

Huib J. Zuidervaart \& Oscar T. Matsuura

Astronomer, Cartographer and Naturalist of the New World

The Life and Scholarly Achievements of Georg Marggrafe (1610-1643) in Colonial Dutch Brazil

Volume 2
Transcription and English
Translation of His
Astronomical Observations

Astronomer, Cartographer and Naturalist of the New World

VOLUME 2
Transcription and English Translation of His Astronomical Observations

Studies in the History of Knowledge

This book series publishes leading volumes that study the history of knowledge in its cultural context. It offers accounts that cut across disciplinary and geographical boundaries, while being sensitive to how institutional circumstances and different scales of time shape the making of knowledge.

Series Editors
Klaas van Berkel, University of Groningen
Jeroen van Dongen, University of Amsterdam
Herman Paul, Leiden University

Advisory Board
Rens Bod, University of Amsterdam
Sven Dupré, Utrecht University and University of Amsterdam
Arjan van Dixhoorn, University College Roosevelt
Rina Knoeff, University of Groningen
Fabian Krämer, University of Munich
Julia Kursell, University of Amsterdam
Ad Maas, Rijksmuseum Boerhaave
Johan Östling, Lund University
Suman Seth, Cornell University
Anita Traninger, FU Berlin

Astronomer, Cartographer and Naturalist of the New World

The Life and Scholarly Achievements of
Georg Marggrafe (1610-1643) in Colonial Dutch Brazil

VOLUME 2

Transcription and English Translation of His Astronomical Observations

Huib J. Zuidervaart E® Oscar T. Matsuura

The publication of this book has been made possible by grants from the Stichting Dr. Henrik Muller's Vanderlandsch Fonds; the Dr. C. Louise Thijssen-Schoute Stichting; the Huygens Instituut (KNAW) and the Louwman Collection of Historic Telescopes.

This book highlights the scientific achievements of the astronomer, cartographer and naturalist Georg Marggrafe (1601-1643).
It consists of two volumes:
Vol. 1. Discusses his biography and legacy. (ISBN 978946372218 6)
Vol. 2. Presents his previously unpublished astronomical observations, collected in colonial Dutch Brazil between 1638 and 1643. This volume contains the earliest known series of observations of the Southern Hemisphere, collected by scientific instruments made according to the European standards of the time.

Cover illustration: Former Portuguese house at Antonio Vaz. First residence of the Dutch governor-general Johan Maurits von Nassau-Siegen, depicted in 1639 by Zacharias Wagener. On top of the house stands the observatory constructed onbehalf of Georg Marggrafe. (Thierbuch, Ca 226, fol. 107. Kupferstich-Kabinett, Staatliche Kunstsammlungen Dresden, Photo: Herbert Boswank.

Cover design and lay-out: Marijke Maarleveld, ViaMare, Almen

ISBN	9789463722285
e-ISBN	9789048556229
DOI	$10.5117 / 9789463722285$
NUR	685

Creative Commons License CC BY NC ND
(http://creativecommons.org/licenses/by-nc-nd/4.0)
© H.J. Zuidervaart \& O.T. Matsuura / Amsterdam University Press B.V., Amsterdam 2022
Some rights reserved. Without limiting the rights under copyright reserved above, any part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise).

Every effort has been made to obtain permission to use all copyrighted illustrations reproduced in this book. Nonetheless, whosoever believes to have rights to this material is advised to contact the publisher.

CONTENTS

PART V - PROGYMNASTICA ASTRONOMICA AMERICANA

TRANSCRIPTION AND ENGLISH TRANSLATION OF MARGGRAFE'SASTRONOMICAL OBSERVATIONS MADE IN COLONIAL DUTCH BRAZIL IN THEYEARS 1638-1643 9
Introduction
The Paris manuscript: a note about the transcription
A note about the English translation
Astronomical and other symbols used by Marggrafe in his manuscripts
TRANSCRIPTION The Latin text of Marggrafe's astronomical observationsin Dutch Brazil. 17
TRANSLATION The English text of Marggrafe's astronomical observationsin Dutch Brazil. 97
INDEX 190
Index of personal namesIndex of celestial bodies and observed phenomena

PART V

PROGYMNASTICA
 ASTRONOMICA AMERICANA

(Title coined by Georg Marggrafe for the intended publication of his astronomical observations)

TRANSCRIPTION AND ENGLISH TRANSLATION OF MARGGRAFE'S ASTRONOMICAL OBSERVATIONS, MADE IN COLONIAL DUTCH BRAZIL IN THE YEARS 1638-1643

Introduction

Georg Marggrafe made important scholarly contributions to three scholarly fields: cartography, natural history and astronomy. However, his death, in 1643, prevented him from personally finalizing and publishing his results. That's why his written legacy was split into three parts at the time. Marggrafe's maps were given to the cartographic publisher Johannes Blaeu, who published these maps as four careful engravings in Caspar Barlaeus's Rerum per octennium in Brasilia (1647) and combined them into a large wall map the same year. About the two other fields, natural history and astronomy, Marggrafe's personal Maecenas, Johan Maurits von Nassau-Siegen, the former governor of Dutch Brazil, reported the following in one of his letters:
[MargGrafe's] manuscripts and drawings concerning the natural history of Brasil, with the description and dimensions of this country have been given by us to Mr. De Laet, and the manuscripts relating to the astronomical observations, to Professor Gool, in order that its content be studied at our cost, and compiled to be published [our italics], as has partly been done. ${ }^{1}$

The WIC director Johannes de Laet indeed published Marggrafe's 'Historiae Rerum Naturalium Brasiliae' in 1648, as part of the elaborately illustrated folio edition Historia Naturalis Brasiliae. But 'Professor Gool', or Jacob Golius, never fulfilled the task imposed on him. That is to say, Golius never took the last step. Under his supervision an edited manuscript was compiled from the then available original observation books of Georg Marggrafe, a manuscript which was press-ready in the mid-1650s. This editing may have been done by Marggrafe's former roommate, the mathematician and astronomer Samuel Kechel ab Hollensteijn, who also constructed a Planisphaerium of the southern

[^0]stars, based on Marggrafe's observations. In 1655 it was said that Kechel would be compensated by publisher Elsevier for his services. ${ }^{2}$

However, a publication was not realized, firstly due to Golius's remarkable intention to present the Brazilian observations in one volume together with 'other astronomical observations transmitted to him from Arabia'. ${ }^{3}$ But the fierce quarrel that erupted in 1656 between Golius and Marggrafe's younger brother Christian over Georg's legacy certainly will not have contributed to Golius' zeal either. When in 1668, a year after Golius's death, this astronomical text from Persia finally saw the light, no one knew that originally Marggrafe's observations would be included. From Golius's estate, the press-ready manuscript came into the possession of Melchisédech Thévenot and surfaced again in Paris, at the auction of his library in 1694. The further history of this manuscript and its two copies, made at the request of the astronomer Joseph-Nicolas de L'isle, is elaborately outlined in our Volume 1, Chapter 6.

In this Volume 2, we present a transcription (with an English translation) of the best-preserved De l'Isle copy, made from the original - now lost - press-ready manuscript from Leiden. With this, the third part of Marggrafe's scholarly legacy finally will be available for other scholars, just as his Maecenas, Johan Maurits von Nassau-Siegen, had intended.

The Paris manuscript: a note about the transcription

The following concerns the text of the early eighteenth-century manuscript B 4-5 in the archives of the Observatoire de Paris, entitled 'Observations faites au Brésil'. This manuscript, which is bound in contemporary green coloured vellum, contains a set of 114 handwritten small folio pages. The document has been marked with three different ink stamps, bearing the texts 'Observatoire de Paris'; 'Depot des Cartes et Journaux de la Marine', and 'Observatoire Imperial'. In the inside of the book can be read: 'No 76 Dix neuf pieces cottées'.

The transcription of this manuscript is made by Oscar Matsuura, according to the principle that its content is leading. Therefore, no diplomatic method of transcription was followed (maintaining the original format, punctuation, spelling etc.), but rather the so-called critical-normal or judicial method. This means that the transcript is made as accurately as possible, maintaining its abbreviations and astronomical symbols, but with

2 Willem Piso to Jacob Gool, 12 May 1655. University Library Leiden, ASF 290: "De observatien van Markgraef sijn mijn behandigt, alsmede UEd. aengename schrijvens. welke ik ElSEvier comunicerende, tot antwoort bequam, dat ik uit sijn neam wilde UE notificeren dat hij UE brief mede ontvangen hadde, en sich in alle billikheit soude laten vinden tot beloning van de moeite van doctor Kechel: niet alleen vant geen [hij] geschreven heeft, maar ook van 't afteijkenen vant Planispherium ...".
3 Christian Marggrafe to Johannes Hevelius, 20 July 1652: 'Fratris mei Georgij observationes Astronomicas iam demu[m] vidi. Sunt Theoriae novae Planetarum, praecipue Mercurij, qui eo in loco, quo vixit, melius quam apud nos conspici potuit. Edentur brevi a clariss. Golio una cum alijs observationibus Astronomicus ex Arabia transmissis'. Observatoire de Paris, Hevelius correspondence.
a capitalization of names (of places and persons). Sound values are also corrected: 'U' as in 'uocant' is replaced by ' V " in 'vocant', etc.; Roman numerals in the text are translated into Arabic. In running text, the sentences are also displayed consecutively. However, the pagination of the manuscript has been maintained. The number between square brackets refers to the page number of the manuscript.

In Leiden, the archive Erfgoed Leiden en Omstreken (ELO) still preserves some of Marggrafe's original notes concerning his astronomical observations in Brazil. ${ }^{4}$ These authentic manuscripts were evidently used to compile the edited, but lost, press-ready Leiden manuscript, of which the Paris manuscript is a neat copy. Especially important is a notebook in Marggrafe's own hand (ELO, North no. 53), containing his Brazilian observations from 15 September 1639 (when Marggrafe started to observe from the newly built observatory) until 19 June 1640. Marggrafe used this notebook to collect his draft notes of the observations. Two examples of such draft notes, hastily written down in pencil, have survived, which confirms that Marggrafe followed this procedure. ${ }^{5}$ The last entry in this small notebook is written halfway down a page, while the Paris manuscript continues at that date without interruption, presenting the observations made on the following day.

The Paris manuscript is the most elaborate of all surviving observation registers. A second - but unfortunately incomplete - copy in the same hand is preserved in the Biblioteca Nacional de Portugal in Lisbon (fig. 1). ${ }^{6}$ A comparison between the Paris and Lisbon manuscripts shows how carefully the Paris scribe has worked. Apart from the page format and page numbering, there is no textual difference between these two manuscripts. This means that we can be reasonably sure that the Paris manuscript is an almost verbatim copy of the lost 'original' press-ready Leiden manuscript, which evidently was compiled from material now mostly lost. Therefore, we have chosen to use the Paris copy of Marggrafe's observations as the basis for this text edition. However, all observations in the Paris manuscript were checked against data and text in the still available Leiden notebook and other Leiden draft sheets of paper, as well as the seventeenth-century extract compiled by IsmaEl Boulliau. ${ }^{7}$ Whenever corrections or additions are made in the transcription, for example when an obvious copying error was made, this is stated in the footnotes.

Not included in this text edition are several loose drawings of the Recife observatory, its instruments and various calculations from Brazil, preserved in the Leiden archive. These are discussed in Volume 1, Chapters 8 and 9. Leiden documents relating to Marggrafe's

[^1]

FIG. 1 Top page of the manuscript Observationes Coelestes Georgij Marggrafij L.M. of the year 1643, preserved in the Biblioteca Nacional de Portugal (Lisbon) with two library stamps, one introduced in 1796 by the Real Biblioteca Pública (Royal Public Library), the other after 1836, when the name was changed into Biblioteca National. (Photo by the authors)
astronomical observations in Brazil are the following, put in chronological order (first column the date, last column the numbers put in pencil on the documents by John D . North in 1979):

25 and 26 December 1638
15 to 21 September 1639
18 September 1639
21 to 23 September 1639
24 September to 14 October 1639
28 September 1639
28 September 1639
15 October to 17 December 1639
17 to 20 December 1639
18 to 21 December 1639
19 December 1639
20 to 24 December 1639
18 and 21 December 1639
24 December 1639
24 December 1639
24 December 1639 to 19 January 1640
28 June 1640
25 September to 4 October 1640
12 November 1640
7 to 15 October 1642
20 November 1642
22 November 1642

North no. 41
North no. 53, fol. 2r
North no. 26vs
North no. 53, fol. 2vs-3r
North no. 53, fol. 3vs-4r
North no. 37
North no. 51
North no. 53, fol. 4vs-5r
North no. 53, fol. 5vs-6r
North no. 59vs
North no. 59r
North no. 53, fol. 6vs-7r
North no. 54, fol. 1vs-2r
North no. 54, fol. 1r
North no. 54, fol. 2vs-3r
North no. 53, fol. 7vs-8r
North no. 32, 79
North no. 37
North no. 6
North no. 61
North no. 49, fol. 1-2r
North no. 49, fol. 2vs

A note about the English translation

The English translation (by both authors) aims at a correct understanding of the text, sometimes deviating from a translation that is too literal. Occasionally, it was typographically necessary to interrupt a line when it actually continues. In that case, this is indicated at the end of such a line with three dots (...), which also appear at the beginning of the next line. Abbreviated portions of text in the manuscript have been completed in the translation between square brackets [].

The identification of the observed celestial bodies has been performed by the astronomer Oscar Matsuura. In this task (completed in 2004), he was assisted by Andre Luiz da Silva, while he was an intern at the Planetário do Ibirapuera with a scientific initiation grant sponsored by the company Omnislux. Of great help in identifying the stars observed was the SkyMap Pro 11 Software for Astronomers, which gave the possibility of reproducing
and checking all astronomical observations. ${ }^{8}$ Most observations were made at Marggrafe's observatory, for which current location we used the geographical coordinates $8^{\circ} 3^{\prime} 51^{\prime \prime}$ South and $34^{\circ} 52^{\prime} 37^{\prime \prime}$ West, applying as additional parameters an altitude of 10 meters and an average temperature of $25^{\circ} \mathrm{C}$.

Marggrafe called several bright stars with names by which they are still known today. These are Arcturus (α Bootis), Fomahant Aquarii (Fomalhaut or α Piscis Austrini), El Karnar (Achernar or α Eridani), Canobus (Canopus or α Carinae), Capella (α Aurigae), Sirius (α Canis Majoris), Rigel Orionis (β Orionis), Spica Virginis (α Virginis), Procyon (α Canis Minoris) and Aldebaran (α Tauri). But other stars - constituting the majority - had to be identified by the personal description provided by Marggrafe, since the current designations did not exist in his time. To complicate matters further, the same star was often described in different ways. For example, the star we know today as η_{2} Hydri is called by Marggrafe σ of the Water Snake, or 'the first star of the quintet' of that asterism. ${ }^{9}$ He used a sequential position, the beginning and end of which is often not clear, because it is not known which stars he has - or has not - included.

For identifying the stars, it was therefore crucial to follow the chronological sequence of the meridian passages, despite the relatively frequent occurrence of reversing the order of adjacent meridian transits. The identifications made in this way were those that seemed most plausible. They are all listed in the footnotes of the translation, together with the date of earliest sighting. Stars mentioned on the same page of the translated manuscript are not repeated in those notes.

Astronomical and other symbols used by Marggrafe IN HIS MANUSCRIPTS

```
MEASUREMENTS
(1) Rhineland voet (foot) = 0.314 m.
(2) Rhineland duim (thumb or inch) = 1/12 foot = 2.62 cm.
lb Libra (pound).
G Gradus (degree, ' ).
M Minute (') = 1/60 degree.
S Second (") = 1/60 minute.
\partial Occasionally used symbol for degree (').
```

[^2]THE SOLAR SYSTEM

-	The Sun
c	The Moon (rising)
)	The Moon (waning)
¢	Mercury
¢	Venus
¢	Earth
0^{*}	Mars
2	Jupiter
ћ	Saturn

THE CONSTELLATIONS

Zodiac symbols are sometimes used to represent points on the ecliptic, with each symbol representing the "first point" of each sign. So Aries is the spring equinox, Cancer $\boldsymbol{\sigma}$ is the summer solstice, etc.

	In Latin	In English	
\uparrow	Aries	Ram	
ర	Taurus	Bull	[not used by M.]
III	Gemini	Twins	
\%	Cancer	Crab	
Ω	Leo	Lion	
ml	Virgo	Maiden	
Ω	Libra	Scales	[not used by M.]
m	Scorpio	Scorpion	
χ^{7}	Sagittarius	Archer	
no	Capricorn	Sea Goat	
尔	Aquarius	Water Carrier	
H	Pisces	Fishes	[not used by M.]

Letters of the Greek alphabet were used to represent successive stars in a constellation.

OTHER

$\triangle \quad$ Upward triangle.
$\triangle \quad$ Upward isosceles triangle.
$\nabla \quad$ Downward triangle.
$\chi \quad$ Versus (towards).
o Perpendicular to ...
o Conjunction

TRANSCRIPTION

The Latin text of Marggrafe's astronomical observations in Dutch Brazil.

[1]
Observatorij nostri astronomici et instrumentorum quae fabre fieri curavi munificentia Illustri. et Excellentissimi herois I. Mauritij Comitis Nassovij Brevis Descriptio. In nova civitate Mauritia in Insula Antonij Vaaz quae est in Brasilia Americae Australis regione. ${ }^{1}$

Super aedibus Illustrissimi herois Mauritij Nassovij Gubernatoris Brasiliae etc., theatrum extrui curavimus figurae quadratae cujus quod libet latus est pedum Rhenolandicorum viginti. Patet ex eo prospectus in mare et terram circumjacentem amplissimus. Ex aedibus autem interius per gradus 43 commodissimus est ascensus in theatrum. In medio theatri extruximus domum sexangularem, et sex laterum, quod libet latus 6 ped.
[2]
Rhenolandicorum latum. Domus altitudo est 13 pedum, ejus tabulatum inferius (ubi instrumenta posita sunt) distat a tabulato theatri in altitudine quinque pedibus, ita ut subter id camera clausa et obscura sit per speculationibus et praxi optica. Camera a ${ }^{2}$ superior domus, ubi observationes astronomicae maximam partem peraguntur altitudinem habet octo pedes Rhenolandicorum in uno a latere versus quarum per januam ingressus patet ascendendo 10 gradus. In reliquis quinque lateribus sunt quinque fenestrae vitreae amplae, et super his 5 fenestrae vitreis, ut et super janua, latera camerae superius ad $1 \frac{1}{3} \mathbb{1}^{3}$ altitudem ${ }^{4}$ possunt pandi; superius hac camera alio tabulato tegitur sexangulari, quod circum circa per sex januas triangulares versus meridiem et septentrionem quidem 4 (1) longas, in reliquis plagis $2 \frac{1}{2}$ (1) longas, et tam amplas ut est quod libet latus et area domus aperiri potest, et januae quidem sex superiores aperiuntur sursum elevando, sex inferiores seu laterales deorsum

[^3]remittendo, ut ita amplissimus pateat prospectus in omnem plagam, omnes que altitudines non verticales et verticales instrumentis capi possint. Super domo adhuc 4 (1) altum ambulacrum est, cujus sustentacula levia facillimum tolli possunt; medio autem illius pyramidalis structura lignea est, cui vexillum ex cupro decoratum, quod insignia comitum Nassoviae continet impositum est. Interius autem in camera superiori in medio erectus est ad trabem quadratam firmam (cujus trabis quodlibet latus $6^{1 / 2}$ (2) 5 est que longum 6 (1) ped. 9 (2) circum agitur in trabe substrata 10 (2) longa, superius in trabe tabulati 5 (2) crassa) quadrans ex ligno firmissimo, quod Pao Sancto Lusitani vocant, fabricatus cujus altitudo est 5 pedum Rhenolandicorum, est que ad fabres in scrupula prima ${ }^{6}$ et $30^{\prime \prime}$ divisus, ut ita levi negotio $1 / 4$ unius minuti eo observari poterit, habetque pinnacidia Thyconica ${ }^{7}$ cum cylindro. Cylinder autem longus est (inquantum

[4]

prominet) $4^{3 / 4}$ (2) ferelatus seu crassus, seu in diametro $21 / 2$ (2). Regula seu lineale longitudinem habet instrumenti et latitudinem $33 / 4$ (2).

Dioptra duas rimas parallelas sibi ipsis et cylindri extremitatibus lateribus parallelas habet, distantes invicem $21 / 2$ (2), longas 3 (2). His rimis parallelis ad angulos rectos interius sunt rimae perpendiculares factae breves pro diametro solis exactius capiendo in altitudine \odot. Tota autem dioptra $4 \& 3 / 4$ (2) longa, et totalata $33 / 4$ (2). Quadrantem hunc ambit circulus azimuthalis 10 pedes Rhenolandicos in diametro habens; est que quadrantis columna ejus centrum, ex qua gnomon tendit in ambitum circuli, ut monstret quod gradus et minuta azimuthi observatio det. Circulus autem azimuthalis in singula minuta prima divisus est ut 30 scrupula secunda ${ }^{8}$ in eo etiam notari poterint.

Incumbit autem circulus azimuthalis 12 columnis in altit. $1^{1 / 2}$ (1) a tabulato camera. Quadrantis autem inferior extremitas a contignatione camerae elevata est $2^{1 / 2}(1)$.
[5]
Superior a summitate camerae distat $1 / 2$ (1) potestque quadrans trabi quadratae ad fixus per quadrata duo ferramenta commodissime circum agi.

Curavi etiam perficere sextantem itidem (ut quadrans) 5 (1) Rhenolandii altum, atque eodem modo divisum aeq. regula, pinnacidijs et cylindro instructum pro distantijs mensurandis, qui in peculiari camerae adservatur sub gradibus ubi in majorem cameram adscensus est; huic inferiori latere 4 ferramenta minimum digitum crassa per cochleas inserta sunt, versus partem acuminatam seu centralem duo quaelibet 4 (1) longa, versus rotundam itidem duo, quaelibet 3 © longa; ut ita sextans firmari possit super basi sua. Nam in trabis basi in lateribus, multae foramina sunt, quibus per claves ferramenta applicantur,

[^4]ibique firmantur. Haec ferramenta altera extremitate regulis ferreis firmantur, quia eorum usus non est necessarius.

Alium paruum sextantem etiam habeo,

[6]

cujus altitudo 2^{9} (2) seu 1 (1) \& 8 (2) Rhenolandicorum atque in singula bina scrupula divisum, cylindro et etiam pinnacidijs cum rimulis et dioptris exornatum ad observationes geodaeticas peragendas et in itinere etiam ad astronomicam itidem usurpandum.

Habeo et globos coelestes et terrestres quatuor diversae magnitudinis cum Uranometria Bayeri qui semper in observatorio usui sunt.

Teneo arenaria duo clepsidrae vice fungentes, tubum ${ }^{10}$ praeterea habeo insignem 7 (1) Rhenolandicos longum.

Libellam etiam construxi ex metallo quae pendet 2 lb $^{11} 93 / 4$ unc. 12 (seu $413 / 4 \mathrm{unc}$) et tornata est, figurae cylindraceae, quae adpensa est chordae 29 (2) Rhenoland. longae seu 2 (1) 5 (2), ut sit mensurae temporis, et $\gamma v o \chi \theta \eta \mu \varepsilon \rho \omega^{13}$ observando.

In inferiori obscura camera, quae intra per rotunda foramina etiam luce illustrari potest, basis est facta protubo imponendo ad observationes deliquiorum solis, macularum solis, et aliarum rerum. Basis illa constat primo ligno
[7]
41/2 (1) alto, 4 (2) lato \& $11 / 2$ (2) crasso quod erectum statui potest; nam inferiore transversale lignum habet, cui incumbit, hac transversim (per crucem) multae foramina habet, et in medio cavitatem ubi inseritur regula 9 (1) longa, quae hinc inde agi potest, et altior ac humilior statui. Regula 3 (2) lata, 1 (2) plus crassa et supra hanc orbis, cujus diameter 1 (1) inseritur, qui et circum agi et demitti ac abtolli potest.

In regula interstitio $11 / 2,3,3 \& 11 / 2$ (1) perpendicularia corpora erecta sunt 8 (2) alta, quibus tubus imponitur et superius clauduntur. Altera extremitas regulae foramini seu fenestrae incumbit. Extra domum in theatro stant aliquae bases pro impendendis instrumentis tempore observationum. Una quidem ex solida trabe, et inferius cruciformis pede gravi 5 (1) alta, cui globus pedalis impositus est, qui in sua matrice circum agi potest; habet que globus eminentiam quadratam 2 (2) latam \& $21 / 2$ altam cui imponitur major sextans pro distantijs syderum ${ }^{14}$ di-
metiendis.
Alia basis ligno perpendiculari 2 (1) alto, cui superius incumbit lignum excavatum 5 (1) longum, quod per cochleam movetur. Super perpendiculari et per semicirculum

[^5]transeuntes utrimque firmaturi, cui imponitur tubus opticus qui 7 (1) longitudinem habet, ut fixae et planetae exactius rimari et collustrari, ac congressus Lunae cum fixis aut planetis exacte adnotari possint. Tota haec basis qua utor, imponitur cancellis theatri, nam inferius rotundam aciem habet quae foramini immititur et circum agi pro libitu potest.

Alia basis est $21 / 2$ (1) alta, perpendiculari trabecula quam etiam imponi priori modo potest cancellis theatri, et sextans minor ei adpendi pro altit. eo sumendis.

In quolibet angulo theatri exterius sciatericum ${ }^{15}$ delineavi, ut ita diversi mode semper tempus ex umbra \odot possit adnotari.

Intra tectum domus autem S. Excittae. ${ }^{16}$
[9]
${ }^{17}$ Infra theatrum horologium magnum ferreum est, quod campanae pulsu omnibus incolis nostrae civitatis tempus indicat.

Habeo etiam pro basi sextantis minoris, quando peregro, habeo malleum more Polonico figuratum, ex solido ferro, novem fere (2) longum, postica et superiori parte cum eminentia quadrata 1 (2) longa, alta, et crassa ut sextans horizontaliter imponi possit, pro distantijs mensurandis, et perpendiculariter adpendi, ad altitudines capiendas. Hic malleus baculo applicatus est $41 / 2$ (1) longo, ex solido ligno, quod Pao Santo vocant et inferius longam aciem habet, ut firmiter terrae inseri possit.

Dein libellam triangularem (vulgo Waeterpass) normam rectangulam, regulas tres ex ligno solido factas habeo ad directionem instrumentorum necessarias. Tabulam item ex lapide fissili, lucernas duas, scamnum triplex seu tres gradus habens ad

[10]

quadrantem adscendendum, aliud scamnum sub quadrante magno verticalibus altitudinibus sumendis necessarium aliaq.

Observationes aliquot sine instrumentis habitae a me in insula Antonij Vaaz in Brasilia anteq ${ }^{18}$ instrumenta perfecta fuerunt et observatorium extructum.
A.C. ${ }^{19} 1638$ die $\frac{9}{19}$ Septemb. ${ }^{20}$ vesperi hora $61 / 2$ distabat $\begin{gathered}\text { a } \\ \text { a Spica }\end{gathered}$ ll advisum tantum quantum
 borealior Spica Ill.

15 It should be sciotherum.
16 A misread for Excellentiam. See North, 'Markgraf' (1979), 407, note 63.
17 It seems that the $18^{\text {th }}$ century French copyist could not read the original manuscript here and has therefore left a blank space.
18 Antequam.
19 Anno Christi.
20 Expressing the date in the Old Style (Julian calendar) above and in the New Style (Gregorian calendar) below.
21 Humero.

Sequenti die $\frac{10}{20}$ Sept. vesperi h. $61 / 2$ circiter $⿱ 宀+$ adhuc occidentalior et borealior Spica ml_{l} distare videbatur ab ea in distantia quae est inter cor Ml^{22} et antecedentem id ad ortum quae apud

[11]

Bayerum est $\tau\left({ }^{23}\right.$ distat cord. m , et anteced. 2σ ad Austrum est ex calculo 29 distantiam a $\underset{ }{ }$ et Spica ex calculo invenio ad hanc horam $1^{\circ} 10^{\prime}$ dubito fixae uniq. loco exacto.

Sequenti die $\frac{11}{22}{ }^{24}$ Sept. vesperi h. $61 / 2$ circiter Mercurius transiverat Spicam Virginis et distare videbatur $a b$ ea tantum quantum heri, et orientalior in tantum in quantum heri occidentalior.

A.C. 1639 die $\frac{8}{18}$ Maij vesperi $o^{7} ¢$ et \succcurlyeq faciebant $\underline{\Delta}$ isoscelum ${ }^{25}$ ad sursum, cujus basis erant σ^{7} et | |
| :---: |
| . | occidebat et paulo post $\mp \& 1$ ' temp. post \uparrow occasum oriebatur \mathbb{C} (fere plena) supremo suo margine. 기 hac vespera umbras faciebat, et radiabat in fluvio Rio Bibiribi vocato, ipsa stans in orientali coeli plaga $\$$ et umbras circumscribebat corporibus et radijs ejus videbatur in fluvio vulgo Rio Capibarini ${ }^{26}$ vocato.

Altero die post d. $\frac{10}{20}$ Maij vesperi $થ$ et \uparrow umbras circumscribebant corporibus. Die sequenti nimirum die
[12]
$\frac{11}{21}$ Maij vesperi h. 7 of erat orientalior et borealior σ^{*} ac et in distantia dimidia duarum australium in ense Orionis seu distantia aequali aut minimum majori mediae caudae Ursae Majoris et aequitis super incidentis. 2/ et \uparrow umbras circumscribebant corporibus absente Luna.

Maculae nigrae instar deficientis Lunae in via lactea non dantur in caelo austrino ubi falso scribit Joseph a Costa L. 1. hist. Ind. c. 2. sed dantur paulis quaedam quae instar reliqui coeli nigriore videntur, quia carent luce illa et stellulis quibus Galaxia reliqua abundat. Sunt autem tria vel quatuor praecipua talia spatia minus luminosa.

Nubeculae Magellani carent stellis advisum, constant eadem materia quam Via Lactea.
[13]
Observatio Eclipsis Lunae totalis quam habui die $\frac{10}{20}$ decembris Vesperi Anno 1638 in Insula Antonij-Vaaz Brasiliae ejusque Civitate Mauritia.

Vespera dicti diej et anni initium sumebat Eclipsis lunae, quamvis autem observatorium et instrumenta nondum perfecta erant, ut privato observationem instituere potuissem (finem enim structurae domum imposuimus mense septembris anni sequentis 1639) tamen quadrante pedali erecto phasum tempora diligenter adnotavi. Quando igitur luna

22
The symbol in the Paris manuscript is of Virgo, but should be Scorpion (M_{4}), so the star should be Antares.
23 This parenthesis was not closed in the manuscript.
24 It should be $\frac{11}{21}$.
25 It should be isoscelem.
26 'Rio Capibarini' is a later addition; the original word has been scratched out and replaced.
in limbo orientali deficere incipiebat, erat altitudo procyonis in orientali plaga $33^{\circ} 30^{\prime}$ quum medietas \mathbb{C} advisum observata videbatur procyon altit. Or. $42^{\circ} 20^{\prime}$.

[14]

In principio totalis observationis altit. Procyon Orient. erat $50^{\circ} 10^{\prime}$.
NB. quae [] his inclusi non perexactis vendito quam lubricus sit ea observandi modus at praecipuis phasis diligenter sunt observatae.

In fine totalis observationis altit. cord. Ω in Ortu erat $33^{\circ} 30^{\prime}$.
Quum disci ${ }^{27}$ lumen recuperasset $)$ alt. Cordis Ω erat $37^{\circ} 30^{\prime}$.
Quum dimidiata apparebat D altit. Cord. Ω erat $41^{\circ} 30^{\prime}$.
In fine omnimode Eclipsis Alt. cord. Ω erat $48^{\circ} 00^{\prime}$.
Erat coelum tempore Eclips. serenissimum. ${ }^{28}$
De colore \mathbb{C} Eclipsatae notandum \mathbb{C} usque dum in umbram totalem immergeretur ab initio nimirum Eclipsis omnimode ad initium totalis observationis talem colorem habebat qualem solet recens ρ nova ${ }^{29}$ hic habere.

Postquam autem tota in umbra terrae esset immersa versus Ortum crassior erat umbra reliqua parte clarior in communi autem totae
[15]
\mathbb{C} rubebat, et quia prunae colorem habebat. Circa medium Eclipsis in medio disci umbra erat spissior circa limbum autem circum circa rubebat magis, dilucior ${ }^{30}$ que apparebat postquam itaque tenderet versus principium emersionis discipans ${ }^{31}$ versus occasum crassior erat quam quae vergebat versus Ortum et flava claritas pendebat ${ }^{32}$ verum lumen, donec ipsum eximia claritate itqu ${ }^{33}$ incipiebat recipere et ab eo tempore usque ad finem omnimode Eclipsis pars obscurata, habebat eundem colorem quem habuerat ab initio ad totalem obtenebrationem usque. Nunquam luminis pars bifidum faciebat lunam seu secundum lineam rectam secabat, sed semper corniculata fuit obscura, et ultimo obtusa.

Die $\frac{15}{25}$ Junij eodem anno 1638 calculus Eclipsis \mathbb{C} totalem hic in Brasilia conspiciendum indicabat. At pluebat tota nocte cum vento valido et semel tantum lunam emicantem ex nubibus videbam ad $\frac{1}{3}$ circiter adhuc obscuratam
[16]
erat autem eo tempore quo calculus indicabat illam emersuram paulatim ex umbra terrae nimirum in initium emersionis et finem omnimodae Eclipsis.

[^6]
Observationes Astronomicae Georgij Margraphij
 Anno C. ${ }^{34}$ MDCXXXIX

Die $\frac{5}{15}$ Septemb. h. $6 \frac{3}{4}$ p.m. G. M. S. ${ }^{35}$					
In altitudine Arcturi occident. $2 /{ }^{36}$ temp. post		18°	59'	00"	South ${ }^{123}$
Altitudooccident.		10°	49'	30 "	
Azimuth ejus ab occid. aequinoct. H. 7 Urb. ${ }^{37}$	versus merid.	07°	30^{\prime}	$00 "$	
Altitudo Arcturi Occid. post.		17°	$19 '$	2	/temp.
Altitudo ర¢ Occid.		08°	49'	00"	
Azimuth ejus ab occas. χ^{38} Merid.		08°	09'	$00 "$	
Iterum					
In altitud. Spica Il occident. et $1 /$ tempore post		07°	22'	$30 "$	
Altitudo ర̛̣ Occid.		06°	29^{\prime}	$45 "$	
Azimuth		08°	$20 '$	$00 "$	

Die $\frac{6}{16}$ Septemb.	G. ${ }^{\circ}$	M.'	S."	
Altitudo \odot Merid.	79	09		in Sept.
Vesperi h. $6 \frac{1}{2}{ }^{39}$ alt. merid. sup. alae Cygni	37	31	45	in Sept.
h. $6 \frac{3}{4}$ alt. Arcturi occid.	19	46	00	
$1 \frac{1}{2} /$ temp. post \succcurlyeq altitudo	12	44	30	
Azimuth ab occas. ${\stackrel{11}{ }{ }^{40} \text { Austrum }}^{08}$	20	00		

\nsucc erat australior et orientalior Spica in eadem distantia circiter qua heri.
Die $\frac{7}{17}$ Septemb.

[^7]Altitudo \odot Merid.

Die 18 Septemb.

Altitudo \odot Merid. in Septentr.	79	55	15	
Vesperi 43 Altit. Mer. Lucid. Lyrae in Septentr.	43	20	30	
H. $6 \frac{3}{4}$ altit. Arcturi Occid.	16	20	30	
2 / temp. post ¢ altitudo	10	59	00	
Azimuth Occid. ad Aus	09	36	00	
(Altit. Mer. Cauda Vult.	68	20	00	B 44
\| Mediae 3 in ala Cygni	30	49	30	B
\{				
\| Suprem. alae Cygni	37	31	30	B
I Lucida Vulturis	73	41	30	B
Altitudo \odot Merid.	Die 19 Septemb.	80	20	00
B				

[18]

Vesperi ob nubes cucurrentes ${ }^{45}$ § observare non potui.

Altitudo Merid. Lucidae Lyrae	43	20	45	
\|Caudae Vulturis	68	20	0^{\prime}	\|
\| Med. 3 in Alae Cygni	30	45	30^{\prime}	\mid
\| Sup. Alae Cygni	37	31	30^{\prime}	† B
\| Pectoris Cygni	42	43	30^{\prime}	\|
Cauda Cygni	37	46	30^{\prime}	\|

Die 20 Septemb.
Altit. \odot Merid.
$80 \quad 43 \quad 20 \quad$ B
Vesperi ob nubes currentes \nsucc observare non potui. Eodem Vesp. ab h. 9 ad 15
Altit. Mer. capitis gruis (γ)
Alae dextrae sin Bayer gruis (η)

59	7	30	$\mathrm{~A}^{46}$
49	29	30	A

Die 20 Septemb. ${ }^{47}$
Altitudo Merid. Extrem. Rostri Toucan (α)
$\begin{array}{llll}36 & 13 & 20 & \text { A }\end{array}$
In Eductione Caud. gruis (θ)
In Cauda gruis 3 Borialior (χ)
Fomahant m
$49 \quad 33 \quad 0 \quad$ A
$45 \quad 3 \quad 0 \quad$ A
$\begin{array}{llll}66 & 38 & 0 & \text { A }\end{array}$

[^8]| In hydro quae in coluro Aequi ($\mathrm{t}^{\text {) }}$ | 18 | 55 | 30 | A |
| :---: | :---: | :---: | :---: | :---: |
| (1' temp. post Culm. lucid. colli phoen.) | | | | |
| Austr. Caud. Ceti | 78 | 14 | 0 | A |
| El Karnar | 39 | 12 | 0 | A |
| Caput hydri (α) | 34 | 58 | 0 | A |
| Die 21 Septemb. | | | | |
| Altitudo © Merid. | 81 | 7 | 45 | B |

Vesperi h. $6 \frac{3}{4}$ horolog.
In Occid. altit. Arcturi
Pulsib. libellae 140 post altit. ఫ̣
Azimuth ab occasu χ merid.
Mox item altit. ఫ̧
Azimuth
G. M. S.
$16 \quad 45 \quad 0$
$14 \quad 13 \quad 0$
$10 \quad 40 \quad 0$
\& 140 puls. post altit. Arcturi occid.
$13 \quad 5 \quad 0$
$11 \quad 10 \quad 0$

Item in altit. Merid. Caudae Vult. erat

Altitudo | Occid. |
| :---: |

$14 \quad 46 \quad 30$

Azimuth ab occas. ad Austrum
$\begin{array}{lll}11 & 34 & 30\end{array}$
Altitud. M. M. fixarum quas hac nocte accepi secundum ordinem prout
Meridianum ingreditur ${ }^{49}$,
Altit. Merid.

θ in Pavone	24	30	0
η in Pavone	31	16	30
α in Pavone	40	30	0
ς in Pavone	30	51	40
κ in Indo	38	32	40
$\kappa(\mu M L)$ Hydri	19	20	0
ε in Pavone	31	20	30
Caput gruis (α^{50})	59	8	0
η gruis	49	37	0
χ^{51} in Toucan	36	14	30
θ in grue	49	32	30
χ in grue	45	4	50
Fomahant m	66	39	0

[^9]| μ in Grue | 43 | 33 | 40 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| Sub hydro clara | 14 | 50 | 0 | \} A |
| β Toucan | 38 | 5 | 30 | J |
| Inferior in anteriore parte alae Toucan (debet ce ${ }^{52} \varepsilon$ in Bayero $\tau \theta$ transpositae, $\varepsilon \mathrm{dt} \mathrm{ce}^{53}$ major, d minor. $)^{54}$ | | | | |
| $\\|$ | 30 | 43 | 30 | 1 |
| \| hydro ${ }^{55}$ | 18 | 53 | 30 | \| |
| Med. alae Toucan (ς) | 31 | 18 | 0 | \| A |
| Caput (α) | 53 | 56 | 0 | \} |
| Ultim. alae Toucan (η) | 33 | 19 | 30 | \| |
| O C. ${ }^{56}$ Australi | 78 | 14 | 0 | J |

Hora 14 coelum obduxerunt nubes. $\varepsilon .{ }^{57}$
El Karnar cum cap. hydri observare non potui.
Die $\frac{12}{22}$ Septemb.
Altitudo Solis Merid.
In Altit. Arcturi occid.
Vesperi h. $6 \frac{1}{2}$
123 pulsib. post alt. $̧$ Occid.
Azimuth ab occasu ψ^{58}
Iterum altit. Arcturi occid.
\& 144 puls. post alt. \wp occid.
$81 \quad 30 \quad 20 \quad$ B

Azimuth $\underset{\text { ¢ ab occas. in Austrum }}{ }$
$16 \quad 54 \quad 30$
$15 \quad 16 \quad 30$

Iterum in Altit. Merid. Lucid. Vult. et azimuth | | 10.47 erat ejus altit. (审) |
| :---: | :---: |

$10 \quad 58 \quad 0 \quad$ Merid.
$15 \quad 32 \quad 0$

Peractis hisce observationibus horolog.

[^10]G. M. S.

Sonabat septimam. Hinc nubibus obducebatur coelum, antea clarissimum.
Circa 9 vespertinam iterum inclarescebat ergo ab h. $9 \frac{1}{2}$ ad 4. matut.

Ita ut ordine sequitur

Altitudo Merid. gruis ${ }^{59}$	59	${ }^{2}$	
β gruis	56	52	40
η gruis	49	23	30^{60}
χ^{61} in Toucan	36	15	30
γ in Toucan	31	32	30
ε gruis	52	50	0
ν hydri	15	0	0
θ gruis	49	29	30^{62}
χ gruis	44	59	30
fomahant m	66	38	0
μ gruis	43	32	0
Sub hydro	14	51	0
β Toucan	38	5	0
ζ phoenicis	58	20	0
ε phoenicis	53	38	0
δ phoenicis	50	46	30
ε Toucan	30	40	0
ι hydri	18	54	0
ζ Toucan	31	18	0
α phoenicis	53	50	0
β phoenicis	52	27	0
η Toucan	33	14	0
CC A	78	12	30
El Karnar	39	9	15^{63}
χ Eridani	41	51	0^{64}

$59 \quad \alpha$ gruis in the Leiden manuscript (ELO, North no. 53, fol. 2vs).
60492930 in the Leiden manuscript, but the value in the Paris manuscript is closer to the correct one.
61α in the Leiden manuscript. Apparently the Greek letter χ of the scribe of the Paris manuscripts has to be understand as α.
62493130 in the Leiden manuscript, but the value in the Paris manuscript is closer to the correct one.
63 An illegible word in parenthesis in the Paris manuscript can be decipherd as 'ter' (meaning three times observed) in the Leiden manuscript.
6444510 in the Leiden manuscript. This value is closer to the correct one.

		G.	M.	S.
Caput hydri	34	56	0	
Omnes in Austro 65				
In Sept.	(altit. merid. cap. Medusae			
	42	19	40	
	altit. merid. luc. lat. persei	33	18	0

Die 23 Septemb.
Meridiae ${ }^{66}$ nubilum
$\begin{array}{llll}\text { Vesperi h. } 6 \frac{3}{4} \text { Urb. in altit. Arcturi occid. } & 15 & 29 & 30\end{array}$
75 pulsib. post $\lcm{+}$ altit. $\quad 14 \begin{array}{lll}13 & 43\end{array}$
Azimuth ab occid. ad merid.
\& 70 pulsus post Arcturi alt. occid.
$11 \quad 14 \quad 0$
$14 \quad 47 \quad 30$
Paulopost
Altitudo Arcturi Occid.
$13 \quad 18 \quad 0$
\& 91 pulsib. post altit. ¢ $\quad 12 \quad 25 \quad 30$
$\begin{array}{llll}\text { Azimuth ab occas. vers. Austr. } & 11 & 24 & 0\end{array}$
\& 60 pulsib. post altit. Arcturi $\quad 12 \quad 39 \quad 0$
$\begin{array}{lllll}\text { Item } \frac{1}{2} \text { ere post altit. } \wp & 8 & 11 & 0\end{array}$
$\begin{array}{lllll}\text { Azimuth ab occas. } \chi^{67} \text { Austr. } & 12 & 30 & 0\end{array}$
\& pulsib. 221^{68} alt. Luc. coron. Bor. in Occid. $23 \quad 41$
Altit. M. M. fixarum Australium sumptarum
in $\mathrm{A}^{69} \mathrm{ab} \mathrm{h} .7$ ad 14 prout ordine
sequuntur.
$\begin{array}{llll}\text { Altit. Merid. } \theta \text { in pavone } & 24 & 27 & 30\end{array}$
η in pavone $\quad 31 \begin{array}{lll}18 & 0\end{array}$
χ^{70} pavonis $\quad 40 \begin{array}{lll}48 & 0\end{array}$
ζ pavonis $\quad 30 \begin{array}{lll}50 & 0\end{array}$
κ Indi $\begin{array}{llll}38 & 30 & 0\end{array}$
[23]

κ	hydri 71	19	19	0
ε	pavone	31	20	0
\hbar	Alt. Merid. A.	79^{72}		

[^11]66 It should be meridie.
67 Symbol meaning versus. See 15 September 1639.
68 Here the Paris manuscript missed the word post that appears in the Leiden manuscript (ELO, North no. 53, fol. 3r).
69 A = Austrum.
$70 \quad \alpha$ in the Leiden manuscript.
71μ hydri in the Leiden manuscript (ELO, North no. 53, fol. 3r).
$7279^{\circ} 53^{\prime} 30^{\prime \prime}$ in the Leiden manuscript. This value is adopted in the translation.

I^{73} (sic!) piscis Notij	63	30	0
Caput gruis	59	9	0
η gruis	49	34	0
χ^{74} Toucan	36	15	30
γ Toucan	31	32	30
v hydri	15	2	0
θ gruis	49	30	0
χ gruis	45	16	0^{75}
fomahant ${ }^{\text {m }}$	66	37	30
μ gruis	43	35	0
Sub hydro	14	52	0
β Toucan	38	5	0
$\zeta \mathrm{phonin}^{76}$	58	23	30
ε phoenic.	53	39	0
δ phoenic.	50	47	0
Sub δ phoenic. δ extat in globo	46	6	30
ζ Toucan	31	17	30
α phoenicis	53	57	0
β phoenic.	52	23	0^{77}
η Toucan	33	16	30
A. C. Ceti	78	10	0

Die 24 Septemb.

| Altitudo \odot Merid. | 82 | 16 | 15 | B |
| :--- | :--- | :--- | :--- | :--- | :--- |

G. M. S.
$15 \quad 30 \quad 0$
104 pulsib. post altit. ఫ̧
$15 \quad 21 \quad 30$
Et azimuth \nsucc ab occas. χ merid.
Iterum non multum post in altit. Arctur.

\& 84 puls. post γ^{79} altit.

$13 \quad 15 \quad 0$
$\begin{array}{lll}13 & 15 & 0^{78}\end{array}$
13430

73 Should be ι.
74α in the Leiden manuscript.
75 This line has been crossed out in the Leiden manuscript.
76 Phoenicis in the Leiden manuscript.
$7752^{\circ} 33^{\prime \prime} 0^{\prime \prime}$ in the Leiden manuscript (ELO, North no. 53, fol. 3vs). According to calculation, this value is closer to the correct one, so it is adopted in the translation.
$78 \quad 13^{\circ} 55^{\prime}$ in the Leiden manuscript ($E L O$, North no. 53 , fol. 3vs). According to the calculation, this value is closer to the correct one, so it is adopted in the translation.
79 A meaningless symbol that does not exist in the Leiden manuscript. It is ignored in the translation.

Azimuth ¢̧ occid. in Merid.	12	16	0
\& 94 puls. post alt. Arctur. occid.	13	15	0
Iterum altit. Arcturi	12	7	0
\& 977^{80} puls. post alt. $¢$	11	40	0
Azimuth	12	5	0
Et postea altit. Arcturi	11	19	0
Die 25 Septemb.			
Altitudo \odot Merid. ${ }^{81}$	82	40	0
Vesperi h. $6 \frac{1}{2}$ horolog.			
In altit. Arcturi Occid.	14	47	0
106 pulsib. post alt. ¢¢	15	12	0
	12	29	0
\& 44 puls. post alt. Arcturi	13	55	30
paulo post altit. Arcturi occid.	12	47	0
\& altit.	13	11	30
Azimuth ab occas. ad merid.	12	48	0
Dehinc alt. Arcturi occid.	12	3	30
Altit. M. δ in dracone quae est borea \square			
Secunda ${ }^{82}$			
Flexurae	14	50	0
Sup. alae Cygni	37	31	30

	G.	M.	S.	
Pectoris Cygni	42	46	15	B
Caudae Cygni	37	48	30	B

H. 10 Vesperi

Altit. Merid. χ^{83} Toucan $\quad 36$
γ Toucan
θ gruis
$31 \quad 31 \quad 30 \quad$ A
fomahant ${ }^{\text {m }}$
$49 \quad 30 \quad 0 \quad$ A

Hinc nubibus obductum coelum
Die 26 Septemb.
Altitudo \odot Merid.
$83 \quad 30^{84} 20 \quad B$
Vesperi ob nubes currentes $\begin{gathered}\text { observare non potui. }\end{gathered}$

[^12]| Die $\frac{17}{22}$ Septemb. | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Vespera et nox nubila Die $\frac{18}{28}$ Septemb. | | | | |
| Merid. nubil. | | | | |
| Vesperi post horam 6 horolog. quadrante circiter post, 字 primum ex claritate crepusculi conspicuus, proxime supra | | | | |
| © fulcatam stabat inclinans non nihil in austrum quia et ecliptica in austrum inclinabat superius, statim autem | | | | |
| Immergebatur $\underset{\text { ¢ in }}{ } \mathbb{C}$, nimirum in superiorem et Orientalem marginem obscurae \mathbb{C} (prout oculis meis vidi et | | | | |

G. M. S.
tubo optico) hoc est \mathbb{C} sulcata tegebat ఫquod spectaculum mihi fuit jucundissimum. Intercedebant autem inter tempus immersionis Ø̧ in \mathbb{C} et Occid.
Altitudinem Lucid. Coronae Boreae $22 \quad 24 \quad 0^{85}$
Puls. libella mea
Postea in tempus comprobarem sumpsi
íterum altitudinem Lucidae Coronae
Boreae in Occid.
Et eandem paulopost
Inter has duas altitudines autem intercedebant pulsus 216.
Quando altit. Luc. Coron. Bor. in Occ.
$21 \quad 520$

Nondum emergerat 卆ex © sonabat tunc horologium septimam, hinc nubibus
obducebatur caelum occidentale. ${ }^{86}$
$8524^{\circ} 24^{\prime} 0^{\prime \prime}$ in the Leiden manuscript. This value is adopted as consistent with the set of observations.
86 Before the next drawing, the Leiden manuscript ($E L O$, North no. 53 , fol. 4r) has more than 20 lines of Calculus exploring the above observations for estimating the time of the occultation of Mercury by the Moon (6:15:30 PM). Time intervals between two subsequent observations were measured counting the oscillations of a pendulum. The period of the pendulum was estimated by ascribing somehow, the solar time apparently for some observations.

Altitudo \odot Merid.
Die $\frac{19}{29}$ Septemb.

Altitudo \odot Merid.	84	12	30	B	
	Die 30 Septemb.				
Altitudo \odot Merid.		84	37	0	B

[27]
G. M. S.

Die 1 et 2 Octob. Nubil.
Die 3 Octob.
Altitudo \odot Merid.
Altitudo \odot Merid.
Altitudo \odot Merid.

	85	47	20	B
Die 4 Octobr.	86	10	30	B
Die 5 Octob.	86	34	20	B

Die 6 et 7 Nubilum
Die 8 Octob.

Altitudo \odot Merid.	87	43	30	B	
Altitudo \odot Merid.	Die 9 Octob.	88	6	30	B

$\operatorname{Die}^{87} 11,12$ Octob. inconstans coelum
Die $\frac{3}{13}$ Octob.

Altitudo \odot Merid.
Die $\frac{2}{12}$ Octob. vesperi h. 7 ¢ distabat circiter 18' a Corde M, ipsa occidentalior.

87 10, 11 and 12 in the Leiden manuscript (ELO, North no. 53, fol. 4r).

