


Behavioural Types:
from Theory to Tools



RIVER PUBLISHERS SERIES IN AUTOMATION,
CONTROL AND ROBOTICS

Series Editors

SRIKANTA PATNAIK
SOA University
Bhubaneswar
India

ISHWAR K. SETHI
Oakland University
USA

QUAN MIN ZHU
University of the West of
England
UK

Indexing: All books published in this series are submitted to Thomson Reuters Book
Citation Index (BkCI), CrossRef and to Google Scholar.

The “River Publishers Series in Automation, Control and Robotics” is a series of
comprehensive academic and professional books which focus on the theory and
applications of automation, control and robotics. The series focuses on topics ranging
from the theory and use of control systems, automation engineering, robotics and
intelligent machines.

Books published in the series include research monographs, edited volumes,
handbooks and textbooks. The books provide professionals, researchers, educators,
and advanced students in the field with an invaluable insight into the latest research
and developments.

Topics covered in the series include, but are by no means restricted to the
following:

• Robots and Intelligent Machines
• Robotics
• Control Systems
• Control Theory
• Automation Engineering

For a list of other books in this series, visit www.riverpublishers.com



The NEC and You Perfect Together: 
A Comprehensive Study of the  

National Electrical Code 

Gregory P. Bierals
Electrical Design Institute, USA

River Publishers

Behavioural Types:
from Theory to Tools

Editors

Simon Gay
University of Glasgow, UK

António Ravara
Universidade Nova de Lisboa, Portugal



Published 2017 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Behavioural Types: from Theory to Tools / by Simon Gay, António Ravara.

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa
business

ISBN 978-87-93519-82-4 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.



Contents

Preface xv

Acknowledgments xix

List of Contributors xxi

List of Figures xxv

List of Tables xxxi

List of Abbreviations xxxiii

1 Contract-Oriented Design of Distributed Applications:
A Tutorial 1
Nicola Atzei, Massimo Bartoletti, Maurizio Murgia, Emilio Tuosto
and Roberto Zunino
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 From Service-Oriented to Contract-Oriented
Computing . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Honesty Attacks . . . . . . . . . . . . . . . . . . . 3
1.1.3 Diogenes . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Specifying Contract-Oriented Services in CO2 . . . . . . . . 4
1.2.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Processes . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 An Execution Context . . . . . . . . . . . . . . . . 6
1.2.4 Adding Recursion . . . . . . . . . . . . . . . . . . 7

1.3 Honesty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 A Simple Dishonest Store . . . . . . . . . . . . . . 8
1.3.2 A More Complex Dishonest Store . . . . . . . . . . 10
1.3.3 Handling Failures . . . . . . . . . . . . . . . . . . . 11
1.3.4 An Honest Store, Finally . . . . . . . . . . . . . . . 13

v



vi Contents

1.3.5 A Recursive Honest Store . . . . . . . . . . . . . . 13
1.4 Refining CO2 Specifications in Java Programs . . . . . . . . 14

1.4.1 Compilation of CO2 Specifications into Java
Skeletons . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Checking Honesty of Refined Java Programs . . . . 17
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Related Work . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Contract-Oriented Programming with Timed Session Types 27
Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli,
Stefano Lande, Maurizio Murgia, Alessandro Sebastian Podda
and Livio Pompianu
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Timed Session Types . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Specifying Contracts . . . . . . . . . . . . . . . . . 29
2.2.2 Compliance . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Run-Time Monitoring of Contracts . . . . . . . . . 35

2.3 Contract-Oriented Programming . . . . . . . . . . . . . . . 36
2.3.1 A Simple Store . . . . . . . . . . . . . . . . . . . . 37
2.3.2 A Simple Buyer . . . . . . . . . . . . . . . . . . . . 37
2.3.3 A Dishonest Store . . . . . . . . . . . . . . . . . . . 38
2.3.4 An Honest Store . . . . . . . . . . . . . . . . . . . 40
2.3.5 A Recursive Honest Store . . . . . . . . . . . . . . 41

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 A Runtime Monitoring Tool for Actor-Based Systems 49
Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto
and Anna Ingólfsdóttir
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Runtime Monitoring Criteria . . . . . . . . . . . . . 52
3.2.2 A Branching-Time Logic for Specifying Correctness

Properties . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Monitoring μHML . . . . . . . . . . . . . . . . . . 55

3.3 A Tool for Monitoring Erlang Applications . . . . . . . . . . 57



Contents vii

3.3.1 Concurrency-Oriented Development
Using Erlang . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Reasoning about Data . . . . . . . . . . . . . . . . 58
3.3.2.1 Properties with specific PIDs . . . . . . . 61
3.3.2.2 Further reasoning about data . . . . . . . 61

3.3.3 Monitor Compilation . . . . . . . . . . . . . . . . . 62
3.4 detectEr in Practice . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Creating the Target System . . . . . . . . . . . . . . 64
3.4.1.1 Setting up the Erlang project . . . . . . . 64
3.4.1.2 Running and testing the server . . . . . . 66

3.4.2 Instrumenting the Test System . . . . . . . . . . . . 68
3.4.2.1 Property specification . . . . . . . . . . . 68
3.4.2.2 Monitor synthesis and instrumentation . . 69
3.4.2.3 Running the monitored system . . . . . . 70
3.4.2.4 Running the correct server . . . . . . . . . 71

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Related and Future Work . . . . . . . . . . . . . . . 73
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 How to Verify Your Python Conversations 77
Rumyana Neykova and Nobuko Yoshida
4.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . 78
4.2 Scribble-Based Runtime Verification . . . . . . . . . . . . . 79

4.2.1 Verification Steps . . . . . . . . . . . . . . . . . . . 79
4.2.2 Monitoring Requirements . . . . . . . . . . . . . . 81

4.3 Conversation Programming in Python . . . . . . . . . . . . 82
4.4 Monitor Implementation . . . . . . . . . . . . . . . . . . . 85
4.5 Monitoring Interruptible Systems . . . . . . . . . . . . . . . 87

4.5.1 Use Case: Resource Access Control (RAC) . . . . . 88
4.5.2 Interruptible Multiparty Session Types . . . . . . . . 90
4.5.3 Programming and Verification of Interruptible

Systems . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.4 Monitoring Interrupts . . . . . . . . . . . . . . . . . 94

4.6 Formal Foundations of MPST-Based Runtime
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



viii Contents

5 The DCR Workbench: Declarative Choreographies
for Collaborative Processes 99
Søren Debois and Thomas T. Hildebrandt
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 History of the DCR Workbench . . . . . . . . . . . 100
5.1.2 The DCR Workbench . . . . . . . . . . . . . . . . . 101

5.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Dynamic Condition-Response Graphs . . . . . . . . . . . . 102

5.3.1 Event States . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Relations . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.3 Executing Events . . . . . . . . . . . . . . . . . . . 104
5.3.4 Formal Development . . . . . . . . . . . . . . . . . 105

5.4 Modelling with the Workbench . . . . . . . . . . . . . . . . 107
5.4.1 Inputting a Model: The Parser Panel . . . . . . . . . 107
5.4.2 Visualisation and Simulation: The Visualiser

and Activity Log Panels . . . . . . . . . . . . . . . 110
5.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.7 Subprocesses . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 Other Panels . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 A Tool for Choreography-Based Analysis
of Message-Passing Software 125
Julien Lange, Emilio Tuosto and Nobuko Yoshida
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Overview of the Theory . . . . . . . . . . . . . . . . . . . . 127
6.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Modelling of an ATM Service . . . . . . . . . . . . . . . . 135

6.4.1 ATM Service – Version 1 . . . . . . . . . . . . . . . 136
6.4.2 ATM Service – Version 2 . . . . . . . . . . . . . . . 137
6.4.3 ATM Service – Version 3 (fixed) . . . . . . . . . . . 141

6.5 Conclusions and Related Work . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



Contents ix

7 Programming Adaptive Microservice Applications:
an AIOCJ Tutorial 147
Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro
and Maurizio Gabbrielli
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2 AIOCJ Outline . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.1 AIOCJ Architecture and Workflow . . . . . . . . . . 151
7.3 Choreographic Programming . . . . . . . . . . . . . . . . . 153
7.4 Integration with Legacy Software . . . . . . . . . . . . . . 155
7.5 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.6 Deployment and Adaptation Procedure . . . . . . . . . . . . 162
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8 JaDA – the Java Deadlock Analyzer 169
Abel Garcia and Cosimo Laneve
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3 Overview of JaDA’s Theory . . . . . . . . . . . . . . . . . 173

8.3.1 The Abstract Behavior of the Network Class . . . . 173
8.3.2 Behavioral Type Inference . . . . . . . . . . . . . . 175
8.3.3 Analysis of Behavioral Types . . . . . . . . . . . . 177

8.4 The JaDA Tool . . . . . . . . . . . . . . . . . . . . . . . . 181
8.4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . 181
8.4.2 The Architecture . . . . . . . . . . . . . . . . . . . 181
8.4.3 The Current JVML Coverage . . . . . . . . . . . . . 184
8.4.4 Tool Configuration . . . . . . . . . . . . . . . . . . 186
8.4.5 Deliverables . . . . . . . . . . . . . . . . . . . . . 187

8.5 Current Limitations . . . . . . . . . . . . . . . . . . . . . . 187
8.6 Related Tools and Assessment . . . . . . . . . . . . . . . . 189
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 190

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9 Type-Based Analysis of Linear Communications 193
Luca Padovani
9.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.3 Extended Examples . . . . . . . . . . . . . . . . . . . . . . 205

9.3.1 Fibonacci Stream Network . . . . . . . . . . . . . . 205



x Contents

9.3.2 Full-Duplex and Half-Duplex Communications . . . 207
9.3.3 Load Balancing . . . . . . . . . . . . . . . . . . . . 209
9.3.4 Sorting Networks . . . . . . . . . . . . . . . . . . . 210
9.3.5 Ill-typed, Lock-free Process Networks . . . . . . . . 212

9.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 214
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10 Session Types with Linearity in Haskell 219
Dominic Orchard and Nobuko Yoshida
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.2 Pre-Session Types in Haskell . . . . . . . . . . . . . . . . . 222

10.2.1 Tracking Send and Receive Actions . . . . . . . . . 223
10.2.2 Partial Safety via a Type-Level Function

for Duality . . . . . . . . . . . . . . . . . . . . . . 224
10.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . 225

10.3 Approaches in the Literature . . . . . . . . . . . . . . . . . 226
10.3.1 Note on Recursion and Duality . . . . . . . . . . . . 227
10.3.2 Single Channel . . . . . . . . . . . . . . . . . . . . 227
10.3.3 Multi-Channel Linearity . . . . . . . . . . . . . . . 229
10.3.4 An Alternate Approach . . . . . . . . . . . . . . . . 233
10.3.5 Multi-Channels with Inference . . . . . . . . . . . . 235
10.3.6 Session Types via Effect Types . . . . . . . . . . . . 236
10.3.7 GV in Haskell . . . . . . . . . . . . . . . . . . . . 238

10.4 Future Direction and Open Problems . . . . . . . . . . . . . 239
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

11 An OCaml Implementation of Binary Sessions 243
Hernán Melgratti and Luca Padovani
11.1 An API for Sessions . . . . . . . . . . . . . . . . . . . . . . 244
11.2 A Few Simple Examples . . . . . . . . . . . . . . . . . . . 245
11.3 API Implementation . . . . . . . . . . . . . . . . . . . . . . 248
11.4 Extended Example: The Bookshop . . . . . . . . . . . . . . 255
11.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 260

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

12 Lightweight Functional Session Types 265
Sam Lindley and J. Garrett Morris
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 265
12.2 A First Look . . . . . . . . . . . . . . . . . . . . . . . . . . 266



Contents xi

12.3 The Core Language . . . . . . . . . . . . . . . . . . . . . . 270
12.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . 270
12.3.2 Typing and Kinding Judgments . . . . . . . . . . . 274

12.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
12.4.1 Recursion . . . . . . . . . . . . . . . . . . . . . . . 278
12.4.2 Access Points . . . . . . . . . . . . . . . . . . . . . 279

12.5 Links with Session Types . . . . . . . . . . . . . . . . . . . 281
12.5.1 Design Choices . . . . . . . . . . . . . . . . . . . . 282
12.5.2 Type Reconstruction . . . . . . . . . . . . . . . . . 283

12.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . 284
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

13 Distributed Programming Using Java APIs Generated
from Session Types 287
Raymond Hu
13.1 Background: Distributed Programming in Java . . . . . . . 287

13.1.1 TCP Sockets . . . . . . . . . . . . . . . . . . . . . 288
13.1.2 Java RMI . . . . . . . . . . . . . . . . . . . . . . . 290

13.2 Scribble Endpoint API Generation: Toolchain Overview . . . 290
13.2.1 Global Protocol Specification . . . . . . . . . . . . 291
13.2.2 Endpoint API Generation . . . . . . . . . . . . . . . 294
13.2.3 Hybrid Session Verification . . . . . . . . . . . . . 297
13.2.4 Additional Math Service Endpoint Examples . . . . 299

13.3 Real-World Case Study: HTTP (GET) . . . . . . . . . . . . 301
13.3.1 HTTP in Scribble: First Version . . . . . . . . . . . 302
13.3.2 HTTP in Scribble: Revised . . . . . . . . . . . . . . 303

13.4 Further Endpoint API Generation Features . . . . . . . . . . 305
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

14 Mungo and StMungo: Tools for Typechecking
Protocols in Java 309
Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, Roly Perera,
A. Laura Voinea and Florian Weber
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 309
14.2 Mungo: Typestate Checking for Java . . . . . . . . . . . . . 311

14.2.1 Example: Iterator . . . . . . . . . . . . . . . . . . . 312
14.3 StMungo: Typestates from Communication Protocols . . . . 315

14.3.1 Example: Travel Agency . . . . . . . . . . . . . . . 316
14.4 POP3: Typechecking an Internet Protocol Client . . . . . . . 320



xii Contents

14.4.1 Challenges of Using Mungo and StMungo
in the Real World . . . . . . . . . . . . . . . . . . . 324

14.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 326
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

15 Protocol-Driven MPI Program Generation 329
Nicholas Ng and Nobuko Yoshida
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 329
15.2 Pabble: Parameterised Scribble . . . . . . . . . . . . . . . . 331
15.3 MPI Backbone . . . . . . . . . . . . . . . . . . . . . . . . 333

15.3.1 MPI Backbone Generation from Ring Protocol . . . 334
15.4 Computation Kernels . . . . . . . . . . . . . . . . . . . . . 334

15.4.1 Writing a Kernel . . . . . . . . . . . . . . . . . . . 335
15.4.1.1 Initialisation . . . . . . . . . . . . . . . . 336
15.4.1.2 Passing data between backbone and kernel

through queues . . . . . . . . . . . . . . . 336
15.4.1.3 Predicates . . . . . . . . . . . . . . . . . 337

15.5 The Pabble Language . . . . . . . . . . . . . . . . . . . . . 338
15.5.1 Global Protocols Syntax . . . . . . . . . . . . . . . 338

15.5.1.1 Restriction on constants . . . . . . . . . . 340
15.5.2 Local Protocols . . . . . . . . . . . . . . . . . . . . 341

15.6 MPI Backbone Generation . . . . . . . . . . . . . . . . . . 342
15.6.1 Interaction . . . . . . . . . . . . . . . . . . . . . . 342
15.6.2 Parallel Interaction . . . . . . . . . . . . . . . . . . 344
15.6.3 Internal Interaction . . . . . . . . . . . . . . . . . . 344
15.6.4 Control-flow: Iteration and For-loop . . . . . . . . . 345
15.6.5 Control-flow: Choice . . . . . . . . . . . . . . . . . 345
15.6.6 Collective Operations: Scatter, Gather and

All-to-all . . . . . . . . . . . . . . . . . . . . . . . 346
15.6.7 Process Scaling . . . . . . . . . . . . . . . . . . . . 348

15.7 Merging MPI Backbone and Kernels . . . . . . . . . . . . . 348
15.7.1 Annotation-Guided Merging Process . . . . . . . . . 348
15.7.2 Kernel Function . . . . . . . . . . . . . . . . . . . 349
15.7.3 Datatypes . . . . . . . . . . . . . . . . . . . . . . . 349
15.7.4 Conditionals . . . . . . . . . . . . . . . . . . . . . 350

15.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 350
15.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 350

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



Contents xiii

16 Deductive Verification of MPI Protocols 353
Vasco T. Vasconcelos, Francisco Martins, Eduardo R. B. Marques,
Nobuko Yoshida and Nicholas Ng
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 353
16.2 The Finite Differences Algorithm and Common

Coding Faults . . . . . . . . . . . . . . . . . . . . . . . . . 355
16.3 The Protocol Language . . . . . . . . . . . . . . . . . . . . 358
16.4 Overview of the Verification Procedure . . . . . . . . . . . 362
16.5 The Marking Process . . . . . . . . . . . . . . . . . . . . . 364
16.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 368
16.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Index 373

About the Editors 375



http://taylorandfrancis.com


Preface

This book presents research produced by members of COST Action IC1201:
Behavioural Types for Reliable Large-Scale Software Systems (BETTY),
a European research network that was funded from October 2012 to October
2016. The technical theme of BETTY was the use of behavioural type systems
in programming languages, to specify and verify properties of programs
beyond the traditional use of type systems to describe data processing.
A significant area within behavioural types is session types, which concerns
the use of type-theoretic techniques to describe communication protocols so
that static typechecking or dynamic monitoring can verify that protocols are
implemented correctly. This is closely related to the topic of choreography, in
which system design starts from a description of the overall communication
flows. Another area is behavioural contracts, which describe the obligations
of interacting agents in a way that enables blame to be attributed to the agent
responsible for failed interaction. Type-theoretic techniques can also be used to
analyse potential deadlocks due to cyclic dependencies between inter-process
interactions.

BETTY was organised into four Working Groups: (1) Foundations; (2)
Security; (3) Programming Languages; (4) Tools and Applications. Working
Groups 1–3 produced “state-of-the-art reports”, which originally intended to
take snapshots of the field at the time the network started, but grew into
substantial survey articles including much research carried out during the
network [1–3]. The situation for Working Group 4 was different. When the
network started, the community had produced relatively few implementations
of programming languages or tools. One of the aims of the network was
to encourage more implementation work, and this was a great success. The
community as a whole has developed a greater interest in putting theoretical
ideas into practice. The sixteen chapters in this book describe systems that
were either completely developed, or substantially extended, during BETTY.
The total of 41 co-authors represents a significant proportion of the active
participants in the network (around 120 people who attended at least one
meeting). The book is a report on the new state of the art created by BETTY in

xv



xvi Preface

the area of Working Group 4, and the title “Behavioural Types: from Theory to
Tools” summarises the trajectory of the community during the last four years.

The book begins with two tutorials by Atzei et al. on contract-oriented
design of distributed systems. Chapter 1 introduces the CO2 contract specifi-
cation language and the Diogenes toolchain. Chapter 2 describes how timing
constraints can be incorporated into the framework and checked with the CO2
middleware.

Part of the CO2 middleware is a monitoring system, and the theme
of monitoring continues in the next two chapters. In Chapter 3, Attard
et al. present detectEr, a runtime monitoring tool for Erlang programs
that allows correctness properties to be expressed in Hennessy-Milner logic.
In Chapter 4, which is the first chapter about session types, Neykova and
Yoshida describe a runtime verification framework for Python programs.
Communication protocols are specified in the Scribble language, which is
based on multiparty session types.

The next three chapters deal with choreographic programming. In Chap-
ter 5, Debois and Hildebrandt present a toolset for working with dynamic
condition response (DCR) graphs, which are a graphical formalism for
choreography. Chapter 6, by Lange et al., continues the graphical theme
with ChorGram, a tool for synthesising global graphical choreographies from
collections of communicating finite-state automata. Giallorenzo et al., in
Chapter 7, consider runtime adaptation.They describeAIOCJ, a choreographic
programming language in which runtime adaptation is supported with a
guarantee that it doesn’t introduce deadlocks or races.

Deadlock analysis is important in other settings too, and there are two more
chapters about it. In Chapter 8, Padovani describes theHypha tool, which uses a
type-based approach to check deadlock-freedom and lock-freedom of systems
modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a
tool for analysing deadlocks in Java programs; this tool, called JaDA, is based
on a behavioural type system.

The next three chapters report on projects that have added session types
to functional programming languages in order to support typechecking of
communication-based code. In Chapter 10, Orchard and Yoshida describe an
implementation of session types in Haskell, and survey several approaches
to typechecking the linearity conditions required for safe session implemen-
tation. In Chapter 11, Melgratti and Padovani describe an implementation
of session types in OCaml. Their system uses runtime linearity checking. In
Chapter 12, Lindley and Morris describe an extension of the web programming



Preface xvii

language Links with session types; their work contrasts with the previous two
chapters in being less constrained by an existing language design.

Continuing the theme of session types in programming languages, the next
two chapters describe two approaches based on Java. Hu’s work, presented
in Chapter 13, starts with the Scribble description of a multiparty session
type and generates an API in the form of a collection of Java classes, each
class containing the communication methods that are available in a particular
state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble
specification. Their StMungo tool generates an API as a single class with an
associated typestate specification to constrain sequences of method calls. Code
that uses the API can be checked for correctness with the Mungo typechecker.

Finally, there are two chapters about programming with the MPI libraries.
Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble,
to describe protocols that parametric in the number of runtime roles. From a
Pabble specification they generate C code that uses MPI for communication
and is guaranteed correct by construction. Chapter 16, by Ng et al., describes
theParTypes framework for analysing existing C+MPI programs with respect
to protocols defined in an extension of Scribble.

We hope that the book will serve a useful purpose as a report on the
activities of COST Action IC1201 and as a survey of programming languages
and tools based on behavioural types.

Simon Gay
Chair, COST Action IC1201

António Ravara
Vice-Chair, COST Action IC1201



http://taylorandfrancis.com


Acknowledgments

COST is an EU-funded programme that enables researchers to set up their
interdisciplinary research networks in Europe and beyond. We provide
funds for organising conferences, meetings, training schools, short scientific
exchanges or other networking activities in a wide range of scientific topics.
By creating open spaces where people and ideas can grow, we unlock the full
potential of science. www.cost.eu

This publication is based upon work from COSTAction IC1201, supported
by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme
of the European Union

xix



http://taylorandfrancis.com


List of Contributors

Abel Garcia, Department of Computer Science and Engineering, University
of Bologna – INRIA FOCUS, Mura Anteo Zamboni 7, 40127, Bologna, Italy

Adrian Francalanza, Department of Computer Science, Faculty of ICT,
University of Malta, Malta

Alessandro Sebastian Podda, University of Cagliari, Italy

Anna Ingólfsdóttir, School of Computer Science, Reykjavík University,
Iceland

Cosimo Laneve, Department of Computer Science and Engineering, Univer-
sity of Bologna – INRIA FOCUS, Mura Anteo Zamboni 7, 40127, Bologna,
Italy

Dimitrios Kouzapas, School of Computing Science, University of Glasgow,
UK

Dominic Orchard, University of Kent, UK

Duncan Paul Attard, Department of Computer Science, Faculty of ICT,
University of Malta, Malta

Eduardo R. B. Marques, CRACS/INESC-TEC, Faculty of Sciences, Univer-
sity of Porto, PT

Emilio Tuosto, University of Leicester, UK

Florian Weber, School of Computing Science, University of Glasgow, UK

Francisco Martins, LaSIGE, Faculty of Sciences, University of Lisbon, PT

Garrett Morris, University of Edinburgh, Edinburgh, UK

xxi



xxii List of Contributors

Hernàn Melgratti, Departamento de Computación, Universidad de Buenos
Aires, Argentina and CONICET-Universidad de Buenos Aires, Instituto de
Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina

Ian Cassar, Department of Computer Science, Faculty of ICT, University of
Malta, Malta

Ivan Lanese, Focus Team, University of Bologna/INRIA, Italy

Jacopo Mauro, Department of Informatics, University of Oslo, Norway

Julien Lange, Imperial College London, UK

Laura Voinea, School of Computing Science, University of Glasgow, UK

Livio Pompianu, University of Cagliari, Italy

Luca Aceto, School of Computer Science, Reykjavík University, Iceland

Luca Padovani, Dipartimento di Informatica, Università di Torino, Italy

Massimo Bartoletti, Università degli Studi di Cagliari, Italy

Maurizio Gabbrielli, Focus Team, University of Bologna/INRIA, Italy

Maurizio Murgia, Università degli Studi di Cagliari, Italy

Nicholas Ng, Imperial College London, UK

Nicola Atzei, Università degli Studi di Cagliari, Italy

Nobuko Yoshida, Imperial College London, UK

Ornela Dardha, School of Computing Science, University of Glasgow, UK

Raymond Hu, Imperial College London, UK

Roberto Zunino, Università degli Studi di Trento, Italy

Roly Perera, School of Computing Science, University of Glasgow, UK and
School of Informatics, University of Edinburgh, UK



List of Contributors xxiii

Rumyana Neykova, Imperial College London, UK

Sam Lindley, University of Edinburgh, Edinburgh, UK

Saverio Giallorenzo, Focus Team, University of Bologna/INRIA, Italy

Simon J. Gay, School of Computing Science, University of Glasgow, UK

Søren Debois, Department of Computer Science, IT University of Copen-
hagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Stefano Lande, University of Cagliari, Italy

Thomas T. Hildebrandt, Department of Computer Science, IT University of
Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Tiziana Cimoli, University of Cagliari, Italy

Vasco T. Vasconcelos, LaSIGE, Faculty of Sciences, University of Lisbon, PT



http://taylorandfrancis.com


List of Figures

Figure 2.1 Contract-oriented interactions in the CO2
middleware. . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.2 Reputation of the dishonest and honest stores
as a function of the number of sessions
with malicious distributors. . . . . . . . . . . . . . 40

Figure 3.1 Runtime monitor synthesis and operational
set-up. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.2 The syntax and semantics of μHML. . . . . . . . . 54
Figure 3.3 The LTSs depicting the behaviour of two servers

p and q. . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.4 The syntax of mHML. . . . . . . . . . . . . . . . 56
Figure 3.5 The anatomy of action patterns for the enriched

mHML syntax. . . . . . . . . . . . . . . . . . . . 59
Figure 3.6 Runtime verifying the correctness of a client-server

system. . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 3.7 The monitor synthesis process and instrumentation

pipeline. . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 3.8 Creating the Erlang project directory structure. . . . 66
Figure 4.1 Scribble methodology from global specification

to local runtime verification. . . . . . . . . . . . . 78
Figure 4.2 Global Protocol (left) and Local Protocol

(right). . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 4.3 The core Python Conversation API operations. . . 82
Figure 4.4 Python program for A: synchronous implementation

(left) and event-driven implementation (right). . . . 84
Figure 4.5 Configuration of distributed session monitors

for an AMQP-based network. . . . . . . . . . . . . 85
Figure 4.6 Monitor workflow for (1) invitation and (2)

in-conversation messages. . . . . . . . . . . . . . . 87
Figure 4.7 Sequence diagram (left) and Scribble protocol

(right) for the RAC use case. . . . . . . . . . . . . 89

xxv



xxvi List of Figures

Figure 4.8 Python implementation (left) and Scribble local
protocol (right) for the User role for the global
protocol from Figure 4.7. . . . . . . . . . . . . . . 91

Figure 4.9 Event-driven conversation implementation
for the User role (left) and Nested FSM
generated from the User local protocol (right). . . . 93

Figure 4.10 The core Python Conversation API operations
and their session π-calulus counterparts. . . . . . . 95

Figure 5.1 Events and initial states (marking) for the mortgage
application process. Where nothing else is indicated,
the initial state of an event is not executed, included,
and not pending. . . . . . . . . . . . . . . . . . . 103

Figure 5.2 DCR graph modelling the mortgage application
process. . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.3 The DCR Workbench. . . . . . . . . . . . . . . . 108
Figure 5.4 EBNF definition of the language recognised by the

Parser panel. . . . . . . . . . . . . . . . . . . . . 109
Figure 5.5 Source code for the core process. . . . . . . . . . 109
Figure 5.6 Visualisation of core process of Figure 5.5. . . . . . 110
Figure 5.7 Transition system of the full mortgage

application process (top), with the red box
expanded for readability (bottom). . . . . . . . . . 112

Figure 5.8 Budget process fragment. . . . . . . . . . . . . . . 113
Figure 5.9 Visualisation of the budget process fragment

of Figure 5.8. . . . . . . . . . . . . . . . . . . . . 113
Figure 5.10 Visualisation of the core process (Figures 5.5

and 5.6) refined by the budget fragment
(Figures 5.8 and 5.9). . . . . . . . . . . . . . . . . 114

Figure 5.11 Appraisal process fragment. . . . . . . . . . . . . 114
Figure 5.12 Additional timing constraints for the mortgage

application process in Figure 5.2. . . . . . . . . . 116
Figure 5.13 Visualisation of additional timing constraints

for the mortgage application process in
Figure 5.2. . . . . . . . . . . . . . . . . . . . . . . 116

Figure 5.14 Additional subprocess constraints (credit limit
extension) for the full mortgage application process
of Figure 5.14. . . . . . . . . . . . . . . . . . . . 117



List of Figures xxvii

Figure 5.15 Visualisation of additional subprocess constraints
(credit limit extension) for the full mortgage
application process of Figure 5.2; after one
execution of Apply for limit extension. . . . . . . 118

Figure 5.16 Alternative subprocess-with-data constraints (credit
limit extension) for the full mortgage application
process of Figure 5.2. . . . . . . . . . . . . . . . . 119

Figure 6.1 Four player game – CFSMs. . . . . . . . . . . . . 128
Figure 6.2 Four player game – Global graph. . . . . . . . . . 130
Figure 6.3 Four player game – TS0. . . . . . . . . . . . . . . 131
Figure 6.4 Architecture of ChorGram. . . . . . . . . . . . . . 132
Figure 6.5 HelloWorld example – fsa representation. . . . . . 134
Figure 6.6 Global graph for ATM service v1. . . . . . . . . . 138
Figure 6.7 Synchronous transition system of ATM

service v2. . . . . . . . . . . . . . . . . . . . . . . 140
Figure 6.8 Global graph for ATM service v3. . . . . . . . . . 142
Figure 7.1 The AIOCJ IDE. . . . . . . . . . . . . . . . . . . . 150
Figure 7.2 TheAIOCJ framework — deployment and execution

of a choreography. . . . . . . . . . . . . . . . . . . 152
Figure 7.3 Location dependency graph among AIOCJ

microservices. . . . . . . . . . . . . . . . . . . . . 164
Figure 8.1 Cases of circular dependencies that may lead to

deadlocks. . . . . . . . . . . . . . . . . . . . . . . 170
Figure 8.2 Java Network program and corresponding

bytecode of methods buildNetwork and
takeLocks. Comments in the bytecode give
information of the objects used and/or
methods invoked in each instruction. . . . . . . . . 172

Figure 8.3 BuildNetwork’s lams. . . . . . . . . . . . . . . . 174
Figure 8.4 Type inference of methods’ behaviors in JaDA. . . . 176
Figure 8.5 Type inference of method’s bodies in JaDA. . . . . 177
Figure 8.6 JaDA analysis of behavioral types. . . . . . . . . . 178
Figure 8.7 JaDA analysis output for the Network program. . . 180
Figure 8.8 JaDA architecture. . . . . . . . . . . . . . . . . . . 182
Figure 8.9 Java while loop with nested synchronizations

and the corresponding bytecode. . . . . . . . . . . 183
Figure 8.10 JaDA Eclipse plug-in screenshot. . . . . . . . . . . 188
Figure 9.1 Graphical representation of the Fibonacci stream

network. . . . . . . . . . . . . . . . . . . . . . . . 206



xxviii List of Figures

Figure 9.2 Graphical representation of a 4 × 3 bi-dimensional
stencil. . . . . . . . . . . . . . . . . . . . . . . . . 208

Figure 9.3 Master-worker (left) and producer-consumer
(right). . . . . . . . . . . . . . . . . . . . . . . . . 209

Figure 9.4 Graphical representation of an odd-even 6-input
sorting network. . . . . . . . . . . . . . . . . . . . 210

Figure 9.5 Stream network computing the Thue-Morse
sequence. . . . . . . . . . . . . . . . . . . . . . . 213

Figure 10.1 Implementations of the communication-typed
combinators where link :: Links =>
(Chan s, Chan (Dual s)) -> IO (). . . . . 223

Figure 12.1 Syntax of types and kinds. . . . . . . . . . . . . . 271
Figure 12.2 Syntax of terms and values. . . . . . . . . . . . . . 273
Figure 12.3 Kinding rules. . . . . . . . . . . . . . . . . . . . . 275
Figure 12.4 Linearity of contexts and context splitting. . . . . . 276
Figure 12.5 Typing rules. . . . . . . . . . . . . . . . . . . . . . 277
Figure 12.6 Type schemas for constants. . . . . . . . . . . . . . 277
Figure 13.1 Sequence diagram for the Math Service

protocol. . . . . . . . . . . . . . . . . . . . . . . . 288
Figure 13.2 A factorial calculation using Math Service via

the java.net.Socket API. . . . . . . . . . . . . 289
Figure 13.3 Factorial calculation as a client of the remote

interface in Figure 13.4(a). . . . . . . . . . . . . . 290
Figure 13.4 A remote Math Service: (a) interface, and

(b) implementation. . . . . . . . . . . . . . . . . . 291
Figure 13.5 Scribble global protocol for Math Service

in Figure 13.1. . . . . . . . . . . . . . . . . . . . . 291
Figure 13.6 Endpoint FSMs for MathSvc (Figure 13.5). . . . . 293
Figure 13.7 Factorial calculation using the Endpoint API

generated for C. . . . . . . . . . . . . . . . . . . . 295
Figure 13.8 State Channel API generated for C in MathSvc

(Figure 13.5). . . . . . . . . . . . . . . . . . . . . 297
Figure 13.9 State Channel API generated for S in MathSvc;

and an implementation of S using the
generated API. . . . . . . . . . . . . . . . . . . . . 300

Figure 13.10 Extract from the revised specification
of HTTP in Scribble. . . . . . . . . . . . . . . . . 304

Figure 13.11 Extract from an implementation of a HTTP client
via API generation. . . . . . . . . . . . . . . . . . 305



List of Figures xxix

Figure 13.12 Additional branch callback interfaces generated
for S in MathSvc; and a corresponding
implementation of S. . . . . . . . . . . . . . . . . 306

Figure 15.1 Pabble-based MPI program generation workflow
(core flow highlighted). . . . . . . . . . . . . . . . 330

Figure 15.2 Global view of Label(T) from Sender to
Receiver;. . . . . . . . . . . . . . . . . . . . . 335

Figure 15.3 Pabble syntax. . . . . . . . . . . . . . . . . . . . 339
Figure 15.4 Pabble interaction statement and its MPI

backbone. . . . . . . . . . . . . . . . . . . . . . . 343
Figure 15.5 Pabble parallel interaction statement and its MPI

backbone. . . . . . . . . . . . . . . . . . . . . . . 344
Figure 15.6 Pabble internal interaction statement and its MPI

backbone. . . . . . . . . . . . . . . . . . . . . . . 345
Figure 15.7 Control-flow: Pabble iteration statements and their

corresponding MPI backbones. . . . . . . . . . . . 345
Figure 15.8 Control-flow: Pabble choice and its corresponding

MPI backbone. . . . . . . . . . . . . . . . . . . . 346
Figure 15.9 Collective operations: Pabble collectives and their

corresponding MPI backbones. . . . . . . . . . . . 347
Figure 16.1 Communication pattern for the finite differences

algorithm. . . . . . . . . . . . . . . . . . . . . . . 355
Figure 16.2 Excerpt of an MPI program for the finite differences

problem. . . . . . . . . . . . . . . . . . . . . . . . 356
Figure 16.3 Protocol for the finite differences algorithm. . . . . 360
Figure 16.4 Protocol compiler running under the

Eclipse IDE. . . . . . . . . . . . . . . . . . . . . . 361
Figure 16.5 Workflow of the verification procedure for C+MPI

programs. . . . . . . . . . . . . . . . . . . . . . . 362
Figure 16.6 The code of Figure 16.2 with verification marks

inserted. . . . . . . . . . . . . . . . . . . . . . . . 368



http://taylorandfrancis.com


List of Tables

Table 8.1 Comparison with different deadlock detection tools.
The inner cells show the number of deadlocks
detected by each tool. The output labelled “(*)”
are related to modified versions of the original
programs: see the text . . . . . . . . . . . . . . . . 189

Table 9.1 Syntax of Hypha input language (partial) . . . . . . 194
Table 9.2 Operational semantics of processes . . . . . . . . . 195
Table 11.1 Application programming interface for binary

sessions . . . . . . . . . . . . . . . . . . . . . . . . 244
Table 11.2 OCaml interface of the API for binary sessions . . . . 251
Table 15.1 Annotations in backbone and kernel . . . . . . . . . 349

xxxi



http://taylorandfrancis.com


List of Abbreviations

AIOC Adaptive Interaction Oriented Choreographies
AIOCJ Adaptive Interaction Oriented Choreographies in Jolie
AMQP Advanced Message Queuing Protocol
AOP Aspect-Oriented Programming
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATM Automated teller machine
BCT Behavioral Class Table
BPMN Business Process Model and Notation
CCP Concurrent constraint programming
CCS calculus of communicating systems
CFSM Communicating Finite State Machines
cHML Co-Safety HML
CML Concurrent ML
CMMN Case Management Model and Notation
CTA Communicating timed automata
DCR Dynamic Condition Response
EFSM Endpoint Finite State Machine
EVM Erlang Virtual Machine
FIFO First In, First Out
FSM Finite State Machine
GHC Glasgow Haskell Compiler
GMC Generalised multiparty compatibility
GSM Guard Stage Milestone
HML Hennessy-Milner Logic
HTTP Hypertext Transfer Protocol
I/O Input/Output
IDE Integrated Development Environment
IT Information Technology
ITU IT University of Copenhagen
JPF Java PathFinder

xxxiii



xxxiv List of Abbreviations

JSON JavaScript Object Notation
JVM Java Virtual Machine
JVML Java Virtual Machine Language
lam deadLock Analysis Model
LLC Linear lambda-calculus
MC Model Checking
MFA Module, Function, Arguments
mHML Monitorable HML
MOM Message oriented middleware
MPI Message-Passing Interface
MPST Multiparty Session Types
OOI Ocean Observatories Initiative
PCF Programmable Computable Functions
POP3 Post Office Protocol 3
QoS Quality of service
RAC Resource Access Control
RE Runtime Environment
RFC Request for Comments
RMI Remote Method Invocation
RPC Remote Procedure Call
RV Runtime Verification
sHML Safety HML
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SODEP Simple Operation Data Exchange Protocol
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TST Timed session type
UML Unified modeling language
URI Uniform Resource Identifier
VM Virtual Machine
WS-CDL Web Services Choreography Description Language
XML eXtensible Markup Language
μHML μ HML



1
Contract-Oriented Design of Distributed

Applications: A Tutorial

Nicola Atzei1, Massimo Bartoletti1, Maurizio Murgia1, Emilio Tuosto2

and Roberto Zunino3

1Università degli Studi di Cagliari, Italy
2University of Leicester, UK
3Università degli Studi di Trento, Italy

Abstract

Modern distributed applications typically blend new code with legacy (and
possibly untrusted) third-party services. Behavioural contracts can be used
to discipline the interaction among these services. Contract-oriented design
advocates that composition is possible only among services with compli-
ant contracts, and execution is monitored to detect (and possibly sanction)
contract breaches.

In this tutorial we illustrate a contract-oriented design methodology
consisting of five phases: specification writing, specification analysis, code
generation, code refinement, and code analysis. Specifications are written
in CO2, a process calculus whose primitives include contract advertisement,
stipulation, and contractual actions. Our analysis verifies a property called
honesty: intuitively, a process is honest if it always honors its contracts
upon stipulation, so being guaranteed to never be sanctioned at run-time.
We automatically translate a given honest specification into a skeletal Java
program which renders the contract-oriented interactions, to be completed
with the application logic. Then, programmers can refine this skeleton into
the actual Java application: however, doing so they could accidentally break
its honesty. The last phase is an automated code analysis to verify that honesty
has not been compromised by the refinement.

1



2 Contract-Oriented Design of Distributed Applications: A Tutorial

All the phases of our methodology are supported by a toolchain, called
Diogenes. We guide the reader through Diogenes to design small contract-
oriented applications.

1.1 Introduction

Developing service-oriented applications is a challenging task: programmers
have to reliably compose loosely-coupled services which can dynamically
discover and invoke other services through open networks, and may be
subject to failures and attacks. Usually, services live in a world of mutually
distrusting providers, possibly competing among each other. Typically, these
providers offer little guarantees about the services they control, and in partic-
ular they might arbitrarily change the service code (if not the Service Level
Agreement tout court) at any time.

Therefore, to guarantee the reliability and security of service-oriented
applications, one must use suitable analysis techniques. Remarkably, most
existing techniques to guarantee deadlock-freedom of service-oriented appli-
cations (e.g., compositional verification based on choreographies [35, 21])
need to inspect the code of all its components. Instead, under the given
assumptions of mutual distrust between services, one can only analyse those
under their control.

1.1.1 From Service-Oriented to Contract-Oriented Computing

A possible countermeasure to these issues is to use behavioural contracts to
regulate the interaction between services. In this setting, a service infrastruc-
ture acts as a trusted third party, which collects all the contracts advertised by
services, and establishes sessions between services with compliant contracts.
Unlike the usual service-oriented paradigm, here services are responsible for
respecting their contracts. To incentivize such honest behaviour, the service
infrastructure monitors all the messages exchanged among services, and
sanctions those which do not respect their contracts.

Sanctions can be of different nature: e.g., pecuniary compensations, adap-
tations of the service binding [29], or reputation penalties which marginalize
dishonest services in the selection phase [3]. Experimental evidence [3]
shows that contract-orientation can mitigate the effort of handling potential
misbehaviour of external services, at the cost of a tolerable loss in efficiency
due to the contract-based service selection and monitoring.



1.1 Introduction 3

1.1.2 Honesty Attacks

The sanctioning mechanism of contract-oriented infrastructures protects hon-
est services against malicious behaviours of the other services: indeed, if
a malevolent service attempts to break the protocol (e.g. by prematurely
terminating the interaction), it is punished by the infrastructure. At the same
time, a new kind of attack becomes possible: adversaries can try to exploit
possible discrepancies between the promised and the actual behaviour of a
service, in order to make it sanctioned. For instance, consider a naı̈ve online
store with the following process:

1. Advertise a contract to “receive a request from a buyer, and then
either send the price of the ordered item, or notify that the item is
unavailable”;

2. Wait to receive a request;
3. Advertise a contract to “receive a quote from a package delivery service,

and then either confirm or abort”;
4. Wait to receive a quote from the delivery service;
5. If the quote is below a certain threshold, then confirm the delivery

and send the price to the buyer; otherwise, send abort to the delivery
service, and notify as unavailable to the buyer.

Now, assume an adversary which plays the role of a delivery service, and
never sends the quote. This makes the store violate its contract with the
buyer: indeed, the store should either send price or unavailable to the buyer,
but these actions can only be performed after the delivery service has sent a
quote. Therefore, the store can be sanctioned.

Since these honesty attacks may compromise the service and cause
economic damage to its provider, it is important to detect the underlying
vulnerabilities before deployment. Intuitively, a service is vulnerable if, in
some execution context, it does not respect some of the contracts it adver-
tises. Therefore, to avoid sanctions a service must be able to respect all the
contracts it advertises, in all possible contexts — even in those populated by
adversaries. We call this property honesty.

Some recent works have studied honesty at the specification level, using
the process calculus CO2 for modelling contract-oriented services [6–9],
whose primitives include contract advertisement, stipulation, and contractual
actions. Practical experience has shown that writing honest specifications
is not an easy task, especially when a service has to juggle with multiple
sessions. The reason of this difficulty lies in the fact that, to devise an



4 Contract-Oriented Design of Distributed Applications: A Tutorial

honest specification, a designer has to anticipate the possible behaviour of
the context, but at design time he does not yet know in which context his
service will be run. Tools to automate the verification of honesty may be of
great help.

1.1.3 Diogenes

In this paper we illustrate the Diogenes toolchain [1], which supports the
correct design of contract-oriented services as follows:

Specification Designers can specify services in the process calculus CO2.
An Eclipse plugin supports writing such specifications, providing syntax
highlighting, code auto-completion, syntactic and semantic checks, and
basic static type checking.

Honesty checking of specifications Our tool can statically verify the hon-
esty of specifications. When the specification is dishonest, the tool
provides a counter example, in the form of a reachable abstract state
of the service which violates some contract.

Translation into Java The tool automatically translates specifications into
skeletal Java programs, implementing the required contract-oriented
interactions (while leaving the actual application logic to be imple-
mented in a subsequent step). The obtained skeleton is honest when the
specification is such.

Honesty checking of refined Java code Programmers can refine the skele-
ton by implementing the actual application logic. This is a potentially
dangerous operation, since honesty can be accidentally lost in the man-
ual refinement. The tool supports this step, by providing an honesty
checker for refined Java code.

1.2 Specifying Contract-Oriented Services in CO2

A service in our modelling language consists of a CO2 process. CO2 is a
process algebra inspired from CCS [28], and equipped with contract-oriented
primitives: contract advertisement, stipulation, and contractual actions.
Contracts are meant to model the promised behaviour of services, and they
are expressed as session types ([34]).

We show the main features of our language with the help of a small case
study, an online store which receives orders from customers.



1.2 Specifying Contract-Oriented Services in CO2 5

1.2.1 Contracts

We first specify the contract C between the store and a customer, from the
point of view of the store. The store declares that it will receive an order,
and then send either the corresponding price, or declare that the item is
unavailable. We formalise this contract as the following first-order binary
session type [19]:

contract C { order? string . ( price! int (+) unavailable ! ) }

Receive actions are marked with the symbol ?, while send actions are marked
with !. The sort of a message (int, string, or unit) is specified next to
the action label; the sort unit is used for pure synchronizations, and it can
be omitted. The symbol . denotes prefixing. The symbol (+) is used to
group send actions, and it denotes an internal choice made by the store.

1.2.2 Processes

Note that contracts only formalise the interaction protocol between two
services, while they do not specify how these services advertise and realise the
contracts. This behaviour is formalised in CO2 [6, 7], a specification language
for contract-oriented services. For instance, a possible CO2 specification of
our store is the following:

1 specification Store {
2 tell x C . // wait until session x is created
3 receive@x order?[v:string] . (
4 if * // checks if the item is in stock
5 then send@x price ![*:int]
6 else send@x unavailable ! ) }

At line 2, the store advertises the contract C, waiting for the service infras-
tructure to find some other service with a compliant contract. Intuitively,
two contracts are compliant if they fulfil each other expectations1. When
the infrastructure finds a contract compliant with C, a new session is created
between the respective services, and the variable x is bound to the session
name.

At line 3 of the snippet above the store waits to receive an order, binding
it to the variable v of sort string. At line 4, the store checks whether the

1More precisely, the notion of compliance we use here is progress, that relates two
processes whenever their interaction never reaches a deadlock [4].



6 Contract-Oriented Design of Distributed Applications: A Tutorial

ordered item is in stock (the actual condition is not given in the specification).
If the item is in stock, then the store sends the price to the customer;
otherwise it notifies that the item is unavailable (lines 5-6). The sent price
*:int is a placeholder, to be replaced with an actual price upon refinement of
the specification into an actual implementation of the service.

1.2.3 An Execution Context

We now show a possible context wherein to execute our store. Although
the context is not needed for verifying the store specification, we use it to
complete the presentation of the primitives of our modelling language.

1 specification BuyerA {
2 tell y { order! string . price? int } .
3 send@y order ![*: string] .
4 receive@y price?[n:int]
5 }
6

7 specification BuyerB {
8 tell y { order! string . ( price? int + unavailable ?

+ availablefrom ? string) } .
9 send@y order ![*: string] .

10 receive {
11 @y price?[n:int]
12 @y unavailable ?
13 @y availablefrom ?[ date:string ]}
14 }

The contract advertised by BuyerA at line 2 is not compliant with the
contract C advertised by the store: indeed, after sending the order, BuyerA
only expects to receive the price — while the store can also choose to send
unavailable. Therefore, any service implementing BuyerA will never be put
in a session with the Store. Instead, the contract advertised at line 8 by
BuyerB is compliant with C. Note that this is true also if the two contracts
are not one dual of each other: indeed, BuyerB accepts all the messages that
the store may send (i.e., price and unavailable), and it also allows for a
further message (availablefrom), to be used e.g. to notify when the item
will be available. Although this message will never be used by the Store,
it could allow BuyerB to establish sessions with more advanced stores. The
symbol + is used to group receive actions, and it denotes an external choice,
one which is not made by the buyer. At lines 11-13, BuyerB waits to receive
at session y one of the messages declared in the contract.



1.2 Specifying Contract-Oriented Services in CO2 7

1.2.4 Adding Recursion

Note that our Store can only manage the order of a single item: if some
buyer wants to order two or more items, she has to use distinct instances of
the store. We now extend the store so that it can receive several orders in the
same session, adding all the items to a cart.

We start by refining our contract as follows:

1 contract Crec {
2 addToCart ? string . Crec
3 + checkout ? . (
4 price! int . (accept? + reject?)
5 (+) unavailable !
6 )
7 }

The contract Crec requires the store to accept from buyers two kinds of
messages: addToCart and checkout. When a buyer chooses addToCart, the
store must allow the buyer to order more items. This is done by recursively
calling Crec in the addToCart branch. When a buyer stops adding items to
the cart (by choosing checkout), the store must either send a price or state
that the items are unavailable. In the first case, the store allows the buyer to
accept the quotation and finalise the order, or to reject it and abort.

A possible specification of the store using the contract Crec is as follows:

1 specification StoreRec { tell x Crec . Loop(x) }
2 specification Loop(x: session) {
3 receive {
4 @x addToCart ?[item:string] -> Loop(x)
5 @x checkout ? -> Checkout (x)
6 }
7 }
8 specification Checkout (x:session) {
9 if * // checks whether the items are available

10 then
11 send@x price ![*:int] .
12 receive {
13 @x accept?
14 @x reject?
15 }
16 else send@x unavailable !
17 }

The store StoreRec advertises the contract Crec, and then continues as
the process Loop(x), where x is the handle to the new session. The process
Loop(x) receives messages from buyers through session x. When it receives
addToCart, it just calls itself recursively; instead, when it receives checkout,
it calls the process Checkout. This process internally chooses whether to send



8 Contract-Oriented Design of Distributed Applications: A Tutorial

the buyer a price, or to notify that the requested items are unavailable. In
the first case, it receives from the client a confirmation, that can be either
accept or reject.

A possible buyer interacting with StoreRec is the following:

1 specification BuyerC {
2 tell y { addToCart ! string . addToCart ! string . checkout !

. (price? int . ( accept! (+) reject !) + unavailable ?)
} .

3 send@y addToCart ![*:string] .
4 send@y addToCart ![*:string] .
5 send@y checkout ! .
6 receive {
7 @y price?[n:int] ->
8 if * then send@y accept! else send@y reject!
9 @y unavailable ? -> nil

10 }
11 }

Note that the buyer’s contract is compliant with Crec, even though the
store contract is recursive, while the buyer’s one is not.

1.3 Honesty

In an ideal world, one would expect that services respect the contracts
they advertise, in all execution contexts: we call honest such services. In
this section we illustrate, through a series of examples, that writing honest
services may be difficult and error-prone. Further, we show how our tools
may help service designers in specifying and implementing honest services.

1.3.1 A Simple Dishonest Store

Our first example is a naı̈ve CO2 specification of the store advertising the
contract C at page 5:

1 specification StoreDishonest1 {
2 tell x C .
3 receive@x order?[v:string] . (
4 if *
5 then send@x price ![*:int ]) }

The store above waits for an order of some item v. Then, it checks whether
v is in stock (the actual test is abstracted by the *:boolean guard). If the item
is in stock, the store sends a price quotation to the buyer (again, the price is
abstracted in the specification).



1.3 Honesty 9

Note that the store does nothing when the ordered item is not in stock. In
this way, the store fails to respect its advertised contract C, which prescribes
to always respond to the buyer by sending either price or unavailable.
Therefore, we classify this specification of the store as dishonest.

In this paper we give an intuitive description of honesty, referring the
reader to the literature [6, 7] for a formal definition. A specification A is honest
when, in all possible executions, if a contract at some session requires A to
do some action, then A actually performs it. Basically, this boils down to say
that when A is required to send a message, then it does so. Likewise, when A
is required to receive a message, then A is ready to accept any message that
its partner may be willing to send. More in detail:

• if the contract is an internal choice a1!S1 (+) ... (+) an!Sn, then A
must send a message having sort Si, and labelled ai, for some i;

• if the contract is an external choice a1?S1 + ... + an?Sn, then A must
be able to receive messages labelled with any labels ai in the choice
(with the corresponding sorts Si).

The honesty property discussed above can be automatically verified
using the Diogenes honesty checker, which uses the verification technique
described and implemented in [6]. This technique is built upon an abstract
semantics of CO2 which approximates both values (sent, received, and in
conditional expressions) and the actual context wherein a specification is
executed. Basically, the tool checks, through an exaustive exploration, that
in every reachable state of the abstract semantics a participant is always able
to perform some of the actions prescribed in each of her stipulated contracts.
Since this is a branching-time property, a natural approach to verify it is by
model checking. To this purpose we exploit a rewriting logic specification of
the CO2 abstract semantics and the Maude [12] search capabilities. This ab-
straction is a sound over-approximation of honesty: namely, if the abstraction
of a specification is honest, then also the concrete one is honest. Further, the
analysis is complete for specifications without conditional statements: i.e., if
an abstracted specification is dishonest, then also its concrete counterpart is
dishonest. If the abstractions are finite-state, we can verify their honesty by
model checking a (finite) state space2. Our implementation first translates a

2Abstractions are finite-state in the fragment of CO2 without delimitation/parallel under
process definitions. For specifications outside this fragment the analysis is still correct, but it
may diverge; indeed, a negative result [9] excludes the existence of algorithms for honesty that
are at the same time sound, complete, and terminating in full CO2.



10 Contract-Oriented Design of Distributed Applications: A Tutorial

CO2 specification into a Maude term [12], and then uses the Maude model
checker to decide the honesty of its abstract semantics.

The honesty checker outputs the message below, that reports that the
specification StoreDishonest1 is dishonest. The reason for its dishonesty
can be inferred from the following output:

result: ($ 0)(
StoreDishonest1[if exp then do $ 0 "price" ! int . 0 else 0]
| $ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]

)
honesty: false

This shows a reachable (abstract) state of the specification, where $ 0
denotes an open session between the store and a buyer.

The state consists of two parallel components: the state of the store

StoreDishonest1[if exp then do $ 0 "price" ! int . 0 else 0]

and the state of the contract at session $ 0, from the point of view of the store:

$ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]

Such contract requires the store to send either price or unavailable to the
buyer. However, if the guard exp of the conditional (within the state of the
store) evaluates to false, the store will not send any message to the buyer, so
violating the contract C. Therefore, the honesty checker correctly classifies
StoreDishonest1 as dishonest.

1.3.2 A More Complex Dishonest Store

We now consider a more evolved specification of the store, which relies on
external distributors to retrieve items. The contract D specifies the interaction
between the store and distributors:

contract D { req! string . ( ok? + no? ) }

Namely, the store first sends a request to the distributor for some item,
and then waits for an ok or no answer, according to whether the distributor is
able to provide the requested item or not.

Our first attempt to specify a store interacting with customers and
distributors is the following:

1 specification StoreDishonest2 {
2 tell x C .
3 receive@x order?[v:string] .



1.3 Honesty 11

4 tell y D .
5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 }

10 }

At line 2, the store advertises the contract C, and then waits until a session
is established with some customer; when this happens, the variable x is bound
to the session name. At line 3 the store waits to receive an order, binding it
to the variable v. At line 4 the store advertises the contract D to establish a
session y with a distributor; at line 5, it sends a request with the value v.
Finally, the store waits to receive a response ok or no from the distributor, and
accordingly responds price or unavailable to the customer (lines 6-9). The
price *:int is a placeholder, to be replaced upon refinement.

The honesty checker classifies StoreDishonest2 as dishonest. The reason
for its dishonesty can be inferred from the following output:

result: ("y",$ 0)(
StoreDishonest2[tell "y" D. (...)]
| $ 0[" price" ! int . 0 (+) "unavailable " ! unit . 0])

honesty: false

This output shows a possible (abstract) state which could be reached by
StoreDishonest2. There, $ 0 denotes an open session between the store
and a buyer, while "y" indicates that no session between the store and a
distributor is established, yet. The contract at session $ 0 requires the store to
send either a price or an unavailability message. However, in the given state
there is no guarantee to find a distributor, hence the store might be stuck in
the tell, never performing the required actions at session $ 0. Because of
this, the store does not fulfil the contract C, hence it is correctly classified as
dishonest.

1.3.3 Handling Failures

We try to fix the specification StoreDishonest2 by adapting it so to consider
the case where the distributor is not available. Let us refine the specification
StoreDishonest2 as follows:

1 specification StoreDishonest3 {
2 tell x C .
3 receive@x order?[v:string] . (
4 tell y D .



12 Contract-Oriented Design of Distributed Applications: A Tutorial

5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 }

10 after * -> send@x unavailable !
11 )
12 }

Note that StoreDishonest3 uses the construct tell · · · after · · · at lines
4-10. This ensures that, if no session is established within a given deadline,
then the contract is retracted (i.e., removed from the registry of available
contracts), and the control passes to the after process. In particular, in our
StoreDishonest3, if no distributor is found, then D is retracted, and the store
performs its duties with the buyer by sending him unavailable. Since the
actual deadline is immaterial in this specification, it is abstracted here as *.

By running the honesty checker on the amended specification, we obtain:

result: ($ 0,$ 1)(
StoreDishonest3

[ retract $ 1 . ( ... )
+ ask $ 1 True . do $ 1 "req" ! string .

( do $ 1 "no" ? unit . do $ 0 "unavailable " ! unit .
(...)

+ do $ 1 "ok" ? unit . do $ 0 "price" ! int . (...)
)]

| $ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]
| $ 1[" req" ! string . ("no" ? unit . (0).Id + "ok" ? unit .

(0).Id)]
)

honesty: false

Note that StoreDishonest3 is still dishonest. The output above shows a
reachable (abstract) state where the store has opened two sessions, $ 0 and
$ 1, with a buyer and a distributor, respectively. At session $ 0 the store
is expected to send either price or unavailable to the buyer. Now, the
store can perform do $ 0 "price" ! int only after receiving the input
from the distributor, i.e. after performing do $ 1 "ok" ? unit. Similarly,
the store can only perform the action do $ 0 "unavailable" ! unit after
the action do $ 1 "no" ? unit. Should the distributor fail to send either of
these messages, then the store would fail to honour its contract C with the
buyer. Therefore, the honesty checker correctly classifies StoreDishonest3
as dishonest. Note that, even if in this case the distributor would be dishonest
as well, (since it violates the contract D with the store), this does not excuse
the store from violating the contract C with the buyer.



1.3 Honesty 13

1.3.4 An Honest Store, Finally

In order to address the dishonesty issues in the previous specification, we
revise the store as follows:

1 specification StoreHonest {
2 tell x C .
3 receive@x order?[v:string] . (
4 tell y D .
5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 after * -> (

10 send@x unavailable !
11 | receive {
12 @y ok? -> nil
13 @y no? -> nil
14 }
15 )
16 }
17 after * -> send@x unavailable !
18 )
19 }

The main difference between this specification and the previous one is
related to the receive at session y. At line 9, after * represents the case
in which no messages are received within a given timeout (immaterial in
this specification). In such case, the store fulfils its contract at session x, by
sending unavailable to the buyer. Further, the store also fulfils its contract
at session y, by receiving any message that could still be sent from the
distributor after the timeout.

Now the honesty checker correctly detects that the revised specification
StoreHonest is honest.

1.3.5 A Recursive Honest Store

We reprise the specification of StoreRec in Section 1.2, by providing a
recursive store which interacts with buyers (via contract Crec at page 7) and
with distributors (via contract D).

1 specification StoreHonestRec {
2 tell x Crec . Loop(x)
3 }
4

5 specification Loop(x: session) {
6 receive {



14 Contract-Oriented Design of Distributed Applications: A Tutorial

7 @x addToCart ?[item:string] -> Loop(x)
8 @x checkout ? -> Checkout (x)
9 }

10 }
11

12 specification Checkout (x:session) {
13 tell y D .
14 send@y req ![*: string] .
15 receive {
16 @y ok? -> send@x price ![*:int] .
17 receive {
18 @x accept?
19 @x reject?
20 }
21 @y no? -> send@x unavailable !
22 after * -> (
23 send@x unavailable ! |
24 receive {
25 @y ok?
26 @y no?
27 }
28 )
29 }
30 after * -> send@x unavailable !
31 }

The specification StoreHonestRec handles the checkout of buyers in the
process Checkout, which is identical to lines 4-14 in StoreHonest. The main
difference with respect to StoreHonest is that StoreHonestRec can receive
multiple requests from a buyer, via the recursive process Loop(x). Despite
this complication, the specification is still verified as honest by Diogenes.

1.4 Refining CO2 Specifications in Java Programs

Diogenes translates CO2 specifications into Java skeletons, using the APIs
of the contract-oriented middleware in [3]. This middleware collects the
contracts advertised by services, establishes sessions between those with
compliant contracts, and it allows services to send/receive messages through
sessions, while monitoring this activity to detect and punish violations. More
specifically, upon detection of a contract violation the middleware punishes
the culprit, by suitably decreasing its reputation. This is a measure of the
trustworthiness of a participant in its past interactions: the lower is the
reputation, the lower is the probability of being able to establish new sessions
with it.



1.4 Refining CO2 Specifications in Java Programs 15

1.4.1 Compilation of CO2 Specifications into Java Skeletons

We illustrate the translation of CO2 specifications into Java through an
example, the StoreHonest given in the previous section. From it, we obtain
the following Java skeleton3:

1 public class StoreHonest extends Participant {
2 public void run () {
3 Session x = tellAndWait (C);
4

5 Message msg = x.waitForReceive("order");
6 String v = msg. getStringValue();
7

8 try {
9 Session y = tellAndWait (D, timeoutP);

10 y. sendIfAllowed ("req", v);
11

12 try {
13 Message msg_1 = y. waitForReceive(timeoutP,"ok","no");
14 switch (msg_1. getLabel ()) {
15 case "ok": x. sendIfAllowed ("price", intP); break;
16 case "no": x. sendIfAllowed ("unavailable "); break;
17 }
18 }
19 catch ( TimeExpiredException e) {
20 parallel (() ->{x. sendIfAllowed (" unavailable ");});
21 parallel (() ->{y. waitForReceive("ok","no");});
22 }
23 }
24 catch( ContractExpiredException e) {
25 // contract D retracted
26 x. sendIfAllowed ("unavailable ");
27 }
28 }
29 }

We comment below how the specification of StoreHonest at page 13 is
rendered in Java.

• tell x C (at line 2) is translated into the assignment

3 Session x = tellAndWait (C)

The API method tellAndWait advertises the contract C to the middle-
ware, and blocks until a compliant buyer contract is found. Then, it
returns a new object, representing the newly established session between
the store and the buyer.

3Minor cosmetic changes are applied to improve readability.



16 Contract-Oriented Design of Distributed Applications: A Tutorial

• receive @x order?[v:string] (at line 3) is translated into

5 Message msg = x. waitForReceive(" order");
6 String v = msg. getStringValue();

where the call to waitForReceive blocks until the store receives a
message labelled order on session x.

• The block tell y D ... after * ... (at lines 4-17) is translated in
Java as the try-catch statement:

try {
Session y = tellAndWait (D, timeoutP );
...

}
catch( ContractExpiredException e) {
...
}

The call tellAndWait(D, timeoutP) advertises the contract D; the sec-
ond parameter specifies a timeout (in milliseconds) to find a compliant
contract. If the timeout expires, the contract D is retracted, and an excep-
tion is thrown. Then, the exception handler performs the recovery action
specified in the after clause by sending unavailable to the client.

• send @y req![*:string] (at line 5) is translated as

y. sendIfAllowed ("req", stringP )

This method call sends a message labelled req at session y, blocking
until this action is permitted by the contract.

• The receive block at lines 6-16 is translated into a try-catch statement

try {
Message msg_1 = y. waitForReceive(timeoutP ,"ok","no");
...

}
catch ( TimeExpiredException e) {

parallel (() ->{x. sendIfAllowed (" unavailable ");});
parallel (() ->{y. waitForReceive("ok","no");});

}

The waitForReceive waits (until the given timeout) to receive on ses-
sion y a message labelled either yes or no, throwing an exception in
case the timeout expires. In such case, the catch block performs the
recovery actions in the after clause of the specification. Namely, the



1.4 Refining CO2 Specifications in Java Programs 17

service spawns two parallel processes, which send unavailable to the
buyer, and receives late replies from the distributor.

Note that the timeout values timeoutP, as well as the order price intP, are
just placeholders. Further, in an actual implementation of the store service,
we may want e.g. to read the order price from a file or a database. This can
be done by refining the skeleton, introducing the needed code to make the
service actually implement the desired functionality.

1.4.2 Checking Honesty of Refined Java Programs

Note that when refining the skeleton into the actual Java application, pro-
grammers could accidentally break its honesty. In general, this happens when
the refinement alters the interaction behaviour of the service. For instance, in
an actual implementation of our store service, we may want to delegate the
computation of price to a separated method, as follows:

public int getOrderPrice ( String order) throws MyException {...}

and change the placeholder intP at line 15 of the generated code with an
invocation getOrderPrice(v). The method could read the order price from a
file or a database, and suppose that, in that method, each possible exception
is either handled or re-thrown as MyException. If getOrderPrice throws an
exception, then the sendIfAllowed() at line 15 is not performed. Unless the
store performs it while handling MyException, the store violates the contract
with the buyer, and so it becomes dishonest.

To address this issue, the Diogenes toolchain includes an honesty checker
for Java programs, to be used after refinement. This honesty checker is built
on top of Java PathFinder (JPF [27, 37]). We define suitable listeners for
JPF, to intercept the requests to the contract-oriented middleware, and to
simulate all the possible responses that the application can receive from
it. Through JPF we symbolically execute the program, in order to infer a
CO2 specification that abstracts its behaviour, preserving dishonesty. Once a
specification is constructed in this way, we apply the CO2 honesty checker
discussed in Section 1.3 to establish the honesty of the Java program.

We can check the honesty of a Java program through the static method
HonestyChecker.isHonest(StoreHonest.class), which returns one of the
following values:

• HONEST: the tool has inferred a CO2 specification and verified its honesty;
• UNKNOWN: the tool has been unable to infer a CO2 specification, e.g.

because of unhandled exceptions within the class under test.



18 Contract-Oriented Design of Distributed Applications: A Tutorial

In our example, we just provide the following stub implementation of the
method getOrderPrice:

@SkipMethod
public int getOrderAmount( String order) throws MyException {

return 42; }

where the annotation @SkipMethod is interpreted by the honesty checker
as follows: assume that the method terminates (possibly throwing one of
the declared exceptions), and it does not interact with the contract-oriented
middleware. For our refined store, the honesty checker returns UNKNOWN,
outputting:

error details: MyException :
This exception is thrown by the honesty checker .

Please catch it!
at i.u.c.store.StoreHonest . getOrderPrice (Store.java:30)
at i.u.c.store.StoreHonest .run(Store.java :15)
at i.u.c.honesty. HonestyChecker. runProcess ( HonestyChecker.java

:182)

As anticipated above, this output remarks that if getOrderAmount throws
an exception, then the store is dishonest.

As a first (naı̈ve) attempt to recover honesty, we further refine the store by
catching MyException, and just logging the error in the exception handler:

try {
...
case "ok": x. sendIfAllowed (" price",getOrderPrice (v)); break;
...

}
catch ( TimeExpiredException e) { ... }
catch ( MyException e) { System.out.println (" failed"); }

In this case, the honesty checker correctly classifies the store as
DISHONEST, producing the following output:

result ($ 0,$ 1)(
StoreHonest [0] |
$ 0[" price" ! unit . 0 (+) "unavailable " ! unit . 0] |
$ 1[0])

honesty: DISHONEST

This output highlights the reason for dishonesty: StoreHonest[0] means
that the store does nothing, while at session $ 0, it should send either price
or unavailable to the buyer.



1.5 Conclusions 19

To recover honesty, rather than just logging the error, we also perform
x.sendIfAllowed("unavailable") in the exception handler, in order to fulfil
the contract with the buyer:

catch ( MyException e) {
System.out. println(" failed");
x. sendIfAllowed ("unavailable ");

}

With this modification, the Java honesty checker correctly outputs HONEST.

1.5 Conclusions

We have presented Diogenes, a toolchain for the specification and verification
of contract-oriented services. Diogenes fills a gap between foundational
research on honesty [6–9] and more practical research on contract-oriented
programming [3]. Our tools can help service designers to write specifica-
tions, check their adherence to contracts (i.e., their honesty), generate Java
skeletons, and refine them while preserving honesty. We have experimented
Diogenes with a set of case studies (more complex than the ones presented in
this tutorial); our case studies are available at co2.unica.it/diogenes.

The effectiveness of our tools could be improved in several ways, ranging
from the precision of the analysis, to the informative quality of output
messages provided by the honesty checkers.

The precision of the honesty analysis could be improved e.g., by im-
plementing the type checking technique of [7], which extends the class of
infinite-state processes for which honesty can be verified. More specifically,
the type system in [7] can also handle some processes with delimitation and
parallel composition under recursion.

Another form of improvement would be to extend the formalism and the
analysis to deal with timing constraints. This could be done e.g. by exploiting
the timed version of CO2 [3] and timed session types [2]. Although the
current analysis for honesty does not consider timing constraints (and there-
fore is unsound in such scenario), it can still give useful feedback when
applied to timed specifications. For instance, it could detect that some
prescribed actions cannot be performed because the actions they depend on
may be blocked by an unresponsive context.

When a specification/program is found dishonest, it would be helpful for
programmers to know which parts of it is responsible for contract violations.
The error reporting facilities of Diogenes could be improved to this purpose:



20 Contract-Oriented Design of Distributed Applications: A Tutorial

this would require e.g., to signal what are the contract obligations that are not
fulfilled, and in what session, and in particular which part of the specifica-
tion/program should be fixed. Further, it would be useful to suggest possible
corrections to the designer.

Another direction for future work is to formally establish relations be-
tween the original CO2 specification and the refined Java code. In fact, our
tools can only check that the user-refined Java code obtained from an honest
CO2 specification is honest, but this does not imply that the refined Java
code still “adheres” to the specification. Indeed, improper refinements could
drastically modify the interaction behaviour of a service, e.g. by removing
some contract advertisements — while preserving honesty. An additional
static analysis could establish that the CO2 process inferred from the user-
refined Java code is behaviourally related to the original specification. An
alternative way to cope with this issue would be to enhance the gener-
ation of the skeletal Java program, by providing a more structured class
hierarchy. More precisely, we could avoid accidental breaches of honesty
by separating, in the generated skeleton, the part that handles the interac-
tions from the parts to be refined. This could be done e.g. by inserting
entry points to invoke classes/interfaces whose behaviour is defined apart,
so separating the application logic and simplifying possible updates in the
specifications.

1.5.1 Related Work

In recent years many works have addressed the safe design of service-oriented
applications. A notable approach is to specify the overall communication
behaviour of an application through a choreography, which validates some
global properties of the application (e.g. safety, deadlock-freedom, etc.).
To ensure that the application enjoys such properties, all the components
forming the application have to be verified; this can be done e.g. by projecting
the choreography to end-point views, against which these components are
verified [35, 21]. Examples of how to embody such approach in existing
programming languages and models are presented for C [33], for
Python [30], and for the actor model [31]. All those approaches are based on
Scribble [38], a protocol description language featuring multiparty session
types [21]. The strict relations between multiparty session types and actor-
based models such as communicating machines [15] has been used to develop
a framework to monitor Erlang applications [18].



1.5 Conclusions 21

This top-down approach assumes that designers control the whole ap-
plication, e.g., they develop all the needed components. However, in many
real-world scenarios several components are developed independently, with-
out knowing at design time which other components they will be integrated
with. In these scenarios, the compositional verification pursued by the top-
down approach is not immediately applicable, because the choreography is
usually unknown, and even if it were known, only a subset of the needed
components is available for verification. However, this issue can be mitigated
when the communication pattern of each component is available. In fact, in
such case if the set of components is compatible, it is possible to synthesise
a faithful choreography [26] with a suitable tool [24]. Such choreography
can then be used to distil monitors for the components that are not trusted
(if any). The ideas pursued in this paper depart from the top-down approach,
because designers can advertise contracts to discover the needed components
(and so ours can be considered a bottom-up approach). Coherently, the main
property we are interested in is honesty, which is a property of components,
and not of global applications. Some works mixing top-down and bottom-up
composition have been proposed in the past few years [5, 16, 25]. Recent
works [32] have explored how to integrate the bottom-up approach with
inference of multiparty session types from GO programs.

The problem of ensuring safe interactions in session-based systems has
been addressed by many authors [10, 11, 13, 14, 17, 19, 21–23, 36]. When
processes have a single session, our notion of honesty is close (yet different)
to session typeability. A technical difference is that we admit processes to
attempt interactions which are not mandated by the contract. E.g., the process:

1 specification P {
2 tell x { a! . b! } . (send @x a! | send @x b!)
3 }

is honest, while it would not be typeable according to most works on session
types, because the action b is not immediately mandated by the contract.

Other, more substantial, differences between honesty and session typing
arise when processes have more than one session. More specifically, we
consider a process to be honest when it enjoys progress in all possible
contexts, while most works on session typing guarantee progress in a given
context. For instance, consider the process:



22 Contract-Oriented Design of Distributed Applications: A Tutorial

1 specification Q {
2 tell x { a! } . tell y { b? } . receive @y b? . send @x a!
3 }

We have that Q is not honest, because the action at session x is not possible
if the participant at the other endpoint of session y does not send b. Note
instead that Q would be well-typed in [20], even if some contexts R can lead
Q to a deadlock. The interaction type system in [14] would allow to check the
progress of Q|R, given a context R.

Acknowledgments This work has been partially supported by Aut. Reg.
of Sardinia P.I.A. 2013 “NOMAD”, and by EU COST Action IC1201
“Behavioural Types for Reliable Large-Scale Software Systems” (BETTY).

References

[1] Nicola Atzei and Massimo Bartoletti. Developing honest Java programs
with Diogenes. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE), volume 9688 of LNCS, pages 52–61.
Springer, 2016.

[2] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Se-
bastian Podda, and Livio Pompianu. Compliance and subtyping in timed
session types. In Formal Techniques for Distributed Objects, Compo-
nents, and Systems (FORTE), volume 9039 of LNCS, pages 161–177.
Springer, 2015.

[3] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Se-
bastian Podda, and Livio Pompianu. A contract-oriented middleware. In
Formal Aspects of Component Software (FACS), volume 9539 of LNCS,
pages 86–104. Springer, 2015. http://co2.unica.itco2.unica.it

[4] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance
in behavioural contracts: a brief survey. In Programming Languages
with Applications to Biology and Security, volume 9465 of LNCS, pages
103–121. Springer, 2015.

[5] Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino.
Choreographies in the wild. Science of Computer Programming, 109:
36–60, 2015.

[6] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto
Zunino. Verifiable abstractions for contract-oriented systems. Journal of
Logical and Algebraic Methods in Programming (JLAMP), 86:159–207,
2017.



References 23

[7] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino.
Honesty by typing. Logical Methods in Computer Science, 12(4), 2016.
Pre-print available as: https://arxiv.org/abs/1211.2609

[8] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[9] Massimo Bartoletti and Roberto Zunino. On the decidability of honesty
and of its variants. In Web Services, Formal Methods, and Behavioral
Types, volume 9421 of LNCS, pages 143–166. Springer, 2015.

[10] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca,
Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Global progress
in dynamically interleaved multiparty sessions. In CONCUR, volume
5201 of LNCS, pages 418–433. Springer, 2008.

[11] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino,
and Luca Padovani. Foundations of session types. In ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming
(PPDP), pages 219–230. ACM, 2009.

[12] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı́-Oliet, José Meseguer, and José F. Quesada. Maude: Specification
and programming in rewriting logic. TCS, 2001.

[13] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. Inference of global progress properties for dynam-
ically interleaved multiparty sessions. In COORDINATION, volume
7890 of LNCS, pages 45–59. Springer, 2013.

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and
Luca Padovani. Global progress for dynamically interleaved multiparty
sessions. Mathematical Structures in Computer Science, 26(2):238–
302, 2016.

[15] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types
meet communicating automata. In European Symposium on Pro-
gramming (ESOP), volume 7211 of LNCS, pages 194–213. Springer,
2012.

[16] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility
in communicating automata: Characterisation and synthesis of global
session types. In International Colloquium on Automata, Languages,
and Programming (ICALP), volume 7966 of LNCS, pages 174–186.
Springer, 2013.

[17] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko
Yoshida. On progress for structured communications. In Trustworthy



24 Contract-Oriented Design of Distributed Applications: A Tutorial

Global Computing (TGC), volume 4912 of LNCS, pages 257–275.
Springer, 2007.

[18] Simon Fowler. An Erlang implementation of multiparty session actors.
In Interaction and Concurrency Experience, volume 223 of EPTCS,
pages 36–50, 2016.

[19] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type disciplines for structured communication-based pro-
gramming. In European Symposium on Programming (ESOP), volume
1381 of LNCS, pages 22–138. Springer, 1998.

[20] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 273–284. ACM,
2008.

[21] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. J. ACM, 63(1):9:1–9:67, 2016.

[22] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco
Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani,
António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi
Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

[23] Naoki Kobayashi. A new type system for deadlock-free processes. In
Proc. CONCUR, volume 4137 of LNCS, pages 233–247. Springer, 2006.

[24] Julien Lange and Emilio Tuosto. A toolchain for choreography-
based analysis of application level protocols. Available at https:
//bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

[25] Julien Lange and Emilio Tuosto. Synthesising choreographies from lo-
cal session types. In CONCUR, volume 7454 of LNCS, pages 225–239.
Springer, 2012.

[26] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicat-
ing machines to graphical choreographies. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
221–232, 2015.

[27] Flavio Lerda and Willem Visser. Addressing dynamic issues of program
model checking. In SPIN workshop on Model checking of software,
pages 80–102, 2001.

[28] Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
1989.



