time (Figure 1.3.1c), whereas policy
gradient updates are gathered in batches for the periodic update of the two
policy networks.

The proposed methodology is applied to create brown fields. In a second
step, the final control can be derived from the brown fields by the offline
programmer. As mentioned before, a significant reduction of the workload
can be achieved when the final programming is done based on a brown
field provided by the agent. The simulation starts from scratch without any
knowledge (starting from a green field). A disadvantage in taking a previous
solution into account (e.g., starting the simulation from an existing but
incompatible brown field) is a potential bias regarding the solution and might
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lead to a local minimum. However, starting from another brown field comes
with the high potential to reduce the training time and can be investigated in
the future.

One might ask why brown fields are evaluated rather than directly
learning the final robotic programming. While it is indeed possible to let
the agent define the final trajectory, the human is kept in the loop as the
approximative nature of DRL as well as the difference between the real
world and the simulation (reality gap) occasionally lead to undesired control
behavior.

1.3.4 Conclusion and Outlook

The concept of optimising trajectories with DRL for industrial robots
in simulations is outlined in this paper. To this end, a possible MDP
formalization of the agent that has the potential to considerably reduce the
amount of the manual work that is involved in the offline programming of the
industrial robots is presented. For the further course of this undertaking, an
adoption of the methodology in three steps is envisioned: (i) The experts are
performing plausibility checks by comparing hand-crafted trajectories with
the solution from the DRL agent. (ii) The agent is used in production by
creating brown fields from which the expert derives the final solution. (iii)
The agent finds final robotic trajectories and the human experts verify the
solution without modifying it.

Beyond the specific application that is outlined in the paper, an end-to-
end learning platform is envisioned that satisfies the industrial requirements
of industrial robotic applications. A high degree of generalization is
targeted to address a wide variety of different tasks that are typical for
manufacturing.
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Abstract

Research on cyber-physical systems comes to the fore with the increasing
progress of applications in the field of autonomous systems. Therefore, there
is a growing interest in methods for enhancing reliability, availability, and
self-adaptation of such systems in safety critical situations. Hence, it is
essential that autonomous systems are equipped with a detection system to
observe faulty behaviour in real time or to predict failing operations to avoid
safety critical scenarios, which may harm people. To bring or hold a system
within healthy conditions, not only detecting a faulty behaviour is important,
but also to find the corresponding root cause.

In this article, we introduce different methods which make use
of detecting unexpected behaviour in cyber-physical systems, for the
localization of faults. The first approach, model-based diagnosis uses logic
to represent a cyber-physical system to perform reasoning for computing
diagnosis candidates. A second promising approach deals with simulation-
based diagnosis systems, using digital twin models to produce faulty
behaviour data in advance, and to find correlations with the original cyber-
physical system’s behaviour, for diagnosis. For the third method the focus is
set on artificial intelligence (machine learning and neural networks), where

47



48 Foundations of Real Time Predictive Maintenance

the goal is to utilize a huge amount of health and safety critical observations
of the system for training to approximate the behaviour associated with faulty
and safety critical states.

Keywords: model based diagnosis, model based reasoning, simulation based
diagnosis, digital twin, AI based predictive maintenance, AI based diagnosis,
abstract model, datacentre design, energy efficiency of datacentre, energy
efficient metrics, datacentre carbon footprint computation.

1.4.1 Introduction and Background

Predictive analytics deals with forecasting the future progression of
a situation and has a wide range of applications, including weather
forecasting, epidemiology prediction, stock market prediction, and predictive
maintenance. When implementing predictive maintenance, predictive
modelling plays a major role. It aims to guarantee a robust prediction result,
which can save considerable production downtime and either prevent or
diminish economic loss. Considering information utilization and modelling
mechanism, the predictive modelling techniques can be classified into three
groups: physics-based, data-driven, and model-based.

The physics-based approach describes the physical behaviour of a system
using the first principle as a series of ordinary or partial differential equations
according to the law of physics [1][6]. However, the construction of a physics
model is usually difficult since it requires detailed and complete knowledge
about the system. Still, this kind of model lacks extensive failure samples to
determine the model parameters in practice.

The data-driven approach constructs a model representing the underlying
relationship of a system based on data mining techniques. The data-driven
approach could be grouped into two categories including statistical and
machine learning based methods. The typical statistical method used, include
the autoregressive model and its variations, linear regression, Wiener process,
and Gamma process among others. Machine learning based methods include
algorithms such as artificial neural networks, clustering techniques, extreme
learning machines, fuzzy logic, and deep learning models. However, the
performance of the data-driven model is sensitive to the size and quality
of the collected dataset. It is important to note that data-driven models are
extremely domain specific. Therefore, the selection of such models is a
crucial part of the process.
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The model-based approach takes advantage of established physical
knowledge and collected data to enhance the prediction performance. It
typically involves two steps including model construction and model updating
[2]. First, analytical models are built based on the physical or empirical
model representing the situation evolving in a quantitative manner. These
models are then updated with newly acquired information to predict the future
progression of the situation based on inference. Comparing with the data-
driven approach, the model-based approach requires less historical data to
construct the models. The predicted value is associated with a confidence
level, resulting from the uncertainty involved in the prediction process [3].

Over the past 30 years, predictive maintenance has been evolving from
predicting failures based on periodic visual inspections to continuous real-
time monitoring of assets and external data with alerts based on statistical
techniques such as regression analysis for at least one important asset.
Furthermore, the advent of Industrial Internet of Things (IIoT) technology
has significantly optimized industrial operations management by connecting
industrial assets with information systems and, hence, with business
processes. Predictive Maintenance 4.0 (PdM 4.0) or simply Maintenance 4.0,
is among the major focus points of IIoT. In [4] the authors identify four levels
of maturity in predictive maintenance, depicted in Figure 1.4.1.

Many companies are combining the capabilities of IIoT and Big Data
to predict equipment malfunctions. The accuracy of the forecast is further

Figure 1.4.1 Four levels of maturity in predictive maintenance.
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getting more precise with improved Artificial Intelligence (AI) techniques
and machine learning tools.

As depicted in [5], Maintenance 4.0 forms a subset of smart manufact-
uring systems which are autonomous in their operation, capable of predicting
failures and triggering maintenance activities. These systems consist of
smart equipment in form of embedded or cyber-physical systems form-
ing the digital twin of physical assets. To achieve near-zero defects,
near-zero downtime and automated decision making based on condition
monitoring, top diagnosis and prognosis techniques need to be implemented.

Finally, the most advanced form of maintenance is prescriptive
maintenance which builds on PdM and provides further guidance on the
maintenance task, including diagnosis capabilities. Prescriptive maintenance
strategies extensively use advanced data processing and visualization
techniques such as graph analysis, simulations, neural networks, complex
event processing, heuristics, and machine learning. These tools can calculate
the timing and the effect of failure, thus, deciding on the priority and urgency
of the maintenance activity.

In Figure 1.4.2, we depict a simplified system architecture, showing how
the different approaches contribute to diagnosis of systems. Simulation-based
diagnosis as well as AI-based diagnosis, utilize models that are obtained in a
pre-offline phase, depicted on the right. Model-based diagnosis makes use of

Figure 1.4.2 Diagnosis system architecture.
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mainly abstract models for diagnosis directly not requiring an offline phase.
In the following, we discuss the different approaches and their foundations in
more detail.

1.4.2 Foundations

In the following, we discuss the foundations behind the diagnosis, i.e.,
the detection of failures and the identification of its root causes in the
context of predictive maintenance. In particular, we focus on methods from
artificial intelligence considering model-based diagnosis, machine learning,
and specifically neural networks. Instead of a detailed discussion of the
foundations, we briefly introduce underlying ideas and provide references to
related literature for the interested reader.

1.4.2.1 Model-based Diagnosis

Model-based diagnosis or reasoning from the first principle has been
developed in the 80s of the last century as an answer to challenges arising
when using logic reasoning as a basis for applications like configuration
and decision support. Instead of formalizing the knowledge-base in a way
from observations to causes such that diagnosis can be directly derived using
ordinary deduction, the idea was to formalize knowledge either in form of
relations or as rules where causes imply their effects. Instead of deduction
abduction or in a more general setting non-monotonic reasoning was used as
an underlying reasoning mechanism (see [19], [20], [21]).

The idea behind model-based diagnosis is to take a model of a system,
which is usually called a system description SD, and observations OBS
for diagnosis computation. In this setup, SD comprises the structure of
the system comprising interconnected components, and the behaviour of
the components. For the latter, we explicitly introduce health states for
components like working abnormally (ab), or correctly (i.e., not abnormal
(¬ab)). For example, the correct behaviour of components can be formalized
using an implication, i.e.,¬ab(C)→ behav(C), whereC is a component and
behav(C) the behaviour of C. Whenever the component works as expected
the behaviour is determined. However, if we assume C to be wrong, the
implication does not allow us to determine behaviour. Hence, the component
may work appropriately even when considered to be faulty. Note that this
modelling allows also to specify a behaviour for any incorrect health state if
required.
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When assuming a model of a system comprising components COMP
and observations, we are able to compute diagnoses. Informally, a diagnosis
explains a faulty behaviour. In the case of model-based diagnosis, we
are interested in assigning a health state to every component in COMP
such that the observations are not in contradiction with the components’
behaviour. Hence, diagnosis becomes searching for health states. In order
to be applicable in practice, diagnosis reasoning often utilizes simplifications
like searching only for diagnoses where one component is considered to be
faulty, and all others are working as expected. Alternatively, diagnosis search
may focus on parsimonious diagnoses, i.e., health assignments to components
unequal to ¬ab, where we are not able to switch a component from being
faulty to working correctly.

Model-based diagnosis computation in general is hard and requires a lot
of computational resources. However, considering today’s hardware, most
recent algorithms, and the availability of fast theorem provers, diagnosis can
be computed within a reasonable amount of time, i.e., within a fraction of a
second even for larger systems (see [22]). For a more detailed discussion on
model-based diagnosis, modelling, formal definitions, and its application to
self-adaptive systems we refer to [23] and most recently [24].

1.4.2.2 Machine Learning Based Diagnosis

Machine learning algorithms have shown promising solutions and improved
decision-making processes by analysing an enormous amount of data. The
use of these algorithms has grown rapidly in the recent years which
helps systems to act intelligently without being explicitly programmed [7].
Machine learning techniques are often used to detect faulty behaviours of the
system [8], [9]. For example, [10] used Support Vector Machine (SVM), a
machine learning algorithm to model linear and non-linear relationships, to
model 9 fault states of the modular production system with different kernel
functions namely Sigmoid, RBF, polynomial and linear kernel functions. The
work presented a 100% classification rate on all kernel functions except for
the sigmoid kernel (52.08% classification rate).

Machine learning algorithms are mainly divided into four categories
explained below:

• Supervised: This type of learning typically learns a function based on the
sample input and output pairs. The goal of the function is to classify/map
a new input instance to the respective output [11]. Please note that the
data samples provided during the training are labelled.
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• Unsupervised: Unsupervised learning involves understanding the
distribution of the data given the data is unlabelled [11]. These types
of algorithms are mostly used for feature generation, dimensionality
reduction, extracting hidden patterns, clustering/grouping data points,
and exploratory analysis.

• Semi-Supervised: Data points could be rarely labelled in real world
[12]. For example, in the fraud detection problem, there could be few
occurrences of fraud transaction leaving too much non-fraud detection
data. Thus, semi-supervised learning comes into play by generating new
instances from the less seen (minatory output), often called synthetic
data generation. It’s a hybridization of “supervised” and “unsupervised”
where the goal is to model better predictions given the data is highly
unlabelled.

• Reinforcement: Reinforcement learning is an area of machine learning
in which an agent is trained to learn the optimal behaviour for a given
environment [13]. The goal of reinforcement learning is to find the
best possible actions such that reward is maximized and the risk is
minimized. Reinforcement learning is mostly useful for automation e.g.,
autonomous driving.

Based on the application, nature of the data and learning outcome, various
machine learning algorithms can be chosen for fault diagnosis in complex
systems. For this case study, we model the fault diagnosis problem with one
of the supervised machine learning algorithms called Bootstrap Aggregation
(Bagging).

1.4.2.3 Artificial Neural Networks for Diagnostics

Machine learning as well as deep learning techniques are very popular in
many areas of engineer’s work. The connection of the AI approach and
technical diagnostics especially in the field of predictive maintenance of
machines [14] is a very actual problem and directly addresses the Internet of
Things as well as Industry 4.0 topics [15]. Big data processing algorithms,
necessary for modern AI techniques application, are overviewed in, e.g.,
[16], standard machine learning approaches, mostly containing statistical
algorithms [17] like SVM, k-NN, PCA, Mahalanobis-Taguchi strategy etc.,
are commonly used, but mainly using of powerful and very popular neural
networks is currently growing. There exists a lot of NNs types used for
diagnostics of the machines, but the convolutional neural network is one of
the most recommended and also used types [18]. Mostly, NN algorithms
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run on the dedicated and powerful hardware designed especially for such
purposes.

The shift from cloud AI processing to local intelligence architecture is
described in [25]. According to that paper, AI has a strong potential for
sensor solutions in the future. Reasons are the increasing complexity of
sensors, the increasing amount of generated raw data, and the requirement for
straightforward data fusion from several sensors. The integration of wireless
communication capabilities in smart sensors makes them usable also as an
IoT device [26]. This process must be accompanied by the integration of
safety- and privacy-aware functions.

1.4.3 Related Research

Predictive analytics intends to make predictions about future progressions,
based on domain knowledge and historic data combined with physic-based,
model-based or machine-learning modelling techniques. In the context of
predictive maintenance (PdM), predictive modelling is used for failure
prediction and prescription of operation and maintenance strategies. Here,
the main objective is to obtain accurate and robust prediction results to
avoid unexpected system downtime. Predictive maintenance is a condition-
driven maintenance program that monitors the mechanical condition, system
efficiency, and other indicators to determine the system’s actual mean-time-
to-failure or loss of efficiency. Considering the definition from [27], the
three key steps of a PdM program are data acquisition to obtain data
relevant to system health, data processing to handle and analyse the data or
signals collected and maintenance decision-making to recommend efficient
maintenance actions or adoptions of the operation strategy. Techniques for
maintenance decision support in a PdM program can be divided into two main
categories [27]: diagnostics and prognostics. Fault diagnostics focuses on
detection, isolation, and identification of faults when they occur. In contrast,
prognostics attempts to predict faults or failures before they occur. Jardine
[28] reviewed and compared several commonly used PdM decision strategies
such as trend analysis that is rooted in statistical process control (SPC), expert
systems (ESs), and neural networks. Wang and Sharp [29] discussed the
decision aspect of PdM and reviewed the recent development in modelling
PdM decision support.

Various model-based diagnosis approaches have been applied to fault
diagnosis of a variety of mechanical systems such as gearboxes [30][31],
bearings [32][33][34], rotors [35][36] and cutting tools [37]. Hansen et al.
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[38] proposed an approach to more robust diagnosis based on the fusion
of sensor-based and model-based information. Vania and Pennacchi [39]
developed some methods to measure the accuracy of the results obtained with
model-based techniques aimed to identify faults in rotating machines. Two
practical successful applications of maintenance programs using model-based
approaches are: (i) an integrated framework for on-board fault diagnosis
and failure prognosis of a helicopter transmission component and (ii) the
TIGER system [40] that combines several artificial intelligence technologies,
including qualitative model-based reasoning to perform condition monitoring
of gas turbines. Here, the diagnostic mechanism is based on a fault manager
and the three independent tools KHEOPS [67], IxTeT [40] and CA-EN [69].
KHEOPS [41] is a high-speed rule-based system, used to express diagnostic
rules in a classic rule-based formalism and allows the user to set pre-alarm
limits for each parameter. IxTeT [40] is used to either describe the normal
causal reaction or look for specific patterns resulting from known faults. CA-
EN [42] is a model-based supervision system devoted to complex dynamic
systems. CA-EN’s representation formalism allows one to combine empirical
causal knowledge and first principles of the domain.

The effectiveness of predictive maintenance depends on practical factors
such as required planning time and implementation effort but especially
on the achievable quality of condition monitoring, the behaviour of the
deterioration process and system specific fault severity. For instance,
vibration and oil debris monitoring is limited by the accuracy of the
measuring instruments and can therefore be considered as imperfect [52].
In many cases, the imperfect condition information has been combined
with deterioration processes, which were modelled as continuous stochastic
processes. Kallen and Van Noortwijk [43] use a gamma deterioration process,
Peng and Tseng [44] a linear trend with random coefficient plus a Brownian
motion as a second random effect, Ye et al. [45] a Wiener process with
positive drift, and Zio and Compare [46] a Randomized Paris-Erdogan fatigue
crack growth model. Nevertheless, also here inspections have to be performed
in order to obtain condition information. Given the effort and short comings,
PdM should only be applied if the expected benefit outweighs the efforts and
costs during the entire life cycle [47][48][49].

1.4.4 Conclusion

Predictive maintenance mechanisms are the major key to improve the
availability, reliability and safety of cyber-physical systems in relation to
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finding or predicting an unexpected behaviour before downtime, defects
or harm to the environment occurs. In this article, we focus on different
approaches for diagnosis, discuss their foundations, and also related research.
However, there remains the questions which diagnosis methods to use and
how to implement them to interact with a specific cyber-physical system. We
elaborate on use cases in two separated articles of this book to answer these
questions.

In these articles, we decided to focus on different diagnosis approaches
based on two systems, a simplified DC e-motor model and a dual three-phase
permanent magnet synchronous motor supported with detailed acausal e-
motor model with the capability of fault injection. The use of model based
and machine learning based approaches is demonstrated on a simplified
DC e-motor model in the article “Real-Time Predictive Maintenance -
Model Based and Machine Learning Based Diagnosis”. The artificial neural
network approaches are demonstrated on a dual three-phase motor diagnosis
and on a diagnosis using smart vibration sensor which is described in
article “Real-Time Predictive Maintenance – Artificial Neural Network Based
Diagnosis”.

In the mentioned articles, we discuss the applicability of diagnosis
algorithms in real-time simulation environments by highlighting a specific
case of how to implement the methods and perform diagnoses on unexpected
behaviour. We obtained promising results encouraging for further research
on the described diagnosis methods depending on the desired detection
dimension, available resources, and model specifications. In addition, the
diagnosis methods deliver the root cause affects which builds the basis for
the research in self-adapting or self-healing systems to bring a system to a
safe state if an unexpected behaviour is detected.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI
“Artificial Intelligence for Digitising Industry” project. The project has
received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 826060. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and Germany, Austria,
Czech Republic, Italy, Latvia, Belgium, Lithuania, France, Greece, Finland,
Norway. The work was co-funded by grants of Ministry of Education,
Youth and Sports of the Czech Republic, by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under the program



References 57

“ICT of the Future” between May 2019 and April 2022 (more information
can be retrieved from https://iktderzukunft.at/en/). The work was also
supported by the infrastructure of RICAIP that has received funding from
the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 857306 and from Ministry of Education, Youth
and Sports under OP RDE grant agreement No CZ.02.1.01/0.0/0.0/17_043/
0010085.

References

[1] Wang, J., Liang, Y., Zheng, Y., Gao, R. X., and Zhang, F., “An
integrated fault diagnosis and prognosis approach for predictive
maintenance of wind turbine bearing with limited samples,”
Renewable Energy, vol. 145, pp. 642-650, 2020. Available online at:
https://www.sciencedirect.com/science/article/pii/S0960148119309371

[2] Song, Z., Zhang, Z., Jiang, Y., and Zhu, J., “Wind turbine
health state monitoring based on a bayesian data-driven approach,”
Renewable Energy, vol. 125, pp. 172-181, 2018. Available online at:
https://www.sciencedirect.com/science/article/pii/S0960148118302404

[3] Wang, J., Wang, P., and Gao, R., “Enhanced particle filter for tool wear
prediction,” 2015.

[4] Sept. 2018, SURVEY Predictive Maintenance 4.0 Beyond the hype:
PdM 4.0 delivers results, Mainnovation.

[5] Towards an open-standards based framework for achieving condition-
based predictive maintenance, Kaur, Karamjit & Selway, Matt &
Grossmann, Georg & Stumptner, Markus & Johnston, Alan, (2018)
Proceedings of the 8th International Conference on the Internet of
Things.

[6] Peng, Y., Dong, M., Zuo, M., “Current status of machine prognostics in
condition-based maintenance: a review,” 2010.

[7] I. a. F. M. a. N. R. Sarker, “AI-Driven Cybersecurity: An Overview,
Security Intelligence Modeling and Research Directions,” SN Computer
Science, vol. 2, 2021.

[8] T. a. B. M. a. P. V. Ademujimi, “A Review of Current Machine Learning
Techniques Used in Manufacturing Diagnosis,” pp. 407-415, 2017.

[9] M. a. D. F. a. K. M. a. M. O. Barakat, “Self adaptive growing neural
network classifier for faults detection and diagnosis,” Neurocomputing,
vol. 74, pp. 3865-3876, 2011.



58 Foundations of Real Time Predictive Maintenance

[10] M. Demetgul, “Fault diagnosis on production systems with support
vector machine and decision trees algorithms,” The International Journal
of Advanced Manufacturing Technology, vol. 67, 2012.

[11] J. a. K. M. a. P. J. Han, Data mining concepts and techniques, third
edition, 2012.

[12] M. a. K. M. a. B. E. Mohammed, Machine Learning: Algorithms and
Applications, 2016.

[13] L. P. a. L. M. L. a. M. A. W. Kaelbling, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237-285,
1996.

[14] R. Liu, B. Yang and E. Zio: Artificial intelligence for fault diagnosis
of rotating machinery: A review. Mech. Syst. Signal Process., vol. 108,
aug 2018: p. 33–47, ISSN 10961216, doi:10.1016/j.ymssp.2018.02.016.
URL https://linkinghub.elsevier.com/retrieve/pii/S0888327018300748.

[15] A. Chen, F. H. Liu and S. D. Wang: Data reduction for real-time
bridge vibration data on edge. In Proc. - 2019 IEEE Int. Conf. Data
Sci. Adv. Anal. DSAA 2019, Institute of Electrical and Electronics
Engineers Inc., oct 2019, ISBN 9781728144931, p. 602–603, doi:
10.1109/DSAA.2019.00077.

[16] S. Yin, X. Li and H. Gao: Data-based techniques focused on modern
industry: An overview. IEEE Trans. Ind. Electron., vol. 62, issue. 1,
2015: s. 657–667, ISSN 02780046, doi:10.1109/TIE.2014.2308133.
URL https://ieeexplore.ieee.org/document/6748057/.

[17] S. Zhang, S. Zhang and B. Wang: Deep Learning Algorithms
for Bearing Fault Diagnostics - A Comprehensive Review. IEEE
Access, vol. 8, jan 2020: p. 29857–29881, ISSN 21693536,
doi:10.1109/ACCESS.2020.2972859, 1901.08247. URL http://arxiv.or
g/abs/1901.08247

[18] H. Qiao, T. Wan and P. Wang: An Adaptive Weighted
Multiscale Convolutional Neural Network for Rotating Machinery
Fault Diagnosis under Variable Operating Conditions. IEEE
Access, aug 2019: p. 118954–118964, ISSN 21693536,
doi:10.1109/ACCESS.2019.2936625.

[19] Davis, R.: Diagnostic reasoning based on structure and behavior.
Artificial Intelligence 24, pp. 347–410, 1984.

[20] Reiter, R.: A theory of diagnosis from first principles. Artificial
Intelligence 32(1), pp. 57–95, 1987.

[21] de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnosis and
systems. Artificial Intelligence 56, 1992.



References 59

[22] Kaufmann, D., Nica, I., Wotawa, F.: Intelligent agents diagnostics
- enhancing cyber-physical systems with self-diagnostic capabilities.
Advanced Intelligent Systems, 2021. DOI https://doi.org/10.1002/ai
sy.202000218.

[23] Wotawa, F.: Reasoning from first principles for self-adaptive and
autonomous systems. In: E. Lughofer, M. Sayed-Mouchaweh (eds.)
Predictive Maintenance in Dynamic Systems - Advanced Methods,
Decision Support Tools and Real-World Applications. Springer (2019).
DOI 10.1007/978-3-030-05645-2.

[24] Wotawa, F.: Using model-based reasoning for self-adaptive control
of smart battery systems. In: M. Sayed-Mouchaweh (ed.) Artificial
Intelligence Techniques for a Scalable Energy Transition – Advanced
Methods, Digital Technologies, Decision Support Tools, and
Applications. Springer (2020).

[25] P. Jantscher: AI In Sensors For IoT [online] Cited 15.6.2021 Available
from: https://siliconsemiconductor.net/article/106227/AI_In_Sensors
_For_IoT.

[26] S. C. Mukhopadhyay, S. K. S. Tyagi, N. K. Suryadevara, V. Piuri, F.
Scotti and S. Zeadally: Artificial Intelligence-based Sensors for Next
Generation IoT Applications: A Review, in IEEE Sensors Journal, doi:
10.1109/JSEN.2021.3055618.

[27] A review on machinery diagnostics and prognostics implementing
condition-based maintenance, Jardine, Andrew & Lin, Daming
& Banjevic, Dragan, Mechanical Systems and Signal Processing,
2006.

[28] A.K.S. Jardine, Optimizing condition based maintenance decisions, in:
Proceedings of the Annual Reliability and Maintainability Symposium,
2002, pp. 90–97.

[29] W. Wang, J. Sharp, Modelling condition-based maintenance decision
support, in: Condition Monitoring: Engineering the Practice, Bury St
Edmunds, 2002, pp. 79–98.

[30] I. Howard, S. Jia, J. Wang, The dynamic modelling of a spur gear in
mesh including friction and a crack, Mechanical Systems and Signal
Processing 15 (2001) 831–838.

[31] W.Y. Wang, Towards dynamic model-based prognostics for transmission
gears, in: Component and Systems Diagnostics, Prognostics, and Health
Management II, vol. 4733, Bellingham, 2002, pp. 157–167.



60 Foundations of Real Time Predictive Maintenance

[32] D.C. Baillie, J. Mathew, Nonlinear model-based fault diagnosis of
bearings, in: Proceedings of an International Conference on Condition
Monitoring, Swansea, UK, 1994, pp. 241–252.

[33] K.A. Loparo, M.L. Adams, W. Lin, M.F. Abdel-Magied, N. Afshari,
Fault detection and diagnosis of rotating machinery, IEEE Transactions
on Industrial Electronics 47 (2000) 1005–1014.

[34] K.A. Loparo, A.H. Falah, M.L. Adams, Model-based fault detection
and diagnosis in rotating machinery, in: Proceedings of the Tenth
International Congress on Sound and Vibration, Stockholm, Sweden,
2003, pp. 1299–1306.

[35] A.S. Sekhar, Model-based identification of two cracks in a rotor system,
Mechanical Systems and Signal Processing 18 (2004) 977–983.

[36] G.H. Choi, G.S. Choi, Application of minimum cross entropy to model-
based monitoring in diamond turning, Mechanical Systems and Signal
Processing 10 (1996) 615–631.

[37] W. Bartelmus, Mathematical modelling and computer simulations as an
aid to gearbox diagnostics, Mechanical Systems and Signal Processing
15 (2001) 855–871.

[38] R.J. Hansen, D.L. Hall, S.K. Kurtz, A new approach to the challenge
of machinery prognostics, Journal of Engineering for Gas Turbines and
Power 117 (1995) 320–325.

[39] A. Vania, P. Pennacchi, Experimental and theoretical application of fault
identification measures of accuracy in rotating machine diagnostics,
Mechanical Systems and Signal Processing 18 (2004) 329–352.

[40] Dousson, C., Gaborit, P., & Ghallab, M. ‘Situation recognition:
representation and algorithms’, Proc. 13th IJCAI, Chambery, France,
1993.

[41] Ghallab, M., & Philippe, H. ‘A Compiler for Real-Time Knowledge-
Based Systems’. Proc. IEEE International Symposium on AI for
Industrial Applications, 287-293, 1988.

[42] Bousson, K., & Trave-Massuyes, L. ‘Fuzzy Causal Simulation in
Process Engineering’. IJCAI-93, Chambery, France. August-September
1993.

[43] Kallen MJ, Van Noortwijk JM. Optimal maintenance decisions under
imperfect inspection. Reliab Eng Syst Saf 2005;90(2–3):177–85.

[44] Peng C-Y, Tseng S-T. Mis-specification analysis in linear degradation
models. IEEE Trans Reliab 2009;58(3):444–55.



References 61

[45] Ye Z-S, Wang Y, Tsui K-L, Pecht M. Degradation data analysis
using wiener processes with measurement errors. IEEE Trans Reliab
2013;62(4):772–80.

[46] Zio E, Compare M. Evaluating maintenance policies by quantitative
modeling and analysis. Reliab Eng Syst Saf 2013;109:53–65.

[47] Maintenance management of wind power systems using condition
monitoring systems – life cycle cost analysis for two case studies,
Nilsson J, Bertling L., 2007.

[48] Asset life cycle management: towards improving physical asset
performance in the process industry, Schuman CA, Brent AC, 2005

[49] Two probabilistic life-cycle maintenance models for deteriorating civil
infrastructures, Van Noortwijk JM, Frangopol DM, 2004.

[50] Wang W, Christer AH. Towards a general condition based maintenance
model for a stochastic dynamic system. J Oper Res Soc 2000;51(2):
145–55.



http://taylorandfrancis.com


1.5
Real-Time Predictive Maintenance –
Model-Based, Simulation-Based and
Machine Learning Based Diagnosis

Franz Wotawa1, David Kaufmann1, Adil Amukhtar1, Iulia Nica1,
Florian Klück2, Hermann Felbinger2, Petr Blaha3, Matus Kozovsky3,

Zdenek Havranek3 and Martin Dosedel3

1Graz University of Technology, Austria
2AVL List GmbH, Austria
3Brno University of Technology CEITEC, Czech Republic

Abstract

Predictive maintenance focuses on forecasting faulty or unwanted behaviour
and defines appropriate countermeasures to be taken. Diagnosis, i.e., the
detection of failures, the identification of faults, and repair provides useful
foundations for predictive maintenance. In this article, we show how
diagnosis, and in particular model-based, simulation-based and machine
learning based diagnosis, can be used in practice. For this purpose, we
introduce a simplified DC e-motor simulation model with the capability of
fault injection to be used to show the efficiency of the introduced diagnosis
methods based on the model’s behaviour. A simulation run of the system
under test with pre-defined injected faults during runtime is used to validate
the results obtained by the diagnosis methods. The results outline a promising
application of these diagnosis methods for industrial applications, since each
algorithm shows a time efficient and reliable diagnosis in relation to find the
root cause of an observed faulty behaviour within the model. Further, the root
cause analysis, performed with the introduced diagnosis methods, offers an
excellent starting point for future development of self-adapting systems.
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Keywords: abstract model, AI based diagnosis, AI based predictive
maintenance, digital twin, model-based diagnosis, machine learning,
simulation-based diagnosis, reliability, validation, fault model, fault injection,
root cause analysis.

1.5.1 Introduction and Background

In this article, we focus on the application of model-based and machine
learning-based diagnosis outlined in the article “Foundations of Real-Time
Predictive Maintenance with Root Cause Analysis” making use of an e-
motor use case. In the foundations, we already discussed the underlying
background, and an architecture of a real-time diagnosis tool for detecting
root causes of faults based on different diagnosis methods, which distinguish
in the applied methodologies.

Besides providing more information regarding the application of the
different diagnosis methods, we want to solve the question of whether model-
based reasoning can be used for obtaining explanations for the given models,
a simplified DC motor model with the capability of fault injection was
developed to capture the individual ideas of diagnosis tools.

The first approach, model-based diagnosis, considers an abstract model
that can be represented as logical rules for diagnosis. This model captures
the abstract values for quantities/signals. Using an abstraction function, it
is possible to map given values to their abstract representation. The second
approach, simulation-based diagnosis, utilizes simulation models directly. A
pre-requisite is that the models not only capture the correct behaviour but also
faulty behaviour like the influence of different parameters on the behaviour.
The last approach, an AI-based diagnosis model also uses simulation models
to gather information about the behaviour based on different parameters of
the system. The produced knowledge base is further used to train a model.
After the training, it is plausible to evaluate the feasibility of the diagnosis
model in terms of decision process optimization in real time.

In summary, we deal with the following diagnosis methods in this article:

• Model-based diagnosis

◦ Abstract model represented with logic rules.
◦ Diagnosis based on state change observations.
◦ Classify the model in components and identify a normal or

abnormal behaviour of each.

• Simulation-based diagnosis
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◦ Detailed simulated system model (“digital twin”) with the
capability of fault injection.
◦ Use of simulation models directly.
◦ Generate labelled reference data by simulating the model with

health and fault condition in different scenarios.
◦ Real-time diagnosis of observed model values based on pre-

simulated reference data.

• AI-based diagnosis

◦ Machine learning to diagnose unexpected behaviour.
◦ Artificial neural networks to diagnose and predict fault

behaviour.
◦ Physical model (digital twin) with the capability of fault injection

to produce training data.
◦ Train and evaluate an AI based model on collected labelled

reference data to detect fault behaviour in real-time within cyber-
physical systems.

For all diagnosis methods, the assumption is to find faults occurring at
runtime. To show the architecture and applicability of these approaches,
the focus is on describing the mechanism and show the results based on
examples to highlight the idea, the problems, and solutions. In the following
section a simplified DC e-motor model with the capability of fault injection
is described and the obtained results based on different diagnosis method
implementations are demonstrated.

1.5.2 Application of Diagnosis Systems Based on
Simplified DC e-Motor Model

In this section we introduce a developed simplified DC e-motor model with
fault injection capability in all used components which comprises the battery,
switch, resistor, load on the motor and the e-motor parts. The ability of fault
injection is used to discuss three different diagnosis algorithms to detect
faults in a system based on the simplified DC e-motor. The first promising
approach is the model-based diagnosis algorithm. The model-based diagnosis
system uses logic to represent the e-motor to perform model-based reasoning
to search for diagnosis candidates given an unexpected behaviour caused
by faults in the system. The second introduced diagnosis system is based
on simulation which uses digital twin models of the e-motor directly to
simulate faults in advance to use the generated data to find correlations with
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the original system. The last approach deals with machine learning using
gathered fault data of the e-motor model to train the system to detect faulty
behaviour.

1.5.2.1 Simplified DC e-Motor Model With Fault Injection
Capabilities

The proposed use case of a DC e-motor comprises a battery, a switch
for turning the motor on and off, a resistor, which we may use to adapt
the voltage provided to the motor, the e-motor, and a load attached to
the motor. In Figure 1.5.1, we find the schematics of the motor that also
comprises the internals of the battery and the motor. We assume that the
battery comprises an internal resistance, the motor resistance, inductance,
as well as a part coupling the electric components to mechanic ones. For
the model we consider a brushed e-motor comprising a wound rotor and a
permanent-magnetic stator. The rotational speed of the motor is proportional
to the voltage applied and its torque is proportional to the applied current.
Table 1.5.1 shows a list of all components with the applicable health states
including faults that can be set during runtime to simulate different behaviour
of the e-motor. The DC e-motor simulation model is built with the equation-
based language Modelica to simulate the complex physical system. For the
diagnosis approaches based on this model, we use the simulated outputs

Figure 1.5.1 Simplified DC e-motor circuit.
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Table 1.5.1 Simplified DC motor component state description.
Component Health state Description

Motor ok Ordinary behaviour of a motor given by its internal
components and the equations provided for DC
motors allowing to map electrical quantities to
mechanical ones.

f1 In this fault mode we assume that 1/3 of the resistor
and inductivity values is lost.

f2 In this fault mode we assume that 2/3 of the resistor
and inductivity values is lost.

Load ok The load applied to the motor is set to its normal
value.

empty There is no load anymore applied to the motor.
f1 The load is 50% higher than its normal value.
f2 The load is 50% lower than its normal value.

directly or a generated FMU (Functional Mockup Unit) from the model
to be able to run simulations of the DC e-motor in other programming
environments.

1.5.2.2 Model-based Diagnosis for Simplified DC e-Motor

In the following, we outline the use of model-based diagnosis for the
identification of root causes. For this purpose, we discuss the necessary
steps required to diagnose the simplified DC motor use case depicted in
Figure 1.5.1. Specifically, we consider the following faulty case where a
certain load is higher than expected, indicated as load fault f1 in Table 1.5.1.
In Figure 1.5.2 we depict the behaviour of the e-motor when switching it on
without load (empty), with the expected load (ok), and the higher load (f1).
We see that when switching on the motor during time 0.5 and 1.5 seconds,
there is a deviation between the observed rotational velocity and the current
drawn to drive the e-motor in all three cases. Although this deviation is not
that high between the ordinary “normal load” scenario and the “high load”
scenario, as it can be observed.

We require observations and a logic model for computing diagnoses. The
observations in the case of model-based diagnosis are assumed to be available
at certain points in time where we probe the system. In Figure 1.5.2, we
consider 3 probing time points 1 , 2 , and 3 at time steps 0.25, 1.00, and
1.75 seconds respectively. In 1 there is no difference between the three
observed signals. In 2 we see that both the rotational velocity as well as
the current are different when comparing “normal load” with the “high load”
scenario. In the “high load” scenario, the velocity is lower and the absolute
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Figure 1.5.2 Simplified DC e-motor diagnosis observations used for model-based diagnosis.

value of the current is slightly higher. In time step 3 , only the velocity is still
lower for “high load”.

Such deviations can be obtained automatically comparing a simulation
run considering the e-motor to work as expected with observations obtained
from monitoring the real e-motor implementation. Deviations trigger
diagnosis and the question is how a model of the e-motor example can
be utilized for obtaining the root cause responsible for the behavioural
differences observed. For diagnosis, we will map the deviations or values
to their corresponding logic representation. But before discussing this issue,
we have a look at modelling for diagnosis.
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We have to formalize the behaviour of components and their
interconnections. For the behaviour, we use rules of the form ¬ab(C) →
behav(C). A battery component, for example, can be easily formalized
stating that in case of correct behaviour, it is delivering power using the
following logic rule:

¬ab (C) ∧ type (C, battery)→ val(pow (C) , nominal) (1.5.1)

The predicate type is used to say that component C is of a type, e.g., battery.
The predicate val is for stating a value, e.g., nominal, for a component port,
e.g., pow. In addition, we may also formalize that a malfunctioning battery is
not delivering any electricity, i.e.:

ab (C) ∧ type (C, battery)→ val(pow (C) , zero) (1.5.2)

We can do the same for switches, resistors, and the motor. A switch if being
switched-on provides electricity (but only if there is electricity at one port).
If switched-off no electricity is provided. A resistor is for passing electricity,
and a motor makes use of provided electrical power to speed-up its rotor.
Depending on the load the velocity reached can be higher or lower, requiring
less or more power.

¬ab (C) ∧ type (C, switch) ∧ on (S) ∧ val (inpow (C) , V )
→ val(outpow (C) , V )

¬ab (C) ∧ type (C, switch) ∧ on (S) ∧ val (outpow (C) , V )
→ val(inpow (C) , V )

¬ab (C) ∧ type (C, switch) ∧ off (S)
→ val(outpow (C) , zero)

ab (C) ∧ type (C, switch)→ val(outpow (C) , zero)

(1.5.3)

¬ab (C) ∧ type (C, resistor) ∧ val (inpow (C) , V )
→ val(outpow (C) , V )

¬ab (C) ∧ type (C, resistor) ∧ val (outpow (C) , V )
→ val(inpow (C) , V )

ab (C) ∧ type (C, resistor)→ val(outpow (C) , zero)

(1.5.4)

¬ab (C) ∧ type (C,motor) ∧ val (inpow (C) , V )→ val(outpow (C) , V )
¬ab (C) ∧ type (C,motor) ∧ val (inpow (C) , V )→ val(speed(C), V )
¬ab (C) ∧ type (C,motor) ∧ val (speed (C) , V )→ val(inpow (C) , V )

ab (C) ∧ type (C,motor)→ ¬val(speed (C) , nominal)
ab (C) ∧ type (C,motor)→ ¬val(outpow (C) , nominal)

(1.5.5)
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Note that in the above model we do not distinguish values to be higher or
lower than expected. Instead, we state that the speed (power requested) is not
allowed to be nominal in case of a fault in the e-motor. This formalization
captures the faulty behaviour required for diagnosis in the mentioned use
case. However, we are also able to come up with a model considering different
faulty states (and not only ab).

The described model formalizes the behaviour of the components. What
is missing, is the description of the structure of the system. In our case, we
have 4 components, i.e., a battery b, a switch s, a resistor r, and a motor
m, that are directly connected. We first, declare the components via stating
logical facts:

type (b, battery) ∧ type(s, switch) ∧ type(r, resistor) ∧ type(m,motor)
(1.5.6)

Afterward, we define the connections between the components using the
predicate conn:

conn (inpow (s) , pow (b)) ∧ conn(outpow (s) , inpow (r))
conn (outpow (r) , inpow (m))

(1.5.7)

To complete the formalization, we state that values are transferred via a
connection (in both directions), and that it is not allowed to have different
values on any connection:

val (X,V ) ∧ conn (X,Y )→ val(Y, V )
val (Y, V ) ∧ conn (X,Y )→ val(X,V )
¬(val (X,V ) ∧ val (X,W ) ∧ V 6= W )

(1.5.8)

This logic model can be now used for diagnosis. Note that in this context a
diagnosis is a setting of health states to components. Hence, we are interested
in assigning either ab or ¬ab to any component, e.g., in our case b, s, r,
and m considering the given observations. In Table 1.5.2, we summarised
the diagnosis results obtained when using the diagnosis engine described
in [2] and the model introduced in this section. Based on the foundations
elaborated in [2] we introduced a more complex physical system also taking
the factor time into consideration for observation to show the efficiency of the
developed diagnosis method for a broader field of application.

We see that in case of the second and third observations, we only obtain
the motor being responsible for the deviation between the expected and
the observed values. Note that this – because of the formalization – states
that the load is higher than expected. The required diagnosis time was less
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Table 1.5.2 Diagnosis results obtained using model-based diagnosis.
Section Observation Diagnosis

1 off (s)
∧ val (pow (b) , nominal)
∧ val (speed (m) , zero)
∧ val(outpow (m) , zero)

¬ab(b) ∧¬ab(s) ∧¬ab (r)∧¬ab(m)

2 on (s)
∧ val (pow (b) , nominal)
∧ ¬val (speed (m) , zero)
∧ ¬val (speed (m) , nominal)
∧ ¬val(outpow (m) , zero)
∧ ¬val (outpow (m) , nominal)

¬ab(b) ∧¬ab(s) ∧¬ab (r)∧ ab(m)

3 on (s)
∧ val (pow (b) , nominal)
∧ ¬val (speed (m) , zero)
∧ ¬val (speed (m) , nominal)
∧ val(outpow (m) , zero)

¬ab(b) ∧¬ab(s) ∧¬ab (r)∧ ab(m)

than 0.0021 seconds for all observations. It is also worth noting that the
observations represent our knowledge. For 2 we know that the speed and
the power consumption (the latter represented using the port outpow) are
both not nominal and also not zero. Similarly, we represent the observations
for 3 .

In summary, the provided model was able together with the given
observations to come up with the expected solution. No other single fault
diagnoses were obtained in any case. Modelling relied on the assumption of
the particular fault case, and the transfer of power through the circuit. This
simplified model may not be appropriate in all cases. Diagnosis time was
very short making the approach feasible for this kind of application having
a limited smaller number of components and taking care of simple models.
Modelling, however, has always been an issue and more sophisticated models
are maybe required for other application scenarios. The presented approach
assumes that a simulation model (a-kind-of a digital twin) is running
concurrently for allowing to generate observations.

1.5.2.3 Simulation-Based Diagnosis for Simplified DC e-Motor

The idea behind the simulation-based diagnosis is to make use of digital twin
models to simulate pre-configured faulty behaviour and thus find correlations
with the original cyber-physical system’s measured values, which allows to
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diagnose faults as well as fault combinations and the correlated root causes
of a physical system.

To diagnose a physical system with a simulation-based approach we
use a system to induce fault modes to measure relevant signals to gather
information about the behaviour under these configurations. This can be
performed on a real system or at least on a digital twin (simulation model)
with the ability to perform fault injection and output all relevant measured
signals. To use the knowledge about the behaviour under fault conditions is
the main idea of the simulation-based diagnosis approach. This leads us to
the question of how to use the measured information to detect a fault system
and additional to diagnose the root cause of such a faulty behaviour?

The main part of the simulation-based diagnosis approach is a precise
cyber physical model, or a simulation model of the physical system (digital
twin) with the capability of fault injection. Besides that, the algorithm itself
is categorized into three subsections. First the reference data, a pre-simulated
fault data generation for the diagnosis, second the model signals processing,
a preparation phase of the measured model signals on which the diagnosis is
performed and last the diagnosis phase where the measured data is brought
into comparison with the pre-simulated fault reference data to find the best
correlation and compute diagnoses to explain the actual system behaviour.

To evaluate the simulation-based diagnosis approach on the DC e-motor
model we use the FMU version of the simulation model running in a python
environment instead of a real system to produce fault reference data for the
diagnosis method. In addition, we used another instance of the simulated
DC e-motor model as a system to be diagnosed. We set the focus on the
diagnosis of the faults in regards to the motor and torque parameter. As stated
in Table 1.5.1 the motor and load state can be set with different modes.
However, for the validation we concentrate on the specific faults as empty,
f1 and f2 for the motor as well as f1 and f2 for the torque. In addition, we use
the ok state to diagnose a health system as a reference to a faulty system.

loadstate ∈ {ok, empty, f1, f2}
motorstate ∈ {ok, f1, f2}

(1.5.9)

To generate the reference data for diagnosis, the simulation is configured with
the option to inject faults at runtime. To generate a reference dataset with a
broad range of different scenarios and signal behaviour characteristics, the
fault states fx (loadstate, motorstate) are injected at various time points
and initial parameters of the DC motor model simulation. Besides the single
fault injection, also all possible combinations of faults are considered to cover
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most of the feasible fault diagnosis. While performing the simulations with
fault injection, we measure the most significant signals −→xs (1.5.10) of the e-
motor model as the battery current i and voltage u, the motor rotation speed
ω and angular acceleration α at a sampling rate of 0.001 seconds.

xs (t) ∈ {i(t), u(t), ω(t), α(t)} (1.5.10)

Next the observations −→xs are processed with a moving average method (see
equation (1.5.11)) on a time window ∆w of 0.05 seconds. With the moving
average we obtain an averaged signal value for each time step we simulate.

xr (t) =
1

n

n∑
i=0

xs(t− i) , n := ∆w (1.5.11)

The average is built since we perform the diagnosis based on an averaged
time window ∆w to avoid losing information during state changes and quick
responses. The averaged reference data −→xr (1.5.12) is stored in a table for
later usage in the diagnosis algorithm. Since all fault states fx are known
for every measurement, we obtain a labelled dataset as reference data. The
corresponding state information is appended to the reference data in the table.

−→xr =
[
xr0 . . . xrn , fload fmotor

]
(1.5.12)

After generating the labelled reference data −→xr, we can run the DC motor
simulation with the option to measure the signals −→xs, as mentioned before
with a sampling rate of 0.001 seconds. For the diagnosis we constantly store
the latest signal values within the same time window ∆w length as selected
for the reference data (0.05 seconds). By selection of an equal-sized time
window, it is possible to make a direct comparison on the reference and
measured data. The diagnosis is requested continuously within a time interval
of 0.4 seconds. With every request, the latest measured signals are averaged
at the request time point equal to equation (1.5.11) and result in −→xm. The
generated averaged measured signal vector−→xm is further used in the diagnosis
process.

Within the diagnosis process the highest correlation between the averaged
measured signals and the averaged reference data is searched. After the global
minimum of the deviation is found, the related reference signal−→xr is read out
to get access to the parameter states fx used as a label for the reference data.
Finally, the identified states fx (fload and fmotor) are returned as the actual
diagnosis. Figure 1.5.3 shows a detailed description of the complete diagnosis
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Figure 1.5.3 Simulation-based diagnosis algorithm description.

algorithm equations for the search process starting with a triggered diagnosis
based on the averaged measured signals −→xm and reference signals −→xr.

Figure 1.5.4 illustrates the e-motor simulation, where the first three graphs
show the battery current flow, the motor angular velocity and the angular
acceleration over a time of 5 seconds. In addition, the markers indicate a
diagnosis request of the system, whereby a green dot depicts a health system
and a red cross means that a fault is detected at this point by the diagnosis
algorithm. The last graph describes the actual set of states fx in the e-motor
simulation (blue rectangle) and the system diagnosis (red arrow), whereby
the diagnosis holds until a change in diagnosing is recognized.

We see that the system starts at health conditions (ok). After the first
second the load fault f1 (high load) is injected into the DC e-motor simulation.
The algorithm recognizes the fault and returns the correct diagnosis. At the
time of 2 seconds, the system is brought back to health conditions for 1
second when the motor state is set to fault f2 (66% inductivity and resistor
value lost). Since this fault is injected within a transient zone where no
diagnosis request is triggered, the fault is detected with the next diagnosis
request what explains the time delay of the diagnosis. With a higher diagnosis
request rate, we obtain faster results, but this is limited in terms of real time
diagnosis and the necessary computation time. The last fault injection into
the system is a combined fault, it consists of a motor fault f2 and a load fault
f1. The fault is again recognized and diagnosed correctly by the algorithm.
We see again a delay between the injection and the computed diagnosis, due
to the selected diagnosis interval of 0.4 seconds.

From this we conclude that the simulation-based diagnosis system is
worth to be considered for further research since the overall algorithm is
easy to implement and the system is robust in detecting different kinds of
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Figure 1.5.4 Simplified DC e-motor diagnosis observation with simulation-based diagnosis.

faults and fault combinations if the faults to be diagnosed are known and the
digital twin is able to simulate the behaviour precisely enough. Weaknesses
are zones where different faults can raise similar characteristics during the
initial phase that may result in wrong diagnoses. The reference table can also
cause problems in terms of storage space, if too many different faults and
fault combinations need to be diagnosed, which also has a direct negative
impact on the computation time. Since we are only interested in short sections
starting with the fault injection and ending when signals reach a certain
equilibrium level, the storage of reference data is minimized.

1.5.2.4 Machine Learning for Diagnosis of Simplified DC e-Motor

As already discussed, that machine learning algorithms are not unfamiliar
with the domain of fault diagnosis. There exist classes of algorithms e.g.,
Support vector machines, Decision Tree, K-Means, etc., which can be utilized
to solve a complex problem related to fault diagnosis. For this case study, fault
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diagnosis of DC motor, we modelled the fault diagnosis problem with one of
the ensembles-technique-based machine learning algorithms called Bootstrap
Aggregation (Bagging). We have multiple fault states of the simplified DC
motor for the diagnosis. Hence, we will use a classifier model for the
classification task. We already have faulty behaviour simulated for each faulty
state, that’s why we adopted a supervised methodology to train the model.
Now we will discuss the methodology for the fault diagnosis using machine
learning in more detail.

In a classification problem, machine learning models take input of
predictor variables corresponding to the dependent variable. In this case
study, we have nine predictor variables and two dependent variables namely
loadstate and motorstate of the e-motor system. Dependent variable loadstate
and motorstate have a set of categorical labels defined as shown in (1.5.9).
In order to transform the problem into the multi-classification problem, we
combined the loadstate and motorstate and introduced a new variable called
target defined as follows:

target=loadstate .motorstate (1.5.13)

Finally, the distribution of the dependent variable is almost equally divided
into faulty and non-faulty categories i.e., 42% and 58% respectively. As the
dependent variable has the sequence of values across predictor variables,
therefore, a machine learning model can be trained to learn the underlying
pattern associated with each state of the system. As there are more than
two states, a multi-classification model is trained as opposed to binary
classification. Furthermore, as machine learning models require data to be
numeric, we encoded the dependent variable with a label encoder in order
to train and evaluate the model performance. Label encoder simply assigns a
unique numeric integer value to a categorical label.

As discussed earlier that we used Bagging algorithm for the modelling,
Random Forest is one of the machine learning models from Bagging
classifiers. Random Forest is a bagging technique that simply combines
(average) the outcome of multiple models and makes more accurate
prediction than one model.

Model selection is one of the important and crucial parts of the training.
The main reason to select Random Forest is that it performs well on both
large and small datasets, and it can select the best subset of features that
perform better and adds more information into the modelling. There is a
number of hyper parameters associated with most of the machine learning
models which can be fine-tuned to achieve the best performance. In this case
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Figure 1.5.5 Box plot 10-fold cross validation.

study we used the important parameters for random forest i.e., n_estmiators
= 100, criterion = gini, min_samples_split = 2, min_samples_leaf = 1
etc. to train and evaluate the model. For the evaluation of the model, K-
fold cross-validation is used where k=10. K-fold cross-validation is used to
ensure that the model is not overfitting [1] and it generalizes well. In this
setting, the dataset is randomly divided into K chunks, and K models are
trained on each chunk. Each model is trained using K-1 chunks and validated
on the remaining dataset. Finally, as an evaluation metric, we used F1-
macro (macro-averaged), used to assess the quality of the model for multiple
classes. F1-macro is an average of label-wise F1 scores, whereas the F1
score is basically a harmonic mean of precision and recall. For each fold,
the F1-macro is calculated, and then averaged score for 10-folds is used to
evaluate the performance of the model. Once the model is passed through
the validation process to estimate the overall performance, the final model is
trained and tested on the test data. Please note that the test data was not part
of the training and validation process.

Next, we will discuss the results obtained from the diagnosis using the
machine-learning model. Figure 1.5.5. shows the distribution of F1-macro
over the 10 folds. For each fold, our model performs well as there are no
outliers. The average score for 10-fold cross-validation is 0.9838, which
shows that model was able to classify and detect the faults correctly, for most
of the states.

Figure 1.5.6. shows the confusion matrix for the test data, where each cell
along the diagonal represents the correct classification of diagnosis and the
rest of the cells show the misclassifications predicted by the model. Results
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Figure 1.5.6 Normalized confusion matrix - model testing/verification.

suggest that the model was able to correctly diagnose two faults i.e. {f1, ok}
and {ok, ok}, whereas we have very few misclassifications for faulty state
{ok, f2}. The F1-macro score for the test data is 0.9465. Results indeed show
that machine learning can be useful for the fault diagnosis of the e-motor.

From this, we conclude that we developed a machine learning algorithm
to classify the faulty states of the DC e-motor, based on the sequence of
variables. Results indeed suggest that machine learning algorithms have the
potential to learn the fault behaviour of the DC e-motor system. Although,
there are few misclassifications of the faulty states, but it is indeed part
of the learning as learning cannot be perfect. Bagging algorithms take the
decision from multiple models. Hence, these algorithms have the ability to
perform well. It is important to note that learning highly depends on the
quality of data, as the model learns from the underlying distribution of the
data and correlations (if exist). Results also suggest that each faulty state
has the learning curve associated with it, as a result, advanced machine-
learning algorithms e.g., boosting, neural networks, and deep learning can
be tested and evaluated for future work. As machine learning algorithms are
not pre-programmed, it gives them the advantage over other traditional faulty
diagnosis techniques.
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1.5.2.5 Comparisons and Limitations

The used underlying methodology has some limitations due to the
assumptions required. In the following section, the limitations and problems
of each applied diagnosis algorithm on the DC e-motor model are
summarized for comparison reasons.

The model-based diagnosis uses a detailed logic representation describing
the model’s components separately from the available simulation model. The
logic models may be made for a particular purpose, e.g., hardware diagnose,
and must be adapted to serve other goals, e.g., design diagnose of a system.
Since the logic representation of complex cyber-physical systems is applied,
the diagnosis is limited to observe state changes. Therefore, abstraction might
not be that simple to map to real behaviour without ambiguity. Further,
there is a lack of tools supporting the development and easily going through
obtained results.