Die $\frac{3}{13}$ octob. h. 7 preterierat ${ }^{88}$ 甲 Cor m , distans ab eo 30 ' circiter, stabatque in recta linea Borealiori Cordis m, a Corde $\mathrm{m}_{\text {, vel minimum vergente Corde }}$ m magis in Austrum hoc modo. Patet hinc Orientalioribus $¢$ transijsse proxime Cor m , parum borealior
conjunctionem que fuisse h.16. Die 12 Octob. respectu mei loci in Anton. Vaaz Brasiliae Insul. quum diurnus of sit 48^{89} calculus Rudolphinorum 10' borealiorem statuit \ddagger Corde m , tempore conjunctionis.

G. M. S.

- G. M. S.

Die 18 Octob.

Altitudo \odot Merid.

Altitudo \odot Merid.
Die 19 Octob.
Die $\frac{10}{20}$ Octob.
Altitudo \odot Merid.
Die 21 Octob.
Altitudo \odot Merid.
Die 24^{90} Octob. abfui in agro
Altitudo \odot Merid.
Die 23 Octob.
Die 24 Octob.Inconstans
Die 25 Octob.
Altitudo \odot Merid.
Die 26, 27 Nubilum
Die 28 Octob.
Altitudo \odot Merid.
G. M. S.
$\begin{array}{llll}88 & 29 & 15 & \text { A }\end{array}$
$88 \quad 7 \quad 20 \quad$ A
$87 \quad 46 \quad 20 \quad$ A
$\begin{array}{llll}87 & 25 & 15 & \text { A }\end{array}$
$\begin{array}{llll}84 & 59 & 30 & \text { A }\end{array}$
Vesperi h. $7 \frac{1}{2}$
Luna adhuc Occidentalior paulo erat
ఎ, et ad diametrum suam ${ }^{91}$ (ad summum)
australior videbatur transitura 21,
sed antequam visa o ingrueret
nubibus obducebatur Occidens, occident. ${ }^{92}$
melius observare potuerunt.
[30]
G. M. S.

Die 29 Octob. Inconstans
Die 30 Octob.
Altitudo \odot Merid.

Altitudo \odot Merid.

Altitudo \odot Merid.
Seq. Inconstans.
Die 2 Novemb.
Die 3 Novemb.
Die 4 et sequent. absens fui, et ob pluviam
Inconstans fuit
Die 10 Novemb.
Altitudo \odot Merid.
$90 \quad 22$ in the Leiden manuscript ($E L O$, North no. 53 , fil. 4vs).
91 It should be suum.
92 occidentaliores in the Leiden manuscript.

Die 11 et 12. Inconstans.
Die $\frac{3}{12}$ Novemb.
Altitudo \odot Merid.

Altitudo \odot Merid.
Die 14 Inconstans.
Die 15 Novemb.
Die 16 et 17 Inconstans.
Die 18 Novemb.

| Altitudo \odot Merid. | 78 | 53 | 30 | A |
| :--- | :--- | :--- | :--- | :--- | :--- |

Seqq. Inconstans.
Die 26 Novemb.
Altitudo \odot Merid.
[31]
Vesperi ab h. 7 ad $10 \frac{1}{2}$
$\xlongequal{\circ}$ appropinquans Occasu heliaco
vespertino, hisce diebus apparebat cornicula ${ }^{93}$ per tubum.
$\begin{array}{llllll}\text { Altitudo Merid. caput Androm. } & 54 & 39 & 40 & \text { B }\end{array}$
Extrema Alae Pegasi
Altitudo Merid. ζ Toucan
ı Hydri
η Toucan
G. M. S.
ε Phoenicis 94
λ Phoenicis
v Phoenicis
Supra μ Phoenicis non extans in globo
μ Phoenicis
El Karnar
Secunda Fluvij
Caput Hydri
Tertia Fluvij
$\begin{array}{llll}68 & 32 & 30 & \text { B }\end{array}$
$31 \quad 18 \quad 0 \quad$ A
$\begin{array}{llll}18 & 58 & 30 & \text { A }\end{array}$

Hinc nubilum factum coelum antea clarissimum.

Die 27 Novemb.

Altitudo \odot Merid.	77	0	0	A	
Altitudo \odot Merid.	Die 28 Novemb.				
Altitudo \odot Merid.	Die 29 Novemb.	76	49	40	A
		76	39	40	A

[32]

Seqq. turbid.

Die $\frac{2}{12}$ Decemb.
Altitudo \odot Merid.
Die 13 Decemb.
Altitudo © Merid.
Die 14 Inconstans.
Die 15 Decemb.
Altitudo \odot Merid.

Altitudo \odot Merid.
G. M. S.
$75 \quad 4 \quad 40 \quad$ A
$75 \quad 0 \quad 30 \quad$ A

Die 16 Decemb.
Vesperi ab h. 7 a dio ${ }^{99}$.
Altitudo Merid. λ Phoenic. ${ }^{100}$ v Phoenic.
(2. ${ }^{102}$ Supra μ Phoenic.
(1. In Hydro η
μ Phoenic.
El Karnar
χ Eridani S. $2^{\text {da }}$ (mihi 3)
Altitudo Merid. Cap. Hydri
φ Eridani S. tertia
In Hydro S. tertia
к Eridani S. quarta
七 Eridani S. quinta
In Erid. (mihi $7^{\text {dtec }}$)

[^13]| Supra hunc ${ }^{104}$ longe | $\begin{gathered} \text { G. } \\ \lceil 64 \end{gathered}$ | $\begin{aligned} & \mathrm{M} . \\ & 18 \end{aligned}$ | $\begin{aligned} & \text { S. } \\ & 30 \end{aligned}$ | A |
| :---: | :---: | :---: | :---: | :---: |
| | \ glob. non habet | | | |
| In Hydro quarta conv. colli 2a | 28 | 27 | 0 | A |
| Sexta Eridani (m. 8) | 56 | 30 | 0 | A |
| Viges. Eridani (4^{105}) | 73 | 10 | 0 | A |
| Sub hac Orientalior | ¢ 67 | 47 | 0 | A |
| | (glob. non habet | | | |
| Octava fluvij mihi putata | 53 | 46 | 0 | A |
| Sed est in fl. non extat in globo. | | | | |
| Die $\frac{7}{17}$ Decemb. | | | | |
| Altitudo \odot Merid. | 74 | 49 | 20 | A |
| Vesperi ab h. $6 \frac{3}{14}$ ad 12 Noct. | | | | |
| Altitudo Merid. λ Phoenic. | 49 | 37 | 20 | A |
| \checkmark Phoenic. | 41 | 6 | 30 | A |
| η Hydri | 27 | 29 | 30 | A |
| Supra μ Phoenic. | 53 | 5 | 0 | A |
| μ Phoenic. | 47 | 19 | 30 | A |
| El Karnar ${ }^{106}$ | 39 | 9 | 50 | A |
| χ Eridiani | 44 | 51 | 0 | A |
| σ Hydri mihi prima quoq. ${ }^{107}$ | 28 | 50 | 0 | A |
| Caput Hydri | 341 | 55 | 0 | |
| | | 54 | 30 | A^{108} |
| φ Eridani | 451 | 4 | 30 | A^{109} |
| | | 5 | 0 | A |
| (2. ${ }^{110}$ Quarta Fluvij | 48 | 57 | 0 | A bis |
| (1. In Hydro S. tertia | 27 | 59 | 0 | A |
| ¢ Eridani ${ }^{111}$ | 53 | 47 | 0 | A |
| In Erid. (caret glob. | 56 | 50 | 0 | A |

[^14]| Supra hanc | 64 | 17 | | A |
| :---: | :---: | :---: | :---: | :---: |
| Quarta Hidri ${ }^{112}$ | 28 | 29 | 0 | A |
| 6 Fluvij (θ) | 56 | 29 | 30 | A |
| Viges. Eridan. | 73 | 11 | 0 | A |
| Quinta quoque in Hydro | 29 | 5 | 0 | A |
| Sub 20 Erid. Orientalior ${ }^{113}$ | 67 | 47 | 0 | A |
| In Eridiano ${ }^{114}$ (globus caret) | 53 | 46 | 0 | A |
| Inferior Colli Hydri S. prima 3 in Hydr. et Nub. Major S. dorado | 34 | 20 | 0 | A |
| In Eridiano ${ }^{115}$, Glob. non habet | 56 | 44 | 0 | A |
| Secunda 3 in Hydr. \& n. ${ }^{116}$ | 34 | 0 | 0 | |
| Occid. Δ fl. S. $7^{\text {a }}$ Eridan. globi | 59 | 46 | 0 | A |
| Austr. Δ Eridan. | 59 | 30 | 0 | A |
| Bor. Δ Eridan. | 117 | | | |
| S. 3 trium in Hydro et informis in circulo | | | | |
| Antarctico | 32 | 20 | 0 | A |
| Inform. in duas nubes Orient. | 22 | 58 | 30 | A |
| Alt. Merid. Aldebar. | 65 | 59 | 0 | B |
| | | 59 | 30 | B |
| Capellae | 36 | 9 | 0 | B |
| | | 9 | 30 | B |
| Rigel Orionis | 89 | 30 | 20 | A |
| | | | 30 | A |
| Die $\frac{8}{18}$ Decemb. | | | | |
| Altitudo \odot Merid. | 74 | 47 | 30 | A |
| Vesperi h. 7 | | | | |
| In Altit. Occid. Caput Androm. | 51 | 28 | 30 | |
| Ejus Azimuth a Sept. vers. Occcas. | 22 | 45 | 0 | |
| Crepusculum finebatur verspertinum | | | | |

G. M. S.

Succedebant inter hanc observationem altit. Cap. Androm. usque ad mediat. Coeli η hydri pulsus libellae meae 873 . 273 puls. in hanc et culminationem