References 25

[29] A. Mukhija, Andrew Dingwall-Smith, and D.S. Rosenblum. QoS-aware
service composition in Dino. In ECOWS, volume 5900 of LNCS, pages
3–12. Springer, 2007.

[30] Rumyana Neykova. Session types go dynamic or how to verify
your Python conversations. In Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software
(PLACES), volume 137 of EPTCS, pages 95–102, 2013.

[31] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors.
In COORDINATION, volume 8459 of LNCS, pages 131–146. Springer,
2014.

[32] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concur-
rent go by global session graph synthesis. In International Conference
on Compiler Construction (CC), pages 174–184. ACM, 2016.

[33] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session
C: safe parallel programming with message optimisation. In Objects,
Models, Components, Patterns (TOOLS), pages 202–218, 2012.

[34] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE, pages 398–413, 1994.

[35] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian
Stahl, and Karsten Wolf. Multiparty contracts: Agreeing and implement-
ing interorganizational processes. Comput. J., 53(1):90–106, 2010.

[36] V. T. Vasconcelos. Fundamentals of Session Types. Information and
Computation, 217:52–70, 2012.

[37] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model checking programs. Automated Software
Engineering, 10(2):203–232, 2003.

[38] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.
The Scribble protocol language. In Trustworthy Global Computing
(TGC), volume 8358 of LNCS, pages 22–41. Springer, 2013.



http://taylorandfrancis.com


2
Contract-Oriented Programming with Timed

Session Types

Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande,
Maurizio Murgia, Alessandro Sebastian Podda and Livio Pompianu

University of Cagliari, Italy

Abstract

Contract-oriented programming is a software engineering paradigm which
proposes the use of behavioural contracts to discipline the interaction among
software components. In a distributed setting, the various components of
an application may be developed and run by untrustworthy parties, which
could opportunistically diverge from the expected behaviour when they find
it convenient. The use of contracts in this setting is essential: by binding
the behaviour of each component to a contract, and by sanctioning contract
violations, components are incentivized to behave in a correct and cooperative
manner.

This chapter is a step-by-step tutorial on programming contract-oriented
distributed applications. The glue between components is a middleware
which establishes sessions between services with compliant contracts, and
monitors sessions to detect and punish violations. Contracts are formalised as
timed session types, which describe timed communication protocols between
two components at the endpoints of a session. We illustrate some basic prim-
itives of contract-oriented programming: advertising contracts, performing
contractual actions, and dealing with violations. We then show how to exploit
these primitives to develop some small distributed applications.

2.1 Introduction

Developing trustworthy distributed applications can be a challenging task.
A key issue is that the services that compose a distributed application may
be under the governance of different providers, which may compete against

27



28 Contract-Oriented Programming with Timed Session Types

each other. Furthermore, services interact through open networks, where
competitors and adversaries can try to exploit their vulnerabilities.

A possible countermeasure to these issues is to use behavioural contracts
to discipline the interaction among services. These are formal descriptions of
service behaviour, which can be used at static or dynamic time to discover
and bind services, and to guarantee that they interact in a protected manner:
namely, when a service does not behave as prescribed by its contract, it can
be blamed and sanctioned for a contract breach.

In previous work [7] we presented a middleware that uses behavioural
contracts to discipline the interactions among distrusting services. Since it
supports the COntract-Oriented paradigm, we called it “CO2 middleware”.

Figure 2.1 illustrates the main features of the CO2 middleware. In (1), the
participant A advertises its contract to the middleware, making it available
to other participants. In (2), the middleware determines that the contracts
of A and B are compliant: this means that interactions which respect the
contracts are deadlock-free. Upon compliance, the middleware establishes
a session through which the two participants can interact. This interac-
tion consists of sending and receiving messages, similarly to a standard
message-oriented middleware (MOM): for instance, in (3) participant A

Figure 2.1 Contract-oriented interactions in the CO2 middleware.



2.2 Timed Session Types 29

delivers to the middleware a message for B, which can then collect it from
the middleware.

Unlike standard MOMs, the interaction happening in each session is
monitored by the middleware, which checks whether contracts are respected
or not. In particular, the execution monitor verifies that actions occur when
prescribed by their contracts, and it detects when some expected action is
missing. For instance, in (4) the execution monitor has detected an attempt
of participant B to do some illegal action. Upon detection of a contract
violation, the middleware punishes the culprit, by suitably decreasing its
reputation. This is a measure of the trustworthiness of a participant in its past
interactions: the lower its reputation is, the lower the probability of being able
to establish new sessions with it.

Item (5) shows another mechanism for establishing sessions: here, the
participant C advertises a contract, and D just accepts it. This means that the
middleware associates D with the canonical compliant of the contract of C,
and it establishes a session between C and D. The interaction happening in
this session then proceeds as described previously.

In this chapter we illustrate how to program contract-oriented distributed
applications which run on the CO2 middleware. A public instance of the
middleware is accessible from co2.unica.it, together with all examples
and experiments we carried out.

2.2 Timed Session Types

The CO2 middleware currently supports two kinds of contracts:

• first-order binary session types [18];
• timed session types (TSTs) [6].

In this section we illustrate TSTs with the help of a small case study, an online
store which receives orders from customers. The use of untimed session types
in contract-oriented applications is discussed in the literature [3, 4, 8].

2.2.1 Specifying Contracts

Timed session types extend binary session types [18, 26] with clocks and
timing constraints, similarly to the way timed automata [1] extend (classic)
finite state automata. We informally describe the syntax of TSTs below, and
we refer to [5, 6] for the full technical development.



30 Contract-Oriented Programming with Timed Session Types

Guards. Guards describe timing constraints, and they are conjunctions of
simple guards of the form t ◦ d, where t is a clock, d ∈ N, and ◦ is a relation
in <, <=, =, >=, >. For instance, the guard t<60,u>10 is true whenever the
value of clock t is less than 60, and the value of clock u is greater than 10.
The value of clocks is in R≥0, like for timed automata.

Send and receive. A TST describes the behaviour of a single participant A
at the end-point of a session. Participants can perform two kinds of actions:

• a send action !a{g;t1,...,tk} stipulates that A will output a message
with label a in a time window where the guard g is true. The clocks
t1,...,tk will be reset after the output is performed.

• a receive action ?a{g;t1,...,tk} stipulates that A will be available
to receive a message with label a at any instant within the time window
where the guard g is true. The clocks t1,...,tk will be reset after the
input is received.

When g = true, the guard can be omitted.
For instance, consider the contract store1 between the store and a

customer, from the point of view of the store.

store1 = "?order {;t} . ! price{t <60}"

The store declares that it will receive an order at any time. After it has
been received, the store will send the corresponding price within 60 seconds.

Internal and external choices. TSTs also feature two forms of choice:

• !a1{g1;R1} + ... + !an{gn;Rn}
This is an internal choice, stipulating that A will decide at run-time
which one of the output actions !ai{gi;Ri} (with 1 ≤ i ≤ n) to
perform, and at which time instant. After the action is performed, all
clocks in the set Ri = {t1,...,tk} are reset.

• ?a1{g1;R1} & ...& ?an{gn;Rn}
This is an external choice, stipulating that A will be able to receive
any of the inputs !ai{gi;Ri}, in the declared time windows. The
actual choice of the action, and of the instant when it is performed,
will be made by the participant at the other endpoint of the session.
After the action is performed, all clocks in the set Ri = {t1,...,tk}
are reset.



2.2 Timed Session Types 31

With these ingredients, we can refine the contract of our store as follows:

store2 = "?order {;t} . (! price{t <60} + ! unavailable {t <10})"

This version of the contract deals with the case where the store receives
an unknown or invalid product code. In this case, the internal choice allows
the store to inform the buyer that the requested item is unavailable.

Recursion. The contracts shown so far can only handle a bounded (statically
known) number of interactions. We can overcome this limitation by using
recursive TSTs. For instance, the contract store3 below models a store
which handles an arbitrary number of orders from a buyer:

store3 = "REC ’x’ [? addtocart {t <60;t}.’x’
& ? checkout {t <60;t}.(

! price{t <20;t}.(
? accept{t <10} & ? reject{t <10})

+ ! unavailable {t <20})]"

The contract store3 allows buyers to add some item to the cart, or
checkout. When a buyer chooses addtocart, the store must allow him to
add more items: this is done recursively. After a checkout, the store must
send the overall price, or inform the buyer that the requested items are
unavailable. If the store sends a price, it must expect a response from the
buyer, who can either accept or reject the price.

Context. Action labels are grouped into contexts, which can be created
and made public through the middleware APIs. Each context defines the
labels related to an application domain, and it associates each label with
a type and a verification link. The type (e.g., int, string) is that of the
messages exchanged with that label. The verification link is used by the
runtime monitor (described later on in this section) to delegate the verification
of messages to a trusted third party. For instance, the middleware supports
Paypal as a verification link for online payments [7].

2.2.2 Compliance

Besides being used to specify the interaction protocols between pairs of
services, TSTs feature the following primitives:

• a decidable notion of compliance between two TSTs;
• an algorithm to detect if a TST admits a compliant one;
• a computable canonical compliant construction.



32 Contract-Oriented Programming with Timed Session Types

These primitives are exploited by the CO2 middleware to establish sessions
between services: more specifically, the middleware only allows interac-
tions between services with compliant contracts. Intuitively, compliance
guarantees that, if all services respect all their contracts, then the overall
distributed application (obtained by composing the services) will not
deadlock.

Below we illustrate the primitives of TSTs by examples; a comprehensive
formal treatment is in [5].

Informally, two TSTs are compliant if, in the interactions where both
participants respect their contract, the deadlock state is not reachable
(see [5] for details). For instance, recall the simple version of the store
contract:

store1 = "?order {;t} . ! price{t <60}"

and consider the following buyer contracts:

buyer1 = "!order {;u} . ? price{u <70}"
buyer2 = "!order {;u} . (? price{u <70} & ? unavailable )"
buyer3 = "!order {;u} . (? price{u <30} & ? unavailable )"
buyer4 = "!order{u <20} . ? price{u <70}"

We have that:

• store1 and buyer1 are compliant: indeed, the time frame where
buyer1 is available to receive price is larger than the one where the
store can send;

• store1 and buyer2 are compliant: although the action ?unavailable
enables a further interaction, this is never chosen by the store
store1.

• store1 and buyer3 are not compliant, because the store may choose to
send price 60 seconds after he got the order, while buyer2 is only able
to receive within 30 seconds.

• store1 and buyer4 are not compliant. Here the reason is more subtle:
assume that the buyer sends the order at time 19: at that point, the store
receives the order and resets the clock t; after that, the store has 60
seconds more to send price. Now, assume that the store chooses to send
price after 59 seconds (which fits within the declared time window of
60 seconds). The total elapsed time is 19+59=78 seconds, but the buyer
is only able to receive before 70 seconds.



2.2 Timed Session Types 33

We can check if two contracts are compliant through the middleware
Java APIs1. We show how to do this through the Groovy2 interactive
shell3.

cS1 = new TST(store1)
cS1. isCompliantWith(new TST( buyer1))
>>> true
cS1. isCompliantWith(new TST( buyer3))
>>> false

Consider now the second version of the store contract:

store2 = "?order {;t} . (! price{t <60} + ! unavailable {t <10})"

The contract store2 is compliant with the buyer contract buyer2
discussed before, while it is not compliant with:

buyer5 = "!order {;u} . (?price{u <90})"
buyer6 = "!order {;u} . (?price{u <90} + ? unavailable {u>5,u <12})"

The problem with buyer5 is that the buyer is only accepting a mes-
sage labelled price, while store2 can also choose to send unavailable.
Although this option is present in buyer6, the latter contract is not compliant
with store2 as well. In this case the reason is that the time window for
receiving unavailable does not include that for sending it (recall that the
sender can choose any instant satisfying the guard in its output action). To
illustrate some less obvious aspects of compliance, consider the following
buyer contract:

buyer7 = "!order{u <100} . ? price{u <70}"

This contract stipulates that the buyer can wait up to 100 seconds for
sending an order, and then she can wait until 60 seconds (from the start of
the session), to receive the price from the store.

Now, assume that some store contract is compliant with buyer7. Then,
the store must be able to receive the order at least until time 100. If the buyer
chooses to send the order at time 90 (which is allowed by contract buyer7),
then the store would never be able to send price before time 70. Therefore,
no contract can be compliant with buyer7.

The issue highlighted by the previous example must be dealt with care: if
one publishes a service whose contract does not admit a compliant one, then

1co2.unica.it/downloads/co2api/
2groovy-lang.org/download.html
3On Unix-like systems, copy the API’s jar in $HOME/.groovy/lib/. Then, add import

co2api.* to $HOME/.groovy/groovysh.rc, and run groovysh.



34 Contract-Oriented Programming with Timed Session Types

the middleware will never connect that service with others. To check whether
a contract admits a compliant one, we can query the middleware APIs:

cB7 = new TST(buyer7)
>>> !order{u<100} . ?price{u<70}

cB7. hasCompliant ()
>>> false

Recall from Section 2.1 that the CO2 middleware also allows a service to
accept another service’s contract, as per item (5) in Figure 2.1. E.g., assume
that the store has advertised the contract store2 above. When the buyer uses
the primitive accept, the middleware associates the buyer with the canonical
compliant of store2, constructed through the method dualOf, i.e.:

cS2 = new TST(store2)
>>> ?order{;t} . (!price{t<60} + !unavailable{t<10})

cB2 = cS2.dualOf ()
>>> !order{;t} . (?price{t<60} & ?unavailable{t<10})

Intuitively, if a TST admits a compliant one, then its canonical compliant
is constructed as follows:

1. output labels !a are translated into input labels ?a, and vice versa;
2. internal choices are translated into external choices, and vice versa;
3. prefixes and recursive calls are preserved;
4. guards are suitably adjusted in order to ensure compliance.

Consider now the following contract of a store which receives an order
and a coupon, and then sends a discounted price to the buyer:

store4 = "?order{t <60} . ? coupon{t <30;t} . ! price{t <60}"

In this case store4 admits a compliant one, but this cannot be obtained
by simply swapping input/output actions and internal/external choices.

cS4 = new TST(store4)
cB4 = new TST("! order{t <60} . ! coupon{t <30;t} . ?price{t <60})")
cS4. isCompliantWith(cB4)
>>> false

Indeed, the canonical compliant construction gives:

cB5 = cS4. dualOf()
>>> !order{t<30} . ?coupon{t<30;t} . ?price{t<60}



2.2 Timed Session Types 35

2.2.3 Run-Time Monitoring of Contracts

In order to detect (and sanction) contract violations, the CO2 middleware
monitors all the interactions that happen through sessions. The monitor
guarantees that, in each reachable configuration, only one participant can be
“on duty” (i.e., she has to perform some actions); and if no one is on duty nor
culpable, then both participants have reached success. Here we illustrate how
runtime monitoring works, by making a store and a buyer interact.

To this purpose, we split the paper in two columns: in the left column we
show the store behaviour, while in the right column we show the buyer. We
assume that both participants call the middleware APIs through the Groovy
shell, as shown before. Note that the interaction between the two participants
is asynchronous: when needed, we will highlight the points where one of the
participants performs a time delay.

Both participants start by creating a connection co2 with the middleware:

usr = " testuser1@gmail.com"
pwd = " testuser1 "
co2 = new CO2ServerConnection(

usr ,pwd)

usr = " testuser2@gmail.com"
pwd = " testuser2 "
co2 = new CO2ServerConnection(

usr ,pwd)

Then, the participants create their contracts, and advertise them to the
middleware through the primitive tell. The variables pS and pB are the
handles to the published contracts.

cS = new TST(store2)
pS = cS.toPrivate (co2).tell()

cB = new TST( buyer2)
pB = cB. toPrivate (co2).tell()

Now the middleware has two compliant contracts in its collection, hence
it can establish a session between the store and the buyer. To obtain a handle
to the session, both participants use the blocking primitive waitForSession:

sS = pS.waitForSession() sB = pB. waitForSession()

At this point, participants can query the session to see who is “on duty”
(namely, one is on duty if the contract prescribes her to perform the next
action), and to check if they have violated the contract:

sS. amIOnDuty ()
>>> false
sS. amICulpable ()
>>> false

sB.amIOnDuty ()
>>> true
sB. amICulpable ()
>>> false



36 Contract-Oriented Programming with Timed Session Types

Note that the first action must be performed by the buyer, who must send
the order. This is accomplished by the send primitive. Dually, the store
waits for the receipt of the message, using the waitForReceive primitive:

msg = sS. waitForReceive()
msg. getStringValue()
>>> 0123
sS.amIOnDuty ()
>>> true

// send at an arbitrary time
sB.send(" order", " 0123")

sB. amIOnDuty ()
>>> false

Since there are no time constraints on sending order, this action can be
successfully performed at any time; once this is done, the waitForReceive
unlocks the store. The store is now on duty, and it must send price within
60 seconds, or unavailable within 10 seconds. Now, assume that the store
tries to send unavailable after the deadline:

// wait more than 10 seconds

sS.send(" unavailable ")
>>> ContractException

msg = sB. waitForReceive()

>>> ContractViolationException:
"The other participant is culpable"

On the store’s side, the send throws a ContractException; on the buyer
side, the waitForReceive throws an exception which reports the violation
of the store. At this point, if the two participants check the state of the session,
they find that none of them is still on duty, and that the store is culpable:

session.amIOnDuty ()
>>> false
session. amICulpable ()
>>> true

session. amIOnDuty ()
>>> false
session. amICulpable ()
>>> false

At this point, the session is terminated, and the reputation of the store is
suitably decreased.

2.3 Contract-Oriented Programming

In this section we develop some simple contract-oriented services, using the
middleware APIs via their Java binding4.

4Full code listings are available at co2.unica.it



2.3 Contract-Oriented Programming 37

2.3.1 A Simple Store

We start with a basic store service, which advertises the contract store2:

1 String store2 ="? order{;t }.(!price{t <60} + ! unavailable {t <10})";
2 TST c = new TST(store2);

4 CO2ServerConnection co2 =
5 new CO2ServerConnection("testuser@co2 .unica.it", " pa55w0rd");
6 Private r = c. toPrivate (co2);
7 Public p = r.tell(); //advertises the contract store2

9 Session s = p. waitForSession();//blocks until session is created
10 String id = s. waitForReceive(). getStringValue();

12 if( isAvailable (id)) { s.send(" price", getPrice (id)); }
13 else { s.send(" unavailable "); }

At lines 1-2, the store constructs a TST c for contract store2. At
lines 4-5, the store connects to the middleware, providing its credentials. At
line 6, the Private object represents the contract in a state where it has not
been advertised to the middleware yet. To advertise the contract, we invoke
the tell method at line 7. This call returns a Public object, modelling a
latent contract that can be “fused” with a compliant one to establish a new
session. At line 9, the store waits for a session to be established; the returned
Session object allows the store to interact with a buyer. At line 10, the
store waits for the receipt of a message, containing the code of the product
requested by the buyer. At lines 12-13, the store sends the message price
(with the corresponding value) if the item is available, otherwise it sends
unavailable.

2.3.2 A Simple Buyer

We now show a buyer that can interact with the store. This buyer just accepts
the already published contract store2. The contract is identified by its hash,
which is obtained from Public.getContractID().

1 CO2ServerConnection co2 = new CO2ServerConnection(...);

3 String storeCID = "0x...";
4 Integer desiredPrice = 10;

6 Public p = Public. accept(co2 , storeCID , TST. class);
7 Session s = p. waitForSession();

9 s.send("order", " 11235811 ");



38 Contract-Oriented Programming with Timed Session Types

11 try {
12 Message m = s. waitForReceive();
13 switch (m. getLabel ()) {
14 case " unavailable ": break;
15 case " price":
16 Integer price = Integer. parseInt (m.getStringValue());
17 if ( price > desiredPrice ) { /* abort the purchase */ }
18 else { /* proceed with the purchase */ }
19 }
20 } catch( ContractViolationException e){/*The store is culpable */}

At line 6, the buyer accepts the store’s contract, identified by storeCID.
The call to Public.accept returns a Public object. At this point a session
with the store is already established, and waitForSession just returns the
corresponding Session object (line 7). Now, the buyer sends the item code
(line 9), waits for the store response (line 12), and finally in the try-catch
statement it handles the messages price and unavailable.

Note that the accept primitive allows a participant to establish ses-
sions with a chosen counterpart; instead, this is not allowed by the
tell primitive, which can establish a session whenever two contracts are
compliant.

2.3.3 A Dishonest Store

Consider now a more complex store, which relies on external distributors to
retrieve items. As before, the store takes an order from the buyer; however,
now it invokes an external distributor if the requested item is not in stock. If
the distributor can provide the item, then the store confirms the order to the
buyer; otherwise, it informs the buyer that the item is unavailable.

Our first attempt to implement this refined store is the following.

1 TST cB = new TST(store2);
2 TST cD = new TST("!req {;t }.(?ok{t <10} & ?no{t <10})");

4 Public pB = cB. toPrivate (co2).tell();
5 Session sB = pB. waitForSession();
6 String id = sB. waitForReceive().getStringValue();

8 if ( isAvailable (id)) { // handled internally
9 sB.send(" price", getPrice (id));

10 }
11 else { // handled with a distributor
12 Public pD = cD.toPrivate (co2).tell();
13 Session sD = pD.waitForSession();

15 sD.send("req", id);



2.3 Contract-Oriented Programming 39

16 Message mD = sD.waitForReceive();

18 switch (mD. getLabel ()) {
19 case "no" : sB.send(" unavailable "); break;
20 case "ok" : sB.send(" price", getPrice (id)); break;
21 }
22 }

At lines 1-2 we construct two TSTs: cB for interacting with buyers, and
cD for interacting with distributors. In cD, the store first sends a request for
some item to the distributor, and then waits for an ok or no answer, according
to whether the distributor is able to provide the requested item or not. At
lines 4-6, the store advertises cB, and it waits for a buyer to join the session;
then, it receives the order, and checks if the requested item is in stock (line 8).
If so, the store sends the price of the item to the buyer (line 9).

If the item is not in stock, the store advertises cD to find a distributor
(lines 12-13). When a session sD is established, the store forwards the item
identifier to the distributor (line 15), and then it waits for a reply. If the
reply is no, the store sends unavailable to the buyer, otherwise it sends a
price.

Note that this implementation of the store is dishonest, namely it may
violate contracts [11]. This happens in the following two cases:

1. Assume that the store has received the buyer’s order, but the requested
item is not in stock. Then, the store advertises the contract cD to find
a distributor. Note that there is no guarantee that the session sD will
be established within a given deadline, nor that it will be established at
all. If more than 60 seconds pass on the waitForSession at line 13,
the store becomes culpable with respect to the contract cB. Indeed, such
contract requires the store to perform an action before 60 seconds (10
seconds if the action is unavailable).

2. Moreover, if the session sD is established in timely fashion, a slow or
unresponsive distributor could make the store violate the contract cB.
For instance, assume that the distributor sends message no after nearly
10 seconds. In this case, the store may not have enough time to send
unavailable to the buyer within 10 seconds, and so it becomes
culpable at session sB.

We have simulated the scenario described in Item 1, by making the
store interact with slow or unresponsive distributors (see Figure 2.2).



40 Contract-Oriented Programming with Timed Session Types

Figure 2.2 Reputation of the dishonest and honest stores as a function of the number of
sessions with malicious distributors.

The experimental results show that, although the store is not culpable in all
the sessions, its reputation decreases over time. Recovering from such situa-
tion is not straightforward, since the reputation system of the CO2 middleware
features defensive techniques against self-promoting attacks [25].

2.3.4 An Honest Store

In order to implement an honest store, we must address the fact that, if the
distributor delays its message to the maximum allowed time, the store may
not have enough time to respond to the buyer. To cope with this scenario,
we adjust the timing constraints in the contract between the store and the
distributor, and we implement a revised version of the store as follows.

1 TST cB = new TST(store2);
2 TST cD = new TST("!req {;t} . (?ok{t <5} & ?no{t <5})");

4 Public pB = cB. toPrivate (co2).tell();
5 Session sB = pB. waitForSession();
6 String id = sB. waitForReceive().getStringValue();

8 if ( isAvailable (id)) { // handled internally
9 sB.send(" price", getPrice (id));

10 }



2.3 Contract-Oriented Programming 41

11 else { // handled with the distributor
12 Public pD = cD.toPrivate (co2).tell(3 * 1000);
13 try {
14 Session sD = pD. waitForSession();
15 sD.send("req", id);

17 try{
18 Message mD = sD. waitForReceive();

20 switch (mD. getLabel ()) {
21 case "no": sB.send(" unavailable "); break;
22 case "ok": sB.send(" price", getPrice (id)); break;
23 }
24 } catch( ContractViolationException e){
25 //the distributor did not respect its contract
26 sB.send(" unavailable ");
27 }
28 } catch( ContractExpiredException e) {
29 //no distributor found
30 sB.send("unavailable ");
31 }
32 }

The parameter in the tell at line 12 specifies a deadline of 3 seconds:
if the session sD is not established within the deadline, the contract cD
is retracted from the middleware, and a ContractExpiredException is
thrown. The store catches the exception at line 28, sending unavailable
to the buyer.

Instead, if the session sD is established, the store forwards the item iden-
tifier to the distributor (line 15), and then waits for the receipt of a response
from it. If the distributor sends neither ok nor no within the deadline specified
in cD (5 seconds), the middleware assigns the blame to the distributor for
a contract breach, and unblocks the waitForReceive in the store with
a ContractViolationException (line 24). In the exception handler, the
store fulfils the contract cB by sending unavailable to the buyer.

2.3.5 A Recursive Honest Store

We now present another version of the store, which uses the recursive contract
store3 on page 31. As in the previous version, if the buyer requests an item
that is not in stock, the store resorts to an external distributor.

1 TST cB = new TST(store3);
2 TST cD = new TST("!req {;t }.(?ok{t<5} & ?no{t <5})");

4 Public pB = cB.toPrivate (co2).tell();
5 Session sB = pB. waitForSession();



42 Contract-Oriented Programming with Timed Session Types

6 List <String > orders = new ArrayList <>();
7 Message mB;

9 try {
10 do {
11 mB = sB. waitForReceive();
12 if (mB. getLabel (). equals(" addtocart ")){
13 orders.add(mB. getStringValue());
14 }
15 } while(!mB.getLabel ().equals(" checkout "));

17 if ( isAvailable ( orders)) { // handled internally
18 sB.send(" price", getPrice (orders));
19 String res = sB.waitForReceive().getLabel ();
20 switch (res){
21 case " accept": // handle the order
22 case " reject": // terminate
23 }
24 }
25 else { // handled with the distributor
26 Public pD = cD.toPrivate (co2).tell(5 * 1000);
27 try {
28 Session sD = pD. waitForSession();
29 sD.send("req", getOutOfStockItems(orders));
30 try{
31 switch (sD. waitForReceive(). getLabel ()) {
32 case "no": sB.send(" unavailable "); break;
33 case "ok":
34 sB.send(" price", getPrice (orders));
35 try{
36 String res =
37 sB. waitForReceive(). getLabel ();
38 switch (res) {
39 case " accept": // handle the order
40 case " reject": // terminate
41 }
42 }
43 catch ( ContractViolationException e) {
44 //the buyer is culpable, terminate
45 }
46 }
47 } catch ( ContractViolationException e){
48 //the distributor did not respect its contract
49 sB.send(" unavailable ");
50 }
51 }
52 catch ( ContractExpiredException e) {
53 //no distributor found
54 sB.send("unavailable ");
55 }
56 }
57 } catch( ContractViolationException e){/*the buyer is culpable */}



2.4 Conclusions 43

After advertising the contract cB, the store waits for a session sB with
the buyer (lines 4-5). After the session is established, the store can receive
addtocart multiple times: for each addtocart, it saves the corresponding
item identifier in a list. The loop terminates when the buyer selects checkout.
If all requested items are available, the store sends the total price to the
buyer (line 18). After that, the store expects either accept or reject from
the buyer. If the buyer does not respect his deadlines, an exception is thrown,
and it is caught at line 57. If the buyer replies on time, the store advertises
the contract cD, and waits for a session sD with the distributor (lines 26-28).
If the session is not established within 5 seconds, an exception is thrown.
The store handles the exception at line 52, by sending unavailable to the
buyer. If a session with the distributor is established within the deadline,
the store requests the unavailable items, and waits for a response (line 31).
If the distributor sends no, the store answers unavailable to the buyer
(line 32). If the distributor sends ok, then the interaction between store and
buyer proceeds as if the items were in stock. If the distributor does not reply
within the deadline, an exception is thrown. The store handles it at line 47, by
sending unavailable to the buyer. An untimed specification of this store is
proved honest in [4]. We conjecture that also this timed version of the store
respects contracts in all possible contexts.

2.4 Conclusions

We have explored the use of behavioural contracts as service-level agree-
ments among the components of a distributed application. In particular, we
have considered a middleware where services can advertise contracts (in the
form of timed session types, TSTs), and interact through sessions, which are
only created between services with compliant contracts. The primitives of
the middleware exploit the theory of TSTs: in particular, a decidable notion
of compliance between TSTs, a decidable procedure to detect when a TST
admits a compliant one, and a decidable runtime monitoring. The middleware
has been validated in [7] through a series of experiments, which measure the
scalability of the approach when the number of exchanged contracts grows,
and the effectiveness of the reputation system.

Although the current version of the middleware only features binary
(either timed or untimed) session types as contracts, the underlying idea
can be extended to other contract models. Indeed, the middleware only
makes mild assumptions about the nature of contracts, e.g., that they feature:



44 Contract-Oriented Programming with Timed Session Types

(i) monitorable send and receive actions, (ii) some notion of accepting a
contract or a role, or (iii) some notion of compliance with a sound (but
not necessarily complete) verification algorithm. Other timed models of
contracts would be ideal candidates for extensions of the middleware. For
instance, communicating timed automata [13] (which are timed automata
with unbounded communication channels) would allow for multi-party
sessions.

Security issues should be seriously taken into account when developing
contract-oriented applications. As we have shown for the dishonest online
store in Section 2.3, adversaries could make a service sanctioned by exploit-
ing discrepancies between its contracts and its actual behaviour. Since these
mismatches are not always easy to spot, analysis techniques are needed in
order to ensure that a service will not be susceptible to this kind of attacks.
A starting point could be the analyses in [8, 9], that can detect whether a
contract-oriented specification is honest; the Diogenes toolchain [3] extends
this check to Java code. Since these analyses do not take into account
time constraints, further work is needed to extend these techniques to timed
applications.

2.4.1 Related Work

The theoretical foundations of our middleware are timed session types
and CO2 [12, 10], a specification language for contract-oriented services.
The middleware implements the main primitives of CO2 (tell, send,
receive), and it introduces new concepts, such as the accept primitive,
time constraints, and reputation.

From the theoretical viewpoint, the idea of constraint-based interactions
has been investigated in other process calculi, such as Concurrent Constraint
Programming (CCP) [24], and cc-pi [16]. The kind of interactions they induce
is quite different from ours. In CCP, processes can interact by telling and
asking for the validity of constraints on a global constraint store. In cc-pi,
interaction is a mix of name communication à la π-calculus [21] and tell à
la CCP (which is used to put constraints on names). In cc-pi consistency plays
a crucial role: tells restrict the future interactions with other processes,
since adding constraints can lead to more inconsistencies; by contrast, in our
middleware advertising a contract enables interaction with other services, so
consistency is immaterial, but compliance is a key notion.

Several formalisms for expressing timed communication protocols have
been proposed over the years. The work [14] addresses a timed extension of



2.4 Conclusions 45

multi-party asynchronous session types [19]. Unlike ours, the approach pur-
sued in [14] is top-down: a global type, specifying the overall communication
protocol of a set of services, is projected onto a set of local types. Then,
a composition of services preserves the properties of the global type (e.g.,
deadlock-freedom) if each service type-checks against the associated local
type. The CO2 middleware, instead, fosters a bottom-up approach to service
composition. Both our approach and [14, 23] use runtime monitoring to
detect contract violations and assign the blame to the party that is responsible
for a contract violation. The CO2 middleware also exploits these data in its
reputation system.

The work [13] studies communicating timed automata, a timed version
of communicating finite-state machines [15]. In this model, participants in a
network communicate asynchronously through bi-directional FIFO channels;
similarly to [14], clocks, guards and resets are used to impose time con-
straints on when communications can happen. An approximate (sound, but
not complete) decidable technique allows one to check when a system of au-
tomata enjoys progress. This technique is based on multiparty compatibility,
a condition that guarantees deadlock-freedom of untimed systems [20].

From the application viewpoint, several works have investigated the
problem of service selection in open dynamic environments [2, 22, 27, 28].
This problem consists in matching client requests with service offers, in a
way that, among the services respecting the given functional constraints, the
one that maximises some non-functional constraints is selected. These non-
functional constraints are often based on quality of service (QoS) metrics,
e.g. cost, reputation, guaranteed throughput or availability, etc. The selection
mechanism featured in our middleware does not search for the “best” contract
that is compliant with a given one (actually, typical compliance relations
in behavioural contracts are qualitative, rather than quantitative); the only
QoS parameter we take into account is the reputation of services. In some
approaches [2, 28] clients can require a sequence of tasks together with a
set of non-functional constraints, and the goal is to find an assignment of
tasks to services that optimises all the given constraints. There are two main
differences between these approaches and ours. First, unlike behavioural con-
tracts, tasks are considered as atomic activities, not requiring any interaction
between clients and services. Second, unlike ours, these approaches do not
consider the possibility that a service may not fulfil the required task.

Some works have explored service selection mechanisms where func-
tional constraints can be required in addition to QoS constraints [22]: the
first are described by a web service ontology, while the others are defined as



46 Contract-Oriented Programming with Timed Session Types

requested and offered ranges of basic QoS attributes. Runtime monitor and
reputation systems are also implemented, which, similarly to ours, help to
marginalise those services that do not respect the advertised QoS constraints.
Some kinds of QoS constraints cannot be verified by the service broker,
so their verification is delegated to clients. This can be easily exploited
by malicious participants to carry on slandering attacks to the reputation
system [17]: an attacker could destroy another participant’s reputation by
involving it in many sessions, and each time declare that the required QoS
constraints have been violated. In our middleware there is no need to assume
that participants are trusted, as the verification of contracts is delegated to the
middleware itself and to trusted third parties.

Acknowledgments This work is partially supported by Aut. Reg. of Sar-
dinia grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2013 (“NOMAD”),
and by EU COST Action IC1201 “Behavioural Types for Reliable Large-
Scale Software Systems” (BETTY). Alessandro Sebastian Podda gratefully
acknowledges Sardinia Regional Government for the financial support of
her PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the
Autonomous Region of Sardinia, European Social Fund 2007–2013 – Axis
IV Human Resources, Objective l.3, Line of Activity l.3.1).

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[2] Danilo Ardagna and Barbara Pernici. Adaptive service composition in
flexible processes. IEEE Trans. Software Eng., 33(6):369–384, 2007.

[3] Nicola Atzei and Massimo Bartoletti. Developing honest Java programs
with Diogenes. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE), volume 9688 of LNCS, pages 52–61.
Springer, 2016.

[4] Nicola Atzei, Massimo Bartoletti, Maurizio Murgia, Emilio Tuosto, and
Roberto Zunino. Contract-oriented design of distributed applications: a
tutorial. tcs.unica.it/papers/diogenes-tutorial.pdf, 2016.

[5] Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. Timed
session types, 2015. Pre-print available at tcs.unica.it/papers/
tst.pdf



References 47

[6] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro
Sebastian Podda, and Livio Pompianu. Compliance and subtyping in
timed session types. In Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), volume 9039 of LNCS, pages
161–177. Springer, 2015.

[7] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro
Sebastian Podda, and Livio Pompianu. A contract-oriented middleware.
In Formal Aspects of Component Software (FACS), volume 9539 of
LNCS, pages 86–104. Springer, 2015. co2.unica.it

[8] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto
Zunino. Verifiable abstractions for contract-oriented systems. Journal of
Logical and Algebraic Methods in Programming (JLAMP), 86:159–207,
2017.

[9] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino.
Honesty by typing. Logical Methods in Computer Science, 12(4), 2016.
Pre-print available at: arxiv.org/abs/1211.2609

[10] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[11] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. On the re-
alizability of contracts in dishonest systems. In COORDINATION,
volume 7274 of LNCS, pages 245–260. Springer, 2012.

[12] Massimo Bartoletti and Roberto Zunino. A calculus of contracting
processes. In IEEE Symposium on Logic in Computer Science (LICS),
pages 332–341. IEEE Computer Society, 2010.

[13] Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines
together. In CONCUR, volume 42 of LIPIcs, pages 283–296. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015.

[14] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty
session types. In CONCUR, volume 8704 of LNCS, pages 419–434.
Springer, 2014.

[15] Daniel Brand and Pitro Zafiropulo. On communicating finite-state
machines. J. ACM, 30(2):323–342, 1983.

[16] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based
language for specifying service level agreements. In European Sympo-
sium on Programming (ESOP), volume 4421 of LNCS, pages 18–32.
Springer, 2007.

[17] Kevin J. Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of
attack and defense techniques for reputation systems. ACM Comput.
Surv., 42(1), 2009.



48 Contract-Oriented Programming with Timed Session Types

[18] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type disciplines for structured communication-based pro-
gramming. In European Symposium on Programming (ESOP), volume
1381 of LNCS, pages 22–138. Springer, 1998.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 273–284. ACM,
2008.

[20] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From commu-
nicating machines to graphical choreographies. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 221–232. ACM, 2015.

[21] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[22] A. Mukhija, Andrew Dingwall-Smith, and D.S. Rosenblum. QoS-
aware service composition in Dino. In ECOWS, volume 5900 of LNCS,
pages 3–12. Springer, 2007.

[23] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime
monitoring for multiparty conversations. In BEAT, volume 162 of
EPTCS, pages 19–26, 2014.

[24] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint pro-
gramming. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 232–245. ACM, 1990.

[25] Mudhakar Srivatsa, Li Xiong, and Ling Liu. TrustGuard: counter-
ing vulnerabilities in reputation management for decentralized overlay
networks. In International Conference on World Wide Web (WWW),
pages 422–431. ACM, 2005.

[26] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE, pages 398–413, 1994.

[27] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for Web
services selection with end-to-end QoS constraints. ACM Transactions
on the Web, 1(1):6, 2007.

[28] Liangzhao Zeng, Boualem Benatallah, Anne HH Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. QoS-aware middleware for Web
services composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.



3
A Runtime Monitoring Tool for

Actor-Based Systems

Duncan Paul Attard1, Ian Cassar1, Adrian Francalanza1, Luca Aceto2

and Anna Ingólfsdóttir2

1Department of Computer Science, Faculty of ICT, University of Malta,
Malta
2School of Computer Science, Reykjavı́k University, Iceland

Abstract

This chapter discusses detectEr, an experimental runtime monitoring tool
that can be used to formally verify concurrent systems developed in Erlang.
Formal correctness properties in detectEr are expressed using a monitorable
subset of Hennessy-Milner Logic with recursion, and synthesised into actor-
based runtime monitors. Our exposition focusses on how the specification
logic is enriched and extended with pattern-matching and conditional con-
structs which allow monitors to be adept at processing the data obtained
dynamically from the system’s execution trace. The tool leverages the native
tracing functionality provided by the Erlang language platform so as to
produce asynchronous monitors that can be instrumented to run alongside
the system with minimal effort. To demonstrate how detectEr can be used in
practice, this material also provides a hands-on guide that is especially aimed
at users wishing to use our tool to monitor Erlang applications.

3.1 Introduction

Concurrency [30] refers to software systems whose functionality is
expressed in terms of multiple components or processes that are specifi-
cally designed to work simultaneously with each other. In recent
years, a concurrency-oriented [3] approach to software development has

49



50 A Runtime Monitoring Tool for Actor-Based Systems

become increasingly commonplace, and is greatly favoured over monolithic-
style approaches. This is, in part, owed to the rigidity that the latter types of
architectures are synonymous with, where attempts at addressing scalability
concerns usually lead to notoriously complex and often, inadequate solutions.
Instead, concurrency recasts the notion of system design in a way that makes
it possible to avail oneself of the multi-processor and multi-core platforms
that are prevalent nowadays.

Formally ensuring the correctness of concurrent systems is an arduous,
albeit necessary, task, especially since the interactions between fine-grained
computational components can easily harbour subtle software bugs. Despite
several success stories in their application to real-life applications, static
verification techniques such as Model Checking (MC) scale poorly in con-
current scenarios, particularly because the system state space that needs to
be exhaustively verified grows exponentially with respect to the size of the
system [13, 14] – this is on account of the considerable number of possible
execution paths that result from process interleaving. Moreover, situations
often arise whereby verification cannot be performed statically (i.e., pre-
deployment), as certain application components might not always be available
for inspection before the system starts executing (e.g. in systems where func-
tional components such as add-ons are downloaded and installed dynamically
at runtime). There are also cases where the internal workings of a component
(e.g. source code or execution graph) are not accessible and need to be
treated as a black box. In these cases, Runtime Verification (RV) presents an
appealing compromise towards ensuring the correctness of component-based
applications. It is a lightweight verification technique that analyses the current
runtime execution path of the system under scrutiny by considering partial
executions incrementally, up to the current execution point [17, 26]. Its nature
inherently circumvents the scalability issues attributed to MC and provides a
means for post-deployment verification. Despite these advantages, RV has
limited expressiveness and cannot be used to verify arbitrary specifications
such as (general) liveness properties [27].

This chapter discusses the implementation of a prototype RV tool called
detectEr, that targets concurrent, component-based applications written in
Erlang. The presented material aspires to introduce this tool from a pragmatic
standpoint, and thus omits technical details that may be abstruse to users of
the tool. Interested readers should consult previous work [4, 19, 21] for details
regarding the monitor synthesis and runtime behaviour of the monitoring
tool.



3.2 Background 51

The content that follows is organised into three sections. Section 3.2
gives a concise overview of the ideas behind RV and monitoring; this is
followed by a review of mHML, the logic used for specifying correctness
properties in our tool. Although this section helps to make the presentation
self-contained, it may be safely skipped by readers familiar with the subject
or merely interested in using the tool. Section 3.3 revisits the logic mHML
from Section 3.2, and examines how it was adapted to address the practical
requirements of users wishing to define correctness properties for Erlang con-
current programs. It also very briefly touches on the compilation process that
transforms mHML specification scripts into executable runtime monitors.
The final section takes the form of a hands-on tutorial that guides readers
through the basic steps that need to be performed in order to instrument an
Erlang application with runtime monitors using the tool.

3.2 Background

An executing system results in the generation of a (possibly infinite) sequence
of events known as a trace. These events are the upshot of internal or external
system behaviours, such as message exchanges between processes or function
invocations. An execution, i.e., a finite prefix of an infinite trace, is consumed
and processed by a software entity known as a monitor, tasked with the
job of checking whether the execution provides enough evidence so as to
determine whether a property is satisfied or violated. Correctness specifica-
tions (properties) serve to unambiguously describe the behaviour to which
the executing system should adhere to. Verdicts denote monitoring outcomes
and are assumed to be definite and non-retractable (i.e., once given, cannot
change). These typically consist of judgements relating to property violations
and satisfactions, but may also include inconclusive verdicts for when the
exhibited execution trace does not permit any definite judgement in relation
to the property being monitored for [4, 6, 17, 19, 26]. A RV monitor for
some correctness property is typically synthesised automatically from a high-
level specification that finitely describes the property. Property specifications
are given in terms of formal logics [4, 6, 7, 19] or other formalisms such
as regular expressions [20] or automata [5, 15, 29]. Figure 3.1 depicts a
correctness specification (denoted by ϕ) that is translated into an executable
monitor, Monitorϕ, and instrumented with the running system. Trace events
are sequentially analysed by the monitor whenever these are generated by the
system through the instrumentation mechanism. Once the monitor reaches a
verdict, it typically stops executing.



52 A Runtime Monitoring Tool for Actor-Based Systems

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

✓

?

✗

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 3.1 Runtime monitor synthesis and operational set-up.

3.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to mon-
itors and the associated system instrumentation, should ideally provide some
guarantees of correctness. This covers both aspects that relate to how monitor
verdicts correspond to the semantics of the property being monitored for
(e.g. a monitor trace rejection should correspond to the system violating
the property being monitored for), as well as requirements that the monitors
instrumented with the executing system under scrutiny do not introduce fresh
bugs themselves (consult our previous work [9, 18, 19, 21] for a detailed
rendition on the subject). Equally important is the efficiency with which
monitors execute, as this can adversely affect the monitored system or even
alter its functional behaviour (e.g. slowdown due to inefficient monitors might
cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces
considerable levels of performance overhead may be deemed too costly to be
feasibly used in practice.

3.2.2 A Branching-Time Logic for Specifying
Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics
[6, 13, 26] treat time as having one possible future, and regard the behaviour



3.2 Background 53

of a system under observation in terms of execution traces or paths. On the
other hand, branching-time logics [1, 13] make it possible to perceive time
instances as potentially having more than one future, thereby giving rise to a
tree of possible execution paths that may be (non-deterministically) taken by
the executing system at runtime.

μHML [1, 25] is a branching-time logic that can be used to specify
correctness properties over Labelled Transition Systems (LTSs) — graphs
modelling the possible behaviours that can be exhibited by executing pro-
cesses (see Figure 3.3 for a depiction of two LTSs). A LTS consists of a set
of system states p, q ∈ SYS, a set of actions α ∈ ACT, and finally, a ternary
transition relation between states labelled by actions, p

α−→ q. When p
α−→ q

for no process q, the notation p
α
�−→ is used. Additionally, p =⇒ q denotes

p(
τ−→)∗q, whereas p

α
=⇒ q, is written in place of p =⇒ · α−→ · =⇒ q.

Actions labelled by τ are used to denote unobservable (silent) actions that are
performed by the system internally.

The μHML syntax, given in Figure 3.2, assumes a countable set of logical
variables X,Y ∈ LVAR, thereby allowing formulae to recursively express
largest and least fixpoints using maxX.ϕ and minX.ϕ respectively; these
constructs bind free instances of the variable X in ϕ. In addition to the
standard constructs for truth, falsity, conjunction and disjunction, the syntax
also includes the necessity and possibility modalities.

The semantics of the logic is defined in terms of the function mapping
μHML formulae ϕ to the set of LTS states S ⊆ SYS satisfying them.
Figure 3.2 describes the semantics for both open and closed formulae, and
uses a map ρ ∈ LVAR ⇀ 2SYS from variables to sets of system states to
enable an inductive definition on the structure of the formula ϕ. The formula
tt is satisfied by all processes, while ff is satisfied by none; conjunctions
and disjunctions bear the standard set-theoretic meaning of intersection and
union. Necessity formulae [α]ϕ state that for all system executions producing
event α (possibly none), the subsequent system state must then satisfy ϕ

(i.e., ∀p′, p α
=⇒ p′ implies p′ ∈ �ϕ, ρ� must hold). Possibility formulae 〈α〉ϕ

require the existence of at least one system execution with event α whereby
the subsequent state then satisfies ϕ (i.e., ∃p′, p α

=⇒ p′ and p′ ∈ �ϕ, ρ�
must hold). The recursive formulae maxX.ϕ and minX.ϕ are respectively
satisfied by the largest and least set of system states satisfying ϕ. The
semantics of recursive variables X with respect to an environment instance ρ
is given by the mapping of X in ρ, i.e., the set of processes associated with X.
Closed formulae (i.e., formulae containing no free variables) are interpreted



54 A Runtime Monitoring Tool for Actor-Based Systems

Sy
nt

ax

ϕ
,φ

∈
μ

H
M

L
::
=

ff
(f

al
si

ty
)

|
tt

(t
ru

th
)

|
ϕ
∧
φ

(c
on

ju
nc

ti
on

)
|

ϕ
∨
φ

(d
is

ju
nc

ti
on

)

|
[α
]ϕ

(n
ec

es
si

ty
)

|
〈α

〉ϕ
(p

os
si

bi
li

ty
)

|
m

ax
X
.ϕ

(m
ax

.fi
xp

oi
nt
)

|
m

in
X
.ϕ

(m
in

.fi
xp

oi
nt
)

|
X

(r
ec

ur
si

ve
va

ri
ab

le
)

Se
m

an
ti

cs

�f
f,
ρ
�

de
f

=
∅

�t
t,
ρ
�

de
f

=
S

Y
S

�ϕ
∧
φ
,ρ

�
de

f
=

�ϕ
,ρ

�
∩

�φ
,ρ

�
�ϕ

∨
φ
,ρ

�
de

f
=

�ϕ
,ρ

�
∪

�φ
,ρ

�

�[
α
]ϕ
,ρ

�
de

f
=

{ p
|∀
p
′ .
p

α
=
⇒
p
′ im

pl
ie

s
p
′ ∈

�ϕ
,ρ

�}
�〈α

〉ϕ
,ρ

�
de

f
=

{ p
|∃
p
′ .
p

α
=
⇒
p
′ an

d
p
′ ∈

�ϕ
,ρ

�}

� m
ax
X
.ϕ
,ρ

�
de

f
=

⋃
{S

|S
⊆

�ϕ
,ρ
[X

�→
S
]�
}

�m
in
X
.ϕ
,ρ

�
de

f
=

⋂
{S

|�
ϕ
,ρ
[X

�→
S
]�
⊆
S
}

�X
,ρ

�
de

f
=
ρ
(X

)

F
ig

ur
e

3.
2

T
he

sy
nt

ax
an

d
se

m
an

ti
cs

of
μ

H
M

L
.



3.2 Background 55

independently of the environment ρ, and the shorthand �ϕ� is used to denote
�ϕ, ρ�, i.e., the set of system states in SYS that satisfy ϕ. In view of this, we
say that a system (state) p satisfies some closed formula ϕ whenever p ∈ �ϕ�,
and conversely, that it violates ϕ whenever p /∈ �ϕ�.

Example 3.2.1. The μHML formula 〈α〉tt describes systems that can
produce action α, while [α]ff describes systems that cannot produce
action α.

ϕ1 = maxX.
(
[req]([resp]X ∧ [resp][resp]ff)

)

ϕ2 = minX.(〈req〉〈resp〉X ∨ 〈lim〉tt)
Formula ϕ1 describes a property that prohibits a system from producing
duplicate responses in answer to client requests. System p whose LTS is
depicted in Figure 3.3a violates ϕ1 through any trace in the regular language
(req.resp)+.resp. Formula ϕ2 describes systems that can reach a service
limit after a number (possibly zero) of request and response interactions;
system q depicted in Figure 3.3b satisfies ϕ2 through any trace in the regular
language (req.resp)∗.lim. �

3.2.3 Monitoring μHML

Despite its limitations (i.e., monitors can only analyse single execution
traces), RV can be still effectively applied in cases where correctness prop-
erties can be shown to be satisfied (or violated) by analysing a single finite
execution. As explained previously, the formula [α]ff states that all α-actions
performed by a satisfying system state should satisfy property ff afterwards.
Since no system state can satisfy ff, the only way how to satisfy [α]ff is for a
system not to perform α. From a RV perspective, for a monitor to detect a vio-
lation of this requirement, observing one negative witness execution trace that

p p′ p′′

req

resp

req

resp

(a)

q q′′q′

req

resp

lim

(b)
Figure 3.3 The LTSs depicting the behaviour of two servers p and q.



56 A Runtime Monitoring Tool for Actor-Based Systems

starts with action α suffices to show that property ϕ is infringed. Dually, when
monitoring for the formula 〈α〉tt, observing one positive witness that starts
with action α suffices to show that property ϕ is satisfied.

Example 3.2.2. The μHML formula ϕ3 = 〈lim〉tt requires that “a process
can perform action lim”. System q in Figure 3.3b can exhibit the trace lim.ε
which suffices to show that system q satisfies ϕ3. Yet, q may also exhibit
other traces, such as those matching (req.resp)∗, that all start with the event
req. These traces do not provide enough evidence that system q satisfies
ϕ3. Stated otherwise, the monitor for formula ϕ3 can reach an acceptance
verdict only when a trace starting with event lim is observed. Otherwise, no
verdict relating to the satisfaction or violation of the formula can be reached;
in our specific case, the monitors we consider will reach an inconclusive
verdict. �

The availability of a single finite runtime trace does however restrict the
applicability of RV in cases such as those involving correctness properties
describing infinite or branching executions. In view of this, certain properties
expressed using the full expressive power of a branching-time logic such
as μHML cannot be monitored for at runtime. The work by Francalanza
et al. [19] explores the limits of monitorability for μHML, identifies a
syntactic logical subset called mHML, and shows it to be monitorable and
maximally expressive with respect to the constraints of runtime monitoring.
The syntax of mHML, given in Figure 3.4, consists of two syntactic classes,
Safety HML (sHML), describing invariant properties stipulating that bad
things do not happen, and Co-Safety HML (cHML), describing properties
that eventually hold after a finite number of events [2, 6, 23]. Formulae ϕ1

and ϕ2 from Example 3.2.1 are instances of sHML and cHML specifications
respectively.

Monitorable Logic Syntax

ψ ∈ mHML
def
= sHML ∪ cHML where:

θ, ϑ ∈ sHML ::= tt | ff | θ ∧ ϑ | [α]θ | maxX.θ | X

π,
 ∈ cHML ::= tt | ff | π ∨
 | 〈α〉π | minX.π | X

Figure 3.4 The syntax of mHML.



3.3 A Tool for Monitoring Erlang Applications 57

3.3 A Tool for Monitoring Erlang Applications

We briefly review the implementation of our RV tool detectEr that analyses
the correctness of concurrent programs developed in Erlang. It builds on the
work by Francalanza et al. [19] which specifies a synthesis procedure that
generates correct monitor descriptions from formulae written in mHML. We
adapt this synthesis procedure so as to produce concurrent monitors in the
form of Erlang actors that are instrumented with the running system via the
tracing mechanism exposed by the VM of the host language. The synthe-
sis procedure exploits the compositional semantics of mHML formulae to
generate a choreography of monitor (actor) components that independently
analyse the individual subformulae constituting a global formula, while still
guaranteeing the correctness of the overall monitoring process.

In the sequel we refrain from delving into the specifics of how these
concurrent monitors are synthesised; readers are encouraged to consult our
previous work [4, 21], where the synthesis procedure is discussed at length.
Instead, we limit ourselves to a high-level description of the main concepts
and technologies required by readers to be able to adequately use the mon-
itoring tool. In particular, we discuss the mechanisms of the host language
used by the tool, the adaptations to the specification logic that facilitate the
handling of data, and finally, give an overview of the tool’s compilation
process.

3.3.1 Concurrency-Oriented Development Using Erlang

Erlang is a general-purpose, concurrent programming language suitable for
the development of fault-tolerant and distributed systems [3, 12, 22]. It adopts
the actor model for concurrency as the primary means for structuring its
applications. An actor is a concurrency unit of decomposition that represents
a processing entity sharing no mutable memory with other actors. It interacts
with other actors by sending (asynchronous) messages, and changes its
internal state based on the messages received from other actors. In Erlang,
actors are implemented as lightweight processes that are uniquely identified
via their process PID (a number triple). Each process owns a message queue,
known as a mailbox, to which messages from other processes can be sent in
a non-blocking fashion; these can be consumed selectively at a later stage
by the recipient process. Messages are comprised of elements of Erlang data
types, including integers, floats, atoms, functions, binaries, etc.. Since process
PIDs are allocated dynamically to newly spawned processes, Erlang provides



58 A Runtime Monitoring Tool for Actor-Based Systems

a mechanism for registering a PID with a fixed alias name. This allows
external entities to refer to a specific process statically via the registered name
alias [3, 12].

The Erlang Virtual Machine (EVM) offers a powerful and flexible tracing
mechanism that makes it possible to observe process behaviour without
modifying the system source code through commonly used instrumenta-
tion techniques such as Aspect Oriented Programming (AOP) [3, 12]. Its
flexibility stems from the fact that it can be selectively applied on specific
processes as required, thereby fine tuning the tracing effort to the desired
level of granularity. When traced, processes generate action messages that are
directed by the Erlang runtime to a specially designated tracer process. Trace
messages assume the form of Erlang tuples that describe the nature of trace
events (e.g. function calls, message sends and receives, garbage collection
triggers, etc.) and are deposited (like any other message) asynchronously
inside the tracer’s mailbox. Tracing serves as the basis for a number of
utilities, including Erlang’s text-based tracing facility dbg, and trace tool
builder ttb [3]. Our tool, detectEr, employs this tracing mechanism to achieve
lightweight trace event extraction for monitoring purposes; refer to the work
by Attard et al. [4] for further details.

3.3.2 Reasoning about Data

Adapting mHML to be used for specifying the behaviour of Erlang programs
adequately requires auxiliary functionality that describes system events car-
rying data; this involves mechanisms for generalising over specific data
values and for expressing data dependencies. detectEr assumes a richer set of
system events that carry data. Our account focusses on two types of events,
namely outputs i ! d and inputs i? d, where i ranges over process PIDs, and
d denotes the data payload associated with the action in the form of Erlang
data values (e.g. PID, lists, tuples, atoms, etc.). In addition, our tool enriches
the syntax of Figure 3.4 by introducing pattern-matching extensions for event
actions (see Figure 3.5). Necessity and possibility formulae may contain event
patterns instead of specific events: these possess the same structure of the
aforementioned data-carrying events, but may also employ variables (Erlang-
style alphanumeric identifiers starting with an upper-case letter) in place of
values. Variables denote quantifications over data and are dynamically bound
to values when they are pattern-matched to specific system events at runtime.
Event patterns also allow us to express data dependencies across multiple
events. Intuitively, whenever a variable is used in a pattern inside a necessity
or possibility formula and again in the ensuing guarded subformula, the first



3.3 A Tool for Monitoring Erlang Applications 59

〈PID ! Data 〉ϕ

Action pattern

Variable PID binds with
the actual value of PID

from trace events

Variable Data binds with
the actual data payload

from trace events

Action type

Figure 3.5 The anatomy of action patterns for the enriched mHML syntax.

variable instance acts as a binder for subsequent variable uses. The next
example illustrates this concept.

Example 3.3.1. The client-server set-up shown in Figure 3.6 consists of a
successor server process (with PID <0.33.0>) that increments the numeric
payloads it receives from requesting clients by 1. Client requests should
adhere to the following protocol. A client sends a tuple of the form
{tag,return addr,value to increment} where the first element is a qualifier
tag stating that it is a client request (tag = req). The client then awaits
for an answer back from the server in the form of a message with format
{resp,incremented value}. The server obtains the identity of the client from
the client request data return addr, which should carry the PID of the client
sending the request (e.g. <0.38.0> in the case of Figure 3.6). One attempt
at verifying the correctness of the executing system is by specifying a safety
property stating that

Server
PID: <0.33.0>

Client
PID: <0.38.0>

system

Monitorϕ3
✗

violation

{req, <0.38.0>, 19}

{resp, 19}

an
al

ys
es

1

2

(a) The incorrect server implementation.

Server
PID: <0.33.0>

Client
PID: <0.38.0>

system

Monitorϕ3 ?

inconclusive

{req, <0.38.0>, 19}

{resp, 20}

an
al

ys
es

1

2

(b) The correct server implementation.

Figure 3.6 Runtime verifying the correctness of a client-server system.



60 A Runtime Monitoring Tool for Actor-Based Systems

“the numeric payload contained in the server’s response cannot
equal the one sent in the original client request.”

This requirement can be expressed as follows:

ϕ3 = [Srv ? {req,Clt,Num}] [Clt ! {resp,Num}] ff

The two necessity constructs in the sHML formula ϕ3 describe a request-
response interaction between the client and server processes. The first
necessity [Srv ? {req,Clt,Num}] specifies an input event data pattern
that conforms to the structure of the data sent by the client when initiating
its interaction with the server (i.e., the action labelled by 1 in Figure 3.6);
meanwhile, the second necessity [Clt ! {resp,Num}] ff specifies an output
action data pattern that conforms to the structure of the data sent by the
server in reply to the client’s request (i.e., action 2 in Figure 3.6). Formula
ϕ3 matches events in the execution trace whenever the server Srv receives a
request with numeric payload Num from client Clt, and replies back to the
same client Clt with an unchanged value Num. Note the dependency between
the patterns in the two necessities: the values matched to the variable Clt and
Num in first pattern are then instantiated in the subsequent necessity pattern.

To illustrate concretely how binding actually works, we can consider
how the two different executions of client-server system depicted in
Figures 3.6a and 3.6b are monitored at runtime. When the event pattern Srv
? {req,Clt,Num} from the first necessity is matched to the first trace event
<0.33.0> ? {req, <0.38.0>,19} (resulting from the execution of action
1 ), the free pattern variables Srv, Clt and Num become bound to the runtime
values <0.33.0>, <0.38.0> and 19 respectively. The runtime binding of
variables Srv, Clt and Num in turn, also instantiates subsequent (guarded)
patterns in the second necessity — this leaves us with the (continuation)
residual formula [<0.38.0> ! {resp, 19}] ff to check for. This closed
formula can now match the second trace event (due to action 2 ), only if an
incorrectly implemented server responds to the initial client request with the
same numeric payload sent to it, as is the case in Figure 3.6a. This leads to
a violation detection. Contrastingly, Figure 3.6b shows the case where the
server’s reply sent back to the client contains the value ‘20’ that does not
match the runtime binding for the subformula [Clt ! {resp,Num}] ff of ϕ3.
After the first pattern-match, Num is bound to ‘19’, and this does not match
with event {resp, 20} of action 2 in Figure 3.6b (Clt is bound to <0.38.0>

as before), thus leading to an inconclusive verdict. �



3.3 A Tool for Monitoring Erlang Applications 61

3.3.2.1 Properties with specific PIDs
Since process PIDs are allocated at runtime, there is no direct way for a
correctness property to refer to a specific process. Nevertheless, the tool
still provides an indirect method how to specify this via the process PID
registering mechanism offered by the host language. For instance, in the case
of formula ϕ3 from Example 3.3.1, one could refer to a particular process
(instead of any arbitrary process that is dynamically bound to variable Srv in
the pattern [Srv ? {req,Clt,Num}] ) using the notation @srv in place of Srv.
This would then map to the process that is registered with the fixed (atom)
name srv in the system and, subsequently, the respective event analysis would
only match events sent specifically to the process whose PID is registered
as srv.

3.3.2.2 Further reasoning about data
Readers might have been wary of the fact that formula ϕ3 in Example 3.3.1
only guards against cases where the server merely echoes back the same
numeric payload sent to it by clients. This only partially addresses the ideal
correctness requirements, because it does not capture the full behaviour
expected of the successor server in Figure 3.6. Reformulating the property
from Example 3.3.1 to read as

“the numeric payload contained in the server’s response must be
equal to the successor of the one sent in the original client request.”

while more specific, requires the monitor to check whether all responses
issued by the server in reply to client requests do in fact contain the successor
of the number enclosed in said requests.

Our logic handles this expressiveness requirement by extending the
enriched mHML syntax from this section with conditional constructs and
predicates, thus enabling it to perform complex reasoning on data values
acquired dynamically through pattern matching. Data predicates1, together
with boolean expressions, are evaluated to values b ∈ {false, true}. Con-
ditionals, written as if b then θ else ϑ for sHML formulae and if b then
π else � for cHML formulae, evaluate to θ and π respectively when
b evaluates to true, and to ϑ and � otherwise. The else clause may be
omitted if not required. Correctness formulae of the latter form are given

1Data predicates are assumed to be decidable (i.e., guaranteed to terminate). Our imple-
mentation makes use of a restricted subset of Erlang side effect-free functions employed in
standard guard expressions (e.g. is list/1, is number/1, is pid/1, etc.) [12].



62 A Runtime Monitoring Tool for Actor-Based Systems

an inconclusive interpretation whenever the boolean condition inside the if
clause evaluates to false. Conditional constructs increase the expressiveness
of mHML, because they make it possible to formalise properties that are
otherwise hard to express using the basic form of the logic. When compiled,
conditional formulae are translated into monitors whose runtime analysis
branches depending on dynamic decisions made on data obtained at runtime.

Example 3.3.2. The reformulated safety property “the numeric payload
contained in the server’s response must be equal to the successor of the
one sent in the original client request” can be specified as follows using the
extended sHML syntax:

ϕ4 =[Srv ? {req,Clt,Num}] [Clt ! {resp, Succ}]
if(Succ �= Num + 1) then ff

Formula ϕ4 differs slightly from the one specified in Example 3.3.1. It
introduces a new variable Succ that binds to the server’s return value. This,
in turn, enables the conditional construct to determine whether the successor
operation is correctly implemented by the server, thus ensuring that ϕ4 is
violated only when the value bound to Succ is not the successor of Num. An
inconclusive verdict is assumed by the formula whenever (Succ �= Num + 1)
does not hold, i.e., Succ is indeed the successor of Num, as in the case of
Figure 3.6b. �

3.3.3 Monitor Compilation

Following closely the synthesis function of [4], our tool is able to parse
mHML formulae and generate Erlang code that monitors for the input
formulae. The inherent concurrency features offered by Erlang, together with
the modular structure of the synthesis function are used to translate formulae
into choreographed collections of (sub)monitors. These are expressed as
concurrent processes that execute independently of one another and analyse
different parts of the exhibited system trace (e.g. one submonitor may be
analysing the second event in an execution trace of length five, whereas
another may forge ahead and analyse the fourth event in the trace). In order
to ensure that submonitors have access to the same trace events, they are
organised as supervision trees [3, 12]: the (parent) monitor to which the
submonitors are attached forks (i.e., replicates and forwards) individual trace
events to its children. The moment a verdict is reached by any submonitor
process, all monitoring processes are terminated, and said verdict is used to
declare the final monitoring outcome. Interested readers are referred to our



3.4 detectEr in Practice 63

previous work [4, 21] for details on how these monitor choreographies are
organised.

Figure 3.7 outlines the compilation steps required to transform a for-
mula script file (e.g. script.hml) into a corresponding Erlang source code
implementing the monitor functionality (e.g. monitor.erl). The tool instru-
ments the synthesised monitors to run asynchronously with the system to
be analysed using the native tracing functionality provided by the EVM.
Crucially, this type of instrumentation requires no changes to the monitor
source code (or the target system binaries). In Figure 3.7, the file packaging
component of the compiler leaves the system source files unchanged; this
increases confidence in the correctness of the resulting monitoring set-up. In
addition to the monitor source file, Figure 3.7 shows also a second module,
launcher.erl, that is generated automatically based on the specified system
start up configuration. The launcher is tasked with the responsibility of
starting the system and corresponding monitors in tandem. Said modules,
together with other supporting tool-related source code files are afterwards
compiled into executable modules (.beam files), which are then packaged
and placed alongside other system binary files.

3.4 detectEr in Practice

We revisit the runtime monitoring tool depicted in Figure 3.7 from a user’s
perspective, and present a brief guide showcasing its main functionality. This
guide, presented in the form of a tutorial, goes through the steps required

mHML
parsing

Code
generation

monitor synthesis

script.hml

+

Configuration

+

Original system
executable files

monitor.erl

launcher.erl

File
packaging

Erlang
compilation

monitor instrumentation

Tool
supporting
libraries

Original system executable files
· · ·

monitor.beam, launcher.beam

detectEr compiler

Figure 3.7 The monitor synthesis process and instrumentation pipeline.



64 A Runtime Monitoring Tool for Actor-Based Systems

to apply our tool to monitor an Erlang implementation of the client-server
system seen earlier in Example 3.3.1. It shows how a simple (but useful)
safety property can be scripted as a sHML formula, and compiled into a
runtime monitor that is used to verify the incorrect and correct behaviour of
the successor server illustrated in Figures 3.6a and 3.6b. cHML properties
from Figure 3.4 can also be monitored for using the same sequence of steps.

The current prototype tool implementation is capable of instrumenting
only one monitor inside the target system. Nevertheless, the tool’s compi-
lation and instrumentation processes were developed with extensibility in
mind, and the steps that are outlined in the following tutorial will remain
valid once the tool is extended to support multiple monitors. Although the
example presented in this guide is fairly basic, it conveys the essence of how
the tool should be applied in practice; more complex properties [8, 10] would
be approached following the same instructions and procedures outlined in the
coming sections.

3.4.1 Creating the Target System

The initial distribution of the tool is available from https://bitbucket.

org/duncanatt/detecter-lite, and requires a working installation of
Erlang. This guide assumes that GNU make is installed on the host system.
OSX users can acquire make by installing the XCode Command Line Tools;
Windows users can install the MinGW suite of tools. Although Linux was
used to create this tutorial, the steps below can be replicated on any other
operating system.

3.4.1.1 Setting up the Erlang project
To facilitate the development of Erlang applications, detectEr includes a
generic makefile which we use in this guide. The following make targets are
provided:

• init: Creates the standard Erlang project structure;
• clean: Removes Erlang .beam and other temporary files;
• all: Cleans and compiles the Erlang project;
• instrument: Synthesises and instruments monitors into the target

system, given the HML script, target system binary directory, and
application entry point configuration.

We begin by creating a target directory called example. This contains
the client-server system Erlang project and all its associated source code



3.4 detectEr in Practice 65

files. At the root of the example directory, we also place the aforementioned
makefile, since this is used to manage the build process of our simple Erlang
application. The latest version of the makefile can be downloaded directly
from the project site using wget:

duncan@term:/$ mkdir example
duncan@term:/$ cd example
duncan@term:/example$ wget https://bitbucket.org/duncanatt/detecter-lite\
/raw/detecter-lite-1.0/Makefile

Once the makefile is downloaded, the standard Erlang directory structure is
created using the init target:

duncan@term:/example$ make init
duncan@term:/example$ ls -l
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 include
-rw-rw-r-- 1 duncan duncan 5463 May 15 16:53 Makefile
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 src
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 test

To avoid writing the Erlang server manually from scratch, the guide
borrows a number of sample source code files that are included in the tool’s
distribution. For simplicity, we assume that the tool is set up in the same
directory as our example project directory. The plus one module that forms
part of the tool distribution, implements a version of the successor server
as described in Figure 3.6. This file, together with its dependencies should
be copied into the src and include directories as shown below; these
commands result in the creation of a directory structure that corresponds to
the one shown in Figure 3.8a.

duncan@term:/example$ cd src
duncan@term:/example/src$ cp ../../detecter-lite/test/plus_one.erl .
duncan@term:/example/src$ cp ../../detecter-lite/src/mon/log.erl .
duncan@term:/example/src$ cd ../include/
duncan@term:/example/include$ cp ../../detecter-lite/include/* .

After the files have been copied successfully into their respective directo-
ries, the Erlang project can be built by invoking make:

duncan@term:/example/include$ cd ..
duncan@term:/example$ make

Compiling Erlang source file: src/log.erl to ebin/log.beam



66 A Runtime Monitoring Tool for Actor-Based Systems

Compiling Erlang source file: src/plus_one.erl to ebin/plus_one.beam

>-------------------------------<
Build completed successfully!

>-------------------------------<

example

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(a) The example project directory sturuc-
ture before compilation.

example

ebin

formula.beam

launcher.beam

log.beam

main mon.beam

plus one.beam

prop.beam

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(b) The example project directory sturuc-
ture after compilation and instrumentation.

Figure 3.8 Creating the Erlang project directory structure.

3.4.1.2 Running and testing the server
With the build now completed, the plus one successor server can be
launched and tested. Since we have not developed a complete application,



3.4 detectEr in Practice 67

but only the server part, testing is conducted using the Erlang shell in place
of a full client implementation. For illustrative purposes, the plus one server
may exhibit different behaviours at runtime depending on the flag it is started
up with. Concretely, the plus one server and shell can be launched from the
terminal as follows:

1 duncan@term:/example$ erl -pa ebin -eval "plus_one:start(bad)"
2
3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 Eshell V7.2 (abort with Ĝ)
5
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value‘0’\,and\,mode ‘bad’.
7 1> _

The plus one server is intentionally started using the startup flag bad,
in order to simulate the incorrect server behaviour depicted in Figure 3.6a.
This serves its purpose later when scripting the formula used to verify the
server’s behaviour. We can confirm that the server started up successfully
by ensuring that the plus one start up log (line 6) shows up in the ter-
minal. Once loaded, the server can be tested by submitting requests to it
using the Erlang ! (send) operator (line 8 below). Following the protocol
outlined in Example 3.3.1, the test request is sent to the process identified
by the Erlang registered process name plus one. This test request observes
the tuple format {req, return addr,value to increment}, where return addr
corresponds to the PID of the sender actor (in this case, the Erlang shell),
and value to increment contains the actual numeric data payload, i.e., the
number the client wishes to increment. In Erlang, a process may obtain its
own PID through the function call self(). Note that commands typed in the
Erlang shell must terminate with a period symbol, otherwise these will not be
processed.

8 1> plus_one ! {req, self(), 19}.
9

10 [<0.33.0> - plus_one:41] - Received request with value ‘19’.
11 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,19}’, Current cnt ‘1’.
12 {req,<0.38.0>,19}
13 2> _

As can be gleaned from the logs above, the plus one server receives
the number ‘19’ as payload, and echoes back that same value to the shell
(lines 10–11). A correct implementation of the server should have replied
with a value of ‘20’, that corresponds to the client’s request being
incremented by ‘1’. The server’s response can be extracted from the Erlang



68 A Runtime Monitoring Tool for Actor-Based Systems

shell by invoking the flush() function to empty the shell’s mailbox (line
14). After confirming that the server is working (incorrectly) as intended, the
Erlang shell can be closed by typing “q().” at the terminal.

14 2> flush().
15 Shell got {resp,19}
16 ok
17 3> _

3.4.2 Instrumenting the Test System

We are now in a position to generate a monitor that verifies the safety property
below, a generalisation of the property discussed earlier in Example 3.3.1:

“After any sequence of request-response interactions with arbi-
trary clients, the numeric payload contained in the server’s
response following a client request must never equal the one sent
in the original client request.”

The monitor synthesised for this property should detect the violating
behaviour exhibited by the plus one server.

3.4.2.1 Property specification
Properties using our tool are specified in plain text files that are processed to
produce monitors in the form of Erlang code. These, together with other sup-
porting source files, are compiled to executable Erlang .beam files and copied
into the target system’s binary directory, ebin. As explained in Section 3.3.3,
the tool also creates a launcher module that is used to bootstrap the system
together with the synthesised monitor. Once loaded, the system executes as
it normally would, while concurrently, the monitor passively observes the
system’s behaviour expressed in terms of the messages exchanged between it
and its environment. A violation will be promptly flagged when discovered
by the monitor analysing the trace generated by our successor server. The
aforestated safety property can be scripted by pasting the sHML formula
given below into a plain text editor, and saving it as prop.hml in the example
directory.

1 max(‘X’,
2 [Srv ? {req, Clt, Num}][Clt ! {resp, Num}] ff
3 &&
4 [Srv ? {req, Clt, Num}][Clt ! {resp, Other}] ‘X’)



3.4 detectEr in Practice 69

This recursive sHML formula makes use of a conjunction (&&) construct
to express the two possible behaviours expected of the system. The violating
behaviour, specified using [Srv ? {req, Clt, Num }][Clt ! {resp, Num }]
ff, demands that a violation be flagged when the server Srv receives
a request containing Num from client Clt, and returns to Clt the
same value Num. The recursive (non-violating) behaviour, expressed by
[Srv ? {req, Clt, Num }][Clt ! {resp, Other }] ‘X’, requires the mon-
itor to recurse whenever a request received from Clt is answered with some
value Other, i.e., not just the successor of Num. This is in line with the
property above, as it requires the monitor to detect violations only when
the same value of Num is returned by a server in reply to a client’s request.
Recursion, made possible by the maximal fixpoint construct max(‘X’,...)
and the recursive variable ‘X’, allows the monitor to unfold repeatedly,
thereby continuously analysing the system trace until the violating behaviour
is detected. Note that the formula in prop.hml is an extension of the
simpler property ϕ3 from Example 3.3.1. In ϕ3, the absence of recursion
restricts the corresponding monitor to analyse, at most, two trace events
before terminating. Note also that a more comprehensive interpretation of
the aforementioned correctness property would of course require the formula
to check that each number in the server’s response is actually the successor
of the one sent in the client’s request, as discussed earlier in Example 3.3.2.
This can be expressed by modifying line 4 in the above script to

max(‘X’, . . . &&
[Srv ? {req, Clt, Num}][Clt ! {resp, Other}] if Other =:= Num + 1 then ‘X’)

In what follows, we stick to the weaker variant of the property to simplify our
presentation.

3.4.2.2 Monitor synthesis and instrumentation
The monitor corresponding to the sHML script created above is synthesised
using the instrument target from the application makefile:

duncan@term:/example$ cd ../detecter-lite
duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[bad]}"



70 A Runtime Monitoring Tool for Actor-Based Systems

The instrument target requires the following command line arguments:

• hml: The relative or absolute path that leads to the formula script file;
• app-bin-dir: The target application’s binary base directory;
• MFA: The target application’s entry point function, encoded as a {Mod,
Fun, [Args]} tuple, where we specify the plus one module’s start
function passing bad as argument, like previously.

Monitor synthesis and instrumentation (refer to Figure 3.7) results in the
Erlang project directory structure shown in Figure 3.8b. All the original target
system binaries remain untouched, and the plus one server application can
be still run without monitors, as before (see Section 3.4.1.2).