The simulation-based approach uses digital twin models directly to
simulate healthy and faulty behaviour. The used parameter and obtained
outputs from the simulation are analysed, processed, labelled and stored in
a lookup table for further usage as a reference basis for the diagnosis search
algorithm. The main requirement for this approach is to generate an accurate
representation of the real system with the capability of fault injection. In
addition, the faults and fault combinations must be previously defined to
be able to diagnose them. With an increasing number of possible faults,
limitation factors as computation time and storage space come to the fore.
Another limitation is the adaptability to hardware or parameter changes in the
real system, since a precise and realistic behaviour representation to obtain a
correct diagnosis is needed.

Machine learning for diagnosis uses labelled reference data to train the
system. Since the algorithm depends on the quality of the observed labelled
data it is essential to have access to a precise simulated representation of
the real system. Variability in the system hardware or parameter requires the
machine learning model to be retrained which takes up an enormous amount
of time. Models usually do not generalize well, and when deployed in real-
time, results are affected by the data points which were not part of the training
dataset. In addition, model selection is a crucial part of learning. Results may
vary based on the model selected for the type of data, e.g., sequential and
non-sequential and underlying distribution of the data. Further, if the labels
of the fault type are not simulated properly the model will be biased towards
the noise and the misclassification rate increases.
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1.5.3 Conclusion

For the simplified DC e-motor, we introduced two types of components
(motor, load) with the ability to inject faults as resistor and inductivity loss
and a varying load factor. Based on this model, three methods, model-based
diagnosis, simulation-based diagnosis and machine-learning diagnosis are
introduced to be able to detect unexpected behaviour and outline its root
cause. The model-based diagnosis method uses a logical representation of
the simplified DC motor model to identify abnormal state changes. With
this approach, we were able to come up with the expected solution in the
particular case applying a high load fault during normal operation, still, the
modelling complexity increases for more sophisticated models.

The simulation-based approach makes use of digital twin models directly
to simulate normal and faulty behaviour to cover possible scenarios which are
of interest for the diagnose part. The measurements and the corresponding
state parameter are stored and used as reference data for the diagnosis search
process during real-time observation of the simplified DC motor model.
The simulation-based diagnosis approach delivers accurate diagnoses in real
time with the limitation that only pre-simulated faults are considered to be
diagnosed.

The last approach is the machine-learning diagnosis, which is capable
to classify the faulty states based on the real-time measured signals of the
model. As training data for the bagging algorithm, we use the simulated
labelled reference data from a simulation-based approach which already
covers different behaviours caused by fault injection. The machine-learning
diagnosis model is validated with a 10-fold cross-validation method and the
verification is done on unseen data which was not part of the validation set.
We generated new instances of the system under test using the simulation-
based approach architecture to run the DC e-motor model simulation to test
the machine-learning diagnosis model.
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Abstract

In this article, we discuss the use of artificial neural networks for monitoring
and diagnosis to be used in the context of real-time predictive maintenance.
There are two use cases analysed here. As a first one, we discuss the
motor model used for diagnosis in detail. In particular, we introduce a
detailed acausal six-phase e-motor model to be used for different stator
and inverter faults simulations. The inter-turn short circuit fault is targeted
here. Simulation data and data measured on a real custom-made six-phase
motor with the ability to emulate this fault are pre-processed based on the
mathematical analysis of the fault. Such data are then used for modular
neural network training. The trained modular neural network is optimized
and deployed into the NVIDIA Jetson platform. The second ANN presented
in this article is designed for bearing fault detection based on vibration
measurements. The vibration data taken from publicly available datasets
are transformed into suitable condition indicators which are analysed by
the multilayer perceptron network running on a PC in MATLAB with the
possibility to implement the resulting network into a small edge device. As
such, two use cases are shown how artificial neural networks can be used on
edge devices. Obtained results show that the approaches can be used in real
setups.

83
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Keywords: AI based diagnosis, acausal model, artificial neural network,
computing-at-the-edge, modular neural network, multilayer perceptron,
multiphase PMS motor, vibration diagnosis, inter-turn short circuit fault,
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1.6.1 Introduction and Background

This article focuses on the demonstration of Artificial Neural Network
(ANN) based monitoring and diagnosis of e-motors and mechatronic systems
implemented on the edge directly in embedded devices. It reveals a theoretical
analysis of existing methods provided in the article “Foundations of Real
Time Predictive Maintenance” and it can be viewed as its two use-cases.

1.6.1.1 AI-based Diagnosis of E-motors

There are many recent papers dealing with the AI-based diagnosis of e-
motors [1], [2], [3], [4], [5] and others. The authors describe the design of
the ANN and provide the success rate of the network evaluation, still they
either do not deal with on the edge implementation or mention that the
integration is in progress. This paper tries to reduce the complexity of the
proposed networks by suitable data pre-processing to be able to classify the
measured data on the edge platform represented with embedded AI hardware
and tends to practical implementation and the operation in real-time. The
integration of fault diagnosis and predictive maintenance algorithms as close
as possible to the motor try to support this trend. This article demonstrates
AI-based diagnosis and predictive maintenance for e-motor running on the
edge. The diagnosis discovers the issues which are potentially dangerous for
the operation if they are ignored. Diagnosis combined with the redundancy
and integration of predictive maintenance tasks can substantially increase the
reliability and the availability of the powertrain.

Various methods to detect faults and unexpected behaviour of cyber-
physical systems were proposed [6]. These methods require a large amount of
experimental data for the learning process, or well-known system behaviour
described by the model. Modelling a healthy system is a relatively simple
task, on the other hand, modelling the system under fault conditions can be
challenging. For instance, commonly used causal modelling methods can be
used to create a healthy motor model, however, modelling of fault behaviour
of the electric motor using causal models is difficult [7]. For these reasons,
an acausal modelling approach was selected since it brings many benefits [8].



1.6.2 Artificial Neural Network for e-Motor Diagnosis 85

This type of model can be created in MATLAB/Simulink using Simscape or
other simulation methods and tools like Modelica.

The requirements on e-motor safety integrity levels are continuously
increasing. It holds for the motor for fully or hybrid electric vehicles as well as
for common industrial motors. For the e-motor, it is demanded by the braking
capability of the e-motor which is good for the energy recuperation, and
by the progression towards autonomous cars. In industrial applications, it is
required due to a higher level of automation and precise production planning.

1.6.1.2 Artificial Intelligence in Vibration Diagnosis

Nowadays, the Artificial Intelligence (AI) approach to vibration diagnosis
is growing significantly and machine learning as well as deep learning
algorithms, including neural networks (NNs), are becoming a part of vibro-
diagnosis [9]. Both approaches are used in practice – simple statistic-based
machine learning algorithms as well as complicated NN structures. Examples
of such methods can support vector machines, decision trees, Bayesian
classifier, Mahalanobis-Taguchi system etc., as representants of the machine
learning algorithms, and convolutional NN, recurrent NN, shallow dense NN,
etc., as representants of the deep learning techniques. The functionality of
the algorithms is mainly demonstrated on the publicly available datasets or
on real captured data on minor occasions. Success rate of the classification is
relatively high and reaches values over 98 %. Because of the lack of real data,
even describing many failures of the concrete machine, transferred learning
algorithms are in the scope of view of the scientific community in the last few
years. This procedure allows the algorithm to be learned using one type of
data captured on one machine, transfer the knowledge and classify the faults
on the second machine without prior training using data of such machine.

1.6.2 Artificial Neural Network for e-Motor Diagnosis

This section provides the first use case of ANN for the inter-turn short circuit
fault detection in a six-phase motor. It is composed of two subsections. The
first one outlines acausal e-motor model, which is used to prepare training
datasets with the fault, which are either not realisable on a real customised
motor or prepared faster and complement datasets from the measurements on
a real motor. The second one presents the steps from the selection of suitable
condition indicators, through the data pre-processing, MNN design, training,
validation, towards MNN deployment on NVIDIA Jetson Xavier platform.



86 Real-Time Predictive Maintenance

1.6.2.1 Acausal e-Motor Model with Faults Injection Capability

This section outlines the development of an acausal e-motor model for the six-
phase motor (connected as two three-phase sub-systems) which is capable to
inject several typical Permanent Magnet Synchronous Motor (PMSM) stator
faults. This model was parameterized for the correspondence with the real
custom-made motor equipped with many windings taps enabling to emulate
these faults. They both can serve as sources of datasets for the ANN training
and validation which is capable to diagnose the inter-turn short circuit fault.

The Simscape allows building physical component models in Simulink
in a fast and natural way. Components and physical connections are directly
integrated within block diagrams and other modelling paradigms. Individual
Simscape components interact with each other. Each Simscape block is
represented by a set of equations that describe the physical behaviour
of components. Equations are automatically processed during the model
compilation process. The motor converts electrical energy into mechanical
rotating energy. The mechanical rotating components as the moment of inertia
or friction block can be used to create the simple model of a motor mechanical
part. The motor connection to the complex mechanical model is also possible
using Simscape.

The electrical part of the dual three-phase motor model can be described
by equation (1.6.1).

uabc12 = Rabc12iabc12 +
dLabc12iabc12

dt
+ eabc12 (1.6.1)

Conversion of electrical energy into mechanical torque can be characterized
using the equation (1.6.2).

Te=Pp

(
1

2
iTabc12

dLabc12

dθ
iabc12+

iTabc12eabc12
ωe

)
(1.6.2)

The mentioned equation can be used to emulate healthy motor model
behaviour. This model can be extended and the equation for some coils are
split into the serial connection of two coils with mutual inductances. The
serial connection of the coils has the same behaviour as the original one. The
voltage potential of any place of the original coil can be subsequently used to
simulate electrical fault. This approach is demonstrated in Figure 1.6.1.

The variable M represents mutual inductance between the coil L and other
motor windings. R represents windings resistance. Variable e denotes the
influence of back-EMF voltage in windings. Parameter σ represents a division
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Figure 1.6.1 Winding equivalent for extended motor model.

ratio. The position of fault occurrence can be specified using this parameter.
The coil splitting process is describable by equations (1.6.3).

u = Ri+
dLi

dt
+ e (1.6.3)

[
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u1_2

]
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σ2L σ(1− σ)L

σ(1− σ)L (1− σ)2L
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i1_2

]
dt

+

[
e1_1

e1_2

]
This description was used to create an acausal model of the dual three-

phase machine able to emulate various internal motor faults. Internal short-
circuits as well as disconnections in phases can be simply simulated. Figure
1.6.2 demonstrates various motor faults which can be simulated as well as
emulated in the real motor. The model is used to generate important data sets
for both healthy and faulty motors and for the transients from healthy to faulty
states. These data sets can be used to train ANNs and for their validation.

1.6.2.2 Artificial Neural Network for Inter-turn Short Circuit
Detection

This section shows the design of the DNN for inter-turn short circuit
fault detection of PMSM. It starts with real experiments which were
performed using the experimental motor with multiple windings taps which
are capable to emulate this type of motor fault. The experiments helped
with the selection of suitable condition indicator for fault detection. Further
subsections describe data pre-processing, preparation of datasets and the
process of training, validating and final deployment of DNN on embedded
hardware.
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Figure 1.6.2 Simulated/Emulated faults in extended motor model / experimental motor.

1.6.2.2.1 Selection of suitable condition indicator for fault
detection

Figure 1.6.3 demonstrates phase currents of both healthy and damaged motor
sub-systems (only currents in the damaged sub-system are shown in this
figure). Figure 1.6.4 shows phase currents transformed into dq coordinates.
In this case, currents of both sub-systems are visible. As it can be observed,
currents of damaged sub-system contain significant noise and distortion in a
form of a significant second harmonic component. This is in accordance with
the mathematical analysis of this fault as it is described e.g., in [8] and [11].

Phase currents or phase currents transformed into dq coordinates could
be used as inputs to recurrent NN. This type of NN can filter the noise
and consider not only the actual measurements but also previous ones.
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Figure 1.6.3 Phase motor currents (healthy/with fault).

Figure 1.6.4 Motor currents in dq coordinates (healthy/with fault).

The computational complexity of such a NN would be high. On the other
hand, linear NN would not be able to detect this fault properly using actual
measurements as inputs due to high measurement noise. This problem can be
overcome by suitable data pre-processing using the filtration method which
is described later in this article.

Figure 1.6.5 shows low pass filtered motor current magnitudes in αβ
coordinates in both sub-systems. The magnitudes should be constant and
independent of the motor electrical angle for the ideal motor and power
inverter operating in steady-state; however, the sixth harmonic component is
visible in both healthy and faulty waveforms. The sixth harmonics component
is generated especially by the dead-time effect. Analysed inter-turn fault
causes a significant increase of the second harmonic component which is
nicely visible in αβ current magnitude waveform.
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Figure 1.6.5 Filtered data in αβ coordinates (healthy/with fault).

From the analysis above it is evident that the second harmonic component
in filtered currents during one electrical period is a good condition indicator
for the inter-turn short circuit fault.

The slight drawback is the fact that the number of measured data during
one electrical period depends on motor speed. To suppress this drawback,
the whole current waveform is converted to 60 data points per electrical
period per sub-system. This fixes the length of the data buffer for its easier
processing with ANN.

1.6.2.2.2 Network structure selection
The designed ANN is composed of several ANN modules, and as such, they
form a Modular Neural Network (MNN). Filtered magnitudes of current
waveforms in both sub-systems are used as inputs into the MNN. To increase
fault classification precision, also filtered magnitudes of voltage waveforms
are used as inputs. Currents represent the motor torque, while voltages
carry the information about the rotational speed. Figure 1.6.6 shows the
proposed structure of the MNN. The symmetry of the motor is reflected in
the symmetry of data processing in MNN.

1.6.2.2.3 Data pre-processing
Inputs into the MNN consist of four buffers. Each buffer has 60 elements.
The buffers are created from actual measured current/voltage magnitudes in
both sub-systems.

Used filtration method is based on sixty IIR filters per MNN input. Only
one filter with index i is active at a time depending on the actual motor
position ϕe(k) in degrees.

i = floor(ϕe(k)/60) (1.6.4)
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Figure 1.6.6 MNN structure used for inter-turn short circuit detection.

Input data updating occurs once per motor control period which is set to 100
micro us. Filters are described by the following formula:

yi(k) = Kui(k) + (1−K) yi(k−1) (1.6.5)

where the filtering constant K is set to 0.01, k is step related with the control
period of the data generation and ui(k) denotes one of the inputs.
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Outputs of the filters are grouped into the buffer. This buffer is used as an
input to MNN and it contains filtered signal along one electrical period.

1.6.2.2.4 Preparation of datasets
Fault symptoms that can appear in PMSMs depend not only on the emulated
fault type but also on the motor operating point (motor speed, load torque,
problematic stator phase). For this reason, a large amount of training data is
required to cover all possible fault states in all operating conditions.

Datasets measured on the real motor were obtained under various
motor speeds and torques. Randomly generated transients between randomly
selected electrical speeds in the range from 200 to 3000 rad/s and with
different torques in the range from 0 to 10 Nm (the breaking torques were
not used for learning and not for validation) were used to generate training
datasets. Simulated data using the motor model were used to generate
complementary datasets under the fault condition because these experiments
are time-consuming on a real motor. The fault current is high and causes fast
local overheating of the motor and it is always necessary to let the motor cool
down after such experiments. The experimental motor also does not enable
to make the short-circuiting between an arbitrary couple of turns of the coil.
And this is the second reason why simulated data are used to prepare missing
datasets advantageously.

The motor symmetry was employed to extend datasets with the faults
in different motor phases. Phase currents and voltages were re-grouped in
different orders to prepare the training and validation data for the six-phase
(two times three-phase) motor. This solution helped to prepare additional
datasets for learning/testing without the necessity to simulate/experiment
with each phase and each sub-system separately. This approach significantly
reduced the time needed for the dataset preparation.

1.6.2.2.5 MNN training
The network from Figure 1.6.6 was trained from the mixture of real
measurements and the data coming from the simulations using the acausal
motor model on a workstation PC in the environment of MATLAB using
pre-processed datasets as described in the previous two sections.

1.6.2.2.6 MNN validation
The capability of MNN to diagnose the inter-turn short circuit fault was
validated using data from the real motor only. Three turns of the stator
winding coil were short-circuited. It represents 3/7 of the stator coil in one
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slot. Validation datasets were measured on the real motor in a similar way as
the ones for training. Data used for training were not used for the validation
at the same time. The fault was successfully classified with the probability of
99.92 %. When the fault depth was lower, the fault detectability was slightly
reduced.

The fault detection below 200 rad/s is significantly less precise, but the
severity of the fault is also lower, and it is usually not harmful for the motor.

1.6.2.2.7 MNN deployment
The designed and trained network was implemented in NVIDIA Jetson
Xavier platform using GPU coder in MATLAB. This NVIDIA platform was
connected with the inverter controller using Ethernet. The controller sends
required voltages and currents. The data pre-processing can run in both, in
the controller or in the NVIDIA platform.

After the fault injection into the model simulation, it requires only 1.1 ms
for classification with a success ratio of 99.92%. The latency of the Linux
running on the NVIDIA platform spans up to 100 µs with the provided
JetPack software. Other operating systems designed for hard real-time like
RedHawk Linux exist and significantly improve the latency issue.

1.6.3 Artificial Neural Network based Vibration Diagnosis

This section is devoted to the design of the second use case, which is ANN
for vibration diagnosis for the bearing state of health monitoring. The first
subsection deals in general with the vibration diagnosis of rotating machines.
The second subsection analysis AI approaches in vibration diagnosis. The
third section presents the developed MLP network.

1.6.3.1 Vibration Diagnosis of Rotating Machines

Vibration diagnosis of rotating machines is a commonly used technique in
technical diagnosis and faults identification. Not only typical mechanical
failures, such as unbalance, misalignment, gears, and bearings problems
can be advantageously diagnosed, but also electrically caused failures
may be simply found. Nowadays, electrical faults are diagnosed mainly
using electrical quantities measurement, however, mechanical vibrations
measurement can be very helpful in the detection of electrically hardly
detected faults. On the other hand, vibration-based diagnosis is capable to
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reveal the faults undetectable by measurement of only electrical quantities.
There can be two reasons for this fact:

• Manifestation of a fault in the electrical signal domain is quite weak
(e.g., in the initial phase of the fault) and cannot be correctly measured
due to small signal to noise ratio, while the vibration signal provides
successful information for sufficient detection of the fault.

• Given fault does not have an image in the electrical domain, thus the
measurement of mechanically generated signals is helpful for successful
fault diagnosis.

Thanks to the aforementioned aspects, vibration diagnosis is a widely used
part of the diagnosis and predictive maintenance of rotating machines,
including e-machines.

1.6.3.2 AI Approaches in Vibration Diagnosis

The algorithms, statistical procedures, and NNs are usually created, learned,
and finally inferred on computers, both standard personal computers, and
advanced powerful multicore computers with the support of dedicated
graphic cards with multicore graphic processors. Also, specialized dedicated
hardware such as the NVIDIA Jetson platform is commonly used thanks to
relatively small dimensions and high computational performance compared
to standard computers. A typical application area for this kind of hardware
is Computing-at-the-Edge (CatE) nodes. Insignificant limitations in available
memory and performance, rather typical for small size CatE sensors, shall
also be taken into consideration. Finally, implementation of the NNs into
small sensors or CatE nodes is a relatively challenging process because
of limited resources, mainly available memory, computational performance,
power consumption as well as the speed of inference of the algorithm. It
is very common, that NN creation, learning, and validation process is done
using a powerful computer, NN structure and parameters are exported from
the IDE and imported into this small performance device as a functional
and successfully learned algorithm. A NN is then executed on the target
hardware with no need to learn the overall structure of the network. It is
good to mention, that by the small performance device is understood a
simple microprocessor with several kilobytes of read/write memory, max.
a megabyte of program memory, core frequency of about several hundreds
of MHz and typical performance of around 100 DMIPS (Dhrystone Million
Instructions Per Second). For comparison, typical Jetson NANO hardware
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has 128 core GPU, 4GB of internal RAM, and is capable of processing around
1600 FLOPS.

Because the performance of the system, as previously mentioned, can
be somehow limited, it is good to reduce the amount of input data by pre-
processing procedures. Not only the NN algorithm itself, but also other
necessary code needs to be executed inside the processor to ensure the
basic functionality of the system (e.g., communication with sensing elements,
drawing graphics on display to communicate with the user, peripheral service
routine, etc.). Signal pre-processing leads to reduction of the input data and
in fact to the reduction of the size and execution time of the AI algorithm. In
the vibration diagnosis, two types of extracted features are usually used:

• Time domain features – features calculated from the time signal, mainly
statistic parameters like RMS value, standard deviation, kurtosis etc.

• Translated domain features – features calculated from translated domain.
Frequency transform, Hilbert transform, Gabor transform, Z-transform,
etc., are the most used transforms in the vibration diagnosis. It is good
to mention, that not the whole e.g. frequency spectrum is used as
an input for the algorithm, but only some particular frequency lines
representing possible faults are led to the input of the NN. This brings a
significant reduction of the input data and computational complexity of
pre-processing algorithms.

1.6.3.3 MLP implementable in device at the edge

As an example of a simple and powerful NN algorithm for bearing faults
classification, Multilayer Perceptron (MLP) can be considered. Simple
shallow dense NN of a MLP type can be seen in Figure 1.6.7.

The network has one hidden layer and three layers in total (including input
and output layer). The number of input neurons is equal to eight, representing
eight input time-domain features. The number of output neurons is equal to
five, representing five output classes. Therefore, the network is trained to
distinguish between five faulty states of the input signal. Training dataset
used for this network is represented by publicly available CWRU bearing data
centre data. As this dataset is used by many scientists for evaluation of their
bearing faults detection algorithms capabilities, accuracy of different neural
networks can be found in the literature, e.g. [10], where maximal accuracy
of 99,92 % can be found. Dataset, containing data of healthy bearing state
and four degrees of bearing outer ring faults, was pre-processed and eight
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Figure 1.6.7 Shallow dense NN.

signal features have been extracted, namely RMS value, kurtosis, skewness,
variance, standard deviation, mean value and min and max value.

Inference algorithm of the network, as well as weights modification
procedure using back propagation method, have been implemented in
MATLAB environment. The output value of each neuron can be calculated
using equation (1.6.6).

y = f

(
N∑
i=1

wixi

)
(1.6.6)

Where wi is the vector of the individual weights w1, w2, ..., wN , xi is the
vector of individual inputs x1, x2, ..., xN of the perceptron, and f(·) is an
activation function. In this case, sigmoid activation has been used.

It is necessary to adjust the initial weights values of the NN during
the learning procedure. The commonly used approach is based on back
propagation algorithm (gradient descend method). The goal is to adjust the
weights according to equation (1.6.7)

w0
j (t+ 1) = w0

j (t) + ∆w0
j (1.6.7)

with the effort to minimize the output error, defined by subtraction between
desired (dj) and real (aj(2)) output values of the network (1.6.8).

E =
1

2

∑
j

(
a
(2)
j − dj

)2
(1.6.8)
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Figure 1.6.8 Mean square error of MLP during training phase.

The equation for final weights modification after partial derivatives of the
aforementioned equations and using mathematical operations can be written:

∆w0
j =

∂E

∂w0
j

=
∂EC

∂a
(2)
j

·
∂a

(2)
j

∂zk
· ∂zk
∂w0

j

= · · ·

=
(
a
(2)
j − dj

)
· a(2)j

(
1− a(2)j

)
· a(0)j · α

(1.6.9)

where a
(2)
j is the output of the network, a(0)

j is the input of the network,
dj is the desired output and α is the learning rate of the back propagation
algorithm.

The final MLP ANN has been implemented in MATLAB and its
classification accuracy has been evaluated using Confusion Matrices (CM).
Mean square error (MSE) calculated according to Equation (1.6.8) during the
learning phase can be observed in Figure 1.6.8.

As it can be seen, MSE reaches very low values (below 2 %) at the end
of the learning phase, which has been confirmed by the CM obtained from
the output acquired during the testing process. Mentioned CM can be seen in
Figure 1.6.9.
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Figure 1.6.9 CM of the testing process of MLP.

Since the MLP was successfully implemented in MATLAB, there is a
strong intention to import the network in the low-performance CatE device.
Such a device can be represented by a small electronic sensor including a
sensing element and microcontroller suitable for MLP inference (e.g. ARM
based STM32 microcontroller). Once the structure of the network is created
and the weights of the network are established by the training process, a file
describing the structure of the network and weights values can be exported
from MATLAB and imported by STM Cube. AI application directly into a
microcontroller. Validation of the network is done on a PC within testing
phase, while validation of the resulting network implementable into STM
device is done within Cube.AI software. Afterwards, MLP will fully run
inside the target STM device.

To fulfil the requirements of the limited resources of the microcontroller,
a simple evaluation of the occupied memory has been done and it is listed in
Table 1.6.1 (considering implementation of float data type using four bytes).

This amount of total occupied memory of ca. 1.2 kB can be smoothly
implemented into small size memory of a microcontroller. Despite the small
size of the MLP network, the classification accuracy of the network is
satisfactory, as it can be seen in Figure 1.6.9 and the overall algorithm is
very well suited for this simple case of bearing faults classification. It is good
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Table 1.6.1 CatE device evaluation of occupied memory.
Layer Memory
Input features 8 x 4 bytes
weights vector (between input and hidden layer) 162 x 4 bytes
weights vector (between hidden and output layer) 90 x 4 bytes
output layer 5 x 4 bytes
intermediate temporary variables 30 x 4 bytes
TOTAL ∼1.200 bytes

to mention, that the accuracy of the classification strongly depends on the
learning phase given by the quality and size of the input training dataset.

1.6.4 Conclusion

Two ANNs were designed to detect unexpected behaviour of the e-motor
and the bearing on the edge device to operate in real-time. For the inter-turn
short circuit detection in the PMSM, MNN was utilized because of the motor
symmetry. The highly detailed acausal e-motor model was used to substitute
measurement in the operating points which were unreachable on a customized
real motor and to reduce the number of required experiments on a real motor.
A significant factor in the diagnosis of an inter-turn short circuit fault is the
processing time. It was reduced with the used computational hardware to
1.1 ms which is promising and should be sufficient for real-time diagnostic
of common e-motors. The second ANN prepared for abnormal vibrations
analysis due to bearing faults is MLP designed in a way that the computation
is prepared to be deployed directly on the vibration sensor’s microcontroller.
This is possible since a low-sized and efficient MLP network is applied,
which delivers good results in the classification of bearing faults.
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Abstract

This introductory article opens the “Applications of AI in the Semiconductor
Industry” section by giving a holistic overview of the development of
artificial intelligence (AI) technologies applied to the industry. Historically,
the semiconductor industry has utilised complex automation for many
tasks and areas, especially in repetitive work and uniform processes.
The high need for flexibility in manufacturing, increased diversification
of products, complexity, and demand for more autonomous operations,
including human-machine interaction, have led to a strong push towards using
AI technologies in semiconductor manufacturing. AI technologies are applied
in semiconductor product development, digitised product definition (DPD),
knowledge management system for risk assessment and root cause analysis,
image recognition for inspection and defect classification in front end (FE)
and back end (BE) applications for anomaly detection in process chains.
Deep learning (DL) and Machine Learning (ML) techniques have given a new
stimulus to semiconductor industry research to address the unique challenges
for semiconductor manufacturing as the technologies nods are evolving and
the number of process parameters to be controlled is increasing. In the end,
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the article introduces the four contributions to this section, highlighting the
use of AI, computer vision, neural networks (NNs) in various use cases in
semiconductor manufacturing processes.

Keywords: artificial intelligence (AI), industrial artificial intelligence,
semiconductor industry, manufacturing, image processing, computer vision,
neural networks, pattern recognition, natural language processing.

2.0.1 Introduction and Background

Industrial AI integrates domain-specific know-how with the AI-based
functions and capabilities into various AI-enabled applications in industrial
sectors. AI technologies applied in the industry enables and accelerates
the autonomous and semi-autonomous processes that run those operations,
realising the vision of the self-optimising manufacturing facilities. AI plays
a double role in the semiconductor industry: it acts as a key leverage element
for digitising the manufacturing processes and provides the technology for
semiconductor manufacturing to optimise the operations and control the
process parameters as the technologies advance toward nanometre-scale
semiconductor nodes. The primary goals of using AI technologies are to
reduce costs, save time, improve quality, and increase the robustness of
industrial processes. AI technologies are applied to increase the efficiency
and effectiveness of industrial processes by mastering complex situations
within the limitations of specified systems. The use of AI in industrial sectors
represents a new opportunity for industrial stakeholders to optimise resources
and increase profitability with a high economic impact.

Semiconductor companies are integrating AI, ML, expert systems, and
other technologies to develop intelligent manufacturing environments to
transform scheduling, dispatching, equipment productivity, process and
equipment control, and robotic management. These technologies optimise
quality, productivity, efficiency, and flexibility while maximising cost-
effectiveness and accelerating overall innovation.

2.0.2 AI Developments in Semiconductor Industry

Today, the semiconductor manufacturing processes are based on the use
of Advanced Process Control (APC) techniques. The availability and use
of custom, off-the-shelf APC facilities in FAB are part of the production
requirements. SEMI consortium [10] has issued the “The Process Control
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System Standards” (SEMI E133) that defines communication between
components to enable run-to-run (R2R) control, fault detection (FD), fault
classification (FC), fault prediction (FP) and statistical process control (SPC).
It is supported by SEMI specifications E125 and E134 on EDA (Equipment
Data Acquisition).

The APC remains a fundamental pillar in semiconductor manufacturing
supported increasingly by AI and Industrial Internet of Things (IIoT)
technologies.

Today, the semiconductor manufacturing facilities experience more
challenges due to high-mix/low-volume loads that result in shorter production
cycles and frequent product mix changes, with increasing pressure on costs
and quality.

In addition, the effect of Moore’s law is expected to approach the limit
of possible performances. Moore’s law has been seen as the fundamental
driver for innovation in the integrated circuit (IC) industry. The doubling of IC
performance started to slow down due to the physical limitations of transistor
shrinkage and quantum mechanical effects such as “quantum tunnelling”
[1][2], which posed many challenges due to excess heat generation and power
consumption. The phenomenon of “dark silicon” has posed other problems
concerning the performance-cost perspective.

The development of new semiconductor technologies requires complex
manufacturing facilities with advanced metrology systems. Each aspect of
semiconductor processing, from lithographic design rule specifications to
continuous yield analysis, essentially depends on accurate and reliable data
for critical dimension (CD) lithographic patterning and material composition.
The status of semiconductor metrology techniques and the opportunities for
AI methods to provide the necessary breakthroughs to support future process
node development is presented in [8][9].

The competitive pressures on semiconductor manufacturers are increased
to reduce production time and costs, improve quality, shorten innovation
cycles, and accelerate new technologies’ ramp-up [3].

A list of few significant advances made by AI and IIoT in the
semiconductor industry is presented below:

Analytics and optimisation used to eliminate repetitive processes and
searches in content management for root cause analysis. Expert systems for
root cause failure analysis and risk assessment in semiconductor production
help access knowledge across all related content and support transferring
domain knowledge from engineers’ expertise into algorithms. Fast and
reliable decisions are made using documents’ data sources (e.g., failure
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mode effect analysis, etc.). Performance improvement is made possible by
performing multidimensional correlations analysis using highly nonlinear
data through machine learning and deep learning techniques and discovering
correlations where human experts need time and are prone to errors.

Sensing used in automated quality assurance by integrating AI-based capture
systems such as image recognition to support the visual inspection and
classification of defects at both the front-end (wafer fabrication) and back-end
(assembly and test) manufacturing processes. Manual and other conventional
quality inspections are unreliable, expensive, have a low detection rate, and
are challenging to scale. The use of AI technologies increases the reliability
and efficiency of these processes.

Packaging optimisation used to improve the assembly and packaging
processes in the industry by applying AI solutions consisting of a
combination of anomaly and deviation detection to increase reproducibility.

Digitalising product definition integrating AI technologies used to optimise
the relationship between requirements and constraints. The complexity
of the requirements stack requires optimisation techniques that AI
provides. Significative development is expected by using AI integrated into
manufacturing facility infrastructure to support the transition from document-
based requirements to machine-readable formats.

2.0.3 Future Trends for AI Technologies and Applications
in Semiconductor Industry

The global semiconductor market is projected to grow from $452.25 billion
in 2021 to $803.15 billion in 2028 at a CAGR of 8.6% during 2021-2028 [4].
Globally, the long-term market trend for electronic components is expected
to exceed US $1,000 billion by 2030. It is estimated that the research and
development costs of developing circuits from a 65 nm node to a state-of-the-
art 5 nm node have increased from $28 million to $540 million, and fab build
costs for the same nodes have increased from $400 million to $5.4 billion
[5]. By implementing AI and ML alone, the industry can gain $35-40 billion
annually. Over a more extended timeframe of 3 to 4 years, it could double to
almost 20% of the industry’s current revenue [5].

AI is transforming the industrial semiconductor industry, moving from
an “application-centric world” to a “data-centric world”, where almost all
data will be generated and consumed by machines. The industry’s growth
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is no longer limited by the ability of humans to create or consume data.
New computing approaches emerge from processing the massive amounts of
available data, and AI-based hardware and software are required to enhance
productivity. Training AI computing becomes incredibly energy-intensive, so
the industry must drive performance-per-watt improvements [6].

The AI technologies can be used to adjust tool parameters to achieve
greater accuracy by deploying real-time tool-sensor data, metrology readings,
and tool-sensor readings from earlier process steps, enabling ML algorithms
to capture nonlinear relationships between process time and outcomes (e.g.,
etch depth). The data aggregated could include electric currents in the etching
process, light intensity in lithography, and temperatures in baking. Optimal
process times based on AI models can be provided for individual wafer or per-
batch that decrease the processing time, improve yield, or both, thus reducing
the cost and increasing throughput.

Computer vision and AI algorithms show their capabilities in the
visual inspection of wafers to ensure quality by detecting defects in the
front-end and back-end production process using cameras, microscopes,
or scanning-electron microscopes. Optical inspection in the semiconductor
manufacturing process for analysis and verification represents an area with
considerable potential for AI research and can significantly improve the
equipment’s expected performance. In addition, combining different physical
and electrical characterisation and measurements techniques with data mining
and AI can provide better yield curves. AI-based wafer-inspection systems
using DL and computer vision are trained/learned to automatically detect and
classify defects on wafers with better accuracy than human operators. The use
of dedicated hardware-based on graphics- and processing tensor-processing
units and on-premises edge computing enables computer-vision algorithms
to train and deploy in real-time in a scalable manner.

AI-based analytics can support the automated yield learning in
integrated circuit design and optimise the iterations based on feedback
from manufacturing. Deploying ML-based algorithms to identify patterns in
component failures, predict likely failures in new techniques, and propose
optimal layouts to improve yield and increase the design’s efficiency.

2.0.4 AI-Based Applications

AI4DI partners [7] are developing AI and IIoT technologies with applications
in different areas of the semiconductors sector. The articles included in this
section cover four demonstrators and actionable insights into how AI and
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IIoT are used in semiconductors applications, presenting challenges and
technological advancements to accelerate the digitising process across the
industry.

The article “AI-Based Knowledge Management System for Risk
Assessment and Root Cause Analysis in Semiconductor Industry” proposes
a new expert system concept for root cause failure analysis and risk
assessment in the semiconductor industry. The knowledge representation of
the expert system’s main component is based on knowledge graphs created
with knowledge extracted from various data sources and post-processed for
better consistency. Queries to the expert system will provide known real-
time risks of the production flow in semiconductor manufacturing. The
paper concludes that integrating fast-developing natural language processing
technologies and AI/ML methods seems the most promising way to digitalise
FMEA documents and create this expert system that can support FMEA
experts at their more complex tasks. Research conducted in AI4DI is also
working toward accommodating industrial environment specifics to facilitate
the integration of the FMEA tool in the real environment of industrial
semiconductor manufacturing.

The article “Efficient Deep Learning Approach for Fault Detection
in the Semiconductor Industry” investigates the use of high quantized
artificial neural networks to be implemented on small industry-grade
microcontrollers enhanced with hardware accelerators. The system proposes
an automatic visual inspection and classification of defects in both
the front- and back-end manufacturing processes in the semiconductor
industry to increase yield and reduce costs. This is a considerable
improvement of the current inspection performed by humans, primarily
because of the high throughput in the production lines. Preliminary
experiments indicate that when appropriately trained, quantized artificial
neural networks can reach high accuracy, and their implementation using
the interconnection of two hardware parts can be resource-efficient. It
remains to be seen for the following steps to be applied on a larger
scale.

The article “Towards Fully Automated Verification of Semiconductor
Technologies” proposes an extension of the existing workflow with an
automated device cross-section analysis to increase trust in semiconductor
devices and their originality (i.e., combat rogues). Central to this approach is
the confluence of knowledge from human domain experts and AI/ML experts
input to automated image interpretation. The goal is to extract technological
attributes and verify them against original design and specifications. By
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applying state-of-the-art AI, the results are comparable to those of an
operator’s manual effort.

The article “Automated Anomaly Detection through Assembly and
Packaging Process” highlights the importance of continuous optimising,
using, and adjusting the assembly process in the semiconductor industry to
achieve competitive advantages, mainly as its reproducibility depends on
various distributed parameters. This demands the high accuracy of employed
automatic inspection tools for visual defect detection. An AI solution
consisting of a combination of anomaly detection (unsupervised learning)
and supervised learning for detecting deviations is proposed, satisfying the
demand, and required features. Two anomaly detection examples have been
considered, and the results showed potential to be good alternatives to
classical approaches.
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Abstract

Due to the increasing technical complexity of products and market pressure,
the demands in the semiconductor industry are rising with respect to quality,
performance, and time to market. Root cause analysis and risk assessment
are crucial elements for success in fulfilling these demands. As a result,
there is an ever-growing number of technical documents, which potentially
contain valuable information serving as a base to inform development
and production. Experts need to cope with this large number of technical
documents, for example, to generate new hypotheses to identify possible
root causes of deviations or potential risks in the ramp-up and production
phase of new products. Unfortunately, most of the technical documents are
unstructured, making processing them even more tedious. New advances
in computer science, specifically artificial intelligence (AI), open the door
for a higher degree of automation of knowledge management tools to
support experts. Knowledge bases such as knowledge graphs allow for
representing complex information but need to be created for each domain.
Novel state-of-the-art graph embedding algorithms showed promising results
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in complementing knowledge bases with new relations. Complementary
to knowledge base completion, language models trained on large textual
corpora have demonstrated their ability to capture complex semantics. This
paper proposes a new expert system concept for failure root cause analysis
and risk assessment in the semiconductor industry, which leverages the
advanced graph embeddings in combination with language models. The main
challenges in this setting are the type of relations of interest, which are causal,
and the language being used, which is highly domain-specific. Thus, we
devised AI for consistency improvement of the data, predicting new links, and
information extraction from unstructured data. The information extraction
is conducted by levaraging domain specific ontologies and by focusing on
presence of causal language.

Keywords: expert system, root cause analysis and risk assessment,
knowledge representation, semiconductor industry, natural language proces-
sing, information extraction, knowledge graph, convolutional neural
network, recurrent neural network, machine learning, link prediction, text
classification, consistency improvement.

2.1.1 Introduction and Background

In the last decades, more than ever, high-tech microelectronic-based
products consolidate as part of everyday life. Thus, expectations concerning
functionality, reliability, and competitive prices are growing. As a response,
more functions are integrated, facilitating products’ performance continuous
growth. Consequently, the technological complexity of microelectronic
components and the amount of data are constantly increasing due to Industry
4.0 applications in the production facilities. Moreover, the fierce, competitive
market situation for the industrial semiconductor companies, which are the
leading supplier of such high-tech products, is inevitably increasing the
time to market and price pressure. Therefore, knowledge and experience
are necessary to enable innovation, stable production, and cope with market
dynamics.

In the semiconductor manufacturing industry, knowledge and experience
refer to domain-specific know-how in chip design, operation and control of
highly sophisticated infrastructure, metrology, quality assurance, verification,
and validation. An effective and efficient knowledge management system
that, on-demand, applies and rolls out existing know-how and allows rapid
learning from the failures has to be in place.
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The necessary knowledge is usually accumulated over long periods and
reflects in the practical experience of the human domain experts. It is common
to document human domain experts’ knowledge in the written form using the
domain-specific language. One of the main challenges is how to make this
knowledge continuously more accessible to all potential users, respectively,
i.e., the engineering teams working in semiconductor manufacturing.

To guarantee the high quality of the products in the semiconductor
industry, human domain experts thoroughly investigate deviations in the
manufacturing process or in the products’ characteristics. Mainly, two
standard processes triggered after deviation identification to answer causal
questions: (i) risk assessment: what will be the effect of the observed
deviation? (ii) root cause analysis: what is the cause of the observed
deviation? Therefore, it is highly intriguing to identify causal relations along
the whole production process.

In the semiconductor manufacturing with many hundred subsequent
process steps, it is effort-intensive and time-consuming to keep up with the
detailed information required for successful semiconductor manufacturing.

The following chapters describe our concept system, which leverages
recent development in computer science and artificial intelligence for
automated information extraction methods from relevant text documents
transferring it into a form that allows the inference of additional causal
relationships.

2.1.2 Research Areas

This chapter proposes a knowledge management system for risk assessment
and root cause analysis in the semiconductor industry. In specific, this chapter
discusses the various system components and functionalities. Lastly, this
chapter highlights the different challenges and research areas addressed for
the proposed system’s use cases.

The defined use case of risk assessment and root cause analysis relies
on information about previous experiences. This information is documented
in different data sources. The human experts’ abilities to interpret various
data sources, extract information, and intelligently combine the information,
formulating hypotheses, are the fundamental motivation of the proposed
system.

To address the motivation mentioned above, we opted for a star schema
system design. The knowledge representation is the core component of the
systems. The knowledge representation is responsible for the storage of
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Figure 2.1.1 AI-based knowledge management concept system for risk assessment and root
cause analysis in semiconductor industry.

information extracted from different sources. The failure mode effect analysis
(FMEA) documents library, the Failure Analysis reports (FA reports), and
other related text documents were selected as primary data sources for the
proposed system. Different information extraction algorithms to account for
the heterogeneity of the data sources were incorporated.

Finally, the refinement algorithms interact with the knowledge
representation predicting new links that indicate causal relations, which are
not present in the data sources. This is achieved by combining information
extracted from different sources in an intelligent way that mimics the human
experts’ ability for reasoning and inference.

Figure 2.1.1 illustrates the general structure for the proposed system
concept.

The proposed system concept is implemented as a demonstrator that uses
three different types of documents as the data sources. However, the proposed
system can be extended to accommodate more types of data sources.

Several challenges were identified and addressed as follows. The
article addresses first the consistency improvement of the selected FMEA
documents. Then, it presents the information extraction from FA reports.
Third, the information extraction from free text is analysed. Fourth, the
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knowledge representation of causal information that enables reasoning and
inference is described, and finally, the refinement algorithm is addressed.

2.1.2.1 FMEA and FMEA Consistency Improvement

The well-known FMEA (failure mode effect analysis) process is performed
by identifying a process map and visualizing components of the process with
a multidisciplinary team. At each step in the process map, challenges that
may lead to errors or potentially unsafe conditions are identified. Each of the
ways that the workflow can fail is called a failure mode. A list of these failure
modes and their possible causes and effects is compiled [1–3], formulating
an FMEA document. In FMEA documents, relations between the columns
(Effect/ Failure mode/ Root cause) are interpreted as causal relations, where
designated cells in the same row are causally related, effectively representing
a causal chain that identifies a single, known risk. The FMEA process
supports the experts to document possible failure mechanisms reaching from
the effects on the (final) product back to its potential root causes. Ideally,
in a given cell, a short, descriptive text represents a single concept. In this
case, a concept is a separable (identifiable) phenomenon that acts as either
as (i) a root cause, (ii) an effect observed in the product characteristics, or
(iii) an intermediate state in the causal chain. Since the FMEA documents
are manually compiled by domain experts and the complex nature of
causal relations (e.g., many to many relations with transitive perception [4]),
inconsistencies are likely to occur. Crucially, any ambiguity anywhere in the
FMEA documents will ultimately affect the whole causal chain due to the
nature of causal relations. This is worsened by the collaborative manner in
how such documents are being crafted. Typically, a group of experts from
different fields (e.g., physicists, technology experts, designers) work together
to formalize FMEAs, following techniques like brainstorming meetings
and workshops. Due to the heterogeneity of these groups and their vastly
different scopes, divergent interpretations of individual causal roles (i.e., the
respective cells) are more likely to occur, contributing to the inconsistencies
experienced in FMEA documents. Based on the analysis of existing FMEA
documents, the majority of data inconsistencies is attributed to one of three
main categories:

1. Cases of conflict in the direction of the relations, i.e., the direction of the
causal effect relation, are reversed.

2. Cases of merged cells, wherein the short text of a single cell comprises
multiple concepts or even relations between numerous concepts, e.g., a
causal chain of multiple causes and effects.
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3. Cases of missing information in the causal chain, where the documented
relation describes a subsequent effect of the cause but skips its direct
effect.

Additionally, anyone not closely familiar with the production process will
struggle to interpret the documents, not only because of the presence of
inconsistencies as mentioned above but also due to the language used in the
short text, containing domain-specific terms including many abbreviations.
To sum up, FMEA documents in their current state are designed to be created
and maintained by experts and to be interpreted exclusively by experts.
However, automatic data analysis methods lack the ability to correct for
impairments in data quality [5], with merged and mixed-up data being a
prime example. As such, methods for improving FMEAs data consistency
and quality are highly required.

In our research, we found that just addressing the consistency purely via
data-driven methods on a document level does not alleviate the problem, i.e.,
building a classifier to detect the content of the columns. Hence, domain
knowledge needs to be considered to define a classification schema that
mimics human domain experts’ perception of the short text. As a response,
we systematically defined: (i) a domain-specific model, consisting of
concepts schema (i.e., types of cause/effects) and a relationship consistency
scheme (i.e., valid relations between the concepts), and (ii) a model of
inconsistencies, consisting of reverse direction of the causal relations, missing
information, and merged cells. Based on real-world data, we found that the
case of merged cells is in fact, the most prevalent cause of inconsistency.
Moreover, the manual classification of the complete documents’ library
is time-consuming. Thus, our research provides a systematic study that
addresses the effectiveness of variant AI-based approaches for short text
classification in the semiconductors industry where domain-specific language
is used. Also, our research extends the intersentential pattern mining
algorithm presented in [6] to address the cases of merged cells.

Our research aims to transform the FMEAs from their current state of
“experts only” to a more machine-friendly form that could achieve a higher
automation degree of expert systems’ methods for root cause analysis and
risk assessment.

2.1.2.2 Causal Information Extracting from Free Text

Our research in causal extraction from the free text, contained in documents
with no predefined structures (unstructured documents), was initiated via an
initial literature survey. As a result, it has been found that there are two main
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approaches, namely: (1) rule-based approaches, (2) machine-learning-based
approaches. The first category is based on several hypotheses, which are
briefly outlined below.

Hume’s comments on causal relation: Based on the observation that cause
and effect often co-occur and thus have a higher likelihood to be part of a
causal relationship [7].

Transitivity: Preserving transitivity is an essential desideratum for an
adequate analysis of causation [8]. For example, if ei causes ej , and ej causes
ek, then the transitivity states that ei causes ek. Moreover, if there is another
cause for ej , e.g. el, it also follows that el causes ek. This property is beneficial
in a textual setting since causal statements are expected to be infrequent.

Suppes’ probabilistic theory of causation [9]: If entity ei causes ej , then
we will likely observe that the conditional probability given ei exceeds the
marginal probability of ej : P(ej | ei) > P(ej).

In addition to these hypotheses, several lexical cues are indicative of
causal relationships. Radinsky et al. [10] propose three types of lexical cues:
(1) causal connectives (e.g., because, as, and after), (2) causal preposition
(e.g., due to, because of), (3) periphrastic causative verbs (e.g., cause, lead
to). Another key insight from literature is that such lexical cues are domain-
dependent and thus are required to be specifically tailored towards the target
text.

As an alternative to manually constructed rule-based methods, there
are also machine-learning-based methods for extraction causality. However,
corpora need to be annotated with ground truth for these methods to work,
which is typically conducted as manual work by domain experts [11]. An
example for such annotation is depicted in Figure 2.1.2, also highlighting the
importance of additionally include hints for co-reference resolution (relation
from “it” to “something”).

Once sufficiently many sentences have been annotated with their
contained causal relationships, methods from the field of supervised machine
learning can be applied. Traditionally, this has been considered a sequence
classification task and approached via Conditional Random Fields [12].

Figure 2.1.2 Manual corpora annotation example.
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More recently, deep learning approaches have been adapted for these tasks,
including LSTMs [13] and CNNs [14].

We identified two works as promising starting points for our setting,
with the first work by Zhao et al. [15] considering extraction of pseudo
causal relations from medical text. They make clear that without in-depth
domain knowledge, one can only identify candidates that need to be screened
by domain experts. Another aspect that makes this work of particular
interest for our setting is the inclusion of intre-sentential relationships.
Yu et al. [15] provided the second source of methods to extract causal
relationships from the scientific literature. Here the language from scientific
publications is expected to be closer to the text available as technical reports.
They use the contextual word-embedding model BERT and classify sentences
into four types of causal relationships as the first stage. The source code of
their approach is also available for download1.

In the semiconductor industry, many unstructured documents containing a
significant amount of information are available. Extracting relevant structured
information from such documents in a (semi-) automated fashion helps
engineers in processing these documents more efficiently. Moreover, allow
for more automation. However, the task is extremely challenging given the
entirely different style in which each document is produced. Moreover, data
annotating is highly effort and resource-intensive. Thus, our research aims
to extract causal relations from a different source of unstructured documents
in an unsupervised approach. The resulting cause and effect pairs will be
used to populate the proposed system concept knowledge representation for
further querying, reasoning, or inference. We consider the following sources
of domain-specific unstructured texts, production tools manuals, handbooks,
and PowerPoint presentations.

We devise a two-step approach, which combines rule-based and machine
learning based approaches.

• Connective discovery: in this step, a rule-based approach is leveraged to
distinguish sentences that contain causal cues. An initial test on publicly
available causal IE dataset [16] shows that the rule-based approach
achieves 80% accuracy.

• Entity extraction: in this step, a machine learning based approach is
devised to identify the exact phrases for the cause and effect within
a sentence that is extracted in the previous step. Specifically, we

1Detecting Causal Language Use in Science Findings, https://github.com/junwang4/causal
-language-use-in-science
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extract candidate phrases per sentence using part-of-speech tagging
[17], followed by scoring using a pre-trained BERT model [18, 19].
Experiments on dataset [16] show that this simple approach achieves
40% hits@5.

The method has been tested on the real-life dataset. Initial analysis has
revealed that the current assumption that a cause-effect pair will be mentioned
within a single sentence is invalid. In addition, given the un-labelled data, a
lack of automatic evaluation means is also an issue. Our follow-up work will
address these two issues.

2.1.2.3 Failure Analysis Process, Failure Analysis Reports, and
Ontologies

The Failure Analysis process aims to trace back detected failures in functional
characteristics of a device to its corresponding physical defects. The Failure
Analysis process is complex and requires significant knowledge about the
device and the different diagnostic tools. Moreover, The Failure Analysis
process includes performing experiments and analyzing their outcomes.
Finally, the Failure Analysis process outcome is documented in a Failure
Analysis report (FA report) report.

The FA report is an unstructured text document that summarizes the
entire investigation process of a single device, i.e., the set of hypotheses,
experiments, obtained measurements, and their implications. A set of possible
hypotheses can be interpreted as the causal model that human domain
experts rely on while conducting the Failure Analysis process. Our research
aims to extract this causal information from experts and reports, boosting
expert systems methods for the Failure Analysis process. The FA report
primarily consists of unstructured text. Hence, human domain experts are
free to report their work according to their personal preferences. However,
the articulation of findings might vary considerably. For example, complete
sentences, paragraphs, bullet points, and tables are commonly used in FA
reports.

In the semiconductors industry, the acquisition of human domain experts’
knowledge and its storage in a machine-readable form paves the way for
applying AI methods that consider domain knowledge automatically. Various
knowledge representation methods can be used to encode human domain
experts’ knowledge, e.g. standard definitions of terms used in the reports. In
the Failure Analysis domain, we opted to formalize human domain experts’
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knowledge as an ontology (a well-studied knowledge representation approach
designed to store terminological definitions, allowing to structure them in a
hierarchical manner) [20]. The Web Ontology Language (OWL), commonly
used to define ontologies, allows for the articulation of human domain
experts’ knowledge. Moreover, given its formal logic-based semantics, OWL
ensures that the formulated statements are interpreted unambiguously. Thus,
the Failure Analysis ontology formulated using OWL language includes three
main definitions:

1. Individuals describe real-world entities, like a job’s integrated circuits
sample or tools available in a lab.

2. Classes define parts of the Failure Analysis domain by summarizing
properties of a collection of individuals, e.g., class OpticalMicroscope
comprises all individual microscopes installed in the lab. Also, class
IncomingInspection including all individuals describing applications of
this method.

3. Properties determine relations between two individuals, e.g., property
uses tool links class method, a superclass of class IncomingInspection,
with class tools, a superclass of class OpticalMicroscope.

By analyzing a given FA report, human domain experts are able to trace
all the laboratory processes, from the first visual inspections of the device
to the key method leveraged to identify the fault. Moreover, the ontology
provides complementary information that describes the human domain
experts’ knowledge (not existing in the FA reports). In consequence, the goal
of the proposed artificial intelligence tool, which is used in the FA laboratory,
is to map the written report to the conceptual knowledge contained in the
ontology. We hypothesize that mapping the written report to the conceptual
knowledge contained in the ontology allows for further AI-based algorithms.
Moreover, as future work algorithms, which capture FA knowledge
(reports mapped to the ontology), could be leveraged for diverse tasks
such as:

1. Incorporate the language model for FA reports consistency improvements.
2. Offer a centralized search tool for all FA-related knowledge – previous

reports, knowledge management database, etc.
3. Assess during the different stages of the FA job, applying the knowledge

acquired from previous reports through suggestions and statistical
knowledge.



2.1.2 Research Areas 123

2.1.2.4 Knowledge Representation

No-SQL databases, including graph databases, showed their effectiveness
while working with distributed data [21]. Moreover, recent advances in graph
embedding algorithms show promising results for downstream tasks such
as node classification and link prediction [22]. Therefore, we opted for No-
SQL databases in specific graph databases as a framework for the knowledge
representation for the proposed system concept.

Moreover, the proposed system concept use case addresses risk
Assessment and root cause analysis. In the proposed system concept use case,
causal relations are the main relation types of interest. However, humans’
ability to interpret causal information makes causal relations deceptively
simple. Hence, causal relations are context-dependent [4]. Causal information
representation is gaining more interest in many research disciplines to
increase the understandability of automated decision-making systems [23].

In the semiconductor industry, the context information is highly variant
from one product to another and from one process to another. Therefore,
an event that occurs in multiple contexts (i.e., different manufacturing
processes or different products) might have a completely different meaning.
Consequently, the causal relation between two events might change or even
disappear depending on the context. However, human domain experts are able
to judge the possibility of the extension of the causal relations between the
contexts.

Our research addresses causal knowledge representation in the
semiconductor industry manufacturing studying the effectiveness of
incorporating context information with regards to the inferencing and
reasoning algorithms.

2.1.2.5 Refinement Algorithm

Real-life knowledge graphs, such as those constructed in this work, are often
orders of magnitude sparser than benchmark knowledge bases like Freebase,
especially if they are built via (automatic) extraction methods from textual
corpora. The textual information stored in the text attributes is commonly
used to compensate for the lack of structure in a sparse graph. For a recent
example, see ref [22]. Language models such as BERT are preferred choices
for generating low dimensional representations for the textual information,
as they have been shown to consistently improve the performance of a large
variety of Natural Language Processing (NLP) tasks [24].