[^15]```
Sup. }\mu\mathrm{ phoenic. A.
211 puls.
M. }\mu\mathrm{ phoenicis in Merid. A
4 3 1 \text { puls.}
M. El Karnar A.
387 puls.
M. Crus Cassiop. B
299 p.
M. Secunda fluvij mihi A ejus
altit. M. 42 56' 0" A
4 9 5 ~ p .
M. \chi fluvij A.
298 p.
M. ו quinq. in hydro A.
66 p.
M. Caput hydri A
188 p.
Altit. Occid. Cap. Androm. }4
118
Azimuth ejus a Sept. in Occas. }38\quad4
252 p.
Alt. Occid. Cap. Androm. }42\quad46
Azimuth ejus
Die \frac{9}{19}}\mathrm{ Decembr.
Altitudo \odot Merid.
[36]
Vesperi h. }
Altitudo Cap. Androm. Occid.
G. M. S.
Azimuth ejus a Sept. in occas.
finis tunc crepusculi verspertini
75 puls.
\eta \text { hydri mediat coeli A.}
238 p.
M. Sup. }\mu\mathrm{ phoenic. A }219\mathrm{ p.
M. }\mu\mathrm{ phoenic. A.
```

[^16]$\left.\begin{array}{llllll}\text { 457 p. } & & & & \\ \text { M. El Karnar A. } & & & & \\ \text { 490 p. } \\ \text { M. Crus Cassiop. B. alt. ejus Merid. } & & & & \\ \text { 797 }\end{array}\right)$

## Tunc finis Crepusculi.

119 The following lines in the Leiden manuscript ( $E L O$, North no. 53 , fol. 6 r) were skipped in the Paris manuscript, but added in the translation:
Azimuth ejus a Sept. in Occ. $3741 \quad 0$
307 puls.
Canobi alt. Or. $\begin{array}{llll}21 & 20 & 0 \mathcal{E} O\end{array}$
120 Here Boulliau's copy (OdP, B12-13) interrupts the observations until August 1640.
121 The Paris manuscript as well as the Leiden manuscript (ELO, North no. 53, fol. 6r) have $58^{\circ} 20^{\prime} 0^{\prime \prime}$ B. In another Leiden manuscript ( $E L O$, North no. 59 recto) the value is $58^{\circ} 50^{\prime}$ 0 ". Compared to the calculated value, the first value has an error exceedingly greater than the usual error. In addition, the observation journal North no. 53 seems to be copied from the sketchier North no. 59. So the latter value was adopted in the translation.

307 puls.
M. Supra $\mu$ phoenicis A

159 p.
M. $\mu$ phoenicis A

327 p.
M. El Karnar A

599 p.
M. Crus Cassiop. B. Alt. ejus Merid. $19 \begin{array}{llll}19 & 54 & 0 & \text { B }\end{array}$

743 p .
M. $\chi$ fluvij A

136 p.
M. Cap. hydri A

136 p.
Altitudo Cap. Androm. Occ. $45 \quad 5 \quad 0 \quad$ \&
Azimuth ejus a Sept. in occ.
3630
[38]
426 p.
Canobi Alt. Or. $\begin{array}{lllll}21 & 4 & 30 & \text { \& }\end{array}$
$\begin{array}{llll}\text { Azimuth ejus a merid. in Ortum } & 36 & 10 & 0\end{array}$
616 p.
Caput Androm. Altit. occ. $\begin{array}{lll}42 & 35 & 30\end{array}$
Azimuth ejus a Sept. in occ.
Eadem vespera us. ad h. $12 \frac{1}{2}$
Altit. Merid. dextri humeri persej
Capitis Medusae
Lucid. Lat. persej
Inform. 2 in Nub. Orient.
In fl. et dorado (glob. caret)
Alia in fluu. et dorado (glob. caret)
Extrem. Caudae Dorado
Capellae
Rigel Orionis
Mediet Nubei ${ }^{124}$ Majoris
In dorso Dorado
Canobi
Die $\frac{11}{21}$ Decemb.
Altitudo $\odot$ Merid.
$40 \quad 15 \quad 0$
$29 \quad 45 \quad 20 \quad$ B
$\begin{array}{llll}42 & 16 & 0 & \text { B }\end{array}$
$\begin{array}{llll}33 & 14 & 30 & \text { B }\end{array}$
$\begin{array}{llll}22 & 57 & 0 & \text { A }\end{array}$
$55 \quad 6 \quad 0 \quad$ A
$45 \quad 73 \quad 30 \quad A^{122,123}$
G. M. S.
$42 \quad 30 \quad 30 \quad$ A
$\begin{array}{llll}36 & 11 & 30 & \text { B }\end{array}$
$89 \quad 34 \quad 0 \quad$ A
$\begin{array}{llll}29 & 15 & 0 & \text { A }\end{array}$
$35 \quad 32 \quad 0 \quad$ A
$45 \quad 48 \quad 30 \quad$ A
$\begin{array}{llll}74 & 44 & 10 & \text { A }\end{array}$

122455330 in the Leiden manuscript ( $E L O$, North no. 53 , fol. 6 vs ). This value is used in the translation.
123 In the Paris manuscript, the following line from the Leiden manuscript was skipped. This line is added in the translation: Inform. ad lat. occ. Dorad. 34510 A
124 Declension dubious.

Vesperi ab h. $9 \frac{1}{2}$ ad 13 Noct.
Altitudo Merid. 2 Occid. in Erid.

Inform. ad Latus occid. Dorad.
Inform. hac longa ${ }^{125}$ Superior ${ }^{126}$

| โSuper. | 63 | 32 | 30 | A |
| :--- | ---: | ---: | ---: | :--- |
| linfer. | 63 | 20 | 0 | A |
|  | 34 | 50 | 30 | A |
|  | 52 | 2 | 0 | A |
|  | 60 | 53 | 30 | $\mathrm{~A}^{127}$ |

[39]

|  | G. | M. | S. |  |
| :---: | :---: | :---: | :---: | :---: |
| Extrema Caudae Dorado | 42 | 27 | 30 | A |
| In fl. et Columbae (glob. caret) | 55 | 41 | 0 | A |
| In Columb. et fl. longe superior binis ${ }^{128}$ |  |  |  |  |
| Nebulosis | 62 | 13 | 0 | A |
| ¢ Infra his 2 Nebulas ad Ortum paulo ${ }^{129}$ | 40 | 18 | 0 | A |
| ( Extra Columbam versus Occid. | 62 | 57 | 0 | A |
| Proxima Sup. Nubei Major | 30 | 40 | 0 | A |
| Extrema alae dextrae Columbae | 62 | 28 | 0 | A |
| In dorso Columbae | 63 | 55 | 30 | A |
| In dorso dorado | 35 | 30 | 30 | A |
| In bolide Naucleri | 47 | 6 | 0 | A |
| In eductione alae dextrae Columbae | 62 | 20 | 0 | A |
| In eductione Colli Columbae | 62 | 55 | 0 | A |
| 2 in Dorado Sup. Bor. | 32 | 25 | 30 | A |
| Sub bolide Naucleri ${ }^{130}$ | 42 | 0 | 0 | A |
| Australissima in Ramo Columbae | 55 | 22 | 30 | A |
| Capitis Columbae | 61 | 1 | 0 | A |
| Sub Canobo ad dextrum ${ }^{131}$ | 43 | 21 | 30 | A |
| Trium superior in Ramo Columbae austr. | 63 | 12 | 0 | A |
| Extrem. ped. dextr. post. Canis Major | 68 | 16 | 30 | A |
| 3 Superior in Ramo Columbae media | 64 | 58 | 30 | A |
| 3 Superior in Ramo Columb. Borealis | 65 | 53 | 0 | A |
| Canobi | 45 | 49 | 30 | A |

Nota. Canobi magnitudo et color ac splendor cum Sirij conveniant proxime

[^17]El Karnar aequalis in hisce Rigel Orionis
[40]
G. M. S.
ergo Canobus magnitud. \& splendor superat El Karnar in quantum Rigel superatur a Sirio. ${ }^{132}$ Die $\frac{12}{22}$ Decemb.
Altitudo © Merid. $74 \quad 44 \quad 20 \quad$ A Circa occasum $\odot$ et post erat serenissimum (uti et hac et antecedentib. diebus) eratque rubeo ${ }^{133}$ vespertina insignis. ${ }^{134}$
Vidi autem lucem diej paene tunc fugatam et verum finem crepusculi vespertini quia ${ }^{135}$ Lucida Vulturis duo ${ }^{136}$ ab occasu distaret et in medio coelo essent 20 grad. aequatoris ${ }^{137}$ a o $\uparrow$ Numeratus. Finito crepusculo nubibus obducebatur totum coelum initio facto ab oriente.

Die 23 pluvium. Nubilum coelum. Die $\frac{14}{24}$ Decemb.

| Altitudo $\odot$ Merid. | 74 | 44 | 45 | A |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Altitudo occid. Cap. Androm. | Vesperi a 7 ad $8 \frac{1}{2} \mathrm{~h}$. |  |  |  |  |
| Azimuth ejus a Septent. in occ. | 46 | 13 | 0 |  |  |
| lan | 34 | 53 | 0 |  |  | 270 puls.

M. I. quique ${ }^{138}$ Hydri A.

164 p .

132 The words 'in quantum Rigel superatur a Sirio' ['Insofar as Rigel is surpassed by Sirius'] are not included in the Leiden manuscript (ELO, North no. no. 53, fol. 6vs). However, these words do appear in the Boulliau copy (OdP, B12-13), which proves that he used the same source as the later made De l'Isle copy.
133 Rubedo in the Leiden manuscript (ELO, ibidem).
134 At this point two lines from the Leiden manuscript are omitted in the Paris manuscript, probably because they are hardly readable (also for us).
135 Quum in the Leiden manuscript.
$1362^{\circ}$ in the Leiden manuscript
137 Not aequatoris but angularis according to the Leiden manuscript.
$1381^{a}$ quinque in the Leiden manuscript (ELO, North no. no. 53, fol. 7r).
M. Cap. Hydri A. NB ${ }^{139}$ Cap. Hydri
$2^{\prime}$ circiter temp. culminat. Orientalis ${ }^{140}$
duarum parvatarum Sup. a $2^{\text {da }} \mathrm{fl}$.
Seu Sup. $2 \min ^{141}$
1096 p.
$\varphi$ Eridani A.
50 p.
Secunda [quique] ${ }^{142}$ Hidri A.
505 p.
Tertia [quousque] ${ }^{143}$ Hidri A.
47
Quarta fl. globi. A.
135
Clara longe supra 4 fl. ejus altit.
M. $62^{\circ} 48^{\prime} 0 " \mathrm{~A}$.

NB Sunt 3 instar $\triangle$ isopleur. ejus
haec est Occid.
672 p.
I. ${ }^{144}$ Erid. s quinta A.

24 p.
6 Erid. globo non extat A.
227 p.
Quarta $S^{145}$ in Hydro cum hac culminat
paruula 6 magnit. in hanc et fluu.
est q ejus altit. Merid.
$42 \quad 7 \quad 0$
296 p.
[42]

Occid $\Delta$ Sup. fluvij 6. A
43 p.
Seq. hanc Australior ejus Alt. Mer. $\quad 61 \quad 0 \quad 0 \quad$ A
488 p.
6. Erid. glob. mihi 8 seu lucida $A$.

126 p.
$\begin{array}{lllll}\text { Alt. Occid. luc. ped. Austral. androm. } & 40 & 11 & 0\end{array}$

[^18]Et ejus azimuth a septent. in occid.
152 p.
Alt. Occid. luc. ped. Austral. Androm.
Azimuth
$30 \quad 30 \quad 0$

Ab h. 9 ad h. 13
Alt. M 11. Eridiani mihi ${ }^{146} \quad 56 \quad 42 \quad 0 \quad$ A
Occ. $\Delta$ fluvij ( 7 globi)
17. Erid. globi

Australis $\Delta$ Erid. (8. globi)
Bor. $\Delta$ fluu. (9 fl. globi)
15. Erid. globi
14. Erid. globi

Inform. in 2. Nubes Or.
Ex duabus lucid. Or. quae sunt sub e duobus occ. in fluvis Rio Indi ${ }^{147}$
2. occid. in fl. superior (10 Erid. globi)

Inter fl. et Dorado
2. occid. in fl. infer. (11 Erid. globi)

Ad latus Occid. Dorado
[43]
Informis super hac longe superior
2. Orient. super ( 13 fl . globi)
2. Orient. fl. infer. (12 fl. globi)

Alt. Merid. extrem. Caudae Dorado
Super hac informis Or. in $\nabla$

[Mss Leiden]

[Mss Paris]

| Extra Columba Occid. | 62 | 10 | 0 | A |
| :--- | :--- | :--- | ---: | :--- |
| Infra 2. Nebulos. ad Ortum | 40 | 16 | 30 | A |
| Rigel Orionis | 89 | 31 | 0 | A |
| Proxime Sup. Nub. Major. | 30 | 41 | 0 | A |

[^19]| Extr. Alae dextr. Columb. | 62 | 29 | 0 | A |
| :--- | ---: | ---: | ---: | ---: |
| In Dorso Columbae | 63 | 55 | 0 | A |
| In dorso Dorado | 35 | 46 | 30 | $\mathrm{~A}^{150}$ |
| In extrem. alae sinist. Columb. | 65 | 46 | 30 | A |
| In educt. alae dextrae Columb. | 62 | 18 | 30 | A |
| In bolide Naucleri | 47 | 4 | 30 | A |
| In eductione alae sinistrae Columb. | 64 | 20 | 0 | A |
| In eductione Colli Columb. | 62 | 55 | 0 | A |
| Superior 2 in ventre Dorado | 32 | 20 | 30 | A |
| Inferior | 31 | 16 | 0 | A |
| Caput Columbae | 61 | 0 | 0 | A |
| Sub Canobi ad dextr. ${ }^{151}$ | 43 | 21 | 0 | A |
| 3. Sup. in Ramo Columb. Austr. | 63 | 10 | 0 | A |
| Extrem. ped. dext. post Canis Major. | 68 | 14 | 30 | A |
| Media 3. Super in Ramo Columbae | 64 | 56 | 30 | A |
| Borealior 3. in Ramo Columbae | 65 | 51 | 0 | A |
| Canobi | 45 | 48 | 30 | A |

## [44]

Altitudo $\odot$ Merid.
Die $\frac{15}{25}$ Decemb.
G. M. S.

Die $\frac{16}{26}$ Decemb.
$\begin{array}{llllll}\text { Altitudo } \odot \text { Merid. } & 74 & 48 & 40 & \text { A }\end{array}$ Vesperi h. 7
$\hbar$ cum duabus lucidis in cauda $\bigvee_{0}$ faciebat $\Delta$ isosceles ad visum erat que $\hbar$ occidentalior stellis tantum distans a precedent ${ }^{152}$ in cauda $\zeta_{0}$ quantum ambae in cauda inter se distant basini autem trianguli $\hbar$ et seq. in cauda faciebant. ${ }^{153}$
$15035^{\circ} 30^{\prime} 0^{\prime \prime}$ in the Leiden manuscript. This value is used in the translation. It is also closer to the calculated one.
151 Inserted at the left in the margin: glob. non habet.
152 It should be precedent. with the abbreviation dot.
153 The figure from the Leiden manuscript ( $E L O$, North no. 53, fol. 7vs) differs slightly from the one in the Paris manuscript.


Die $\frac{17}{27}$ Decemb.
Altitudo $\odot$ Merid.
$\begin{array}{llll}74 & 51 & 0 & \text { A }\end{array}$
Die 28, 29 et 30. Inconstans coelum
fuit, et ego etiam absens fui in campis.
Die $\frac{21}{31}$ Decemb.
Altitiudo $\odot$ Merid.
$75 \quad 6 \quad 0 \quad$ A
Nox Inconstans.
[45]
Sequitur annus 1640
Et in eo Observationes
Coelestes Georgij
Marggrafij Die $1^{\text {a }}$
Januarij Greg. A. C.
1640

Altitudo $\odot$ Meridiana
Seqq. Inconstans Coelum.
Die 6 Januarij
Altitudo $\odot$ Merid.
G. M. S.
$\begin{array}{llll}75 & 10 & 15 & \text { A }\end{array}$

Altudo Merid. $\quad \begin{array}{lllll}75 & 41 & 30 & \text { A }\end{array}$

|  | Die 7 Januarij | 75 | 50 | 0 | A |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Altitudo $\odot$ Merid | Die 8 Januarij |  |  |  |  |
| Altitudo $\odot$ Merid. | Die 9 Januarij | 75 | 58 | 30 | A |
| Altitudo $\odot$ Merid. |  | 76 | 70 | 0 | A $^{154}$ |

Reliquo mensis ut et februarij ${ }^{155}$, ut plurimum serenitate carvimus, et ego aliquoties peregre abfui. Mense Martii die $\frac{8}{18}$ nocte sequent. domus nostra
ubi habitamus, sponte sua totaliter corruit, nobis omnibus dormientibus. Sed singulari Dei ope omnes septem numero vivi servati sumus, hinc inde tamen in membris laesi, supellex mea damnum inde passa, arculis íncludenda fuit, usquedum aede Redintegrata quod trimestri spatio post demum ${ }^{156}$ factam; Interea temporis coactus fui feriari ab operibus mathematicis; accedente ${ }^{157}$ etiam semiluxatione axillae sinistrae, quae me inutilem ad aliquid peragendum effecit et ultra duos menses detinuit.

Altitudo $\odot$ Merid.
Die $\frac{1}{11}$ Junij
Die 12 et 13 pluit.
Die 14 Junij
Altitudo $\odot$ Merid

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.
G. M. S.
.

| Die 18 Junij. G. M. S. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 58 | 24 | 40 |
| Die $\frac{9}{19}$ Junij. |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 58 | 23 | 40 |
| Die $\frac{10}{20}$ Junij. |  |  |  |  |
| Ab h. $9 \frac{1}{2}$ fere Ante Merid. |  |  |  |  |
| 1. Altitudo $\odot$ Ante Merid. |  | 40 | 22 | 30 |
| Azimuth ejus a Sept. in Ort. |  | 48 | 50 | 0 |
| 2. Altitudo $\odot$ |  | 42 | 31 | 0 |
| Azimuth ut ante |  | 46 | 43 | 0 |
| 3. Altitudo $\odot$ |  | 46 | 5 | 30 |
| Azimuth |  | 42 | 33 | 30 |
| 4. Altitudo $\odot$ |  | 47 | 22 | 30 |
| Azimuth |  | 40 | 42 | 0 |
| 5. Altitudo © |  | 48 | 7 | 30 |
| Azimuth |  | 39 | 35 | 0 |
| 6. Altitudo $\odot$ Ante Meridiem |  | 49 | 0 | 0 |
| Azimuth a Sept. in Ortum |  | 38 | 10 | 0 |
| 7. Altitudo $\odot$ |  | 53 | 21 | 0 |
| Azimuth |  | 29 | 5 | 0 |
| Erat h. $10 \frac{3}{4}$ Solarij |  |  |  |  |
| 8. Altitudo $\odot$ Merid. |  | 58 | 23 | 30 |
| Azimuth |  | 0 | 0 | 0 |
| 9. Altitudo $\odot$ post Meridiem |  | 58 | 12 | 0 |
| Azim. a Sept. in Occas. |  | 7 | 47 | 0 |
| [48] |  |  |  |  |
|  |  | G. | M. | S. |
| 10. Altitudo © |  | 57 | 30 | 0 |
| Azimuth |  | 14 | 40 | 0 |
| 11. Altitudo $\odot$ |  | 56 | 0 | 0 |
| Azimuth |  | 22 | 34 | 0 |
| 12. Altitudo $\odot$ |  | 49 | 15 | 30 |
| Azimuth |  | 39 | 35 | 0 |
| 13. Altitudo $\odot$ |  | 48 | 7 | 30 |
| Azimuth |  | 41 | 37 | 0 |
| 14. Altitudo $\odot$ |  | 47 | 41 | 0 |
| Azimuth a Septent. in Occas. |  | 42 | 21 | 0 |
| Erat h. 2. Solarij |  |  |  |  |
| Per Gnomonis umbram etiam | antecedentia |  |  |  |

157a End of the Leiden manuscript (ELO North no. 53].

Observavi erecto stylo partic.
4000, ergo in Observat. anteced.

1. Longitudo Umbrae erat particul. 4660
(qualium Gnomon 4000)
Angulus inter 1 et 2 obseru. umbrae $\quad 2^{\circ} \quad 15^{\prime}$
2. Longitudo Umbrae partic. 4324.

Angulus 40
$4^{158} \ldots$.... 3650
Angulus $\quad 1 \begin{array}{ll}15\end{array}$
5. ...p... 3554

Angulus $\quad 1 \quad 30$
6....p... 3448

Angulus $9 \quad 0$
7....p... 2950
[49]
Angulus
8. ...p... 2437

Angulus $8 \quad 0$
9. ...p... 2455

Angulus $\quad 6 \quad 45$
10. ...p... 2522

Angulus $\quad 7 \quad 6$
11 ...p... 2671
Angulus $\quad 77^{159} 15$
12. ...p... 3415

Angulus 20
13. ...p... 3552

Angulus $\quad 0 \quad 45$
14. ... p... 3610

Die $\frac{11}{21}$ Junij.
Ab h. $9 \frac{1}{4}$ circiter Ante Merid.

| 1. Altitudo $\odot$ Ante Merid. | $39^{\circ}$ | $15^{\prime}$ | $0 "$ |
| :--- | :--- | ---: | ---: |
| Azimuth a Septent. in Ortum | 49 | 40 | 0 |
| 2. Altitudo $\odot$ | 40 | 22 | 30 |
| Azimuth | 48 | 49 | 0 |
| 3. Altitudo $\odot$ | 41 | 12 | 0 |
| Azimuth | 48 | 0 | 0 |
| 4. Altitudo $\odot$ | 42 | 31 | 0 |
| Azimuth | 46 | 42 | 0 |
| 5. Altitudo $\odot$ | 46 | 0 | 0 |
| Azimuth | 42 | 41 | 0 |

[^20]

Die 22 Junij pluit.

[^21]| Die $\frac{13}{23}$ Junij. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Altitudo $\odot$ Merid. | 58 | 25 | 0 | B |
| Die $\frac{14}{24}$ Junij. |  |  |  |  |
| Altitudo $\odot$ Merid. | 58 | 26 | 20 | B |
| Vesperi Coelo serenissimo Observavi |  |  |  |  |
| quando finiretur crepusculum Vespertinum; |  |  |  |  |
| Vidi autem ejus finem, fugato poenitus ${ }^{162}$ |  |  |  |  |
| illo rubore lato, quum Cord. m , Altit. |  |  |  |  |
| Orient. esset | 41 | 36 | 0 |  |

Diebus seqq. Coelum incommodum.
Die $\frac{18}{28}$ Junij Coelo serenissimo.
H. 10 Antemeridiana, erecto instrumento
meo optico, per foramen cujus diameter
10 particularum; accepi diametrum
[52]
Radij ${ }^{163} \odot$ ejusmodi particularum; aliquoties
73 , aliquoties 74 distantia autem
foraminis a Radio adumbrato erat
p. 7340, observatio repetita post merid.
eadem dedit. Hoc dico majorem non
comparuisse diametrum Radij, quam 74 p . et minime fuisse 73 p .
Altitudo $\odot$ Merid. $\quad \begin{array}{lllll}58^{\circ} & 36^{\prime} & 0^{\prime \prime} & \mathrm{B}\end{array}$
Seqq. turbidum coelum.
Die $\frac{5}{28}$ Julij.
Altitudo $\odot$ Merid

Altitudo $\odot$ Merid.
Die 16 Julij pluit.
Die ${ }_{17}$ Julij
Seqq. pluviosum.
Die $\frac{13}{23}$ Julij.
Altitudo $\odot$ Merid

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.
Die $\frac{14}{24}$ Julij.
Die 25 Julij pluit.
Die $\frac{16}{26} \mathrm{~J}$ ulij.
$\begin{array}{llll}62 & 34 & 40 & \text { B }\end{array}$

162 Sic!
163 The expression diameter of the radius sounds oddly and is repeated few lines later. But in this case radius means the luminous projection of the Sun.

|  | Die $\frac{17}{27}$ Julij. | 62 | 49 | 40 | B |
| :--- | :--- | :--- | :--- | :--- | :--- |

G. M. S.

| Seqq. dies nubili pluviosi <br> Kalend. Augusti |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Die 2 Augusti | 64 | 1 | 40 | B |
|  | 64 | 17 | 0 | B |

Seqq. nub. pluviosi.
Die 7 Augusti
Altitudo $\odot$ Merid.
Vesperi die 7 Augusti h. $6 \frac{1}{2}$
In Altitud. Occid. Arcturi ${ }^{164}$
Ejus azimuth a Septent. in Occ.
330 puls. post. Altit. ర̧ Occid.
Azimuth a Septent. in Occas.
245 puls. post iterum ఛ̧ altit.
Azimuth a Septent. in Occas.
343 pulsus post altit. Arcturi occ.
Azimuth ejus a Septent. in Occ.
Ulterius ad h. 9 usque verspertinam
Altitudo Merid. Or. Anguli Austr. $\left(\beta^{165}\right) \quad \begin{array}{lllll}29 & 53 & 30 & \text { A }\end{array}$
In turib.
In turib.
Una Cauda M, $(\varepsilon)$
$2^{\text {a }}$ Cauda $\mathrm{m}_{\text {, }}(\boldsymbol{\mu})$
$3^{\text {a }}$ Cauda M, ( $\zeta$ )
$51 \quad 20 \quad 0$
$41 \quad 17 \quad 0$
$\begin{array}{lll}6 & 7 & 0\end{array}$
$77 \quad 42 \quad 0$
$4 \quad 59 \quad 30$
$78 \quad 0 \quad 0$
$48 \quad 59 \quad 0$
$6540 \quad 0 \quad$ B
$44 \quad 28 \quad 0$
$49 \quad 51 \quad 0 \quad$ A
$42 \quad 49 \quad 30 \quad$ A
$64 \quad 32 \quad 0 \quad$ A
$60 \quad 47 \quad 0 \quad$ A
$55 \quad 25 \quad 30 \quad$ A
[54]

Duarum in turib. Inferior
Superior
G. M. S.
quae Sub. Superiore $2^{\text {mo }}$. in turib.
In turib. Supra duas
Vltim. Cauda m ,
$42 \quad 10 \quad 0 \quad$ A

Penultim. Cauda M,
Sexta Caud. M,
Occidentalissim. pavon. $(\chi)$
Quarta a fine Cauda II,

430000 A
$37 \quad 49 \quad 30 \quad$ A
$48 \quad 39 \quad 0 \quad$ A
$\begin{array}{llll}61 & 10 & 0 & \text { A }\end{array}$
$6120 \quad 0 \quad$ A
$55 \quad 26 \quad 30 \quad$ A
$33 \quad 40 \quad 0 \quad$ A
$59 \quad 21 \quad 0 \quad$ A

[^22]| Quinta a fine Cauda M, | 58 | 12 | 30 | A |
| :---: | :---: | :---: | :---: | :---: |
| Post Caud. $M$, in $\chi^{\nearrow}$ | 61 | 16 | 0 | A |
| In Cauda pavon. ( $\mu$ ) | 34 | 30 | 0 | A |
| In turib. | 48 | 6 | 30 | A |
| Una Arcus $\boldsymbol{\chi}^{\boldsymbol{7}}(\gamma)$ | 67 | 46 | 30 | A |
| Arcus $\chi^{7}$ | 61 | 18 | 0 | A |
| 21 Meridiana altitudo | 74 | 31 | 30 | A |
| \& 127 pulsus post |  |  |  |  |
| Quae Orientalior prima Arcus $\boldsymbol{\chi}^{\boldsymbol{7}}$ ( $\delta$ ) | 68 | 10 | 0 | A |
| Arcus $\chi^{7}$ ( $\varepsilon$ ) | 63 | 36 | 30 | A |
| Sub Corona $\nabla$ occ. | 52 | 3 | 0 | A |
| - $\nabla^{\nabla}$ austr. | 48 | 56 | 0 | A |
| $-\nabla$ Or. | 52 | 3 | 0 | A |
| In Arcu $\chi^{7}(\lambda)$ | 72 | 30 | 0 | A |
| In pavoni (v) | 35 | 39 | 0 | A |
| In pavoni ( l ) | 30 | 32 | 30 | A |
|  |  |  |  |  |
| Altitudo $\odot$ Merid. | 65 | 77 | 30 | $\mathrm{B}^{166}$ |
|  |  |  |  |  |
|  | G. | M. | S. |  |
| Vesperi ob nubes $\succ ¢$ Observare non potuit |  |  |  |  |
| Altitud. Merid. $\mathrm{p}^{167}$ Cor. m , ad Boream | 73 | 23 | 30 | A |
| Cordis M, | 72 | 29 | 30 | A |
| Seq. Cor. M , ad austrum | 70 | 40 | 0 | A |
| Or. $\triangle$ Austrini | 29 | 51 | 0 | A |
| Hinc nubes Iterum Serenum. |  |  |  |  |
| Altitudo Merid. prima cauda m , | 64 | 31 | 0 | A |
| Secunda Cauda M, | 60 | 45 | 30 | A |
| Hinc nubes per noctem. |  |  |  |  |
|  |  |  |  |  |
| Altitudo $\odot$ Merid. | 66 | 14 | 30 | B |
|  |  |  |  |  |
| Altitudo $\odot$ Merid. | 66 | 32 | 0 | B |
| Parvo Sextante itidem | 66 | 32 | 0 | B |
| Vespera multae nubes demum ijs dispersis. H. $6 \frac{1}{2}$ |  |  |  |  |
| Altitudo $\begin{aligned} & \text { occ. }\end{aligned}$ | 8 | 21 | 0 |  |
| Azim. a Septent. in Occ. | 79 | 38 |  |  |
| 215 puls. post. |  |  |  |  |
| Altitudo Occ. Luc. Coronae Bor. | 52 | 26 | 0 |  |

[^23]| Azimuth a Septent. in occ. | 16 | 10 | 0 |
| :--- | ---: | ---: | ---: |
| 117 puls. post. |  |  |  |
| ¢ Altit. | 7 | 6 | 0 |
| Azimuth | 79 | 40 |  |
| \& 225 puls. post |  |  |  |

[56]
Altitudo Occ. Luc. Coronae Bor.
G. M. S.

Azimuth
$52 \quad 7 \quad 0$

Iterum Impeditum a nubibus per tempus
Hinc clarum.
Altitudo Merid. 3a Caud. M, ( $\mu$ ) $\quad \begin{array}{lllll}55 & 24 & 0 & \text { A }\end{array}$
Duarum in turib. inferior
Superior
In turib. sub tres duabus
Supra hic duabus
Ultima Caudae m ,
1630

Penultima Caudae m ,
$42 \quad 7 \quad 0 \quad$ A
$43 \quad 0 \quad 0 \quad$ A

Statim hac culminat paruula
sub Cauda M,
Nubes Iterum.
Occidentalissim. pavonis ( $\lambda$ ) est sub ea
quae in turib. sub duabus cum altit.
merid.
37 49; $3336.0^{168}$
Quarta a fine Caudae $M$,
Quinta a fine Caudae $M$,
$\begin{array}{llll}59 & 18 & 30 & \text { A }\end{array}$
Extra Caudam M,
$58 \quad 18 \quad 0 \quad$ A
Nubecula Splendens hac Superior in
ejus locum nebulosum Bayerus posuit
In Cauda pavonis ( $\mu$ )
$61 \quad 11 \quad 0 \quad$ A

In turibulo
$63 \quad 25 \quad 0 \quad$ A

Hinc Nubilum

> Die $\frac{1}{11}$ Augusti pluit.
> Die $\frac{2}{12}$ Augusti.

## [57]

G. M .

Vesperi dimidia 7 Inclarescebat.
Altitudo Merid. Cord. m , $\begin{array}{lllll}72 & 29 & 30 & \text { A }\end{array}$
Seq. Cord. $m$, ad Austr.
$\begin{array}{llll}70 & 39 & 30 & \text { A }\end{array}$
Iterum nubilum.

[^24]Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.
Nox Nubilosa.

Alt. $\odot$ Mer.
Nox nebulosa.

Altitudo $\odot$ Merid.
Nox nubilosa.

Altitudo $\odot$ Merid.
Nox Nubilosa.

Altitudo $\odot$ Merid.
Vesperi post 6
ర̧ ob nubes observare non potui
Altitud. Merid. 3. Caud. Sco ( $\zeta$ )
Duo in turib. inferior
Superior
Quae Sub. Super $2^{\text {mum }}$ In turib.
Quae Supra duas in turib.
Ultima Caudae m ,
Penultima Caudae m,

Die $\frac{3}{13}$ Augusti.
Die $\frac{6}{16}$ Augusti.

Die $\frac{7}{17}$ Aug.

Die 18 Augusti.

Die $\frac{9}{19}$ Augusti.

Die $\frac{10}{20}$ Augusti.
[58]
G. M. S.
$55 \quad 24 \quad 0 \quad \mathrm{~A}^{169}$
$\begin{array}{llll}33 & 37 & 30 & \text { A }\end{array}$
$59 \quad 20 \quad 0 \quad$ A
$58 \quad 10 \quad 30 \quad$ A

Biduum pluviosum.
Die $\frac{13}{23}$ Augusti.

Nox pluv.
Die $\frac{14}{24}$ Augusti Merid.
Nubilum pluvies.
Vesperi post 6. h.
$70 \quad 40 \quad 20 \quad$ B
Altitudo $\odot$ Merid.

Altitudo Spica Ill occ.
Azimuth ab occas. in Merid.
$69 \quad 40 \quad 0 \quad$ B
$55 \quad 24 \quad 30 \quad$ A
$42 \quad 10 \quad 0 \quad$ A
$43 \quad 0 \quad 0 \quad$ A
$37 \quad 49 \quad 30 \quad$ A
$48 \quad 39 \quad 30$ A
$61 \quad 10 \quad 0 \quad$ A
$61 \quad 21 \quad 30 \quad$ A
$\begin{array}{llll}67 & 25 & 40 & \text { B }\end{array}$
$68 \quad 21 \quad 0 \quad$ B
$68 \quad 40 \quad 30$
$69 \quad 0 \quad 15 \quad$ B
$69 \quad 20 \quad 0 \quad$ B
,

Sexta Caud. m,

Quarta a fine Caud. IL, Quinta a fine Caud. Il,
Hinc nubilum.

169 The next observed celestial body has not been recorded.

138 puls. post.
Altitudo ל઼ occ. $\begin{array}{llll}17 & 29 & 0\end{array}$
Azimuth $88 \quad 20$
a Sept. in Occas.
140 puls.
Altitudo Spic. Ill occ.
Azimuth ab occid. in Merid.
135 puls.
Altitudo ఛ̧
$16 \quad 26 \quad 30$
Azimuth a Septent. in occas.
$88 \quad 12 \quad 0$
141 puls.
[59]

Altitudo Spic. Il l
G. M. S.
$35 \quad 54 \quad 0$
Azimuth
128 p.
Altitudo ४̧ $\begin{array}{llll}15 & 20 & 0\end{array}$
Azimuth $\begin{array}{llll}88 & 36 & 0\end{array}$
128 p.
$\begin{array}{lllll}\text { Altitudo Spicae ID又 } & 34 & 51 & 0\end{array}$
Azimuth
$6 \quad 6 \quad 0$
234 p.
Altitudo ఛ
$14 \quad 2 \quad 0$
Azimuth
$88 \quad 43 \quad 0$
137 p.
$\begin{array}{llll}\text { Altitudo Spicae ITl } & 33 & 25 & 30\end{array}$
Azimuth $\begin{array}{llll}6 & 20 & 0\end{array}$
Postea
Quae Supra duas in turib. in Merid.
252 puls. post.
Ulima Caudae m , in Merid.
160 p.
Penultima Caud. m , Culminat.
138 p.
Sexta Caud. M,
389 p.
Quarta Caudae m , a fine
286 p.
Quinta a fine Caudae m ,
255 p.
Extra Caud. M,
155 p.
Occ. Altit. Arcturi ..... $31 \quad 26$
Azimuth ejus a Sept. in Occ. ..... 5935
Altit. Merid. quae in Sinistr. Herculisdraconis$35 \quad 41 \quad 0 \quad$ B
Altitudo Mer. duo Lucid. in Cap. draconisAzimuth a Septent. in Occas.$\begin{array}{llll}30 & 20 & 30 & B\end{array}$
Altitudo Occ. Arcturi$25 \quad 37 \quad 0$
118 p. post.
2) Altitud. Merid. ..... $\begin{array}{llll}74 & 32 & 30 & \text { A }\end{array}$
353 p.Altitudo Arcturi Occid.AzimuthAltitudo Merid. Lucid. Lyrae$24 \quad 1 \quad 0$
ab h. $11 \frac{1}{2}$ ad h. $13^{170}$.Altitudo occ. Caud. Vult.$62 \quad 51 \quad 0$
$43 \quad 22 \quad 30$ ..... B$39 \quad 6 \quad 30$
Azimuth a Septent. in occas. ..... $65 \quad 51 \quad 0$
182 p.
Altitude Merid. $\hbar$ ..... $83 \quad 48 \quad 0 \quad$ A
897 p.
Altitudo Merid. $0^{*}$ ..... $79 \quad 49 \quad 0 \quad$ A
385 p.
Altitudo Occ. Caud. Vulturis ..... $33 \quad 53 \quad 0$Azimuth ejus$68 \quad 6 \quad 0$
260 p.Altitudo Merid. $\theta$ in grue959 p .
Altitudo Merid. fomahant ${ }^{\text {m }}$Die $\frac{15}{25}$ Augusti.Merid. nubes.Vesperi post $6 \frac{1}{4} \mathrm{~h}$.
In altitud. Occ. Spic. Ml ..... $37 \quad 28 \quad 0$

170 This time reckoning suggests that the hours of the day start at noon and goes up to 24 h at the next noon. But the new date would start at midnight.


Die $\frac{16}{26}$ Augusti h. $6 \frac{1}{4}$ vesperi.

| Altitudo Spicae Ml occ. | 36 | 22 | 30 |
| :---: | :---: | :---: | :---: |
| Azimuth ab occas. in Merid. | 5 | 55 | 0 |
| 126 p. |  |  |  |
| ర̧ Altitudo Occ. | 18 | 10 | 30 |
| Azimuth a Septent. in Occ. | 89 | 13 | 0 |
| 283 p. |  |  |  |
| ¢̧ altitudo Occ. | 17 | 4 | 30 |
| Azimuth | 89 | 23 | 0 |
| 378 p. |  |  |  |
| Spica Inl Altitudo Occ. | 33 | 20 | 0 |

Azimuth
$6 \quad 9 \quad 0$
440 p .
[63]
Quae Supra duas in turib. in Merid...
171 p.
Ultima in Cauda M , in Merid.
183 p.
Penultima Caudae m , in Merid.
89 p.
Sexta Caudae M,
424 p.
Quarta Caudae m ,
316 p.
Quinta Caudae m ,
192 p.
Post Caudam M,
101 p.
Altitudo Spicae Ml occid
Azimuth ab occ. in Merid.
$26 \quad 6 \quad 0$
Post hor. $7 \frac{1}{4}$ Altitudo Arcturi Occid.
Azimuth a Septent. in occ.
$\begin{array}{lll}6 & 45 & 0\end{array}$

218 p. post.
2/ altitudo Merid.
270 p.
Altitudo Arcturi Occid.
Azimuth
Altitudo Merid. Lucid. Lyrae
hor. $11 \frac{1}{2}$
[64]

|  | G. | M. | S. |  |
| :---: | :---: | :---: | :---: | :---: |
| Altitudo Occ. Caud. Vult. | 41 | 2 | 0 |  |
| Azimuth a Septent. in occ. | 64 | 42 | 0 |  |
| 637 p. |  |  |  |  |
| ち Altitudo Merid. | 83 | 47 | 30 | A |
| 825 p. |  |  |  |  |
| $o^{*}$ altitudo Merid. | 79 | 41 | 30 | A |
| 943 p. |  |  |  |  |
| Altitudo Occid. Caudae Vult. | 32 | 30 | 0 |  |
| Azimuth |  | 68 | 43 | 0 |

Die 27. Nub. pluit.


Circa Med. Noctis Nubilum factum.
Die $\frac{19}{29}$ Augusti pluit.

## Die $\frac{20}{30}$ Augusti．

Vesperi ab h． $6 \frac{1}{4}$ usque ad 8 h ．
Altitudo Occ． $\begin{aligned} & \text { © } \\ & \text { Azimuth ab occid．in Merid．}\end{aligned}$.
117 p．post．
Altitudo Occ．Spicae Ill
Azimuth ab occid．in Merid．
G．M．S．

74 p．
४ Altitudo
Azimuth
92 p．
$\begin{array}{llll}\text { Spicae IlX Altitudo } & 30 & 14 & 30\end{array}$
Azimuth
$\begin{array}{lll}6 & 37 & 0\end{array}$
119 p．
४̧ Altitudo
Azimuth
$16 \quad 10 \quad 0$

105 p.
Altitudo Spicae 仅 $\quad 29 \quad 21 \quad 0$
Azimuth
88 p．
४ Altitudo $\quad 15 \quad 27 \quad 0$
Azimuth $\quad \begin{array}{llll}2 & 14 & 30\end{array}$
113 p．
Altitudo Spicae 仅 $\quad \begin{array}{lll}28 & 36 & 30\end{array}$
Azimuth $6 \quad 42$ 0
88 p．
［67］
४ Altitudo
G．M．S．

Azimuth
$14 \quad 45 \quad 0$
120 p ．
$\begin{array}{llll}\text { Altitudo Spicae 仅 } & 27 & 47 & 30\end{array}$
Azimuth
$6 \quad 43 \quad 0$
80 p ．
૬ Altitudo $\quad 13 \begin{array}{lll}13 & 51 & 30\end{array}$
Azimuth $\quad 2 \quad 24 \quad 0$
106 p．
$\begin{array}{llll}\text { Spicae IlX Altitudo } & 27 & 3 & 30\end{array}$
Azimuth
$6 \quad 450$
116 p．
४ Altitudo
$13 \quad 5 \quad 0$
Azimuth
$2 \quad 27 \quad 0$
89 p．

| Spicae Ill Altitudo | 26 | 18 | 0 |
| :---: | :---: | :---: | :---: |
| Azimuth | 6 | 47 | 0 |
| 105 p. |  |  |  |
| ¢̧ Altitudo | 12 | 20 | 30 |
| Azimuth | 2 | 36 | 0 |
| 105 p. |  |  |  |
| Altitudo Arcturi Occid. | 31 | 5 | 0 |
| Azimuth a Septent. in Occas. | 59 | 43 | 0 |
| 122 p. |  |  |  |
| ¢̧ Altitudo | 11 | 27 | 30 |
| Azimuth | 2 | 45 | 0 |
| 216 p . |  |  |  |

[68]

Arcturi Altitudo Occ.
G. M. S.

Azimuth
$30 \quad 0 \quad 0$

557 p.
Arcturi Altitudo occ. $\quad 28 \quad 6 \quad 0$
Azimuth
$61 \quad 7 \quad 0$
536 p.
2) Altitudo Merid.

281 p.
Altitudo Arcturi occid.
Azimuth a Septent. in occ.
$25-20 \quad 0$

1957 p.
Altitudo Merid. Lucid. Lyrae
$43 \quad 23 \quad 30$
$\hbar$ et $0^{\pi}$ non observavi ob viciniam
Lunae plenae
Die $\frac{21}{31}$ Augusti.
Altitudo $\odot$ Merid.
$\begin{array}{llll}73 & 30 & 0 & B\end{array}$
Die 1 Septemb. Vesp. h. $6 \frac{1}{4}$
Altitudo Occ. Spicae Ml
Azimuth ab occ. in Merid.
$27 \quad 34 \quad 0$
138 p.
ל̧ Altitudo Occid.
Azimuth ab occ. in Merid.
$15 \quad 19 \quad 0$
135 p.
Altitudo Spicae ml
Azimuth
$26 \quad 30 \quad 30$

124 p .


171 Considering the following observations of Mercury the elevation should rather be $16^{\circ} 10^{\prime}$ $0^{\prime \prime}$. This value is adopted for the translation.

| ¢ Altitudo | 14 | 19 | 30 |
| :---: | :---: | :---: | :---: |
| Azimuth | 3 | 47 | 0 |
| 121 p. |  |  |  |
| Arcturi Altitudo Occ. | 30 | 26 | 0 |
| Azimuth a Septent. in Occ. | 60 | 2 | 0 |
| 116 p. |  |  |  |
| ¢ Altitudo Occid. | 13 | 19 | 30 |
| Azimuth | 3 | 51 | 0 |
| 109 p . |  |  |  |
| Arcturi Altitudo Occid. | 29 | 42 | 30 |
| Azimuth | 60 | 20 | 30 |
| 119 p . |  |  |  |
| ¢̧ Altitudo | 12 | 30 | 0 |
| Azimuth | 4 | 7 | 0 |
| 96 p . |  |  |  |
| Arcturi Altitudo Occid. | 28 | 57 | 0 |
| Azimuth | 0 | 41 | 0 |

G. M. S.

Lustravi etiam hac vespera | quam |
| :---: | primum videri potuit, propter crepusculum tubo utens, et quia ille in elongatione maxima, apparebat clarissime bifidus et quod fere minus, lucens quam dimidiam partem. ఫ̧ autem scintillat instar fixae, in quanta etiam sit Altitudine ab horizonte conspicuus. 2 no observavi quia nubilum factum.

Die 3, 4 et 5. Inconstans coelum.
Die 6 Septemb. Merid. Nubes.
Vesperi h. $6 \frac{1}{4}$
Altitudo Arcturi Occid. $\quad 29 \quad 46 \quad 0$
Azimuth a Septent. in Occas. $\quad 60 \quad 12 \quad 0$
163 p.
४̧ Altitudo $\quad 15 \quad 25 \quad 0$
Azimuth ab Occas. in Merid. $\quad 5 \quad 13 \quad 0$
109 p.
Altitudo Arcturi Occ. $\quad 28 \quad 51 \quad 0$
Azimuth
6100
148 p.
४ Altitudo $\quad 14 \begin{array}{lll}14 & 31 & 0\end{array}$
Azimuth
113 p .

| Spicae Ml Altitudo Occ. | 21 | 51 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth ab Occ. in Merid. | 7 | 8 | 0 |
| 110 p. |  |  |  |


|  | G. | M. | S. |
| :---: | :---: | :---: | :---: |
| ¢̧ Altitudo | 13 | 39 | 0 |
| Azimuth | 5 | 38 | 0 |
| 137 p. |  |  |  |
| Spicae Ml又 Altitudo | 21 | 0 | 0 |
| Azimuth | 7 | 22 | 30 |
| 105 p. |  |  |  |
| ¢ Altitudo Occid. | 12 | 47 | 30 |
| Azimuth | 5 | 47 | 30 |
| 149 p. |  |  |  |
| Arcturi Altitudo Occid. | 26 | 17 | 0 |
| Azimuth | 61 | 50 | 0 |
| 146 p . |  |  |  |
| Spicae Ml Altitudo Occid. | 19 | 30 | 0 |
| Azimuth | 7 | 14 | 0 |
|  |  |  |  |
| Insignis Magnitudine fulget, et magnitudine paululum Superat 21 Colore ab eo diversissimus $0^{\pi}$ enim rubet instar prunea 기 clara Luce fulget. |  |  |  |

Die 7 Septemb. Merid. Nubes.
Vesperi h. $6 \frac{1}{4}$
Altitudo Spicae Ill Occid. $20 \begin{array}{lll}10 & 0\end{array}$
$\begin{array}{llll}\text { Azimuth ab Occas. in Merid. } & 6 & 42 & 30\end{array}$
110 p .
४ Altitudo $\quad 12 \quad 31 \quad 0$
Azimuth ab Occas. in Merid. $\quad 5 \quad 57 \quad 0$
125 p.

| Spicae Ill Altitudo Occid. | 19 | 10 | 0 |
| :---: | :---: | :---: | :---: |
| Azimuth | 7 | 4 | 0 |
| 86 p. |  |  |  |
| ¢̧ Altitudo | 11 | 39 | 0 |
| Azimuth | 6 | 13 | 0 |
| 75 p. |  |  |  |
| Spicae Il又 Altitudo | 18 | 33 | 30 |


| Azimuth | 7 | 12 | 30 |  |
| :---: | :---: | :---: | :---: | :---: |
| Et eo momento. <br> 2 Altitudo Meridiana | 74 | 30 | 0 | A |
| Antequam has observationes $¢ ¢$ et 21 |  |  |  |  |
| Instituerem, Tubo accurate lustravi $¢$ |  |  |  |  |
| Statim postquam emergeret ex crepusculo, diu que lustravi et apparuit mihi clarissime sulcat. lucidam partem |  |  |  |  |
| Ortum versus S. Superius, partem opacam Occasum versus seu inferius, id estC Cornutus, more $\$$, Cornua dirigebat in Occidentem quod in $\mathbb{C}$ fieri Solet quando Occidentalis est. |  |  |  |  |


[Mss Paris]

[Mss Boulliau]

Reliquum Noctis Nubilum.
Die 8 et 9. Turbidum, pluv. Coelum.
Die 10 Septemb.
Altitudo $\odot$ Merid.
[74]
G. M. S.

Vesperi ab Amicis Impeditus fui:
Noctu Nubes.
Die 11 et 12. Nubes pluv.
Die $\frac{4}{14}$ Sept. Merid. Nubilum
Vesperi h. $6 \frac{1}{4}$
In Crepusculo quando nondum apparerent
fixae 기 mediabat coelum. Et 21
Altitudo Merid. $\begin{array}{lllll}74 & 30 & 0 & \text { A }\end{array}$

Postea quam primum apparebat |  |
| --- |

Lustravi cum perspicillo et apparuit
Corniculatum.
Deinde

Altitudo | occid. |
| :---: |

Azimuth ab Occ. in Merid.
$\begin{array}{llll}77 & 17 & 0 & B\end{array}$

103 p.
Spicae Ml Altitudo Occid. $\begin{array}{lll}13 & 36 & 0\end{array}$

| Azimuth ab Occas. in Merid. | 8 | 10 | 0 |
| :--- | ---: | ---: | ---: |
| 123 p. post. |  |  |  |
| Arcturi Altitudo Occ. | 20 | 5 | 0 |
| Azimuth a Septent. in Occas. | 64 | 36 | 0 |
| 136 p. |  |  |  |
| Altitudo ఛ̧ | 7 | 51 | 0 |
| Azimuth | 8 | 52 | 0 |
| 120 p. |  |  |  |
| Altitudo Spicae MQ Occid. | 12 | 7 | 30 |
| Azimuth | 8 | 37 | 0 |
| 104 p. |  |  |  |

## [75]

Altitudo Arcturi Occid
G. M. S.

Azimuth
105 p.
Altitudo ఛ̧ $\quad 6 \quad 36$
Azimuth $\quad 9 \quad 1 \quad 0$
123 p.
Spicae Ill Altitudo
Azimuth
153 p.
Altitudo Arcturi
Azimuth
$17 \quad 31 \quad 0$
Postea has fixarum Altitudines Austr.
Sumpsi.

| Altitudo Merid. 2 in in $\chi^{7}$ |  | 67 | 45 | 0 | A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NB Intercedunt aliquae fixae omnes non sumpsi | $\mid \gamma$ quq. in Cor. A. Secunda a sumo | 59 | 40 | 0 | A |
|  | $\mid \tau$ in $\chi^{7}$ | 69 | 55 | 0 | A |
|  | \{ Orientalis Cap. $\chi^{7}$ | 76 | 30 | 0 | A |
|  | \| Duarum proximor ${ }^{172}$ sibi sub pedibus |  |  |  |  |
|  | $\chi^{\boldsymbol{\lambda}}$ Superior (non extat in globo | 53 | 3 | 0 |  |
|  | \| Quae Supra has duas Orient. | 56 | 50 | 0 | A |
|  |  |  |  |  |  |

Die 15 et 16. Inconst. nub.

172 It should be proximarum.

Die 17 Septemb. Merid. nubilum.
Vespera clara quidem, sed propter versus horizontem Occidentalem quae tardius discussae, $̧$ observare non potui.

Hora 10 Vesperi, Ante.
[76]

| Altitudo Merid. 11 Hydri seu $\lambda$ | 19 | 9 | 0 |  |
| :---: | :---: | :---: | :---: | :---: |
| In pisse ${ }^{173}$ Notio ( l ) | 63 | 25 | 0 | A |
| In pisse ${ }^{174}$ Notio ( $\theta$ ) | 65 | 32 | 0 | A |
| Capit gruis ( $\alpha$ ) | 59 | 4 | 0 | A |
| in laeva manus ${ }^{175}$ Indi Sagitt. 2 ( $\delta$ ) duarum Superior Supra Rostrum Toucan | 41 | 28 | 0 | A |
| Inferior i.e. ejusdem Saggit. 3 (ع) | 39 | 53 | 0 | A |
| Altitudo Occid. Caud. Vult. | 41 | 41 | 0 |  |
| Azimuth ejus a Septent. in Occas. | 64 | 18 | 0 |  |
| 399 p. post |  |  |  |  |
| Altitudo Merid. $\hbar$ | 83 | 20 | 0 | A |
| 48 p. |  |  |  |  |
| Altitudo Merid. ${ }^{\text {a }}$ | 79 | 43 | 0 | A |
| 528 p. |  |  |  |  |
| Altitudo Occid. Caud. Vult. | 38 | 1 | 0 |  |
| Azimuth | 66 | 23 | 0 |  |
| Iterum |  |  |  |  |
| Altitudo Merid. extrem. Rostri Toucan ( $\alpha$ ) | 36 | 10 | 0 | A |
| Col. ${ }^{176}$ Toucan ( $\gamma$ ) | 31 | 29 | 0 | A |
| Die $\frac{8}{18}$ Septemb. |  |  |  |  |
| Altitudo Meridiana $\odot$ | 80 | 20 | 40 | B |


[Mss Paris]

Vesperi clarum coelum, Sed quia nubes oblongatrae ${ }^{177}$, circa occidentem collectae, et vix $1 \frac{1}{2}$ hora post occasum $\odot$ discussae $\succ$ ¢ nec videre nec observare

[^25]Instrumentis potui.
2 Altitudo Merid.
Hora 10 Vesp. ad 12 fine.
Altitudo Merid. 11 Hydrae ( $\lambda$ )
Caput Gruis ( $\alpha$ )
Altitudo Occid. Caud. Vultur.
Azimuth a Septent. in Occas.
G. M. S.

210 p.
Ea quae ad clunes $\mathrm{m}_{\mathrm{m}}$ in Merid. (1)
173 p.
$\hbar$ altitudo Merid. $\quad 83 \quad 18$
56 p.
$\begin{array}{lllll}\text { ơ Altitudo Merid. } & 79 & 47 & 30 & \text { A }\end{array}$
572 p.
Altitudo Occid. Caud. Vultur.
Azimuth
$32 \quad 50 \quad 0$
103 p.
$\begin{array}{llll}\text { Altitudo Occid. Caud. Vult. } & 37 & 28 & 30^{178}\end{array}$
Azimuth
Altit. Merid. in Cauda gruis trium bor. ( $\lambda$ ) 44
$66 \quad 40 \quad 0$

Fomahant m
$58 \quad 30$ A
Sub hydro (quae non in globo)
$\begin{array}{llll}66 & 33 & 30 & \text { A }\end{array}$
Die $\frac{9}{19}$ Septembris.
Altitudo $\odot$ Merid.
$80 \quad 44 \quad 20 \quad$ B
Vesperi
2l et ơ visibiles erant, ipso momento
G. M. S.
occasus Solis, non item $\hbar$ quamvis $\sigma^{\text {a }}$
Vicinus: Sed post $\frac{1}{4}$ horae denuo poterat
videri, paulo post occasum $\odot$ erat.
Altitudo Meridiana 기
$\begin{array}{llll}74 & 29 & 30 & \text { A }\end{array}$
1307 p.
Altitudo Occid. Arcturi $\quad 20 \quad 28 \quad 30$
Azimuth a Septent. in Occas. $64 \begin{array}{lll}18 & 0\end{array}$
345 p.
$\begin{array}{llll}\text { Altitudo Arcturi Occid. } & 19 & 17 & 30\end{array}$
Azimuth $\quad 64 \begin{array}{lll}50 & 0\end{array}$
1256 p.
Spicae Il又 Altitudo Occid. $\begin{array}{lll}7 & 15 & 0\end{array}$

178 Note that this western elevation is higher than the previous one.

| Azimuth ab Occas. in Merid. | 8 | 58 | 0 |
| :---: | :---: | :---: | :---: |
| 189 p. |  |  |  |
| Arcturi Altitudo Occid. | 14 | 5 | 0 |
| Azimuth a Septent. in Occas. | 66 | 20 | 0 |
| Coelum autem Serenissimum erat ubique et Rubedo vespertina in Occid. $̧$ tamen videre nunquam potui, quamvis diligentissime diuque eum quaesiverim. |  |  |  |
| Et Spicae Ml quae 4 aut 5 grad. jam altior eo Supra horizontem aegre tandem emergebat videnda $్$ plane non. |  |  |  |
| Causam coniscio in aërem minus illuminatum a luce crepusculi, et rubedinam vespertinam: accessit luna quae corniculata |  |  |  |

[79]
G. M. S.
et in $*^{179} \odot$ in Occidente extabat, cujus lumen etiam adjumento fuit, ${ }^{180} \mathrm{Et}$ ¢̧ $\mathrm{Rx}{ }^{181}$ gradus etiam ipsae causam praebere potuit aliqualem.

## Hora 10 Vesperi (paulo ante)

Altitudo Occid. Caudae Vultur. $42 \begin{array}{lll}11 & 0\end{array}$
Azimuth a Septent. in Occ. $64 \quad 12 \quad 0$
279 p.
Stella ad clunes m in Meridiano...
263 p.
$\begin{array}{lllll}\text { Altitudo Merid. } \hbar & 83 & 17 & 30 & \text { A }\end{array}$
46 p .
Altitudo Merid. ơ $\quad 79 \begin{array}{llll}74 & 0 & \text { A }\end{array}$
724 p .
Altitudo Occid. Caud. Vult. $37 \quad 34 \quad 0$
Azimuth $\begin{array}{lll}66 & 24 & 0\end{array}$
127.

Altitudo Occid. Caud. Vult. $37 \quad 8 \quad 0$

179 In astrology, * is the symbol for the sextile, or the situation in which the lines of sight of two celestial bodies, viewed from the center of the earth, make an angle of 60 degrees with each other. On this day, 19 September 1640, the Sun and the Moon were approximately in this situation.
180 Sic!
181 In medieval times the symbol Bx was an abbreviation of the late Latin instruction 'recipere', meaning 'receive'. It was the first word of a medical prescription. In astronomy 'Mercurius recipere' refers to the retrograde movement of the planet.


Vt autem dicam de Rubedine Vespertina Coelo Serenissimo occulta $\odot$ infra horizontem merso (praeclare videri potest, \& $\odot$ tunc sine Radijs apparet) paulo post aurej ex flavo coloris se diffundit color Arcuatum in Occidente ad 5.6 vel 7 . grad. altitudinem in Medio post semi horam circiter hic color Rubicans q. fit seu flamm. fumo pauco mixtus, et hunc colorem retinet donec sensim dispareat durante hoc Crepusculo, stella in ejus ambitu Consistens videri non potest. Ideo etiam $\begin{aligned} & \text { hac die et Anteced. nunquam }\end{aligned}$ videre potui existentem in ejus Ambitu. Spic. 仅 vero vidi quia altior et extra ejus arcum, quodque descensu suo Sequebatur disparitionem crepusculi, Nam a Superiore parte accurato disparere incipit Rubedo illa, inferior pars, ultimo euanescit.

Vesperi h. 10.
Altitudo Caudae Vultur. Occid.
$40 \quad 26 \quad 0$
Azimuth a Septent. in Occas.
$65 \quad 21 \quad 0$
105 p.
Altitudo Merid. $\hbar$
$83 \quad 15 \quad 30 \quad$ A
36 p .

Altitudo Merid. ơ
G. M. S.

589 p.
Altitudo Occid. Caud. Vultur.

Azimuth $\quad 66 \quad 42 \quad 0$
63 p.
Altitudo Occid. Caud. Vultur. $37 \quad 20 \quad 0$
Azimuth $\begin{array}{lll}66 & 50 & 0\end{array}$
Die $\frac{11}{21}$ Septemb.
Altitudo $\odot$ Merid.
Die $\frac{12}{22}$ Septemb.
$81 \quad 31 \quad 30 \quad$ B

Altitudo $\odot$ Merid.
$81 \quad 55 \quad 0 \quad$ B
Et eodem Meridie
Stilus erectus particularum 4000
Longitudo Umbrae - 587 partic. ejusmodi.
Circa Occasum $\odot$ observatorio expectans
tempus culminationis lunae futurae,
Circa h. 6. 22' eaque in prima quadratura
et primis gradibus $\bigvee_{0}$ existente, ac Nonag.
cum Merid. coincidente in differentia
$36^{\prime}$ circiter, et post Occasum $\odot$ totum
Coelum nubibus obducebatur, ut desiderio meo satisfacere minime possem.

Die $\frac{13}{23}$ Septemb.
Altitudo $\odot$ Merid.
$82 \quad 18 \quad 0 \quad$ B
Vesperi h. $9 \frac{3}{4}$ fere
Altitudo Occid. Caudae Vulturis $41 \quad 10 \begin{array}{lll} & 0\end{array}$
[82]
Azimuth a Septent. in Occas.
G. M. S.

216 p.
Altitudo Merid. $\hbar \quad 83 \quad 10 \quad 0 \quad$ A
149 p .
$\begin{array}{llllll}\text { Altitudo Merid. } 0^{\pi} & 80 & 11 & 30 & \text { A }\end{array}$
547 p.
Altitudo Occid. Caud. Vultur. $\quad 37 \quad 52 \quad 0$
Azimuth
$66 \quad 28 \quad 0$
256 p.
Altitudo Occid. Caud. Vult. $\quad 36$
Azimuth
$67 \quad 8 \quad 0$
Hora $10 \frac{1}{2}$ vidi tres Satellites $2 /$ in Occidentali plaga, existentes unum Supra, duas infra cum H. M. ${ }^{182}$ Intervallo à 21 $1 \frac{1}{2} 1.5$ circiter.

182 H.M.: maybe abbreviation for Hic Monstrato referring to the figure.


Die 24 Sept. Nubilum.
Die $\frac{15}{25}$ Septemb.
Altitudo $\odot$ Merid
Vesperi h. $9 \frac{3}{4}$ post.
Altitudo Occid. Caud. Vulturis
$40 \quad 53 \quad 30$
Azimuth a Septent. in Occas.
$64 \quad 43 \quad 0$
158 p.

|  | [83] | G. | M. | S. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Altitudo Merid. $\dagger$ |  | 83 | 9 | 0 | A |
| 171 p. |  |  |  |  |  |
| Altitudo Merid. ${ }^{\text {a }}$ |  | 80 | 24 | 30 | A |
| 516 p. |  |  |  |  |  |
| Altitudo Occid. Caud. Vult. |  | 37 | 59 | 0 |  |
| Azimuth |  | 66 | 38 | 0 |  |
| 211 p. |  |  |  |  |  |
| Altitudo Occid. Lucid. Lyrae |  | 21 | 10 | 0 |  |
| Azimbth a Septent. in Occas. |  | 43 | 33 | 0 |  |
| Die ${ }^{\frac{\overline{26}}{}}$ Septemb. |  |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 83 | 27 | 40 | B |
| Vesperi h. $9^{\overline{4}}$ |  |  |  |  |  |
| Altitudo Caud. Vult. Occid. |  | 41 | 51 | 0 |  |
| Azimuth a Septent. in Occas. |  | 64 | 15 | 0 |  |
| 397 p. |  |  |  |  |  |
| Altitudo Merid. $\dagger$ |  | 83 | 9 | 0 | A |
| 157 p. |  |  |  |  |  |
| Altitudo Merid. ${ }^{\text {a }}$ |  | 80 | 30 | 0 | A |
| 596 p. |  |  |  |  |  |
| Altitudo Occid. Caud. Vult. |  | 37 | 44 | 30 |  |
| Azimuth |  | 66 | 32 | 0 |  |
| 120 p. |  |  |  |  |  |
| Altitudo Occid. Lucid. Lyrae |  | 21 | 13 | 30 |  |
| Azimuth a Septent. in Occas. |  | 43 | 29 | 30 |  |
|  | Sequens pluviosum |  |  | * ${ }^{183}$ |  |

[^26]$\left.\begin{array}{lccccc} & \text { Die } \frac{20}{30} \text { Septemb. } & \text { G. } & \text { M. } & \text { S. } & \\ \text { Altitudo } \odot \text { Merid. } & \text { Nox Nubila } \\ & \text { Die } 1^{a} \text {. Octobris }\end{array}\right)$

Altitudo $\odot$ Merid. | 86 | 32 | 0 | B |
| :--- | :--- | :--- | :--- | :--- |

Biduum Inconstans.
Die 7. Octob.
Mane ab h. 4 ad 7. Man.
ఫ̧ videri non potuit quamvis Sereno Coelo.
Crepusculum matutinum videri incipie-
bat quum humerum rubescens Orionis
distabat à Meridiano in Occidentem
2. grad.

Hor. $5 \frac{1}{4}$ Circiter
Altitudo Orient. Jubae $\Omega$
Azimuth ab Ortu in Septent.

| 22 | 25 | 0 |
| :--- | :--- | :--- |
| 27 | 36 | 0 |

271 p.
Altitudo Orient. Jubae \& $\quad \begin{array}{lll}23 & 35 & 0\end{array}$
Azimuth ab Ortu in Septent.
$28 \quad 8 \quad 0$
280 p.
Sequens in ped. praeced. II 1 Anteced.
Seu Calx II in Meridiano
810 p.
Lucida pedis II in Merid.
118 p.
$\begin{array}{lllll}\text { Altitudo Centri Lunae bissectae Merid. } & 61 & 38 & 30 & \text { B }\end{array}$
[86]
(Erat $\mathbb{C}$ Bissecta et 90 Coincidebat fere
cum Meridiano, © autem tantum 37' circiter
distabat tempore culminationis a
Nonagesimo in Ortu ex Calculo.)
1634 p.
Centrum $\odot$ visum In horizonte Ortiuo,
In azimutho ${ }^{184} \mathrm{ab}$ Ortu in Austrum $\quad 5 \quad 42 \quad 0$
1469 p.
Altitudo $\odot$ Orientalis $\quad \begin{array}{llll}5 & 46 & 30\end{array}$
Azimuth ab Ortu in Austrum $\quad 4 \quad 39 \quad 0$
826 p.
$\begin{array}{llll}\text { Altitudo } \odot \text { Orientalis } & 9 & 7 & 30\end{array}$
Azimuth ab Ortu in Austrum $\quad 4 \quad 4 \quad 0$
Altitudo $\odot$ Merid.
Die 8 Octobris
Altitudo $\odot$ Merid. Die 9 Octob.
Altitudo $\odot$ Merid.
G. M. S.

Vesperi ab h. 8 usque ad $9 \frac{1}{4}$
Altitudo Merid. Sequentis Caudae $\bigvee_{0}$
$87 \quad 42 \quad 0 \quad$ B

312 p .
Altitudo Occid. Caud. Vultur. $44 \quad 22 \quad 0$
Azimuth a Septent. in Occas.
$62 \quad 42 \quad 0$
383 p.
Altitudo Occid. Caud. Vultur. $48 \quad 4 \quad 0^{185}$

[^27]Azimuth
543 p.
Altitudo Merid. $\hbar$
730 p .
Altitudo Merid. $\mathrm{o}^{\text {a }}$
566 p.
Altitudo Caud. Vult. Occid.
Azimuth a Septent. in Occas.
105 p .
Altitudo Occid. Caud. Vultur.
Azimuth
Die 10 Octob.
Meridie nubilum
Vesperi ab h. 8
Altitudo Merid. Seq. Caudae $\bigvee_{0}$
914 p.
$\eta$ Gruis in Merid.
266 p.
Altitudo Occid. Lucid. Lyrae
Azimuth a Septent. in Occas. ${ }^{186}$
106 p.
Altitudo Merid. $\hbar$
796 p.
Altitudo Merid. $0^{*}$
384 p.
Altitudo Occid. Caud. Vultur.
Azimuth a Septent. in Occas.

128 p.
Altitudo Occid. Lucid. Lyrae
Azimuth
133 p.
Altitudo Occid. Caud. Vultur.
Azimuth
Die ${ }^{\frac{1}{11}}$ Octob.
Mane ab h. 4.

In vigilans $\underset{+}{\text { ¢, }}$, Nunquam tamen mihi Comparaviteadem causa quam veluti die $\frac{9}{19}$ Septemb. hujus anni. Quamvis

[^28]enim jam in maximam elongationem perigea est $\underset{\text { ¢ }}{ }$ : tamen vix Oritur ante Initium Crepusculi, et usque dum 4:5. aut 6 grad. altitudinem acquirit, mera fere dies est, ut cerni non poterit $a b$ ejus claritate; Nam Crepuscula matutina brevi diem efficiunt, ut longo tempore Ante Ortum Solis merum diem habeamus. Accedebat etiam Luna corniculata in Orientali plaga.
Quando altitudo Merid. Syrij esset
Merus erat dies quum tamen dimidia hora post demum $\odot$ Ortus fuerit, ut ex hac observatione judicare poteris.

Altitudo $\odot$ Meridiana

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.
Vesperi ab h. 8. ad. 9.
Altitudo Occid. Caud. Vultur.
Azimuth a Septent. in Occas.
423 p.
Altitudo Merid. $\hbar$
429 p.
Altitudo Occid. Lucid. Lyrae
Azimuth a Septent. in Occas.
715 p.
Altitudo Merid. $\sigma^{\text {a }}$
500 p
Altitudo Occid. Caud. Vulturis
Azimuth
170 p.
Altitudo Occid. Caud. Vultur.
Azimuth a Septent. in Occas.
159 p.
Altitudo Occid. Lucid. Lyrae
Azimuth
G. M. S.
$89 \quad 12 \quad 0 \quad$ B
Die 12 Nub. pluit.
Die $\frac{3}{13}$ Octob.
Nox Nubila
Die $\frac{4}{14}$ Octob.
$89 \quad 56 \quad 30 \quad$ B
$89 \quad 33 \quad 40 \quad$ A
$42 \quad 39 \quad 0$
$6340 \quad 0$
$82 \quad 58 \quad 0 \quad$ A
$22 \quad 50 \quad 0$
$41 \quad 57 \quad 0$
$82 \quad 56 \quad 30 \quad$ A
$35 \quad 11 \quad 30$
$67 \quad 24 \quad 0$
$34 \quad 36 \quad 0$
$67 \quad 53 \quad 0$
$18 \quad 49 \quad 0$
$45 \quad 38 \quad 0$

Vltima medietas noctis nubila, pluit.
Die $\frac{5}{15}$ Octob.
Altitudo $\odot$ Merid. $\quad 89 \quad 11 \quad 0 \quad$ A
Nox Nubila
Altitudo $\odot$ Merid.
Die $\frac{6}{16}$ Octob.
G. M. S.

$$
1
$$

- 

$88 \quad 49 \quad 30 \quad$ A
Die $\frac{7}{17}$ Octob.
Altitudo $\odot$ Merid.
$88 \quad 27 \quad 30 \quad$ A

Integrum fere Mensem peregri abfui
Chorographiae et Topographiae Causa:
Die $\frac{3}{13}$ Novemb.
Coelum pro noto haud erat Serenum ad Observationem $\odot$ Eclipsis quae accidebat, attamen Initium et finem rite observatam.
Hor. igitur $10 \frac{1}{2}$ horolog. paulo plus in Altit. $\odot$ Orient. $67 \quad 12 \quad 0$
Initium hic erat Mauriciae ${ }^{187}$.
Hor. $1 \frac{1}{2}$ fere post merid. in alt. $\odot$ occ. $\begin{array}{llll}67 & 26 & 0\end{array}$
Desinebat Eclipsis $\odot$ Mauriciae.
Altitudo $\odot$ Meridiana Obscurati: $\quad 79 \quad 51$
Et eo Momento observatio maxima
proxime Crepusculi Vespertini initium
videbatur. Caelum Obtusum. Inclinatio

G. M. S.
in Meridiem talis circiter, exacte observare nubes Invidebant. Digiti obscurati 10 .
Incaepit Eclipsis ab Occidente Superius,

[^29]
## desijt ab Oriente inferius Sectiones omnes

Curvae.
Raptim Observavi quum Cornua deorsum
inclinabant.
Altitudo $\odot$ Occid. $\quad 79 \begin{array}{lll}14 & 0\end{array}$
Et quum 6. digit lumen Recuperasse
videbantur, erat Altitudo $\odot$ Occid.
Pag. Seq. vide observationem hujus
Eclipsis Nauclerorum

|  | Die $\frac{4}{14}$ Novemb. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Altitudo $\odot$ Merid. | Die 15 Novemb. | 35 | 40 | A |  |
| Altitudo $\odot$ Merid. | Biduum pluvice. | 79 | 20 | 20 | A |
|  | Die 18 Novemb. |  |  |  |  |
| Altitudo $\odot$ Merid. | Die $\frac{9}{19}$ Novemb. | 78 | 37 | 0 | A |
| Altitudo $\odot$ Merid. | Die 20 Novemb. | 78 | 23 | 30 | A |
| Altitudo $\odot$ Merid. |  | 78 | 10 | 0 | A |

Septiduum Nubilum, pluvium mixtum.
[92]

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.

Die 28. Novemb.

| Altitudo $\odot$ Merid. | 76 | 37 | 30 | A |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Altitudo $\odot$ Merid. | Die 29. Novemb. | 76 | 27 | 0 | A |