3.4.2.3 Running the monitored system
The instrumented system can be started up by using the automatically
generated launcher module as shown:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2

3 Erlang/OTP 18 [erts-7.2] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 Eshell V7.2 (abort with ^G)
5

6 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
7 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial cnt value ‘0’ and mode ‘bad’.
8

9 [<0.32.0> - main_mon:24] - System to be monitored started.
10 [<0.34.0> - main_mon:62] - Resolved procs [].
11 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula env.
12 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
13 [<0.34.0> - main_mon:84] - Starting main monitor loop.
14 1> _

As indicated by the above logs, the plus one server and corresponding
monitor are now executing in parallel with PIDs <0.33.0> and <0.34.0>

that are dynamically assigned at runtime once the respective processes
are spawned (lines 6–7). The synthesised monitor corresponding to the
recursion in the formula of Section 3.4.2.1 eagerly unfolds one itera-
tion of the formula (lines 10–11) exposing a conjunction construct at top
level (see Francalanza et al. [21] for a detailed discussion of how recur-
sion is handled in the synthesised monitors). The “conjunction monitor”
mon and spawns its two submonitor actors once it starts executing (line
12); these correspond to the violation submonitor created from subfor-
mula [Srv ? {req, Clt,Num }][Clt ! {resp, Num }] ff and the recursive



3.4 detectEr in Practice 71

submonitor created from [Srv ? {req, Clt, Num }][Clt ! {resp, Other }]
‘X’. As before, the server is tested using the same request, sent from the
Erlang shell (line 15):

15 1> plus_one ! {req, self(), 19}.
16
17 [<0.33.0> - plus_one:41] - Received request with value ‘19’.
18 [<0.41.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.
20 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,19}’, Current cnt ‘1’.
21
22 {req,<0.38.0>,19}
23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,19}}.
24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,19}}.
25 [<0.41.0> - formula:67] - mon_ff matched ‘ff’ action.
26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
27 [<0.34.0> - main_mon:113] -
28
29 Main monitor/tracer received ‘ff’ - *** Violation detected! ***
30
31 2> _

The violation (PID <0.41.0>) and recursive (PID <0.42.0>) submon-
itor processes acquire trace events from their parent “conjunction monitor”
process mon and as soon as new trace events are reported by the EVM. For
instance, the trace event generated by the message {req, self(),19} sent
from the shell is forwarded by mon and to its child submonitors (lines 18–19).
Next, the plus one server computes the result and sends it back to the Erlang
shell (line 20). This causes the second trace event to be generated by the
system and reported by the EVM’s tracing mechanism; once again this trace
event is forwarded to, and processed by both submonitors (lines 23–24). At
this point, the recursive submonitor tries to unfold in preparation for the next
computation (line 26), while the violation submonitor flags a violation verdict
ff (line 25), which is in turn sent to the main monitor. As a single detection
suffices to ensure a global verdict, the main monitor terminates accordingly
with ff (line 29); consult the work by Attard et al. [4] for reasons on why this
is the case.

3.4.2.4 Running the correct server
So far, the plus one successor server has been intentionally launched in bad

mode in order to demonstrate how violations are handled by our monitor. We
now re-instrument the system in order to emulate the correct successor server
behaviour depicted in Figure 3.6b; invoking the instrument target differs



72 A Runtime Monitoring Tool for Actor-Based Systems

only in the MFA tuple used to start the server, where instead of bad, the flag
good is used:

duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[good]}"

The server should now behave correctly, and return the successor value
of any numeric payload that we choose to send to it from the Erlang shell.

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"

2

3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]

4 Eshell V7.2 (abort with Ĝ)

5

6 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].

7 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial cnt value ‘0’ and mode ‘good’.

8

9 [<0.32.0> - main_mon:24] - System to be monitored started.

10 [<0.34.0> - main_mon:62] - Resolved procs [].

11 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula environment.

12 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.

13 [<0.34.0> - main_mon:84] - Starting main monitor loop.

14 1> _

15 1> plus_one ! {req, self(), 19}.

16

17 [<0.33.0> - plus_one:41] - Received request with value ‘19’.

18 [<0.41.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.

19 [<0.42.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.

20 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,20}’, Current cnt ‘1’.

21

22 {req,<0.38.0>,19}

23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,20}}.

24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,20}}.

25 [<0.41.0> - formula:59] - mon_id no match.

26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.

27 [<0.42.0> - formula:91] - mon_and spawned processes ‘<0.44.0>’ and ‘<0.45.0>’.

28 2> _

When the client request {req, self(),19} is submitted to the server
from the Erlang shell (line 15), this again generates a response from the server
answering back with the tuple {resp,20}. Although the sequence of trace
events is similar to the ones in Section 3.4.2.3, the data in these events is
different: the server response now carries value ‘20’ as opposed to ‘19’. This
causes the violation submonitor to terminate with an inconclusive verdict
(line 25) and the recursive submonitor to unfold (line 26) in preparation for
the next trace events. Stated otherwise, no violation is detected by the monitor
up to the current point of execution.



3.5 Conclusion 73

3.5 Conclusion

We have presented an overview of detectEr from the perspective of a user
wishing to employ this tool to verify Erlang systems at runtime. The tool
automatically synthesises monitoring code from specifications written in
the monitorable subset of the Hennessy-Milner Logic with maximal and
minimal fixpoints [25, 19]. The monitoring code which is then instrumented
to run alongside the system under scrutiny infers specification satisfactions or
violations by analysing the runtime execution trace exhibited by the system.
One salient aspect of the tool is that the instrumentation employs the tracing
facility of the host language virtual machine. It therefore requires no access
to system source code and relies only on the application’s binary files. The
execution of the monitor and the system being analysed is decoupled — this
may lead to late (satisfaction or violation) detections from the monitor. In
spite of this, the lightweight instrumentation approach adopted by detectEr
leaves the target system binaries untouched, thus making it possible to
employ our tool in cases where (commercial) software with licenses and/or
support agreements explicitly forbid the modification of binary code.

3.5.1 Related and Future Work

Apart from being a manifestation of the work due to Francalanza et al. [19],
the tool detectEr was also used as a starting point for a number of other
investigations. Cassar et al. [11] explored choreographed reconfigurations
for submonitors as means to lower the monitoring computational overhead,
whereas in subsequent work [8], the authors also explored modifications to
the tool to be able to synchronise more closely the executions of the system
and the monitor, thereby avoiding problems associated with late detections.
In other work by Cassar et al. [10], the investigators consider extensions
to the tool that enable the runtime analysis to administer adaptation actions
to the system once a violation is detected. Following this work, the authors
also developed a type-based approach [9] to ensure that runtime adaptations
are administered correctly by the tool. We are presently considering tool
extensions that enable monitoring analysis to be distributed across sites and
also alternative monitor synthesis procedures that guarantee a degree of
property enforcement.

There has also been an extensive body of work [16, 28] on the runtime
checking of session types. Lange et al. [24] demonstrate the correspondence
between session types and a fragment of the modal μ-calculus, which has
been previously shown by Larsen [25] to be a reformulation of the logic



74 A Runtime Monitoring Tool for Actor-Based Systems

μHML. Crucially, the monitors we study consider the system from a global
level. By contrast, the aforementioned works project global multiparty ses-
sion types to local endpoint types, which are then synthesised into local
monitors that analyse traffic at individual channel endpoints.

Acknowledgments This work was partly supported by the project “Theo-
FoMon: Theoretical Foundations for Monitorability” (nr.163406-051) of the
Icelandic Research Fund.

References

[1] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba.
Reactive Systems: Modelling, Specification and Verification. Cambridge
Univ. Press, New York, NY, USA, first edition, 2007.

[2] Bowen Alpern and Fred B. Schneider. Recognizing Safety and Liveness.
Distributed Computing, 2(3):117–126, 1987.

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, first edition, 2007.

[4] Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a
Branching-Time Logic. In RV, volume 10012 of LNCS, pages 473–481.
Springer, 2016.

[5] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and
David E. Rydeheard. Quantified Event Automata: Towards Expressive
and Efficient Runtime Monitors. In FM, volume 7436 of LNCS, pages
68–84. Springer, 2012.

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime
Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.,
20(4):14, 2011.

[7] Andreas Klaus Bauer and Yliès Falcone. Decentralised LTL Monitor-
ing. In FM, volume 7436 of LNCS, pages 85–100. Springer, 2012.

[8] Ian Cassar and Adrian Francalanza. On Synchronous and Asynchronous
Monitor Instrumentation for Actor-Based Systems. In FOCLASA,
volume 175 of EPTCS, pages 54–68, 2014.

[9] Ian Cassar and Adrian Francalanza. Runtime Adaptation for Actor
Systems. In RV, volume 9333 of LNCS, pages 38–54. Springer, 2015.

[10] Ian Cassar and Adrian Francalanza. On Implementing a Monitor-
Oriented Programming Framework for Actor Systems. In IFM, volume
9681 of LNCS, pages 176–192. Springer, 2016.



References 75

[11] Ian Cassar, Adrian Francalanza, and Simon Said. Improving Runtime
Overheads for detectEr. In FESCA, volume 178 of EPTCS, pages 1–8,
2015.

[12] Francesco Cesarini and Simon Thompson. Erlang Programming.
O’Reilly Media, first edition, 2009.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, first edition, 1999.

[14] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani.
Model Checking and the State Explosion Problem. In LASER, volume
7682 of LNCS, pages 1–30. Springer, 2011.

[15] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A
Monitoring Tool for Erlang. In RV, volume 7186 of LNCS, pages 370–
374. Springer, 2011.

[16] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Practical interruptible conversations: Distributed
dynamic verification with multiparty session types and Python. Formal
Methods in System Design, 46(3):197–225, 2015.

[17] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can
you verify and enforce at runtime? STTT, 14(3):349–382, 2012.

[18] Adrian Francalanza. A Theory of Monitors. In FoSSaCS, volume 9634
of LNCS, pages 145–161. Springer, 2016.

[19] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On Verifying
Hennessy-Milner Logic with Recursion at Runtime. In RV, volume 9333
of LNCS, pages 71–86. Springer, 2015.

[20] Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed
System Contract Monitoring. J. Log. Algebr. Program., 82(5–7):186–
215, 2013.

[21] Adrian Francalanza and Aldrin Seychell. Synthesising Correct Concur-
rent Runtime Monitors. Formal Methods in System Design, 46(3):226–
261, 2015.

[22] Fred Hebert. Learn You Some Erlang for Great Good!: A Beginner’s
Guide. No Starch Press, first edition, 2013.

[23] Orna Kupferman. Variations on Safety. In TACAS, volume 8413 of
LNCS, pages 1–14. Springer, 2014.

[24] Julien Lange and Nobuko Yoshida. Characteristic Formulae for Session
Types. In TACAS, volume 9636 of LNCS, pages 833–850. Springer,
2016.



76 A Runtime Monitoring Tool for Actor-Based Systems

[25] Kim Guldstrand Larsen. Proof Systems for Satisfiability in Hennessy-
Milner Logic with Recursion. Theor. Comput. Sci., 72(2&3):265–288,
1990.

[26] Martin Leucker and Christian Schallhart. A Brief Account of Runtime
Verification. J. Log. Algebr. Program., 78(5):293–303, 2009.

[27] Zohar Manna and Amir Pnueli. Completing the Temporal Picture.
Theor. Comput. Sci., 83(1):91–130, 1991.

[28] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed Run-
time Monitoring for Multiparty Conversations. In BEAT, volume 162 of
EPTCS, pages 19–26, 2014.

[29] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. Marq:
Monitoring at Runtime with QEA. In TACAS, volume 9035 of LNCS,
pages 596–610. Springer, 2015.

[30] A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, first
edition, 1997.



4
How to Verify Your Python Conversations

Rumyana Neykova and Nobuko Yoshida

Imperial College London, UK

Abstract

In large-scale distributed systems, each application is realised through inter-
actions among distributed components. To guarantee safe communication
(no deadlocks and communication mismatches) we need programming lan-
guages and tools that structure, manage, and policy-check these interactions.
Multiparty session types (MSPT), a typing discipline for structured inter-
actions between communicating processes, offers a promising approach.
To date, however, session types applications have been limited to static
verification, which is not always feasible and is often restrictive in terms
of programming API and specifying policies. This chapter investigates the
design and implementation of a runtime verification framework, ensuring
conformance between programs and specifications. Specifications are written
in Scribble, a protocol description language formally founded on MPST.
The central idea of the approach is a runtime monitor, which takes a
form of a communicating finite state machine, automatically generated from
Scribble specifications, and a communication runtime stipulating a message
format. We demonstrate Scribble-based runtime verification in manifold
ways. First, we present a Python library, facilitated with session primi-
tives and verification runtime. Second, we show examples from a large
cyber-infrastructure project for oceanography, which uses the library as a
communication medium. Third, we examine communication patterns, fea-
turing advanced Scribble primitives for verification of exception handling
behaviours.

77



78 How to Verify Your Python Conversations

4.1 Framework Overview

Figure 4.1 illustrates the methodology of our framework. The development
of a communication-oriented application starts with the specification of the
intended interactions (the choreography) as a global protocol using the Scrib-
ble protocol description language [9]. From a global protocol, the toolchain
mechanically generates (projects) a Scribble local protocol, represented as a
finite state machine (FSM), for each participant (abstracted as a role). As a
session is conducted at run-time, the monitor at each endpoint validates the
communication actions performed by the local endpoint, and the messages
that arrive from the other endpoints, against the transitions permitted by the
monitor’s FSM. Each monitor thus works to protect (1) the endpoint from
invalid actions by the network environment, and (2) the network from incor-
rectly implemented endpoints. Our runtime multiparty session types (MPST)
[6] framework is designed in this way to ensure, using the decentralised
monitoring of each local endpoint, that the session as a whole conforms to
the original global protocol [1], and that unsafe actions by a bad endpoint
cannot corrupt the protocol state of other compliant endpoints.

Figure 4.1 Scribble methodology from global specification to local runtime verification.



4.2 Scribble-Based Runtime Verification 79

Outline. We outline the structure of this chapter. Section 4.2 demonstrates
our runtime MPST framework through an example. We present a global-to-
local projection of Scribble protocols, endpoint implementations, and local
FSM generation. Section 4.3 demonstrates an API for conversation program-
ming in Python that supports standard socket-like operations, as well as
event-driven interface. The API decorates conversation messages with meta
information required by the monitors to perform runtime verification. Sec-
tion 4.4 discusses the monitor implementation, focusing on key architectural
requirements of our framework. Section 4.5 presents an extension of Scribble
with asynchronous session interrupts. This is a feature of MPST, giving a
general mechanism for handling nested, multiparty exception handling. We
present the extension of the Python API with a new construct for scopes,
endpoint implementations, and local FSM generation for monitoring. Sec-
tion 4.6 explains the correspondence between a theoretical model and our
implementation.

4.2 Scribble-Based Runtime Verification

This section illustrates the stages of our framework and its implementation
through a use case, emphasising the properties verified at each verification
stage. The presented use case is obtained from our industrial partners Ocean
Observatories Institute (OOI) [7] (use case UC.R2.13 ”Acquire Data From
Instrument”). The OOI is a project to establish a cyberinfrastructure for
the delivery, management and analysis of scientific data from a large net-
work of ocean sensor systems. Its architecture relies on the combination of
high-level protocol specifications of network services (expressed as Scribble
protocols [8]) and distributed runtime monitoring to regulate the behaviour of
third-party applications within the system. We have integrated our framework
into the Python-based runtime platform developed by OOI [7].

4.2.1 Verification Steps

Global Protocol Correctness. The first level of verification is when design-
ing a global protocol. A Scribble global protocol for the use case is listed in
Figure 4.2 (left). Scribble describes interactions between session participants
through message passing sequences, branches and recursion. Each message
has a label (an operator) and a payload. The Scribble protocol in Figure 4.2
starts by protocol declaration, which specifies the name of the protocol, Data



80 How to Verify Your Python Conversations

1 global protocol DataAcquisition(
2 role U, role A, role I) {
3 Request (string :info) from U to A;
4 Request (string :info) from A to I;
5 choice at I {
6 Supported() from I to A;
7 rec Poll {
8 Poll() from A to I;
9 choice at I {

10 Raw(data) from I to A
11 @{size(data) <= 512};
12 Formatted(data) from A to U;
13 continue Poll;
14 } or {
15 Stop() from I to A;
16 Stop() from A to U;}}
17 } or {
18 NotSupported from I to A;
19 Stop() from A to I;
20 Stop from A to U;}}

local protocol DataAcquisition
at A (role U, role A, role I)}

Request (string:info) from U;
Request (string:info) to I;
choice at I {

Supported() from I;
rec Poll {

Poll() to I;
choice at I {
Raw(data) from I
@{size(data) <= 512};
Formatted(data) to U;
continue Poll;
} or {
Stop() from I;
Stop() to U;}}

} or {
NotSupported from I;
Stop() to I;
Stop to U;}}

Figure 4.2 Global Protocol (left) and Local Protocol (right).

Acquisition, and its participating roles – a User (U), an Agent service (A)
and an Instrument (I). The overall scenario is as follows: U requests through
A to start streaming a list of resources from I (line 3–4). At line 5 I makes a
choice whether to continue the interaction or not. If I supports the requested
resource, I sends a message Supported and the communication continues by
A sending a Poll request to I. The raw resource data is sent from I to A, at A
the data is formatted and forwarded to U (line 10–12). Line 11 demonstrates
an assertion construct specifying that I is allowed to send data packages that
are less than 512MB.

The Scribble toolchain validates that a protocol is well-formed and thus
projectable for each role. For example, in each case of a choice construct, the
deciding party (e.g. at I) must correctly communicate the decision outcome
unambiguously to all other roles involved; a choice is badly-formed if the
actions of the deciding party would cause a race condition on the selected
case between the other roles, or if it is ambiguous to another role whether the
decision has already been made or is still pending.
Local protocol conformance. The second level of verification is performed
at runtime and ensures that each endpoint program conforms to the local
protocol structure. Local protocols specify the communication behaviour for
each conversation participant. Local protocols are mechanically projected
from a global protocol. A local protocol is essentially a view of the global
protocol from the perspective of one participant role. Projection works by
identifying the message exchanges where the participant is involved, and



4.2 Scribble-Based Runtime Verification 81

disregarding the rest, while preserving the overall interaction structure of the
global protocol.

From the local protocols, an FSM is generated. At runtime, the endpoint
program is validated against the FSM states. There are two main checks that
are performed. First, we verify that the type (a label and payloads) of each
message matches its specification (labels can be mapped directly to message
headers, or to method calls, class names or other relevant artefacts in the
program). Second, we verify that the flow of interactions is correct, i.e. inter-
action sequences, branches and recursions proceed as expected, respecting
the explicit dependencies (e.g. m1() from A to B; m2() from B to C;
imposes a causality at B, which is obliged to receive the messages from A

before sending a message to C).
Policy validation. The final level of verification enables the elaboration
of Scribble protocols using annotations (@{} in Figure 4.2). Annotations
function as API hooks to the verification framework: they are not verified
by the MPST monitor itself, but are, instead, delegated to a third-party
library. Our current implementation uses a Python library for evaluating
basic predicates (e.g. the size check in Figure 4.2). At runtime, the monitor
passes the annotated information, along with the FSM state information, to
the appropriate library to perform the additional checks or calculations. To
plug in an external validation engine, our toolchain API requires modules for
parsing and evaluating the annotation expressions specified in the protocol.

4.2.2 Monitoring Requirements

Positioning. In order to guarantee global safety, our monitoring framework
imposes complete mediation of communications: communication actions
should not have an effect unless the message is mediated by the monitor.
The tool implements this principal for outline monitor configurations, i.e. the
monitor is running as a separate application. Outline monitoring is realised
by dynamically modifying the application-level network configuration to
(asynchronously) route every message through a monitor. Our prototype is
built over an Advanced Message Queuing Protocol (AMQP) [1] transport.
An AMQP is a publish-subscribe middleware. An AMQP network consists
of a federation of distributed virtual routers (called brokers) and queues. A
monitor dispatcher is assigned to each network endpoint as a conversation
gateway. The dispatcher can create new routes and spawn new monitor
processes if needed, to ensure the scalability of this approach.



82 How to Verify Your Python Conversations

Message format. To monitor Scribble conversations, our toolchain relies
on a small amount of message meta data, referred to as Scribble header,
and embedded into the message payload. Messages are processed depending
on their kind, as recorded in the first field of the Scribble header. There
are two kinds of conversation messages: initialisation (exchanged when a
session is started, carrying information such as the protocol name and the
role of the monitored process) and in-session (carrying the message operation
and the sender/receiver roles). Initialisation messages are used for routing
reconfiguration, while in-session messages are the ones checked for protocol
conformance.
Principals and Conversation runtime. A principal (an application) imple-
ments a protocol behaviour using the Conversation API. The API is built on
top of a Conversation Runtime. The runtime provides a library for instan-
tiating, managing and programming Scribble protocols and serialising and
deserializing conversation messages. The library is implemented as a thin
wrapper over an existing transport library. The API provides primitives for
creating and joining a conversation, as well as primitives for sending and
receiving messages.

4.3 Conversation Programming in Python

The Python Conversation API is a message passing API, which offers a high-
level interface for safe conversation programming, mapping the interaction
primitives of session types to lower-level communication actions on concrete
transports. The API primitives are displayed in Figure 4.3. In summary, the
API provides functionality for (1) session initiation and joining, (2) basic
send/receive.
Conversation Initiation. A session is initiated using the create method.
It creates a fresh conversation id and the required AMQP objects (principal
exchange and queue), and sends an invitation for each role specified in the
protocol. Invitations are sent to principals.

Conversation API operation Purpose
create(protocol_name, config.yml) Initiate conversation, send invitations
join(self, role, principal_name) Accept invitation
send(role, op, payload) Send a message
recv(role) Receive message from role
recv_async(self, role, callback) Asynchronous receive

Figure 4.3 The core Python Conversation API operations.



4.3 Conversation Programming in Python 83

We use a configuration file to provide the mapping between roles and
principals. We give on the right an example of the configuration file (invita-
tion section) for the DataAcquisition protocol. Principal names direct the
routing of invitation message to the right endpoint. Each invitation carries a
role, a principal name and a name for a Scribble local specification file. An
invitation is accepted using the Conversation.join method. It establishes
an AMQP connection and, if one does not exist, creates an invitation queue
for receiving invitations.

invitations:
-role: U
principal name: bob
local capability: DataAcquisition.spr

-role: A
principal name: allice
local capability: DataAcquisition.spr

-role: I
principal name: carol
local capability: DataAcquisition.spr

We demonstrate the usage of the API in a Python implementation of the
local protocol projected for the Agent role. The local protocol is given in
Figure 4.2 (right). Figure 4.4 (left) gives the Agent role implementation. First,
the create method of the Conversation API initiates a new conversation
instance of the DataAcquisition protocol, and returns a token that is
used to join the conversation locally. The config.yml file specifies which
network principals will play which roles in this session and the runtime sends
invitation messages to each principal. The join method confirms that the
endpoint is joining the conversation as the principal alice playing role A.
Once the invitations are sent and accepted (via Conversation.join), the
conversation is established and the intended message exchange can proceed.
As a result of the initiation procedure, the runtime at every participant has a
mapping (conversation table) between each role and their AMQP addresses.
Conversation Message Passing. The API provides standard send/receive
primitives. Send is asynchronous, meaning that a basic send does not block
on the corresponding receive; however, the basic receive does block until the
message has been received. In addition, an asynchronous receive method,
called recv_async, is provided to support event-driven usage of the conver-
sation API. These asynchronous features map closely to those supported by



84 How to Verify Your Python Conversations

class ClientApp(BaseApp):
def start(self):

c = Conversation.create(
’DataAcquisition’, ’config.yml’)
c.join(’A’, ’alice’)

resource_request = c.recv(’U’)
c.send(’I’, resource_request)
req_result = c.recv(’I’)

if (req_result == ’Supported’):
c.send(’I’, ’Poll’)
op, data = c.recv(’I’)

while (op != ’Stop’):
formatted_data = format(data)
c.send(’U’, formatted_data)

c.send(’U’, stop)
else:

c.send([U, I], stop)
c.stop()

class ClientApp(BaseApp):
def start(self):

c = Conversation.create(
’DataAcquisition’, ’config.yml’)
c.join(’A’, ’alice’)
c.recv_async(’U’, on_request)

def on_request(self, conv, op, msg):
if (op == SUPPORTED):

conv.send(’I’, ’Poll’)
conv.recv_async(’I’, ’on_data’)

else: conv.send([I, U], ’Stop’)

def on_data(self, conv, op, payload):
if (op != ’Stop’):

formatted_data = format(payload)
c.send(’U’, formatted_data)

else:
conv.send(’U’, ’Stop’)
conv.stop()

Figure 4.4 Python program for A: synchronous implementation (left) and event-driven
implementation (right).

Pika1, a Python transport library used as an underlying transport library in
our implementations.

Each message signature in a Scribble specification contains an operation
and payloads (message arguments). The API does not mandate how the
operation field should be treated, allowing the flexibility to interpret the
operation name in various ways, e.g. as a plain message label, an RMI method
name, etc. We treat the operation name as a plain label.

Following its local protocol, the program for A receives a request from
U and forwards the message to I. The recv returns a tuple, (label, payload)
of the message. When the message does not have a payload, only the label
is returned (req_result = c.recv(’I’)). The recv method can also
take the source role as a single argument (c.recv(’I’)), or additionally
the label of the desired message (c.recv(’I’, ’Request’)). The send
method called on the conversation channel c takes, in this order, the des-
tination role, message operator and payload values as arguments. In our
example, the received payload resource_request is forwarded without
modifications to I. After A receives the reply from I, the program checks the
label value req_result using conditional statements, if (req_result==
’Supported’). If I replies with ’Supported’, A enters a loop, where it
continuously sends a ’Poll’ requests to I and after receiving the result from
I, formats the received data (format(data)) and resends the formatted
result to U.

1http://pika.readthedocs.org/



4.4 Monitor Implementation 85

Event-driven conversations. For asynchronous, non-blocking receives, the
Conversation API provides recv_async to be used in an event-driven style.
Figure 4.4 (right) shows an alternative implementation of the user role using
callbacks. The method recv_async accepts as arguments a callback to be
invoked when a message is received.

We first create a conversation variable similar to the synchronous imple-
mentation. After joining the conversation, A registers a callback to be invoked
when a message from U is received (on_request). The callback executions
are linked to the flow of the protocol by taking the conversation id as an
argument (e.g. conv). It also accepts as arguments the label for the message
(op) and the payload (msg). In the message handler for Request, the role
A forwards the received payload to I and registers a new message handler
for the next message. Although the event-driven API promotes a notably
different programming style, our framework monitors both implementations
in Figure 4.4 transparently without any modifications.

4.4 Monitor Implementation

Figure 4.5 depicts our outline monitor configuration. The interception mech-
anism is based on message forwarding. A principal has at least one queue
for consuming messages, although the number of queues can be tuned to

Figure 4.5 Configuration of distributed session monitors for an AMQP-based network.



86 How to Verify Your Python Conversations

use separate queues for invitations and roles. We outline a concrete scenario.
Principal Alice is authenticated and connected to her local broker.

1. Authentication creates a network access point for Alice (the Monitor
circle in Figure 4.5). The access point consists of a new conversation
monitor instance, monitor queues (monitor as a consumer), and an
exchange. Alice is only permitted to send messages to this exchange.

2. Alice initiates a new session (creates an exchange with id 1234 in
Figure 4.5) and dispatches an invitation to principal Bob. The invitation
is received and checked by Alice’s monitor and then dispatched on the
shared channel, from where it is rerouted to Bob’s Monitor.

3. Bob’s monitor checks the invitation, generates the local FSM and ses-
sion context for Bob and Bob’s role (for example client), and allocates a
session channel (with exchange: 1234 and routing keys matching Bob’s
role (1234.client.∗ and 1234. ∗ .client). The invitation is delivered to
Bob’s queue.

4. Any message sent by Alice (e.g. to Bob) in this session is similarly
passed by the monitor and validated. If valid, the message is forwarded
to the session channel to be routed. The receiver’s monitor will similarly
but independently validate the message.

Figure 4.6 depicts the main components and internal workflow of our
prototype monitor. The lower part relates to conversation initiation. The
invitation message carries (a reference to) the local protocol for the invitee
and the conversation id. We use a parser generator (ANTLR2) to produce,
from a Scribble local protocol, an abstract syntax tree with MPST constructs
as nodes. The tree is traversed to generate a finite state machine, represented
in Python as a hash table, where each entry has the shape:

(current state, transition) �→ (next state, assertion, var)

where transition is a quadruple (interaction type, label, sender, receiver),
interaction type is either send or receive and var is a variable binder for a
message payload. We number the states using a generator of natural numbers.
The FSM generation is based on the translation of local Scribble protocols to
FSMs, presented in [5].

The upper part of Figure 4.6 relates to in-conversation messages, which
carry the conversation id (matching an entry in the FSM hash table), sender
and receiver fields, and the message label and payload. This information

2http://www.antlr.org/



4.5 Monitoring Interruptible Systems 87

Figure 4.6 Monitor workflow for (1) invitation and (2) in-conversation messages.

allows the monitor to retrieve the corresponding FSM (by matching the
message signature to the FSM’s transition function). Assertions associated
to communication actions are evaluated by invoking a library for Python
predicate evaluation.

4.5 Monitoring Interruptible Systems

This section presents the implementation of a new construct for verifying
asynchronous multiparty session interrupts. Asynchronous session interrupts
express communication patterns in which the behaviour of the roles following
the default flow through a protocol segment may be overruled by one or more
other roles concurrently raising asynchronous interrupt messages. Extending
MPST with asynchronous interrupts is challenging because the inherent
communication race conditions that may arise conflict with the MPST safety
properties. Taking a continuous stream of messages from a producer to a
consumer as a simple example: if the consumer sends an interrupt message
to the producer to pause or end the stream, stream messages (those already in
transit or subsequently dispatched before the interrupt arrives at the producer)
may well continue arriving at the consumer for some time after the interrupt is
dispatched. This scenario is in contrast to the patterns permitted by standard
session types, where the safety properties guarantee that no message is ever
lost or redundant by virtue of disallowing all protocols with potential races.



88 How to Verify Your Python Conversations

This section introduces a novel approach based on reifying the concept
of scopes within a protocol at the runtime level when an instance of the
protocol is executed. A scope designates a sub-region of the protocol, derived
from its syntactic structure, on which certain communication actions, such
as interrupts, may act on the region as a whole. At run-time, every message
identifies the scope to which it belongs as part of its meta data. From this
information and by tracking the local progress in the protocol, the runtime
at each endpoint in the session is able to resolve discrepancies in a protocol
state by discarding incoming messages that have become irrelevant due to
an asynchronous interrupt. This mechanism is transparent to the user pro-
cess, and although performed independently by each distributed endpoint,
preserves global safety for the session.

We integrate the new interrupt construct in our framework for runtime
monitoring. The FSM generation is extended to support interruptible protocol
scopes. We treat interruptible scopes by generating nested FSM structures. In
the case of scopes that may be entered multiple times by recursive protocols,
we use dynamic FSM nesting (conceptually, a new sub-FSM is created each
time the scope is entered, and the sub-FSM is terminated once it reaches
its end state or when an interrupt message is received) corresponding to the
generation of fresh scope names in the syntactic model.

4.5.1 Use Case: Resource Access Control (RAC)

This section expands on how we extend Scribble to support the specification
and verification of asynchronous session interrupts, henceforth referred to as
just interrupts. Our running example is based on an OOI project use case,
which we have distilled to focus on session interrupts.

Figure 4.7 (left) gives an abridged version of a sequence diagram given in
the OOI documentation for the Resource Access Control (RAC) use case [8],
regarding access control of users to sensor devices in the OOI cyberinfras-
tucture for data acquisition. In the OOI setting, a User interacts with a sensor
device via its Agent proxy (which interacts with the device using a separate
protocol outside of this example). OOI Controller agents manage concerns
such as authentication of users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried
in the messages and focus on the structure of the protocol. The depicted
interaction can be summarised as follows. The protocol starts at the top of the
left-hand diagram. User sends Controller a request message to use a sensor



4.5 Monitoring Interruptible Systems 89

U C A

req(int)
start

data

data(2)
.
.
.

.

.

.

(1)

U C A

pause

resume
(1)

stop

timeout timeout

(2)

1 global protocol RACProtocol(
2 role User as U,
3 role Controller as C, role Agent as A){
4 // U requests the device for some duration
5 req(duration :int) from U to C;
6 start () from C to A;
7 interruptible {// U, C and A in scope
8 rec X {
9 interruptible {// U and A in scope

10 rec Y {
11 data() from A to U;
12 continue Y;}
13 } with {// Interrupts A in Y
14 pause() by U;}
15 resume () from U to A;
16 continue X;
17 }
18 } with {// Interrupts A and C/U in X
19 stop() by U;// Before duration expired
20
21 timeout () by C;// Duration is up
22 }
23 }

Figure 4.7 Sequence diagram (left) and Scribble protocol (right) for the RAC use case.

for a certain amount of time (the int in parentheses), and Controller sends a
start to Agent. The protocol then enters a phase (denoted by the horizontal
line) that we label (1), in which Agent streams data messages (acquired from
the sensor) to User. The vertical dots signify that Agent produces the stream
of data freely under its own control, i.e. without application-level control from
User. User and Controller, however, have the option at any point in phase (1)
to move the protocol to the phase labelled (2), below.

Phase (2) comprises three alternatives, separated by dashed lines. In the
upper case, User interrupts the stream from Agent by sending Agent a pause
message. At some subsequent point, User sends a resume and the protocol
returns to phase (1). In the middle case, User interrupts the stream, sending
both Agent and Controller a stop message. This is the case where User
does not want any more sensor data, and ends the protocol for all three
participants. Finally, in the lower case, Controller interrupts the stream by
sending a timeout message to User and Agent. This is the case where,
from Controller’s view, the session has exceeded the requested duration, so
Controller interrupts the other two participants to end the protocol. Note this
diagram actually intends that stop (and timeout) can arise anytime after (1),



90 How to Verify Your Python Conversations

e.g. between pause and resume (a notational ambiguity that is compensated
by additional prose comments in the specification).

4.5.2 Interruptible Multiparty Session Types

Figure 4.7 (right) shows a Scribble protocol that formally captures the
structure of interaction in the Resource Access Control (RAC) use case and
demonstrates the uses of our extension for asynchronous interrupts. Besides
the formal foundations, we find the Scribble specification more explicit and
precise, particularly regarding the combination of compound constructs such
as choice and recursion, than the sequence diagram format, and provides
firmer implementation guidelines for the programmer.

The protocol starts with a header declaring the protocol name (given as
RACProtocol in Figure 4.7) and role names for the participants (three roles,
aliased in the scope of this protocol definition as U, C and A). Lines 5 and 6
straightforwardly correspond to the first two communications in the sequence
diagram, a User sends a request message, carrying an int payload, to the
Controller and then the Controller replies with a start() message and an
empty payload.

Then the intended communication in “phase” (1) and (2) in the diagram,
is clarified in Scribble as two nested interruptible statements. The outer
statement, on lines 7–22, corresponds to the options for User and Con-
troller to end the protocol by sending the stop and timeout interrupts. An
interruptibleconsists of a main body of protocol actions, here lines 8–
17, and a set of interrupt message signatures, lines 18–22. The statement
stipulates that each participant behaves by either (a) following the protocol
specified in the body until finished for their role, or (b) raising or detecting
a specified interrupt at any point during (a) and exiting the statement. Thus,
the outer interruptible states that U can interrupt the body (and end the
protocol) by a stop() message, and C by a timeout().

The body of the outer interruptible is a labelled recursion statement
with label X. The continue X; inside the recursion (line 16) causes the flow
of the protocol to return to the top of the recursion (line 8). This recursion
corresponds to the loop implied by the sequence diagram that allows User
to pause and resume repeatedly. Since the recursion body always leads to the
continue, Scribble protocols of this form state that the loop should be driven
indefinitely by one role, until one of the interrupts is raised by another role.
This communication pattern cannot be expressed in multiparty session types
without interruptible.



4.5 Monitoring Interruptible Systems 91

The body of the X-recursion is the inner interruptible, which cor-
responds to the option for User to pause the stream. The stream itself is
specified by the Y-recursion, in which A continuously sends data() messages
to U. The inner interruptible specifies that U may interrupt the Y-recursion
by a pause() message, which is followed by the resume() message from U

before the protocol returns to the top of the X-recursion.

4.5.3 Programming and Verification of Interruptible Systems

We extend the Python API, presented in Section 4.3, to provide functionality
for scope management for handling interrupt messages. We demonstrate
the usage of the construct through an implementation of the local protocol
projected for the User role. Figure 4.8 gives the local protocol and its
implementation.

Similarly to the previous example from Section 4.3, the implementation
starts by creating a conversation instance c of the Resource Access Control
protocol (Figure 4.7) using method create (line 6, left) and join. The
latter returns a conversation channel object for performing the subsequent
communication operations.
Interrupt handling. The implementation of the User program demonstrates
a way of handling conversation interrupts by combining conversation scopes

1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 self.buffer = buffer(MAX_SIZE)
6 conv = Conversation.create(
7 ’RACProtocol’, ’config.yml’)
8 c = conv.join(user, ’alice’)
9 c.send(controller, ’req’, 3600)

10 with c.scope(’timeout’, ’stop’) as c_x:
11 while not self.should_stop():
12 with c_x.scope(’pause’) as c_y:
13 while not self.buffer.is_full():
14 data = c_y.recv(agent)
15 self.buffer.append(data)
16 c_y.send_interrupt(’pause’)
17 use_data(self.buffer)
18 self.buffer.clear()
19 c_x.send(agent, ’resume’)
20 c_x.send_interrupt(’stop’)
21 c.close()

local protocol RACProtocol
at U (role C, role A){
req(duration :int) to C;
interruptible {

rec X {
interruptible {

rec Y {
data() from A;
continue Y;
}

} with {
pause () by U;

}
resume () to A;
continue X;

}
} with {

stop() by U;
timeout () by C;

}
}

Figure 4.8 Python implementation (left) and Scribble local protocol (right) for the User role
for the global protocol from Figure 4.7.



92 How to Verify Your Python Conversations

with the Python with statement (an enhanced try-finally construct). We use
with to conveniently capture interruptible conversation flows and the nesting
of interruptible scopes, as well as automatic close of interrupted channels in
the standard manner, as follows. The API provides the c.scope() method,
as in line 10, to create and enter the scope of an interruptible Scribble
block (here, the outer interruptible of the RAC protocol). The timeout and
stop arguments associate these message signatures as interrupts with this
scope. The conversation channel c_x returned by scope is a wrapper of the
parent channel c that (1) records the current scope of every message sent in
its meta data, (2) ensures every send and receive operation is guarded by
a check on the local interrupt queue, and (3) tracks the nesting of scope
contexts through nested with statements. The interruptible scope of c x is
given by the enclosing with (lines 10–20); if, e.g., a timeout is received
within this scope, the control flow will exit the with block to line 21. The
inner with (lines 12–16), corresponding to the inner interruptible block,
is associated with the pause interrupt. When an interrupt, e.g. pause in
line 16, is thrown (send_interrupt) to the other conversation participants,
the local and receiver runtimes each raise an internal exception that is either
handled or propagated up, depending on the interrupts declared at the current
scope level, to direct the interrupted control flow accordingly. The delineation
of interruptible scopes by the global protocol, and its projection to each local
protocol, thus allows interrupted control flows to be coordinated between
distributed participants in a structured manner.

The scope wrapper channels are closed (using the Python construct with)
after throwing or handling an interrupt message. Since we assume asyn-
chronous communication, there is a delay from the time when an interrupt
mesasage is sent untill the time when the interrupt message is received by all
participants. Hence, the monitor reacts differently when checking message
sending (a check driven by the monitored participant) and message receive
(an action driven by a message arriving in the queue of the monitor); the
monitor discards the message in the latter case and marks the message
as wrong in the former case. More precisely, when a monitor receives a
message from a closed scope, it discards it as to accommodate for the
delay in receiving of an interrupt message. However, if a participant that is
monitoried attepts to send a message on a scope that is already closed (after
an interrupt message has been recieved or after the participant has thrown
interrupt himself) then the monitor flagges the interaction as an error. For
example, using c_x after a timeout is received (i.e. outside its parent scope)
will be flagged as an error. However, receiving messages on that scope will be



4.5 Monitoring Interruptible Systems 93

1 class UserApp(BaseApp):
2 def start(self):
3 self.buffer = buffer(MAX_SIZE)
4 conv = Conversation.create(
5 ’RACProtocol’, config.yml)
6 c = conv.join(user, ’alice’)
7 # request 1 hour access
8 c.send(controller, ’req’, 3600)
9 c_x = c.scope(’timeout’, ’stop’)

10 c_y = c_x.scope(’pause’)
11 c_y.recv_async(agent, recv_handler)
12
13 def recv_handler(self, c, op, payload):
14 with c:
15 if self.should_stop():
16 c.send_interrupt(’stop’)
17 elif self.buffer.is_full():
18 self.process_buffer(c, payload)
19 else:
20 self.buffer.append(payload)
21 c.recv_async(agent, recv_handler)
22
23 def process_buffer(self, c, payload):
24 with c:
25 c_x = c.send_interrupt(’pause’)
26 use_data(self.buffer, payload)
27 self.buffer.clear()
28 c_x.send(agent, ’resume’)
29 c_y = c_x.scope(’pause’)
30 c_y.recv_async(agent, recv_handler)

C!req(int)
new scope

A?data

A!pauseA!resume

{C, A }!stopC?timeout

Figure 4.9 Event-driven conversation implementation for the User role (left) and Nested
FSM generated from the User local protocol (right).

discarded and will not be dispatched to the application. In our example, the
User runtime discards data messages that arrive after pause is thrown. The
API can also make the discarded data available to the programmer through
secondary (non-monitored) operations.
Message handlers with scopes. As demonstrated in Section 4.3, our Python
API supports asynchronous receive through the primitive recv_async. The
construct is used to register a method that should be invoked on message
receive. To support event-driven programming with interrupts, we extend the
implementation presented in Section 4.3. The difference is in the semantics
of event handlers. More precisely, each event handler is associated with a
scope. Therefore, if an interrupt is received, but the protocol state is not in the
same scope as the scope written in the conversation header of the interrupt
message, the interrupt will be discarded.

Figure 4.9 (left) shows an alternative implementation of the User role
using callbacks. We first enter the nested conversation scopes according to
the potential interrupt messages (lines 9 and 10). The callback method is
then registered using the recv_async operation (line 11). The callback
executions are linked to the flow of the protocol by taking the scoped channel



94 How to Verify Your Python Conversations

as an argument (e.g. c on line 13). Note that if the stop and pause interrupts
were not declared for these scopes, line 16 and line 25 would be considered
invalid by the monitor. When the buffer is full (line 17), the user sends
the pause interrupt. After raising an interrupt, the current scope becomes
obsolete and the channel object for the parent scope is returned. After the
data is processed and the buffer is cleared, the resume message is sent
(line 28) and a fresh scope is created and again registered for receiving data
events (line 29). Our framework monitors both this implementation and that
in Figure 4.8 transparently without any modifications.

4.5.4 Monitoring Interrupts

FSM generation for interruptible local protocols makes use of nested FSMs.
Each interruptible induces a nested FSM given by the main interruptible
block, as illustrated in Figure 4.9 (right) for the User local protocol. The
monitor internally augments the nested FSM with a scope id, derived from
the signature of the interruptible block, and an interrupt table, which records
the interrupt message signatures that may be thrown or received in this
scope. Interrupt messages are marked via the same meta data field used to
designate invitation and in-conversation messages, and are validated in a
similar way except that they are checked against the interrupt table. However,
if an interrupt arrives that does not have a match in the interrupt table
of the immediate FSM(s), the check searches upwards through the parent
FSMs; the interrupt is invalid if it cannot be matched after reaching the
outermost FSM.

4.6 Formal Foundations of MPST-Based
Runtime Verification

In this section, we explain the correspondence between a theoretical model
for MPST-based monitoring and the implementation, presented in this chap-
ter. Our implementation is formalised in a theory for MPST-based verification
of networks, first proposed in [3], and later extended in [1], and in [2].
The interrupt extension is formalised in [4]. [3] only gives an overview
of the desired properties, and requires all local processes to be dynami-
cally verified through the protections of system monitors, while [1] presents
a framework for semantically precise decentralised run-time verification,
supporting statically and dynamically verified components. In addition, the



4.6 Formal Foundations of MPST-Based Runtime Verification 95

routing mechanism of AMPQ networks is explicitly presented in [1], while
in [3] it is implicit.

A delicate technical difference between the theory and the implementa-
tion lies in handling of out-of-order delivery of messages when messages
are sent from different senders to the same receiver. Asynchrony poses a
challenge in the treatment of out-of-order asynchronous message monitoring,
and thus, to prevent false positive results, in the theoretical model, a type-
level permutations of actions is required, e.g a monitor checks messages up
to permutations. The use of global queues and local permutations is inefficient
in practice, and thus we have implemented the theoretical model of a global
queue as different physical queues. Specifically, we introduce a queue per
pair of roles, which ensures messages from the same receivers are delivered
in order and are not mixed with messages from other roles. This model is
semantically equivalent to a model of a global indexed queue, permitting
permutation of messages.

Next we explain the correspondence between the asynchronous π-
calculus with fine-grained primitives for session initiation and our Python
API.Also in [1] specifications are given as local types. Instead of using local
types, for efficient checking, we use communicating finite state machines
(CFSMs) generated from local Scribble protocols, which are equivalent to
local types, as has been shown in [5].
Processes. Our Python API embodies the primitives of the asynchronous
π-calculus with fine grained primitives for session initiation, presented in
[1]. The correspondence is given in Figure 4.10. Note that the API does
not stipulate the use of a recursion and a conditional, which appear in the
syntax of session π-calculus, since these constructs are handled by native
Python constructs. The create method, which, we remind, creates a fresh
conversation id and the required AMQP objects (principal exchanges and
queues), and sends an invitation for each role specified in the protocol,
corresponds to the action a〈s[r] : T 〉, which sends on the shared channel a, an

Conversation API operation Purpose
create(protocol_name, config.yml) a〈s[r] : T 〉
join(self, role, principal_name) a(y[r] : T ).P
send(role, op, payload) k[r1, r2]!l〈e〉
recv(role) k[r1, r2]?{li(xi).Pi}i∈I

recv_async(self, role, callback) –
Figure 4.10 The core Python Conversation API operations and their session π-calulus
counterparts.



96 How to Verify Your Python Conversations

invitation to join the fresh conversation s as the role of r with a specification
T . In the implementation, this information is codified in the message header,
which as we have explained contains the new session id (abstracted as s),
the name of the local Scribble protocol (i.e. T ) and the role (i.e. r). The
invitation action a(y[r] : T ).P models session join. As a result of join
new queues and a routing bindings are created. For example, when Bob

joins a conversation with id of 1234 as the role of client, as shown in
Figure 4.5, an AMQP binding 1234.client.∗ is created, which ensures that
all messages to the role of a client are delivered to Bob. The reduction rule
for a(y[r] : T ).P , in the semantics in [1], reflects this behaviour by adding a
record in the routing table. The primitive for sending a message k[r1, r2]!l〈e〉
corresponds to the API call send, and results in sending a message of type
s[r1, t2]!l〈e〉, which in the implementation is codified in the message header,
consisting of session id s, sender r1, receiver r2, label l and a payload e.
Properties of monitored networks. Finally, we give an overview of the
properties of monitored networks as presented in [1]. Due to the correspon-
dence explained above, these properties are preserved in the context of the
monitor implementation, presented in this chapter.
Local safety states that a monitored process respects its local protocol, i.e.

that dynamic verification by monitoring is sound.
Local transparency states that a monitored process has equivalent

behaviour to an unmonitored but well-behaved process, e.g. statically
verified against the same local protocol.

Global safety states that a system satisfies the global protocol, provided that
each participant behaves as if monitored.

Global transparency states that a fully monitored network has equivalent
behaviour to an unmonitored but well-behaved network, i.e. in which all
local processes are well-behaved against the same local protocols.

Session fidelity states that, as all message flows of a network satisfy
global specifications, whenever the network changes because some local
processes take actions, all message flows continue to satisfy global
specifications.

4.7 Concluding Remarks

We have presented a runtime verification framework for Python programs
based on Scribble protocols. We discuss the core design elements of the
implemention of a conversation-based API in a dynamically typed language,



References 97

Python. Through a runtime layer of protocol management Scribble protocols
are loaded and translated to CFSMs such that during a program execu-
tion, messages emitted by the program are checked against a corresponding
CFSM. We also introduce a construct for expressing exception-like pat-
terns in Scribble, which syntactically splits the protocol into sub-regions,
allowing certain messaging to act on the regions as a whole and thus per-
mitting controllable races, traditionally disallowed by the theory of session
types.

Acknowledgements We thank the anonymous reviewers for their insight-
ful comments, which helped us to improve the article. This work is
partially supported by EPSRC projects EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1 and EP/N028201/1; by EU FP7 612985
(UP-SCALE).

References

[1] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and
Nobuko Yoshida. Monitoring networks through multiparty session types.
In FMOODS, volume 7892 of LNCS, pages 50–65, 2013.

[2] Tzu-Chun Chen. Theories for Session-based Governance for Large-scale
Distributed Systems. PhD thesis, Queen Mary, University of London,
2013.

[3] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and
Nobuko Yoshida. Asynchronous distributed monitoring for multiparty
session enforcement. In TGC’11, volume 7173 of LNCS, pages 25–45,
2012.

[4] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Practical interruptible conversations: Distributed
dynamic verication with multiparty session types and python. FMSD,
pages 1–29, 2015.

[5] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types
meet communicating automata. In ESOP, volume 7211 of LNCS, pages
194–213. Springer, 2012.

[6] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. Journal of the ACM, 63, 2016.



98 How to Verify Your Python Conversations

[7] Ocean Observatories Initiative. http://www.oceanobservator
ies.org/

[8] OOIExamples. http://confluence.oceanobservatories.
org/display/CIDev/Identify+required+Scribble+
extensions+for+advanced+scenarios+of+R3+COI

[9] Scribble project home page. http://www.scribble.org



5
The DCR Workbench: Declarative
Choreographies for Collaborative

Processes

Søren Debois and Thomas T. Hildebrandt

Department of Computer Science, IT University of Copenhagen,
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Abstract

The DCR Workbench is an online tool for simulation and analysis of col-
laborative distributed processes specified as DCR graphs. The Workbench
is a robust and comprehensive implementation of DCR graphs, providing
concrete syntax, specification by refinement, visualisation, simulation, static
analysis, time analysis, enforcement, declarative subprocesses, data depen-
dencies, translation to other declarative models, and more. This chapter
introduces the Workbench and, through the features of the Workbench,
surveys the DCR formalism. The Workbench is available on-line at http:
//dcr.tools.

5.1 Introduction

Citizens, businesses and public organisations increasingly rely on distributed
business processes. Many such processes involve at the same time informa-
tion systems, humans and mechanical artefacts, and are thus highly unpre-
dictable. Moreover, such processes are constantly evolving due to advances
in technology, improvement in business practices, and changes in legislation.

In this climate of distribution and continuous change, the traditional
vision of verifying a system once and for all against a final formal description
has little hope of realisation. Instead, we need tools and techniques for
describing, building, and analysing systems of continuously changing dis-
tributed collaborative processes. Dynamic Condition Response graphs, DCR
graphs, is a formal model developed in response to this need.

99



100 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Developed through a series of research projects, DCR graphs today stands
on three pillars: a substantial body of academic publications on both case
studies [8, 10, 15, 17, 20, 38] and formal aspects [2, 6, 7, 12–14, 16, 18,
21–25, 29–31, 34, 37]; the DCR Workbench, implementing most major
advances of the formalism (the subject of this chapter); and a commer-
cial adaptive case-management system developed by independent vendor
Exformatics A/S [9, 11, 15, 19, 23, 28].

Declarative process notations such as DCR graphs, DECLARE [33, 40]
and GSM [26] generally support specification and analysis of requirements,
whereas imperative notations such as Workflow Nets [1] and BPMN [32]
generally support implementation of requirements. DCR graphs have the
advantage of serving as both the specification of requirements and the run-
time representation of a process instance, which can be adapted dynamically
if the requirements change.

The DCR Workbench is a comprehensive tool for modelling with DCR
graphs and analysing DCR models. The Workbench serves the dual purposes
of being a communication and teaching tool, used both in classroom settings
and in discussions with industry, as well as a test-bed for experimentation
with new analysis and variants.

This chapter gives an introduction to DCR graphs in general and the
Workbench in particular. As we shall see, the Workbench implements a
majority of published DCR graph variants and analysis methods, as well
as some work-in-progress experimental additions and algorithms that have
yet to be published. Through the features of the Workbench, the chapter
also provides a survey of the state-of-the-art of DCR graphs variants, their
technical properties, and their published analysis methods and algorithms.

5.1.1 History of the DCR Workbench

DCR graphs were introduced in 2010 [18,29] by Thomas Hildebrandt and his
group at the ITU. Soon after, Danish vendor of adaptive case-management
solutions, Exformatics A/S, entered into a long-term collaboration with the
ITU group; a collaboration which continues to this day. The continued
financial support and interest of Exformatics A/S has been instrumental in
the development of the formalism.

DCR graphs were implemented repeatedly as the formalism evolved.
Notably, an early implementation created by industrial PhD Tijs Slaats in
collaboration with Exformatics A/S [37] eventually grew into that company’s
current commercial DCR tool [9, 15, 28], available at dcrgraphs.net. In



5.1 Introduction 101

2013 this tool was solidifying into a commercial offering. While the backing
of commercial vendor was extremely helpful to DCR graph, the Exformat-
ics tool was becoming too heavyweight for quick academic experiments.
Accordingly, the ITU group in 2013 commenced development of a nimbler
implementation. This effort was spearheaded by Søren Debois and became
the DCR Workbench of the present chapter.

The two tools have different goals: Exformatics’ offering is aimed at
non-expert commercial users and emphasises stability and usability. Con-
versely, the DCR Workbench is aimed at academics and prioritises ease-of-
experimentation overall. This division has so far been productive: sufficiently
good ideas implemented in the Workbench has later been re-implemented by
Exformatics in their commercial offering [8–10, 28].

The Workbench made its first appearance in a research paper in 2014 [12],
and its first appearance in industry collaborations in 2015 [9]. Subsequently,
the Workbench has provided implementation and examples for most major
developments of the formalism [2, 6, 12–14, 16].

The DCR Workbench is implemented in F# [39], using the WebSharper
library [5] to derive server- and client-side components from the same F#
code base. The choice of implementation language and platform is no acci-
dent: On the one hand, F# is very well-suited to manipulating formal models;
on the other, the web-based platform makes the Workbench immediately
available to interested researchers: all it takes is a browser.

5.1.2 The DCR Workbench

The DCR Workbench is available at

http://dcr.tools/2017chapter

This URL leads to a special page supporting this chapter with the collection
of examples used on the following pages. We encourage the reader to visit
this page and actively try out the examples presented in the remainder of this
chapter as he progresses through the it.

Overview In Section 5.2, we introduce a running example, and in Sec-
tion 5.3, we recall DCR graphs. In Section 5.4 we introduce basic modelling,
simulation and analysis of DCR graphs in the Workbench. In Section 5.5
we construct models by refinement; in Section 5.6 we discuss timed models;
in Section 5.7 we talk about subprocesses; and in Section 5.8 data. In
Section 5.9, we mention briefly other tools in the Workbench, before
concluding in Section 5.10.



102 The DCR Workbench: Declarative Choreographies for Collaborative Processes

5.2 Running Example

As a running example we consider a stylised mortgage loan application pro-
cess distilled from real-life cases [9, 13]. Mortgage application processes are
in practice extremely varied, depending on the type of mortgage, the neigh-
bourhood, the applicant, and the credit institution in question. The purpose of
the process is to arrive at a point where the activity Assess loan application
can be carried out. This requires in turn:

1. collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

In practice, applicants’ budgets tend to be underspecified, so an intern will
screen the budget and request a new one if the submitted one happens to be
so. The case worker should not spend time assessing the application if the
documentation has not been collected or the budget is underspecified. The
caseworker decides if the appraisal can be entirely statistical, i.e., carried out
without physical inspection, or if it requires an on-site appraisal. For reasons
of cost efficiency, only one appraisal should be carried out.

5.3 Dynamic Condition-Response Graphs

In this section, we recall DCR graphs [6,9,14,15,18,29,37]. We begin by an
informal walkthrough, followed by a formal development in Section 5.3.4.

DCR graphs constitute a declarative modelling notation describing at the
same time a process and its run-time state. The core notation comprises
labelled events, event states, and five possible relations between events. The
relations govern: (a) how executability of one event depend on the state of
another, and (b) how execution of one event updates the states of another.

5.3.1 Event States

The event state consists of three booleans: The executed, included, and
pending states of the event.

• The executed state simply registers whether the event has been previ-
ously executed (an event may execute more than once). It is updated to
true whenever the event executes. It is never updated to false.

• The included state indicates whether the event is included, i.e. relevant
for the process. Being included is a prerequisite for an event to execute.



5.3 Dynamic Condition-Response Graphs 103

• The pending state indicates whether the event is required to eventually
execute (or become not included).

We give events and initial states for the running example in Figure 5.1.
Except Request new budget, which becomes relevant only when a budget
has been submitted, all events are included. The Assess loan application
and Submit budget events are pending: they are required to complete the
process.

5.3.2 Relations

Each pair of events may be related by one of five different relations. Relations
regulate (a) which events may execute in a given graph (condition, milestone)
and (b) the effect of executing an event (inclusion, exclusion, response).

We give a full DCR model of the running example1 in Figure 5.2.

Conditions. A condition e→• f causes the target activity f to be not executable
whenever the source activity e is included (its “included” state is true) and has
not been previously executed (its “executed” state is false). E.g., in Figure 5.2,
we must execute Collect documents before Assess loan application can be
executed.

Milestones. A milestone e→� f causes the target activity f to be not executable
whenever the source activity e is included and pending (its “included” and
“pending” states are true). In Figure 5.2, whenever Submit budget is pending,
Assess loan application is prevented from executing.

Event Role Initial state
Collect documents Caseworker
Budget screening approve Intern
Request new budget Intern Excluded
Submit budget Customer Pending
On-site appraisal Mobile consultant
Statistical appraisal Caseworker
Assess loan application Caseworker Pending

Figure 5.1 Events and initial states (marking) for the mortgage application process. Where
nothing else is indicated, the initial state of an event is not executed, included, and not pending.

1This graph is in fact the output of the DCR Workbench visualiser; we describe in
Section 5.4.2 exactly how the visualiser represents event state.



104 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Figure 5.2 DCR graph modelling the mortgage application process.

Responses. A response e •→ f causes the target activity f to be pending
(its “pending” state is true) whenever the source activity e is executed.
In Figure 5.2, when an applicant executes Submit budget, we require a
subsequent screening: there is a response from Submit budget to Budget
screening approve.

Inclusions and exclusions. An inclusion e →+ f resp. an exclusion e →% f
causes the “included” state of the target activity f to be true resp. false when
the source activity e is executed. In Figure 5.2, the activity Submit budget
includes the activity Request new budget.

5.3.3 Executing Events

Enabled events are the ones which have their “included” state true, and which
do not have their execution prohibited by a condition or milestone as indicated
above. Conditions or milestones from excluded events do not disable their tar-
get events. E.g., in Figure 5.2, both On-site appraisal and Statistical appraisal
are conditions for Assess loan application, but once one executes, the other is
excluded and thus no longer required for Assess loan application to execute.



5.3 Dynamic Condition-Response Graphs 105

Executing an enabled event in a DCR graph updates event states as
indicated by inclusion, exclusion, and response relations. Conceptually, we
can think of the execution as producing a new DCR graph with the same
relations but with updated event states.

The denotation of a DCR model is the set of (finite and infinite) sequences
of event labels, corresponding to a sequence of such event executions, where
at each step, every pending event is eventually executed or excluded at some
later step. We refer to such sequences as accepting traces. It follows that for
finite accepting traces, in the final state, no event is pending and included.

We consider potential traces for Figure 5.2.

• s0 = 〈Collect documents, Assess loan application〉. This sequence intu-
itively corresponds to assessing the loan application without getting a
budget and appraising the property. After Collect documents, the event
Assess loan application is not enabled, so s0 is not a trace.

• s1 = 〈Collect documents, Submit budget〉. This sequence is a trace, but
not an accepting one, since Assess loan application is pending and
included in the final state. It follows that s1 sequence is not part of the
denotation of Figure 5.2.

• s2 = 〈Collect documents, Submit budget, Budget screening approve,
Statistical appraisal, Assess loan application〉 is an accepting trace.

Notice that between the notions of enabledness and accepting trace, DCR
graphs express both permissions and obligations. We return to expressiveness
of DCR graphs in Section 5.7 below.

5.3.4 Formal Development

Definition 1 (DCR Graph [18]). A DCR graph, ranged over by G, is a tuple
(E,R,M, �) where

• E is a finite set of (labelled) events, the nodes of the graph.
• R is the edges of the graph. Edges are partitioned into five kinds, named

and drawn as follows: The conditions (→•), responses (•→), milestones
(→�), inclusions (→+), and exclusions (→%).

• M is the marking of the graph. This is a triple (Ex,Re, In) of sets of
events, respectively the previously executed (Ex), the currently pending
(Re), and the currently included (In) events.

• � is a labelling function assigning to each e ∈ E a label comprising an
activity name and a set of roles.



106 The DCR Workbench: Declarative Choreographies for Collaborative Processes

When G is a DCR graph, we write, e.g., E(G) for the set of events of G,
Ex(G) for the executed events in the marking of G, etc.

Notation. Let R⊆X ×Y be a relation. For y∈Y we take Ry= {x ∈X | (x,y)∈
R}; dually for x ∈ X we take xR = {y ∈ Y | (x,y) ∈ R}. We use this notation
for relations, e.g.,, (→• e) is the set of events that are conditions for e.

Definition 2 (Enabled events). Let G = (E,R,M, �) be a DCR graph, with
marking M= (Ex,Re, In). An event e ∈ E is enabled, written e ∈ enabled(G),
iff (a) e ∈ In, (b) In∩ (→•e)⊆ Ex, and (c) In∩ (→�e)⊆ E\Re.

That is, enabled events (a) are included, (b) have their included conditions
executed, and (c) have no included milestone with an unfulfilled responses.

Definition 3 (Execution). Let G = (E,R,M, �) be a DCR graph with marking
M = (Ex,Re, In). Suppose e ∈ enabled(G). We may execute e obtaining the
DCR graph G′ = (E,R,M′, �) with M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex∪ e
2. Re′ = (Re\ e)∪ (e•→)
3. In′ = (In\ (e→%))∪ (e→+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events; (2) update the currently required responses Re by first removing e,
then adding any responses required by e; and (3) remove from In those events
excluded by e, then adding those included by e.

Technically, the operational semantics of a DCR graph is the labelled
transition system where states are graphs and transitions are executions.

Definition 4 (Transitions). Let G be a DCR graph. If e ∈ enabled(G) and
executing e in G yields H , we say that G has transition on e to H and write
G −→e H . A run of G is a (finite or infinite) sequence of DCR graphs Gi and
events ei such that: G = G0 −→e0 G1 −→e1 . . .. A trace of G is a sequence of
labels of events ei associated with a run of G. We write runs(G) and traces(G)
for the set of runs and traces of G, respectively.

The denotation of a DCR graph is the set of accepting finite and infinite
traces allowed by its operational semantics.

Definition 5 (Acceptance). A run G0 −→e0 G1 −→e1 . . . is accepting iff for
all n with e ∈ In(Gn)∩Re(Gn) there exists m > n s.t. either em = e, or e �∈
In(Gm). A trace is accepting iff it has an underlying run which is.



5.4 Modelling with the Workbench 107

Acceptance tells us which workflows a DCR graph accepts, its language.

Definition 6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We conclude this Section by noting that by Definitions 2 and 3, because
the set of events is finite, both the set of enabled events and the result of
executing an event are computable in polynomial time.

5.4 Modelling with the Workbench

A typical configuration of the Workbench can be seen in Figure 5.3. The
Workbench is divided into panels. In the configuration in Figure 5.3, we see
the Visualiser, Parser and Activity Log panels.

The Workbench maintains at all times a current DCR graph and a current
trace. Each panel allow the user to interact with this current graph and current
trace. A few panels also maintain a DCR graph of their own.

Panels are dynamic: The user is free to remove panels by clicking “close”
in the lower-left corner of a panel; or to add panels by selecting a new panel
in the “Add a new panel” section of the Workbench panel. At the time of
writing, the Workbench implements 22 different panels.

When working with the Workbench, it is customary to have several panels
open; e.g., a visualiser and one or more analysis panels. The Workbench
panel contains a selection of seven pre-made such panel configurations called
“presets”. These presets are accessible through the left-hand “Load a preset”
section of the Workbench panel.

Finally, the Workbench can function as a process engine, making some
of its functionality available programmatically as a REST interface; see the
right-hand “REST API” section.

5.4.1 Inputting a Model: The Parser Panel

The parser panel allows input of DCR graphs as plain text. The parser accepts
programs written according to the grammar of Figure 5.4.

As an example program, consider the abridged variant of our running
example given in Figure 5.6; the corresponding input program is listed in
Figure 5.5. The Workbench accepts such source programs as input, pro-
ducing visualisations automatically. (Visualisations in this chapter was so
produced.)



108 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Figure 5.3 The DCR Workbench (http://dcr.tools).



5.4 Modelling with the Workbench 109

〈expressions〉 ::= 〈expressions〉 〈relation〉
| 〈expressions〉 〈relation〉 WHEN 〈condition〉
| 〈expressions〉 〈event〉
| 〈expressions〉 GROUP { 〈expressions〉 }
| 〈empty〉

〈relation〉 ::= 〈event〉 〈arrow〉 〈event〉
| 〈event〉 〈arrow〉 〈relation〉

〈arrow〉 ::= -->* | --<> | -->+ | -->% | *-->
| -[ 〈num〉 ]->* (Timed condition)
| *-[ 〈num〉 ]-> (Timed response)

〈event〉 ::= % 〈event〉
| / 〈event〉
| ! [〈num〉] 〈event〉
| : [〈num〉] 〈event〉
| ( 〈event〉+ )

| 〈identifier〉 [〈meta〉] [〈sub〉]

〈meta〉 ::= [ [〈identifier〉] [ 〈string〉 = 〈string〉 ]* ]

〈sub〉 ::= [ ? ] { 〈expressions〉 }

〈condition〉 ::= (* ... *)

Figure 5.4 EBNF definition of the language recognised by the Parser panel.

( "Collect documents" [ role = Caseworker ] 3

"Submit budget" [ role = Customer ] ) 4

-->* 5

!"Assess loan application" [ role = Caseworker ] 6

Figure 5.5 Source code for the core process.

The concrete syntax specifies events and relations such as “condition from
A to B” with expressions such as “A -->* B”. An event state is specified by
prefixing an event with modifiers such as ! or %. We see this on line 6 in
Figure 5.5. If the event occurs more than once in the program, it is sufficient
to prefix the modifier only once. We specify roles by adding a role tag to the
event. We see this on line 3 in Figure 5.5. More than one role may be added;
in general, the same tag may be added multiple times.

It is occasionally convenient to relate more than one event at the same
time. In the present case, Assess loan application needs conditions on both



110 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Figure 5.6 Visualisation of core process of Figure 5.5.

Collect documents and Submit budget. We specify these conditions concisely
by enclosing the latter two in parenthesis, as seen on line 3–4.

As the user types in the parser, a preview of the graph being input is
presented on the right. The input graph substitutes the current graph and resets
the current trace when the user clicks “Load”.

The parser also understands the XML format output by Exformatics A/S
commercial http://dcrgraphs.net tool [15, 38].

5.4.2 Visualisation and Simulation: The Visualiser
and Activity Log Panels

The Visualiser, top-most in Figure 5.3, displays a visualisation of the current
DCR graph. In Figure 5.3, the chosen visualisation is simply the graph layout;
alternatively, the underlying transition system may be shown (see below).

The visualisation of the core application process (Figure 5.5) is repro-
duced in Figure 5.6. The visualiser represent events as boxes, labelled by the
activity of the event (centre) and the role or participant executing that activity
(top). E.g., the top-left box represents an activity Collect documents which is
carried out by a Caseworker.

Activities are coloured according to their state: grey background is not
currently executable (Assess loan application in Figure 5.6), red label! with
an exclamation mark is pending (ditto); “greyed out” boxes are excluded
events (Request new budget in the original Figure 5.2); and finally, executed
events have a tick mark after their action label, (Submit budget in Figure 5.3).



5.5 Refinement 111

Simulation The visualiser allows executing events by clicking. E.g., to
execute Submit budget, simply click it. This will extend the current trace
with that execution, and replace the current graph with the one obtained by
applying the updates to event state resulting from the execution of
Submit budget (in this case, setting “executed” of that event true). Use the
browser’s back buttons to revert to a previous state.

The Activity Log panel, third from the top in Figure 5.3, displays the
current trace, analogous to the way the visualiser displays the current graph.

State-space enumeration As mentioned in Definition 4, a DCR graph
gives rise to a labelled transition system (LTS), where states are markings and
transitions are labelled event executions. The visualiser can be configured to
render a visualisation of the state space of the DCR graph rather than the
DCR graph itself, through the drop-down button on the left of the panel. The
visualiser highlights the current run in that LTS. The visualisation of the full
LTS of the full mortgage application process of Figure 5.2.

The visualiser was originally reported in [12], with the transition system
generator following in [9].

5.5 Refinement

We proceed to construct step-wise the full mortgage process application by
refinement [6,14]. We begin with the core process of Figures 5.5 and 5.6. We
first add the process fragments for budget submission and screening given in
Figures 5.8 and 5.9.

The Workbench supports step-wise refinement: by using in the parser
the “Merge” button rather than the “Load” button. Whereas “Load” replaces
the current graph and sets the current trace to empty, the “Merge” button
preserves both, replacing the global current graph with (graph) union G⊕H
of the current graph G and the parser’s current local graph H .

To refine the core process by the budget fragment, we make sure that
the core process is the current graph, then enter the fragment (Figure 5.9)
in the parser, and click “Merge”. The result is the graph in Figure 5.10. As
can be seen, the resulting process is close to the full running example in
Figure 5.2, except the process fragment for appraising the property is missing.



112 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Assess loan application +!
Budget screening approve +  

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!

Assess loan application +!
Budget screening approve +  

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!
Collect documents

Assess loan application +!
Budget screening approve +  

Collect documents +  
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget +!

On-site appraisal

Assess loan application +!
Budget screening approve +  

Collect documents +  
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!

Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Collect documents

Assess loan application +!
Budget screening approve +  

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget +!

On-site appraisal

Assess loan application +!
Budget screening approve +  

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!

Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

On-site appraisal

Collect documents

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Statistical appraisal

Collect documents

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Submit budget

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget +!.

Request new budget

Collect documents,On-site appraisal

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Collect documents,Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Collect documents,Submit budget

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget +!.

Request new budget

On-site appraisal,Submit budget

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget +!.

Request new budget

Statistical appraisal,Submit budget

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget +!.

Request new budget

Budget screening approve

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Request new budget

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Collect documents,On-site appraisal,Submit budget

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget +!.

Request new budget

Collect documents,Statistical appraisal,Submit budget

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget +!.

Request new budget

Budget screening approve,Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Collect documents,Request new budget

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Budget screening approve,On-site appraisal

Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

On-site appraisal,Request new budget

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Budget screening approve,Statistical appraisal

Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Request new budget,Statistical appraisal

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Budget screening approve

Submit budget

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget +!.

Request new budget

Budget screening approve

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .
Submit budget

Request new budget

Submit budget

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Budget screening approve,Collect documents,On-site appraisal

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .

Assess loan application

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .Submit budget

Collect documents,On-site appraisal,Request new budget

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Budget screening approve,Collect documents,Statistical appraisal

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Assess loan application

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Collect documents,Request new budget,Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!.

Budget screening approve

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Budget screening approve

Collect documents,Submit budget

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget +!.

Request new budget

Budget screening approve,Collect documents

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Request new budget

Collect documents,Submit budget

On-site appraisal

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Budget screening approve

On-site appraisal,Submit budget

Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget +!.

Request new budget

Budget screening approve,On-site appraisal

Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Request new budget

On-site appraisal,Submit budget

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .
Budget screening approve

Budget screening approve

Statistical appraisal,Submit budget Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget +!.

Request new budget

Budget screening approve,Statistical appraisal

Collect documents

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Request new budget

Statistical appraisal,Submit budget

Collect documents

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Budget screening approve

Budget screening approve

Request new budget

Submit budget

Collect documents

On-site appraisal

Statistical appraisal

Request new budget

Submit budget

Budget screening approve

Collect documents

On-site appraisal

Statistical appraisal

Submit budget

Budget screening approve

Collect documents

On-site appraisal

Statistical appraisal

Assess loan application,Budget screening approve,Collect documents,On-site appraisal

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Submit budget

Budget screening approve

Collect documents,On-site appraisal,Submit budget

Assess loan application

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget +!.

Request new budget

Budget screening approve,Collect documents,On-site appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .
Submit budget

Request new budget

Collect documents,On-site appraisal,Submit budget

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .

Budget screening approve

Assess loan application,Budget screening approve,Collect documents,Statistical appraisal

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Budget screening approve

Collect documents,Statistical appraisal,Submit budget

Assess loan application

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget +!.

Request new budget

Budget screening approve,Collect documents,Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Request new budget

Collect documents,Statistical appraisal,Submit budget

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Budget screening approve

Budget screening approve

Collect documents,Request new budget

Submit budget

On-site appraisal

Statistical appraisal

Request new budget

Collect documents,Submit budget

Budget screening approve

On-site appraisal

Statistical appraisal

Submit budget

Budget screening approve,Collect documents

On-site appraisal

Statistical appraisal

Budget screening approve

On-site appraisal,Request new budget

Submit budget

Collect documents

Request new budget
On-site appraisal,Submit budget

Budget screening approve

Collect documents

Submit budget

Budget screening approve,On-site appraisal

Collect documents

Budget screening approve

Request new budget,Statistical appraisal

Submit budget

Collect documents

Request new budget

Statistical appraisal,Submit budget

Budget screening approve

Collect documents

Submit budget

Budget screening approve,Statistical appraisal

Collect documents

Budget screening approve

Assess loan application,Collect documents,On-site appraisal,Submit budget

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget +!.

Request new budget

Budget screening approve

Collect documents,On-site appraisal,Request new budget

Submit budget

Request new budget
Collect documents,On-site appraisal,Submit budget

Budget screening approve

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal + .

Request new budget +  
Statistical appraisal %  

Submit budget + .

Assess loan application

Submit budget

Budget screening approve,Collect documents,On-site appraisal

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget + .

Assess loan application

Budget screening approve

Assess loan application,Collect documents,Statistical appraisal,Submit budget

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget +!.

Request new budget

Budget screening approve
Collect documents,Request new budget,Statistical appraisal

Submit budget

Request new budget

Collect documents,Statistical appraisal,Submit budget

Budget screening approve

Assess loan application +  
Budget screening approve +!.

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Assess loan application

Submit budget

Budget screening approve,Collect documents,Statistical appraisal

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget + .

Assess loan application

Collect documents,On-site appraisal,Request new budget

Submit budget

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal + .

Request new budget %  
Statistical appraisal %  

Submit budget +!.

Budget screening approve

Request new budget Assess loan application,Collect documents,On-site appraisal,Submit budget

Budget screening approve

Submit budget

Assess loan application,Budget screening approve,Collect documents,On-site appraisal

Collect documents,Request new budget,Statistical appraisal

Submit budget

Assess loan application +  
Budget screening approve + .

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!.

Budget screening approve

Request new budget

Assess loan application,Collect documents,Statistical appraisal,Submit budget

Budget screening approve

Submit budget

Assess loan application,Budget screening approve,Collect documents,Statistical appraisal

Submit budget

Budget screening approve,Collect documents,On-site appraisal

Submit budget

Budget screening approve,Collect documents,Statistical appraisal

Assess loan application +!
Budget screening approve +  

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!

Assess loan application +!
Budget screening approve +  

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget +!
Collect documents

On-site appraisal

Assess loan application +!
Budget screening approve +  

Collect documents +  
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!

Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Collect documents

Assess loan application +!
Budget screening approve +  

Collect documents + .
On-site appraisal %  

Request new budget %  
Statistical appraisal + .

Submit budget +!

Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Statistical appraisal

Collect documents

Assess loan application +!
Budget screening approve +!

Collect documents +  
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Submit budget

Collect documents

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents +  
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Request new budget

Collect documents,Statistical appraisal

Assess loan application +!
Budget screening approve +!

Collect documents + .
On-site appraisal %  

Request new budget +  
Statistical appraisal + .

Submit budget + .

Submit budget

Collect documents,Submit budget

Statistical appraisal

Assess loan application +!
Budget screening approve + .

Collect documents + .
On-site appraisal +  

Request new budget %  
Statistical appraisal +  

Submit budget + .

Budget screening approve

Statistical appraisal,Submit budget

Collect documents

Budget screening approve

Collect documents

Statistical appraisal

Assess loan application +!
Budget screening approve +!.

Collect documents +  
On-site appraisal +  

Request new budget +  
Statistical appraisal +  

Submit budget + .

Submit budget

Collect documents,Statistical appraisal,Submit budg

Budget screening approve

Submit budget

Figure 5.7 Transition system of the full mortgage application process (top), with the red box
expanded for readability (bottom).

Repeating the Merge procedure with the process fragment in Figure 5.11
adds the missing bits and leaves us with exactly Figure 5.2—this is how the
examples for the present chapter has been constructed.



5.5 Refinement 113

!"Submit budget" 3

-->* "Budget screening approve" [ role = Intern ] 4

-->* "Assess loan application" [ role = Caseworker ] 5

6

"Submit budget" 7

--<> "Assess loan application" 8

9

"Submit budget" 10

-->+ %"Request new budget" [ role = "Intern" ] 11

*--> "Submit budget" [ role = "Customer" ] 12

*--> "Budget screening approve" 13

-->% "Request new budget" 14

Figure 5.8 Budget process fragment.

Figure 5.9 Visualisation of the budget process fragment of Figure 5.8.

Not every such merge preserves the language of the original graph. Exclu-
sions may void conditions, giving the merged graph behaviour not present in
the original graph, even when restricting attention to only the events of that
graph. As a very simple example, consider the two graphs G = a →• b and
H = c →% a. The union G⊕H = a →• b,c →% a has the trace 〈c, b〉; even
if we dismiss the new event c, G could not by itself exhibit the trace 〈b〉.



114 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Figure 5.10 Visualisation of the core process (Figures 5.5 and 5.6) refined by the budget
fragment (Figures 5.8 and 5.9).

Group "Appraisal" { 3

"On-site appraisal" [ role = "Mobile consultant" ] 4

"Statistical appraisal" [ role = "Caseworker" ] 5

} 6

7

"Statistical appraisal" -->% "On-site appraisal" 8

"On-site appraisal" -->% "Statistical appraisal" 9

10

"Appraisal" 11

-->* "Assess loan application" [ role = "Caseworker" ] 12

Figure 5.11 Appraisal process fragment.

This situation was investigated in detail in previous work [6,14], where a
sufficient condition for a refinement to be language preserving in the above
sense was established in a much richer setting. For the present notion of DCR



5.6 Time 115

graphs, it is sufficient to require that the refining graph does not exclude or
include any events of the original graph.

Notation. Given a sequence s and an alphabet Σ, write s�Σ for the largest
sub-sequence s′ of s s.t. s′i ∈ Σ; e.g, if s = AABC then s�A,C= AAC.

Definition 7. Given DCR graphs G and H , we say that H is a refinement of
G iff lang(H)�l(E(G))⊆ lang(G).