124 AI-Based Knowledge Management System for Risk Assessment

Figure 2.1.3 BERT-ConvE workflow.

Building upon existing work, this work also builds a BERT-based
method (BERT-ConvE) to exploit transfer learning of BERT (fine-tuning)
in combination with a convolutional network model ConvE [25]. See
Figure 2.1.3 for an overview of the main components of the BERT-ConvE
method, together with the general workflow. Experiments on ConceptNet
[26] show that the proposed method outperforms strong baselines by 50%
on knowledge graph completion tasks. The proposed method is suitable for
sparse graphs as also demonstrated by empirical studies on ATOMIC [27] and
sparsified-FB15k-237 datasets [28]. The next step is to apply the proposed
method to the knowledge graph constructed in this work.

However, to our best knowledge, challenges in respect to the use of
domain-specific languages, in specific the semiconductor industry, have not
been addressed before. Moreover, context information plays a vital role in the
correctness of the causal relation. The context information in the proposed use
case indicates the settings in which the causal relation is present between two
events (the cause and the effect). The prosed concept system addresses the
prediction of causal relations, which is context-dependent. Thus, it introduces
more sparsity to the resulted knowledge graph.
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Our research addresses the causal knowledge graph completion challenge
in industrial settings, considering the domain-specific language, structural
information, and context information.

2.1.3 Reflections

We presented an AI-based knowledge management system for Risk
Assessment and Root Cause Analysis in the Semiconductor Industry.
The proposed system process various types of documents where causal
relationships are being captured. As these documents were originally
intended for interpretation by human experts and created by people of
different backgrounds, these documents, in their current form, require
additional information extraction algorithms.

Moreover, due to the manual creation of some of these documents
and the nature of causal relation, some of these documents i.e., FMEAs,
tend to contain a number of inconsistencies calling for consistency
checks and automated means of quality improvements. As a response,
we systematically defined: (i) a domain-specific model, consisting of a
concept schema (i.e., types of cause/effects) and a relationship consistency
schema (i.e., valid relations between the concepts), and (ii) a model of
inconsistencies, consisting of mixed-up cells (including reverse direction),
missing information, and merged cells.

Regarding the FA reports, the unstructured nature of their content (free
text) requires a different approach than those utilized in FMEAs. Thus, the
discovery of causal relations, among others, is handled with an ontology. The
ontology, a formal set of descriptions of terms regarding the Failure Analysis
work and the different links between them, is then utilized to map the reports.
We hypothesize that this data structure will allow us to develop further AI-
based algorithms such as language models.

Also, our research areas address causal knowledge representation in the
semiconductor industry manufacturing and aim to study the effectiveness
of incorporating context information regarding the hypotheses generation
(i.e., predicting possible causal links in causal knowledge graph) methods.
Moreover, it addresses the causal knowledge graph completion method
in industrial settings. Hence, our research considers sparsity and noise
introduced by automated information extraction, sparsity presented by the
causal relations context information, and domain-specific language.

Finally, we devised a knowledge graph embedding method BERT-ConvE,
that effectively exploits transfer learning and context-dependency of BERT
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in combination with a convolutional network model, ConvE. Experiments on
knowledge graph completion task on publicly available knowledge graphs
(ConceptNet, ATOMIC, sparsified FB15k-237) has shown that BERT-ConvE
is suitable for sparse knowledge graphs where structural information is
limited and textural information is informative for reasoning over the graph.

2.1.4 Conclusion

In conclusion, while human domain experts remain the key source of
knowledge, the proposed system aims to mimic their ability to extract
information from different data sources and extend knowledge between
different scenarios to support the experts in their repetitive tasks. Moreover,
although the proposed system concept may appear simple in design,
the proposed use case (Risk Assessment and Root Cause Analysis in
Semiconductor Industry) pushes the boundaries of many states of the
art methods of artificial intelligence and natural language processing.
Furthermore, our research areas highlight novel approaches to address causal
domain knowledge information extraction, representation, and completion,
leveraging a combination of advances in computer science, artificial
intelligence, and natural language processing.

Acknowledgments

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] L. Ashley and G. Armitage, “Failure mode and effects analysis:
an empirical comparison of failure mode scoring procedures,”
Journal of patient safety, vol. 6, no. 4, pp. 210–215, 2010, doi:
10.1097/pts.0b013e3181fc98d7.

[2] M. Scorsetti et al., “Applying failure mode effects and criticality
analysis in radiotherapy: lessons learned and perspectives of



References 127

enhancement,” Radiotherapy and oncology: journal of the European
Society for Therapeutic Radiology and Oncology, vol. 94, no. 3, pp.
367–374, 2010, doi: 10.1016/j.radonc.2009.12.040.

[3] N. Viscariello et al., “A multi-institutional assessment of COVID-19-
related risk in radiation oncology,” Radiotherapy and oncology : journal
of the European Society for Therapeutic Radiology and Oncology, vol.
153, pp. 296–302, 2020, doi: 10.1016/j.radonc.2020.10.013.

[4] N. McDonnell, “Transitivity and proportionality in causation,” Synthese,
vol. 195, no. 3, pp. 1211–1229, 2018, doi: 10.1007/s11229-016-1263-1.

[5] Erik HOLLNAGEL, “Evaluation of Expert Systems,” in Studies in
Computer Science and Artificial Intelligence, Topics in Expert System
Design, Giovanni GUIDA and Carlo TASSO, Eds.: North-Holland,
1989, pp. 377–416. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780444873217500193

[6] J.-L. Wu, L.-C. Yu, and P.-C. Chang, “Detecting causality from online
psychiatric texts using inter-sentential language patterns,” BMC Medical
Informatics and Decision Making, vol. 12, no. 1, p. 72, 2012, doi:
10.1186/1472-6947-12-72.

[7] K. A. Rogers, “Hume on Necessary Causal Connections,” Philosophy,
vol. 66, no. 258, pp. 517–521, 1991, doi: 10.1017/S0031819100065165.

[8] L. A. Paul, N. Hall, and E. J. Hall, Causation: A user’s guide: Oxford
University Press, 2013.

[9] Julian Reiss, “Suppes’ probabilistic theory of causality and causal
inference in economics,” Journal of Economic Methodology, vol. 23,
no. 3, pp. 289–304, 2016, doi: 10.1080/1350178X.2016.1189127.

[10] K. Radinsky, S. Davidovich, and S. Markovitch, “Learning causality
for news events prediction,” in Proceedings of the 21st international
conference on World Wide Web, Lyon, France: Association for
Computing Machinery, 2012, pp. 909–918.

[11] J. Dunietz, L. Levin, and J. Carbonell, “Annotating Causal Language
Using Corpus Lexicography of Constructions,” in Proceedings of The
9th Linguistic Annotation Workshop, 2015, pp. 188–196. [Online].
Available: https://www.aclweb.org/anthology/W15-1622
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Abstract

The semiconductor industry is a very cost sensitive industry and yield is
key to profitability. The ability to analyse and detect the faulty parts at
several manufacturing steps is also very important to ensure the quality
of the delivered integrated circuits. Several factors as alignments, shifts
or masks rotations can lead to errors during the front-end step (wafer
fabrication), or others causes such as fingerprints, scratches and stains
can cause cosmetic damage during the back-end step (silicon packaging).
Therefore, an automatic visual inspection is required to ensure that the parts
are free of any defects. In this chapter, we focus specifically on classifying
wafer maps according to predefined defaults. We propose a platform which
aims at making the classification process more energy efficient, by means of
the interconnection of two hardware parts. The first one, the microprocessor
STM32MP1, is responsible for image pre-processing and for offloading
inference to a dedicated hardware accelerator. The second one, the hardware
accelerator, is implemented in a Xilinx Zybo Z7-20 FPGA and uses a
quantized neural network model. Preliminary results show that, for this low
throughput applications that has a limited number of classes, the solution
presented in this article can classify in real-time with accuracy above 80%
using limited resources.
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Keywords: classification, wafer maps, deep learning, quantized neural
networks, embedded artificial intelligence, HW/SW integration, hardware
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array.

2.2.1 Motivation: The Wafer Fault Classification Problem

Defect inspection and classification are significant steps of most
manufacturing processes in the semiconductor industry. These steps are
needed during the front-end process, when wafers come out of the foundry,
and during the back-end process, when packaging individual chips. Having a
proper inspection to partition wafers, dies, or packages in correct vs incorrect
items is needed not only to ensure delivering working packaged chips to
customers, but also to improve the quality of the manufacturing process.
Similarly, accurate classification of the defaults, be they during the front-
end or back-end process, is key to high yield. Indeed, yield management
and yield learning help the manufacturing process engineers in determining
the causes of abnormal fabrication. To ensure a high-level of quality and
yield, still today, many of the inspection phases are performed visually,
by humans [1]. Given the throughput on the production lines, the actual
inspection can only be done on samples, which leaves quite some room for
improvement.

In this chapter, we focus on the front-end process, and more specifically
on the detection and classification of wafer defects using deep neural
networks (DNN), which have proven to be efficient for classifying images.
Early detection of defects at the back-end process, during which wafers are
produced and electrically tested, can help to readjust certain parameters in
the production line, to increase yield and thus reduce costs. This explains
why a lot of effort has been devoted to this topic since the infancy of mass
production of integrated circuits.

Once wafers have been fabricated and the electrical inspection step
carried out, different 2D images are generated indicating which dies are
working properly and which are not. These images, known as wafer maps,
must then be inspected to extract their features and classified into different
categories. It will allow to determine if all chips on the wafer can go
to packaging, in the case of lack of defects, or if the wafer presents a
specific failure pattern indicating an issue during some of the production
stages. Specific failure patterns may indicate the root cause of a problem.
For instance, when several faulty dies appear randomly on a wafer without
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following any specific pattern, the problem may come from the presence
of dust particles transferred to the wafer surface; when a ring of faulty
dies is present, the issue is due to a misalignment of several layers during
photolithography; when defects are located in the centre of the wafer or
following a donut pattern they may indicate a non-uniform application
of forces to smooth and flatten, silicon wafer, a non-uniform temperature
distribution or also a problem during oxidation; when some streaks run across
the wafer surface it may be due to a human error in handling equipment or
due to an issue during the chemical-mechanical polishing stage; or even when
falling dies are located near to the edge of the wafer, this can indicate an issue
during etching or a non-uniform cleaning.

Wafer data, because it could leak information on the process and possibly
its yield, is very sensitive, and manufacturer are unwilling to share it. The
work presented in this chapter will therefore be based on a public and
open access dataset that has been “anonymized” and then donated to the
community by TSMC: the WM-811K wafer map dataset [2]. The wafer
production line throughput is low compared to general purpose computer
vision applications, and the construction of the wafer maps is the result
of a process which also involves test equipment [3]. However, since the
machines are working 24/7, 365 days a year for continuous monitoring of the
production quality, we seek solutions that are both accurate and low power.
In addition to these constraints, and given the confidentiality of the data
processed, being able to perform on-device classification instead of sending
the data to a remote server is also of importance. To that end, we choose
to investigate the use of highly quantized artificial neural networks to be
implemented on small industry grade micro-controllers, possibly enhanced
with hardware accelerators on FPGA. After having defined in this section the
problem at hand, we organize this chapter as follows. Section 2.2.2 presents
past works related to it while section 2.2.3 details the requirements and
functional specifications of the system. Section 2.2.4 presents the method
we propose and some preliminary results. Finally, section 2.2.5 wraps-up the
chapter and presents possible extensions to this work.

2.2.2 Related Works

Recently, many authors have proposed different techniques for automatic
detection and classification of failure wafer patterns, either using Machine
Learning (ML) or Deep Learning (DL) techniques.
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On the one hand, we find some approaches where a feature extraction
is performed on wafer maps to obtain a reduced representation ready to be
analysed and classified. In this context, different authors have highlighted
the use of ML techniques, generally applied in computer vision. Some
of these techniques allow for example the feature extraction using the
Hough transform, the generation of probability distributions used to define
specific-faulty regions, or the use of k-nearest-neighbour classifiers to
distinguish faulty patterns. A key research implementing ML techniques is
presented in [2]. It introduces a new set of features which, requiring low
computation and storage, is used to obtain a reduced representation of wafer
maps, to identify wafer maps failure patterns and to support recovery of
similar failures in other wafer maps. The proposed approach applies support
vector machines as classifier, preserves the rotation-invariant attribute in
wafers maps and reduces the computational cost with respect to different
approaches carrying spatial analysis between features maps. This work is
considered as a reference because it is at the origin of the WM-811K dataset
used for the experiments presented in this chapter.

On the other hand, we find several approaches implementing DL
techniques, which have seen an exponential growth in the last years. For
example, Alawieh et al. [4] propose a wafer map classification using deep
selective learning and implement a reject technique where model refrain
from predicting class label when the miss-risk is high. This can usually
happen when during classification some wafers show default patterns that
have never been seen during training. Also, Convolutional Neural Networks
(CNN) have demonstrated great potential to recognize and classify patterns
without carrying manual feature extractions. Using convolution layers,
they can perform automatic feature extraction; using pooling layers they
can summarize the last extraction by reducing the features maps size;
and using fully-connected layers they can efficiently classify patterns into
well-separated categories. As described below, several studies have been
conducted to detect and classify wafer defect patterns using CNN. Kyeong
and Kim [5] address the problem of detecting mixed-type defect patterns, this
means to have different defect patterns combined in the same wafer. Authors
propose a single approach building individual CNN-based classification
models for each pattern and determining the final class by combining the
results of multiple individual models. Jang et al. [6] implement a one-vs-
one model that uses a CNN as base classifier. Their technique consists of
determining a weighted mean score from failure bit count wafer maps (grey-
scale images) and then, based on this score, they determine the presence
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or absence of failures. Failure detection is performed calculating the score
proximity in relation to a data group learned in a feature space. In principle
to address a high-quality classification of wafers maps using CNN, having a
set of examples containing a large quantity of labelled patterns is required.
These patterns are the key to fit the parameters in DNN before inference.
Sometimes, even having a large quantity of patterns is still not enough, but
it is also required to have as much as possible a balanced dataset. That is, a
set of examples where the proportion of wafer maps in each class is almost
the same. As it is difficult to achieve, domain expert engineers are required
for labelling data coming from the manufacturing process in the form of
wafer maps. As this process represents a significant cost, several authors
[7], [8], [9], [10], [11] have worked on different techniques to avoid the use
of unbalanced datasets and to automatically increase the sets of examples
reducing the intervention of experts.

Although many of the presented solutions achieve high performance,
none of them have been specifically designed to be implemented on small
embedded devices. We are interested to address this challenge by using
quantized neural networks, which in our knowledge have never been used
for classifying faulty wafer maps.

2.2.3 Target Platform Requirements

Based on these experiences and considering the increasing need to detect
and classify defects in an automatic, real-time and power-efficient way, we
define the requirements for an automatic wafer defect detection platform
targeting high-power efficiency and real-time inference. While this platform
should be generic enough to support different applications, it will primarily
target detection and classification of faulty wafer maps. We rely on the
requirements presented below to enable industrial scanning equipment to
efficiently address the aforementioned problem.

• Define a deep learning classification platform that can be programmed
and its hardware partially reconfigured: When we refer to deep learning,
we evoke the new programming paradigm where humans provide input
data and expected responses, and a layered system, better known as
DNN, processes inputs and stores a meaningful representation that can
be later used to perform tasks automatically, for example recognizing
a set of images. The stage where the system transforms input data
and stores a representation of it in form of parameters, also known as



136 Efficient Deep Learning Approach for Fault Detection

weights, is called learning. The appropriate selection of the weights
associated with each neural network layer is performed by first assigning
random values and computing a temporal prediction of the network
from a set of inputs, then comparing that prediction with respect to
the expected response (through a loss function), and using a back-
propagation algorithm (usually implemented by an optimizer) to adjust
the weights in the correct direction [12]. Once the system has learned
an enough representative input dataset, it can be used to perform
automatic classification tasks also called inference. For learning, we
will follow the approach in which the neural network parameters are
computed and refined off-line, before implementing a HW/SW model in
the industrial equipment via micro-controllers and small reconfigurable
devices.

• Design an efficient DNN model to be implemented in hardware: We
will focus on neural network models with small number of parameters
and on quantization techniques to increase power efficiency during
classification, without neglecting high-throughput. On modern high-
end front-end equipment, the throughput in terms of wafer per hour
is between 150 and 300. Assuming that the electrical characterization
and test equipment is dimensioned to work at that same throughput,
this means that the analysis must be performed in a 20 s to 40 s
time frame. It is thus neither useful nor economically sensible to
reach for throughputs like those required by general purpose video
processing.

• Use real images which undergo classical linear time pre-processing
before being fed to a DNN implemented by the classification platform:
We will use the WM-811K public dataset provided by the Multimedia
Information Retrieval (MIR) laboratory. It contains 811457 real wafer
maps collected from 46393 lots of real-world fabrication. The 2D images
provided in this dataset have different sizes and 172951 (∼20%) of
these images were manually labelled by domain experts using nine
patterns (Figure 2.2.1): no-defects (85.2%), edge-ring (5.6%), edge-
local (3.0%), center (2.5%), local (2.1%), scratch (0.7%), random
(0.5%), donut (0.3%) or near-full (0.1%). As observed by different
authors, the challenge with this dataset is that it is unbalanced, then
image pre-processing and data augmentation will be required to improve
classification accuracy.
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2.2.4 HW/SW System and Methodology

2.2.4.1 Industrial HW/SW System for On-Device Inference

We propose a platform allowing the integration, in a reconfigurable device, of
a neural network model trained upstream with a set of reference wafer maps,
as well as the classification of new faulty wafers by means of a dedicated
HW/SW architecture.

The hardware architecture of the platform consists of two main boards
(Figure 2.2.2). One STM32MP1 board interfacing with the physical world
(i.e., the wafer production line), and one Zybo-Z7 board for the wafer
fault classification. The STM32MP1 is an industrial grade master board
including an ARM dual-core Cortex-A7 and an additional Cortex-M4, DDR
memory and a good set of peripherals, in particular a 1GBps Ethernet
chipset, USB device connectors and an HDMI output connector. The Zybo-
Z7 embeds the XC7Z020 SoC from Xilinx, featuring 667MHz dual-core
Cortex-A9 processor, 1GB DDR3L memory, a 1GBps controller as well as an
FPGA. Both boards communicate through a GBps Ethernet link, allowing the
STM32MP1 to send input image to the Zybo-Z7 taking care of the inference
and sending back the results through the Ethernet link. An inference cycle
thus consists of: (1) receive an image from the test equipment, (2) apply scale
and crop filters to get the image to the correct dimensions, (3) send it to the
Zybo-Z7, (4) make the inference on the Zybo-Z7 and (5) get back the results
to the STM32MP1. The Zybo-Z7 is the heart of the inference process. It
integrates a hardware implementation of a neural network, taking advantage
of the high parallelisation capabilities the FPGA offers. The network is
integrated with a message-based interface consisting of a pair of RX/TX
FIFOs connected to high-performance Scatter-Gather (S/G) DMA engine.
These FIFOs are used by the network to receive configuration weights and
inputs as well as send inference outputs. The DMA engine is used by the
software to efficiently exchange those data and control and status commands
to drive the neural network.

Figure 2.2.1 Example of classified wafer maps.
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Figure 2.2.2 The platform hardware architecture.

Figure 2.2.3 The platform software architecture.

The software architecture of the platform is also composed of two
parts (Figure 2.2.3). The STM32MP1 runs a Linux operating system pre-
configured by ST tools. It includes an application accessing the file system to
send inputs to the Zybo-Z7 through the Ethernet link. It also configures the
neural network by sending the weights to the Zybo-Z7. The Zybo-Z7 runs
a minimal Linux operating system built using PetaLinux tools. It includes
a custom driver integrating the neural network in the Linux environment,
allowing user applications to control it. To do so, the driver provides a char
device interface in which applications can read and write into to control the
neural network. The driver implements those read and writes by driving the
S/G DMA engine included in the neural network interface.

With the neural network accessible by user applications, the main
application configures the Ethernet link with the STM32MP1. Once the
communication with the STM32MP1 is established, the application forwards
weights and inputs to the neural network and receives outputs from it.
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Figure 2.2.4 System design and optimization process using N2D2.

2.2.4.2 Neural Network Building and Training Using N2D2

Current research on deep neural networks extensively uses different
frameworks, such as PyTorch [13] and Tensorflow [14], which allow the
development of neural networks and ML algorithms. Some other frameworks,
such as Keras [15], QKeras [16] or Larq [17], are interfaces to these
frameworks. Unfortunately, once a network has been designed and trained,
there is a gap towards its optimized deployment in an embedded and hardware
constrained system. The recent development of libraries built to ease the
deployment and optimization of DNN, such as TensorRT [18] or TFLite
[14], reflects the rising trend of hardware integration requirements. The main
weakness of these libraries remains the limitation to certain target platforms
and the possible optimizations that can be applied, which are greatly linked
to proprietary solutions. To train and generate a first neural model, we use the
N2D2 deep learning framework [19], which reduces this gap by providing an
innovative optimization method to the system designer.

N2D2 is hardware agnostic while being able to directly target most
common computing architectures and parallel run-time software. As shown
in the high-level view of the system design process enabled by N2D2
(Figure 2.2.4), this framework integrates a generic database handling and data
processing dataflow.

The N2D2 learning core is close to the standard deep learning frameworks
with the support of typical layers, operators and learning rules. Its execution
on x86 and ARM processor is accelerated thanks to C++/OpenMP kernels
while execution on NVidia GPUs is supported thanks to cuDNN and custom
CUDA Kernels. Moreover, the N2D2 core also supports spikes simulations
modelling. The input model representation of the N2D2 framework can be
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made through an INI description file or thanks to the Open Neural Network
Exchange (ONNX) format [20], allows the user to load a pre-trained neural
network from another deep learning framework.

Among the key features of the N2D2 framework, the integrated
quantization module remains one promising technique to optimize a deep
learning model for a wide range of hardware accelerators. Quantization
refers to the process of reducing the number of bits that represent a
number, without performance degradation. In the context of deep learning,
the predominant numerical format used for research and for deployment
has so far been 32-bit floating point, or FP32. However, the desire for
reduced bandwidth and compute requirements of models has driven research
into using lower-precision numerical formats. It has been extensively
demonstrated that weights and activations can be represented using 8-bit
integers (or INT8) without incurring significant loss in accuracy. The use of
even lower bit-widths, such as 4/2/1-bits, is an active field of research that
has also shown great progress. The more obvious benefit from quantization is
significantly reduced bandwidth and storage. For instance, using INT8 for
weights and activations consumes 4x less overall bandwidth compared to
FP32. Additionally, integer compute is faster than floating point compute.
It is also much more area and energy efficient. Note that very aggressive
quantization can yield even more efficiency. If weights are binary{-1, 1}
[21], [22] or ternary{-1, 0, 1} [23], [24], then convolution and fully-
connected layers can be computed with additions and subtractions only,
removing multiplications completely. A lot of techniques have been proposed
recently to quantize neural networks. These techniques can be classified
into two types: Post Training Quantization (PTQ), which quantizes both
weights and activations for faster inference, without requiring to re-train
the model; Quantization Aware Training (QAT), which models quantization
during training and can provide higher accuracies than post quantization
training schemes. Both techniques are integrated into N2D2. However, QAT
is currently the best technique to provide highest accuracies for heavily
quantized networks, with bit-widths as low as 4/2/1-bits for weights and/or
activations. N2D2 integrates both Learned Step Size Quantization (LSQ) [25]
and Scale-Adjusted Training (SAT) [26] [27] state-of-the art QAT algorithms,
the latter one being one of the most promising solutions, both in term of
implementation complexity, flexibility and accuracy. The quantization aware
training in N2D2 is performed by a full precision learning phase with weights
clamping; and quantization learning phase, with the same hyperparameters
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by using a transfer learning method from the previously clamped
weights.

We use N2D2 to build and train a first neural network model. Three
kinds of networks are tested, all based on convolutional layers, with various
complexity. First, a simplified AlexNet made of 3 convolutional layers with
MaxPooling, followed by 2 fully connected layers and a SoftMax activation
layer. Second, a simplified VGG with 5 convolutional blocks (made of 2 or
3 convolutional layers) of increasing size, with MaxPooling, followed by 2
fully connected layers and a SoftMax activation layer. Third, a MobileNet
V1, which uses depthwise separable convolutions in place of the standard
convolutions to provide lighter models. The version used here has 27 layers
(26 groups of ‘convolution + batch normalization’ and 1 fully connected +
softmax layers).

Before training, the images in the WM-811K dataset are homogenized.
They are rescaled to a common size. Sizes of 42x42 pixels and 64x64
pixels were tested. As mentioned above, the dataset is very unbalanced,
as the ‘no defect’ class has much more images than the others. We then
decided to limit the scope of the application to the first eight classes and
discard this last class, for a total of 17625 training images and 7894 test
images. We help the network converge to a correct solution, by applying
data augmentation (Random rotation and horizontal/vertical image flipping)
during the training phase. To decrease the memory usage, images are also
transformed to Grayscale and normalized (colour range moved from 0-255 to
0-1) before applying the data augmentation strategy.

After training, we observed that although the topology of the simplified
AlexNet is much simpler, it uses much more weights and biases than the
other networks for a total of 2,478,632 numbers to store. The performances
were not better, so this network was abandoned. The simplified VGG network
requires around 600,000 parameter storage (depending on the presence
of batch normalization layers) which is much lighter. In comparison, the
MobileNet V1 requires a little bit more with 823,752 parameters. The best
performances were obtained with the VGG network with 98.2% recognition
on the training set and 81.0% on the test set (1 hour and 38 minutes training
and 2000 training epochs). After applying post-training quantization (8-bits),
the performance on the test set remained at 80.4% (0.6% loss) for images size
of 42x42 pixels.
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2.2.4.3 Neural Network Export and FPGA Implementation Used
for Inference

The inference platform is implemented in hardware, targeting an FPGA based
platform (the Zybo-Z7 board in our proposed platform). The implementation
is performed using Vivado-HLS, Xilinx’s High-Level-Synthesis tool from
C++ programs. The neural network implementation process is divided in
two phases. First, a C++ export, which could be for example the reference
N2D2 export. This export is expected to provide an implementation in which
the structural parameters of the layers, e.g., loop boundaries, are passed as
template parameters. This allows heavy compile-time inlining, optimization
and loop unrolling. Second, the neural network FPGA implementation,
which consists of modifying the C++ implementation to make it fit for
HLS synthesis. Indeed, the C++ implementation does not target HLS due
to language and library limitations such as dynamic memory allocation,
printfs, file system access. In addition, a set of pragmas must be added to
guide the synthesis tool in order to get a properly optimized network. The
most important pragmas are array modifiers and loop unrolling directives.
Array modifiers (called array_map, array_partition and array_reshape in
Vivado-HLS) are used to optimize the structure of arrays by splitting them
in smaller arrays. It also allows to merge small words, for instance our 2-
bit wide weights, into bigger words allowing to fetch several small words
in the same cycle. Having efficiently structured arrays, in particular the one
storing weights in Block RAMs (BRAMs), allows to completely unroll some
loops as data contained in these arrays can be accessed in one clock cycle by
all the parallelized iterations. Unrolling loops is performed using the unroll
pragma. It requires reordering the nested loops in a way that will allow the
synthesis tool to properly unroll and take advantage of the array structures we
defined. Optimizing the usage of BRAM is key to make a network fit entirely
in an FPGA, even with low parallelization settings, to avoid time and power
consuming external memory accesses.

We report the resource usage for a preliminary experiment on a fully-
connected input layer for 42x42 wafer maps (Figure 2.2.5). These results
show the evolution of resource usage against the bit-size of weights. The
important point enlighten by these experiments is that lowering the size of
weight is key to make a network fit inside a given FPGA. Of course, reducing
the weight size leads to a loss of accuracy, though this loss can be mitigated
by increasing the number of neurons in the network. For instance, reducing
the weight size on a 100-neuron network with 8-bit weights to a 2-bit weights
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Figure 2.2.5 Resource occupation (FF and LUT) for 42x42 wafer maps.

Figure 2.2.6 BRAM occupation for 42x42 wafer maps.

network allows to increase the number of neurons to 400 while occupying the
same amount of BRAMs (Figure 2.2.6).

2.2.5 Conclusion

Process control in the semiconductor industry is a major issue. In this article,
we present the approach we propose, that is suited to the low throughput of the
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wafer production line. It is an AI hardware/software based solution running
on a small industry grade device which aims at analysing wafer maps in real-
time. We report preliminary experiments showing first that highly quantized
neural networks, when trained appropriately, can reach high accuracy, and
second, that the hardware implementation of these networks can be very
resource efficient.

The next step is to smooth the integration between the tools and generalize
hardware support to larger classes of network layers.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] M.-J. Wang and C.-L. Huang, “Evaluating the Eye Fatigue
Problem in Wafer Inspection,” IEEE Transactions on Semiconductor
Manufacturing, vol. 17, no. 3, pp. 444-447, 2004.

[2] M.-J. Wu, J.-S. Jang and J.-L. Chen, “Wafer Map Failure Pattern
Recognition and Similarity Ranking for Large-Scale Data Sets,” IEEE
Transactions on Semiconductor Manufacturing, vol. 28, no. 2, pp. 1-12,
2015.

[3] F. Duvivier, “Automatic detection of spatial signature on wafermaps in
a high volume production,” in International Symposium on Defect and
Fault Tolerance in VLSI Systems, Albuquerque, NM, USA, 1999.

[4] M. B. Alawieh, D. Boning and D. Z. Pan, “Wafer Map Defect Patterns
Classification Using Deep Selective Learning,” in ACM/EDAC/IEEE
Design Automation Conference, Virtual Event, USA, 2020.

[5] K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns
in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE
Transactions on Semiconductor Manufacturing, vol. 31, no. 3, pp.
395-402, 2018.



References 145

[6] J. Jang, M. Seo and C. O. Kim, “Support Weighted Ensemble Model for
Open Set Recognition of Wafer Map Defects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 4, pp. 635-643, 2020.

[7] T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern
Classification and Image Retrieval Using Convolutional Neural
Network,” IEEE Transactions on Semiconductor Manufacturing, vol.
31, no. 2, pp. 309-314, 2018.

[8] M. Saqlain, Q. Abbas and J. Y. Lee, “A Deep Convolutional Neural
Network for Wafer Defect Identification on an Imbalanced Dataset
in Semiconductor Manufacturing Processes,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 3, pp. 436-444, 2020.

[9] J. Shim, S. Kang and S. Cho, “Active Learning of Convolutional
Neural Network for Cost-Effective Wafer Map Pattern Classification,”
IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 2, pp.
258-266, 2020.

[10] R. Wang and N. Chen, “Defect Pattern Recognition on Wafers using
Convolutional Neural Networks,” Quality and Reliability Engineering
International, vol. 36, no. 4, pp. 1245-1257, 2020.

[11] T. -H. Tsai and Y. -C. Lee, “A Light-Weight Neural Network for Wafer
Map Classification Based on Data Augmentation,” in IEEE Transactions
on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663-672, Nov.
2020. Available online at: https://doi.org/10.1109/TSM.2020.3013004.

[12] F. Chollet, Deep Learning with Python, USA: Manning Publications
Co., 2017.

[13] A. Paszke, S. Gross et al., “PyTorch: An Imperative Style,
High-Performance Deep Learning Library,” in Advances in Neural
Information Processing Systems, Vancouver, Canada, 2019.

[14] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015. Available online at: http://tensorflow.
org/.

[15] “Keras: The Python Deep Learning API.” Available online at: https:
//keras.io/. [Accessed 2021].

[16] “QKeras: A Quantization Deep Learning Library for Tensorflow Keras,”
Available online at: https://github.com/google/qkeras. [Accessed 2021].

[17] “Larq: Python Library for Training BNN,” 2021. Available online at:
https://larq.dev/.

[18] “NVidia TensorRT: Programmable inference accelerator.” Available
online at: https://developer.nvidia.com/tensorrt.



146 Efficient Deep Learning Approach for Fault Detection

[19] O. Bichler, D. Briand et al., “N2D2-neural network design &
deployment,” CEA LIST, 2017. Available online at: https://github.c
om/CEA-LIST/N2D2/raw/master/manual/manual.pdf.

[20] J. Bai, F. Lu et al., “ONNX: Open Neural Network Exchange.” Available
online at: https://github.com/onnx/onnx. [Accessed 2021].

[21] I. Hubara, M. Courbariaux et al., “Quantized Neural Networks: Training
Neural Networks with Low Precision Weights and Activation,” J. Mach.
Learn. Res., vol. 18, no. 1, p. 6869–6898, 2017.

[22] M. Rastegari, V. Ordonez et al., “XNOR-Net: ImageNet Classification
Using Binary Convolutional Neural Networks,” in European Conference
in Computer Vision, 2016.

[23] L. Fengfu and L. Bin, “Ternary Weight Networks,” 2016. Available
online at: https://arxiv.org/abs/1605.04711.

[24] H. Alemdar, V. Leroy et al., “Ternary Neural Networks for Resource-
Efficient AI Applications,” in 30th International Joint Conference on
Neural Network, Training code available at https://github.com/slide-lig
/tnn-train, 2017.

[25] S. K. Esser, J. L. McKinstry et al., “Learned Step Size Quantization,”
2019. Available online at: http://arxiv.org/abs/1902.08153.

[26] J. Qing, Y. Linjie and L. Zhenyu, “Towards Efficient Training for Neural
Network Quantization,” 2019. Available online at: https://arxiv.org/abs/
1912.10207.

[27] J. Qing, Y. Linjie and L. Zhenyu, “Rethinking Neural Network
Quantization,” 2020. Available online at: https://openreview.net/for
um?id=HygQ7TNtPr.



2.3
Towards Fully Automated Verification of

Semiconductor Technologies

Matthias Ludwig1, Dinu Purice2, Bernhard Lippmann1,
Ann-Christin Bette1 and Claus Lenz2

1Infineon Technologies AG, Munich, Germany
2Cognition Factory GmbH, Munich, Germany

Abstract

In an ever more connected world, semiconductor devices are at the heart of
every technically sophisticated system. Safety and security in operation, on
which many times vital personal or business data or our lives depend on, is
critical. The market for semiconductors is tremendous, and rogues also to
get their share by selling counterfeit products which potentially jeopardize
that very safety and security. Trust into semiconductor devices can be created
by securing the supply chain or by verifying the electrical characteristics,
the physical layout and the manufacturing technology against the design and
specifications. The objective of this work is to propose a verification pipeline
for semiconductor devices utilizing their technological features computed
by the means of an automated device cross-section analysis. The emphasis
lies on the confluence of an established industrial analytic process with
novel possibilities provided by the advances in data processing and machine
learning. This framework, its technical implementations, and exemplary
results of our proposed autonomous technology analytics approach are
presented in this work. Furthermore, the results are compared against a
manual expert’s measurement which underline the high performance of the
framework and its effective multi-stage realisation.
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2.3.1 Introduction

Trust into microelectronics [2], [3] can be generated by the validation and
verification [12] of its originality. With today’s world-wide distributed supply
chains of microelectronics manufacturing, validating the safety, security,
and trustworthiness of these devices is a highly complex task. Still, it is
of paramount importance: electronics span every aspect of our daily lives
and range from applications such as the (industrial) internet of things, over
consumer electronics, to connected vehicles.

A way to check a product’s originality is through physical inspection
techniques, such as cross-sectioning. Through a sub-sequent analysis of
the cross-sections, the integrity of the manufacturing technology [11] can
be verified. To achieve this, all technological properties can be used in
a verification process. In the case of cross sections, these are geometric
shapes and dimensions, or material-related properties. Each technology can
be interpreted as a unique fingerprint, so that deviations from specifications
can be reported as suspicious. Nonetheless, physical inspection techniques
must keep up with the continuously growing complexity of advanced
semiconductor manufacturing nodes, and automation is another requirement
in demand.

Cross-section (CS) images from scanning electron microscopes (SEM)
are acquired at the failure analysis or process control labs and are a standard
analysis process in the semiconductor industry. By the usage of SEM-
integrated software tools, the technological features are manually measured
and evaluated by engineers. Due to the expenditure of human labour, this
process is costly and domain knowledge is required to fully interpret a sample
or to detect anomalies in a set of images. The data is already available
today, with datasets being produced at the sites. The utilization of data
intensive analysis methods opens the possibility to create additional value
by saving analysis expenses - and in the end overall cost - with an automated
interpretation and measurement approach.

Figure 2.3.1 shows the second important aspect of the inspection flow:
the full abstraction stack – ranging from software applications down to the
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Figure 2.3.1 Abstraction layers in typical computing systems, ranging from software, over
hardware design, to the underlying manufacturing technology.

physical implementation – of complex computing systems is illustrated. More
and more software layers and manufacturing technology-agnostic layers can
be investigated through published methods for verification of security [4]
and functional safety (IEC 61508). Yet, the lower layers remain proprietary
with no way to verify the integrity of their design. There have been several
publications addressing the integrity checking of physical properties of
semiconductor packages [5], [6], [7], and supply chain security related
approaches [8]. Summaries about the detection and avoidance schemes of
counterfeit electronics can be found in [1], [9], [10]. This work aims to push
the boundaries of the state-of-the-art of automated physical inspection by the
enablement of an automated detection of suspicious devices through SEM
cross-section analysis.

In this work, academic and industrially relevant topics are discussed:
First, the technology related characteristic – providing methods to secure
the integrity of integrated devices. And second, the implementation of
an industrial automation use-case – integrated into a complex established



150 Towards Fully Automated Verification of Semiconductor Technologies

environment – which can be seen paradigmatic for the challenges and
possibilities of the entire project.

2.3.2 Background: Interpreting Semiconductor
Technologies

The tremendous manufacturing improvements of past years and decades for
semiconductor devices are shown in Figure 2.3.2. The CS images show four
different technology stacks, from 150nm (introduced in the early 2000s)
down to a more advanced 28nm (introduced in the early 2010s) process
node. On these equally scaled CS images it is shown that the size of critical
dimensions (CDs) has been continuously shrunk. On the other hand, the total
number of processing steps and subsequently the number of visible objects is
increasing.

The stacks visible in the images can be interpreted as a unique fingerprint
for each manufacturing technology and its measured properties allow an
inference to the specified and designed technological features. Specifically
from these images, the thickness for each deposited layer and the minimum
dimensions of each lithographic pattern found for each layer can be extracted.
The set of identified technological parameters then enables the identification
of production technologies. The innovative novelty of our approach can
be explained via Figure 2.3.3: In the current reverse engineering process,
the input is a known or unknown device, with the target to analyse its
physical properties (geometrical and material-related) and consequently its
manufacturing process.

Figure 2.3.2 Equally scaled scanning electron microscope images of semiconductor device
cross-sections, showing a 28nm, a 40nm, a 65nm, and 150nm process node (from [12]).
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Figure 2.3.3 Example of a cross-section image which shows already interpreted objects on
the left side and part of the raw image on the right side.

The application of the aforementioned principles for the purpose of
counterfeit identification is even more challenging when vast numbers
of features must be correlated and interpreted against known technology
definitions. An automated processing of this data has been enabled by the
advances in image processing and automated feature extraction.

The integration of technology domain knowledge and AI methods into
a well-controlled industrial process (see Figure 2.3.4) is a fundamental
prerequisite of the project. Considering the challenges of a supervised deep
learning approach to interpret the SEM images, contributions from both fields
were needed to produce the labelled dataset. Yet due to the high complexity
of the task and the non-availability of methods to analyse the complex
data structures, it was not possible to provide a fully automated approach.
This missing link between AI methods and domain knowledge and the use
cases is worked out by the proposed approach of SEM image interpretation
and presented in this work. The second stage of overlap between the
application and AI fields then comes into play during the segmentation result
interpretation process. During this process, the segmentation accuracy does
not linearly translate into overall technology prediction accuracy. This is
explained by the fact that certain features identified by the deep learning (DL)
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Figure 2.3.4 Overall framework of the project. Domain knowledge and AI methods were the
enabler for the use-cases that are facilitated through the automated SEM image interpretation.

methodology have a larger impact on subsequent calculation than others.
Consequently, a looped, iterative development approach was followed to
ensure the AI component of the overall process is trained adequately. An
emphasis is put on the most relevant and critical features, instead of the more
common approach of maximizing a pre-defined accuracy metric.

2.3.2.1 Methodology: The Integrated Analysis Process

A conspectus of the whole analysis process is shown in Table 2.3.1, where the
established laboratory process is extended via two software (data processing)
steps. The entire process is outlined in detail in this chapter.

Table 2.3.1 Framework of the cross-section interpretation with the respective sub-processes.

P
rocess

F
low

−−−−−−−−−−−−−→

Sub-Process Sub-Steps Intermediate Results

Lab work
Established analysis process:

• Physical sample preparation
• SEM image acquisition

Grey-scaled images

Feature
extraction

• Image segmentation
• Object vectorisation

Vectorised images,
objects per class

Feature
processing

• Feature measurement
• Technology determination

Technology features,
technology platform
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Sample preparation and image acquisition: Even though cross-sectioning
is considered a standard process, mastering the physical process can take
several years. Two main methods for cross-sectioning exist: The first is a
deposition of the sample in epoxy and subsequently an abrasive grinding of it.
Moreover, the cross-sectioning can be performed on a glass grinding wheel,
after devices package has been detached. The last step in the laboratory is the
image acquisition via SEMs [13].

Image Processing: The goal of the image processing step is to provide fast,
reliable, and accurate segmentations based on SEM images. The images are
grey-valued with ambiguous intensity values for different object classes, as
indicated in Figure 2.3.5. Furthermore, the task difficulty is boosted by the
various zoom levels and variability of the regions of interest sizes.

The overlaps between different classes represented in Figure 2.3.5. A
challenge the use of classical computer vision segmentation techniques such
as thresholding, region-growing, or histogram-based methods. Nevertheless,
these approaches are useful to supplement the segmentation pipeline in
pre- and post-processing steps. The nature of the SEM images bears
high similarity to medical images, particularly computed tomography and
magnetic resonance images, where AI based techniques are becoming
increasingly investigated to solve segmentation challenges. Therefore, a
set of experiments aimed at comparing various DL state-of-the-art fully
convolutional methods were conducted, comparing architectures such as U-
net [15], PSPNet [18], FPN [19], GSCNN [20], Siamese-based [23]. It is
concluded that overly complex architectures overfit specific tasks and often
underperform on high-variance data, and while being commonly used as
a benchmark, the U-net basis for the CNN architecture can outperform

Figure 2.3.5 A. Normalized histogram per class. B. Various zoom levels of the same image,
magnified 4310, 8650, 20940 and 72180 times, respectively.
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Figure 2.3.6 Exemplified overview of the segmentation pipeline.

other architectures assuming proper pre- and post-processing techniques [14].
Subsequently, a cascade U-net based architecture is concluded to be most
suitable for the task at hand.

A dataset of around 500 images was created and labelled in pixel-
wise accuracy, and dedicated networks were trained for metal and VIA
(vertical interconnection access) segmentation (further called “experts”).
First level experts segment the down-sampled image, and pass the resulting
segmentation (one-hot encoded) to the second level expert along with the
input image, who produces a more accurate output, much less vulnerable to
outliers. Due to the varied nature of the labels of interest it was concluded
that such a cascaded approach is beneficial for metal segmentation, while
providing negligible improvements for VIAs, which were subsequentially
segmented by a single “expert”.

The issue of the relatively small dataset was tackled using image
augmentation including horizontal flips and small rotations. Segmentation
problems involving high intra- and inter-class imbalance (as is the case
in question) have shown to be solved most successfully using Dice-based
loss functions [16]. Therefore, several candidates were investigated as
hyper-parameter options, with metal segmentation benefitting most from
LogCoshDSC Loss [22], and VIA segmentation from Focal Tversky Loss
[21], respectively. The high number of hyperparameters were tuned using a
population-based approach. The evolutionary nature of the approach ensured
high confidence in the obtained parameters and better final performance while
keeping computational time requirements within reasonable limits [17]. The
obtained results yield a 24 % increase in accuracy compared to the baseline
version, and obtained an overall Dice score of 0.90. Examples of resulting
segmentations are presented below in Figure 2.3.7.
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Figure 2.3.7 Examples of segmented images with yellow illustrating metal components, and
green illustrating VIAs.

Image Measurement: The segmented images are calibrated via SEM
meta-data or pattern matching of the dimensional bars and then vectorised
into polygons of the different classes (e.g.: metal, VIAs, etc.). Polygons
enable the utilization of their inherent attributes like the centroid, the
circumference, or the area. An innovative – completely unsupervised - usage
of these attributes is used for pattern recognition purposes. Established
clustering methods [24] are linked with the properties of manufactured
semiconductor devices. From these clusters the geometrical features are
determined.

Technology Determination: The target is to evaluate the correct
technology platform via the computed process feature vector. This vector will
have dozens of measured attributes which are correlated against the known
technology definitions (see example in Figure 2.3.8). In our implementation,
distance metrics (Euclidean, rectilinear distance) between measured and
defined values have been shown to yield good prediction results. A further
improvement will be gained through assessment of individual feature
importance by variable selection techniques.

In the example in Figure 2.3.8, three random features – metal 1 thickness,
contact height, contact minimum pitch, and the total number of metal
layers (colour coded) – are plotted for several dozen possible technology
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Figure 2.3.8 Example features of different semiconductor technologies. The four
dimensions were arbitrarily chosen from more than hundred possible attributes defining a
semiconductor front-end technology.

specifications. These characteristics are also of importance for a correct
determination. The red mark shows an example measurement and the closest
distance to adjacent data-points yields the most likely technology match.
These three dimensions are extended to a higher dimensional space in the
application.

2.3.2.2 Example Analysis: From the Image to the Feature
Extraction

To conclude our work, the technological attributes of the VIAs of a sample
are extracted. The VIAs are shown in the grey-scale image of Figure 2.3.9
and indicated through red boxes. After their semantic segmentation, the VIA
objects appear in green and the metal lines in yellow. A visual inspection
shows that all VIAs have been neatly extracted. The same applies to the
metal, except for the top metal which shows a minor tear in the middle
section. The measurement of the geometrical features (pitch and height) is
shown in Table 2.3.2 and the automated measurement is compared against the
manual measurement of an expert operator. The deviation on the right column
shows the feasibility of an autonomous analysis which can also be done with
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Figure 2.3.9 Example SEM CS with the grey-scaled SEM image (left) and the segmented
image (right).

Table 2.3.2 Results of measured features of the VIAs. In the right column, the deviation
between the automated and the manual is shown.

Measurement Auto Manual Dev. [%]

VIA 1 Pitch [nm] 917 895 2.4
VIA 1 Height [nm] 675 711 5.1
VIA 2 Pitch [nm] 912 895 1.9
VIA 2 Height [nm] 700 742 5.7
VIA 3 Pitch [nm] 910 895 1.7
VIA 3 Height [nm] 779 806 3.3

other measurable features. Due to the high accuracy of the measurement, the
technology platform determination for this example was successful.

2.3.3 Conclusion

The possibility of applying state-of-the-art AI approaches has enabled us
to extend the existing workflow by an automated technology analysis. It
has been shown that an extraction of technological attributes from SEM CS
images in a fully autonomous manner is possible, with results comparable to
an operator’s manual effort. The most challenging part was the confluence of
the knowledge of both domain experts and AI/ML experts.

The presented framework allows an automated check of the inferred
technological parameters for verification and validation against specifications.
Additionally, emphasis is put on a modular design of the sub-tools. This
allows a migration to other applications and an extension of the presented
status with other classes for segmentation is not overly complex. In summary,
this contribution is a steps towards improved physical inspection for hardware
assurance. A future task will be the application of the framework on real
world examples.
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Abstract

In the semiconductor industry the desired quality and effectiveness in the
process of assembling integrated circuits is nowadays at the limit and
without safety margin. To achieve important competitive advantages, this
process must be continuously optimized and adjusted. Such process is
indeed strongly dependent on parameters that are distributed among various
control technology assemblies, materials, and the environment. However,
the current inspection tools deployed for defect detection through assembly
and packaging process are mainly based on rigid and simple rules. The
latter are handcrafted by engineers, which can only extract shallow features.
Therefore, the accuracy of classification by tools is quite low, which provides
incomplete information for root cause investigation and can cause yield-loss
costs due to over reject. Hence, automatic inspection tools for visual defect
detection, acting as final quality gate before shipping to end customers is
very demanding. Therefore, a deviation detection model based on machine
learning is developed. On the other side, due to the lack of existing labelled
images, an anomaly detection is proposed, in some cases as an assistant
tool for collecting defect images with less effort. Results show that artificial
intelligent (AI) solutions can achieve a better performance than the classical
tools and overcome the human ability in detecting the deviation in the data.
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Hence, AI can be used for decreasing the yield-loss, improving quality of the
product and greatly reduce labour intensity.

Keywords: artificial intelligence, semiconductor industry, image classi-
fication, wirebonding, deep learning, anomaly detection.

2.4.1 Introduction and Background

Semiconductor manufacturing has an increasing complexity and demand on
quality requirements, as electronics increasingly become an important part
of modern society. In principle, semiconductor manufacturing is equipped
with lots of sensors to monitor the processes, but it lacks a suitable way
to make use of this data. Thus, new methods are needed to support quality
and engineering personal at finding deviations during production to avoid
costly production losses or even worse, complaints by customers. Machine
learning based anomaly detection (AD) can be a powerful tool to indicate
single outliers, but also systematic changes in processes and / or materials.
In a next step those deviations can be analysed to label the data indicating
a root cause for the different types of deviations. Therefore, one of the
success factors in optimizing the industrial processes is either automatic
anomaly detection, supervised learning or both, which leads to prevention
of production flaws, improving the quality, increasing yields and making
more benefits.

The most popular way of performing anomaly detection in many
industrial applications is by adjusting digital camera parameters or sensors
during the collection of either images or time series data. This is basically
an image or signal anomaly detection problem that is searching for patterns
that are different from normal data later on at test phase [9]. By assumption,
humans can easily manage such tasks by recognizing normal patterns, but this
is not as easy for machines. Unlike other classical approaches, image anomaly
detection faces some of the following difficult challenges: class imbalance,
quality of data, and unknown anomaly [9]. A prevalence of abnormal events
is generally an exception, whereas normal events account for a significant
proportion. Some techniques usually handle the anomaly detection problem
as a “one-class” problem. Here models are learnt by using the normal data as
truth ground and afterwards are evaluated whether the new data belongs to
this ground truth or not, by the degree of similarity to the ground truth [18].
In the early applications of surface defect detection, the background is often
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modeled by designing handmade features on defect-free data. For example,
Bennatnoun et al. used blobs technique [5] to characterize the correct texture
and to detect deviations through changes in the charter ships of generated
blobs. While Amet et al. [1] used wavelet filters to extract different scales
of defect-free images, then extracted the informative features of different
frequency scales of images. However, most of these methods can work with
homogeneous data of good quality and would require prior knowledge. But
in most of real applications, this is not the case. Here, the deep learning
approaches are used. One variant of common deep learning, which is used
for anomaly detection, is the auto encoders (AEs), as they have unique
reconstruction property.

The latter can map the input data non-linearly into a low-dimensional
latent space and reconstruct it back into the data space. These models are then
learned in an unsupervised fashion by minimizing input and output errors
[3, 4, 12]. For time series data, the anomaly detection has a similar goal and
issues alike:

• Difficulties connected to definition of normal regions, especially in
regions close to boundaries.

• In many domains, normal behaviour develops gradually, and an ongoing
position of normal pattern cannot guarantee its usage as sufficient proxy
on another time step.

• Depending on application field, different parameter fluctuations are
considered as normal, so there is no universal pattern or system, which
does directly allow using techniques developed for one application to
another.

• Absence of labelled data.
• Challenges connected to removing noise from data, which could be

mistaken as anomalies [7].

Due to these above-mentioned challenges unsupervised anomaly detection on
multi-dimensional data is a very important problem in machine learning and
business applications [13].
In this article we will show two examples, how we make use of AD to

1. Detect deviations and
2. Generate further benefit by applying AD such as:

a. Setup control
b. Material control
c. Labelling deviations for supervised learning
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d. Compare different equipment regarding process stability and
matching

The first example is based on sensor data from the wire bonding process and
the second is based on images of the product. For both examples, different
approaches were evaluated regarding accuracy and usability in production.
First implementations showed that relevant outliers can be found, labelled,
and used for subsequent supervised modelling. Additionally, the anomaly
detection helped the production and engineers to find systematic influences
and derive process improvements based on the new data insights from the
anomaly detection. The defect would happen either in early processes or
after the chip completed all the process including wafer fabrication, assembly
and final test. Technically, the recorded data during sequence processes is
collected in a time series fashion for some process or as images for others.
Such data has fluctuations, noise, bad quality and high resolution. However,
the defect is relatively small and hard to detect even manually. Unfortunately,
the built-in software algorithm has a poor classification performance due
to rigid and simple rules. So, the specification for inspection is very tight
because no defective chips are allowed to ship to customers. As a result,
a huge amount of good chips is scrapped, causing unnecessary yield loss
cost. Moreover, there is another challenge for defect detection in productive
environment if the production environment is dynamic, which means that the
data quality is always strongly inconsistent. But also, to detect new defect
types which have not been seen before is challenging but important for
production.

In summary, the following section will describe the development of an IT
infrastructure for anomaly detection in process chains. The aim is to develop
an industrialised solution for the detection and visualization of anomalies in
different process – using wire bonding and optical outgoing inspection (OOI)
as examples. If necessary, with subsequent notification of the user about
critical analysis results via e-mail/output signals. Basis of the development
and visualization in anomaly detection is the work on wire bonding and OOI
image data as well as further demo data.

2.4.2 Dataset Description and Defect Types

For wire bonding data, the data consists of a set of 369 experiments,
each of which is described via 432 features (coming from 3 different
sensors) during 143 timestamps. However, the features are highly repetitive
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Figure 2.4.1 Curves for one experiment.

(see Figure 2.4.1). This is because there are multiple bond connections on
one device, which share the same process parameters and behave quite
similar. The three sensors are a current sensor, located at the transducer, a
displacement sensor measuring the deformation of the wire and a frequency
sensor, also located at the transducer of the wire bonder.

Changes in the raw data can have multiple reasons and are not necessarily
known prior. However, most prominent are defects based on contamination
of the device or a misadjusted machine, which can cause misaligned
or deformed bonds. Some of the defects are shown in the following
figures.

Already here enough deviations were found and labelled to enable a
supervised training, which will be tested on new and historical data. Further
developments were carried out based on Outliergram. It is also based on
comparing the shapes of functions. Intuitively, the idea is to inspect how
much time the curves spend above and between other curves from the dataset.
The outliers are detected by inspecting the relationship between those two
values for each of the curves. The results are presented in Figure 2.4.3.
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The methods described require the pairwise comparison of all samples in
the dataset. In some cases, this may be too expensive. If those methods
produce meaningful results, they can be used to filter datasets before training
an outliers-sensitive model, e.g., PCA or autoencoder on the rest of the
dataset. Furthermore, the reconstruction error from those models could be
used to detect outliers as it is less expensive to compute than the pairwise
methods.

The second example is dealing with images which are basis for decision
if a product has critical deviations and should be scrapped. As the availability
of labelled images in a high yield manufacturing is low, AD can help to find
critical devices. The further down presented procedure is in principle the same
as for the wire bonding, however the used methodologies are more adapted
to image data.

The last production step before packing is always the electrical test and
a final optical outgoing inspection (OOI) to check that the product is free
of visible defects. In the given use-case, a semiconductor power module
needs to be inspected from two sides using two monochrome cameras and
multiple light sources. The task of the inspection is to check the module
at three areas: Leads, mold body and heatsink. Leads and mold body are
very consistent in their optical appearance and the images can be checked
using classical, rule-based algorithms. These are not considered in this
use-case.