|  | Die 30. Nubilum |  |  |  |  |
| Altitudo $\odot$ Merid. | Die 1 ${ }^{\text {a }}$ Decembris. | 76 | 8 | 30 | A |

Seqq. Septimanis peregre iterum abfui. Die $\frac{10}{20}$ Decemb.

Die 21. Decemb.
G. M. S.
$6 \quad 8 \quad 30 \quad$ A

Die 22. Decemb. Seqq. Obtusum Coelum.

Die 28. Decemb.

Die 29. Decemb.

Die 30. Decemb.

Die 31. Decemb.
Altitudo $\odot$ Merid. $\quad 75 \quad 6 \quad 20$ A

Observationes<br>Eclipsis Solis

$\frac{3}{13}$ Novemb. 1640. ~
Aliquot Nauclerorum. Sub latitudine Australi $20^{\circ} 5^{\prime}$ remotus a terra seu littore Brasiliae 23 milliaribus observavit Initium hor. 11 ante Meridiem finem h. 1.15'. post merid. et digitos observatos 8 seu $\frac{2}{3}$ Coelo sereno, vento N.N. ${ }^{188}$ Navarchus (Leendert Rieijsen Hartochs ${ }^{189}$ ) Inde ponam longitudinem loci observationis 346 gr. 20'. min. ~

# Sequitur annus C. 1641 Et in eo Observationes coelestes Georgij Marggrafij. 

Die 1.2. et 3. Januarij, nubilum enim pluit.

[^30]Altitudo $\odot$ Meridiana

Altitudo $\odot$ Meridiana
Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.

Altitudo $\odot$ Merid.

Die 4. Jan. 1641. Stilo Gregor.
G. M. S.
$\begin{array}{llll}75 & 29 & 30 & \text { A }\end{array}$
Die 5. Januarij.
Die 6. Januarij.
Die 7. Jan. Nubilum.
Die 8. Januarij.
Die 9. Januarij.
Die 10. Januarij.
$76 \quad 8 \quad 0 \quad$ A
$\begin{array}{llll}76 & 17 & 0 & \text { A }\end{array}$

Vesperi Coelo Serenissimo observavi
quamdiu aliquas litteras Vulgariter
Scriptas posset. Sub die post occasum $\odot$, nulla adhibita candela, tam diu autem perfecte legere potui, usque ${ }^{190}$ dum Mirach S. Cingulum Andromedae haberet altitud. Occid.
Et Azimuth ejus a Sept. in Occas.
$41 \quad 1 \quad 0$
© Occidit hodie hora 6.12'
Altitudo Merid. Capitis Medusae
$2 \quad 20 \quad 0$

Quia Coelum Serenissimum, observavi et durationem Crepusculi vespertini. Vidi Autem Rubedinem illam poenitus fugatam et Jam jam verum finem Crepusculi, quando Lucid. Latus Persej culminaret in Altitudine
G. M. S.

Notandum autem Crepuscula hic paulo longiora esse sole versante in Australioribus signis, Breviora in Borealissimis, ubi ex observationibus Collectis etiam patebit. Hora 8 vesperi ơ medius videbatur Inter medium et sequentem lini $\mathcal{H}$.

[^31]

[^32]aut eum quam proxime praeterituram versus Austrum.
Calculus meus ex Rudolphinis praedixit $\$$ transituram ad Austrum 1' minuto Australiorem $\hbar$, nudis oculis adspiciore ${ }^{192} \xlongequal{\circ}$ et $\hbar$. $\%$ eximie radiabat et ad dextram altior paululum stabat
$\hbar$ a Radijs ejus fere tactum ad visum et ipse egre videndus ab 9 .
Praedixi hanc 0 $\hbar$ $\circ$ optime obseruandam esse in Nova Hispania et vera dixi utinam nobis fortuna fuisset?

Die 19. Januarij.
Altitudo $\odot$ Meridiana
Vesperi $\mathrm{h} .7 \circ$ praeterierat $\hbar$, exis-
tens Orientalior, videbitur que distan-
tia $\%$ a $\hbar$ eadem quae est Inter Austra-
lem et Borealem in praecedenti cornu $\odot$
193 in Bayero $\gamma$ et $\beta$ ).
Triduum Inconstans.
Die 23. Januarij.

| Altitudo © Merid. |  | 78 | 52 | 0 | A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Biduum Nubilum. Die 26 Januarij. |  |  |  |  |
| Altidudo $\odot$ Merid. |  | 79 | 38 | 0 | A |
|  | Triduum Nubile. Die 30 Januarij. |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 80 | 43 | 0 | A |
|  | Die 31 Januarij. |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 81 | 0 | 0 | A |
|  | Seqq. Turbidum. |  |  |  |  |
|  | [98] |  |  |  |  |
|  |  | G. | M. | S. |  |
|  | Die 7. februarij. |  |  |  |  |
| Altitudo $\odot$ Merid. |  | 83 | 6 | 30 A |  |
| Die 9 februarij peregre profectus sum, et novem menses continuos abfui Geographiae causa. Mense Novembris |  |  |  |  |  |
|  |  |  |  |  |  |

[^33]rediens, Mensem Mauritiae consumpsi.
Sed maximam partem etiam in vicinis
Locis Geographiae causa absens.
Mense decembris die 10 peregre profectus sum in Borealem Brasiliae ab hinc partem chorographiae et historiae naturalis causa, Interea ab Operibus Astronomicis feriavi Coactus fui. In posterum tamen Deo vita et valetudine concedente redux Continua opera, etiam quae restant in hac parte Omnia peragam.

Anno Christi 1642.
Die $\frac{6}{16}$ Iunij. ex hoc itinere mense decembris Anni praeteriti Inchoato Redij
[99]
G. M. S.
$\Sigma \times \Theta \times^{194}$
Observationes Caelestes
Georgij Marggrafij.
Anno Christi 1642.
Die $\frac{4}{14}$ Aprilis vesperi in Castello Ceulen, ad fluv. Potij $\mathrm{i}^{195}$ : qui vulgo Rio grande vocatur Ostium sito, observavi instrumento meo, quod Sextans erat initium Eclipsis $\mathbb{C}$, quando altitudo Procyonis seu Anticanis esset in Occidentali plaga coeli $31^{\circ} .31^{\prime} .0^{\prime \prime}$. paulo post nubibus obducebatur coelum, antea serenissimum. Imberque cadebat et Lunam non videbam Amplius, usque dum ultra 10 digit. esset observata. Hinc enim serenitas exquisita redijt et ego observavi principium totalis observationis $\mathbb{C}$ quando Altitudo Cordis m , Orientalis esset $32^{\circ} .24^{\prime} .0^{\prime \prime}$. postea coelum iterum nubibus tectum fuit. Antetempus principij emersionis ©

[^34]ex totali umbra terrae coelum inclarescebat denuo, lunaque diu antequam veri luminis aliquid reciperet, falsa luce clarescebat. Tempus initij emersionis ex totali umbra invidere mihi nubes. De hinc coelum serenissimum usque ad omnimodum finem Eclipseos, quam observavi quando altitudo sinistri humeri $\not{ }^{7}$ esset in Orientali plaga $35^{\circ} .18^{\prime} .0^{\prime \prime}$. Incipiebat Eclipsis ab Ortu inferius, Recuperatio prima Luminis itidem erat ab Ortu; desinebat omnimoda Eclipsis ab Occasu. Hanc Eclipsim etiam observavit Nauarchus Jacob Abrahamsen, ad fluv. Ipanaema ostium in Capitania Ciara sub latitudine australi $4^{\circ} .50^{\prime}$. Initium autem Eclipsis se observasse seribit vesperi h. 9.30'. finem h. 13.15'. Durationem totalis morae in umbra terrae ponit $1 \frac{1}{4}$ horis.

Die 3. Octob. Greg.

| Altitudo $\odot$ Merid. B | G. |
| :--- | :--- |
| 85 | M. |
| 74 | S. |
| $40^{196}$ |  |

Die 7. Octob. Styl. Greg.
Vesperi circa 11. horam initium sumebat
[101]
G. M. S.
hic Mauritiae Eclipsis $\mathbb{C}$, et 151 .puls. ${ }^{197}$ post initium erat ejus altitudo Orien$\begin{array}{lllll}\text { talis } O^{\star} & 48 & 43 & 30\end{array}$
Coelum erat clarum sed multae nubes
currentes, qua de causa non potui
Stellam eligere quam volui.
Tempore Eclipsis altitudo centri $\mathbb{C}$
Meridiana $\quad \begin{array}{llll}76 & 14 & 30 & \text { B }\end{array}$
214 p. post altit. Orient. Aldebar.
Initium totalis observationis quo
minus observarem Invidere nubes uti

196 This value is clearly wrong. A plausible correction is $86^{\circ} 4^{\prime} 40^{\prime \prime}$.
197 A draft of this observation of the eclipse of 7 October 1642 is also written on a single sheet of paper among the Leiden documents (North no. 61).
et emersionem ex totali umbra.
Tempore totalis Eclipseos $\mathbb{C}$ parum
Conspicua, Ante emersionem totalem diu Lumine parum Splendebat pars obscurata autem in conspicua erat quando © Incipiebat recuperare Lumen. Initium observationis ab ortu, emersionis itidem ab ortu. Post finem Omnimodae Eclipsis 2 minuta temporis erat altitudo occidentalis occipitis piscis Australis
Nota. $\sigma^{\pi}$ ad Initium Eclipsis longitudo est $6.8^{198}$. Lat. Meridionalis descendens $1^{\circ} .56^{\prime}$. proinde ascensio recta $\sigma^{\circ}$
[102]
$34^{\circ} .20^{\prime}$. et declinatio $11^{\circ} .45^{\prime}$ Borea.
Aldebaran ascensio recta $63^{\circ} .53^{\prime}$, et declinatio 15.44. Borea. Occipitis piscis
Australis ascensio recta $344^{\circ} .4^{\prime}$. Et
declinatio $1^{\circ} .21{ }^{\prime}$. Borea.
Die $\frac{5}{15}$ Octob.
Altitudo $\odot$ Merid. $\quad 89 \quad 23 \quad 0 \quad \mathrm{~A}$
Vesperi h. $6^{\frac{1}{2}}$ circiter
$\begin{array}{lllll}\text { Altitudo Occ. Cor.mL } & 14 & 32 & 30\end{array}$
$\begin{array}{llllll}\text { Azimuth ejus ab Occid. in Merid } & 25 & 52 & 0\end{array}$
264 . puls. post.
Altitudo Occid. ४̧ $\quad 5 \quad 10 \quad 0$
$\begin{array}{llll}\text { Azimuth ab Occid. in Merid. } & 21 & 53 & 30\end{array}$
152 p. p.
Altitudo Occid. Cordis TL $\quad 13 \quad 3 \begin{array}{lll}13 & 0\end{array}$
Azimuth Occid. in Merid.
$25 \quad 550$

Vesperi hor. $6^{\frac{1}{2}}$ circiter
Altitudo Occid. Cord. m , $\quad 9 \begin{array}{lll}94 & 0\end{array}$
$\begin{array}{llll}\text { Azimuth ab Occid. in Merid. } & 25 & 50 & 0\end{array}$
166 p. p.
$\begin{array}{llll}\text { Altitudo Occid. ४̧ } & 7 & 32 & 30\end{array}$
$\begin{array}{llll}\text { Azimuth ejus ab Occid. in Merid. } & 23 & 50 & 0\end{array}$
93 p. p.

[^35][103]

| Altitudo Occid. Cordis M, | 8 | 35 | 30 |
| :---: | :---: | :---: | :---: |
| Azimuth | 26 | 23 | 0 |
| 130 p. p. |  |  |  |
| Altitudo Occid. $¢$ | 6 | 37 | 30 |
| Azimuth | 23 | 52 | 0 |
| 129 p. p. |  |  |  |
| Altitudo Occid. Cordis m, | 7 | 44 | 30 |
| Azimuth | 26 | 12 | 0 |
| 127 p. p. |  |  |  |
| Altitudo Occid. ¢̧ | 5 | 49 | 0 |
| Azimuth | 23 | 52 | 0 |
| 157 p. p. |  |  |  |
| Altitudo Occid. Cord. m, | 6 | 50 | 0 |
| Azimuth | 26 | 26 | 0 |
| 117 p. p. |  |  |  |
| Altitudo Occid. ¢¢ | 4 | 53 | 30 |
| Azimuth | 23 | 56 | 0 |
| 129 p. p. |  |  |  |
| Altitudo Occid. Cord. m, | 5 | 58 | 30 |
| Azimuth | 26 | 34 | 0 |
| Die 8 Novemb. Vesperi h. $6 \frac{1}{2}$ |  |  |  |
| Altitudo $¢$ ¢ Occid. | 10 | 41 | 30 |
| Azimuth ab Occid. in Merid. | 23 | 52 | 0 |
| 198 p. p. |  |  |  |
| Altitudo Occid. Lucid. Lyrae | 25 | 10 | 0 |

[104]
Azimuth a Septent. in Occid.
G. M. S.

230 p. p.
Altitudo $\begin{array}{r}\text { Occid. }\end{array} \quad 9 \quad 10 \quad 0$
Azimuth
$23 \quad 54 \quad 0$
397 p. p.
Altitudo Lucid. Lyrae Occid. $\quad 23 \quad 42 \quad 30$
Azimuth
42330
Cor $m$, videbam aequalis fere [one illegible word]
paulo majoris altitudinis ab horizonte
cum $్$ ¢̧, sed australius longe: Invide-
bant nubes supervenientes, quo minus
cum $\begin{gathered}\text { c conferrem. }\end{gathered}$

Die 9. Novemb. Gregor.
Vesperi hor $6 \frac{1}{2}$ ad 7 .

Altitudo $\begin{gathered}\text { Occid. }\end{gathered}$
Azimuth ab Occas. in Merid.
11350
$23 \quad 52 \quad 0$
134 p. p.
Altitudo Occid. Lucid. Lyrae
$24 \quad 59 \quad 0$
Azimuth a Septent. in Occas.
41350
120 p. p.
Altitudo $\begin{array}{r}\text { Occid. }\end{array} \quad 10 \begin{array}{lll}10 & 37 & 0\end{array}$
Azimuth
$23 \quad 53 \quad 0$
158 p. p.
Altitudo Occid. Lucid. Lyrae $24 \quad 15 \quad 30$
Azimuth
[105]

202 p. p.
Altitudo Occid. ఛ $\quad 9 \quad 19 \quad 0$
Azimuth $\quad 23 \quad 58 \quad 0$
179 p. p.
Altitudo Occid. ४̧ $\quad 8 \quad 48 \quad 0$
Azimuth
$74 \quad 3 \quad 0^{199}$
188 p. p.
Altitudo Occid. Cordis M, $\quad \begin{array}{lll}6 & 54 & 30\end{array}$
Azimuth ab Occid. in Merid. $\quad 26 \quad 22 \quad 0$
149 p. p.
Altitudo ఛ̧ $\quad 7 \quad 40 \quad 30$
Azimuth $24 \quad 13 \quad 0$
215 p. p.
Altitudo Occid. Lucid. Lyrae $\quad 21 \quad 53 \quad 0$
Azimuth a Septent. in Occas.
Die $\frac{10}{20}$ Novemb.
Vesperi hor. $6 \frac{1}{2}$ ad hor. $7 \frac{1}{4}$
Altitudo Merid. fomahant $\underset{\sim}{\mathrm{m}} \quad 6640 \quad 0$
189 p. p.
Altitudo $\begin{aligned} & \text { Occid. } \\ & 12 \\ & 3\end{aligned}$
Azimuth ab Occid. in Austrum $\quad 25 \quad 33 \quad 0$
272 p. p.
Altitudo Occid. Caud. Cygni $\quad 29 \quad 43 \quad 0$
Azimuth a Sept. in Occas.
$27 \quad 20 \quad 0$
166 p. p.

199 Sic, but according to calculation a plausible value should be $24^{\circ} 3^{\prime} 0^{\prime \prime}$.

| Altitudo Merid. 기 | 88 | 38 | 0 | A |
| :---: | :---: | :---: | :---: | :---: |
| 235 p. p. |  |  |  |  |
| Altitudo $\begin{array}{r}\text { Occid. }\end{array}$ | 9 | 40 | 0 |  |
| Azimuth | 25 | 45 | 0 |  |
| 153 p. p. |  |  |  |  |
| Altitudo Occid. Caud. Cygni | 28 | 43 | 0 |  |
| Azimuth | 28 | 40 | 0 |  |
| 139 p. p. |  |  |  |  |
| Altitudo $\begin{array}{r}\text { O Occid. }\end{array}$ | 8 | 40 | 0 |  |
| Azimuth | 25 | 51 | 0 |  |
| 170 p. p. |  |  |  |  |
| Altitudo Occid. Caud. Cygni | 28 | 8 | 0 |  |
| Azimuth a Septent. in Occas. | 29 | 27 | 0 |  |
| NB. quamprimum $\begin{aligned} & \text { videbatur in crepus- }\end{aligned}$ culo vespertino, Tubo cum accurate |  |  |  |  |
| lustravi, et apparuit Cornut. |  |  |  |  |
| Eadem vespera ab h. $9 \frac{1}{2}$ ad $11 \frac{1}{2} \mathrm{~h}$. |  |  |  |  |
| Altitudo Meridiana El Karnar | 39 | 13 | 30 | A |
| Sequens El Karnar in fluvio | 42 | 58 | 0 | A |
| Duarum quae Supra 3. Eridiani occidentalior | 50 | 10 | 0 | A |
| 3 Eridiani | 44 | 52 | 30 | A |
| Duarum quae Supra 3. |  |  |  |  |
| Haec 30" temporis Erid. Orientalior | 49 | 8 | 0 | A |
| culminabat post 3. Conversionis Colli |  |  |  |  |
| Eridiani. Hydri tertia | 28 | 50 | 0 | A |
| Caput Hydri | 34 | 56 | 0 | A |
| Tertia Eridiani | 45 | 0 | 30 | A |
| Quarta Eridiani | 48 | 56 | 0 | A |
| In Hydro tertia d. quinque | 28 | 0 | 0 | A |

[107]

| Quinta Eridani | 53 | 49 | 0 | A |
| :--- | ---: | ---: | ---: | ---: |
| In Erid. (quae 7 esse debet) glob. caret | 56 | 50 | 0 | A |
| Supra hanc Longe | 64 | 17 | 30 | A |
| Altitudo Merid. Convers. Colli Hydri 2 |  |  |  |  |
| Sexta Eridani | 28 | 29 | 0 | A |
| Convers. Colli Hydri prima | 56 | 31 | 0 | A |
| Superior Colli Hydri seu secunda | 29 | 7 | 0 | A |
| Longe supra hanc mox culminans | 32 | 47 | 0 | A |
| (Duas omisi hic.) | 37 | 9 | 0 | A |
| Sub 20. Erid. Orient. |  |  |  |  |
|  | 67 | 48 | 30 |  |

Vesperi ab hor $6 \frac{1}{2}$ ad hor. 10 .
Altitudo Merid. fomahant $\underset{\sim}{\mu} \quad 66 \quad 40 \quad 0 \quad$ A
150 p. p.
Altitudo ఛ̧ Occid. $31 \begin{array}{lll}30^{200}\end{array}$
Azimuth ab Occid. in Merid.
$25 \quad 50 \quad 0$
157 p. p.
Altitudo Lucid. Vult. Occid. $\begin{array}{lll}40 & 23 & 0\end{array}$
Azimuth a Septent. in Occid. $73 \quad 18 \quad 0$
122 p. p.
Altitudo ఛ̧ Occid. 12 2 0
Azimuth $\quad 25 \quad 51 \quad 0$
131 p. p.
Altitudo Lucid. Vult. Occid. $\quad 39 \begin{array}{lll}34 & 0\end{array}$
Azimuth
$73 \quad 550$
[108]
122 p. p.
Altitudo ఛ̧ Occid.
G. M. S.

Azimuth $\quad 25 \quad 53 \quad 0$
128 p. p.
$\begin{array}{llll}\text { Altitudo Lucid. Vult. Occid. } & 38 & 33 & 30\end{array}$
Azimuth $\quad 74 \quad 2 \quad 0$
$\nsucc$ lustravi in Crepusculo et apparuit
fulcatus more 9
Altitudo Merid. in eductione Rostri
Toucan ( $\beta$ ) $\quad 38 \quad 6 \quad 0 \quad$ A
Quae in linea Recta fere inter fomah.
et $\zeta$ phoenicis
In phoenic. alae dextr. 3. bor ( $\zeta$ )
In eadem ala trium media ( $\varepsilon$ )
In eadem ala trium Austral. ( $\delta$ )
Sub $\delta$ phoenic. (glob. non habet)
Supra phoenic. (glob. non)
In eductione alae sinistr. Toucan super
( $\delta$ )

| In ejusdem alae eductione Inferior |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 5 (culminat mox post $\delta$ ) <br> Seu trium prima et Occid. $\zeta$ <br> Alae dextrae phoenicis $(v)$ | 30 | 39 | 30 | A |
| In phoenice quod ejus Rostrum dici <br> potest (glob. non habet) <br> In Media Ala $(\zeta)$ | 43 | 30 | 30 | A |

[109]


Azimuth ab Occid. in Merid.
G. M. S.

210 p. p.
Altitudo Lucid. Vult. Occid. $\quad 39 \quad 51 \quad 0$

Azimuth a Septent. ad Occas.
182 p. p.
Altitudo $\begin{array}{r}\text { Occid. } \\ 12 \\ 19\end{array}$
Azimuth
180 p. p.
Altitudo Occid. Lucid. Vultur. $\quad 38 \quad 24 \quad 0$
Azimuth
$74 \quad 10 \quad 0$
138 p. p.
Altitudo $\begin{array}{r}\text { Occid. } \\ 11 \\ 15\end{array}$
Azimuth $\quad 25 \quad 50$
131 p. p.
Altitudo Lucid. Vult. Occid. $\begin{array}{lll}37 & 30 & 0\end{array}$
Azimuth
$74 \quad 120$
157 p. p.
Altitudo $\succ$ Occid. $\quad 10 \begin{array}{lll}10 & 8 & 30\end{array}$
Azimuth $\quad 25 \quad 56$
154 p. p.
Altitudo Occid. Lucid. Vult. 36
Azimuth
$74 \quad 56 \quad 0$
$\succcurlyeq$ fulcatus cornua in Occidentem
dirigebat, seu inferius. ${ }^{202}$
Die $\frac{10}{20}$ Decemb.
Altitudo $\odot$ Merid.
[111]
$\Sigma \times \Theta \times^{204}$
Observationes Coelestes
Georgij Marggrafij L.M. ${ }^{205}$
Anno Christi 1643
Die $\frac{10}{20}$ februarij.
Vesperi ab hor. $7 \frac{1}{4}$ ad 10 hor.
Altitudo Merid. dorsi Columbae ( $\gamma$ )
In dorso dorado
In eductione alae dextr. Columbae
In Bolide Naucleri
G. M. S.

Duarum in Dorado prope polum

[^36]Eclipticae Bor.
Canobi
Humerus gubernatoris Navis
In genu pedis posterioris Sinistri Canis majoris
In Navis Ambulacro ad Sinist. Canobi
Sub hac Australior Longe
in extremitate caudae piscis volantis
In extremitate ala ${ }^{206}$ dextrae piscis volantis
Sup. Clipeo Navis Longe ( $\lambda$ )
Extrema alae sinistrae piscis volantis
In Navi Supra duobus Nebulosis

Die 10 Martii Gregor.
Vesperi ab hor. 8 ad hor. $10 \frac{1}{2}$
Altitudo Merid. in extrem. alae destr. piscis volantis quae in Navi $(\theta)$
Quae Super Nebulosis junctae ${ }^{207}$
Extrema alae Sinistr. piscis volantis
In Navi ( $\delta$ )
Nebulosae junctae ${ }^{208}$
In Navi ( $\zeta$ )
In ventre piscis volantis
Ad Sinistrum nebulosarum ( $\mu$ )
Prima alae sinist. piscis volantis
Prima alae dextrae piscis volantis
Ultima Caudae Chamelonis
Duarum in Navi Occidentalior
In Navi
In Navi
Penultima Caudae Chamelonis
In Navi
In Navi
In Navi
Antepenultimam Caudae Chamelonis
Caput piscis volantis
In Naui duarum Occidentalior
Quae Sub hac

[^37]| Duarum Orientalior |  | 40 | 25 | 0 | A |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | [113] |  |  |  |  |
| In Navi |  | G. | M. | S. |  |
| Quae Supra duabus Antedictis | 30 | 1 | 0 | A |  |
| In Navi | 44 | 44 | 0 | A |  |
| In Navi | 59 | 17 | 0 | A |  |
| In Navi duabus Orientalior | 42 | 48 | 0 | A |  |
| In Navi | 40 | 36 | 0 | A |  |
| In Navi | 37 | 20 | 0 | A |  |
| In Navi | 34 | 50 | 0 | A |  |
|  |  | 45 | 20 | 0 | A |

Dehinc peregre abij Geographiae et Historiae Naturalis causa, Redij 2.
Aprilis.

## Eclipsis Lunae partialis

Die 4. Aprilis Gregor. Mane coelum Serenum erat, Nubes currentes, ventus terrestris, hora $4 \frac{1}{2}$ nondum Initium Eclipseos, postea nubes obducebant Occidentem, quominus $\mathbb{C}$ videri posset. Emergebat $\mathbb{C}$ ex Nubibus altitudinem habens 4. grad. Occidentalem, in claritate Crepusculi deficiens $\frac{1}{4}$ ab Austro, seu ad sinistrum mihi. Iterum disparebat, amplius non conspicua, ante occasum suum, tantum de hac Eclipsi observare nubes concesserunt.
[114]

Die 21 Junij Serenissimum.

| Altitudo $\odot$ Merid. | 58 | 23 | 30 | B |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Altitudo $\odot$ Meridiana | Die 22 Junij. | 58 | 23 | 30 | B |

$\dot{\sim}$
Finis Observationum
Georgij Marggrafij. $\sim^{210}$

[^38]
# TRANSLATION: THE ENGLISH TEXT OF MARGGRAFE'S ASTRONOMICAL OBSERVATIONS IN DUTCH BRAZIL 

[1]<br>Short description of our astronomical observatory and of the instruments


#### Abstract

of whose skilful construction I took care through the generosity of the most illustrious and distinguished hero, count Johan Maurits van Nassau, in the new town of Mauritia, in the island of Antonio Vaz, which is in Brazil, in the southern region of America.


We supervised the erection, on top of the house of the most illustrious hero [Jонan] Maurits van Nassau, the Governor of Brazil, etc., of a square platform, the sides of which measured 20 Rhineland feet. ${ }^{1}$ From there a very wide view is offered over the sea and the land around it. Climbing this platform is done from the interior of the house through 43 very comfortable steps. In the center of the platform, we erected a hexagonal turret with six sides, each with a width of six ...

Rhineland feet. ${ }^{2}$ The height of the turret is 13 feet. ${ }^{3}$ Its floorboard (where the instruments are placed) stands 5 feet $^{4}$ above the floor of the platform, so that there is an enclosed and dark room underneath for observations and optical experiments.

The upper chamber of the turret, where most of the astronomical observations are carried out, has a height of 8 Rhineland feet ${ }^{5}$ and on one side, after climbing 10 steps, one finds the entrance door. In the five remaining sides there are large windows with glass, and above these five windows, as well as above the door, the sides of the room reach $1 \frac{1}{3}$ Rhineland feet up to the ceiling;' the upper part of this room is covered with another hexagonal floor, and is surrounded by six triangular shutters, four feet wide to the south and the north, and 2.5 feet wide on the remaining sides, and wide enough to open the turret on either side. ${ }^{7}$ The six upper shutters can be opened by lifting them up, and the six bottom or side shutters ...

[^39]by folding them down, so that a wide view is accessible in all directions and all vertical and non-vertical elevations required for the instruments.

Above the turret there is an ambulacrum still four feet high, which light handrail can be easily removed, and in the middle of that pyramid is a wooden structure, decorated with a copper vane, holding the insignia of the Count of Nassau. Inside, in the middle of the upper room, the quadrant was installed, securely attached to a square beam (with each side 6.5 inches wide and 6 feet and 9 inches long), which can pivot on a 10 -inch long and 5 -inch wide supporting beam adjacent to the upper floor. ${ }^{8}$ This quadrant, 5 Rhineland feet high, is made out of a sturdy wood that the Portuguese call Pau Santo. ${ }^{9}$ The workmen divided the graded circle to within one and a half arc minutes, so that it would be possible to observe a quarter of an arc minute in normal use. The quadrant also has a Tychonic sight with a cylinder. The cylinder itself (while ...
[4]
protruding) measures approximately $43 / 4$ inches; [it is] not quite wide or thick, but $21 / 2$ inches in diameter. A ruler has the length of the instrument and is $33 / 4$ inches wide.

The dioptra [or astronomical sighting tube] has two slits parallel to each other and parallel to the sides at the extremities of the cylinder, mutually separated $21 / 2$ inches, with a length of 3 inches. ${ }^{10}$ Inside these parallel and at right angle slits there are perpendicular slits made short for grasping exactly the [apparent] diameter of the Sun, when taking its elevation. The entire dioptra is $43 / 4$ inches long, and its full width is $33 / 4$ inches. An azimuthal circle 10 Rhineland feet in diameter encircles the quadrant; the pillar of the quadrant is in the center [of the azimuthal circle], from which a pointer stretches over the circuit of the [azimuthal] circle, in order to show how much degrees and minutes the observation of the azimuth provides.

The azimuthal circle is divided into minutes, so that 30 " can be recorded. This azimuthal circle rests on 12 columns, $11 / 2$ feet above the floor of the room. The lower end of the quadrant is $21 / 2$ feet above this floor.
[5]
Its upper part is $1 / 2$ a foot away from the top of the room. The quadrant is attached to a square frame of beams that can be easily turned by means of two square iron tools.

I took care also of building a sextant ${ }^{11}$ in the same way (as the quadrant), 5 Rhineland feet high, and divided in the same way and equipped with a similar ruler, a Tychonic sight and a cylinder for measuring [angular] distances. This [instrument] is kept in a special place under the ladder, whereby one goes up to the larger room. To this lower side [of the sextant] 4 small finger thick tools were inserted by means of screw thread, tapered towards

[^40]the central line, each 4 feet long, and likewise two toward the sphere [of a ball joint], each 3 feet long; so that the sextant may stand firm upon his pedestal. ${ }^{12}$ In the side of the pedestal there are many holes in which iron plugs can be inserted and secured. These plugs are blocked at their ends by iron pins [inserted into holes], so that they do not need to be secured [in some other way]. I have also another small sextant, ...

## [6]

the height of which is 20 Rhineland inches, or 1 foot and 8 inches, divided into 2 arc minutes. [This instrument] is [also] equipped with a cylinder and a Tychonic sight with narrow slits and sighting tubes, for conducting geodetic observations and also [for astronomical use] during the expeditions.

I also have four celestial and terrestrial globes of different sizes, with Bayer's Uranometria, which are always used in the observatory. Further, there are two hourglasses, which act as clepsydra. And I have an outstanding telescope, [with a tube] seven feet long.
To measure the time while observing during the nychthemeron [night], I constructed on a lathe a cylindrical plumb bob of metal, weighing 2 pounds and 9 ounces (or $413 / 4$ ounces). It is suspended from a rope, 2 foot 5 inch, or 29 inch long.

In the lower dark room, which can be illuminated inside by light through the circular apertures, a support has been made for adjusting the tubus [telescope] to observe solar eclipses, sunspots etc. This support consists of a principal beam ...
[7]
$41 / 2$ feet high, 4 inches wide and $11 / 2$ inch thick, that can stand up; for the lower part has a transverse beam, on which it leans; it has many transversal (or crossed) holes ${ }^{13}$ and in the middle of the cavity a 9 feet long ruler can be inserted, which can be operated on either side, and set higher or lower. The ruler is three inches wide and more than one inch thick and above it a circular frame, one foot in diameter, is inserted that can be turned, lowered or removed. On the ruler, at intervals of [respectively] $11 / 2,3,3$ and $11 / 2$ feet, vertical holders are raised, 8 inches high, upon which the tubus [telescope] can be placed, the upper part of which is covered. ${ }^{14}$ The other end of the ruler leans on the aperture or window.

Outside the building, on the platform there are some pedestals for placing the instruments during the observations. One [is made] of solid timber, 5 feet high, with a sturdy cross shaped foot below, on which a sphere [with a diameter] of one foot is set, ${ }^{15}$ that can move around in its casing; this sphere has a square protuberance, two inches wide and $21 / 2$ [inches] high, upon which the great sextant can be set for ...

[^41]measuring stellar [angular] distances. On the top part of another vertical pedestal of two feet high, a hollow gutter with a length of five feet is attached, which can be moved by screws. ${ }^{16}$ A semicircle is attached to both ends of the vertical stand to stabilize the 7 -foot telescope [in the gutter], so that the fixed [stars] and the planets can be accurately examined and viewed, and the Moon's encounter with the fixed [stars] and the planets may be recorded exactly. When I use this pedestal, the whole is attached to the balustrade of the platform, having below a round point that can be inserted into a hole and may be turned with ease.

Another $21 / 2$ feet high pedestal, with a small vertical rod, can also be attached to the balustrade of the platform, just like the previous one. The small sextant can be hung on this stand for the measurement of elevations. In each corner of the Theatre [platform], I outlined a sundial, so that in different ways the time always may be recorded from the shadow of the Sun. ${ }^{17}$ However, under the roof of the house of His Excellency, ... [sentence not finished]. ${ }^{18}$

## [9]

Below the platform there is a large iron clock that by the stroke of the bell announces the time to all inhabitants of our city.

When I travel, I also have for the smaller sextant a Polish-style hammer-shaped pedestal, made of solid iron, about 9 inches long, with a cuboid protrusion, one inch long, high and thick in the rear and upper part, so that the sextant can be placed horizontally for measuring [azimuthal] distances, and suspended vertically for measuring elevations. ${ }^{19}$ This hammer is attached to a stick, $41 / 2$ feet long, made of sturdy wood called Pao Santo, the lower part of which is long and tapered, so that it can be pinned steadfastly into the ground. Further, I have a triangular level (commonly called Waterpass), a carpenter's square, three rulers made of a solid wood, all needed for orienting the instruments. Also, a slate board, two lanterns, a three-legged stool with three steps for ...
[10]
climbing up to the quadrant, ${ }^{20}$ another bench beneath the large quadrant, required for getting the elevations, and other necessary items.

[^42][1638]
Some observations performed by myself without instruments on the Island of Antonio Vaz, before the instruments were finished and the observatory was built.

On 19 September 1638, at 6:30 PM, seen [with the naked eye], Mercury stood as far from Spica of Virgo ${ }^{21}$, as Mars was then from the Archer's left shoulder ( $\sigma$ according to Bayer). ${ }^{22}$ But Mercury was more to the west and to the north than Spica. On the following day, 20 September, at about 6:30 PM, Mercury was still more westward and northward than Spica. She was seen standing apart from that star by a distance [comparable to the interval] between the Heart of Scorpion ${ }^{23}$ and the star preceding it in the east, which according to

## [11]

$\ldots$ Bayer is $\tau$ [Scorpii] ${ }^{24}$. (The distance of the Heart of Scorpion and the preceding star $2 \partial^{25}$ to the south is according to my calculation for this time $1^{\circ} 10^{\prime}$, or 29 times the distance between Mercury and Spica ${ }^{26}$. But I am not sure of the precise location of a single fixed star). On the following day, 21 September [1638], about 6:30 PM, Mercury passed Spica of Virgo and seemed to be as far from it as yesterday, and more easterly in so far as yesterday was more westerly.

In the evening of 18 May 1639, Mars, Venus and Mercury formed an upward isosceles triangle, whose base was formed by Mars and Mercury. Mercury was setting and Venus shortly afterwards, and a minute (in time) later the (almost full) Moon rose with its upper edge. This evening Jupiter (itself standing in the eastern region of the sky) did cast shadows and shined on the river named Rio Beberibe, while Venus (whose brightness was seen on the river called Rio Capibaribe) did cast shadows circumscribing the bodies. After the next day, on the evening of 20 May [1639], Jupiter and Venus [also] cast shadows circumscribing the bodies. On the following day, evidently the day of ...
[12]
... 21 May [1639], at 7 PM, Venus was more eastward and more northward than Mars, and also at half distance between the two southern stars of the Orion's sword ${ }^{27}$, or at an equivalent or small distance of the brighter star in the middle of the tail of the Great Bear ${ }^{28}$

[^43]to the star almost falling upon $\mathrm{it}^{29}$. Jupiter and Venus [again] cast shadows circumscribing the bodies in the absence of the Moon.

Black spots, like the eclipsed Moon in the Milky Way do not appear in the eastern sky, as José de Acosta wrongly states in the second Chapter of the first book of his Historia Natural y Moral de las Indias. ${ }^{30}$ But there are a few [regions] that seem blacker than the rest of the sky, because they lack that light of the stars with which the rest of the galaxy abounds. But there are a few [regions] that appear blacker than the rest of the sky, because they lack the light from the stars that the rest of the galaxy is so richly supplied with. However, there are [only] three or four of such less luminous regions. The Magellanic Clouds lack the [naked eye] visible stars. They consist of the same substance as the Milky Way.

## [13] <br> Observations I made of the total Lunar Eclipse in the evening of 20 December 1638 on the Island of Antonio Vaz in Brazil and in its town, Mauritia.

In the evening of the aforesaid date and year, the beginning of the eclipse of the Moon took place. ${ }^{31}$ And although the observatory and the instruments were not yet finished, so that I was deprived of being able to set up the observation privately (the structure on the house [of the Governor] would only be ready in September of the next year 1639), we recorded carefully the time of the critical moments with the installed one-foot quadrant. When then the Moon started to fade out in the eastern border, the elevation of Procyon ${ }^{32}$ in the eastern region was $33^{\circ} 30^{\prime}$ and when half of the Moon was observed, ...
... Procyon was seen at the eastern elevation of
$42^{\circ} \quad 20^{\prime}$.

2978 Ursae Majoris. First observation.
30 Marggrafe refers here to José de Acosta, Historia natural y moral de las Indias, en que se tratan las cosas notables del cielo, y elementos, metales, plantas, y animales dellas: y los ritos y cerimonias, leyes y gouierno, y guerras de los Indios (Sevilla: Juan de León, 1590). In his account of his observations of the southern sky in Peru, Acosta mentions dark spots like the eclipsed Moon participating of the daily motion of the sky as the Milky Way, that he did not have seen in the northern skies.
31 According to SkyMap, this eclipse was entirely visible from Recife.
32 Procyon, or $\alpha$ Canis Minoris, with an apparent visual magnitude of 0.34 , is the brightest star in the constellation of Canis Minor ('the small dog') and the eighth-brightest star in the night sky. First observation.

In the beginning of the observation of the total [eclipse], ...
... the eastern elevation of Procyon was
$50^{\circ} \quad 10^{\prime}$.
Note that [ $]^{33}$ included here is meant to indicate that these values are not completely accurate. Because the method of observing is slippery. But the most important moments have been carefully observed. At the end of the observation of the total [eclipse] the eastern elevation of the Heart of the Lion ${ }^{34}$ was $33^{\circ} 30^{\prime}$. When the light of the lunar disc was recovered, ...
... the elevation of the Heart of the Lion was $37^{\circ} 30^{\prime}$.
When the Moon was seen halved, the elevation of the Heart of the Lion was $41^{\circ} 30^{\prime}$.
At the end of any sign of eclipse the elevation of the Heart of the Lion was $48^{\circ} 00^{\prime}$. During the eclipse the sky was mostly clear. As for the colour of the eclipsed Moon, it should be noted that, until it was plunged into total shadow, from the beginning to the total eclipse, the Moon had the same colour as a recent New Moon here. ${ }^{35}$ However, after the whole [Moon] was immersed in the shadow of the Earth, the shadow was darker towards the east, while the remaining part was brighter. But in general the whole ...
[15]
... Moon appeared red and had even the colour of a plum. About halfway through the eclipse, the shadow in the center of the disk was thicker, but around the rim [of the Moon] it was redder, and as [the eclipse] progressed toward the beginning of the resurrection, it appeared more diluted; [the darkened part] that disappeared to the west was coarser than the part that bent to the east. Then came a golden brightness like a real light, because [the Moon] itself took on an extraordinary brightness and from then on the eclipsed part until the end of the eclipse had the same colour that it had from the beginning until the total obscuration. At no point did the illuminated part cause the Moon to split into two halves, or cut through a straight line, but always the dark part was crescent-shaped and ultimately obtuse.

Calculations have shown that a total lunar eclipse could be observed in Brazil on 25 June of the same year $1638 .{ }^{36}$ But then it rained all night, with strong winds, and only once did I see the Moon shining through the clouds, obscured to about a third.
[16]
But it was then already the time predicted by the calculation when the Moon would gradually emerge from the shadow of the Earth, that is, near the end of the eclipse.

33 The bracket might symbolize the values of the elevation.
34 Regulus, or $\alpha$ Leonis, with an apparent visual magnitude of 1,4 , is the brightest object in the constellation Leo, and the 22nd brightest star in the sky. First observation.
35 The previous New Moon was on 5 December 1638.
36 The eclipse was indeed total, but partially visible from Recife in the dawn of 25/26 June 1638. When leaving the umbra, the Moon had already set.

## Astronomical observations of Georg Marggrafe in the year 163937

| On 15 September at 6:45 PM, |  |  |  |
| :---: | :---: | :---: | :---: |
| when 2 minutes later the western elevation of Arcturus ${ }^{38}$ was | 18 | 59 | 00 |
| the western elevation of Mercury was | 10 | 49 | 30 |
| and its azimuth from west to south was | 07 | 30 | 00 |
| 7 o'clock, city time, |  |  |  |
| when 2 minutes later the western elevation of Arcturus was | 17 | 19 | 00 |
| the western elevation of Mercury was | 08 | 49 | 00 |
| and its azimuth from west to south was | 08 | 09 | 00 |
| Repetition: when the western elevation of Spica of Virgo was | 07 | 22 | 30 |
| and 1 minute later the western elevation of Mercury was | 06 | 29 | 45 |
| and azimuth [from west to south] | 08 | 20 | 00 |

[17]
Mercury and Spica of Virgo ${ }^{39}$ stood in the same vertical [circle], Spica of Virgo higher and Mercury lower.

16 September [1639]
Meridian elevation of the Sun $\quad 79 \quad 09$ north
At 6:30 PM, the meridian elevation of the upper star ...
$\ldots$ of the wing of the Swan ${ }^{40}$
At 6:45 PM, the western elevation of Arcturus ${ }^{41}$
$37 \quad 3145$ north
1.5 minute later, Mercury's elevation $\quad 12 \begin{array}{lll}12 & 44 & 30\end{array}$

Azimuth from west to south $\quad \begin{array}{lll}08 & 20 & 00\end{array}$
Mercury was further south and east than Spica, at about the same distance [from this star] as yesterday.

17 September [1639]
Meridian elevation of the Sun $\quad 79 \quad 32 \quad 30$ north
18 September [1639]
Meridian elevation of the Sun in the north
$\begin{array}{lll}79 & 55 & 15\end{array}$
In the evening, meridian elevation in the north ...

[^44]| $\ldots$ of the bright star of the Lyre ${ }^{42}$ | 43 | 20 | 30 |  |
| :---: | :---: | :---: | :---: | :---: |
| At 6:45 [PM], the western elevation of Arcturus | 16 | 20 | 30 |  |
| 2 minutes later, Mercury elevation | 10 | 59 | 00 |  |
| Azimuth from west to south | 09 | 36 | 00 |  |
| 〔Meridian elevation of the tail of the Eagle ${ }^{43}$ | 68 | 20 | 00 | N |
| \| [Meridian elevation] of the star in the middle of three ... |  |  |  |  |
| \} ... in the wing of the Swan | 30 | 49 | 30 | N |
| \|[Meridian elevation] of the star of the tip of Swan's wing ${ }^{44}$ | 37 | 31 | 30 | N |
| [[Meridian elevation] of the bright star of the Eagle ${ }^{45}$ | 73 | 41 | 30 | N |
| 19 September [1639] |  |  |  |  |
| Meridian elevation of the Sun | 80 | 20 | 00 | N |
| [18] |  |  |  |  |
| In the evening, because of clouds moving swiftly I could not observe Mercury. |  |  |  |  |
| Meridian elevation of the bright star of Lyre ${ }^{46}$ | 43 | 20 | 45 |  |
| ¢Tail of the Eagle ${ }^{47}$ | 68 | 20 | 007 |  |
| \|Star in the middle of the three stars in the [right] wing of the Swan ${ }^{48}$ | 30 | 45 | 30 |  |
| \}Upper star of the wing of the Swan ${ }^{49}$ | 37 | 31 |  | north |
| Star of the breast of the Swan ${ }^{50}$ | 42 | 43 | 30 |  |
| (Star of the tail of the Swan ${ }^{51}$ | 37 | 46 | 30) |  |
| 20 September [1639] |  |  |  |  |
| Meridian elevation of the Sun | 80 | 43 |  | orth |
| In the evening because of clouds moving swiftly, I could not observe |  |  |  |  |
| In the same evening from 9 PM to 3 AM : |  |  |  |  |
| Meridian elevation of the head of the Crane ${ }^{52}(\gamma)$ | 59 | 7 |  | outh |

[^45]| [Meridian elevation] of the right wing (left for Bayer) of the Crane ${ }^{53}$ | 49 | 29 | 30 south |
| :---: | :---: | :---: | :---: |
| Meridian elevation of the end of the beak of the Toucan ${ }^{54}$ | 36 | 13 | 20 south |
| [Meridian elevation] of the star where the tail of the Crane comes from. ${ }^{55}$ | 49 | 33 | 0 south |
| [Meridian elevation] of the star more to the north among the three in the tail of the $\operatorname{Crane}^{56}(\chi)$ | 45 | 3 | 0 south |
| Fomalhaut of the Water Carrier ${ }^{57}$ | 66 | 38 | 0 south |
| [Meridian elevation] of the star of the Water Snake ... $\ldots$ in the equinoctial colure ${ }^{58}$ | 18 | 55 | 30 south |
| ( 1 minute after the culmination of the bright star of the neck of Pho |  |  |  |
| [Meridian elevation] of the southernmost star of the tail of the Whale ${ }^{60}$ | 78 | 14 | 0 south |
| [Meridian elevation] of Achernar ${ }^{61}$ | 39 | 12 | 0 south |
| [Meridian elevation] of the head of the Water Snake ${ }^{62}$ | 34 | 58 | 0 south |
| 21 September [1639] |  |  |  |
| Meridian elevation of the Sun | 81 | 7 | 45 north |
| [19] |  |  |  |
| In the evening at 6:45 PM. Western elevation of Arcturus ${ }^{63}$ | 16 | 45 | 0 |
| After 140 oscillations of the pendulum, the elevation of Mercury | 14 | 13 | 0 |
| Azimuth from west to south | 10 | 40 | 0 |
| Soon again the elevation of Mercury [was] | 13 | 5 | 0 |

53 Alnair, or $\alpha$ Gruis. One of the brightest stars in the sky, with a visual magnitude of 1.7, this star is one of the fifty-eight stars selected for celestial navigation. FIRST OBSERVATION.
$54 \alpha$ Tucanae. FIRST OBSERVATION. Tucana (the Toucan) is not a prominent constellation, as all of its stars are third magnitude or fainter.
$55 \beta$ Gruis. First observation.
$56 \varepsilon$ Gruis. First observation.
57 Fomalhaut, or $\alpha$ Piscis Austrini, with an apparent visual magnitude of 1,16, is the brightest star in the southern constellation of Piscis Austrinus, the 'Southern Fish', and one of the brightest stars in the sky. FIrst observation. See however, vol. 1, page 254.
$58 \beta$ Hydri. First observation. Brightest star in the constellation of Hydrus, also the closest reasonably bright star to the south celestial pole. Hydrus ('Water Snake') is a small constellation in the deep southern sky, one of twelve constellations created by Petrus Plancius at the end of the sixteenth century.
59 Ankaa, or $\alpha$ Phoenicis, with an apparant visual magnitude of 2.38, is the brightest star in the constellation of Phoenix. FIRST observation.
$60 \quad \beta$ Ceti. FIrst observation.
61 Achernar, or $\alpha$ Eridani, with an apparent visual magnitude of $0.40-0.46$, is the brightest star in the constellation of 'the river' Eridanus, and the ninth-brightest in the night sky. FIRST observation.
62 'Head of Hydras', or $\alpha$ Hydri, with an apparent visual magnitude of 2.90, is the second (!) brightest star in the southern circumpolar constellation of Hydrus ('the Water Snake'). First observation. Alpha Hydri should not be confused with $\alpha$ Hydrae, in the constellation Hydra, a vast constellation on the celestial equator.
63 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.

[and its] azimuth [from west to south] $\quad 11$| 10 | 0 |
| :--- | :--- | :--- |

And after 140 oscillations of the pendulum, ...
$\ldots$ the western elevation of Arcturus [was] $14 \begin{array}{lll}46 & 30\end{array}$
Likewise when the tail of the Eagle ${ }^{64}$ was crossing the meridian, ...
$\ldots$ the western elevation of Mercury [was] $\begin{array}{llll}11 & 34 & 30\end{array}$
... [and its] azimuth from west to south $\quad 11 \begin{array}{lll}31 & 0\end{array}$
Meridian elevation of the stars I caught this night [in my telescope], in the order they crossed the meridian. Between 7 and 14 hours in the night.

Meridian elevation: $\theta$ of the Peacock ${ }^{65} \quad$| 24 | 30 | 0 |
| :--- | :--- | :--- | |

$\eta$ of the Peacock $\left.{ }^{66} \quad$| 31 | 16 | 30 |
| :--- | :--- | :--- | \right\rvert\,

$\alpha$ of the Peacock ${ }^{67} \quad \begin{array}{llll}40 & 30 & 0 & \text { | }\end{array}$
$\zeta$ of the Peacock ${ }^{68} \quad \begin{array}{llll}30 & 51 & 40 & \text { | }\end{array}$
$\kappa$ of the Indian ${ }^{69} \quad \begin{array}{lll}38 & 32 & 40\end{array}$
$\kappa$ of the Water Snake ${ }^{70} \quad \begin{array}{llll}19 & 20 & 0 & \end{array}$
$\varepsilon$ of the Peacock ${ }^{71}$ 年 $\left.\begin{array}{llll}31 & 20 & 30\end{array}\right\}$
south
Head of the Crane $(\alpha)^{72} \quad \begin{array}{llll}59 & 8 & 0 & \text { | }\end{array}$
$\eta$ of the Crane ${ }^{73} \quad 49 \begin{array}{lll}47 & 0\end{array}$
$\alpha$ of the Toucan ${ }^{74} \quad \begin{array}{llll}36 & 14 & 30\end{array}$
$\theta$ of the Crane ${ }^{75} \quad 49 \begin{array}{lll}32 & 30\end{array}$
$\chi$ of the Crane $\left.{ }^{76} \quad \begin{array}{llll}45 & 4 & 50\end{array} \right\rvert\,$
Fomalhaut ${ }^{77}$ of the Water Carrier $\quad \begin{array}{llll}66 & 39 & 0 & \text { J }\end{array}$

[^46]$\mu$ of the Crane ${ }^{78}$

$\left.\begin{array}{rrr}43 & 33 & 40 \\ 14 & 50 & 0 \\ 38 & 5 & 30\end{array}\right\}$ south

Bright star below the Water Snake ${ }^{79}$
$38 \quad 5 \quad 30$ J
$\beta$ of the Toucan ${ }^{80}$
Lower star in the foremost part of the Toucan's wing ${ }^{81}$ (should be $\varepsilon$, but transposing to the Bayer's atlas $\varepsilon$ should be brighter and $\delta$ less)

| 30 | 43 | 30 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| \| (or $\boldsymbol{\iota}$ ) of the Water Snake ${ }^{82}$ | 18 | 53 | 30 |  |
| The star in the middle of Toucan's wing $(\zeta)^{83}$ | 31 | 18 | 0 | south |
| Head of Phoenix ( $\alpha)^{84}$ | 53 | 56 | 0 |  |
| The last star of the Toucan's wing $(\eta)^{85}$ | 33 | 19 | 30 |  |
| The southernmost star of the tail of the Whale ${ }^{86}$ | 78 | 14 | 0 |  |

At 2 AM the clouds covered the sky and I could not observe Achernar ${ }^{87}$ with the head of the Water Snake ${ }^{88}$.

22 September [1639]
Meridian elevation of the Sun $\quad \begin{array}{llll}81 & 30 & 20 \text { south }\end{array}$
At 6:30 PM. Western elevation of Arcturus ${ }^{89} \quad 16$
After 123 oscillations of the pendulum the western elevation of Mercury
$\begin{array}{lll}15 & 16 & 30\end{array}$
Azimuth from west to south
$\begin{array}{lll}10 & 58 & 0\end{array}$
Again the western elevation of Arcturus $\quad 15 \quad 32 \quad 0$
And after 144 oscillations of the pendulum
the western elevation of Mercury $\quad 13 \quad 46$
Azimuth of Mercury from west to south $\begin{array}{lll}11 & 20 & 0\end{array}$
Again when the bright star of the Eagle ${ }^{90}$ was crossing the meridian, $\ldots$
... the azimuth of Mercury [from west to south] was 10
$\begin{array}{ll}78 & \text { 乌 Gruis. FIRST OBSERVATION. } \\ 79 & \beta \text { Octantis. FIRST OBSERVATION. According to our calculation, this star crossed the meridian }\end{array}$ before the four preceding stars and 35 m 7 s before the previous one.
$80 \quad \gamma$ Tucanae. First observation.
$81 \varepsilon$ Tucanae. First observation.
$82 \beta$ Hydri. First observed 20 September 1639.
83 乌Tucanae. FIRST OBSERVATION. According to our calculation, this star crossed the meridian 4 m 50 s before the previous star.
84 Ankaa, or $\alpha$ Phoenicis. First observed 20 September 1639.
$85 \beta_{1}$ Tucanae. FIRSt observation.
$86 \beta$ Ceti. First observed 20 September 1639.
87 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
$88 \alpha$ Hydri. First observed 20 September 1639.
89 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
90 The bright star of the Eagle should be Altair, or $\alpha$ Aquilae (First observed 18 September 1639). But its meridian passage occurred after this series of observations was interrupted at 7 PM. Moreover, the elevation of Mercury was incompatibly low ( $1^{\circ} 19^{\prime} 21$ "). So the star should be $\zeta$ Aquilae, described before as the Tail of the Eagle. (First observed 18 September 1639).
... and its elevation
$12 \quad 13 \quad 0$
Once finished these observations the clock ...
[21]
... struck 7 PM. Henceforth the clouds covered the sky which earlier was very clear. Around 9 PM it became clear again, then from 9:30 PM to 4 AM, I mader the following observations:

| Meridian elevation of $\alpha$ of the Crane ${ }^{91}$ | 59 | 08 | 40 |
| :---: | :---: | :---: | :---: |
| $\beta$ of the Crane ${ }^{92}$ | 56 | 52 | 40 |
| $\eta$ of the Crane ${ }^{93}$ | 49 | 23 | 30 |
| $\alpha$ of the Toucan ${ }^{94}$ | 36 | 15 | 30 |
| $\gamma$ of the Toucan ${ }^{95}$ | 31 | 32 | 30 |
| $\varepsilon$ of the Crane ${ }^{96}$ | 52 | 50 | 00 |
| $v$ of the Water Snake ${ }^{97}$ | 15 | 00 | 00 |
| $\theta$ of the Crane ${ }^{98}$ | 49 | 29 | 30 |
| $\chi$ of the Crane ${ }^{99}$ | 44 | 59 | 30 |
| Fomalhaut of the Water Carrier ${ }^{100}$ | 66 | 38 | 00 |
| $\mu$ of the Crane ${ }^{101}$ | 43 | 32 | 00 |
| Below the Water Snake ${ }^{102}$ | 14 | 51 | 00 |
| $\beta$ of the Toucan ${ }^{103}$ | 38 | 05 | 00 |
| $\xi$ of the Phoenix ${ }^{104}$ | 58 | 20 | 00 |
| $\varepsilon$ of the Phoenix ${ }^{105}$ | 53 | 38 | 00 |
| $\delta$ of the Phoenix ${ }^{106}$ | 50 | 46 | 30 |
| $\varepsilon$ of the Toucan ${ }^{107}$ | 30 | 40 | 00 |
| $\iota$ of the Water Snake ${ }^{108}$ | 18 | 54 | 00 |
| $\zeta$ of the Toucan ${ }^{109}$ | 31 | 18 | 00 |

[^47]| $\alpha$ of the Phoenix ${ }^{110}$ | 53 | 50 | 00 |
| :---: | :---: | :---: | :---: |
| $\beta$ of the Phoenix ${ }^{111}$ | 52 | 27 | 00 |
| $\eta$ of the Toucan ${ }^{112}$ | 33 | 14 | 00 |
| CC A ${ }^{113}$ | 78 | 12 | 30 |
| Achernar ${ }^{114}$ | 39 | 09 | 15 |
| $\chi$ of the River ${ }^{115}$ (Eridanus) | 44 | 51 | 00 |
| [22] |  |  |  |
| Head of the Water Snake ${ }^{116}$ | 34 | 56 | 0 |
| All in southern sky ${ }^{17}$ |  |  |  |
| In the northern sky $\left.\begin{array}{l}\text { meridian elevation of Medusa's head }{ }^{118} \\ \text { meridian elevation of the bright star } \ldots\end{array}\right\}$ in the rib of Perseus ${ }^{119}$ | 42 33 | 19 18 | 40 0 |
| 23 September [1639] |  |  |  |
| Clouded at noon. At 6:45 PM the western elevation of Arcturus ${ }^{120}$ and after 75 oscillations of the pendulum the elevation of | 15 | 29 | 30 |
| Mercury was | 14 | 43 | 0 |
| and its azimuth from west to the meridian [south] | 11 | 14 | 0 |
| and after 70 oscillations of the pendulum, ... ... the western elevation of Arcturus was | 14 | 47 | 30 |
| A little later the western elevation of Arcturus was | 13 | 18 | 0 |
| and after 91 oscillations of the pendulum, the elevation of |  |  |  |
| Mercury was | 12 | 25 | 30 |
| and its azimuth from west towards south was | 11 | 24 | 0 |
| and after 60 oscillations of the pendulum the elevation of |  |  |  |
| Arcturus was | 12 | 39 | 0 |
| Likewise about an half ${ }^{121}$ later, the elevation of Mercury was | 8 | 11 | 0 |
| and its azimuth from west towards south was | 12 | 30 | 0 |

110 Ankaa, or $\alpha$ Phoenicis. First observed 20 September 1639.
$111 \kappa$ Phoenicis. First observation.