That is, the language of H restricted to the labels used by events in G
must be a subset of the language of G. We can now state the following
Proposition [6, Theorem 43]:

Proposition 1. Let G and G′ be DCR processes such that for every e ∈ E(G),
there is no relation x →% e or x →+ e in G′. Then the graph union G⊕G′ is
a refinement of G.

If the Workbench has current graph G and the parser has graph G′ not sat-
isfying (a published [6,14] generalisation of) the conditions of Proposition 1,
the Parser issues a warning and requires confirmation before merging.

DCR refinement was originally suggested in [17, 24] and worked out com-
prehensively in [6, 14]. The Workbench implements this latter mechanism.

5.6 Time

The Workbench supports the extension of DCR graphs with time [2, 23].
Time is modelled discretely by a special action tick modelling the passage of

time; conditions are augmented with an optional delay, e
k−→• f, and responses

with an optional deadline e • k−→ f. Intuitively, the delay in the timed condition
requires that at least k ticks have passed after the last execution of e before f
may execute; dually, the deadline in the timed response requires that at most
k ticks pass after the last execution of e before f must execute.

The former requirement makes it possible to have timelocks, i.e., situ-
ations where, say, f must execute, but is not allowed to. As a very simple

example, consider the DCR graph G = e
3−→• f,e • 2−→ f. In this graph, once

e executes, at least 3 ticks must pass before f can execute because of
the condition delay, but at most 2 ticks may pass before f must execute
because of the response deadline. After the sequence 〈e, tick, tick〉, the graph
is said to be time-locked: Time cannot advance without a constraint being
violated.



116 The DCR Workbench: Declarative Choreographies for Collaborative Processes

For our running example, suppose that (a) the initial screening of the
customer’s budget must be completed within 5 days, and (b) that the final
assessment of the loan application must wait a 3-day “grace period” after
a statistical appraisal (in order to prevent caseworkers from doing overly
optimistic statistical appraisals). We model these constraints as a timed DCR
graph directly using a timed response and condition in Figures 5.12 and 5.13.

Timed DCR graphs are still in finite state [23], but deciding time-
lock freedom naively by exploring in the state space is infeasible. Recent
research [2] established a sufficient condition for a graph to be time-lock–
free and gave a generic “enforcement mechanism” for time-lock–free graphs,
that is, a device which monitors the progression of time and a DCR graph and
proactively causes events to execute to avoid missing deadlines.

The Workbench implements time as defined in [23], and time-lock–analysis
and enforcement as defined in [2].

"Submit budget" [ role = "Customer" ] 3

*-[5]-> "Budget screening approve" [ role = "Intern" ] 4

5

"Statistical appraisal" [ role = "Caseworker" ] 6

-[3]->* "Assess loan application" [ role = "Caseworker" ] 7

Figure 5.12 Additional timing constraints for the mortgage application process in Figure 5.2.

Figure 5.13 Visualisation of additional timing constraints for the mortgage application
process in Figure 5.2.



5.7 Subprocesses 117

5.7 Subprocesses

It may happen that a customer during the application process applies for
pre-approval of an expected increase in property value due to, e.g., on-
going kitchen remodellings. In this case, the caseworker must assess the
limit extension before deciding on the mortgage application itself. At the
caseworker’s discretion, an intern may or may not collect bank statements
from the customer for the limit extension assessment; however, collecting
that statement requires the customer’s explicit consent.

Such limit extensions in practice may happen several times during a
mortgage application due to, e.g., expanded scope of a kitchen remodelling
project. Thus, the limit extension fragment is a subprocess: A process that
may be added to the main process when necessary, and possibly repeatedly.

Note that since subprocesses may be added repeatedly, each such addition
must duplicate the events of the subprocess. This situation is akin to bound
names under replication being duplicated in in the π-calculus [35]. The
subprocess may contain both events local to the subprocess, bound events,
and references to events of the containing graph. The former are indicated
syntactically with a / prefix as seen in lines 6–8.

The Workbench supports subprocesses; we add the above limit extension
process in Figures 5.14 and 5.15. Note that in visualisation, the subprocess is
not visible until it has been expanded once.

The visualisation shows the triggering event Apply for limit extension—
singled out as spawning a subprocess by the � following contemporary busi-
ness process notations, e.g., BPMN [32]. The bound events in a subprocess
are shown with round corners and inside a dashed box2.

"Assess loan application" 3

4

"Apply for limit extension" [ role = Customer ] 5

{ /"Assess limit extension" [ role = Caseworker ] 6

/"Collect consent" [ role = Intern ] 7

-->* /"Collect bank statement" [ role = Intern ] 8

"Submit budget" [ role = Customer ] 9

--<> !"Assess limit extension" [ role = Caseworker ] 10

-->* "Assess loan application" [ role = Caseworker ] 11

} 12

*--> "Submit budget" 13

Figure 5.14 Additional subprocess constraints (credit limit extension) for the full mortgage
application process of Figure 5.2.

2If a subprocess adds new global events—as opposed to bound ones—these would appear
with square corners inside the box.



118 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Figure 5.15 Visualisation of additional subprocess constraints (credit limit exten-
sion) for the full mortgage application process of Figure 5.2; after one execution of
Apply for limit extension.

Subprocess semantics is based on graph union; if G = . . . ,e{H} contains
a subprocess-spawning event e, then executing e will form the graph G⊕H ,
then apply the effects of e. Note the importance of bound names here:
If events in H were not bound, then repeated instantiation of the subpro-
cess would not change the graph, i.e., G⊕H ⊕H = G⊕H . This equation
emphatically does not hold under the current semantics, where events in
H may be bound, and thus replicated. In the running example, executing
Apply for limit extension twice would result in all rounded-box event to be
replicated twice—we invite the reader to try this out in the Workbench.

Adding subprocesses and bound events significantly increase the expres-
sive power of DCR graphs [6, Theorem 9]:

Theorem 1. DCR graphs express the union of regular and ω-regular
languages. Graphs with subprocesses and bound events are Turing complete.



5.8 Data 119

In particular, while event-reachability and refinement is decidable for
plain and timed DCR graphs, they are undecidable for DCR graphs with
subprocesses and bound events.

DCR graphs was extended with a notion of subprocesses and bound events
in [12], followed by an investigation of expressive power in [6, 14]. The
Workbench implements subprocesses in the sense of [12].

5.8 Data

The Workbench augments DCR graphs with a notion of “input events”
and relations conditional on data. Suppose for our running example that
if the amount applied for in a credit limit extension exceeds EUR 10.000,
then having a bank statement becomes a condition for evaluating the loan
application.

Technically, this is accomplished by: (a) adding the option of inputting
a value when a subprocess is spawned; and (b) adding data-guards on select
relations. When the subprocess is instantiated, condition on the input value
dictates whether, e.g., the relation e →• f takes effect or not.

We extend the running example with such a conditional condition in
Figure 5.16. Note that since the “variable” associated with an event is simply
the name of the event, it becomes convenient to specify separately the name
and label of the event. This is done in line 3, where it is specified that the
event limit has label Apply for a limit extension and role Customer. (Without
an explicit specification, the Workbench identifies event and label.)

The visualiser does not show data-guarded relations, and the formal
semantics of DCR graphs with data have yet to be published.

limit["Apply for limit extension" role = Customer ] ? 3

{ /"Assess limit extension" 4

/"Collect consent" -->* /"Collect bank statement" 5

"Submit budget" 6

--<> !"Assess limit extension" 7

-->* "Assess loan application" 8

"Collect bank statement" 9

-->* "Assess loan application" 10

when "$limit > 10000" 11

} 12

*--> "Submit budget" 13

Figure 5.16 Alternative subprocess-with-data constraints (credit limit extension) for the full
mortgage application process of Figure 5.2.



120 The DCR Workbench: Declarative Choreographies for Collaborative Processes

An interesting application of data is that of specifying user-input “forms”
(think Web forms) via DCR graph, associating with each event in a graph an
input field in such a form. This idea was implemented in the Actions panel
and later realised [27] in collaboration with Exformatics A/S.

5.9 Other Panels

We mention here briefly a few panels of the Workbench not discussed so far.

1. An encoding from DCR to the GSM model [26] was defined in recent
research [16]; the Workbench implements this encoding an outputs
CMMN [4] XML.

2. Notions of concurrency and independence of DCR events, following
the standard notion of labelled asynchronous transition systems [3, 36],
was recently investigated [13]. The Workbench’ Concurrency panel
implements these notions, automatically identifying concurrent events.

3. Work on applications of DCR in practical settings suggested a need
for simplifying process models when presented to end users [9]. The
Workbench contains a number of such simplifying views, most notably
a “swimlane” view of the current trace in the panel of the same name,
and a mechanism for projecting a graph in various ways to sub-graphs
of interest.

5.10 Conclusion

We have given an introduction to DCR graphs, and an overview of the DCR
Workbench. Since the Workbench implements most major variations of DCR
graphs, this Chapter has also served as a survey of the state-of-the-art of DCR
graphs as modelling and analysis tool for continuously changing distributed
collaborative processes.

The Workbench has been instrumental for scientific research, providing
a test-bed for quick experiments with new ideas; for teaching, providing
students the opportunities for hands-on learning of abstract concepts; and
for collaborations with industry and knowledge transfer to industry. In all
these instances, providing a practical platform on which to demonstrate
sometimes difficult-to-communicate abstract concepts helps to cement the
reality and applicability of DCR as a modelling methodology. In particular,
the Workbench has paved the way for academic results [9, 12, 18, 21, 27] to
find their way to implementation in commercial tools [8, 28].



References 121

We invite the reader to use the Workbench for research and teaching. It is
available at http://dcr.tools.

References

[1] Wil M. P. van der Aalst. Verification of Workflow Nets. In Proc. of the
18th Int. Conf. on Application and Theory of Petri Nets, ICATPN, pages
407–426, 1997.

[2] David A. Basin, Søren Debois, and Thomas T. Hildebrandt. In the nick
of time: Proactive prevention of obligation violations. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016, pages 120–134.
IEEE Computer Society, 2016.

[3] Marek Bednarczyk. Categories of asynchronous systems. PhD thesis,
U. Sussex, 1988.

[4] BizAgi and others. Case Management Model and Notation (CMMN),
v1, May 2014. OMG Document Number formal/2014-05-05, Object
Management Group.

[5] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing
Reactive GUIs in F# Using WebSharper, pages 203–216. Springer,
2011.

[6] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Replication, refine-
ment & reachability: Complexity in Dynamic Condition-Response
graphs. Acta Informatica, 2017. Accepted for publication.

[7] Søren Debois, Thomas T. Hildebrandt, Paw Høsgaard Larsen, and Ken-
neth Ry Ulrik. Declarative process mining for DCR graphs. In SAC ’17,
2017. Accepted for publication.

[8] Søren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. Bridging the valley of death: A success story on danish funding
schemes paving a path from technology readiness level 1 to 9. In
SER&IP 2015, pages 54–57. IEEE, 2015.

[9] Søren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. Hybrid process technologies in the financial sector. In BPM
2015, Industry track, volume 1439 of CEUR Workshop Proceedings,
pages 107–119. CEUR-WS.org, 2015.

[10] Søren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. The DCR graphs process portal. In BPM 2016, volume 1789
of CEUR Workshop Proceedings, pages 7–11. CEUR-WS.org, 2016.



122 The DCR Workbench: Declarative Choreographies for Collaborative Processes

[11] Søren Debois, Thomas T. Hildebrandt, and Lene Sandberg. Experience
report: Constraint-based modelling and simulation of railway emer-
gency response plans. In ANT 2016 / SEIT-2016, volume 83 of Procedia
Computer Science, pages 1295–1300. Elsevier, 2016.

[12] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Hierarchical
declarative modelling with refinement and sub-processes. In BPM 2014,
volume 8659 of LNCS, pages 18–33. Springer, 2014.

[13] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Concurrency
and asynchrony in declarative workflows. In BPM 2015, volume 9253
of LNCS, pages 72–89. Springer, 2015.

[14] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Safety, liveness
and run-time refinement for modular process-aware information systems
with dynamic sub processes. In FM 2015, pages 143–160, 2015.

[15] Søren Debois, Thomas T. Hildebrandt, Tijs Slaats, and Morten Mar-
quard. A case for declarative process modelling: Agile development
of a grant application system. In EDOC Workshops ’14, pages 126–133.
IEEE Computer Society, 2014.

[16] Rik Eshuis, Søren Debois, Tijs Slaats, and Thomas T. Hildebrandt.
Deriving consistent GSM schemas from DCR graphs. In ICSOC 2016,
volume 9936 of Lecture Notes in Computer Science, pages 467–482.
Springer, 2016.

[17] Thomas T. Hildebrandt, Morten Marquard, Raghava Rao Mukkamala,
and Tijs Slaats. Dynamic condition response graphs for trustworthy
adaptive case management. In OTM 2013 Workshops, volume 8186 of
LNCS, pages 166–171. Springer, 2013.

[18] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative
Event-Based Workflow as Distributed Dynamic Condition Response
Graphs. In PLACES 2010, volume 69 of EPTCS, pages 59–73, 2010.

[19] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Declarative modelling and safe distribution of healthcare workflows. In
FHIES 2011, volume 7151 of LNCS, pages 39–56. Springer, 2011.

[20] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Designing a cross-organizational case management system using
dynamic condition response graphs. In EDOC 2011, pages 161–170.
IEEE Computer Society, 2011.

[21] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Nested dynamic condition response graphs. In FSEN 2011, Revised
Selected Papers, volume 7141 of Lecture Notes in Computer Science,
pages 343–350. Springer, 2011.



References 123

[22] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Safe
distribution of declarative processes. In SEFM 2011, volume 7041 of
LNCS, pages 237–252. Springer, 2011.

[23] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and
Francesco Zanitti. Contracts for cross-organizational workflows as
timed dynamic condition response graphs. J. Log. Algebr. Program.,
82(5–7):164–185, 2013.

[24] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and
Francesco Zanitti. Modular context-sensitive and aspect-oriented pro-
cesses with dynamic condition response graphs. In FOAL 2013, pages
19–24. ACM, 2013.

[25] Thomas T. Hildebrandt and Francesco Zanitti. A process-oriented event-
based programming language. In DEBS 2012, pages 377–378. ACM,
2012.

[26] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. Heath III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculı́n.
Introducing the guard-stage-milestone approach for specifying business
entity lifecycles. In WS-FM 2010, LNCS. Springer, 2010.

[27] Morten Marquard, Søren Debois, Tijs Slaats, and Thomas T. Hilde-
brandt. Forms are declarative processes! In BPM 2016 Industry Track
(to appear), 2016.

[28] Morten Marquard, Muhammad Shahzad, and Tijs Slaats. Web-based
modelling and collaborative simulation of declarative processes. In
BPM 2015, volume 9253 of LNCS, pages 209–225. Springer, 2015.

[29] Raghava Rao Mukkamala. A Formal Model For Declarative Workflows:
Dynamic Condition Response Graphs. PhD thesis, IT University of
Copenhagen, 2012.

[30] Raghava Rao Mukkamala and Thomas T. Hildebrandt. From dynamic
condition response structures to büchi automata. In TASE 2010, pages
187–190. IEEE, 2010.

[31] Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Tijs Slaats.
Towards trustworthy adaptive case management with dynamic condition
response graphs. In EDOC 2013, pages 127–136. IEEE Computer
Society, 2013.

[32] Object Management Group BPMN Technical Committee. Business Pro-
cess Model and Notation, version 2.0, 2013. http://www.omg.org/
spec/BPMN/2.0.2/PDF



124 The DCR Workbench: Declarative Choreographies for Collaborative Processes

[33] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst.
DECLARE: full support for loosely-structured processes. In EDOC
2007, pages 287–300, 2007.

[34] Søren Debois and Tijs Slaats. The analysis of a real life declarative
process. In CIDM 2015. IEEE, 2015. Accepted for publication.

[35] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of
Mobile Processes. Cambridge university press, 2003.

[36] M. W. Shields. Concurrent machines. Computer Journal, 28(5):449–
465, 1985.

[37] Tijs Slaats. Flexible Process Notations for Cross-organizational Case
Management Systems. PhD thesis, IT University of Copenhagen,
January 2015.

[38] Tijs Slaats, Raghava Rao Mukkamala, Thomas T. Hildebrandt, and
Morten Marquard. Exformatics declarative case management workflows
as DCR graphs. In BPM ’13, volume 8094 of LNCS, pages 339–354.
Springer, 2013.

[39] Don Syme, Jack Hu, Luke Hoban, Tao Liu, Dmitry Lomov, James
Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel Quirk,
et al. The F# 4.0 language specification. Technical report, 2005.

[40] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a truly
declarative service flow language. In WS-FM 2006, volume 4184 of
LNCS, pages 1–23. Springer, 2006.



6
A Tool for Choreography-Based Analysis

of Message-Passing Software

Julien Lange1, Emilio Tuosto2 and Nobuko Yoshida1

1Imperial College London, UK
2University of Leicester, UK

Abstract

An appealing characteristic of choreographies is that they provide two com-
plementary views of communicating software: the global and the local views.
Communicating finite-state machines (CFSMs) have been proposed as an
expressive formalism to specify local views. Global views have been rep-
resented with global graphs, that is graphical choreographies (akin to BPMN
and UML) suitable to represent general multiparty session specifications.
Global graphs feature expressive constructs such as forking, merging, and
joining for representing application-level protocols.

An algorithm for the reconstruction of global graphs from CFSMs has
been introduced in [17]; the algorithm ensures that the reconstructed global
graph faithfully represents the original CFSMs provided that they satisfy a
suitable condition, called generalised multiparty compatibility (GMC). The
CFSMs enjoying GMC are guaranteed to interact without deadlocks and
other communication errors. After reviewing the basic concepts underlying
global graphs, communicating machines and safe communications, we high-
light the main features of ChorGram, a tool implementing the generalised
multiparty compatibility and reconstruction of global graphs of [17]. We
overview the architecture of ChorGram and present a comprehensive exam-
ple to illustrate how it is used directly to analyse message-passing software
and programs.

125



126 A Tool for Choreography-Based Analysis of Message-Passing Software

6.1 Introduction

Choreographic approaches are becoming popular in the “top-down” develop-
ment of distributed software. In fact, a choreography-based model features
two views of software: the global view and the local view. The former
is a “holistic” specification of the behaviour of the composition of all
components (and it abstracts away low level details such as asynchrony).
The latter view specifies the behaviour of each component in isolation and
should be obtained by projecting the global behaviour with respect to each
component. In this framework, well-formedness of the global view and
compliance of the realisation of software with respect to the corresponding
projection should guarantee the soundness of the communication of the
application.

The recent rise of services, cloud, and micro-services is changing the way
software is produced. As a matter of fact, applications are being developed by
composing (possibly distributed) independent components which coordinate
their execution by exchanging messages. Modern applications offer and
rely on public APIs to interact with each other, are deployed on different
architectures and devices, and try to accommodate the needs of a vast number
of users. The term “API economy” (see e.g., ibm.com/apieconomy) has
been coined to refer to such applications. Existing and novel languages, as
well as middlewares and programming models, foster this shift in software
development. Languages such as Erlang, Elixir, Scala, and Go are paramount
examples of this shift and start to be used in a wider range of application
domains than the ones they were originally conceived for. For instance,
Erlang plays a main role in well-known applications such as WhatsApp [24]
and Facebook [21].

The trend described above is dictated by the compelling requirements
of openness, scalability, and heterogeneity and caters to new challenges.
Firstly, this shift pushes the applicability of top-down software development
approaches to their limits. The composition mechanisms required to guaran-
tee the interoperability of applications have to be of an order of magnitude
more sophisticated than just the type signature of their APIs, as in traditional
software engineering practice. More precisely, in order to attain a correct
composition, it is crucial to expose (part of) the communication pattern
of components. Hence, developers are responsible to guarantee the correct
composition of their components. This is not an easy task. Subtle and hard to
fix bugs can be introduced by inappropriate communications.



6.2 Overview of the Theory 127

Our recent work [17] has shown that communication soundness is guar-
anteed when a set of communicating components enjoys the generalised
multiparty compatibility property. Moreover, we have defined an algorithm
that reconstructs a global view of a system from the composition of its
local components. These results enable the realisation of an effective tool-
supported approach to the design and analysis of communicating software.
In fact, we have developed ChorGram [16], a tool supporting the theory
of multiparty compatibility and choreography construction, i.e., ChorGram
implements two fundamentals functionalities: it ensures that a system of
CFSMs validates the GMC condition and if so, it returns a choreography
which faithfully captures the interactions of the original system.

In this chapter, we introduce ChorGram and show how it supports soft-
ware architects in the design and analysis of software. We first review the
theoretical results underlying the tool; Section 6.2 presents our theory only
informally and with the help of a simple example. Section 6.3 presents the
architecture of the tool, how it integrates with the auxiliary tools it relies
upon, and its data flow. Section 6.4 shows an application to a non trivial
example. We start from a multiparty compatible application and show how
a naive evolution could break its multiparty compatibility. We then use
ChorGram to analyse and fix the problem. Section 6.5 gives our concluding
remarks.

6.2 Overview of the Theory

Here we introduce the key ingredients of our framework which constructs
choreographies, i.e., global graphs such as the one in Figure 6.2, from local
specifications, i.e., communicating finite-state machines, such as the ones in
Figure 6.1.

CFSMs In this framework, we use communicating finite-state machines [7]
as behavioural specifications of distributed components (i.e., end-point speci-
fications) from which a choreography can be built. CFSMs are a conceptually
simple model and are well-established for analysing properties of distributed
systems. A system of CFSMs consists of a finite number of automata which
communicate with each other through unbounded FIFO channels. There are
two channels for each pair of CFSMs in the system, one in each direc-
tion. We present the semantics of CFSMs informally through the example
below.



128 A Tool for Choreography-Based Analysis of Message-Passing Software

Figure 6.1 Four player game – CFSMs.

Consider the system of four machines in Figure 6.1, whose initial states
are highlighted in blue. Each machine has three input buffers to receive
messages from the other three participants and has access to three output
buffers to send messages to other participants. Each transition in a machine
is either a send action, e.g., A ¨B!bWin in machine A or a receive action, e.g.,
A ¨B?bWin in machine B. The system realises a protocol of a fictive game
where: Alice (A) sends either bWin to Bob (B) or cWin to Carol (C) to decide
who wins the game. In the former case, A fires the transition A ¨B!bWin
whereby the message bWin is put in the FIFO buffer AB from A to B, and
likewise in the latter case. If B wins (that is the message bWin is on top of
the queue AB and B consumes it by taking the transition A ¨B?bWin), then he



6.2 Overview of the Theory 129

sends a notification (cLose) to C to notify her that she has lost. Symmetrically,
C notifies B of her victory (bLose). During the game, C notifies Dave (D) that
she is busy.

After B and C have been notified of the outcome of the game, B sends a
signal (sig) to A, while C sends a message (msg) to A. Once the result is sent,
A notifies D that C is now free and a new round starts.

Global graph The final product of our framework is the construction of a
choreography which is equivalent to the original system of CFSMs. Global
graphs [17] were inspired by the generalised global types [10] and BPMN
choreography [19]. Given as input the CFSMs from Figure 6.1, our tool
generates the global graph in Figure 6.2. The nodes of a global graph are
labelled according to their function: a node labelled with indicates the
starting point of the interactions; a node labelled with indicates the termi-
nation of the interactions (not used in Figure 6.2); a node labelled with an
interaction A Ñ B : msg indicates that participant A sends a message of type
msg to B; a node labelled indicates either a choice, merge, or recursion;
a node labelled with indicates either the start or the end of concurrent
interactions. The graphical notation for branch and merge is inspired by
process-algebraic notations; the reader familiar with BPMN should note that
our -node corresponds to the ˆ and ˆ gateways in BPMN, while our
-node corresponds to the ` gateway in BPMN.

In the global graph of Figure 6.2, the flow of the four player game
becomes much clearer. In particular, one can clearly see that either B or C
win the game and that, while the results of the game are being announced, C
and D are interacting.

Communication soundness properties A (runtime) configuration of a sys-
tem of CFSMs, is a tuple consisting of the states in which each machine is
and the content of each channel.

We say that a machine is in a sending (resp. receiving) state if all its
outgoing transitions are send (resp. receive) actions. A state without any
outgoing transition is said to be final. A state that is neither final, sending
nor receiving is a mixed state.

We say that a configuration is a deadlock if all the buffers are empty,
there is at least one machine in a receiving state, and all the other machines
are either in a receiving state or a final state. A system has the eventual
reception property [5] if whenever a message has been sent by a participant,



130 A Tool for Choreography-Based Analysis of Message-Passing Software

Figure 6.2 Four player game – Global graph.

that message will be eventually received. We say that a system of CFSMs is
communication sound if none of its reachable configuration is a deadlock and
it validates the eventual reception property.

Ensuring communication soundness Our tool checks that the CFSMs vali-
date generalised multiparty compatibility (GMC) [17] which guarantees that
(i) the projections of the generated global graph are equivalent to the original
system and (ii) the system is communication sound (as defined above).



6.2 Overview of the Theory 131

The GMC condition consists of two parts: representability and branching
property. Both parts are checked against the machines and their synchronous
executions, i.e., the finite labelled transition system (dubbed TS0) of the
machines executing with the additional constraint that a message can be
sent only if its partner is ready to receive it and no other messages are
pending in other buffers. For instance, all the synchronous executions of
our running example are modelled in the finite labelled transition system in
Figure 6.3.

The representability condition essentially requires that for each partici-
pant, the projection of TS0 onto that participant yields an automaton that is
bisimilar to the original machine. The branching property condition requires
that whenever a branching occurs in TS0 then either (i) the branching com-
mutes, i.e., it corresponds to two independent (concurrent) interactions, or (ii)
it corresponds to a choice and the following constraints must be met:

Figure 6.3 Four player game – TS0.



132 A Tool for Choreography-Based Analysis of Message-Passing Software

1. The choice is made by a single participant (the selector).
2. If a participant is not the selector but behaves differently in two branches

of the choice, then it must receive different messages in each branch
(before the point where its behaviours differ).

Item (1) guarantees that every choice is located at exactly one participant (this
is crucial since we are assuming asynchronous communications). Item (2)
ensures that all the participants involved in the choice are made aware of
which branch was chosen by the selector.

Besides guaranteeing communication soundness, our GMC condition
ensures that if a system of CFSMs validates it, then we can construct a
global graph which is equivalent to the original system, i.e., the global graph
contains exactly the same information than the system of CFSMs.

6.3 Architecture

The structure and the work-flow of our tool is illustrated in Figure 6.4. Before
commenting on the diagram, we explain its graphical conventions. Dashed
arrows represent files used to exchange data; the input files are provided by
the user, those of hkc are generated by the Haskell module Representability.
Solid arrows do not represent invocations but rather control/data flow. For
instance, the arrow from TS represents the fact that the check of the GMC
property is made by concurrent threads on the results produced by TS.

.fsa .cms

cfsm2gg

gmc

SystemParser TS

Representability BranchingProperty

hkc petrify

BuildGlobal

Figure 6.4 Architecture of ChorGram.



6.3 Architecture 133

Data- and control-flow The Python script cfsm2gg provides a command
line interface to the application and connects it with the external tools hkc [6]
and petrify [8], respectively used to check language equivalence between
projections and their corresponding CFSMs and to extract a Petri net from
a transition system. The script takes a description of the system in (a file
that is in) either of the two formats described in the following paragraph and
triggers all the other activities.

The core functionalities are implemented in the Haskell modules (within
the dotted box) and are described below.

gmc is the main program; it is invoked by cfsm2gg, which passes over
the input file (after having set some parameters according to the flags
of the invocation). After invoking SystemParser, the internal Haskell
representation of the system of CFSMs is passed by gmc to TS, which
computes the synchronous transition system – TS0 (and the bounded one
if required with the -b flag of cfsm2gg). The synchronous transition
system is then checked for generalised multiparty compatibility [17,
Definitions 3.4(ii) and 3.5] (but for the language equivalence part [17,
Definition 3.4(i)] later checked by invoking hkc from cfsm2gg). This
check is performed in parallel and has the side effect of producing the
files to give in input to hkc.

cfsm2gg invokes hkc, once it has obtained the control back from gmc, to
check the language equivalence of the original CFSMs with respect
to the corresponding projections of the synchronous transition system.
Finally, petrify is invoked and its output is then transformed by Build-
Global as described in [17] to obtain a global graph (in dot format) of
the system. Besides, cfsm2gg generates also graphical representation
of the communicating machines and the transition systems (again in the
dot format).

Input formats The syntax of the input files of gmc can be specified either
in the fsa (after finite state automata) or cms format, the latter being a simple
process-algebraic syntax (described below). The format to be used depends
on the extension of the file name (.fsa or .cms respectively, and for file names
without extensions the default format is fsa).

A system consists of a list of automata, each described by specifying an
(optional) identifier, its initial state, and its transitions. (Identifiers of CFSMs
are strings starting with a letter.) We refer to the example in Figure 6.5 to



134 A Tool for Choreography-Based Analysis of Message-Passing Software

.outputs A

.state graph
q0 1 ! hello q1
q1 1 ! world q2
.marking q0
.end

.outputs

.state graph
q0 0 ? hello q1
q1 0 ? world q2
.marking q0
.end

q0 q1 q2
1 ! hello 1 ! world

q0 q1 q2
1 ? hello 1 ? world

The first automaton has an identifier A while for the second
no identifier is specified, so the automaton is identified by 1,
its position in the file (automata positions start from 0). The
lines following each .state graph line yield the transitions
followed by the specification of the initial state with the line
starting with .marking, and finally with the end of the automa-
ton specification (line starting with .end). Transitions are
written as src m act msg tgt, where src and tgt are respectively
the source and target state, m is the position of the partner
CFSM, act is the action (! and ? respectively for output and
input actions), and msg is the message.

Figure 6.5 HelloWorld example – fsa representation.

describe the fsa format. Consider the text on the left of Figure 6.5 specifying
the (system consisting of) two simple automata depicted on the right.

It is sometimes more convenient to have a more concrete syntax to
represent machines. Therefore we define the alternative cms format. The idea
is that each CFSM of a system is described by a process in the syntax that we
now describe.

The cms format of a system is a term of the following grammar:

S ::= system id of A1, ¨ ¨ ¨ , An : A1 = M 1 ‖ ¨ ¨ ¨ ‖ Am = M m

where id is a string used to identify the system, A1, ¨ ¨ ¨ ,An are the names of
the machines forming the system, and for each 1 ď i ď m (with m ě n ě 2)
we have a unique defining equation assigning an expression that specifies the
behaviour of Ai. We can now model the HelloWorld example of Figure 6.5,
as follows:

system helloWorld of A, B : A = ¨ ¨ ¨ ‖ B = ¨ ¨ ¨
(where the ellipsis will be defined in a moment). The list of defining equations
specify the behaviour Mi of each role Ai, with 1 ď i ď n, of the system and



6.4 Modelling of an ATM Service 135

the behaviour of some auxiliary machines. For each 1 ď i ď m, the identity
Ai cannot appear in the communication actions of the behaviour Mi of the
defining equation Ai“Mi.

Basically, the behaviour of a machine1 is specified as a regular expression
on an alphabet of actions. We impose some syntactic restrictions to keep out
some meaningless terms and define:

M ::“ B`M branching

pre ::“ A!m output
ˇ
ˇ A?m input

B ::“ pre; end prefix
ˇ
ˇ pre; M prefix
ˇ
ˇ pre do A iteration

A machine M is a sum of branches B. A branch is a prefix-guarded behaviour
(a machine or end) or it is the invocation to the behaviour of a machine A
specified in the set of defining equations of the system. Prefixes yield the
possible actions of a participant: in A!m (resp. A?m), the message m is sent
to (resp. received from) participant A. The equations for the participants of
the helloWorld system are:

A “ B!hello; B!world; end and B “ A?hello; A?world; end

Trailing occurrences of end can be omitted, e.g., writing A “ B!hello;B!world.
Finally, + is right-associative and gives precedence to all the other operators
except ‖, which has the lowest precedence.

6.4 Modelling of an ATM Service

We use a simple scenario to showcase ChorGram. We want to design the
protocol of a service between an ATM (A), a bank (B), and a customer (C),
where, after a successful authentication, the customer C can withdraw cash
or check the balance of their account. Such services are enabled only after
the ATM has successfully checked the credentials of C. We also require that
bank B monitors the usage of the cards of its customers, so that unsuccessful
attempts to use it are reported to C (e.g., via an SMS to the customers’
mobile).

1The cms format provides a richer and more flexible syntax which we omit here because
not used in the examples. The full syntax is described at https://bitbucket.org/emlio_
tuosto/chorgram/wiki/Home



136 A Tool for Choreography-Based Analysis of Message-Passing Software

6.4.1 ATM Service – Version 1

For the moment, we will assume that the protocol repeats only after a
successful withdrawal. Let us start with the description of the bank B:
1 B = A ? accessFailed ;
2 C ! failedAttempt
3 + . . N o t i f i c a t i o n of au then t i ca t i on outcome
4 A ? accessGranted ; (
5 A ? checkBalance ;
6 A ! balance
7 +
8 A ? withdraw ; (
9 A ! deny

10 + . . B decides i f to a l low the wi thdrawal
11 A ! allow do B
12 )
13 +
14 A ? quit
15 )

The bank B is notified of the outcome of the authentication by the ATM A.
If the access fails, B sends a message to the customer C (lines 1–2); other-
wise, the bank waits to be told which service has been requested by the
customer and acts accordingly (lines 4–14). (The symbol “..” is for single-line
comments.)

The specification for the customer C is as follows:
1 C = A ! auth ; (
2 A ? authPass ; ( . . Services are now enabled
3 A ! checkBalance ;
4 A ? balance
5 +
6 A ! withdraw do Cw . . a f t e r the request C cont inues as Cw
7 +
8 A ! quit ;
9 A ? card

10 )
11 +
12 A ? authFail ;
13 A ? card ;
14 B ? failedAttempt
15 )
16 ||
17 Cw = A ? card
18 +
19 A ? money do C

Firstly, C provides the ATM A with their credentials by sending the auth
message (line 1). If the authentication fails, the ATM replies with the authFail
message; in this case the customer also expects their card back and the
message failedAttempt from the bank (line 14). On successful authentication,
C can select one of the services offered by the ATM or quit the protocol (lines
3–9). In the latter case, C receives their card and terminates (line 9). To check
their balance, C sends the message checkBalance to A and waits for the result
(line 3). If C sends A the message withdraw, then C continues to Cw (line 6),
namely they expects to receive their cash (in which case the protocol restarts)
or their card back.



6.4 Modelling of an ATM Service 137

The most complex participant is the ATM A. It can be specified as
follows:
1 A = C ? auth ; (
2 C ! authFail ;
3 B ! accessFailed ;
4 C ! card
5 +
6 C ! authPass ;
7 B ! accessGranted ; (
8 C ? checkBalance do Ac . . Ac i s s p e c i f i e d below
9 +

10 C ? withdraw do Aw . . Aw i s s p e c i f i e d below
11 +
12 C ? quit ;
13 B ! quit ;
14 C ! card
15 )
16 )

The structure of participant A is very similar to the one of C with the addition
of the interactions to liaise with the bank. In case A receives the request for a
service from C, it will behave according to Ac (for checking the balance) or
to Aw (for withdrawing money). These behaviours are specified below.
1 Ac = B ! checkBalance ; B ? balance ;C ! balance
2 ||
3 Aw = B ! withdraw ; (
4 B ? deny ;
5 C ! card
6 +
7 B ? allow ;
8 C ! money do A
9 )

Auxiliary machine Ac forwards the checkBalance message to B, waits
for the balance, and returns it to the customer (line 1). Similarly, auxiliary
machine Aw forwards the request for withdrawal to B, and waits for the
outcome (lines 3–8). If the withdrawal is denied (line 4), then the card is
returned to the customer, otherwise the customer receives the money and the
protocol restarts (line 8).

Executing ChorGram on the system
1 system atm of C, A , B :
2 C = ¨ ¨ ¨ || Cw = ¨ ¨ ¨
3 ||
4 A = ¨ ¨ ¨ || Ac = ¨ ¨ ¨ || Aw = ¨ ¨ ¨
5 ||
6 B = ¨ ¨ ¨

we verify that the system is GMC and the resulting global graph is reported
in Figure 6.6, where the overall protocol becomes apparent.

6.4.2 ATM Service – Version 2

The previous specification is GMC, but has several drawbacks, the most
evident of which is the fact that when the protocol is repeated the customer



138 A Tool for Choreography-Based Analysis of Message-Passing Software

Figure 6.6 Global graph for ATM service v1.

has to re-authenticate. We therefore replace the previous participants C and A
with the following ones:
1 C = A ! auth ; (
2 A ? authPass do Ca . . Now C loops back a f t e r au then t i ca t i on
3 +
4 A ? authFail ;A ? card ; B ? failedAttempt
5 )
6 ||
7 Ca = A ! checkBalance ; A ? balance do Cf . . A f t e r successfu l requests , C decides
8 + . . whether to cont inue or not to behave as Cf
9 A ! withdraw ; (

10 A ? card
11 +
12 A ? money do Cf
13 )
14 ||
15 Cf = A ! newService do Ca
16 +
17 A ! quit ; A ? card



6.4 Modelling of an ATM Service 139

18 ||
19 A = C ? auth ; (
20 C ! authPass ; B ! accessGranted do Aa
21 +
22 C ! authFail ; B ! accessFailed ;C ! card
23 )
24 ||
25 Aa = C ? checkBalance do Ac
26 +
27 C ? withdraw do Aw
28 ||
29 Ac = B ! checkBalance ; B ? balance ;C ! balance do Af
30 ||
31 Aw = B ! withdraw ; (
32 B ? deny ; C ! card
33 +
34 B ? allow ;C ! money do Af
35 )
36 ||
37 Af = (C ? quit ; C ! card ) + (C ? newService do Ac )

Now, after successful authentication, the customer C decides which service to
invoke, behaving as specified by Ca (lines 7–12). Once the request has been
served, the customer executes Cf deciding whether to quit or ask for a new
service (lines 15–17). Accordingly, A reacts to service requests as per Aa on
lines 25–27 of the above snippet, similarly to the previous version of ATM,
but after the completion of each request, A behaves as per Af on line 37 and
returns the card to C if a quit message is received or repeats from Aa when a
new service is requested.

The verification of the new version of the system with ChorGram now
highlights some problems as shown by the following output message (slightly
manipulated for readability):
1 ¨ ¨ ¨
2 gmc : Branching Proper ty ( pa r t ( i i ) ) : [ Rp ( [ qCf , qAf , qBa ] ,¨ ¨ ¨ ) ]
3 ( qCf , qAf ,C,A, Tau , newService )
4 ( qCf , qAf ,C,A, Tau , q u i t ) No choice awareness
5 ¨ ¨ ¨

The above message reports that a reachable configuration where participants
C, A, and B respectively are in state qCf, qAf, and qBa is a ‘No choice
awareness’ configuration. This configuration is highlighted in yellow in the
synchronous transition system, which is reported in Figure 6.7. Inspecting
the synchronous transition system, we note that this configuration leads to
deadlocks (the configurations highlighted in orange in Figure 6.7), due to the
fact that the participant B is not notified when the quit branch is taken, i.e., B
is not aware of which branch of the protocol was chosen by C.

Notice that ChorGram builds a global graph also when the system vio-
lates GMC (not shown for space restrictions). Such a synthesised global graph
reflects some of their possible communication sound executions while leaving
out traces where communication misbehaviour happen. The global graph of



140 A Tool for Choreography-Based Analysis of Message-Passing Software

Figure 6.7 Synchronous transition system of ATM service v2.



6.5 Conclusions and Related Work 141

our second version of the ATM system can also be used to understand what
goes wrong in the overall choreography.

6.4.3 ATM Service – Version 3 (fixed)

Besides making the refined specification of Section 6.4.2 GMC, in the next
version we also want to let the customer quit the protocol immediately after
the authentication. This change makes Cf and Af unnecessary: so, we replace
Ca and Cf with the following new versions:
1 Ca = A ! checkBalance ; A ? balance do Ca
2 +
3 A ! withdraw ; (
4 A ? card
5 +
6 A ? money do Ca
7 )
8 +
9 A ! quit

10 ||
11 Aa = C ? checkBalance do Ac
12 +
13 C ? withdraw do Aw
14 +
15 C ? quit ;
16 B ! quit

Note that now A notifies B when the protocol quits (line 15). This modifica-
tion requires also to modify the bank, which is now:
1 B = A ? accessFailed ; C ! failedAttempt . . The bank t e l l s the customer the attempt f a i l e d
2 +
3 A ? accessGranted do Ba
4 ||
5 Ba = A ? checkBalance ; A ! balance do Ba
6 +
7 A ? withdraw ; (
8 A ! deny
9 +

10 A ! allow do Ba
11 )
12 +
13 A ? quit

The above changes re-establish GMC, hence communication soundness
of the system, as verified by ChorGram, which returns the global graph of
Figure 6.8.

6.5 Conclusions and Related Work

Conclusions & future work We presented ChorGram, a tool support-
ing the analysis and design of choreography-based development. We have
discussed only part of the features of ChorGram, those strictly related to



142 A Tool for Choreography-Based Analysis of Message-Passing Software

Figure 6.8 Global graph for ATM service v3.

the bottom-up development based on our theory [17], which is itself an
extension of previous work on synthesising global types from local specifi-
cations [9, 13, 15]. Recently, ChorGram has been extended with new func-
tionalities for top-down development. These new functionalities rely on a
new semantic framework [11]. We are also planning to plug the “bottom-
up” approach advocated here with the classical “top-down” approach [12]
as advocated by, e.g., the Scribble specification language [22, 25]. Such an
integration would give the flexibility of designing protocols at the global level
and obtain the local level automatically, and vice-versa.

As illustrated in Section 6.4, our approach can be used to give feedback
to protocol designers. Hence, we are considering integrating ChorGram with



6.5 Conclusions and Related Work 143

a framework [20] allowing programmers to obtain real-time feedback wrt.
the multiparty compatibility of the system they are designing. Currently, the
prototype highlights communication mismatches at the local level and it is
sometimes difficult to identify the real cause of such errors [20]. However, it
appears that a (possibly partial) global graph can help giving precise feedback
to the developer so that they can fix the error(s) easily.

Existing extensions and applications Recent work extends the theory
underlying ChorGram [17] to communicating timed automata (CTA) [5],
i.e., CFSMs which use clocks to constrain when send and receive actions
may take place. The authors show that if a system validates some conditions
on communication soundness and deadlines, it is possible to construct a
choreography with time constraints which is equivalent to the original system
of CTAs.

The synthesis of global graphs from local specifications has been applied
thus far in two programming languages. A tool to statically detect deadlocks
in the Go programming language is available [18]. The tool first extracts
CFSMs from each Go-routine in the source code, then feeds them into a slight
variation of ChorGram (for synchronous semantics) which checks whether
the system is multiparty compatible and generates the corresponding global
graph (which may be used to track down what may have caused deadlocks).
Also, ChorGram has been used to model and analyse genserver [23], a part
of the Erlang OTP standard library widely used in the Erlang community
for the development of client/server applications. The analysis highlighted
possible coordination errors and was conducted following the pattern showed
in Section 6.4. The main difference was that the participants and the cor-
responding CFSMs had to be extracted from the API documentation of
genserver.

An interesting use [2, 14] of multiparty compatibility is to support
an orchestration mechanism based on the agreement of behavioural con-
tracts [4]. Recently this theoretical framework has been used to develop
Diogenes [1], a middleware supporting designers (and developers) to write
honest programs [3], namely programs that respect all their contracts in all
their execution contexts. An interesting future work is to integrate Diogenes
and ChorGram in order to adapt components when they are not multiparty
compatible. In such cases, (as discussed at the end of Section 6.4.2) Chor-
Gram synthesises a choreography which, although not faithfully reflecting
the behaviour of participants, represents some of their possible communica-
tion sound executions. Such a synthesised choreography could then be used
to obtain projections that help to attain honesty.



144 A Tool for Choreography-Based Analysis of Message-Passing Software

Acknowledgements This work is partially supported by EU FP7 612985
(UPSCALE) and by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1 and EP/N028201/1.

References

[1] Nicola Atzei and Massimo Bartoletti. Developing honest Java pro-
grams with Diogenes. In Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), pages 52–61, 2016.

[2] Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino.
Choreographies in the wild. Sci. Comput. Program., 109:36–60, 2015.

[3] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino.
Honesty by typing. In FMOODS/FORTE, volume 7892 of LNCS, pages
305–320. Springer, 2013.

[4] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2. Scientific Annals in Comp. Sci., 22(1):5–60,
2012.

[5] Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines
together. In CONCUR 2015, pages 283–296, 2015.

[6] Filippo Bonchi and Damien Pous. HKC. http://perso.ens-lyon.
fr/damien.pous/hknt/

[7] Daniel Brand and Pitro Zafiropulo. On communicating finite-state
machines. JACM, 30(2):323–342, 1983.

[8] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, Enric Pastor, and Alexandre Yakovlev. Petrify. http://www.
lsi.upc.edu/„jordicf/petrify/

[9] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility
in communicating automata: Characterisation and synthesis of global
session types. In ICALP 2013.

[10] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types
meet communicating automata. In ESOP 2012, pages 194–213, 2012.

[11] Roberto Guanciale and Emilio Tuosto. An Abstract Semantics of the
Global View of Choreographies. In ICE 2016, pages 67–82, 2016.

[12] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. J. ACM, 63(1):9:1–9:67, 2016.

[13] Julien Lange. On the Synthesis of Choreographies. PhD thesis,
Department of Computer Science, University of Leicester, 2013.



References 145

[14] Julien Lange and Alceste Scalas. Choreography synthesis as contract
agreement. In ICE, volume 131 of EPTCS, pages 52–67, 2013.

[15] Julien Lange and Emilio Tuosto. Synthesising choreographies from
local session types. In CONCUR 2012, pages 225–239, 2012.

[16] Julien Lange and Emilio Tuosto. ChorGram: tool support for choreo-
graphic development. Available at https://bitbucket.org/emlio_
tuosto/chorgram/wiki/Home, 2015.

[17] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communi-
cating machines to graphical choreographies. In POPL 2015, pages
221–232, 2015.

[18] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concur-
rent Go by global session graph synthesis. In CC 2016, pages 174–184,
2016.

[19] Object Management Group. Business Process Model and Notation.
http://www.bpmn.org

[20] Roly Perera, Julien Lange, and Simon J. Gay. Multiparty compatibility
for concurrent objects. In PLACES 2016, pages 73–82, 2016.

[21] Chris Piro. Chat stability and scalability. https://goo.gl/Z1tpgA
[22] Scribble. http://www.scribble.org
[23] Ramsay Taylor, Emilio Tuosto, Neil Walkinshaw, and John Derrick.

Choreography-based analysis of distributed message passing programs.
In PDP 2016, pages 512–519, 2016.

[24] Paolo D’Incau’s blog. https://goo.gl/eXKng1, 2013.
[25] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.

The Scribble protocol language. In TGC 2013, pages 22–41, 2013.



http://taylorandfrancis.com


7
Programming Adaptive Microservice

Applications: An AIOCJ Tutorial*

Saverio Giallorenzo1, Ivan Lanese1,
Jacopo Mauro2 and Maurizio Gabbrielli1

1Focus Team, University of Bologna/INRIA, Italy
2Department of Informatics, University of Oslo, Norway

Abstract

This tutorial describes AIOCJ, which stands for Adaptive Interaction Ori-
ented Choreographies in Jolie, a choreographic language for programming
microservice-based applications which can be updated at runtime. The com-
pilation of a single AIOCJ program generates the whole set of distributed
microservices that compose the application. Adaptation is performed using
adaptation rules. Abstractly, each rule replaces a pre-delimited part of the
program with the new code contained in the rule itself. Concretely, at runtime,
the application of a rule updates part of the microservices that compose
the application so to match the behavior specified by the updated program.
Thanks to the properties of choreographies, the adaptive application is free
from communication deadlocks and message races even after adaptation.

7.1 Introduction

Today, most applications are distributed, involving multiple participants scat-
tered on the network and interacting by exchanging messages. While still
widely used, the standard client-server topology has shown some of its

∗Supported by the COST Action IC1201 BETTY, by the EU project FP7-644298 HyVar:
Scalable Hybrid Variability for Distributed, Evolving Software Systems, by the GNCS group
of INdAM via project Logica, Automi e Giochi per Sistemi Auto-adattivi, and by the EU EIT
Digital project SMAll.

147



148 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

limitations and peer-to-peer and other interaction patterns are raising in pop-
ularity in many contexts, from social networks to business-to-business, from
gaming to public services. Programming the intended behavior of such appli-
cations requires to understand how the behavior of the single program of one
of their nodes combines with the others, to produce the global behavior of the
application. In brief, it requires to master the intricacies of concurrency and
distribution. There is clearly a tension between the global desired behavior
of a distributed application and the fact that it is programmed by developing
local programs. Choreographies [1–5], and more specifically choreographic
programming [6], aim at solving this tension by providing to developers a
programming language where they directly specify the global behavior. A
sample choreography that describes the behavior of an application composed
of one client and one seller is:

1 product_name@client = getInput( "Insert product name" );
2 quote: client( product_name ) -> seller( sel_product )

The execution starts with an action performed by the client: an input request
to the local user (line 1). The semicolon at the end of the line is a sequential
composition operator, hence the user input should complete before execution
proceeds to line 2. Then, a communication between the client and the seller
takes place: the client sends a message and the seller receives it. A more
detailed description of the choreographic language used in the example above
is presented in Section 7.3.

Following the choreographic programming approach, given a chore-
ography, the local programs that implement the global specification are
automatically generated by the language compiler, ready for the deployment
in the intended locations and machines. For instance, the compilation of the
choreography in the example produces the local codes of both the client
and the seller. The local code of the client starts with a user interaction,
followed by the sending of a message to the seller. The local code of the
seller has just one action: the reception of a message from the client.

The choice of a choreographic language also has the advantage of avoid-
ing by construction common errors performed when developing concurrent
and distributed applications [7]. Notably, these include communication dead-
locks, which may cause the application to block, and message races, which
may lead to unexpected behaviors in some executions.

Another advantage of the choreographic approach is that it eases the task
of adapting a running distributed application. We recall that nowadays appli-
cations are often meant to run for a long time and should adapt to changes



7.1 Introduction 149

of the environment, to updates of requirements, and to the variability of
business rules. Adapting distributed applications at runtime, that is without
stopping and restarting them, and with limited degradation of the quality of
service, is a relevant yet difficult to reach goal. In a choreographic setting,
one can simply specify how the global behavior is expected to change. This
approach leaves to the compiler and the runtime support the burden of
concretely updating the code of each local program. This update should be
done avoiding misbehaviors while the adaptation is carried out and ensuring
a correct post-adaptation behavior.

This tutorial presents AIOCJ1, which stands for Adaptive Interaction
Oriented Choreographies in Jolie, a framework including i) a choreographic
language, AIOC, for programming microservice-based applications which
can be dynamically updated at runtime and ii) its runtime environment. The
main features of the AIOCJ framework are:

Choreographic approach: the AIOC language allows the programmer to
write the behavior of a whole distributed application as a single program;

Runtime adaptability: AIOCJ applications can be updated by writing new
pieces of code embodied into AIOC adaptation rules. Adaptation rules
are dynamically and automatically applied to running AIOCJ applica-
tions, providing new features, allowing for new behaviors, and updating
underlying business rules.

Microservice architecture: AIOCJ applications are implemented as sys-
tems of microservices [8]. Indeed, we found that the microservice
architectural style supports the fine-grained distribution and flexibility
required by our case. As a consequence, AIOCJ applications can inter-
act using standard application-layer protocols (e.g., SOAP and HTTP)
with existing (legacy) software thus also facilitating and supporting the
integration of existing systems.

A more technical account of the AIOCJ framework can be found in the
literature, describing both the underlying theory [9] and the tool itself [10].
AIOCJ can be downloaded from its website [11], where additional documen-
tation and examples are available.

1The tutorial refers to version 1.3 of AIOCJ.



150 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

7.2 AIOCJ Outline

As described in the Introduction, AIOC is a choreographic language for
programming microservice-based applications which can be dynamically
updated at runtime. The AIOCJ framework is composed of two parts:

• the AIOCJ Integrated Development Environment (IDE), provided as
an Eclipse plugin, that lets developers write both AIOC programs and
the adaptation rules that change the behavior of AIOCJ applications at
runtime;

• the AIOCJ Runtime Environment (RE), which is used to support the
execution and the adaptation of AIOCJ applications.

The AIOCJ IDE (see the screenshot in Figure 7.1) offers standard function-
alities such as syntax highlighting and syntax checking. However, the most
important functionality of the IDE is the support for code compilation. The
target language of the AIOCJ compiler is Jolie [12, 13], the first language
natively supporting microservice architectures. A key feature of the Jolie
language is its support for a wide range of communication technologies
(TCP/IP sockets, Unix domain sockets, Bluetooth) and of protocols (e.g.,
HTTP, SOAP, JSON-RPC) that makes it extremely useful for system integra-
tion. AIOC inherits this ability since it makes the communication capabilities
of Jolie available to the AIOC programmer.

Since AIOC is a choreographic language, each AIOC program defines a
distributed application. The application is composed of different nodes, each
taking a specific role in the choreography. Each role has its own local state,
and the roles communicate by exchanging messages. The structure of AIOCJ

Figure 7.1 The AIOCJ IDE.



7.2 AIOCJ Outline 151

applications makes the compilation process of AIOCJ peculiar for two main
reasons:

• the compilation of a single AIOC program generates one Jolie microser-
vice for each role involved in the choreography, instead of a unique
executable for the whole application;

• the compilation may involve either an AIOC program, or a set of AIOC
adaptation rules. In particular, the latter may be compiled even after the
compilation, deployment, and launch of the AIOC program. Thus AIOC
adaptation rules can be devised and programmed while the application
is running, and therefore applied to it at runtime.

Adaptation rules target well-identified parts of AIOC programs. Indeed,
an AIOC program may declare some part of its code as adaptable by
enclosing it in a scope block. Abstractly, the effect of the application of
an AIOC adaptation rule to a given scope is to replace the scope block
with new code, contained in the adaptation rule itself. Concretely, when the
distributed execution of an AIOC program reaches a scope, the AIOCJ RE
checks whether there is any adaptation rule applicable to it. If this is the case,
then the running system of microservices adapts so to match the behavior
specified by the updated choreography. This adaptation involves coordinating
the distribution and execution of the local codes corresponding to the global
code in the adaptation rule. If instead no rule applies, the execution proceeds
as specified by the code within the scope.

In the rest of this section we describe the architecture of AIOCJ and
the workflow that developers, or better DevOps2, have to follow in order to
compile, deploy, and adapt at runtime an AIOCJ application (a more detailed
step-by-step description is in Section 7.6). We instead dedicate Sections 7.3
to 7.5 to the description of the AIOC language.

7.2.1 AIOCJ Architecture and Workflow

The AIOCJ runtime environment comprises a few Jolie microservices that
support the execution and adaptation of compiled programs. The main
microservices of the AIOCJ runtime environment are:

• Adaptation Manager, a microservice in charge of managing the adapta-
tion protocol;

• Adaptation Server, a microservice that contains a set of adaptation rules;

2DevOps is a portmanteau of “development” and “operations” used to indicate the
professional figure involved in the development, deployment, and operation of the application.



152 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

• Environment, a microservice used to store values of global properties
related to the execution environment. These properties may be used to
check whether adaptation rules are applicable or not.

More precisely, a runtime environment includes one Adaptation Manager,
zero or more Adaptation Servers, each of them enabling a set of adaptation
rules, and, if needed to evaluate the applicability conditions of the rules,
one Environment microservice. Adaptation Servers can be added or removed
dynamically, thus enabling dynamic changes in the set of rules.

Microservices compiled from AIOC code interact both among them-
selves, as specified by the choreography, and with the Adaptation Manager,
to carry out adaptation. Indeed, when a scope is about to be executed, the
Adaptation Manager is invoked to check whether the scope can be executed
as it is, or if it must be replaced by the code provided by some adaptation
rule, made available by an active Adaptation Server. In fact, when started, an
Adaptation Server registers itself at the Adaptation Manager. The Adaptation
Manager invokes the registered Adaptation Servers to check whether their
adaptation rules are applicable. In order to check applicability, the corre-
sponding Adaptation Server evaluates the applicability condition of the rule,
possibly interacting with the Environment microservice. The first applicable
adaptation rule, if any, is used to replace the code of the scope.

Let us consider an example. Take a simple choreography in AIOC
involving two roles, client and seller. Figure 7.2 depicts the process of
compilation 1© and execution 2© of the AIOC. From left to right, we use
the IDE to write the AIOC and to compile it into a set of executable Jolie
microservices (Client and Seller). To execute the generated application, we
first launch the Adaptation Manager and then the two compiled microservices.

Figure 7.2 The AIOCJ framework — deployment and execution of a choreography.



7.3 Choreographic Programming 153

Now, let us suppose that we want to adapt our application. Assuming
that the choreography has at least one scope, we only need to write and
introduce into the system a new set of adaptation rules. Figure 7.2 depicts
the needed steps. From right to left, we write the rules (outlined with dashes)
and we compile them using the IDE 3©. The compilation of a set of adaptation
rules in AIOCJ produces a single Adaptation Server (also outlined with
dashes). After the compilation, the generated Adaptation Server is deployed
and started, and it registers itself at the Adaptation Manager. If environmental
information is needed to evaluate the applicability condition of the rule, then
the DevOps has also to deploy the Environment microservice. From now on,
until the Adaptation Server is shut down, the rules it contains are active
and can be applied to the application. Actual adaptation happens when a
scope is about to execute, and the applicability condition of the rule for the
current scope is satisfied. This adaptation is performed automatically and it
is completely transparent to the user, except for possible differences in the
visible behavior of the new code w.r.t. the original one.

7.3 Choreographic Programming

The main idea of choreographic programming is that a unique program
describes the behavior of a whole distributed application. The main construct
of such a program are interactions, such as:

quote: client( product_name ) -> seller ( sel_product )

This interaction specifies that role client sends a message to role seller
on operation quote. The value of the message is given by the evaluation
of expression product_name (here just a variable name) in the local state of
role client. The message will be stored by the seller in its local variable
sel_product. An interaction involves two roles of the choreography, but other
choreography constructs involve just one role. For instance, an assignment
like continue@client = "y", means that the string "y" is assigned to the
variable continue of role client, as specified by the @ operator.

Let us now detail a simple AIOC program implementing a client/seller
interaction featuring a payment via a bank (see Listing 7.1). We will use
this program as running example throughout the tutorial. Lines 1–6 form the
preamble, which specifies some deployment information:

• line 2 declares the starter of the choreography, i.e., the first role
that needs to be started and the one that coordinates the start of the
application by waiting for the other roles to join;



154 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 preamble {
2 starter: client
3 location@client: "socket://client.com:5000"
4 location@seller: "socket://seller.com:5050"
5 location@bank: "socket://bank.com:6000"
6 }
7
8 aioc {
9 continue@client = "y";
10 while( continue == "y" )@client{
11 product_name@client = getInput( "Insert product name" );
12 quote: client( product_name ) -> seller( sel_product );
13 price@seller = getInput( "Quote product: " + sel_product );
14 if ( price > 0 )@seller{
15 quoteResponse: seller( price ) -> client( product_price );
16 accept@client = getInput(
17 "Do you accept to buy the product: " + product_name +
18 " at price: " + product_price + "? [y/n]" );
19 if ( accept == "y" )@client{
20 orderPayment: client( product_price ) -> bank( amount );
21 authorisePayment@bank = getInput(
22 "Do you authorise the payment: " + amount + " [y/n]?" );
23 if ( authorisePayment == "y" )@bank{
24 issuePayment: bank( amount ) -> seller( payment );
25 productDelivery: seller() -> client();
26 r@client = show( "Object delivered" )
27 } else {
28 r@client = show( "Payment refused" )
29 }
30 }
31 } else {
32 _r@client = show( "Product " + product_name + " unavailable." )
33 };
34 continue@client = getInput( "Continue shopping? [y/n]" )
35 }
36 }

Listing 7.1 Running example: basic choreography.

• lines 3–5 specify how the roles participating to the choreography can
be reached. In this case, all the three roles communicate using TCP/IP
sockets, as specified by the "socket://" prefix of the URI.

The actual code is introduced by the keyword aioc. After the local
assignment at line 9, line 10 introduces a while loop. The @client suffix
specifies that the guard is evaluated by the client in its local state. Notice that
the decision about whether to enter the loop or not is taken by the client but
it impacts also other roles. These roles are notified of the choice by auxiliary
communications which are automatically generated. The assignment at line 9



7.4 Integration with Legacy Software 155

and the while loop starting at line 10 are composed using a semicolon, which
represents sequential composition. Line 11 is again an assignment, where
built-in function getInput is used to interact with the local user. The function
creates a window showing the string in parameter and returns the input of the
user. Line 12 is an interaction between the client and the seller. The next
interesting construct is at line 14, featuring a conditional. As for while loops,
the conditional specifies which role is in charge of evaluating the guard,
and other roles are automatically notified of the outcome of the evaluation.
Function show (line 26) is a built-in function like getInput, simply showing
a message.

Abstracting from the technical details, the choreography specifies that the
client asks the quote for a product (line 12), and then decides whether to buy
it or not (line 19). In the first case, the client asks the bank to perform the
payment (line 20). If the payment is authorized (line 23), then the money is
sent to the seller (line 24), which delivers the product to the client (line 25).
At the end of the interaction, the client may decide to buy a new product or
to stop (line 34).

When writing AIOC programs, beyond the usual syntactic errors, one
should pay attention to a semantic error peculiar of choreographic program-
ming. Indeed, a semicolon specifies that the code before the semicolon should
be executed before the code after the semicolon. However, since there is no
central control, such a constraint can only be enforced if for each pair of
statements S and T such that S is just before the semicolon and T is just after
the semicolon, there is a role occurring in both S and T. This property is called
connectedness [9] and it is needed to enforce the sequentiality of the actions.
When connectedness does not hold, AIOCJ IDE alerts the user by showing
the error “The sequence is not connected”. Instead of asking the programmer
to satisfy connectedness, one could extend AIOCJ to automatically insert
auxiliary communications to ensure connectedness, similarly to what is done
for while loops and conditionals. Such an extension is left as future work.

7.4 Integration with Legacy Software

The example in the previous section shows how one can program a distributed
application in AIOCJ. However, such a distributed application is closed:
there is no interaction between the application and the outside world, except
for basic visual interactions with the users of the application. As we will
see below, AIOCJ applications are not necessarily closed systems. Indeed,



156 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

AIOCJ provides a strong support to integration with legacy software. We
already cited that AIOCJ is based on the microservice technology. As such,
it supports interaction with external services via standard application-layer
protocols, such as SOAP and HTTP. Such services are seen as functions
inside AIOC programs, and can be invoked and used inside expressions.

Let us see how this can be done by refining our running example from
Listing 7.1 into the one in Listing 7.2.

1 include quoteProduct from "socket://localhost:8000" with SOAP
2 include makePayment from "socket://localhost:8001/IBAN" with HTTP
3
4 preamble {
5 starter: client,
6 location@client: "socket://client.com:5000"
7 location@seller: "socket://seller.com:5050"
8 location@bank: "socket://bank.com:6000"
9 }
10
11 aioc {
12 continue@client = "y";
13 while( continue == "y" )@client{
14 product_name@client = getInput( "Insert product name" );
15 quote: client( product_name ) -> seller( sel_product );
16 price@seller = quoteProduct( sel_product );
17 if ( price > 0 )@seller{
18 quoteResponse: seller( price ) -> client( product_price );
19 accept@client = getInput(
20 "Do you accept to buy the product: " + product_name +
21 " at price: " + product_price + "? [y/n]" );
22 if ( accept == "y" )@client{
23 orderPayment: client( product_price ) -> bank( amount );
24 authorisePayment@bank = makePayment( amount );
25 if ( authorisePayment == "y" )@bank{
26 issuePayment: bank( amount ) -> seller( payment );
27 productDelivery: seller() -> client();
28 r@client = show( "Object delivered" )
29 } else {
30 r@client = show( "Payment refused" )
31 }
32 }
33 } else {
34 _r@client = show( "Product " + product_name + " unavailable." )
35 };
36 continue@client = getInput( "Continue shopping? [y/n]" )
37 }
38 }

Listing 7.2 Running example: integration with external services.



7.4 Integration with Legacy Software 157

In Listing 7.2, lines 1 and 2 declare two external services, quoteProduct
invoked using SOAP and makePayment invoked using HTTP (more precisely, a
POST request carrying XML data). Both external services communicate with
AIOCJ using TCP/IP sockets. The first service is invoked at line 16 by the
seller and it is used to check the price of a given product. In principle, such
a service can be either publicly available or a private service of the seller.
Here, we assume that this service gives access to the seller IT system, e.g.,
to the database storing prices of the available products. The second service is
invoked at line 24 by the bank, and gives access to the bank IT system. One can
easily imagine to make the example more realistic by adding other external
services taking care, e.g., of shipping the product.

We now discuss in more detail how function arguments are encoded for
service invocation and how the result is sent back to the caller. In general
AIOCJ functions can have an arbitrary number of parameters, separated by
commas. The parameters are embedded in a tree structure which is then
encoded according to the chosen application-layer data protocol. The tree
structure has an empty root with a number of children all named p (for
parameter) carrying the parameters of the invocation, in the order in which
they are specified. The return value instead has basic type (such as string,
integer, double) and it is contained in the root of the response message.

For instance, consider a sample function myFunction, with three parame-
ters, a string, an integer, and a double. If the data protocol for myFunction is
SOAP, then the AIOCJ application would send a SOAP message as reported
in Listing 7.3. A possible reply to the message above is a SOAP message of
the form reported in Listing 7.4.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <SOAP-ENV:Envelope
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
6 <SOAP-ENV:Body>
7 <myFunctionRequest>
8 <p xsi:type="xsd:string">parameter1</p>
9 <p xsi:type="xsd:int">2</p>
10 <p xsi:type="xsd:double">3.14</p>
11 </myFunctionRequest>
12 </SOAP-ENV:Body>
13 </SOAP-ENV:Envelope>

Listing 7.3 Function invocation: SOAP message request.



158 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 <?xml version="1.0" encoding="utf-8" ?>
2 <SOAP-ENV:Envelope
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
6 <SOAP-ENV:Body>
7 <myFunctionResponse xsi:type="xsd:string">
8 responseValue
9 </myFunctionResponse>
10 </SOAP-ENV:Body>
11 </SOAP-ENV:Envelope>

Listing 7.4 Function invocation: SOAP message response.

Other application-layer data protocols would produce similar structures.
Currently, AIOCJ supports SOAP, HTTP, SODEP (i.e., Jolie’s binary data
protocol), JSON/RPC, and XML/RPC. As far as the communication medium
is concerned, AIOCJ supports other options beyond TCP/IP sockets, namely
Bluetooth with URIs of the form "btl2cap://0050CD00321B:101" and Unix
domain sockets with URIs of the form "localsocket://var/comm/socket".
The choice of the communication medium and the choice of the application-
layer data protocols are orthogonal.

7.5 Adaptation

We now come to the main feature of AIOCJ, namely the support for
adaptation. Adaptation is performed in two stages:

1. when writing the original AIOC program, one should foresee which
parts of the code could be adapted in the future, and enclose them into
scopes;

2. while the AIOC program is running, one should write adaptation rules
to introduce the desired new behavior.

We introduce in Listing 7.5 three scopes to show how adaptation can be
enabled in the running example in Listing 7.2.

Scope transaction-execution at lines 26–29 encloses the body of the busi-
ness transaction, with the idea that this can be changed to support integration
with a shipper service, or more refined payment protocols. Then, we have
two scopes, success-notification (lines 30–32) and failure-notification
(lines 34–36), which are in charge of notifying the client of the outcome of
the transaction, with the idea that different forms of notification, e.g., through
e-mail or SMS, could be implemented in the future. Developers can equip



7.5 Adaptation 159

1 include quoteProduct from "socket://localhost:8000" with SOAP
2 include makePayment from "socket://localhost:8001/IBAN" with HTTP
3
4 preamble {
5 starter: client
6 location@client: "socket://client.com:5000"
7 location@seller: "socket://seller.com:5050"
8 location@bank: "socket://bank.com:6000"
9 }
10
11 aioc {
12 continue@client = "y";
13 while( continue == "y" )@client{
14 product_name@client = getInput( "Insert product name" );
15 quote: client( product_name ) -> seller( sel_product );
16 price@seller = quoteProduct( sel_product );
17 if ( price > 0 )@seller{
18 quoteResponse: seller( price ) -> client( product_price );
19 accept@client = getInput(
20 "Do you accept to buy the product: " + product_name +
21 " at price: " + product_price + "? [y/n]" );
22 if ( accept == "y" )@client{
23 orderPayment: client( product_price ) -> bank( amount );
24 authorisePayment@bank = makePayment( amount );
25 if ( authorisePayment == "y" )@bank{
26 scope @seller {
27 issuePayment: bank( amount ) -> seller( payment );
28 productDelivery: seller() -> client()
29 } prop { N.scopename = "transaction-execution" };
30 scope @seller {
31 r@client = show( "Object delivered" )
32 } prop { N.scopename = "success-notification" }
33 } else {
34 scope @seller {
35 r@client = show( "Payment refused" )
36 } prop { N.scopename = "failure-notification" }
37 }
38 }
39 } else {
40 _r@client = show( product_name + " is unavailable." )
41 };
42 continue@client = getInput( "Continue shopping? [y/n]" )
43 }
44 }

Listing 7.5 Running example: enabling adaptation.

scopes with properties describing their nature and characteristics. These
properties can be used to decide whether a given rule should apply to a given
scope or not. In the example, we just use a property scopename to describe
each scope. In general, however, many properties can be used. For example,



160 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

if some scope encloses a part of the code which is critical for security reasons,
one of its properties could declare the security level of the current code. Such
a declaration is under the responsibility of the programmer and it is in no way
checked or enforced by the AIOCJ framework.

Note that each scope is followed by an annotation @role that declares
the coordinator of the adaptation procedure of the scope. The coordinator is
in charge of invoking the Adaptation Manager, which handles the selection
of an applicable adaptation rule. The Adaptation Manager can access the
internal state of the coordinator to check whether an adaptation rule is
applicable or not. The coordinator is also in charge of fetching the local codes
compiled from the selected adaptation rule and of distributing them to the
other roles.

Remark 1 We highlight that there is no precise convention on how to place
scopes: one should try to foresee which parts of the AIOC program are
likely to change. As a rule of thumb, parts which are critical for security
or performance reasons may be updated to improve the security level or
the performance of the application. Parts which instead implement business
rules may need to be updated to change the business rules. Finally, parts that
manage interactions with external services may need to be updated to match
changes in the external services. There is also a trade-off involved in the
definition of scopes. On the one hand, large scopes are rarely useful, since
they could be updated only before the beginning of their execution, which can
be quite early in the life of the application. On the other hand, small scopes
may be problematic, since a meaningful update may involve many of them
and currently AIOCJ does not provide a way to synchronize when and how
scopes are updated.

Now that the application in Listing 7.5 is equipped with scopes, it is
ready to be deployed, and offers built-in support for adaptation. While the
application is running, a new need may emerge. Assume for instance that
the application, meant for trading cheap products, needs to be used also for
more expensive ones. In this previously unforeseen setting, the fact that the
payment is performed in a single installment and before the shipping of the
product may be undesirable for the Client. One can meet this new need by
providing an adaptation rule (see Listing 7.6) where the payment is performed
in two installments, each consisting in half of the original amount: one sent
before and the other after the delivery of the product. This rule targets scopes
with property scopename equal to transaction-execution and it applies only



7.5 Adaptation 161

1 rule {
2 on { N.scopename == "transaction-execution" and
3 E.split_payment_threshold < price }
4 do {
5 issuePayment: bank( amount / 2 ) -> seller( first_payment );
6 productDelivery: seller() -> client();
7 issuePayment: bank( amount / 2 ) -> seller( second_payment );
8 payment@seller = first_payment + second_payment
9 }
10 }

Listing 7.6 Adaptation rule: split payment.

if the price of the product is above a split_payment_threshold available
in the Environment microservice. The idea is that such a threshold may be
agreed upon by the client and the seller or established by some business
regulation. We remark that properties of the scope, like N.scopename, are
prefixed by N while values provided by the Environment microservice, like
E.split_payment_threshold, are prefixed by E. Names with no prefix refer
to variables of the role that coordinates the adaptation of the scope, such as
price in this example.

We note that the above adaptation rule changes the choreography and,
as a consequence, the behavior of two of its roles. In general, an adaptation
rule can impact an arbitrary number of roles. We also note that the need for
adaptation is checked — and adaptation is possibly performed — every time
the scope is executed. In this example, if the client buys many products,
some with price above the threshold and some below, the need for adaptation
is checked for each item and adaptation is performed only for the ones with a
price above the threshold. In essence, purchases of cheap products follow the
basic protocol whilst purchases of expensive ones follow the refined protocol
introduced by the adaptation rule.

We now consider another need that may emerge. Assume that the seller
decides to log all its sales, e.g., for tax payment reasons. Again, one may write
an adaptation rule (see Listing 7.7) to answer this need. This rule targets the
scope with property N.scopename = "success-notification" (lines 30–32
in Listing 7.5), which was not exactly intended for logging, but can be
adapted to do so by taking care of repeating in the new code also the original
notification message (line 31 in Listing 7.5, repeated at line 8 in Listing 7.7).
The rule exploits both a new role, logger, and two external services log and
getTime. External services are declared exactly as in AIOC programs. Note
that here we omit the application-layer protocol of both services, hence the
default, SOAP, is used.



162 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 rule {
2 include log from "socket://localhost:8002"
3 include getTime from "socket://localhost:8003"
4 newRoles: logger
5 location@logger: "socket://localhost:15000"
6 on { N.scopename == "success-notification" }
7 do {
8 r@client = show( "Object delivered" )
9 |
10 {
11 log: seller( sel_product + " " + payment ) -> logger( entry );
12 time@logger = getTime();
13 log_entry = time + ": " + entry;
14 { r1@logger = log( log_entry ) | r2@logger = show( log_entry ) }
15 }
16 }
17 }

Listing 7.7 Adaptation rule: logging.

The additional role is declared using keyword newRoles (line 4). New
roles in AIOCJ rules should not be involved in the target AIOC program
and take part to the choreography only while the body of the rule executes.
As for normal roles, the URI of new roles is declared using the keyword
location.

7.6 Deployment and Adaptation Procedure

In this section we describe the steps that DevOps need to follow to deploy the
AIOCJ application of Listing 7.5 and to adapt it at runtime. When reporting
paths, we use the Unix forward slash notation.

Compiling and Running an AIOC. As already mentioned, AIOCJ IDE runs
as an Eclipse plugin. Hence, to create a new AIOC program we create a
new project and a new file inside it with .ioc extension. We write the code
in Listing 7.5 and we compile it by clicking on the button “Jolie Endpoint
Projection” . The compilation creates three folders in the Eclipse project:
epp_aioc, adaptation_manager, and environment.

Within the folder epp_aioc we can find one subfolder for each role in the
AIOC program containing all the related code. The main file is named after
the role and has the standard Jolie extension .ol. The subfolder needs to be
moved in the host corresponding to the location of the role declared in the
preamble of the AIOC program. For example, the subfolder client should
be moved into the host located at "client.com".



7.6 Deployment and Adaptation Procedure 163

Within the folders adaptation_manager and environment the main files are,
respectively, main_adaptationManager.ol and environment.ol.

Before starting the compiled AIOC program, we make sure that the
external services included in the choreography are running. To run the AIOC
program, we first launch the Adaptation Manager with

jolie adaptation_manager/main_adaptationManager.ol

Then, we run the roles in the choreography, beginning from the client, which
is declared as the starter of the choreography. For instance, the client —
previously deployed at "client.com" — can be launched with

jolie client/client.ol

At the moment there is no need to run the Environment. As soon as the last
role is started, the execution of the AIOCJ application begins.

Adapting a Running AIOC. Adaptation rules are defined using the same
Eclipse plugin as AIOC programs. They need to be stored in a new .ioc file,
either in the same project as the AIOC program or in a new one.

As for AIOC programs, the compilation of a set of adaptation rules is
triggered by the “Jolie Endpoint Projection” button and produces a folder
named epp_rules, which corresponds to a unique Adaptation Server. Inside
the folder, the main file is AdaptationServer.ol within path

__adaptation_server/servers/server

Also in this case, before starting the Adaptation Server, we make sure that the
external services included in the rules are running.

If some adaptation rule has an applicability condition that checks
some Environment variables (e.g., variable E.split_payment_threshold in
Listing 7.6, line 3), the Environment microservice needs to be launched,
running the program environment.ol. Environment variables can be added
and removed both by console interaction or by editing the configuration file
environmentVariables.xml.

If some adaptation rule needs a new role, the location declared for it
should be able to interact with the Adaptation Server that contains the rule.
To this end, AIOCJ provides a dedicated microservice called Role Supporter,
which needs to be deployed in the host corresponding to the target location.
This is done by moving to the corresponding host the folder

role_supporter/ruleN/roleName



164 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

where N is the sequential number of the rule, from top to bottom, inside
the file .ioc, and roleName is the name of the new role. The folder contains
the code of the utility microservice, RoleSupporter.ol, and an automatically
generated configuration file config/location.iol. For instance, the config-
uration file for the RoleSupporter for role logger in the rule in Listing 7.7
(assuming it is the only rule in the .ioc file) is

role_supporter/rule1/logger/config/locations.iol

If the location of the new role is unspecified, then "localhost:9059" is
used by default and the corresponding folder is default_role_supporter.

Once both the external services and the Role Supporters are running, we
can launch the Adaptation Server. When launched, the Adaptation Server reg-
isters at the Adaptation Manager and the compiled adaptation rules become
enabled. From now on, when a scope is reached during execution, the rules
in the Adaptation Server are checked for applicability.

Both microservices implementing roles of AIOCJ applications and the
ones in AIOCJ RE — namely the Adaptation Manager, the Environment,
the Adaptation Servers, and the Role Supporters — can be re-deployed on
hosts different from the default ones. This requires to move the corresponding
folder, but also to update the configuration files that contain their addresses,
including their own configuration file. Notably, no recompilation is needed.
We report in Figure 7.3 the dependency graph among the locations of AIOCJ
microservices. In the figure, the notation A → B means that microservice
A must know the deployment location of microservice B. At the bottom
of each box we report the path to the corresponding configuration file for

Figure 7.3 Location dependency graph among AIOCJ microservices.