The biggest challenge of the optical inspection is the defect detection on
the heatsink, see Figure 2.4.4, which consists of a rough copper surface.
It needs to be inspected for scratches, metal, or mold particles as well
as for mechanical damage like imprints. However, this surface shows a
very high variety in appearance, as it is oxidized during preceding high
temperature testing steps. Hence, the inspection cannot be carried out
using rule-based algorithms, as the oxidized areas cannot be distinguished
clearly from true defects by a rule-based algorithm. In this context, trained
personnel took care of the heatsink inspection and was used to label
the image data for supervised learning. The image data consists of four
images per module and side, recorded with a different combination of light
sources. Coaxial and diffuse lighting are used to highlight contaminations
and particles on the heatsink whereas low-angle lateral lighting is used for
detecting mechanical defects such as scratches or imprints in the surface,
see Figure 2.4.4.

Also, for visualization purpose, two metrics are used: modified band
depth (MBD) and modified epigraph index (MEI). The outliergram visualises
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the relationship between these two metrics. The normal curves define
a parabola in the two-dimensional space, see Figure 2.4.3. With some
thresholds regarding quantiles, some outliers, which are too far away from
the parabola (see Figure 2.4.2) can be identified.

Figure 2.4.2 Left: Distribution of average curves distance to other samples. Right: the results
are showed in left by using Wasserstein distance outliers.

Figure 2.4.3 Outliergram, an example of feature for device current traces. Outliers are
detected by inspecting the relationship between MEI and MBD.
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Figure 2.4.4 Shows samples of OOI use case. Top left: particle in lower right corner (bottom
side). Top right: particle in centre of image (top side). Bottom left: particle in centre of image
(top side). Bottom right: scratch in upper area of heatsink (top side). Note that bottom side is
larger than top side.

2.4.3 Methodology

In this work, we used absolutely pure anomaly detection for the first use case
and combined AD with supervised learning for the second use case. Hence,
we apply the following scenarios:

• For wire bonding use case, Warstein distance outlier is applied.
• For optical outgoing inspection (OOI), two approaches are considered:

a. Anomaly detection, using pre-trained DL algorithms, was used first
in order to reduce effort of labelling data.

b. Afterwards, the labelled data were used for training a convolutional
neural network (CNN).
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2.4.3.1 Anomaly Detection

Anomalies are defined as events that deviate from the standard, rarely happen,
and don’t follow the rest of the “pattern”, see Figure 2.4.5. In general,
anomaly detection algorithms (ADA) can be classified into two types:

• Outlier detection: In this case the dataset consists of both good and
abnormal units. Here ADA tries to find the optimal region boundaries
of the training data, where the good units are most concentrated and
therefore isolating the abnormal units. Such algorithms are often trained
using unsupervised learning [6] (i.e., without labels). This type of
detection can detect global outliers [2], contextual outliers [8, 10], or
collective outliers [8]. However, sometimes, such methods could be used
as a pre-process for datasets before applying additional machine learning
techniques [11].

• Novelty detection: Unlike outlier detection, which includes examples
of both normal and abnormal units, novelty detection algorithms have
only the normal units (i.e., no anomaly events) during training phase.
These algorithms are trained with only labelled examples of good
units (semi-supervised learning). At inference phase, novelty detection
algorithms must detect when an input data point is far (deviate) off to
the good ones.

Generally speaking, outlier detection and novelty detection is a form of
unsupervised learning. In this study we introduce a new version of anomaly
detection called pseudo anomaly detection (PAD). The latter is indeed a
supervised learning algorithm, which can be employed to do unsupervised
learning (anomaly detection).

2.4.3.2 Pseudo Anomaly Detection

Following the definition of AD, the idea behind PAD is to simply follow the
same definition by using an existing pre-trained algorithm like Alex [16],
Resnet [17], GoogleNet [18] etc. Those pretrained algorithms are already
trained on a benchmark called the ImageNet dataset [14]. The latter has labels
of up to 1000 classes. To cluster the unlabelled data into different categories,
under the assumption that prevalence of the defects is very low with respect
to the whole population, the expected outputs is to map the good images
(majority) to a specific category (one or subset of 1000 classes), within
they should have some similarity. On the other hand, the scrapped images
(minority) would be distributed over other categories. Such scrapped images
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Figure 2.4.5 Show an example of outliers (anomaly) cluster which is clearly inconsistent
with the rest of the dataset.

will show up but will happen with an incredibly small probability. Here, these
images are reviewed by an expert. In this way the effort for labelling images
was reduced by roughly 85%. Please note that names of classes as you can see
in Figure 2.4.4 and Figure 2.4.5, represent the original names of the classes,
which was used during training of such algorithms as supervised learning
(names of real objects). However, in this work, we employ such algorithm
as unsupervised algorithms for our data if they don’t belong to any of these
classes. As, a result, we suppose most good units have similar patterns and
would map to a one or few real classes. However, from a machine learning
perspective, this makes detecting anomalies hard — by definition, in case
we have massive amounts of good images and few bad images of “anomaly”
units, but which have a uniform distribution in our dataset. How are anomaly
detection algorithms, which tend to work optimally with balanced datasets,
supposed to work when the anomalies we want to detect might only 0.2%
based on prevalence assumption? Luckily, in our case PAD could figure out
the similarity within good images and map them to only a few categories.
This is very helpful to reduce the effort for labelling defect images, see
Figure 2.4.5.

For wirebonding, a method was developed for the detection of possible
outliers. First attempts were done using dimensionality reduction techniques
and tests of new approaches, which could smooth out possible anomalies
and then, search for new approaches to analyse each feature separately.
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Only the results for single feature are presented, however if the adopted
approach provides meaningful results, it could be extended to the whole
dataset. The planned methodological approach was to find the curves that
had different shapes than the others. To compare the shapes of curves we
utilised Wasserstein distance which estimates how much work should be done
to transform one distribution into another. For each curve in the dataset, we
computed the average of its distances to all the other curves.

Based on the histogram in Figure 2.4.2, a threshold value is selected
(threshold = 1.2e−3) to detect the curves that differ much from the other.

On the other hand, the anomaly detection for the wire bonding process
was integrated into the process monitoring system from IFX with an
additional visualization to quickly see the status of the machine in the
anomaly detection. The machines were sending the data via the SECS/GEM
interface to a central IFX system which combines different data sources to
a unified format and sends the data to the IFX APC-System. The anomaly
detection can access this data and calculate the anomaly score. The result of
the anomaly detection system is then also stored in the IFX APC-System.
This is done by creating a file with the appropriate unified format containing
the anomaly detection result and storing in on a network share, where the
APC-System access the data and integrates it. In this stage the visualization
process can be done by accessing the data independent from the anomaly
detection calculation. The data flowchart for wire bonding case can be seen
in Figure 2.4.9.

Figure 2.4.6 Shows the process flow for the whole process including PDA and supervised
learning applied on optical images.
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Figure 2.4.7 Anomalies exist at the marked area. In this study, anomaly detection with pre-
trained algorithm Resnet was conducted.

Figure 2.4.8 Shows an example of clustering anomalies units. Left: shows the clustering
according to PAD. Middle: shows clustering after review process by an expert. Right: shows
an example of defect units which recognized as a tick by PAD. As it shown, names represent
the real names of classes of labelled images of ImageNet dataset.

2.4.3.3 Convolutional Neural Networks

Recently, deep neural networks (DNNs) have shown superior performance
in a wide range of image processing tasks. We shortly summarize the most
common variant of deep learning algorithms, which is called sequential
convolutional neural network (SCNN): The primary purpose of the sequential
convolution operation is to extract local features from the input image at
various spatial scales. Convolution preserves the spatial relationship between
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Figure 2.4.9 Shows the process flow of wire bonding use case.

pixels by learning image features using small patches of the input data. In
CNN terminology, a 4×4 image patch, is called, for example, a captive field
or filter kernel or feature detector, and the matrix formed by sliding the local
filter over the whole image and computing the dot product of the filter weight
with the input image intensity is called the convolved feature or activation
map or the feature map. Each such feature map acts as input to the subsequent
convolutional layer. It is important to note that filters act as feature detectors
extracting various features from the original input image. As a result, the
most relevant features are kept and less relevant features are suppressed. Let
us suppose that an image X is defined by the following mapping:

X : {1, . . . ,M} × {1, . . . , N} →W ∈ R, (i, j)→ Xi,j (2.4.1)

Such an image X is represented by an array of size M × N. Given a filter
F ∈ R(2k1+1)×(2k2+1) the convolution of the image X with the filter kernel F
is computed as:

(X∗F)r,s :=

k1∑
u=−k1

k2∑
v=−k2

Fu,v Xr+u,s+v (2.4.2)

Where the filter F is given by

F =

 F−k1,−k2 · · · F−k1,k2
... F0,0

...
Fk1,−k2 · · · Fk1,k2

 (2.4.3)

However, in addition to convolution layers there are several common layers,
which can be used with CNN such as rectified linear units (ReLU), pooling
layers (either max or average) and fully connected layers. The latter is
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corresponding to the traditional multi-layer perceptron network and is
conventionally applied in the last stage of the CNN.

In this study for OOI use case, a CNN structured was created from scratch
with 170 layers and 3 branches. A common set of hyperparameters as follows:
number of epochs =3, initial learning rate (ILR) = 0.0001, mini-batch size =
64, and the stochastic gradient descent with momentum (SGDM) optimizer
is employed.

2.4.4 Results and Discussion

For wire bonding use case, the anomaly detection system was running in
parallel to production for several weeks. As it is difficult to validate the
anomaly detection during production, since a difference in the raw data might
result in a wide range of different impacts on the product, two different
approaches to validate the system were made. The first one was to simply
calculate the percentage of devices which showed an anomaly in the dataset
and compare this to the process yield. If these percentages align, this is a
good indicator that the anomaly detection represents the product quality.
During our tests this was the case. As a second approach we gathered multiple
devices which showed a high anomaly score and examined them thoroughly.
In all of the cases different influences could be found on the device, like a
contaminated device, reduced shear value or input material which was out of
specifications. However, score indicating how different the raw data is from
normal, an important aspect of the used anomaly detection was that the result
is an anomaly and not a Boolean indication anomaly / no anomaly. Thus,
it is necessary to find a threshold on which the difference in the raw data
influences the quality of the product. It might be possible to find this threshold
automatically if labelled data is available.

For OOI use case, PDA was running on roughly 12000 images. From
this historical data PAD could reduce effort for labelling by more than 85%.
This enabled an expert to go through only the rest of suspicion images
and categories this portion to the real defects and real over-reject (good
images). Roughly 130 images were recognized as defect images. Here, the
same number of good images was used for training the CNN model to avoid
imbalance issues during training process. Furthermore, relative few defect
images were available during the training process, a strict regularization was
considered to avoid the over-fitting issue by adding a dropout layer with 0.5
parameter. However, remaining of good images were used for test purposes.
But first, we split the data into 80% for training and 20% for validation.
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The accuracy was 99% for sensitivity as well as for specificity. That means
only 1% should be historically reviewed but also periodically during run
the model in productive data. Importantly, to follow zero defect philosophy,
which means that only images without any defect are sent out to a customer.
The threshold of the confidence level is set higher than 95% in order to report
good images. On the other hand, this leads to an increase in the over-reject
rate to roughly 2.5%. In this way, the model was tested on productive data
with roughly 24000 images. An expert also manually reviewed the latter.
The accuracy was robust with 98% and zero escapee. Overtime, more defect
images are collected, and the model is updated to reduce the over-reject.
Moreover, the model was transferred to run on the BOT side of the same
product. Here, no available labelled images of this side are used for training.
But there is sort of similarity between both sides. Only a bit of adaptation
was done as a pre-processing on BOT images due to the difference in terms
of reference points and resolution. The accuracy on BOT side was 97% as
well.

2.4.5 Conclusion and Outlooks

In summary an AI solution consisting of a combination anomaly detection
(unsupervised learning) and supervised learning are used for detecting
deviations in semiconductor processes. In this work, it was demonstrated
how AI can efficiently solve real-world problems in the industrial setting.
The results are promising and would be a good alternative for classical
approaches. As a results yields will be increased significantly, the quality
will be improved, and the effort will be reduced as well. The next steps is to
monitor, optimise and validate both solutions over time, but also integration
of AI models into the productive environment. Additionally, the long-term
goal is not only find the deviation but also to detect the exact type of defects
like scratch, particle in case of images and to point out the root cause in case
of wirebonding.
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Abstract

This introductory article opens the section on “Advancing Artificial
Intelligence in Industrial Machinery Applications”. It gives an overview of
the state-of-the-art AI technologies in industrial machinery and the current
AI development in efficiency improvement, personnel safety, automation,
and human-machine interaction. It also presents future potential and
opportunities for AI in the sector, covering trends of using AI, IIoT
technologies, and advanced actuation and sensing techniques, safety/quality,
maintenance, waste reduction, and environmental sustainability. Finally, the
article introduces the four contributions to this section.

Keywords: artificial intelligence (AI), industrial internet of things (IIoT),
industrial automation, predictive maintenance, human-machine interaction,
smart manufacturing, edge computing, smart robot.

3.0.1 Introduction and Background

Today, AI is a powerful source of disruption and a tool to achieve
a competitive advantage in industrial manufacturing. The manufacturing
companies that neglect to recognise the importance of AI are expected to
lose their competitive edge. Many industrial manufacturing facilities are
implementing AI across the value chain, but still, many are only using
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AI in core functions such as engineering, product development, assembly,
and quality testing. The main reasons for implementing AI technologies in
industrial environments are driven by the need to assist in making decisions or
acting, automate manual and cognitive tasks, and augment decision-making
through continuous machine learning (ML) [5]. There has been a rapid
growth in AI development and deployment in the last decade. Machines
already complete 29% of simple or complex tasks today [7].

Modern production processes in the manufacturing industry and the
process industry have reached a critical level of complexity. Stable operation
and constantly high product quality are maintained only through continuous
monitoring, inspection, and adaptation. This applies in particular to the
industrial landscape in Europe, which has a strong focus on customisable
products and highly specialised processes rather than standardised mass
production. New business models (e.g., lot-size one production) and intense
competition from outside Europe require increasing speed and reducing
complexity overhead. Through automation, artificial intelligence (AI) and
ML are key technologies for managing this increasing complexity in
the future manufacturing and process industry. Examples include plant
reconfiguration on demand in Industry 5.0, automatic proactive online
adaption, optimisation of process parameters, and predictive production
planning.

Integrating AI/ML in future manufacturing lines and processes heralds
a new era where interactions between people and machines become more
integrated, and the decision-making process is driven by data and AI. In
other words, the current fragmentation within and outside the manufacturing
lines will evolve towards a system where manufacturing processes are
connected, and decisions are taken accordingly by the data analysis coming
from different sources. Implementing an AI/ML method in a production
system can address both the actual production (physical level) and the
monitoring and planning of the production (abstract level). Skilled human
workers will continue to play an essential role at both levels and are
therefore the most critical factor that needs to be considered in the automation
process. AI4DI addresses this challenge in its third pillar. While pillars one
and two covers the technological and methodological challenges involved
in rolling out AI/ML in a production environment, pillar three is vital
for the final system’s acceptance and efficient and novel human-machine
interactions.
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3.0.2 AI Developments and Future Trends in Industrial
Machinery

With AI entering the manufacturing floor, starts the use of digital technology
to replace not only “muscles” but also “brains”. In the last few years, AI
has become deeply embedded across industrial and other applications, with
initial use cases using AI in manufacturing representing niche applications
and expanding into mainstream production.

The current adoption rate of AI in manufacturing is relatively low, and the
prevalence of AI is expected to increase significantly by 2030 [5].

Industrial machinery is changing alongside society, and everyday life,
while digitisation is rapidly becoming de facto. Jobs that are repetitive,
tedious, and do not require high skills are slowly being replaced by smart
manufacturing systems. AI-based approaches are internationally accepted
as the main driver [1] for digitisation and transformation of factories since
flexibility and deep understanding of complex manufacturing processes are
becoming the critical advantage to raise competitiveness [2]. By looking at
smart manufacturing and digitisation trends [3], the factories of tomorrow
will be multi-purpose and able to adapt to new designs in a very short time.
Similarly, smart industrial robot control methods will allow robots to adapt
to the stochastic environment, enabling more human-like performance by
completing tasks that have not been directly programmed to the robot or
intuitively interact and collaborate with humans.

IIoT and AI-based real-time monitoring in industrial machinery can
optimise production, tracking the different production steps and identify
changes in the production parameters. Supervised and unsupervised ML
algorithms can interpret real-time data from multiple production shifts and
identify unknown patterns in processes, products, and production workflows.

In robotics, vision systems support the development of collaborative
robots and cobots. Cobots are used to collaborate with humans in terms
of helping or relieving the human operators of repetitive tasks and are
expected to evolve and provide automated tasks and connected in a network
of intelligent IIoT devices.

Operating, checking, and improving functioning and efficiencies in
industrial pieces of machinery requires AI-based solutions designed with
embedded technical robustness and safety. The industrial AI systems must be
assessed to withstand potential attacks (along with unexpected functioning
in new environments) and have fallback plans and similar general safety
mechanisms in place. The use of AI solutions has the potential in autonomous
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system monitoring to improve safety and efficiency and provide new
performant human-machine interfaces [6].

The accomplishments in the field of AI are contributing to innovative
industrial robot control trends. The AI usage in robotic systems is firmly
becoming one of the main areas of focus as the industrial machinery requires
increased performance, adaptability to product variations, increased safety,
reduced costs etc. Still, these requirements are neither feasible nor sustainable
to be achieved by standard control methods.

Applications of AI are progressing in different areas of industrial
machinery manufacturing with a focus on improving quality control/
assessment, energy efficiency, safety, maintenance, and process optimisation.
A number of these areas where AI technologies have the potential to expand
in industrial machinery are listed below [4].

Operational simulation and optimisation are application segments for AI
in machinery. Dynamic simulation and optimisation of processes enable end-
users to plan the use of the machine/equipment effectively, plan the flow of
materials, dynamically supply, and predict possible anomalous scenarios. Key
drivers of growth in this segment are the need for end-users to lower overall
operating costs and the rise of physics-based AI solutions. The demand for
AI solutions that address operational simulation and optimisation grow since
more manufacturing lines become more complex plus integrated with the
supply chain and processes.

Quality control is increasingly important in industrial machinery production
due to stringent quality requirements for industrial products. The AI-based
techniques can bring new intelligent quality inspection solutions in the
industrial machinery space that support quality control applications across
several industrial and machinery segments. AI-based computer vision for
quality inspection is used in advanced equipment manufacturing lines with
increasing demand for intelligent systems for quality control in all production
steps. The developments further advance the evolution of embedded AI at the
different micro, deep, meta edge levels.

Maintenance is one of the critical applications for AI in industrial
machinery manufacturing that evolves from preventive toward predictive
and prescriptive maintenance using AI-based techniques. Increasing
machine/equipment efficiency and minimise/eliminate unplanned downtime
requires new predictive maintenance solutions. The solutions are based on
ML using supervised or unsupervised learning to detect failure patterns for
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parts from machine data and predict when the subsequent machine part failure
can occur.

Energy management and energy efficiency are significant concerns in
industrial machinery/equipment design and their manufacturing processes.
AI-based methods used in the industry can support the efficient use of energy
in manufacturing facilities, optimising the energy management for various
production lines and manufacturing plants. AI-based solutions can predict
precise the energy need and type of energy available at the time of use to
optimise the integration and use of various energy sources (renewable, fossil)
in the production processes.

3.0.3 AI-based Applications

AI4DI partners are developing AI and IIoT technologies with applications
in different areas of industrial machinery. The articles included in this
section cover several aspects: sensing the environment, making independent
decisions, and acting according to the machinery.

The article “AI-Powered Collision Avoidance Safety System for
Industrial Woodworking Machinery” addresses the challenge of applying
AI-technology to safety-critical industrial equipment: it cannot be certified,
as, although safety standards do exist for both product and process, they
are likely not yet to include innovative algorithms. At the same time, its
inclusion in the current certification schemes waits for the technology to
become mature enough to trigger industry engagement. The paper attempts to
demonstrate by using a prototype (based on ultrasound sensors and coupled
with a temporal convolutional network-TCN algorithm) that AI technology
can meet safeguards such as halting machinery’s operation and bringing it to
a safe state when certain conditions are met. The prototype can detect when
a person is within a certain distance from the industrial machine with high
sensitivity and specificity.

The article “Construction of a Smart Vision-Guided Robot System for
Manipulation in a Dynamic Environment” addresses the challenges of
enabling industrial robots integrated into manufacturing processes to “see”
in dynamic environments. The article presents an innovative vision-guided
robot system capable of collecting and processing data from various edge
devices and adaptive decision-making. Promising preliminary results have
been obtained based on synthetic training and validation data generated by
open-source software building blocks, easily adaptable and extendable for
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other industrial applications. It is yet to be seen results and performance when
combining synthetic with real training data sets.

The article “Radar-Based Human-Robot Interfaces” addresses the need
to ensure robots’ safety and active control as they interact more closely with
humans in different types of settings. The current vision-only approaches are
no longer sufficient and must be improved, for example, using hand gesture
recognition capabilities. Two implementations of the radar-based human-
robot interface have been explored (one using traditional machine learning
classification techniques and the other using spiking neural networks). The
implementations are compared in terms of their strengths and weaknesses,
and the results are presented and discussed. Finally, some preliminary
conclusions on performance trade-offs, gesture set choice, ergonomics are
provided. Both implementations successfully detect gestures using a single
radar, but more work is needed to improve the detection performance.

The article “Touch Identification on Sensitive Robot Skin Using Time
Domain Reflectometry and Machine Learning Methods” presents the proof
of concept of a novel sensor system for robotic human-machine interface
(HMI) applications, mimicking the human sense of touch. The system
is enabled by implementing an artificial sensitive skin consisting of a
robust and straightforward part of the sensing hardware mounted on the
robot combined with adaptive AI algorithms to recognise touch events.
A measurement concept based on electrical time domain reflectometry
(TDR) allows identifying/remembering touch events, localising them on
the sensor surface, and determining the touch-force magnitudes. The
information collected from the sensor is pre-processed and then used
for training and validation of artificial neural networks to obtain high-
accuracy: regressive deep neural networks (DNNs) for identification of the
touch positions and forces and classification DNNs for discrete force level
identification. The results demonstrate that a high-level accuracy is obtained,
and more work is needed to reduce the gap between training and validation
accuracy.
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Abstract

Applying Artificial Intelligence technology to safety-critical industrial
equipment requires preliminarily studies on the efficacy and limitations
of such technology, to enable the definition of normative certification
frameworks. In this chapter, we present the prototype of an ultrasound-based
collision avoidance system for industrial woodworking machinery. Using
a single ultrasound sensor, the prototype can identify the presence of an
operator in less than 13 milliseconds, with high sensitivity (97.3%) and
specificity (98.6%) also in the presence of noise. The solution presented is
able to leverage increasing amount of data over time to increase accuracy,
improving the model while always keeping the inference adequate for
the memory, power and latency constraints of real-time execution on an
embedded microcontroller unit.
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3.1.1 Introduction and Background

Every day, industry workers operate on complex pieces of machinery
for tasks ranging from woodworking, car construction, circuit soldering,
clothing fabrication, etc. Virtually all such machinery requires trained and
skilful operation, and it is often hazardous if operated out of well-defined
practices. Safeguarding the health of operators without disrupting operativity
is therefore a paramount concern in the design of such pieces of machinery,
prompting the specification of industrial standards for functional safety of
equipment: safeguards that halt the operation of machinery and bring it to
a safe state when certain conditions are met, e.g., a person is detected in
the trajectory of a moving part by a non-contact Electro-Sensitive Protective
Equipment (ESPE) sensor, such as a photodiode.

To ensure a shared set of rules that can be used as a normative framework,
safety equipment in industrial machinery must typically be certified under
international standards such as IEC 61508 and EN/IEC 61496 to achieve
a given Safety Integrity Level (SIL). The former standard deals in general
with all programmable electronic equipment, while the latter is more specific
on requirements for designing, building, and verifying the operation of non-
contact ESPE systems. A downside of international standards is that newly
introduced technology that is not covered by the current version cannot
be certified – and this includes innovative algorithms. Even technology
improving the worker’s safety or convenience must wait for inclusion in a
new version of the standards, which only happens if the technology itself is
mature enough to trigger the industry’s interest in its inclusion.

In the fields of machine vision and data analytics, algorithms based on
artificial intelligence – and particularly, Deep Learning (DL) – have recently
become mainstream, both when executed in the cloud and directly at the
edge, i.e., on the same computing devices that perform data collection. The
most famous family of algorithms, Deep Neural Networks (DNNs), is now
considered a mature technology, showing extremely good results for many
data analytics tasks. DNNs would be a promising technology for improving
the performance of safety equipment such as ESPE systems by extracting
more relevant information out of sensor data, for example from the correlation
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between multiple streams of information. Edge Deep Learning techniques
enable an analysis such as this to be performed directly near the sensors
themselves, ensuring high reliability and ultra-low-latency response to critical
situations. Despite this promise, applications of AI to ESPE systems are not
yet considered by any industrial standard, and industry interest would have to
be gathered by means of advanced prototypes demonstrating the effectiveness
of this idea in the field.

In this chapter, we showcase a prototype collision avoidance system for
industrial woodworking machinery that is based on cheap ultrasound sensors
– like the ones used for park assist in cars – coupled with an algorithm based
on Temporal Convolutional Networks (TCNs), a sub-family of lightweight
DNNs specifically dedicated to time series data analytics. The goal of the
collision avoidance system is to detect the presence of a human body in front
of the sensor array using only ultrasound information, possibly in presence
of intrusive noise coming from other operations in a busy manufacturing
environment.

3.1.2 Review of Industrial-level Methods for Edge DNNs

In recent years, DNNs became leading solutions in a broad variety of
computational tasks, and they are being extensively integrated into digital
industries. The rapid proliferation of pervasive Internet of Things (IoT)
devices and of ubiquitous cognitive computing is pushing the industry
towards performing Machine Learning (ML) inference on edge devices,
which enables real-time processing of data and reduces strain on Cloud
networks. These embedded platforms, however, pose stringent constraints
on power consumption, latency, and memory footprint. Moreover, some
devices are equipped with hardware accelerators that require specialized
programming and mapping endeavours 1D be fully exploited These new
challenges led to the development of Tiny Machine Learning (TinyML),
a novel and rapidly growing field that aims to enable 1he porting of ML
algorithms onto embedded computational platforms, characterised by strict
requirements in terms of memory and power envelope.

3.1.2.1 Compression Techniques

In the modelling and training stages, several compression techniques can
be used to trim the size of the network and reduce the number of
computations.
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Quantization approximates real (floating-point) values to integers with lower
bit widths, enabling reduced-precision computation. In fact, normally most
networks are trained using FP32 numbers, but smaller representations can
greatly optimize the memory utilization and the inference performance with
little loss of accuracy [1]. Model designers can experiment with different
numerical precisions for the weights and/or the activations of each layer,
building mixed-precision models to achieve the desired trade-off between
prediction loss and model size. Although quantization is more effective when
applied during training (quantization-aware training), also post-training
quantization schemes are widely used.

Vector compression schemes focus on reducing the constants’ size by
clustering and sharing the weights and the biases, using algorithms such as
k-means or hash functions.

Pruning removes redundant parameters or neurons that do not significantly
contribute to the accuracy of results, for example, because they are 0. It can be
performed at training time (static pruning) or at runtime (dynamic pruning)
and it can either target the neurons or the connections between them.

3.1.2.2 Popular Frameworks and Tools

Most of the major deep learning frameworks support some compression
schemes and other techniques tailored for Deep Learning at the Edge [2].

TensorFlow Lite is a lightweight framework for on-device inference,
based on the popular TensorFlow (by Google). It supports post-training
quantization targeting half-precision float (FP16) and INT8 datatypes.
Moreover, quantization-aware training and pruning can be performed in
TensorFlow and Keras. The models produced with these tools can be used
also in TensorFlow Lite Micro, a runtime framework designed to perform
inference on microcontrollers.

Apache TVM is an open compiler stack that provides end-to-end compilation
of neural networks (modelled in TensorFlow, ONNX, Keras, or MXNet) to
several backend frameworks and hardware targets. It supports quantization
up to 1∼4 bits, as well as block-sparsity. Moreover, the microTVM
extension allows targeting small bare-metal devices using a minimal C
runtime.
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ONNX provides an open format for AI models, aiming to simplify
networks exchange between different frameworks, tools, and target hardware.
It supports INT8 quantization, both at runtime and during training, for
Convolutional, MatMul, and Activation layers.

STM32CubeAI is a software extension pack for the STM32CubeMX code-
generation tool, which provides a user-friendly GUI to quickly configure
STM32 microcontrollers to run Neural Networks inference. It supports
ONNX and TFlite models and can perform post-training compression
on them. The generated code provides APIs to use multiple models in
the same codebase and to accelerate their execution using ARM CMSIS
kernels.

In addition to the popular frameworks listed above, novel specialized
tools implement more advanced compression techniques and finer-grained
quantization settings: some examples are QKeras [3], Larq [4], and
Brevitas [5].

3.1.3 Materials and Methods

3.1.3.1 System Architecture

The collision avoidance system that we propose exploits ultrasonic (US)
sensing to detect the presence of a person or object within a certain
distance from the industrial machine; in case of detection, a STOP signal
is immediately conveyed to the machine control logic. The system works in
a conceptually simple way: a set of transducers emit an ultrasonic pulse; if
the pulse hits a person, it will produce an echo that can be sensed by the
transducers themselves.

To work correctly, the system must operate with ultra-low latency, and,
at the same time, it has to deal with many possible noise sources that pollute
the signal and make it harder to achieve high sensitivity and specificity. To
increase the system’s resiliency against interfering waves in the US spectrum,
we process the acquired data using a Neural Network to discern the US
echo from other unwanted noises and detect the presence of a worker in the
machine’s trajectory.

As shown in the Figure 3.1.1, the main components of this system are:

• The ultrasonic sensors and their drivers
• A Lattice FPGA
• An STM32-H7 microcontroller board
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Figure 3.1.1 System architecture schema.

The data acquisition pipeline of the final system will start with a 3×3
matrix of 9 MULTICOMP MCUSD14A58S9RS-30C ultrasonic ceramic
transducers, while the demo prototype uses only one sensor. Each of these
devices acts both as an emitter and as a microphone for sound waves with
a frequency around 50 kHz. When the emitted ultrasonic pulses encounter
an obstacle, they get reflected towards the sensor, which translates the
mechanical vibrations of the echo into a variable electrical tension. By
analysing this signal, the distance between the sensor and an object, if any,
can be easily derived.

Each sensor is driven by a dedicated Texas Instruments PGA460
ultrasonic signal processor and driver, that integrates a low-noise amplifier,
a programmable time-varying gain stage, an (up to) 12-bit ADC and a DSP.
In the proposed system, the ADC is configured with a resolution of 8 bits that
matches the input bit width of the Neural Network. The sampling frequency
is 1 MHz and the sampling period for each data chunk is 20.48 ms, yielding
an output data rate of 8000 kbps for each driver.

A low-power Lattice ECP5 LFE5U-85F FPGA is used to aggregate the
data streams (channels) coming from each of the PGA460 devices; moreover,
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at start up the FPGA configures the drivers’ resolution, sampling rate, and
other parameters. The devices communicate using the USART protocol, in
which the programmable logic acts as master, while the ultrasonic drivers
are slaves. In particular, the communication happens through synchronous
USART (clocked at 8 MHz) with a packet size of 8 bits and a baud rate of 8
Mbps.

After collecting all the data of a sampling window from the drivers, the
FPGA performs subsampling, reducing the 20480 per-channel samples by a
10× factor; then, all the channels’ data is packed to be sent to the STM32
microcontroller. A data package produced by the FPGA contains 2048 8-bit
samples for each channel, for a total size of 147.46 Kb. The communication
between the two devices happens mainly via the SPI protocol (Mode 0),
with a serial clock of 5 MHz, and is initiated by the MCU which acts as
the master. An additional GPIO line is asserted by the FPGA to inform the
microcontroller when it has finished its tasks.

The STMicroelectronics STM32H743ZI2 board (STM32-H7 for short),
belonging to the Nucleo-144 family, features a high-performance ARM
Cortex-M7 processor (with double-precision FPU) operating at 480 MHz,
2 MB of Flash memory, 1 MB of SRAM (including 192 KB of tightly-
coupled scratchpad memory for real-time tasks), 4 DMA controllers, and
several communication peripherals including UART/USART, SPI, USB-
OTG, Ethernet, and GPIO lines.

Its main duties are to acquire the data from the Lattice device, perform
the Neural Network’s inference and send control signals to the industrial
machine’s PLC and to the FPGA (which, in turn, controls the ultrasonic
drivers and transducers).

In particular, the MCU prototype firmware implements a state machine
(depicted in the Figure 3.1.2) composed of five main states:

(1) Waiting FPGA configuration
(2) Waiting Acquisition
(3) Data Transfer
(4) Inference
(5) Halted

The system starts in state (1), in which the FPGA configures the transducers
drivers and communicates with the MCU. When ready, the FPGA sends a
signal to the MCU, which replies with a “Start Data Acquisition” command
and waits in the state (2). When all the data needed for one inference have
been acquired and pre-processed, the FPGA sends a “Data_ready” signal
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Figure 3.1.2 MCU firmware state machine.

which triggers the data transfer to the STM32 over SPI, happening in state
(3). When the payload is received, the MCU informs the FPGA (which
will prepare for the next acquisition) and then it runs the Neural Network
inference in state (4). If an obstacle is detected, the MCU will assert a GPIO
line connected to the industrial machine’s controller, and the firmware will
move to state (5); otherwise, the system will go back to state (1). The system
can be halted also by pressing a specific button on the control panel, to allow
the user to report false negatives: this information is stored and could be used
to improve the model accuracy in the future. A dedicated command can be
used to exit from the halting state and restore the normal execution from
state (1).

3.1.3.2 Dataset Collection

To address the targeted use case, an ultrasound (US) dataset was collected
with an acquisition setup reproducing the working conditions of the industrial
machinery of interest.

Framing the problem as a binary classification task, where the goal is
detecting the presence of a human inside the area of interest, US windows
were recorded with and without a person originating a US echo.
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Working in an anechoic chamber, bursts of US at 50kHz were sent toward
a predefined region by utilizing the TI PGA460 illustrated in the previous
section. Ultrasounds were sampled at 1MHz, producing UINT8 data; and a
window of 28ms was recorded in each acquisition.

In addition to the presence or absence of a person, corresponding to the
positive and negative class respectively, two conditions were varied to explore
the variability of the real working conditions:

• The person’s distance from the sensor, which was varied from 0.5m
to 2.0m.

• The pressure level of a compressed-air jet used to reproduce the
environmental noise of the machinery’s room, which was varied from
0bar to 3bar (applied for the negative class as well).

A total of 227 US windows (85 negatives, 142 positives) were collected with
different combinations of the described settings.

Four examples of the acquired US signals are shown in the Figure 3.1.3
(for clarity, only the first 20ms are displayed). All windows include the
final part of the US burst, which contains no information but can be easily
cut since it has the same timing in every recording. As it can be seen, the
information needed for classification is strictly related to the reception of a
US echo.

The shown recordings exemplify the motivation for addressing the
task with Machine Learning (ML), and with Temporal Convolutional
Networks (TCN) in particular. In the ML/DL paradigm, the modelling of the
relationship between the signal pattern and the class is completely entrusted
to the training of the algorithm, which learns a discriminant function that
is entirely data-driven, i.e., fully independent from any feature extraction
handcrafted ad hoc. Thus, there is no need to develop an analytical description
of the positive echo, which would require a huge amount of trial and
error. Moreover, TCNs (defined in detail in the next Subsection, Detection
Methods) are deep models able to work directly on raw signals. In our
use case, this prerogative is paramount, since it allows to automatize the
discrimination between the signal of interest and the background noise due
to the compressed-air jet pressure, making this aspect data-driven as well and
avoiding the need for any manual calibration.

For the subsequent Deep Learning setup, data were kept UINT8, and
under-sampled to 100kHz and randomly split into a training set and a test set
with a 50%-50% proportion. The US burst was discarded from all recordings,
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Figure 3.1.3 Visualizations of selected samples of the dataset.

and only 2048 samples (20.48ms at 100kHz) were considered for each
window.

3.1.3.3 Detection Methods

Temporal Convolutional Networks (TCNs) are a recent category of deep
models that have surged to State of The Art (SoA) in many tasks
involving time sequences, surpassing Recurrent Neural Networks (RNNs) for
trainability and accuracy [6–8].

The two features of TCNs are in the 1D convolutions, applied along the
temporal direction:

– Causality: filters only cover a left-neighbourhood of each input sample,
to exclude future samples.

– Dilation: a fixed step d is inserted between the kernel’s input samples, to
enlarge the receptive field while keeping the model size fixed.

The TCN presented in this work is inspired by TEMPONet, a topology
that is SoA in real-time classification and regression of bio signals [9]. In
this work, we impose a reduction of model size compared to the original
TEMPONet structure: we strongly reduce the feature maps (as explained
below), obtaining a net that is more compact as to both parameters and
activations. Moreover, we use no activation (i.e., we set d = 1 for all
convolutions), since we experimentally found that dilation provides no
increase in accuracy.
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The model architecture is made up of 3 Convolutional Blocks, each
containing:

– 2 causal convolutions with filter size k = 3 and full padding;
– 1 convolution with filter size k = 5, variable stride s, followed by average

pooling (filter 2, stride 2).

The 3 convolutional blocks have stride s = 1, 2, 4, respectively. Searching for
a net as compact as possible, we lower the number of feature maps of the 3
convolutional blocks compared to the original model of [9]. We reduce Block
I’s maps from 32 to 2, reduce Block II’s maps from 64 to 4, and reduce Block
III’s maps from 128 to 4.

After the convolutional blocks, 3 Fully Connected (FC) layers execute
the classification. FC I has 8 units, FC II has 4 units, and FC III has 1 unit,
representing the estimated probability of the input sequence belonging to the
positive class.

All layers, except FC III, have ReLU non-linearity as activation function
and are equipped with Batch-Normalization to counter internal covariate shift
[10]. FC I and FC II are trained with dropout with pdrop = 0.5, to help
regularization [11].

The optimized TEMPONet proposed in this work processes a 2048-
sample input US window (20.48ms at 100kHz) with less than 1000
parameters. The model directly works on raw signals (UINT8 data), without
the need for any pre-processing or feature extraction, which would cause
overhead before inference.

The TCN model was implemented in Python 3.8 using PyTorch 1.6.
Trainings were performed with Binary Cross-Entropy loss (computed in a
class-balanced way, i.e., weighting equally the positive and negative class),
and Stochastic Gradient Descent (SGD) with AdaM optimizer, initial learning
rate λ0 = 0.001, and minibatch size 128. SGD was applied for 8 epochs
at FP32 precision, followed by Post-Training Quantization (PTQ) to 8bit
(i.e., INT8). Then, 8 epochs of quantization-aware training were performed,
applying PArameterized Clipping acTivation (PACT) [12] as implemented in
the library NEMO (NEural Minimizer for tOrch [13], [14], an open-source
package to quantize CNN for deployment on memory-constrained ultra-
low power platforms, such as the STM32-H7 MCU targeted in this work.
These further 8 epochs of quantization-aware training are a fine-tuning which
mitigates the initial drop of accuracy due to PQT (as shown in the Section
Results).
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On the edge device, different variants of this TCN were tested (for
example, with or without dilations), but all the presented experiments are
based on the TCN without dilations.

Since an STM32 microcontroller is being used, the models are fed to the
X-CUBE-AI extension (version 6.0) for STM32CubeMX, which configures
the MCU and generates the code of the inference application. The generated
API contains functions to manage multiple models and to run the inference
on the data of an input buffer.

Three versions of the chosen TCN were produced, tested, and compared:

• The original model (TCN FP32), using FP32 inputs and no compression
or quantization: it consists of 251224 MACC operations, 3.57 KiB of
weights, and 24 KiB of activations.

• The compressed model (TCN FP32 compressed), using FP32 inputs and
X-CUBE-AI’s weight-sharing compression based on k-means clustering
(with compression level = 8): it consists of 251224 MACC operations,
1.84 KiB of weights, and 24 KiB of activations.

• The quantized model (TCN UINT8 Quantized), which uses UINT8
inputs, outputs, activations, and weights: it consists of 226509 MACC
operations, 1.02 KiB of weights and 6.05 KiB of activations.

3.1.3.4 Continual Learning Setup

To simulate a realistic scenario of Continual Learning, where the new data
received by the TCN are also stored and used for periodic retraining, we
conducted experiments applying an increasing data augmentation to the
original US data. Data augmentation allows increasing the variability of
the data seen by a model during training, thus improving its generalization
capability. Exploring data augmentation provides insight into the model’s
ability to leverage an increasing training set, improving its learning over time.

In our experiments, data were augmented by a factor Faugm ranging from
50 to 1000. From each original US data window, Faugm synthetic windows
were produced via a two-step transformation:

• Scaling by a random factor s uniformly drawn between 0.5 and 1.5,
followed by clipping and rounding to recover UINT8 values.

• Time-shift by a random interval ∆t uniformly drawn between -1.5ms
and +1.5ms.

Since this augmentation injects randomness from the very beginning of our
training pipeline, Nrep = 30 repetitions of the experiment were performed for
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each explored value of Faugm; each repetition involved augmenting the data
from scratch and training a TCN from scratch.

3.1.4 Experimental Results

3.1.4.1 Evaluation Metrics

In the setup we propose, we target both classification metrics, regarding
the goodness of the recognition provided by the algorithm, and deployment
metrics, to assess the suitability of the model and of the chosen STM32-H7
MCU to the edge-inference workload.

The classification metrics we target are three, and are typical of binary
classification in unbalanced settings:

– Sensitivity (also called True Positive Rate - TPR, or recall): the fraction
of actual positives the net correctly classifies, formally TP / (TP + FN);

– Specificity (or True Negative Rate - TNR): the fraction of actual
negatives the net correctly classifies: TN / (TN + FP);

– Balanced accuracy (or macro-average accuracy): the average between
sensitivity and specificity.

In contrast with unbalanced accuracy, these three metrics are independent
of class imbalance. Moreover, recourse to sensitivity and specificity
allows characterizing the model’s behaviour exploring different sensitivity-
specificity tradeoffs, which is methodologically interesting as it allows to
tune the model’s detection threshold based on the application-specific relative
importance of False Positives and False Negatives.

The deployment metrics we use are three, to assess the satisfiability of the
main requirements of real-time on-edge computations:

Memory footprint: amount (and percentage of the available quantity)
of RAM and FLASH memory used by the firmware (including the neural
network); since dynamic memory is not used, this metric is available at
compile-time.

– Latency: amount of time or clock cycles needed to complete one
inference, once the input data is ready.

– Power consumption: average power draw of the MCU during a sequence
of inferences.

The memory footprint metric is particularly important in a resource-
constrained scenario and provides interesting insights on which alternative
devices could be used for the computation. In terms of performance
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Figure 3.1.4 Validation metrics at different augmentation factors.

assessment, throughput was not considered since this system is mainly
sequential and does not exploit parallelism or pipelining.

3.1.4.2 Continual Learning Scenario

Figure 3.1.4 shows the validation metrics of the proposed TCN quantized to
8bit, after training on data augmented by a factor Faugm ranging from 50
to 1000. The observed trend is a clear learning curve, which highlights that
our setup is able to leverage an increasing amount of data to improve the
recognition.

The same behaviour is shown by a further characterization, namely the
Receiver Operating Characteristic (ROC) curve for the validation metrics,
reported in the Figure 3.1.5. As it can be seen, the model is able to exploit
the larger training set, produced by stronger augmentation, to improve its
sensitivity-specificity Pareto frontier.

Our setup is thus well-suited for a Continual Learning scenario, where the
classifier is required to improve its goodness by exploiting new data seen in
periodic re-training.
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Figure 3.1.5 ROC curves at different augmentation factors.

3.1.4.3 Robustness Against Quantization

Table 3.1.1 reports the validation metrics at different stages of training,
obtained for augmentation factor Faugm = 1000 and averaged over the Nrep =
30 repetitions run. Each validation is performed as an inference over the test
set. The best recognition is achieved by the model in FP32 format. However,
this numeric type is not hardware-friendly and is not suitable for deployment.
After Post-Training Quantization to 8bit and 1 epoch of quantization-aware
training, the model’s goodness at validation drops by 1.75%, 0.74%, and
1.25% in sensitivity, specificity, and balanced accuracy, respectively. After
8 epochs of quantization-aware training, these degradations (at validation)
are reduced to 1.02%, 0.14%, and 0.58% respectively.

This demonstrates that 8bit fine-tuning is capable to recover the accuracy
drop following quantization. The final negligible deterioration proves that the
proposed TCN is robust against quantization to 8bit.
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Table 3.1.1 Validation metrics at different training stages.

Training level
Validation metric

Sensitivity Specificity Balanced
accuracy

8 ep. FP32 0.9835 (baseline) 0.9875 (baseline) 0.9855 (baseline)
8 ep. FP32 + 1 epoch INT8 0.9660 (- 0.0175) 0.9801 (- 0.0074) 0.9730 (- 0.0125)
8 ep. FP32 + 8 epoch INT8 0.9733 (- 0.0102) 0.9861 (- 0.0014) 0.9797 (- 0.0058)

3.1.4.4 Latency, Energy and Memory Footprint on STM32H743ZI

The three TCN variants described in Section 3.4.1 were deployed and
tested on the STM32 MCU using the X-CUBE-AI platform. To perform the
measurements, the framework’s “System Performance” application template
was used, and the board was connected to a PC through its microUSB port,
which served also as power source.

Table 3.1.2 reports the measured values of the chosen deployment
metrics.

For each model, the execution latency is the average value over 16
inferences with random input data.

The memory footprint was computed statically by the compiler, based
on the size of the program’s segments and their location according to the
linker script: in these experiments, the .text segment was allocated in the Flash
memory, while .data, .bss and .stack were saved in the RAM. The values of
RAM and Flash utilization reported in the Table 1.1.2 refer to the models’
data structures, as reported by X-CUBE-AI.

The power consumption was measured using a USB power meter
connected between the board and the computer. For each model, we report the
average power draw over a 30-seconds interval, during which a continuous
cycle of inferences was being executed on the board.

Despite the baseline model (TCN FP32) already meeting the selected
requirements, the results show that compression and quantization techniques
can successfully reduce the memory footprint and the power consumption on
this workload. However, limitations in the current version of the framework
prevented latency optimizations. Our future work will focus on optimizing

Table 3.1.2 Deployment metrics on three model variants.
Model version Latency RAM Util. Flash Util. Power

Draw
TCN FP32 11.412 ms 32 KiB 3.57 KiB 1.639 W
TCN FP32 Compressed 11.418 ms 32 KiB 1.84 KiB 1.637 W
TCN UINT8 Quantized 12.768 ms 8.11 KiB 1.02 KiB 1.621 W
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the inference time on top of the platform, to combine the quantized model’s
higher memory efficiency with performance gain.

3.1.5 Conclusion

In this work, an ultrasound-based and AI-powered collision avoidance system
for industrial machinery was presented. Its development required engineering
of the hardware acquisition and processing pipeline in terms of hardware
components, system integration, and firmware development, as well as
dataset collection, models optimization and deployment. The resulting 1-
sensor prototype is able to accurately sense the presence of a person in the
working area with low latency.
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Abstract

This article outlines the construction of universal, user-friendly smart robot
system for manipulation in a dynamic environment through AI-based vision
system which incorporates processing on the edge. To successfully perform
complex tasks in changing conditions, robots require both intelligence
for adaptive decision-making and the ability to accurately perceive the
environment and interface with it. The proposed system is built in a way
that maximizes the modularity of the system. And thus, improves the ease
at which the system can be modified to other specific goals after it has
been operationalized. In this work, these characteristics are achieved by the
use of synthetically generated data and Robot Operating System (ROS) as
a middleware software. The first results prove the feasibility of training
object detection networks on synthetically generated data sets. And also a
combination of a 3D camera and industrial robot provides a convenient way
for adding new objects to the database.

Keywords: edge computing, artificial intelligence, smart robot, smart
manufacturing, synthetic data generation, robot operating system, computer
vision, object detection, verification and validation.
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3.2.1 Introduction and Background

Over the last decades, robots are increasingly used to off-load the physical
labour of workers and to perform tasks more efficiently and accurately.
This has resulted in a significant increase in productivity and quality of the
performed tasks and manufactured products [1]. At first, robots were mainly
used to take over the repetitive tasks of the workers. Today AI-based robotic
systems are becoming an increasingly important part of manufacturing
processes [2], [3], but industrial robots lack abilities to tackle the dynamic
environment of today’s manufacturing.

Manufacturing processes are equipped with a wide variety of sensors
and cameras for quality control, safety fields, object detection in the 2D
environment etc. Most of these processes are manually programmed for one
specific task with only little tolerance for changes or adaption to different
environments. Industrial robots in these systems are capable to manipulate
with objects very precisely and repeat tasks with high accuracy. However,
traditionally working in dynamic environments (especially with randomly
distributed objects) still requires either human resources or dedicated sorting
hardware. The latter one is usually spacious, expensive, and costly/time
consuming to adjust if product assortment changes.

Changes in the marketplace translate into uncertainty for the
manufacturing and end user mobility services. The way for business to
succeed is by being flexible, smart, and effective in the manufacturing process
[4]. However today many factories are still effectively designed for single
purpose, that means there is little or no room for flexibility in terms of
product design changes. In this article we propose a universal, user-friendly,
and modular system that enables robots to “see” and work with randomly
dropped objects that are overlapping with each other in a pile.

3.2.2 Challenges of Enabling Robots to “See”

The attention to picking and placing of arbitrarily placed objects that are
overlapping each other in a pile has increased in the last years [4], especially
in the context of Industry 4.0 and smart manufacturing [5]. The described
problem is not only challenging to solve but also to be adapted and deployed
to different manufacturing sectors.

3.2.2.1 Modularity

Different industries or manufacturing sectors have diverse conditions
especially in the context of vision, such as lightning conditions,
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environmental elements, and most importantly varied object types. The
challenge within modularity includes efficient adaption to changes in the
environment by respective component change such that a replacement of one
component has no (or only minimal) impact on other components within the
system.

3.2.2.2 Operability

Even though the modularity is a critical characteristic of a universal and
flexible system, the operability plays an important role as well. Whereas
the challenge with respect to operability includes user-friendliness and easy
adaptability to other specified goals should be doable/manageable without
any deep specific knowledge of the underlying target technology.

3.2.2.3 Computer Vision Algorithms

Two computer vision problems - object detection and instance segmentation
- are sufficient to automate many tasks of an industrial robot. The detection
indicates where in the camera’s frame an object is located, and which class
does this object belong to. Whereas segmentation determines which class
does every pixel of an image belongs to. Instance segmentation is a type of
segmentation that differentiates among pixels belonging to different instances
of the same class. With this information, one can acquire a visible shape of
a specific object and use it to determine an object’s pose, which in turn is
handy for picking up and manipulating the object. However, detection and
segmentation are challenging tasks in the case of randomly piled objects.
The objects are often only partially visible, and when the pile consists of
similar or even the same object types, the similar features that could be
used to detect the unobstructed objects are scattered all over the pile [6].
Similarly, an instance segmentation algorithm might struggle to distinguish
similar and partially overlapping objects. Thus, the AI-based methods depend
on annotated training data, where each new object requires numerous new
training examples of pile images and labelling of such data is a tedious
and very time-consuming manual labour, especially in the case of image
segmentation tasks.

3.2.2.4 Validation of Algorithms

Since the advent of deep AI algorithms not only the performance but
also the complexity of the respective algorithms has drastically increased.
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The increased complexity of these algorithms in turn poses a unique
set of challenges to both system designers and system validators. Since
laboratory-based testing and user validation often forms a very time-costly
and expensive task, simulation-based testing and user validation are often a
preferred method in this aspect to (a) shorten development cycle times and
(b) to reach a higher level of system maturity before testing and validating
the system under laboratory- and real-world conditions.

Simulation- as well as laboratory testing and validation methods in
general face both, a significant state space explosion problem as well as a
gap to the real-world environment. For vision-based systems, this may arise
from many aspects, for instance light conditions or dirty or distorted lenses
or sensors etc. It is therefore crucial to system testers and validators to design
their experiments not only as close as possible to the real-world conditions,
but they must also be aware about the coverage of representative corner
conditions and border cases which might affect the system in the field. Only
in this way experiments can be designed to address many issues as possible
beforehand, and to report valuable feedback to the systems designers during
development cycles.

3.2.3 Requirements

To successfully perform complex tasks in changing conditions, robots require
both intelligence for adaptive decision-making and the ability to accurately
perceive the environment and interface with it. Enabling robots to “see”
in terms of ability to work with objects that are different and unstructured
in piles where industrial robot movements cannot be pre-programmed can
support many workers in challenging working environments. However, this
ability requires specifically designed solutions which addresses the stated
challenges.

These needs introduce a sufficient degree of modularity to the system as a
strong requirement to keep a high operability in both changing environments
but also when changing system components: goal is to keep both the effort as
well as cost as low as possible when adapting the system to e.g. other types of
objects, changed environmental lighting conditions, but also when adapting
the system to use other hardware components like other types of sensors,
(which might feature different characteristics in terms of resolution, accuracy
and even sensor failures like lens distortions, which might have to be handled
differently for different sensors). To alleviate the training data acquisition
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process and simplify the use of computer vision methods in industry the
solutions require more efficient data preparation.

The extent to which a system can be decomposed into independent
interacting modules that can be separately understood is beneficial not only
with respect to Verification and Validation (V&V) efforts. Thus, to reduce
complexity, independent and interchangeable system component-modules
have to be defined that can be separately implemented, tested and validated
to achieve a specific functionality. I.e. when the robot should be retrained to
handle different kinds of objects under different environmental conditions,
it should not be required to redesign or revalidate the perception system
itself; when the perception system is being exchanged for another one, it
should not be required to redesign and revalidate the module handling the user
interaction or the module performing high level decision making. However,
in such a case it is still important to validate the proper integration of the new
module to provide assurance about the system as a whole.

The design of representative experiments featuring a high coverage of
potential issues arising in the field requires a comprehensive standardization
of the experiments with simultaneous preservation of degrees of freedom for
adapting the experiments to modified use case requirements as well as to
similar application domains. Thus, with respect to the proposed validation
framework, we aim at accompanying the AI algorithm design- and training
phase by providing a toolbox that allows for efficiently creating standardized
representative experiments while being easy to handle and by being as
intuitive as possible to the user.

Being based on existing, publicly available open source software building
blocks, the validation framework should form a software abstraction layer
easing the handling of a synthetic image generator to setup and conduct a
variety of simulation scenarios (including physics simulation), the rendering
of realistic image scenes as well as the generation of required ground truth
annotation information (i.e. segmentation- and depth images/information)
without having to directly deal with the complexity of the different underlying
lower level software modules.

Furthermore, the toolbox shall come with a set of helper methods trying
to ease (a) the generation of synthetic experiments (i.e. generated benchmark
datasets), (b) the evaluation of the system-under-test’s performance on
generated datasets, while supporting the usage of hardware accelerators (i.e.
GPUs) and to allow for parallel data processing using remote- and distributed
computing. In addition, by using generic interface types, the framework shall
be extendable with little effort to also incorporate other software modules
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later on, like, for instance style transform networks to further decrease
the simulation-reality gap or to also allow for applying adversarial dataset
generation techniques.

3.2.4 Proposed Solution

The architecture of the proposed solution, Figure 3.2.1, is built in such
a way that maximizes the modularity of the system and improves the
ease at which the system can be modified to other specific goals after it
has been operationalized. The experimental system is intended to be fully
functional by the use of at least two 3D cameras and respective edge
devices in a combination with an industrial robot. Moreover, the designed
architecture does not preclude adding an additional camera-edge-robot blocks
to supplement a pick and place process in scenarios when different objects
are mixed in one pile and requires different grasping strategies. In following
the sections hardware and software components will be described in more
detail.