$112 \beta_{1}$ Tucanae. First observed 21 September 1639.
$113 \beta$ Ceti. First observed 20 September 1639. CC A stands for Caudae Ceti Australior.
114 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
$115 \chi$ Eridani. First observation.
$116 \alpha$ Hydri. First observed 22 September 1639.
117 Referring to the stars observed hitherto.
118 Algol, or $\beta$ Persei, known also as the Demon Star, is a bright multiple star in the constellation of Perseus and one of the first non-nova variable stars to be discovered. Algol's apparant visual magnitude is usually near-constant at 2.1 , but regularly dips to 3.4 every 2.86 days during roughly 10 -hour-long partial eclipses. FIRST OBSERVATION.
119 Mirfak, or $\alpha$ Persei, with an apparent visual magnitude of 1.81 , is the brightest star in the northern constellation of Perseus, outshining the constellation's best-known star, Algol. FIRst observation.
120 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
121 The unit of time, (minute or hour), is not given. According our calculations, the time lapse was about 15 minutes.
and after 221 oscillations of the pendulum the western elevation ...
$\ldots$ of the bright star of the Northern Crown ${ }^{122}$ was $\quad 23 \quad 410$
Meridian elevations of fixed southern [stars], taken up in the southern sky from 7 PM to 2 AM , follow in the right order.

Meridian altitude of $\theta$ in the Peacock ${ }^{123} \quad$| 24 | 27 | 30 |
| :--- | :--- | :--- |

$\eta$ in the Peacock ${ }^{124} \quad \begin{array}{lll}31 & 18 & 0\end{array}$
$\alpha$ of the Peacock ${ }^{125} \quad \begin{array}{lll}40 & 28 & 0\end{array}$
$\zeta$ of the Peacock ${ }^{126} \quad \begin{array}{llll}30 & 50 & 0\end{array}$
$\boldsymbol{\kappa}$ of the Indian ${ }^{127} \quad \begin{array}{llll}38 & 30 & 0\end{array}$
[23]
$\boldsymbol{\kappa}$ of the Water Snake ${ }^{128} \quad \begin{array}{llll}19 & 19 & 0\end{array}$
$\varepsilon$ in the Peacock ${ }^{129} \quad \begin{array}{llll}31 & 20 & 00\end{array}$
$\begin{array}{llll}\text { Meridian southern altitude of Saturn } & 79 & 53 & 30\end{array}$
$\iota$ of the southern Fish ${ }^{130} \quad \begin{array}{llll}63 & 30 & 0\end{array}$
Head of the Crane ${ }^{131} \quad \begin{array}{ccc}59 & 9 & 0\end{array}$
$\eta$ of the Crane ${ }^{132} \quad \begin{array}{llll}49 & 34 & 0\end{array}$
$\alpha$ of the Toucan ${ }^{133} \quad \begin{array}{llll}36 & 15 & 30\end{array}$
$\gamma$ of the Toucan ${ }^{134} \quad \begin{array}{lll}31 & 32 & 30\end{array}$
$v$ of the Water Snake ${ }^{135} \quad \begin{array}{lll}15 & 2 & 0\end{array}$
$\theta$ of the Crane ${ }^{136}$ 49 $\begin{array}{llll} & 30 & 0\end{array}$
$\chi$ of the Crane ${ }^{137}$ 45 $\begin{array}{lll}16 & 0\end{array}$
Fomalhaut of the Water Carrier ${ }^{138} \quad \begin{array}{llll}66 & 37 & 30\end{array}$
$\mu$ of the Crane ${ }^{139} \quad 43 \begin{array}{lll}45 & 0\end{array}$

[^48]| Below the Water Snake ${ }^{140}$ | 14 | 52 | 0 |
| :---: | :---: | :---: | :---: |
| $\beta$ of the Toucan ${ }^{141}$ | 38 | 5 | 0 |
| $\zeta$ of the Phoenix ${ }^{142}$ | 58 | 23 | 30 |
| $\varepsilon$ of the Phoenix ${ }^{143}$ | 53 | 39 | 0 |
| $\delta$ of the Phoenix ${ }^{144}$ | 50 | 47 | 0 |
| Star below $\delta$ of the Phoenix ${ }^{145}$ ( $\delta$ recorded on the globe) | 46 | 6 | 30 |
| Cloudy henceforth. |  |  |  |
| $\zeta$ of the Toucan ${ }^{146}$ | 31 | 17 | 30 |
| $\alpha$ of the Phoenix ${ }^{147}$ | 53 | 57 | 0 |
| $\beta$ of the Phoenix ${ }^{148}$ | 52 | 33 | 0 |
| $\eta$ of the Toucan ${ }^{149}$ | 33 | 16 | 30 |
| Australior Caudae Ceti ${ }^{150}$ | 78 | 10 | 0 |
| From now on the sky became cloudy |  |  |  |
| 24 September [1639] |  |  |  |
| Meridian elevation of the Sun | 82 | 16 | 15 north |
| [24] |  |  |  |
| 6:45 PM. Western elevation of Arcturus ${ }^{151}$ | 15 | 30 | 0 |
| After 104 oscillations of the pendulum the elevation of Mercury was | 15 | 21 | 30 |
| and the azimuth of Mercury from west to the meridian [south] was | 13 | 15 | 0 |
| Again not much later when the elevation of Arcturus was | 13 | 55 | 0 |
| after 84 oscillations of the pendulum the elevation of Mercury was | 13 | 43 | 0 |
| Western azimuth of Mercury to the [southern] meridian and after 94 oscillations of the pendulum ... | 12 | 16 | 0 |
| ... the western elevation of Arcturus was | 13 | 15 | 0 |
| Again the elevation of Arcturus | 12 | 7 | 0 |
| and after 79 oscillations of the pendulum the elevation of Mercury was | 11 | 40 | 0 |
| Azimuth [from west to south] | 12 | 5 | 0 |
| And later the elevation of Arcturus was | 11 | 19 | 0 |

[^49]25 September [1639]

| Meridian elevation of the Sun [to the north] | 82 | 40 | 0 |
| :---: | :---: | :---: | :---: |
| 6:30 PM on the watch, when the western elevation of Arcturus was | 14 | 47 | 0 |
| after 106 oscillations of the pendulum, the elevation of Mercury was | 15 | 12 | 0 |
| The azimuth of Mercury from west to [south] in the meridian and after 44 oscillations of the pendulum, the elevation of | 12 | 29 | 0 |
| Arcturus was | 13 | 55 | 30 |
| and a little later the western elevation of Arcturus was | 12 | 47 | 0 |
| and the elevation of Mercury was | 13 | 11 | 30 |
| and the azimuth from west to [south] in the meridian | 12 | 48 | 0 |
| After that, the western elevation of Arcturus was | 12 | 3 | 30 |
| The meridian elevation of $\delta$ of the Dragon ${ }^{152}$, which is to the north of the head of the Dragon ${ }^{153}$, and is the second of the bend | 14 | 50 | 0 north |
| Upper [star] in the [right] wing of the Swan ${ }^{154}$ | 37 | 31 | 30 north |
| [25] |  |  |  |
| [Meridian elevation] of the breast of the Swan ${ }^{155}$ | 42 | 46 | 15 north |
| [Meridian elevation] of the tail of the Swan ${ }^{156}$ | 37 | 48 | 30 north |
| 10 PM. Meridian elevation of $\alpha$ of the Toucan ${ }^{157}$ | 36 | 14 | 0 south |
| $\gamma$ of the Toucan ${ }^{158}$ | 31 | 31 | 30 south |
| $\theta$ of the Crane ${ }^{159}$ | 49 | 30 | 0 south |
| Fomalhaut of the Water Carrier ${ }^{160}$ | 66 | 38 | 0 south |

Henceforth the sky was covered by clouds
26 September [1639]
Meridian elevation of the Sun
83320 north
In the evening because of moving clouds, I could not observe Mercury.
27 September [1639]
Meridian altitude of the Sun
Evening and night cloudy $\begin{array}{lll}83 & 26 & 30 \text { north }\end{array}$

[^50]
## 28 September

Cloudy at noon. In the evening after about 6:15 PM, Mercury was the first to become visible in the brightness of the twilight; she was near and above the thin crescent of the New Moon, inclined somewhat to the south, because the upper part of the ecliptic was also inclined [to the south]. But Mercury would immediately plunge in the Moon, and without doubt in the upper and eastern edge of the dark part of the Moon (exactly as I observed with my eyes ...
[26]
$\ldots$ and with the telescope). That is, the furrowed Moon hided Mercury, a view that was very pleasant for me. Between the instant of the immersion of Mercury in the Moon the western elevation of the bright star of the Northern Crown ${ }^{161}$ was $\quad 2424 \quad 0$ [Number of] oscillations of my pendulum 1046. Afterwards I took up to confirm the elevation ...
$\ldots$ of the bright star of the Northern Crown $\quad 23 \quad 48 \quad 0$ and once again a little later the western elevation ...
... of the bright star of the Northern Crown 2300
But 216 oscillations of the pendulum intervened between these two elevations. When the western elevation of the bright star of the Northern Crown was $\begin{array}{llll}21 & 52 & 0\end{array}$ Mercury had not yet emerged from behind the Moon, then the clock chimed 7 o'clock and henceforth clouds covered the western sky. ${ }^{162}$


[Mss Paris]

29 September
Meridian elevation of the Sun
30 September
Meridian elevation of the Sun
$84 \quad 12 \quad 30$ north

[^51]On 1 and 2 October [1639]. Cloudy
On 3 October [1639]
Meridian elevation of the Sun
On 4 October [1639]
Meridian elevation of the Sun
On 5 October [1639]
Meridian elevation of the Sun
On 6 and 7 [Octover [1639]. Cloudy
On 8 October [1639]
Meridian elevation of the Sun
On 9 October [1639]
Meridian elevation of the Sun $\quad 88 \quad 6 \quad 30$ north
On 10, 11 and 12 October [1639]. Fickle weather.
13 October [1639]
Meridian elevation of the Sun $\quad 89 \quad 37 \quad 30$ north
On 12 October, ${ }^{163}$ at 7 PM, Venus stood apart about 18 ' westwards of the Heart of Scorpion ${ }^{164}$. On 13 October at 7 PM, Venus had passed the Heart of Scorpion at a distance of about $30^{\prime}$, and stood in a straight line with the [star in the] north of the Heart of Scorpio ${ }^{165}$ and the Heart of Scorpion; or at least she approached the Heart of Scorpion more to the south in this way. Then it is clear that Venus headed eastwards, closer to the Heart of Scorpion, slightly more northerly ...
[28]
$\ldots$ than the conjunction that would occur on 12 October, at $4 \mathrm{AM}^{166}$, calculated for my place on the Brazilian Island Antoni Vaz. Since the daily motion of Venus is 48 ', I calculated from the Rudolphine [tables] that Venus was 10 ' south of the Heart of Scorpion at the time of the conjunction.

[^52]

On 14 October [1639]
Meridian elevation of the Sun at the vertex $\begin{array}{llll}90 & 0 & 0^{167}\end{array}$
If on the [next] morning in the south, $10^{\prime \prime}$ beyond the vertex, [an angle of] $89^{\circ} 59^{\prime} 50^{\prime \prime}$ [is measured], then an observation of $90^{\circ} 0^{\prime} 0^{\prime \prime}$ is accurate, as long as the meridian [elevation] is recorded twice, [namely] by pointing the instrument north once and then south.

On 15 October [1639]
$\begin{array}{llll}\text { Meridian elevation of the Sun } & 89 & 37 & 15\end{array}$
On 16 October [1639]
Meridian elevation of the Sun $\quad \begin{array}{lll}89 & 14 & 20 \text { south }\end{array}$
On 17 October [1639]
Meridian elevation of the Sun $\quad 88 \quad 51 \quad 30$ south
[29]
On 18 October [1639]
Meridian elevation of the Sun
On 19 October [1639]
Meridian elevation of the Sun

On 20 October [1639]
Meridian elevation of the Sun
$87 \quad 46 \quad 20$ south

On 21 October [1639]
Meridian elevation of the Sun
$87 \quad 25 \quad 15$ south

On 22 October [1639] I went away to the field.

167 According to our calculation, the meridian elevation of the Sun was $89^{\circ} 51^{\prime} 04$ " south.

On 23 October [1639]
Meridian elevation of the Sun
864240 south
On 24 October [1639]. Unstable weather.

On 25 October [1639]
Meridian elevation of the Sun
86030 south
On 26 and 27 October. Cloudy.
On 28 October [1639]
Meridian elevation of the Sun
$84 \quad 59 \quad 30$ s outh 7:30 PM. Hitherto, the Moon was a little west of Jupiter, and Jupiter was envisioned to cross [the Moon] at its more southerly intersection, but before the impending attack of the conjunction could be observed, the western sky [was] covered with clouds. People who live further west may have perceived [the conjunction] better.
[30]
On 29 October [1639]. Unstable weather.
On 30 October [1639]
Meridian elevation of the Sun
$8420 \quad 0$ south
Following days. Fickle weather.
On 2 November [1639]
Meridian elevation of the Sun
On 3 November [1639]
Meridian elevation of the Sun
83220 south
On 4 November [1639] and following days
I was away, and because of rain. The weather was fickle.
On 10 November [1639]
Meridian elevation of the Sun $\quad 81 \quad 0 \quad 0$ south

On 11 and 12 November. Fickle weather.
On 13 November [1639]
$\begin{array}{lllll}\text { Meridian elevation of the Sun } & 80 & 10 & 0 & \text { south }\end{array}$

On 14 November. Fickle weather.
On 15 November [1639]
Meridian elevation of the Sun
$79 \quad 39 \quad 0$ south

On 16 and 17 November. Fickle weather.
On 18 November [1639]
Meridian elevation of the Sun $\quad \begin{array}{lll}78 & 53 & 30\end{array}$ south

Following days. Fickle weather.
On 26 November [1639]
Meridian elevation of the Sun $\quad 77 \quad 11 \quad 10$ south
[31]
From 7 PM to 10:30 PM. Venus nearing the heliacal setting in the evening, appeared horned these days through the telescope.
Meridian elevation of the head of Andromeda ${ }^{168} \quad \begin{array}{llll} & 54 & 39 & 40\end{array}$ north
Star in the extremity of the wing of Pegasus ${ }^{169} \quad \begin{array}{llll}68 & 32 & 30 & \text { north }\end{array}$
Meridian elevation of $\zeta$ of the Toucan ${ }^{170}$
$\iota$ of the Water Snake ${ }^{171}$
$\eta$ of the Toucan ${ }^{172}$
$\xi$ of the Phoenix ${ }^{173}$
$\lambda$ of the Phoenix ${ }^{174}$
$v$ of the Phoenix ${ }^{175}$
Above $\mu$ of the Phoenix ${ }^{176}$ not displayed on the globe
$\mu$ of the Phoenix ${ }^{177}$
Achernar ${ }^{178}$
The second star of the River (Eridanus) ${ }^{179}$
Head of the Water Snake ${ }^{180}$
$31 \quad 18 \quad 0$ south
$18 \quad 58 \quad 30$ south
$\begin{array}{llll}33 & 16 & 30 \\ \text { south }\end{array}$
$38 \quad 47 \quad 0$ south
$49 \quad 36 \quad 0$ south
4160 south
$53 \quad 30$ south
$47 \quad 20 \quad 0$ south
$\begin{array}{lll}39 & 10 & 0 \\ \text { south }\end{array}$
$44 \quad 52 \quad 30$ south
34 〔56 0 south
5530 south $^{181}$
The third star of the River (Eridanus) ${ }^{182}$
45230 south

[^53]| The fourth star of the River ${ }^{183}$ | 48 | 54 | 0 south |
| :---: | :---: | :---: | :---: |
| The globe does not show the fourth of the River. |  |  |  |
| The head of Medusa ${ }^{184}$ |  |  | 30 south |
|  |  | 13 | 0 south |
| Henceforth, the previously very clear sky turned cloudy |  |  |  |
| On 27 November [1639] |  |  |  |
| Meridian elevation of the Sun | 77 | 00 | 0 " south |
| On 28 November [1639] |  |  |  |
| Meridian elevation of the Sun | 76 | 49 | 40 south |
| On 29 November [1639] |  |  |  |
| Meridian elevation of the Sun | 76 | 39 | 40 south |
| [32] |  |  |  |
| Following days stormy |  |  |  |
| On 12 December [1639] |  |  |  |
| Meridian elevation of the Sun | 75 | 4 | 40 south |
| On 13 December [1639] |  |  |  |
| Meridian elevation of the Sun | 75 | 0 | 30 south |
| On 14 December. Fickle weather |  |  |  |
| On 15 December [1639] |  |  |  |
| Meridian elevation of the Sun | 74 | 54 | 30 south |
| On 16 December [1639] |  |  |  |
| Meridian elevation of the Sun | 74 | 51 | 40 south |
| From 7 PM to 10 PM. Meridian elevation of $\lambda$ of the Phoenix ${ }^{185}$ | 49 | 38 | 0 south |
| $v$ of the Phoenix ${ }^{186}$ | 41 | 5 | 30 south |
| $\eta$ of the Water Snake ${ }^{187}$ | 27 | 29 | 0 south |
| The star above $\mu$ of the Phoenix ${ }^{188}$ |  |  |  |
|  | [ 53 |  | 0 south |
|  | 1 not | on th | e globe |
| $\mu$ of the Phoenix ${ }^{189}$ | 47 | 20 | 0 south |

[^54]| Achernar ${ }^{190}$ | 39 | 9 | 50 south |
| :---: | :---: | :---: | :---: |
| $\chi$ of the River ${ }^{191}$, the second star (third for me) | 44 | 51 | 30 south |
| Meridian elevation of the Head of the Water Snake ${ }^{192}$ | 34 | 54 | 0 south |
| $\varphi$ of the River ${ }^{193}$, the third star | 45 | 5 | 30 south |
| The third star of the Water Snake ${ }^{194}$ | 27 | 56 | 30 south |
| $\kappa$ of the River ${ }^{195}$, the fourth star | 48 | 55 | 30 south |
| $\iota$ of the River ${ }^{196}$, the fifth star | 53 | 48 | 0 south |
| In the River (for me the 7th star) ${ }^{197}$ |  |  |  |
|  | \| 56 | 49 | 30 south |
|  | not on the globe |  |  |

[33]
Far above this star ${ }^{198}$ (not on the globe) $\quad 64 \quad 18 \quad 30$ south
The fourth star of the Water Snake ${ }^{199}$ (second after the twist of the neck)
The sixth star of the River ${ }^{200}$ (for me the $8^{\text {th }}$ )
The $20^{\text {th }}$ of the River $(\tau)^{201}$
$28 \quad 27 \quad 0$ south

Below that star and more to the east ${ }^{202}$ (not on the globe)
$5630 \quad 0$ south
$73 \quad 10 \quad 0$ south
Star reckoned by myself as $8^{\text {th }}$ of the River ${ }^{203}$
$67 \quad 47 \quad 0$ south

If this star is in the River, it is not displayed on the globe.
17 December [1639]

| Meridian elevation of the Sun | 74 | 49 | 20 south |
| :--- | :--- | ---: | :--- |
| From 6:45 PM to midnight. Meridian elevation of $\lambda$ of the Phoenix ${ }^{204}$ | 49 | 37 | 20 south |
| $\boldsymbol{v}$ of the Phoenix ${ }^{205}$ | 61 | 6 | 30 south |
| $\boldsymbol{\eta}$ of the Water Snake |  |  |  |
| Above $\mu$ of the Phoenix ${ }^{207}$ | 27 | 29 | 30 south |
|  | 53 | 5 | 0 south |

190 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
$\chi$ Eridani. First observed 22 September 1639.
$\alpha$ Hydri. First observed 22 September 1639. $\varphi$ Eridani. First observed 26 November1639.
$\delta$ Hydri. First observation.
$\kappa$ Eridani. First observed 26 November1639. According to our calculation, this star crossed the meridian 1 m 49 s before the previous star.
TYC 7558-987-1 in the River Eridanus. First observation.
$\iota$ Eridani. First observation. Not in the globe suggests a non-Ptolemeic star. $\beta$ Fornacis. First observation. Not in the globe suggests a non-Ptolemeic star. $\varepsilon$ Hydri. First observation.
$\theta_{1}$ Eridani. First observation.
$\tau_{3}$ Eridani. FIRSt observation.
$\alpha$ Fornacis. FIRSt observation. Absent in Houtman's catalogue.
TYC 7567-1183-1 in the River Eridanus. First observation. Absent in Houtman's catalogue. $\beta$ Phoenicis. First observed 26 November1639.
$\zeta$ Phoenicis. First observed 26 November1639.
$\kappa$ Tucanae. First observed 16 December 1639.
$\gamma$ Phoenicis. First observed 26 November1639.

| $\mu$ of the Phoenix ${ }^{208}$ | 47 | 19 | 30 south |
| :---: | :---: | :---: | :---: |
| Achernar ${ }^{209}$ | 39 | 9 | 50 south |
| $\chi$ of the River ${ }^{210}$ | 44 | 51 | 0 south |
| $\sigma$ of the Water Snake ${ }^{211}$ (for me the first [second] also) ${ }^{212}$ | 28 | 50 | 0 south |
| Head of the Water Snake ${ }^{213}$ | 34 | ¢55 | 0 |
|  |  | 154 | 30 south |
| $\varphi$ of the River ${ }^{214}$ | 45 | 4 | 30 south |
|  |  | 5 | 0 south |
| The fourth star of the River ${ }^{215}$ | 48 | 57 | 0 south |
| The third star of the Water Snake ${ }^{216}$ | 27 | 59 | 0 south |
| $\iota$ of the River ${ }^{217}$ | 53 | 47 | 0 south |
| In the River (not displayed on the globe) ${ }^{218}$ | 56 | 50 | 0 south |

[34]
Above this star ${ }^{219}$
$\begin{array}{lll}64 & 17 & 00 \\ \text { south }\end{array}$
Fourth star of the Water Snake ${ }^{220}$
$6^{\text {th }}$ of the River $(\theta)^{221}$
282900 south
The twentieth star of the River ${ }^{222}$
Also the fifth star of the Water Snake ${ }^{223}$
Below the $20^{\text {th }}$ star of the River and more to the east ${ }^{224}$
Star in the River (not not displayed on the globe) ${ }^{225}$
$56 \quad 29 \quad 30$ south
$73 \quad 11 \quad 00$ south
290500 south
$67 \quad 47 \quad 00$ south
534600 south
Beneath ${ }^{226}$ the first ${ }^{227}$ of the three stars in the neck of the Water Snake ...

[^55]| $\ldots$ and the Large Cloud ${ }^{228}$ of Dorado constellation ${ }^{229}$ | $34 \quad 20$ | 0 south |
| :---: | :---: | :---: |
| Star in the River, the globe does not show ${ }^{230}$ | $56 \quad 44$ | 00 south |
| The second of the three stars in the Water Snake and n. ${ }^{231}$ | 3400 | 00 south |
| Western star of the $\Delta^{232}$ of the River, $7^{\text {th }}$ of the Eridanus on the globe | 5946 | 00 south |
| Southern star of the $\Delta$ of the River | 5930 | 00 south |
| Northern star of the $\Delta$ of the River, third star of the trio in the Water Snake ${ }^{233}$ and the |  |  |
| shapeless Large Cloud in the Antarctic Circle ${ }^{234}$ | 2000 south |  |
| [Star ${ }^{235}$ ] east of the 2 shapeless clouds | $22 \quad 58$ | 30 south |
| Meridian elevation of Aldebaran ${ }^{236}$ | 65 「59 | 00 nor |
|  | - 59 | 30 north ${ }^{237}$ |
| [Meridian elevation of] Capella ${ }^{238}$ | $36\lceil 9$ | 00 north |
|  | - 9 | 30 north ${ }^{239}$ |
| [Meridian elevation of] Rigel ${ }^{240}$ of the Orion | 8930 | 20 south ${ }^{241}$ |
|  |  | 30 south |

18 December [1639]
Meridian elevation of the Sun
At 7 PM. Head of Andromeda ${ }^{242}$ in the western elevation of
$74 \quad 47 \quad 30$ south

Its azimuth from north to west
$51 \quad 28 \quad 30$

The evening twilight was ending.

228 Large Magellanic Cloud.
$229 \zeta_{2}$ Reticuli. Dorado is the constellation of Dolphin fish.
230 TYC 7572-1748-1 in the River Eridanus. FIRSt observation. Absent in Houtman's catalogue.
$231 \kappa$ Reticuli. Absent in the globe suggests a non-Ptolemaic star. According to our calculation, this star crossed the meridian 54 s before the previous star. ' n .' might mean nubes (referring to the Magellanic Clouds)
232 Triangle formed by the following stars in the River Eridanus: TYC 7034-1311-1; 7570-15851 and 7035-1374-1.
$233 \beta$ Reticuli. First observation.
234 Large Magellanic Cloud.
$235 \gamma$ Hydri. First observation.
236 Aldebaran, or $\alpha$ Tauri. First observation.
237 This value is closer to the calculated one.
238 Capella, or $\alpha$ Aurigae, with an apparent visual magnitude of 0.08 , is the brightest star in the northern constellation of Auriga, and the sixth-brightest star in the night sky. Its name means 'little goat' in Latin. First observation.
239 This value is closer to the calculated one.
240 Rigel, or $\beta$ Orionis. First observation.
241 This value is closer to the calculated one.
242 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.

From the observation of the elevation of the head of Andromeda ${ }^{243}$ until the meridian transit of $\eta$ of the Water Snake ${ }^{244}$ it lasted 873 oscillations of my pendulum. 273
oscillations between this observation and the southern culmination of the star above $\mu$ of the Phoenix ${ }^{245}$.
211 oscillations of the pendulum:
Southern meridian transit of $\mu$ of the Phoenix ${ }^{246}$
431 oscillations of the pendulum:
Southern meridian transit of Achernar ${ }^{247}$
387 oscillations of the pendulum:
Northern meridian transit of the leg of Cassiopeia ${ }^{248}$
299 oscillations of the pendulum:
Southern meridian transit of the second star for me of the River ${ }^{249}$;
its elevation $\quad 22^{\circ} \quad 56^{\prime} \quad 0^{\prime \prime}$ south
495 oscillations of the pendulum:
Southern meridian transit of $\chi$ of the River ${ }^{250}$
298 oscillations of the pendulum:
Southern meridian transit of the first star of the quintet of the Water Snake ${ }^{251}$ 66 oscillations of the pendulum:
Southern meridian transit of the head of the Water Snake ${ }^{252}$
188 oscillations of the pendulum:
Western elevation of the head of Andromeda ${ }^{253} \quad 44 \begin{array}{lll}40 & 0\end{array}$
Its azimuth from north to west $\begin{array}{llll}38 & 1 & 0\end{array}$
283 oscillations of the pendulum:
Western elevation of the head of Andromeda $\begin{array}{lll}43 & 27 & 0\end{array}$
Its azimuth from north to west $\quad \begin{array}{lll}38 & 40 & 0\end{array}$
252 oscillations of the pendulum:
Western elevation of the head of Andromeda $\quad 42 \quad 46 \quad 0$
Its azimuth $\begin{array}{llll}39 & 56 & 0\end{array}$

19 December [1639]
Meridian elevation of the Sun
$7445 \quad 40$ south

[^56]| At 7 PM. Western elevation of the Head of Andromeda ${ }^{254}$ | 51 | 20 |  |
| :---: | :---: | :---: | :---: |
| Its azimuth from the north to the west | 23 | 17 |  |
| Then the end of the evening twilight. |  |  |  |
| 735 oscillations of the pendulum: |  |  |  |
| $\eta$ of the Water Snake ${ }^{255}$ reaches the celestial southern meridian |  |  |  |
| 238 oscillations of the pendulum: |  |  |  |
| Meridian transit of the star above $\mu$ of the Phoenix ${ }^{256}$ |  |  |  |
| 219 oscillations of the pendulum: |  |  |  |
| Southern meridian transit of $\mu$ of the Phoenix ${ }^{257}$ |  |  |  |
| 457 oscillations of the pendulum: |  |  |  |
| Southern meridian transit of Achernar ${ }^{258}$ |  |  |  |
| 490 oscillations of the pendulum: |  |  |  |
| Northern meridian transit of the Cassiopeia's leg ${ }^{259}$. |  |  |  |
| Its meridian elevation | 19 | 54 |  |

797 [oscillations of the pendulum]:
Southern meridian transit of $\chi$ of the River ${ }^{260}$
240 oscillations of the pendulum:
Southern meridian transit of the first star of the quintet of the Water Snake ${ }^{261}$ 148 [oscillations of the pendulum]:
Meridian transit of the head of the Water Snake ${ }^{262}$
229 oscillations of the pendulum]:
Western elevation of the head of Andromeda $\begin{array}{llll}44 & 20 & 0 & \text { and }\end{array}$
its azimuth from north to west $\quad 37 \quad 41 \quad 0$
307 oscillations of the pendulum:
Eastern elevation of Canopus ${ }^{263}$ 21 20
Its azimuth from south to east $\quad 36 \quad 9 \quad 0$
353 oscillations of the pendulum:
Western elevation of the head of Andromeda $\begin{array}{llll}42 & 40 & 0^{\prime \prime} & \&\end{array}$
its azimuth from north to west
$39 \quad 52 \quad 0$

252 oscillations of the pendulum:
Eastern elevation of Canopus $\begin{array}{lllll}22 & 37 & 0^{\prime \prime} & \&\end{array}$
Its azimuth from south to east $\quad \begin{array}{lll}35 & 53 & 0\end{array}$

[^57]In the same evening the Meridian elevation of Medusa's head ${ }^{264}$ [was] $42 \quad 14 \quad 30$ north
Of the bright star of Pleiades ${ }^{265} \quad 58 \quad 50 \quad 0$ north
Of the shapeless object in the Antarctic Circle ${ }^{266} \quad 32 \quad 20 \quad 0$ south
Of the [star] east of the 2 shapeless nebulae ${ }^{267}$
$22 \quad 57 \quad 15$ south

On 20 December [1639]
Meridian elevation of the Sun
From 7 PM. Western elevation of the Head of Andromeda ${ }^{268}$
its azimuth from north to west
$74 \quad 44 \quad 30$ south
$50 \quad 00$ \&

Then the twilight ended.
307 oscillations of the pendulum:
Southern meridian transit of the star above $\mu$ of the Phoenix ${ }^{269}$
159 oscillations of the pendulum:
Southern meridian transit of $\mu$ of the Phoenix ${ }^{270}$
327 oscillations of the pendulum:
Southern meridian transit of Achernar ${ }^{271}$
599 oscillations of the pendulum:
Northern meridian transit of the leg of Cassiopeia ${ }^{272}$.
Its meridian elevation $\quad 19 \begin{array}{lll}19 & 54 & 0 \text { north }\end{array}$
743 oscillations of the pendulum:
Southern meridian transit of $\chi$ of the River ${ }^{273}$
136 oscillations of the pendulum:
Southern meridian transit of the head of the Water Snake ${ }^{274}$
136 oscillations of the pendulum:
Western elevation of the head of Andromeda ${ }^{275} \quad 45 \quad 5 \quad 0 \quad \&$
its azimuth from north to west
3630

[^58]426 oscillations of the pendulum:
Eastern elevation of Canopus ${ }^{276}$
its azimuth from south to east

| 21 | 4 | 30 | $\&$ |
| :--- | :--- | ---: | :--- |
| 36 | 10 | 0 |  |

616 oscillations of the pendulum:
Western elevation of the Head of Andromeda ${ }^{277} \quad \begin{array}{lll}42 & 35 & 30\end{array}$
Its azimuth from north to west $40 \quad 15 \quad 0$
In the same evening until 0:30 AM.
Meridian elevation of the right shoulder of Perseus ${ }^{278}$
of the Head of Medusa ${ }^{279}$
of the bright star in the rib of Perseus ${ }^{280}$
of the star eastern of the 2 shapeless clouds ${ }^{281}$
of the star in the River and Dorado ${ }^{282}$ (not on the globe)
Another star in the River and Dorado ${ }^{283}$ (not on the globe)
[Star] of the shapeless [body] at the western side of Dorado ${ }^{284}$
[Meridian elevation] of the end of Dorado's Tail ${ }^{285}$
of Capella ${ }^{286}$
of Rigel of Orion ${ }^{287}$
[Star] that divides the Large Cloud ${ }^{288}$ in the middle ${ }^{289}$
[Star] in the back of Dorado ${ }^{290}$
[Meridian elevation] of Canopus ${ }^{291}$

| 29 | 45 | 20 north |
| ---: | ---: | ---: |
| 42 | 16 | 0 north |
| 33 | 14 | 30 north |
| 22 | 57 | 0 south |
| 55 | 6 | 0 south |
| 45 | 53 | 30 south |
| 34 | 51 | 0 south |
| 42 | 30 | 30 south |
| 36 | 11 | 0 north |
| 89 | 34 | 0 south |
| 29 | 15 | 0 south |
| 35 | 32 | 0 south |
| 45 | 48 | 30 south |

276 Canopus, or $\alpha$ Carinae. First observed 19 December 1639.
277 Andromeda, or $\alpha$ Andromedae. First observed 26 November 1639.
$278 \gamma$ Persei. First observation.
279 Algol, or $\beta$ Persei. First observed 22 September 1639.
280 Mirfak, or $\alpha$ Persei. First observed 22 September 1639.
$281 \gamma$ Hydri. First observed 17 December 1639. The shapeless clouds are the Magellanic Clouds.
$282 \alpha$ Horologii. First observation. Absent in Houtman's catalogue.
$283 \gamma$ Doradus. FIRST observation. Absent in Houtman's catalogue.
$284 \boldsymbol{\alpha}$ Reticuli is the brightest star in the southern circumpolar constellation of Reticulum. It has an apparent visual magnitude of 3.3. First observation. The Shapeless body of Dorado refers to the Large Magellanic Cloud.

On 21 December [1639]

| Meridian elevation of the Sun | 74 | 44 | 10 south |
| :---: | :---: | :---: | :---: |
| From 9:30 PM to 1 AM . |  |  |  |
| Meridian elevation of the stars of the western pair of |  |  |  |
| the River fupper ${ }^{299}$ | 63 | 32 | 30 south |
| Llower ${ }^{293}$ | 63 | 20 | 0 south |
| [Star] of the shapeless [object] ${ }^{294}$ at the western side of Dorado ${ }^{295}$ | 34 | 50 | 30 south |
| [Meridian elevation] of the star far above this shapeless [object] ${ }^{296}$ | 52 | 2 | 0 south |
| [Meridian elevation] of the lower star of the eastern pair of the River ${ }^{297}$ | 66 | 53 | 30 south |
| [39] |  |  |  |
| [Star] at the end of Dorado's Tail ${ }^{198}$ | 42 | 27 | 30 south |
| [Star] in the River and of the Dove (not on the globe) ${ }^{299}$ | 55 | 41 | 0 south |
| In the Dove and the River far and above the two clouds ${ }^{300}$ | 62 | 13 | 0 south |
| Below the two clouds ${ }^{301}$ and |  |  |  |
| ¢ a little to the east ${ }^{302}$ | 40 | 18 | 0 south |
| [Out of Dove constellation towards west ${ }^{303}$ | 62 | 57 | 0 south |
| [Star] near and above the Large Cloud ${ }^{304}$ | 30 | 40 | 0 south |
| [Star] in the end of the right wing of the Dove ${ }^{305}$ | 62 | 28 | 0 south |
| [Star] in the back of the Dove ${ }^{306}$ | 63 | 55 | 30 south |
| [Star] in the back of Dorado ${ }^{307}$ | 35 | 30 | 30 south |
| [Star] in the Swift Ship of the Skipper ${ }^{308}$ [Jason] | 47 | 6 | 0 south |

[^59]| [Star] where the right wing of the Dove comes from. ${ }^{309}$ | 62 | 20 | 0 south |
| :---: | :---: | :---: | :---: |
| [Star] where the neck of the Dove comes from. ${ }^{310}$ | 62 | 55 | 0 south |
| Of the two stars in Dorado, the upper or northern one. ${ }^{311}$ | 32 | 25 | 30 south |
| [Star] below Argo Navis of the Skipper. ${ }^{312}$ | 42 | 0 | 0 south |
| The southernmost [star] of the branch of the Dove. ${ }^{313}$ | 55 | 22 | 30 south |
| [Star] of the Head of the Dove. ${ }^{314}$ | 61 | 1 | 0 south |
| [Star] below Canopus to the right. ${ }^{315}$ | 43 | 21 | 30 south |
| Of the upper triplet [of stars] of the Branch of the Dove, ... ... that one in the south. ${ }^{316}$ | 63 | 12 | 0 south |
| [Star] of the end of the right and rear foot of the Great Dog. ${ }^{317}$ | 68 | 16 | 30 south |
| Of the three [stars] in the upper part of the Branch of the Dove ... that one in the middle. ${ }^{318}$ | 64 | 58 | 30 south |
| From the upper triplet [of stars] in the Branch of the Dove, ... ...that one in the north. ${ }^{319}$ | 65 | 53 | 0 south |
| [Meridian elevation] of Canopus ${ }^{320}$ | 45 | 49 | 30 south |

Remark. The brightness and colour besides the splendour of Canopus agrees closely with those of Sirius ${ }^{321}$. Achernar ${ }^{322}$ is equal in these aspects to Rigel ${ }^{323}$ in Orion, ...
[40]
... therefore Canopus ${ }^{324}$ surpasses Achernar ${ }^{325}$ in brightness and splendour, while Rigel ${ }^{326}$ is surpassed by Sirius. ${ }^{327}$
$309 \beta$ Columbae. FIRST OBSERVATION. According to our calculation, this star crossed the meridian 30 s before the previous one.
$310 \gamma$ Columbae. FIRST OBSERVATION.
$311 \delta$ Doradus. FIRST OBSERVATION. According to our calculation, this star crossed the meridian 35 $s$ before the previous one. The other star of the pair is $\varepsilon$ Doradus.
$312 \gamma$ Pictoris. This star crossed the meridian 53 s before the two previous ones. Inserted in the left margin: Not in the globe, which suggests a non-Ptolemeic star.
$313 \eta$ Columbae. First observation.
$314 \theta$ Columbae. First observation.
$315 \delta$ Pictoris. FIRST OBSERVATION. Inserted in the left margin: not in the globe. Canopus $=\alpha$ Carinae.
$316 \kappa$ Columbae. The other stars are $\delta$ Columbae and $\lambda$ Canis Majoris. FIRST OBSERVATIONS
317 C Canis Majoris. First observation.
$318 \delta$ Columbae. See two footnotes above.
$319 \lambda$ Canis Majoris. Ibidem.
320 Canopus, or $\alpha$ Carinae. First observed 19 December 1639.
321 Sirius, or $\alpha$ Canis Majoris, with an apparent visual magnitude of -1.46, is the brightest star in the night sky, almost twice as bright as Canopus, the next brightest star. FIRST OBSERVATION.
322 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
$323 \beta$ Orionis. First observed 17 December 1639.
324 Canopus, or $\alpha$ Carinae. First observed 19 December 1639.
325 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
$326 \beta$ Orionis. First observed 17 December 1639.
327 Sirius, or $\alpha$ Canis Majoris. First observed 21 December 1639.
[The sky] was very clear around sunset and after (today, just like the previous days) and evening stood out for its red colour. [...] ${ }^{328}$ And towards the true end of twilight, that evening, when I almost saw daylight flee, the bright [star of the] Eagle ${ }^{329}$ was second to set. ${ }^{330}$ She [was] in the middle of the sky, ${ }^{331} 20^{\circ}$ [from the meridian to west], reckoned from the perpendicular to the vernal point. ${ }^{332}$ At the end of the twilight, the whole sky was covered by clouds, starting from the east.

## 23 December [1639]. A rainy and cloudy sky

24 December [1639]
Meridian elevation of the Sun
From 7 PM to 8:30 PM.
Western elevation of the Head of Andromeda. ${ }^{333} \quad 46 \quad 13 \quad 0$
Its azimuth from north to west $\quad \begin{array}{lll}34 & 53 & 0\end{array}$
270 oscillations of the pendulum:

## [41]

Southern meridian transit of the first star of the quintet of the Water Snake. ${ }^{334}$ 164 oscillations of the pendulum:
Southern meridian transit of de head of the Water Snake. ${ }^{335}$
NB. About two minutes of time earlier ${ }^{336}$, the eastern ${ }^{337}$ of the two pitiful [stars] above the second star of the River ${ }^{338}$ culminated.
1096 oscillations of the pendulum:
Southern meridian transit of $\varphi$ of the River. ${ }^{339}$
50 oscillations of the pendulum:

328 At this point two lines from the Leiden manuscript are omitted in the Paris manuscript, probably because they are hardly readable (also for us).
$329 \alpha$ Aquilae or Altair. First observed 18 September 1639.
330 According to our calculation, the Sun set 59 m 31 s before.
331 Middle of sky might mean meridian.
332 The symbol $\uparrow$ normaly denotes the vernal point. But the text only makes sense, if we consider that the ecliptic longitude of the Sun was $271^{\circ} 0^{\prime} 15.8^{\prime \prime}$, that is about $90^{\circ}$ from the vernal point. So the combination of $o \uparrow$ in the Leiden and Paris manuscripts probably means 'perpendicular to the vernal point'.
333 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.
$334 \eta_{2}$ Hydri. First observed 17 December 1639.
$335 \alpha$ Hydri. First observed 22 September 1639.
336 According to our calculation, this duration was 4 min 47 s .
337 TYC 8041-1200-1 in the Phoenix that, according to our calculation, crossed the meridian several minutes before the two previous stars. FIRST OBSERVATION. Its companion is $\psi$ Phoenicis.
$338 \chi$ Eridani. First observed 22 September 1639. (Actually the third, above the second star).
$339 \varphi$ Eridani. First observed 26 November1639.

The second of the quintet of stars of the Water Snake. ${ }^{340}$
505 oscillations of the pendulum:
The third of the quintet of stars of the Water Snake. ${ }^{341}$
47 oscillations of the pendulum:
Fourth [star] of the River on the globe. ${ }^{342}$
135 oscillations of the pendulum:
The meridian elevation of the bright star ...
... far above the fourth ${ }^{343}$ of the River. ${ }^{344} \quad 62^{\circ} 48^{\prime} \quad 0^{\prime \prime}$
NB These are three stars forming an isosceles triangle ${ }^{345}$, of which this is the western star.
672 oscillations of the pendulum:
Southern meridian transit of $\iota$ of the River, 5 th star ${ }^{346}$
24 oscillations of the pendulum:
Southern [meridian transit of the] $6^{\text {th }}$ star of the River. Not displayed on the globe. ${ }^{347}$
227 oscillations of the pendulum:
The fourth star of the quintet in the Water Snake. ${ }^{348}$
With it culminates the very small 6-magnitude star ${ }^{349}$ in the Water Snake and the River, ... ... being its meridian elevation
$42 \quad 7 \quad 0$
296 oscillations of the pendulum:

Western [star] ${ }^{350}$ of the triangle ${ }^{351}$ above the $6^{\text {th }}$ star of the River. ${ }^{352}$
43 oscillations of the pendulum:
This star is followed [in meridian transit] by another one, more to south. ${ }^{353}$.
Its meridian elevation $\quad 61 \quad 0 \quad 0$
448 oscillations of the pendulum:
$340 \pi_{2}$ Hydri. First observation.
$\kappa$ Eridani. First observed 26 November1639. This star crossed the meridian 1 m 49 s before the previous star.
$343 \kappa$ Eridani. First observed 26 November1639.
$\varphi$ Fornacis, with a visual magnitude of 5.13. First observation. Absent in Houtman's catalogue. According to our calculation, this star crossed the meridian before the two previous ones, 59 s before the last one and 2 m 48 s before the anterior one. TYC 7558-987-1. First observed 16 December 1639.
$\iota$ Eridani. First observed 16 December 1639. Absent in Houtman's catalogue. $\varepsilon$ Hydri. First observed 16 December 1639.
$\zeta$ Horologii, with a visual magnitude of 5.21. According to our calculation, this star culminated 4 min 51 s before the previous one.
$\beta$ Fornacis. First observed 16 December 1639. According to our calculation, this star crossed the meridian 18 s before the first of the two previous stars, but not the second, because it was chronologically misplaced.
Triangle of stars from the Furnace. $\iota$ Eridani. First observed 16 December 1639. $\eta_{3}$ Fornacis. First observation.
$6^{\text {th }}$ star of the River, for me the 8 th or the bright one. ${ }^{354}$ 126 oscillations of the pendulum:
Western elevation of the bright star of the southern foot
of Andromeda. ${ }^{355} \quad 40 \begin{array}{lll}11 & 0\end{array}$

And its azimuth from north to west $\quad 30 \quad 30 \quad 0$
152 oscillations of the pendulum:
Western elevation of the bright star of the southern foot
$\begin{array}{llll}\text { of Andromeda. }{ }^{356} & 39 & 53 & 30\end{array}$
Azimuth $\begin{array}{lll}31 & 0 & 0\end{array}$

From 9 PM to 1 AM.
Meridian elevation of the $11^{\text {th }}$ star for me of the River ${ }^{357} \quad 56420$ south
Western star of the triangle of the River ( $7^{\text {th }}$ of the globe) ${ }^{358} \quad 59 \quad 44 \quad 0$ south
$17^{\text {th }}$ [star] of the River on the globe ${ }^{359}$
Southern [star] of the triangle of the River ( $8^{\text {th }}$ of the globe $)^{360} \quad \begin{array}{lllll}59 & 25 & 30 \text { south }\end{array}$
Northern [star] of the triangle of the River
$\left(9^{\text {th }} \text { of the globe in the River }\right)^{361} \quad \begin{array}{llll}60 & 50 & 0 \text { south }\end{array}$
$15^{\text {th }}$ [star] of the River on the globe ${ }^{362} \quad 72 \quad 30 \quad 0$ south
$14^{\text {th }}$ [star] of the River on the globe ${ }^{363} \quad 7310 \quad 0$ south
[Star ${ }^{364}$ ] east of the 2 shapeless clouds ${ }^{365}$ 22 $\quad 57 \quad 30$ south
Eastern $\left[\operatorname{star}^{366}\right]$ of the two bright ones that are below the two ${ }^{367}$ [stars] ...
$\ldots$ at west of the River $\quad 5500$ south
From the two western stars of the River, the upper one, ${ }^{368} \ldots$ $\ldots$ (the $10^{\text {th }}$ of the River on the globe) $\quad 63 \quad 31 \quad 30$ south
[Star] between the River and Dorado ${ }^{369} \quad 45 \quad 50 \quad 0$ south
From the two western ${ }^{370}$ stars of the River, the lower one, ${ }^{371} \ldots$

[^60]| (the $11^{\text {th }}$ of the River on the globe) | 63 | 18 | 30 south |
| :---: | :---: | :---: | :---: |
| [Star] at the western side of Dorado. ${ }^{372}$ | 34 | 48 | 30 south |
| [43] |  |  |  |
| [Star] far above the shapeless [cloud]. ${ }^{373}$ | 52 | 27 | 30 south |
| Of the pair [of stars) at east [of the River], the upper one. ${ }^{374} \ldots$ <br> ... (the $13^{\text {rd }}$ of the River on the globe) | 67 | 38 | 30 south |
| Of the pair [of stars] at east of the River, the lower one, ${ }^{375}$... <br> ... (the $12^{\text {th }}$ of the River on the globe) | 66 | 51 | 30 south |
| Meridian elevation of the end of Dorado's tail. ${ }^{376}$ | 42 | 25 | 00 south |
| The eastern [star ${ }^{377}$ ] in $\nabla^{378}$ above the shapeless [cloud]. | 55 | 40 | 00 south |


[Star] out and west of the Dove. ${ }^{379} \quad 62 \quad 10 \quad 00$ south
[The star] below the eastern of the two clouds. ${ }^{380}$
Rigel ${ }^{381}$ of the Orion.
Near and above the Large Cloud. ${ }^{382}$
[Star] at the end of the right wing of the Dove. ${ }^{383}$
[Star] in the back of the Dove. ${ }^{384}$
[Star] in the back of Dorado. ${ }^{385}$
[Star] in the end of the left wing of the Dove. ${ }^{386}$
$40 \quad 16 \quad 30$ south
$89 \quad 31 \quad 00$ south
$30 \quad 4100$ south
$62 \quad 2900$ south
$63 \quad 55 \quad 00$ south
$35 \quad 30 \quad 00$ south
$65 \quad 46 \quad 30$ south
$372 \alpha$ Reticuli. First observed 20 December 1639. According to our calculation, this star crossed the meridian 34 s before the previous star.
$373 \delta$ Caeli. See First observed 21 December 1639. The 'shapeless cloud' is the Large Magellanic Cloud.
$v_{1}$ Eridani. According to our calculation, this star crossed the meridian 26 s before the previous star.
$375 v_{2}$ Eridani. See First observed 21 December 1639.
$376 \alpha$ Doradus. First observed 20 December 1639.
$377 \alpha$ Caeli. See First observed 21 December 1639.
378 In the drawing the upper star at left is $\alpha$ Caeli and at right, $\alpha$ and $\delta$ Horologii; below is $\delta$ Caeli.
$379 \gamma$ Caeli. See First observed 21 December 1639.
$380 \zeta$ Doradus. See First observed 21 December 1639. 'Two clouds' = the large Magellanic Cloud
$381 \beta$ Orionis. First observed 17 December 1639.This star crossed the meridian 2 m 10 s before the previous star.
$382 \theta$ Doradus. First observed 21 December 1639.
$383 \varepsilon$ Columbae. First observed 21 December 1639.
384 Phact, or $\alpha$ Columbae. First observed 21 December 1639.
385
386 $\beta$ Doradus. First observed 20 December 1639. $\mu$ Columbae.

| [Star] where the right wing of the Dove comes from. ${ }^{887}$ | 62 | 18 | 30 south |
| :---: | :---: | :---: | :---: |
| [Star] in the Swift Ship of the Skipper. ${ }^{388}$ | 47 | 04 | 30 south |
| [Star] where the left wing of the Dove comes from. ${ }^{389}$ | 64 | 20 | 00 south |
| [Star] where the neck of the Dove comes from. ${ }^{390}$ | 62 | 55 | 00 south |
| Upper [star] of the pair in the womb of Dorado. ${ }^{391}$ | 32 | 20 | 30 south |
| Lower [star] of the pair in the womb of Dorado. ${ }^{392}$ | 31 | 16 | 00 south |
| Head of the Dove. ${ }^{393}$ | 61 | 00 | 00 south |
| Below Canopus, at right. ${ }^{394}$ | 43 | 21 | 00 south |
| The southernmost of the three upper [stars] in the branch of the Dove. ${ }^{395}$ | 63 | 10 | 00 south |
| [Star] of the end of the right and rear foot of the Great Dog. ${ }^{396}$ | 68 | 14 | 30 south |
| That one in the middle of the three upper [stars] ... ... in the branch of the Dove ${ }^{397}$ | 64 | 56 | 30 south |
| The northernmost of the three [stars] in the branch of the Dove. ${ }^{398}$ | 65 | 51 | 00 south |
| Canopus | 45 | 48 | 30 south |

[44]
25 December [1639]
Meridian elevation of the Sun

26 December [1639]
Meridian elevation of the Sun
744840 south
At 7 PM. Saturn with two bright [stars] in the tail of the Sea Goat ${ }^{399}$ composed an isosceles triangle. Saturn was further west than the stars, and was separated from the leading [star] in the Sea Goat's tail, ${ }^{400}$ just as far apart as the two [stars] in the tail between themselves. However, Saturn and the subsequent [star] ${ }^{401}$ in the tail formed the base of the triangle.

[^61]

On 27 December [1639]
Meridian elevation of the Sun
$74 \quad 51 \quad 0$ south

On 28, 29 and 30 December the sky was fickle and I also went away to the countryside.

On 31 December [1639]
Meridian elevation of the Sun $75 \quad 6 \quad 0$ south Fickle night.

The year 1640 follows with the Observations of the Heavens by Georg Marggrafe, starting on 1 January A.C. 1640, Gregorian [calendar]

Meridian elevation of the Sun
In the following days, fickle sky.

On 6 January [1640]
Meridian elevation of the Sun $75 \quad 41 \quad 30$ south

On 7 January [1640]

| Meridian elevation of the Sun |  | 75 | 50 | 0 south |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Meridian elevation of the Sun | On 8 January [1640] |  |  |  |
|  |  | 75 | 58 | 30 south |
| Meridian elevation of the Sun | On 9 January [1640] |  |  |  | In the remainder of the month, as well as in February, for the most part we lacked fine weather and several times I went away. In the night following 18 March ${ }^{403}$ our house ...

... where we live, spontaneously collapsed altogether while we all were sleeping. But thanks to the extraordinary power of God we all, seven in number, were spared alive, although wounded thence in the limbs. My furniture thence suffered damage, including the chest. Until the house was repaired, what was done after a time span of a trimester, I was constrained to abstain from mathematical works in the meantime. Having also occurred a subluxation of my left armpit, what made me useless for accomplishing anything, it detained me more than two months.

On 11 June [1640]
Meridian elevation of the Sun $\quad 58 \quad 41 \quad 0$ north
On 12 and 13 June it rained
On 14 June [1640]
Meridian elevation of the Sun
On 15 June [1640]
Meridian elevation of the Sun
On 16 June [1640]
Meridian elevation of the Sun
On 17 June [1640]. Cloudy.
[47]
On 18 June [1640]
Meridian elevation of the Sun
$58 \quad 2440$ north

[^62]| On 19 June[1640] ${ }^{404}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Meridian elevation of the Sun | 58 | 23 | 40 north |
| On 20 June [1640] |  |  |  |
| From about 9:30 AM |  |  |  |
| 1. Elevation of the Sun before noon | 40 | 22 | 30 |
| Its azimuth from north to east | 48 | 50 | 0 |
| 2. Elevation of the Sun | 42 | 31 | 0 |
| Azimuth as before | 46 | 43 | 0 |
| 3. Elevation of the Sun | 46 | 5 | 30 |
| Azimuth | 42 | 33 | 30 |
| 4. Elevation of the Sun | 47 | 22 | 30 |
| Azimuth | 40 | 42 | 0 |
| 5. Elevation of the Sun | 48 | 7 | 30 |
| Azimuth | 39 | 35 | 0 |
| 6. Elevation of the Sun before the meridian transit | 49 | 0 | 0 |
| Azimuth from north to east | 38 | 10 | 0 |
| 7. Elevation of the Sun | 53 | 21 | 0 |
| Azimuth | 29 | 5 | 0 |
| It was 10:45 according to the sundial ${ }^{405}$ |  |  |  |
| 8. Meridian elevation of the Sun | 58 | 23 | 30 |
| Azimuth | 0 | 0 | 0 |
| 9. Elevation of the Sun after the meridian transit | 58 | 12 | 0 |
| Azimuth from north to west | 7 | 47 | 0 |
| [48] |  |  |  |
| 10. Elevation of the Sun | 57 | 30 | 0 |
| Azimuth | 14 | 40 | 0 |
| 11. Elevation of the Sun | 56 | 0 | 0 |
| Azimuth | 22 | 34 | 0 |
| 12. Elevation of the Sun | 49 | 15 | 30 |
| Azimuth | 39 | 35 | 0 |
| 13. Elevation of the Sun | 48 | 7 | 30 |
| Azimuth | 41 | 37 | 0 |
| 14. Elevation of the Sun | 47 | 41 | 0 |
| Azimuth from north to west | 42 | 21 | 0 |

It was 2 o'clock on the sundial ${ }^{406}$. By means of the shadow of the gnomon, I also made the previous observations with an upright shaft with 4000 divisions. Therefore in the previous observations:

[^63]| 1. The length of the shadow was 4660 divisions (as the gnomon had 4000 [divisions]) |  |  |
| :---: | :---: | :---: |
| 2. Length of the shadow 4324 divisions |  |  |
| Angle | 4 | 0 |
| 4. ${ }^{407}$ [Length of the shadow] 3650 divisions |  |  |
| Angle | 1 | 15 |
| 5. [Length of the shadow] 3554 divisions |  |  |
| Angle | 1 | 30 |
| 6. [Length of the shadow] 3448 divisions |  |  |
| Angle | 9 | 0 |
| 7. [Length of the shadow] 2950 divisions |  |  |
| [49] |  |  |
| Angle | 29 | 0 |
| 8. [Length of the shadow] 2437 divisions |  |  |
| Angle | 8 | 0 |
| 9. [Length of the shadow] 2455 divisions |  |  |
| Angle | 6 | 45 |
| 10. [Length of the shadow] 2522 divisions |  |  |
| Angle | 7 | 6 |
| 11. [Length of the shadow] 2671 divisions |  |  |
| Angle | 17 | 15 |
| 12. [Length of the shadow] 3415 divisions |  |  |
| Angle | 2 | 0 |
| 13. [Length of the shadow] 3552 divisions |  |  |
| Angle | 0 | 45 |
| 14. [Length of the shadow] 3610 divisions |  |  |

14. [Length of the shadow] 3610 divisions

On 21 June [1640]
From about 9:15 AM.

1. Elevation of the Sun before the meridian transit $\quad 3915 \quad 0$

Azimuth from north to east $\quad \begin{array}{llll}49 & 40 & 0\end{array}$
2. Elevation of the Sun $\quad \begin{array}{llll}40 & 22 & 30\end{array}$

Azimuth $\begin{array}{llll}48 & 49 & 0\end{array}$
3. Elevation of the Sun $\quad 41 \quad 12 \quad 0$

Azimuth $48 \quad 0 \quad 0$
4. Elevation of the Sun $\quad \begin{array}{llll}42 & 31 & 0\end{array}$

Azimuth $46 \quad 42 \quad 0$
5. Elevation of the Sun $\quad 46 \quad 0 \quad 0$

Azimuth $\begin{array}{llll}42 & 41 & 0\end{array}$

407 The number [3] is not recorded.
[50]

| 6. Elevation of the Sun | 49 | 40 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth | 37 | 0 | 0 |
| 7. Elevation of the Sun | 51 | 59 | 0 |
| Azimuth | 32 | 22 | 0 |
| 8. Meridian elevation of the Sun | 58 | 23 | 30 |
| north |  |  |  |
| Azimuth | 0 | 0 | 0 |

Second in azimuth from north to West, thus far the same [elevation] as the meridian elevation of the Sun ${ }^{408}$
9. Elevation of the Sun after the meridian transit $\quad 58 \quad 4 \quad 0$

Azimuth from north to west
$43 \quad 41 \quad 0^{409}$
It was about 2 PM in the sundial.
The gnomon with 4000 divisions is used as in the previous observations.

1. Length of the shadow 4851 divisions

Angle $\quad 1^{\circ} \quad 0^{\prime}$
2. [Length of the shadow] 4661 divisions

Angle 1
3. [Length of the shadow] 4530 divisions
$\begin{array}{lll}\text { Angle } & 15\end{array}$