7.7 Conclusion 165

locations, which is config/locations.iol except for the deployment location
of Adaptation Servers which is directly contained in their own main file.

7.7 Conclusion

In this tutorial we have given a gentle introduction to the AIOCJ framework
and to the AIOC language. While both adaptation and choreographies are
thoroughly studied in the literature, their combination has not yet been
explored in depth. As far as we know, AIOCJ is the only implemented
framework in this setting. Theoretical investigations of the interplay between
adaptation and multiparty session types [14–16] (which use choreographies
as types instead of as a language) have been undertaken. A relevant work con-
siders self-adaptive systems [14]. It uses multiparty session types to monitor
that the computation follows the expected patterns, and it performs adaptation
by moving from one choreography to the other according to external condi-
tions. However, all possible behaviors are present in the system since the
very beginning. Another work studies how to update a system so to preserve
the guarantees provided by multiparty session types [15]. Another study, still
preliminary, describes multiparty session types that can be updated from both
inside and outside the system [16]. None of the three proposals above has
been implemented. On the other side, we find two implemented approaches
for programming using choreographies, Scribble [4, 17] and Chor [2], but
they do not support adaptation. Chor is particularly related to AIOCJ, since
they both produce Jolie code and they share part of the codebase. Finally, the
main standard in the field of choreographic specifications, WS-CDL [5], does
not support adaptation. Moreover, WS-CDL is just a specification language
and not an executable one. Further information on choreographies can be
found in two surveys. One presents a general description of the theory of
choreographies and session types [18]. The other accounts for their use in
programming languages [19].

As future work we would like to understand what is needed to make
AIOCJ more usable in practice. To this end, we are experimenting by apply-
ing AIOCJ to case studies developed for other approaches to adaptation, such
as Context-Oriented Programming [20] and distributed [21] and dynamic [22]
Aspect-Oriented Programming. Initial results in this direction can be found
on the AIOCJ website [11]. Another direction is to provide automated
support for the deployment of AIOCJ applications using containerization
technologies such as Docker [23].



166 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

References

[1] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-
centered programming for web services,” ACM Trans. Program. Lang.
Syst., vol. 34, no. 2, 2012.

[2] M. Carbone and F. Montesi, “Deadlock-Freedom-by-Design: Multiparty
Asynchronous Global Programming,” in POPL, pp. 263–274, ACM,
2013.

[3] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the Gap
between Interaction- and Process-Oriented Choreographies,” in SEFM,
pp. 323–332, IEEE, 2008.

[4] K. Honda, A. Mukhamedov, G. Brown, T. Chen, and N. Yoshida, “Scrib-
bling interactions with a formal foundation,” in ICDCIT, vol. 6536 of
LNCS, pp. 55–75, Springer, 2011.

[5] World Wide Web Consortium, Web Services Choreography Descrip-
tion Language Version 1.0, 2005. http://www.w3.org/TR/ws-
cdl-10/

[6] F. Montesi, “Kickstarting choreographic programming,” in WS-
FM:FASOCC, vol. 9421 of LNCS, pp. 3–10, Springer, 2014.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,” in
ASPLOS, pp. 329–339, ACM, 2008.

[8] S. Newman, Building Microservices. " O’Reilly Media, Inc.", 2015.
[9] M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro,

“Dynamic choreographies - safe runtime updates of distributed applica-
tions,” in COORDINATION, vol. 9037 of LNCS, pp. 67–82, Springer,
2015.

[10] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, and M. Gabbrielli,
“AIOCJ: A choreographic framework for safe adaptive distributed
applications,” in SLE, vol. 8706 of LNCS, pp. 161–170, Springer, 2014.

[11] “AIOCJ website.” http://www.cs.unibo.it/projects/
jolie/aiocj.html

[12] “Jolie website.” http://www.jolie-lang.org/
[13] F. Montesi, C. Guidi, and G. Zavattaro, “Composing services with

JOLIE,” in Proc. of ECOWS’07, pp. 13–22, IEEE, 2007.
[14] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri, “Self-adaptive mul-

tiparty sessions,” Service Oriented Computing and Applications, vol. 9,
no. 3-4, pp. 249–268, 2015.



References 167

[15] G. Anderson and J. Rathke, “Dynamic software update for message pass-
ing programs,” in APLAS, vol. 7705 of LNCS, pp. 207–222, Springer,
2012.

[16] M. Bravetti et al., “Towards global and local types for adaptation,” in
SEFM Workshops, vol. 8368 of LNCS, pp. 3–14, Springer, 2013.

[17] “Scribble website.” http://www.jboss.org/scribble
[18] H. Hüttel et al., “Foundations of session types and behavioural con-

tracts,” ACM Computing Surveys, vol. 49, no. 1, 2016.
[19] D. Ancona et al., “Behavioral types in programming languages,” Foun-

dations and Trends in Programming Languages, vol. 3, no. 2-3, pp. 95–
230, 2016.

[20] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented Pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
2008.

[21] R. Pawlak et al., “JAC: an aspect-based distributed dynamic framework,”
Software: Practice and Experience, vol. 34, no. 12, pp. 1119–1148,
2004.

[22] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and
P. K. McKinley, “An aspect-oriented approach to dynamic adaptation,”
in WOSS, pp. 85–92, ACM, 2002.

[23] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, 2014.



http://taylorandfrancis.com


8
JaDA – the Java Deadlock Analyzer

Abel Garcia and Cosimo Laneve

Department of Computer Science and Engineering, University of Bologna –
INRIA FOCUS, Mura Anteo Zamboni 7, 40127, Bologna, Italy

Abstract

JaDA is a static deadlock analyzer that targets Java bytecode. The core of
JaDA is a behavioral type system especially designed to record dependencies
between concurrent code. These behavioral types are thereafter analyzed by
means of a fixpoint algorithm that reports potential deadlocks in the original
Java code. We give a practical presentation of JaDA, highlighting the main
connections between the tool and the theory behind it and presenting some of
the features for customising the analysis. We finally assess JaDA against the
current state-of-the-art tools, including a commercial grade one.

8.1 Introduction

In concurrent languages, a deadlock is a circular dependency between a set of
threads, each one waiting for an event produced by another thread in the set.
In the Java programming language, deadlocks are usually resource-related,
namely they are caused by operations ensuring different threads the exclusive
access to a set of resources. (Java has also so-called communication-related
deadlocks, which are common in network based systems. These deadlocks,
which are thoroughly studied in [1,2], are out of the scope of this work.) Java
features threads by means of an ad-hoc class called Thread; this class has two
methods Thread.start() and Thread.join() for spawning and joining
threads. The consistency between threads that share objects is enforced by
synchronized blocks, a linguistic construct that may be defined either for

169



170 The JaDA Tool

Figure 8.1 Cases of circular dependencies that may lead to deadlocks. (Lock acquisitions
are represented with squares, the corresponding release is marked with a circle).

simple code blocks or for method bodies [3, Chapter 17]1. It turns out that the
dependencies defined by synchronized blocks may be circular. These prob-
lems are difficult to detect or anticipate, since they may not occur during every
execution. Figure 8.1 shows (a timeline representation of) some examples of
deadlocked programs. At the time of writing this chapter, the Oracle Bug
Database2 reports more than 40 unresolved bugs due to deadlocks, while the
Apache Issue Tracker3 reports around 400 unresolved deadlock bugs. Clearly,
a deadlock may have catastrophic effects for the overall functionality of a
software system.

In this chapter, we present an end-to-end automatic analyzer for detecting
potential deadlock bugs of Java programs at compilation time – JaDA, the
Java Deadlock Analyzer tool. JaDA addresses the compilation target of every
Java application – the Java Virtual Machine Language, JVML, also called
Java bytecode – and extracts abstract models out of it by means of an
inference system. These abstract models are successively analyzed.

The decision of addressing JVML instead of Java was motivated by two
reasons: Java is too complex and it has no reference semantics. On the
contrary, JVML is simple – it has 198 instructions that can be sorted into 7

1There are also other mechanisms that remain out of the scope of this work, such
as, the volatile variables and the higher-level synchronization API defined on package
java.util.concurrent.

2http://bugs.java.com/
3https://issues.apache.org/jira



8.2 Example 171

different groups of similar instructions – and has a reference semantics that
is defined by the behavior of the Java Virtual Machine (JVM) [3, Chapter 6].
Analyzing JVML has also other relevant advantages: addressing programming
languages that are compiled to the same bytecode, such as Scala [4],
and the possibility to analyze proprietary software whose sources are not
available.

The inference system of JaDA consists of a number of rules that analyze
the effects of the instructions on the synchronization process. The types
inferred from the bytecode, called lams [1, 2, 5, 6], are functional programs
that define dependencies between threads. Then JaDA uses a variation of
the algorithm defined in [1, 2] for detecting circularities in lams, and reports
potential threats as output of the analysis. The tool also exhibits the exe-
cutions causing deadlocks, by linking the dependencies with the chunk of
source code that originated them, thus easing the analysis of false positives.

The current release of JaDA covers most of the JVML, including threads
and synchronizations, constructors, arrays, exceptions, static members, inter-
faces, inheritance, recursive data types. Few synchronization-related features
are not covered by the current release, such as wait-notify-notifyAll
operations, dynamic class loading and reflection.

The rest of the chapter is organized as follows. Section 8.2 presents a
motivating example of a recursive Java program that creates a (statically)
unbounded number of threads. This is one of the main achievements so far
and the theory overviewed in Section 8.3 will be explained by means of it.
Section 8.4 describes the tool in some detail, highlighting implementation
issues. Section 8.5 analyses the current limitations of JaDA and Section 8.6
reports an assessment of JaDA with respect to state-of-the-art tools for Java
deadlock analysis. Finally we conclude in Section 8.7.

8.2 Example

Figure 8.2 reports the Java class Network and part of its JVML. The main

method creates a network of n threads by invoking buildNetwork – say
t1, ¨ ¨ ¨ , tn – that are all potentially running in parallel with the caller – say
t0. Every two adjacent threads share an object, which is also created by
buildNetwork.

The buildNetwork method will produce a deadlock depending on its
actual arguments: it is deadlock-free when it is invoked with two differ-
ent objects, otherwise it may deadlock (if also n ą 0). Therefore, in the



172 The JaDA Tool

class Network{

public void main(int n){

Object x = new Object();

Object y = new Object();

// deadlock

buildNetwork(n, x, x);

// no deadlock

//buildNetwork(n, x, y);

}

public void buildNetwork(int n,

Object x, Object y){

if (n==0) {

takeLocks(x,y) ;

} else {

final Object z = new Object() ;

//anonymous Thread child class

Thread thr = new Thread(){

public void run(){

takeLocks(x,z) ;

}} ;

thr.start();

this.buildNetwork(n-1,z,y) ;

}

}

public void takeLocks(Object x,

Object y){

synchronized (x) {

synchronized (y) { }

}

}

}

public void buildNetwork(int n, Object x, Object y)

0 iload_1 //n

1 ifne 13

4 aload_0 //this

5 aload_2 //x

6 aload_3 //y

7 invokevirtual 24 //takeLocks(x, y):void

10 goto 50

13 new 3

16 dup

17 invokespecial 8 //Object()

20 astore 4 //z

22 new 26

25 dup

26 aload_0 //this

27 aload_2 //x

28 aload 4 //z

30 invokespecial 28 //Network$1(this, x, z)

33 astore 5 //thr

35 aload 5 //thr

37 invokevirtual 31 //start():void

40 aload_0 //this

41 iload_1 //n

42 iconst_1

43 isub

44 aload 4 //z

46 aload_3 //y

47 invokevirtual 36 //buildNetwork(n-1, z, y):void

50 return

public void takeLocks(Object x, Object y)

0 aload_1; //x

1 dup;

2 astore_3;

3 monitorenter; //acquires x

4 aload_2; //y

5 dup;

6 monitorenter; //acquires y

7 monitorexit; //releases y

8 aload_3;

9 monitorexit; //releases x

16 return;

Figure 8.2 Java Network program and corresponding bytecode of methods buildNetwork
and takeLocks. Comments in the bytecode give information of the objects used and/or
methods invoked in each instruction.

case of Figure 8.2, the program is deadlocked, while it is deadlock free
if we comment the instruction buildNetwork(n,x,x) and uncomment
buildNetwork(n,x,y).

The problematic issue of Network is that the number of threads is not
known statically – n is an argument of main. This is displayed in the bytecode
of buildNetwork in Figure 8.2 by the instructions at addresses 30 and 37 that



8.3 Overview of JaDA’s Theory 173

respectively created a new thread and start it, and by the recursive invocation
at instruction 47.

8.3 Overview of JaDA’s Theory

JaDA’s theory relies on two main techniques: (i) an inference type system
for extracting abstract models out of JVML instructions, and (ii) a fixpoint
algorithm for analyzing the models. We overview the two techniques in the
following subsections; in the last subsection we discuss the JaDA behavioral
types for the buildNetwork example.

8.3.1 The Abstract Behavior of the Network Class

Figure 8.3 details the output of JaDA for the Network class in Figure 8.2. The
types have been simplified for readability: the actual JaDA types are more
complex and verbose. Some comments (in gray) explain the side effects of
invocations, other comments (in yellow) correspond to the lines that are com-
mented in Figure 8.2. The behavior of main begins by calling the constructor
of the class Object. Notice that, after such invocation, the structure of x and
y is known. Then the type reports the invocation to buildNetwork.

The behavior of takeLocks is the parallel composition of two depen-
dencies corresponding to the acquisition of the locks of x and y. Every
dependency is formed by the last held lock and the current element. Notice
that every method receives an extra argument corresponding to the last
acquired lock at the moment of the invocation, in this case that argument
is u.

The behavior of buildNetwork has five states: (i) the invocation to
takeLocks, (ii) the creation and initialization of the object z, (iii) the creation
and initialization of the thread thr, (iv) the spawn of thr, (v) and the
recursive invocation (in parallel with the spawn of thr). The buildNetwork
method also reports one spawned thread as side effect. This may appear
contradictory (because buildNetwork spawns n threads). However, in this
case JaDA is able to detect that thr is the only thread (from those created) that
may be relevant (for the deadlock analysis) in an outer scope. This deduction
is done by considering the objects in the record structure of thr.

The constructors of Object and Thread have an empty behavior. On
the contrary, the constructor of the class Network$1 is more complex
(Network$1 is the name the JVM automatically gives to the anonymous



174 The JaDA Tool

m
a
i
n
(
t
h
i
s

|
t
,
u
)
:
T
{t
h
r
}

=

O
b
j
e
c
t
.
i
n
i
t
(
x

|
t
,
u
)

+
O
b
j
e
c
t
.
i
n
i
t
(
y

|
t
,
u
)

+
/
/
s
t
r
u
c
t
u
r
e

o
f

x
:
x
[
]

a
n
d

y
:
y
[
]

/
/
d
e
a
d
l
o
c
k

b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
x

|
t
,
u
)

/
/
n
o
-
d
e
a
d
l
o
c
k

/
/
b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
y

|
t
,
u
)

/
/
c
r
e
a
t
e
s

u
n
s
y
n
c

t
h
r
e
a
d
:

t
h
r

t
a
k
e
L
o
c
k
s
(
t
h
i
s
,
x
,
y

|
t
,
u
)

=
t
:
(
u
,
x
)

&
t
:
(
x
,
y
)

b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
y

|
t
,
u
)

:
T
{t
h
r
}=

t
a
k
e
L
o
c
k
s
(
t
h
i
s
,
x
,
y

|
t
,
u
)

+

O
b
j
e
c
t
.
i
n
i
t
(
z

|
t
,
u
)

+
/
/
z
:
z
[
]

N
e
t
w
o
r
k
$
1
.
i
n
i
t
(
t
h
r
,

t
h
i
s
,

x
,

z
|

t
,

z
)
+

/
/
t
h
r
:
t
h
r
[
t
h
i
s
$
0
:
t
h
i
s
[
]
,

v
a
l
$
x
:
x
[
]
,

v
a
l
$
z
:

z
[
]
]

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
r

|
t
h
r
,
u
1
)

+

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
r

|
t
h
r
,
u
1
)

&
b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
z
,
y

|
t
,
u
)

O
b
j
e
c
t
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)
:
t
h
i
s
[
]

=
0

/
/
n
o

s
i
d
e

e
f
f
e
c
t
s

T
h
r
e
a
d
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)
:
t
h
i
s
[
]

=
0

/
/
n
o

s
i
d
e

e
f
f
e
c
t
s

N
e
t
w
o
r
k
$
1
.
i
n
i
t
(
t
h
i
s
,

x
1
,

x
2
,

x
3
|

t
,

u
)
:
t
h
i
s
[
t
h
i
s
$
0
:
x
1
,

v
a
l
$
x
:
x
2
,

v
a
l
$
z
:
x
3
]

=

T
h
r
e
a
d
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
i
s
[
t
h
i
s
$
0
:
x
1
,
v
a
l
$
x
:
x
2
,
v
a
l
$
z
:
x
3
]
|
t
,
u
)

=
t
a
k
e
L
o
c
k
s
(
x
1
,
x
2
,
x
3
|
t
,
u
)

F
ig

ur
e

8.
3

B
u
i
l
d
N
e
t
w
o
r
k

’s
la

m
s.



8.3 Overview of JaDA’s Theory 175

Thread child class4 instantiated inside the method buildNetwork of the
class Network). Being defined as an inner class, Network$1 has access to the
local variables in the scope in which it has been created, namely the variables
x, z and the this reference to the container instance. The JVM addresses
this by passing these variables to the constructor of the class and assigning
them to internal fields, in this case named val$x, val$z and this$0. Notice
that the behavior of the constructor keeps track of two important things:
the invocation to the constructor of the parent class Thread.init and the
changes in the carrier object which goes from this to this[this$0:x1,

val$x:x2, val$z:x3] where xi are the formal arguments.
Finally, the behavior of the run method from the class Network$1 con-

tains only the invocation to the takeLocks method. Notice that run method
assumes a certain structure from the carrier object.

8.3.2 Behavioral Type Inference

The typing process is done bottom-up, in a compositional way. That is, a
type is derived for every JVML instruction; the type of each method is the
composition of the types of the instructions it contains. Similarly, the type
of a program is the set of type of the methods therein. JaDA types are not
standard types, such as integers, booleans, etc. They are models of the abstract
behavior of a program, called behavioral types, that hold information about
concurrency and synchronizations of every execution path.

In particular, the types of instructions retain two key pieces of information
in JaDA:

• the dependencies, written t:(a,b), to be read as “thread t acquires the
lock of object b while it is holding the lock of a”, and

• the method invocations, written C.m(args| t, a), which means that
the method m of class C is invoked with arguments args (that include the
carrier object) in the thread t and while holding the lock of a.

In order to verify the consistency of parallel threads, behavioral types also
take into account the (reading and writing) effects on objects. The types of
the instructions can be composed either sequentially with the ` operation, or
in parallel with the � operation.

In JaDA, the behaviors of methods are the sequential composition of
instructions’ types in method’s body plus the sum of their effects. The effects

4https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html



176 The JaDA Tool

also include both threads spawns and thread joins in the method body. It
is worth to remark that thread creations and synchronizations in JVML are
defined by method invocations of the class Thread; therefore they are typed
as method invocations with an ad-hoc management of spawns and joins.

The flow of the inference of behavioral types is described by the chart
in Figure 8.4. The algorithm starts with an (empty) Behavioral Class Table
(BCT), a structure where a behavioral description is associated to every
method, and a sorted set of pending methods which initially contains all the
methods of the program. The algorithm takes the first element of the set and
types it (see below). The resulting effects are compared to the previous state
of the BCT: if a change is found, the method is updated and every caller (every
method depending on the current one) is added to the pending methods list.
The algorithm terminates when the BCT reaches an stable state.

A similar technique is used to type the body of each method. The process
is described in the chart shown in Figure 8.5. In this case, the inference
process inside a method starts with a queue of pending instructions, which
initially contains the first instruction. Each instruction is typed and the
instruction state is updated (we have defined a set of typing rules in [7]). If the
instruction type has been updated then the subsequent instruction(s) need to
be typed (again). Notice that there may be several subsequent instructions, for
example when the current instruction is a conditional. The state of an instruc-
tion contains an abstraction of the operand stack, the local variables, the local
heap, the threads created upto that instruction and the chain of acquired locks

Figure 8.4 Type inference of methods’ behaviors in JaDA.



8.3 Overview of JaDA’s Theory 177

Figure 8.5 Type inference of method’s bodies in JaDA.

(this information allows us to define the lam [2] of an instruction). Once no
state is updated anymore, the type of the corresponding method is computed
accordingly.

8.3.3 Analysis of Behavioral Types

The analysis of the inferred types is also performed iteratively. The overall
approach is described by the chart in Figure 8.6. The initial step computes
the abstract state of every method. This state is a sequence of parallel
compositions of dependency pairs – function invocations in lams are deleted.
The algorithm proceeds instruction by instruction, by expanding and cleaning
its current state. The expansion process unfolds every invocation, the cleaning
process removes pairs containing a fresh name (names not belonging to the
method arguments or effects). Removing such pairs is crucial for termination
because it allows us to keep the set of dependencies finite. In particular, the
cleaning is performed by computing the transitive closure of the dependency
pairs (this way we recover dependencies that are not direct and involve fresh
names) and keeping only those whose elements are not fresh. In case we find
a circular dependency formed only by fresh names then a special dependency
pair is inserted (and this will ensure the presence of a deadlock). The full
details of this algorithm are described in [1, 2].

Once all abstract states have been computed, the algorithm returns the
circularities present in the main method.



178 The JaDA Tool

Figure 8.6 JaDA Analysis of behavioral types.

As an example, we apply the algorithm of Figure 8.6 to the Network

behaviour in Figure 8.3. For simplicity we have excluded the methods with
empty behaviour as well as their invocations.

Initially, an empty state is associated to every method. Using this model,
we perform the first iteration and we get (we denote a set with [ e1, e2,

¨ ¨ ¨ ] where elements ei are dependencies t:(x,y); sets of sets are denoted
by [ [ e1, e2, ¨ ¨ ¨ ], ¨ ¨ ¨ ]):

main(this | t,u) thr = [

[] // no states resulting from buildNetwork(this,_,x,y | t,u)

] = [] // expanding and cleaning result empty

takeLocks(this,x,y | t,u) = [

[ t:(u,x) & t:(x,y) ]

] = [

[ t:(u,x) & t:(x,y) & t:(u,y)] // t:(u,y) is added by transitivity

]

buildNetwork(this,_,x,y | t,u) thr = [

[ t:(u,x) & t:(x,y) & t:(u,y)], // invocation of takeLocks

[], // invocation of Network$1.run

[], // invocation of Network$1.run and buildNetwork



8.3 Overview of JaDA’s Theory 179

] = [

[ t:(u,x) & t:(x,y) & t:(u,y) ]

]

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = [

[ t:(u,x2) & t:(x2,x3) & t:(u,x3) ] // invocation of takeLocks

] = [

[ t:(u,x2) & t:(x2,x3) & t:(u,x3) ]

]

Since the states of methods is changed (all except main) we perform a second
iteration, which gives:

main(this | t,u) thr = [

[ t:(u,x) & t:(x,x) & t:(u,x)] // state of buildNetwork(this,_,x,y | t,u)

] =

[

[] // the cleaning process removes dependencies that contain fresh names

// the dependency t:(x,x) is removed because it is a reentrant lock

]

takeLocks(this,x,y | t,u) = [

[ t:(u,x) & t:(x,y) ]

] = [

[ t:(u,x) & t:(x,y) & t:(x,y)] // this is the fixpoint for takeLocks

]

buildNetwork(this,_,x,y | t,u) thr = [

[ t:(u,x) & t:(x,y) & t:(u,y)], // invocation of takeLocks

[ thr:(u,x) & thr:(x,z) & thr:(u,z)], // invocation of Network$1.run

[[ thr:(u,x) & thr:(x,z) & thr:(u,z)] & [ t:(u,z) & t:(z,y) & t:(u,y) ]]

// invocation of Network$1.run and buildNetwork

] = [

[ t:(u,x) & t:(x,y) & t:(u,y)], // this state has not changed

[ t1:(u,x)],

[ thr:(u,x) & t_thr:(x,y) & t:(u,y) ] // t_thr:(x,y) is new: it is a

// dependency between x and y involving the threads t and thr

]

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = [

[ t:(u,x2) & t:(x2,x3) & t:(u,x3) ] // invocation of takeLocks(x1,x2,x3 | t,u)

] = [

[ t:(u,x2) & t:(x2,x3) & t:(u,x3) ] // this is the fixpoint for Network$1.run

]

Since buildNetwork is changed, we need a third iteration. The computation
of the dependencies of main gives

main(this | t,u) thr = [// states resulting from buildNetwork(this,_,x,x | t,u)

[ t:(u,x) & t:(x,x) & t:(u,x) ],

[ thr:(u,x) ],



180 The JaDA Tool

[ thr:(u,x) & t_thr:(x,x) & t:(u,y) ]

] =

[

[t_thr:($,$)]

]

In particular, in the states of main, after the transitive closure, contain
t thr:(x,x), which is a circular dependency involving two threads. Instead
of writing the dependency in that way (using a fresh name x), we write it
as t thr:($,$), where x is replaced by a special name $. It is worth to
notice that t thr:($,$) gives two informations: (i) the deadlock is created
by threads t and thr, (ii) the object name is $, which indicates that the
deadlock is produced regardless of the arguments of the invocation. Since
t thr:($,$) denotes a circularity, the algorithm might stop. Actually, we
decided not to stop JaDA at this point, we let it continue in order to collect
every circularity.

JaDA output for the Network program is reported in Figure 8.7. In this
case, JaDA has been set to analyze only the Network class (see analysis-
extent in Section 8.4.4). Therefore, it warns about non-analyzed dependen-
cies: the constructors from classes Thread and Object (whose types are
considered empty – the actual type of these methods is nevertheless empty).
JaDA reports 1 deadlock after the analysis, and outputs its trace. In this

Figure 8.7 JaDA analysis output for the Network program.



8.4 The JaDA Tool 181

case there are two threads involved in the deadlock: those with id 204 (the
one running main) and 229. The deadlock is caused by two monitorenter

instructions on objects 346 and 211, taken in different order by the two
threads. The tool outputs the computational traces ending with the two
monitorenter instructions; the numbers in the traces represent the lines in
the source5.

8.4 The JaDA Tool

In this section we describe the main features of the JaDA tool, as well as,
some key implementation details.

8.4.1 Prerequisites

JaDA has been designed to run on bytecode generated by the Java com-
piler6 and it assumes that the bytecode has been already checked by the
Java Bytecode Verifier (therefore it does not contain either syntactic or
semantic errors). JaDA also requires that every dependency is matched by
a corresponding bytecode. Although the bytecode is not executed, JaDA

computes every necessary information to solve key issues for the analysis,
such as the informations about inheritance. The loading of the existing types
is done dynamically in a sand-boxed class loader7 to avoid security risks.
The full set of dependencies can be specified in JaDA through a classpath-like
configuration (see property class-path in Section 8.4.4). Finally, JaDA also
assumes that the code targeted by the analysis fits with the current limitations
of the tool (see Section 8.5).

8.4.2 The Architecture

The JaDA analysis starts by parsing of the bytecode of a program and
its dependencies. This is a cumbersome task because of the length and
verbosity of the JVML syntax. JaDA relies on the ASM framework [8] for
the bytecode extraction and manipulation. (Other third party tools have

5The line numbers in the output may not accurately match the example in Figure 8.2,
because the latter has been slightly reduced for presentation purposes.

6We have tested JaDA against the 1.6, 1.7 and 1.8 versions of the Java compiler, and against
the 1.8 version of the Eclipse Java Compiler (ECJ).

7https://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html



182 The JaDA Tool

been also designed for manipulating and analyzing the bytecode: the page
https://java-source.net/open-source/bytecode-libraries con-
tains a list of existing tools for this purpose. ASM provides a wide set of
tools for interacting with the bytecode, including code generation and code
analysis. It is also light-weight, open source, very well-documented and up
todate with the latests versions of Java.

Figure 8.8 shows part of the JaDA architecture. In the figure, nodes
are classes while arrows denote inheritance relationships. In the center of
the image, there are the classes of the ASM framework; the other classes
implement the technique so far described.

Values. A basic element of the architecture are the Value objects. JaDA uses
two types of values: RecordTree store the methods’ signature in the BCT,
while RecordPtr store the state of local variables and the operand stack.
Updating the Value elements amounts to upgrade every other element of the
JaDA architecture. In the following paragraphs we discuss their functionality.

Frames. The JDAFrame class extends the ASM Frame by defining two impor-
tant methods: execute and merge. The method execute implements the
typing rules used by JaDA. It relies on an abstract interpreter that executes
symbolically the current instruction with the given stack and local variables
state. The method merge is invoked when the analysis process reiterates
over an already typed frame. This method implements the logics of the has
changed condition in the type inference of method bodies, see Section 8.3.2.

Figure 8.8 JaDA architecture.



8.4 The JaDA Tool 183

for(int i = 0; i < 10; i++){

synchronized (a) {

synchronized (b) {

}

}

}

20 ...

21 aload_1; //a

22 dup;

23 astore 4;

25 monitorenter;

26 aload_2; //b

27 dup;

28 monitorenter;

29 monitorexit;

30 aload 4;

32 monitorexit;

40 iinc 3 1; //i++

43 iload_3; //i

44 bipush 10;

46 if_icmplt -25; //LOOP condition

48 ...;

Figure 8.9 Java while loop with nested synchronizations and the corresponding bytecode.

The decision on whether the subsequent frames must be checked again is
taken upon the result of this method. To illustrate this consider the example
from Figure 8.9.

When the typing process arrives each instruction for the first time its
current Frame changes from the empty frame to the frame containing infor-
mation about the instruction. Namely this first frame will contain the local
variable status, the invocations and the existing locks and threads at each
instruction. This changes enforces every frame to calculate its continuation at
least one time. The following sequence shows the frames calculation for this
chunk of code (only the relevant instructions are included):
...

Fr.21:{CurrentThread: main, Locks:{}}

...

Fr.25:{CurrentThread: main, Locks:{a}}

...

Fr.28:{CurrentThread: main, Locks:{a,b}}

Fr.29:{CurrentThread: main, Locks:{a}}

Fr.32:{CurrentThread: main, Locks:{}}

...

Fr.46:{CurrentThread: main, Locks:{}}

Fr.21:{CurrentThread: main, Locks:{}}

Fr.48:{CurrentThread: main, Locks:{}}

...

Notice that after calculating the frame 46, there are two possible contin-
uations: 21 and 48. The second time Fr.21 is calculated it produces the same
known result, therefore its continuation (Fr.22) is not calculated again. The
calculation process continues then sequentially with Fr.48.



184 The JaDA Tool

Interpreter. The JVM is a stack machine, every operation pops a certain
number of elements off the stack and pushes on its result. The JDAInt-
erpreter class extends the ASM Interpreter in order to comply with the
values representations in JaDA. In particular, JDAInterpreter implements
an important feature of our tool, namely the output of the traces potentially
causing deadlocks. In fact, it returns the variable names of the objects
involved, the stack trace chain and the related line numbers in the original
Java code 8.

Analyzer. The ASM default analyzer supports very basic data-flow analysis
limited to the scope of a single method. Similarly, JaDA analysis of a
method does not go beyond its scope. However JDAAnalyzer extracts the
necessary information – the type – that supports the compositional analysis.
This part is implemented by the algorithm described in Figure 8.5, which
is the building block of our tool. Consequently, JDAAnalyzer analyses the
whole program by computing the final state of the BCT according to the
algorithm in Figure 8.4. The final step of JDAAnalyzer is the computation
of the models of the methods in the BCT as described in the algorithm in
Figure 8.6.

8.4.3 The Current JVML Coverage

The theory of JaDA has been studied in [7] where we have defined the typing
rules for a number of complex features of JVML, in particular, threads, syn-
chronizations, static constructors, recursive data structures, inheritance and
polymorphism, reflection and native methods. For a subset of this language –
those featuring threads and synchronizations – we also delivered a correctness
proof [9]. In this section we briefly overview our solutions for the main
features of JVML that are covered in the current release of JaDA.

Static constructors. Static constructors are problematic because they are not
explicitly invoked by the JVM. In fact, those are invoked on-the-fly by the JVM
when the first (static) access to the containing class is performed. That is, the
code of a static constructor can potentially precede any operation involving
a static member of its class. In order to deal with this issue in a sound way,
we model every static operation as a non-deterministic choice between the

8This is possible only when the bytecode has been compiled including debugging
information.



8.4 The JaDA Tool 185

type of the operation per-se and the typing of the static constructor of the
class followed by the original operation. As one can imagine this makes the
analysis computationally complex because the number of possible behaviors
exponentially increases. The alternative (and the default choice) in JaDA is to
assume that static constructors are all executed before the main method (see
the static-constructor option in Section 8.4.4). This is a safe choice
provided that concurrent operations do not occur within static constructors
(which is often the case).

Recursive data structures. As discussed in Section 8.3.2, the analysis of
JaDA relies on several iterative processes. The termination of these iterations
strongly relies on the constraint that the number of object names is always
finite. To ensure this finiteness constraint, the recursive objects are abstracted
during the inference process. In particular, the inference replaces the field
values whose class is already present in the object structure by a generic
representative value. These representative values are treated in an ad-hoc way
during the analysis of circular dependencies. Namely, they are considered
equal to any other object of the same class (that is their identity is not
guaranteed). Our assessments indicate that this over-approximation does not
jeopardise JaDA’s precision when the elements of the recursive structure are
pairwise different and threads act in a uniform way on them. On the contrary,
the tool may return a number of false positives that is proportional to the
dimension of the structure.

Arrays. Since JaDA does not process numerical expressions, it considers
array[2] equal to array[3]. Therefore, JaDA manages arrays in a similar
way it does for recursive data types. Every element in the array is represented
by a unique object and, as for recursive data structures, this may be the cause
of over-approximations. For example, JaDA returns a false positive when two
different threads in parallel perform a lock operation on different objects of
the array.

Inheritance and polymorphism. Inheritance and, in particular, polymor-
phism are sources of non-determinism. In fact, since it is not possible to
resolve the runtime type of an object at static time, we cannot determine
in a precise way the instance method being invoked over it. To deal with
this issue in a sound way, JaDA substitutes every invocation with the non-
deterministic choice among the method implementations in the type hierarchy



186 The JaDA Tool

of the carrier. Enhancing this process to increase the precision of the analysis
is currently an ongoing work. In the current release, whenever it is possible
to derive the runtime type, we drop the wrong invocations.

Reflection, native methods, alternative concurrency models. In Java,
like in many modern programming languages, there is some support for meta-
programming, namely the capacity of a program to modify itself during its
execution. Java also admits (native) methods and concurrency models that
have no bytecode implementation. These methods are treated in an ad-hoc
manner by the JVM. In all these cases, since there is not an explicit bytecode
implementation, there is no evidence of what will happen at static time.
Because of this reason, JaDA by default assumes a void behavior in these
situations. Although, users can manually provide the behavior descriptions
for methods involving such operations (see custom-types option in Sec-
tion 8.4.4). This is particularly useful in the case of native methods (which
are implemented in C), where users provide a more accurate behavior by
analyzing its actual implementation.

8.4.4 Tool Configuration

In order to provide some flexibility, JaDA supports a set of settings to
customize the analysis.

<target>: this setting specifies the target file or folder to analyze. It is
mandatory. The type of files admitted are: Javaclass files (“.class”),
Java jar files (“.jar”) and compressed zip files (“.zip”). In the case of
folders, the content of the folder is analyzed recursively.

verbose[=<value>]: the value ranges from 1 to 5, the default and more
verbose value is 5.

class-path <classpath>: Standard Java classpath description. If the
target contains dependencies other than those in the standard library,
they must be specified via this option.

target-method <methodName>: fully qualified target method (should be
a void method without arguments). It compels JaDA to analyse the
specified method. If this option is not set, the analysis chooses the first
main method found.



8.5 Current Limitations 187

analysis-extent[=<value>]: Indicates the extent of the analysis. Possi-
ble values are full: analyzes every dependency including the system
and classpath-included libraries; classpath: analyzes every library in
the classpath (this is the default value); custom: analyzes the classes
specified through the property additional-targets; and self: does
not analyze any class but the specified target.

additional-targets <classes>: if analysis-extent is set to custom
this property must contain a comma separated list of the fully qualified
names of a subset of classes in the classpath to include in the analysis.
Such a feature is useful for avoiding typing known libraries.

custom-types <file>: a setting file to specify predefined behavioral
types.

static-constructors[=<value>]: indicates when the static constructors
should be processed, the possibilities are before-all and
non-deterministically. The default option is before-all.

8.4.5 Deliverables

JaDA is available in three forms: a demo website [10], a command line tool
(see Figure 8.7) and an Eclipse plug-in. All of them share the same core: a
prototype implementation of the technique discussed in [7]. At the moment of
writing this chapter, the demo website only allows to analyze single-file pro-
grams and to use a subset of the options previously described. The command
line tool and the Eclipse plug-in are available through direct requests. The
Eclipse plug-in output also displays the execution graph causing the deadlock
with links to the source code that originates it (see Figure 8.10).

8.5 Current Limitations

The current version of JaDA does not cover a coordination mechanism
between thread that is quite usual in Java: the wait-notify-notifyAll
operations. There are also other less critical limitations, such as the analysis
of native code and reflection operations. However, these features can be
covered by manually specifying the behavior of the corresponding methods
(see property custom-types in Section 8.4.4).

The methods wait-notify-notifyAll are public and final of the class
Object; therefore they are inherited by all classes and cannot be modified.



188 The JaDA Tool

Figure 8.10 JaDA Eclipse plug-in screenshot.

The invocations to wait, notify and notifyAll succeed for threads that
already hold the lock of the object a on the stack. In this case, the wait

instruction moves its own thread to the wait set of a and the object is
relinquished by performing as many unlock operations as the integer stored
in the lock field of a. The instructions notify and notifyAll respectively
wake up one thread and all the threads in the wait set of a. The woken-up
threads are re-enabled for thread scheduling, which means competing for
acquiring the lock of a again. The winner will lock a as many times it did
on a before the wait-operation.

Below we briefly describe the solution we are currently investigating for
extending JaDA to cover wait-notify-notifyAll.

We use two new type of dependency pairs: t1 : pa, anq, which means “the
thread t1 sends a notification on a while holding its lock, and t2 : pa, awq,
which means “the thread t2 awaits a notification on a while holding its
lock”. These two pairs are respectively produced by notify and wait

methods. The problem is that, even if the abstract model retains a term
t1 : pa, anq�t2 : pa, awq expressing that the wait and notify occur in
parallel threads (notification-wait matching couple), we cannot conclude that
the program is deadlock-free. This because the above term does not convey
any information about what operation has been performed before. In fact, a
wrong ordering might cause the thread t2 to wait indefinitely. To overcome



8.6 Related Tools and Assessment 189

this problem, we extend JaDA with an additional analysis that detects the
wait pairs that can potentially remain unsatisfied. This solution is extensively
discussed in [7].

8.6 Related Tools and Assessment

JaDA has been assessed with respect to a number of state-of-the-art tools. In
particular, in Table 8.1, the tools have been classified according to the type
of analysis they perform (see [7] for a discussion about analysis techniques
for deadlock detection). We have chosen Chord for static analysis [11],
Sherlock for dynamic analysis [12], and GoodLock for hybrid analysis [13].
We have also considered a commercial tool, ThreadSafe 9 [14].

We have analyzed a number of programs that exhibit a variety of sharing
patterns. The source of all benchmarks in Table 8.1 is available either at [11,
12] or in the JaDA-deadlocks repository10.

Since the current release of JaDA does not completely cover JVM, in
order to gain preliminary experience, we modified the Java libraries and
the multithreaded server programs of RayTracer, MolDyn and MonteCarlo
(labelled with “(*)” in the Table 8.1) and implemented them in our system.

Table 8.1 Comparison with different deadlock detection tools. The inner cells show the
number of deadlocks detected by each tool. The output labelled “(*)” are related to modified
versions of the original programs: see the text

Static Hybrid Dynamic Commercial
Benchmarks JaDA Chord GoodLock Sherlock ThreadSafe

Sor 1 1 7 1 4
RayTracer (*) 0 0 8 2 0
MolDyn (*) 0 0 6 1 0
MonteCarlo (*) 0 0 23 2 0
BuildNetwork 3 0 0
Philosophers2 1 0 1
PhilosophersN 3 0 0
StaticFields 1 1 1
ThreadArrays 1 1 1
ThreadArraysWJoins 1 1 0
ScalaSimpleDeadlock 1
ScalaPhilosophersN 3

9http://www.contemplateltd.com/threadsafe
10https://github.com/abelunibo/Java-Deadlocks



190 The JaDA Tool

This required little programming overhead; in particular, we removed volatile
variables, avoided the use of Runnable interfaces for creating threads, and
reduced the invocations of native methods involved in I/O operations. Out of
the four chosen tools, we were able to install and effectively test only two
of them: Chord and ThreadSafe; the results corresponding to GoodLock

and Sherlock come from [12] because we were not able to get the sources
of the tools and run our new programs (*). We also had problems in testing
Chord with some of the examples in the benchmarks, perhaps due to some
misconfigurations, that we were not able to solve because Chord has been
discontinued.

The first block of programs belongs to a well-known group used as bench-
marks for several Java analysis tools. In its current state JaDA only detects
1 deadlock in all of the four analyzed programs from this group. It gives
responses that are similar to ThreadSafe and Chord (ThreadSafe appears
a bit more imprecise on Sor). The programs in the second block corresponds
to examples designed to test our tool against complex deadlock scenarios like
the Network program. We notice that both Chord and ThreadSafe fail to
detect those kinds of deadlocks. The third group reports the analysis of two
examples of Scala programs [4]. These programs have been compiled with
the Scala compiler 2.11 whose target is Java bytecode. We remark that, to
the best of our knowledge, at the moment of writing this chapter, there is no
static deadlock analysis tools for such language (for this reason the entries
corresponding to the other tools are empty).

We think that the results in Table 8.1 are encouraging and we hope
to deliver more convincing ones as soon as JaDA overcomes its current
limitations.

8.7 Conclusions

JaDA is a static deadlock analysis tool that targets JVML. Therefore it supports
the analysis of every compiled Java program, as well as, every programs
written in languages that are also compiled in JVML, like Scala. The tech-
nique underlying JaDA uses a behavioral type system that abstract the main
features of the programs with respect to the concurrent operations.

JaDA is designed to run in an automatic fashion, meaning that the
inference of the program type and the subsequent analysis could be done
unassisted. Nevertheless, user intervention is possible and may enhance the
precision of the analysis, for example in presence of native methods.



References 191

Even though the tool is still under development, we have been able to
asses it by analyzing a set of Java and Scala programs. This contribution
also reports a comparison between JaDA’s results and those of existing dead-
lock analysis tools, amongst which is a commercial grade one. The results
obtained so far are very promising and we expect to gain more precision as
the development continues.

References

[1] N. Kobayashi and C. Laneve, “Deadlock analysis of unbounded process
networks,” Information and Computation, vol. 252, pp. 48–70, 2017.

[2] E. Giachino, N. Kobayashi, and C. Laneve, “Deadlock analysis of
unbounded process networks,” in Proceedings of 25th International
Conference on Concurrency Theory CONCUR 2014, vol. 8704 of
Lecture Notes in Computer Science, pp. 63–77, Springer, 2014.

[3] J. Gosling, W. N. Joy, and G. L. S. Jr., The Java Language Specification.
Addison-Wesley, 1996.

[4] M. Odersky and al., “An Overview of the Scala Programming Lan-
guage,” Tech. Rep. IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[5] E. Giachino and C. Laneve, “Deadlock detection in linear recursive
programs,” in 14th Int. School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2014, vol. 8483
of Lecture Notes in Computer Science, pp. 26–64, Springer, 2014.

[6] E. Giachino, C. Laneve, and M. Lienhardt, “A framework for deadlock
detection in core ABS,” Software and Systems Modeling, vol. 15, no. 4,
pp. 1013–1048, 2016.

[7] A. Garcia and C. Laneve, “Deadlock detection of Java Bytecode.” A pre-
liminary version is available at http://jada.cs.unibo.it/data/
Doc/jada-draft-lncs.pdf, 2016.

[8] E. Bruneton, “Asm 4.0 a java bytecode engineering library.” http:

//download.forge.objectweb.org/asm/asm4-guide.pdf. Last
accessed: 2016-12-03.

[9] A. Garcia, “Static analysis of concurrent programs based on behavioral
type systems.” Available at http://jada.cs.unibo.it/data/Doc/
Abel-Garcia-PhD-Thesis-draft.pdf, 2017.

[10] A. Garcia and C. Laneve, “JaDA – the Java Deadlock Analyzer.”
Available at http://jada.cs.unibo.it, 2016.



192 The JaDA Tool

[11] M. Naik, C. Park, K. Sen, and D. Gay, “Effective static deadlock
detection,” in 31st International Conference on Software Engineering
(ICSE 2009), pp. 386–396, ACM, 2009.

[12] M. Eslamimehr and J. Palsberg, “Sherlock: scalable deadlock detection
for concurrent programs,” in Proceedings of the 22nd International Sym-
posium on Foundations of Software Engineering (FSE-22), pp. 353–365,
ACM, 2014.

[13] S. Bensalem and K. Havelund, “Dynamic deadlock analysis of multi-
threaded programs,” in in Hardware and Software Verification and
Testing, vol. 3875 of Lecture Notes in Computer Science, pp. 208–223,
Springer, 2005.

[14] R. Atkey and D. Sannella, “Threadsafe: Static analysis for java concur-
rency,” ECEASST, vol. 72, 2015.



9
Type-Based Analysis

of Linear Communications

Luca Padovani

Dipartimento di Informatica, Università di Torino, Italy

Abstract

This chapter presents a tool called Hypha for the type-based analysis of
processes that communicate on linear channels. We describe the specification
language used to model the systems under analysis (Section 9.1) followed by
the typing rules on which the tool is based in order to verify two properties
of systems, deadlock freedom and lock freedom (Section 9.2). In the final part
of the chaper we illustrate the expressiveness and the limitations of the tool
discussing a number of examples inspired by representative communication
patterns using in parallel computing (Section 9.3) and then discuss closely
related work (Section 9.4). The tool can be downloaded from the author’s
home page, the type system has been described by Padovani [18] and the
corresponding reconstruction algorithms by Padovani et al. [19, 20].

9.1 Language

The Hypha specification language is a mildly sugared variant of the linear π-
calculus [16] whose grammar is shown in Table 9.1. It makes use of booleans,
integers, an infinite set X of names, and comprises expressions and processes.
The syntax shown here is somewhat simplified and tailored to the modeling of
the examples discussed in this chapter. Hypha supports other forms that may
be useful in the description of protocols with branching points and provide
convenient syntactic sugar on top of those given in Table 9.1. The Hypha
specification language is appropriate for modeling concurrent processes that
exchange messages on private (or session) channels [10].

193



194 Type-Based Analysis of Linear Communications

Table 9.1 Syntax of Hypha input language (partial)

Notation b ∈ {true, false} Booleans
h, k,m, n ∈ Z Integers

x, y, z, u, v ∈ X Names

Expression e ::= b Boolean constant
| n Integer constant
| u Name
| · · ·

Process P,Q ::= { } Idle process
| u!(e1, . . . , en) Output
| u?(x1, . . . , xn).P Input
| *u?(x1, . . . , xn).P Replicated input
| new u1, . . . , un in P Channel creation
| if e then P else Q Conditional execution
| P | Q Parallel composition
| { P} Grouping

For simplicity, in the provided syntax expressions are limited to values
and comprise booleans, integers, and names. In the examples we will also
make use of a few binary operators (such as +) and relations (such as <).
Processes comprise the usual terms of the π-calculus. The term { } models
the idle process that performs no actions. The term u!(e1, . . . , en) models
a process that outputs the tuple (e1, . . . , en) on the channel u. We omit the
parentheses when n is 1 and write, for example, u!n in place of u!(n). We
consider two forms of input processes. The term u?(x1, . . . , xn).P models
an ephemeral input process that waits for one message from u, which is
supposed to be an n-tuple, and then executes P where xi is replaced by the
i-th component of the tuple. The term *u?(x1, . . . , xn).P models a persistent
input process (also called service) that waits for an arbitrary number of
messages. Each time a message is received, a new copy of P (with the
variables xi suitably instantiated) is spawned and the service makes itself
available again for further receptions. The term new u1, . . . , un in P models
a process creating new channels u1, . . . , un with scope P. As usual in the π-
calculus, the scope of a channel may broaden as a result of communications
(scope extrusion). The terms if e then P else Q and P | Q respectively
model conditional and parallel processes P and Q. Finally, {P} represents
the same process as P and is useful to disambiguate the way processes are



9.1 Language 195

*fibo?(n,c).
if n ≤ 0 then c!1
else new a,b in { fibo!(n-1,a) | fibo!(n-2,b) | a?(x).b?(y).c!(x+y) }

Listing 9.1 Modeling of the recursive Fibonacci function.

grouped. The notions of free and bound names of a process P, respectively
denoted by fn(P) and bn(P), are as expected.

Example 1 (recursive Fibonacci function). Listing 9.1 shows the modeling
of a service that computes the n-th number in the Fibonacci sequence. The
service waits for invocations on channel fibo, each invocation consisting of
the number n and a channel c on which the n-th Fibonacci number will be
sent. The body of the service closely follows the familiar structure of the
recursive definition of the Fibonacci sequence. When n ≤ 0 the answer is
immediately sent over c. When n > 0, two new channels a and b are created,
the service invokes itself twice to compute the (n−1)-th and (n−2)-th numbers
in the sequence, and then the sum of the two partial results is sent over c. �

As usual, the operational semantics of the language is defined in terms
of a structural congruence relation, which identifies terms that are meant
to have the same semantics, and a reduction relation that defines the proper
computation steps. We omit the formal definition of structural congruence,
which is essentially the same as in the π-calculus and includes commutativity
and associativity laws for parallel composition and the usual laws for shrink-
ing and extending the scope of channels. The second one is the least relation
defined by the rules in Table 9.2 and closed by structural congruence and
under the following reduction contexts:

Reduction context C ::= [ ] | C | P | new u1, . . . , un in C
The fully-fledged formalization of the language also includes an evalua-

tion relation for compound expressions [18].
To formulate the properties enforced by our typing discipline we intro-

duce a few predicates that describe the pending communications of a process

Table 9.2 Operational semantics of processes

u!(e1, . . . , en) | u?(x1, . . . , xn).P −→ P{e1/x1} · · · {en/xn}
u!(e1, . . . , en) | *u?(x1, . . . , xn).P −→ P{e1/x1} · · · {en/xn} | *u?(x1, . . . , xn).P

if true then P else Q −→ P
if false then P else Q −→ Q



196 Type-Based Analysis of Linear Communications

P with respect to some channel a. We use the obvious extension of bound
names we have introduced for processes to reduction contexts:

in(a, P)
def⇐⇒ P = C[a?(x1, . . . , xn).Q] ∧ a � bn(C)

*in(a, P)
def⇐⇒ P = C[*a?(x1, . . . , xn).Q] ∧ a � bn(C)

out(a, P)
def⇐⇒ P = C[a!(e1, . . . , en)] ∧ a � bn(C)

sync(a, P)
def⇐⇒ (in(a, P) ∨ *in(a, P)) ∧ out(a, P)

wait(a, P)
def⇐⇒ (in(a, P) ∨ out(a, P)) ∧ ¬sync(a, P)

In words, in(a, P) holds if there is a sub-process Q within P that is waiting
for a message on channel a. Note that, by definition of reduction context, the
input cannot be guarded by other actions. The condition a � bn(C) implies
that a is not captured by a binder in C, i.e. it occurs free in P. The predicates
out(a, P) and *in(a, P) are similar, but they regard outputs and persistent
inputs, respectively. Therefore, when in(a, P) holds it means that there is a
pending ephemeral input on a and when out(a, P) holds it means that there
is a pending output on a. Then, sync(a, P) means that there are pending
input/output operations on a, but a synchronization on a is immediately
possible. On the contrary, wait(a, P) means that there is a pending output
or a pending ephemeral input on a, but no immediate synchronization on a is
possible. Note the asymmetry in the way pending inputs and outputs trigger
the wait predicate. We do not interpret *in(a, P) as a pending input operation,
meaning that we do not require a persistent input process to run infinitely
often. At the same time, any pending output triggers the wait predicate, even
when the output represents a service invocation.

We say that a process P is deadlock free if every residual of P that cannot
reduce further contains no pending communications. Formally:

Definition 9.1. P is deadlock free if whenever P −→∗ new c1, . . . , cn inQ �−→
we have ¬wait(a,Q) for every a.

We say that a process P is lock free if every residual Q of P in which
there are pending communications can reduce further to a state in which such
operations complete. Formally:

Definition 9.2. P is lock free if whenever P −→∗ new c1, . . . , cn in Q and
wait(a,Q) there is R such that Q −→∗ R and sync(a,R).

In Definitions 9.1 and 9.2, it is important to universally quantifiy over the
topmost channel restrictions in a residual of P so that the notion of (dead)lock
freedom for P concerns both free and bound channels of P.



9.2 Type System 197

It is easy to prove that lock freedom implies deadlock freedom [19]. On
the other hand, there exist deadlock-free processes that are not lock free, as
shown in the example below.

Example 2 (deadlock-free, locked process). The process

new c in { *forever?(x).forever!x | forever!c | c!42 }

is deadlock free but not lock free. Indeed, the process reduces forever, but no
input operation is ever performed on the c channel. As a result, the pending
output on c cannot be completed. �

9.2 Type System

In this section we describe a type system that enforces the properties intro-
duced in Section 9.1: well-typed processes are guaranteed to be (dead)lock
free. The tool Hypha then implements a type reconstruction algorithm for
this type system and finds a typing derivation for a given process, provided
there is one. Note that, while the type reconstruction algorithm is complete
with respect to the type system, the type system itself is not complete with
respect to (dead)lock freedom: there exist (dead)lock free processes that are
ill typed according to the type system. In fact, it is undecidable in general
to establish whether a π-calculus process is (dead)lock free, hence the type
system is necessarily conservative.

Polarities, qualifiers, and types are defined by the following grammar:

Polarity p, q ⊆ {?, !}
Qualifier q ::= *

∣∣∣ h
k

Type t, s ::= bool
∣∣∣ int ∣∣∣ κ[t]q ∣∣∣ α ∣∣∣ μα.t

Types comprise the base types bool and int of boolean and integer
values, channel types κ[t]q, and the usual forms α and μα.t for representing
recursive types. A channel type κ[t]q consists of:

• A polarity p specifying the operations allowed on the channel: ∅ means
none, {?} means input, {!}means output, and {?, !} means both. We will
abbreviate {?, !} with # and {?} and {!} with ? and !, respectively.
• A sequence t1, . . . , tn of types, abbreviated as t, specifying that each

message exchanged over the channel is an n-tuple of values where the
i-th value has type ti.
• A qualifier q specifying how many times the channel can or must be

used according to its polarity. The qualifier *means that the channel can



198 Type-Based Analysis of Linear Communications

be used any number of times. A qualifier of the form h
k means that the

channel can only be used once. In this case, h and k are respectively the
level and the tickets associated with the channel: channels with smaller
levels must be used before channels with greater levels; a channel with
k tickets can be sent as a message on another channel at most k times.

We require that, in a recursive type μα.t, the type variable α can only
occur guarded by a channel type constructor. For example, μα.α is illegal
while μα.?[α]* is allowed. We identify two types modulo renaming of
bound type variables and if they have the same infinite unfolding, that is
if they denote the same (regular) tree [4]. In particular, we have μα.t =
t{μα.t/α}.

Qualifiers distinguish service channels (with qualifier *) from linear
channels (with qualifiers of the form h, k). Service channels are used for
modeling persistent services, such as fibo in Listing 9.1 and forever in
Example 2. Linear channels are used for modeling private communications
between pairs of processes. Examples of linear channels are a and b in
Listing 9.1 and c in Example 2. The fact that a linear channel can be used
for one communication only is not a limitation in practice. Structured private
conversations made of arbitrarily many communications can be encoded
using a continuation-passing style [5, 12]. We will see several examples of
this technique at work in the rest of the chapter. On the other hand, knowing
that a channel is linear provides some guarantees on the fact that the channel
will not be discarded without being used. This is a necessary (although not
sufficient) condition for guaranteeing that communications on linear channels
eventually occur.

The level of a linear channel measures the urgency with which the channel
must be used: the lower the level is, the sooner the channel must be used. We
extend this notion from linear channels to arbitrary types. To compute the
level of a type, we define an auxiliary function | · | such that |t| is an element
of Z ∪ {⊥,�} where ⊥ < n < � for every n ∈ Z:

|t| def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if t = p[s]* and ? ∈ p
n if t = p[s]n

m and p � ∅
� otherwise

(9.1)

According to this definition, service channels with input capability have
the lowest level ⊥ (first equation). This way we guarantee input receptiveness
of services, for the use of a service channel with input capability cannot
be postponed by any means. Base values, service channels with output



9.2 Type System 199

capability, and linear channels with no capabilities have the highest level �
(last equation) because they do not affect (dead)lock freedom in any way.
Linear channels with non-empty polarity must be used according to their level
(second equation). We say that a (value with) type t is unlimited if |t| = �,
that it is linear if |t| ∈ Z, that it is relevant if |t| = ⊥.

We define another auxiliary function $h
k to shift levels and tickets: $h

k t is
the same as t except when t is a linear channel. In this case, the level/tickets
in t are transposed by h and k respectively. Formally:

$h
k t

def
=

{
p[s]n+h

m+k if t = p[s]n
m and p � 0

t otherwise
(9.2)

Note that positive/negative shifting of levels corresponds to decreasing/
increasing the urgency with which a value of a given type must be used.

The type system makes use of type environments Γ to keep track of the
type of names occurring free in processes. A type environment is a finite
map from names to types written u1 : t1, . . . , un : tn. We write dom(Γ ) for
the domain of Γ , namely the set of names for which there is an association
in Γ , and Γ , Γ ′ for the union of Γ and Γ ′ when dom(Γ ) ∩ dom(Γ ′) = ∅. We
also need a more general way of composing type environments that takes into
account the level and tickets of linear channel types and the fact that we can
split channel types by distributing different capabilities to different processes.
Following [16], we define a partial operator + between types, thus:

t + t = t if t is unlimited
p[t]* + q[t]* = (p ∪ q)[t]*
p[t]n

h + q[t]n
k = (p ∪ q)[t]n

h+k if p ∩ q = ∅
(9.3)

Informally, unlimited types combine with themselves without restrictions.
The combination of two unlimited/relevant channel types has the union of
their polarities. Two linear channel types can be combined only if they have
the same level and disjoint polarities, and their combination has the union of
their polarities and the sum of their tickets. We extend the partial operator +
to type environments:

Γ + Γ ′ def
= Γ , Γ ′ if dom(Γ ) ∩ dom(Γ ′) = ∅

(Γ , u : t) + (Γ ′, u : s)
def
= (Γ + Γ ′), u : t + s

(9.4)

Note that Γ + Γ ′ is undefined if there is u ∈ dom(Γ ) ∩ dom(Γ ′) such that
Γ (u) + Γ ′(u) is undefined and that dom(Γ + Γ ′) = dom(Γ ) ∪ dom(Γ ′). We let
|Γ | denote the lowest level of the types in the range of Γ , that is



200 Type-Based Analysis of Linear Communications

|Γ | def
= min{|Γ (u)| | u ∈ dom(Γ )} (9.5)

We say that Γ is unlimited if |Γ | = �.
We now turn our attention to the typing rules, which are meant to enforce

the following properties of channels:

1. a service channel with input capability must be used by a replicated input
process (we refer to this condition as input receptiveness);

2. a linear channel cannot be discarded until both its input and output
capabilities have been used (we refer to this condition as linearity);

3. an operation on a linear channel cannot block channels with lower or
equal level (with linearity, this condition guarantees deadlock freedom);

4. the use of a linear channel cannot be postponed forever (with linearity
and deadlock freedom, this condition guarantees lock freedom).

The typing rules allow us to derive judgments of the form Γ � e : t,
stating that e is well typed in the environment Γ and has type t, and of the
form Γ �k P, stating that P is well typed in the environment Γ . The parameter
k ∈ {0, 1} intuitively represents the “cost” for sending a channel over another
channel: each output operation consumes k tickets from the channels being
sent. The type system is designed in such a way that a well typed, closed
process P is guaranteed to be deadlock free if ∅ �0 P and lock free if ∅ �1 P.

Expressions. Because the model has an extremely simple expression lan-
guage, the corresponding typing rules, shown below, are fairly obvious and
extend easily to more complex expressions:

[t-bool]
∅ � b : bool

[t-int]
∅ � n : int

[t-name]
u : t � u : t

The important remark concerning these rules is that the type environment
used for typing an expression e only contains associations for the free names
occurring in e. This makes sure that no linear or relevant resource (namely,
channels that must be used at least once) is left unused. Later on we will
discuss a structural rule that allows us to discard resources whose use is not
necessary in order to enforce (dead)lock freedom.

Idle and grouped processes. Rule [t-idle] states that the idle process is well
typed in the empty environment only:

[t-idle] ∅ �k { }



9.2 Type System 201

For example, the judgment a : ![int]n
m �k { } is not derivable, because

the linear channel a is supposed to be used for one output operation, whereas
the process { } does nothing. This typing rule illustrates a key trait of the
type system, making sure that linear channels with pending capabilities are
not discarded. If this were not the case, one could write processes like

new a in a?(x)

which are stuck waiting for messages that will never arrive.
The typing rule for a grouped process is simple and does not enforce any

constraint other than typability of the process itself:

[t-group]
Γ �k P

Γ �k { P }

Outputs. Rule [t-out] is used for typing output operations on linear channels:

[t-out] u : ![t]m
n + v : $n

k t �k u!v 0 < |t|
First of all, the channel u being used for the output must indeed have

capability !. The type of the message v must be t (as specified in the type of
the channel u) except that its level is shifted by m and its tickets are shifted by
k. The shifting of the level means that the level of t in ![t]m

n is relative to m.
This, together with the side condition 0 < |t|, makes sure that the level of v
(the channel being sent as a message) is strictly greater than the level of u.
The shifting of the tickets in t accounts for the fact that, by sending v as a
message, one ticket from v is consumed. Note that this is necessary only in
the judgments for lock freedom (k = 1). Below are a few examples:

• The judgment a : ![?[int]1
0]

2
0, b : ?[int]3

1 �1 a!b is derivable
because ?[int]3

1 = $
2
1 ?[int]

1
0. Note in particular that the channel to

be sent on a must have no tickets, which is in fact what happens to b
after 1 ticket is consumed from its type before it travels on a.
• The judgment a : ![![int]1

0]
0
0, b : ![int]1

0 �1 a!b is not derivable
because b has no tickets and so it cannot travel on a.
• Let t = ?[t]0

0 and observe that #[t]1
0 = ![t]

1
0 + ?[t]

1
0. The judgment

a : #[t]1
0 �0 a!a is not derivable, despite the message a has the “right”

type ?[t]1
0 = $

1
0 t, because the condition 0 < |t| = 0 is not satisfied. A

process like a!a is deadlocked because the occurrence of a that is meant
to be used for matching this output operation is the very message sent
on a itself.



202 Type-Based Analysis of Linear Communications

• The judgment a : ![?[int]*]0
0, b : ?[int]* �0 a!b is not derivable

because 0 ≮ |?[int]*| = ⊥. A service channel with input capability
such as b cannot be sent as a message to guarantee input receptiveness.

Rule [t-out*] is used for typing outputs on unlimited channels.

[t-out*] u : ![t]* + v : $n
k t �k u!v ⊥ < |t|

There are two key differences between [t-out] and [t-out*]. First, the
condition ⊥ < |t|, where t is the type of v means that only unlimited channels
with input capability cannot be communicated. Second, the type of v does
not need to match exactly the type t in the channel type of u, but its level
can be shifted by an arbitrary amount n. This is the technical realization of
polymorphism. In particular, each distinct output on u can shift the type of the
message by a different amount, therefore allowing polymorphic recursion. We
will often use this feature in the extended examples in the second half of this
chapter.

Both [t-out] and [t-out*] generalize easily to an arbitrary number of
message arguments. As an example, the former rule can be generalized as
follows:

u : ?[t1, . . . , th]
m
n + v1 : $m

k t1 + · · · + vh : $m
k th �k u!(v1, . . . , vh) 0 < |ti|

Inputs. Rule [t-in] is used for typing linear input operations:

[t-in]
Γ , x : $n

0 t �k P

Γ + u : ?[t]n
m �k u?(x).P

n < |Γ |

The channel u must have type ?[t]n
m and the continuation P is typed

in an environment where the input polarity of u has been removed and the
received message x has been added. The level of the type of x is shifted by
n, consistently with the relative interpretation of levels of message types that
we have already discussed for [t-out]. The tickets of u are irrelevant since u
is used for an input operation, not as the content of a message. The condition
n < |Γ | ensures that the input on u does not block operations on other channels
with equal or lower level. In particular, Γ cannot contain service channels with
input capability. Below are some typical examples of ill-typed processes that
violate this condition:

• a : ?[int]1
0, b : ![int]0

0 �k a?(x).b!x is not derivable because 1 ≮ 0:
the input on a blocks the output on b, but b has lower level than a;



9.2 Type System 203

• a : #[int]h
0 �k a?(x).a!x is a degenerate case of the previous exam-

ple, where the input on a blocks the very output that should synchronize
with it. Note that this process is well-typed in the traditional linear
π-calculus [16].
• a : ?[int]h

0, c : ?[int]* �k a?(x).*c?(y) is not derivable because
|?[int]*| = ⊥. To guarantee input receptiveness, we require that
replicated inputs cannot be guarded by other operations.

Rule [t-in*] is used for typing replicated input operations corresponding
to persistent services:

[t-in*]
Γ , x : t �k P

Γ + u : ?[t]* �k *u?(x).P
� ≤ |Γ |

This rule differs from [t-in] in three important ways. First of all, u must
be a service channel with input capability. Second, the side condition � ≤ |Γ |
makes sure that the environment Γ used for typing the body of the service
is unlimited. This is because the service can be invoked an arbitrary number
of times, hence its body cannot contain linear resources. Third, it may be
the case that u ∈ dom(Γ ), because ?[t]* + ![t]* = #[t]* according to
(9.3) and ![t]* is unlimited. This means that services may recursively invoke
themselves. We use this feature in several examples, including Example 1.

As for [t-out] and [t-out*], both [t-in] and [t-in*] can be easily generalized
to handle arbitrary tuples of message arguments.

Conditional and parallel processes. The typing rule for conditional pro-
cesses is shown below:

[t-if]
Γ1 � e : bool Γ2 �k P Γ2 �k Q

Γ1 + Γ2 �k if e then P else Q

As usual, the condition must have type bool and + is used for combining
the type environments used in different parts of the process. Note that both
branches must be typable using the same type environment, meaning that the
linear channels occurring in P and Q must be used in the same order. For
example, the judgment

a : ?[int]1
0, b : ?[int]2

0 �k if e then a?(x).b?(y) else b?(y).a?(x)

is not derivable because the else branch uses the two linear channels a and
b in an order not allowed by their levels.



204 Type-Based Analysis of Linear Communications

The typing rule for parallel compositions is shown below:

[t-par]
Γ1 �k P Γ2 �k Q

Γ1 + Γ2 �k P | Q

Because of the definition of the + operator, which combines the types
of linear channels only provided that such channels have the same level,
the order in which linear channels are used in the branches of the parallel
composition must be consistent. For example, the judgment

a : #[int]1
0, b : #[int]2

0 �k a?(x).b!x | b?(y).a!y

cannot be derived because the second branch violates the side condition of
[t-in] requiring b to have a strictly smaller level than a. Indeed, the whole
process is deadlocked.

Channel creation. Restrictions can be used to introduce both linear and
service channels. In the former case, the typing rule is

[t-new]
Γ , a : p[t]n

m �k P

Γ �k new a in P
p ∈ {0, #}

Note that the rule “guesses” the right level and number of tickets that
are necessary for typing P. The polarity is either #, meaning that a must be
used for both one input and one output operation in P, or 0, meaning that a
is a depleted channel that is not supposed to be used at all in P. The reason
why the typing rule accounts for this possibility is purely technical and is
necessary to prove that process reductions preserve typing [18].

The typing rule for introducing a service channel is essentially the same:

[t-new*]
Γ , a : #[t]* �k P

Γ �k new a in P

Unlike linear channels, the capability of restricted unlimited channels
is always #. Since an unlimited channel a with input capability must be
used (cf.[t-in*]), this guarantees that there is always a service waiting for
invocations on a. On the other hand, a service channel with output capability
does not have to be used (cf. (9.1)), therefore imposing that the capability of
a is # does not mandate invocations on a.



9.3 Extended Examples 205

Unused resources. The following structural rule provides a limited form
of weakening whereby it is possible to add unused resources in a type
environment, provided that these resources have an unlimited type:

[t-weak]
Γ �k P

Γ + Γ ′ �k P
� ≤ |Γ ′|

For example, both a : 0[int]m
n �k { } and x : int �k { } are derivable,

because the type environments only contain resources that impose no usage
and therefore can be discarded using [t-weak]. On the contrary, neither a :
![int]m

n �k { } nor a : ?[int]* �k are derivable.
The type system refines the one for the linear π-calculus [16], hence all

the properties of the linear π-calculus (partial confluence, linear usage of
channels, etc.) are still guaranteed. The added value is that the type system
also guarantees deadlock/lock freedom.

Theorem 9.3. The following properties hold:

1. If ∅ �0 P, then P is deadlock free.
2. If ∅ �1 P, then P is lock free.

Example 3 (recursive Fibonacci function). Let P be the process shown in
Listing 9.1. Then it is possible to derive

fibo : #[int, ![int]0
0]
* �k P

if and only if k = 0. It is not possible to find a derivation for k = 1 since
the type system cannot establish an upper bound to the time after which the
continuation channel c will be used in an invocation fibo!(n,c). In fact,
such upper bound depends on n and on the fact that the recursion of the fibo
service is well-founded This latter property requires a kind of analysis that
eludes the capabilities of the type system. �

9.3 Extended Examples

9.3.1 Fibonacci Stream Network

In this section we discuss an alternative modeling of system that computes
the sequence of Fibonacci numbers and that is an example of stream net-
work, that is a network of communicating processes that exchange infinite



206 Type-Based Analysis of Linear Communications

add source(1) copy

source(0)

e a
b

c

d

Figure 9.1 Graphical representation of the Fibonacci stream network [8, 22].

sequences (streams) of messages. Figure 9.1 depicts the Fibonacci stream
network [8, 22] where the boxes represent processing units and the arrows
represent communication channels.

Each source(n) process sends n on the outgoing channel followed by
each message received from the incoming channel. The copy process for-
wards each received message on each of its two outgoing channels. Finally,
add sends on the outgoing channel the sum of corresponding messages
received from the two incoming channels. Overall, it is easy to see that
the stream of messages flowing on channel a corresponds to the Fibonacci
sequence 1, 1, 2, 3, 5, . . ..

The modeling of the Fibonacci stream network in Hypha’s input language
is shown in Listing 9.2. There is a service for each of the boxes in Figure 9.1,
with source that makes use of an auxiliary service link that acts as a
persistent message forwarder. The network itself is created on line 5, where
the services are invoked and connected by the channels a through e. The
most distinctive aspect of the modeling is the use of continuation passing
for the representation of message streams: each channel that connects two
combinators is in fact a linear channel (a channel that is meant to be used for
one communication only); whenever a message is exchanged on the channel,
the payload is paired with a fresh (linear) channel on which the subsequent
message will be exchanged. This pattern can be clearly observed in the
definitions of link, add, and copy. To improve readability, hereafter we write
x̄ for a channel name that is meant to represent the continuation of x.

{ *link?(x,y).x?(v,x̄).source!(v,x̄,y)
| *source?(n,x,y).new ȳ in { y!(n,ȳ) | link!(x,ȳ) }
| *add?(x,y,z).x?(v,x̄).y?(w,ȳ).new z̄ in { z!(v+w,z̄) | add!(x̄,ȳ,z̄) }
| *copy?(x,y,z).x?(v,x̄).new ȳ,z̄ in { y!(v,ȳ) | z!(v,z̄) | copy!(x̄,ȳ,z̄) }
| source!(1,e,a) | copy!(a,b,c) | source!(0,b,d) | add!(d,c,e) }

Listing 9.2 Term representation of the Fibonacci stream network [8, 22].



9.3 Extended Examples 207

Hypha infers the following types for the channels used in the system

source : #[int, ?[int, μα.?[int, α]3
2]

2
1, ![int, μβ.?[int, β]

3
1]

0
0]
*

link : #[?[int, μα.?[int, α]3
2]

0
0, ![int, μβ.?[int, β]

3
1]

1
1]
*

add : #[?[int, μα.?[int, α]3
1]

0
0, ?[int, μβ.?[int, β]

3
1]

1
0,

![int, μγ.?[int, γ]3
2]

2
0]
*

copy : #[?[int, μα.?[int, α]3
1]

0
0,

![int, μβ.?[int, β]3
2]

2
0, ![int, μγ.?[int, γ]

3
1]

1
0]
*

a, d : #[int, μα.?[int, α]3
1]

0
2

b, e : #[int, μα.?[int, α]3
2]

2
3

c : #[int, μα.?[int, α]3
1]

1
2

confirming that the system is well typed and therefore lock free. In particular,
Theorem 9.3(2) allows us to deduce that every number in the sequence of
Fibonacci is computed in finite time. We make some observations concerning
the inferred channel types: first, Hypha correctly distinguishes between the
channels representing services (such as copy and source) from the linear
channels that connect them (such as a and b). Second, the levels associated
with linear channels give hints concerning the order of synchronizations in
the system. The synchronizations on a and d (with level 0) happen first,
followed by that on c (level 1), and then by that on e (level 2). Note however,
that the total order on levels does not necessarily reflect the partial order
that represents dependencies between channels. For example, b has a strictly
greater level than c and yet the synchronizations on these two channels
may happen in any order. Concerning the ticket annotations, note that all
linear channels require at least 2 tickets because they are used to connect
2 services. For example, a connects source(1) and copy. By contrast, b
and e need one more ticket because they are also forwarded by source
to link.

9.3.2 Full-Duplex and Half-Duplex Communications

Many parallel algorithms use batteries of processes arranged in a grid that
iteratively update array elements and communicate with processes assigned
to neighbor elements (Figure 9.2). Processes may communicate according
to one out of two modalities: when communication is full-duplex, pro-
cesses simultaneously send messages to each other; when communication
is half-duplex, only one message travels between two processes at any



208 Type-Based Analysis of Linear Communications

0 1
a

b

Figure 9.2 Graphical representation of a 4 × 3 bi-dimensional stencil.

moment in time. Correspondingly, we can model the dotted grid fragment in
Figure 9.2 as

e!(0, a, b) | f!(1, b, a) (9.6)

where e and f are service channels defined as either

*full?(n,x,y).new x̄ in { x!(n,x̄) | y?(m,ȳ).full!(n+m,x̄,ȳ) }

in case of full-duplex communication or as

*half?(n,x,y).y?(m,ȳ).new x̄ in { x!(n,x̄) | half!(n+m,x̄,ȳ) }

in case of half-duplex communication. In both cases, x is used for sending
messages to, and y for receiving messages from, a neighbor process. Each
message sent on x carries a payload n as well as a continuation channel x̄ used
for the communication at the next iteration. Symmetrically, each message
received from y contains the neighbor’s payload m and a continuation ȳ. The
difference between full and half is that, in the latter case, the sender waits
for the message from its neighbor before sending its own.

Overall there are 4 possible configurations of the system (9.6) obtained
by instantiating e and f with either full or half. It is easy to see that a
configuration is lock free as long as at least one of e or f is instantiated with
full. Indeed, Hypha infers the types

a, b : #[int, μα.?[int, α]1
1]

0
2

when e = f = full and the types

a : #[int, μα.?[int, α]2
1]

1
2 b : #[int, μα.?[int, α]2

1]
0
2

when e = half and f = full. The case when e = full and f = half
is symmetric, while the one when e = f = half is ill typed for deadlock
freedom and, therefore, for lock freedom as well.



9.3 Extended Examples 209

master

worker

worker

a

b

producer

worker

worker

consumer

a

b

c

d

Figure 9.3 Master-worker (left) and producer-consumer (right).

9.3.3 Load Balancing

Figure 9.3 shows two network topologies aimed at taking advantage of
parallelism by distributing multiple tasks to independent workers. They differ
in that in the master-worker topology the same process that produces tasks
is also the one that collects the results, whereas in the producer-consumer
topology (sometimes called “farm”) producer and consumer are different
processes. The distinction between the two topologies has important conse-
quences at the communication layer since the channels are bi-directional in
the former network and uni-directional in the latter.

Listings 9.3 and 9.4 show the modeling of the network topologies in
Figure 9.3, both of which are well-typed according to the lock freedom type
system implemented in Hypha. For the master-worker network, Hypha infers
the types

a : #[int, μα.![int, ![int, α]2
1]

1
0]

0
2

b : #[int, μα.![int, ![int, α]2
1]

1
0]

1
2

{ *master?(n,x,y).
new x̄,ȳ in { x!(n,x̄) | y!(n+1,ȳ) | x̄?(v, ¯̄x).ȳ?(w, ¯̄y).master!(n+2, ¯̄x, ¯̄y) }

| *worker?(n,z).z?(m,z̄).new ¯̄z in z̄!(m mod n,¯̄z).worker!(n,¯̄z)
| master!(0,a,b) | worker!(2,a) | worker!(3,b) }

Listing 9.3 Term representation of master-worker (half-duplex channels).

{ *producer?(n,x,y).new x̄,ȳ in { x!(n,x̄) | y!(n+1,ȳ) | producer!(n+2,x̄,ȳ) }
| *consumer?(x,y).x?(v,x̄).y?(w,ȳ).{ print!v | print!w | consumer!(x̄,ȳ) }
| *worker?(n,x,y).x?(m,x̄).new ȳ in { y!(m mod n,ȳ) | worker!(n,x̄,ȳ) }
| producer!(0,a,b) | worker!(2,a,c) | worker!(3,b,d) | consumer!(c,d) }

Listing 9.4 Term representation of producer-consumer.



210 Type-Based Analysis of Linear Communications

which describe a communication protocol whereby the master sends a task
(represented as an integer number) to each worker along with a continuation
channel. By using this continuation channel, the worker will answer back
with the processed task (again represented as an integer number) and another
continuation that the master uses for starting another iteration.