Figure 3.2.1 Architecture of the proposed solution.
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3.2.4.1 Hardware and Interface Components

3.2.4.1.1 Robot Interface
Several interfaces are available to communicate with a robot [7]. The robot
operating system (ROS) [8] is a popular abstraction layer to interface
with a robot, and we propose that ROS is used for our proof-of-concept
demonstrator. Using ROS for interfacing allows easier re-use for other robot
types. A limitation of ROS is that no hard real-time constraints are supported.
This will be addressed in ROS-2, a major rewrite of the ROS code. For a
proof-of-concept, both ROS and ROS-2 are valid options, and over time it
is expected that ROS-2 will become the preferred option for commercial
products. ROS is supported for different operating systems – with Ubuntu
Linux the main supported operating system.

3.2.4.1.2 Industrial Robot
Using ROS as an abstraction layer, a wide range of devices can be supported.
For our proof-of-concept demonstrator, a Universal Robots UR5, 6 DOF
(degreed-of-freedom) robotic arm is considered as a hardware platform for
a smart robot. The maximum payload of UR5 can reach up to 5kg and the
default reach is 850mm. Thus, the reach of the robot can be improved by
gripper modifications. The repeatability of the UR5 robot is +/- 0.1mm.

3.2.4.1.3 3D Cameras
To enable robots to “see” we propose the usage of at least 2 3D cameras.
One camera is statically mounted above the robot, perceives the environment
around it and locates the region of the object of interest. The second camera
is mounted on the robot as gripper modification for closer and more precise
data acquisition from the object of interest. In this work, we have evaluated
two different cameras for this task: a Zivid One M stereo camera [9] and an
Intel RealSense D415 stereo camera [10]. The Zivid One M stereo camera
uses structured light as 3D technology, features a resolution of 1920x1200
and a common point precision of 60 µm and operates at up to 12 frames per
second. The main parameters of the D415 stereo camera are a resolution of
1280x720 for depth images and a frame rate of up to 90fps.

3.2.4.1.4 Deep Edge Device
The data acquired from the 3D cameras is then processed on deep edge
devices. The evaluation board ZCU102 [11] was utilized for prototyping and
verification purposes and to define the necessary parameters and interfaces
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for the carrier board. The carrier board is necessary for the “brains” of the
edge processing unit (image and ML algorithm – System-on-a-Module). In
essence, SoM is a bare-minimum board with all the necessary peripherals
(e.g., RAM, power supplies, etc.) forming a stand-alone system. The SoM is
connected to a carrier board, which has the necessary peripheral devices and
connections for the use-case. By utilizing a SoM, it is possible to reuse the
“brains” of the operation in different systems or to easily upgrade them in
case there is an increased demand for performance. Therefore, the computing
unit and its periphery is separated and can be upgraded independently. In our
use case, the aim is to perform image and ML algorithm processing at the
edge, therefore the developed carrier boards dimensions must be minimized.
To interface with the stereo camera and other USB peripherals, an USB3 hub
has been integrated into the carrier board. To forward the processed data to
the robot control unit, the carrier board has gigabit ethernet connectivity to
ensure a low latency connection with the control unit.

3.2.4.2 Software Components

3.2.4.2.1 Computer Vision Algorithms
The perception software module consists of an image and depth-map
processing AI that segments images, detects pickable objects, and determines
the orientation of the detected object. The detection is accomplished by a
YOLO deep neural network architecture [12] and the segmentation is done
by a Mask R CNN instance segmentation model [13]. To detect objects using
YOLO the data from the camera must be pre-processed. The main step of
pre-processing is object scaling regarding to the trained model, so that the
object proportions are the same. YOLO detects all the objects in one frame on
which the model has been trained on and then selects the best pickable object
by the highest confidence rating. Additionally, the object’s pick position is
determined in the same frame and a name/ID is defined for the object. Thus,
not all detected objects can potentially be picked by the robot arm, as the
object could be too close to the side of the container, or the approach angle
is too high. Therefore, different parameters are applied, and initial collision
checking is done to decrease the pick&place cycle time and increase the
picking success rate.

3.2.4.2.2 Synthetic Data Generation
Data preparation for machine-learning tasks plays an important role and
according to Cognilytica [14] on average more than 80% of time spent on AI
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projects are based on the collection and the processing of the data. The data
collection techniques can be distinguished in several methods. The reviewed
techniques published in [15] varies for different use cases. For example, in
applications such as every-day object detection or machine translation there
are publicly available data sets that could be reused and adapted for one’s
needs for model training [16]. In the context of smart factories, the situation
is different, where product variety is changing more quickly, and algorithms
must be repeatedly trained on new data sets. In these cases, re-usability of
existing data sets is fairly low and manual labeling methods cannot meet
the requirements of agile production as it is time-consuming, expensive and
usually requires expert knowledge of the specific field. The most promising
technique in terms of flexibility and comparatively low cost is synthetic
data generation where time consumption is reduced depending on processing
power and how optimized the generation algorithms are implemented.

Our proposed data generator itself consists of a python library
encapsulating the 3D render engine specific commands for setting up and
rendering the synthetic images and forms an easy-to-use abstraction layer
supporting an application-specific set of image generation parameters. Since
a vast number of synthetic images will be generated, the data generator
library further provides hardware accelerator support (i.e. GPUs) wherever
applicable as well as support for remote deployment and execution to ease
massively parallel remote data generation. The current development version
is implemented using Python 3.7 [17] and interfaces the open-source 3D
render engine Blenderr [18] v2.92.

3.2.4.2.3 Object 3D Reconstruction
The synthetic data generation framework is intended to be used with object
3D models, whereas in some cases the 3D models of the objects of interest
are not available. For such situations object scanning software tools using
depth cameras are being developed. The scanning software uses a camera
mounted on the robot arm, capturing data from different viewpoints, to gather
data from all sides of the object. The point clouds gathered from different
viewpoints are aligned using the camera position information from the robot
system. The alignment is fine-tuned by estimating a transformation for point
to plane distance. After alignment, a 3D mesh is generated representing the
object.

3.2.4.2.4 Validation Framework
The purpose of the validation framework is to automate the standardized
procedure of performance evaluation (i.e., systematically carry out a vast
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number of deterministic test inferences using the AI algorithm under test)
on the generated datasets and to perform corresponding bookkeeping about
the achieved object detection results. The results further serve as valuable
information for the designers of the AI-based object detection algorithm
during repeatedly improved training- and testing iteration cycles.

The validation framework is being implemented in Python 3.7 featuring
a distributed master-worker architecture. It interfaces the synthetic data
generator and the AI algorithm under test, a bookkeeping module for storing
the validation results and an easily expandable plug-in system for applying
specific analytics to the device under test.

3.2.4.2.5 Robot Control
After the object’s pick position and orientation is determined a collision-free
trajectory is generated, including different pose generation for approaching
any detected object and for successfully picking it. A time optimal trajectory
generation is used for the generation of trajectories with smooth and
continuous velocity profiles. Moreover, several common ROS packages are
used for ensuring the modularity with different sensor types and robots. ROS-
Industrial is used to extend the advanced capabilities of ROS software to
industrial relevant hardware and applications. For example, for interfacing
with Universal Robot UR5 driver enabling ROS operation of UR robots is
used. Moreover, the MoveIt! [19] motion planning framework that runs on top
of ROS is utilized for robot arm navigation, motion and trajectory planning,
robot interaction etc.

3.2.4.3 Hardware/Software Partitioning

The main functions of the proposed solution - object detection and pose
estimation - will be performed on the deep edge device. Moreover, the pre-
processing will be done using an application processing unit APU, but neural
network models will be deployed on DPU. Furthermore, the object pose, and
type will be sent to the control unit for trajectory generation to pick up the
detected object. An additional application server will be used for application
interface/GUI, training and validation supervision, edge configurations and
implementation of the trained AI model and other applications. The object 3D
reconstruction utilizes an industrial robot in a combination with stereo camera
to precisely acquire data of the object of interest. The detailed HW/SW
partitioning can be seen in Figure 3.2.2.
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Figure 3.2.2 Hardware/Software partitioning.

3.2.5 Demonstrator Setup and Initial Results

Firstly, the following dataset is generated: for every individual (independent)
scene, we fill an initially empty box with 50 randomly placed objects
by making use of Blender’s physics simulation engine to achieve realistic
positioning and orientation. We use textures and Blender’s principled
BSDF shader nodes to achieve realistic renderings of the scenes including
reflections. After filling the box with the objects, we create a series of (data
dependent) renderings both varying 4 different light power levels and the
orientation of the camera, which orbits around the box and renders the scene
from 16 different angles, which can be seen in Figure 3.2.3. For every camera
orientation, we also generate a depth image and the segmentation images
of the individual objects (Figure 3.2.6) as seen by the camera and labelled
by the object ID. We further generate an annotation file for every camera
perspective which contains the individual object’s orientation and rotation in
camera coordinates together with the object’s visibility percentage.

First results of a successful implementation on EDGE device of the
trained YOLO model on synthetically generated data (Table 3.2.1) is achieved
by using only one object type, where the model has been trained to detect
only fully visible objects that are not obstructed by other objects. The test
data consists of real 300 images.
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Figure 3.2.3 Renderings with different light power levels and camera orientations.

Table 3.2.1 First object detection results, where the model has been trained on syntheticaly
generated data.

mAP@0.90 mAP@0.75 mAP@0.50 Synthetic data set Best result
Total Augmented (steps)

44.99 % 94.35 % 96.73 % 4000 16000 6400

Accordingly, the whole workflow of the system has been tested, as it
can be seen in Figure 3.2.4, where the AI is used to analyse the data of the
Intel RealSense camera, which incorporates processing on the edge (FPGA
based SoC). Currently the object detection is done on the edge device and
then the further processing such as: object segmentation, pose estimation and
communication with the robot is done separately on another processing unit
(application server).

Figure 3.2.4 Object detection and pick and place operation.
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Figure 3.2.5 Setup for object 3D reconstruction.

Furthermore, the first results on adding new objects to the scene have
been also achieved. The Zivid 3D camera mounted on the robot arm is
utilized to reconstruct the 3D model of the object of interest (marked in red in
Figure 3.2.5). Depending on the dimensions of the object, the robot moves
in a certain distance and angle around the object to precisely acquire a point
cloud and generate a 3D model.

The reconstructed 3D model is then added to the synthetic data generation
software by mixing different kind of object types in a pile. The next version
of the dataset will use 2 different 3D models of objects for filling the box,
where half of the objects are matt white plastic bottles, and the other half are
shiny aluminium metal cans Figure 3.2.6.
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Figure 3.2.6 Scene including the plastic bottle- and the reconstructed metal can 3D models
(middle) together with the and corresponding depth image (left) and segmentation masks
(right).

3.2.6 Conclusion and Future Work

The proposed system consists of several elements that tackles the challenges
of enabling robots to “see”. The first results prove the feasibility of the
proposed system and form the basis for further developments within the
AI4DI project. The proposed hardware and software components leverage
the modularity, operability, and the functional correctness of the system. Even
though the results of using only synthetic data for training AI-based computer
vision algorithms are promising, different combinations of synthetic and
real training data sets will be explored as well. Furthermore, future work
will include improvements of the object detection algorithms and continued
improvements on the used pose-estimation methods. In scenarios where
various objects are mixed in one pile different grasping strategies could
be required, a case for which multi-robot collaborations methods are being
explored and will be implemented during the project.

With respect to the synthetical data generation framework, in this
project we are developing a set of open-source software building blocks
to automatically generate a large amount of photorealistic training- and
validation data for our robotic bin picking use case. The dataset images
are fully annotated with position- and rotation information, including depth
images, a labelled segmentation mask as well as a visibility score for every
object visible in the scene. We believe that our set of software building
blocks can be easily adapted or extended and allow for a rapid creation of
similar datasets also for other industrial applications. The datasets created
during this project will finally be made publicly available on the project
website.
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Abstract

In this article, two implementations of a radar-based human-robot interface
are presented. These implementations represent two classes of inference
approaches that are investigated in the radar group at imec. The first class
exploits traditional machine learning classification techniques. The second
class uses spiking neural networks. The machine learning classification
system presented in this article supports nine gestures and achieves a gesture
classification accuracy of 93%. This compares to an accuracy of 98% for our
spiking neural network system operating on four gestures. Based on public
data sets, the accuracy of the spiking neural network approach exceeds the
published state of the art. Misclassification is however significant, which is
still precluding safety critical interactions when using a single radar sensor.
As proof-of-concept, a discrete control of a robot will be demonstrated by
means of radar-based gesture recognition using five gestures. We present the
main concepts of this demonstrator. For pre-validation, we use emulation of
the gesture recall statistics and timing characteristics to model the radar part.

Keywords: gesture recognition, 60-GHz radar, machine learning, random
forest classification, neuromorphic computing, spiking neural networks,
micro-Doppler, human-robot interaction, discrete robot control.
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3.3.1 Introduction and Background

In tomorrow’s factories, production robots and cobots will need to interact
more closely with humans in different types of settings, ranging from
advanced assembly lines to the use of exoskeletons to enhance worker
capabilities. To ensure safety and active control of those robots, advanced
sensors will need to be integrated both on the robots as in the fixed factory
infrastructure. These sensors must be reliable and fast while being able to
operate in harsh conditions. Often, vision-only approaches will be found to
be vulnerable to failure in low visibility conditions.

Millimeter wave radar has the advantage of operating under visually
difficult conditions such as darkness, smoke, and dust. Moreover, radar
enables to measure the surrounding including the speed of approaches and
receding targets. Therefore, radar is excellently suited for collision avoidance.
No wonder that this technology is intensively applied in automotive. Radar
also enables to use the temporal velocity changes (so-called micro-Doppler
patterns) to identify/classify the target. As such, road users can be identified
[1], or different hand gestures can be distinguish as demonstrated by Google
in their Soli project [2].

Many different approaches can be explored to create a radar-based robot
interface. To enhance the intuitive interaction between the operator and the
machine, a contact/touchless interface via hand gestures is preferred. These
hand gestures could, for example be used to select from a menu (= discrete
gestures), or the hand movements could be tracked at real-time to operate the
robot (continuous control). Although real-time interaction can be perceived
very natural , it comes with significant technical challenges and security risks.
Therefore, in this work, we opt for detecting the hand discrete gestures, and
we construct a vocabulary allowing the operator to control discrete robot
actions. Our envisioned proof-of-concept will control a robot arm taking
pictures of an object from different positions and angles. This will enable
3D object modelling.

In this article, we consider two hand gesture recognition implementations
using the same 60 GHz radar platform (TI IWR6843 [3]), as well as their
suitability for the proof-of-concept demonstrator for interfacing with a robot
arm. In our first implementation, the hand gesture type is identified before
augmenting it based on the hand location.

This implementation relies on traditional classification techniques based
on engineered features [4].
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The second implementation does not rely on segmenting the space in
quadrants, but only aims to recognize gestures independent on the hand
location. This implementation uses a spiking neural network organized as
a liquid state machine (LSM) in combination with a trained output classifier
layer [5]. For pre-validation of the demonstrator the radar part is modelled by
means of gesture command recall statistics and timing behavior.

In the following sections, we start with describing both interface
implementations separately. Then we compare both implementations in terms
of performance and implementation complexity, as well as how they can be
integrated in the proof-of-concept use case.

3.3.2 Gesture Recognition Using a Machine Learning
Approach

3.3.2.1 Concept and Experimental Setup

Although the radar system [3] offers only a moderate angular resolution (3x4
MIMO with singe patch antennas), the angular dimensions (both azimuth and
elevation) can be exploited to determine the hand position. This provides an
extra degree of freedom to design the control interface. The implemented
concept is depicted in Figure 3.3.1, showing the training process (in red) and
the inference process (in blue).

The result of the radar inference is then used to control a robot arm (in
green).Specifically:

Figure 3.3.1 Human-robot interaction concept using 60 GHz radar.
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• For training, indicated in red, raw data is collected. Next radar signal
pre-processing is applied, and features are extracted. These features are
then used to train the model, and the machine learning model data is
saved. These tasks do not require real-time processing and can be done
on the edge or in the cloud.

• For gesture recognitions, indicated in blue, features are extracted, and
the model is used to recognize the gesture by means of a classifier that
uses the machine learning model data.

• The recognized gestures are communicated to the robot part, indicated
in green. Gestures are transformed into robot commands which are sent
to the robot interface.

The proof-of-concept setup consists of an upwards facing radar mounted
in front of the robot operator. The center of detection is approximately 50
cm above the radar sensor. The operated can perform the following hand
gestures:

• Palm/hand wave. If a waving hand is detected, then the zone of this
gesture is also detected (left/right/front/back/up/down) relative to the
detection center. These zones are between 20 and 30 cm away from the
center. For example: doing a palm wave at 70 cm (50 cm + 20 cm) above
the radar sensor is detected as a “palm-wave/up”.

• Pinch. This corresponds to pinching the thumb and index finger.
• Thumbs down. This corresponds to a “thumbs down” gesture with the

thumb facing to the radar sensor.
• Tick. This corresponds to making a “V” check movement in the air.

During the measurement campaign, also other gestures were recorded. These
were used to model unknown gestures for testing the robustness of the
classifier.

3.3.2.2 Inference Pipeline, Training Algorithm

Radar systems exploit electromagnetic waves to detect and locate objects in
their environment.

A radar system comprises a transmitter, receiver, and signal processing
modules. The implementation uses an FMCW radar [3].

Figure 3.3.2 illustrates an FMCW radar with one transmitter and one
receiver, depicting the linear sawtooth and digital signal processing to recover
range and Doppler information after the ADC convertor.
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Figure 3.3.2 Simplified radar block diagram.

Transmit Part

The transmit signal is a sinusoid whose frequency is swept linearly from a
start frequency to a stop frequency, forming a chirp with a duration of TChirp.
These chirps are repeated with a chirp repetition interval TCRI. A voltage-
controlled oscillator (VCO) is used to steer a phased locked loop (PLL) which
produces the output signal, which is amplified with a power amplifier (PA)
and sent to the transmit antenna.

Receive Part

A reflected signal is picked up by the receive antenna and amplified with a
low noise amplifier (LNA). It is mixed with the transmitted signal producing
a beat signal that has a frequency that depends on the range (delay) of
the reflected signal. A high pass filter (HPF) is used to removed unwanted
signal components at low frequencyies, determining the minimum range and
cancelling spillover from the transmit signal. Next the signal is amplified
by a second amplifier and passed through a low pass filter (LPF) to limit
the maximum range. Next, the signal is digitized with an analog to digital
convertor (ADC) and a range Doppler map is produced by doing a fast-
time fast Fourier transform (FFT) to recover range and slow time FFT to
produce Doppler information. Note that by doing so only moving objects can
be observed.

In this implementation, all data after the ADC is processed on a laptop,
using a data capture board [6]. Angular information can be obtained by
combining multiple transmitters with multiple receivers. Figure 3.3.3 shows
the signal processing to obtain angular and micro-Doppler information, used
to generate feature data. To generate a point cloud a constant false alarm rate
(CFAR) detector is used to identify targets, and the MUSIC algorithm is used
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Figure 3.3.3 Signal processing pipeline to provide input to the feature generator.

to annotate identified targets with angular information. To generate micro-
Doppler data, beamforming is applied to do a coarse angle estimation, and a
slow time FFT to generate a micro-Doppler cube.

To train and evaluate a random forest classifier, feature data is extracted
from these signal processing blocks, as illustrated in Figure 3.3.4. We extract
ten features, subdivided in four classes [4]:

1. MD: micro-Doppler features:

• RAW: a sub-sampled micro-Doppler cube
• ENV: a curve fit of the micro-Doppler envelopes

2. RD_ROI: range-Doppler region of interest features. This corresponds to
a denoised and subsampled version of the range Doppler information.

3. POINT: point cloud features. This tracks the average, mode and
standard deviation of range (RNG), elevation (ELV), azimuth (AZM)
and Doppler (DOP) over several radar frames (of 90 milliseconds each).

Figure 3.3.4 Feature extraction for the random forest classifier.
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4. META. From the range Doppler cube, the following meta parameters
are derived:

• RENG: range instantaneous energy
• VCENT: centroid velocity
• VDISS: dispersion of velocity

3.3.2.3 Data Recording and Results

The machine learning approach was based on a supervised framework. First,
the setup collected a dataset of gestures for the learning phase. Table 3.3.1
gives the radar parameter used for these measurements [3].

The TI DCA1000 [6] data capture board was used to obtain raw
data samples. While the maximum unambiguous range is 11.3 meter, the
maximum range was restricted to 1.5 m since larger heights are not relevant
for the upward facing radar.

To train the machine leaning model, 22 different test subjects with two
types of gesture were recorded.

• In 6 zones (left, right, up, down, backwards, forward) measurements
were done for a palm wave gesture under different conditions (normal
speed, fast speed, left arm, right arm).

• Six gestures were done in the central position: pinch, thumb-up, thumb-
down, cross, tick, palm tilt with different speeds and hand. After
analysis it was decided to retain only the pinch, thumb-down and tick
gestures.

Table 3.3.1 Chirp/Frame (a) and scene (b) radar parameters.
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Table 3.3.2 Recall and precision statistics of the machine learning based detector.
Percentage Tick Pinch Thumb

down
Left Right Up Down Forward Backward Unknown

Recall 87.3 74.4 78.7 96.1 93.6 94.8 96.8 93.6 89.4 83.2
Precision 87.3 84.2 76.6 80.3 81.0 88.5 86.0 83.0 90.8 89.7

Labeling the data took most effort, and unsupported or poorly executed
gestures were labeled as unknown. For the palm-wave, some gestures were
relabeled to another type if the test subject made the gesture in the wrong
zone.

For training the model a 5-fold cross validation was used, doing 5 runs
using 80% users for training and 20% for testing the model. To assess the
performance, we look at detector statistics, timing, and real time inference
performance.

Machine Learning Detector Statistics

Achieved detection accuracy is 86.1% with 13.8% misdetections. The
detection rate is significantly impacted by using unknow data for input
stimuli. If this data is not included, then detection performance increases to
92.8% with 7.2% misdetections.

Table 3.3.2 shows the achieved recall and precision statistics of the
detected gestures. Recall shows the probability that a gesture is detected
correctly, while precision indicates the percentage that a reported gesture is
correct.

Machine Learning Real Time Inference

We use an Intel Core i7-8750H @ 2.20GHz based laptop to run all signal
processing after ADC, feature extraction and classification in python on an
Ubuntu 16.04 operating system. Critical parts are optimized in C or C++.
While 12 cores are available, we use no explicit multi-threading. Real-time
performance is achieved, and processing delay is less than 120 milliseconds.

3.3.3 Gesture Recognition Using a Spiking Neural Network

For the second implementation, a spiking neural network (SNN) approach
was used for the radar-based hand gesture recognition (HGR). For this
implementation, the same FMCW millimeter-wave radar was used. After
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Figure 3.3.5 SNN-based gesture demonstrator.

pre-processing the range-Doppler radar signal, we use a signal-to-spike
conversion scheme that encodes radar Doppler maps into spike trains. The
spike trains are fed into a spiking recurrent neural network, a liquid state
machine (LSM). The readout spike signal from the SNN is then used as input
for a logistic regression which is used as a classifier in a supervised learning
machine learning framework.

3.3.3.1 Concept and Experimental Setup

The proof-of-concept setup of the second implementation is shown in
Figure 3.3.5. This implementation differs from the previous one in two ways.
Firstly, the hand is now placed at a more or less fixed distance to the radar. No
attempt is made to identify where the hand is positioned in space in front of
the sensor. Secondly, the demonstration focuses on accurately identifying the
gesture the person is making. The gesture vocabulary is “Swipe left”, “Swipe
right”, “Zoom out” and “Zoom in”, allowing the user of the demonstrator,
e.g., to navigate through a series of pictures and zoom in/out on each of them.

3.3.3.2 Inference Pipeline, Training Algorithm

The radar system collects the range-Doppler frames, representing the velocity
and distance of the reflected object (i.e., hand). These frames were mapped as
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Figure 3.3.6 Range vs Doppler (left), flattened range-Doppler vs frames (right).

16×16 images (Figure 3.3.6 left), where a sequence of frames represents the
complete gesture. Each gesture has different time durations, thus different
amounts of frames. Each frame was unrolled and vertically stacked for the
data representation, creating a frame versus flattened range-Doppler matrix
(Figure 3.3.6 right).

The flattened range-Doppler can be seen as a unique pixel location of the
16 × 16 range-Doppler images. The frame vs. pixel representation captures
the information in time, which is ideal for the signal-to-spike neural encoding
to produce the spike train input for the LSM network.

The LSM is a type of reservoir computer capable of universal function
approximation [7]. The basic formulation of LSM maps an input function
u (·) onto a filter, or liquid neurons, LM while the output xM (t) =(
LMu

)
(t) is fed to a second component, a readout map fM , which is

task-specific and generates the output y (t) = fM
(
xM (t)

)
.

The readout maps in our context will be a classifier that receives a state
as input. Different classifiers can be used for this second component, such as
logistic regression, random forest, or support vector machine. For simplicity
and ease of in hardware implementation, we focus on the logistic regression
in these experiments.

Figure 3.3.7 shows the LSM and how it has been used to build an end-to-
end system for gesture recognition.

The top part of Figure 3.3.7 depicts the timing and how each gesture is
sampled in the LSM. Ts0 and Ts1 are the boundaries of the time interval
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reserved for a gesture, wherein the spike train of a gesture can have a variable
stimulus length duration.

After the end of the stimulus, a readout delay tr determines the readout
window interval, during which the state of the liquid is measured and stored
or passed to the classifier, depending on whether it is used in a real-time
online or offline learning and inference system.

When mapping to the LSM, each sample had a different stimulus length.
As a result, the readout window varies according to the sample frame
duration.

The conversion from spike at pixel position i, of frame n to spike si (t)
at time t, is a direct map from n to t, i.e., if frame n has a spike at pixel i,
then si (t) has a spike at t = n. An alternative way to map the LSM was to
normalize the frames to a predefined fixed stimulus length, whereas all the
samples have the same readout window duration.

For every pixel position i, we convert the spike in frame n to a relative
time regarding a fixed stimulus length Sl . Thus, the spike train sequence is
given by:

si(t) =
fn ∗ Sl
fl

Figure 3.3.7 LSM network with trainable output layer.
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Where:
Sl= predefined fixed stimulus length;
fn= frame number,n that contains a spike;
fl= length of the particular sample in number of frames.

In constructing the LSM, we focus on achieving the most compact and
simpler to implement network without sacrificing accuracy. Each pixel i will
produce a spike train as an input to the LSM, and each input is randomly
connected to Cinp excitatory neurons.

All excitatory neurons are used for readout. For the neuron unit, we used a
leaky integrate-and-fire neuron model with exponential postsynaptic currents
with the associated synaptic model, based on [8].

3.3.3.3 Data Recording and Results

The SNN approach was based on a supervised framework. First, we collect a
dataset of gestures for the learning phase.

Table 3.3.3 details the radar parameter used for the radar [3] in this
demo setup. Notice that while it was configured for 32 chirps per frame, we
rescaled to a 16 x 16 range-Doppler image to compose the frame versus pixel
representation, reducing to a total of 256-pixel channels as input to the LSM.

The range depth, width and resolution were configured to around 0.5 m,
thus only the reflected signal directly in front of the radar receivers were
captured for the range-Doppler frames.

Table 3.3.3 Chirp/Frame (a) and scene (b) radar parameters.
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Ideally, the more diverse and generic the learning dataset, the better
generalization can be achieved by the machine learning framework.

Conversely, a personalized dataset can be used to tune the system for
a specific user. In this case, we have collected four gestures from a single
person. Collecting data from multiple persons will be done in the next phase.

Each gesture was collected in 30 separate sessions, wherein each session,
a gesture was repeated 15 times.

The learning set contained then 450 samples for each of the four gestures.
Figure 3.3.8 shows the confusion matrix of a 90%-10% learning (1620
samples) and test (180 samples) split of the dataset.

The LSM consisted of 600 neurons and a normalized stimulus length
Sl = 20.

Table 3.3.4 summarizes recall and precision statistics of the SNN based
detector, for the confusion matrix in Figure 3.3.8.

Figure 3.3.8 Confusion matrix for a 90%-10% learning (1620 samples) and test (180
samples) split of the dataset.
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Table 3.3.4 Recall and precision statistics of the SNN based detector.
Percentage Zoom out

(label 0)
Zoom in
(label 1)

Swipe left
(label 2)

Swipe right
(label 3)

Recall 100 100 97.8 94.0
Precision 100 97.8 95.7 97.9

3.3.3.4 Discussion

The setup was based on an Intel NUC Core i7-10710U (12MB Cache,
1.10GHz) with 32 GB DDR4 RAM. A complete capture, classification,
and image cursor movement took between 0.5 to 1 sec for inference.
The recognition rates reflect the confusion matrix shown in Figure 3.3.8,
depending on the hand’s relative position to the radar. The learning phase
is relatively fast as the SNN was designed to be compact and efficient,
considering the possibility of being deployed on an embedded system. The
learning process was performed when launching the program, and uses a few
minutes. The collection of the learning dataset was the most time-consuming
element.

Dataset personalization shows that the system can be tuned specifically to
the user operating the robot or other device to be controlled. Generalization to
many users or a generic user base depends on the learning dataset. Moreover,
extending the dataset to recognize more gestures can be easily done. In both
cases, other classification schemes, such as support vector machine (SVM)
or random forest, can be applied and integrated straightforwardly into the
system. The spiking neural network algorithms were also validated on public
data sets [5], achieving a gesture detection accuracy of 98%, which is better
than the published state of the art. Still there is a misclassification chance of
2%. This restricts gesture input to non-safety-critical applications.

3.3.4 Proof of Concept Demonstration

We envisioned a proof-of concept demonstrator with five gestures to control
the position of a robot arm:

• The robot arm positions a camera at discrete locations around an object.
The robot arm can be moved to the left or to the right of the object,
following a pre-defined trajectory. Also, the camera can be tilted up and
down.

• A picture can be made of a 3D object and stored for post
processing.
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Figure 3.3.9 Proof of concept radar/robot interface block diagram.

These interactions are shown in Figure 3.3.9. The gesture-detecting radar
system and the robot arm will interface over TCP/IP via an Ethernet
link. A radar client collects gestures and transmits them to a robot server,
which converts the gestures to robot commands to manipulate the camera
location/position. There is a risk that a gesture is misclassified, resulting in
a faulty recall. Such errors need to be corrected by the operator. This can be
done without an increased safety risk. We still need to decide on the process
to take the pictures and to handle the associated risks for sub-optimal captured
data.

The radar client can either be emulated (a) or use a radar part (b) as shown
in Figure 3.3.9. Either one of these modes is used. In emulation mode, it
is sufficient to model the recall statistics of the different gestures together
with their latency. This allows pre-validation of the robot part of the use
case, without requiring a radar part or classification. For demonstration the
emulation part is replaced by a suitable radar and classification. The TCP/IP
communication scheme stays identical.

For the radar machine learning approach, sufficient gestures are available
to support this use case. A logical choice is to use gestures with the best recall
statistics. At least one gesture needs to be added to the spiking neural network
if this approach is chosen.

3.3.5 Comparison and Conclusion

Both implementations (the machine learning and the spiking neural network)
successfully detect gestures using a single radar. We observe that the SNN
implementation achieves a better detection performance of 97.8%. The
main reason is that larger training sets are used for a single user. For the
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machine learning implementation, we observe that the classifier sometimes
generates valid gestures for unseen data. Excluding this (for fair comparison),
the detection performance improves from 86.1% to 92.8%. Although the
obtained detection performances are rather high, the current implementations
are not yet suited for safety critical applications. Both approaches require
some time to detect a gesture, which may exceed half a second. This enables
discrete control of a robot but precludes real time control. We envision a
proof-of-concept demonstrator to illustrate the interaction between the radar
system and the robot arm. This system will control the position/location of
a camara mounted on the robot arm based on hand gestures detected by the
radar system. A statistical model of the radar system is being created to allow
early evaluation. This model combines gesture recall statistics with latency
characteristics. The proof-of-concept demonstrator will be fully developed
within the frame of the AI4DI project together with other consortium
partners.
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Abstract

The article presents the proof of concept of a novel sensor system for
robotic HMI applications, mimicking the human sense of touch. An artificial
sensitive skin, consisting of a robust and simple part of the sensing hardware
based on electrical TDR, is mounted on the robot. In combination with
adaptive AI algorithms, it enables for localisation of touch events on the
sensor surface as well as determination of the touch-force magnitudes. Sensor
data, obtained from a robotised test stand, are utilised to train and validate
regressive DNNs for touch position recognition and classification DNNs for
discrete force level classification. The results demonstrate that a high level of
accuracy can be obtained, but some additional work is needed to reduce the
gap between training and validation accuracy.

Keywords: human machine interaction, sensitive robot skin, touch control,
collision detection, sensor development, artificial intelligence methods,
artificial neural networks, deep learning, machine learning, training and
validation, electrical time domain reflectometry.
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3.4.1 Introduction and Background

Robot-based processes have been indispensable in many branches of industry
for a long time. In addition to the typical application in autonomous
production lines, an increasing trend to use robot co-workers in interaction
with humans is currently recognizable. The robot assistance aims at relieving
the strain on physically strenuous, repetitive or particularly precise work
steps, enabling a significant improvement of working conditions, accelerating
of workflows, and enhancing the product quality.

While the kinematic, dynamic, and performance characteristics of today’s
robots are suitable for supporting a wide range of human activities, the biggest
challenge remains an appropriate control of the robots. Working hand in
hand between a person and a robot requires a high degree of compatibility
not only in terms of motor skills, but also in terms of communication
capabilities. This work addresses the communication-related aspect of the
human-machine interaction (HMI). It presents some ideas and development
steps of an artificial sensitive skin that – in combination with suitable AI
algorithms – enables a kind of tactile sense for robots. The goal is, on the
one hand, to provide the interacting human with a communication channel
for issuing commands through simple touches. On the other hand, the robot
should be able to recognize its environment and react accordingly, e.g. stop
in case of a collision.

3.4.2 State of the Art

Several projects use sensor systems based on the well-known capacitive
measurement principle to detect the approach and contact between humans
and objects with spatial resolution [1]. Furthermore, optical systems based
on Bragg grating sensors [2] or on the measurement of electrical resistance
changes [3] are often used to fulfill the same function. New sensors are
under development that originate from the field of elastic circuits. Such
sensors consist of multilayer micro channels in an elastomer matrix, which
is filled with a conductive liquid to detect multi-axial strains and contact
pressures [4]. Other scientific projects are analyzing the robot cell by multiple
high-resolution cameras that capture images from different directions and
continually create a three-dimensional representation of the scene [5]. Recent
advances in environmental modeling and navigation are in many ways
connected to the developments of high-precision laser or ultrasound scanning
systems [6], [7]. Such scanners are based on the time-of-flight principle, in
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which a transmitted light or sound pulse is reflected by an obstacle and the
echo is detected by the receiver.

Identification of user interactions and associated intentions is an
important task that is solved by interpreting raw sensor signals. In the field of
robot HMI, solutions for collision detection based on signals from joint force
sensors of smaller robots are known. The used algorithms range from analytic
or empirical approaches to the use of AI methods such as artificial neural
networks (ANN) and deep learning training algorithms [8], often referred
to as machine learning (ML). The goal is to detect collision events with
relatively low forces under constant presence of variable process forces. In
this context, the proposed large area touch sensor represents an input device
that outputs signals containing an implicit information about the contact
position and force. In literature, similar applications are mentioned where AI
methods are used for information extraction from sensor signals. An example
is the use of ANNs to detect touch position and force in multi-channel piezo-
based touch panels with intrinsic channel crosstalk [9]. Other works focus on
AI-based identification of more abstract features of the HMI with the goal of
implementing a running user authentication [10].

3.4.3 Problem Definition

High development and integration costs of the above mentioned sensor
systems, often coupled with inherent drawbacks such as dead zones
(laser scanning or ultrasonic systems) still prevent the widespread use
of sophisticated HMI concepts. Thus, the presented work addresses the
development of a touch sensor based on electrical time domain reflectometry
(TDR). TDR is a well-established measurement method that enables a
spatially resolved measurement of the electrical properties of a transmission
line based on propagation times and reflection characteristics of electrical
signals fed in at the beginning of the line [11]. The underlying idea for the
proposed touch sensor principle arises from the observation that physical
deformations of an elastic transmission line can cause significant local
changes of its electrical impedance that are well-measurable by means of
TDR. Such a solution promises several important advantages compared to
conventional touch sensor principles. A single, standard shielded electrical
connection is sufficient for interrogation of the sensor signal. The sensor
structure is simple and inexpensive to manufacture, and it shows high
mechanical robustness and electromagnetic compatibility, which is especially
important under harsh industrial conditions.
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The development of a functioning touch sensor according to the outlined
principle comprises two main tasks. The first task focuses on the elaboration
of an elastically compressible patch sensor with suitably designed and
distributed transmission lines. The distribution of the lines and the elastic
properties of the entire sensor structure should allow deformations related to
the touch force over the entire range of expected HMI forces. Moreover, the
deformations should be reliably detectable in the TDR signal, enabling the
identification of both touch position and touch force.

The second task concerns the reconstruction of touch positions and
forces from the TDR signals. The periodically triggered TDR measurement
provides a vector of discrete values describing the impedance profile along
the electromagnetic (EM) waveguide at each measurement. Because of the
complex path of the waveguide, even simple contacts can produce multiple
deformations. Due to the complexity of the wave phenomena and partly
unknown system parameters, the determination of an empirical or analytical
inverse model that converts the TDR vectors into contact positions and forces
would be very challenging. As a possible solution, an AI based approach is
developed, which achieves the preprocessing of TDR vectors by means of
established signal analysis methods and an identification using ANNs.

3.4.4 Concepts and Methods

Figure 3.4.1 shows a generic application scenario of the focused touch sensor,
where it represents a component of the robot’s control loop. The combination
of signal processing algorithms with an AI-based recognition of touch events
and collisions enables a flexible and application-adapted behavior of the robot
when interacting with humans.

The structure-installed touch sensor is a purely passive part of the
system containing the compressible transmission lines. Once excited by
the radio frequency (RF) generator, it responses with EM wave reflections
that are analog-digital converted by the RF digitizer and carry information
sufficient for:

• Detection of touches and collisions,
• Identification of the touch force magnitudes,
• Geometric localization of touch points on the sensor surface.

Achieving of these functionalities depends on the information content of
the output signals, which in turn results from mechanical and geometrical
properties of the sensor. The required elastic, electrical and dielectric
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Figure 3.4.1 Overview of the HMI principle: Basic components of the sensing, computing
and control of touch events.

properties of the constitutive materials as well as the layout of the
transmission lines are determined in an iterative, model-based process. The
developed multi-physical model features a time-domain simulation of TDR
signals that takes into account the characteristics of the RF electronic
modules.

The AI-based signal analysis allows the above-mentioned detection and
localization of touch events as well as determination of the touch force
magnitude. The applied ML concepts assume the supervised training of ANN
based on labelled, experimentally acquired signal sequences.

3.4.5 Proof of Concept of the Novel Sensor System

In this section, the implementation and validation of the sensor system
functions described in the chapter 4 is shown step by step.

3.4.5.1 Experimental Acquisition of Training Data

The acquisition of training data is typically an important challenge in the
implementation of AI-based applications. For this purpose, an experimental
approach has been designed to capture TDR vectors that result from artificial
touch events occurring at different locations and force levels. A gantry robot,
adapted for this purpose, automatically carries out test series in which a
custom end-effector equipped with a soft, finger-like tip touches the sensor
surface in a force-controlled manner. A specially developed software runs
defined touch sequences whilst controlling the robot itself, triggering the
TDR device, and storing the TDR data together with labels identifying the
touch coordinates and forces as ground truth for the later learning stage.
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The stored raw signal sequences are preprocessed (averaging and
filtering) in order to reduce the noise content. A further pre-processing step is
a resampling of the averaged and filtered TDR vectors in order to reduce the
data dimensionality. The processed experimental data become training data
by labeling them using the information about touch coordinates and applied
forces. In the investigations carried out so far, different labeling schemes were
applied, which enable the training of both, regressive deep neural networks
(DNN) for continuous touch positions, and classification DNNs for discrete
force levels.

The presented approach allows the acquisition of large experimental data
sets, which are needed to obtain high quality training data. It would be
impossible to get an appropriate amount of data by a manual approach. A
further advantage is the high and reproducible precision of the generated
touch events in terms of contact coordinates and forces.

3.4.5.2 Training Procedure

In the proof-of-concept phase, a TensorFlow-based training procedure is used
on a data set generated from a thin and elastic surface sensor applied to a
flat metallic component. The data set consists of 6380 TDR sequences, each
containing 1000 values known as data set features and was labelled by six
labels (0 N, 5 N, 6 N, 7 N, 8 N, 9 N) for the force identification task and two
labels (x and y coordinates values) for the position identification task.

Before model training, the data was normalized, so that a distribution
with a mean of zero and a standard deviation of one results. Then the data
set is divided into three parts with 70% training, 15% validation, and 15%
testing data, respectively. Once the data set is divided, a DNN model is
trained to identify touch force and position. For the touch force identification
task, two hidden layers are used with Relu [12] as an activation function.
Furthermore, the Softmax [13] function is used in the output layer with the
categorical-cross entropy-based loss function. The first hidden layer contains
128 neurons, and the second hidden layer contains 64 neurons. The network
weights and biases are updated using stochastic gradient descent (SGD) [14]
based backpropagation algorithm.

Position identification is a regression task due to the continuous nature of
x and y coordinate values. Here, two hidden layers were used with Relu as
an activation function. The two hidden layers contain 128 and 64 neurons,
respectively. Moreover, in the output layer linear activation was used to
predict the x and y coordinate values and the mean absolute error (MAE) [15]
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is used for loss calculation. Here, a SGD based backpropagation algorithm is
used for biases and weight optimization of the network also.

Due to intensive investigations in regard to different network architectures
using different numbers of hidden layers and various numbers of neurons, the
architectures described above have found to be appropriate to predict force as
well as the position of occurring touch events.

The presented approach involves a single training process that bases on all
available training data. Further development steps should include procedures
for a continuous retraining and validation based on consecutively acquired
user feedback, leading to the improvement of the sensor functionalities.

3.4.6 Results

Selected results of the force and position prediction models acting as a proof
of concept are shown in Figure 3.4.2. There the results for force prediction,
especially the model accuracy [16] during the training procedure is presented
(Figure 3.4.2a). The accuracy is equal to the fraction of correctly predicted
instances.

Using the mentioned approaches for force and position determination, an
overall accuracy of 99.7% for training and 83.9% for validation are obtained.
The considerable gap between training and validation accuracy indicates
slight overfitting [17], which may be critical in a real-time human-machine
collaboration application. Currently, experiments using dropout layers, batch
normalization and the use of other deep learning architectures (temporal CNN
[18], LSTM [19]) are under consideration in order to reduce the gap between
training and validation accuracy.

Figure 3.4.2 Network performance during the training: a) accuracy of the force
identification and b) loss of the position identification.
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Results for position identification are shown in (Figure 3.4.2b), where the
MAE loss is plotted as a function of the training epoch. This graph is used as
evaluation criteria rather than accuracy [16], because the discrete comparison
between actual and predicted coordinate (x, y) values are not possible. It
demonstrates that a significant decrease in both training and validation loss
is achieved between 1 and 50 epochs. At higher training epochs, there is
no significant decrease in validation loss, whereas training loss still show a
significant decrease. The final difference in loss between actual and predicted
validation cases is approximately 10.33 mm, which could be reduced by
predicting the region rather than the specific coordinate position, which is
currently under investigation.

3.4.7 Conclusions

The contribution reports on the concept, methods and early results of a large-
area touch sensor for robotic HMI applications. A robust and simple part
of the sensing hardware mounted on the robot enables in combination with
adaptive AI algorithms the implementation of an artificial sensitive skin that
mimics the human sense of touch. The results presented provide proof of
concept of the novel sensor system through a basic training and validation
of the touch position and force detection capability. This functionality can be
extended depending on the application – for example by means of incremental
learning – enabling a new quality of communication with collaborating
robots.
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Abstract

This introductory article opens the section giving an overview of the
state-of-the-art AI technologies in the food and beverage industry and
the current AI development in areas such as quality optimisation and
analytics and predictive maintenance. It also presents future potential and
opportunities for AI in the sector, covering trends of using AI and IIoT
technologies in production optimisation, safety/quality, maintenance, waste
reduction, environmental sustainability, and packaging. Finally, the article
introduces the five contributions to this section, providing highlights on
the use of AI and IIoT in various scenarios in champagne production
and soybean manufacturing processes and challenges and technological
advancements.

Keywords: artificial intelligence (AI), industrial internet of things (IIoT),
champagne production, soybean manufacturing, optimisation, predictive
maintenance.

4.0.1 Introduction and Background

The food and beverage industry is undergoing a significant transformation
to adopt new technologies, accelerate automation, increase efficiency, safety
and avoid production disruption.
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Artificial intelligence (AI) and the industrial internet of things (IIoT)
enable digitising industries. The advancement in technology brings more
intelligence at the edge that empowers IIoT devices with smarter decision-
making, high performance, low power processing, and built-in security to
create more intelligent and adaptive industrial applications.

The deployment of AI, IIoT and robotics solutions in the food and
beverage industry has supported overcome significant issues related to
production and execution by reducing the possible chance of human errors
and by increasing the automation process while moving manual labour to
specific tasks that are crucial for the quality of the final product.

AI and IIoT fuel change in food and beverage production and packaging
to reach user expectations concerning quality and associated impact on
the cost. To achieve the desired trade-off between quality and price,
manufacturing stakeholders actively leverage AI and IIoT technologies’
potential across various applications, like product design, quality control,
maintenance, and user engagement.

4.0.2 AI Developments in Food and Beverage Industry

The integration of AI technology has transformed the productivity in the
food and beverage industry, with increased efficiency, significant decreases
in downtime, repair costs, and added labour requirements and costs.

Companies in the food and beverage production and manufacturing
industry leverage AI’s benefits by using AI methods such as neural networks
(NNs), machine learning (ML) techniques, and advanced analytical tools, like
speech and text analysis linked with computer vision and voice recognition
technologies to optimise time and improve the overall user experience. The
food manufacturing facilities use AI to automatically sort, clean, and dispose
of products like fruits and vegetables. Manual labour is automated using
cameras, sensors, and actuators integrated into autonomous machines. These
improved monitoring abilities can reduce millions of tons of food waste. Food
quality and safety are monitored using IIoT devices, supported by arrays of
sensors, wireless devices, and edge technology, while AI-based food safety
solutions help identify food risks in food products.

AI technologies monitor potential problems through various supply
chain levels, supporting food manufacturing to become safer, healthier, and
more efficient. Precise inventory management is a base of the food and
beverages production and manufacturing industry, ensuring production lines
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are stocked with the equipment, ingredients, and supplies necessary to run
an effective and profitable business. AI helps remove the uncertainty from
inventory management. Strategies like intelligent forecasting can utilise sales
data, consumer behaviour, and seasonal information to predict how to keep
warehouses stocked accurately.

In most food and beverage applications, AI and IIoT interpret data from
sensors, detect patterns or anomalies and identify when action is needed.
Sensors generate the data that is aggregated, classified, and significant data
points are analysed using AI techniques. These technologies are used to
detect anomalies, such as early warning signs that an asset may fail or require
maintenance at food and beverage manufacturing facilities. AI technology is
used to distinguish patterns, expand the knowledge base, recognise cause-
and-effect relationships, use analytics insights related to likely outcomes or
the next data point in the trend’s curve.

Food and beverage manufacturing facilities are utilising capital-intensive
machinery and improving and optimising the use of these machines; their
energy consumption and efficiency are critical for staying competitive in
the industry. The industry is an integrated chain of suppliers, vendors,
utilities, labour, stakeholders, ancillaries and manufacturing, and the increase
in efficiency in each part of the supply chain improves the overall
productivity.

Predictive quality analytics and predictive maintenance are areas in the
food and beverage industry where AI and IIoT are used to detect machine
failures and anomalies, predict faults and abnormalities, redefine/define error
classes and find factors that impede productivity.

IIoT devices and their digital twins provide benefits for predictive
maintenance solutions in food and beverage processing and manufacturing
combined with AI, including deep learning (DL) and NNs. Advanced and
accurate detection of faults, predicting the remaining useful life of an
asset given an operational context, can be simulated in an environment
where accurate digital twin models of IIoT devices are used. The intelligent
IIoT digital twin represent a continuously learning system that is updated
automatically to mirror the changes and parameters of the physical IIoT
devices. The digital twins can predict asset behaviour and deliver results
within given parameters and cost constraints. The equipment is constant
functioning, and the digital twins provide information about the physical
processes to achieve the targeted outcome.
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4.0.3 Future Trends for AI Technologies and Applications
in Food and Beverage Industry

In the food and beverage market, AI has a value at USD 3.07 billion in 2020
and is foreseen to attain USD 29.94 billion by 2026 at a CAGR of over
45.77% during the period (2021 - 2026) [1][2][3]. Shifts in consumer needs
by preferring fast, affordable, and easily accessible food options have led to
a transformation in the food and beverage industry, with many companies
leveraging advanced technologies, such as AI, ML, IIoT and robotics to
scale operations and help corporations stay competitive in a dynamic market
environment. The future trends indicate several areas in food of beverage
that are impacted by AI, IIoT and automation, and provide opportunities
for expanding AI technologies’ development, increasing efficiency and
profitability. The AI and IIoT technologies are focusing on addressing process
optimisation, predictive maintenance, and production efficiency.

In the following paragraphs a short overview is provided covering the
trends of AI, IIoT technologies and applications used in areas such as food
and beverage production optimisation, safety/quality, hygiene, maintenance,
waste reduction, environmental sustainability, and packaging.

Production Optimisation - AI and IIoT technologies have the most
potential to optimise production and reveal manufacturing facilities’ best
operating points to meet and even exceed the production facility nominal
performance.

The production optimisation allows to address all the productions issues
related to the climate change introducing a more rigorous monitoring systems
and more agile production changeovers, decreasing the amount of time
needed to switch from one product to another and recognising production
bottlenecks before they grow into a problem. IIoT devices, AI algorithms and
actuators can be used together with AI trained models to calibrate production
automatically, improving output quality and speed.

Safety and Quality - AI-based systems with the support of IIoT devices
provide performant solutions for detecting safe and quality issues in
production. These technologies deliver safer, more accurate production lines
resulting in higher speed and more consistency than humans. AI-based
detection on the factory floor has the potential to keep employees and
equipment safer, identifying possible risks.
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Hygiene - AI technologies have the potential for optimising the hygiene
and cleaning tasks that are critical for food and beverage facilities by using
self-optimising cleaning systems, where AI-based multi-sensor IIoT systems
recognise food residue and microbial debris on equipment to determine the
optimal length of cleaning time.

Maintenance - Food and beverage processing covers the whole value chain
from planting and growing, harvesting, receiving materials to production,
quality assurance and inspection, and the packing and dispatching of final
products. In each step of the value chain, the processes happen in a
particular environment (hot, cold, harsh, humid, etc.) that requires constant
maintenance of equipment, storage, and workspaces. IIoT and AI, DL are
applied to understand data, make predictions, and suggest recommended
actions without explicit human guidance. Predictive maintenance brings
benefits, including shortened maintenance time, streamlined equipment
reconfiguration, avoid downtime, reduced failures, including maintenance
costs. The AI-based maintenance in food and beverage includes production
line sensors, equipment, motors, manufacturing assets and quality inspection
controls to smart connections with electronic records and manufacturing
execution systems (MES).

Waste Reduction - AI and IIoT are effectively used in optimisation and
provide novel approaches to measuring and monitoring production input and
output materials and significantly impacting waste reduction. AI analytics
use IIoT real-time monitoring to identify anomalies in production outputs as
soon as they occur concerning each batch or cycle and check the production
quality.

Environmental Sustainability - The food and beverage process optimisation
using AI and IIoT provides an indirect way of optimising energy and
water consumption, creating immediate advantages for operating costs and
margins while positively impacting the environment. The raw materials
utilised as input to the production (e.g., fruit, grapes, vegetables, beans) differ
significantly in size, shape, colour, moisture, and texture, adding a layer of
complexity to the production line. Implementing AI-based computer vision
and pattern recognition techniques combined with parameter measurements
using sensors can easily recognise variances, removing contaminants without
wasting whole batches and continually adjusting water and energy usage
according to process requirements. The entire process operating 24-7,
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including robotics and IIoT devices, can be fully automated using AI-based
solutions across the production line.

Environment sustainability is achieved by reducing waste, pollution,
carbon footprint and cutting electricity consumption using AI-based
forecasting, alerts, and energy management tools using predictive ML
algorithms to help facility managers to identify issues before they become
problems, reducing costly downtime.

Packaging - Automation using AI-driven robotics, 3D cameras, IIoT devices
is an area that is evolving fast for applications such as packing and picking
demands for fast and efficient delivery. The food and beverage industry
processes offer unique potential for intelligent automation by reducing
complexity and automating the labour-intensive process, reducing cost,
increasing efficiency, accuracy, and work at scale. AI is used in supply chain
management through logistics, predictive analytics, and transparency. AI is
used to analyse the supply chain data and better understand variables in the
supply chain by anticipating future scenarios by reducing the time to market
and establishing an agile supply chain capable of foreseeing and dealing with
uncertainties.

The high cost of large-scale deployment of AI-based solutions in the food
and beverage sector restricts the market growth, and the trend is to develop
AI, IIoT technologies that are cost-effective, scalable, and energy-efficient
and applied to several layers in the food and beverage supply chains.

Feedstock in the food processing industry can be increasingly made
uniform, considering that the food storage is done with the help of AI-based
automated solutions used in sorting, which can decrease the labour cost,
increase speed, and improve yields.

4.0.4 AI-Based Applications

AI4DI partners are developing AI and IIoT technologies with applications
in different areas of the food and beverage sector. The articles included in
this section cover five demonstrators and actionable insights into how AI and
IIoT are used in food and beverage applications, presenting challenges and
technological advancements to accelerate the digitisation process across the
industry.

The article “Innovative Vineyards Environmental Monitoring System
Using Deep Edge AI” presents a novel environmental monitoring system,
demonstrating how to connect science (AI) engineering (IIoT) and design
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to improve the quality of products and increase the efficiency of their
industrial processes by better tracking the production flow. IoT nodes provide
real-time data related to weather, soil, crop water status and soil salinity.
Connecting many sensors with different sensing technologies to each IIoT
node allows for the generation of many and best-fit use cases in champagne
production. Sensor data is accessed rapidly and at a relatively low cost
by using LoRaWAN wireless technology. In the study, ML is deployed on
IIoT nodes, and two architectural pattern solutions were investigated: one,
where deep neural networks (DNNs) are executed on the end device with
no AI on the cloud, and the other, where DNNs are implemented on both
edge and cloud in a complementary manner. The results show that with
proper hardware and automatic conversion of pre-trained NNs to fit within
the limited resources, moving computation to the edge solves the business
and power consumption constraints and addresses the privacy and security
requirements.

The article “AI-Driven Yield Estimation Using an Autonomous Robot
for Data Acquisition” explores automated and non-destructive methods for
detection and counting grapes to overcome the drawbacks of the traditional
techniques based on automated data acquisition and AI. The conventional
techniques are both manual and destructive and have often been uncertain
regarding the results’ precision and repeatability /reproducibility. Most
automated processes based mainly on the analysis of 2D images have
drawbacks linked to detecting hidden grapes and estimating the number
of berries. LiDAR combined with non-linear modelling can achieve better
performances. The extra modelling step can determine hidden parts on the
2D images, such as grapes hidden by leaves. The LiDAR sensor installed on
a vineyard robot and the image acquisition cameras used for grape detection
transform the robot into a fully automated tool for yield forecasting.