4. [Length of the shadow] 4325 divisions

Angle 40
5. [Length of the shadow] 3830 divisions

Angle $\quad \begin{array}{ll}5 & 30\end{array}$
6. [Length of the shadow]. 3366 divisions

Angle $\quad 4 \quad 30$
7. [Length of the shadow] 3100 divisions

Angle
$32 \quad 30$
[51]
8. [Length of the shadow] 2438 divisions
Angle $9^{\circ} 45^{\prime}$
9. [Length of the shadow] 2469 divisions

Angle $\quad 31 \quad 15$
10. [Length of the shadow] 3510 divisions

Angle $\quad 2 \quad 30$
11. [Length of the shadow] 3730 divisions

NB. More accurate angles may be shown with the azimuthal circle. ${ }^{410}$

408 According to our calculation, the elevation had indeed changed 1' 11 ", but the instrument was not sensitive enough to detect such a difference.
409 This value is at odds with our calculated one ( $8^{\circ} 53^{\prime} 55^{\prime \prime}$ ) and is clearly wrong.
410 The azimuthal circle should be of the 5 feet quadrant, but it is hard to imagine that the solar observations with the gnomon were made in the quadrant room. So this sentence might simply express how better should be the angle measurements with the azimuthal circle.

It rained on 22 June [1640].
On 23 June [1640]
Meridian elevation of the Sun $\quad \begin{array}{ccc}58 & 25 & 0\end{array}$

On 24 June [1640]
Meridian elevation of the Sun 582620 north I observed in the evening with a clear sky, when the twilight was going to end. And I saw its end, as a penance, fled with a broad blush, when the eastern elevation of the Heart of Scorpion ${ }^{411}$ was
$4136 \quad 0$

In the following days. Annoying weather.
On 28 June [1640] with a clear sky
At 10 AM , with my optical instrument ${ }^{412}$ set up, I determined through a hole with a diameter of 10 divisions [chosen arbitrarily] ${ }^{413}$ the diameter ...
[52]
... of the Sun, expressed in this same division. Several times I found 73 [divisions], other [times] 74. However, the distance from the hole to the outlined illuminated image of the Sun was 7340 divisions. ${ }^{414}$ This observation, repeated after the meridian transit, gave the same result. I mean, no diameter larger than 74 divisions was found, nor one smaller than 73 divisions.
Meridian elevation of the Sun $\quad 58 \quad 36 \quad 0$ north
Stormy weather in the following days
On 15 July [1640]
Meridian elevation of the Sun $\quad \begin{array}{lll}60 & 26 & 30\end{array}$

It rained on 16 July [1640]
On 17 July [1640]
Meridian elevation of the Sun $\quad \begin{array}{llll}60 & 47 & 0 & \text { north }\end{array}$

[^64]Rainy during the following days
On 23 July [1640]


It rained on 25 July [1640]
On 26 July [1640]
Meridian elevation of the Sun
623440 north

| On 27 July |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Meridian elevation of the Sun |  | 62 | 49 | 40 north |
| [53] |  |  |  |  |
| Following days cloudy and rainy |  |  |  |  |
| $1^{\text {st }}$ of August [1640] |  |  |  |  |
| Meridian elevation of the Sun |  | 64 | 1 | 40 north |
| On 2 August [1640] |  |  |  |  |
| Meridian elevation of the Sun |  | 64 | 17 | 0 north |

## Following days cloudy and rainy

## On 7 August [1640]

| Meridian elevation of the Sun | 65 | 40 | 0 north |
| :--- | ---: | ---: | ---: |
| At 6:30 PM, when the western elevation of Arcturus ${ }^{415}$ [was] | 51 | 20 | 0 |
| Its azimuth from north to west | 41 | 17 | 0 |
| After 330 oscillations of the pendulum, ... |  |  |  |
| $\quad$. the western elevation of Mercury [was] | 6 | 7 | 0 |
| Azimuth from north to west | 77 | 42 | 0 |
| After 245 oscillations of the pendulum, again the elevation of Mercury | 4 | 59 | 30 |
| Azimuth from north to west | 78 | 0 | 0 |
| After 343 oscillations of the pendulum, western elevation of Arcturus | 48 | 59 | 0 |
| Its azimuth from north to west | 44 | 28 | 0 |

415 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.

| Later until about 9 PM |  |  |
| :---: | :---: | :---: |
| Meridian elevation of the eastern [star] of the Southern Triangle ${ }^{416}$ | $29 \quad 53$ | 30 south |
| [Star] in the Censer ${ }^{417}$ | $49^{418} 51$ | 0 south |
| [Star] in the Censer ${ }^{419}$ | 4249 | 30 south |
| First [star] of Scorpion's tail ${ }^{420}(\varepsilon)$ | $64 \quad 32$ | 0 south |
| Second [star] of Scorpion's tail ${ }^{421}$ ( $\mu$ ) | $60 \quad 47$ | 0 south |
| Third [star] in Scorpion's tail ${ }^{122}$ ( $\zeta$ ) | $55 \quad 25$ | 30 south |

## [54]

From the pair [of stars] in the Censer, the lower one ${ }^{423}$
The upper one ${ }^{424}$
[Star] below the upper pair in the Censer ${ }^{425}$
[Star] above the pair ${ }^{426}$ in the Censer
The last [star] in Scorpion's tail ${ }^{427}$
The next to the last [star] in Scorpion's tail ${ }^{428}$
The sixth [star] in Scorpion's tail ${ }^{429}$
The westernmost [star] of the Peacock ${ }^{430}(\chi)$
The fourth [star] from the end in Scorpion's tail ${ }^{431}$
The fifth [star] from the end in Scorpion's tail ${ }^{132}$
[Star] in the Archer after Scorpion's tail ${ }^{133}$

| 42 | 10 | 0 south |
| :--- | :--- | ---: |
| 43 | 0 | 0 south |
| 37 | 49 | 30 south |
| 48 | 39 | 0 south |
| 61 | 10 | 0 south |
| 61 | 20 | 0 south |
| 55 | 26 | 30 south |
| 33 | 40 | 0 south |
| 59 | 21 | 0 south |
| 58 | 12 | 30 south |
| 61 | 16 | 0 south |

[^65]| [Star] in the tail of the Peacock ${ }^{434}(\mu)$ | 34 | 30 | 0 south |
| :---: | :---: | :---: | :---: |
| [Star] of the Censer ${ }^{435}$ | 48 | 6 | 30 south |
| The first [star] of the bow of the $\operatorname{Archer}^{436}(\gamma)$ | 67 | 46 | 30 south |
| [Star] of the bow (of the Archer) ${ }^{437}$ | 61 | 18 | 0 south |
| Meridian elevation of Jupiter | 74 | 31 | 30 south |
| and after 127 oscillations of the pendulum, the [star] of the bow ... <br> $\ldots$ of the Archer, that is the first one eastward ${ }^{438}$ ( $\delta$ ) | 68 | 10 | 0 south |
| [Star] of the bow of the Archer ${ }^{439}(\varepsilon)$ | 63 | 36 | 30 south |
| [Star] at west of the triangle below the southern Crown ${ }^{440}$ | 52 | 3 | 0 south |
| - at south ${ }^{441}$ | 48 | 56 | 0 south |
| - at east ${ }^{442}$ | 52 | 3 | 0 south |
| [Star] in the bow of the Archer ${ }^{433}$ ( $\lambda$ ) | 72 | 30 | 0 south |
| [Star] in the Peacock ${ }^{444}(v)$ | 35 | 39 | 0 south |
| [Star] in the Peacock ${ }^{445}$ ( $\left.t\right)$ | 30 | 32 | 30 so |

On 8 August [1640]
Meridian elevation of the Sun
$65 \quad 57 \quad 30^{446}$ north
[55]
In the evening, because of clouds, I could not observe Mercury.
Meridian elevation of the [star] preceding the Heart of Scorpion ${ }^{447} \ldots$
... to the north ${ }^{488}$
[Meridian elevation] of the Heart of Scorpion
[Meridian elevation] of [the star] following Scorpion's head to south ${ }^{49}$
$73 \quad 23 \quad 30$ south
$72 \quad 29 \quad 30$ south
$70 \quad 40 \quad 0$ south
$434 \pi$ Pavonis. First observation.
$435 \theta$ Arae. First observation.
$436 \gamma$ Sagittarii. FIRST OBSERVATION.
$437 \quad \eta$ Sagittarii. FIRST OBSERVATION.
$438 \delta$ Sagittarii. FIRST OBSERVATION.
439 Kaus Australis, or $\varepsilon$ Sagittarii. Brightest star in the constellation of Sagittarius ('archer'), with a visual magnitude of 1.85 . First observation.
$440 \alpha$ Telescopii. Brightest star in the southern constellation of Telescopium, with an apparent visual magnitude of 3.5 . According to our calculation, this star crossed the meridian 1 s before the previous one. FIRST OBSERVATION.
$441 \zeta$ Telescopii. FIRST ObSERVATION.
$442 \delta_{l}$ Telescopii. First observation.
$443 \lambda$ Sagittarii. FIRST OBSERVATION.
$444 \lambda$ Pavonis.
$445 \kappa$ Pavonis.
446 Guessed value.
447 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
$448 \quad \sigma$ Scorpii. First observed 13 October 1638.
$449 \tau$ Scorpii. First observed 20 September 1638.

| [Meridian elevation] of the eastern [star] of the Southern Triangle ${ }^{450}$ | 29 | 51 | 0 south |
| :---: | :---: | :---: | :---: |
| Henceforth clouds. Again clear sky. |  |  |  |
| Meridian elevation of the first [star] in Scorpion's tail ${ }^{451}$ | 64 | 31 | 0 south |
| Second [star] in Scorpion's head ${ }^{452}$ | 60 | 45 | 30 south |

Since then clouds for all the night.
On 9 August [1640]
Meridian elevation of the Sun $\quad \begin{array}{llll}66 & 14 & 30 & \text { north }\end{array}$
On 10 August [1640]

| Meridian elevation of the Sun | 66 | 32 | 0 north |
| :---: | :---: | :---: | :---: |
| Likewise with the portable sextant | 66 | 32 | 0 north |
| In the evening a lot of clouds spread just where I wanted to observe. Time: 6:30 PM |  |  |  |
| Western elevation of Mercury | 8 | 21 | 0 |
| Azimuth from north to west | 79 | 38 |  |
| After 215 oscillations of the pendulum: |  |  |  |
| Western elevation of the bright [star] of the Northern Crown ${ }^{453}$ | 52 | 26 |  |
| Azimuth from north to west | 16 | 10 | 0 |
| After 117 oscillations of the pendulum: |  |  |  |
| Mercury elevation ${ }^{454}$ | 7 | 6 | 0 |
| Azimuth [From north to west] | 79 | 40 |  |
| And after 225 oscillations of the pendulum [was] ... |  |  |  |

[56]
... the western elevation of the bright [star] of the Northern Crown ${ }^{455} \quad 52$
Azimuth [From north to west] $\quad 16$
Again hampered by clouds for a while. Henceforth clear sky.
Meridian elevation of the third [star] of Scorpion's tail $(\mu)^{456} \quad 55 \quad 24 \quad 0$ south
Lower [star] of the pair in the Censer ${ }^{457}$
$42 \quad 7 \quad 0$ south
The upper one ${ }^{458}$
$43 \quad 0 \quad 0$ south
In the Censer, below the pair, the third star ${ }^{459} \quad 37 \quad 49 \quad 0$ south

[^66]

It rained on 11 August [1640]
On 12 August [1640]
[57]
7:30 PM [the sky] was illuminated.
Meridian elevation of the Heart of Scorpion ${ }^{472} \quad 72 \quad 29 \quad 30$ south
[Star] that follows the Heart of Scorpion to south ${ }^{473} \quad 70$
Cloudy again.
On 13 August [1640]
Meridian elevation of the Sun
$67 \quad 25 \quad 40$ north

[^67]
## On 16 August [1640]

| Meridian elevation of the Sun Cloudy night. | 68 | 21 | 0 north |
| :---: | :---: | :---: | :---: |
| On 17 August [1640] |  |  |  |
| Meridian elevation of the Sun | 68 | 40 | 30 north |
| Cloudy night. |  |  |  |
| On 18 August [1640] |  |  |  |
| Meridian elevation of the Sun | 69 | 0 | 15 north |
| Cloudy night. |  |  |  |
| On 19 August [1640] |  |  |  |
| Meridian elevation of the Sun | 69 | 20 | 0 north |
| Cloudy night. |  |  |  |
| On 20 August [1640] |  |  |  |
| Meridian elevation of the Sun | 69 | 40 | 0 north |
| After 6 PM. Because of clouds, I could not make observations. |  |  |  |
| Meridian elevation of the third [star] of Scorpion tail ${ }^{474}(\zeta)$ | 55 | 24 | 30 south |
| The pair in the Censer, the lower star ${ }^{475}$ | 42 | 10 | 0 south |
| The upper [star] | 43 | 0 | 0 south |
| [Star] in the Censer that is beneath the pair above ${ }^{476}$ | 37 | 49 | 30 south |
| [Star] in the Censer above the pair ${ }^{477}$ | 48 | 39 | 30 south |
| Last [star] of Scorpion tail ${ }^{478}$ | 61 | 10 | 0 south |
| The next to the last [star] of Scorpion tail ${ }^{479}$ | 61 | 21 | 30 south |

[58]
The sixth [star] of Scorpion tail ${ }^{480}$
$55 \quad 24 \quad 0$ south
[...] $]^{481}$
The fourth [star] from the end of Scorpion's tail ${ }^{482}$
The fifth [star] from the end of Scorpion's tail ${ }^{483}$
$\begin{array}{lll}33 & 37 & 30 \\ \text { south }\end{array}$
$59 \quad 20 \quad 0$ south
$58 \quad 10 \quad 30$ south
Henceforth cloudy [sky]. Rainy sequence of two days.

[^68]On 23 August [1640]
Meridian elevation of the Sun
Rainy night.

On 24 August [1640]
Noon. Rainy cloudy.
After 6 PM. Western elevation of Spica of Virgo ${ }^{484} \quad 38 \quad 20 \quad 0$ and
Azimuth from west to south
600
After 138 oscillations of the pendulum.
Western elevation of Mercury
$\begin{array}{lll}17 & 29 & 0\end{array}$
Azimuth from north to west
$70 \quad 40 \quad 20$ north

140 oscillations of the pendulum.
Western elevation of Spica of Virgo $\quad \begin{array}{lll}36 & 58 & 0\end{array}$
Azimuth from west to south $\quad \begin{array}{lll}5 & 55 & 0\end{array}$
135 oscillations of the pendulum.
Elevation of Mercury

| 16 | 26 | 30 |
| :--- | :--- | :--- |

$\begin{array}{llll}\text { Azimuth from north to west } & 88 & 12 & 0\end{array}$
141 oscillations of the pendulum.
[59]

| [Western] elevation of Spica of Virgo ${ }^{485}$ | 35 | 54 | 0 |
| :---: | :---: | :---: | :---: |
| Azimuth [from west to south] | 6 | 7 | 0 |
| 128 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Mercury | 15 | 20 | 0 |
| Azimuth [from north to west] | 88 | 36 | 0 |
| 128 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo | 34 | 51 | 0 |
| Azimuth [from west to south] | 6 | 6 | 0 |
| 234 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Mercury | 14 | 2 | 0 |
| Azimuth [from north to west] | 88 | 43 | 0 |

137 oscillations of the pendulum.
[Western] elevation of Spica of Virgo $\begin{array}{llll}33 & 25 & 30\end{array}$
Azimuth [from west to south] $\quad \begin{array}{llll}6 & 20 & 0\end{array}$
Afterwards.
That [star] above the pair in the Censer ${ }^{486}$ in the meridian After 252 oscillations of the pendulum.
The last [star] of Scorpion's tail ${ }^{187}$ in the meridian 160 oscillations of the pendulum.
The next to the last [star] of Scorpion's tail ${ }^{488}$ culminates

[^69]138 oscillations of the pendulum.
The sixth [star] of Scorpion's tail ${ }^{189}$
389 oscillations of the pendulum.
The fourth [star] from the end of Scorpion's tail ${ }^{490}$
286 oscillations of the pendulum.
Fifth [star] from the end of Scorpion's tail ${ }^{491}$
255 oscillations of the pendulum.
[60]
[Star] outside of Scorpion's tail ${ }^{492}$
155 oscillations of the pendulum.
Western elevation of Arcturus ${ }^{493} \quad 31 \quad 26$
Its azimuth from north to west $\quad \begin{array}{lll}59 & 35\end{array}$
Meridian elevation [of a star] in the left [shin] ...
$\ldots$ of Hercules of the Dragon ${ }^{494} \quad 35 \quad 41 \quad 0$ north
Meridian elevation of the following [eastern] star ...
... in the pair of bright stars in the head of the Dragon ${ }^{495}$
$30 \quad 20 \quad 30$ north
$\begin{array}{lllll}\text { After about 7:30 PM. Western elevation of Arcturus } & 25 & 37 & 0\end{array}$
Azimuth from north to west
$62 \quad 25 \quad 0$
After 118 oscillations of the pendulum.
Meridian elevation of Jupiter ${ }^{496}$
743230 south
353 oscillations of the pendulum.
Western elevation of Arcturus
$24 \quad 1 \quad 0$
Azimuth [from north to west]
Meridian elevation of the bright [star] of the Lyre ${ }^{497}$
$\begin{array}{lll}62 & 51 & 0\end{array}$
Mer
$43 \quad 2230$ north

## From 11:30 PM to 1 AM

Western elevation of the tail of the Eagle ${ }^{498} \quad \begin{array}{llll}39 & 6 & 30\end{array}$
Azimuth from north to west $\begin{array}{lll}65 & 51 & 0\end{array}$
182 oscillations of the pendulum.
Meridian elevation of Saturn $\quad 83 \quad 48 \quad 0$ south
897 oscillations of the pendulum.
Meridian elevation of Mars $\quad 79 \quad 49 \quad 0$ south

[^70]385 oscillations of the pendulum.
Western elevation of the tail of the Eagle

Its azimuth [from north to west] | 33 | 53 | 0 |
| ---: | ---: | ---: |
| 68 | 6 | 0 |

## [61]

260 oscillations of the pendulum.
Meridian elevation of $\theta$ in the Crane ${ }^{499}$
959 oscillations of the pendulum.
Meridian elevation of Fomalhaut of the Water Carrier ${ }^{500} \quad \begin{array}{llll}66 & 34 & 0 & \text { south }\end{array}$

On 25 August [1640]
Clouds at noon. After 6:15 PM.
Spica of Virgo ${ }^{501}$ at the western elevation $\quad 37 \quad 28 \quad 0$
Azimuth from west to south $\quad \begin{array}{llll}5 & 38 & 0\end{array}$
After 118 oscillations of the pendulum.
Western elevation of Mercury $\quad 18 \quad 9 \quad 0$
Its azimuth from north to west $\begin{array}{llll}88 & 31 & 0\end{array}$
123 oscillations of the pendulum.
Western Elevation of Spica of Virgo $\begin{array}{lll}36 & 33 & 0\end{array}$
Its azimuth [from west to south] $\quad \begin{array}{lll}5 & 38 & 0\end{array}$
142 oscillations of the pendulum.
Western elevation of Mercury $\quad 17 \begin{array}{lll}17 & 10 & 0\end{array}$
Azimuth [from north to west] $\quad \begin{array}{llll}88 & 37 & 0\end{array}$
121 oscillations of the pendulum.
Western Elevation of Spica of Virgo $\begin{array}{lll}35 & 30 & 0\end{array}$
Azimuth [from west to south] 6
189 oscillations of the pendulum.
Western Elevation of Mercury $\quad 16 \begin{array}{lll}16 & 0 & 0\end{array}$
Azimuth [from north to west] $\quad \begin{array}{llll}88 & 48 & 0\end{array}$
104 oscillations of the pendulum.
Western Elevation of Spica of Virgo $\begin{array}{lll}34 & 21 & 0\end{array}$
[62]
Azimuth [from west to south] $\quad \begin{array}{lll}6 & 2 & 30\end{array}$
7:30 PM. Western elevation of Arcturus ${ }^{502} \quad \begin{array}{lll}26 & 36 & 30\end{array}$
Azimuth from north to west
$61 \quad 58 \quad 0$
163 oscillations of the pendulum.
$\begin{array}{llll}\text { Meridian elevation of Jupiter } & 74 & 32 & 0 \\ & \text { south }\end{array}$

[^71]377 oscillations of the pendulum.
Western elevation of Arcturus
Azimuth [from north to west]
8 PM. Meridian elevation of the bright [star] of the Lyre ${ }^{503}$
$24 \quad 39 \quad 0$

Clouds about midnight and after.
On 26 August [1640]

| 6:15 PM. Western elevation of Spica of Virgo ${ }^{504}$ | 36 | 22 | 30 |
| :---: | :---: | :---: | :---: |
| Azimuth from west to south | 5 | 55 | 0 |
| 126 oscillations of the pendulum. |  |  |  |
| Western elevation of Mercury | 18 | 10 | 30 |
| Azimuth from north to west | 89 | 13 | 0 |
| 283 oscillations of the pendulum. |  |  |  |
| Western elevation of Mercury | 17 | 4 | 30 |
| Azimuth [from north to west] | 89 | 23 | 0 |
| 378 oscillations of the pendulum. |  |  |  |
| Western elevation of Spica of Virgo | 33 | 20 | 0 |
| Azimuth [from west to south] | 6 | 9 | 0 |
| 440 oscillations of the pendulum. |  |  |  |

[63]
[Star] above the pair in the Censer ${ }^{505}$ in the meridian 171 oscillations of the pendulum.
Last [star] in the tail of Scorpion ${ }^{506}$ in the meridian 183 oscillations of the pendulum.
The next to the last [star] of Scorpion's tail ${ }^{507}$ in the meridian 89 oscillations of the pendulum.
The sixth [star] of Scorpion's tail ${ }^{508}$ [in the meridian]
424 oscillations of the pendulum.
The fourth [star] of Scorpion's tail ${ }^{509}$ [in the meridian]
316 oscillations of the pendulum.
The fifth [star] of Scorpion's tail ${ }^{510}$ [in the meridian]
192 oscillations of the pendulum.
[Star] after Scorpion's tail ${ }^{511}$ [in the meridian]

[^72]| 101 oscillations of the pendulum. |  |  |  |
| :---: | :---: | :---: | :---: |
| Western elevation of Spica of Virgo ${ }^{512}$ | 26 | 6 | 0 |
| Azimuth from west to south | 6 | 45 | 0 |
| After 7:15 PM. Western elevation of Arcturus ${ }^{513}$ | 26 | 51 | 0 |
| Azimuth from north to west | 61 | 28 | 0 |
| After 218 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Jupiter | 74 | 32 | 0 south |
| 270 oscillations of the pendulum. |  |  |  |
| Western elevation of Arcturus | 25 | 7 | 30 |
| Azimuth [from north to west] | 62 | 22 | 0 |
| Meridian elevation of the bright [star] of the Lyre ${ }^{514}$ | 43 | 24 | 0 north |
| 11:30 PM. |  |  |  |
| [64] |  |  |  |
| Western elevation of the tail of the Eagle ${ }^{515}$ | 41 | 2 | 0 |
| Azimuth from north to west | 64 | 42 | 0 |
| 637 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Saturn | 83 | 47 | 30 south |
| 825 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Mars | 79 | 41 | 30 south |
| 943 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle | 32 | 30 | 0 |
| Azimuth [from north to west] | 68 | 43 | 0 |

On 27 [August 1640]. Cloudy. It rained.
On 28 August [1640]
Clouds at noon.

6:15 PM. Western elevation of Mercury $\quad$| 17 | 24 | 0 |
| :--- | :--- | :--- |

Azimuth from west to south $\quad \begin{array}{llll}0 & 38 & 0\end{array}$
158 oscillations of the pendulum.
Western elevation of Spica of Virgo ${ }^{516} \quad \begin{array}{lll}32 & 24 & 0\end{array}$
Azimuth from west to south $\quad \begin{array}{llll}6 & 15 & 0\end{array}$
128 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{lll}16 & 21 & 0\end{array}$
Azimuth [from west to south] $\quad 0 \quad 46$
97 oscillations of the pendulum.

[^73]| Western elevation of Spica of Virgo | 31 | 32 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth[from west to south] | 6 | 18 | 0 |
| 86 oscillations of the pendulum. |  |  |  |

## [65]

| [Western] elevation of Mercury | 15 | 38 | 30 |
| :--- | ---: | ---: | ---: |
| Azimuth [from west to south] | 0 | 58 | 0 |
| 554 oscillations of the pendulum. |  |  |  |
| Western elevation of Spica of Virgo ${ }^{517}$ | 29 | 0 | 30 |

113 oscillations of the pendulum.
[Western] elevation of Mercury $\quad 13 \begin{array}{lll}13 & 0 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}1 & 21 & 30\end{array}$
130 oscillations of the pendulum.

[Western] elevation of Spica of Virgo $\quad$| 28 | 8 | 30 |
| ---: | ---: | ---: |

Azimuth [from west to south] $\quad \begin{array}{lll}6 & 42 & 0\end{array}$
108 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{lll}12 & 6 & 30\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}1 & 34 & 0\end{array}$
113 oscillations of the pendulum.
Western elevation of Spica of Virgo $\quad \begin{array}{lll}27 & 19 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}6 & 45 & 0\end{array}$
7:30 PM. Western elevation of Arcturus ${ }^{518} \quad \begin{array}{lll}27 & 28 & 0\end{array}$
Azimuth from north to west $\begin{array}{llll}61 & 32 & 0\end{array}$
349 oscillations of the pendulum.
Meridian elevation of Jupiter
$74 \quad 320$ [south]
299 oscillations of the pendulum.
Western elevation of Arcturus
$25 \quad 13 \quad 0$
Azimuth [from north to west]
$62 \quad 220$
About midnight clouds came up.
It rained on 29 August [1640]
[66]
On 30 August [1640]
From 6:15 PM to 8 PM.
Western elevation of Mercury $\quad \begin{array}{lll}17 & 50 & 0\end{array}$
Azimuth from west to south $\quad 1 \begin{array}{lll}17 & 0\end{array}$
After 117 oscillations of the pendulum.
Western elevation of Spica of Virgo ${ }^{519} \quad \begin{array}{llll}31 & 1 & 0\end{array}$
Azimuth from west to south $\begin{array}{llll}6 & 28 & 0\end{array}$

[^74]74 oscillations of the pendulum.
[Western] elevation of Mercury 1700
Azimuth [from west to south]
220
92 oscillations of the pendulum.
[Western] elevation of Spica of Virgo $\quad \begin{array}{lll}30 & 14 & 30\end{array}$
Azimuth [from west to south] $\quad \begin{array}{llll}6 & 37 & 0\end{array}$
119 oscillations of the pendulum.
[Western] elevation of Mercury $\quad 16$
Azimuth [from west to south]
$2 \quad 10 \quad 0$
105 oscillations of the pendulum.
[Western] elevation of Spica of Virgo $\quad \begin{array}{llll}29 & 21 & 0\end{array}$
Azimuth [from west to south]
88 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{lll}15 & 27 & 0\end{array}$
Azimuth [from west to south]
113 oscillations of the pendulum.
[Western] elevation of Spica of Virgo $\quad \begin{array}{llll}28 & 36 & 30\end{array}$
Azimuth [from west to south]
88 oscillations of the pendulum.
[67]

| [Western] elevation of Mercury | 14 | 45 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth [from west to south] | 2 | 21 | 30 |
| 120 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo ${ }^{520}$ |  |  |  |
| Azimuth [from west to south] <br> 80 oscillations of the pendulum. | 27 | 47 | 30 |
| [Western] elevation of Mercury | 6 | 43 | 0 |
| Azimuth [from west to south] | 13 | 51 | 30 |
| 106 oscillations of the pendulum. | 2 | 24 | 0 |
| [Western] elevation of Spica of Virgo |  |  |  |
| Azimuth [from west to south] <br> 116 oscillations of the pendulum. | 6 | 45 | 30 |
| [Western] elevation of Mercury | 13 | 5 | 0 |
| Azimuth [from west to south] | 2 | 27 | 0 |
| 89 oscillations of the pendulum. | 26 | 18 | 0 |
| [Western] elevation of Spica of Virgo | 6 | 47 | 0 |
| Azimuth [from west to south] | 12 | 20 | 30 |
| 105 oscillations of the pendulum. | 2 | 36 | 0 |
| [Western] elevation of Mercury |  |  |  |

520 Spica, or $\alpha$ Virginis. First observed 19 September 1638.


[^75]| [Western] elevation of Spica of Virgo ${ }^{525}$ | 25 | 32 | 0 |
| :---: | :---: | :---: | :---: |
| Azimuth [from west to south] | 6 | 52 | 0 |
| 130 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Mercury | 13 | 20 | 0 |
| Azimuth [from west to south] | 3 | 38 | 0 |
| 119 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo | 24 | 34 | 30 |
| Azimuth [from west to south] | 6 | 57 | 0 |
| A little later I observed Jupiter this way. |  |  |  |
| Western elevation of Arcturus ${ }^{526}$ | 26 | 36 | 0 |
| Azimuth from north to west | 61 | 55 | 0 |
| 171 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Jupiter | 74 | 31 | 0 |
| 382 oscillations of the pendulum. |  |  |  |
| Western elevation of Arcturus | 24 | 48 | 0 |
| Azimuth [from north to west] | 62 | 38 | 30 |
| On 2 September [1640]. <br> [Northern] meridian elevation of the Sun | 74 | 13 | 15 |
| 6:15 PM. |  |  |  |
| Western elevation of Spica of Virgo | 27 | 28 | 30 |
| Azimuth from west to south | 6 | 35 | 0 |
| 112 oscillations of the pendulum. |  |  |  |
| Western elevation of Mercury | 16 | 10 | 0 |
| [70] |  |  |  |
| Azimuth from west to south | 3 | 33 | 30 |
| 112 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo ${ }^{527}$ | 26 | 35 | 0 |
| Azimuth [from west to south] | 6 | 39 | 0 |
| 119 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Mercury | 15 | 18 | 30 |
| Azimuth [from west to south] | 3 | 41 | 30 |
| 117 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo | 25 | 42 | 0 |
| Azimuth [from west to south] | 6 | 43 | 0 |
| 138 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Mercury | 14 | 19 | 30 |
| Azimuth [from west to south] | 3 | 47 | 0 |
| 121 oscillations of the pendulum. |  |  |  |

[^76]| Western elevation of Arcturus ${ }^{528}$ | 30 | 26 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth from north to west | 60 | 2 | 0 |
| 116 oscillations of the pendulum. | 13 | 19 | 30 |
| Western elevation of Mercury | 3 | 51 | 0 |
| Azimuth [from west to south] | 29 | 42 | 30 |
| 109 oscillations of the pendulum. | 60 | 20 | 30 |
| Western elevation of Arcturus |  |  |  |
| Azimuth [from north to west] | 12 | 30 | 0 |
| 119 oscillations of the pendulum. | 4 | 7 | 0 |
| [Western] elevation of Mercury |  |  |  |
| Azimuth [from west to south] <br> 96 oscillations of the pendulum. | 28 | 57 | 0 |
| Western elevation of Arcturus | 60 | 41 | 0 |

[71]
This evening I also examined Mercury, as soon as it could be seen, near the twilight, using the telescope, because it was at its greatest [eastern] elongation. It appeared clearly divided in two halves, with one part less bright than the other one. Mercury, however, visibly sparkles like a star, no matter what height it is seen above the horizon. I did not observe Jupiter because it became cloudy.

On 3, 4 and 5 [September 1640]: fickle sky.
On 6 September [1640]. Clouds at noon.
6:15 PM. Western elevation of Arcturus ${ }^{529} \quad 29 \quad 46$
Azimuth from north to west $\quad \begin{array}{lll}60 & 12 & 0\end{array}$
163 oscillations of the pendulum.
[Western] elevation of Mercury $\begin{array}{lll}15 & 25 & 0\end{array}$
Azimuth from west to south $\quad \begin{array}{lll}5 & 13 & 0\end{array}$
109 oscillations of the pendulum.
Western elevation of Arcturus $\quad \begin{array}{ccc}28 & 51 & 0\end{array}$
Azimuth [from north to west]
6100
148 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{lll}14 & 31 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{llll}5 & 22 & 0\end{array}$
113 oscillations of the pendulum.
Western elevation of Spica of Virgo ${ }^{530} \quad \begin{array}{lll}21 & 51 & 0\end{array}$
$\begin{array}{llll}\text { Azimuth from west to south } & 7 & 8 & 0\end{array}$
110 oscillations of the pendulum.

[^77][72]

| [Western] elevation of Mercury | 13 | 39 | 0 |
| :---: | :---: | :---: | :---: |
| Azimuth [from west to south] | 5 | 38 | 0 |
| 137 oscillations of the pendulum. |  |  |  |
| [Western] elevation of Spica of Virgo ${ }^{531}$ | 21 | 0 | 0 |
| Azimuth [from west to south] | 7 | 22 | 30 |
| 105 oscillations of the pendulum. |  |  |  |
| Western elevation of Mercury | 12 | 47 | 30 |
| Azimuth [from west to south] | 5 | 47 | 30 |
| 149 oscillations of the pendulum. |  |  |  |
| Western elevation of Arcturus ${ }^{532}$ | 26 | 17 | 0 |
| Azimuth [from north to west] | 61 | 50 | 0 |
| 146 oscillations of the pendulum. |  |  |  |
| Western elevation of Spica of Virgo | 19 | 30 | 0 |
| Azimuth [from west to south] | 7 | 14 | 0 |
| Mars was already rising near sunset ${ }^{533}$, and was also near its perigee ${ }^{534}$ in the Water Carrier. |  |  |  |
| Conspicuous in brightness, it shines and overcomes Jupiter somewhat in brightness. ${ }^{535}$ |  |  |  |
| Quite different in colour, Mars is red like a prune, whereas Jupiter shines with a clear light. |  |  |  |

On 7 September [1640]. Clouds at noon.
6:15 PM. Western elevation of Spica of Virgo $20 \begin{array}{llll}20 & 10 & 0\end{array}$
Azimuth from west to south $\quad \begin{array}{llll}6 & 42 & 30\end{array}$
110 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{lll}12 & 31 & 0\end{array}$
Azimuth from west to south $\begin{array}{lll}5 & 57 & 0\end{array}$
125 oscillations of the pendulum.
[73]
Western elevation of Spica of Virgo ${ }^{536}$
$19 \quad 10 \quad 0$
Azimuth [from west to south]
$7 \quad 4 \quad 0$

86 oscillations of the pendulum.
[Western] elevation of Mercury $\quad 11 \begin{array}{lll}11 & 39 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}6 & 13 & 0\end{array}$
75 oscillations of the pendulum.
[Western] elevation of Spica of Virgo $\begin{array}{llll}18 & 33 & 30\end{array}$
$\begin{array}{llll}\text { Azimuth [from west to south] } & 7 & 12 & 30\end{array}$

531 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
532 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
533 About 1 h 17 min before sunset.
534 Mars reached a minimum geocentric distance on 20 August 1640.
535 At that time, Mars had a visual magnitude of -2.6, and Jupiter -2.3.
536 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

And at the same time ${ }^{537}$, the Meridian elevation of Jupiter [was] $\begin{array}{lllll}74 & 30 & 0 & \text { south }\end{array}$ Before making these observations of Mercury and Jupiter, I examined Mercury closely with the telescope. Immediately after [the planet] emerged from twilight, it seemed to me distinctly furrowed, the bright part towards the east or above, the shaded part towards the west or below. ${ }^{538}$ This means Mercury is horned, ${ }^{539}$ like Venus, with its horns pointing west, which is usually what happens to the moon when it's west. ${ }^{540}$


The rest of the night was cloudy.
On 8 and 9 [September 1640]. Stormy and rainy sky.

## On 10 September

Meridian elevation of the Sun
$77 \quad 17 \quad 0$ north [74]
In the evening I was prevented by friends [from doing the observations]. ${ }^{541}$ Clouds at night.

On 11 and 12 [September 1640]. Rainy clouds.
On 14 September [1640]. Cloudy at noon.
6:15 PM. In the twilight, when the stars had not yet appeared, Jupiter crossed the meridian.
Its meridian elevation [was] $\begin{array}{ccc}74 & 30 & 0 \text { south }\end{array}$
After Mercury became visible, I observed with the telescope and it appeared horned.
Subsequently: Western elevation of Mercury $\quad \begin{array}{llll}9 & 22 & 0\end{array}$
Azimuth from west to south $\begin{array}{llll}8 & 33 & 0\end{array}$
103 oscillations of the pendulum.
Western elevation of Spica of Virgo ${ }^{542}$ 13 $\begin{array}{llll}13 & 36 & 0\end{array}$
$\begin{array}{lllll}\text { Azimuth from west to south } & 8 & 10 & 0\end{array}$

537 According to our calculation, the meridian transit of Jupiter occurred 2 m 57 s before the previous observation.
538 According to our calculation, the clear and shaded parts are reversed in the description, as well as in the drawing.
539 According to our calculation, Mercury was not horned, but gibbous.
540 Mercury's horns pointed east. When the moon washes in the west, Mercury's horns point east.
541 It was around Marggrafe's $30^{\text {th }}$ birthday. He was born 20 September 1610 (old style).
542 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

After 123 oscillations of the pendulum.

Western elevation of Arcturus ${ }^{543} \quad$| 20 | 5 | 0 |
| :--- | :--- | :--- |

Azimuth from north to west $\begin{array}{llll}64 & 36 & 0\end{array}$
136 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{llll}7 & 51 & 0\end{array}$
Azimuth [from west to south] $8 \quad 52 \quad 0$
120 oscillations of the pendulum.
$\begin{array}{llll}\text { Western elevation of Spica of Virgo } & 12 & 7 & 30\end{array}$
Azimuth [from west to south] $\begin{array}{lll}8 & 37 & 0\end{array}$
104 oscillations of the pendulum.
[75]
Western elevation of Arcturus ${ }^{544} \quad \begin{array}{lll}18 & 50 & 0\end{array}$
Azimuth [from north to west]
$64 \quad 55 \quad 0$
105 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{llll}6 & 36 & 30\end{array}$
Azimuth [from west to south]
$9 \quad 1 \quad 0$
123 oscillations of the pendulum.
[Western] elevation of Spica of Virgo ${ }^{545}$ 10 $\begin{array}{llll}10 & 51 & 0\end{array}$
Azimuth [from west to south] $\begin{array}{llll}8 & 32 & 0\end{array}$
153 oscillations of the pendulum.
[Western] elevation of Arcturus $\begin{array}{llll}17 & 31 & 0\end{array}$
Azimuth [from north to west] $\quad \begin{array}{lll}65 & 18 & 0\end{array}$
Then, I measured the following [meridian] elevations of stars in the south:
Meridian elevation of Jupiter ${ }^{546}$ in the Archer $\quad 67 \quad 45 \quad 0$ south
〔besides $\gamma^{547}$ in the Southern Crown,
$\mid$ the second [star] from the top ${ }^{548} \quad \begin{array}{lll}59 & 40 & 0 \text { south }\end{array}$
$\mid \tau$ of the Archer ${ }^{549} \quad \begin{array}{llll}69 & 55 & 0 \text { south }\end{array}$
YEastern [star] of the head of the Archer ${ }^{550} \quad \begin{array}{llll}76 & 30 & 0 & \text { south }\end{array}$
| Upper [star] of the two closest each other under
|the feet of the Archer ${ }^{551}$ (not on the globe) $\quad 53 \quad 3 \quad 0$ south

[^78]On 17 September [1640]. Cloudy at noon.
It was a clear evening indeed, but fog on the western horizon prevented me from seeing Mercury. Before 10 PM.

## [76]

Meridian elevation of $\kappa$ of the Water Snake ${ }^{553}$ or $\lambda$
[Star] in the Southern Fish ( ()$^{554}$
$19 \quad 9 \quad 0$
[Star] in the Southern Fish $(\theta)^{555}$
$63 \quad 25 \quad 0$ south
[Star] star] in the head of the Crane $(\alpha)^{556}$
$65 \quad 32 \quad 0$ south

Second [star] of the arrow in the left hand of the Indian, ...
... the upper one from the pair above the beak of the
Toucan ( $\delta)^{557}$
$59 \quad 4 \quad 0$ south

Lower [star], that is, the third one of the same arrow $(\varepsilon)^{558}$
Western elevation of the tail of the Eagle ${ }^{559}$
Its azimuth from north to west
1280 south

After 399 oscillations of the pendulum.
Meridian elevation of Saturn $\quad 83 \quad 20 \quad 0$ south
48 oscillations of the pendulum.
Meridian elevation of Mars $\quad 79 \quad 43 \quad 0$ south
528 oscillations of the pendulum.
Western elevation of the tail of the Eagle $\quad 38 \quad 1 \quad 0$
Azimuth [from north to west] $\begin{array}{llll}66 & 23 & 0\end{array}$
Repetition
Meridian elevation of the end of the beak of the Toucan ${ }^{560}(\alpha) \quad 36$
Neck of the Toucan $(\gamma)^{561} \quad 31 \quad 29 \quad 0$ south

552 Rukbat (meaning 'the archer's knee'), or $\alpha$ Sagittarii, is not a particularly bright star in the constellation of Sagittarius, with a visual apparent magnitude of +3.97 . First observation. Absent in Houtman's catalogue.
$553 v$ Octantis. First observed 21 September 1639.
$554 \iota$ Piscis Austrini. First observed 23 September 1639.
$555 \theta$ Piscis Austrini. First observation.
556 Not $\alpha$ but $\gamma$ Gruis. See 20 September 1639.
$557 \delta$ Indi and the other star of the pair is $\varepsilon$ Indi. FIRST OBSERVATION.
558
559
$560 \alpha$ Tucanae. First observed 20 September 1639. But according to our calculation, this star crossed the meridian before the two previous observations ( 41 s and 6 m 30 s , in this order).
$561 \delta$ Tucanae. First observed 22 September 1639.

[Mss Paris]

In the evening the sky was clear, but because extended clouds amassed around the west ${ }^{562}$, which dissipated only one and a half hour after sunset, I could not find, neither observe, Mercury ${ }^{563}$...

## [77]

... with the instruments ${ }^{564}$. Meridian elevation of Jupiter
$74 \quad 29 \quad 30$ south $^{565}$
10 PM to 12 PM at the end.
Meridian elevation of 11 of the Water Snake ${ }^{566}(\boldsymbol{\lambda}) \quad 19 \quad 5 \quad 0$ south
Head of the Crane ${ }^{567}(\alpha)$
Western elevation of the tail of the Eagle ${ }^{568}$
59430 south

Azimuth from north to west
$4130 \quad 0$
210 oscillations of the pendulum.
[Star] that is in the hindquarters of the Water Carrier ${ }^{569}$ in the meridian 173 oscillations of the pendulum.
Meridian elevation of Saturn $\quad 83 \quad 18 \quad 30$ south
56 oscillations of the pendulum.
$\begin{array}{llll}\text { Meridian elevation of Mars } & 79 & 47 & 30\end{array}$
572 oscillations of the pendulum.
Western elevation of the tail of the Eagle $\quad \begin{array}{llll}32 & 50 & 0^{570}\end{array}$
Azimuth [from north to west]
$6631 \quad 0$

103 oscillations of the pendulum.
Western elevation of the tail of the Eagle $\quad \begin{array}{lll}37 & 28 & 30\end{array}$
Azimuth [from north to west] $\begin{array}{llll}66 & 40 & 0\end{array}$
Meridian elevation of the northern [star] of ...
$\ldots$ the three stars in the tail of the $\operatorname{Crane}^{571}(\chi) \quad 44 \quad 58 \quad 30$ south

[^79]| Fomalhaut of the Water Carrier <br> [Star] below the Water Snake ${ }^{573}$ <br> (not on the globe) <br> On 19 September [1640] | 66 | 33 | 30 south |
| :--- | ---: | ---: | ---: | ---: |
|  | 14 | 51 | 0 south |

[78]
... at sunset. However, not Saturn, although Mars was near. But a quarter of an hour later they were seen together, a little after the Sun had set.
Meridian elevation of Jupiter
1307 oscillations of the pendulum.
Western elevation of Arcturus ${ }^{574} \quad \begin{array}{lll}20 & 28 & 30\end{array}$
Azimuth from north to west $\begin{array}{llll}64 & 18 & 0\end{array}$
345 oscillations of the pendulum.
Western elevation of Arcturus $\quad \begin{array}{lll}19 & 17 & 30\end{array}$
Azimuth [from north to west] $\begin{array}{llll}64 & 50 & 0\end{array}$
1256 oscillations of the pendulum.
Western elevation of Spica of Virgo ${ }^{575}$ 7 $\begin{array}{llll}75 & 0\end{array}$
$\begin{array}{lllll}\text { Azimuth from west to south } & 8 & 58 & 0\end{array}$
189 oscillations of the pendulum.
Western elevation of Arcturus $\begin{array}{lll}14 & 5 & 0\end{array}$
Azimuth from north to west $\begin{array}{lll}66 & 20 & 0\end{array}$
The sky was very clear everywhere, and there was red evening glow in the west. But I never could see Mercury, although I searched for it very carefully and for a long time. Spica in the constellation of Virgo, already 4 or 5 degrees above the horizon, was barely visible. Mercury eventually emerged with difficulty. I know that the sky is less illuminated by the twilight and the red evening glow. But the Moon rose in the West, horned ...
[79]
$\ldots$ and in sextile [= ca. 60 degrees] to the Sun, whose light also contributes. And Mercury's retrograde motion could also provide some cause of its own [why the planet is so hard to see].
10 PM (a little earlier):
Western elevation of the tail of the Eagle ${ }^{576} \quad 42 \begin{array}{lll}42 & 11 & 0\end{array}$
Azimuth from north to west $\begin{array}{lll}64 & 12 & 0\end{array}$
279 oscillations of the pendulum.
Star in the haunch of the Water Carrier ${ }^{577}$ [north] in the meridian

[^80]| 263 oscillations of the pendulum. |  |  |  |
| :---: | :---: | :---: | :---: |
| Meridian elevation of Saturn | 83 | 17 | 30 south |
| 46 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Mars | 79 | 54 | 0 south |
| 724 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle | 37 | 34 | 0 |
| Azimuth [from north to west] | 66 | 24 | 0 |
| 127 [oscillations of the pendulum.] |  |  |  |
| Western elevation of the tail of the Eagle | 37 | 8 | 0 |
| Azimuth [from north to west] | 66 | 48 | 0 |

On 20 September [1640]
Meridian elevation of the Sun
8180 north
In the evening I observed with a very clear sky, when the twilight was about to end.
Already that evening redness had disappeared in the western region.
The elevation of the Heart of Scorpion ${ }^{578}$ was $\quad 4548 \quad 0$
[80]
However, in order to discuss the evening redness of the serene sky, when the Sun has plunged below the horizon (it can be seen very clearly that the Sun disappears without rays) and a little later after dawn, a golden colour of yellow hue spreads over an arc in the west, up to 5,6 or 7 degrees elevation in the center, and after about half an hour this reddening colour becomes as a flame a little mixed with smoke. And this coulor is retained until it gradually disappears during twilight, and a star staying in its range cannot be seen. For this reason, I have not been able to see Mercury in its range, today and yesterday either. I truly saw Spica of Virgo ${ }^{579}$, because [this star] [was] higher and out of the arch. Its descent followed the disappearance of the twilight. For, first the upper reddish part starts to disappear, then the lower part, finally fades.
10 PM. Western elevation of the tail of the Eagle ${ }^{580}$

| Azimuth from north to west |
| :--- |
| 105 oscillations of the pendulum. |
| Meridian elevation of Saturn <br> 36 oscillations of the pendulum. | | 40 | 26 | 0 |
| :--- | :--- | :--- | :--- |
| 65 | 21 | 0 | 36 oscillations of the pendulum.

[81]
Meridian elevation of Mars
$79 \quad 58 \quad 30$ south
589 oscillations of the pendulum.
Western elevation of the tail of the Eagle ${ }^{581}$
$\begin{array}{lll}37 & 36 & 30\end{array}$

578 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
579 Spica, or $\alpha$ Virginis. First observed 19 September 1638. Its western elevation when the Sun set was $18^{\circ} 23^{\prime} 29 "$.
$580 \zeta$ Aquilae. First observed 18 September 1639.
581 Ibidem.

| Azimuth [from north to west] | 66 | 42 | 0 |
| :--- | :--- | :--- | :--- |
| 63 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle | 37 | 20 | 0 |
| Azimuth [from north to west] | 66 | 50 | 0 |

On 21 September [1640]
Meridian elevation of the Sun
813130 north
On 22 September [1640]
Meridian elevation of the Sun
815530 north
In the same noon, the gnomon [of the sundial] with 4000 divisions was set upright. The length of the shadow was 587 of the same divisions. ${ }^{582}$ Around sunset, I waited in the observatory for the time of the coming culmination of the Moon, about 6:22 PM ${ }^{583}$. The Moon, in its first quarter and a few degrees in [the constellation of] Capricornus, also coincided with the meridian [at ninety degrees], with a difference of about 36 '. And after sunset the whole sky was covered by clouds, so that I could not at all satisfy my wishes.

On 23 September [1640]

| Meridian elevation of the Sun | 82 | 18 | 0 north |
| :--- | :--- | :--- | :--- | :--- |
| About 9:45 PM |  |  |  |
| Western elevation of the tail of the Eagle | 41 | 10 | 0 |

[82]
Azimuth from north to west $64 \quad 50 \quad 0$
216 oscillations of the pendulum.
Meridian elevation of Saturn $\quad 83 \quad 10 \quad 0$ south
149 oscillations of the pendulum.
Meridian elevation of Mars $\quad 80 \quad 11 \quad 30$ south
547 oscillations of the pendulum.
Western elevation of the tail of the Eagle ${ }^{584} \quad \begin{array}{lll}37 & 52 & 0\end{array}$
Azimuth [from north to west] $\begin{array}{llll}66 & 28 & 0\end{array}$
256 oscillations of the pendulum.
Western elevation of the tail of the Eagle $\quad 36$
Azimuth [from north to west] $\begin{array}{llll}67 & 8 & 0\end{array}$

[^81]At 10:30 PM, I saw three satellites of Jupiter in the western region [of the sky], one being above [Jupiter] and two below, with intervals to Jupiter depicted here, approximately $11 / 2$, 1 and 5.


On 24 September [1640]. Cloudy.

On 25 September [1640]

| Meridian elevation of the Sun | 83 | 4 | 20 north |
| :--- | ---: | ---: | ---: |
| After 9:45 PM |  |  |  |
| Western elevation of the tail of the Eagle ${ }^{585}$ | 40 53 30 <br> Azimuth from north to west 64 43 <br> 158 oscillations of the pendulum.   |  |  |

Meridian elevation of Saturn
$83 \quad 9 \quad 0$ south
171 oscillations of the pendulum.
Meridian elevation of Mars
$80 \quad 24 \quad 30$ south
516 oscillations of the pendulum.
Western elevation of the tail of the Eagle ${ }^{586}$
$37 \quad 59 \quad 0$
Azimuth from north to west
$6638 \quad 0$
211 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre ${ }^{587}$
Azimuth from north to west
[83]

| On 26 September [1640] |  |  |  |
| :---: | :---: | :---: | :---: |
| Meridian elevation of the Sun | 83 | 27 | 40 north |
| 9:45 PM |  |  |  |
| Western elevation of the tail of the Eagle | 41 | 51 | 0 |
| Azimuth from north to west | 64 | 15 | 0 |
| 397 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Saturn | 83 | 9 | 0 south |
| 157 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Mars | 80 | 30 | 0 south |
| 596 oscillations of the pendulum. |  |  |  |

[^82]| Western elevation of the tail of the Eagle | 37 | 44 | 30 |
| :--- | :--- | :--- | :--- |
| Azimuth [from north to west] | 66 | 32 | 0 |
| 120 oscillations of the pendulum. |  |  |  |
| Western elevation of the bright [star] of the Lyre <br> Azimuth from north to west | 21 13 30 <br> 43 29 30 |  |  |

Next day rainy.
[84]
On 30 September [1640]
Meridian elevation of the Sun
Cloudy night
On 1 ${ }^{\text {st }}$ October [1640]
Meridian elevation of the Sun
On 2 October [1640]
Meridian elevation of the Sun
85450 north
8:45 PM
Western elevation of the tail of the Eagle ${ }^{588} \quad \begin{array}{lll}41 & 58 & 30\end{array}$
Azimuth from north to west
346 oscillations of the pendulum.
Meridian elevation of Saturn
$\begin{array}{lll}64 & 11 & 0\end{array}$

485 oscillations of the pendulum.
Meridian elevation of Mars
8350 south

566 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre ${ }^{589}$
$20 \quad 59 \quad 0$
Azimuth from north to west
$\begin{array}{lll}43 & 31 & 30\end{array}$
237 oscillations of the pendulum.
Western elevation of the tail of the Eagle
$36 \quad 9 \quad 0$
Azimuth from north to west
$67 \quad 8 \quad 0$
119 oscillations of the pendulum.
Western elevation of the tail of the Eagle
$\begin{array}{lll}35 & 41 & 30\end{array}$
Azimuth [from north to west]
On 3 October [1640]
Meridian elevation of the Sun
8690 north

[^83]Following night cloudy, rainy, windy.
On 4 October [1640]
Meridian elevation of the Sun
86320 north
Two fickle days

## On 7 October [1640]

In the morning from 4 to 7 AM , Mercury could not be seen, in spite of the clear sky.
${ }^{590}$ Morning twilight was just emerging, when Orion's reddening shoulder ${ }^{591}$ stood two degrees from the meridian to the west ${ }^{599}$.
About 5:15 AM. The eastern elevation of the Lion's Mane ${ }^{593}$ [was] $22 \quad 25 \quad 0$
Azimuth from east to north $\begin{array}{llll}27 & 36 & 0\end{array}$
271 oscillations of the pendulum.
Eastern elevation of the Mane of the Lion $\quad \begin{array}{lll}23 & 35 & 0\end{array}$
Azimuth from east to north $28 \quad 8 \quad 0$
280 oscillations of the pendulum.
Following [star] in the front foot of the Twins ${ }^{594}$. The preceding [star] or the heel of the Twins ${ }^{595}$ in the meridian 810 oscillations of the pendulum.
Bright [star] of the foot of the Twins ${ }^{596}$ in the meridian 118 oscillations of the pendulum.
Meridian elevation of the center of the bisected Moon $\quad 61 \quad 38 \quad 30$ north
[86]
(The Moon was bisected and $90^{0597}$ coincided almost with the meridian, but the Moon stood apart only about 37 minutes ${ }^{598}$ from the time of culmination, or of the $90^{\circ}$ from east by calculation.)
1634 oscillations of the pendulum.
Center of the Sun seen in the eastern horizon ${ }^{599}$
In azimuth from east to south $\quad \begin{array}{lll}5 & 42 & 0\end{array}$

590 A similar situation was reported for the evening of 19 September 1640.
591 Betelgeuse, or $\alpha$ Orionis, is the second-brightest star in the constellation of Orion, and usually the tenth-brightest star in the night sky. It is a semiregular variable star whose apparent visual magnitude varies between 0.0 and 1.6.. FIRST OBSERVATION.
592 Betelgeuse was at this position when the Sun was $17^{\circ} 44^{\prime} 37^{\prime \prime}$ below the eastern horizon. Mercury rose 18 m 16 s later.
$593 \gamma$ Leonis. FIRST observation.
$594 \mu$ Geminorum. First observation.
$595 \eta$ Geminorum. According to our calculation, this star crossed the meridian 4 m 7 s before the previous observation.
$596 \gamma$ Geminorum. First observation.
597 Maybe $90^{\circ}$ of ecliptic longitude.
598 According to our calculation, the Moon at $90^{\circ}$ of ecliptic longitude would cross the meridian not 37 , but 20 min later.
599 Therefore elevation $=0^{\circ}$.

| cillations of the |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 5 | 46 | 30 |  |
| Azimuth from east to south | 4 | 39 | 0 | 0 |
| 826 oscillations of the pendulum. |  |  |  |  |
| Eastern elevation of the Sun | 9 | 7 | 30 |  |
| Azimuth from east to south | 4 | 4 | 0 | ) |
| Meridian elevation of the Sun | 87 | 42 |  | ) north |
| On 8 October [1640] |  |  |  |  |
| Meridian elevation of the Sun | 88 | 4 |  | north |

On 9 October [1640]

| Meridian elevation of the Sun | 88 | 27 | 0 north |
| :--- | :--- | :--- | :--- |
| From 8 PM up to 9:15 PM |  |  |  |
| Meridian elevation of the [star] following the tail of the Sea Goat |  |  |  |
| 312 | 80 | 21 | 30 south |
| 312 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle ${ }^{601}$ | 44 | 22 | 0 |
| Azimuth from north to west <br> 383 oscillations of the pendulum. <br> Western elevation of the tail of the Eagle | 42 | 42 | 0 |

[87]
Azimuth [from north to west] $\begin{array}{llll}63 & 22 & 0\end{array}$
543 oscillations of the pendulum.
Meridian elevation of Saturn $\quad 83 \quad 0 \quad 0$ south
730 oscillations of the pendulum.
Meridian elevation of Mars
82930 south