For the producer-consumer network Hypha infers the types

a : #[int, μα.?[int, α]2
1]

0
2

b : #[int, μα.?[int, α]2
1]

1
2

c : #[int, μα.?[int, α]2
1]

1
2

d : #[int, μα.?[int, α]2
1]

2
2

again confirming that the network is lock free.

9.3.4 Sorting Networks

Figure 9.4 depicts an example of so-called sorting network, that is a network
of communicating processes whose overall effect is that of sorting an input
vector of fixed size, 6 in this case. The network is made of two different
kinds of processes: comparators (the rectangular boxes) input two values
and possibly swap them if the first happens to be larger than the second;
buffers (the square boxes) simply forward the input value. The input values
go through three identical phases; in each stage, the odd-indexed inputs and
then the even-indexed inputs are compared to, and possibly swapped with,
their successor.

The sorting network in Figure 9.4 is modeled in the linear π-calculus
as shown in Listing 9.5. Note the use of auxiliary services odd and even
corresponding to the two sub-phases of each phase and linked together by

0 5

1 4

2 3

3 2

4 1

5 0

a61 a62 a63 a64

a51 a52 a53 a54

a41 a42 a43 a44

a31 a32 a33 a34

a21 a22 a23 a24

a11 a12 a13 a14

Figure 9.4 Graphical representation of an odd-even 6-input sorting network.



9.3 Extended Examples 211

1 { *compare?(x,y,l,h).
2 new z in { x?(v).z!v | y?(w).z?(v).if v<w then l!v | h!w else l!w | h!v }
3 | *buffer?(x,y).x?(v).y!v
4 | *provide?(x,n).x!n
5 | *consume?(x,n).x?(v).print!(n,v)
6 | *even?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).

7 { compare!(x1,x2,y1,y2) | compare!(x3,x4,y3,y4) | compare!(x5,x6,y5,y6) }

8 | *odd?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).

9 { buffer!(x1,y1) | compare!(x2,x3,y2,y3)

10 | buffer!(x6,y6) | compare!(x4,x5,y4,y5) }

11 | *phase?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).new z1,z2,z3,z4,z5,z6 in

12 { even!(x1,x2,x3,x4,x5,x6,z1,z2,z3,z4,z5,z6)

13 | odd!(z1,z2,z3,z4,z5,z6,y1,y2,y3,y4,y5,y6) }

14 | phase!(a11,a21,a31,a41,a51,a61,a12,a22,a32,a42,a52,a62)

15 | phase!(a12,a22,a32,a42,a52,a62,a13,a23,a33,a43,a53,a63)

16 | phase!(a13,a23,a33,a43,a53,a63,a14,a24,a34,a44,a54,a64)

17 | provide!(a11,0) | provide!(a21,1) | provide!(a31,2)

18 | provide!(a41,3) | provide!(a51,4) | provide!(a61,5)

19 | consume!(a14,0) | consume!(a24,1) | consume!(a34,2)

20 | consume!(a44,3) | consume!(a54,4) | consume!(a64,5) }

Listing 9.5 Term representation of an odd-even 6-input sorting network.

restricted channels zi. This network is well-typed and Hypha infers the types

comparator : #[?[int]0
0, ?[int]

0
0, ![int]

2
0, ![int]

2
0]
*

buffer : #[?[int]0
0, ![int]

2
0]
*

ai j : #[int]4( j−1)
2

confirming that each value sent on ai1 is eventually received on some aj4.
More specifically, the level 12 assigned with the aj4 channels gives an upper
bound to the number of synchronizations needed for producing the output.

Comparators input values in parallel (from the channels x and y) and
perform an internal synchronization (on a private linear channel z) to join the
results of the two receptions and output the results. Alternatively, one could
model comparators in such a way that the receive operations on x and y are
performed in a fixed order. The choice of a particular modeling affects the lev-
els associated with the input channels, but not the typeability of the network
as a whole. This is not the case for buffers: they are operationally irrelevant
and are usually omitted in standard presentations of sorting networks. Their
use in Listing 9.5 is key for the lock freedom analysis to succeed as they
make sure that the levels of the channels connecting one phase to the next
one remain aligned.



212 Type-Based Analysis of Linear Communications

9.3.5 Ill-typed, Lock-free Process Networks

In general, the problem of verifying whether a π-calculus process is
(dead)lock free is undecidable. For this reason, the type system on which
Hypha is based is necessarily incomplete, in the sense that there exist pro-
cesses satisfying Definitions 9.1 and 9.2 which are ill typed according to the
type system described in Section 9.2. In this section, we discuss two repre-
sentative examples of processes that cannot be handled by our type system. In
all cases, the inability to find a typing derivation is tightly related to the fact
that the type system uses integer numbers for reasoning on the dependencies
between linear channels and such numbers measure the (abstract) moment of
time at which the synchronization occurs on these channels.

Listing 9.6 shows a process that computes the sequence of prime num-
bers. The process is modeled after Eratosthenes’ sieve: the from process emits
the infinite stream of natural numbers starting from 2; the sequence goes
through a growing pipeline of filters, each filter removing those numbers
of the sequence that happen to be a multiple of a given prime number m; if
a number n manages to cross the entire pipeline and hits the emitter process
output, then it is prime. In this case n is sent on print and a new filter
removing the multiples of n is inserted at the end of the pipeline. Hypha
is able to distinguish linear from service channels and to infer the type of
messages exchanged therein, but the process is ill-typed for deadlock freedom
even though it is deadlock free. The problem can be traced to the body of
filter: when the received number n turns out to be a multiple of m, the
number is simply discarded and no output is sent on y. So, the recursive
invocation of filter on line 3 reuses the same output channel y that was
received as input. Observe that x̄ is received from x, meaning that the level
of x̄ must necessarily be greater than the level of x, and that the level of
x̄ must be strictly smaller than the level of y, since the input on performed
on x̄ at the next iteration of filter blocks the possible output on y. Given
that the distribution of prime numbers is irregular, there is no upper bound
to the number of inputs on x that may be necessary before the next output

1 { *from?(n,x).new x̄ in { x!(n,x̄) | from!(n+1,x̄) }
2 | *filter?(m,x,y).x?(n,x̄).{ if n mod m = 0 then filter!(n,x̄,y)
3 else new ȳ in { y!(n,ȳ) | filter!(m,x̄,ȳ) } }
4 | *output?(x).x?(n,x̄).{ print!n | new y in { filter!(n,x̄,y) | output!y } }
5 | from!(2,a) | output!a }

Listing 9.6 Stream Network computing the sequence of prime numbers.



9.3 Extended Examples 213

on y is guaranteed to be performed. In general, the type system can handle
those cases in which communications occur following a regular pattern that
is independent of the content of messages themselves.

The second example we consider is a process stream network (Figure 9.5)
that computes the so-called Thue-Morse sequence, that is the sequence of
binary digits 011010011001 · · · starting with 0 and obtained by appending
the boolean complement of the sequence obtained thus far. The term repre-
sentation of the process network (Listing 9.7) is modeled after its definition
in terms of lazy streams [7] and makes use of a set of combinators some of
which we have already used for the Fibonacci stream network (Section 9.3.1).
The network is lock-free, as witnessed by the fact that the corresponding lazy
stream definition can be shown to be productive [7], but also ill typed for
deadlock freedom and hence for lock freedom as well. In this network the
problematic combinator is zip, which interleaves on the output channel f the
digits received from the input channels d and e hence producing messages on
f at twice the rate at which they are consumed from d and e. This means that
there is no fixed offset between the levels of d and e and that of f that could
be dealt with by the typing rule [t-out*]. Note that this phenomenon does not
manifest in the Fibonacci stream network (Figure 9.1) despite its seemingly
similar topology. The key difference is that in the Fibonacci network the add
process combines the messages received from the two input channels into a
single message sent on the output channel. The example is interesting also

zip source(0) copy

tail

invert

f a
b

c

d

e

Figure 9.5 Stream network computing the Thue-Morse sequence.

1 { *zip?(x,y,z).x?(u,x̄).new z̄ in { z!(u,z̄) | zip!(y,x̄,z̄) }
2 | *invert?(x,y).x?(u,x̄).new ȳ in { y!(1-u,ȳ) | invert!(x̄,ȳ) }
3 | *tail?(x,y).x?(_,x̄).link!(x̄,y)
4 | *link?(x,y).x?(v,x̄).source!(v,x̄,y)
5 | *copy?(x,y,z).x?(v,x̄).new ȳ,z̄ in { y!(v,ȳ) | z!(v,z̄) | copy!(x̄,ȳ,z̄) }
6 | *source?(n,x,y).new ȳ in { y!(n,ȳ) | link!(x,ȳ) }
7 | source!(0, f,a) | copy!(a,b,c) | invert!(b,d) | tail!(c,e) | zip!(d,e, f) }

Listing 9.7 Term representation of the stream network computing the Thue-Morse sequence.



214 Type-Based Analysis of Linear Communications

because the impossibility to type the term is due to an excess of produced
messages rather than the lack thereof, as it was with the sequence of prime
numbers.

9.4 Related Work

Binary session type disciplines [12] provide intra-session guarantees of lock
freedom but cannot enforce this property in general when multiple sessions
are interleaved for types do not carry any information concerning the depen-
dencies between different sessions. Some session type systems [1, 24] are
designed in such a way that a plain session type discipline is sufficient
to guarantee deadlock freedom. However, only networks with a tree-like
communication topology are well typed. Among the examples we have
considered, just the recursive Fibonacci (Listing 9.1) and the master-worker
(Listing 9.3) fall in this category.

Multiparty session type disciplines [11,12] extend (dead)lock freedom to
sessions involving multiple processes. In these framework a global type is
used to describe the interactions between participants of a session as opposed
to the actions that participants perform on the channel of the session. The
global type is given explicitly by the system designer/programmer and a
tool is then used to check the consistency of the global type against (a
model of) the code that is meant to realize it. This top-down approach is
complementary to the one we have pursued in this chapter: Hypha analyzes
assemblies of processes knowing nothing about the intended communication
topology. In general, global types have been designed for describing delim-
ited interactions within sessions, but they cannot dispense completely from
the need of interleaving different sessions, in which case they are unable to
prevent (dead)locks. This has led to the study of hybrid approaches [2, 3]
that keep track of the order in which different sessions interleave with the
purpose of detecting mutual dependencies between sessions that could lead
to (dead)locks.

The works most closely related to our own are those where each
input/output operation described by a channel/session type is annotated with
information that captures the dependencies between different channels/ses-
sions. Such annotations come in the form of integer numbers as in our
case, or as abstract events, or as combinations thereof. The original tech-
nique and the corresponding analysis tool TyPiCal, which our type system
and Hypha are heavily inspired by, were described by Kobayashi [13–15].



References 215

These type systems and our own are uncomparable: on the one hand, in
Kobayashi’s works annotations can be used to reason about dependencies
between arbitrary channels, whereas we focus on linear channels only. On
the other hand, the form of level polymorphism allowed by rule [t-out*]
enables the verification of cyclic networks of recursive processes (most of
the examples we have examined in this chapter fall in this category) that
cannot be successfully handled by Kobayashi’s type systems [13–15]. A more
recent work [9] improves the precision of the technique, although recursive
types (hence recursive communication protocols) are not considered. The
annotation-based technique has also been applied directly to binary [17, 23]
and multiparty sessions [21].

It has been shown that the approaches imposing a tree-like communica-
tion topology [1, 24] are subsumed by those those annotating I/O actions in
session types with dependency information [6].

Acknowledgments I’m grateful to the anonymous reviewers whose com-
ments helped me improving both content and presentation of this chapter.

References

[1] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic
propositions as session types. Mathematical Structures in Computer
Science, 26(3):367–423, 2016.

[2] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. Inference of Global Progress Properties for Dynami-
cally Interleaved Multiparty Sessions. In Proceedings of COORDINA-
TION’13, LNCS 7890, pages 45–59. Springer, 2013.

[3] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and
Luca Padovani. Global Progress for Dynamically Interleaved Multiparty
Sessions. Mathematical Structures in Computer Science, 26:238–302,
2016.

[4] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25:95–169, 1983.

[5] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types
revisited. In Proceedings of PPDP’12, pages 139–150. ACM, 2012.

[6] Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session
typed processes. In Proceedings of EXPRESS/SOS’15, EPTCS 190,
pages 1–15, 2015.



216 Type-Based Analysis of Linear Communications

[7] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara,
and Jan Willem Klop. Productivity of stream definitions. Theoretical
Computer Science, 411(4-5):765–782, 2010.

[8] Marc Geilen and Twan Basten. Kahn process networks and a reac-
tive extension. In Handbook of Signal Processing Systems, pages
1041–1081. Springer, 2013.

[9] Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock ana-
lysis of unbounded process networks. In Proceedings of CONCUR’14,
LNCS 8704, pages 63–77. Springer, 2014.

[10] Kohei Honda. Types for dyadic interaction. In Proceedings of
CONCUR’93, LNCS 715, pages 509–523. Springer, 1993.

[11] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. Journal of the ACM, 63(1):9, 2016.

[12] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco
Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani,
António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi
Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Computing Surveys, 49:3:1–3:36, 2016.

[13] Naoki Kobayashi. A type system for lock-free processes. Information
and Computation, 177(2):122–159, 2002.

[14] Naoki Kobayashi. Type-based information flow analysis for the pi-
calculus. Acta Informatica, 42(4-5):291–347, 2005.

[15] Naoki Kobayashi. A new type system for deadlock-free processes. In
Proceedings of CONCUR’06, LNCS 4137, pages 233–247. Springer,
2006.

[16] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the pi-calculus. ACM Transactions on Programming Languages and
Systems, 21(5):914–947, 1999.

[17] Luca Padovani. From Lock Freedom to Progress Using Session Types.
In Proceedings of PLACES’13, EPTCS 137, pages 3–19, 2013.

[18] Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus.
In Proceedings of CSL-LICS’14, pages 72:1–72:10. ACM, 2014.

[19] Luca Padovani. Type Reconstruction for the Linear π-Calculus with
Composite Regular Types. Logical Methods in Computer Science,
11:1–45, 2015.

[20] Luca Padovani, Tzu-Chun Chen, and Andrea Tosatto. Type Reconstruc-
tion Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi.
In Proceedings of COORDINATION’15, LNCS 9037, pages 83–98.
Springer, 2015.



References 217

[21] Luca Padovani, Vasco T. Vasconcelos, and Hugo Torres Vieira. Typing
Liveness in Multiparty Communicating Systems. In Proceedings of
COORDINATION’14, LNCS 8459, pages 147–162. Springer, 2014.

[22] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[23] Hugo Torres Vieira and Vasco T. Vasconcelos. Typing progress
in communication-centred systems. In Proceedings of COORDINA-
TION’13, LNCS 7890, pages 236–250. Springer, 2013.

[24] Philip Wadler. Propositions as sessions. Journal of Functional Program-
ming, 24(2–3):384–418, 2014.



http://taylorandfrancis.com


10
Session Types with Linearity in Haskell

Dominic Orchard1 and Nobuko Yoshida2

1University of Kent, UK
2Imperial College London, UK

Abstract

Type systems with parametric polymorphism can encode a significant pro-
portion of the information contained in session types. This allows concurrent
programming with session-type-like guarantees in languages like ML and
Java. However, statically enforcing the linearity properties of session types,
in a way that is also natural to program with, is more challenging. Haskell
provides various language features that can capture concurrent programming
with session types, with full linearity invariants and in a mostly idiomatic
style. This chapter overviews various approaches in the literature for session
typed programming in Haskell.

As a starting point, we use polymorphic types and simple type-level func-
tions to provide session-typed communication in Haskell without linearity.
We then overview and compare the varying approaches to implementing
session types with static linearity checks. We conclude with a discussion of
the remaining open problems.

The code associated with this chapter can be found at http://github.
com/dorchard/betty-book-haskell-sessions.

10.1 Introduction

Session types are a kind of behavioural type capturing the communication
behaviour of concurrent processes. While there are many variants of session
types, they commonly capture the sequence of sends and receives performed
over a channel and the types of the messages carried by these interactions. A
significant aspect of session types is that they enforce linear use of channels:

219



220 Session Types with Linearity in Haskell

every send must have exactly one receive (no orphan messages), and vice
versa (no hanging receives). These properties are often referred to together as
communication safety. A channel cannot be reused once it has “used up” its
capability to perform sends and receives. This aspect of session types makes
them hard to implement in languages which do not have built-in notions of
linearity and resource consumption in the type system.

The following two example interactions will be used throughout.

Example 1 (Integer equality server and client). Consider a simple server
which provides two modes of interaction (services) to clients. If a client
chooses the first service, the server can then receive two integers, compare
these for equality, send the result back as a boolean, and then return to the
start state. The second service tells the server to stop hence it does not return
to providing the initial two services.

A potential client requests the first behaviour, sends two integers, receives
a boolean, and then requests that the server stop. These server and client
behaviours are captured by the following session types, using the notation
of Yoshida and Vasconcelos [18], which describe the interaction from the
perspective of opposite channel endpoints:

Server := μα.&{eq :?Z.?Z.!B.α, nil : end}
Client := ⊕{eq :!Z.!Z.?B.⊕{nil : end}}

The server has a recursive session type, denoted μα.S which binds the
variable α in scope of a session type S. Session types are typically equi-
recursive, such that μα.S ≡ S[μα.S/α]. The operator & denotes a choice
offered between branches, labelled here as eq and nil. In the eq case, two
integers are received and a boolean is sent before recursing with α. In the nil
case the interaction finishes, denoted by end.

The client selects the eq service, denoted by ⊕. Two integers are sent
and a boolean is received. Then the nil behaviour is selected via ⊕, ending
the interaction. Session types thus abstract communication over a channel, or
equivalently, they describe a channel’s capabilities.

The two types are dual: they describe complementary communication
behaviour on opposite end-points of a channel. Duality can be defined
inductively as a function on session types:

!τ.S = ?τ.S &{li : Si}i∈I = ⊕{li : Si}i∈I μα.S = μα.S[α/α]

?τ.S = !τ.S ⊕{li : Si}i∈I = &{li : Si}i∈I end = end



10.1 Introduction 221

Recursion variables come in two flavours: α and their dual α. The dual of a
dualised variable (α) = α is the undualised α. This formulation of duality
with recursive types is due to Lindley and Morris [7].

Duality enforces communication safety. If the communication patterns
of the server and client do not match then duality does not hold. Duality also
encompasses linearity, as any repetition of actions by the server or client leads
to non-matching communication behaviour.

Example 2 (Delegating integer equality). Following the expressive power
of the π-calculus, session types can also capture delegation, where channels
are passed over channels. Thus, the types of communicated values τ include
session types of communicated channels, written 〈S〉.

As a permutation on the previous example, we introduce a layer of
indirection through delegation. The server, after receiving two integers, now
receives a channel over which the resulting boolean should be sent. Dually,
the client sends a channel which has the capability of sending a boolean. This
is captured by the session types:

Server := μα.&{eq :?Z.?Z.?〈!B〉.α, nil : end}
Client := ⊕{eq :!Z.!Z.!〈!B〉.⊕{nil : end}}

The server’s capability to receive a channel, over which a boolean is sent, is
denoted ?〈!B〉 whose dual in the client is !〈!B〉: the sending of a channel over
which a boolean can be sent.

The reader is referred to the work of Yoshida and Vasconcelos [18] for a
full description of a session type theory for the π-calculus on which our more
informal presentation is based here.

To unpack the problem of encoding session type linearity in Haskell,
we first introduce a relatively simple encoding of session types capturing
sequences of send and receive actions on channels and some notion of
session duality. However, this approach does not fully enforce linearity
(Section 10.2). We then overview the various approaches in the literature for
encoding session types in Haskell, focusing on their approach to linearity
(Section 10.3). Outstanding problems and open questions in this area are
discussed finally in Section 10.4.

Throughout, “Haskell” refers to the variant of Haskell provided by
GHC (the Glasgow Haskell Compiler) which provides various type system
extensions, the use of which is indicated and explained as required.



222 Session Types with Linearity in Haskell

10.2 Pre-Session Types in Haskell

Haskell provides a library for message-passing concurrency with channels
similar in design to the concurrency primitives of CML [14]. The core
primitives have types:

newChan :: IO (Chan a)

readChan :: Chan a -> IO a

writeChan :: Chan a -> a -> IO ()

forkIO :: IO () -> IO ThreadId

These functions operate within the IO monad for encapsulating side-effectful
computations; creating channels (newChan), sending and receiving values on
these channels (writeChan and readChan), and forking processes (forkIO)
are all effectful. Channels have a single type and are bi-directional. The
following program implements Example 1:

server c d = do

x <- readChan c

case x of

Nothing -> return ()

Just x’ -> do

(Just y’) <- readChan c

writeChan d (x’ == y’)

server c d

main = do {c <- newChan; d <- newChan; forkIO (client c d); server c d}

client c d = do

writeChan c (Just 42)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

The choice between the two services is provided via a Maybe type, where
server :: Chan (Maybe Int) -> Chan Bool -> IO (). Two channels are
used so that values of different type can be communicated. The channel
types ensure data safety: communicated values are of the expected type.
However, this typing cannot ensure communication safety. For example,
the following two alternate clients are well-typed but are communication
unsafe:
client’ c d = do

writeChan c (Just 42)

writeChan c (Just 53)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

client’’ c d = do

writeChan c (Just 42)

readChan c

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

On the left, an additional message is sent which is left unreceived in the
server’s channel buffer. On the right, a spurious readChan occurs after the
first writeChan leading to a deadlock for the server and client.



10.2 Pre-Session Types in Haskell 223

send c x = do

c’ <- newChan

writeChan c (Send x c’)

return c’

recv c = do

(Recv x c’) <- readChan c

return (x, c’)

fork f = do

c <- newChan

c’ <- newChan

forkIO (link (c, c’))

forkIO (f c)

return c’

close c = return ()

Figure 10.1 Implementations of the communication-typed combinators where link ::

Links => (Chan s, Chan (Dual s)) -> IO ().

A significant proportion of communication safety (mainly the order of
interactions) can be enforced with just algebraic data types, polymorphism,
and a type-based encoding of duality.

10.2.1 Tracking Send and Receive Actions

Taking inspiration from Gay and Vasconcelos [3], we define the following
alternate combinators (with implementations shown in Figure 10.1) and data
types:

send :: Chan (Send a t) -> a -> IO (Chan t)

recv :: Chan (Recv a t) -> IO (a, Chan t)

close :: Chan End -> IO ()

data Send a t = Send a (Chan t)

data Recv a t = Recv a (Chan t)

data End

The send combinator takes as parameters a channel which can transfer values
of type Send a t and a value x of type a returning a new channel which can
transfer the values of type t. This is implemented via the constructor Send,
pairing the value x with a new channel c’, sending those on the channel c,
and returning the new continuation channel c’.

The recv combinator is somewhat dual to this. It takes a channel c on
which is received a pair of a value x of type a and channel c’ which can
transfer values of type t. The pair (x, c’) is then returned. The close

combinator discards its channel which has only the capability of transferring
End values, which are uninhabited (empty data types).



224 Session Types with Linearity in Haskell

The following implements a non-recursive version of the integer equality
server with delegation from Example 2 (for brevity C = Chan):

server :: C (Recv Int (Recv Int (Recv (C (Send Bool End)) End))) -> IO ()

server c = do

(x, c) <- recv c

(y, c) <- recv c

(d, c) <- recv c

d <- send d (x == y)

close c

close d

The type of the channel c gives a representation of the session type
?Z.?Z.?〈!B〉.end from Example 2. At each step of the program, the channel
returned by a send or receive is bound to a variable shadowing the chan-
nel variable used e.g. (x,c) <- recv c. This programming idiom provides
linear channel use.

10.2.2 Partial Safety via a Type-Level Function for Duality

One way to capture duality is via a type family. Type families are prim-
itive recursive type functions, with strong syntactic restrictions to enforce
termination. We define the (closed) type family Dual:

type family Dual s where

Dual (Send a t) = Recv a (Dual t)

Dual (Recv a t) = Send a (Dual t)

Dual End = End

Duality is used to type the fork operation, which spawns a process with a
fresh channel, returning a channel of the dual type:

fork :: Link s => (Chan s -> IO ()) -> IO (Chan (Dual s))

Figure 10.1 shows the implementation which uses a method link of the type
class Link to connect sent messages to received messages and vice versa. A
client interacting with server above can then be given as:

client c = do

c <- send c 42

c <- send c 53

d <- fork (\d’ -> do { c <- send c d’; close c })

(r, d) <- recv d

putStrLn ("Result: " ++ show r)

close d

example = do { c’ <- fork client; server c’ }



10.2 Pre-Session Types in Haskell 225

Thus, the client sends two integers on c then creates a new channel d’, which
is sent via c before c is closed. On the returned channel d (with dual session
type to d’), we receive the result, which is output before closing d. Thus,
Chan essentially provides the end-points of a bi-directional channel. The type
of client can be given as:1

client :: (Dual s ~ Recv Bool End, Link s) =>

Chan (Send Int (Send Int (Send (Chan s) End))) -> IO ()

Swapping a send for a recv, or vice versa, means the program will no longer
type check. Likewise, sending or receiving a value of the wrong type or at the
wrong point in the interaction is also a type error.

10.2.3 Limitations

The approach described so far captures sequences of actions, but cannot
enforce exact linear usage of channels; nothing is enforcing the idiom of
shadowing each channel variable once it is used. For example, the first few
lines of the above example client could be modified to:

client c = do

c <- send c (42 :: Int)

_ <- send c 53

c <- send c 53

...

By discarding the linear variable-shadowing discipline, an extra integer is
sent on c in the third line. This is not prevented by the types. While the
typing captures the order of interactions, it allows every action to be repeated,
and entire session interactions to be repeated. Thus, the session type theory
captured above is a kind of Kleene-star-expanded version where sequences
of actions in a session type A1. . . . .An.end are effectively expanded to allow
arbitrary repetition of individual actions and entire interaction sequences:
(A∗

1. . . . .A
∗
n)

∗.end.
We thus need some additional mechanism for enforcing proper linear use

of channels, rather than relying on the discipline or morality of a program-
mer writing against a communication specification. We have also not yet
considered branching behaviour or recursion, which are highlighted in the
approaches from the literature.

1A more general type can be inferred, since both Int types can be replaced with arbitrary
types of the Num class and Bool with an arbitrary type of the Show class.



226 Session Types with Linearity in Haskell

10.3 Approaches in the Literature

There are various different approaches in the literature providing session-
typed concurrent, communicating programs in Haskell with linearity:

• Neubauer and Thiemann [9] give an encoding of first-order single-
channel session types with recursion;

• Using parameterised monads, Pucella and Tov [13] provide multiple
channels, recursion, and some building blocks for delegation, but require
manual manipulation of a session type context;
(http://hackage.haskell.org/package/simple-sessions)

• Sackman and Eisenbach [15] provide an alternate approach where
session types are constructed via a value-level witness;
(http://hackage.haskell.org/package/sessions)

• Imai et al. [5] extend Pucella-Tov with delegation and a more user-
friendly approach to handling multiple channels;
(http://hackage.haskell.org/package/full-sessions)

• Orchard and Yoshida [11] use an embedding of effect systems into
Haskell via graded monads based on a formal encoding of session-typed
π-calculus into PCF with an effect system;
(https://github.com/dorchard/sessions-in-haskell)

• Lindley and Morris [8] provide a finally tagless embedding of the GV
session-typed functional calculus into Haskell, building on a linear λ-
calculus embedding due to Polakow [12].
(https://github.com/jgbm/GVinHs)

The following table summarises the various implementations’ support for
desirable session-type implementation features: recursion, delegation, mul-
tiple channels (for which we summarise how session contexts are modelled
and its members are accessed), idiomatic Haskell code, and whether manual
user-given specification of session types is feasible.

NT04 PT08 SE08 IYA10 OY16 LM16

Recursion � � deBruijn �labels � Affine
Delegation � � � �
Multi-channel � � � � �
− Contexts stack map list map list
− Access positional labels deBruijn names member

Idiomatic � � �� �� �
Manual spec � � �value � �



10.3 Approaches in the Literature 227

We characterise idiomatic Haskell as code which does not require interposing
combinators to replace standard syntactic elements of functional languages,
e.g., λ-abstraction, application, let-binding, recursive bindings, and variables.
In the above, for example, PT08 has one tick and IYA10 has two since PT08
must use specialised combinators for handling multiple channel variables
whilst IYA10 does not require such combinators, instead using standard
Haskell variables.

10.3.1 Note on Recursion and Duality

Early formulations of session types e.g. [18], defined duality of recursive
types as μα.S = μα.S. Whilst this duality is suitable for tail-recursive
session types, it is inadequate when recursive variables appear in a communi-
cated type [2]. For example, the type μα.!〈α〉 should have the unfolded dual
type of ?〈μα.!〈α〉〉 but under the earlier approach is erroneously ?〈μα.?〈α〉〉.
In Section 10.1, duality was defined using dualisable recursion variables, akin
to Lindley and Morris [7], which solves this problem. However, all session-
type implementations which support delegation and recursion (PT08, IYA10,
OY16) implement the erroneous duality. This is an area for implementations
to improve upon.

10.3.2 Single Channel; Neubauer and Thiemann [9]

Neubauer and Thiemann provided the first published implementation of
session types in Haskell. Their implementation is based on a translation
from a simple session-typed calculus that is restricted to one end of a
single communication channel. The session type theory is first order (i.e.,
no channel delegation), but includes alternation and recursive sessions using
a representation based on the following data types:

data NULL = NULL -- the closed session

data EPS = EPS -- the empty session

data SEND_MSG m r = SEND_MSG m r -- send message m, then session r

data RECV_MSG m r = RECV_MSG m r -- receive message m, then session r

data ALT l r = ALT l r -- alternative session: either l or r

data REC f = REC (f (REC f)) -- fixed-point of a parametric type

Session types are specified by defining a value using the above data construc-
tors which provides a homomorphic type-level representation of the session



228 Session Types with Linearity in Haskell

type. For example, the following value and its type describes a sequence of
receiving two integers and sending a bool:

simple = RECV_MSG intW (RECV_MSG intW (SEND_MSG boolW EPS))

where intW = 0, boolW = False witness the integer and boolean types and
simple :: RECV MSG Int (RECV MSG Int (SEND MSG Bool EPS)).

Duality is provided by parameterising such specification values by place-
holders for the ‘send’ and ‘receive’ actions which can then be applied
to SEND MSG and RECV MSG in one order or the other to provide the dual
specification. For example, the above specification becomes:

simple (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) =

recv intW (recv intW (send boolW EPS))

This function specialisations to the dual behaviour of the server via (simple

RECV MSG SEND MSG) and the client (simple SEND MSG RECV MSG).
A recursive session type (μβ.γ) is represented as a fixed-point, via REC,

of a parametric data type representing γ. For Example 1, the body of the
server’s recursive type &{eq :?Z.?Z.!B.α, nil : end} can be represented by
the following data type, which also uses ALT:

data Exm s r a =

MkExm (ALT (r Label (r Int (r Int (s Bool a)))) (r Label EPS))

where data Label = Eq | Nil. The full specification is constructed as:

exampleSpec (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) = a0

where a0 = REC (MkExm (ALT

(recv Eq (recv intW (recv intW (send boolW a0))))

(recv Nil EPS)))

A computation at one end-point of a channel is represented by the Session

data type which is indexed by the session type representation and internally
wraps the IO monad. The main communication primitives produce values of
Session:

class SEND st message nextst | st message -> nextst where

send :: message -> Session nextst () -> Session st ()

class RECEIVE st cont | st -> cont where

receive :: cont -> Session st ()

close :: Session NULL () -> Session EPS ()



10.3 Approaches in the Literature 229

The SEND class provides sending values of type message given a continuation
session with specification nextst, returning a computation with specification
st. The functional dependency st message -> nextst enforces that the
instantiation of st and message uniquely determines nextst. An instance
SEND (SEND MSG m b) m b specialises send to:

send :: m -> Session b () -> Session (SEND_MSG m b) ()

The RECEIVE class abstracts receiving, taking a general continuation and
returning a computation with communication specified by st. For RECV MSG

and ALT, the receive method is specialised at the types:

receive :: (m -> Session x ()) -> Session (RECV_MSG m x) ()

receive :: (RECV s m, RECV s’ m’) => ALT m m’ -> Session (ALT s s’) ()

with RECV shorthand for RECEIVE. The Example 1 server can be defined:

exampleServer socket = do

(h, _ ,_) <- accept socket

let session = receive (ALT (\Eq -> recvNum1) (\Nil -> finish))

recvNum1 = receive (\x -> recvNum2 x)

recvNum2 x = receive (\y -> sendEq x y)

sendEq x y = send (x == y) session

finish = close (io $ putStrLn "Fin.")

str <- hGetContents h

run session (exampleSpec SEND_MSG RECV_MSG) str h

The communication pattern of session (line 3), encoded by its type, must
match that of the specification exampleSpec SEND MSG RECV MSG as enforced
by the run deconstructor which expects a computation of type Session st

a and a corresponding specification value of type st. Any deviation from
the specification is a static type error. Since computations are wrapped in
the indexed Session type, they can only be executed via run and thus are
always subject to this linearity check. This contrasts with the simple approach
in Section 10.2 where actions on channels produce computations in the
(unindexed) IO monad, which allowed arbitrary repetition of actions within
the specified behaviour.

10.3.3 Multi-Channel Linearity; Pucella and Tov [13]

Pucella and Tov improve on the previous approach, providing multi-channel
session types with recursion and some higher-order support, though not full
delegation. Similarly to Neubauer-Thiemann, the basic structure of session



230 Session Types with Linearity in Haskell

types is represented by several data types: binary type constructors :!: and
:?: for send and receive and Eps for a closed session. Offering and selecting
of choices are represented by binary type constructors :&: and :+:, which
differs to Neubauer-Thiemann who coalesce these dual perspectives into ALT.
Duality is defined as a relation via a type class with a functional dependency
enforcing bijectivity:

class Dual r s | r -> s, s -> r

instance Dual r s => Dual (a :!: r) (a :?: s)

instance Dual r s => Dual (a :?: r) (a :!: s)

instance Dual Eps Eps

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :+: r2) (s1 :&: s2)

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :&: r2) (s1 :+: s2)

instance Dual r s => Dual (Rec r) (Rec s)

instance Dual (Var v) (Var v)

Recursive session types use a De Bruijn encoding where Rec r introduces
a new recursive binder over r and Var n is the De Bruijn index of the nth

binder where n has a unary encoding (e.g., Z, S Z, etc.).
Communication is provided by channels Channel c (which we abbreviate

to Chan c) where the type variable c represents the name of the channel. The
session type of a channel c is then a capability provided by the data type Cap

c e s which associates session type s to channel c with an environment e of
recursive variables paired with session types.

A parameterised monad [1] is used to capture the session types of the
free channels in a computation. Parameterised monads generalise monads to
type constructors indexed by a pair of types akin to pre- and post-conditions.
Its operations are represented via the class:

class ParameterisedMonad (m :: k -> k -> * -> *) where

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

return :: a -> m p p a

The “bind” operation >>= for sequential composition has type indices repre-
senting sequential composition of Hoare triples: a computation with post-
condition q can be composed with a computation with pre-condition q.
Relatedly, a pure value of type a can be lifted into a trivial computation which
preserves any pre-condition p in its post-condition.

One of the original examples of parameterised monads is for encoding
first-order single-channel session-typed computations [1]. This is expanded
upon by Pucella and Tov to multi-channels. They provide a parameterised
monad Session, indexed by stacks of session type capabilities associated



10.3 Approaches in the Literature 231

to channels. Pre-conditions are the channel capabilities at the start of a
computation, and post-conditions are the remaining channel capabilities after
computation.

Stacks are constructed out of tuples where () is the empty stack. For
example, (Chan c e s, (Chan c’ e’ s’, ())) is a stack of two capa-
bilities for channels c and c’. The core communication primitives then
manipulate the capability at the top of the stack:

send :: Chan c -> a -> Session (Cap c e (a :!: s), x) (Cap c e s, x) ()

recv :: Chan c -> Session (Cap c e (a :?: s), x) (Cap c e s, x) a

For example, sending a value of type a on channel c requires the capability a

:!: s at the top of the stack for c in the pre-condition, which becomes s in
the post condition. Branching follows a similar scheme.

Recursive behaviour is mediated by combinators which provide the
unrolling of a recursive session type (enter) and referencing a bound
De-Bruijn-indexed recursive variable via zero and suc:

enter :: Chan c -> Session (Cap c e (Rec s), x) (Cap c (s, e) s, x) ()

zero :: Chan c -> Session (Cap c (s,e) (Var Z), x) (Cap c (s,e) s, x) ()

suc :: Session (Cap t (r, e) (Var (S v)), x) (Cap t e (Var v), x) ()

Thus, entering a recursive sessions type adds the body of the type onto the
top of De-Bruijn environment stack; zero peeks the session type from the top
of the stack and suc pops and decrements the variable. The original paper has
a slightly different but equivalent formulation for suc– the above is provided
by the online implementation.

Example 1 can then be implemented as follows:
server c = do

enter c

loop

where loop = offer c

(do x <- recv c

y <- recv c

send c (x == y)

zero c

loop)

(close c)

client c = do

enter c

sel1 c

send c 42

send c 53

x <- recv c

io $ putStrLn $ "Got: " ++ show x

zero c

sel2 c

close c

The types of both can be inferred. For example, the type of server is:

server :: Eq a => Chan t -> Session

(Cap t e (Rec ((a :?: (a :?: (Bool :!: Var Z))) :&: Eps)), x) x ()



232 Session Types with Linearity in Haskell

Dual endpoints of a channel are created by functions accept and request

capturing the notion of shared channels [18], called a rendezvous here:

accept :: Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r, x) y a) -> Session x y a

request :: Dual r r’ => Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r’, x) y a) -> Session x y a

Thus, for our example, the server and client processes can be composed by
the following code which statically enforces duality through request:

example = runSession $ do rv <- io newRendezvous

forkSession (request rv client)

accept rv server

with forkSession :: Session x () () -> Session x () () enforcing a closed
final state for the forked subcomputation (line 2). Whilst the above code is
fairly idiomatic Haskell (modulo the management of recursion variables),
the example has only one channel. In the context of multiple channels, the
capability of a channel may not be at the top of the session environment stack,
thus context manipulating combinators must be used to rearrange the stack:

swap :: Session (r, (s, x)) (s, (r, x)) ()

dig :: Session x x’ a -> Session (s, x) (s, x’) a

where swap is akin to exchange and dig moves down one place in the stack.
Thus, multi-channel code requires the user to understand the type-level stack
representation and to manipulate it explicitly. Multi-channel code is there-
fore non-idiomatic, in the sense that we can’t just use Haskell variables on
their own.

Example 2 cannot be captured as channels cannot be passed. Pucella
and Tov provide a way to send and receive capabilities, however there is no
primitive for sending channels along with an associated capability. Imai et al.
describe a way to build this on top of Pucella and Tov’s approach with an
existentially quantified channel name, however this is still limited by the lack
of a new channel constructor. Instead, channel delegation could be emulated
with global shared channels for every delegation but this shifts away from the
message-passing paradigm.

In their paper, Pucella and Tov use the ixdo notation which copies exactly
the style of the do notation for monads, but which is desugared by a pre-
processor into the operations of the parameterised monad. In modern GHC,
this can be replaced with the RebindableSyntax extension which desugars
the standard do notation using any functions in scope named (>>=) and



10.3 Approaches in the Literature 233

return, regardless of their type. The operations of a parameterised monad
can therefore usurp the regular monad operations. Thus, the non-idiomatic
pre-processed ixdo notation can be replaced with idiomatic do notation. The
same applies to the work of Sackman and Eisenbach (Section 10.3.4) and
Imai et al. (Section 10.3.5) who also use parameterised monads. Similarly,
GHC’s rebindable syntax is reused by Orchard and Yoshida with graded
monads (Section 10.3.6).

10.3.4 An Alternate Approach; Sackman and Eisenbach [15]

In their unpublished manuscript, Sackman and Eisenbach provide an imple-
mentation also using a parameterised monad but with quite a different
formulation to Pucella and Tov. The encoding of session environments is
instead through type-level finite maps from channel names (as types) to
session types. This requires significantly more type-level machinery (imple-
mented mostly using classes with functional dependencies), resulting in much
more complicated types than Pucella-Tov. However, they provide a parame-
terised monad SessionType for constructing session-type witnesses at the
value level (similarly to Neubauer-Thiemann) which is much easier to read
and write than the corresponding type-level representation. Session-based
computations are then constructed through another parameterised monad
called SessionChain.

Sackman-Eisenbach represent session types by type-level lists (via con-
structors Cons and Nil) of actions given by parametric data types Send,
Recv, Select, Offer, Jump, and (non parametric) End similar to the other
representations. For Example 2, the recursive session type of the server can
be constructed via value-level terms as:

(serverSpec, a) = makeSessionType $ do

a <- newLabel

let eq = do {recv intW; recv intW; recvSession (send boolW); jump a}

a .= offer (eq ~|~ end ~|~ BLNil)

return a

This uses the SessionTypeparameterised monad indexed by TypeState types
which have further indices managing labels and representing session types.
The makeSessionType function returns a pair of a value capturing the speci-
fication serverSpec and the component of the type labelled by a. Labels are
used to associate types to channels and for recursive types, where newLabel

generates a fresh label bound to a. The third line associates to a the expected
session behaviour: a choice is offered where offer takes a list of behaviours



234 Session Types with Linearity in Haskell

constructed by ~|~ (cons) and BLNil (nil). As in Neubauer-Thiemann, intW
and boolW are value witnesses of types. The recursive step is via jump on label
a. The type of send illustrates the SessionType parameterised monad:

send :: (TyList f, TyList fs) => t -> SessionType

(TypeState n d u (Cons (lab, f) fs))

(TypeState n d u (Cons (lab, (Cons (Send (Normal, t)) f)) fs)) ()

The final parameter to TypeState provides a type-level list of labelled ses-
sion types (themselves lists). In the post-condition, the session type f from
the head of the list in the pre-condition has Send consed onto the front,
parameterised by (Normal, t) indicating the value type t.

The session-type building primitives have computation building counter-
parts (whose names are prefixed with s, e.g. ssend) returning computations
in the SessionChain parameterised monad. We elide the details, but show the
implementation of the server from Example 2:

server = do

cid <- fork serverChan dual (cons (serverSpec, notDual) nil) client

c <- createSession serverSpec dual cid

withChannel c (soffer ((do

x <- srecv

y <- srecv

recvChannel c (\d ->

withChannel d (do { ssend (x == y); sjump })))

~||~ (return ()) ~||~ OfferImplsNil))

The session type specification serverSpec is linked to computation to enforce
linearity via fork. Above, client refers to the client code which is forked
and given a channel whose behaviour is dual to that created locally by
createSession, specified by serverSpec. The sjump primitive provides the
recursive behaviour but has no target which is implicitly provided by the
specification. The withChannelprimitive “focuses” the computation on a par-
ticular channel such that the communication primitives are not parameterised
by channels, similar to Neubauer-Thiemann. This has some advantage over
Pucella-Tov, which required manual session-context manipulation, though
channel variables still cannot be used directly here. Combined with the
complicated type encoding, we therefore characterise this approach as the
least idiomatic.

It should be noted that since the appearance of their manuscript, the
type checking of functional dependencies in GHC has become more strict
(particularly with the additional Coverage Condition [16, Def. 7]). At the time



10.3 Approaches in the Literature 235

of writing, the latest available online implementation of Sackman-Eisenbach
fails to type check in multiple places due to the coverage conditions added
later to GHC. It is not immediately clear how to remedy this due to their
reliance on functional dependencies which do not obey the new coverage
condition.

10.3.5 Multi-Channels with Inference; Imai et al. [5]

Imai, Yuen, and Agusa directly extend the Pucella-Tov approach, providing
type inference, delegation, and solving the deficiencies with accessing multi-
ple channels. They replace the positional, stack-based approach for multiple
channels with a De Bruijn index encoding which is handled implicitly at the
type level. For example, send has type

send :: (Pickup ss n (Send v a), Update ss n a ss’, IsEnded ss F)

=> Channel t n -> v -> Session t ss ss’ ()

Computations are modelled by the parameterised monad Session as before,
but now pre- and post-condition indices ss and ss’ are type-level lists
of session types, rather than a labelled stack. Whilst these structures are
isomorphic, the way session types are accessed within the list representation
differs considerably.

A channel Channel t n has a type-level natural number n representing
the position of the channel’s session type in the list. The constraint Pickup
above specifies that at the nth position in ss is the session type Send v a. The
constraint Update then states that ss’ is the list of session types produced
by replacing the nth position in ss with the session type a. The rest of the
communication primitives follow a similar scheme to the above, generalising
Pucella-Tov primitives to work with the De Bruijn indices instead of just the
capability at the top of the stack.

A fresh channel can be created by the following combinator:

new :: SList ss l => Session t ss (ss:>Bot) (Channel t l)

where l is the length of the list ss as defined by the constraint SList, and
thus is a fresh variable for the computation.

Using this library leads to highly idiomatic Haskell code, with no
additional combinators required for managing the context of session-typed
channels. Both examples can be implemented, with code similar to that
shown for Pucella-Tov in Section 10.3.3. The one downside of this approach
however is that the types, whilst they can be inferred (which is one of the aims



236 Session Types with Linearity in Haskell

of their work), are complex and difficult to read, let alone write. Relatedly,
the type errors can be difficult to understand due to the additional type-level
mechanisms for managing the contexts.

10.3.6 Session Types via Effect Types; Orchard and Yoshida [11]

Orchard and Yoshida studied the connection between effect systems and
session types. One part of the work showed the encoding of a session-
typed π-calculus into a parallel variant of PCF with a general, parameterised
effect system. This formal encoding was then combined with an approach for
embedding effect systems in Haskell [10] to provide a new implementation
of session-typed channels in Haskell. The implementation supports multiple
channels in an idiomatic style, delegation, and a restricted form of recursion
(affine recursion only).

The embedding of general effect systems in Haskell types is provided
by a graded monad structure, which generalises monads to type constructors
indexed by a type-representation of effect information. This “effect type” has
the additional structure of a monoid, encoded using type families. The graded
monad structure in Haskell is defined:

class Effect (m :: ef -> * -> *) where

type Unit m :: ef

type Plus m (f :: ef) (g :: ef) :: ef

return :: a -> m (Unit m) a

(>>=) :: m f a -> (a -> m g b) -> m (Plus m f g) b

Thus a value of type m f a denotes a computation with effects described by
the type index f of kind ef. The return operation lifts a value to a trivially
effectful computation, marked with the type Unit m. The “bind” operation
(>>=) provides the sequential composition of effectful computations, with
effect information composed by the type-level binary function Plus m. The
session type embedding is provided by a graded monad structure for the data
type Process:

data Process (s :: [Map Name Session]) a = Process (IO a)

Type indices s are finite maps of the form ’[c :-> s, d :-> t, ...] map-
ping channel names c, d to session types s, t. The Session kind is given by
a data type (representing a standard grammar of session types) promoted by
the data kinds extension of GHC to the kind-level.

The Plus type operation of the Process graded monad takes the union of
two finite maps and sequentially composes the session types of any channels



10.3 Approaches in the Literature 237

that appear in both of the finite maps. This relies on the closed type family
feature of GHC to define type-level functions that can match on their types,
e.g., to compare types for equality.

The core send and received primitives then have the following types:

send :: Chan c -> t -> Process ’[c :-> t :! End] ()

recv :: Chan c -> Process ’[c :-> t :? End] t

In each, the type-index on Process gives a singleton finite map from the
channel name c to the session type. We elide the rest of the combinators.
Duality is enforced when a pair of channel endpoints is created by new:

new :: (Duality env c) => ((Chan (Ch c), Chan (Op c)) -> Process env t)

-> Process ((env :\ (Op c)) :\ (Ch c)) t

where :\ removes a channel’s session type from the environment.
A non-recursive implementation of Example 2 can be defined:

server (c :: (Chan (Op "c"))) =

do l <- recv c

case l of

L -> subL $ do

x <- recv c

y <- recv c

k <- chRecv c

k (\d -> send d (x == y))

R -> subR $ subEnd c (return ())

client (c :: (Chan (Ch "c"))) = do

send c L

subL’ c $ do

send c 42

send c 53

new (\(d :: (Chan (Ch "d")), d’) ->

do chSend c d

x <- recv d’

print $ "Got: " ++ show x)

which are composed by new (\(c, c’) -> client c ‘par‘ server c’).
One advantage of this approach is that most types are easy to write by

hand, with a succinct understandable presentation in terms of the finite maps
from channel names to session types. Furthermore, the use of multiple chan-
nels is idiomatic, using Haskell’s normal variables. The major disadvantage
of this approach is that the user must give their own explicit type-level names
to the channels, e.g., type signatures like Chan (Ch "c") above. For simple
examples this is not a burden, but manually managing uniqueness of variables
does not scale well.

Furthermore, the approach is brittle due to complex type-level represen-
tation and manipulations of finite maps. For example, GHC has difficulty
reasoning about the type-level union operation (used as Plus) when applied
to types involving some polymorphism.



238 Session Types with Linearity in Haskell

10.3.7 GV in Haskell; Lindley and Morris [8]

GV is a session-typed linear functional calculus, proposed by [17], based
on the work of Gay and Vasconcelos [3], and adapted further by Lindley
and Morris [6]. The GV presented by Lindley and Morris aims at re-use
of standard components, defined as an extension of the linear λ-calculus
with session-typed communication primitives. This provides a basis for their
Haskell implementation by reusing an embedding of the linear λ-calculus
into Haskell due to Polakow [12]. Polakow’s embedding provides a “tagless
final” encoding of the linear-λ calculus (LLC), meaning that terms of LLC are
represented by functions of a type class, whose interpretation/implementation
can be varied based on the underlying type. Furthermore, the embedding uses
higher-order abstract syntax (HOAS) i.e., binders in LLC are represented by
Haskell binders.

To represent the linear types notion of context consumption, contexts
are split in two with judgments of the form: ΔI \ΔO � e : A with input
context ΔI and output context ΔO which remains after computing e and
thus after some parts of ΔI have been consumed. Contexts come equipped
with the notion of a “hole” (written �) denoting a variable that has been
consumed. For example, a linear variable use is typed by Δ, x : A,Δ′ \Δ,�,
Δ′ � x : A.

The embedding of this linear type system uses natural numbers to rep-
resent variables in judgements. Judgements are represented by types repr

:: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *. Thus, the LLC term
representation is a type indexed by four pieces of information: a natural
number denoting a fresh name for a new variable, the input context (a list
of Maybe Nat where Just n is a variable and Nothing denotes �), the output
context, and the term type.

The core of the embedding for the linear function space fragment, is then
given by the LLC class, parameterised by a repr type:

class LLC (repr :: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *) where

llam :: (LVar repr v a -> repr (S v) (Just v ’: i) (Box ’: o) b)

-> repr v i o (a -<> b)

(^) :: reprv v i h (a -<> b) -> repr v h o a -> prepr v i o b

where LVar represents linear variables, defined as the type forall v i o .

(Consume x i o) => repr v i o a describing that using a variable leads to
its consumption for all input and output contexts i and o.



10.4 Future Direction and Open Problems 239

The session primitives of GV are added atop the LLC embedding via
another tagless final encoding (we elide the primitives for branching):

class GV (ch :: * -> *) repr where

send :: DualS s => repr v i h t -> repr v h o (ch (t <!> s))

-> repr v i o (ch s)

recv :: DualS s => repr v i o (ch (t <?> s)) -> repr v i o (t * ch s)

wait :: repr v i o (ch EndIn) -> repr v i o One

fork :: DualS s => repr v i o (ch s -<> ch EndOut)

-> repr v i o (ch (Dual s))

The types involve duality as both a predicate (type constraint) DualS and as a
type-level function Dual.

The approach does not provide recursive sessions so we implement a non-
recursive version of Example 1 as:

server = llam $ \c ->

recv c ‘bind‘ (llp $ \x c ->

recv c ‘bind‘ (llp $ \y c ->

send (const (==) $$$ x $$$ y) c))

example = fork server ‘bind‘ client

client = llam $ \c ->

send (const 42) c ‘bind‘ (llam $ \c ->

send (const 53) c ‘bind‘ (llam $ \c ->

recv c ‘bind‘ (llp $ \r c ->

wait c ‘bind‘ (llz $ ret r))))

This approach cleanly separates the notion of linearity from the channel
capabilities of session types. The main downside is that application, λ-
abstraction, and composition of terms must be mediated by the combinators
of the LLC embedding. Therefore, the approach does not support idiomatic
Haskell programming.

10.4 Future Direction and Open Problems

The table at the beginning of Section 10.3 (p. 226) indicates that there
is no one implementation that provides all desirable features: a session-
typed library for communication-safe concurrency with linearity, delegation,
multiple-channels, recursion, idiomatic Haskell code, and the ability to eas-
ily give session type specifications by hand. Furthermore, none correctly
implements duality with respect to recursion (Section 10.3.1).

So far there appears to be a trade-off between these different features.
Pucella and Tov provide an idiomatic system with relatively simple types,
but require the manual management of the capability stack. The work of Imai
et al. provides a highly idiomatic system, but the types are hard to manipulate
and understand. Orchard and Yoshida provide types that are easy to write,
but at the cost of forcing the user to manually manage fresh channel names.
Lindley and Morris handle variables idiomatically, but require additional



240 Session types with linearity in Haskell

combinators for application, λ-abstraction and term composition. Sackman
and Eisenbach provide session types which are easily specified by-hand with
a value witness, but with non-idiomatic code and hard to manipulate types.

One possible solution is to adapt the approach of Orchard and Yoshida
with a way to generate fresh channel names at the type-level automatically
via a GHC type checker plugin (see, e.g., [4]). Alternatively, existential names
can be used for fresh names. However, the implementation of type-level finite
maps relies on giving an arbitrary ordering to channel names (for the sake of
normalisation) which is not possible for existential names. In which case,
a type-checker plugin could provide built-in support for finite maps more
naturally, rather than using the current (awkward) approach of Orchard and
Yoshida.

We have examined the six major session type implementations for Haskell
in this chapter. All of them provide static linear checks, leveraging Haskell’s
flexible type system, but all have some deficiencies; finding a perfectly
balanced system remains an open problem.

Acknoweldgements We thank Garrett Morris and the anonymous reviewers
for their helpful comments. This work was supported in part by EPSRC
grants EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/M026124/1, and
EU project FP7-612985 UpScale.

References

[1] Robert Atkey. Parameterised notions of computation. Journal of
functional programming, 19(3–4):335–376, 2009.

[2] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouza-
pas. On duality relations for session types. In Trustworthy Global
Computing 2014, pages 51–66, 2014.

[3] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asyn-
chronous session types. Journal of Functional Programming, 20(01):
19–50, 2010.

[4] Adam Gundry. A typechecker plugin for units of measure: domain-
specific constraint solving in GHC Haskell. In ACM SIGPLAN Notices,
volume 50, pages 11–22. ACM, 2015.

[5] Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session Type Inference in
Haskell. In PLACES, pages 74–91, 2010.



References 241

[6] Sam Lindley and J. Garrett Morris. A semantics for propositions as
sessions. In ESOPb, pages 560–584. Springer, 2015.

[7] Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recur-
sion for Session Types. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016,
pages 434–447. ACM, 2016.

[8] Sam Lindley and J Garrett Morris. Embedding session types in haskell.
In Proceedings of the 9th International Symposium on Haskell, pages
133–145. ACM, 2016.

[9] Matthias Neubauer and Peter Thiemann. An Implementation of Session
Types. In PADL, volume 3057 of LNCS, pages 56–70. Springer, 2004.

[10] Dominic Orchard and Tomas Petricek. Embedding effect systems in
Haskell. ACM SIGPLAN Notices, 49(12):13–24, 2015.

[11] Dominic Orchard and Nobuko Yoshida. Effects as Sessions, Sessions as
Effects. ACM SIGPLAN Notices, 51(1):568–581, 2016.

[12] Jeff Polakow. Embedding a Full Linear Lambda Calculus in Haskell.
ACM SIGPLAN Notices, 50(12):177–188, 2016.

[13] Riccardo Pucella and Jesse A. Tov. Haskell Session Types with
(Almost) no Class. In Proc. of Haskell Symposium ’08, pages 25–36.
ACM, 2008. ISBN 978-1-60558-064-7.

[14] John H. Reppy. CML: A Higher-Order Concurrent Language. In PLDI,
pages 293–305, 1991.

[15] Matthew Sackman and Susan Eisenbach. Session Types in Haskell
(Updating Message Passing for the 21st Century), 2008. Technical
report, Imperial College London.

[16] Martin Sulzmann, Gregory J Duck, Simon Peyton-Jones, and Peter J
Stuckey. Understanding functional dependencies via constraint handling
rules. Journal of Functional Programming, 17(01):83–129, 2007.

[17] Philip Wadler. Propositions as sessions. Journal of Functional
Programming, 24(2–3):384–418, 2014.

[18] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language Primi
tives and Type Discipline for Structured Communication-Based Pro-
gramming Revisited: Two Systems for Higher-Order Session Commu-
nication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.



http://taylorandfrancis.com


11
An OCaml Implementation of Binary

Sessions

Hernán Melgratti1,2 and Luca Padovani3

1Departamento de Computación, Universidad de Buenos Aires,
Argentina
2CONICET-Universidad de Buenos Aires, Instituto de Investigación en
Ciencias de la Computación (ICC), Buenos Aires, Argentina
3Dipartimento di Informatica, Università di Torino, Italy

Abstract

In this chapter we describe FuSe, a simple OCaml module that implements
binary sessions and enables a hybrid form of session type checking without
resorting to external tools or extensions of the programming language. The
approach combines static and dynamic checks: the former ones are performed
at compile time and concern the structure of communication protocols; the
latter ones are performed as the program executes and concern the linear
usage of session endpoints. We recall the minimum amount of theoretical
background for understanding the essential aspects of the approach (Sec-
tion 11.1) and then describe the API of the OCaml module throughout a
series of simple examples (Section 11.2). In the second half of the chapter we
detail the implementation of the module (Section 11.3) and discuss a more
complex and comprehensive example, also arguing about the effectiveness
of the hybrid approach with respect to the early detection of protocol vio-
lations (Section 11.4). We conclude with a survey of closely related work
(Section 11.5).

The source code of FuSe, which is partially described in this chapter
and can be used to compile and run all the examples given therein, can be
downloaded from the second author’s home page.

243



244 An OCaml Implementation of Binary Sessions

11.1 An API for Sessions

We consider the following grammar of types and session types

t, s ::= bool | int | α | T | [li : ti]i∈I | · · ·
T, S ::= end | !t.T | ?t.T | &[li : Ti]i∈I | ⊕[li : Ti]i∈I | A | A

where types, ranged over by t and s, include basic types, type variables,
session types, disjoint sums, and possibly other (unspecified) types. Session
types, ranged over by T and S , comprise the usual constructs for denoting
depleted session endpoints, input/output operations, branches and choices, as
well as possibly dualized session type variables A, B, etc.

The dual of a session type T , written T , is obtained as usual by swapping
input and output operations and is defined by the following equations:

A = A
end = end

(?t.T ) = !t.T
(!t.T ) = ?t.T

&[li : Ti]i∈I = ⊕[li : Ti]i∈I

⊕[li : Ti]i∈I = &[li : Ti]i∈I

Following Gay and Vasconcelos [4], our aim is to incorporate binary
sessions into a (concurrent) functional language by implementing the API
shown in Table 11.1. The create function creates a new session and returns
a pair with its two peer endpoints with dual session types. The close function
is used to signal the fact that a session is completed and no more communica-
tions are supposed to occur in it. The send and receive functions are used
for sending and receiving a message, respectively: send sends a message
of type α over an endpoint of type !α.A and returns the same endpoint
with its type changed to A to reflect that the communication has occurred;
receive waits for a message of type α from an endpoint of type ?α.A and
returns a pair with the message and the same endpoint with its type changed
to A. The branch and select functions deal with sessions that may continue
along different paths of interaction, each path being associated with a label
li. Intuitively, select takes a label lk and an endpoint of type ⊕[li : Ai]i∈I

Table 11.1 Application programming interface for binary sessions

val create : unit → A × A
val close : end → unit
val send : α → !α.A → A
val receive : ?α.A → α × A
val select : (Ak → [li : Ai]i∈I) → ⊕[li : Ai]i∈I → Ak

val branch : &[li : Ai]i∈I → [li : Ai]i∈I



11.2 A Few Simple Examples 245

where k ∈ I, sends the label over the endpoint and returns the endpoint with its
type changed to Ak, which is the continuation corresponding to the selected
label. The most convenient OCaml representation for labels is as functions
that inject an endpoint (say, of type Ak) into a disjoint sum [li : Ai]i∈I where
k ∈ I. This explains the type of select’s first argument. Dually, receive
waits for a label from an endpoint of type &[li : Ai]i∈I and returns the
continuation endpoint injected into a disjoint union.

We note a few more differences between the API we implement in this
chapter and the one described by Gay and Vasconcelos [4]. First of all, we
use parametric polymorphism to give session primitives their most general
type. Second, we have a single function create to initiate a new session
instead of a pair of accept/request functions to synchronize a service and
a client. Our choice is purely a matter of simplicity, the alternative API being
realizable on top of the one we present (the API implemented in the FuSe
distribution already provides for the accept/request functions, which we
will see at work in Section 11.4). Finally, our communication primitives are
synchronous in that output operations block until the corresponding receive
is performed. Again, this choice allows us to provide the simplest implemen-
tation of these primitives solely using functions from the standard OCaml
library. Asynchronous communication can be implemented by choosing a
suitable communication framework.

11.2 A Few Simple Examples

Before looking at the implementation of the communication primitives, we
illustrate the API at work on a series of simple examples. In doing so, we
assume that the API is defined in a module named Session. The following
code implements a client of an ‘‘echo’’ service, a service that waits for a
message and bounces it back to the client.

let echo_client ep x =

let ep = Session.send x ep in

let res, ep = Session.receive ep in

Session.close ep;

res

The parameter ep has type !α.?β.end and x has type α. The function
echo_client starts by sending the message x over the endpoint ep. The con-
struction let rebinds the name ep to the endpoint returned by the primitive
send, which now has type ?β.end. The endpoint is then used for receiving a



246 An OCaml Implementation of Binary Sessions

message of type β from the service. Finally, echo_client closes the session
and returns the received message.

The service is implemented by the echo_service function below, which
uses the parameter ep of type ?α.!α.end to receive a message x and then
to sent it back to the client before closing the session.

let echo_service ep =

let x, ep = Session.receive ep in

let ep = Session.send x ep in

Session.close ep

There is an interesting asymmetry between (the types of) client and
service in that the message x sent by the service is the very same message it
receives, whereas the message res received by the client does not necessarily
have the same type as the message x it sends. Indeed, there is nothing
in echo_client suggesting that x and res are somewhat related. This
explains the reason why the session type of the endpoint used by the client
(!α.?β.end) is more general than that used by the service (?α.!α.end)
aside from the fact that the two session types describe protocols with com-
plementary actions. In particular, !α.?β.end is not dual of ?α.!α.end
according to the definition of duality given earlier: in order to connect client
and service, β must be unified with α. The code that connects echo_client
and echo_service through a session is shown below:

let _ =

let a, b = Session.create () in

let _ = Thread.create echo_service a in

print_endline (echo_client b "Hello, world!")

The code creates a new session, whose endpoints are bound to the names
a and b. Then, it activates a new thread that applies echo_service to the
endpoint a. Finally, it applies echo_client to the remaining endpoint b.

We now wish to generalize the echo service so that a client may decide
whether to use the service or to stop the interaction without using it. A service
that offers these two choices is illustrated below:

let opt_echo_service ep =

match Session.branch ep with

| �Msg ep → echo_service ep
| �End ep → Session.close ep

In this case the service uses the branch primitive to wait for a label
selected by the client. We use OCaml’s polymorphic variant tags (�Msg and



11.2 A Few Simple Examples 247

�End in this case) as labels because they do not have to be declared explicitly,
unlike data constructors of plain algebraic data types. The initial type of ep is
now &[End : end, Msg : ?α.!α.end] and the value returned by branch has
type [End : end, Msg : ?α.!α.end]. In the Msg branch the service behaves
as before. In the End branch the service closes the session without performing
any further communication.

The following function realizes a possible client for opt_echo_service:

let opt_echo_client ep opt x =

if opt then

let ep = Session.select (fun x → �Msg x) ep
in echo_client ep x

else

let ep = Session.select (fun x → �End x) ep
in Session.close ep; x

This function has type ⊕[End : end, Msg : !α.?α.end] → bool →
α → α and its behavior depends on the boolean parameter opt: when opt
is true, the client selects the label Msg and then follows the same protocol
as echo_client; when opt is false, the client selects the label End and
then closes the session. Note that we have to η-expand the polymorphic
variant tags �Msg and �End so that their type matches that expected by
select. When the same label is used several times in the same program,
it is convenient to define the η-expansion once, for example as

let _Msg x = �Msg x
let _End x = �End x

Note also that the messages sent and received now have the same type in
the initial type of ep. This is because of the structure of opt_echo_client,
which returns either x or the message returned by the service.

A further elaboration of the echo service allows the client to send an
arbitrary number of messages before closing the session. In order to describe
this protocol we must extend the syntax of session types presented earlier
to permit recursive types. In practice, the representation of session types
we will choose in Section 11.3 allows us to describe recursive protocols by
piggybacking on OCaml’s support for equi-recursive types, which is enabled
by passing the -rectypes option to the compiler. The implementation of the
elaborated echo service is therefore a straightforward recursive function:

let rec rec_echo_service ep =

match Session.branch ep with



248 An OCaml Implementation of Binary Sessions

| �Msg ep → let x, ep = Session.receive ep in
let ep = Session.send x ep in

rec_echo_service ep

| �End ep → Session.close ep
Note the recursive call rec_echo_service ep in the Msg branch, which

allows the server to accept again a choice from the client after replying back
to a request. The rec_echo_service function now expects an endpoint ep
of type rec A&[End : end, Msg : ?α.!α.A]where rec AT denotes the (equi-
recursive) session type T in which occurrences of A stand for the session type
itself.

The following client

let rec rec_echo_client ep =

function

| [] → let ep = Session.select _End ep in
Session.close ep; []

| x :: xs → let ep = Session.select _Msg ep in
let ep = Session.send x ep in

let y, ep = Session.receive ep in

y :: rec_echo_client ep xs

has type rec A⊕[End : end, Msg : !α.?β.A] → list α → β list and
repeatedly invokes the recursive echo service on each element of a list.

11.3 API Implementation

In order to implement the API presented and used in the previous sections
we have to make some choices regarding the OCaml representation of session
types and of session endpoints. In doing so we have to take into account the
fact that OCaml’s type system is not substructural and therefore is unable to
statically check that session endpoints are used linearly. In the rest of this
section we address these concerns and then detail the implementation of the
API in Table 11.1.

Representation of session types. FuSe relies on the encoding of session
types proposed by Dardha et al. [1] and further refined by Padovani [13]. The
basic idea is that a sequence of communications on a session endpoint can
be compiled as a sequence of one-shot communications on linear channels



11.3 API Implementation 249

(channels used exactly once) where each exchanged message carries the
actual payload along with a continuation, namely a (fresh) channel on which
the subsequent communication takes place.

The image of the encoding thus relies on two types:

• a type 0 which is not inhabited, and
• a type 〈ρ,σ〉 which describes channels for receiving messages of type ρ

and sending messages of type σ. Both ρ and σ can be instantiated with
0 to indicate that no message is respectively received and/or sent.

The correspondence between session types T and types of the form 〈t, s〉
is given by the map �·� defined below

Encoding of session types
�end� = 〈0, 0〉
�?t.T� = 〈�t� × �T�, 0〉
�!t.T� = 〈0, �t� × �T�〉

�&[li : Ti]i∈I� = 〈[li : �Ti�]i∈I , 0〉
�⊕[li : Ti]i∈I� = 〈0, [li : �Ti�]i∈I〉

�A� = 〈ρA,σA〉
�A� = 〈σA, ρA〉

and extended homomorphically to all types. We assume that for each session
type variable A there exist two distinct type variables ρA and σA that are also
different from any other type variable α.

For example, the session type ?α.A is encoded as 〈α×〈ρA,σA〉, 0〉, which
describes a channel for receiving a message of type α×〈ρA,σA〉 consisting of
a component of type α (that is the actual payload of the communication) and a
component of type 〈ρA,σA〉 (that is the continuation channel on which the rest
of the communication takes place). There is a twist in the encoding of outputs
for the session type of the continuation is dualized. The reason for this is that
the type associated with the continuation channel in the encoding describes
the behavior of the receiver of the continuation rather than that of the sender.
As we will see, this twist provides us with a simple way of expressing duality
relations between session types, even when they are (partially) unknown. The
encodings of ⊕[li : Ti]i∈I and &[li : Ti]i∈I follow the same lines and make
use of polymorphic variant types to represent the selected or received choice.
As an example, the encoding of T = ⊕[End : end, Msg : !α.?β.end] is
computed as follows



250 An OCaml Implementation of Binary Sessions

�T� = 〈0, [End : �end�, Msg : �?α.!β.end�]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × �!β.end�, 0〉]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × 〈0,β × �end�〉, 0〉]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × 〈0,β × 〈0, 0〉〉, 0〉]〉

If instead we consider the session type T = &[End : end, Msg :
?α.!β.end], then we derive:

�T� = 〈[End : �end�, Msg : �?α.!β.end�], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × �!β.end�, 0〉], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × 〈0,β × �end�〉, 0〉], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × 〈0,β × 〈0, 0〉〉, 0〉], 0〉

Remarkably we observe that the encoding of T can be obtained from that
of T by swapping the two components of the resulting channel types. This is
a general property:

Theorem 1 If �T� = 〈t, s〉, then �T� = 〈s, t〉.
An equivalent way of expressing this result is the following: if �T� =

〈t1, t2〉 and �S � = 〈s1, s2〉, then

T = S ⇐⇒ �T� = �S � ⇐⇒ t1 = s2 ∧ t2 = s1

meaning that the chosen encoding allows us to reduce session type duality
to type equality. This property holds also for unknown or partially known
session types. In particular, �A� = 〈ρA,σA〉 and �A� = 〈σA, ρA〉.

We end the discussion of session type representation with two remarks.
First, although the representation of session types chosen in FuSe is based on
the continuation-passing encoding of sessions into the linear π-calculus [1],
we will implement the communication primitives in FuSe so that only the
payload (or the labels) are actually exchanged. Therefore, the semantics of
FuSe communication primitives is consistent with that given in [4] and the
components corresponding to continuations in the above types are solely used
to relate the types of session endpoints as these are passed to, and returned
from, FuSe communication primitives. Second, the OCaml type system is
not substructural and there is no way to qualify types of the form 〈t, s〉 as
linear, which is a fundamental requirement for the type safety of the API. We
will overcome this limitation by means of a mechanism that detects linearity
violations at runtime. Similar mechanisms have been proposed by Tov and
Pucella [20] and by Hu and Yoshida [5].



11.3 API Implementation 251

Table 11.2 OCaml interface of the API for binary sessions

module Session : sig

type 0
type (ρ,σ) st (* OCaml syntax for 〈ρ,σ〉 *)
val create : unit → (ρ,σ) st × (σ,ρ) st
val close : (0,0) st → unit
val send : α → (0,(α × (σ,ρ) st)) st → (ρ,σ) st
val receive : ((α × (ρ,σ) st),0) st → α × (ρ,σ) st
val select : ((σ,ρ) st → α) → (0,[>] as α) st → (ρ,σ) st
val branch : ([>] as α,0) st → α

end

Having chosen the representation of session types, we can see in
Table 11.2 the OCaml interface of the module that implements the binary
session API. In OCaml syntax, the type 〈t, s〉 is written (t,s) st. There is a
direct correspondence between the signatures of the functions in Table 11.2
and those shown in Table 11.1 so we only make a couple of remarks. First,
we extensively use Theorem 1 whenever we need to refer to a session type
and its dual. This can be seen in the signatures of create, send and select
where both (ρ,σ) st and (σ,ρ) st occur. Second, in the types of select
and branch the syntax [>] as α means that α can only be instantiated with
a polymorphic variant type. Without this constraint the signatures of select
and branch would be too general and the API unsafe: it would be possible
to receive a label sent with select, or to branch over a message sent
with send. Note that the constraint imposed by [>] as α extends to every
occurrence of α in the same signature.

By comparing Tables 11.1 and 11.2 it is clear that the encoding makes
session types difficult to read. This problem becomes more severe as the
protocols become more involved. The distribution of FuSe includes an aux-
iliary tool, called rosetta, that implements the inverse of the encoding to
pretty print encoded session types into their familiar notation. The tool can
be useful not only for documentation purposes but also to decipher the likely
obscure type error messages issued by OCaml. Hereafter, when presenting
session types inferred by OCaml, we will often show them as pretty printed
by rosetta for better clarity.

Representation of session endpoints. Session primitives can be easily
implemented on top of any framework providing channel-based communica-
tions. FuSe is based on the Eventmodule of OCaml’s standard library, which



252 An OCaml Implementation of Binary Sessions

provides communication primitives in the style of Concurrent ML [16] and the
abstract type t Event.channel for representing channels carrying messages
of type t. It is convenient to wrap the Eventmodule so as to implement unsafe
communication channels, thus:

module UnsafeChannel : sig

type t

val create : unit → t
val send : α → t → unit
val receive : t → α

end = struct

type t = unit Event.channel

let create = Event.new_channel

let send x u = Event.sync

(Event.send u (Obj.magic x))

let receive u = Obj.magic

(Event.sync (Event.receive u))

end

We just need three operations on unsafe channels, create, send and
receive. The first one creates a new unsafe channel, which is simply an
Event channel for exchanging messages of type unit. The choice of unit
over any other OCaml type is immaterial: the messages exchanged over a
session can be of different types, hence the type parameter we choose here
is meaningless because we will perform unsafe cast at each communication.
These casts cannot interfere with the internals of the Event module because
t Event.channel is parametric on the type t of messages and therefore
the operations in Event cannot make any assumption on their content. The
implementation of send and receive on unsafe channels is a straight-
forward adaptation of the corresponding primitives of the Event module.
Observe that, consistently with the communication API of Concurrent ML,
Event.send and Event.receive do not perform communications them-
selves. Rather, they create communication events which occur only when
they are synchronized through the primitive Event.sync. The Obj.magic
function from the standard OCaml library has type α → β and performs the
necessary unsafe casts.

We now have all the ingredients for giving the concrete representation
of (encoded) session types. This representation is kept private to the FuSe
module so that the user can only manipulate session endpoint through the
provided API:



11.3 API Implementation 253

type (α,β) st = { chan : UnsafeChannel.t;
mutable valid : bool }

A session type is represented as a record with two fields: the chan field
is a reference to the unsafe channel on which messages are exchanged; the
mutable valid field is a boolean flag that indicates whether the endpoint
can be safely used or not. Every operation that uses the endpoint first checks
whether the endpoint is valid. If this is the case, the valid flag of the endpoint
is reset to false so that any subsequent attempt to reuse the same endpoint
can be detected. Otherwise, an InvalidEndpoint exception is raised. It
is convenient to encapsulate this functionality in an auxiliary function use,
which is private to the module and whose implementation is shown below:

let use u = if u.valid then u.valid ← false
else raise InvalidEndpoint

In principle, checking that the valid field is true and resetting it to
false should be performed atomically, to account for the possibility that
several threads are attempting to use the same endpoint simultaneously. In
practice, since OCaml’s scheduler is not preemptive and use allocates no
memory, the execution of use is guaranteed to be performed atomically
in OCaml’s runtime environment. Different programming languages might
require a more robust handling of the validity flag [13].

Whenever an operation on a session endpoint completes and the session
endpoint is returned, its valid flag should be set to true again. Doing so on
the existing record, though, would be unsafe. Instead, a new record referring
to the very same unsafe channel must be created. Again it is convenient to
provide this functionality as a private, auxiliary function fresh:

let fresh u = { u with valid = true }

Implementation of communication primitives. A new session is initiatied
by creating a new unsafe channel ch and returning the two peer endpoints of
the session, which both refer to the same channel. The valid flag of each
peer is set to true, indicating that it can be safely used:

let create () = let ch = UnsafeChannel.create ()

in { chan = ch; valid = true },

{ chan = ch; valid = true }



254 An OCaml Implementation of Binary Sessions

The implementation of close simply invalidates the endpoint. OCaml’s
garbage collector takes care of any further finalization that may be necessary
to clean up the corresponding unsafe channel:

let close = use

The send operation starts by checking that the endpoint is valid and,
in this case, invalidates it. Then, the message x is transmitted over the
underlying unsafe channel and a refreshed version of the endpoint is returned.
The receive operation is analogous, except that it returns a pair containing
the message received from the underlying unsafe channel and the refreshed
endpoint:

let send x u =

use u; UnsafeChannel.send x u.chan; fresh u

let receive u =

use u; (UnsafeChannel.receive u.chan, fresh u)

The select operation is behaviorally equivalent to send, since its pur-
pose is to transmit the selected label (which is its first argument) over the
channel. On the other hand the branch operation injects the refreshed session
endpoint with the function received from the channel:

let select = send

let branch u =

use u; UnsafeChannel.receive u.chan (fresh u)

We conclude this section showing the type inferred by OCaml for the
rec_echo_client defined in Section 11.1:

val rec_echo_client :

(0,[> �End of (0,0) st
| �Msg of (β × (0,γ × (0,α) st) st,0) st]
as α) st → β list → γ list

As expected, the type is rather difficult to understand. Part of this diffi-
culty is a consequence of the fact that the type expression t as α, which is
used in OCaml also to denote a recursive type, is placed in a position such that
t does not correspond to the encoding of a session type. It is only by unfolding
this recursive type that one recovers an image of the encoding function. The
same signature pretty printed by rosetta becomes

val rec_echo_client :

rec X.⊕[ End: end | Msg: !α.?β.X ] →
α list → β list

whose interpretation is straightforward.



11.4 Extended Example: The Bookshop 255

11.4 Extended Example: The Bookshop

In this section we develop a FuSe version of a known example from the
literature [4], where mother and child order books from an online book-
shop. The purpose of the programming exercise is threefold. First, we see
a usage instance of the accept and request primitives provided by FuSe
for establishing sessions over service channels. Second, we discuss a non-
trivial example in which the session types automatically inferred by OCaml
are at the same time more general and more precise than those given by
Gay and Vasconcelos [4]. This is made possible thanks to the support for
parametric polymorphism and subtyping in session types that FuSe inherits
for free from OCaml’s type system. Finally, we use the example to argue about
the effectiveness of the FuSe implementation of binary sessions in detecting
protocol violations, considering that FuSe combines both static and dynamic
checks.