The article “AI-based Quality Control System at the Pressing Stages of
the Champagne Production” discusses computer vision algorithms/models
to automatically classify grapes containers in terms of the average quality of
contained grapes. The system detects grapes and unwanted elements (green or
ripen grapes, leaves, stones, tools) for quality estimation before the delivery
of the grapes to the press, as well as the challenges of deploying the trained
models into the field, namely, on small edge devices with limited capabilities.
The paper proposes using converters rather than rewriting the models in
low-level languages to reduce the size and resources. Thus, trained models
developed with high-end API (such as TensorFlow) can be deployed on
various boards, allowing for exploring trade-offs between performances and
inference time. A deep neural network with an encoder-decoder architecture
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has been developed for this purpose. The architecture’s performance is
evaluated based on three parameters (inference time, the model’s overall size,
and the intersection over union score) and in three board configurations:
without quantised, quantised without an accelerator, and quantised with an
accelerator. The results obtained are promising, showing that it is possible
to deploy the converted model in a real-time context while limiting the
performance losses due to its conversion.

The article “Optimisation of Soybean Manufacturing Process Using
Real-time Artificial Intelligence of Things Technology” presents a soybean
process optimisation solution using real-time artificial intelligence of things
(RT-AIoT) technology based on data collected from - and transmitted to
different types of industrial IoT sensors, cameras, and actuators, using several
wired and wireless protocols. Implementing intelligent vision locally on IIoT
edge devices solves several issues faced by deploying it to the cloud and
brings further challenges posed by deep learning on resource-constrained
edge devices. Data is analysed using AI-based algorithms to improve the
utilisation of the raw material, increase the yields and end-product quality,
and optimise energy consumption reduction by supporting and/or replacing
manual work and existing systems. The overall target is an analysis system
that monitors the production line and offers information and analytics on
production adjustments to preserve or increase the quality and utilisation.
With multi-image sensors, IIoT devices under evaluation, the proposed
production optimisation system is interfaced with the existing industrial
SCADA system, processes and analyses the IIoT sensor data at different edge
computing granularity levels. By applying analytics and AI-based approaches
based on data, it is possible to obtain interpretive results for strategic decision
making for process optimisation, cost reduction and energy-efficient process
tuning.

The article “AI and IIoT-based Predictive Maintenance System for
Soybean Processing” presents a creative and innovative approach to bringing
artificial intelligence to edge devices with various levels of resources,
demonstrated for an industrial soybean processing AI and IIoT-based
predictive maintenance system. The system implements an architecture
integrated at micro, deep and meta edge levels, based on a heterogeneous
wireless sensor network that consists of sensor nodes and IIoT devices with
different communication interfaces (BLE, LoRaWAN, Wi-Fi). This allows
for exploring various combinations of computing power, sensing range, and
AI-based processing capabilities to identify the parameter changes that occur
before a failure and predict a future period in which these parameter changes
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appear and thus identify when a failure might occur. The experimental results
are promising, showing that it is possible to plan maintenance actions to
reduce the number of production stops for single maintenance actions and
thus minimise the downtime of the soybean production line.
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Abstract

With a turnover of more than 4.2 billion euros in 2020 and a 20% share
in the value of the French wine industry’s exports, the champagne industry
represents a considerable weight in the French economy. In this context
of significant economic development, the issue of climate change has been
added, calling into question the practices and means of production of the
sector. The challenges related to global warming and an ever-increasing
demand for yield can be addressed using the Internet of Things (IoT) and
Artificial Intelligence (AI) technologies to benefit champagne production and
answer these challenges.

This article presents a solution to optimise Vranken Pommery products’
quality and make environmentally friendly decisions by using intelligent
sensors distributed as close as possible to the production and storage facilities
to collect data. These sensors use LoRaWAN technology and protocol to
communicate. The system integrates components capable of hosting artificial
intelligence algorithms and using advanced microcontrollers that allow for
intelligent communication network implementation while reducing power
consumption and deployment costs.
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4.1.1 Introduction

The 21st century has brought a digital transformation in the industrial
sector in which the boundaries between the physical and digital worlds are
blurring to create what we called Industry 4.0. Industry 4.0 will be the place
where employees, machines and products interact, bringing a new set of
technologies to enable the Internet of Things (IoT) and, more specifically,
the Industrial Internet of Things (IIoT).

Industry 4.0 began in manufacturing but has become essential for
all industrial markets such as the food and beverage markets. Like any
business, those within food and beverage manufacturing, such as Champagne
manufacturers, must respond quickly and effectively to change to keep up
with competitors. Industry 4.0 applied to Champagne is a challenge since
today the work in vineyards in Champagne still involves many manual tasks
such as counting grape berries for yield forecasting or visual inspection of
vines for disease detection. These tasks are essential because the quality of
Champagne naturally depends on the quality of the raw material, i.e., grapes.
In addition to the agricultural imperatives, the Champagne is the result of a
long and rigorous industrial manufacturing process, as shown in Figure 4.1.1.
This process starts with the pressing and the first fermentation, continues with
the assembly and the second fermentation, the ageing in the cellar, and ends
with bottling and sending to the end customer.

Figure 4.1.1 Value chain for champagne production.
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Smart manufacturing leveraging on IoT and Cyber-Physical Systems
(CPS) enables different physical sensors, actuators, and controllers to be
locally interconnected and globally connected to cloud computing servers,
forming complex online systems.

The use of IIoT can have an impact all along the manufacturing
process of champagne (and more generally of wine). Indeed, thanks to
sensors distributed in vineyards, it is possible to collect numerous data
such as humidity, temperature or soil parameters: moisture, temperature, and
electrical conductivity. The analysis of these data helps winemakers better
managing and controlling the growth of their cultures. Besides, with the
help of AI, specialised analytics allow growers to continually monitor soil,
plant, and atmosphere to adjust irrigation and fertilisation in response to the
environment. For example, by comparing current data with historical ones,
the creation of predictive models on the best harvest period is now a reality.
Furthermore, beyond the vineyard itself, IIoT can be used in wine cellars
to monitor the ageing and the conservation of the champagne. Temperature
is particularly important as even slight fluctuations impact the oxidation of
the wine, which strongly affects the quality. Thanks to the IIoT, vintners are
able to understand when tiny fluctuations occur and correct them before any
damage is done. Thus, IIoT can help winemakers to achieve more successful
harvests, better control production, and ensure ideal quality during transit and
storage.

With these ideas in mind, this article presents a new environmental
monitoring system enhanced by AI for yield forecasting, disease detection,
fertiliser/pesticide optimisation, quality estimation, etc. This document aims
to explain how the solution works, from the communication part to the
intelligence part, and give insights on how this solution will help champagne
manufacturers.

The article is structured as follows. Section 4.1.2 describes the current
state of the art. Section 4.1.3 introduces the edge intelligence concept.
Section 4.1.4 describes the LoRaWAN system architecture. Section 4.1.5
presents the monitoring system along with the architecture of the end nodes
enhanced by AI. Section 4.1.6 concludes the work.

4.1.2 Related Work

Agriculture is seeing fundamental changes due to IoT and AI. In today’s
global warming environment and growing demographics, connected objects
and artificial intelligence are an advantage. Their use allows farmers to
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manage their farms better. Collecting data on the state of crops, weather
forecasts, or even parameters such as temperature or humidity is at the heart
of the intelligent farming concept.

The main contribution of AI and IIoT in agriculture is helping the
industry players make decisions, allowing them to optimise their production
and, therefore, their yield. For example, Farmwave [1] will enable farmers
in the decision-making process concerning their farms. Using vision-based
algorithms and edge AI, this solution can identify pest damage and disease
through photos. Plantix [2] is also a solution to help farmers and agricultural
workers increase their productivity. Thanks to a mobile application,
farmers can take pictures of their crops and get information about them.
Plantix can diagnose infected crops and diseases and propose appropriate
treatments.

Unlike solutions such as Farmwave or Plantix, which rely on images,
some use data collection and AI to provide models and predictions to help
farmers know how to optimise the productivity of their crops. This is the case
of Cropx [3], a solution that measures moisture, temperature, and electrical
conductivity in the soil. Cropx helps farmers monitor their crops and ensure
increased productivity by providing crop-specific recommendations. Thanks
to AI, Cropx uses crop models to learn and understand the behaviour of its
supported crops, depending on the region. Cropx also provides aerial imagery,
topography maps, and soil mapping to help the farmer in the decision-making
process.

Another example could be Microstrain [8] which is a wireless
environmental detection system that monitors vineyards’ key growth
episodes. Information such as soil and leaf moisture, solar radiation and
temperature are collected and merged to monitor vineyards remotely and alert
growers to critical situations.

In addition to providing an answer to purely economical questions, AI and
IoT are being used to provide solutions to more complex problems. Adapting
production methods to climate change is, for instance, one of the challenges
of smart agriculture. The solution aWhere [7] uses AI to give insights about
the weather to help farmers, companies, governments, or agencies adapting to
climate change. More than 1.9 million virtual weather stations are deployed
to turn climate insights into action (as pest and disease modelling, fertiliser
timing recommendations, optimal planting dates, etc.) and create powerful
maps to monitor the weather in a specific area (global to local scale).

The issues raised by the concept of sustainable development also
integrates a social dimension, and some solutions try to respond to this
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problem. For example, PlantVillage Nuru [4] helps farmers from developing
countries diagnose crop diseases, even without an internet connection.
Developed with the UN FAO (Food and Agriculture Organization of the
United Nations) and the CGIAR (Consultative Group on International
Agricultural Research), Nuru is an AI assistant that can diagnose multiple
diseases in Cassava, fall armyworm infections in African Maize, potato
disease and wheat disease. An essential part of the PlantVillage Nuru solution
is also the share of knowledge between smallholder farmers.

Many projects belonging to smart farming concept are based on
servomechanism systems such as robots, drones, or satellites rather than
scattered sensors. For example, Precisionhawk [5] is a solution based on
drones, sensors, and AI. Drones collect high-quality data through sensors to
survey, map, and image farmland. The results are then provided to a web
application.

The Blue River Technology project [6] has developed robots that can
accurately distinguish between “weeds” and cultivated plants using AI. Based
on image processing algorithms, this solution allows farmers to limit spraying
to weeds only, thereby reducing pesticide use.

Finally, Taranis [9] helps farmers monitor their fields. Using satellites,
planes, and drones with vision-based AI, this solution allows workers to
detect and prevent crop loss due to insects, crop disease and weeds. Data are
assembled in reports, graphs, maps, or insights to make the decision-making
process easier for the worker.

4.1.3 Edge Intelligence

AI has started to widen the application potentiality of IoT and CPS,
enriching them with intelligent services used by many users. Deployment
of standalone localised CPS such as the one offered by the ISA-95 model
based on supervisory control and data acquisition (SCADA) system offers
an inefficient solution due to resource wastage, prohibitive costs with the
significant disadvantage of the distributed system nature of data itself.
Thus, centralised approaches based on the cloud have tried to address
these problems by combining data distribution and robust central services.
A significant number of sensor data can be analysed and consolidated in
synthetic format by modern dashboards In these approaches dashboards are
updated in real-time or near real-time to understand the adequate status of
manufacturing processes better.
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Compared to the previous approaches, cloud-based solutions enable
to monitor the actual working conditions of machines and analyse data
to understand what is happening. When deviations occur, using this
approach, it is possible to identify the reasons for variation compared to a
standard procedure. This transparency implies the possibility of subsequent
forecasting events and thus anticipating possible dangerous situations for the
efficiency of the manufacturing production lines. To implement an efficient
correct forecast, it is important to analyse a considerable amount of data
collected during a long period. Then, applying AI with the most appropriate
ML algorithms that model the behaviour of machines, it is possible to
anticipate the future event of the machines and decide the most appropriate
actions. For instance, depending on these events, it is possible to predict
the time of preventive maintenance. Another advantage of these cloud-based
approaches is implementing the digital twin of one machine or an entire
manufacturing line, enabling without human controls to activate the most
appropriate corrective actions within the manufacturing process. Cloud-based
monitoring solutions allow for the improvement of the operative efficiency
of a manufacturing line by decreasing machine downtime and reducing
maintenance periods. The core of the cloud-based monitoring system is to
have an efficient communication infrastructure for each machine and the
overall manufacturing line. Such communication infrastructure must send
efficiently data coming from the sensors towards the cloud. Cloud-based
monitoring systems require smart sensors that include functionalities of
communication and data signal processing.

Data signal processing is required to transform the physical monitored
variable into something meaningful that can be transmitted to the cloud. For
such reasons nowadays, such sensors include Micro Controller Unit (MCU),
analogue and digital interfaces, memories, and communication hardware. The
degree of smartness is related to its decentralised computation capabilities to
perform operations that may include data from many probes connected to the
same smart sensors. Considering the Moore law, it is possible to implement
smart sensors with smaller and more powerful MCUs such as the STM32.

These MCUs can process data from several probes and apply algorithms
more and more complex, including AI. A direct implication of this trend is
that smart sensors are becoming the hub of many probes, thus reducing the
costs associated with communication, processing, latency, and energy.

Communication costs can be reduced since data can be combined, so
less data will be transmitted. Reducing data communication also implies a
reduction of energy since most of the energy of the end node is consumed
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during the data transmission. Time-critical applications imply real-time/near-
real-time computation. These requirements cannot be met using the standard
cloud approach due to the broad latency introduced by the network. With the
increase of computation, it is now possible to move part of the computation
from the cloud to the smart sensors: aka the edge nodes.

Moving computation to the edge, we also address privacy and security.
Data privacy is guaranteed since the MCU can now decide the form of
data to be transmitted to the cloud. Instead, the security will be reinforced
leveraging the hardware security mechanisms provided by modern MCU.
Several research papers focused on the possibility of bringing artificial
intelligence to devices with limited resources [13][14][15][16]. To bring an
AI model to MCU, ML developers should deal with the proper hardware, ML
accelerator and memory set up to fit with the limited resources.

Therefore, to implement ML, two solutions may be used. The first one
is called on-device computation, where Deep Neural Networks (DNNs) are
executed on the end device with no AI on the cloud. The second is referred
to as hierarchical computation, where DNNs are executed on the device and
then on the cloud. In the second solution, the DDNs executed on the device
and the cloud are complementary. Implementing an AI algorithm on MCU is
challenging. And it is still a young technology.

As a result, engineers often must rely on a lot of different tools and
complex workflows. For such reason, tools are essential. An example of
a good tool that enables simple implementation of a DNN on a MCU is
the X-CUBE-AI [17], suitable only for STMicroelectronics MCUs. It is
an expansion of the STM32CubeMX environment that extends the tool’s
potential, allowing an automatic conversion of pre-trained NNs to low
resource hardware. X-CUBE-AI also optimises libraries by modifying layers
and reducing the number of weights to make the network more memory
friendly.

4.1.4 Communication Technology – LoRaWAN

The numerous IoT applications impose constraints on the choice of the
network architecture to be implemented. Depending on the use of a connected
object, the organisation of the communication network will be different. To
meet the required specifications and use cases, a network using IoT must find
a compromise between the following four constraints:

• Range
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• Data transmission rate
• Power consumption
• Cost of deployment

There are many different technologies available for this purpose.If the
communication must be done over short distances (a few metres to a hundred
metres), it is possible to use Wi-Fi, Bluetooth, RFID or Zigbee connectivity.
These technologies allow sending data at a fast rate with reasonable
energy consumption, but the communication can only be done at short
range [10].

If the use case requires sending data over a hundred metres, then cellular
connectivity technologies (2G, 3G, 4G or 5G) seem more appropriate.
Cellular technologies allow for the transmission of large amounts of data over
vast distances, which can be advantageous in the industrial sector.

However, there are IoT use cases where these technologies are not
adapted. Indeed, these technologies are energy-intensive and have a high
deployment cost. In some applications, such as in the field of connected
agriculture or smart cities, the connected devices used need to transmit little
data over large distances but are powered by simple batteries that do not
provide much energy [10].

LPWAN (Low Power Wide Area Network) technologies are designed to
transmit over large distances and maintain sound signal propagation even
in more challenging environments. In an open environment, communication
can be established over several tens of kilometres. In a more constrained
environment (e.g., in urban areas), the range of LPWAN technologies is
a few kilometres. LPWANs consume very little energy and allow devices
to reach a lifetime of 10 years or more depending on the battery used. In
addition, LPWANs allow covering a large area with few communicating
devices. Indeed, the long range of LPWAN technologies and the network
structure itself allows deploying fewer devices than cellular technologies
while maintaining optimal efficiency.

Finally, since LPWANs do not have to handle complex waveforms (such
as a voice call, for example), the transmit/receive module does not have to be
very elaborate, which saves on hardware and production techniques.

Thus, the exponential growth of the IoT and the possibilities offered by
LPWAN technologies are very interesting for enterprises.

The number of deployed connected objects (excluding phones, tablets,
and computers) was indeed 7 billion in 2018 and is expected to reach
21.5 billion in 2025. Of all these devices, 25% belonged to LPWAN
deployments [10].
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Therefore, some companies have invested in establishing LPWAN
networks and offer their own technology solution.

The Figure 4.1.2 summarises the characteristics of different communi-
cation technologies [11][12].

The LoRaWAN protocol was born under the impetus of the LoRa
Alliance, which brings together various players in the IoT. It allows realising
an LPWAN network that benefits from the advantages of LoRa technology
while providing a solution to some IoT requirements, such as mobility and a
large capacity of module connections.

The LoRaWAN uses a star-of-stars topology in which gateways relay
messages between LoRa modules and a LoRa server. Figure 4.1.3 shows the
overall architecture of a LoRaWAN network, which can be broken down into
four parts.

The End Nodes part groups all the LoRa modules that communicate
with the gateways. These are the ones that contain all the sensors necessary
for data acquisition. They have a LoRa radio that allows them to send the
collected data to all the gateways within the communication range. The data
transmission is done using LoRa technology.

The Concentrator/Gateway part gathers all the gateways that have been
deployed. They ensure the link between the connected devices and the LoRa
server. They listen to all the communication channels. They convert LoRa
frames into messages understandable by the server and vice versa. They
can handle many LoRa modules, giving the LoRaWAN network a high load
capacity.

The Network Server receives, via TCP/IP communication, the messages
transmitted by the LoRa gateways. It also manages incoming and outgoing

Figure 4.1.2 Comparative range, data rate, energy efficiency characteristics of
communications technologies [11][12].
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Figure 4.1.3 LoRaWAN architecture [19].

communications between the application part of the network and the
gateways. For example, it will delete messages received in duplicate (several
gateways can send the same data if they are in the range of the same LoRa
node) and will take care of the authentication of data sent and received by
LoRa nodes.

The Application Server takes care of the encryption and decryption of
messages passing through the network. In most cases, the Application Server
is followed by a Web Application part, grouping the web applications that
will use the data collected by the LoRa modules. This part does not belong to
the LoRaWAN protocol and is implemented by the user, but one of the roles
of the Application Server is to dissociate the different web applications that
want to connect to the network and transmit the instructions coming from
them to the LoRa terminals.

Communication within a LoRaWAN network is bidirectional. It can be
uplink (from the terminals to the server) or downlink (from the server to
the endpoints). Most transmissions in a LoRaWAN network are uplink. It
is also possible to realise a LoRaWAN network implementing only uplink
connections to reduce the complexity of the network if the use case allows it.

In addition to the energy benefits of LoRa technology, the LoRaWAN
protocol has implemented a class system to reduce network consumption.
Thus, a LoRa module can be class A, B or C depending on its ability to
communicate in the downlink as presented in Figure 4.1.4.

All LoRa devices must be able to implement class A. This mode is the
least power consuming. At each transmission of the terminal, two reception
windows are opened to receive downlink communications.
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Figure 4.1.4 Operation of the different classes of a LoRaWAN [18].

These reception windows depend on a fixed duration, frequency, and data
rate. If the device receives communication in the RX1 window, then the
second window is not opened, and the device goes back to standby.

A downlink communication can only be done after an uplink transmission
has been done. This mode consumes very little energy, as the device is mainly
on standby but imposes a significant gateway/module communication latency.

Class B is a mode that seeks a compromise between energy consumption
and downlink communication latency. It has the same operation as class
A (2 reception windows after each transmission) and implements reception
windows that open periodically. To allow synchronising the reception
windows between the LoRa module and the concentrator, the concentrator
must send a beacon and a ping. The LoRa device can therefore receive
instructions without having first sent a message. This mode reduces the
latency of downlink communications but increases the terminal’s power
consumption.

Class C is a mode adapted to specific LoRa modules. Indeed, in this mode,
the terminal continuously listens to downlink communications, except when
it transmits. Class C eliminates any latency in the transmission but is not
energetically viable for a battery-powered device. It is, therefore, suitable for
modules connected to the mains.

One of the major drawbacks of LoRa technology is the lack of means
to secure communication. The LoRaWAN protocol offers a solution to
overcome this problem. Any communicating object wanting to join a network
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must be identified. To achieve this identification, it is necessary that the device
is activated.

The security within a LoRaWAN network is ensured using three essential
elements:

• Device Address (DevAddr): address of the device on the network, acts
as an IP address

• Network Session Key (NwkSKey): AES128 key shared between the
terminal and the Network Server, used for authentication

• Application Session Key (AppSKey): AES128 key shared between the
terminal and the Application Server, used for data encryption

• Each module knows three elements necessary for its identification by
the LoRa server:

• Device EUI (DevEUI): defines the device ID
• Application EUI (AppEUI): defines the ID of the application to which

the device is attached
• Application Key (AppKey): a key that allows deriving the security

keys

The transmission data rate depends on two parameters: the Spreading
Factor (SF) and the Bandwidth (BW). The LoRaWAN protocol normalises
the associations of these two parameters and names Data Rate (DR) an
SF/BW pair. LoRaWAN lists seven DRs (from DR0 to DR6) for a LoRa
modulation.

As the LoRaWAN protocol is based on LoRa technology, communication
is carried out in the same frequency bands (from 863 MHz to 870 MHz in
Europe). The LoRaWAN server defines several channels that can be used
for uplink and downlink communications within this band. The LoRaWAN
protocol requires the LoRa device to know the channels 868.1 MHz,
868.3 MHz, and 868.5 MHz from DR0 to DR5. LoRaWAN protocol also
implements an algorithm named Adaptative Data Rate (ADR) that allows the
Network Server to automatically calibrate the optimal DR for communication
with the device, using Signal to Noise Ratio (SNR) and Received Signal
Strength Indication (RSSI) [20].

Thus, LoRaWAN provides a suitable answer to most of the issues
raised by the IoT. Its range of several kilometres, its energy efficiency and
the robustness of its communications make LoRaWAN one of the most
used solutions in the LPWAN market. The Table 4.1.1 summarises the
characteristics of different LPWAN technologies.
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Table 4.1.1 LPWAN technologies comparison.
Sigfox LoRaWAN NB-IOT LTE-M

Modulation UNB, GFSK CSS QPSK 16QAM
Flow 100 bps uplink

600 bps
downlink

0,25 to 50
kbps

100 kbps 1 Mbps

Range (open
environment)

To 50 km To 20 km To 10 km To 5 km

Cost =C =C=C =C=C=C =C=C=C
Lifetime More than 10

years
More than 10

years
To 10 years Less than 10

years
Payload (Bytes) 12 uplink

8downlink
Up to 250 1600 More than

1000
Security None AES128 LTE LTE

Quality of
Service

None Definable but
complicated

Definable Definable

Latency Downlink
communication

limited

Depends on
the class used

1 second 10
milliseconds

Mobility and
localization

No Yes Limited
mobility, no
localization

Mobility, no
localization

Deployment Sigfox operator Private
operators and

networks

Operators Operators

4.1.5 Environmental Monitoring System

It is widely recognised that the digitalisation of French wine and champagne
grape production can bring significant economic, environmental, and social
benefits. The future of the Champagne and Wine sector implies an
exponential increase to observe and monitor key aspects of production cost
effectively. For a company like Vranken Pommery, the production starts at
the vineyards and ends at the bottling. At each step, the data sources are
diverse, spanning from simple environmental data to complex images. The
environmental monitoring system manage the production operations and to
reduce the waste by improving Vranken-Pommery operational efficiency.

Fungi cause the most common vine diseases. Different species can infect
grapevines. Black rot (Guignardia bidwellii), Powdery mildew (Uncinula
necator), and Grey mold (Botrytis cinerea) are examples of diseases that
can affect grape quality. Each fungus develops under certain environmental
conditions.
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The environmental monitoring system is based on data collected
by different industrial sensors (e.g., TEROS, STMicroelectronics, etc.)
connected to STM32WL enhanced by a machine learning core enabling
continuous monitoring of the environment, the soil, meteorological
conditions, and/or plant performances. The STM32WL System-On-Chip
integrates both a general purpose microcontroller and a sub-GHz radio
on the same chip. Built on Arm® Cortex®-M4 and Cortex®-M0+ cores
(single- and dual-core architectures available), STM32WL microcontrollers
support multiple modulations- LoRa®, (G)FSK, (G)MSK, BPSK - to ensure
flexibility in wireless applications with LoRaWAN®, Sigfox, W-MBUS,
mioty® or any other suitable protocol in a fully open way. Sensors will
be able to acquire and merge underground and climate data. Many sensors
are today available on the market but in order to accurately understanding
the percentage of water in a soil has been a complex, costly, and laborious
process. Soil moisture is highly variable over short distances, at different
depths in the soil profile, and in different soil types and densities. Today
only few of sensors provide the right degree of precision and low percentage
of sensor-to-sensor variability in their measurements. In the environmental
monitoring system in order to meet the functional and not functional
requirements provided by Vranken-Pommery for the soil moisture sensors,
the TEROS12 sensor from METER Group has been selected since it provides
sensor-to-sensor variability (less than 1%), at a reasonable cost. Thus, the
TEROS12 sensors along with other types of sensors are used to make
precise, informed decisions and better manage Vranken-Pommery, labour,
equipment, and chemical usage. Technological advancements introduced by
the STM32WL enables ML and efficient communication directly at the edge.
To improve the power efficiency an innovative approach has been chosen:
to enrich with a machine learning core to the STM32WL. The adopted
solution give the possibility to implement ML directly to the STM32WL
and/or to the machine learning core. The Machine Learning Core provided
by the LSM6DSOX comprises a set of configurable parameters and decision
trees able to implement AI algorithms in the sensor itself. The kinds of
algorithms suitable for the Machine Learning Core can be implemented by
following an inductive approach, which involves searching patterns from
observations.

The idea behind the Machine Learning Core is to use the accelerometer,
gyroscope, and external sensor data (readable through the I2C master
interface) to compute a set of statistical parameters selectable by the user
(such as mean, variance, energy, peak, zero crossings, etc.) in a defined time
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window. In addition to the sensor input data, some new inputs can be defined
by applying some configurable filters available in the device.

The Machine Learning Core parameters are called “Features” and can be
used as input for a configurable decision tree that can be stored in the device.
The decision tree, which can be stored in the LSM6DSOX, is a binary tree
composed of a series of nodes. A statistical parameter (feature) is evaluated
against a threshold to establish the evolution in the next node and this in
each node. When a leaf (one of the last nodes of the tree) is reached, the
decision tree generates a readable result through a dedicated device register.
Using this innovative architecture, we can target from 10 to 1000 times energy
saving.

The environmental monitoring system exploits the range of State-of-the-
art IoT sensor nodes and communication protocols to deliver data to Vranken
Pommery to aid the decision-making process. As described above, the IoT
sensor node provided includes different sensing technologies to provide real-
time data related to weather, soil, crop water status, soil salinity. With the
latest development of wireless communication technologies, sensor data can
be accessed rapidly and at a relatively low cost, saving Pommery potentially
significant amounts of time and money.

Since IoT sensor nodes are battery-powered, the right combination
of low-power sensors and communication networks is imperative for the
environmental monitoring system. In addition, the sensors used in this demo
require low bandwidth due to the small size of the transmitted data packets.
Thus, LPWANs are the best suited wireless communication protocols for this
demo due to their low power consumption and long communication distance.
LoRaWAN is one well-established protocol in the LPWAN family, it uses
Long-Range (LoRa) modulation in its physical layer, and it is characterised
by extended and significant coverage and low data rate with low complexity
assuring optimal power consumption. Using LoRaWAN, a large volume of
data from multiple sensor types installed in multiple vineyards of Vranken-
Pommery are generated. Therefore a data management system composed of
a distributed data system formed by the IIoT nodes previously described and
a centralised data system collecting sensor data from the distributed data
system and providing access to data via ad-hoc methods is required. This
system aims to enable time-series data collection, processing, and storage. In
order to have a user-friendly approach to managing the acquired data, it is also
crucial to present and visualise data via a complete end-to-end infrastructure
based on Grafana. Using Grafana, we can pull data from the database,
allowing us to create customised and attractive charts and graphs. Dashboards
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provide the real value of the monitoring parameters and use computational
models and algorithms to translate data to useful information to Vranken-
Pommery to make actionable decisions. The introduction of an efficient and
scalable data management system allows managing larger datasets that may
cover multiple Vranken-Pommery vineyards. Managing the collected datasets
effectively makes it possible to exploit further prediction (AI) opportunities
in the Cloud that are infeasible with smaller siloed datasets.

4.1.6 Conclusion

This article presents a monitoring system demonstrating how an AI-based
energy-efficient IIoT solution using LoRaWAN connectivity can be used in
Champagne production. The trends in moving computation from the cloud to
the edge are summarised, and the implication of IIoT end nodes design and
architecture is discussed. It is crucial to connect many sensors to each IIoT
end node to give the flexibility to address several use cases in champagne
production. We have also proposed to deploy machine learning on IIoT end
nodes. The article described the way to enable the execution of machine
learning models on hardware with low performances based on STM32
MCU to reduce the network data transmission by allowing computations
to be performed close to the sensor data sources, preserving privacy in
uploading data, and reducing power consumption for continuous wireless
communication to cloud servers. Finally, the article describes the deployment
of a system monitoring infrastructure based on LoRaWAN for the monitoring
of environmental conditions within the vineyards of Vranken Pommery.
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Abstract

The quality of the harvest depends significantly on the quality of the grapes.
Therefore, winemakers need to make the right decisions to obtain high-
quality grapes. One of the first problems is estimating the yield of the crops.
It allows winemakers to respect the specific norms of their appellation (yield
quota, alcohol levels, etc.). It is also necessary to organise the logistics of the
harvest (start date, human resources required, transportations, etc.).

Traditionally, the yield estimation is performed by collecting grapes and
berries over small, randomised samples, a destructive and laborious task.
This work explores how automatic data acquisition combined with artificial
intelligence can drive an automated and non-destructive yield estimation,
adapted to the characteristics of each vine parcel.

Keywords: yield estimation, precision viticulture, image segmentation, fruit
counting, deep learning, LiDAR sensor, vine balance.
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4.2.1 Introduction

Winemakers use yield estimation to get decisive information for the
organisation of the harvest and the business’s economy. Therefore, it is
necessary to estimate the yield for the organisation of the harvest, whether
in the field or at the wine press.

Today, most winemakers estimate their yield using Equation (4.2.1) on
a given land parcel. Traditionally, the counting is visually performed by
an operator, leading to uncertainties on the precision and repeatability; in
addition, the weight of the grapes requires them to be harvested. Estimations
using historical data are also used; however, important variations can skew the
predictions. The number of grapes and their weight varies from year to year.
Despite the method, a variation of 30% can be found between the estimations
and the reality [2].

Yield (in kg per hectare)

=
nb of vine plants× nb of grapes× average grape weight

parcel’s area
(4.2.1)

Artificial Intelligence (AI) allows a clear improvement of work conducted in
businesses using decision aids. AI can be better than humans in repetitive,
time consuming, and tedious tasks. For example, automating the counting
of grapes and fruits, in general, is one of the central problems in precision
agriculture.

Many methods have been proposed these past years. Some methods are
based on a classic image analysis approach, which consists of developing
algorithms for segmentation, shape recognition, and problem-specific feature
extraction. This method has been applied for the detection of oranges [8] and
peppers [12]. Another approach is based on deep learning and convolutional
neural networks. This type of neural network can solve multiple tasks like
classification, segmentation, or object detection by automatically learning
the correct representations needed for the job. This approach requires a
large quantity of raw data rather than subjective criteria and specialised
algorithms developed by humans. Deep learning has been used a lot since
2012 [6] and is now state of the art for classifying and detecting objects and
fruits [7].

This paper aims to summarise the different methods of fruit detection and
counting applied to viticulture for yield estimation.
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4.2.2 Artificial Intelligence for Grape Detection

Grape counting is one of the yield estimation methods used by winemakers
today. Grapes are harvested among a random sample allowing an estimation
of the number of grapes by vine, the number of berries per grape, and the
weight of the berries. These three components make up for 60%, 30%, and
10% of the variability in the yield, respectively [1]. However, this method is
destructive, hence limiting the number of samples. An alternative consists of
using images to estimate the components to allow for the automation of the
tasks and limiting the biases due to the perception of the human eye.

The detection algorithm must take an image containing grapes as input
and output an image that includes the location of the grapes and their
number. This task is potentially difficult for several reasons: (i) there are many
sources of variations in images taken in natural conditions (lighting, distance,
background), (ii) the leaves can hide some of the grapes, and (iii) the leaves
are green and share a similar colour to the grapes before they ripen.

Several classic methods or using deep learning can be used for the
detection of grapes. A first naive approach is to use a threshold. One or
several thresholds are chosen and applied on each pixel to separate the areas
of fruit from the rest of the image [4]. These algorithms are fast, but they
have several limitations that render them difficult to use in the field unless
the lighting is controlled. In rare cases, this technique can be employed in
natural conditions, however, only in simple cases where the berries are ripe,
of a black variety, and the vine has been trimmed [3].

A second approach uses a segmentation method with active contours. It
has been used for the detection of white grapes for automatic harvesting [14].
However, it remains limited to being used at night with a controlled light
source, which can erase the image background (sky, ground, and the vine
rows).

A third approach uses classic machine learning to develop methods for
grape detection that are more robust to the variations in natural lighting
conditions. They perform a segmentation pixel by pixel using a pixel’s
neighbourhood, or block, as an input to the classification model. The model
produces a binary output (grape or not grape) which is then applied to the
central pixel or the entire block. These methods do not work with the raw
image; the extraction of features is a necessary step before analysing each
block. The average of the RGB channels of a block is an example of simple
features. This method suffers from several limitations, including sensitivity
to colour (grape variety) and a high execution time (potentially long).
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Deep learning has been recently applied to help solve the problem of
detecting and counting grapes. A naive approach consists of a block-by-block
(or pixel by pixel) classification with a convolutional neural network. The
usage of CNNs allows for simplifying the detection algorithm because the
model will learn the appropriate features from the data. Several popular object
detection models, Faster R-CNN, R-FCN, and SSD, have been applied to the
problem of detecting grapes and counting them using videos [5]. In addition,
the model Mask R-CNN, which allows for simultaneous object detection and
object segmentation, has also been used [10].

4.2.3 Towards an Automated Protocol for Yield Estimation

The detection of grapes is the first step for automated yield estimation. It
requires converting the counting into an assessment in kilograms per vine or
kilograms per hectare. The benefits of image analysis are that it can rapidly
process large quantities of data to avoid random selection and destructive
methods in the field. However, most automated methods have drawbacks
linked to detecting hidden grapes and the estimation of the number of berries
using 2D images.

Since 2019, we have performed image collection campaigns on parcels
of the Vranken-Pommery domain in Reims for the project H2020 AI4DI[15],
using different cameras and methods, for example, with a GoPro fixed on a
picket or embarked on a tractor (Figure 4.2.1a). Approximately 400 pictures
have been taken in the 2019 campaign, from which 322 photos have been
labelled to train the segmentation models. The model is a UNet encoder-
decoder with a ResNet-34 backbone. At the end of the training process, the
generated model has an IoU (Intersection over Union) score of 0.69 and
an F1 score of 0.8. The IoU is limited due to the lack of precision in the
labelling. However, the model allows detecting nearly 100% with a false
positive rate near 0% (Figure 4.2.4). The main problem is that grapes on the
background can also be counted, reducing the counting precision. Several
filtering methods, including the suppression of areas that are too small or
morphological openness, have been studied to control this problem. The
model was then applied to 200 images taken in 2020, allowing for the total
count of the number of grapes (hidden and visible) and the precise location
of each visible grape.

In addition, [9] carried out a systematic tracking of several rows in the
vineyard, allowing calibrate our deep learning algorithms for automated
yield estimation. This tracking, performed over four rows (200 vines) at
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Figure 4.2.1 (a) Camera attached to the vehicle, (b) defoliated vine.

different phenological stages, has included the counting of classic organs
(vine, flowers/grapes) thanks to other strategies (random counting or by the
sampling of the parcels) as well as sampling the berries to estimate their
volume and ripeness.

The counting of the grapes has also been done by unveiling hidden grapes
by defoliation. Hence, the operator first counts the visible grapes in the plant
and, after defoliation, takes a second picture (Figure 4.2.1b). Around 30
images were taken in this way and were then labelled and used to help identify
partially hidden grapes. An example of the comparison between automated
and manual counting where hidden grapes have been exposed is illustrated in
Figure 4.2.4.

Thanks to the manual and automated counting data, a linear regression
model has been generated for each row then a cross-examination of each
model is done using the three other rows. Although the error rate varies
from 0% to 31%, depending on the model and the row, we obtain an average
error rate of 14%. This is better than current error rates with the traditional
approach but remains perfectible. Hence, the improvement of this analysis
is based on a better distinction between grapes in the foreground and grapes
in the background as well as using non-linear regression models and other
variables such as the porosity of the canopy.

Another improvement relates to the average weight of the grapes.
Indeed, the measurements performed by [9] show a high dependency on the
pluviometry before the readings. Also, the vitality of the vines varies each
year, leading to a high variability when comparing with historical averages.
The following section details one approach that may help our algorithms to
compensate for this variability.
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Figure 4.2.2 Example of grape segmentation. On the left: the original image. On the right:
the segmented image.

Figure 4.2.3 Correlation between visible grapes and the total number of grapes.
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Figure 4.2.4 Biomass estimation and vine cane diameters obtained from Physiocap©.

4.2.4 Assessing the Vine Vitality Using an Embarked
LiDAR

The yield estimation depends not only on the grape count but also on
the relative weight of the grapes and berries. As a result, estimation
divergences may appear between different vineyard parcels. Indeed, vineyard
management practices and terroir characteristics may influence the fruit
quality and quantity. Also, the vine balance can affect grape content as sugar,
acids, and flavours concentrations [11]. Therefore, vine vigour evaluation is
an important tool to estimate the vine balance, which is directly linked to the
number of branches per linear meter and the diameter of these branches.

The traditional measurement technique is based on counting and
weighing the winter dormant canes manually. This method is time-
consuming, and the accuracy can be compromised by manual sampling,
which does not consider all vineyard densities. An alternative for the
traditional approach is the mapping of the dormant canes using a 2D
laser scanner LiDAR sensor before pruning to assess variability in vine
vigour within vineyards. This scanner allows to create charts representing
the vineyard parcels, as seen in Figure 4.2.4. Previous works suggest that
laser scanners offer great promise to characterise field variability in vine
performance [13].

In addition, the LiDAR sensor can be installed on a vineyard robot,
allowing a fully autonomous measurement of all the vineyard areas with
few human interventions (Figure 4.2.5). Using a robot is a safe, more
ecological, and less time-consuming support than a straddle vine tractor.
Coupled with the image acquisition cameras used for grape detection, the
robot becomes a fully automated tool to improve the yield forecasting for the
winemakers.
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Figure 4.2.5 (a) Vineyard robot Bakus©, (b) Physiocap© LIDAR installed on the robot.

4.2.5 Conclusions

The work that has been developed since 2019 shows an interest in deep
learning for the detection and counting of grapes in natural conditions. These
approaches have greater flexibility with respect to classic methods based only
on image analysis. Indeed, deep learning has achieved better results for fruit
and flower detection by avoiding the subjective selection of the algorithms
and features.

These good performances have only been evaluated for grape count
estimation. Yet, yield estimation requires an extra modelling step to determine
the hidden part of the fruits: number of grapes hidden by the leaves, number
of berries per grape, etc. Therefore, better performances are expected with
non-linear modelling using additional information such as the vine vitality.
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Abstract

Deep learning (DL) is a hot trend for object detection and segmentation,
thanks to Deep Neural Networks (DNNs). Image recognition is a powerful
tool for precision viticulture, having strong potential in yield estimation and
automatic quality estimation of the grapes. However, developing the models
is one part of the problem; deploying them in the field, at the edge of the
network, is another problem that comes with its own constraints. This paper
studies the use of embedded devices to run DNN algorithms for real-time
grape segmentation at the wine press. The results show that it is possible to
use edge devices while respecting a real-time context with little detection
quality losses.

Keywords: grape detection, precision viticulture, deep learning, edge
computing, computer vision, object detection, Tensorflow-Lite.
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4.3.1 Introduction and Background

Computer vision has helped automate tasks that once required intensive
manual labour. For example, it has been used to automatically count fruits and
vegetables such as peppers [14] or oranges [11]. Applying this to viticulture
is a more challenging problem because each fruit, i.e., the grape, is made of
several berries with colours that can vary depending on the variety (white
or red) or even resemble the colour of the foliage before the grapes ripen.
Nonetheless, detecting grapes automatically is a necessary step for solving
other, more complex problems such as yield estimation. Dunn et al. [5] were
the first to propose a method for detecting grapes in images. Since then, many
methods have been developed to achieve better detection rates and be used on
large scales.

Indeed, several approaches can be used to identify the location of grapes
on an image. The most intuitive way is by looking at the colour of each pixel,
as proposed by Dunn et al. [5]. Unfortunately, this method is sensitive to
the lighting condition and cannot be used for different grape varieties: red or
white.

Another approach to detecting grapes consists in trying to detect the
individual berries as first proposed by [7], which uses the reflection properties
of light on each berry. It will produce a specular reflection pattern that follows
a Gaussian distribution that can be used to isolate the individual berries
that compose the grape. Although it has been implemented in the field and
evaluated on a large scale, this approach requires additional equipment (flash
or lamp) and works best at night. Therefore, it is not a practical method for
use in the field.

Machine learning methods have been proposed to create a binary
estimation on each pixel or pixel block of an image. In this case, the
selected pixel or block is classified as either a grape or not a grape. Some
methods require a feature extraction process before the classification [4][10]
and others, based on deep learning, combine the feature extraction and the
classification within the same model [3][2]. In this first case, many different
features can be used, for example, the average of the RGB channels in the
pixel block [10] or the colour histogram [9]. Several classifiers are possible
as well, such as the Multi-Layer Perceptron (MLP) [2], Support Vector
Machines [4] and AdaBoost [10]. Each method will be a combination of these
two different algorithms - feature extractor and classifier. One of the main
problems with this approach is that the quality of the classification results
depends on the choice of the feature extractor, which in turn depends on
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the researcher’s choice. One of the main problems with this approach is that
the quality of the classification results depends on the choice of the feature
extractor, which in turn depends on the researcher’s choice.

Convolutional Neural Networks can overcome this problem by combining
the feature extraction process and the classification of the extracted features
in the same algorithm. Different architectures have been examined with the
objective of detecting grapes using transfer learning which yields good results
[3]. Some other models have also been explored, such as the Mask R-CNN by
Santos et al. [13], Faster R-CNN, R-FCN, and SSD [8]. These methods detect
the location of grapes in the image with bounding boxes. Other approaches
use deep learning for semantic segmentation to detect individual berries
[6][15] or grapevine flowers [12], which we use in this work.

The deployment of deep learning for industrial applications is a challenge.
Current deep learning models are trained on powerful GPUs. The challenge
is to convert these models for real-time inference on the field. One way
to deploy the algorithms is to use specific hardware such as embedded
devices, essentially small computers that can operate in remote places
like vineyards or wine presses. These small devices have limitations, most
notably in computing power and available memory. These constraints must
be acknowledged to choose the most suitable tools and algorithms for
onboard applications. These constraints include the inference time that must
be low enough for practical use. Luckily, a wide range of readily available
boards with various capabilities can be used for deploying grape detection
algorithms. The option of creating a board for a specific application is always
possible.

This paper focuses on detecting unwanted elements (green or ripen
grapes, leaves, stones, tools) before delivering the grapes to the press. This
paper will be looking at the deployment of a deep neural network for semantic
segmentation on a readily available embedded device, enabling AI inference
at the edge of the network. Different versions of the model will be tested,
and the performances will be analysed based on these three criteria: inference
time, performance loss when compared to the original model, and model size.
In addition, results must be obtained in less than 15 seconds not to impact the
winery production chain.

4.3.2 Methodology

Our team acquired the images for training and testing at the wine press,
using a GoPro camera mounted over the weighting device, as illustrated
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Figure 4.3.1 Image acquisition at the wine pressing sites.

in Figure 4.3.1. Each high-resolution image (4000 by 3000 pixels) covers
four crates at the wine press containing grapes and some of the surrounding
environment. However, the model can only accept image blocks of 224 by
224 pixels as input. Therefore, the training and validation set images were
split into smaller blocks that correspond to 12713 image blocks for the
training set and 3250 image blocks for the validation set. The model was
implemented in Python using TensorFlow’s Keras API and saved in the hdf5
format. All the weights and biases are stored as 32-bit floating-point numbers
(float32 datatype) for this model. Figure 4.3.2 illustrates the image analysis
workflow, where a segmentation mask is devised and used to select only the
classes we are interested in (in this case, it applies a binary mask to select
only grapes).

Embedded devices are not necessarily powerful enough to run an AI
model written in Python. For efficiency reasons, the applications that are run
on these kinds of devices are usually programmed in a compiled language
such as C or C++ instead of an interpreted language like Python. However,
to avoid having to rewrite entire models in one of these languages and yet
still deploy them on smaller, embedded devices, Tensorflow has created a
conversion process to optimise an hdf5 model developed using their API.
The process converts the model into an optimised FlatBuffer by, for example,
fusing layers when possible. This conversion aims at reducing the overall
model size while trying to maintain the performance of the original model.
Different options are available when converting a model from the hdf5 format
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Figure 4.3.2 Example of the image processing steps.

to the tflite format. A commonly used one is the quantisation of the weights
and biases to optimise the model. From the original encoder-decoder model,
two variants were generated using this converter. Both variants were created
with the TOCO converter provided by TensorFlow and saved in the tflite
format. The first model was converted in the most straightforward manner
using the API provided by TensorFlow’s version 2.2. No datatype conversion
was performed on the weights, biases, or activations for this model, and they
maintain their original datatype of float32.

While also being converted using TensorFlow’s version 2.2, the second
variant took advantage of the post-training integer quantisation process to
convert the datatype of the constant tensors (i.e., weights and biases) and
the variable tensors (i.e., activations) from float32 to int8. This quantisation
process reduces the model’s size and memory usage while increasing
inference speed, allowing it to run on smaller devices. However, it will
inevitably decrease the global performances of the model due to rounding
errors that will occur during the conversion. To convert the variable tensors
(the output of the intermediate layers), a representative dataset must be
provided to estimate the range of the floating-point tensors by running a
few inference cycles. A specific dataset does not need to be created for this
process; therefore, the representative dataset was generated using the images
in the validation set from the original model. Several of the images were
cut into blocks of the same size as the model’s input. A total of 179 images
of 224x224 pixels were included in the representative dataset. Before being
used for the quantisation of the model, the images were normalised. This
conversion operation is necessary for being able to use the model on a TPU.
The accelerator can only run layers that have been converted beforehand.
If the entire model is not quantised, then the operations that have not been
affected by the process will be run on the CPU.
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In this case, all layers were successfully converted, except the first and the
final one. As the images are normalised before input, the value of each pixel
is a floating-point number between 0 and 1. If the input layer only accepted
integers, then the pixel values would be rounded off, and the input image
would only contain values of 0, creating a black image and rendering the
inference pointless. For the final layer, even though the model’s output is a
binary mask with integer values for pixels — 1 represents a pixel belonging
to a grape and 0 a pixel that does not – the performances significantly
deteriorated if the output of the final layer was of type int8. Therefore, the
first and final layers were not converted using post-training quantisation.

The device used to run the AI models is an STM32MP157C-DK2 board
produced by STMicroelectronics. It has two processors, a dual-core Cortex-
A7 32 bits and a Cortex-M4 32 bits. The latest version of the X-Linux-AI
package, created explicitly by STMicroelectronics to run AI models on their
devices, was installed on the board. This package comes with TensorFlow
Lite 2.4.1 and the necessary support libraries for using Coral Edge TPU
accelerators. Since it cannot have any version of TensorFlow installed on it,
the STM32MP157C-DK2 can only run tflite models. Because this board has
no dedicated GPU for artificial intelligence, inferences can only be performed
using its CPU, which can be pretty slow. Therefore, we equipped the board
with a Google Coral USB accelerator (Figure 4.3.3). This tensor processing
unit (TPU) is an ASIC processor specifically designed to accelerate the
inference of artificial intelligence models, provided as TensorFlow Lite
models.

Figure 4.3.3 STM board and TPU accelerator used in this work.
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To evaluate the performances, three criteria were used: the inference
time, the model’s overall size, and the intersection over union (IOU) score.
The inference time is used to compare the hardware and software options
concerning the real-time constraint that has been set, 15 seconds in this case.
The size of the model is given to show how efficient the compression is during
the conversion process. Finally, the IOU score was calculated relative to the
results obtained with the DGX server. Using this metric, we aim to assess
how the inferences from different model versions differ from the original one.
Hence, an IOU score of 1 means that the variants’ performances are the same
as those of the baseline model.

4.3.3 Results and Discussion

The obtained results are presented in Table 4.3.1. Also, Figure 4.3.4 shows
an example of the output for each model variant on the STM32MP157C-
DK2 board against the baseline output obtained on the DGX server. The
inference time and the IOU score presented here were obtained by averaging
the individual inference time and IOU score of all the images in the test set.
Three tests were run with different models. The STM32MP157C-DK2 board
can only run the tflite versions of the model (quantised and not quantised)
because the board does not support TensorFlow but only the TensorFlow Lite
runtime environment. Therefore, the quantised model was run twice, once
without using the TPU accelerator and the second time with the accelerator.

The results show that the chosen device is not powerful enough to run
the tflite model using only the CPU, whether quantised or not and fit the
requirements. The quantisation process does allow for a slight decrease in the
inference time, of a factor of 1.1 only. This improvement is far insufficient
to satisfy the real-time requirements that were set. The only viable solution
is to use the TPU accelerator, as the inference time is reduced by a factor
of 13 when comparing it with the same model without using the accelerator.
Using the accelerator has a drawback as it forces the model to be quantised,
inducing a performance degradation as shown by the relative IOU score of
0.93. Considering the significant reduction in the inference time, the slight
deterioration of the performances is justified, especially since it is the only
scenario that fills the real-time requirements. However, it is interesting to note
that since the IOU score is 1 for the non-quantised model, the conversion
from the hdf5 format to the tflite does not impact its performances and the
only effect is to reduce its overall size. The compression factor between
each model is approximately three. More precisely, it achieves a factor of
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Table 4.3.1 Results obtained with the STM32MP157C-DK2 board.
IOU score Inference (sec.) Size (in MB)

Baseline N/A 0.4 93
tflite not quantised 1 137 31
tflite quantised without TPU 0.93 117 8.7
tflite quantised with TPU 0.93 11 8.7

Figure 4.3.4 Output of the models.

3 between the original and the tflite version and a factor of 3.6 between the
non-quantised and the quantised version. Even if the quantisation process
impacts the performances, it still allows for complex and heavy models to
run on devices with limited resources.

4.3.4 Conclusion

Deep neural networks require large amounts of resources to operate. This
is not a problem when deployed on various servers with powerful GPUs;
however, this impedes deploying trained models on embedded devices with
limited capabilities. To tackle this problem and avoid having to rewrite
models in programming languages better suited for smaller devices such a
C or C++, different converters exist to reduce the size and the necessary
resources for the models to run. These converters allow models initially
developed using high-end APIs such as TensorFlow to be easily deployed
on boards such as the STM32MP157C-DK2.

In this paper, a deep neural network with an encoder-decoder architecture
for semantic segmentation was converted to the tflite format, allowing it to
run on two small devices. The evaluation proposed in this paper compares
three criteria: the inference time, the IOU score relative to the non-converted
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model, and the model size. The obtained results are very encouraging. They
show that deploying the converted model in a real-time context is possible
while limiting the performance losses due to its conversion. Furthermore,
the time constraints at the wine press are relatively light, allowing the
exploration of model architectures that are not necessarily conceived for real-
time applications, such as the original encoder-decoder architecture used in
this case study. Nonetheless, this paper gives some insights into the trade-off
between performances and inference time when deploying models to smaller
devices.

Still, other alternative converters have not been studied here. For instance,
the N2D2 platform [1] developed by the CEA-List can convert models from
an ONNX format to various targets, including the STM32MP157C-DK2
board. Using N2D2 would bypass the use of Python and TensorFlow Lite
by creating a specifically designed project in C. Using this converter may
provide better inference time while maintaining the same performances and
will be explored in the future.
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Abstract

In this article, a soybean process optimisation solution using real-time
artificial intelligence of things (RT-AIoT) technology at the edge is presented.
Image classification, object detection and recognition are machine vision
techniques implemented into industrial internet of things (IIoT) devices to
determine variations in the morphological features in soybeans. Evaluating
soybean features, such as moisture and temperature combined with other
measurements, such as colour, size, shape, and texture, can improve the
utilisation of the raw material and the quality of the derived products,
thus reducing energy consumption. Implementing intelligent vision locally
on IIoT edge devices solves several issues faced by deploying it to the
cloud and brings further challenges posed by deep learning on resource-
constrained edge devices. Most deep neural networks are too complex to
be created and trained on most nowadays microcontrollers, but if optimised
in terms of memory, processing, and power capabilities, they can run on
them. With multi-image sensors, and IIoT devices under evaluation, the
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proposed production optimisation system is interfaced with the existing
industrial SCADA system, and analyses the IIoT sensor data at different edge
computing granularity levels. With the preliminary findings and results, we
show that the RT-AIoT, including machine vision technology, is now possible
on all micro, deep and meta edge levels with the advent of AI.

Keywords: production optimisation, artificial intelligence, smart sensors
systems, edge computing, industrial internet of things, industrial internet
of intelligent things, soybeans manufacturing, machine vision, machine
learning, deep learning, SCADA, PLC, real-time artificial intelligence of
things (RT-AIoT).

4.4.1 Introduction

The digitising industry brings about the integration of the physical and
digital systems of the production environments. It allows the collection of
vast amounts of information using supervised control and data acquisition
(SCADA) systems comprising programmable logic controllers (PLC),
sensors/actuators and industrial internet of things (IIoT) devices [1][2]. These
devices are connected to different equipment located in various production
facilities, measure and monitor several parameters and process the data in
on-premises servers and the cloud. The new technologies integrate people,
machines, and products, enabling faster and more targeted information
exchange. The information insights and analytics are increasing in value by
implementing artificial intelligence (AI) techniques and methods collected by
IIoT systems and processing at the edge close to the industrial production
line. The data intelligent edge processing can bring valuable information
and knowledge from the manufacturing process and system dynamics. By
applying analytics and AI-based approaches based on data collected from
IIoT devices, it is possible to obtain interpretive results for strategic decision
making for process optimisation, cost reduction and energy-efficient process
tuning.

Food processing and manufacturing include all processes intended to
transform raw food materials into products suitable for consumption, cooking
or resale. Implementing AI, IIoT and robotics solutions in the food processing
and manufacturing sector can assist in overcoming critical issues related
to production and execution by eliminating the possible chance of human
errors and reducing the work redundancy being performed by manual labour.
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Furthermore, innovation in production optimisation, production parameters
tuning, and equipment maintenance can be fuelled by AI.