566 oscillations of the pendulum.
Western elevation of the tail of the Eagle ${ }^{603} \quad 35 \quad 49 \quad 0$
Azimuth from north to west $\quad 67 \quad 14 \quad 0$
105 oscillations of the pendulum.
Western elevation of the tail of the Eagle $\quad \begin{array}{lll}35 & 30 & 0\end{array}$
Azimuth [from north to west] $\begin{array}{llll}67 & 29 & 0\end{array}$
On 10 October [1640]
Cloudy in the noon. From 8 PM.
Meridian elevation of the [star] following the tail of the Sea Goat ${ }^{604} 80 \quad 22 \quad 30$ south 914 oscillations of the pendulum.

[^84]| $\eta$ of the Crane ${ }^{605}$ in the meridian |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| 266 oscillations of the pendulum. |  |  |  |
| Western elevation of the bright [star] of the Lyre ${ }^{606}$ |  |  |  |
| Azimuth from north to west ${ }^{607}$ |  |  |  |
| 106 oscillations of the pendulum. | 24 | 9 | 0 |
| Meridian elevation of Saturn <br> 796 oscillations of the pendulum. | 82 | 59 | 30 south |
| Meridian elevation of Mars <br> 384 oscillations of the pendulum. | 82 | 18 | 0 south |
| Western elevation of the tail of the Eagle <br> Azimuth from north to west | 36 | 22 | 0 |

128 oscillations of the pendulum.

| Western elevation of the bright [star] of the Lyre ${ }^{608}$ | 20 | 19 | 0 |
| :--- | ---: | ---: | ---: |
| Azimuth [from north to west] | 43 | 59 | 0 |
| 133 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle ${ }^{609}$ | 35 | 30 | 30 |
| Azimuth [from north to west] | 67 | 21 | 0 |

On 11 October [1640]
In the morning from 4 AM . Searching for Mercury, that is never the same for me, given what I experienced on 19 September of this year. ${ }^{610}$ For although Mercury has already reached its greatest elongation, ${ }^{611}$ yet it hardly rises before the onset of twilight ${ }^{612}$, and when the Sun rises to 4,5 or 6 degrees [of elevation], it is almost pure day, so that Mercury cannot be discerned from the brightness of daylight. The [horned] Moon also approached in the eastern region [of the sky]. ${ }^{613}$

When the meridian elevation of Sirius ${ }^{614}$ was $\quad 81 \quad 50$ However, it was already full day, half an hour after sunrise, as you may judge from this observation.

605 Cannot be $\eta$ Gruis because it crossed the meridian much later. So the star might be $\alpha$ Gruis (First observed 20 September 1639).
606 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
607 Azimuth not given.
608 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
609 乌Aquilae. First observed 18 September 1639.
610 Marggrafe refers to the difficulty of observing Mercury near the horizon.
611 According to our calculation, Mercury would reach its maximum elongation two days later (i.e. the greatest distance in degrees of arc from Mercury to the Sun). The perigee would not be reached until 13 January 1641.
612 According to our calculation the Sun's elevation was $-14^{\circ} 52^{\prime} 29^{\prime \prime}$ when Mercury rose.
613 At sunrise the Moon's eastern elevation was $44^{\circ} 48^{\prime} 52^{\prime \prime}$.
614 Sirius, or $\alpha$ Canis Majoris. First observed 21 December 1639.

On 12 [October 1640]. Cloudy and it rained.
On 13 October [1640]
Meridian elevation of the Sun

Cloudy night. | 89 | 56 | 30 north $^{615}$ |
| :--- | :--- | :--- | :--- |

On 14 October [1640]

| Meridian elevation of the Sun | 89 | 33 | 40 south |
| :---: | :---: | :---: | :---: |
| From 8 PM to 9 PM. Western elevation of the tail of the Eagle ${ }^{616}$ | 42 | 39 | 0 |
| Azimuth from north to west | 63 | 40 | 0 |
| 423 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Saturn | 82 | 58 | 0 south |
| 429 oscillations of the pendulum. |  |  |  |
| Western elevation of the bright [star] of the Lyre ${ }^{617}$ | 22 | 50 | 0 |
| Azimuth from north to west | 41 | 57 | 0 |
| 715 oscillations of the pendulum. |  |  |  |
| Meridian elevation of Mars | 82 | 56 | 30 south |
| 500 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle | 35 | 11 | 30 |
| Azimuth [from north to west] | 67 | 24 | 0 |
| 170 oscillations of the pendulum. |  |  |  |
| Western elevation of the tail of the Eagle | 34 | 36 | 0 |
| Azimuth from north to west | 67 | 53 | 0 |
| 159 oscillations of the pendulum. |  |  |  |
| Western elevation of the bright [star] of the Lyre | 18 | 49 | 0 |
| Azimuth [from north to west] | 45 | 38 | 0 |

[90]
Second half of the night cloudy, it rained.
On 15 October [1640]
Meridian elevation of the Sun
$8911 \quad 0$ south Cloudy night.

On 16 October [1640]
Meridian elevation of the Sun
$88 \quad 49 \quad 30$ south

[^85]Meridian elevation of the Sun
$88 \quad 27 \quad 30$ south
I was absent almost a month for the sake of chorography ${ }^{618}$ and topography.

On 13 November [1640]
As is well known, the sky was not clear for the observation of the solar eclipse which was taking place, but the beginning and the end were duly observed. ${ }^{619}$ So a little more than 10:30 AM, at the eastern elevation of the Sun at $\begin{array}{lll}67 & 12 & 0\end{array}$ it was the beginning [of the eclipse], here in Mauritia ${ }^{620}$, about an hour and a half in the afternoon ${ }^{621}$, [when] the Sun had a western elevation [of]
$67 \quad 26 \quad 0$
The solar eclipse in Mauritia came to an end, when .... ${ }^{622}$
$\ldots$ the Meridian elevation of the darkened Sun [was] $79 \quad 51 \quad 0$ south
At that moment the observation of the maximum [of the eclipse] appeared [to occur] close to the beginning of the evening twilight . It was a dark sky. The inclination ...

... to the south [of the eclipsed Sun] [was] nearly [as in the figure]. ${ }^{623}$ The clouds hindered an accurate observation. The obscuration was 10 digits. ${ }^{644}$ The eclipse began above [the solar disc], in the west and ended below in the east. All sections were curved. Suddenly, I noticed that the horns bent downward ${ }^{625}$, [when] the western elevation of the Sun [was]
$\begin{array}{lll}79 & 14 & 0\end{array}$
And when the light seemed to recover 6 digits, ...

618 Chorography: description of the country.
619 The total solar eclipse of 13 November 1640 was only partial visible in Recife.
620 According to our calculation, the eclipse began in Recife 6 m 23 s earlier, when the eastern elevation of the Sun was $65^{\circ} 48^{\prime} 8^{\prime \prime}$.
621 According to our calculation, at 13 h 22 m 52 s .
622 According to our calculation, the Sun was at this western elevation 13 m 57 s before the end of the eclipse.
623 According to our calculation, the meridian in the sketch should be rotated about $45^{\circ}$ westward if north is to be kept up.
624 A digit is $1 / 12$ of the diameter of the Sun. So 10 digits are about $83 \%$ of the solar diameter, while our calculation predicted that $80.4 \%$ of the solar diameter was covered at maximum of the eclipse.
625 According to our calculation, this was at $11 \mathrm{~h} 12 \mathrm{~m} \mathrm{32s}$.
$\ldots$ the western elevation of the Sun was $\quad \begin{array}{llll}77 & 38 & 0^{626}\end{array}$
On the next page, see the skippers' observations of this solar eclipse.

| On 14 November [1640] |  |  |  |
| :---: | :---: | :---: | :---: |
| Meridian elevation of the Sun | 79 | 35 | 40 south |
| On 15 November [1640] |  |  |  |
| Meridian elevation of the Sun | 79 | 20 | 20 south |
| Two rainy days |  |  |  |
| On 18 November [1640] |  |  |  |
| Meridian elevation of the Sun | 78 | 37 | 0 south |
| On 9 November [1640] |  |  |  |
| Meridian elevation of the Sun | 78 | 23 | 30 south |
| On 20 November [1640] |  |  |  |
| Meridian elevation of the Sun | 78 | 10 | 0 south |
| Cloudy for seven days, mixed with rain. |  |  |  |

[92]
On 28 November [1640]
Meridian elevation of the Sun

On 29 November [1640]
Meridian elevation of the Sun
$76 \quad 27 \quad 0$ south

## On 30 [November 1640]. Cloudy.

On 1 December [[1640]
Meridian elevation of the Sun
$76 \quad 8 \quad 30$ south I went out again in the following weeks.

On 20 December [1640]
Meridian elevation of the Sun

On 21 December [1640]
Meridian elevation of the Sun

On 22 December [1640]
Meridian elevation of the Sun
$74 \quad 40 \quad 0$ south
Drab sky in the following days

626 According to our calculation, when the Sun was at this elevation, much more than 6 digits were eclipsed $(=50 \%)$.

On 28 December [1640]

| Meridian elevation of the Sun |  | 74 | 53 | 30 south |
| :---: | :---: | :---: | :---: | :---: |
| On 29 December [1640] |  |  |  |  |
| Meridian elevation of the Sun |  | 74 | 57 | 30 south |
|  | On 30 December [1640] |  |  |  |
| Meridian elevation of the Sun |  | 75 | 2 | 0 south |
|  | On 31 December [1640] |  |  |  |
| Meridian elevation of the Sun |  | 75 | 6 | 20 south |

Meridian elevation of the Sun
$75 \quad 6 \quad 20$ south
[93]
Observations of the Solar Eclipse
[on] 13 November 1640 . Some [information] from the skippers

Beneath the southern latitude of $20^{\circ} 05^{\prime}$ removed 23 miles from the continent or the Brazilian coast, ${ }^{627}$ skipper [Leendert Reijnsen Verhochen] observed the beginning [of the eclipse] at 11:02 AM and the end at 1:17 PM with [ a darkening of] 8 digits, or two-thirds, with a clear sky, and a wind from the north-northwest. ${ }^{628}$ The longitude of his location is estimated at $346^{\circ} 28^{\prime} .{ }^{629}$

627 This latitude is about 24 km north of Vitória, ES, in Brazil.
628 The English translation of the original Dutch letter is as follows: 'In the year of our Lord 1640 | Item, on the 13th of November, when the clock pointed at $11: 02 \mathrm{~h}$, the eclipse of the Sun started, and he became 2/3 part obscured, and it lasted until the clock was 1:17 h, and were at this Friday on [an altitude of] 20 degrees, 5 minutes , and a latitude of 346 degrees, 28 minutes, south of the horizon, and we were beyond our route 23 miles and we had nice weather, with the wind north, north-west. | The skipper, Leendert Reijnsen Verhochen'.
629 Subtracting this longitude from $340^{\circ}$ 8.5' (The longitude of Mauritia according to Tractatus Topographicus $\mathcal{E}$ Meteorologicus Brasiliae, cum Observatione Eclipsis Solaris, in the Historia Naturalis Brasiliae (1648), we get a longitude difference of $6^{\circ} 19.5^{\prime}$, which, added to today's value of Marggrafe's observatory in Recife, gives $41^{\circ} 12^{\prime} 07^{\prime \prime} \mathrm{W}$. This longitude with the latitude $-20^{\circ} 5^{\prime} S$ corresponds to a location more than 100 km inland Brazil! When the true location was 23 miles from the Brazilian coast, the total error in longitude was about $1.5^{\circ}$.

# The year of Christ 1641 follows <br> with the celestial observations of Georg Marggrafe 

On day 1, 2 and 3 of January, cloudy and it rained.
[94]
On 4 January 1641 in the Gregorian calendar.
$\begin{array}{llll}\text { Meridian elevation of the Sun } & 75 & 29 & 30 \text { south }\end{array}$

On 5 January [1641]

| Meridian elevation of the Sun |  | 75 | 36 | 30 south |
| :--- | :--- | :--- | :--- | :--- |
| Meridian elevation of the Sun | On 6 January [1641] | 75 | 44 | 0 south |

On 7 January [1641]. Cloudy

On 8 January [1641]
Meridian elevation of the Sun

On 9 January [1641]
Meridian elevation of the Sun

On 10 January [1641]
Meridian elevation of the Sun
$75 \quad 59 \quad 30$ south

In the serene evening, I checked how long I could write a letter in the ordinary language perfectly. The [next] day, after sunset, no candle being used, I was able to read perfectly for a long time, until Mirach or the girdle of Andromeda ${ }^{630}$ had the western elevation of
$41 \quad 1 \quad 0$

And its azimuth from north to west ${ }^{631}$
$29 \quad 21 \quad 0$
The Sun set today at 6 h 12 m
$\begin{array}{llll}\text { Meridian elevation of the head of Medusa }{ }^{632} & 42 & 20 & 0 \text { [north] }\end{array}$
[95]
Because the sky was very clear, I also paid attention to the duration of the evening twilight. But I saw that the redness was chased away, soon after the real end of the twilight ${ }^{633}$ when $\begin{array}{llllll}\text { the bright rib of Perseus }{ }^{634} \text { culminated at the elevation of } & 33 & 19 & 30 \text { north }\end{array}$

[^86]It is to be noted here that the twilight lasts a little longer when the Sun moves toward the southern [zodiacal] signs, and is shorter [when the Sun moves] toward the northernmost ones, which will also be clear from the observations collected.
At 8 PM, Mars was visible halfway between the [star] in the middle of the Fishes ${ }^{635}$, and the following one. ${ }^{636}$ However, not in a straight line, but a little more southerly than the straight line, in this way:


11 January [1641]
Meridian elevation of the Sun $\quad \begin{array}{lll}76 & 26 & 40\end{array}$ south

12 January [1641]. Fickle [weather]
13 January [1641]
Meridian elevation of the Sun

14 January [1641]
Meridian elevation of the Sun
[96]
On 15 January [1641]
Meridian elevation of the Sun
On 16 January [1641]
Meridian elevation of the Sun

On 17 January [1641]
Meridian elevation of the Sun
On 18 January [1641]
Meridian elevation of the Sun At 6:30 PM, I peeked with my telescope at the conjunction of Saturn and Venus: at the said

[^87]time Venus stood apart from Saturn two-third diameter of my telescope. ${ }^{637}$ One hour later, Venus was still Western.
Now Venus was already closer to Saturn. Then both were setting. ${ }^{638}$ People who live more to the west may have observed the true conjunction.
Concerning the latitude, Venus will either appear bound to Saturn, or pass [Saturn] as close to the south as possible ${ }^{639}$. My calculation, based on the Rudolphine [Tables], predicted that Venus would pass one arc minute to the south of Saturn. ${ }^{640}$ Venus and Saturn were [further] observed with the naked eye.
Venus radiated exceedingly, ${ }^{641}$ and a little higher to the right ...
... stood Saturn, ${ }^{642}$ almost touched by its rays, and barely distinguishable from Venus. predicted this conjunction of Saturn with Venus to be best observed in New Spain and I told the truth. We have been lucky indeed!

On 19 January [1641]
Meridian elevation of the Sun $\quad \begin{array}{llll}77 & 59 & 0 & \text { south }\end{array}$
At 7 PM, Venus had passed Saturn, stepping forth more to the east. It was seen that the distance of Venus to Saturn was the same as between the southern ${ }^{643}$ and northern ${ }^{644}$ [stars] in the preceding horn of the $\operatorname{Ram}$ ( $\gamma$ and $\beta$ in Bayer).
Three days of fickle weather
On 23 January [1641]

Meridian elevation of the Sun
Two cloudy days
Meridian elevation of the Sun
Three cloudy days
On 26 January [1641]

On 30 January [1641]
Meridian elevation of the Sun

On 31 January [1641]
Meridian elevation of the Sun
$78 \quad 52 \quad 0$ south

Following days. Stormy weather

637 This means that the field-of-view of MargGrafe's telescope was approximately 11.5'.
638 According to our calculation, Venus set 4 s before Saturn.
639 According to our calculation, at the maximum of the conjunction Venus approached the south of Saturn.
640 According to our calculation, the separation was over twice this value.
641 The apparent visual magnitude of Venus was -4 while the Saturn was +0.9 .
642 According to our calculation, this situation in fact occurred about 3 h after sunset.
$643 \gamma$ Arietis. First observation.
$644 \beta$ Arietis. FIRST observation.

On 7 February [1641]
Meridian elevation of the Sun

On 9 February [1641]
I departed and I was absent nine uninterrupted months for the sake of Geography. Coming back in November, I spent one month in Mauritia, but most part I was absent in neighbouring places, also for the sake of Geography.

On 10 December [1641]
I departed from here to the southern part of Brazil for the sake of Chorography ${ }^{645}$ and Natural History. Meanwhile, I was forced to abstain from astronomical work. In the future, however, God granting life and health and resuming uninterrupted work, I will finish all that still remains [to be done] in this part [of the world].

On 16 June, in the year of Christ 1642
I came back from that journey which started in December of the past year.
[99]
$\boldsymbol{\Sigma} \bullet \boldsymbol{\Theta}{ }^{\bullet 646}$

## Georg Marggrafe's <br> Astronomical observations <br> In the year of Christ 1642

On 14 April [1642], in the evening in Fortress Ceulen, located at the mouth of the Potengi river which is popularly named Rio Grande, I observed with my instrument - which was a sextant - the beginning of a lunar eclipse, ${ }^{647}$ when the elevation of Procyon ${ }^{648}$ or the Anti Dog ${ }^{649}$ in the western part of the sky was
$31^{\circ} 31^{\prime} \quad 0^{\prime \prime} .{ }^{650}$
A little later the sky, previously clear, was covered by clouds. And it rained and I did not see the Moon any further until it was seen darkened more than 10 digits. ${ }^{651}$ Then excellent

645 Chorography: description of the country.
646 The abbreviation $\Sigma \dot{v} v \boldsymbol{v} \Theta \varepsilon \omega$ means 'With God', or 'With Gods help'.
647 According to our calculation, this was a total eclipse of the Moon on 14/15 April 1642, entirely visible from that location (Fortaleza dos Reis Magos, Natal, RN). For the calculation we used the latitude $5^{\circ} 45^{\prime} 23^{\prime \prime} \mathrm{S}$ and longitude $35^{\circ} 11^{\prime} 42^{\prime \prime} \mathrm{W}$ from Google Earth.
$648 \alpha$ Canis Minoris. First observed 20 December 1638.
649 'Anti-Dog', because in relation to Sirius, 'the Dog star', the star Procyon is on the opposite side of the Milky Way.
650 According to our calculation, the Moon entered the umbra 2 m 46 s after Procyon was at this western elevation.
651 A digit is $1 / 12$ of the diameter of the Sun. So 10 digits are about $83 \%$ of the solar diameter.
weather returned and I watched the beginning of the total (eclipsed) Moon when the eastern elevation of the Heart of Scorpion ${ }^{652}$ was $32^{\circ} \quad 24^{\prime} \quad 0^{1653}$ Afterwards the sky was covered by clouds again. Before the Moon's exit ...
[100]
from the Earth's total shadow, the sky became clear again and the Moon was illuminated by spurious light for a long time, before receiving some true light. Clouds prevented me [of observing] the beginning of the exit [of the Moon] from the total shadow. Henceforth, the sky [was] very clear until the full end of the eclipse, which I observed when the elevation of the left shoulder of the Archer ${ }^{654}$ in the eastern region was $\quad 35^{\circ} 18^{\prime} 0^{16655}$. The eclipse started from the lower eastern part [of the Moon]. The first recovery of light was likewise from the east. The eclipse abandoned [the Moon] completely in the west. Skipper Jacob Abrahamsen also observed this eclipse at the mouth of the river Ipanema, ${ }^{656}$ in the captaincy of Ceará at the southern latitude of $4^{\circ} 50^{\prime}$. The beginning of the eclipse, ${ }^{657}$ if observed, should be 9:30 PM and the end ${ }^{658} 1: 15 \mathrm{AM}$. [The skipper] stated that the total duration of the submergence [of the Moon] in the shadow of the Earth [was] 1 hour and 15 minutes. ${ }^{659}$

On 3 October [1642], according to the Gregorian calendar
Meridian elevation of the Sun $\quad 86 \quad 4 \quad 40$ north

On 7 October [1642]
About 11 PM the beginning was taking place ...
[101]
$\ldots$ of the lunar eclipse, ${ }^{660}$ here in Mauritia, and 151 oscillations of the pendulum after its beginning, the eastern elevation of Mars was $\quad 48 \quad 43$

652 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
653 According to our calculation, the totality of the eclipse started 6 m 21 s before Antares was at this eastern elevation.
$654 \sigma$ Sagittarii according to Pingré, Annales Célestes (1901), 158. First observation 19 September 1638.

655 When this star was at this elevation, the Moon had left the umbra 6 m 43 s before, but would leave the penumbra only 55 m 1 s later.
656 This letter, dated 15 April 1642, written by Jacob Abrahamsen, pilot of the bark Schevelingen, is preserved among the Leiden documents (ELO, North no. 2). Today a city called 'Upanema' is located at the Rio do Carmo, a tributary of the Rio Apodi, so probably this river near the border of Ceará is meant.
657 The beginning should refer to the Moon entering the umbra.
658 The end should refer to the Moon leaving the umbra.
659 This duration should refer to the totality of the eclipse.
660 According to our calculation, this total eclipse of the Moon of $7 / 8$ October 1642 was entirely visible from Recife.
661 According to our calculation, Mars was at this position 39 s before the Moon entered the umbra.

The sky was clear, but there were many fast moving clouds, for which reason I could not choose the star I wanted. At the time of the Eclipse, the meridian elevation ...
$\ldots$ of the centre of the Moon was $\quad 76 \quad 14 \quad 30$ north
After 214 oscillations of the pendulum, ...
... the eastern elevation of Aldebaran ${ }^{662}$ [was]
$35 \quad 39 \quad 0$
At the beginning of the total [lunar eclipse] clouds hindered the observation of emerging from the umbra [or total shadow]. During the total eclipse, the Moon was barely visible. Before total immersion [in the shadow of the Earth], [the Moon] shone with little light, but the darkened part was inconspicuous when the Moon began to regain light. The beginning of observation [was noted] from the rising, the emergence likewise from the rising.
Two minutes after the complete end of the [lunar] eclipse, the western elevation of the western tail of the Southern Fish ${ }^{663}$ was $\quad \begin{array}{llll}16 & 50 & 0\end{array}$
Note that at the beginning of the eclipse the longitude of Mars was $6^{\circ} 8^{\prime 664}$ and the descending ${ }^{665}$ southern latitude $1^{\circ} 56^{\prime 666}$, therefore the right ascension of Mars ...
[102]
... was $34^{\circ} 20^{\prime 667}$ and its declination $11^{\circ} 45^{\prime}$ north ${ }^{668}$.

| Right ascension of Aldebaran ${ }^{669}$ | $63^{\circ}$ $53^{\prime 670}$  <br> and declination $5^{\circ}$ $44^{\prime}$ north $^{671}$ <br> Right ascension of the occiput ${ }^{672}$ of the Southern Fish ${ }^{673}$ 34 $4^{\circ}$ <br> $4^{\prime 674}$   |  |
| :--- | ---: | :--- |
| and declination | $1^{\circ}$ | $21^{\prime}$ north $^{675}$ |

On 15 October [1642]
Meridian elevation of the Sun
89230 south

[^88]On 2 November [1642]

| About 6:30 PM. Western elevation of the Heart of Scorpion ${ }^{676}$ | 14 | 32 | 30 |
| :---: | :---: | :---: | :---: |
| Its azimuth from west to south | 25 | 52 | 0 |
| After 264 oscillations of the pendulum. |  |  |  |
| Western elevation of Mercury | 5 | 10 | 0 |
| Azimuth from west to south | 21 | 53 | 30 |
| After 152 oscillations of the pendulum. |  |  |  |
| Western elevation of the Heart of Scorpion | 13 | 3 | 0 |
| Azimuth from west to south | 25 | 55 | 0 |

On 7 November [1642]. Gregorian calendar
About 6:30 PM. Western elevation of the Heart of Scorpion $\quad \begin{array}{llll}9 & 34 & 0\end{array}$
Azimuth from west to south $\quad \begin{array}{lll}25 & 50 & 0\end{array}$
After 166 oscillations of the pendulum.
$\begin{array}{llll}\text { Western elevation of Mercury } & 7 & 32 & 30\end{array}$
Its azimuth from west to south $\quad \begin{array}{lll}23 & 50 & 0\end{array}$
After 93 oscillations of the pendulum.
[103]
Western elevation of the Heart of Scorpion ${ }^{677} \quad \begin{array}{rrr}8 & 35 & 30\end{array}$
Azimuth [from west to south] $\quad 26 \quad 23 \quad 0$
After 130 oscillations of the pendulum.
$\begin{array}{llll}\text { Western elevation of Mercury } & 6 & 37 & 30\end{array}$
Azimuth [from west to south] $\begin{array}{lll}23 & 52 & 0\end{array}$
After 129 oscillations of the pendulum.
$\begin{array}{lllll}\text { Western elevation of the Heart of Scorpion } & 7 & 44 & 30\end{array}$
Azimuth [from west to south] $\begin{array}{lll}26 & 12 & 0\end{array}$
After 127 oscillations of the pendulum.
Western elevation of Mercury $\quad 5 \quad 49 \quad 0$
Azimuth [from west to south] $\begin{array}{lll}23 & 52 & 0\end{array}$
After 157 oscillations of the pendulum.
Western elevation of the Heart of Scorpion $\quad \begin{array}{lll}6 & 50 & 0\end{array}$
Azimuth [from west to south] $\begin{array}{lll}26 & 26 & 0\end{array}$
After 117 oscillations of the pendulum.
$\begin{array}{lllll}\text { Western elevation of Mercury } & 4 & 53 & 30\end{array}$
Azimuth [from west to south] $\begin{array}{llll}23 & 56 & 0\end{array}$
After 129 oscillations of the pendulum.
Western elevation of the Heart of Scorpion $\quad \begin{array}{llll}5 & 58 & 30\end{array}$
Azimuth[from west to south] $\begin{array}{lll}26 & 34 & 0\end{array}$

On 8 November [1642]. 6:30 PM
$\begin{array}{llll}\text { Western elevation of Mercury } & 10 & 41 & 30 \\ \text { Azimuth [from west to south] } & 23 & 52 & 0\end{array}$

[^89]After 198 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre ${ }^{678} \quad 25 \quad 10$
[104]
Azimuth from north to west
41220
After 230 oscillations of the pendulum.
Western elevation of Mercury $\quad 9 \begin{array}{lll}9 & 10 & 0\end{array}$
Azimuth [from west to south] $\begin{array}{lll}23 & 54 & 0\end{array}$
After 397 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre ${ }^{679} \quad \begin{array}{llll}23 & 42 & 30\end{array}$
Azimuth [from north to west] $42 \quad 33 \quad 0$
I observed the Heart of Scorpion ${ }^{680}$ at almost the same elevation above the horizon as Mercury ${ }^{681}$, but more to the south ${ }^{682}$. Rising clouds, prevented a further comparison with Mercury.

## On 9 November [1642]. Gregorian calendar

From 6:30 PM to 7 PM
Western elevation of Mercury $\begin{array}{lll}11 & 35 & 0\end{array}$
Azimuth from west to south $\begin{array}{lll}23 & 52 & 0\end{array}$
After 134 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre $\quad \begin{array}{lll}24 & 59 & 0\end{array}$
Azimuth from north to west $\begin{array}{llll}41 & 35 & 0\end{array}$
After 120 oscillations of the pendulum.
Western elevation of Mercury $\quad \begin{array}{lll}10 & 37 & 0\end{array}$
Azimuth [from west to south] $\begin{array}{lll}23 & 53 & 0\end{array}$
After 158 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre $\quad \begin{array}{lll}24 & 15 & 30\end{array}$
Azimuth [from north to west] $\begin{array}{llll}42 & 9 & 0\end{array}$
[105]
After 202 oscillations of the pendulum.
Western elevation of Mercury $\quad 9 \begin{array}{lll}9 & 19 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}23 & 58 & 0\end{array}$
After 179 oscillations of the pendulum.
Western elevation of Mercury $\quad 8 \quad 48 \quad 0$
Azimuth [from west to south] $\begin{array}{lll}24 & 3 & 0\end{array}$

[^90]After 188 oscillations of the pendulum.
Western elevation of the Heart of Scorpion ${ }^{683} \quad \begin{array}{llll}6 & 54 & 30\end{array}$
Azimuth from west to south $\quad \begin{array}{llll}26 & 22 & 0\end{array}$
After 149 oscillations of the pendulum.
[Western] elevation of Mercury $\quad \begin{array}{ccc}7 & 40 & 30\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}24 & 13 & 0\end{array}$
After 215 oscillations of the pendulum.
Western elevation of the bright [star] of the Lyre ${ }^{684} \quad 2153 \quad 0$
Azimuth from north to west
$43 \quad 40 \quad 0$

On 20 November [1642]
From 6:30 PM to 7:15 PM.
Meridian elevation of Fomalhaut of the Water Carrier ${ }^{685} \quad \begin{array}{llll}66 & 40 & 0\end{array}$
After 189 oscillations of the pendulum.
Western elevation of Mercury $\begin{array}{lll}12 & 3 & 30\end{array}$
Azimuth from west to south $\quad \begin{array}{lll}25 & 33 & 0\end{array}$
After 272 oscillations of the pendulum.
Western elevation of the tail of the Swan ${ }^{686} \quad \begin{array}{lll}29 & 43 & 0\end{array}$
$\begin{array}{llll}\text { Azimuth from north to west } & 27 & 20 & 0\end{array}$
After 166 oscillations of the pendulum.
[106]
Meridian elevation of Jupiter ${ }^{687} \quad \begin{array}{llll}88 & 38 & 0 & \text { south }\end{array}$
After 235 oscillations of the pendulum.
Western elevation of Mercury $\quad \begin{array}{lll}9 & 40 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}25 & 45 & 0\end{array}$
After 153 oscillations of the pendulum.
Western elevation of the tail of the Swan ${ }^{688} \quad 28 \quad 430$
Azimuth [from north to west] $\quad \begin{array}{lll}28 & 40 & 0\end{array}$
After 139 oscillations of the pendulum.
Western elevation of Mercury $\quad 8 \quad 40$
Azimuth [from west to south] $\quad \begin{array}{lll}25 & 51 & 0\end{array}$
After 170 oscillations of the pendulum.
Western elevation of the tail of the Swan $\quad \begin{array}{lll}28 & 8 & 0\end{array}$
Azimuth from north to west
$29 \quad 27 \quad 0$
NB. As soon as Mercury could be seen in the evening twilight, I inspected [the planet] carefully with the telescope and it showed up horned. In the same evening from 9:30 PM

[^91]| to 11:30 PM. the meridian elevation of Achernar ${ }^{689}$ | 39 | 13 | 30 south |
| :---: | :---: | :---: | :---: |
| [Star] following Achernar in the River ${ }^{690}$ | 42 | 58 | 0 south |
| Western [star] ${ }^{691}$ of the pair above the third [star] ${ }^{699}$ of the River | 50 | 10 | 0 south |
| Third [star] of the River | 44 | 52 | 30 south |
| This [star] culminated 30 seconds ${ }^{693}$ after the third [star] of the River |  |  |  |
| The eastern [star] ${ }^{694}$ of the pair above, the third [star] of the River | 49 | 8 | 0 south |
| Third [star] of the twist of the neck of the Water Snake ${ }^{695}$ | 28 | 50 | 0 south |
| Head of the Water Snake ${ }^{696}$ | 34 | 56 | 0 south |
| Third [star] of the River ${ }^{697}$ | 45 | 0 | 30 south |
| Fourth [star] of the River ${ }^{698}$ | 48 | 56 | 0 south |
| Third [star] from the quintet in the Water Snake ${ }^{699}$ | 28 | 0 | 0 south |
| [107] |  |  |  |
| Fifth [star] of the River ${ }^{700}$ | 53 | 49 | 0 south |
| In the River (the star that should be the $\left.7^{\text {th }}\right)^{701}$ [is] absent on the globe | 56 | 50 | 0 south |
| Above it [the previous star] and far away ${ }^{702}$ | 64 | 17 | 30 south |
| Meridian elevation of the second star in the twist of the Water Snake's neck ${ }^{703}$ | 28 | 29 | 0 south |
| Sixth [star] of the River ${ }^{704}$ | 56 | 31 | 0 south |
| First [star] in the twist of the Water Snake's neck ${ }^{705}$ | 29 | 7 | 0 south |
| Upper or second [star] of the neck of the Water Snake ${ }^{706}$ | 32 | 47 | 0 south |
| Far above it [the previous star] the next one culminating ${ }^{707}$ (I omitted two stars here) | 37 | 9 | 0 south |
| Eastern [star] below the $20{ }^{\text {th }}$ of the River ${ }^{708}$ | 67 | 48 | 30 [south |

689 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
690 TYC 8475-1390-1. First observed 18 December 1639.
$691 \psi$ Phoenicis. FIRST OBSERVATION.
$692 \chi$ Eridani. First observed 22 September 1639.
693 According to our calculation, 57 s.
694 TYC 8041-1200-1. First observed 24 December 1639.
$695 \eta_{2}$ Hydri. First observed 17 December 1639.
$696 \alpha$ Hydri. First observed 20 September 1639.
$697 \varphi$ Eridani. First observed 26 November1639.

On 21 November [1642]
From 6:30 PM to 10 PM.
Meridian elevation of Fomalhaut of the Water Carrier ${ }^{709} \quad \begin{array}{llll}66 & 40 & 0 & \text { south }\end{array}$
After 150 oscillations of the pendulum.
Western elevation of Mercury $\quad \begin{array}{lll}13 & 1 & 30\end{array}$
Azimuth from west to south $\quad \begin{array}{lll}25 & 50 & 0\end{array}$
After 157 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle ${ }^{710} \quad 40 \begin{array}{lll}43 & 23\end{array}$
$\begin{array}{lllll}\text { Azimuth from north to west } & 73 & 18 & 0\end{array}$
After 122 oscillations of the pendulum.
Western elevation of Mercury $\begin{array}{lll}12 & 2 & 0\end{array}$
Azimuth [from west to south] $\quad \begin{array}{lll}25 & 51 & 0\end{array}$
After 131 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle $\quad \begin{array}{llll}39 & 24 & 0\end{array}$
Azimuth [from north to west] $\begin{array}{llll}73 & 55 & 0\end{array}$
[108]
After 122 oscillations of the pendulum.
Western elevation of Mercury $\quad 11 \begin{array}{lll}11 & 9 & 0\end{array}$
Azimuth [from west to south]
$25 \quad 53 \quad 0$
After 128 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle $\begin{array}{llll}711 & 38 & 33 & 30\end{array}$
Azimuth [from north to west] $\quad 74 \quad 2 \quad 0$
I inspected ${ }^{712}$ Mercury at twilight and it showed up furrowed ${ }^{713}$ in the manner of Venus.
$\begin{array}{lllll}\text { Meridian elevation of } \beta \text { where the beak of the Toucan leaves }{ }^{714} & 38 & 6 & 0 \text { south }\end{array}$
[Star] ${ }^{715}$ in the straight line, ... $\ldots$ almost between Fomalhaut ${ }^{716}$ and $\zeta$ Phoenicis $^{717} \quad 63 \quad 44 \quad 0$ south
Third northern [star] $\xi$ of the right wing in the Phoenix ${ }^{718} \quad \begin{array}{llll}58 & 24 & 0 \text { south }\end{array}$
[Star] $\varepsilon$ in the middle of the three in the same wing ${ }^{719}$
Southern [star] $\delta$ of the three in the same wing ${ }^{720}$
$53 \quad 41 \quad 0$ south
$50 \quad 49 \quad 0$ south

[^92]| [Star] under $\delta$ of the Phoenix ${ }^{791}$ (not on the globe) | 46 | 6 | 30 south |
| :---: | :---: | :---: | :---: |
| [Star] above the Phoenix ${ }^{722}$ (not on the globe) | 68 | 9 | 0 south |
| Upper [star] $\delta$ in the branch of the left wing of the Toucan ${ }^{723}$ | 31 | 59 | 0 south |
| Lower [star] 5 in the branch of the same wing ${ }^{724}$ (which culminates soon after the previous star ${ }^{725}$ ) or first among the three ${ }^{726}$ [stars] and western to $\zeta^{7727}$. | 30 | 39 | 30 south |
| [Star] of the right wing of the Phoenix ${ }^{728}(v)$ [Star] in the Phoenix that can be said its | 43 | 30 | 30 south |
| beak ${ }^{729}$ (not on the globe) | 50 | 34 | 30 south |
| [Star] in the middle of the wing ( $\zeta)^{730}$ | 31 | 20 | 0 sout |

[Stars] on the twist of the neck of the Water Snake $\left\{\begin{array}{l}\text { the } \operatorname{sixth}^{731}(\iota) \\ \text { ( }) \\ 19\end{array}\right] 1 \begin{array}{llll}0 \text { south }\end{array}$
Bright [star] on the neck of the Phoenix ${ }^{733}(\alpha) \quad 54 \quad 2 \quad 30$ south
Its small [star] ${ }^{734} \beta$
$52 \quad 36 \quad 0$ south
[Star] in the back of Toucan ${ }^{735}(\eta)$
$\begin{array}{lll}33 & 19 & 0 \\ \text { south }\end{array}$
The southern one of the three [stars] ...
... at the right foot of the Phoenix ${ }^{736}$ ( $\kappa$ )
$4731 \quad 0$ south
[Star] where the left wing of the Phoenix leaves ${ }^{737}(\eta) \quad 50 \quad 11 \quad 0$ south Upper [star] of the two in the hearth ...

[^93]| ... under the right foot of the Phoenix ${ }^{738}$ | 38 | 50 | 0 south |
| :---: | :---: | :---: | :---: |
| [Star] in Phoenix ${ }^{\text {739 }}$ (not on the globe) | 45 | 16 | 30 south |
| Above the Phoenix ${ }^{740}$ (not on the globe) | 66 | 55 | 0 south |
| The northern one of the two [stars] in the hearth ... ...under the left wing of the Phoenix ${ }^{741}(\lambda)$ | 9 | 39 | 0 south |
| The lower one of the two [stars] in the hearth ... <br> ... under the right foot of the Phoenix ${ }^{742}(v)$ | 41 | 8 | south |
| [Star] above $\lambda$ of the Phoenix ${ }^{743}$ (not on the globe) | 50 | 50 | 0 south |
| Fourth [star] $\eta^{744}$ on the twist of the neck of the Water Snake, | 27 | 29 | 0 sout |
| [Star] above $\mu$ of the Phoenix ${ }^{745}$ (not on the globe) | 53 | 6 | 0 south |
| Southern one ( $\mu$ ) of the two stars in the hearth under the left wing of the Phoenix ${ }^{746}$ | 47 | 19 | 0 south |
| Achernar ${ }^{747}$ | 39 | 13 | ) so |

On 22 November [1642]
In the evening the meridian elevation of Fomalhaut of the Water Carrier
$66 \quad 39 \quad 30$ south
After 171 oscillations of the pendulum, ...
... the western elevation of Mercury [was]
$13 \quad 37 \quad 0$
[110]
Azimuth from west to south
$25 \quad 39 \quad 0$
After 210 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle ${ }^{748} \quad \begin{array}{llll}39 & 51 & 0\end{array}$
Azimuth from north to west $\begin{array}{llll}73 & 20 & 0\end{array}$
After 182 oscillations of the pendulum.
Western elevation of Mercury $\quad 12 \quad 19 \quad 0$
Azimuth [from west to south] $\quad 25 \quad 42 \quad 0$
After 180 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle $\quad 38424 \quad 0$
Azimuth [from north to west] $\begin{array}{llll}74 & 10 & 0\end{array}$

[^94]After 138 oscillations of the pendulum.
Western elevation of Mercury $\quad 11 \begin{array}{lll}15 & 0\end{array}$
Azimuth [from west to south] $\begin{array}{lll}11 & 55 & 50\end{array}$
After 131 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle $\quad \begin{array}{llll}37 & 30 & 0\end{array}$
Azimuth [from north to west]
$74 \quad 120$
After 157 oscillations of the pendulum.
Western elevation of Mercury $\quad \begin{array}{llll}10 & 8 & 30\end{array}$
Azimuth [from west to south]
$25 \quad 56 \quad 0$
After 154 oscillations of the pendulum.
Western elevation of the bright [star] of the Eagle $\quad \begin{array}{lll}36 & 21 & 0\end{array}$
Azimuth [from north to west]
$74 \quad 56 \quad 0$
Furrowed Mercury pointed the horns to west or downward ${ }^{749}$.
On 20 December [1642]
Meridian elevation of the Sun $\quad 74 \quad 40 \quad 0$ south
[111]
$\Sigma \times \Theta \times{ }^{750}$

## Observations of the Heavens <br> by Georg Marggrafe of Liebstadt <br> from the Margraviate of Meissen in the year of Christ 1643

On 20 February
From 7:15 PM to 10 PM
Meridian elevation of the back of the $\operatorname{Dove}^{751}(\gamma) \quad \begin{array}{llll}63 & 53 & 30 \text { south }\end{array}$
[Star] in the back of Dorado ${ }^{752}$
[Star] where the right wing of the Dove comes from ${ }^{753}$
[Star] in the Swift Ship ${ }^{754}$ of the Skipper ${ }^{755}$
Northern [star] among the two in Dorado near ...
... the pole of the ecliptic ${ }^{756}$

| 35 | 30 | 0 south |
| ---: | ---: | ---: |
| 62 | 17 | 0 south |
| 47 | 3 | 0 south |
|  |  |  |
| 32 | 23 | 30 south |
| 45 | 47 | 30 south |

749 According to our calculation, Mercury was not horned, but gibbous with the convex side turned towards the east.
750 The abbreviation $\Sigma \dot{v} v \Theta \varepsilon \omega$ means 'With God', or 'With Gods help'.
751 Phact, or $\alpha$ Columbae. First observed 21 December 1639.
$752 \beta$ Doradus. First observed 20 December 1639.
$753 \beta$ Columbae. First observed 21 December 1639.
754 Argo Navis, a constellation in the southern sky.
$755 \beta$ Pictoris. First observed 21 December 1639.
$756 \delta$ Doradus. First observed 21 December 1639. The other star of the pair is $\varepsilon$ Doradus.
757 Canopus, or $\alpha$ Carinae. First observed 19 December 1639.

The shoulder of the helmsman of the Ship ${ }^{758}$
[Star] in the knee of the left and rear foot of the Greater Dog ${ }^{759}$ [Star] at left of Canopus in the deck of the Ship ${ }^{760}$
[Star] below the previous one, far and more to the south ${ }^{761}$
[Star] in the end of the tail of the Flying Fish ${ }^{762}$
[Star] in the end of the right wing of the Flying Fish ${ }^{763}$
Upper and far [star] in the shield of the $\operatorname{Ship}^{764}(\lambda)$
Last [star] of the left wing of the Flying Fish ${ }^{765}$
[Star] in the Ship above the two nebulae ${ }^{766}$

| 55 | 20 | 0 south |
| ---: | ---: | :--- |
| 66 | 5 | 0 south |
| 48 | 0 | 0 south |
| 36 | 42 | 0 south |
| 28 | 21 | 0 south |
| 30 | 59 | 0 south |
| 55 | 37 | 0 south |
| 26 | 30 | 0 south |
| 46 | 11 | 0 south |

## [112]

On 10 March [1643]. Gregorian Calendar.
From 8:00 PM to 10:30 PM.
Meridian elevation of the [star] at the end of the right wing...
$\ldots$ of the Flying Fish located in the Ship. ${ }^{767}(\theta)$
(Not on the globe) The star above the contiguous nebulae ${ }^{768}$
[Star] at the left wing of the Flying Fish ${ }^{769}$
[Star] in the Ship ${ }^{770}(\boldsymbol{\delta})$
[Not on the globe] Contiguous nebulae ${ }^{771}$
[Star] in the Ship ${ }^{772}(\zeta)$
[Star] in the womb of the Flying Fish ${ }^{773}$
[Star] at left of the nebulae ${ }^{774}(\mu)$
First [star] of the left wing of the Flying Fish ${ }^{775}$

| 58 | 32 | 0 south |
| ---: | ---: | ---: |
| 46 | 14 | 0 south |
| 26 | 31 | 0 south |
| 59 | 12 | 0 south |
| 38 | 35 | 0 south |
| 51 | 59 | 0 south |
| 30 | 42 | 0 south |
| 39 | 53 | 30 south |
| 27 | 57 | 0 south |

[^95]

| [Star] eastern to the two in the Ship ${ }^{795}$ | 40 | 36 | 0 south |
| :--- | :--- | :--- | :--- |
| [Star] in the Ship |  |  |  |
| [Star] in the Ship | 37 | 20 | 0 south |
| [Star] in the Ship ${ }^{798}$ | 34 | 50 | 0 south |
|  | 45 | 20 | 0 south |

Henceforth I departed abroad for the sake of Geography and Natural History. I came back on the second [day] of April [1643].

## Partial Lunar eclipse

On 4 April [1642], according to the Gregorian Calendar, the sky was clear in the morning. The clouds were moving, the wind came from of the land. At 4:30 AM, the eclipse had not yet begun. ${ }^{799}$ Later, the clouds covered the western [sky], so that I could not see the Moon anymore. When the Moon emerged from the clouds, it it was at a four-degree elevation to the west. ${ }^{800}$ It stood in the clarity of the twilight, ${ }^{801}$, missing a quarter [circle] to the south, slightly to the left. Again [the Moon] disappeared and was no longer visible. Nothing further [of this eclipse] was visible, because the clouds did not grant any observations before setting.
[114]
On 21 June [1643]. The clearest sky.
Meridian elevation of the Sun $\quad \begin{array}{lll}58 & 23 & 30\end{array}$
On 22 June [1643]
Meridian elevation of the Sun
582330 north

The end of Georg Marggrafe's observations.

[^96]
## INDEX

## Index of personal names

Abrahamsen，Jacob，86， 177
Acosta，José de， 102
Blaeu，Johannes， 9
Boulliau，Ismael，11，33，40，43，53，104， 116
Golius，Jacob，9－10
Hevelius，Johannes， 10
Houtman，Frederick de， 112
Isle，Joseph－Nicolas de l＇， 10
Kechel ab Hollensteijn，Samuel，9－10
Laet，Johannes de， 9
Marggrafe，Christian， 10
Matsuura，Oscar，10－11， 13
North，John， 13
Piso，Willem， 10
Plancius，Petrus， 106
Silva，Andre Luiz da， 13
Thévenot，Melchisédech， 10
Verhochen，Leendert Reijnsen，81， 172

Index of Celestial Bodies and Observed Phenomena
Achernar（ $\alpha$ Eridani），106，108，110，118，120－ 125，128，182， 185
Alcyone（ $\eta$ Tauri）， 125
Aldebaran（ $\alpha$ Tauri），122， 178
Algenib（ $\gamma$ Pegasi）， 118
Algol（ $\beta$ Persei），110，119，125－126， 173
Alnair（ $\alpha$ Gruis），106－107，109，111， 168
Alphecca（ $\alpha$ Coronae Borealis），111，114，143， 158
Alpheratz．See Adromeda
Altair（ $\alpha$ Aquilae），105，108，129，183， 185
Andromeda（ $\alpha$ Andromedae），118，122－126， 129，131， 173
Andromedae，$\alpha$ ．See Andromeda
$\sim \beta, 131,173$
Ankaa（ $\alpha$ Phoenicis），106，108，110，112， 184
Antares（ $\alpha$ Scorpii），101，115，139，142，144， 162，177，179－181
Aquarii，$\alpha$ ．See Sadalmelik
Aquilae，$\alpha$ ．See Altair
—，$\zeta, 105,107-108,147,150,159-165,167-169$
Arae，$\alpha, 141,144-146,149$
－，$\beta, 141,143$
—，$\gamma, 141,143,145$
一，ס，143－145
—，૬， 141
—，$\eta, 141$
—，$\theta, 142,144$
—，$\sigma, 144$
Arcturus（ $\alpha$ Bootis），104－108，110，112－113，140， 147－151，153－156，158， 161
Arietis，$\beta, 175$
—，$\gamma, 175$

Atria（Trianguli Australis），141， 143
Betelgeuse（ $\alpha$ Orionis）， 166
Bootis，$\alpha$ ．See Arcturus
Caeli，$\delta, 132$
Canis Majoris，$\alpha$ ．See Sirius
—，૬，128， 133
—，к， 187
—，$\lambda, 128,133$
Canis Minoris，$\alpha$ ．See Procyon
Canopus（ $\alpha$ Carinae），124，126，128，133，186－ 187
Capella（ $\alpha$ Aurigae），122， 126
Capricorni，$\delta, 133,167$
—，$\gamma, 133$
Carinae，$\alpha$ ．See Canopus
—，$\beta, 188$
—，$\varepsilon, 187$
—，ı，188， 189
－，v， 189
—，$\chi, 187$
—，HJ 4156， 188
—，No．V343， 188
—，No．V357，188－189
Cassiopeiae，$\varepsilon$ ，121，123－125
Ceti，$\beta, 106,108,110,112$
Chamaeleontis，$\alpha, 188$
—，ท， 188
—，$\theta, 188$
Columbae，$\alpha$ ．See Phact
—，$\beta, 128,133,186$
一，$\gamma, 128,133$
—，$\delta, 128,133$
—，ع，127， 132
－，$\eta, 128$
一，$\theta, 128,133$
—，к，128， 133
－，$\lambda, 133$
－，$\mu, 132$
一，о， 127
Conjunction，
—，of Saturn and Venus， 174
—，of the Moon and Jupiter， 117
－，of Venus and Antares， 115
Coronae Borealis，$\alpha$ ．See Alphecca
Cygni，$\alpha$ ．See Deneb
一，$\gamma, 105,113$
－， $\mathbf{\iota}, 105$
—，STF 2579．See STF 2579
Deneb（ $\alpha$ Cygni），105，113， 181
Doradus，$\alpha, 126-127,132$
－，$\beta, 126-127,132,186$
－，$\gamma, 126,131$
—，ס，128，133， 186
—，$\varepsilon, 128,133,186$
-, $\eta, 127,132$
-, $0,127,132$
Draconis, $\beta, 113,147$
—, $\gamma, 113,147$
-, $\delta, 113$
-, ऽ, 113
—, v-2, 113
Eclipse, Lunar, 102-103, 176-178, 189
Eclipse, Solar, 99, 170-172
Eridani, $\alpha$. See Achernar
—, $0-1,120-121,131,182$
—, t, 120-121, 130, 182
—, к, 119-121, 130, 182
—, $\tau-0,131$
—, т-3, 120-121, 182
—, $\tau-8,131$
—, т-9, 131
—, v-1, 132
—, v-2, 127, 132
-, $\phi, 118,120-121,129,182$
一, $\chi, 110,118,120-121,123-125,129,182$
—, No. 41, 127, 131
—, No. 43, 127, 131
Fomalhaut ( $\alpha$ Piscis Austrini), 106-107, 109, 111, $113,148,161,181,183,185$
Fornacis, $\alpha, 120-121,182$
—, $\beta, 120-121,130,182$
-, $\eta-3,130$
-, $\phi, 130$
Geminorum, $\gamma, 166$
—, $\eta, 166$
-, $\mu, 166$
Gruis, $\alpha$. See Alnair
—, $\beta, 106-107,109,111,113,148$
$-, \gamma, 105,107,109,111,159,160$
—, ס-1, 109
—, $\varepsilon, 106-107,109,111,160$
-, ५, 108, 109, 111, 160
—, $\eta, 160,168$
—, $\lambda, 109$
Herculis, $\mathbf{l}, 147$
Horologii, $\alpha$, 126, 131-132
-, $\beta, 182$
-, $\delta, 131-132$
-, ऽ, 130
-, $\mu, 182$
Hydrae, $\alpha, 106$
Hydri, $\alpha, 106,108,110,118,120-121,123-125$, 129, 182
-, $\beta, 106,108-109,118,184$
$-, \gamma, 122,125-126,131$
-, $\delta, 120-121,130,182$
—, $\varepsilon, 120-121,130,182$
$-, \zeta, 121,182$
-, $\eta-2,121,123-124,129,182$
—, $\theta, 184$
—, $\pi-2,130$

Indi, $\beta, 107,111$
—, ס, 159
—, $\varepsilon, 159$
Jupiter, 101-102, 117, 142, 147-148, 150-151, 153158, 160-161, 164, 181
Jupiter, satellites of, 164
Kaus Australis ( $\varepsilon$ Sagittarii), 142
Leonis, $\alpha$. See Regulus
—, $\gamma, 166$
Lion, Heart of. See Regulus
Lyrae, $\alpha$. See Vega
Magellanic Clouds, 102, 122, 125-127, 131-132
Mars, 101, 147, 150, 153, 156, 159-165, 167-169, 174, 177-178
Mercury, 101, 104-108, 110, 112-114, 140, 142-143, $146,148-162,166,168,179-181,183,185-186$
Milky Way, 102, 176
Mirfak ( $\alpha$ Persei), 110, 126, 173
Moon, Conjuction. See Conjunction
-, Eclipse. See Eclipse, lunar
-, Full, 153
—, New, 103, 114
—, Rising, 101
NGC 2516, 187
Octantis, $\beta, 108-109,111$
—, $\gamma-1,161$
—, v, 107, 111, 159, 160
Orionis, $\alpha$. See Betelgeuse
Orionis, $\beta$. See Rigel
—, $\delta, 101$
—, $\varepsilon, 101$
Pavonis. $\alpha$. See Peacock
-, $\beta, 107,111$
-, $\gamma, 107,111$
-, $\delta, 107,111$
—, $\varepsilon, 107,111$
-, $\eta, 141,144-145$
—, к, 142
—, $\lambda, 142$
—, $\pi, 142,144$
Peacock ( $\alpha$ Pavonis), 107, 111
Pegasi, $\gamma$. See Algenib
Persei, $\alpha$. See Mirfak
-, $\beta$. See Algol
Phact ( $\alpha$ Columbae), 127, 132, 186
Phoenicis, $\alpha, 106,108,110,112,184$
—, $\beta, 118-120,185$
-, $\gamma, 118$-120, 123-125, 185
-, ס, 118-119, 121, 123-125, 185
—, $\varepsilon, 183-184$
-, ऽ, 118-119, 120, 185
—, $\eta, 118,185$
—, t, 109, 112, 183
—, к, 110, 112, 184
—, $\lambda$-1, 184
-, $\mu, 184$
$-, v, 185$
—, $\pi, 184$
—, $\rho, 185$
-, $\sigma, 112,184$
$-, \psi, 129,182$
Pictoris, $\alpha, 187$
-, $\beta, 127,133,186$
—, $\gamma, 128$

- $\delta, 128,133$

Piscis Austrini, $\alpha$. See Fomalhaut
—, 0,159
—, t, 111, 159
Piscium, $\gamma, 178$
—, $\varepsilon, 174$
—, ऽ, 174
Procyon ( $\alpha$ Canis Minoris), 102-103, 176
Puppis, $\zeta, 187$
—, v, 187
—, $\sigma, 187$
—, $\tau, 187$
Regulus ( $\alpha$ Leonis), 103
Reticuli, $\alpha, 126-127,132$
-, $\beta, 122,125$
-, ऽ-2, 122
—, к, 122
Rigel ( $\beta$ Orionis), 122, 126, 128, 132
Rukbat ( $\alpha$ Sagittarii), 159
Sadalmelik ( $\alpha$ Aquarii), 160-161
Sagittarii, $\alpha$. See Rukbat
—, $\beta-1,158$
-, $\beta$ - 2,158
—, $\gamma, 142$
—, $\delta, 142$
—, $\varepsilon$. See Kaus Australis
—, ५, 158
-, $\eta, 142$
—, $\lambda, 142$
—, $\pi, 158$
-, $\sigma, 101,177$
—, $\tau, 158$
Saturn, 111, 133, 147, 150, 153, 159-165, 167169, 174-175
Scorpii, $\alpha$. See Antares
—, $\varepsilon, 141,143$
—, $\eta, 141,143,145$
—, $\theta, 141,145,147,149$
—, t-1, 141, 144-145, 147, 149
—, к, 141, 144-145, 147, 149
—, $\lambda, 141,144-146,149$
—, $\mu-1,141,143$
—, $\sigma, 115,142$
—, $\tau, 101,142,144$
—, v, 141, 144-146, 149
—, M7, 144
Scorpion, Heart of. See Antares
Sculptoris, $\alpha, 185$
-, $\beta, 109,112,183$

- , $\gamma, 183$
—, $\delta, 184$
Sirius ( $\alpha$ Canis Majoris), 128, 168, 176
Spica ( $\alpha$ Virginis), 101, 104, 146, 148-158, 161-162
STF 2579, 104-105, 113
Sun, Apparent diameter of, 139
-, Elevation of, Passim
Tauri, $\alpha, 178$, See Aldebaran
,$- \eta$. See Alcyone
Telescopii, $\alpha, 142$
—, ס-1, 142
—, ૬, 142
Trianguli Australis, $\beta, 141$
—, $\gamma, 141$
Tucanae, $\alpha, 106-107,109,111,113,159$
—, $\beta-1,108,110,112,118,184$
-, $\gamma, 108-109,112,183$
—, ס, 109, 111, 113, 159
-, $\varepsilon, 108-109,184$
-, $\zeta, 108-109,112,118,184$
—, к, 119-120, 123-124, 185
—, v, 184
TYC 7034-1311-1, 122, 131
TYC 7035-1374-1, 122, 131
TYC 7389-2159-1, 141, 144, 147, 149
TYC 7558-987-1, 120-121, 130, 182
TYC 7567-1183-1, 120-121
TYC 7570-1585-1, 122, 131
TYC 7572-1748-1, 122, 131
TYC 7650-3052-1, 187
TYC 8041-1200-1, 129, 182
TYC 8169-1192-1, 188
TYC 8456-967-1, 112, 183
TYC 8475-1390-1, 123, 182
TYC 8597-2340-1, 189
TYC 8944-3281-1, 188
TYC 9162-504-1, 126
Ursae Majoris, $\varepsilon, 101$
—, no. 78, 102
Vega ( $\alpha$ Lyrae), 105, 147, 149-150, 153, 164-165, 168-169, 180-181
Velorum, $\gamma, 187$
-, $\delta, 188$
—, к, 188
—, $\lambda, 188$
—, v, 188
—, o, 188
—, ф, 189
-, $\psi, 188$
Venus, 101, 115, 118, 157, 175, 183
Virginis, $\alpha$. See Spica
Volantis, $\alpha, 188$
一, $\beta, 188$
-, $\gamma-2,187$
-, $\delta, 187$
—, ,, 187
—, ૬, 187
—, к, 187

Georg Marggrafe (1610-1643) is today hailed as the principal author of an influential account of the natural history of Northern Brazil and as compiler of the first accurate map of the area, which is considered as one of the most elegant products of seventeenth-century Dutch cartography. But initially he had the ambition to become known in astronomy. With the support Johan Maurits van Nassau-Siegen, then governor-general of colonial Dutch Brazil, he built in Recife the first European-style astronomical observatory on the South American continent, where he systematically charted the southern stars. He intended to supplement the famous astronomer Tycho Brahe, who charted the Northern sky half a century before. But Marggrafe's untimely death (and the negligence of a Leiden professor) prevented the publication of his valuable observations. As a result, Marggrafe did not achieve fame in astronomy, but instead became famous for his equally remarkable other achievements.