Service channels in FuSe are provided by the module Service, whose
signature is shown below.

module Service : sig

type α t
val create : unit → α t
val accept : (ρ,σ) st t → (ρ,σ) st
val request : (ρ,σ) st t → (σ,ρ) st
val spawn : ((ρ,σ) st → unit) → (ρ,σ) st t

end

The type A Service.t describe a service channel that allows initiation of
sessions of type A. A session is created when two threads invoke accept
and request over the same service channel. In this case, accept returns a
session endpoint of type A and request returns its peer of type A.

The bookshop is modeled as a function that waits for session initiations on
the service channel showAccess and invokes shopLoop at each connection:

let shop shopAccess =

shopLoop (Service.accept shopAccess) []

A session initiated with the bookshop is handled by the function
shopLoop, which operates over the established session endpoint s and the
current list order of books in the shopping cart. The shopLoop function
is recursive and repeatedly offers the possibility of adding a new book by
selecting the Add label. When Checkout is selected instead, the bookshop



256 An OCaml Implementation of Binary Sessions

waits for a credit card number and an address and sends back an estimated
delivery date computed by an unspecified deliveryOn function.

let rec shopLoop s order =

match Session.branch s with

| �Add s →
let book, s = Session.receive s in

shopLoop s (book :: order)

| �CheckOut s →
let card, s = Session.receive s in

let address, s = Session.receive s in

let s = Session.send (deliveryOn order) s in

Session.close s

The type inferred by OCaml for shopLoop is

val shopLoop :

rec X.&[ Add: ?α.X | CheckOut: ?β.?γ.!day.end ]
→ α list → unit

which is structurally the same given by Gay and Vasconcelos [4], except for
the type variables α, β and γ. Indeed, the body of shopLoop does not use the
received values book, card and address and therefore their type remains
generic.

We now model a mother process placing an order for two books, one
chosen by her and another selected by her son. In principle, the mother could
let the son select his own book by delegating the session with the bookshop
to him. However, the mother wants to be sure that her son will buy just one
book that is suitable for his age. To enforce these constraints, the mother
sends her son a voucher, that is a function providing a controlled interface
with the bookshop. Overall, the mother is modeled thus:

let mother card addr shopAccess sonAccess book =

let c = Service.request shopAccess in

let c = Session.select _Add c in

let c = Session.send book c in

let s = Service.request sonAccess in

let s = Session.send (voucher card addr c) s in

Session.close s

where the parameters card, addr and book stand for information about
payment, delivery address and mother’s book. In addition, shopAccess and



11.4 Extended Example: The Bookshop 257

sonAccess are the service channels for connecting with the bookshop and
the son, respectively. The mother establishes a session c with the bookshop
and adds book to the shopping cart. Afterwards, she initiates another session
s for sending the voucher to her son. The voucher is modeled by the function:

1 let voucher card address c book =

2 let c =

3 if isChildrensBook book then

4 let c = Session.select _Add c in

5 Session.send book c

6 else c

7 in

8 let c = Session.select _CheckOut c in

9 let c = Session.send card c in

10 let c = Session.send address c in

11 let day, c = Session.receive c in

12 Session.close c

where book is chosen by the son. If book is appropriate − something that is
checked by the unspecified function isChildrensBook − the book is added
to the shopping cart. Then, the order is completed and the connection with
the bookshop closed.

For voucher and mother OCaml infers the following types:

val voucher : α → β →
rec X.⊕[ Add: !γ.X | CheckOut: !α.!β.?δ.end ]
→ γ → unit
val mother : α → β →
&[ Add: ?γ.rec X.&[ Add: ?δ.X

| CheckOut: ?α.?β.!ε.end ]
] Service.t → ?(δ → unit).end Service.t → γ
→ unit

In contrast to the type of mother given by Gay and Vasconcelos [4], the
type inferred by OCaml makes it clear that mother always adds at least one
book to the shopping cart. The connection between mother and shopLoop is
still possible because the protocol followed by mother is more deterministic
than − or a supertype of [3] − the one she is supposed to follow.

To finish the exercise we model the son as the following function:

let son sonAccess book =

let s = Service.accept sonAccess in



258 An OCaml Implementation of Binary Sessions

let f, s = Session.receive s in

f book;

Session.close s

where sonAccess is the service channel used for accepting requests from his
mother and book is the book he wishes to purchase. Note that the mother
sends a function (obtained as the partial application of voucher) which is
saturated by the son who provides the chosen book.

Overall, the code for connecting the three peers is shown below:

let _ =

let mCard = "0123 4567 7654 3210" in

let mAddr = "17 session type rd" in

let mBook = "Life of Ada Lovelace" in

let sBook = "1984" in

let shopAccess = Service.create () in

let sonAccess = Service.create () in

let _ = Thread.create shop shopAccess in

let _ = Thread.create (son sonAccess) sBook in

mother mCard mAddr shopAccess sonAccess mBook

It is not possible to qualify session endpoints as linear resources in
OCaml. This means that there are well-typed programs that, by using session
endpoints non-linearly, cause communication errors and/or protocol viola-
tions. In the rest of this section we use the example developed so far to do
some considerations concerning the effectiveness of the library in detecting
programming errors involving session endpoints. In particular we argue that,
despite the lack of linear qualification of session endpoints, OCaml’s type
system is still capable of detecting a fair number of linearity violations. In
the worst case, those violations that escape OCaml’s type checker are at least
detected at runtime with the mechanism we have put in place in Section 11.3.

We can simulate a linearity violation by replacing the session endpoint
bound by a let with _. For example, we can replace line 10 in the body of
voucher with

10 let _ = Session.send address c in

so that the very same endpoint c is used both for this send and also for the
subsequent receive. This linearity violation is detected by OCaml because
the type of a session endpoint used for an output is incompatible (i.e., not
unifiable) with that of an endpoint used for an input. Now suppose that we
replace line 8 in the same function with



11.4 Extended Example: The Bookshop 259

8 let _ = Session.select _CheckOut c in

so that the same endpoint c is used for both a select and the subsequent
send. Even if select and send are both output operations, the type of mes-
sages resulting from the encoding of a plain message output has a topmost ×
constructor which is incompatible with the polymorphic variant type resulting
from the encoding of a label selection. Therefore, also this linearity violation
is detected by OCaml’s type checker. In general, any linearity violation arising
from the use of different communication primitives is detected by OCaml.
Consider then line 9, and suppose that we replace it with

9 let _ = Session.send card c in

so that the same endpoint c is used for sending both card and address. In
this case the session endpoint is used for performing two plain outputs and
the sent messages have compabile (i.e., unifiable) types. Therefore, taken
in isolation, the voucher function would be well typed. In the context of
the whole program, however, OCaml detects a type error also in this case.
The point is that the faulty version of voucher now implements a different
protocol than before. In particular, it appears as if voucher sends just
one message after selecting CheckOut and before receiving the estimated
delivery date. On the contrary, the protocol of the bookshop as implemented
by shopLoop still expects to receive two messages before the delivery date is
sent back to the client. Therefore, the protocols of the bookshop and the one
inferred by the combination of mother and voucher are no longer dual to
each other and the session request performed by mother to the bookshop is
ill typed. For this problem to go undetected, there must be another linearity
violation in the body of shopLoop, in the place that corresponds exactly to
the point where the same violation occurs in voucher.

A simpler example of linearity violation that goes undetected by OCaml’s
type checker can be obtained by duplicating the f book application in the
body of the son function. This modification might correspond either to a
genuine programming error or to a malicious attempt of son to purchase
more than one book. The reason why this duplication results into a linearity
violation is that the closure corresponding to f contains the session endpoint
c from mother, so applying f twice results in two uses of the same c. This
error is detected by the type system of Gay and Vasconcelos [4] where the
function f has a linear arrow type. In FuSe, the program compiles correctly,
but the second application of f triggers the runtime mechanism that detects
linearity violations causing the InvalidEndpoint exception to be raised.



260 An OCaml Implementation of Binary Sessions

11.5 Related Work

Several libraries of binary sessions have been proposed for different func-
tional programming languages. Most libraries for Haskell [6,12,15,17] use
a monad that encapsulates the endpoints of open sessions. Besides being
a necessity dictated by the lazyness of the language, the monad prevents
programmers from accessing session endpoints directly thus guaranteeing
that endpoint linearity is not violated. The monad also tracks the evolution
of the type of session endpoints automatically, not requiring the programmer
to rebind explicitly the same endpoint over and over again. However, the
monad has a cost in terms of either expressiveness, usability, or portability:
the monad defined by Neubauer and Thiemann [12] supports communication
on a single channel only and is therefore incapable of expressing session
interleaving or delegation. Pucella and Tov [15] propose a monad that stores
a stack of endpoints (or, better, of their capabilities) allowing for session
interleaving and delegation to some extent. The price for this generality is
that the programmer has to write explicit monadic actions to reach the chan-
nel/capability to be used within the monad; also for this reason delegation
is severely limited. Imai et al. [6] show how to avoid writing such explicit
actions relying on a form of type-level computations. Lindley and Morris [9]
describe another Haskell embedding of session types that provides first-class
channels. Linearity is enforced statically using higher-order abstract syntax.

A different approach is taken in Alms [19, 21], a general-purpose pro-
gramming language whose type system supports parametric polymorphism,
abstract and algebraic data types, and built-in affine types as well. Tov [19]
illustrates how to build a library of binary sessions on top of these features.
Because Alms’ type system is substructural, affine usage of session endpoints
is guaranteed statically by the fact that session types are qualified as affine.
Further embeddings of session types in other experimental and domain-
specific languages with substructural type systems have been described by
Mazurak and Zdancewic [10], Lindley and Morris [8], and Morris [11].

Scalas and Yoshida [18] propose a library of binary session for Scala
that is very related to our approach. As in FuSe, Scalas and Yoshida use a
runtime mechanism to compensate for the lack of affine/linear types in Scala
and work with the encoded representation of session types given by Dardha
et al. [1]. A notable difference is that Scala type system is nominal, so that
encoded session types are represented by Scala (case) classes which must
be either provided by the programmer or generated from the protocol. This
means that the protocol cannot be inferred automatically from the code and



References 261

that the subtyping relation between session types is constrained by the (fixed)
subclassing relation between the classes that represent them.

The main source of inspiration for the representation of session types
in FuSe originates from the continuation-passing encoding of binary ses-
sions [1] and partially studied also in some earlier works [2, 7]. Our
representation of encoded session types allows session type duality to be
expressed solely in terms of type equality, whereas the representation chosen
by Dardha et al. [1] requires a residual albeit simple notion of duality for
the topmost channel type capability. Another difference is that we consider
the encoding at the type level only, not requiring the explicit exchange of
continuation channels for the implementation of communication primitives.
For these reasons, the soundness of the encoding [1] cannot be used directly
to argument about the soundness of FuSe’s typing discipline. Padovani [13]
formalizes FuSe’s approach to binary sessions along with the necessary
conditions under which the program does not raise exceptions. The same
paper also illustrates a simple monadic API built on top of the primitives
in Table 11.1 and investigates the overhead of the various approaches to
linearity.

In addition to the features described in this chapter, FuSe supports sequen-
tial composition of session types. This feature makes it possible to describe
with greater precision protocols whose set of (finite) traces is context-free as
opposed to regular [14,22]. As discussed by Thiemann and Vasconcelos [22],
these protocols arise naturally in the serialization of structured data types.
Currently, FuSe provides the first and only implementation of context-free
session type checking and inference.

Acknowledgments We thank the anonymous reviewers for their careful
reading of the chapter and suggestions of improvements and related work.

References

[1] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types
revisited. In Proceedings of PPDP’12, pages 139−150. ACM, 2012.

[2] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped
pi-calculus with linear types. In Proceedings of CONCUR’11, LNCS
6901, pages 280−296. Springer, 2011.

[3] Simon Gay and Malcolm Hole. Subtyping for Session Types in the
π-calculus. Acta Informatica, 42(2−3):191−225, 2005.



262 An OCaml Implementation of Binary Sessions

[4] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory
for asynchronous session types. Journal of Functional Programming,
20(1):19−50, 2010.

[5] Raymond Hu and Nobuko Yoshida. Hybrid Session Verification
through Endpoint API Generation. In Proceedings of FASE’16, LNCS
9633, pages 401−418. Springer, 2016.

[6] Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session Type Inference
in Haskell. In Proceedings of PLACES’10, EPTCS 69, pages 74−91,
2010.

[7] Naoki Kobayashi. Type systems for concurrent programs. In 10th
Anniversary Colloquium of UNU/IIST, LNCS 2757, pages 439−453.
Springer, 2002. Extended version available at http://www.kb.ecei.
tohoku.ac.jp/ koba/papers/tutorial-type-extended.pdf

[8] Sam Lindley and J. Garrett Morris. Lightweight Functional Session
Types. Unpublished manuscript available at http://homepages.inf.
ed.ac.uk/slindley/papers/fst-draft-february2015.pdf,
2015.

[9] Sam Lindley and J. Garrett Morris. Embedding session types in haskell.
In Proceedings of Haskell’16, Haskell 2016, pages 133−145, New York,
NY, USA, 2016. ACM.

[10] Karl Mazurak and Steve Zdancewic. Lolliproc: to concurrency from
classical linear logic via curry-howard and control. In Proceeding of
ICFP’10, pages 39−50. ACM, 2010.

[11] J. Garrett Morris. The best of both worlds: linear functional program-
ming without compromise. In Proceedings of ICFP’16, pages 448−461.
ACM, 2016.

[12] Matthias Neubauer and Peter Thiemann. An implementation of session
types. In Proceedings of PADL’04, LNCS 3057, pages 56−70. Springer,
2004.

[13] Luca Padovani. A Simple Library Implementation of Binary Sessions.
Journal of Functional Programming, 27, 2017.

[14] Luca Padovani. Context-Free Session Type Inference. In Proceedings
of the 26th European Symposium on Programming (ESOP’17), LNCS.
Springer, 2017.

[15] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost)
no class. In Proceedings of HASKELL’08, pages 25−36. ACM, 2008.

[16] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.



References 263

[17] Matthew Sackman and Susan Eisenbach. Session Types in Haskell:
Updating Message Passing for the 21st Century. Technical report,
Imperial College London, 2008. Available at http://pubs.doc.ic.
ac.uk/session-types-in-haskell/

[18] Alceste Scalas and Nobuko Yoshida. Lightweight Session Program-
ming in Scala. In Proceedings of ECOOP’16, LIPIcs 56, pages
21:1−21:28. Schloss Dagstuhl, 2016.

[19] Jesse A. Tov. Practical Programming with Substructural Types. PhD
thesis, Northeastern University, 2012.

[20] Jesse A. Tov and Riccardo Pucella. Stateful Contracts for Affine Types.
In Proceedings of ESOP’10, LNCS 6012, pages 550−569. Springer,
2010.

[21] Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceed-
ings of POPL’11, pages 447−458. ACM, 2011.

[22] Vasco T. Vasconcelos and Peter Thiemann. Context-free session types.
In Proceedings of ICFP’16, pages 462−475. ACM, 2016.



http://taylorandfrancis.com


12
Lightweight Functional Session Types

Sam Lindley and J. Garrett Morris

University of Edinburgh, Edinburgh, UK

Abstract

Row types provide an account of extensibility that combines well with para-
metric polymorphism and type inference. We discuss the integration of row
types and session types in a concurrent functional programming language,
and how row types can be used to describe extensibility in session-typed
communication.

12.1 Introduction

In prior work, we have developed a core linear λ -calculus with session types
called GV [13]. GV is inspired by a functional language with session types
developed by Gay and Vasconcelos [7], which we term LAST (for Linear
Asynchronous Session Types), and by the propositions-as-types correspon-
dence between session types and linear logic first introduced by Caires and
Pfenning [4] and later adapted to the classical setting by Wadler [23]. We have
given direct proofs of deadlock freedom, determinism, and termination for
GV. We have also given semantics-preserving translations between GV and
Wadler’s process calculus CP, showing a strong connection between GV’s
small-step operational semantics and cut elimination in classical linear logic.

In this article, we demonstrate that we can build practical languages
based on the primitives and properties of GV. We introduce a language, FST,
that extends GV with polymorphism, row types, and subkinding, integrating
linear and unlimited data types. FST, while more expressive, is still deadlock-
free, deterministic, and terminating. We consider several extensions of FST.
Recursion and recursive session types support the definition of long-running
services and repeated behavior. Adding recursion and recursive session types

265



266 Lightweight Functional Session Types

results in a system that is no longer terminating, but is still deadlock free and
deterministic. Access points support a more flexible mechanism for session
initiation. Adding access points results in a system that is not deadlock-free,
deterministic, or terminating, but that still satisfies subject reduction and a
weak form of progress.

Outline. The article proceeds as follows. Section 12.2 presents some exam-
ples illustrating FST and its extensions. Section 12.3 gives a formal account of
FST, a linear variant of System F, incorporating polymorphism, row-typing,
subkinding, and session types.

Section 12.4 explores extensions of FST with recursion, recursive types,
and access points, and demonstrates the expressivity of access points with
encodings of state cells, nondeterministic choice, and recursion.

Section 12.5 describes a practical implementation of FST in Links, a
functional language for web programming, and discusses our adaptation of
the existing Links syntax and type inference mechanisms to support linearity
and session types.

Section 12.6 concludes.
In this version of the article, we focus on the FST type system, and omit

the formal semantics and statements of correctness. An extended version
including the formal semantics and correctness proofs is available online [15].

12.2 A First Look

Before giving a formal account of the syntax and type system of FST, we
present some simple examples of programming in FST. We use a desktop
calculator as a running example. Despite its simplicity, it will motivate the
features of FST.

A One-Shot Calculator Server. We begin with a process that implements a
calculator server. We specify it as a function of one channel, c, on which it
will communicate with a user of the calculator.

calc c = offer c {Add c → let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
send 〈x+ y,c〉

Neg c → let 〈x,c〉= receive c in
send 〈−x,c〉}

On receiving a channel c, the function calc offers a choice of two behaviors,
labeled Add and Neg on c. In the Add case, it then expects to read two values



12.2 A First Look 267

from c and send their sum along c. The Neg case is similar. The session type
of channel c encodes these interactions, so the type of calc is

calc : �{Add : ?Int.?Int.!Int.End,Neg : ?Int.!Int.End}→ End

where the session type !T.S denotes sending a value of type T followed by
behavior S, ?T.S denotes reading a value of type T followed by behavior S,
and �{� : S, . . . , �n : Sn} denotes offering an n-ary choice, with the behavior
of the ith branch given by Si.

Next, we consider a client for the calculator server:

user1 c = let c = select Add c in let 〈x,c〉= receive (send 〈19,send 〈23,c〉〉) in x

Like calc, the user1 function is passed the channel on which it communicates
with the calculator. It begins by selecting the Add behavior, which is compat-
ible with the choice offered by calc. Its subsequent behavior is unsurprising.
We could give the channel a type dual to that provided by the calculator:

user1 : ⊕{Add : !Int.!Int.?Int.End,Neg : !Int.?Int.End}→ Int

However, this type overspecifies the behavior of user1 as the Neg branch is
unused in the definition of user1. In FST, we can use row polymorphism to
abstract over the irrelevant labels in a choice, as follows:

user1 : ∀ρ .⊕{Add : !Int.!Int.?Int.End;ρ}→ Int

This type specifies that the argument to user1 may be instantiated to any
session type that offers a choice of Add with a suitable behavior along
with arbitrary other choices. FST includes explicit type abstractions and type
annotations on bound variables; we omit both in the examples in order to
improve readability. Our concrete implementation of FST in Links, is able
to reconstruct omitted types and type abstractions using a fairly standard
Hindley-Milner-style type inference algorithm.

We can plug the calculator server and the user together as follows

let c = fork calc in user1 c

yielding the number 42. The fork primitive creates a new child process and a
channel through which it can communicate with its parent process.

Recursive Session Types. The one-shot calculator server allows only one
operation to be performed before the communication is exhausted. If we
add support for recursive session types, then we can define a calculator that



268 Lightweight Functional Session Types

allows an arbitrary number of operations to be performed. In order to make
the example more interesting, we define a calculator server with a memory.

calcrec : Int→ (rec σ .�{Add : ?Int.?Int.!Int.σ ,
Neg : ?Int.!Int.σ ,
M+ : ?Int.σ ,
MR : !Int.σ
Stop : End})→ End

calcrec m c = offer c {Add c → let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
calcrec m (send 〈x+ y,c〉)

Neg c → let 〈x,c〉= receive c in
calcrec m (send 〈−x,c〉)

M+ c → let 〈x,c〉= receive c in calcrec (m+ x) c
MR c → let c = send 〈m,c〉 in calcrec m c}
Stop c → c}

The idea is that selecting M+ adds a number to that currently stored in
memory and MR reads the current value of the memory. A user must now
explicitly select Stop in order to terminate communication with the server.

user2 : ∀ρρ ′.⊕{Add : !Int.!Int.?Int.⊕{Stop : End;ρ};ρ ′} → Int
user2 c = let 〈x,c〉= receive (send 〈19,send 〈23,select Add c〉〉) in

select Stop c;x

With the row variables instantiated appropriately, we can plug user2 and the
recursive calculator together

let c = fork calcrec 0 in user2 c

again yielding 42.
The examples we have seen so far could be implemented using subtyping

instead of row polymorphism. We now consider a function that cannot be
implemented with subtyping. Suppose we wish to abstract over the memory
add operation. We define a function that can be used to communicate with
any calculator server that supports M+ and arbitrary other operations.

mAdd : ∀ρ .Int→ (rec σ .⊕{M+ : !Int.σ ;ρ})→ (rec σ .⊕{M+ : !Int.σ ;ρ})
mAdd n c = send 〈n,select M+ c〉

The key feature of this function is that the row variable ρ appears both con-
travariantly (inside the second argument) and covariantly (inside the return
type) in the type of mAdd. Thus, in a system with subtyping but without row
typing, one would have to explicitly instantiate ρ , ruling out an extensible



12.2 A First Look 269

calculator server implementation. Let us use mAdd to define a client that
invokes multiple calculator operations.

user3 :
∀ρρ ′ρ ′′.
⊕{M+ : !Int.⊕{M+ : !Int.⊕{MR : ?Int.⊕{Stop : End;ρ};ρ ′};ρ ′′}} → Int

user3 c = let c = select MR (mAdd 19 (mAdd 23 c)) in
let 〈x,c〉= receive c in
select Stop c;x

We can plug user3 and the recursive calculator together as before

let c = fork calcrec 0 in user3 c

again yielding 42.

Access Points. A key limitation of the examples we have seen so far is that
they allow only one user to connect to a calculator server at a time. Access
points provide a more flexible mechanism for session initiation than the fork
primitive. Intuitively, we can think of access points as providing a matchmak-
ing service for processes. Processes may either accept or request connections
at a given access point; accepting and requesting processes are paired non-
deterministically. We now adapt our calculator server to synchronize on an
access point instead of a fixed channel:

calcAP : ∀α.Int→ AP (�{Add : ?Int.?Int.!Int.End,
Neg : ?Int.!Int.End,
M+ : ?Int.End,
MR : !Int.End})→ α

calcAP m a = let c = accept a in
offer c {
Add c →let 〈x,c〉= receive c in

let 〈y,c〉= receive c in
let c = send 〈x+ y,c〉 in calcAP m a

Neg c →let 〈x,c〉= receive c in
let c = send 〈−x,c〉 in calcAP m a

M+ c → let 〈x,c〉= receive c in calcAP (m+ x) a
MR c → let c = send 〈m,c〉 in calcAP m a}

Unlike calcrec, this calculator server never stops; rather, it will persist until the
access point is no longer accessible by any client code, at which point it may
be garbage collected. As calcrec never returns, it is polymorphic in its return
type. In general, an access point a has type AP S for some session type S. The



270 Lightweight Functional Session Types

expression accept a returns an end point of type S and request a returns an
end point of type S.

We can connect our original user to calcAP. We use the new operator to
create a fresh access point and the spawn operator to create child threads
(without any shared channels).

let a = new in spawn (λ 〈〉.calcAP 0 a);user1 (request a)

The result of evaluation is again 42. More interestingly, we can connect
multiple clients to the same server concurrently.

let a = new in
let mAdd n a = send 〈n,select M+ (request a)〉 in
let mRecall a = let 〈x,c〉= receive (select M+ (request a)) in
spawn (λ 〈〉.calcAP 0 a);
spawn (λ 〈〉.mAdd 19 (request a));
spawn (λ 〈〉.mAdd 23 (request a));
mRecall a

The result of evaluating this code is non-deterministic. Depending on the
scheduler it may yield 0, 19, 23, or 42.

12.3 The Core Language

The calculus we present in this section, FST (F with Session Types), is a call-
by-value linear variant of System F with subkinding, row types, and session
types. It combines a variant of GV, our session-typed linear λ -calculus [13],
with the row typing and subkinding of our previous core language for
Links [11], and the similar approach to subkinding for linearity of Mazurak
et al’s lightweight linear types [17].

As our focus is programming with session types rather than their log-
ical connections, we make some simplifications compared to our earlier
work [13]. Specifically, we have a single unlimited self-dual type of closed
channels, and we omit the operation for linking channels together.

12.3.1 Syntax

To avoid duplication and keep the concurrent semantics of FST simple, we
strive to implement as much as possible in the functional core of FST, and
limit the session typing constructs to the essentials. The only session type
constructors are for output, input, and closed channels, and no special typing



12.3 The Core Language 271

rules are needed for the primitives, which are specified as constants. Other
features such as choice and selection can be straightforwardly encoded using
features of the functional core.

Types. The syntax of types and kinds is given in Figure 12.1. The function
type A →Y B takes an argument of type A and returns a value of type B and
has linearity Y . (We write A → B as an abbreviation for A →• B.) The record
type 〈R〉 has fields given by the labels of row R. The variant type [R] admits
tagged values given by the labels of row R. The polymorphic type ∀αK(Y,Z).A
is parameterized over the type variable α of kind K(Y,Z).

The input type ?A.S receives an input of type A and proceeds as the
session type S. Dually, the output type !A.S sends an output of type A and
proceeds as the session type S. The type End terminates a session; it is its
own dual. We let σ range over session type variables and the dual of session
type variable σ is σ .

Row Types. Records and variants are defined in terms of row types. Intu-
itively, a row type represents a mapping from labels to ordinary types. In
fact, rows also track absent labels, which are, for instance, needed to type
polymorphic record extension (a record can only be extended with labels that
are not already present). A row type includes a list of distinct labels, each of
which is annotated with a presence type. The presence type indicates whether
the label is present with type A (Pre(A)), absent (Abs), or polymorphic in its
presence (θ ).

Row types are either closed or open. A closed row type ends in ·. An
open row type ends in a row variable ρ or its dual ρ; the latter are only
meaningful for session-kinded rows. The mapping from labels to ordinary
types represented by a closed row type is defined only on the labels that are

Ordinary Types A,B ::= A →Y B
| 〈R〉 | [R]
| ∀αK(Y,Z).A | α | α
| S

Session Types S ::= !A.S | ?A.S
| End | σ | σ

Row Types R ::= · | � : P;R | ρ | ρ
Presence Types P ::= Abs | Pre(A) | θ | θ
Types T ::= A | R | P

Labels �
Label Sets L ::= {�1, . . . , �k}
Kinds J ::= K(Y,Z)
Primary Kinds K ::= Type

| RowL

| Presence
Linearity Y ::= • | ◦
Restriction Z ::= π | �
Type Variables α,σ ,ρ,θ

Figure 12.1 Syntax of types and kinds.



272 Lightweight Functional Session Types

explicitly listed in the row type, and cannot be extended. In contrast, the row
variable in an open row type can be instantiated in order to extend the row
type with additional labels. As usual, we identify rows up to reordering of
labels.

�1 : P1;�2 : P2;R = �2 : P2;�1 : P1;R

Furthermore, absent labels in closed rows are redundant:

� : Abs;�1 : P1, . . . ;�n : Pn; ·= �1 : P1, . . . ;�n : Pn; ·

Duality. The syntactic duality operation on type variables extends to a
semantic duality operation on session types and is lifted homomorphically
to session row types, and session presence types:

?A.S = !A.S
!A.S = ?A.S
End = End

α = α

· = ·
� : P;R = � : P;R

ρ = ρ

Abs = Abs

Pre(S) = Pre(S)

θ = θ

Kinds. Types are classified by kinds. Ordinary types have kind Type. Row
types R have kind RowL where L is a set of labels not allowed in R. Presence
types have kind Presence.

The three primary kinds are refined with a simple subkinding discipline,
similar to the system described in our previous work on Links [11] and the
system of Mazurak et al. on lightweight linear types [17]. A primary kind
K is parameterized by a linearity Y and a restriction Z. The linearity can be
either unlimited (•) or linear (◦). The restriction can be session typed (π) or
unconstrained (�). The interpretation of these parameters on row and presence
kinds is pointwise on the ordinary types contained within the row or presence
types inhabiting those kinds. For instance, the kind RowL (◦,π) is inhabited
by row types of linear session type and the kind Presence(•,�) by presence
types of unlimited unconstrained ordinary types.

By convention we use α for ordinary type variables or for type variables
of unspecified kind, ρ for type variables of row kind, and θ for type variables
of presence kind. We sometimes omit the primary kind, either inferring it
from context or assuming a default of Type. For instance, we write α•,�
instead of αType(•,�).

Subkinding. The two sources of subkinding are the linearity and restriction
parameters.



12.3 The Core Language 273

	 • ≤ ◦ 	 π ≤ �

	 Y ≤ Y ′ 	 Z ≤ Z′

	 K(Y,Z)≤ K(Y ′,Z′)

Our notion of linearity corresponds to usage, not alias freedom. Thus, any
unlimited type can be used linearly, but not vice versa.

Kind and Type Environments.

Kind Environments Δ ::= · | Δ,α : K(Y,Z)
Type Environments Γ ::= · | Γ,x : A

Kind environments map type variables to kinds. Type environments map term
variables to types.

Terms. The syntax of terms and values is given in Figure 12.2. We let x range
over term variables and c range over constants. Lambda abstractions λYxA.M
are annotated with linearity Y . Type abstractions ΛαJ.V are annotated with
kind J. Note that the body of a type abstraction is restricted to be a syntactic
value in the spirit of the ML value restriction (in order to avoid problems
with polymorphic linearity and with polymorphic session types). Records
are introduced with the unit record 〈〉 and record extension 〈�= M;N〉
constructs. They are eliminated with the binding forms let 〈〉 ← M in N
and let 〈�= x;y〉 ← M in N, the latter of which binds the value labeled by
� to x and the remainder of the record to y. Conventional projections M.�

Terms L,M,N ::= x | c
| λYxA.M | L M
| ΛαJ .V | M T
| 〈〉 | 〈�= M;N〉
| let 〈〉 ← M in N
| let 〈�= x;y〉 ← M in N
| (� M)R | case L {� x → M;y → N}
| case⊥ L

Values V,W ::= x
| λYxA.M
| ΛαK(Y,Z).V
| 〈〉 | 〈�=V ;W 〉
| (� V )R

Constants c ::= send | receive | fork

Figure 12.2 Syntax of terms and values.



274 Lightweight Functional Session Types

are definable using this form, but note that because projection discards the
remainder of the record, its applicability to records with linear components
is limited. Variants are introduced with the injection � M and eliminated with
case L {� x → M;y → N}. Hypothetical empty variants are eliminated with
case⊥ L.

Concurrency. The concurrency features of FST are provided by special
constants. The term send 〈V,W 〉 sends V along channel W , returning the
updated channel. The term receive W receives a value along channel W , and
returns a pair of the value and the updated channel. The term fork (λx.M)
returns one end of a channel and forks a new process M in which x is bound
to the other end of the channel.

Notation. We use the following abbreviations:

let x = M in N
def
= (λ x.N) M

M;N
def
= let x = M in N, x fresh

� : A
def
= � : Pre(A)

〈A1, . . . ,Ak〉 def
= 〈1 : A1; . . . ;k : Ak; ·〉

#»

�
def
= �1, . . . , �k

#     »

� : P
def
= �1 : P1, . . . , �k : Pk

We interpret n-ary record and case extension at the type and term levels in the
standard way. For instance

〈 #     »

� : P;R〉 def
= 〈�1 : P1;〈. . . ;〈�n : Pn;R〉 . . .〉〉

and
case L {·} def

= case⊥ L

case L {z → N} def
= let z = L in N

case L {� x → N; χ} def
= case L {� x → N;z → case z {χ}}

where we let χ range over sequences of cases:

χ ::= · | z → N | � x → N; χ

We write fv(M) for the free variables of M. We write ftv(T ) for the free
type variables of a type T and ftv(Γ) for the free type variables of type
environment Γ. We write dom(Γ) for the domain of type environment Γ.

12.3.2 Typing and Kinding Judgments

The kinding rules are given in Figure 12.3. The kinding judgment Δ 	 A :
K(Y,Z) states that in kind environment Δ, the type A has kind K(Y,Z). Type
variables in the kind environment are well-kinded. The rules for forming



12.3 The Core Language 275

Δ 	 T : K(Y,Z)

FUNCTION
Δ 	 A : Type(Y,�) Δ 	 B : Type(Y ′,�)

Δ 	 A →Y ′′
B : Type(Y ′′,�)

FORALL
Δ,α : K(•,Z) 	 A : Type(Y,�)

Δ 	 ∀αK(Y ′,Z).A : Type(Y,�)

RECORD
Δ 	 R : Row /0(Y,�)

Δ 	 〈R〉 : Type(Y,�)

VARIANT
Δ 	 R : Row /0(Y,�)

Δ 	 [R] : Type(Y,�)

INPUT
Δ 	 A : Type(Y,�)
Δ 	 S : Type(Y ′,π)

Δ 	 ?A.S : Type(◦,π)

OUTPUT
Δ 	 A : Type(Y,�)
Δ 	 S : Type(Y ′,π)

Δ 	 !A.S : Type(◦,π)
END

Δ 	 End : Type(•,π)

EMPTYROW

Δ 	 · : RowL (Y,Z)

EXTENDROW
Δ 	 P : Presence(Y,Z) Δ 	 R : RowL{�}(Y,Z)

Δ 	 (� : P;R) : RowL (Y,Z)

ABSENT

Δ 	 Abs : Presence(Y,Z)

PRESENT
Δ 	 A : Type(Y,Z)

Δ 	 Pre(A) : Presence(Y,Z)

TYVAR
α : K(Y,Z) ∈ Δ
Δ 	 α : K(Y,Z)

DUALTYVAR
α : K(Y,π) ∈ Δ
Δ 	 α : K(Y,π)

UPCAST
	 J ≤ J′ Δ 	 T : J

Δ 	 T : J′

Figure 12.3 Kinding rules.

function, record, variant, universally quantified, and presence types follow
the syntactic structure of types. Because of the subkinding relation, a record
is linear if any of its fields are linear, and similarly for variants. Recall that
RowL is the kind of row types whose labels cannot appear in L . (To be clear,
this constraint applies equally to absent and present labels; it is a constraint
on the form of row types. In contrast, � : Abs in a row type is a constraint on
terms.) An empty row has kind RowL (Y,Z) for any label set L , linearity Y ,
and restriction Z. The use of disjoint union in the EXTENDROW rule ensures
that row types have distinct labels. A row type can only be used to build a
record or variant if it has kind Row /0; this constraint ensures that any absent
labels in an open row type are mentioned explicitly.

In Figure 12.4 we define two auxiliary judgments that for use in the
typing rules. The linearity judgment Δ 	 Γ : Y is the pointwise extension
of the kinding judgment restricted to the linearity component of the kind. It



276 Lightweight Functional Session Types

Δ 	 Γ : Y

L-EMPTY

Δ 	 · : Y

L-EXTEND
Δ 	 Γ : Y Δ 	 A : K(Y,Z)

Δ 	 (Γ,x : A) : Y

Δ 	 Γ = Γ1 +Γ2

C-EMPTY

Δ 	 ·= ·+ ·

C-•
Δ 	 A : Type(•,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = (Γ1,x : A)+(Γ2,x : A)

C-◦-LEFT
Δ 	 A : Type(◦,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = (Γ1,x : A)+Γ2

C-◦-RIGHT
Δ 	 A : Type(◦,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = Γ1 +(Γ2,x : A)

Figure 12.4 Linearity of contexts and context splitting.

states that in kind environment Δ, each type in environment Γ has linearity Y .
The type environment splitting judgment Δ 	 Γ = Γ1 +Γ2 states that in kind
environment Δ, the type environment Γ can be split into type environments
Γ1 and Γ2. Contraction of unlimited types is built into this judgment.

The typing rules are given in Figure 12.5. The typing judgment Δ;Γ 	 M :
A states that in kind environment Δ and type environment Γ, the term M has
type A. We assume that Γ and A are well-kinded with respect to Δ. If Δ and Γ
are empty (that is, M is a closed term), then we will often omit them, writing
	 M : A for ·; · 	 M : A.

We assume a signature Σ mapping constants to their types. The definition
of Σ on the basic concurrency primitives is given in Figure 12.6.

The EXTEND rule is strict in the sense that it requires a label to be absent
from a record before the record can be extended with the label. The CASE

rule refines the type of the value being matched so that in the type of the
variable bound by the default branch, the non-matched label is absent.

Selection and Choice. Traditional accounts of session types include types
for selection and choice. Following our previous work [13], inspired by
Kobayashi [8], we encode selection and choice using variant types.

⊕{R} def
= ![R].End

�{R} def
= ?[R].End

select � M
def
= fork (λ x.send 〈� x,M〉)

offer L {χ} def
= let 〈x,z〉= receive L in case x {χ}



12.3 The Core Language 277

Δ;Γ 	 M : A

VAR
Δ 	 Γ : •

Δ;Γ,x : A 	 x : A

CONST
Σ(c) = A

Δ; · 	 c : A

LINLAM
Δ;Γ,x : A 	 M : B

Δ;Γ 	 λ ◦xA.M : A →◦ B

UNLLAM
Δ 	 Γ : •
Δ;Γ,x : A 	 M : B

Δ;Γ 	 λ •xA.M : A →• B

APP
Δ;Γ1 	 L : A →Y B
Δ;Γ2 	 M : A

Δ;Γ1 +Γ2 	 L M : B

POLYLAM
Δ,α :: K(•,Z);Γ 	V : A α /∈ ftv(Γ)

Δ;Γ 	 ΛαK(Y,Z).V : ∀αK(Y,Z).A

POLYAPP
Δ;Γ 	 M : ∀αK(Y,Z).A
Δ 	 T :: K(Y,Z)

Δ;Γ 	 M T : A[α := T ]

UNIT
Δ 	 Γ : •

Δ;Γ 	 〈〉 : 〈〉

LETUNIT
Δ;Γ1 	 M : 〈〉 Δ;Γ2 	 N : B

Δ;Γ1 +Γ2 	 let 〈〉 ← M in N : B

CASEZERO
Δ;Γ 	 L : []

Δ;Γ 	 case⊥L : B

EXTEND
Δ;Γ1 	 M : A
Δ;Γ2 	 N : 〈� : Abs;R〉

Δ;Γ1 +Γ2 	 〈�= M;N〉 : 〈� : Pre(A);R〉

LETRECORD
Δ;Γ1 	 M : 〈� : Pre(A);R〉
Δ;Γ2,x : A,y : 〈R〉 	 N : B

Δ;Γ1 +Γ2 	 let 〈�= x;y〉 ← M in N : B

INJECT
Δ;Γ 	 M : A

Δ;Γ 	 (� M)R : [� : Pre(A);R]

CASE
Δ;Γ1 	 L : [� : Pre(A);R]
Δ;Γ2,x : A 	 M : B
Δ;Γ2,y : [� : Abs;R] 	 N : B

Δ;Γ1 +Γ2 	 case L {� x → M;y → N} : B

Figure 12.5 Typing rules.

Σ(send) = ∀α◦,�.∀σ◦,π .〈α, !α.σ〉 →• σ
Σ(receive) = ∀α◦,�.∀σ◦,π .?α.σ →• 〈α,σ〉

Σ(fork) = ∀σ◦,π .∀α•,�.(σ →◦ α)→• σ

Figure 12.6 Type schemas for constants.

The encoding of select uses fork in order to generate a fresh channel of
the continuation type. In the implementation of Links we support selec-
tion and choice in the source language. This is primarily for programming
convenience. One might imagine desugaring these using the rules above,



278 Lightweight Functional Session Types

and then potentially rediscovering them in the back-end for performance
reasons.

Semantics. In the extended version of this article [15] we give an asyn-
chronous small-step operational semantics for FST. Following Gay and
Vasconcelos [7], whose calculus we call LAST (for Linear Asynchronous
Session Types), we factor the semantics into functional and concurrent
reduction relations, and introduce explicit buffers to provide asynchrony.
For the functional fragment of the language, we give a standard left-to-
right call-by-value semantics. The semantics of the concurrent portion of the
language is given by a reduction relation on configurations of process and
buffers. This semantics differs from our previous work on GV [13] in that
is relies on explicit buffers, allowing asynchrony between the sending and
receiving of a message, and it uses standard β -reduction instead of weak
explicit substitutions [10]. FST, like GV but unlike LAST, is deadlock-free,
deterministic, and terminating.

12.4 Extensions

FST can be straightforwardly extended with additional features.
If we add a fixed point constant, then we lose termination, but deadlock

freedom and determinism continue to hold. Another standard extension sup-
ported by Links is recursive types. While care is needed in defining the dual
of a recursive session type, the treatment is otherwise quite standard. Negative
recursive types allow a fixed point combinator to be defined, so again we lose
termination, but deadlock freedom and determinism continue to hold.

The price we pay for the strong properties we obtain is that our model
of concurrency is rather weak. For instance, it gives us no way of imple-
menting a server with any notion of shared state. Drawing on LAST (and
previous work on session-typed π-calculi), Links supports access points,
which provide a much more expressive model of concurrency at the cost of
introducing deadlock. Nevertheless, it is often possible to locally restrict code
to a deadlock-free subset of Links.

12.4.1 Recursion

The grammar of session types we have presented so far is rather limited; for
example, it cannot express repeated behavior. As illustrated in Section 12.2,
we can use recursive session types to define a calculator that supports multiple



12.4 Extensions 279

calculations. In order to support this kind of example, we can straightfor-
wardly extend FST with equi-recursive types. We add a kinding rule for
recursive types and identify each recursive type with its unrolling.

REC
Δ,α : Type(Y,Z) 	 A : Type(Y,Z)

Δ 	 rec αY,Z.A : Type(Y,Z)
rec αY,Z.A = A[rec αY,Z.A/α]

It is well-known [2, 3] that recursive types complicate the definition of
duality, particularly when the recursion variable appears as a carried type
(that is, as A in ?A.S or !A.S). For example, consider the simple recursive
session type rec σ ◦,π .?σ .σ . The dual of this type is not rec σ ◦,π .!σ .σ , as one
would obtain by taking the dual of the body of the recursive type directly, but
is rec σ ◦,π .!σ .σ instead.

Bernardi and Hennessy [2] point out that even existing definitions that
correctly handle the above instance of recursion variables appearing inside
a carried type often fail for other examples. The underlying difficulty arises
from attempting to define duality in a setting in which the duality operator
may not be applied to atomic type variables. Bernardi and Hennessy show
that is is possible to give a correct definition in such a setting, but we prefer
the more compositional definition that arises naturally when one admits duals
of atomic type variables [16] (something that we want anyway as our calculus
is polymorphic).

rec σX ,π.S = rec σX ,π.(S[σ/σ ])

Having added recursive types, one can of course encode a fixed point combi-
nator. Alternatively, we can add a fixed point constant to FST, even without
recursive types:

Σ(fix) = ∀α•,�.∀β •,�.((α →• β )→• (α →• β ))→• (α →• β )

Of course, these extensions allows us to write nonterminating programs, but it
is straightforward to show that subject reduction, progress, deadlock freedom,
and determinism continue to hold.

12.4.2 Access Points

In order to extend FST with access points, we replace the constant fork with
four new constants:

Σ(spawn) = ∀α•,�.(〈〉 →◦ α)→• 〈〉
Σ(new) = ∀σ◦,π .〈〉 →• AP σ

Σ(accept) = ∀σ◦,π .AP σ →• σ
Σ(request) = ∀σ◦,π .AP σ →• σ



280 Lightweight Functional Session Types

A process M is spawned with spawn M, where M is a thunk that returns an
arbitrary unlimited value; we can define spawn in terms of fork and vice
versa:

spawn M
def
= (λ xEnd.〈〉)(fork (λ xEnd.M 〈〉))

fork M
def
= let z = new 〈〉 in spawn (λ x.M (accept z));request z

Session-typed channels are created through access points. A fresh access
point of type AP S is created with new. Given an access point L of type AP S
we can create a new server channel (accept L), of session type S, or client
channel (request L), of session type S. Processes can accept and request
an arbitrary number of times on any given access point. Access points are
synchronous in the sense that each accept will block until it is paired up with
a corresponding request and vice-versa.

Adding access points exposes the difference between asynchronous and
synchronous semantics. Here is an example of a term that reduces to a
value under an asynchronous semantics, but deadlocks under a synchronous
semantics.

let z = new 〈〉 in
let z′ = new 〈〉 in
spawn (λ 〈〉.let x = accept z in

let y = accept z′ in send 〈0,x〉; let 〈v,y〉= receive y in v);
let x = request z′ in
let y = request z in send 〈0,x〉; let 〈v,y〉= receive y in v

Under an asynchronous semantics, both sends happen followed by both
receives, and the term reduces to the value 0. Under a synchronous semantics
both sends are blocked and the term is deadlocked.

Shared State. With access points we can implement shared state cells.

State A = AP (!A.End)

newCell : ∀α•,�.〈〉 → State α
newCell v = let x = new 〈〉 in spawn (λ 〈〉.send 〈v,accept x〉);x

put : ∀α•,�.State α → α → 〈〉
put x v = let 〈 , 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);〈〉
get : ∀α•,�.State α → α
get x = let 〈v, 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);v



12.5 Links with Session Types 281

Nondeterminism. We can straightforwardly encode nondeterministic
choice by using an access point to generate a nondeterministic boolean value.
Suppose that we have Δ;Γ 	 M : T and Δ;Γ 	 N : T . The following term will
nondeterministically choose between terms M and N:

let z = new 〈〉 in
spawn (λ 〈〉.send 〈True,accept z〉);
spawn (λ 〈〉.send 〈False,accept z〉);
let 〈x, 〉= receive (request z) in
case x {True→ M;False→ N}

One process is left waiting on accept z. However, as z cannot escape, this
process can be safely garbage collected.

Recursion. Recursion can in fact be encoded using access points. We have
already seen that access points are expressive enough to simulate higher-
order state. We can now use Landin’s knot (back-patching) [9] to implement
recursion. For instance, the following term loops forever:

let x = newCell〈〉→〈〉 (λ 〈〉.〈〉) in put 〈x,λ 〈〉.get x 〈〉〉;get x 〈〉

12.5 Links with Session Types

Version 0.6 of the Links web programming language includes an extension
based on FST. It is available online from the Links website:

http://links-lang.org/

Links is a functional programming language for the web. From a single
source program, Links generates code to run on all three tiers of a web
application: the browser, the server, and the database. Links is a call-by-value
language with support for ML-style type inference (extended with support
for first-class polymorphism similar to that of provided by the impredicative
polymorphism extension of GHC [22]). It incorporates a row-type system
that is used for records, variants, and effects, and provides equi-recursive
types. Subkinding is used to distinguish base types from other types. This
is important for enforcing the constraint that generated SQL queries must
return a list of records whose fields are of base type [11].

In order to keep the presentation uniform and self-contained we use the
concrete syntax of FST throughout rather than that of Links. However, all
of the examples presented in this article can be written directly in Links with
essentially the same abstract syntax, modulo the fact that Links uses Hindley-
Milner style type inference.



282 Lightweight Functional Session Types

12.5.1 Design Choices

Before implementing session types for Links we considered a number of
design choices. Linearity is central to our description of session types. Most
existing functional languages (including vanilla Links) do not provide native
support for linear types. We considered three broad approaches:

1. encode linearity using existing features of the programming language
(as in Pucella and Tov’s Haskell encoding of session types [19] or our
Haskell encoding of session types [14])

2. stratify the language so that the linear fragment of the language is
separated out from the host language (as in Toninho et al’s work [20])

3. bake linearity into the type system of the whole language (as in
LAST [7])

The appeal of the first approach is that it does not require any new
language features, assuming the starting point is a language with a sufficiently
rich type system—for example, one that is able to conveniently encode
parameterized monads [1], or parameterized higher-order abstract syntax [5].
The second approach is somewhere in between. It allows a linear language
to be embedded in an existing host language without disrupting the host
language. The third approach requires linearity to pervade the whole type
system, but opens up interesting possibilities for code reuse, for instance
through polymorphism over linearity [24] or through subkinding [17].

Given that we are in the business of developing our own programming
language, we decided to pursue the third option. We wanted to include the
full expressivity of our language in the linear fragment, so we did not see
a significant benefit in stratification, and we wanted to explore possibilities
for code-reuse offered by baking linearity into the type system. We were also
presented with another choice regarding how to accommodate code reuse.
Given that Links already supported subkinding [11] we elected to adopt the
linear subkinding approach of Mazurak et al. [17].

An advantage of the LAST (and FST) approach to session typing is that
channels are first class and hence support compositional programming. This
is in contrast to the parameterized monad approach and approaches based
on process calculi, in which channels are just names. For example, in FST
with recursive types we can define broadcasting a value to a whole list of
channels:

broadcast : ∀α•,�σ◦,π .α → LinList (!α.σ)→ LinList σ
broadcast v xs = linMap (λ x.send 〈v,x〉) xs



12.5 Links with Session Types 283

where LinList A is a linear list data type and linMap is the map operation over
linear lists:

LinList A = rec α◦,�.[Nil;Cons : 〈A,α〉]
linMap : ∀α◦,�β (◦,�).(α → β )→ LinList α → LinList β
linMap f xs = case xs {Nil → Nil

Cons 〈x,xs〉 → Cons 〈 f x, linMap f xs〉}
An attendant drawback to having first-class channels is that one must

explicitly rebind channels after each operation. This is in contrast to the
parameterized monad approach and approaches based on process calculi,
which implicitly rebind channels after each communication. In order to
mitigate the need to explicitly rebind channels, we introduce process cal-
culus style syntactic sugar inspired by previous work on the correspondence
between classical linear logic and functional sessions [12, 13, 23]. To ease the
job of writing a parser, we explicitly delimit process calculus style syntactic
sugar with special brackets �−�.

�x(y).Q�
def
= let 〈x,y〉= receive x in �Q�

�x[M].Q�
def
= let x = send〈M,x〉 in �Q�

�� x.Q�
def
= let x = select � x in �Q�

�offer x {�i → Qi}i �
def
= offer x {�i(x)→ �Qi �}i

�{M}�
def
= M

We let Q range over process calculus style terms. The desugaring of input,
output, selection, and branching is direct. The {−} brackets allow values to
be returned from the tail of a process calculus expression. As an example, we
can more concisely rewrite the one-shot calculator server of Section 12.2 as
follows:

sugarCalc= λ c.� offer c {Add→c(x).c(y).c[x+ y].{〈〉}
Neg→c(x).c[−x].{〈〉}} �

In general, the syntactic sugar allows us to take advantage of a process-
calculus style for communication-heavy sequences of code, but switch back
to a functional style for compositional programming.

12.5.2 Type Reconstruction

Vanilla Links provides type inference, as in many other typed functional
languages. However, as a consequence of the typing of application, the types
of higher-order functions in FST are not uniquely determined by their uses.



284 Lightweight Functional Session Types

As an example, consider the application operator in FST, implemented by the
following term:

Λα•,�
1 ,α•,�

2 .λY1 f α1→Y2 α2 .λY3xα1 . f x

This term is well-typed for arbitrary choices of Y1 and Y2, and any choice
of Y3 more constraining than Y2, giving six distinct well-typed instantiations
in all.

There are several ways we might hope to restore complete type inference,
but they each come with significant additional complexity. We could intro-
duce bounded quantification over linearities, combining the approaches of
Tov and Pucella [21] and Walker [24]; in addition to introducing new forms of
quantification, the implications of the resulting system for type inference have
not been studied. Another approach was recently proposed by Morris [18].
His approach captures all the variations of the term above in a single term,
and provides complete type inference. However, it relies on qualified types,
an alternative source of complexity. In Links, we prefer unlimited function
types τ →• τ ′ to linear function types τ →◦ τ ′ when inferring the types of
functions. The programmer is always free to override this choice by explicitly
providing types. This approach preserves the simplicity of the language and
of type reconstruction, but at the cost of some completeness.

12.6 Conclusion and Future Work

We have presented an account of lightweight functional session types, extend-
ing a core session-typed linear λ -calculus [13] with: the row typing of the
core language for Links [11], the subkinding for linearity of Mazurak et al.’s
lightweight linear types [17], and the asynchrony and access points of Gay
and Vasconcelos’s linear type theory for asynchronous session types [7].

There is a significant gap between variants of FST with and without
access points. We would like to investigate abstractions that add some of
the expressive power of access points, but are better behaved. In particular,
it would be interesting to explore richer type systems for enforcing deadlock
and race freedom, while allowing some amount of stateful concurrency. More
immediately, it would also be natural to exploit the existing effect type system
of Links to statically enforce desirable properties, for instance, by associating
the use of access points with a particular effect type.

References

[1] R. Atkey. Parameterised notions of computation. J. Funct. Program.,
19(3–4):335–376, 2009.



References 285

[2] G. Bernardi and M. Hennessy. Using higher-order contracts to model
session types. CoRR, abs/1310.6176v4, 2015.

[3] V. Bono and L. Padovani. Typing copyless message passing. Logical
Methods in Computer Science, 8(1), 2012.

[4] L. Caires and F. Pfenning. Session types as intuitionistic linear
propositions. In CONCUR. Springer, 2010.

[5] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5):509–543, 2009.

[6] J. Garrigue, G. Keller, and E. Sumii, editors. ICFP. ACM, 2016.
[7] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous

session types. J. Funct. Program., 20(01):19–50, 2010.
[8] N. Kobayashi. Type systems for concurrent programs. In 10th Anniver-

sary Colloquium of UNU/IIST. Springer, 2002.
[9] P. J. Landin. The mechanical evaluation of expressions. Computer Jour-

nal, 6(4):308–320, 1964.
[10] J. Lévy and L. Maranget. Explicit substitutions and programming lan-

guages. In FSTTCS, volume 1738 of LNCS, pages 181–200. Springer,
1999.

[11] S. Lindley and J. Cheney. Row-based effect types for database
integration. In B. C. Pierce, editor, TLDI. ACM, 2012.

[12] S. Lindley and J. G. Morris. Sessions as propositions. In PLACES, 2014.
[13] S. Lindley and J. G. Morris. A semantics for propositions as sessions.

In J. Vitek, editor, ESOP, volume 9032 of Lecture Notes in Computer
Science, pages 560–584. Springer, 2015.

[14] S. Lindley and J. G. Morris. Embedding session types in haskell. In
G. Mainland, editor, Haskell, pages 133–145. ACM, 2016.

[15] S. Lindley and J. G. Morris. Lightweight functional session types
(extended version). http://homepages.inf.ed.ac.uk/slindley/
papers/fst-extended.pdf, 2016.

[16] S. Lindley and J. G. Morris. Talking bananas: structural recursion for
session types. In Garrigue et al. [6], pages 434–447.

[17] K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight linear types in
System F◦. In A. Kennedy and N. Benton, editors, TLDI. ACM, 2010.

[18] J. G. Morris. The best of both worlds: linear functional programming
without compromise. In Garrigue et al. [6], pages 448–461.

[19] R. Pucella and J. A. Tov. Haskell session types with (almost) no class.
In A. Gill, editor, Haskell. ACM, 2008.



286 Lightweight Functional Session Types

[20] B. Toninho, L. Caires, and F. Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In ESOP. Springer,
2013.

[21] J. A. Tov and R. Pucella. Practical affine types. In T. Ball and M. Sagiv,
editors, POPL, pages 447–458. ACM, 2011.

[22] D. Vytiniotis, S. Weirich, and S. L. Peyton Jones. FPH: first-class
polymorphism for Haskell. In J. Hook and P. Thiemann, editors, ICFP.
ACM, 2008.

[23] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2–3):384–
418, 2014.

[24] D. Walker. Substructural Type Systems. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 1. MIT
Press, 2005.



13
Distributed Programming Using Java APIs

Generated from Session Types

Raymond Hu

Imperial College London, UK

Abstract

This is a tutorial on using Scribble [9], a toolchain based on multiparty
session types [1, 4], for distributed programming in Java. The methodology
is based on the generation of protocol-specific Endpoint APIs from Scribble
specifications [6]. We start with a brief recap of TCP network program-
ming using standard Java APIs, and their limitations with regards to safety
assurances. The main tutorial content is an overview of the key stages of
the Scribble toolchain, from global protocol specification, through Endpoint
API generation, to Java endpoint implementation, with examples. We discuss
the hybrid form of session safety promoted by the Endpoint API generation
approach. We then consider Scribble specifications and implementations
of HTTP as a real-world use case. Finally, we demonstrate some further
Scribble features that leverage Endpoint API generation to safely support
more advanced communication patterns.

13.1 Background: Distributed Programming in Java

The two core facilities for TCP-based network programming in Java (and
other languages) are the socket APIs and Java Remote Method Invocation
(RMI). The socket APIs allow the programmer to work directly with TCP
connections, and are the basis over which many higher-level networking
facilities are built. Java RMI is the Java adaptation of remote procedure call
(RPC) functionality; with regards to this discussion, RMI is representative

287



288 Distributed Programming Using Java APIs Generated from Session Types

of the corresponding facilities in other languages or platform-independent
frameworks, e.g., RESTful Web services.

Running example: Math Service. As a running Hello World example, we
specify and implement a two-party network service for basic arithmetic oper-
ations. For the purposes of this tutorial, we are not concerned with the most
realistic development of such a service, but rather that this simple example
features core constructs of protocol design, such as message sequencing,
alternative cases and repeated sequences.

Figure 13.1 depicts the Math Service protocol as a UML sequence dia-
gram [8, §17]. For some number of repetitions (loop), the client C sends to
the server S a Val message with an Integer payload; C then selects between
the two alternatives (alt), to send an Add or a Mult message carrying a second
Integer. S respectively replies with a Sum or a Prod message carrying the result.
Finally, C sends a Bye message, with no payload, ending the session.

13.1.1 TCP Sockets

Sockets are supported in the standard Java API by the java.net and
java.nio.channels packages. Figure 13.2 gives a client implementation using
Math Service for a factorial calculation via the java.net.Socket API. For
simplicity, we assume serializable Java classes for each of the message types
(e.g., Add), with a field val for the Integer payload, and use standard Java
object serialization via java.io.ObjectOutput/InputStream.

C S

loop Val(Integer)

alt Add(Integer)

Sum(Integer)

Mult(Integer)

Prod(Integer)

Bye()

Figure 13.1 Sequence diagram for the Math Service protocol.



13.1 Background: Distributed Programming in Java 289

Figure 13.2 A factorial calculation using Math Service via the java.net.Socket API.

From a networking perspective, TCP sockets offer a high-level abstrac-
tion in the sense of reliable and ordered message delivery. From an applica-
tion perspective, however, the raw communication interface of a TCP channel
is simply a pair of unidirectional bit streams—essentially a communications
machine code, in contrast to the support for high-level data types in “local”
computations.

Working directly with standard socket APIs thus affords almost no safety
assurances with regards to the correctness of protocol implementations. The
key kinds of application-level protocol errors are:

Communication mismatches when the sent message is not one of those
expected by the receiver (also called a reception error). E.g., if C were
to commence a session with an Add message: assuming an implemen-
tation of S in the style of Figure 13.2, this would likely manifest as a
ClassCastException on the object returned by the readObject in S. Note,
the dual error of the receiver applying an incorrect cast are equally
possible.

Deadlock in situations where some set of participants are all blocked on
mutually dependent input actions. E.g., if C were to call readObject after
sending Val, but before sending Add or Mult; while S is (correctly) waiting
for one of the latter.

Orphan messages if the receiver terminates without reading an incoming
message. In practice, an orphan error often manifests as, e.g., an
EOFException, since TCP uses a termination handshake. E.g., if S skips
the receive of Bye before C has sent it, leading C to attempt the write on a
closed connection.



290 Distributed Programming Using Java APIs Generated from Session Types

13.1.2 Java RMI

RMI is a natural approach towards addressing the mismatch between high-
level, typed Java programming and low-level networking interfaces. Dis-
tributed computations can be (partially) abstracted away as regular method
invocations, while benefiting from static typing of each call and its commu-
nicated arguments and return value.

The Math Service protocol may be fitted to a remote interface as in
Figure 13.4(a), essentially by decomposing the protocol into separate call-
return fragments; and Figure 13.3 re-implements the factorial calculation as
a client of this interface. Individual remote calls are now statically typed
with respect to their arguments and return. Unfortunately, RMI programs in
general remain subject to the same potential protocol errors illustrated for
the previous sockets example (although their concrete manifestations may
differ). The typed RMI interface does not prevent, for example, a bad client
from calling Add before Val.

Disadvantages of call-return based protocol decomposition are further
illustrated by the (minimal) implementation of the remote interface in
Figure 13.4(b), which suffices to serve a single client but is completely
inadequate in the presence of concurrent clients. Basic RMI programs lose
the notion of an explicit session-oriented abstraction in the code (cf., the
threading of session control flow in Figure 13.2 wrt. the socket/stream
variable usages), which complicates the correlation and management of
application-level session flows across the separate methods.

13.2 Scribble Endpoint API Generation: Toolchain
Overview

Using the Math Service running example, we demonstrate the stages of
the Scribble toolchain, from global protocol specification, through Endpoint

RMIMath mathS = (RMIMath) registry.lookup("MathService");

int i = 5, res = i;

while (i > 1) { mathS.Val(i); i = mathS.Add(i - 1);

mathS.Val(res); res = mathS.Mult(i); }

mathS.bye();

Figure 13.3 Factorial calculation as a client of the remote interface in Figure 13.4(a).



13.2 Scribble Endpoint API Generation: Toolchain Overview 291

interface RMIMath

extends Remote {

void Val(Integer x) .. ;

void Bye() throws .. ;

Integer Add(Integer y) .. ;

Integer Mult(Integer y) .. ;

}

class RMIMathS implements RMIMath {

private int x;

public void Val(Integer x) ...

{ this.x = x; }

public void Bye() throws .. { }

public Integer Add(Integer y) ...

{ return this.x + y; }

public Integer Mult(Integer y) ...

{ return this.x * y; }

...

Figure 13.4 A remote Math Service: (a) interface, and (b) implementation.

API generation, to Java endpoint implementation. The source code of the
toolchain [10] and tutorial examples [5] are available online.

13.2.1 Global Protocol Specification

The tool takes as its primary input a textual description of the source protocol
or choreography from a global perspective. Figure 13.5 is a Scribble global
protocol for the Math Service running example.

A payload format type declaration (line 1) gives an alias (Int) to data type
definitions from external languages (java.lang.Integer) used for message
formatting. The protocol signature (line 2) declares the name of the global

protocol (MathSvc) and the abstraction of each participant as a named role (C
and S).

Message passing is written, e.g., Val(Int) from C to S. A message sig-
nature (Val(Int)) declares an operator name (Val) as an abstract message

1 type <java> "java.lang.Integer" from "rt.jar" as Int;

2 global protocol MathSvc(role C, role S) {

3 choice at C { Val(Int) from C to S;

4 choice at C { Add(Int) from C to S;

5 Sum(Int) from S to C; }

6 or { Mult(Int) from C to S;

7 Prod(Int) from S to C; }

8 do MathSvc(C, S); }

9 or { Bye() from C to S; }

10 }

Figure 13.5 Scribble global protocol for Math Service in Figure 13.1.



292 Distributed Programming Using Java APIs Generated from Session Types

identifier (which may be, e.g., a header field value in the concrete message
format), and some number of payload types (a single Int). Message passing is
output-asynchronous: dispatching the message is non-blocking for the sender
(C), but the message input is blocking for the receiver (S). A located choice
(e.g., choice at C) states the subject role (C) for which selecting one of the
cases (the or-separated blocks) to follow is a mutually exclusive internal
choice. This decision is an external choice to all other roles involved in each
block, and must be appropriately coordinated by explicit messages. A do

statament enacts the specified (sub)protocol, including recursive definitions
(e.g., line 8).

The body of the MathSvc protocol may be equivalently written in a similar
syntax to standard recursive session types:

rec X { choice at C { Val(Int) from C to S; ... continue X; }

or { Bye() from C to S; } }

Protocol validation. The tool validates the well-formedness of global proto-
cols. We do not discuss the details of this topic in this tutorial, but summarise
a few elements. Firstly, the source protocol is subject to a range of syntactic
checks. Besides basic details, such as bound role names and recursion vari-
ables, the key conditions are role enabling, consistent external choice subjects
and reachability. Role enabling is a consistency check on the (transitive)
propagation of choice messages originating from a choice subject to the other
roles involved in the choice. The following is a very simple example of bad
role enabling:

choice at C { Val(Int) from S to C; ... } or { Bye() from C to S; }

Since the choice is at C, S should not perform any output before it is enabled,
i.e, by receiving a message that directs it into the correct choice case. The
second of the above conditions requires that every message of an external
choice be communicated from the same role.

Reachability of protocol states is imposed on a per-role basis, i.e, on
projections; Scribble protocols are also checked to be tail recursive per
role. These rule out some basic syntactic inconsistencies (e.g., sequential
composition after a non-terminating recursion), and support the later FSM
translation step (see below).

Together, the syntactic conditions support the main validation step based
on explicit checking of safety errors (and progress violations), such as recep-
tion errors and deadlocks (outlined in § 13.1, on a bounded model of the



13.2 Scribble Endpoint API Generation: Toolchain Overview 293

protocol. For example, (wrongly) replacing Bye by Val will be found by the
explicit error checking to be invalid.

choice at C { Val(Int) from C to S; ... } or { Val(Int) from C to S; }

The ambiguous (non-deterministic) receipt of the decision message by S from
C (i.e., a message identified by Val in both cases—Scribble does not introduce
any implicit meta data or communications) may lead to various deadlock and
orphan message errors, depending on the different permutations of C and S

proceeding in the two cases. E.g., if C proceeds in the right case and S in
the left, then S will be stuck (in the “...”) waiting for an Add/Mult (or will
encounter a broken connection error).

Endpoint FSM generation. The next key step is the generation of an
Endpoint Finite State Machine (EFSM) for each role in the protocol. We use
the term EFSM for the particular class of multiparty communicating FSMs
given by Scribble’s syntax and validation. The construction is based on and
extends the syntactic projection of global types to local types [4], followed by
a translation to an EFSM, building on a correspondence between local types
and communicating FSMs [2, 7]. The nodes of an EFSM represent the states
in the localised view of the protocol for the target role, and the transitions are
the communication actions performed by the role between states. The EFSM
for every role of a valid global protocol is defined.

Figure 13.6 depicts the (dual) EFSMs for C and S in MathSvc. The initial
states are numbered 1. The notation, e.g., S!Val(Int) means output of message
Val(Int) to S; ? dually denotes input. The recursive definition of this protocol
manifests as the cycles returning to state 1.

1

5 2

3 4

S!Bye() S!Val(Int)

S!Add(Int)

S?Sum(Int)

S!Mult(Int)

S?Prod(Int)

1

5 2

3 4

C?Bye() C?Val(Int)

C?Add(Int)

C!Sum(Int)

C?Mult(Int)

C!Prod(Int)

Figure 13.6 Endpoint FSMs for C and S in MathSvc (Figure 13.5).



294 Distributed Programming Using Java APIs Generated from Session Types

13.2.2 Endpoint API Generation

For a given role of a valid global protocol, the toolchain generates an
Endpoint API for implementing that role based on its EFSM. The current
implementation generates Java APIs, but the principle may be applied or
adapted to many statically-typed languages.

There are two main components of a generated Endpoint API, the Ses-
sion API and the State Channel API. The generated APIs make use of a
few protocol-independent base classes that are part of the Scribble runtime
library: Role, Op, Session, MPSTEndpoint and Buf; the first three are abstract
classes. These shall be explained below.

Session API. The frontend class of the Session API, which we refer to as the
Session Class, is a generated final subclass of the base Session class with the
same name as the source protocol, e.g., MathSvc. It has two main purposes.
One is to house the family of protocol-specific constants for type-directed
session programming in Java, generated as follows.

A session type based protocol specification features various kinds of
names, such as role names and message labels. A session type system
typically requires these names to be present in the processes to drive the
type checking (e.g., [4, 1]). For the present Java setting, the Session API is
generated to reify these abstract names as singleton types following a basic
(eagerly initialised) singleton pattern. For each role or message operator name
n in the source protocol, we generate:

• A final Java class named n that extends the appropriate base class (Role
or Op). The n class has a single private constructor, and a public static
final field of type n and with name n, initialised to a singleton instance
of this class.

• In the Session Class, a public static final field of type n and with name
n, initialised to the constant declared in the corresponding n class.

For example, for role C of MathSvc, the subclass C of Role is generated to
declare the singleton constant public static final C C = new C();. The MathSvc

class is generated to collect these various constants together, including the
field public static final C C = C.C ;.

The Session API comprises the Session Class with the singleton type
classes. The other main purpose of the Session Class is for session initiation
in endpoint implementations, as explained below.



13.2 Scribble Endpoint API Generation: Toolchain Overview 295

An implementation of C via Endpoint API generation. At this point, we
give, in Figure 13.7, a first version of the factorial calculation using the
Endpoint API generated by the Scribble tool for C in MathSvc.

The code can be read similarly to the socket code in § 13.1.1; e.g., s1 is
a session channel variable. A difference from the earlier socket code is that
the Scribble API is generated as a fluent interface, allowing consecutive I/O
operations to be chained (e.g., line 11). We refer to and explain this code
through the following subsections.

Session initiation. Lines 3–6 in Figure 13.7 is a typical preamble for a
(client) endpoint implementation using a Scribble-generated API. We start
by creating a new MathSvc session by instantiating the Session Class. The
session object, sess, is used to create a new session endpoint object of type
MPSTEndpoint<MathSvc, C>, parameterised on the type of the session and the
endpoint role. The C parameter in this type is the singleton type in the Session
API; and the C argument in the constructor call is the single value of this type.

The third argument required by the MPSTEndpoint constructor is
an implementation of the ScribMessageFormatter interface, that is responsible
for the underlying serialization and deserialization of individual messages
in this session. For this example, we use the default ObjectStreamFormatter

provided by the Scribble runtime library based on the standard Java serializa-
tion protocol (messages communicated by this formatter must implement the
Serializable interface).

Figure 13.7 Factorial calculation using the Endpoint API generated for C.



296 Distributed Programming Using Java APIs Generated from Session Types

Before proceeding to the main body of a protocol implementation, the
MPSTEndpoint object is used to set up the session topology via connection
establishment actions with the appropriate peer endpoints. On line 6, the
MPSTEndpoint is used to perform the client-side connect to S. The second
argument is a reference to the constructor of SocketChannelEndpoint in the
Scribble runtime library, which embodies a standard TCP socket; alternatives
include HTTP and shared memory endpoints. The connection setup phase is
concluded when the MPSTEndpoint is passed as a constructor argument to the
initial state channel constructor, MathSvc C 1, expained next.

The MPSTEndpoint implements the Java AutoCloseable interface and should
be handled using a try-with-resources, as on line 4; the encapsulated network
resources are implicitly closed when control flow exits the try statement.

State Channel API. The State Channel API is generated to capture the
protocol-specific behaviour of a role in the source global protocol, as
represented by its EFSM, via the static typing facilities of Java.

• Each state in the EFSM is reified as a Java class for a state-specific
session channel, thus conferring a distinct Java type to channels at each
state in a protocol. We refer to instances of these generated channel
classes as state channels.

• The I/O operations (methods) supported by a channel class are the
transitions permitted by the corresponding EFSM state.

• The return type of each generated I/O operation is the channel type
for the successor state following the corresponding transition from the
current state. Performing an I/O operation on a state channel returns a
new instance of the successor channel type.

By default, the API generation uses a simple state enumeration (e.g., Fig-
ure 13.6) for the generated channel class names; e.g., MathSvc C 1 for the
initial state channel. More meaningful names for states may be specified
by the user as annotations in the Scribble source. The terminal state of an
EFSM, if any, is generated as an EndSocket class that supports no further I/O
operations. The channel class for the initial state is the only class with a public
constructor, taking an MPSTEndpoint parameterised on the appropriate Session
Class and role types; all other state channels are instantiated internally by the
generated API operations.

Figure 13.8 summarises the generated channel classes and their main I/O
operations for C in MathSvc. E.g., a state channel of type MathSvc C 1 supports
methods for sending Val and Bye to S; these send methods are overloaded via



13.2 Scribble Endpoint API Generation: Toolchain Overview 297

Figure 13.8 State Channel API generated for C in MathSvc (Figure 13.5).

the parameters for the destination role and message operator (the singleton
types of the Session API), as well as the message payloads. Sending a Val

returns a MathSvc C 2 channel, i.e., the state of sending an Add or Mult; whereas
a sending a Bye returns an EndSocket.

For unary input states, i.e., an EFSM state with a single input transition,
the generated receive method, e.g., for Sum in MathSvc C 3, takes Buf arguments
parameterised according to the expected payload type(s), if any. Buf<T> is
a simple generic one-slot buffer provided by the Scribble runtime library,
whose value is held in a public val field. The receive method is generated to
write the payload(s) of the received message to the respective Buf arguments.

In Figure 13.7, lines 7–14 use the State Channel API for C to perform
the factorial calculation. Starting from the instance of MathSvc C 1, assigned
to s1, the implementation proceeds by performing one I/O operation on
each current state channel to obtain the next. The fluent API permits con-
venient chaining of I/O operations, e.g., line 17 in sub1 starts from state
1, and proceeds through states 2 and 3 (by sending Val and Add messages),
before returning to 1 (by receiving the Sum). The endpoint implementation is
complete upon reaching EndSocket.

Attempting any I/O action that is not permitted by the current protocol
state, as designated by the target state channel, will be caught by Java type
checking. For example (from the Eclipse IDE):

13.2.3 Hybrid Session Verification

As demonstrated above, Scribble-generated Endpoint APIs leverage standard,
static Java type checking to verify protocol conformance, provided every state
channel returned by an API operation is used exactly once up to the end of



298 Distributed Programming Using Java APIs Generated from Session Types

the session. This is the implicit usage contract of a Scribble-generated API,
to respect EFSM semantics in terms of following state transitions linearly up
to the terminal state.

Much research has been conducted towards static analyses for such
resource usage properties: to this end, it may be possible to combine these
with API generation tools to recover fully static safety guarantees in cer-
tain contexts. However, designing such analyses for mainstream engineering
languages, such as Java and C#, in full generality is a significant challenge,
and often based on additional language extensions or imposing various
conservative restrictions.

As a practical compromise, the Endpoint API generation of Scribble
promotes a hybrid approach to session verification. The idea is simply to
complement the static type checking of session I/O on state channels with
run-time checks that each state channel is indeed used exactly once in a
session execution.

Run-time checking of linear state channel usage. The checks on linear
state channel usage are inlined into the State Channel API operations by the
API generation. There are two cases by which state channel linearity may be
violated.

Repeat use. Every state channel instance maintains a boolean state value
indicating whether it has been used, i.e., a session I/O oper-
ation has been performed on the channel. The API generation
guards each I/O operation with a run-time check on this boolean.
If the channel has already been used, a LinearityException is
raised.

Unused. All state channels of a session instance share a boolean state value
indicating whether the session is complete for the local endpoint. The
API is generated to set this flag when a terminal operation, i.e. an I/O
action leading to the terminal EFSM state, is performed. If control flow
leaves the enclosing try statement of the associated MPSTEndpoint, the
Scribble runtime checks this flag via the implicit close method of the
AutoCloseable interface. If the session is incomplete, an exception is
raised.

It is not possible for the completion flag to be set if any state chan-
nel remains unused on leaving the try statement of an MPSTEndpoint. IDEs



13.2 Scribble Endpoint API Generation: Toolchain Overview 299

(e.g., Eclipse) support compile-time warnings in certain situations where
AutoClose-able resources are not appropriately handled by a try.

Hybrid session safety. Together, a statically typed Endpoint API with run-
time state channel linearity checking offers the following properties.

1. If a session endpoint implementation respects state channel linearity,
then the generated API statically ensures freedom from the application
errors outlined in § 13.1 (i.e., communication safety, e.g., [4, error-
freedom]) when composed with conformant endpoints for the other roles
in the protocol.

2. Regardless of state channel linearity, any statically well-typed endpoint
implementation will never perform a message passing action that does
not conform to the protocol.

These properties follow from the fact that the only way to violate the EFSM of
the API, generated from a validated protocol, is to violate state channel linear-
ity, in which case the API raises an exception without actually performing the
offending I/O action. This hybrid form of session verification thus guarantees
the absence of protocol violation errors during session execution up to pre-
mature termination, which is always a possibility in practice due to program
errors outside of the immediate session code, or other failures, such as broken
connections.

When following the endpoint implementation pattern promoted by a
generated API, by associating session code to the MPSTEndpoint-try, the Java
IOException of, e.g., a broken connection will direct control flow out of the
try, safely (w.r.t. session typing) avoiding further I/O actions in the failed
session. Finer-grained treatment of session failures is a direction of ongoing
development for Scribble (and MPST).

13.2.4 Additional Math Service Endpoint Examples

A first implementation of S. Figure 13.9 summarises the State Channel API
generated for S in MathSvc. Unlike C, the EFSM for S features non-unary input
states, which correspond at the process implementation level to the branch
primitive of formal session calculi (e.g., [1]). Java does not directly support a
corresponding language construct, but API generation enables some different
options.

One option, demonstrated here, is designed for standard Java switch pat-
terns. For each branch state, a branch-specific enum is generated to enumerate



300 Distributed Programming Using Java APIs Generated from Session Types

Figure 13.9 State Channel API generated for S in MathSvc; and an implementation of S
using the generated API.

the cases of the choice according to the source protocol. E.g., for the initial
state of S: enum MathSvc_S_1_Enum { Val, Bye }.