In soybean production facilities, the benefits of AI can be leveraged
by using IIoT, neural networks (NNs), machine learning (ML) techniques,
advanced analytical tools, image, and pattern recognition technologies to
optimise production, equipment maintenance timely and less costly and
overall production flow. With AI and IIoT, the data received from sensors
are interpreted and recognised when action is needed. Aggregated data are
generated and sorted, and significant data points are identified by sensors
and AI techniques. These technologies are used to optimise processes, spot
anomalies, such as early warning signs that equipment or motors may fail
or require maintenance. AI technology is used to recognise patterns, expand
the knowledge base, identify cause-and-effect relationships, and use insights
related to likely outcomes or the next data point in the curve of the trend.

The Real-time Artificial Intelligence of Things (RT-AIoT) is the
combination of AI technologies with the IIoT devices and infrastructure to
achieve more efficient real-time IIoT operations, improve human-machine
interactions and enhance data management and analytics.

In this article, an approach to optimising an industrial soybean
manufacturing process using AI-based methods and RT-AIoT technology is
presented.

The article is organised as follows. This section provided the introduction
and the background for this research and innovation activity. The next three
sections give an overview and a description of soybean production process,
reference architectural conceptual framework, and process parameters
monitoring techniques. The micro, deep and meta edge concepts are
described in the next section. Afterwards, the section on embedded intelligent
vision and multi-sensors fusion approach describes the system requirements,
including an overview of relevant hardware architectures. The experimental
set-up section depicts the overall architecture and workflow, the specific
experiments performed and results. Finally, the last section concludes and
highlights the next steps.

4.4.2 Soybean Production Process Description

For the use case presented in this article, the soybean production starts with 30
000 tonnes of soybeans arriving at the manufacturing facility on ships every
three to four weeks.
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The ships are unloaded in 3–4 days into a flat storage container, where the
soybeans are stored until they are processed.

From the storage, the soybeans are transported on a conveyor belt into
the cleaning area of the plant. Here, the coarse fraction and dust from the
soybeans are cleaned out.

The cleaned soybeans are moved through a weight in which the budget
capacity is 59 tonnes per hour.

In the next step, the soybeans are cracked between two pairs of cracker
rolls, where each bean is broken into 6–8 pieces. The cracked soybeans are
transported in closed conveyors and through a conditioning phase where the
soybeans are heated and dried before flakers. The soybeans become more
elastic in this process, so they do not crack in the flaking step. The flakers
press the soybeans into thin flakes between a pair of hydraulic rollers.

The next phase is the expander process, where direct steam is added to
the flakes, pressing the soybean flakes to a conus with a high-pressure screw
to expand the oil cells in the soybeans. After the expander phase, the water
content is increased due to the added direct steam, and the expanded material
is dried with hot air before extraction.

In the extraction process, soybean oil is extracted from soybeans with
hexane. Then, the hexane and soybean oil mixture is pumped to the
distillation, and the soybean meal is transported to the toaster and heat
treatment.

During distillation, hexane is evaporated from the soybean oil in three
steps. After the hexane is removed, the soybean oil is pumped into a
degumming phase. Here, water is added to separate lecithin from soybean oil.

After separation, the two products are pumped into separate dryers to
evaporate the water, and then the products are pumped into storage tanks.

The soybean meal must be toasted and heated to evaporate hexane,
eliminate bacteria, and make the meal digestible. After toasting, the meal
is hot air-dried and transported to a storage container.

The soybeans production flow is presented in Figure 4.4.1.
The products resulted after different phases of the production are

illustrated in Figure 4.4.2.
The soybeans are shipped from Brazil and Canada, with temperatures

fluctuating from 5◦C to 35◦C. With the variation in raw material, product
yields and energy consumption in soybean production are affected.

Using sensors, IIoT devices, and AI-based techniques makes it possible
to control variations throughout the process to optimise product yields and
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Figure 4.4.1 Soybean production process flow.

Figure 4.4.2 Soybean products.

energy consumption. Typical parameters monitored during the manufacturing
process are temperature, moisture, colour, texture, weight, and volume.

Water content, also known as moisture, is the most critical parameter in
preparing soybeans before the extraction phase. If the water content is too
high, the residual oil in the soybean meal will increase, and the oil yield will
be reduced.

This process is crucial for optimisation, and suitable locations are
identified for instrumentation in cleaning, cracking and after-drying
production areas.

The cleaning and preparation environment are dusty and challenging for
moisture measurement and monitoring. Therefore, unique solutions must be
considered for implementation.
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4.4.3 Overall Manufacturing System Architecture and
Platform

The soybean process optimisation solution is developed in the AI4DI (ECSEL
JU) project [3]. The AI4DI reference architecture is defined at a high-level
abstraction with various functional domains that include different devices,
equipment on several communications networks, processing and storage
capabilities at the edge and in the cloud, and training/learning embedded
in different layers. The reference architectural conceptual framework
includes different views, functional domains, system properties, cross-cutting
functions, the description of interfaces and interactions between these
elements and the features located outside the reference architecture [4].

This article uses the proposed implementation of the optimisation
procedure for an industrial soybean manufacturing process using AI-based
methods and RT-AIoT technology for mapping it into the functional domains.
The high-level reference architecture includes six functional domains. A short
description of each functional domain is provided in the next paragraphs.

The physical systems domain consists of physical components such as IIoT
devices operating within soybean industrial manufacturing.

The control domain interfaces the physical systems using sensing and
actuation in soybean industrial manufacturing, and implements necessary
communication and means of execution. This domain includes the
communication function (e.g., abstraction of different types of physical/link
layer/networking technologies, Bluetooth, LoRa, Wi-Fi) with which the
different sensors, actuators, and support infrastructure (gateways, controllers,
routers, etc.) connect to exchange data, messages, and information.

The operations domain encompasses the provisioning, management,
monitoring, diagnostics and optimisation of sets or groups of devices in the
control domain, ensuring the continued operations of single devices and the
associated control systems for soybean manufacturing. The domain includes
provisioning, deployment, management, monitoring, diagnostic, predictive
and optimisation functions implemented in on-premises edge computing
facilities.

The information domain implements the collection, system-level data
fusion, transformation, storage, optimisation, and analysis of data from
several domains, and implements AI techniques and methods for intelligence
fusion at the system level during different soybean manufacturing and



4.4.4 Process Parameters Monitoring 307

production stages. The analytics function includes data modelling, processing
and analysis and the rule engines for different feature implementations.

The application domain uses case-specific logic, rules, integration, human
interfaces, and models to deliver the system-wide optimisation of operations
and relies on intelligence from the information domain. The APIs/UI function
presents the application’s capabilities in the form of APIs for dashboards or
use by other applications.

The business domain integrates information from applications, business
system enterprises, human resources, customer relationships, assets, service
lifecycle, billing and payment, work planning and scheduling to achieve the
desired business objectives. The business domain for soybean manufacturing
implements the functionality for the integration of AI/IIoT-specific functions
and standard enterprise business support systems such as Enterprise Resource
Planning (ERP), Product Lifecycle Management (PLM), Supply Chain
Management (SCM).

4.4.4 Process Parameters Monitoring

The following section gives a short description of the measurement
techniques under evaluation for measuring soybean parameters and ambient
conditions.

The techniques and methods [8][9] evaluated for moisture, protein, oil
measurements, soybean colour, texture and pattern analysis, and ambient
parameters (e.g., temperature, pressure) are presented below.

Microwave non-destructive testing (MNDT) is a non-invasive, non-
destructive measurement technique in which microwaves penetrate a material
and can thus be used to measure its water content (moisture). The dielectric
constant of water changes with temperature and frequency, and is typically
20 times higher than that of other materials [5] at around 78.4 at ambient
condition of 25◦C and 1GHz [6]. This is resulting in a relatively strong
interaction between microwaves and water, which is measured as attenuation
and phase shift. The dielectric constant of soybeans thus influences
microwaves, and the water content can be accurately determined. The
equipment must use weak microwave power (typically 0.1mW) [7] so that
the soybeans themselves are not heated or altered.

Near-infrared (NIR) spectroscopy is a non-invasive, non-destructive
technique based on the absorption of electromagnetic radiation. NIR
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spectroscopy instruments produce a large amount of data, and chemometric
methods are used to extract useful information. Like many other
measurements, those for NIR spectroscopy rely on standard calibration
methods to achieve good results, and the instruments therefore need to be
calibrated for the specific measurements that you want to perform—typically,
a wide range of measurements, including highest and lowest levels of water,
oil, or protein content, are needed. The possible bottlenecks of calibration
versus the benefits to the demonstrator of the measurements are currently
under investigation and there is yet no conclusion.

NIR light is a portion of the electromagnetic spectrum close to visible red,
at about 750 to 2500 nanometres as illustrated in Figure 4.4.3, and can be
used to detect the chemical bonds between atoms in organic compounds
such as soybeans. Infrared absorption is caused by several effects, but the
most important is the transfer of electromagnetic energy into chemical bond
vibration, and absorption features may be related to specific molecular
structures [10].

Soybeans absorb, reflect, and transmit varying amounts of near-infrared
electromagnetic waves based on their composition. Each compound (e.g., oil,
lecithin, and water) responds to a particular NIR wavelength, which can be
measured to estimate the oil, water (moisture) and protein content in soybeans
used to produce soy oil, lecithin, and meal. The quality of soybeans can
be determined by their colour, shape, and chemical composition, and NIR
technology can therefore help to identify and distinguish soybean quality
based on chemical, oil, lecithin, and water composition.

Figure 4.4.3 The electromagnetic spectrum - regions of interest in the context of NIR
spectroscopy. Adapted from [10].
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Hyperspectral image analysis is a non-invasive, non-destructive technique
that is based on imaging of the electromagnetic spectrum, dividing it into
many bands, and can be extended to a wide range of wavelengths beyond
the visible range. Hyperspectral imaging measures continuous spectral bands
and depends on relatively high computing power to transform the acquired
pixelated images into readable data at an acceptable wavelength resolution.
Optical filters and light sources are optimised for the wavelengths (bands) in
the spectrum that reflect the levels of water, oil, and protein in soybeans. This
method is being evaluated considering the complexity, cost, and calibration
features.

Capacitive sensing is a non-destructive technique based on the same
principle as a capacitor, measuring the electric field between two electrodes
using a material placed between them as the dielectric. Applying an excitation
voltage (DC or AC) to the electrodes creates an electric field, and the current
flow in that field will change based on the conductivity of the material
between the electrodes. The current is measured and transformed into values
based on a physical model to give the moisture level of the material. This
method is being evaluated for accuracy and other features.

Cameras can capture images in visible, infrared, near-infrared, hyperspectral
spectrum to monitor the sizes and colours of whole soybeans and the texture
of crushed soybeans. The image processing of crushed soybeans is more
challenging than that of whole soybeans, thus requiring different types of
cameras. Solutions for good lighting conditions are also needed.

Temperature and pressure sensors are used to measure the temperature
in the different areas of the soybean processing line using wired/wireless
sensors temperature sensors with a temperature range of 0◦C to 55◦C. The
indoor ambient temperature and pressure vary according to location, weather
conditions and seasons, and depends on the process steps performed in
that area. Temperature and humidity are therefore critical parameters to
measure and consider when analysing data from different points in a soybean
production line.

AI and IIoT rely upon data generated at the sensor level, and data
must be consistent, accurate and reliable. Sensors must have the required
precision and embedded connectivity to pass measurement data for process
optimisation purposes to the edge computing data system.
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A common historian where information is aggregated for AI-based
analytics, reporting and visualisation is needed to aggregate the data from
the SCADA system and made it available for the edge server.

The value of AI and IIoT is limited by the ability to capture data from
sensors in the soybean manufacturing process. The wired/wireless sensors
must accurately measure moisture, temperature, humidity and other visual
constituents, and the system should provide a way to confirm that the readings
are accurate. This requires that the sensors are calibrated, and able to provide
information when their battery life is low and a diagnose action is needed.

The process parameters monitoring includes a modular design for reliable
sensing solutions in the harsh soybean manufacturing environment.

The sensor and related electronics are adequately packaged and placed in
secure locations so they are not exposed to overrated temperature, humidity,
dust, and other ambient conditions that can degrade and/or damage the
sensors, IoT devices, gateways prematurely.

Power consumption is critical for the lifetime of the wireless sensors,
the measurement precision of the sensors, and the AI-based algorithms
applied to them. Therefore, viable power monitoring and energy-efficient
communications capabilities must be integrated into the design.

4.4.5 Edge Processing and AI-based Framework for
Real-Time Monitoring

Intelligent edge computing architectures accelerate the move to more
processing and the value-creating process-optimisation use cases associated
with the edge. The approach used in this work for soybean process
optimisation addresses the granularity of the edge by providing intelligence
to the micro, deep and meta edge. A description of the micro, deep and meta
edge concepts are provided in the following paragraphs.

The micro edge describes the intelligent sensors, machine vision and
IIoT devices that generate data and are implemented using processors and
microcontrollers (e.g., ARM Cortex M4) due to constraints related to costs
and power consumption. The distance from the compute resource is minimal,
as the compute resources operate on the data they generate. The hardware
devices of the micro-edge physical sensors/actuators generate data and/or
actuate based on physical objects. Integrating AI-based elements into these
devices and running AI-based techniques for training/learning and inference
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on these devices brings the intelligence and analytics closest to the physical
parameters measured.

The deep edge comprises intelligent controllers PLCs, SCADA elements,
machine vision connected embedded systems, networking equipment (IIoT
gateways) and computing units that aggregate data from the sensors/actuators
of the IIoT devices generating data. Deep edge processing resources are
implemented with performant processors and microcontrollers (e.g., Intel i-
series, Atom, ARM M7+, etc.) that include components such as CPUs, GPUs,
TPUs or ASICs.

The meta edge integrates processing resources, typically located on
premises, implemented with embedded high-performance computing units,
edge machine vision systems, edge servers (e.g., high-performance CPUs,
GPUs, FPGAs, etc.) that are designed to handle compute-intensive tasks,
such as processing, data analytics, AI-based functions, networking, and data
storage.

The edge analytics applications presented in this work enable new use
cases that rely on low-latency and high-data throughput. The demonstrator
developed use intelligent sensors, embedded machine vision and IIoT devices
integrated with edge computing to implement learning and inference on-
premises in the soybeans manufacturing facility.

4.4.6 Embedded Intelligent Vision and Multi-sensors
Fusion Approach

Image classification, object detection and recognition are machine vision
techniques using information collected from IIoT sensors. With such
information, it is possible to determine morphological features such as colour,
size, shape, texture, and moisture in soybeans for monitoring and improving
the utilisation of the raw material and the quality of the derived products, thus
reducing energy consumption. With the advent of AI, this capability is now
possible on all micro, deep and meta edge levels.

Intelligent devices are enabled by machine vision to grasp the visual
surroundings. Machine vision is integrated into the perception systems
in industrial sectors, including autonomous vehicles, food processing,
semiconductors and more, and is one of the areas that has benefitted the most
from the rapid advances in AI/ML. ML algorithms enable high performance
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in image segmentation, object detection, image classification, object tracking,
pattern and object recognition, image generation, and more.

Deep Learning (DL), a subset of ML, allows machines, robots and
intelligent IIoT devices to recognise objects with close to human-like ability.
At the lower levels, ML algorithms perform processing techniques on the
image, extract features from the image, access and intertwin multiple views.
At the higher level, they perform more advanced tasks, such as image
classification - making inferences about whether the object in the image
belongs to a specific class of objects. It is at the highest level that DL
is employed to build intelligent, scalable machine vision systems that can
recognise/identify and react/respond to objects in images and videos.

Convolutional neural network (CNN) is a class of DL networks and
has become increasingly powerful in large-scale image recognition on IIoT
devices by combining the feature extraction process and classifying the
extracted features in the same algorithm, relying on extracted features. When
DL technology is deployed in IIoT devices, it relies on pretrained DL models,
and transfer learning techniques are employed to retrain an existing image
classifier into a custom classifier by retraining a small image dataset using
minimal resources. CNN is under evaluation along with other DL models and
techniques.

Edge sensors and IIoT devices are increasingly becoming more
intelligent, generating a massive amount of data, often creating latency,
reliability, and privacy concerns. A shift in AI processing from the cloud
to the edge was triggered by such developments, made possible by recent
advances in microcontroller architectures and algorithm design. By deploying
intelligent vision locally on IIoT edge devices, most concerns related to
deploying to the cloud are addressed and answered:

• Bandwidth: ML algorithms need lots of data and transferring large
amounts to the cloud is costly and demands bandwidth. Therefore,
severe reductions must be applied, affecting the performance and
accuracy of the results from the algorithms. When algorithms run on
IIoT edge devices, the amount of data processed is limited only by IIoT
edge device capabilities.

• Latency: ML models on IIoT edge devices can respond in real-time to
inputs (as the round-trip to the cloud is no longer involved) enabling
real-time edge nodes to run in real-time and meet deadlines.

• Costs: By processing data on-device, the costs of transmitting data over
a network and processing it in the cloud are reduced. The cost of running
ML in the cloud can be expensive due to the complex infrastructure.
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• Reliability: Systems controlled by on-device models are inherently more
reliable, not least because they are no longer affected by outages in the
cloud.

• Privacy: User privacy is protected when data are processed locally on an
embedded system and are not transferred to the cloud.

Nonetheless, other concerns are posed by ML on machine vision IIoT edge
devices. Most deep NNs are too complex to be created and trained on most
nowadays microcontrollers, but if optimised in terms of memory, processing,
and power capabilities, they can run on them. The optimisation can be done
either by rewriting the models in low-level languages or by quantising to
improve the latency and the model size.

It is envisaged that it will be more common for machine vision IIoT edge
devices to embed deep NNs and other AI techniques in the future. For now,
thanks to interoperability efforts, tools and methods are available to optimise
deep NN that have been trained on standard platforms to do specific tasks.
Therefore, they can run on IIoT edge devices with limited capabilities. It is
a matter of balancing the goals of obtaining the most significant reduction in
the size of the original code with a minor accuracy loss.

Real-time monitoring and control are essential criteria for optimising
process parameters and maximising soybean manufacturing production
outcomes. The proposed process optimisation is built on an industrial real-
time data acquisition AI-based system (intelligent sensors and machine vision
IIoT devices) implemented into an on-premises edge computing environment
integrated with existing industrial SCADA system. The remote soybean
parameters are measured and collected by the intelligent data acquisition
and control system through reliable protocols and communication networks,
providing an interface with the existing SCADA system through a common
historian entity.

In this context, multi-sensor fusion is the process of achieving multi-
objective optimisation by combining data from multiple sensors, which, taken
separately, can only provide local optimums.

The data aggregation functionalities are integrated into the edge platform
components, whereas the IIoT gateway handles edge data collected from
different IIoT devices. The IIoT hardware platform and devices are integrated
with the existing SCADA system and open platform communications server
(OPC), interfaced with the ERP manufacturing facility and web and mobile
App solutions.
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Monitoring the moisture of soybeans before processing is critical,
and three process sub-systems are identified as possible locations in
the processing workflow and contain component sensor instrumentation
according to the sensor tag system developed for unique identification.

The moisture measurements and other monitoring measurements are
seen in conjunction with temperature and image analyses. The targeted
measurement parameters monitored are the moisture of soybeans before
processing at different locations in the processing workflow (e.g., on the
conveyor belt before cleaning, on the conveyor belt after cleaning and before
weight, and after crackers before conditioning). The aim is to measure
soybean water content, temperature and “quality of cracking,” to control the
changes and adjust the conditioning according to the variations.

Different communication protocols and gateways are used (BLE, LoRa
and Wi-Fi), depending on data rate, bandwidth, application, etc. Even in harsh
environments, communication with edge devices is facilitated by the seamless
integration of wireless connectivity, ensuring data storage, pre-processing in
real-time, visualisation, and possibilities to change parameters or effectuate
other necessary actions.

4.4.6.1 Embedded Vision IIoT Systems Evaluation

A broad spectrum of hardware architectures is available with various trade-
offs to deploy machine vision NN models. Several architectures are under
evaluation in terms of suitability for different machine vision applications
and placement on the three edge levels. They are illustrated in Figure 4.4.4
and briefly presented in the following paragraphs.

OpenMV [11] is a small camera module on a microcontroller board that can
be programmed in Python to implement applications using machine vision
in the real world. It can detect colour and shape, frame differencing, face
detection and more. For the experimental setup, the webcam capabilities have
been enhanced with infrared and global shutter camera modules.

The former is to easily interface with the flare left in thermal imaging
sensors for thermal vision applications. Combining machine vision with
thermal imaging allows for better identifying objects to measure the
temperature with great accuracy. Because of the modular design, the
swapping of the standard lens for the long-range infrared imager can be done
easily. The latter module allows the OpenMV Cam to capture high-quality
greyscale images and not be affected by motion blur. The module can take
snapshots on-demand with high frame-per-second speed.
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Figure 4.4.4 Hardware architectures under evaluation.

MPCam [12] is an intelligent camera system designed to bridge the
gap between the development and rapid deployment of machine vision
applications. The camera has, in addition to a Dual Armr Cortexr-A7 core
running up to 800 MHz and Cortexr-M4 at 209 MHz combined with a
dedicated 3D graphics processing unit (GPU) and MIPI-DSI display interface
and a CAN FD interface, an accelerator module that balances performance
and cost and is therefore suitable for lab experiments as well as in the
production line.

STM32MP1 [13] is a multiprocessor system that allows independent
firmware to run on two computer cores (MasterArm Cortex-A7 running
Linux based operation system and Arm Cortex-M4running RTOS). The latest
Linux includes TensorFlow Lite (TFLite), so the development kit can run
TFLite models. It has no dedicated computer unit for AI, and as such,
inferences can only be performed using its CPU unit. However, the board
can add an accelerator (such as Coral USB accelerator) to speed up the
inferences of AI models. STM32MP1 is compatible with the Deep Learning
STM32Cube.AI ecosystem.
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STM32H747I-DISCO kit [14] is designed with STM32Cube.AI, an
extension pack of the STM32CubeMX configuration and code generation
tool and function packs for high performance AI applications. It is
now possible to map and run pretrained networks on the board of the
microcontroller using several AI solutions. The function pack for computer
vision features examples of computer vision applications based on CNN,
including an application for food recognition.

Regardless of the type of hardware architecture, the solution allows the import
of trained neural networks and convert them into microcontroller code and
run the inference directly on the microcontroller on edge. This reflects the
AI paradigm shift, going from the cloud approach with high bandwidth,
high centralised processing power, high latency, to more distributed AI, with
lower bandwidth and reduced centralised computing power, more real-time
response, and improved privacy.

4.4.7 Experimental Setup

In the first phase of the soybeans production optimisation, the specific
objective is to evaluate variability in the morphological features of soybeans
and classify soybeans according to selected features. The concept is to
build an embedded intelligent vision system integrated into the production
line as part of an advanced IIoT concept that can detect soybeans (wholes
and fractions) and analyse their morphological features. The system can be
used to detect variations that can lead to production process adjustments to
improve final product quality and optimise the process in terms of energy
reduction.

The embedded vision system is a flexible machine vision platform
integrated into the IIoT system that will instantly, when powered on, display
interactive results in real-time.

The OpenMV-based experimental setup currently under evaluation is
illustrated in Figure 4.4.5. The system consists of multiple OpenMV nodes
acting as machine vision IIoT devices. The OpenMV comes with a removable
camera module, making the interface with different vision sensors possible.
Some nodes are equipped with a global shutter camera module to capture
fast action and eliminate motion blur, while others use the infrared camera
module for thermal machine vision.

The nodes are mounted strategically on the production line (before and
after the soybeans are cleaned out and after they are crushed). The machine
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Figure 4.4.5 Experimental setup.

vision IIoT devices will be placed over the conveyor belt or in places that
view the crushed soybeans.

The OpenMV machine vision IIoT devices are used not only as image
sensors but also as AI-based processing nodes. The OpenMV IDE includes
a Python-based interface to develop application code and programme the
machine vision functions. The IDE is a robust editor and offers a frame
buffer viewer to see what the camera sees, a serial terminal for debugging,
and a histogram display for making object detection and tracking easy. The
application is then sent as a script to the camera module, which is running
MicroPython.

The OpenMV machine vision IIoT devices can run NNs on images, and
deep learning NNs can run inference layers. As such, they do not need a
network connection for inferences for the AI functionality. Some nodes are
equipped with Wi-Fi modules using limited bandwidth to transmit via MQTT
all protocol-specific measurements and results to the higher edge layers (deep
and meta edge) for multi-sensor fusion and further processing.

The OpenMV offers competitive performance at low power consumption.
Still, the nodes have limited flash memory (2 MB) required to store the
firmware, and the NNs files. The memory can be expanded using an SD card,
resulting in a slower inference output.
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Figure 4.4.6 Training and inference workflow.

As the soybean application is relatively large, the approach is to
optimise the size, and the optimisation flow under evaluation is presented
in Figure 4.4.6.

The NN model’s creation, training, and validation are performed using
ML frameworks, and several tools are under evaluation (Keras, TensorFlow
and Cafee). The trained NN model is then input to the STM32Cube.AI
module and converted into optimised C code. Next, the firmware wrapped
with the generated files and NN library is compiled, and the binary file
is flashed onto the OpenMV target using IDE. The model is then used
to programme the board (using microPython) and call the NN prediction
function. The advantage of this workflow is that it performs the hardware
level optimisation, and it also provides access to the software stack.

Notably, if the resulting optimised code still does not follow the hardware
capabilities, the optimisation process is repeated with more compression.
The process is about reaching a balance between avoiding opting for more
performant hardware (resulting in increased costs) and not jeopardising the
application’s performance (e.g., results accuracy). Although not shown in the
Figure 4.4.6, it is envisaged to use the above flow in a feedback loop, where
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relevant runtime data is sent back to the framework to retrain the NN model
and redeploy it in real-time back onto the microcontroller.

4.4.7.1 Experimental Evaluation and Results

In real-time, soybeans will move in a bulk fashion on the conveyor belt
under machine vision IIoT devices. Both bulk and individual soybean samples
must be considered. The preliminary experiments were conducted mainly on
soybean samples to sense soybean colour, shape, and soybean amounts. The
following guidelines govern the machine vision objectives:

Origin - Soybean size in the same load can vary, for example, due to different
suppliers. There are relatively large variations in seed shape, size, and colour.
Shape varies from almost spherical to flat and elongated. Seed size ranges
from 5-11 mm and seed weight from 120-180 mg/seed. Soybean hulls can
be yellow, green, brown, or black, either all one colour or a pattern of two
colours [15]. For the use case presented in this article there are mainly two
types of soybeans (originating from Canada and Brazil), and the former tends
to be slightly larger than the latter.

Dockage fractions - A load also contains dockage fractions (including
split soybeans due to breakage) that must be removed during the cleaning
process. The percentage (%) of these fractions is an important indicator of
soybean quality. The amount of broken soybeans smaller than halves should
be determined.

Colour - Colour differences may relate to a moisture content variation.

Moisture - Investigating the impact of moisture content on the morphological
feature classification of soybeans, individual and bulk, is important at
different moisture content levels.

Crushed fractions - Soybeans are crushed and analysed. Each targeted
fraction present in the sample should be distinguished based on images.
Currently, this is performed manually based on three target values (3.36mm,
1.69mm, 0.84mm), resulting in four fractions: > 3.36 mm, > 1.69 mm,
> 0.84 mm, <0.84 mm. The results provide a measure of the decrease in
soybean oil quality with increasing soybean breakage.

The challenge is the variation in soybeans’ morphological features, which are
extracted as attributes for classification using image processing techniques
and neural networks. Around 50 data sets are collected with a fixed number
of soybeans (60) randomly arranged in an imaginary cell size of 80 x 80 mm.
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All images were captured with the OpenMV device and pre-processed
within the IDE before saving them. The camera can capture up to 320x240
RGB565 images. The saved images are split into training and testing data
sets and fed to training and validation. Various machine vision functions,
including neural networks, are performed, on the images, including the
following:

Boundary detection - This technique uses the Canny Edge Detector
algorithm and simple high-pass filtering followed by thresholding. Boundary
detection indicates the presence of dockage fractions before cleaning.

Colour tracking - The OpenMV device can detect up to 32 colours
simultaneously in an image, and each colour can have any number of distinct
blobs. OpenMV Cam will then determine the position, size, centroid, and
orientation of each blob. Using colour tracking, the OpenMV device is
programmed to track the soybeans on the belt, with colours set using the
Threshold Editor.

Colour classifier - Although distinct colour variances between soybeans with
different moisture content can be seen, preliminary results indicated that
colour classification alone does not adequately describe the variations among
different moisture content. NIR measurement is also needed.

Thermal and NIR water content analysis - The setup measures whole
or cracked soybeans before drying, using infrared and NIR cameras. An
infrared camera classifies soybeans at different moisture content levels using
the thermal approach. The moisture content effects on the classification
capability of colour, morphology, and textural features of imaged soybeans
are evaluated. An NIR camera classifies soybeans at different moisture
content levels using absorbance of water in the NIR spectrum.

The normal parameters measured on whole or cracked before drying
and expanded soybeans flakes after drying are presented in Table 4.4.1 and
Table 4.4.2, respectively..

Table 4.4.1 Normal parameters measured on whole or cracked soybeans before drying.
Parameter Value

Water content in soybeans 11,0 – 13,5 %
Oil content in soybeans 18,0 – 21,5 %
Accuracy of measure +/- 0,2 %
Temperature in the soybeans 5 – 30 ◦C
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Table 4.4.2 Normal parameters measured on expanded soybean flakes after drying.
Parameter Value

Target water content 9,5 %
Water content in soybeans 9,0 – 10,5 %
Oil content in soybeans 18,0 – 21,5 %
Accuracy of measure +/- 0,2 %
Temperature in the soybeans 55 – 65 ◦C

Classification to detect variations on the production line - A TensorFlow
NN for image classification has been trained, optimised, and deployed on
the OpenMV. A convolutional NN trained on the collected image data set
for detecting soybeans is investigated. This approach can give robust results
even with significant variations. CNN are exponentially more accurate and
efficient than traditional computer processing models for AI use cases like
recognition, identification, and classification tools.

The results of the machine vision functions applied on various soybeans
samples are shown in Figure 4.4.7 and Figure 4.4.8.

The soybeans images processed by a binary image filter are presented in
Figure 4.4.9.

4.4.8 Summary and Future Work

The soybean production flow is complex, and the many process steps of
soybeans impact the quality of the derived products and energy consumption.
These steps can be improved and optimised by monitoring morphological
features, such as moisture, size, shape, texture, and colour in soybeans and
using variations in these features to adjust in real-time.

Figure 4.4.7 Boundary tracking for samples with impurities and split soybeans (left) and
cleaned soybeans and crushed fractions (right).
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Figure 4.4.8 Image detection segmentation and processing for samples of cleaned soybeans
(left), soybeans with impurities (middle) and crushed fractions (right).

Figure 4.4.9 Soybeans images processed by a binary image filter.

This optimisation is made possible by employing RT-AIoT (a
combination of AI technologies with sensing and machine vision IoT devices
integrated into industrial infrastructure) to achieve more efficient real-time
IIoT operations. With such an integration, human-machine interactions are
improved, enhancing data management and analytics.

The system proposed for soybean process optimisation, based on RT-
AIoT, includes a flexible machine vision embedded platform that displays
results interactively into the IIoT system.
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A broad spectrum of hardware architectures is available with various
trade-offs to deploy machine vision IIoT devices at the edge. Several
architectures are under evaluation concerning the suitability for different
machine vision functions for the soybean optimisation process, such as
boundary detection, colour tracking, thermal analysis, classification, and
appropriateness for placement on the three edge levels.

Machine vision IIoT devices are used as image sensors, AI-based
processing nodes and communication devices to run neural networks on
images and transfer the information to the industrial process system.

The creation of the model, training and validation are performed
using standard ML frameworks. The generated models can run on the
microcontrollers if optimised in memory, processing, and power capabilities.
It is a matter of balancing the goals of obtaining the most significant reduction
in the size of the original code with a minor accuracy loss.

In preliminary results, it is assumed that by placing machine vision
IIoT devices at different locations in the processing workflow (e.g., on
the conveyor belt before cleaning, on the conveyor belt after cleaning and
before weight, and after crackers before conditioning), better sensor and AI
functionality can be obtained. In turn, an improvement in product quality and
process efficiency can be achieved with such a procedure.

Preliminary experiments are being conducted on an experimental test
bench, mainly on soybean samples, to sense temperature, moisture, colour,
weight and volume. The following steps are envisaged to adopt the same
AI functions for soybean bulk samples, validating the proposed machine
vision IIoT system and further integrating it into the soybean industrial
process. Another possible activity is identifying the optimal soybean
moisture measurement method considering precision, ease of calibration,
size, robustness, processing capabilities and cost. Thermal imaging for
moisture detection in soybeans to increase production efficiency and reduce
energy consumption is a challenging issue and will be explored in the
next steps. The camera functions like a microbolometer, i.e. multiple heat-
detecting sensors sensitive to infrared radiation from 700 nm to 1000
nm wavelength. By setting a maximum and minimum temperature range,
the thermal camera can be programmed in the IDE to function as a
sensor for seeing objects of a particular temperature. It is important to
note that the camera does not really “see” moisture in soybeans; it can
detect slight temperature differences and patterns that reveal the existence
of water.
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Finally, as the soybeans are moved in a bulk fashion on the conveyor
belt, further work will focus on ensuring that the system is equipped with
high-speed imaging cameras. Global shutter cameras, which are recording
all image data simultaneously, are used to take pictures of soybeans on a
conveyor belt. Preliminary simulations were performed with the OpenMV
global shutter. Provided the exposure is short enough, the image has no
motion blur on moving objects. However, the trend is to increase the exposure
time to obtain more lighting on the camera and the best signal to noise ratio.
The choice of the camera requires reaching a balance between increasing
exposure time as much as possible (resulting in slightly higher levels of noise)
and preserving the image accuracy, resolution and reliability, also allowing
the algorithm to be programmed within the IDE.
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Abstract

This article presents an industrial predictive maintenance (PdM) system used
in soybean processing based on artificial intelligence (AI) and Industrial
Internet of Things (IIoT) technologies. The PdM system allows for the
continuous monitoring of relevant production equipment/motor parameters,
such as vibration, sound/noise, temperature, and current/voltage. It is
designed to identify abnormalities and potentially break down situations
to prevent damage, reduce maintenance costs and increase productivity.
Condition monitoring is combined with AI-based methods and edge
processing to identify the parameter changes and unusual patterns that occur
before a failure and predict impending failure modes well before they occur.
The PdM demonstrator currently under evaluation is planned to integrate
intelligent IIoT-based sensors to measure parameters, convolutional neural
network and Wi-Fi, LoRaWAN, Bluetooth low energy (BLE) technologies
for intelligent communication.
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4.5.1 Introduction

Artificial intelligence (AI), Industrial Internet of Things (IIoT) and edge
computing combined with intelligent sensors and actuators are enablers for
digitising industry and driving the development of new technologies for
the Industrial Internet of Intelligent Things (IIoIT). The advancement in
these technologies brings additional intelligence at the edge that empowers
IIoIT devices with more intelligent decision making, high performance, low
power processing and built-in security to create more intelligent and adaptive
industrial applications.

As the intelligent capabilities of the IIoT devices expand, industrial
systems become more efficient, interactions become more seamless and
IIoT devices become capable of detecting anomalies and potential failures
sooner.

The manufacturing infrastructure, equipment and industrial products
integrate novel components (e.g., CPUs, GPUs, AI accelerators, neuromorphic
processors) that support AI operations and capabilities, allowing intelligence
to be moved to the edge. Integrating edge distributed intelligent
sensors/actuators and AI methods and techniques into industrial process
flows accelerates the digitising of industry and improves manufacturing
processes (i.e., lower cost, less energy consumption, higher yield, and
quality).

Furthermore, the progress in equipment monitoring accelerates the
transition of maintenance operations from preventive maintenance (PvM)
towards predictive maintenance (PdM). These developments further advance
cost reduction, machine fault reduction, repair stop reduction, spare parts
inventory reduction, spare part life increasing, increased production, operator
safety, repair verification and overall profit.

Soy is a predominant ingredient in the food industry. Soybean production
and the maintenance of equipment in the soybean production line can be
improved through optimisations and reductions in downtime, repair costs and
additional labour costs and requirements.
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Predictive quality analytics using AI is helping soybean production
facilities gain control over the equipment. Predictive analytics substantially
helps to:

• Detect production equipment/motor anomalies and failures.
• Predict abnormalities and faults.
• Redefine and define error classes.
• Find factors that hamper productivity.

IIoT and intelligent sensors/actuators integrated with different AI techniques
offer benefits to PdM solutions in soybean processing and manufacturing.
These benefits include detecting faults early and accurately, predicting the
remaining useful lifetime of an equipment/motor given an operational context
or even prescribing guidance on work scope for the field service team with
recommendations regarding the parts and personnel skills desired to service
them.

The equipment and motors of the soybean production facility have little
or no communication with the SCADA control system. As a result, it is
challenging to determine the actual fault that causes a stop to the equipment
without remote monitoring. Combined with AI-based techniques, placing
various sensors and IIoT devices on the equipment to monitor critical
parameters help identify abnormalities and potentially break down situations
that reduce the production’s unforeseen downtime. Some of the typical
parameters to monitor are vibration, sound/noise, temperature/thermography,
and current/voltage. In addition to the real-time measurements of these
parameters, an analysis of the rate of change of the machine condition can
provide valuable information for estimating warning levels and absolute
limits before failure. Sensor data collection can be carried out in parallel
for similar machines by building an AI/ML/DL model that can predict how
much the mechanical machine components have deteriorated. The model can
also determine which sensors should get the most attention to increase the
sampling frequency and/or length of sampling interval. Several measurement
technologies also reduce the possibility of false positives and false negatives
(i.e. an indication for machinery when it is not deteriorated and no indication
when a warning should have been received from the inference).

The article is organised as follows. The next sections present the elements
describing the maintenance foundations in industrial production facilities
and principles of PdM. Soybean production process and maintenance
policies are described in the next section, followed by the description of
the AI-based PdM framework methodology. Afterwards, the section on
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integrated industrial system for the maintenance of soybean production
equipment describes the current approaches and elements. The experimental
set-up section depicts the overall architecture, the specific experiments
performed and results. Finally, the last section concludes and highlights
the next steps.

4.5.2 Maintenance Foundations

Maintenance is defined by the standard European Standard EN 13306 as
“the combination of all technical, administrative and managerial actions
performed during the life cycle of an item intended to retain it in or restore
it to, a state in which it can perform a required function” [1]. A maintenance
management plan is required to perform the maintenance operation.

Maintenance management is defined as the sum of all the management
activities that determine the maintenance objectives, strategies and respon-
sibilities, and implementation through maintenance planning, maintenance
control, and improvement of maintenance activities. Regular maintenance is
critical to keep the equipment/motors and the work environment safe and
reliable. Several types of maintenance are defined by the EN 13306 standard
and illustrated in Figure 4.5.1.

The classification includes the following maintenance types [1]:

Reactive Maintenance (RM) is a run-to-failure maintenance management
method, offering maximum production output of the equipment by using it to
its limits. The maintenance action for repairing equipment is performed only
when the equipment has broken down or been run to the point of failure. The
cost of repairing or replacing a component would potentially be more than
the production value received by running it to failure.

Figure 4.5.1 Maintenance types. Adapted from EN 13306 Standard [1].
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Preventive Maintenance (PvM), time-based, or scheduled is a maintenance
procedure conducted periodically with a planned schedule in time or process
iterations to anticipate process/equipment/motors failures. The main aim
is to improve the efficiency of the equipment/motors by minimising the
failures in production preventive maintenance works usually under a pre-
existing maintenance schedule provided by the equipment’s manufacturer
The procedure is used in many different industrial processes to avoid failures.
However, the method requires several corrective actions that can lead to
increased operating costs.

Condition-based Maintenance (CBM) is defined as a method based on
constant equipment/motors monitoring or their behavioural health that can
be performed when they are necessary and not planned. The maintenance
actions can be performed when the actions on the process are taken after one
or more conditions of degradation of the equipment/motors.

Predictive Maintenance (PdM) is based on the continuous monitoring
of the equipment/motors to detect trends in the health of a machine and
using prediction tools, models, and algorithms to predict when failure occur
and estimate when such maintenance actions are required, and maintenance
scheduled.

Prescriptive Maintenance (PsM) uses sensors, data, and advanced analytics
to determine the root cause of a potential failure so specific corrective action
can be prescribed. A fully proactive/prescriptive maintenance implements the
following tasks. The workflow starts with detection – measuring machine
vibrations and making comparisons to the baseline or previously measured
data to determine changes in condition. If significant changes occur, the
data are analysed to identify problems and prepare maintenance timelines.
Analysis involves evaluating the relationship between phase, frequency and
amplitude in the data collected from various sensors to deduce the symptoms
that identify the root problem. If necessary, maintenance or corrective repairs
are scheduled. Additional measurements are taken to Verify that the problem
has been fixed. Finally, data history is studied to determine the Root Cause
so that it can be avoided if the problem is recurrent. PsM solutions are in
the first stages of evaluation and the implementations still require increased
complexity and costs.

The solution presented in this article focusses on a PdM system approach
that does not involve the prescriptive part, which is envisaged in the next
development steps. Figure 4.5.2 illustrates the comparison between PdM,
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Figure 4.5.2 Failure and maintenance timing. Adapted from [8].

PvM and RM types in terms of maintenance plans and intervention timing
and Figure 4.5.3 shows the comparison in terms of cost.

The maintenance types display different trade-offs between repair cost
and prevention cost. PvM has the lowest repair cost – due to well-scheduled
downtime – but has the highest prevention cost, while RM has the lowest

Figure 4.5.3 Comparison of maintenance cost and frequency of maintenance. Adapted from
[3].
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prevention cost – due to using run-to-failure management – but has the
highest repair cost. PdM’s goal is to predict when the equipment is likely
to fail and to decide which maintenance activity should be performed.
Therefore, PdM can achieve the optimal trade-off.

Although PdM supersedes both PvM and RM, the total cost of its
condition monitoring devices (e.g., sensors, IIoT devices) is often higher.
PdM systems become increasingly complex to detect failures in early stages,
using real-time IIoT data, historical data, prediction tools such as AI, machine
learning (ML) methods, feature extraction from sensor and monitoring
analysis, model-based condition analysis, statistical inference approaches and
engineering techniques.

For the soybean production the focus is on predictive maintenance
using condition-based monitoring and AI-based techniques for the prediction
algorithms.

4.5.3 Principles of Predictive Maintenance

PdM collects data from IIoT sensors and devices connected to machines
and processes the data through predictive algorithms to discover trends and
identify when the equipment needs to be repaired or retired.

The principle of PdM is to use the actual operating condition of systems
and components to optimise operation and maintenance – neither running the
equipment to failure, nor replacing it when it still functions. Maintenance
is conducted only when necessary. The motors requiring maintenance are
identified in time and are shut down only just before imminent failure occurs,
a decision that reduces the time and money spent on maintenance, minimising
the production hours lost to maintenance as well as the cost of spare parts
and supplies. Maintenance is scheduled when specific conditions are met and
before the equipment/motors break down.

When PdM is used in industrial processes, such as soybean production,
maintenance is performed by observing specific parameters or components
(e.g., equipment, motors) of the system or production line. The advantage
of this procedure is that the system is controlled in real time based on the
monitored parameters. The equipment/motors in the production systems have
an operating curve that is well defined by the manufacturer.

PdM has the possibility of detecting potentially critical situations with
the equipment/motors that lead to serious consequences situations before they
arise. A cost-benefit analysis is conducted before deciding if PdM is profitable
and preferred for a specific motor.



334 AI and IIoT-based Predictive Maintenance System

The performance of a PdM system – deciding which machines to keep
running and which to schedule for maintenance – depends on the accuracy
of the information gathered from various sensors, IIoT devices and the
algorithms’ ability to interpret that information i.e., the system’s intelligence.
CBM enables real-time evaluation of machine health and triggers alarms
(e.g., by indicating excess vibration or temperature) so that immediate
corrective action can be taken to avert failure.

There is a dependency between PdM and CBM and PsM. CBM can be
standalone without a PdM in place, but PdM relies on CBM in collecting,
comparing, and storing measurements that determine a machine’s health.
Also, PdM is part of a proactive (prescriptive) maintenance approach but is
not necessarily a fully proactive/prescriptive system: it does not guarantee
that the root causes of problems and failures are eliminated.

4.5.4 Soybean Production Process and Maintenance
Policies

The predictive maintenance policies for soybean production are centred on
improving the efficiency of the equipment/motors utilisation, reducing the
down time, estimating the remaining useful lifetime of the equipment/motors,
and reducing the overall maintenance costs.

The approach used for the soybean production process is based on
condition-based monitoring implemented using various sensors, IIoT devices
that allow a continuous monitoring process of relevant equipment/motors
sensor parameters. Condition based monitoring is combined with AI-based
methods and edge processing to identify the parameter changes that occur
before a failure and predict a future period in which the parameter changes
appear, and thus the failure might happen.

The policies adopted are based on the production manufacturing goals,
the selected category for conditioning monitoring, the maintenance scope,
fault detection categories, manufacturing system size, predictive AI-based
techniques, data handling and the evaluation approach. A short description
of these different categories selected for the soybean production process and
maintenance policies is presented in the following paragraphs.

The predictive maintenance system combining CBM, and AI is aimed
to minimise the downtime of the soybean production line as it allows
to plan maintenance actions and group-specific maintenance actions to
reduce the number of production stops for single maintenance actions.



4.5.4 Soybean Production Process and Maintenance Policies 335

Minimising downtime helps reducing costs and increase productivity.
The goals are aligned with the non-functional requirements (NFRs) for
the implementation, such as reliability, compatibility, and maintainability
according to the standard ISO/IEC 25010 (SQuaRE - Systems and software
Quality Requirements and Evaluation) [4].

The selection of NFRs such as maintainability and reliability emphasises
the importance of preserving the system’s capabilities over the operational
lifetime. The reliability aims in improving individual components and
providing redundancy. Maintainability enhances the maintenance measures
to implement and improve preventive maintenance, apply predictive
maintenance measures, and increase repair capability and speed.

The soybean production PdM system aims to evolve from inspection-
based monitoring to sensor-based continuous online monitoring in real-
time. With sensor-based monitoring, various IIoT sensors and devices
monitor vibration, temperature/thermography, sound/noise, current/voltage
parameters and collect the relevant data. Continuous collection of relevant
monitoring data is used to identify the running state and estimate the useful
life of the equipment/motors.

Figure 4.5.4 shows the operative curve slope of the machine condition
dependency on the life cycle of the equipment that is typical for industrial
motors and hence applicable in our case. At the failure inception point,
the machine’s condition starts to deteriorate, and various sensor modalities
(such as vibration, temperature, sound and current) can reveal conditions
that indicate the machine’s potential for failure. The combinations of
parameter measurements associated with specific failure modes, such as
motor imbalance, misalignment, loose coupling and degraded bearings,
are valuable data. These data sets are used as input to supervised
learning algorithms (such as decision trees or neural-network models)
to later predict those failure modes from real-time sensor data collected
from motors.

As illustrated in Figure 4.5.4, a vibration analysis is typically an indicator
of machine health. It enables the early detection of a sudden failure and helps
to eliminate downtime due to such a failure. A well-designed PdM system
uses a combination of several sensor modalities to determine the time elapsed
from the detection of deterioration symptoms to the failure of the equipment.
For example, increased current consumption, noise or heat typically suggests
a shorter potential to failure time interval for most motors.
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Figure 4.5.4 Parameters monitored during equipment life-time operation. Adapted from
STMicroelectronics.

In the case of soybean production, vibration, sound, temperature, and
current modalities, are monitored as part of the CBM and integrated into the
PdM system.

The soybean production predictive maintenance system focuses on the
prediction of the future conditional state of equipment/motors to schedule
maintenance activities in an appropriate way and scope, and provide fault
detection, attempting to predict the remaining life of the equipment/motors
and in the future to identify the root cause of the failure based on the collected
data.

The future activities are targeting the processing of acquired monitoring
data to reveal the reasons for future failure. The feasibility and accuracy of
a fault detection approach depend on the monitoring activity level, which
means that the more equipment/motors parts and components are monitored
separately, the better can be identified where the root cause for a future
failure is.
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Manufacturing system size for the soybean production PdM is applied
to single-component equipment/motors. Further work could focus on multi-
component systems. The implementation of PdM system for these multi-
component systems requires increasing the number of monitoring devices
and processing data and dependencies between the equipment/motors’
components.

PdM incorporates a combination of monitoring techniques such as
ultrasonic, vibration, noise/sound, temperature/thermography, and motor
parameters (e.g., current, voltage, load).

The selection of the sensors is important as the sensors can detect certain
faults and failures. Several types of parameters and transducer types are
considered for monitoring the equipment/motors:

• Vibration is measured using accelerometers based on piezo transducers
with low noise measuring frequencies up to 30kHz to identify
bearing conditions, gear meshing, misalignment, imbalance, and load
conditions. MEMS accelerometers offer low cost/power/size solutions
for vibration measurements up to 20kHz.

• Sound pressure is measured using low cost/power/size microphones
detecting sound with frequencies up to 20kHz for identifying bearing
conditions, gear meshing, pump cavitation, misalignment, imbalance,
load conditions or ultrasonic microphones detecting sound with
frequencies up to 30kHz.

• Currents up to 150 A are measured using a clamp-on transformer with
wireless capabilities (e.g., LoRaWAN).

• Temperature is measured using thermocouple or thermistor sensors (e.g.,
temperature range from 0 to 85◦C. An infrared camera is considered for
taking thermographic images of the motors.

4.5.4.1 Vibration Analysis

Predictive maintenance incorporates a combination of monitoring techniques,
such as vibration, noise/sound, temperature/thermography, and motor
parameters (e.g., current, voltage and load). Vibration analysis stands out
due to the multitude of problems that can be discovered and rectified
through it.

Vibration is adaptable to various machines and indicates overall machine
condition and problem severity, and analysis provides information on specific
faults.
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A vibration analysis is the best indicator of the condition of motors
with rotating parts. It is considered a direct measurement for detecting
and monitoring imbalance, misalignment, and looseness of a rotating part.
Machines/motors vibrate regularly when operated, and a low vibration level
normally indicates that the equipment is running correctly. When vibration
begins to increase, the machine may be about to fail.

Vibration amplitude can be expressed in units of displacement, velocity
or acceleration. Displacement is a measurement of the linear movement
in the signal as the machine oscillates back and forth. Velocity is the
speed of the signal as the machine oscillates back and forth. Acceleration
is usually compared to the gravitational acceleration in the signal at the
instant the oscillation changes direction. In summary, displacement is the
peak-to-peak movement of the vibrating part. The velocity is the speed
at which displacement occurs, and acceleration is the rate of velocity
change.

Vibration is the motion of machine components caused by dynamic
forces. It refers to the mechanical oscillations around an equilibrium point.
The oscillations may be periodic, random, or transient. Transient vibration
appears, for example, when pump cavitations occur due to an improper
system line-up.

Vibration is described by amplitude (typically velocity), time, frequency,
and phase. Vibration is measured by transducers that convert vibration motion
(e.g., an accelerometer to measure g-force on a 3-axis and then convert speed
and frequency into an electrical signal for processing), vibration meters that
detect only amplitude (no frequency components) and vibration analysers
that convert amplitude versus time to amplitude versus frequency (spectrum
analysis).

Faults can be detected early using a full signature (spectrum) analysis,
frequency analysis parameter sets and overall vibration levels (no specific
faults can be detected via this method). Types of faults that can be detected
include misalignment, looseness, bearing defects or wear, unbalance, internal
component rubbing and resonant structural conditions.

Different vibration sensors are under evaluation for the implementation
including two high-performance accelerometer-based sensors with very low
noise operation (45 µg/√Hz ±2g, and ±10g), 3D accelerometer + 3D Gyro
inertial measurement sensor, and an ultra-wide bandwidth (up to 6 kHz) low-
noise 3-axis digital vibration sensor.
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4.5.5 AI-based Predictive Maintenance Framework
Methodology

The AI-based predictive maintenance framework includes the design and
development of an intelligent multi-sensors wireless system that comprise
the following steps:

• Define the system architecture.
• Find sensors that measure and collect the required physical parameters

with the correct accuracy and stability at the right price and availability.
• Determine the required processing microcontroller specifications,

including computational power, memory, interfaces, and AI-based
capabilities.

• Choose the connectivity and communication protocols technologies.
• Design the power management, form factor and integration into the

industrial system.
• Outline the edge integration strategy and the overall collection of

information flow.
• Develop the AI-based models and algorithms.
• Implement the required analytics and characterise the system.
• Validate the AI-based system in the real application scenario.

The AI-based algorithms are fed with data gathered to monitor the
motors/equipment parameters and train models to identify possible
anomalies.

The architecture used for predictive maintenance allows the implemen-
tation of edge machine learning, using intelligent capabilities of IIoT devices,
which can be deployed to run AI models directly on the motors/equipment.

The IIoT devices collect the information from sensors in the edge
node in real-time, allowing continuous monitoring of the motors/equipment
operations. Data is processed in the cloud and locally at the edge from
machine learning predictive models, detecting anomalies.

The overall AI-based predictive maintenance framework used for the
soybean production is illustrated in Figure 4.5.5. The AI-based models can
be deployed at different micro, deep and meta-edge levels as illustrated in
Figure 4.5.6. The work described in this article consider the case of the
deployment of the AI-based models at the meta-edge level.

AI-based PdM refers to the ability of a PdM system to use knowledge
and sensor data to anticipate and address potential issues before they lead to
breakdowns in operations, processes, services, or systems. In the context of
the soybean production demonstrator, three AI-based techniques have been
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Figure 4.5.5 AI-based predictive maintenance framework.

explored: knowledge-based, ML-based and DL-based approaches. A more
comprehensive survey of current AI approaches for PdM can be found in [9].

Knowledge-based approaches make use of domain expert knowledge and
deductive reasoning, of which expert systems and model-based reasoning are
two representative examples.

Expert systems typically consist of a knowledge database and an
inference engine. The knowledge database contains the human domain expert
knowledge represented in a form that can be processed by machines. For
example, rules are structured in an “if A, then B” format. The inference
engine consists of algorithms, which, via step-by-step inferences, draw
deductions based on the knowledge rules.

Model-based approaches are applicable in cases where physical processes
that have an impact on the health of the equipment can be simulated using
mathematical models. The advantage of these approaches is that they are
effective and accurate, and models can be reused. However, complex systems
cannot always be approximated precisely using explicit mathematical models.

Knowledge-based approaches are feasible when there is a lot of human
expert knowledge and experience that can be modelled but not enough data.
On the downside, knowledge bases take time to acquire and represent on
computers, and if some knowledge is missing or incomplete, a less reliable
result will be produced.

Machine learning (ML)-based approaches are useful when domain
knowledge and experience is scarce, but vast amounts of data are available,
allowing ML algorithms to search for large patterns and extract useful
knowledge. ML algorithms developed for the context of PdM include
Artificial Neural Network (ANN), decision tree (DT), Support Vector
Machine (SVM), k-Nearest Neighbours (k-NN).

These approaches typically involve feeding a neural network with data
(images, vibration, audio, etc.), and the network thus trained would then
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be able to accurately guess the motor diagnosis when fed with real-time
sensor data.

The advantage of ML-based approaches is that they do not rely on a
domain expert’s knowledge and are able to handle large amounts of real-
time sensor data, thus allowing for automation. ML-based approaches also
have limitations depending on the use case application of the PdM. A survey
of ML methods applied to PdM, their challenges and opportunities can be
found in [2].