This book presents Marggrafe's stunning biography and is supplemented by a text edition of his astronomical legacy, prepared for the printing press in the 1650s, but only now finalized.



[^0]:    1 Johan Maurits von Nassau-Siegen to the curators of Leiden University, 19 March 1655. University Library Leiden, ASF 290: "De Schriften ende teijckeningen, betreffende de natuijrlicke historie van Brasil, ende de beschrijvinge ende afmetinge der voors. Landen, sijn door ons gegeven aen den heere de Laet, Ende de Schriften, aengaende de Astronomische Observatien, aen den heere Professor Gool, ten eijnde deselve saecken op onse Costen ondersoecht, ende bij een gebracht, mochten in 't licht gegeven worden, soo als ten deele is geschied".

[^1]:    4 Marggrafe's digitized autographs in the Leiden archive were acquired by Oscar Matsuura on CD-Rom in 2006. Today the collection can be consulted via the website of the library of Erfgoed Leiden (ELO): https://www.erfgoedleiden.nl/collecties/bibliotheek, shelfmark LB 7000-1.
    5 ELO, North no. 54 (draft observations of 24 December 1639) and North no. 59 (draft observations of 18- 21 December 1639).
    6 Biblioteca Nacional de Portugal, Mss 6, n. 37. This Lisbon manuscript contains two library stamps. One that has been used since 1796 by the Real Biblioteca Pública (Royal Public Library ), which was based on the collections of the Biblioteca da Real Mesa Censória (Royal Board of Censorship). This stamp was replaced in 1836, when the name was changed into Biblioteca National. A second stamp was applied after 1922. See for the ink stamps: Do terreiro do Paço ao Campo Grande. 200 Anos da Biblioteca Nacional (Liboa: BN, 1997), 164.
    7 OdP, manuscript B12-13.

[^2]:    8 Chris Marriott, SkyMap Pro 11 Software for Astronomers. Provided by the Thompson Partnership, Devon, England.
    $9 \quad$ In current astronomy the Greek letter $\sigma$ is no longer in use.

[^3]:    1 With ink stamps: ‘Observatoire de Paris'; 'Depot des cartes et journaux de la marine’ and 'Observatoire Imperial'. At the foot of the page, left: '76 78, A.'
    2 A superfluous word.
    3 The symbol (1) used in the Paris manuscript stands for the unit of length, the Rhineland foot.
    4 It should be altitudinem.

[^4]:    5 The symbol (2) used in the Paris manuscript stands for digitus (in Dutch duim or in English inch), which stands for $1 / 12$ of a foot, measuring $2,62 \mathrm{~cm}$.
    $6 \quad$ Scrupulum primum $=$ minute (').
    $7 \quad$ It should be pinacidium tychonicum. This is an ingenious sighting tube conceived by Тусно Brahe. See vol. 1, fig. 92a.
    8 Scrupulum secundum: second (").

[^5]:    9 This is obviously an error of the copyist. It should be 20 instead of 2.
    10 Tubus astronomicus = telescope.
    11 'lb', fully spelled out as libra (pound).
    12 Uncia = ounce (unit of weight equal to $1 / 12$ pound). The Amsterdam pound was 494,09 grams and corresponded to 16 ounces. So an ounce would be 30.9 grams.
    13 It could be vuxӨŋuepov, which means a full period of a day including the day and the night.
    14 It should be siderum.

[^6]:    27 'disci' written in other ink.
    28 A description of the eclipse with the recorded times is present in the Leiden manuscripts ( $E L O$, North no. 11r), as well as some calculations in North no. 10r, 10vs and 11vs).
    29 ' $\rho$ nova' written in other ink. A symbol like this in the original manuscript might mean lunar phase.
    30 It should be dilutior.
    31 It should be dissipans.
    32 ' P endebat' written in different ink.
    33 It may be itaque.

[^7]:    34 Anno Christi. Beginning of the Leiden manuscript (ELO, North no. 53).
    35 G. M. S.: degree, minute and second of arc.
    36 /: minute of time.
    37 Urb.: Urbica.
    $38 \quad \chi$ is the symbol for versus.
    39 The words Vesperi $h .6 \frac{1}{2}$ does not appear in the Leiden manuscript (ELO, North no. 53, fol. 2r).
    40 In the manuscript 21 is the symbol that stands for Jupiter, but it should be $\chi$, the symbol for versus. (see 15 September 1639).

[^8]:    $4179^{\circ} 32^{\prime} 30^{\prime \prime}$ in the Leiden manuscript ( $E L O$, North no. 53, fol. 2r). According to calculation, this value is closer to the correct one, so it is adopted in the translation..
    42 At this place the Leiden manuscript has Vesperi impeditus.
    43 'Vesperi' written with a different hand in the left margin.
    44 B for Boreal.
    45 It shoud be currentes.
    46 A stands for Austral.
    47 Unnecessary repetition of the date.

[^9]:    $4811^{\circ} 31^{\prime}$ in the Leiden manuscript ( $E L O$, North no. 53, fol. 2vs). According to calculation, this value is closer to the correct one, so it is adopted in the translation. .
    49 In the Leiden manuscript follows: 'sub hora 7 et 14 nocte'.
    50 In the previous page the same star had the correct Greek letter $\gamma$.
    $51 \alpha$ in the Leiden manuscript (ELO, North no. 53, fol. 2vs). Apparently the Greek letter $\chi$ of the scribe of the Paris manuscripts has to be understand as $\alpha$.

[^10]:    52 There is a horizontal line above the word in the Paris manuscript.
    53 With a double horizontal line above the word in the Paris manuscript.
    54 The sentence in parenthesis is clearer in the Leiden manuscript ( $E L O$, North no. 53 , fol. 2vs): debet $\varepsilon$ esse, sed in Bayero Atlante transpositae $\varepsilon$ debet major esse, $\delta$ minor
    55 In the Leiden manuscript is added: in coluro aeqn.
    56 CC Australior in the Leiden manuscript.
    57 According to the Leiden manuscript this symbol means ideo (therefore).
    58 Symbol for Ad Austrum.

[^11]:    65 Referring to the stars observed hitherto.

[^12]:    8079 pulses in the Leiden manuscript. This value is adopted in the translation.
    81 Sept. is added in the Leiden manuscript.
    82 Secundae in the Leiden manuscript.
    $83 \alpha$ in the Leiden manuscript ( $E L O$, North no. 53 , fol. 3 vs ). Apparently the Greek letter $\chi$ of the scribe of the Paris manuscripts has to be understand as $\alpha$.
    8483320 in the Leiden manuscript. This value is adopted in the translation because it is closer to the calculated one.

[^13]:    99 ad 10 in the Leiden manuscript ( $E L O$, North no. 53, fol. 5 r).
    100 Unclear additional words like et foco.
    101 In the Leiden manuscript this note belongs to the following observation.
    102 (2) means that this star crossed the meridian before the following star marked with (1).
    103 Repeated date.

[^14]:    104 It should be hanc.
    $105 \tau$ in the Leiden manuscript ( $E L O$, North no. 53 , fol. 5 r).
    106 Inserted at the left in the margin: Culminat proxime Ante crus. Cassiop.
    107 Inserted at the left in the margin: Statim culminat Caput Hydri.
    108 This value is closer to the calculated one.
    109 Ibidem.
    110 In this case, according to calculation, the order between (1) and (2) should not be exchanged.
    111 Inserted at the left in the margin: Et statim culminat.

[^15]:    112 It should be Hydri.
    113 Inserted at the left in the margin: glob. caret.
    114 It should be Eridano.
    115 It should be Eridano.
    116 Inserted at the left in the margin: glob. non habet.
    117 Meridian elevation not recorded.

[^16]:    118 After this entry, the French copyist (or the earlier editor) has forgotten to copy the next lines, which are present in the Leiden manuscript (ELO, North no. 53, fol. 5vs). These lines are added in the translation:
    Azimuth ejus a Sept. in Occ. $38 \quad 1 \quad 0$
    283 p.
    Cap. Androm. alt. occ. 4327 Oet

[^17]:    125 It should be longe.
    126 Inserted at the left in the margin: glob. caret.
    127665330 in the Leiden manuscript. This value, which is closer to the calculated one, is used in the translation.
    128 Inserted at the left in the margin: glob. caret.
    129 Inserted at the left in the margin, before the accolade: glob. caret.
    130 Inserted at the left in the margin: glob. non habet.
    131 Inserted at the left in the margin: glob. non habet.

[^18]:    139 Here appears the word ante in the Leiden manuscript, where the NB stands in the margin.
    140 orientalior in the Leiden manuscript.
    141 Here the Leiden manuscript has the addition: 2 mihi 3.
    142 quinque added from the Leiden manuscript.
    143 Ibidem.
    144 Sic!
    1455 in the Leiden manuscript, instead of $S$.

[^19]:    146 The following data are also written (in pencil) as a draft on a single piece of paper among the Leiden manuscripts (North no 54. See also North no. 53, fol. 7vs-8r).
    147 Rio Indi does not appear in the Leiden manuscript (ELO, North no. no. 53, fol. 7 recto), but instead a small triangle $\nabla$ with four stars is drawn, identical to the figure on the next page.
    148344830 in the Leiden manuscript. This value is used in the translation.
    $14967^{\circ} 68^{\prime} 38^{\prime \prime}$ in the Leiden manuscript (ELO, North no. no. 53 , fol. 7 r). This value is used in the translation. It is also closer to the calculated one.

[^20]:    158 Sic! The item 3 is missing.
    159 Shoud be 17 instead of 77 .

[^21]:    160 In the Paris manuscript there is a tilde mark above the q , so the word quam is meant. 161 Sic!

[^22]:    164 Here Boulliau's copy resumes, having omitted all observations since 21 December 1639.
    165 Not $\beta$ but $\alpha$ Trianguli Australis.

[^23]:    166 Value of minutes obviously wrong.
    167 With an abbreviation mark above.

[^24]:    168 Sic! But 3749 before the semicolon is the meridian elevation quoted few lines above.

[^25]:    173 It should be pisce.
    174 It should be pisce.
    175 It should be тапи.
    176 Collum.
    177 It should be oblongatae.

[^26]:    183 Apparently a meaningless symbol.

[^27]:    184 Sic.
    185 Western elevation higher than the previous one, so it is obviously wrong. Possibly it should be $43^{\circ} 4^{\prime} 0^{\prime \prime}$.

[^28]:    186 Sic! Azimuth missing.

[^29]:    187 Mauritiae before.

[^30]:    188 N.N.W. according to to the original letter.
    189 The original Dutch letter is preserved among the Leiden manuscripts (ELO, North no. 1). It reads: Int Jaer onses heeren $1640 \mid$ Item, op Den 13 november de klock 11 ueeren twee | begonnen | De keliptie inde sonne ende hij weerden twee derde paertten | veer duijstert ende het duerde tot de kloock 1 ueeren ende ${ }^{1 / 4}$ ueers $\mid$ tvee ende wij hadden op des vrijdach de hoeckes van 20 graeden en $\mid 5$ menutes ende wij hadden leeijnten 346 grades ende 28 menuten | besuiden de kijmme ende wij waeren buiten de wech 23 millen ende wij | hadden moeij ronde schin weer en den wint weer noort noort dewest | Schijper Leendert Reijnsen Verhochen. According to the signature of the original letter, the correct name of the skipper was 'Verhochen'.

[^31]:    190 Beginning of the surviving part of the (incomplete preserved) manuscript in Lisbon.

[^32]:    191 'sic' added by the copyist?

[^33]:    192 Sic! It may be adspiciuntur.
    193 An opening parenthesis is missing here.

[^34]:    194 Abbreviation of $\Sigma u \dot{v} \theta \varepsilon \omega$, meaning ‘With God’, or 'With Gods help’.
    195 Sic!

[^35]:    198 Or $6^{\prime} 8^{\prime \prime}$.

[^36]:    202 This is the last observation copied by Boullieu in the manuscript in the Observatoire de Paris, B12-13.
    $203 M$ for meridional was used instead of $A$ for austral.
    204 Abbreviation of $\Sigma \dot{v} v \Theta \varepsilon \omega$ that means 'With God', or 'With Gods help'.
    205 L.M.: abbreviation for Liebstadio-Misnici.

[^37]:    206 It should be alae.
    207 Inserted at the left in the margin: glob. caret.
    208 Inserted at the left in the margin: glob. caret.
    209 Sic!

[^38]:    210 End of both the Lisbon and Paris manuscripts.

[^39]:    1 1 Rhineland foot $=0.314$ meter. So, 20 Rhineland feet is 6.3 meter.
    26 Rhineland feet is 1.9 meter. For designs for the observatory, see vol. 1, fig. 88 and $E L O$, North nos. 69a, 70r and 70 vs.
    313 Rhineland feet $=4.1$ meter.
    45 Rhineland feet $=1.6$ meter.
    58 Rhineland feet $=2.5$ meter.
    $6 \quad 1 \frac{1}{3}$ Rhineland feet $=0.42$ meter.
    74 Rhineland feet $=1.26$ meter ; $21 / 2$ Rhineland feet $=0.79$ meter.

[^40]:    8 Drawings related to the 5 -foot quadrant were found in the Leiden manuscripts.See vol. 1, fig. 90 and 91b (ELO, North no. 71vs).
    9 Pau Santo, literally 'Holy Wood'; scientifically Zollernia paraensis.
    10 Related drawings were found among the Leiden manuscripts. See vol. 1, fig. 92b (ELO, North no. 73r and 73vs).
    11 For a drawing of the sextant, see vol. 1, fig. 94 (ELO, North no. 71r).

[^41]:    12 For a sketch of the pedestal of the sextant, see also vol. 1, fig. 94 and below, manuscript page 7.
    13 For displacing the telescope laterally.
    14 For a sketch of this device, see $E L O$, North no. 72vs.
    15 The sphere of a ball joint.

[^42]:    16 For the placing of a telescope.
    17 A possible drawing of the sundial's gnomon or staff can be found in $E L O$, North no. 72 r. See vol. 1, fig. 96.
    18 This is probably the result of a transcribing error by the French copyist.
    19 A partial drawing is present in the Leiden manuscripts (ELO, North no. 72r). See vol. 1, fig. 96.
    20 Its aligning sight.

[^43]:    Spica, or $\alpha$ Virginis, with an apparent visual magnitude of 0.97 , is the brightest object in the constellation of Virgo and one of the 20 brightest stars in the night sky. FIRST OBSERVATION. $\sigma$ Sagittarii. FIRST observation.
    Antares, or $\alpha$ Scorpii, with an apparent visual magnitude of +0.6 down to +1.6 , is the brightest star in the constellation of Scorpius. On average it is the $15^{\text {dh }}$-brightest star in the night sky. FIRST ObSERVATION.
    $\tau$ Scorpii. First observation.
    Maybe the symbol for degree ( ${ }^{\circ}$ ).
    Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    These stars might be $\delta$ and $\varepsilon$ Orionis.
    $\varepsilon$ Ursae Majoris. First observation.

[^44]:    37 Here Marggrafe starts to report his observations with the 5 feet quadrant on the newly finished observatory. The observations recorded from this date, until 19 June 1640, are also noted down in the Leiden manuscript, ELO, North no. 53. The notes copied by Boulliau (Observatoire de Paris, B12-13) also start here.
    38 Arcturus, or $\alpha$ Bootis, with an apparent visual magnitude of $-0,05$, is the brightest star in the constellation of Boötes, the fourth-brightest in the night sky, and the brightest in the northern celestial hemisphere. FIRST OBSERVATION.
    39 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    40 The star should be STF 2579 in the Swan, but its meridian transit occurred more than one hour after the last recorded observation of the night. On the other hand, there was no other candidate star crossing the meridian around 6 h 30 m of the local solar time.
    41 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.

[^45]:    42 Vega, or $\alpha$ Lyrae, with an apparent visual magnitude of 0.026 , is the brightest star in the constellation of Lyra, and the fifth-brightest star in the night sky. Frist observation.
    43 乌Aquilae. First observation.
    44 STF 2579. First observed 16 September 1639.
    45 Altair, or $\alpha$ Aquilae, with an apparent visual magnitude of 0.76 , is the brightest star in the constellation of Aquila (Eagle) and the twelfth-brightest star in the night sky. FIRST observation. According to our calculation, this star crossed the meridian 33 s before the previous star.
    46 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    $47 \zeta$ Aquilae. First observed 18 September 1639.
    $48 \quad \iota$ Cygni. First observation.
    49 STF 2579. First observed 16 September 1639.
    $50 \quad \gamma$ Cygni. First observation.
    51 Deneb, or $\alpha$ Cygni, with an average apparent visual magnitude of 1,25, is the brightest star in the constellation of Cygnus ('the Swan'), and the 19th brightest star in the night sky. Deneb is one of the vertices of the asterism known as the Summer Triangle and the Head of the Northern Cross. First observation.

[^46]:    $64 \zeta$ Aquilae. First observed 18 September 1639.
    $65 \varepsilon$ Pavonis. FIRst ObSERVATION.
    $66 \delta$ Pavonis. First observation
    67 Peacock, or $\alpha$ Pavonis. Binary star in the southern constellation of Pavo ('peacock'), near the border with the constellation Telescopium, with na apparent magnitude of 1.94. FIRST observation.
    $68 \beta$ Pavonis. FIRST ObSERVATION.
    $69 \beta$ Indi. FIRST ObSERVATION.
    $70 \quad v$ Octantis. FIRst observation.
    $71 \quad \gamma$ Pavonis. FIRST ObSERVATION. According to our calculation, this star crossed the meridian 2 m 38 s before the previous star.
    $72 \gamma$ Gruis. First observed 20 September 1639.
    73 Alnair, or $\alpha$ Gruis. First observed 20 September 1639.
    $74 \alpha$ Tucanae. First observed 20 September 1639.
    $75 \beta$ Gruis. First observed 20 September 1639.
    $76 \varepsilon$ Gruis. First observed 20 September 1639.
    77 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.

[^47]:    $91 \quad \gamma$ Gruis. First observed 20 September 1639.
    $92 \lambda$ Gruis. First observation.
    93 Alnair, or $\alpha$ Gruis. First observed 20 September 1639.
    $94 \alpha$ Tucanae. First observed 20 September 1639.
    $95 \delta$ Tucanae. FIRST OBSERVATION.
    $96 \delta_{l}$ Gruis. First observation.
    $97 \beta$ Octantis. First observed 21 September 1639. This star crossed the meridian 3 m 26 s before the previous star.
    $\beta$ Gruis. First observed 20 September 1639.
    $\varepsilon$ Gruis. First observed 20 September 1639.
    Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    $\zeta$ Gruis. First observed 21 September 1639.
    $\beta$ Octantis. First observed 21 September 1639.
    $\gamma$ Tucanae. First observed 21 September 1639.
    $\beta$ Sculptoris. FIRST OBSERVATIoN.
    $\iota$ Phoenicis. First observation.
    HR 8959 in the Phoenix.
    $\varepsilon$ Tucanae. First observed 21 September 1639.
    $\beta$ Hydri. First observed 20 September 1639.
    $109 \zeta$ Tucanae. First observed 21 September 1639. This star crossed the meridian 4 m 50 s before the previous star.

[^48]:    122 Alphecca, or $\alpha$ Coronae Borealis, with an average apparent visual magnitude of 2.24, is an eclipsing binary star in the constellation of Corona Borealis. FIRST OBSERVATION.
    $123 \varepsilon$ Pavonis. First observed 21 September 1639.
    $124 \delta$ Pavonis. First observed 21 September 1639.
    125 Peacock, or $\alpha$ Pavonis. First observed 21 September 1639.
    $126 \beta$ Pavonis. First observed 21 September 1639.
    $127 \beta$ Indi. First observed 21 September 1639.
    $128 v$ Octantis. First observed 21 September 1639.
    $129 \gamma$ Pavonis. First observed 21 September 1639. This star crossed the meridian 2 m 37 s before the previous star.
    $130 \quad \iota$ Piscis Austrini. First observation.
    $131 \gamma$ Gruis. First observed 20 September 1639.
    132 Alnair, or $\alpha$ Gruis. First observed 20 September 1639.
    $133 \alpha$ Tucanae. First observed 20 September 1639.
    $134 \delta$ Tucanae. First observed 22 September 1639.
    $135 \beta$ Octantis. First observed 21 September 1639.
    $136 \beta$ Gruis. First observed 20 September 1639.
    $137 \varepsilon$ Gruis. First observed 20 September 1639.
    138 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    $139 \zeta$ Gruis. First observed 21 September 1639.

[^49]:    140 No candidate star was found below the Water Snake (Hydrus) crossing the meridian around the given elevation between the meridian transit of the previous and the subsequent star.
    $\gamma$ Tucanae. First observed 21 September 1639.
    $\beta$ Sculptoris. First observed 22 September 1639.
    $\iota$ Phoenicis. First observed 22 September 1639.
    TYC 8456-967-1 in the Phoenix. First observation.
    $\sigma$ Phoenicis. First observation. Absent in Houtman’s catalogue. See Knobel, 'On Frederick de Houtman's catalogue of the southern stars' (1917); Verbunt \& Van Gent, 'Early star catalogues of the southern sky' (2011).
    $\zeta$ Tucanae. First observed 21 September 1639.
    Ankaa, or $\alpha$ Phoenicis. First observed 20 September 1639.
    $\kappa$ Phoenicis. First observed 22 September 1639.
    $\beta_{1}$ Tucanae. First observed 21 September 1639.
    $\beta$ Ceti. First observed 20 September 1639.
    Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.

[^50]:    $152 \delta$ Draconis. First observation.
    153 The stars of the head of the Dragon are $\beta$ Draconis, $\gamma$ Draconis, $\xi$ Draconis and $v_{2}$ Draconis.
    154 STF 2579. First observed 16 September 1639.
    $155 \gamma$ Cygni. First observed 19 September 1639.
    156 Deneb, or $\alpha$ Cygni. First observed 19 September 1639.
    $157 \alpha$ Tucanae. First observed 20 September 1639.
    $158 \delta$ Tucanae. First observed 22 September 1639.
    $159 \beta$ Gruis. First observed 20 September 1639.
    160 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.

[^51]:    161 Alphecca, or $\alpha$ Coronae Borealis. First observed 23 September 1639.
    162 The inserted figures are from the Leiden manuscript (ELO, North no. 53, fol. 4r) and the Paris manuscript.

[^52]:    163 Notice, this observation recedes back one day.
    $164 \alpha$ Scorpii or Antares. First observed 20 September 1638.
    $165 \sigma$ Scorpii. First observation.
    166 It should be 13 October 1639, 4 PM.

[^53]:    168 Andromeda, (also) Alpheratz, or $\alpha$ Andromedae, with an overall apparent visual magnitude 2.06, of is the brightest star in the constellation of Andromeda. FIRST OBSERVATION.
    $\zeta$ Tucanae. First observed 21 September 1639.
    $\beta$ Hydri. First observed 20 September 1639.
    $\beta_{1}$ Tucanae. First observed 21 September 1639.
    $\eta$ Phoenicis. First observation.
    $\beta$ Phoenicis. FIRST OBSERVATION.
    $\zeta$ Phoenicis. FIRST OBSERVATION.
    $\gamma$ Phoenicis. First observation. Not in the globe suggests a non-Ptolemaic star.
    $\delta$ Phoenicis. FIRST ObSERVATION.
    Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
    $\chi$ Eridani. First observed 22 September 1639.
    $\alpha$ Hydri. First observed 22 September 1639.
    This value is closer to the calculated one.
    $\varphi$ Eridani. First observation.

[^54]:    $183 \kappa$ Eridani. FIRST obSERVATION. Not in the globe suggests a non-Ptolemaic star.
    184 Algol, or $\beta$ Persei. First observed 22 September 1639.
    $185 \beta$ Phoenicis. First observed 26 November1639.
    $186 \zeta$ Phoenicis. First observed 26 November1639.
    $187 \kappa$ Tucanae. FIRST observation.
    $188 \gamma$ Phoenicis. First observed 26 November1639. Not in the globe suggests a non-Ptolemeic star.
    $189 \delta$ Phoenicis. First observed 26 November1639.

[^55]:    $208 \delta$ Phoenicis. First observed 26 November1639.
    209 Achernar, or $\alpha$ Eridani. Inserted in the left margin: About the same time the leg of $\varepsilon$ Cassiopeia culminates.
    $210 \chi$ Eridani. First observed 22 September 1639.
    $211 \eta_{2}$ Hydri. FIRST observation.
    212 Inserted in the left margin: Immediately the head of the Water Snake culminates .
    $213 \alpha$ Hydri. First observed 20 September 1639.
    $214 \varphi$ Eridani. First observed 26 November1639.
    $215 \kappa$ Eridani. observed twice. First observed 26 November1639.
    $216 \delta$ Hydri. First observed 16 December 1639.
    217 TYC 7558-987-1. First observed 16 December 1639. Inserted in the left margin: And immediately reached culmination.
    $218 \iota$ Eridani. First observed 16 December 1639. Absent in Houtman's catalogue.
    $219 \beta$ Fornacis. First observed 16 December 1639.
    $220 \varepsilon$ Hydri. First observed 16 December 1639.
    $221 \theta_{1}$ Eridani. First observed 16 December 1639.
    $222 \tau_{3}$ Eridani. First observed 16 December 1639.
    223 گHydri. FIRST observation. This star crossed the meridian 6 m 11 s before the previous star.
    $224 \alpha$ Fornacis. First observed 16 December 1639.
    225 TYC 7567-1183-1. First observed 16 December 1639. Absent in the globe suggests a nonPtolemaic star.
    226 'Beneath' refers to the southern Celestial Pole, not the elevation from the horizon.
    227 § Hydri ? (was earlier the fifth star of the Water Snake).

[^56]:    243 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.
    $244 \kappa$ Tucanae. First observed 16 December 1639.
    $245 \gamma$ Phoenicis. First observed 26 November1639.
    $246 \delta$ Phoenicis. First observed 26 November1639.
    247 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
    $248 \varepsilon$ Cassiopeiae. See observations 17 December 1639, 6:45 PM.
    249 TYC 8475-1390-1 in the River Eridanus. FIRst ObSERVATION.
    $250 \chi$ Eridani. First observed 22 September 1639.
    $251 \eta_{2}$ Hydri. First observed 17 December 1639.
    $252 \alpha$ Hydri. First observed 22 September 1639.
    253 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.

[^57]:    254 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.
    $255 \kappa$ Tucanae. First observed 16 December 1639.
    $256 \gamma$ Phoenicis. First observed 26 November1639.
    $257 \delta$ Phoenicis. First observed 26 November1639.
    258 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
    $259 \varepsilon$ Cassiopeiae. See observations 17 December 1639, 6:45 PM.
    $260 \chi$ Eridani. First observed 22 September 1639.
    $261 \eta_{2}$ Hydri. First observed 17 December 1639.
    $262 \alpha$ Hydri. First observed 22 September 1639.
    263 Canopus, or $\alpha$ Carinae, with an apparent visual magnitude of -0.74 , is the brightest star in the southern constellation of Carina and the second-brightest star in the night sky. FIRST observation. Canopus was a luxury city at the coast of ancient Egypt.

[^58]:    264 Algol or $\beta$ Persei. First observed 22 September 1639.
    $265 \eta$ Tauri or Alcyone.
    $266 \beta$ Reticuli. First observed 17 December 1639.
    $267 \quad \gamma$ Hydri. First observed 17 December 1639. The nebulae are the Magellanic Clouds.
    268 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639.
    $269 \gamma$ Phoenicis. First observed 26 November1639.
    $270 \delta$ Phoenicis. First observed 26 November1639.
    271 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
    $272 \varepsilon$ Cassiopeiae. See observations 17 December 1639, 6:45 PM.
    $273 \chi$ Eridani. First observed 22 September 1639.
    $274 \alpha$ Hydri. First observed 22 September 1639.
    275 Andromeda, or $\alpha$ Andromedae. First observed 26 November1639. According to our calculation, this star was at this elevation 2 m 14 s before the previous star was crossing the meridian.

[^59]:    29241 Eridani. First observation.
    29343 Eridani. First observation.
    294 Large Magellanic Cloud.
    $295 \alpha$ Reticuli. 'western' Should be 'eastern'. First observed 20 December 1639. According to our calculation, this star crossed the meridian 34 s before the previous star.
    $296 \delta$ Caeli in the Chisel. FIrst observation. Inserted in the left margin: does not exist in the globe, which suggests a non-Ptolemeic star.
    $297 v_{2}$ Eridani. First observation.
    $298 \alpha$ Doradus. First observed 20 December 1639.
    $299 \alpha$ Caeli. First observation. Absent in Houtman's catalogue.
    $300 \quad \gamma$ Caeli. First observation Inserted in the left margin: not in the globe. Absent in Houtman's catalogue.
    301 The Magellanic Clouds.
    302 § Doradus. FIRST OBSERVATION. Inserted at the left in the margin, before the accolade: Not in the globe, which remark suggests a non-Ptolemeic star. 'Large cloud' refers to the Magellanic Cloud.
    303 o Columbae. First observation.
    $304 \theta$ Doradus. First observation.
    $305 \varepsilon$ Columbae. First observation.
    306 Phact, or $\alpha$ Columbae, is a the brightest star in the southern constellation of Columba, with an apparent visual magnitude of 2.6. FIRST OBSERVATION.
    $307 \beta$ Doradus. First observed 20 December 1639.
    $308 \beta$ Pictoris. First observation. The swift ship = Argo Navis.

[^60]:    $354 \quad \theta_{1}$ Eridani. First observed 16 December 1639.
    $355 \beta$ Andromedae. First observation. This star crossed the meridian 9 s before the previous one.
    356 The same star of the previous observation.
    357 TYC 7572-1748-1. First observed 17 December 1639.
    358 TYC 7034-1311-1. First observed 17 December 1639.
    $359 \tau_{6}$ Eridani. First observation.
    360 TYC 7570-1585-1. First observed 17 December 1639.
    361 TYC 7035-1374-1. First observed 17 December 1639.
    $362 \tau_{8}$ Eridani. FIRST OBSERVATION.
    $363 \tau_{9}$ Eridani. First observation.
    $364 \gamma$ Hydri. First observed 17 December 1639.
    365 The Magellanic Clouds.
    $366 \alpha$ Horologii. First observed 20 December 1639. The western star of the pair is $\delta$ Horologii.
    367 The two stars are 41 and 43 Eridani. First observed 21 December 1639. 'West' should be 'east'.
    36841 Eridani. 'Western' should be 'eastern'.
    $369 \gamma$ Doradus. First observed 20 December 1639.
    370 Should be eastern.
    37143 Eridani. First observed 21 December 1639.

[^61]:    $387 \beta$ Columbae. First observed 21 December 1639.
    $388 \beta$ Pictoris. First observed 21 December 1639.
    $389 \lambda$ Columbae. First observation.
    $390 \gamma$ Columbae. First observed 21 December 1639.
    $391 \delta$ Doradus. First observed 21 December 1639. This star crossed the meridian 35 s before the previous one.
    $392 \varepsilon$ Doradus.
    $393 \theta$ Columbae. First observed 21 December 1639.
    394 Canopus, or $\alpha$ Carinae (First observed 19 December 1639) and $\delta$ Pictoris (First observed 21 December 1639). Inserted in the margin: Not in the globe, which suggests a non-Ptolemeic star.
    $395 \kappa$ Columbae. First observed 21 December 1639.
    $396 \zeta$ Canis Majoris. First observed 21 December 1639.
    $397 \delta$ Columbae. First observed 21 December 1639.
    $398 \lambda$ Canis Majoris. First observed 21 December 1639.
    399 In Capricornus ('horned goat'), one of the constellations of the zodiac.
    400 The leading star of the Tail of the Sea Goat was $\gamma$ Capricorni.
    401 The subsequent star was $\delta$ Capricorni. FIRST OBSERVATION.

[^62]:    402 This value was adopted, because it matches better to the calculated one.
    403 'In the night following 18 March' might mean 'after the change to new date at midnight'.

[^63]:    404 This is the last recorded day in the Leiden observation register ELO, North no. 58.
    405 According to our calculation, the sundial hour at the previous observation was 10 h 43 m 34 s.
    406 The calculated sundial time at the previous observation was 1 h 55 m 31 s .

[^64]:    411 Antares or $\alpha$ Scorpii. First observed 20 September 1638.
    412 The instrument should be a camera obscura, set up in the room beneath that one with the 5 -foot quadrant.
    413 A blackened card with a hole is present among the Leiden manuscripts (ELO, North no. 79). See vol. 1, fig. 110.

    414 For three small drawings of the Sun, together with some calculations, on a sheet of paper bearing this very date ' 28 June', see: Vol. 1, fig. 111 ( $E L O$, North no. 32). Above the three circular drawings of the sun, in a different small but seventeenth-century handwriting, some words in Dutch are written: glijck ('alike'), wat grooter ('somewhat larger') and wat kleender ('somewhat smaller'). This seems to indicate that at that moment Marggrafe worked together with an assistant.

[^65]:    416 Atria, or $\alpha$ Trianguli Australis, with an apparent visual magnitude of 1.91, is the brightest star in the southern constellation of Triangulum Australe ('Southern Triangle'), forming an apex of a triangle with $\beta$ Trianguli Australis and $\gamma$ Trianguli Australis that gives the constellation its name. FIRST OBSERVATION.
    $\eta$ Arae. First observation.
    418 In chronological order, $\eta$ Arae was the first star to cross the meridian at elevation $39^{\circ} 46^{\prime}$ $21^{\prime \prime}$, so instead of $49^{\circ}$ in elevation, it should be $39^{\circ}$.
    419 ૬Arae. First observation.
    $420 \varepsilon$ Scorpii. FIRST OBSERVATION. This star and the next one crossed the meridian, respectively, 2 m 8 s and 1 m 30 s before the previous one.
    $421 \mu_{1}$ Scorpii. First observation.
    $422 \quad \eta$ Scorpii. FIRST observation.
    $423 \gamma$ Arae. First observation.
    $424 \beta$ Arae is the brightest star in the southern constellation of Ara (the 'Altar', or 'Censer'), with an average apparent visual magnitude of 2.84. FIRST OBSERVATION.
    $425 \delta$ Arae. FIRST OBSERVATION.
    $426 \alpha$ Arae with an average apparent visual magnitude of 2.93, is the second brightest star in the southern constellation of Ara (the 'Altar', or 'Censer'). First observation.
    $427 v$ Scorpii. FIRST OBSERVATION.
    $428 \lambda$ Scorpii. FIRST OBSERVATIon.
    $429 \quad \theta$ Scorpii. FIRST observation.
    $430 \quad \eta$ Pavonis. First observation. According to our calculation, this star crossed the meridian 54 s before the previous one.
    $431 \kappa$ Scorpii. First observation.
    $432 \iota_{1}$ Scorpii. First observation.
    433 TYC 7389-2159-1 in the Scorpion. First observation.

[^66]:    450 Atria, or $\alpha$ Trianguli Australis. First observed 7 August 1640. According to our calculation, this star crossed the meridian 2 m 16 s before the previous one.
    $451 \varepsilon$ Scorpii. First observed 7 August 1640.
    $452 \mu_{1}$ Scorpii. First observed 7 August 1640.
    453 Alphecca, or $\alpha$ Coronae Borealis. First observed 23 September 1639.
    454 According to our calculation, Mercury was in this position 1 s before the previous observation.
    455 Alphecca, or $\alpha$ Coronae Borealis. First observed 23 September 1639.
    $456 \quad \eta$ Scorpii. First observed 7 August 1640.
    $457 \quad \gamma$ Arae. First observed 7 August 1640.
    $458 \beta$ Arae. First observed 7 August 1640.
    $459 \delta$ Arae. First observed 7 August 1640.

[^67]:    $460 \quad \alpha$ Arae. First observed 7 August 1640.
    $461 v$ Scorpii. First observed 7 August 1640.
    $462 \lambda$ Scorpii. First observed 7 August 1640.
    463 This star might be $\sigma$ Arae which, according to our calculation, crossed the meridian 16 s before the previous star.
    $464 \quad \eta$ Pavonis. First observed 7 August 1640.
    $465 \delta$ Arae. First observed 7 August 1640
    $466 \kappa$ Scorpii. First observed 7 August 1640.
    $467 \iota_{1}$ Scorpii. First observed 7 August 1640.
    468 TYC 7389-2159-1. First observed 7 August 1640.
    469 The bright open cluster M7 in the constellation of Scorpion.
    $470 \pi$ Pavonis. First observed 7 August 1640.
    $471 \quad \theta$ Arae. First observed 7 August 1640.
    472 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
    $473 \tau$ Scorpii. First observed 20 September 1638.

[^68]:    $474 \quad \eta$ Scorpii. First observed 7 August 1640.
    $475 \gamma$ Arae. First observed 7 August 1640.
    $476 \delta$ Arae. First observed 7 August 1640.
    $477 \alpha$ Arae. First observed 7 August 1640.
    $478 v$ Scorpii. First observed 7 August 1640.
    $479 \lambda$ Scorpii. First observed 7 August 1640.
    $480 \quad \theta$ Scorpii. First observed 7 August 1640.
    481 Not filled in. The unquoted star should be $\eta$ Pavonis. First observed 7 August 1640. According to our calculation, this star crossed the meridian 55 s before the previous star.
    $482 \kappa$ Scorpii. First observed 7 August 1640.
    $483 \boldsymbol{\iota}_{1}$ Scorpii. First observed 7 August 1640.

[^69]:    484 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    485 Ibidem.
    $486 \alpha$ Arae. First observed 7 August 1640.
    $487 v$ Scorpii. First observed 7 August 1640.
    $488 \lambda$ Scorpii. First observed 7 August 1640.

[^70]:    $489 \quad \theta$ Scorpii. First observed 7 August 1640.
    $490 \kappa$ Scorpii. First observed 7 August 1640.
    $491 \iota_{1}$ Scorpii. First observed 7 August 1640.
    492 TYC 7389-2159-1. First observed 7 August 1640.
    493 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    $494 \iota$ Herculis. First observation.
    $495 \gamma$ Draconis. The other star of the pair is $\beta$ Draconis.
    496 According to our calculation, Jupiter crossed the meridian 1 m 42 s before Arcturus was in the position of the previous observation.
    497 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    $498 \zeta$ Aquilae. First observed 18 September 1639.

[^71]:    499 The meridian elevation is not given, but this star should be $\beta$ Gruis (First observed 20 September 1639).
    500 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    501 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    $502 \alpha$ Bootis. First observed 15 September 1639.

[^72]:    503 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    $504 \alpha$ Virginis. First observed 19 September 1638.
    $505 \alpha$ Arae. First observed 7 August 1640 .
    $506 v$ Scorpii. First observed 7 August 1640.
    $507 \lambda$ Scorpii. First observed 7 August 1640.
    $508 \quad \theta$ Scorpii. First observed 7 August 1640.
    $509 \kappa$ Scorpii. First observed 7 August 1640.
    $510 \iota_{1}$ Scorpii. First observed 7 August 1640.
    511 TYC 7389-2159-1. First observed 7 August 1640.

[^73]:    512 Spica, or $\alpha$ Virginis. First observed 19 September 1638. According to our calculation, this star was in this position 7 s before the previous observation.
    513 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    514 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    515 乌Aquilae. First observed 18 September 1639.
    516 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

[^74]:    517 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    518 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    519 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

[^75]:    521 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    522 Ibidem.
    523 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    524 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

[^76]:    525 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    526 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    527 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

[^77]:    528 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    529 Ibidem.
    530 Spica, or $\alpha$ Virginis. First observed 19 September 1638.

[^78]:    543 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    544 Ibidem.
    545 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    546 Jupiter had already crossed the meridian more than half an hour before the previous observation. Moreover, the meridian elevation was much higher ( $74^{\circ} 30^{\prime} 49^{\prime \prime}$ ). So it seems that the observation was instead of $\zeta$ Sagittarii.
    $547 \quad \gamma$ Coronae Australis.
    548 Alphecca, or $\alpha$ Coronae Australis. First observed 23 September 1639.
    $549 \tau$ Sagittarii. FIRST OBSERVATION. According to our calculation, this star crossed the meridian about 30 s before the previous star.
    $550 \pi$ Sagittarii. FIRST OBSERVATION.
    $551 \beta_{1}$ Sagittarii with magnitude 3.96. Absent in Houtman's catalogue. The other star is $\beta_{2}$ Sagittarii with magnitude 4.27.

[^79]:    562 The figure might illustrate the clouds crowded in the western sky.
    563 Mercury was already about to set.
    564 The instruments could be the 7 -foot telescope and the 5 -foot quadrant.
    $565 B$ in the original, but it should be $A$.
    $566 v$ Octantis. First observed 21 September 1639.
    $567 \gamma$ Gruis. First observed 20 September 1639.
    568 乌Aquilae. First observed 18 September 1639.
    569 Sadalmelik, or $\alpha$ Aquarii, with an apparent visual magnitude of 2.94, is the second brightest star in the constellation of Aquarius ('Water Carrier') . First observation.
    570 Due to too large an error in azimuth, and also because the next western elevation of the same star is higher, an elevation of $37^{\circ} 50^{\prime} 0$ "seems more plausible.
    $571 \varepsilon$ Gruis. First observed 20 September 1639. The other stars of the triad are $\eta$ and $\zeta$ Gruis.

[^80]:    572 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    $573 \gamma_{1}$ Octantis. Absent in Houtman's catalogue.
    574 Arcturus, or $\alpha$ Bootis. First observed 15 September 1639.
    575 Spica, or $\alpha$ Virginis. First observed 19 September 1638.
    576 乌Aquilae. First observed 18 September 1639.
    577 Sadalmelik, or $\alpha$ Aquarii. First observed 18 September 1640.

[^81]:    582 According to our calculation, the length of the shadow should be 566 divisions.
    583 It is noteworthy that the hour angle of the Sun at the meridian transit of the Moon was 6 h 22 m 50 s .
    $584 \zeta$ Aquilae. First observed 18 September 1639.

[^82]:    $585 \zeta$ Aquilae. First observed 18 September 1639.
    586 Ibidem.
    587 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.

[^83]:    $588 \zeta$ Aquilae. First observed 18 September 1639.
    589 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.

[^84]:    $600 \delta$ Capricorni. First observed 26 December 1639.
    601 SAquilae. First observed 18 September 1639.
    602 Elevation corrected, due to an obvious mistake by the French copyist, who mistook a 3 for an 8 .
    $603 \zeta$ Aquilae. First observed 18 September 1639.
    $604 \delta$ Capricorni. First observed 26 December 1639.

[^85]:    615 South, according to our calculation.
    616 乌Aquilae. First observed 18 September 1639.
    617 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.

[^86]:    $630 \beta$ Andromedae. First observed 24 December 1639.
    631 According to our calculation, this observation was 49 m 50 s after sunset.
    632 Algol or $\beta$ Persei. First observed 22 September 1639.
    633 According to our calculation, the end of the twilight occurred 1 h 10 m 58 s after sunset.
    634 Mirfak, or $\alpha$ Persei. First observed 22 September 1639.

[^87]:    $635 \varepsilon$ Piscium. First observation.
    $636 \zeta$ Piscium, eastern in relation to $\varepsilon$ Piscium. FIRST OBSERVATION.

[^88]:    $662 \alpha$ Tauri. First observed 16 December 1639.
    663 This star is $\gamma$ Piscium according to Pingré, Annales Célestes (1901), 160. (FIrst observation). It was at this elevation 28 m 7 s before the Moon left the umbra.
    664 The calculated ecliptic longitude of Mars when the Moon entered the umbra was $24^{\circ} 57^{\prime}$ $57.5^{\prime \prime}$. The longitude quoted in the manuscript may be the complement for the boundary of $30^{\circ}$ of the first zodiacal sign.
    665 Old arithmetic expression of the ecliptic latitude.
    666 The calculated ecliptic latitude is $-0^{\circ} 41^{\prime} 20.1^{\prime \prime}$.
    667 According to our calculation, $44^{\circ} 18^{\prime} 12.9^{\prime \prime}$.
    668 According to our calculation, $+14^{\circ} 45^{\prime} 34.8^{\prime \prime}$.
    $669 \alpha$ Tauri. First observed 16 December 1639.
    670 According to our calculation, $63^{\circ} 52^{\prime} 43.65^{\prime \prime}$.
    671 According to our calculation, $+15^{\circ} 43^{\prime} 52.2^{\prime \prime}$.
    672 Back of the head. First observed 7 October 1642.
    $673 \quad \gamma$ Piscium. First observed 7 October 1642.
    674 According to our calculation, $344^{\circ} 40^{\prime} 1.5^{\prime \prime}$.
    675 According to our calculation, $+1^{\circ} 20^{\prime} 43.4^{\prime \prime}$.

[^89]:    676 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
    677 Ibidem.

[^90]:    678 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    679 Ibidem.
    680 Antares, or $\alpha$ Scorpii First observed 20 September 1638.
    681 According to our calculation, at the last observation, $\alpha$ Scorpii was $7^{\prime \prime} 24$ higher than Mercury.
    682 According to our calculation, at the last observation, the azimuth of $\alpha$ Scorpii was $1^{\circ} 21^{\prime}$ 45 " more southern than those of Mercury.

[^91]:    683 Antares, or $\alpha$ Scorpii. First observed 20 September 1638.
    684 Vega, or $\alpha$ Lyrae. First observed 18 September 1639.
    685 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    686 Deneb, or $\alpha$ Cygni. First observed 19 September 1639.
    687 According to our calculation, Jupiter crossed the meridian 13 s before the previous observation.
    688 Deneb, or $\alpha$ Cygni. First observed 19 September 1639.

[^92]:    709 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    710 Altair, or $\alpha$ Aquilae. First observed 18 September 1639.
    711 Ibidem.
    712 With the telescope.
    713 According to our calculation, both planets were gibbous.
    $714 \gamma$ Tucanae. First observed 21 September 1639.
    $715 \gamma$ Sculptoris. FIRST OBSERVATION.
    716 Fomalhaut, or $\alpha$ Piscis Austrini. First observed 20 September 1639.
    $717 \beta$ Sculptoris. First observed 22 September 1639.
    718 Also $\beta$ Sculptoris.
    719 ィ Phoenicis. First observed 22 September 1639.The other two stars are TYC 8456-967-1 (First observed 23 September 1639) and $\varepsilon$ Phoenicis.
    720 TYC 8456-967-1. First observed 23 September 1639.

[^93]:    $721 \sigma$ Phoenicis. First observed 24 September 1639. Absent in Houtman's catalogue.
    $722 \delta$ Sculptoris. Absent in Houtman's catalogue.
    $723 \quad \eta$ Tucanae. First observation.
    $724 \varepsilon$ Tucanae. First observed 21 September 1639.
    725 According to our calculation, this time interval was 2 m 29 s .
    726 The three stars from west to east are $\varepsilon, \zeta$ and $\beta_{1}$ Tucanae.
    $727 \zeta$ Tucanae. First observed 21 September 1639.
    $728 \pi$ Phoenicis. According to our calculation, this star crossed the meridian 41 s before the previous one.
    $729 \varepsilon$ Phoenicis. Absent in Houtman's catalogue.
    730 STucanae. First observed 21 September 1639.
    $731 \beta$ Hydri. First observed 20 September 1639.
    732 According to our calculation, between the previous and the following meridian transits there was no meridian transit of a naked eye star at such elevation. $\theta$ Hydri crossed the meridian at $24^{\circ} 47^{\prime} 51^{\prime \prime}$, 2 h 55 m 53 seconds after the previous star.
    733 Ankaa, or $\alpha$ Phoenicis. First observed 20 September 1639.
    $734 \kappa$ Phoenicis. First observed 22 September 1639.
    $\beta_{I}$ Tucanae. First observed 21 September 1639.
    $\lambda_{1}$ Phoenicis. According to our calculation, this star crossed the meridian 51 s before the previous one.

[^94]:    $738 \eta$ Phoenicis. The other star is $\zeta$ Phoenicis (First observed 29, respectively 26 November 1639).
    $739 \rho$ Phoenicis. Absent in Houtman's catalogue.
    $740 \alpha$ Sculptoris. Absent in Houtman's catalogue.
    $741 \beta$ Phoenicis. First observed 26 November1639. The other star of the pair might be $\delta$ Phoenicis.
    $742 \zeta$ Phoenicis. First observed 26 November1639. The companion star is $\eta$ Phoenicis.
    $743 v$ Phoenicis northeast of $\beta$ Phoenicis. Absent in Houtman's catalogue.
    $744 \kappa$ Tucanae. First observed 16 December 1639.
    $745 \gamma$ Phoenicis. Absent in Houtman's catalogue. The star $\mu$ is $\delta$ Phoenicis. Both first observed 26 November1639.
    $746 \delta$ Phoenicis. First observed 26 November1639. The companion star might be $\beta$ Phoenicis.
    747 Achernar, or $\alpha$ Eridani. First observed 20 September 1639.
    748 Altair, or $\alpha$ Aquilae. First observed 18 September 1639.

[^95]:    $758 v$ Puppis. FIRST OBSERVATION.
    $759 \kappa$ Canis Majoris. FIRst observation.
    $760 \tau$ Puppis. FIRST OBSERVATION.
    $761 \alpha$ Pictoris, with an apparent visual magnitude of 3.27 , is the brightest star in the southern constellation of Pictor. First observation.
    $762 \gamma_{2}$ Volantis. FIRst observation.
    $763 \delta$ Volantis. FIRST OBSERVATION.
    764 o Puppis. FIRSt OBSERVATION.
    765 לVolantis. FIRST OBSERVATION.
    $766 \chi$ Carinae. First observation. The two nebulae are in the region of the open star cluster NGC 2516.
    767 TYC 7650-3052-1 in the Poop Deck (Puppis).
    $768 \chi$ Carinae. First observed 20 February 1643. Absent in Houtman's catalogue.
    $769 \zeta$ Volantis. First observed 20 February 1643. According to our calculation, this star crossed the meridian 1 m 54 s before the previous star.
    $770 \zeta$ Puppis. FIRST OBSERVATION.
    771 Here it becomes clear that the two contiguous nebulas are the region of the open cluster NGC 2516 with the crowd of stars. Nebula, therefore not included in Houtman's catalogue.
    $772 \gamma$ Velorum. First observation.
    $773 \varepsilon$ Volantis. FIRST OBSERVATION.
    $774 \varepsilon$ Carinae. The nebulae are related to NGC 2516. First observation.
    $775 \kappa_{2}$ Volantis. FIRST OBSERVATION.

[^96]:    795 TYC 8597-2340-1 in the Keel of the Ship (Carina). The two in the Ship are $\iota$ and V357 Carinae.
    796 I Carinae. First observation.
    $797 v$ Carinae. First observation.
    $798 \phi$ Velorum. First observation.
    799 According to our calculation, the Moon entered the umbra at 5:25:19 local solar time.
    800 According to our calculation, the Moon's azimuth was $265^{\circ} 48^{\prime} 43^{\prime \prime}$, or $4^{\circ} 11^{\prime} 16^{\prime \prime \prime}$ west.
    801 According to our calculation, when the Moon was at this western elevation, the Sun would rise 16 m 31 s later.