Deep learning (DL)-based approaches have been proven to be superior
to ML-based approaches in the field of PdM. For example, Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) are widely
applied.

It is technologically possible to combine the above approaches to obtain
the best trade-offs. For the demonstrator, a combination of regression
methods and statistical techniques, along with CNN or RNN, is under
evaluation.

The choice of DL algorithms for the demonstrator is justified by their
abilities in feature learning and prediction involving multilayer nonlinear
transformations. CNN can extract local features of the input data and combine
them layer by layer to generate high-level features. The CNN structure
consists mainly of input layer, convolution layer, pooling layer, and fully
connected layer [9][7][10]. The steps involved are data collection, the data
pre-processing, the data transformation [6], and the CNN model creation [5].

Preparation of the training data requires analysing the following
information sources: real-time data from the IIoT monitoring devices,
the motors/equipment fault history, including the description of the error
events, the failure scheme that contains a sufficient number of failure
cases, motors/equipment maintenance/repair history including information
about replaced components, predictive maintenance tasks performed, and the
motors/equipment conditions to estimate the life-time. The data collected
should contain time-varying functions that acquire ageing patterns or any
anomaly that could cause performance reduction.

For training/learning the data pre-processing requires to create/construct
the datasets, create the features, and the anomalies and normalise the data
sets that they can be used for training. For supervised anomaly detection ML
models, creation of data sets for training and testing are both needed.

The DL models can identify an anomaly, and the edge device
sends a notification to signal that was recognised a different function
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pattern (e.g., different current consumption, increased operating temperature,
alternative operational state, different vibration, and sound patterns, etc.).

Whereas model training is primarily done in cloud, model inference is
performed at the edge and on the devices to allow for information to be
captured and analysed without transferring across network communication
protocols or storing in cloud infrastructure.

4.5.6 Industrial Integrated System for Soybean Production
Equipment Maintenance

The architecture proposed takes into consideration that the IIoT sub-systems
are connected to different edge gateways, and then the information is
aggregated to an on-premises edge server as presented in Figure 4.5.6. The
edge computing solution proposed is to improve the performance, security,
operating cost, and reliability of IIoT and AI-based platform, applications,
and services.

The system design is based on a heterogeneous wireless sensor network
that consists of sensor nodes and IIoT devices with different communication
interfaces (e.g., BLE, LoRaWAN, Wi-Fi), computing power, sensing range
and AI-based processing capabilities.

The system implements an architecture integrated at micro, deep and
meta-edge levels, allowing heterogeneous wireless sensor networks to
communicate with the various gateways while integrating the information

Figure 4.5.6 Industrial integrated system for equipment maintenance.
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from heterogeneous nodes in a shared on-premises edge server application
and a shared database. The network architecture allows for interfacing with
the existing SCADA system and providing a secure link to external cloud
applications.

The micro-edge implementation increases the information acquisition
from the intelligent edge sensors placed on equipment/motors and allows end-
users to build predictive maintenance solutions based on advanced anomaly
detection algorithms.

The heterogeneous architecture provides the ability to retrieve data from
LoRaWAN and Wi-Fi wireless sensor nodes using for example the MQTT
protocol. The architecture has several advantages related to integrating
data from heterogeneous sensor nodes and providing a mechanism for
their transmission to an on-premises edge computing server and creating
geographically distributed wireless sensor nodes over the production facility.

LoRaWAN network is deployed in a star topology, where the end
nodes communicate with the LoRA gateways. Information received by LoRa
gateways is sent to the LoRA network server and the application server using
an IP-based backhaul network. The components integrated into meta-edge are
detailed in Figure 4.5.7.

AI models can run on the edge server, considering the ability to use the
Kubernetes platform on-premises.

Two or three nodes (servers/processing units) can be connected to
the master node running the “brain” of the Kubernetes. A cluster of
nodes/resources need to be created virtually by sharing the available CPUs
and RAMs using the on-premises edge server.

The edge server interfaces include protocols such as MQTT, HTTPS
using RESTful API, OPC UA, etc.

Figure 4.5.7 Soybean production predictive maintenance system demonstrator.



344 AI and IIoT-based Predictive Maintenance System

The soybean manufacturing facility produces soy oil, lecithin, and meal.
In the soybean production line, the hammer mill located in the crushing area
of the plant is defined as one of the most critical equipment to monitor and
prioritised in the predictive maintenance use case.

The lumps in the soybean meal are crushed in two parallel hammer
mills, and the meal is transported to the soybean meal storage. The hammer
mills are only inspected visually by operators two times a day and have no
communication back to the control system. The hammers and shafts get worn
repeatedly, and trained operators can sometimes hear the weariness before a
breakdown. The hammer mills sound picture is an important characteristic
that can indicate an imminent accident.

The experimental set-up comprises of the physical/field part that includes
the equipment/motors and the IIoT sensors and actuators. The control
layer includes different types of network and domain controllers, PLCs,
communication IIoT gateways, etc. The operation and information layers
include backbone network, clients (e.g., OPC), edge server(s), and data
storage.

Predictive maintenance demonstrator performs maintenance based on the
motors/equipment health status indicators. The IIoT-based sensors are used
to measure unusual patterns of motors parameters, such as motor’s vibration
level, temperature, current consumption, and, based on experience, failures
are preceded by an unusual pattern of these parameters. A convolutional
neural network (CNN) DL technique capable of extracting data representation
is planned for the demonstrator that is integrated in the AI-based model and
the algorithms developed.

CNN deep learning is proposed due to its shared weights and the ability
of local field representation to extract the input sensors/IIoT data features
and combine them layer by layer to generate high-level features. The CNN
structure consists of the input layer, convolution layer, pooling layer, and fully
connected layer.

CNN can extract valuable and robust features from IIoT and sensor
monitoring data such as raw vibration signals to identify fault types. For
example, the vibration signals can be converted to discrete frequency
spectrum via Fast Fourier Transform (FFT) and use CNN to analyse the
spectrum-principal-energy-vector and obtains a series of eigenvectors. Next,
a CNN model can be used for regression prediction. RNN deep learning is
another method evaluated in the project that includes feedback connections
in ANN architecture, accounting for past input state influence to the current
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network output. Compared with the simple feedforward architectures, the
training of the RNN architecture is a much more complex task.

The edge computing approach is integrated and interfaced with industrial
SCADA infrastructure and linked through the historian component.

Consolidating the historian, SCADA, and HMI applications alongside
new containerised functions for PdM using AI-based models and algorithms
alongside an IIoT stack supports the processing at the edge and the AI
deployment.

4.5.7 Experimental Set-up and Implementation

The overall architecture and role of the different components, technologies
and protocols that constitute the PdM system is depicted in Figure 4.5.8.
The evaluation approach for the soybean production PdM system is based
on specific experiments conducted to validate the approach. The experiments
are limited to test setups suitable to demonstrate the concept. The aim is to
scale up the system as the experiments validate the different solutions.

As vibration analysis is the most common technique of PdM programs
in the industry, this section focuses on experimentation related to
the vibration parameter. The deployed HW/SW predictive maintenance
solution measure and analyse vibrations to detect abnormal behaviours of
the motors/equipment, with AI-based techniques for detecting operating
anomalies before a failure occurs.

Figure 4.5.8 Overall architecture.
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The inference is applied as well to a class of devices based on
microcontrollers (e.g., STMicroelectronics microcontrollers) that have AI-
based components and can implement semi-supervised learning engine
that aggregates data from sensors, identify and create a reference
behavioural profile of the motor/equipment, then detects and acts upon
anomalous/abnormal behaviour.

Every machine component produces a specific type of vibration signal,
which, when displayed in the vibration spectrum, often forms characteristic
patterns. Pattern recognition is a key part of vibration analysis, but significant
training and experience are necessary to read patterns.

The experimental setup uses a four item software stack: Node-RED [15]
and MQTT [16] to collect vibration measurements from two IIoT devices
placed on an AC test motor; and InfluxDB [11] and Grafana [13] to store the
data into a database and query the database to build dashboards and create
visualisations of the data in the form of charts, graphs and more.

Node-RED implements various automation logic, while InfluxDB
is preferred over other databases (such as MySQL); a timestamp is
automatically added when data are pushed into the database. The
experimental setup is detailed in Figure 4.5.9.

An MQTT broker (e.g., Mosquitto [12]) is installed on a separate server.
The IIoT devices are connected to the broker using a 2.4 GHz band Wi-
Fi connectivity protocol. An analysis of the load on different channels was
conducted before selecting the channel for the IIoT sensor node. As illustrated
in Figure 4.5.10, some channels are loaded more than others depending on the

Figure 4.5.9 Experimental set-up detailed.
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Figure 4.5.10 Spectrum analysis Wi-Fi 2.4GHz.

Wi-Fi devices operating in the area where the sensors are installed. For the
setup the channel with the lower load was selected (channel 12).

The IIoT devices are set up to use MQTT and have five channels (three
for the accelerometer and two for inclinometer) that are active and enabled
for static or streaming mode. During the former, measurements are published
to separate topics, while during the latter all measurements are published to a
single topic.

The data is parsed on the Node-RED. The Node-RED flow connects
to the MQTT broker and subscribes to each sensor’s measurement topic,
waits for the payloads, checks the acquisition mode, parses the payload,
extracts measurements, displays the data on live dashboards, stores data into
the database and displays in Grafana. A Node-RED flow is visualised in
Figure 4.5.11 and a Node-RED dashboard in Figure 4.5.12.

The Payload Parsing node function receives as input the payload sent from
the IIoT device and captured by the MQTT broker nodes. The payload is
sliced into sections, each section will hold only the payload of each field of
the MQTT frame content and return them in array object.

The Measurement Threshold Alarm function listens to measurement
values and send notification if a defined threshold is reached. SMTP or SMS
to mobile are used for notifications. Other functions nodes are preparing the
data for the database and for the Node-RED live dashboard.
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Figure 4.5.11 MQTT subscriber with Node-RED flow (vibration sensor per topic).

Figure 4.5.12 MQTT subscriber with Node-RED results (vibration data streaming).

During the preliminary vibration analysis, techniques, such as K-means
clustering to organise the measurements into useful clusters and non-linear
regression to make predictions inside and outside of the training sets area,
have been employed. The sensor data were also processed visually as
3D points and inputted to a K-means clustering and non-linear regression
together with data to test against the learning data.

This configuration is implemented on meta-edge server, where MQTT,
Node-RED, InfluxDB and Grafana are setup to work together. This workflow
can also be implemented on deep edge. Furthermore, Node-RED and possibly
also MQTT can be replaced with Telegraf [14] in case of simpler flows with
less automation logic, thus reducing the software stack.

In addition to the above flow, a second flow has been deployed using
the STWIN SensorTile Wireless Industrial Node [17], which is a complete
sensor-to-edge and cloud ecosystem with environmental sensing, vibration
monitoring and sound/ultrasound detection. It also features a debugger,
embedded signal processing libraries running on an ARM Cortex-M4
microcontroller and an ultra–low-power accelerometer to preserve battery
life during monitoring. As shown in Figure 4.5.13, it has digital and
analogue microphones, inertial sensors and temperature and pressure sensors
connected through wired or wireless options.
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Figure 4.5.13 STWIN SensorTile wireless industrial node.

Data from all the sensors are sent to a USB at the maximum data rate for
analysis by the computer; it can also be stored on an SD card or transmitted
using BLE or Wi-Fi capabilities.

The device can be connected directly to the cloud through a secure
connection using certificates. On the cloud side, it is also possible to collect
data from various devices that are located at disparate places and/or from
devices using different connectivity. AI methods can be employed to collect
data at the edge and in the cloud.

The test setup includes several IIoT devices that take various
measurements using BLE, Wi-Fi or LoRaWAN communication protocols and
an AC low power e-motor installed on a lab test bench.

The data collection flow was also tested by IIoT devices connected
directly to the cloud through the Wi-Fi expansion to verify the STWIN
device’s capabilities and fitness to the purpose. The end-to-end solution
includes access to a dashboard for the predictive maintenance application that
allows data from the IIoT devices to be collected and visualised. The sensor
parameters have thresholds that trigger alarms and warnings.

Another IIoT device was connected via Bluetooth to an Android tablet
with the BLE app installed. The app recognised the board after the board
with the preloaded software was powered up. The data collected from the
sensors are illustrated in Figure 4.5.14.
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Figure 4.5.14 Real-time data from the three-axis MEMS vibration sensor.

The various graphs show the live data coming from the three-axis MEMS
vibration sensor and the FFT applied to the signal received from the vibration
sensor that indicates the main frequencies in the spectrum.

As illustrated in Figure 4.5.14, thresholds have been added to the sensors,
and unbalanced situations were purposely created to trigger the alarms
and warnings associated with the vibration parameters. The data logs were
downloaded for further analysis and processing.

4.5.8 Summary and Future Work

This article presented an AI- and IIoT-based PdM for soybean processing
and its implementation approaches. The PdM foundations described in
the article are followed to develop a PdM concept that fits the process
requirements of soybean manufacturing. The maintenance scope assumes
that every maintenance action conducted at the equipment/motors restores
functionality and durability to their original level. The PdM solution for the
soybean production system targets individual equipment. Future activities
could address the possibility of grouping maintenance actions that may lead
to an overall cost reduction for maintenance activities.

The proposed edge computing solution improves the performance,
security, operating cost and reliability of IIoT and AI-based platform,
applications and services.

The system design is based on a heterogeneous wireless sensor network
consisting of sensor nodes and IIoT devices with different communication
interfaces (e.g., BLE, LoRaWAN, Wi-Fi), computing power, sensing range
and AI-based processing capabilities. The network architecture allows for
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interfacing with the existing SCADA system and providing a secure link to
external cloud applications.

Future work will focus on data fusion and filtering to integrate multiple
sensor data and generate data that are more reliable than individual sensor
data. The proposed convolutional neural network DL technique to extract data
representation will be further evaluated to integrate the AI-based model and
the algorithms developed. The vibration signals collected will be converted
to a discrete frequency spectrum via Fast Fourier Transform and further
analysed to improve the PdM model.

The AI- and IIoT-based PdM concept will be further developed for edge
processing at different levels by combining micro, deep and meta-edge with
local data access and storage.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] EN 13306:2017, Maintenance Terminology. European Standard. CEN
(European Committee for Standardization), Brussels, 2017.

[2] T.P. Carvalho, F.A.A.M.N., Soares, R. Vita, R. da P. Francisco, J.P.
Basto, and S.G. S. Alcalá, (2019). A systematic literature review
of machine learning methods applied to predictive maintenance,
Computers & Industrial Engineering, Volume 137. Available online at:
https://doi.org/10.1016/j.cie.2019.106024

[3] Netto A.C., A.H. de Andrade Melani C.A. Murad, M.A. de Carvalho
Michalski, G.F. Martha de Souza, S.I. Nabeta (2020) A Novel Approach
to Defining Maintenance Significant Items: A Hydro Generator Case
Study. Energies. 2020; 13(23):6273. Available online at: https://doi.org/
10.3390/en13236273

[4] ISO/IEC 25010:2011. Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models.



352 AI and IIoT-based Predictive Maintenance System

[5] W. Silva, M. Capretz, (2019). “Assets Predictive Maintenance Using
Convolutional Neural Networks,” in 20th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD)

[6] Z. Wang, T. Oates (2015). “Imaging time-series to improve classification
and imputation,” 2015, arXiv:1506.00327. Available: http://arxiv.org/ab
s/1506.00327

[7] K. S. Kiangala and Z. Wang, “An Effective Predictive Maintenance
Framework for Conveyor Motors Using Dual Time-Series Imaging and
Convolutional Neural Network in an Industry 4.0 Environment,” in
IEEE Access, Vol. 8, pp. 121033-121049, 2020, Available online at:
https:// doi: 10.1109/ACCESS.2020.3006788.

[8] R. K. Mobley, An introduction to predictive maintenance. Elsevier, 2002
[9] Ran, Y., Zhou, X., Lin, P., Wen, Y. and Deng, R. (2019). “A Survey

of Predictive Maintenance: Systems, Purposes and Approaches”. IEEE
Communications Surveys & Tutorials, 20, pp. 1-36. Available online at:
https://arxiv.org/pdf/1912.07383.pdf

[10] L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network
based feature learning and fault diagnosis method for the condition
monitoring of gearbox,” Measurement, Vol. 111, pp. 1–10, 2017.

[11] InfluxDB Platform. Available online at: https://www.influxdata.com/pr
oducts/influxdb-overview/

[12] Eclipse Mosquitto. Available online at: https://mosquitto.org/
[13] Grafana. Available online at: https://grafana.com/grafana/
[14] Telegraf. Available online at: https://www.influxdata.com/time-series-

platform/telegraf/
[15] Node-RED. Available online at: https://nodered.org/
[16] MQTT. Message Queuing Telemetry Transport. Available online at: ht

tps://mqtt.org/
[17] STWIN SensorTile Wireless Industrial Node. Available online at: https:

//www.st.com/en/evaluation-tools/steval-stwinkt1.html



Section 5

AI Transportation

353



http://taylorandfrancis.com


5.0
Applications of AI in

Transportation Industry

Mathias Schneider1, Matti Kutila2 and Alfred Höß1

1Ostbayerische Technische Hochschule Amberg-Weiden, Germany
2VTT Technical Research Centre of Finland Ltd., Finland

Abstract

This introductory article opens the section on “Applications of AI in
Transportation Industry”, giving a broad overview of the latest AI
technologies in the transportation industry, with an additional focus on the
developments enabling automated Mobility-as-a-Service (MaaS). It presents
future capabilities and opportunities for AI, together with covering state-of-
the-art Intelligent Transport Systems (ITS) trends, including advancements
on the vehicle, infrastructure, and management level. Finally, the article
outlines the two papers included in this section, highlighting concepts and
challenges of using AI for automated, optimised, and individual passenger
transport.

Keywords: intelligent transport systems (ITS), mobility-as-a-service
(MaaS), advanced driver assistance systems (ADAS).

5.0.1 Introduction and Background

Transportation industry is a crucial element to guarantee our daily lives.
Following the previous trends of the last decade, the transportation industry
has pioneered by digitising its processes by introducing extensive data
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systems and automated agents, spanning from the vehicle up to traffic
systems.

To understand and control this data, it became mandatory to optimise
processes on the micro- and macroscopic level in this complex, ever-
changing ecosystem. However, since data alone does not enable higher
efficiency, safety or automation, the demand for data processing is constantly
increasing. Thereby, specific use cases, e.g., in the field of automated driving,
require high demands in terms of latency. Decentralised, intelligent systems
leveraging efficient AI models and suitable edge computation platforms
are currently being investigated to close the gap. These developments will
contribute to the European Commission long-term strategies “Vision Zero”
(reduce road fatalities to almost zero) and “European Green Deal” (climate-
neutrality), which should be reached by 2050.

In this introduction article, we will introduce the state-of-the-art for
automated passenger transport. Thereby, we will elaborate on recent trends
on AI-enabled automated MaaS in the field of ITS and envision possible
opportunities. Finally, the article outlines ongoing activities concerning the
AI4DI project that are presented in two separate articles.

5.0.2 AI Developments in Transportation Industry

In recent years, AI progressively became an imperative approach for
processing ITS related data. This trend, reinforced by wide industrial support,
establishes a solid foundation to build an efficient MaaS architecture.
Accordingly, the latest progress for Machine Learning (ML) applications is
discussed based on the survey by Yuan et al. [1]. The authors of this paper
structure ML applications in three primary tasks: perception, prediction, and
management. This differentiation corresponds to the processing architecture
for automated driving, namely perception, planning, and control, which by
itself is an expansive research field [2] [3].

Perception – Nowadays, due to the broad usage of different sensors
such as cameras, LiDARs, and radars, traffic perception data’s variety
and quantity increased exponentially. Accordingly, ML approaches are
progressively leveraged as a first step to process this data to retrieve valuable
information. Perception aspects deal with the physical world (road, vehicles,
and pedestrians) and the monitoring of the digital components (reliability and
security of the communication network).
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Whereas earlier work for object classification, detection, and segmentation
leverages mainly supervised ML algorithms such as Support Vector
Machines (SVM) utilising hand-crafted features, recent trends aim to harness
deep-learning (DL) models, capable of embedding features in their neural
network architecture. Common approaches include Convolutional Neural
Network (CNN), and implementations such as YoloV4 [4]. In contrast to
traditional algorithms, these models tend to be more versatile (resolution,
orientation, scene) and robust against anomalies or external conditions
(daylight or weather). Besides perception algorithms relying on a single
sensor-type input, data-fusion approaches are currently under development.
These operate either low-level (a single model uses all raw sensor inputs
for inference) or high-level (multiple networks are used, and outputs are
concatenated at a later stage) [5] and further improve the overall reliability
of the perception module. Moreover, perception algorithms fusing the output
of multiple agents generating HD-maps and digital twins [6] are research
fields.

Prediction – Diverse ML approaches are investigated for ITS to fulfil
prediction purposes, including anticipating traffic, travel times, vehicle
behaviour, and road occupancy. These methods improve the decision-making
fleet management, e.g., regarding the last mile support use case. Traffic
flow prediction methods are applied based on the results of the presented
perception models and are used to determine travel times for vehicles and
passengers. Subsequently, the results are leveraged to eventually optimise
the vehicle and route selection on a global scale. Since these tasks require
the model of temporal-spatial changes, Recurrent Neural Network (RNN)
architectures and derivates, such as Long Short-Term Memory (LSTM) [7],
are employed.

Management – ML for management tasks is considered to raise efficiency
on vehicle-, infrastructure-, and resource-level. This includes control of traffic
lights and a trajectory or route selection for the automated fleet. Secondary
tasks, such as networking and computation problems, are tackled, comprising
resource management for V2X communication [8] and mobility-aware edge
computing offloading [9].

In contrast to the previous domain, ML often investigates deep
reinforcement learning (DRL) techniques for management decisions. For
instance, Deep Q-Learning (DQN) is considered to optimise traffic light
management to minimise queue waiting times [10]. Besides, Proximal
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Policy Optimization (PPO) is leveraged for steering and speed control of an
automated vehicle [11].

5.0.3 Future Trends for Applications in Transportation
Industry

The following paragraphs elaborate on two future applications utilising the
introduced ML technologies in detail.

Automated driving – In recent years, AI has been used commercially
in passenger cars’ Advanced Driver Assistance Systems (ADAS). In
addition, lately, AI has also been used in the development of automated
driving functionalities. CNN and DRL are the most common deep learning
methodologies, which have been successfully applied to automated driving
solutions. Developing a reliable and robust fully Automated Driving System
(ADS) often needs that several AI methods are used together.

Training data is one of the essential requirements and challenges to
develop deep learning solutions. Many ADS developers have done the
collection of large data sets for autonomous driving and environment
perception. Luckily, more and more open data sets have been published
for the research community. One of the best-recognized data sets for ADS
development is the KITTI benchmark suite [12], which includes several data
sets to evaluate various ADS functions [3]. There are also other similar open
data sets such as Waymo Open data set [13], Cityscapes [14], Berkeley
DeepDrive [15], etc. The training data is always limited as it is impossible
to cover all scenarios that an automated vehicle could encounter in the real
world. However, the rapid progress in collecting larger and larger data sets
will enable more advanced deep learning systems on automated vehicles.

The environment perception and scene understanding around the vehicle
is crucial for automated driving. This includes detection of other road users,
road markings and other road furniture. Deep neural networks, such as
CNNs, are today very accurate for detecting, tracking, and classifying various
road user types, including cars, trucks, busses, pedestrians, cyclists, etc.
A breakthrough has been achieved in pedestrian detection solutions with
deep learning [1]. However, there are still some challenges in the pedestrian
detection task from camera data, such as substantial occlusions and bad
weather conditions. Deep learning-based methods are also widely used for
detecting and tracking positions and geometries of moving obstacles (e.g.,
other vehicles) based on camera data [16]. Image segmentation is used to
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classify the pixels of an image into the road and non-road parts [1]. Road
marking detection and recognition involves detecting the marking positions
and recognizing their types (e.g., lane markings, road markings, messages,
and crosswalks) [16]. Other road furniture detection includes, for example,
traffic sign recognition.

AI-based environment perception algorithms utilize only two dimensions
(2D). However, 2D models are not enough in all cases to describe 3D real-
world objects. The 3D perception is based on LiDAR or stereo cameras. 3D
tracking and behaviour prediction of other road users is required in automated
driving. Vehicle behaviour corresponds to braking, steering, lane change and
moving trajectory [1]. Pedestrian behaviour includes actions like running or
crossing the street [1]. In future years, AI and ML will gradually enable better
prediction of the behaviour and intent of other road users.

Traffic flow and public transport travel time prediction – Various
combinations of AI algorithms have been used in predicting traffic flow and
travel time. Travel time predictions enable, for example for vehicle routing,
guide vehicle dispatching, as well as congestion and traffic management.
Forecasting traffic flows and travel time is a complex and challenging
problem, which is affected by diverse factors, including spatial correlations,
temporal dependencies, and external conditions (e.g., events, holidays,
weather, and traffic lights) [1]. For travel time prediction, there are segment
and path-based estimation approaches. Lately, integrated DL methods,
which utilize both segment-based and path-based approaches, have also
been studied. Recently researchers have also combined deep learning with
traditional methods with some success [1].

One problem with AI-based prediction development is that training data
is not readily available as most road networks are not equipped with traffic
measurement sensors. Traffic data can be collected from mobile devices,
and this data is often available from global map data providers such as
Google or Here. In many cases, multiple data sources are used together
to get better results. High-quality public data sets from the real-world are
essential for accurate traffic forecasting. These are progressively available
from some cities in Europe as open public data. For example, the open public
transport data from a city may provide many opportunities to develop new AI-
based tools. Today, most public transport vehicles are fitted with positioning
systems (e.g., Global Navigation Satellite System - GNSS), which provides
accurate real-time information about the current location and movements of
the vehicles. Typically, open public transport data from a city includes vehicle
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Figure 5.0.1 Transportation research areas in AI4DI.

positions, public transport schedules and route identifiers, etc. This kind
of continuous open data stream has enabled the development of Estimated
Times of Arrival (ETA) prediction methods utilising ML. Recently, in many
studies, several external data sources such as weather, traffic and information
about the passengers have been combined for machine learning model
development [17].

5.0.4 AI-Based Applications

AI4DI partners are developing AI and Industrial Internet of Things (IIoT)
technologies with applications in different areas of the transportation industry
sector. This section introduces two articles covering how AI and IIoT are
used in the transportation sector. They present challenges and technological
developments for perception, prediction, and management in the context of
automated MaaS.

The article “AI-Based Vehicle Systems for Mobility-as-a-Service
Application” describes the safe operation of automated vehicles in urban
environments, attempting to improve the environmental perception to detect
other road users by proposing a novel method for data fusion between an
in-vehicle camera and a LiDAR sensor. Accurate 3D object detection and
tracking is achieved by employing deep models (high-level, deterministic,
supervised, and reinforcement learning). The KITTI benchmark suite has
been used for development and validation, with promising results. The gap
between simulated and real environments continuously diminishes with the
rapid advances in autonomous control technology that offer improved visual
and physical experiences.

The article “Open Traffic Data for Mobility-as-a-Service Applications -
Architecture and Challenges” addresses the need for high-quality public data
sets from the real world with advancing digitisation in the domain of ITS and
hence the need for data pre-processing from multiple sources, including raw
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sensor data, to prepare for AI-based modelling. While current pre-processing
is often implemented as a cloud solution, a system architecture is proposed
where computations are scaled and distributed to different layers in the edge–
cloud continuum. A set of data refinement strategies has been developed to
improve data quality and integrity, which refine the data into becoming more
suitable for AI-based MaaS applications.
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Abstract

Achieving sufficient safety measures is among the major challenges
in developing automated vehicles that can operate safely in an urban
environment. Data fusion between an in-vehicle camera and a LiDAR
sensor can be used for detection and tracking of other road users in an
automated vehicle. In addition, simulated environments together with high-
level deterministic, supervised and reinforcement learning-based autonomous
control could provide traffic safety benefits in the future. These AI-based
technologies have been studied in the AI4DI project to enable the Mobility
as a Service (MaaS) operators fleet management of automated vehicles. The
development and testing of these methods are presented in this chapter with
the first promising results. The Camera - LiDAR fusion algorithm provided
very good results with the accuracy evaluation using the KITTI dataset.
The real-time applicability of the fusion algorithm was also successfully
verified.

Keywords: automated driving, sensor data fusion, 3D object detection
and tracking, reinforcement learning, simulation, CNN, training, real-time
systems, neural networks.
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5.1.1 Introduction and Background

This article focuses AI solutions to be used in Mobility as a Service (MaaS)
with fleet management of automated driving “last mile” vehicles. Automated
vehicles could bring improved efficiency to the MaaS, but road safety is a
must. There are several factors affecting the decision making of the automated
vehicle. The automated vehicles must be aware of the surrounding road
users and obstacles and possess quick reaction times in case unexpected
movements or behaviour should occur. This presents the problem of 3D object
detection and tracking, which is a major topic of research with automated or
autonomous vehicles. Having knowledge of the accurate physical locations
of other road users is integral to decision making. In addition, estimation of
the speeds and headings of other road users is required to predict possible
dangerous situations. Therefore, accurate 3D detection and tracking are
needed.

Coming up with the best possible predictions and consequent actions is
mission critical requirement for the automated vehicle. A mission critical
system is a system that is essential to the survival. The selected action depends
on many factors in complex traffic situations. The faster the vehicles are
moving, the quicker the cycle of prediction and action selection must be. This
creates a critical role for system components of the automated vehicle system
including the software components.

This paper presents a novel method for data fusion between an in-
vehicle camera and a LiDAR sensor, which enables the vehicle to map
2D image coordinates to a 3D environment and vice versa. This is utilised
for detection and tracking of other road users in an automated vehicle. In
addition, this paper compares the deterministic, supervised and reinforcement
learning-based autonomous control development possibilities on a high
level. An autonomous control solution blueprint for a control pipeline
that can be trained in a simulation environment is presented. This is
done by combining reinforcement learning control planning capability with
complementary supervised, learning-based observation metadata detection
collection and deterministic safety measures for avoiding collisions and
casualties.

5.1.2 AI-Based 3D Object Detection and Tracking for
Automated Driving

With the increased computing power, there are more possibilities of
implementing AI-based solutions for automated driving systems, which
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require real-time processing rates. A convolutional neural network (CNN)
is one popular solution for 2D object detection. While the CNNs for image
processing are getting more and more accurate, some additional methods are
required to make use of these networks in accurate 3D object tracking.

5.1.2.1 Camera and LiDAR Sensor Data Fusion

Data fusion between a camera and a LiDAR sensor enables the vehicle to map
2D image coordinates to a 3D environment and vice versa. With accurate
inter-sensor calibrations, the 2D detections provided from image data by a
CNN can be transformed into the 3D coordinate system of the LiDAR. This
enables 3D location estimation of objects, while taking advantage of the
accuracy of a 2D CNN. The 3D points provided by a LiDAR sensor can
be projected onto a corresponding 2D image, if the Lidar and the camera
providing the images are calibrated to each other.

The method of combining the point cloud and 2D detection boxes to
obtain object clusters is described in Figure 5.1.1. The output of a 2D
image object detector defines the locations of the objects in the 2D space
using rectangular bounding boxes. The point cloud provided by the LiDAR
sensor can be projected to the same 2D image, and the pixel coordinates
of the projected points can be compared to the detection boxes. The point
projections that are inside a detection box boundary can be tagged so that
the original 3D point is marked as residing inside a detection box in the 2D
perspective. This allows the examination of 3D spatial information of the 2D
detection box. A challenge in this method, however, is raised by the fact that
the 2D detection boxes are usually drawn so that the entire object is contained
inside it, which results in the background area being included especially in the
corner areas of the detection box. This means that many of the 3D points that
are projected and considered to be inside a detection box, actually originate
from the background terrain, and falsify the 3D spatial information related to
the actual object. This can be solved by altering the 2D detection box size
to make it smaller, and focus it on a certain area of the original detection
box. This detection box focusing can eliminate the false point projections
originating from the background. This process results in accurate 3D spatial
information of the 2D detected objects. With this information, the original 3D
point cloud from the LiDAR can be processed to obtain the 3D point cluster
representation of the 2D object mapped onto the image by an image object
detector.
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Figure 5.1.1 3D object clustering using a point cloud and 2D detection boxes.

5.1.2.2 Experiments and Results

The presented method of 3D object detection was implemented as a
functional real-time system into one of the test vehicles of the VTT
automated vehicles research team. The vehicle was equipped with a 32-
beam RoboSENSE LiDAR and a 16-beam Velodyne LiDAR for point cloud
capturing. The image capturing was performed on a Basler Ace2-series
RGB camera, and the images were processed on an Nvidia Jetson Xavier
AGX embedded deep learning device. On an actual vehicle integration, the
time delays between the data capture events of the LiDAR and the camera
must be addressed. To synchronise the point clouds to the captured image
more precisely, the odometry data of the vehicle was also captured using a
combination of an inertial measurement unit (IMU) and a Global Positioning
System (GPS) sensor. The velocity and angular turn rate of the vehicle were
used together with the time delays between the camera and the LiDAR to
rectify the point cloud to better match the 2D image, and therefore keep the
point projections more accurate, even with the vehicle in motion.

This sensor setup was integrated into the vehicle as three separate
data capture and distribution modules running on separate computers. The
LiDAR-capturing computer collected point clouds, transformed them into
the vehicles’ common coordinate system, and the modified point cloud was
published on an OpenDDS (Open Data Distribution Service) network. The
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Jetson device processed the images captured by the Basler camera using the
YOLO v4 network [1], and published the images and the neural network 2D
detections on the in-vehicle OpenDDS network together with the movement
data of the vehicle from the odometry module.

All the processed data was received from the OpenDDS network by
the fourth computer, performing the sensor data fusion. The algorithm first
received the latest 2D camera-based detections, transformed the LiDAR
point cloud and the odometry data. The point cloud was filtered using an
Approximate Progressive Morphological Filter (APMF). It is a simplified
version of the Progressive Morphological Filter [2], which removes the
ground points of the cloud in real-time. The ground points are unneeded, and
they are even likely to add error to the later calculations.

The algorithm first applied the detection box focussing, and processed
each of the point cloud 3D points. For each 3D point, the delay correction was
applied using the odometry and capture time delays, and then the projection
was performed onto the 2D image. Then it was checked whether the projected
point was placed inside a detection box. This point cloud processing operation
was multi-threaded with the sensor fusion computers’ processor cores to
significantly decrease the computing times.

After matching the 3D points to the 2D detection boxes, the algorithm
processed each of the detection boxes to find the objects’ 3D location from the
LiDAR point cloud. This was done by sorting the points tagged to a detection
box based on distance, and choosing the median 3D point as the estimated
location of the object. Choosing the median point helps remove any possible
noise that might still be caused by some background 3D points, and even
occluding obstacles of smaller sizes, which may partially cover the detection
box in the image. Another option instead of choosing the median point is to
average all of the 3D points which have been tagged to the detection box.
This, however, leads to more inaccuracies and makes the estimation much
more susceptible to noise from occluding obstacles, for example.

With the estimations of the locations of the objects in 3D, they can be
extracted from the ground-filtered point cloud. This was done by cropping the
approximate point cloud area containing the object. The 3D crop dimensions
depend on the predicted class of the object. For a pedestrian, the cropping
is much smaller than for a car, for example. This operation was performed
on every object detected by YOLO v4, optimally resulting in the true 3D
locations and point representations of the objects, see Figure 5.1.2 and
Figure 5.1.3.
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Figure 5.1.2 3D detections on camera view.

Figure 5.1.3 3D detections in LiDAR point cloud.

5.1.2.3 Evaluation of the Algorithm and Vehicle Integration

The performance of the algorithm was evaluated on the KITTI 3D object
detection dataset [3]. Instead of using the standard KITTI evaluation
threshold, a custom method of accuracy evaluation was used to focus more
on the accuracy of the projection-based location matching. The evaluation
was done by estimating the 3D point clusters representing the objects, and
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Table 5.1.1 Percentage of estimated object cluster means correctly placed inside KITTI
ground truth boxes.
DIFFICULTY TOTAL CAR PEDESTRIAN
Easy 97.91% 99.29% 93.94%
Moderate 92.28% 92.58% 90.72%
Difficult 87.64% 87.50% 88.50%

then comparing whether the mean of the points in a single cluster is found
inside a KITTI 3D ground truth detection box. If the average point is inside a
ground truth box, it is counted as a success, otherwise it is a failure. Only one
match per ground truth box is allowed. The accuracy was evaluated with the
‘easy’, ‘moderate’ and ‘hard’ difficulty thresholds KITTI, with the ‘car’ and
‘pedestrian’ classes included, see Table 5.1.1.

The vehicle integration was the main goal of the algorithm
implementation. For the practicality of the system, real-time operating speed
was critical. The YOLO v4 module was able to operate at a rate of 16 Hz
with the Jetson utilising the TensorRT library to accelerate deep learning
operations. The amounts of the odometry data were comparably very small,
and it was streamed in the OpenDDS network at a rate of 20 Hz. The LiDAR
point clouds were captured at 10 Hz, which were the largest data stream in
the system. Based on the field of view (FoV) of the Basler camera, the points
that were clearly out of the camera image frame were ignored to speed up
the algorithm. Additionally, the OpenMP multiprocessing library was utilised
to parallelise the data fusion operations, increasing the total speed of the
integrated system to real-time levels. The inference times were measured in a
728-second-long test in an urban driving environment, resulting in operation
rates of 7-10 Hz for the full system.

5.1.3 Autonomous Control Prototyping in Simulated
Environments

Autonomous control fascinates technology enthusiasts and engineering teams
all over the world. Public focus is on autonomous road vehicles for bringing
improved efficiencies and safety on the road. In more controlled and restricted
operating environments, autonomous work machines and robots have already
been able to tirelessly perform cycles of work under human operator
surveillance for some time. The ambition and need for research remain clear
as more advanced autonomous control seems achievable.
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5.1.3.1 Reinforcement Learning Control for Mobile Vehicles

The potential to use simulated environments for purposes of training
reinforcement learning (RL)-based control agents for mobile machines has
been studied in the project by Vaisto. This topic has been studied actively in
recent years, see [4] and [5]. Contrary to supervised learning methods, which
cover the potential action state space of the targeted operational domain only
partially, RL has the theoretical potential to have comparably higher finite
action-value state space coverage [6]. Then again, it is a known challenge
that applying RL control in the real world is challenging [7].

This higher state coverage brings with it the promise that RL can handle
more corner cases, if the RL training process and reward scheme considers the
state space coverage as one key performance indicator. There’s no certainty
that what the action state coverage is and how well an RL agent can adapt to
slightly different environments and observations. Research focus remains on
measuring the potential actions and state space in each operational domain
and then be able to measure that and identify potential pitfalls.

The RL-agent controlled last-mile pod has been trained for project
demonstrators in a simulation environment. A short route from the bus stop
to the nearby coffee shop has been highlighted in Figure 5.1.4.

The RL agent can drive the pod along any arbitrary and continuous routes
in the simulation environment, but in the case wherein the control model was
overfitted to be able to collect statistics related to reward scheme obedience.
The reward scheme monitors the agent’s actions, and based on fitting actions,
a reward was granted to the agent. If the agent was violating the reward
rules, the training episode was ending. The training for this measurement

Figure 5.1.4 Last-mile pod driving scenario.
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Table 5.1.2 The statistics for the agent performance.
Episode end reasons:
Maximum (60m) distance reached 16601 68.68%
Episode end checkpoint reached 4135 17.11%
Collision with “dummy” car 2362 9.77%
Pod was off from the GPS line by 1.5m+ 617 2.55%
Collision with pedestrian 113 0.47%
The next checkpoint was not reached within 10 sec 338 1.40%
The Pod flipped more than 45 degrees 4 0.02%
TOTAL 24,170 100.00%

Figure 5.1.5 Pod sensor view.

was performed on a laptop workstation with Intel i7 CPU. Agent was trained
in simulation over 10 nights (∼90 hours). The statistics for the agent’s
performance are shown in Table 5.1.2.

The training for this measurement example is not complete, but the
statistics clearly show that “Maximum (60m) distance reached” starts to be in
the majority and “Episode end checkpoint reached” has increased to 17.11%,
so pod is able to complete the route successfully. Based on our experience
the reward obedience continues to improve as training continues. Also, the
dummy cars and pedestrian are not naturally behaving at all times and they
cause some of the episodes to end. As shown in Figure 5.1.5, the sensors
are facing forward and thus they currently leave blind spots around the
vehicle.

5.1.3.2 The Architecture – Immediate Actions Time-Horizon

Potential solution architecture for autonomous mobile vehicles based on a
focus on reinforcement learning was presented above. The main control
functions would be handled by a hierarchy of RL agents as shown in
Figure 5.1.6. On the top level is a multi-armed bandit agent that would
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Figure 5.1.6 Immediate action control research architecture.

have the highest system level control authority. Driving agents would be
complementing each other and handling specific parts of driving. Then there
would be peer agents performing overlapping primary functions and if the
actions proposed by the agents would be equal, then the action is approved
for actuation.

The multi-armed bandit would be trained to stochastically select the right
agent for proposing action in real-time. The object-detecting environmental
sensing would be performed by neural networks trained with finite datasets.
The time horizons beyond two seconds can rely on various deterministic
and machine learning approaches. A reinforcement learning agent can learn
to follow, for example, position breadcrumbs, but the actual planning and
optimisation is beyond the scope of this article.

5.1.4 Conclusion

This chapter introduced novel methods for data fusion between an in-vehicle
camera and a LiDAR sensor for detection and tracking of other road users
as well as high-level, deterministic, supervised and reinforcement learning-
based autonomous control development possibilities.
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The Camera – LiDAR fusion algorithm provided very good results
with the accuracy evaluation, being mostly able to locate even the more
challenging objects in the KITTI dataset as seen in Table 5.1.1. The real-
time applicability of the algorithm was also verified. The developed algorithm
makes a valuable contribution to the development of the automated vehicles’
environment perception. In addition, the real-time operating speed of the
algorithm in the test vehicle was quite fast. However, occasional performance
drops also occurred for single frames. In future work, the operating rates
could be stabilised by further developing the multiprocessing of the data
fusion module.

Reinforcement Learning can be used for developing autonomous driving
control in a simulated environment. RL was applied in continuous action
space, so the control agents learn to approximate parametric action-value
control functions that correspond to real-world needs. A method was
presented whereby reinforcement learning is complemented by other machine
learning methods or even deterministic safety methods in building a flexible
autonomous driving control system. Based on the study, it was concluded that
RL potentially plays a role in autonomous control development. Simulation
environments are as yet neither visually nor physically on par with the real
world, but the gap is getting smaller every year and autonomous control
models are already a viable method of product development.
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Abstract

Data-driven approaches will be a pivotal tool to interpret traffic data and
to optimise operations to enable more efficient, individual, public transport.
Whereas nowadays data remain a proprietary resource, Finland pioneered
an open ecosystem. In this work, we present an architecture to acquire
heterogeneous data sources and different data refinement strategies at the
edge-level, such as a map-matching approach for inaccurate vehicle GPS
traces. Finally, data quality monitoring at the cloud-level is highlighted by
introducing and applying an Errors-to-Data Ratio (EDR) metric.

Keywords: mobility-as-a-service, edge computing, cloud computing.

5.2.1 Introduction and Background

Mobility-as-a-Service (MaaS) is set to revolutionize urban transport by
enabling the orchestration of multiple means of transportation [1]. Thereby,
Artificial Intelligence (AI) is a key technology capable of transforming vast
volumes of historical and real-time data generated by edge devices, such as
vehicles, traffic sensors and cameras to valuable knowledge for MaaS [2].
The utilization of traffic data at scale is a critical factor for training predictive
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AI systems. They will power a MaaS operator to successfully manage a
fleet of automated driving vehicles for real-time, multi-modal and on-demand
transportation [3]. Traffic data are collected from heterogeneous sources, and
they come in large volumes, diverse formats, and different rates of speed.
To unlock the full potential of the traffic data and make them applicable
for training AI algorithms suitable for Intelligent Transportation Systems
(ITS), we conceptualised and implemented a complete data management
stack that entails processing pipelines applied both at the edge and the cloud.
Data processing at the edge involves raw data acquisition, pre-processing
for feature engineering and the utilisation of an unstructured database for
storage. Data management is resumed in the cloud with pipelines that include
structuring, further processing, data quality monitoring and storing in a
time-series database.

5.2.2 Data Acquisition

Initiated by the strategic Open Tampere program in 2012, the City of
Tampere, Finland, is publishing several data sources under the Open
Data licence [4]. Traffic-related data are maintained by the ITS Factory
Community [5] and InfoTripla [6]. They comprise information of public
transport positioning [7], traffic cameras [8] and loop detectors, measuring
traffic amount, congestions, and queue lengths [9].

Data scrapers extract, synchronize, and retain data for each of the sources,
as illustrated in Figure 5.2.1. Whenever applicable, existing data formats
are kept, including the Service Interface for Real Time Information (SIRI)
[10] for public transport vehicle activity, as well as DATEX II [11] for
traffic amount measurements. Utilising standardised data formats increase
the reusability of subsequent processing components. Raw data is stored in
an unstructured MongoDB database. Table 5.2.1 presents database statistics,
including the amount of data and sampling rates of the different sources.
Thereby, bus traces comprise around 3000 traces of about 150 bus lines.
As indicated in the table, traffic cameras capture images with different
frequencies.

5.2.2.1 Bus Traces

ITS Factory’s public transport Application Programming Interface (API)
allows to continuously monitor active vehicles with an overall sampling rate
between 0.5 Hz and 1 Hz. Utilizing information of the related bus route,
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Figure 5.2.1 Open data tampere: design for data acquisition.

Table 5.2.1 Statistics for open traffic data in tampere (2021-5-31). (*) Traffic cameras
images are available starting from November 2019 but are not stored in the MongoDB.

# Samples Total size
[GB]

Avg. size
[KB]

Start date Measurements
per day/sensor

# Sensors

Traffic
amount

104,616 65.24 653.88 2020-11-18 ∼1,440 ∼510

Congestion 97,584 12.18 130.88 2020-11-18 ∼1,440 ∼480
Queue length 59,994 7.24 126.5 2020-11-18 ∼720 ∼300
Bus traces 597,251 107.21 188.22 2020-11-17 ∼3,000 ∼150
Traffic
camera

7,163,364 657.46 96.24 2021-01-15* 96/192/1,440 ∼140

Global Positioning System (GPS) traces are used to generate durations spent
from one bus stop to another. They provide valuable information about the
traffic flow in general by deriving metrics such as average speed and stop
times. Since the GPS accuracy varies especially in urban regions, the trace is
subsequently processed to match the true track.

5.2.2.2 Traffic Cameras

About 140 traffic cameras are available around Tampere. Due to privacy
reasons, only images are publicly accessible (maximal one per minute). While
certain parts of the image are censored (buildings, etc.), the view of the
camera focuses on the street and intersections. Image resolutions vary (e.g.,
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Figure 5.2.2 Bus GPS trace, Line 32 Ranta-Tampella to TAYS Arvo.

Figure 5.2.3 Traffic cameras and their field of view in Tampere.

640 x 360 px, 704 x 576 px) and objects are largely distorted due to the large
perspective. Background objects tend to become very small (less than ten
pixels wide) and are often partially occluded. As shown in Figure 5.2.2 and
Figure 5.2.3, traces and cameras are roughly synchronized as the passing bus
is visible on the images corresponding to its GPS position.

5.2.2.3 Loop Detectors

Tampere provides a vast amount of loop detector measurements, including
metrics for traffic amount, congestions, and queue lengths. Data are updated
each minute. The spatial information of each sensor is documented separately
for each traffic intersection as shown in Figure 5.2.4. Whereas congestions
and queue lengths are formatted in JavaScript Object Notation (JSON), traffic
amounts are structured using DATEX II standard developed by the European
Committee for Standardization (CEN/TC 278).
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Figure 5.2.4 Loop detectors for traffic amount measurements using DATEX II.

5.2.3 Data Processing at the Edge

Depending on the data source, raw sensor data are not yet suitable for
scaling AI-based MaaS applications. This subsection presents data refinement
strategies as illustrated in Figure 5.2.5. The architecture comprises object
detection for traffic camera images to condense valuable information related
to the traffic flow as well as map-matching algorithms to normalize
travel times from bus GPS traces. Whereas this kind of pre-processing is
nowadays often implemented as a cloud solution, our architecture leverages
heterogeneous edge platforms to orchestrate the required computations. Since
the edge platforms cannot be physically deployed to the test field in Tampere,
a dedicated hardware-in-the-loop (HIL) laboratory cluster is set up for
this task.

Figure 5.2.5 Architecture for data preparation at the edge.
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Figure 5.2.6 Traffic object detection (left) and hourly car quantity (right).

5.2.3.1 Object Detection

Object detection is applied to reduce raw, traffic camera image footage to the
number of different road objects. Therefore, a YOLOv4 network [12], trained
on the MS COCO dataset [13], is leveraged to detect six different types of
road users (car, truck, bus, bicycle, motorbike, and person), as well as traffic
lights. Although improvements can be introduced to increase the quality of
the detection (e.g., excluding parking cars), a first evaluation reveals that it is
capable to outline the traffic situation (Figure 5.2.6): whereas the accumulated
cars-per-image metric is stable between November 2019 and February 2020,
a decline can be observed starting March 2020, likely influenced by the
effects of the COVID-19 pandemic.

5.2.3.2 Bus GPS Trace

Bus GPS traces contain a high amount of information about the current traffic
state and are utilised to estimate travel times between bus stops and timings
for the passenger transfer at a station. Since coordinates are imprecise as
shown in Figure 5.2.7, multiple processing steps are conducted to increase
the quality of this data source.

Figure 5.2.7 Refinement of GPS bus traces: (a) Raw GPS [blue] and planned bus route
[green] (b) Snapped bus route to OSM road network [black] (c) Partitioned route according to
bus stop vicinity [yellow/purple] (d) Map-matching GPS trace [red].
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In our approach, the given route provided by the bus API is first snapped
to the Open Street Map (OSM) road network. Based on the bus stop positions
and a predefined radius, the aligned route is split into segments which
allow differentiating a segment between two bus stops and a segment in the
vicinity of a stop. GPS coordinates are mapped to this aligned route while
applying additional consistency checks, e.g., filtering positions too far away
from the route, or physically impossible heading deviations introduced by
the inaccuracy of raw GPS. This transformation rectifies timings for each
segment and further enables to augment additional OSM-based information,
e.g., road segment IDs [14] or amenity characteristics [15].

5.2.4 Data Processing in the Cloud

Historical traffic data stored in MongoDB are further processed to extract
structural time series features which can be used for machine learning
algorithms. Data quality metrics are monitored before and after the final
cleaning and imputation to improve the integrity and inherit information
value of the training features. The data extraction is performed with Dask,
a Python library for parallel computation. The final features are stored in an
InfluxDB, a time-series database optimized for fast, high-availability storage
and retrieval of time series data. For high-quality visualizations, Grafana,
an open-source monitoring and observability platform, is configured to run
queries on InfluxDB data.

5.2.4.1 Data Quality Monitoring

In the context of AI-based MaaS applications, data management processes
can be influenced by principles that are quite different from those ruling
more traditional computing environments. Cloud deployments, streaming
data, data volume, volatility and heterogeneity pose new challenges for
data-driven analytics. Moreover, the limited explainability of many broadly
used AI models adds another layer of ambiguity, since performance issues
can be attributed to various factors (e.g., model selection, implementation,
data quality). Therefore, data quality assessment and improvement are the
first steps in an iterative process of designing, building and evaluating AI
solutions. Even after deployment, continuous monitoring of data distributions
is critical for detecting data shifts and promptly enact retraining to avoid
performance deterioration. To improve data quality and integrity, we defined,
quantified, and monitored four classes of errors: 1) duplicate data, 2) missing
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Figure 5.2.8 Data storage and processing in the cloud. The processed features can be
retrieved and visualized as time-series and used for training AI prediction models.

data, 3) inconsistent values (e.g., outliers for traffic sensors and cameras, or
negative values for travel-time durations, and 4) incomplete items (e.g., bus
route segments with less than two GPS traces, or sensor measurements with
a count period less than the one defined in the specifications). All these types
of errors are considered of critical importance for obtaining a high-quality
dataset to train machine learning models [16]. For each error class and each
category of traffic data, we calculated the Errors-to-Data Ratio (EDR), i.e., the
number of errors divided by the total number of items. To derive an overall
data quality metric for each traffic data category, we used the unweighted
EDR average across all error classes in the category. EDRs have been
calculated before and after removing erroneous measurements. For missing
data in the categories of sensors and cameras, the elimination was applied
sensor-wise, only for those sensors that exceeded 50% of missing values.
The remaining missing values are dealt with imputation by interpolation
through time. The threshold was decided to retain a balance between losing
information and injecting imputation related bias into the dataset.

5.2.4.2 Data Quality Observations

This section presents some of the preliminary observations obtained from
applying the cloud-based data management pipelines on data collected for
the week of February 19 to 25, 2021. Data observability is the first step
to troubleshoot, understand, and explore the data. Figure 5.2.9 presents the
weekly traffic data and bus traces stored as time-series in InfluxDB as they
are captured in Grafana dashboards. Expected patterns of seasonality or
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Figure 5.2.9 Weekly data from left to right, top to bottom: traffic amount, congestion,
vehicle counts derived from traffic-camera images, queue length and travel-time durations
for the segmented bus routes (bus-links).

unexpected outliers can be readily detected to assess the maturity of the data
components and decide on further actions.

Subsequently, the EDR metrics were calculated for each category of
traffic data and error type, before and after eliminating erroneous samples.
Table 5.2.2 presents the ratios and the mean EDR reduction percentage in
each category of traffic data. In addition, the number of total measurements is
shown before and after the elimination. Our data quality monitoring strategy
improves the data by reducing the errors by 26.95% and up to 100%. While
the total number of measurements is only reduced by 14.91%, data quality

Table 5.2.2 Errors-to-Data Ratio (EDR) for five categories of traffic data collected for the
week of February 19 to 25, 2021. EDR is given as a percentage before and after the first step
of data cleaning, which involves eliminating erroneous observations.

EDR (%) pre / post-processing % EDR # Measurements
Duplicates Missing Impossible Incomplete Reduction pre/post processing

Traffic
amount

6.93 / 0 15.19 / 12.54 0.9 / 0 0 / 0 45.5 5,836,320 / 5,554,080

Congestion 0 / 0 15.4 / 12.58 2.88 / 0 0 / 0 31.18 5,473,440 / 5,090,400
Queue
length

1.82 / 0 51.09 / 39.04 0.51 / 0 0 / 0 26.95 3,376,800 / 1,975,680

Bus
traces

0 / 0 13.16 / 0 0.004 / 0 1.63 / 0 100 494,716/ 426,629

Traffic
camera

0 / 0 56.64 / 3.97 0 / 0 0 / 0 93 223776 / 60,480

Measurements Reduction 14.91%
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analysis reveals a higher loss of information in the category of ‘queue length’,
in which the lowest EDR reduction is recorded. This observation indicates
that this category of data might be of low quality as a feature and needs to be
further assessed to decide if it has to be excluded.

5.2.5 Conclusion

With advancing digitisation in the domain of ITS exploiting generated data
becomes a key challenge to optimise operations to establish greener and more
resource-efficient mobility. In this work, we presented a system architecture
to acquire and process open traffic data which will allow AI-based modelling.
Our architecture addresses two major challenges for such a system - data
volume and quality. To compensate for a high data quantity and related
communication overhead, computations are scaled and distributed to different
layers in the edge-cloud continuum. Further, the presented monitoring
strategies improve the quality of training data sets that are required by data-
driven approaches. In future work, we will leverage the data to develop MaaS
applications, such as predicting the estimated time of arrival (ETA) for public
transport, optimising passenger transfer timing in a last mile use case.
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