The channel class itself (Figure 13.9), MathSvc S 1, is generated with a
single branch operation. This method blocks until a message is received,
returning a new instance of the generated MathSvc S 1 Cases class, which holds
the enum value corresponding to the received message in a final op field.
Unfortunately, since the static type of the Cases object reflects the range of
possible cases, the API requires the user to manually call the corresponding
receive method of the Cases object, essentially as a form of cast to obtain the
appropriately typed state channel.



13.3 Real-World Case Study: HTTP (GET) 301

Lines 11–20 in Figure 13.9 implement a switch on the op enum of
MathSvc S 1 Cases. The Java compiler is able to statically determine whether
all enum cases are exhaustively handled. In each of the two cases (Bye and
Val), the corresponding receive-cast is called on the Cases object to obtain
the successor state channel of that (input) transition. Leveraging the hybrid
verification approach, the generated API includes an implicit run-time check
that the correct cast method is used following a branch; calling an incorrect
method raises an exception.

§ 13.4 discusses an alternative API generation that allows session
branches to checked by Java typing without additional run-time checks.

Alternative C factorial implementation. Following is an implementation of
a factorial calculation using the C endpoint of MathSvc in a recursive method,
illustrating the use of the State Channel API in an alternative programming
style.

MathSvc_C_1 facto(MathSvc_C_1 s1, Buf<Integer> b) throws ... {

if (b.val == 1) return s1; // Pre: b.val >= 1

Buf<Integer> tmp = new Buf<>(b.val);

return facto(sub1(s1, tmp), tmp) // sub1 from Fig.13.7

.send(S, Val, b.val).send(S, Mult, tmp.val).receive(S, Prod, b);

}

Besides conformance to the protocol itself, the state channel parameter and
return types help to ensure that the appropriate I/O transitions are performed
through the protocol states in order to enact the recursive method call
correctly.

13.3 Real-World Case Study: HTTP (GET)

In this section, we apply the Scribble API generation methodology to a real-
world protocol, HTTP/1.1 [3]. For the purposes of this tutorial, we limit this
case study to the GET method of HTTP, and treat a minimal number of
message fields required for interoperability with existing real-world clients
and servers. The following implementations have been tested against Apache
(as currently deployed by the dept. of computing, Imperial College London)
and Firefox 5.0.1.

A key point illustrated by this experiment on using session types in prac-
tice is the interplay between data types (message structure) and session types
(interaction structure) in a complete protocol specification. In particular, that



302 Distributed Programming Using Java APIs Generated from Session Types

aspects of the former can be refactored into the latter, while fully preserving
protocol interoperability, to take advantage of the safety properties offered by
Scribble-generated APIs in endpoint implementations.

13.3.1 HTTP in Scribble: First Version

HTTP is well-known as a client-server request-response protocol, typically
conducted over TCP. Despite its superficial simplicity, i.e., a sequential
exchange of just two messages between two parties, the standards documen-
tation for HTTP spans several hundred pages, as is often the case for Internet
applications and other real-world protocols.

Global protocol. As a first version, we simply express the high-level notion
of an HTTP request-response as follows:

sig <java> "...client.Req" from ".../Req.java" as Req;

sig <java> "...server.Resp" from ".../Resp.java" as Resp;

global protocol Http(role C, role S) {

Req from C to S;

Resp from S to C;

}

A small difference from the Scribble examples seen so far are the sig

declarations for custom message formatting. Unlike type declarations, which
pertain specifically to payload types, sig is used to work with host language-
specific (e.g., <java>) routines for arbitrary message formatting; e.g., Req.java
contains Java routines, provided as part of this protocol specification, for
performing the serialization and deserialization between Java Req objects and
the actual ASCII strings that constitute concrete HTTP requests on the wire.

Client implementation. For such a simple specification, we omit the
EFSMs and Endpoint APIs for each role, and directly give client code using
the generated API (omitting the usual preamble):

Buf<Resp> b = new Buf<>();

Http_C_1 s1 = new Http_C_1(client); // client: MPSTEndpoint<Http, C>

s1.send(S, new Req("/index.html", "1.1", host)).receive(S, Resp, b);

The generated API prevents errors such as attempting to receive Resp

before sending Req or sending multiple Reqs. However, one may naturally
wonder if this is “all there is” to a correct HTTP client implementation—
where is the complexity that is carefully detailed in the RFC specification?



13.3 Real-World Case Study: HTTP (GET) 303

The answer lies in the message formatting code that we have conveniently
abstracted as the Req and Res message classes. A basic HTTP session does
exchange only two messages, but these messages are richly structured,
involving branching, optional and recursive structures. In short, this first
version assumes the correctness of the Req and Resp classes (written by the
protocol author, or obtained using other parsing/formatting utilites) as part of
the protocol specification.

13.3.2 HTTP in Scribble: Revised

As defined in RFC 7230 [3] (§ 3 onwards), the message grammar is:

Intuitively, the act of sending a HTTP request may be equivalently understood
as sending a request-line, followed by sending zero or more header-fields ter-
minated by CRLF, and so on. Following this intuition, we can refactor much of
this structure from the data side of the specification to the session types side,
giving a Scribble description that captures the target protocol specification
in more explicit detail than previously. Consequently, the generated API will
promote the Java endpoint to respect this finer-grained protocol structure by
static typing, as opposed to assuming the correctness of the supplied message
classes.

We are able to refine the Scribble for HTTP/TCP in this way because
any application-level notion of “message” identified in the specification is
ultimately broken down and communicated via the TCP bit streams, in a
manner that is transparent to the other party (client or server). This approach
may thus be leveraged for any application protocol conducted over a transport
with such characteristics.

Global protocol. Figure 13.10 is an extract of a revised Scribble specifi-
cation of HTTP. The monolithic request and response messages have been
decomposed into smaller constituents; e.g., RequestL and Host respectively
denote the request-line and host-field in a request. For the most part, the
Java code for formatting each message fragment as an HTTP ASCII string
is reduced to a simple print instruction with compliant white spacing built in



304 Distributed Programming Using Java APIs Generated from Session Types

Figure 13.10 Extract from the revised specification of HTTP in Scribble.

(e.g, CRLFs). The structure by which these constituents should be composed
to reform whole messages is now expressed in the Request and Response

subprotocols.

Client implementation. Taking the revised Scribble HTTP, Endpoint API
generation proceeds as usual, generating the EFSMs for each role to give
the structure of the State Channel API. Lines 2–3 in Figure 13.11 is an
almost minimal implementation of a correctly formatted request according
to the Request subprotocol. The typed API ensures the initial, mandatory
RequestLine; then amongst the recursive choice cases we opt to send only
the Host field, before concluding the request by an empty Body. A complete
client implementation is given by: doResponse(doRequest(s1)).

Besides limiting to a subset of the protocol, this revision is by no means
a complete specification of HTTP in terms of capturing the entire message
grammar in full detail; the fidelity of the Scribble specification may be pushed



13.4 Further Endpoint API Generation Features 305

1 Http_C_3 doRequest(Http_C_1 s1) throws Exception {

2 return s1.send(S, new RequestLine("/index.html", "1.1"))

3 .send(S, new Host("www.host.com")).send(S, new Body(""));

4 }

5 EndSocket doResponse(Http_C_3 s3) throws Exception {

6 Http_C_4_Cases cases = s3.async(S, HttpV, new Buf<>()).branch(S);

7 switch (cases.op) {

8 case _200: ...

9 case _404: ...

10 ...

11 }

12 ...

Figure 13.11 Extract from an implementation of a HTTP client via API generation.

further, perhaps towards a “character-perfect” specification, via suitably fine-
grained message decomposition.

13.4 Further Endpoint API Generation Features

Branch-specific callback interfaces. Scribble also generates a callback-
based API for branch states, which does not require additional run-time
checks (cf. § 13.2.4). For each branch state, a handler interface is gen-
erated with a callback variant of receive for each choice case; e.g.,
MathSvc S 1 Handler in Figure 13.12. Apart from the operator and payloads,
each method takes the continuation state channel as a parameter; the return
type is void. Java typing ensures that a (concrete) implementation of this
interface implicitly covers all cases of the branch. Finally, a variant of branch
is generated in the parent channel class (e.g., MathSvc S 1) that takes an
instance of the corresponding handler interface, with return void. As before,
this branch blocks until a message is received; the API then delegates the
handling of the message to the appropriate callback method of the supplied
handler object.

Figure 13.12 gives a class that implements the handler interfaces of
both branch states for S. Assuming an MPSTEndpoint<MathSvc, S> serv, this
handler class may be used in an event-driven implementation of S by: new

MathSvc_S_1(serv).branch(C, new MathSHandler()).

State-specific futures for unary inputs. For unary input states, Scribble
additionally generates state-specific input futures as an alternative mechanism



306 Distributed Programming Using Java APIs Generated from Session Types

Figure 13.12 Additional branch callback interfaces generated for S in MathSvc; and a
corresponding implementation of S.

to the basic receive. For example, in the revised Scribble specification of
HTTP (Figure 13.11), the channel class Http C 3 corresponds to the state
where C should receive the HTTP version element (HttpV) of the response
status-line (Line 14 in Figure 13.10). For this state, Scribble generates the
class Http C 3 Future. Its key elements are input-specific fields for the mes-
sage type (msg) or payloads (e.g., pay1) to be received, and a sync method to
force the future. For the Http C 3 channel class itself, the following variant of
receive is generated:

Http_C_4 async(S role, HttpV op, Buf<Http_C_3_Future> fut)

Unlike a basic receive, calling async returns immediately with a new instance
of Http C 3 Future in the supplied Buf.

Calling sync first implicitly forces all pending prior futures, in order, for
the same peer role. It then blocks the caller until the expected message is
received, and writes the values to the generated fields of the future. This
safely preserves the FIFO messaging semantics between each pair of roles
in a session, so that endpoint implementations using generated futures retain
the same safety properties as using only blocking receives. Repeat forcing of
an input future has no effect.

An example usage of async was given in Figure 13.11 (line 6). There,
the async is used to safely affect a non-blocking input action (the client is



References 307

not interested in blocking on awaiting just the HttpV portion of the response).
Since the HttpV future is never explicitly forced – unlike state channels, input-
futures are not linear objects – async also affects a user-level form of affine
input action, in the sense that the user never reads this message. Finally, async
enables postponing input actions until later in a session, for safe user-level
permutation of session I/O actions.

References

[1] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical
Structures in Computer Science, 760:1–65, 2015.

[2] P.-M. Deniélou and N. Yoshida. Multiparty session types meet commu-
nicating automata. In ESOP ’12, volume 7211 of LNCS, pages 194–213.
Springer, 2012.

[3] R. Fielding, Y. Lafon, M. Nottingham, and J. Reschke.
IETF RFCs 7230–7235 Hypertext Transfer Protocol 1.1.
https://tools.ietf.org/html/rfc7230

[4] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL ’08, pages 273–284. ACM, 2008.

[5] R. Hu. Demo files for this BETTY tutorial chapter. https://

github.com/scribble/scribble-java/tree/master/modules/

demos/scrib/bettybook

[6] R. Hu and N. Yoshida. Hybrid session verification through endpoint
API generation. In FASE ’16, volume 9633 of LNCS, pages 401–418.
Springer, 2016.

[7] J. Lange, E. Tuosto, and N. Yoshida. From communicating mach-
ines to graphical choreographies. In POPL ’15, pages 221–232. ACM
Press, 2015.

[8] OMG UML 2.5 specification. http://www.omg.org/spec/UML/2.5
[9] Scribble homepage. http://www.scribble.org

[10] Scribble GitHub repository. https://github.com/scribble/scri
bble-java



http://taylorandfrancis.com


14
Mungo and StMungo: Tools for
Typechecking Protocols in Java

Ornela Dardha1, Simon J. Gay1, Dimitrios Kouzapas1, Roly Perera1,2,
A. Laura Voinea1 and Florian Weber1

1School of Computing Science, University of Glasgow, UK
2School of Informatics, University of Edinburgh, UK

Abstract

We present two tools that support static typechecking of communication
protocols in Java. Mungo associates Java classes with typestate specifica-
tions, which are state machines defining permitted sequences of method
calls. StMungo translates a communication protocol specified in the Scribble
protocol description language into a typestate specification for each role in
the protocol by following the message sequence. Role implementations can
be typechecked by Mungo to ensure that they satisfy their protocols, and then
compiled as usual with javac. We demonstrate the Scribble, StMungo and
Mungo toolchain via a typechecked POP3 client that can communicate with
a real-world POP3 server.

14.1 Introduction

Modern computing is dominated by communication, at every level from
manycore architectures through multithreaded programs to large-scale dis-
tributed systems; this contrasts with the original emphasis on data processing.
Early recognition of the importance of structured data meant that high-level
programming languages have always incorporated data types and supported
programmers through the techniques of static and dynamic typechecking. The
foundational status of structured data was explicitly recognised in the title
of Wirth’s classic 1976 text Algorithms + Data Structures = Programs, but
a more appropriate modern slogan would be Programs + Communication

309



310 Mungo and StMungo: Tools for Typechecking Protocols in Java

Structures = Systems. The new reality of communication-based software
development needs to be supported by programming tools based on struc-
turing principles and high-level abstractions. Given the success of data types,
it is natural to apply type-theoretic techniques to the specification and ver-
ification of communication-based code. During the last twenty years, this
goal has been pursued by the expanding and increasingly active research
community on session types [12, 13, 24]. A session type is a formal structured
description of a communication protocol, specifying the type, sequence and
direction of messages. By embedding this description in the type system of a
programming language, adherence to the protocol can be verified by static
typechecking; if desired, dynamic monitoring can be introduced into the
runtime system.

Several researchers have worked towards making typechecked commu-
nication structures available for mainstream software development, by trans-
ferring session types from their original setting of pi-calculus to functional
and object-oriented languages [3, 5–8, 15, 17, 19]. Gay et al. [9] proposed
an integration of session types and object-oriented programming through the
concept of typestates [22], in which methods are constrained to be called
only in particular sequences. They defined a translation from the session
type of a communication channel endpoint into a typestate specification that
constrains the use of send and receive methods on an object representing the
channel endpoint. Their notation for typestate specifications was inspired by
the syntax of session types.

Dardha, Gay, Kouzapas and Perera extended that work and implemented
it as Mungo [16], a front-end typechecking tool for Java. They also gen-
eralised the translation from session types to typestate specifications, so
that it handles multiparty [11] instead of binary session types, and made
it concrete by implementing StMungo [16], a translator from the Scribble
[20, 25] protocol description language into Mungo specifications. The Scrib-
ble description of a protocol is translated into an API with which to program
implementations of protocol roles; the typestate specification associated with
the API permits static checking of the correctness of the implementation
of a role. Typestate specifications do not represent the notion of duality of
session types; compatibility between roles depends on the assumption that
their typestate specifications are derived from a single global session type.
The paper by Kouzapas et al. [16] illustrated the use of Mungo and StMungo
with a substantial case study of an SMTP client [21], including the low-level
implementation details necessary to enable communication with standard
SMTP servers. This achieved the long-standing goal of using session types to
specify and verify implementations of real internet protocols.



14.2 Mungo: Typestate Checking for Java 311

The present chapter describes Mungo and StMungo in relation to
three examples. The first, in Section 14.2.1, illustrates Mungo by defin-
ing and checking a typestate specification for an iterator. The second, in
Section 14.3, is a simple multiparty scenario based on a travel agency. Finally,
in Section 14.4, we show how Mungo and StMungo can be used to typecheck
a client for the POP3 protocol [18].

14.2 Mungo: Typestate Checking for Java

Mungo is a static analysis tool that checks typestate properties in Java
programs. Mungo implements two main components. The first is a Java-
like syntax to define typestate specifications for classes, and the second is
a typechecker that checks whether objects that have typestate specifications
are used correctly. Mungo typechecks standard Java code without syntactic
extensions; typestate specifications are defined in separate files and are asso-
ciated with Java classes by means of the Java annotation mechanism. After
typechecking with Mungo, programs can be compiled and run using standard
Java tools. The declaration of a typestate specification in a single file contrasts
with other approaches that take the viewpoint of typestate as pre- and post-
conditions on methods; we discuss this point in Section 14.5. If a class has
a typestate specification, the Mungo typechecker analyses each variable of
that class in the program and extracts the method call behaviour (sequences
of method calls) through the variable’s life. Finally, it checks the extracted
information against the sequences of method calls allowed by the typestate
specification.

Mungo is implemented in the JastAdd [10] framework, which is a
Reference Attribute Grammar (RAG) meta-compiler suite compatible with
Java. JastAdd provides a Java parser and typechecker, and was also used to
implement a parser for the typestate specification language.

Mungo supports typechecking for a subset of Java. The programmer
can define classes with typestate specifications and classes without them.
The typechecking procedure tracks variables storing instances of classes
with typestate specifications, through argument passing and return values.
Moreover, the typechecking procedure for the fields of a class follows the
typestate specification of the class to infer a typestate usage for the fields. For
this reason fields that have typestate specifications must be defined in a class
that also has a typestate specification.



312 Mungo and StMungo: Tools for Typechecking Protocols in Java

Mungo first runs the Java typechecker provided by the JastAdd frame-
work. If there are no errors then Mungo performs additional well-formedness
checks before it runs the typestate checking procedure. First, the tool checks
for well-formed typestate specifications: they must be deterministic and all
states must be reachable from the initial state. Second, it checks that a class
with a typestate specification implements all the methods required in the
typestate. Third, arrays cannot store objects that have typestates, because
array access, and thus inference for objects that are stored in an array, cannot
be determined at statically. Finally, fields with typestate specifications must
be private and non-static, to disallow external interference with their state.

Completing the coverage of Java will require further work. Some features
we anticipate to be relatively straightforward extensions, such as synchro-
nised statements, the conditional operator ?:, inner and anonymous classes,
and static initialisers. Generics, inheritance and exceptions are non-trivial.
Currently, generics are not supported, while inheritance is supported for
classes without associated typestate behaviour. Exceptions are supported
syntactically but are type-checked under the (unsound) assumption that no
exceptions are thrown; a try{...} catch(Exception e) {...} statement is
typechecked by typechecking the try block but not the catch block. If
the program does not throw exceptions then there will be no violations of
typestate specifications, but exception handlers may violate typestates.

14.2.1 Example: Iterator

We introduce some of the features of Mungo through an example that
enforces correct usage of a Java Iterator. The example shows how a program-
mer can define an API and associate it with a typestate specification in order
to constrain the order in which methods can be called. In the code below we
define class StateIterator to wrap a Java Iterator. We use the Java anno-
tation syntax @Typestate("StateIteratorProtocol") to associate the class
StateIterator with the typestate specification StateIteratorProtocol. We
often refer to a typestate specification as a protocol, following the established
terminology of “object protocol” in the typestate literature.

1 package iterator;

2 import java.util.Iterator;

3

4 @Typestate("StateIteratorProtocol")

5 class StateIterator {



14.2 Mungo: Typestate Checking for Java 313

6 private Iterator iter;

7

8 public StateIterator(Iterator i) { iter = i; }

9 public Object next() { return iter.next(); }

10 public void remove() { iter.remove(); }

11 public Boolean hasNext() {

12 if(iter.hasNext() == true)

13 return Boolean.True;

14 return Boolean.False;

15 } }

We assume that the underlying implementation of the Java Iterator
includes the remove() method. The implementation of method hasNext() uses
the Iterator to discover whether the underlying collection has more elements.
It assumes the definition of the enumeration

1 enum Boolean { True, False }

which is provided as part of the Mungo framework. This enumeration is used
to specify dependency of the protocol on the result of a method.

Overall, the StateIteratorProtocol protocol ensures that the Java Itera-
tor will be used in a way that throws no exceptions (method next() throws
NoSuchElementException when there are no more elements in the underlying
collection, and method remove() throws IllegalStateException when there
is no element to removed). The code below defines the typestate specification
StateIteratorProtocol.

1 package iterator;

2

3 typestate StateIteratorProtocol {

4 HasNext = { Boolean hasNext(): <True: Next, False: end> }

5 Next = { Object next(): HasNextOrRemove }

6 HasNextOrRemove = {

7 void remove(): HasNext,

8 Boolean hasNext(): <True: NextOrRemove, False: end>

9 }

10 NextOrRemove = {

11 void remove(): Next,

12 Object next(): HasNextOrRemove

13 } }



314 Mungo and StMungo: Tools for Typechecking Protocols in Java

A new iterator object is in state HasNext, because that is the first state
in the definition. The only method available is hasNext(). If method next()

were available then NoSuchElementException might be thrown in the case
where there are no (more) elements in the underlying collection. Similarly,
the availability of method remove() might result in IllegalStateException. A
call of method hasNext() means that the continuation of the protocol depends
on the return value of the method. In the case of False no further interaction
with the iterator is possible, thus preventing possible exceptions. If the value
True is returned then the state changes to Next, which forces the programmer
to call the next() method and proceed to state HasNextOrRemove. Method
remove() is not available because it should only be called after next() in
order to remove the element returned by next(). Method hasNext() is not
available because calling it would be redundant.

The state HasNextOrRemove offers a choice between methods remove and
hasNext(). In the former case the iterator removes the current object and pro-
ceeds to the HasNext state. Alternatively, calling hasNext() either proceeds to
state NextOrRemove or ends the protocol otherwise. In state NextOrRemove there
is still the possibility of removing the last returned object and proceeding to
the Next state (this is because a poll has already been done), or getting the
next element of the collection using method next() and proceeding to the
HasNextOrRemove state.

To summarise, if we assume semantic correctness of the methods of
iter (for example, that iter.hasNext() correctly reports the state of iter),
then by using Mungo to typecheck code that uses a StateIterator, we can
ensure that NoSuchElementException and IllegalStateException will not
occur. Specifically, we guarantee: i) not calling the next() method on an
empty collection; ii) not calling the remove() when there is no element to
remove from the underlying collection; iii) additionally, not having redundant
calls of the hasNext() method.

To avoid conflicting state changes, objects with typestates must not be
aliased. Mungo uses linear typing to prevent aliasing.

The code below, which is well-typed according to Mungo, creates and
uses a StateIterator object. It creates a HashSet containing the positive
integers smaller than 32, and then removes the even numbers.

1 Collection c = new HashSet();

2 Integer i = 0; while(i < 32) c.add(i++);

3 StateIterator iter = new StateIterator(c.iterator());

4 iterate:



14.3 StMungo: Typestates from Communication Protocols 315

5 do {

6 switch(iter.hasNext()) {

7 case True:

8 System.out.println(i = (Integer) iter.next());

9 if(i%2 == 0) iter.remove();

10 continue iterate;

11 case False:

12 break iterate;

13 }

14 } while(true);

The HashSet’s iterator is wrapped in a StateIterator object, which is
subsequently used according to its protocol. The loop structure in the protocol
is matched by the pattern label: do { ... } while(true); together with the
continue label; and break label; statements. The switch statement handles
the possible results of hasNext(), controlling the continuation or termination
of the loop. The code on line 9 chooses whether or not to call remove(); the
state here is HasNextOrRemove.

14.3 StMungo: Typestates from Communication Protocols

StMungo (Scribble to Mungo) is a transpiler from Scribble to Java, which
also generates Mungo typestate specifications. It is based on the integration
of session types and typestates [9] which consists of a formal translation of
session types for communication channels into typestate specifications for
channel objects. The latter define the order in which the methods of the
channel objects can be called. This specification of the permitted sequences of
method calls is naturally viewed as a channel protocol. We take a step further:
we extend this formal translation from binary to multiparty session types [11]
and implement it as StMungo, which translates Scribble local protocols into
typestate specifications and prototype implementation code based on TCP/IP
sockets. After refinement, the implementation is typechecked using Mungo.

A Scribble local protocol describes the communication between one role
and all the other participants in a multiparty scenario, including the way in
which messages sent to different participants are interleaved. StMungo is
based on the principle that each role in the multiparty communication can be
abstracted as a Java class following the typestate corresponding to the role’s
local protocol. The typestate specification generated by StMungo, together
with the Mungo typechecker, guide the programmer in the design and imple-
mentation of distributed multiparty communication-based programs with



316 Mungo and StMungo: Tools for Typechecking Protocols in Java

guarantees of communication safety and soundness. StMungo is the first tool
to provide a practical embedding of multiparty session type protocols into
object-oriented languages with typestate specifications.

The diagram shows how the toolchain consisting of Scribble, StMungo
and Mungo is used to generate a Java program from a Scribble protocol.

We start with a global protocol written in Scribble, which is then validated
and projected into local protocols, one for each role specified in the global
protocol. At this point we run StMungo on the local projections for which we
want to generate a typestate. The tool generates a typestate specification, a
Java API and a prototype main program. After completing the main program,
typechecking with Mungo verifies that it correctly implements the protocol.

14.3.1 Example: Travel Agency

We now illustrate the toolchain of Scribble, StMungo and Mungo by means
of a travel agency example, which models the process of booking a flight
through a university travel agent.

Three participants are involved: Researcher (abbreviated R), who intends
to travel; Agent (A), who is able to make travel reservations; and Finance (F),
who approves expenditure from the budget. In the Scribble [25] language, we
first define the global protocol among three roles, which are abstract represen-
tations of the participants. The protocol consists of sequences of interactions.
Every message (e.g. request) can be associated with a payload type (e.g.
Travel), a sender, and one or more receivers. Typically payload types are
structured data types defined separately from the protocol specification.

In the global protocol, after the check message requesting authorisation
for a trip, F can choose to approve or refuse the request.

1 global protocol BuyTicket(role R, role A, role F) {

2 request(Travel) from R to A;

3 quote(Price) from A to R;



14.3 StMungo: Typestates from Communication Protocols 317

4 check(Price) from R to F;

5 choice at F {

6 approve(Code) from F to R,A;

7 ticket(String) from A to R;

8 invoice(Code) from A to F;

9 payment(Price) from F to A;

10 } or {

11 refuse(String) from F to R,A;

12 } }

The Scribble tools can be used to validate the protocol definition and to
derive a local version of the protocol for each role, according to the theory
of multiparty session types [11]. This is known as endpoint projection. Here
is the projection for R, which describes only the messages involving that role.
The self keyword indicates that R is the local endpoint.

1 local protocol BuyTicket_R(self R, role A, role F) {

2 request(Travel) to A;

3 quote(Price) from A;

4 check(Price) to F;

5 choice at F {

6 approve(Code) from F;

7 ticket(String) from A;

8 } or {

9 refuse(String) from F;

10 } }

Notice that the exchange of invoice and payment between A and F is not
included. Similarly, the local projection for A omits the check message; we
omit its local projection. Finally, the local projection for F omits the request,
quote and ticket messages.

1 local protocol BuyTicket_F(role R, role A, self F) {

2 check(Price) from R;

3 choice at F {

4 approve(Code) to R,A;

5 invoice(Code) from A;

6 payment(Price) to A;

7 } or {

8 refuse(String) from F to R,A;

9 } }



318 Mungo and StMungo: Tools for Typechecking Protocols in Java

The common theme between protocols and typestate specifications is the
requirement to do operations in particular orders. Our methodology for
implementing the roles in a Scribble protocol is to define a Java class that
encapsulates socket connections to provide the necessary communication,
and provides methods that send and receive the messages in the protocol.
This class constitutes an API for role programming. To ensure that com-
munication methods are called in the order required by the protocol, we
associate a typestate specification with the API, so that Mungo can check
the correctness of code that uses the API. StMungo generates a Java API
and a Mungo specification. If we are implementing all of the endpoints in
a system, then the generated APIs are immediately interoperable with each
other. However, interoperability with pre-existing endpoints such as a POP3
server (Section 14.4) typically requires an extra layer in order to translate
between the abstract message labels defined in Scribble and the detailed
textual message formats required by the protocol.

For the R role, StMungo converts the BuyTicket_R local projection into
the following Mungo definitions:

1. RProtocol, a typestate specification capturing the interactions local to
the R role.

2. RRole, a Java class that implements RProtocol by communication over
Java sockets. This is an API that can be used to implement the R

endpoint.
3. RMain, a prototype Java implementation of the R endpoint. This runs

as a Java process, and provides a main() method which uses RRole to
communicate with the other parties in the session. For testing purposes
it provides a command-line interface to choose and display message
parameters.

To complete the ticket buying example, we now describe the result of trans-
lating the local protocol for R. For each choice there is an enumerated type,
named according to the numerical position of the choice in the sequence of
choices within the local protocol. The values of the enumerated type are the
names of the first message in each branch of the choice. For the choice in
BuyTicket_R we have the following definition.

1 enum Choice1 { APPROVE, REFUSE; }

Every role involved in the choice will have an enumerated type with the same
set of values, but the names of the types are not necessarily the same for
every role.



14.3 StMungo: Typestates from Communication Protocols 319

The typestate specification RProtocol defines the allowed sequences
of method calls. As it includes method headers, it also provides similar
documentation to an interface. The initial state is the first one defined.

1 typestate RProtocol {

2 State0 = { void send_requestTravelToA(Travel): State1 }

3 State1 = { Price receive_quotePriceFromA(): State2 }

4 State2 = { void send_checkPriceToF(Price): State3 }

5 State3 = { Choice1 receive_Choice1LabelFromF():

6 <APPROVE: State4, REFUSE: State6> }

7 State4 = { Code receive_approveCodeFromF(): State5 }

8 State5 = { String receive_ticketStringFromA(): end }

9 State6 = { String receive_refuseTravelFromF(): end } }

The API is defined by the class RRole, which is also generated. When
instantiated, it establishes socket connections to the other role objects in the
session (ARole and FRole); we omit the details here.

1 @Typestate("RProtocol") public class RRole {

2 public RRole(){

3 ... // Bind the sockets and accept a client connection

4 try { // Create the read and write streams

5 socketAIn = new BufferedReader(..);

6 socketAOut = new PrintWriter(..);

7 } catch (IOException e) {

8 System.out.println("Read failed"); System.exit(-1);

9 } }

10 public void send_requestTravelToA(Travel payload) {

11 this.socketAOut.println(payload); }

12 public Price receive_quotePriceFromA() {

13 String line = "";

14 try { line = this.socketAIn.readLine();

15 } catch (IOException e) {

16 System.out.println("Input/Output error."); System.exit(-1);

17 }

18 // Parse line to the appropriate type and then return it

19 return Price.parsePrice(line); }

20 ... // Define all other methods in RProtocol }

The RMain class provides a prototype implementation of the R endpoint,
using the RRole class to communicate with the other roles in the system.



320 Mungo and StMungo: Tools for Typechecking Protocols in Java

Mungo statically checks the correctness of an R implementation (either based
on the prototype or written separately), by checking that methods are called in
allowed sequences and that all possible responses are handled. For example,
main below is correct.

1 public static void main(String[] args) {

2 RRole r = new RRole();

3 Travel t = // input travel;

4 r.send_requestTravelToA(t);

5 Price p = r.receive_quotePriceFromA();

6 r.send_checkPriceToF(p);

7 switch(r.receive_Choice1LabelFromF().getEnum()) {

8 case APPROVE:

9 Code c = r.receive_approveCodeFromF();

10 println(r.receive_ticketStringFromA());

11 break;

12 case REFUSE:

13 println(r.receive_refuseStringFromF());

14 break;

15 } }

This code is checked by computing the sequences of method calls that
are made on an RRole object, inferring the minimal typestate specification
that allows those sequences, and then comparing this specification with the
declared specification RProtocol. The comparison is based on a simulation
relation. Typically the programmer would modify the prototype implemen-
tation by defining extra business logic, but she is also free to rewrite it
completely. Mungo statically checks RMain, or any client of the RRole class,
to ensure that methods of the protocol are called in a valid sequence and that
all possible responses are handled.

14.4 POP3: Typechecking an Internet Protocol Client

As a more substantial example, we use a standard internet protocol,
POP3 [18] (Post Office Protocol Version 3), to show the applicability of
session types in the real world and the use of session type tools to typecheck
protocols. The protocol allows an email client to retrieve messages from a
server. The diagram below is based on RFC 1939 [18], the official specifica-
tion of the protocol. The labels “+OK” and “-ERR” are part of the textual
message format. For simplicity, several transitions from state TRANSACTION

have been omitted.



14.4 POP3: Typechecking an Internet Protocol Client 321

The protocol starts with the client connecting to the server and the server
authenticating the connection. The client then has the choice to either submit
a username to log into a mailbox, or to end the authorization. Upon receiving
the username, the server has the choice to accept the username or to send an
error message to the client, for example if the username does not exist. After
the username has been accepted, the client is then required to send a password
or to end the authorization. If the password is accepted, the transaction stage
begins. In the transaction stage, the client has a choice of various commands:
the diagram shows just STAT (status) and LIST (summary list). Some of these
requests involve a choice at the server side to either fulfil the request or to
send an error message.

Alternatively the client can choose to QUIT. The specification of the
messages and state transitions of POP3 can be converted into a Scribble
global protocol, as shown below.

1 global protocol POP3(role S, role C) {

2 OKN(String) from S to C;

3 rec authentication_username {

4 choice at C {

5 USER(String) from C to S;

6 choice at S {

7 OK(String) from S to C;

8 rec authentication_password {

9 choice at C {



322 Mungo and StMungo: Tools for Typechecking Protocols in Java

10 PASS(String) from C to S;

11 choice at S {

12 OK(String) from S to C;

13 rec transaction {

14 choice at C {

15 STAT() from C to S;

16 OKN(int, int) from S to C;

17 continue transaction;

18 } or {

19 LIST() from C to S;

20 choice at S {

21 OK(String) from S to C;

22 rec summary_choice_retrieve {

23 choice at S {

24 DOT() from S to C;

25 continue transaction;

26 } or {

27 SUM(int, int) from S to C;

28 continue summary_choice_retrieve; } }

29 } or {

30 ERR(String) from S to C;

31 continue transaction; }

32 } or {

33 QUIT() from C to S;

34 OKN(String)from S to C; } }

35 } or {

36 ERR(String) from S to C;

37 continue authentication_password; }

38 } or {

39 QUIT() from C to S;

40 OKN(String) from S to C; } }

41 } or {

42 ERR(String) from S to C;

43 continue authentication_username; }

44 } or {

45 QUIT() from C to S;

46 OKN(String) from S to C; } } }



14.4 POP3: Typechecking an Internet Protocol Client 323

Projection using the Scribble tools produces local protocols for the client
and the server. For the rest of this section we focus on the client protocol. For
brevity we omit the authentication phase.

1 local protocol POP3 (role S,self C) {

2 OKN(String) from S;

3 ...

4 rec transaction {

5 choice at C {

6 STAT() to S;

7 OKN(int,int) from S;

8 continue transaction;

9 } or {

10 LIST() to S;

11 choice at S {

12 OK(String) from S;

13 rec summary_choice_retrieve {

14 choice at S {

15 DOT() from S;

16 continue transaction;

17 } or {

18 SUM(int,int) from S;

19 continue summary_choice_retrieve; } }

20 } or {

21 ERR(String) from S;

22 continue transaction; }

23 } or {

24 QUIT() to S;

25 OKN(String) from S; } }

26 ...

27 QUIT() to S;

28 OKN(String) from S; } } }

We use StMungo to translate the Scribble local protocol into a typestate
specification CProtocol, which defines the order in which the communication
methods are called.

1 typestate CProtocol {

2 State0 = {String receive_OKStringFromS(): State1}

3 ...

4 State9 = {void send_STATToS(): State10,



324 Mungo and StMungo: Tools for Typechecking Protocols in Java

5 void send_RETR_NToS(): State12,

6 void send_QUITToS(): State19}

7 State10 = {void send_STATToS(): State11}

8 State11 = {IntInt receive_OKNIntIntFromS(): State9}

9 State12 = {void send_LISTToS(): State13}

10 State13 = {Choice1 receive_Choice1LabelFromS():

11 <OK: State14, ERR: State18>}

12 State14 = {String receive_OKStringFromS(): State15}

13 State15 = {Choice2 receive_Choice2LabelFromS():

14 <DOT: State16, SUM: State17>}

15 State16 = {void receive_DOTFromS(): State9}

16 State17 = {String receive_SUMIntIntFromS(): State15}...}

14.4.1 Challenges of Using Mungo and StMungo in the Real
World

Programming with loops A POP3 server responds to the LIST command by
sending any number of lines, terminated by the DOT message.

The Scribble description of the state reached by +OK() uses explicit
recursion in which continue jumps to a named state.

1 rec summary_choice_list {

2 choice at S {

3 DOT() from S to C

4 continue transaction;

5 } or {

6 SUM(int, int) from S to C;

7 continue summary_choice_list; } }

The Java code generated by StMungo is a direct translation, using labelled
statements and continue. Given that we are generating imperative code rather
than recursive functions, this seems to be the only systematic way to handle
the arbitrary structure of Scribble’s rec. Although continue is a goto, its use is



14.4 POP3: Typechecking an Internet Protocol Client 325

controlled and checked by Mungo: it is only allowed when the recursion point
in the protocol has been reached. The SJ language [15] introduces sendWhile

and receiveWhile loops to match particular protocol patterns, but we have
chosen not to extend Java with new loop constructs.

1 _summary_choice_list: do {

2 switch(currentC.receive_Choice2LabelFromS().getEnum()){

3 case Choice2.DOT:

4 Void payload10 = currentC.receive_DOTVoidFromS();

5 System.out.println("Received from S: ." + payload10);

6 continue _transaction;

7 case Choice2.SUM:

8 SUMIntInt payload11 = currentC.receive_SUMIntIntFromS();

9 System.out.println("Received from S: " + payload11);

10 continue _summary_choice_list; } }

11 while(true);

Abstract vs. concrete messages When designing a complete system and
implementing all the roles, StMungo can generate concrete textual messages
in a uniform way; alternatively, we could use a structured message format
such as JSON. However, in POP3 and other standard protocols, the client
has to work with the textual message formats defined by the protocol. For
example, the Scribble message OK(int, int) from S to C; corresponds to
a line of text such as +OK 2 200. In the current implementation of the POP3
example, conversion between abstract and concrete messages is done by hand-
written code, but we are working on a tool to generate message converters
from a specification.

Naming StMungo converts Scribble message names into Java method
names. The method definition depends on whether or not the message appears
at the beginning of a Scribble choice, and this cause naming conflicts if the
same name is used for messages in both kinds of position. For example, OK
and OKN in POP3 would more naturally both be OK.

Non-standard implementations Real-world servers do not always follow
the RFC exactly. The specification of POP3 states that if the client sends
an unknown username, it is rejected and the username must be sent again.
However, the server used for this case study, namely GMX.co.uk, accepts an
unknown username and expects the client to send the password again. Conse-
quently, even after completing the prototype client generated by StMungo
and checking it with Mungo, it is necessary to test the client thoroughly



326 Mungo and StMungo: Tools for Typechecking Protocols in Java

with existing servers if we want to ensure correct operation in all cases.
When deviations from the RFC are discovered, the Scribble definition of the
protocol can be generalised accordingly. This problem could be reduced by
promoting the use of formal protocol descriptions within RFCs.

14.5 Related Work

Session types. The main pieces of related work on session types and Java are
the Session Java (SJ) language [15] and the API generation approach [14],
both by Hu et al. The API generation approach has been used to to analyse an
SMTP client in Java. The API for SMTP implements multiparty session types
using a pattern in which each communication method returns the receiver
object with a new type that determines which communication methods are
available at the next step. Standard Java typechecking can verify the cor-
rectness of communication when the pattern is used properly, with runtime
monitoring being used to ensure linearity constraints are fulfilled. In contrast
with this approach, Mungo’s approach is completely static.

SJ [15] builds on earlier work [4, 5, 7] to add binary session type channels
to Java. SJ implements a library for binary sessions that have a pre-defined
interface. The syntax of Java is extended with communication statements to
allow typechecking. The scope of a session is restricted to the body of a
single method. Mungo removes this restriction by allowing the abstraction
of multiparty session types as user-defined objects that can be passed and
used throughout different program scopes.

Typestates. There have been many projects that add typestates to practical
languages, since the introduction of the concept by Strom and Yemini [22].
Plural [2] is a noteworthy example. It is based on Java and has been used
to study access control systems. Plural implements typestates by using anno-
tations to define pre- and post-conditions on methods, referring to abstract
states and predicates on instance variables. By contrast, Mungo explicitly
defines the possible sequences of method calls. Plural and Mungo both allow
the typestate after a method call to depend on the return value.

Plaid [1, 23] introduces typestate-oriented programming as a paradigm.
Instead of class definitions, a program consists of state definitions containing
methods that cause transitions to other states. Transitions are specified in a
similar way to Plural’s pre- and post-conditions. Similarly to classes, states
can be structured into an inheritance hierarchy. As opposed to Plaid, Mungo
focuses on the object-oriented paradigm in order to be applicable to Java.

Our previous paper [16] discusses related work in more detail.



References 327

Acknowledgements This research was supported by the UK EPSRC project
“From Data Types to Session Types: A Basis for Concurrency and Distribu-
tion” (EP/K034413/1) and by COST Action IC1201 “Behavioural Types for
Reliable Large-Scale Software Systems”. We thank the reviewers for their
detailed comments.

References

[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented
programming. In OOPSLA ’09, pages 1015–1022. ACM Press, 2009.

[2] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In ECOOP ’09, volume 5653 of
Springer LNCS, pages 195–219, 2009.

[3] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and
E. Giachino. Amalgamating sessions and methods in object-oriented
languages with generics. Theoret. Comp. Sci., 410:142–167, 2009.

[4] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida.
Objects and session types. Information and Computation, 207(5):
595–641, 2009.

[5] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, and N. Yoshida.
Bounded session types for object oriented languages. In FMCO ’06,
volume 4709 of Springer LNCS, pages 207–245, 2006.

[6] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou.
Session types for object-oriented languages. In ECOOP ’06,
volume 4067 of Springer LNCS, pages 328–352, 2006.

[7] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A
distributed object-oriented language with session types. In TGC ’05,
volume 3705 of Springer LNCS, pages 299–318, 2005.

[8] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50, 2010.

[9] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira.
Modular session types for distributed object-oriented programming. In
POPL ’10, pages 299–312. ACM Press, 2010.

[10] G. Hedin. An introductory tutorial on JastAdd attribute grammars. In
Generative and Transformational Techniques in Software Engineering
III, volume 6491 of Springer LNCS, pages 166–200, 2011.

[11] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL ’08, pages 273–284. ACM Press, 2008.



328 Mungo and StMungo: Tools for Typechecking Protocols in Java

[12] K. Honda. Types for dyadic interaction. In CONCUR ’93, volume 715
of Springer LNCS, pages 509–523, 1993.

[13] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP

’98, volume 1381 of Springer LNCS, pages 122–138, 1998.
[14] R. Hu and N. Yoshida. Hybrid session verification through end-

point API generation. In FASE 16, volume 9633 of Springer LNCS,
pages 401–418, 2016.

[15] R. Hu, N. Yoshida, and K. Honda. Session-based distributed pro-
gramming in Java. In ECOOP ’08, volume 5142 of Springer LNCS,
pages 516–541, 2008.

[16] D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typechecking
protocols with Mungo and StMungo. In PPDP ’16, pages 146–159.
ACM Press, 2016.

[17] M. Neubauer and P. Thiemann. An implementation of session types. In
PADL ’04, volume 3057 of Springer LNCS, pages 56–70, 2004.

[18] Post office protocol version 3, RFC 1939. https://www.ietf.org/rfc/

rfc1939.
[19] R. Pucella and J. A. Tov. Haskell session types with (almost) no

class. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell,
pages 25–36. ACM Press, 2008.

[20] Scribble project homepage. www.scribble.org.
[21] Simple mail transfer protocol, RFC 821. https://tools.ietf.org/

html/rfc821.
[22] R. E. Strom and S. Yemini. Typestate: A programming language concept

for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):
157–171, 1986.

[23] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter. First-class
state change in Plaid. In OOPSLA ’11, pages 713–732. ACM Press,
2011.

[24] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE ’94, volume 817 of Springer LNCS,
pages 398–413, 1994.

[25] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol
language. In TGC ’13, volume 8358 of Springer LNCS, pages 22–41,
2013.



15
Protocol-Driven MPI Program Generation

Nicholas Ng and Nobuko Yoshida

Imperial College London, UK

Abstract

This chapter presents Parameterised Scribble (Pabble), an extension of the
Scribble language to capture scalable protocols, and a top-down, code
generation framework of Message-Passing Interface (MPI) programs.

The code generation process begins with defining a Pabble protocol for
the topology of the MPI application. An MPI parallel program skeleton
is automatically generated from the protocol, which can then be merged
with code kernels defining their behaviours. The merging process is fully
automated through the use of an aspect-oriented compilation tool.

Pabble protocols are parameterised over the number of roles at runtime,
and are grounded on theories of parameterised multiparty session types
(MPST) where valid Pabble protocols can ensure safety and progress of
communication in the generated MPI programs. Using the framework, pro-
grammers only need to supply the intended Pabble protocol and provide
code kernels to obtain parallelised programs. Since the skeleton generation
and the merging process are automatic, the framework not only simplifies
the development of MPI programs, the output programs are efficient and
scalable MPI applications, that are guaranteed, free from communication
mismatch, type errors or deadlocks by construction, improving productivity
of programmers.

15.1 Introduction

The Message Passing Interface (MPI) [8] is the de-facto standard for parallel
programming on high-performance computing systems. Despite the advances
in novel techniques and models such as the Partitioned Global Address Space

329



330 Protocol-Driven MPI Program Generation

(PGAS) used by X10 [3, 10, 17] for simplifying parallel programming, MPI is
still by far the most widely used parallel programming library in the scientific
community. However, parallel programming with the MPI library is a well-
documented difficult task, in which reasoning about interactions between
distributed processes is difficult at scale, and communication mismatches are
amongst the most common pitfalls by MPI users [6].

To apply behavioural types in safe, scalable parallel programming, this
chapter presents a parallel programming workflow based on a protocol
language Pabble, which we will explain in more details in Section 15.5.
Figure 15.1 shows the overview of our approach, and this chapter explains
the core use case of the approach highlighted in the figure. A Pabble protocol
is an abstract representation of the communication topology, or parallel com-
munication patterns of a parallel application. We consider every application
a coupling between sequential, computation code that defines functional
behaviours of processes in the application, and a communication topology
that connects the processes together as a coherent application. Hence, to build
a parallel application, we first define the communication protocol, written in
Pabble. A valid Pabble protocol is guaranteed free of interactions and patterns
that introduce communication errors and deadlocks. The Pabble protocol
is used to generate an annotated MPI program backbone (Section 15.6),
specifying the interactions between parallel processes. Based on the Pabble
protocol, computation kernels are written in C language (C99), using queues
to pass data locally between the kernels. The kernels are then merged with
the MPI backbone by LARA [2], an aspect-oriented compilation tool, to
transform the backbone and the kernels into a complete MPI application
(Section 15.7).

Common protocols
repository

Custom Pabble
global protocols

Sequential
kernels (C99)

or

Pabble tool

Local protocol

MPI codegen

MPI backbone

LARA weaver Non-Optimised MPI
application

Optimised MPI
application

Communication protocol Sequential code

Protocol compiler
(Automatic)

Output(s)

a-2a-1 b

c

d,e

Figure 15.1 Pabble-based MPI program generation workflow (core flow highlighted).



15.2 Pabble: Parameterised Scribble 331

In addition to the merge, LARA can also perform pragma directed opti-
misations on the source code to overlap communication and computation,
improving the runtime performance. The details of the optimisations, rigor-
ous evaluations of the approach, and a pre-generated repository of common
protocols are omitted from this chapter, but can be found in the original
paper [12].

15.2 Pabble: Parameterised Scribble

In this section we introduce Parameterised Scribble (Pabble) [14, 15], a
developer friendly notation for specifying application level interaction proto-
col based on the theory of parameterised multiparty session types [5]. As the
name suggests, Pabble is a parametric evolution of Scribble [16, 18], which
itself is based on the theory of multiparty session types [1, 9]. We begin with
an example Scribble protocol to explain the basic syntax of Pabble and the
Scribble family of protocol languages, and why parameterisation is important
for protocols describing scalable, parallel program topologies.

1 module example;

2 global protocol Ring(role Worker1, role Worker2, role Worker3) {

3 rec LOOP {

4 Data(T) from Worker1 to Worker2;

5 Data(T) from Worker2 to Worker3;

6 DataLast(T) from Worker3 to Worker1;

7 continue LOOP; }

8 }

Listing 15.1 Ring protocol in Scribble.

Scribble

This Ring protocol describes a series of communications in which the
role Worker1 passes a message of type Data(T) to Worker3 by forwarding
through Worker2, and receives back a DataLast(T) message from Worker3

to complete the ring. It is easy to notice that explicitly describing all
interactions among distinct roles is verbose and inflexible: for example, when
extending the protocol with an additional role Worker4, we must rewrite
the whole protocol. On the other hand, we observe that these worker roles
have identical communication patterns that can be logically grouped together:
Workeri+1 receives a message from Workeri and the last Worker sends
a message to Worker1. In order to capture these replicable patterns, we
introduce an extension of Scribble with dependent types, namely Pabble. In
Pabble, multiple participants can be grouped in the same role and indexed.



332 Protocol-Driven MPI Program Generation

This greatly enhances the expressive power and modularity of the protocols.
Here ‘parameterised’ refers to the number of participants in a role that can be
changed by parameters.

1 module example;

2 const N = 3;

3 global protocol Ring(role Worker[1..N]) {

4 rec LOOP {

5 Data(T) from Worker[i:1..N-1] to Worker[i+1];

6 DataLast(T) from Worker[N] to Worker[1];

7 continue LOOP; }

8 }

Listing 15.2 Parametrised Ring protocol in Pabble.

Pabble

Our ring example is rewritten in the syntax of Pabble shown above. The
role Worker[1..N] declares workers with indices 1 up to an arbitrary
integer N. The Worker roles can be identified individually by their indices,
for example, Worker[1] refers to the first and Worker[N] refers to the
last. In the body of the protocol, the sender, Worker[i:1..N-1], declares
multiple Workers, bound by the bound variable i, and iterates from 1 to
N-1. The receivers, Worker[i+1], are calculated on their indices for each
instance of the bound variable i. The second line is a message sent back from
Worker[N] to Worker[1].

3 local protocol Ring at Worker[1..N](role Worker[1..N]){

4 rec LOOP {

5 if Worker[i:2..N] Data(T) from Worker[i-1];

6 if Worker[i:1..N-1] Data(T) to Worker[i+1];

7 if Worker[1] DataLast(T) from Worker[N];

8 if Worker[N] DataLast(T) to Worker[1];

9 continue LOOP; }

10 }

Pabble (at Worker)

The above code shows the local protocol of Ring, which is a localised
version of Listing 15.2 at the Worker role. It represents the Worker[1..N]

parameterised role, and corresponds to multiple endpoints in the same logical
grouping. A Pabble local protocol is automatically generated from its global
protocol following the projection algorithm in [14], and programmers only
need to define the global protocol to use Pabble for MPI development.

Above servers as a primer on the Pabble language, sufficient for our
introductory example; Later, the full syntax and explanations of the Pabble
language will be given in Section 15.5.



15.3 MPI Backbone 333

15.3 MPI Backbone

A typical MPI program follows a Single Program, Multiple Data (SPMD)
parallel programming model, where a single source code is executed by
multiple parallel processors. This model shares a lot of similarities with the
parameterised local protocols in Pabble which groups together similar roles
in a single protocol, except that local protocols can be generated from global
protocols which are easier to express overall communication or topologies.
As a running example, we use the Pabble protocol presented earlier to
demonstrate the framework and implement a ring accumulator that calculates
a sum of values from each Worker and distribute to all.

1 int main(int argc, char *argv[])

2 { MPI_Init(&argc, &argv);

3 MPI_Comm_rank(MPI_COMM_WORLD, &meta.pid);

4 MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs);

5 #pragma pabble type T

6 typedef void T; ⇒ typedef double T;

7 MPI_Datatype MPI_T; ⇒ MPI Datatype MPI T = MPI DOUBLE;

8

9 T *bufData_r, *bufData_s;

10 /** Other buffer declarations **/

11 /** Definitions of cond0, cond1, ... **/

12 #pragma pabble kernel Init ⇒ init(Init, "input.txt")

13 #pragma pabble predicate Ring

14 while (1) { ⇒ while(iter())

15 if (cond0) { /*if Worker[i:2..N]*/

16 bufData_r = (T *)calloc(meta.buflen(Data), sizeof(T));

17 MPI_Irecv(bufData_r, meta.buflen(Data), MPI_T, /*Worker[i-1]*/...);

18 MPI_Wait(&req[0], &stat[0]);

19 pabble_recvq_enqueue(Data, bufData_r);

20 #pragma pabble kernel Data ⇒ accumulate(Data);

21 }

22 if (cond1) { /*if Worker[i:1..(N-1)]*/

23 #pragma pabble kernel Data ⇒ accumulate(Data);

24 bufData = pabble_sendq_dequeue();

25 MPI_Isend(bufData, meta.buflen(Data), MPI_T, /*Worker[i+1]*/...);

26 MPI_Wait(&req[1], &stat[1]);

27 free(bufData);

28 }

29 // Similarly for DataLast between Worker[1] and Worker[N]

30 MPI_Finalize();

31 }

32 return EXIT_SUCCESS; }

Listing 15.3 MPI backbone generated from the Ring protocol.

C/MPI Backbone



334 Protocol-Driven MPI Program Generation

15.3.1 MPI Backbone Generation from Ring Protocol

Based on the Pabble Ring protocol in the introduction, our code generation
framework generates an MPI backbone code (e.g. Listing 15.3). First it auto-
matically generates local protocols from a global protocol as an intermediate
step to make MPI code generation more straightforward. The MPI backbone
generation procedure is described in details later in Section 15.6, here we
focus on the generated MPI backbone code output.

An MPI backbone is a C99 program with boilerplate code for ini-
tialising and finalising the MPI environment of a typical MPI application
(lines 2–4 and 30 respectively), and MPI primitives for message passing
(e.g. MPI_Isend/MPI_Irecv1). Therefore the MPI backbone realises the
interaction between participants as specified in the Pabble protocol, without
supporting any specific application functionality. The backbone has three
kinds of #pragma annotations as placeholders for kernel functions, types and
program logic. The annotations are explained in Section 15.7.1. The boxed
code in Listing 15.3 represents how the backbone are converted to code that
calls the kernel functions in the MPI program.

On lines 5 and 6, generic type T and MPI_T are defined datatypes for
C and MPI respectively. T and MPI_T are refined later when an exact type
(e.g. int or composite struct type) is known with the kernels.

Following the type declarations, other variable declarations including the
buffers (line 9), and their allocation and deallocation are managed by the
backbone. They are generated as guarded blocks of code, which come directly
from the local protocol. lines 15–21 shows a guarded receive that correspond
to if Worker[i:2..N] Data(T)from Worker[i-1] in the protocol and
lines 22–28 for if Worker[i:1..N-1] Data(T)to Worker[i+1].

Given the MPI backbone, we can then implement computation kernels for
the MPI program.

15.4 Computation Kernels

Computation kernels are C functions that describe the algorithmic behaviour
of the application. Conceptually, each message interaction defined in Pabble
(e.g. Label(T)from Sender to Receiver), and – through the automatic
MPI backbone generation – the MPI backbone, can be associated to a kernel
by its label (e.g. Label).

1We use MPI_Isend/MPI_Irecv with MPI_Wait in place of the equivalent MPI_Send/MPI_Recv
respectively. To simplify presentation we write MPI_Send/MPI_Recv in the rest of the chapter.



15.4 Computation Kernels 335

Sender Process Receiver Process

(1) Execute Label kernel

MPI Send MPI RecvMessage of type T

(2) Execute Label kernel

Figure 15.2 Global view of Label(T)from Sender to Receiver;.

Figure 15.2 shows how kernels are invoked in a message-passing state-
ment between two processes named Sender and Receiver respectively.
Since a message interaction statement involves two participants (e.g. Sender
and Receiver), the kernel serves two purposes: (1) produce a message for
sending and (2) consume a message after it has been received. The two parts
of the kernel are defined in the same function, but runs on the sending process
and the receiving process respectively. The kernels are top-level functions and
do not send or receive messages directly through MPI calls. Instead, messages
are passed between kernels and the MPI backbone (derived from the Pabble
protocol) via a queue API: in order to send a message, the producer kernel
(e.g. (1)) of the sending process enqueues the message to its send queue; and a
received message can be accessed by a consumer kernel (e.g. (2)), dequeuing
from its receive queue. This allows the decoupling between computation
(as defined by the kernels) and communication (as described in the MPI
backbone).

15.4.1 Writing a Kernel

We now explain how a user writes a kernel file, which contains the set
of kernel functions related to a Pabble protocol for an application. As an
example, we implement accumulator in a ring topology below.

A minimal kernel file must define a variable meta of meta_t type, which
contains the process id (i.e. meta.pid), total number of spawned pro-
cesses (i.e. meta.nprocs) and a callback function that takes one param-
eter (message label) and returns the send/receive size of message payload
(i.e. unsigned int meta.bufsize(int label)). The meta.buflen

function returns the buffer size for the MPI primitives based on the label
given, as a lookup table to manage the buffer sizes centrally. Process id and
total number of spawned processes will be populated automatically by the
backbone code generated. The kernel file includes the definitions of the kernel
functions, annotated with pragmas, associating the kernels with message
labels. The pragmas that are allowed are detailed in Section 15.7. The kernels
can use file (i.e. static) scope variables for local data storage. Our ring



336 Protocol-Driven MPI Program Generation

accumulator kernel file starts with the following declarations for local data
and meta:

Kernel file header
1 typedef struct {

2 double* values; int N;

3 } local_data_t;

4 static local_data_t *local;

5

6 unsigned int buflen(int label) { return 1; } // 1-size buffer for all.

7 meta_t meta = {/*pid*/0, /*nprocs*/1, MPI_COMM_NULL, &buflen};

User C Kernel

15.4.1.1 Initialisation
Most parallel applications require explicit partitioning of input data. In these
cases, the programmer writes a kernel function for partitioning, such that each
participant has a subset of the input data. Input data are usually partitioned
with a layout similar to the layout of the participants. In our ring accumulator
example, the processes are arranged linearly, and the input file contains an
array of at least meta.nprocs elements, so meta.nprocs initial values are
read into the local->values array. In our example initialisation function
below, we also set the current accumulated value to be our initial value of
local->values[meta.pid].

Kernel: Init
9 #pragma pabble kernel Init

10 void init(int id, const char *filename)

11 { FILE *fp = fopen(filename, "r");

12 local = (local_data_t *)malloc(sizeof(local_data_t));

13 local->values = NULL; local->N = 0;

14 ... // allocate etc.

15 int nprocs = meta.nprocs; // Number of processes (known at runtime).

16 for (int i=0; i<nprocs; i++)

17 fscanf(fp, "%f", &local->values[i]); // Copy data to local

18 fclose(fp); local->N = nprocs;

19 local->accumulated = local->values[meta.pid]; /* initial value on proc */

20 }

User C Kernel

15.4.1.2 Passing data between backbone and kernel
through queues

The kernels are void functions with at least one parameter, which is the
label of the kernel. Inside the kernel, no MPI primitive should be used to
perform message passing. Data received from another participant or data that
need to be sent to another participant can be accessed using a receive queue



15.4 Computation Kernels 337

Kernel: Data
20 #pragma pabble kernel Data

21 void accumulate(int id)

22 { double *rcvd_val; // Ptr to received value (temp).

23 if (!pabble_recvq_isempty() && pabble_recvq_top_id() == id) {

24 rcvd_val = (double *)pabble_recvq_dequeue(); // allocated by backbone

25 local->accumulated += *rcvd_val;

26 } else { // Allocate and send value

27 accumulated_val = (double *)calloc(meta.buflen(id), sizeof(double));

28 *accumulated_val = local->accumulated

29 pabble_send_enqueue(id, accumulated_val);

30 }

31 }

User C Kernel

and send queue. Consider the following kernel for the label Data in the ring
accumulator example:

Each kernel has access to a send and receive queue local to the whole
process, which holds pointers to the buffer to be sent and the buffer containing
the received messages, respectively. The queues are the only mechanism
for kernels to interface the MPI backbone. The simplest kernel is one that
forwards incoming messages from the receive queue directly to the send
queue. In the above function, when the kernel function is called, it either
consumes a message from the receive queue if it is not empty (i.e. after a
receive), or produce a message for the send queue (i.e. before a send).

Kernels can have extra parameters. For example, in the init function
above, filename is a parameter that is not specified by the protocol (i.e. Init
()). When such functions are called, all extra parameters are supplied by
command-line arguments in the final generated MPI application.

15.4.1.3 Predicates
A predicate kernel is similar to a normal void kernel, but with a function
signature that returns an int (as a boolean), it is used as a conditional
variable, where the value of the variable is determined by the body of the
kernel. In the iter() predicate kernel, we use the number of processes
to determine when the ring protocol has completed a cycle (i.e. executed
meta.nproc times) and terminate the while-loop.

Kernel: Ring
32 #pragma pabble predicate Ring

33 int iter() { static int i = 0; return i++ < meta.nprocs }

User C Kernel



338 Protocol-Driven MPI Program Generation

Aftere writing the computation kernels, we can then use the framework
to merge the MPI backbones with the computation kernels, and we get a
complete MPI program. The resulting MPI program is shown in Listing 15.3
(boxed code).

15.5 The Pabble Language

In this section, we present more details of the Pabble language, including
its syntax, and the well-formedness conditions (i.e. syntactic restrictions to
ensure protocol correctness) of the language.

15.5.1 Global Protocols Syntax

Figure 15.3 lists the core syntax of Pabble, which consists of two protocol
declarations, global and local. A global protocol is declared with the protocol
name (str denotes a string) with role and group parameters followed by the
body G. Role R is a name with argument expressions. The argument expres-
sions are ranges or arithmetic expressions h, and the number of arguments
corresponds to the dimension of the array of roles: for example, Worker
[1..4][1..2] denotes a 2-D array with size 4 and 2 in the two dimensions
respectively, forming a 4-by-2 array of roles.

Declared roles can be grouped by specifying a named group using the
keyword group, followed by the group name and the set of roles. For
example,

group EvenWorker={Worker[2][2], Worker[4][2]}

creates a group which consists of two Workers. A special built-in group, All,
is defined as all processes in a session. We can encode collective operators
such as many-to-many and many-to-one communication with All, which will
be explained later.

Apart from specifying ranges by constants, ranges can also be specified
using expressions. Expression e consists of operators for numbers, logarithm,
left and right logical shifts (<<, >>), numbers, variables (i, j, k), and constants
(M, N). Constants are either bound outside the protocol declaration or are
left free (unbound) to represent an arbitrary number. As in [11], when the
constants are bound, they are declared by numbers outside the protocol,
e.g. const N = 10 or lower and upper bounds, e.g. const N = 1..10.
We also allow leaving the declaration free (unbound), e.g. const N, as a
shorthand to represent an arbitrary constant with lower and upper bounds
0 and max respectively, i.e. const N = 0..max, where max is a special



15.5 The Pabble Language 339

Global Pabble
global protocol str(para) { G }

Parameter
para ::= role Rd, ..., Role declaration

group str = {Rd, ...}, ... Group declaration
Global protocol body

G ::= l(T) from R to R; Interaction
| choice at R { G1 } or ... or { GN } Choice
| foreach (b) { G } Foreach
| allreduce opc(T); Reduction
| rec l { G } Recursion
| continue l; Continue
| G G Sequential composition

Payload type
T ::= int | float | . . . Data types

Expression
e ::= e op e Binary expressions

| num Integers
| i, j, k, ... | N Variables, constants

op ::= opc | - | / | % | << | >> | log | . . . Binary operations
opc ::= + | * | . . . Commutative operations

Role
Rd ::= str Role declaration

| str[e..e]...[e..e] Param. role declaration
R ::= str Roles

| str[h]...[h] Param. roles
| All All group role

h ::= b | e Role parameter
b ::= i : e..e Binding range

Local Pabble
local protocol str at Rd(para) { L }

Local protocol body
L ::= [ if R] l(T) from R; (Conditional) Receive

| [ if R] l(T) to R; (Conditional) Send
| choice at R { L1 } or ... or { LN } Choice
| foreach (b) { L } Foreach
| allreduce opc(T); Reduction
| rec l { L } Recursion
| continue l; Continue
| L L Sequential composition

Figure 15.3 Pabble syntax.

value representing the maximum possible value or practically unbounded.
Binding range expression b takes the form of i : e1..en which means i is
ranged from e1 to en. Binding variables always bind to a range expression
and not individual values. Indices in a Pabble protocol must be bound with



340 Protocol-Driven MPI Program Generation

the binding range expression, the details are omitted here, please see indices
well-formed conditions in [14].

In a global protocol G, l(T ) from R1 to R2 is called an interaction
statement, which represents passing a message with label l and type T from
one role R1 to another role R2. R1 is a sender role and R2 is a receiver
role. choice at R { G1 } or ... or { GN } means the role R will
select one of the global types G1,. . . ,GN . rec l { G } is recursion with
the label l which declares a label for continue l statement. foreach (b)
{G} denotes a for-loop whose iteration is specified by b. For example,
foreach (i:1..n){ G } represents the iteration from 1 to n of G where
G is parameterised by i.

Finally, allreduce opc(T) means all processes perform a distributed
reduction of value with type T with the operator opc (like MPI_Allreduce

in MPI), and sends the resulting value from the reduction to all processes. It
takes a mandatory predefined operator opc where opc must be a commutative
and associative arithmetic operation so they can correspond to MPI reduction
operations which have the same requirements. Pabble currently supports sum
and product.

We allow using simple expressions (e.g. Worker[i:0..2*N-1]) to
parameterise ranges. In addition, indices can also be calculated by expres-
sions on bound variables (e.g. Worker[i+1]) to refer to relative positions of
roles.

There are restrictions on the indices on such as relative indices calcula-
tions and index bounds presented below. The restrictions ensure termination
of the projection algorithm and safety of the communication topology at
runtime.

15.5.1.1 Restriction on constants
In Pabble protocols, constants can be defined by

(1) A single numeric value (const N = 3); or
(2) Lower and upper bound constraints not involving the max keyword; or
(3) A range defined with the max keyword.

(1) sets a fixed value to a constant, as exemplified in Listing 15.2. (2) gives
runtime constants a lower bound and an upper bound, e.g. the number of pro-
cesses spawned in a scalable protocol, which is unknown at design time and
will be defined and immutable once the execution begins. To ensure Pabble
protocols are communication-safe in all possible values of constants, we must
ensure that all parameterised role indices stay within their declared range.



15.5 The Pabble Language 341

Such conditions prevent sending or receiving from an invalid (non-existent)
role which will lead to communication mismatch at runtime.

The following explains how to determine whether the protocol will be
valid for all combinations of constants:

1 const M = 1..3;

2 const N = 2..5;

3 global protocol P(role R[1.. N ]) {

4 T from R[i:1.. M ] to R[i+1];

5 }

The basic constraints from the constants are:

1 ≤ M, M ≤ 3, 2 ≤ N and N ≤ 5

We then calculate the range of R[i+1] as R[2..M+1]. Since the objective is
to ensure that the role parameters in the protocol body (i.e. 1..M and 2..M+1)
stay within the bounds of 1..N, we define a constraint set to be:

1 ≤ 1 & M ≤ N and 1 ≤ 2 & M +1 ≤ N

which are lower and upper bound inequalities of the two ranges. From them,
we obtain this inequality as a result:

M +1 ≤ N

By comparing this against the basic constraints on the constants, we can
check that not all outcomes belong to the regions and thus this is not a
communication-safe protocol (an example of a unsafe case is M = 3 and N

= 2). On the other hand, if we alter line 4 to T from R[i:1..N-1] to R

[i+1];, the constraints are unconditionally true and so we can guarantee all
combinations of constants M and N will not cause communication errors.
(3) is a special case of (2), where the upper bound of a constant is set to
the max keyword. We write const N = 0..max to represent a range without
upper bound, here it means the constant N can be any integer value larger
than 1. Since it is not possible to enumerate all values of N, we apply a more
restrictive constraint on the expressions, allowing only range calculation that
uses addition or subtractions on integers (e.g. i+1).

15.5.2 Local Protocols

As mentioned in Section 15.2, local protocols are localised versions of the
global protocols at each role, and are used directly for skeleton generation.
They are generated from a global protocol by a projection algorithm detailed



342 Protocol-Driven MPI Program Generation

in [14]. Local protocol L consists of the same syntax of the global type except
the input from R (receive) and the output to R (send). The main declaration
local protocol str at Re (. . .) { L } means the protocol is located
at role Re. We call Re the endpoint role. In Pabble, multiple local protocol
instances can reside in the same parameterised local protocol. This is because
each local protocol is a local specification for a participant of the interaction.
When there are multiple participants with a similar interaction structure that
fulfil the same role in the protocol, such as the Worker role from our Ring
example from the introduction, the participants are grouped together as a

single parameterised role. The local protocol for a collection of participants
can be specified in a single parameterised local protocol, using conditional
statements on the role indices to capture corner cases. For example, in
a general case of a pipeline interaction, all participants receive from one
neighbour and send to another neighbour, except the first participant which
initiates the pipeline and is only a sender and the last participant which ends
the pipeline and does not send. In these cases we use conditional statements
to guard the input or output statements. To express conditional statements
in local protocols, if R may be prepended to an input or output statement.
if R input/output statement will be ignored if the local role does not match
R. More complicated matches can be performed with a parameterised role,
where the role parameter range of the condition is matched against the
parameter of the local role. For example, if Worker[1..3] will match
Worker[2] but not Worker[4]. It is also possible to bind a variable to the
range in the condition, e.g. if Worker[i:1..3], and i can be used in the
same statement.

15.6 MPI Backbone Generation

Below we explain how Pabble statements are translated into MPI blocks.

15.6.1 Interaction

An interaction statement in a Pabble protocol is projected in the local protocol
as two parts: receive and send. The correspondence is shown in Figure 15.4.

The first line of the local protocol shows a receive statement, written in
Pabble as if P[dstId] from P[srcId]. The statement is translated to a
block of MPI code in 3 parts. First, memory is dynamically allocated for the
receive buffer (line 2), the buffer is of Type and its size fetched from the
function meta.bufsize(Label). The function is defined in the kernels and



15.6 MPI Backbone Generation 343

Label(Type) from P[srcIdx]
to P[dstIdx];

Global Protocol
→ if P[dstIdx] Label(Type) from P[srcIdx];

if P[srcIdx] Label(Type) to P[dstIdx];

Projected Local Protocol

Interaction
1 if (meta.pid == role_P(dstIdx)) {

2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));

3 MPI_Recv(buf, meta.bufsize(Label), MPI_Type, role_P(srcIdx), Label, ...);

4 pabble_recvq_enqueue(Label, buf);

5 #pragma pabble kernel Label
6 }

7 if (meta.pid == role_P(srcIdx)) {

8 #pragma pabble kernel Label
9 buf = pabble_recvq_dequeue();

10 MPI_Send(buf, meta.bufsize(Label), MPI_Type, dstIdx, Label, ...);

11 free(buf);

12 }

Output C/MPI Backbone

Figure 15.4 Pabble interaction statement and its MPI backbone.

returns the size of message for the given message label. Next, the program
calls MPI_Recv to receive a message (line 3) from participant P[srcRole]
in Pabble. role_P(srcIdx) is a lookup macro from the generated backbone
to return the process id of the sender. Finally, the received message, stored
in the receive buffer buf, is enqueued into a global receive queue with
pabble_recvq_enqueue() (line 4), followed by the pragma indicating a
kernel of label Label should be inserted. The block of receive code is guarded
by an if-condition, which executes the above block of MPI code only if the
current process id matches the receiver process id.

The next line in the local protocol is a send statement, converse of the
receive statement, written as if P[srcIdx] Label(Type)to P[dstIdx].
The MPI code begins with the pragma annotation, then dequeuing the global
send queue with pabble_sendq_dequeue() and sends the dequeued buffer
with MPI_Send. After this, the send buffer, which is no longer needed, is
deallocated. The block of send code is similarly guarded by an if-condition
to ensure it is only executed by the sender. By allocating memory before
receive and deallocating memory after send, the backbone manages memory
for the user systematically. Since the protocol and the backbone makes no
assumption about memory management on user’s computation kernel, this
mechanism helps the separation of concern between the protocol (i.e. the
generated backbone) and the user kernels, and leaves open the possibility
of optimal memory management during merge without breaking existing
kernels.



344 Protocol-Driven MPI Program Generation

15.6.2 Parallel Interaction

A Pabble parallel interaction statement is written as Label(Type)from

P[i:1..N-1] to P[i+1], meaning all processes with indices from 1 to
N-1 send a message to its next neighbour. P[1] initiates sending to P[2],
and P[2] receives from P[1] then sends a message to P[3], and so on. As
shown in Figure 15.5, the local protocol encapsulates the behaviour of all
P[1..N] processes, and the statement is realised in the local as conditional
receive followed by a conditional send, similar to ordinary interaction. The
difference is the use of a range of process ids in the condition, and relative
indices in the sender/receiver indices. The generated MPI code makes use
of expression with meta.pid (current process id) to calculate the relative
index.

15.6.3 Internal Interaction

When role with name __self is used in a protocol, it means that both the
sending and receiving endpoints are internal to the processes, and there is no
interaction with external processes. This statement applies to all processes,
and is not to be confused with self-messaging, e.g. Label()from P[1]

to P[1], which would lead to deadlock. The statement does not use any
MPI primitives. The purpose of using this special role is to create optional
insertion point for the MPI backbone, which may be used for optional kernels
such as initialisation or finalisation, hence it generates a pragma in the MPI
backbone.

Label(Type) from P[i:1..N-1]

to P[i+1];

Global Protocol
→ if P[i:2..N] Label(Type) from P[i-1];

if P[i:1..N-1] Label(Type) to P[i+1];

Projected Local Protocol

Parallel Interaction
1 if (role_P(2)<=meta.pid&&meta.pid<=role_P(N)) {

2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(..., /*prevRank:*/ meta.pid-1, Label, ...);

4 pabble_recvq_enqueue(Label, buf);

5 #pragma pabble kernel Label
6 }

7 if (role_P(1)<=meta.pid&&meta.pid<=role_P(N-1)) {

8 #pragma pabble kernel Label
9 buf = pabble_sendq_dequeue();

10 MPI_Send(..., /*nextRank:*/ meta.pid+1, Label, ...); free(buf);

11 }

Output C/MPI Backbone

Figure 15.5 Pabble parallel interaction statement and its MPI backbone.



15.6 MPI Backbone Generation 345

Internal() from __self to __self;

Global/Local Protocol
1 #pragma pabble Internal

Output C/MPI Backbone

Figure 15.6 Pabble internal interaction statement and its MPI backbone.

15.6.4 Control-flow: Iteration and For-loop

rec and foreach are iteration statements. Specifically rec/continue is
recursion, where the iteration conditions are not specified explicitly in the
protocol, and translates to while-loops. The loop condition is the same in all
processes, otherwise be known as collective loops. The loop generated by rec
has a #pragma pabble predicate annotation, so that the loop condition

can be later replaced by a kernel (see Section 15.7.1).
The foreach construct, on the other hand, specifies a counting loop,

iterating over the integer values in the range specified in the protocol from
the lower bound (e.g. 0) to the upper bound value (e.g. N-1). This construct
can be naturally translated into a C for-loop.

15.6.5 Control-flow: Choice

Conditional branching in Pabble is performed by label branching and selec-
tion. We use the example given in Figure 15.8 to explain. The deciding
process, e.g. P[master], makes a choice and executes the statements in the
selected branch. Each branch starts by sending a unique label, e.g. Branch0,
to the decision receiver, e.g. P[worker]. Hence for a well-formed Pabble
protocol, the first line of each branch is from the deciding process to the same
process but using a different label.

Note that the decision is only known between the two processes in the first
statement, and other processes should be explicitly notified or use broadcast
to propagate the decision. The MPI backbone is generated with a different
structure as the local protocol. First, the MPI backbone contains an outer

rec LoopName { ... continue LoopName; }

Global/Local Protocol
foreach (i:0..N-1) { ... }

Global/Local Protocol

Iteration
1 #pragma pabble predicate LoopName

2 while (1) {

3 ... }

Output C/MPI Backbone Foreach
1 for (int i=0; i<=N-1; i++) {

2 ...

3 }

Output C/MPI Backbone

Figure 15.7 Control-flow: Pabble iteration statements and their corresponding MPI
backbones.



346 Protocol-Driven MPI Program Generation

choice at P[master] {

Branch0(Type) from P[master]

to P[worker];

...

} or { ... }

Global Protocol

→

choice at P[master] {

if P[worker] Branch0(Type) from P[master];

if P[master] Branch0(Type) to P[worker];

...

} or { ... }

Projected Local Protocol

Choice
1 if (rank==role_P(master)) { // Choice sender

2 #pragma pabble predicate Branch0

3 if (1) {

4 // Block of send.

5 MPI_Send(..., MPI_Type, role_P(worker), Branch0, ...);

6 } else

7 #pragma pabble predicate Branch1

8 if (1) { ... }

9 } else { // Choice receiver

10 MPI_Probe(role_P(master), MPI_ANY_TAG, comm, &status);

11 switch (status.MPI_TAG) {

12 case Branch0:

13 // Ordinary block of recv.

14 if (rank==role_P(worker)) {

15 MPI_Recv(..., MPI_Type, role_P(master), Branch0, ...);

16 pabble_recvq_enqueue(Branch0, buf); }

17 ... break;

18 #pragma pabble Branch1

19 case Branch1: ...

20 }

21 }

Output C/MPI Backbone

Figure 15.8 Control-flow: Pabble choice and its corresponding MPI backbone.

if-then-else, splitting the deciding process (lines 1–9) and the decision
receiver (lines 9–21). In the deciding process, a block of if-then-else-if
code is generated to perform a send with different label (called MPI tag),
e.g. line 5. This statement is generated with all the queue and memory
management code as described above for ordinary interaction statements.
Each of the if-condition is annotated with #pragma pabble predicate

BranchLabel, so that the conditions can be replaced by predicate kernels
(see Section 15.7.1). For the decision receiver, MPI_Probe is used to peek
the received label, then the switch statement is used to perform the correct
receive (for different branches).

15.6.6 Collective Operations: Scatter, Gather and All-to-all

Collective operations are written in Pabble as multicast or multi-receive
message interactions. While it is possible to convert these interactions into



15.6 MPI Backbone Generation 347

multiple blocks of MPI code following the rules in Figure 15.7 (e.g. loop
through receivers for scatter), we take advantage of the efficient and expres-
sive collective primitives in MPI. Figure 15.9 shows the conversion of Pabble
statements into MPI collective operations. We describe only the most generic
collective operations, i.e. MPI_Scatter, MPI_Gather and MPI_Alltoall.

Translating collective operations from Pabble to MPI uses both global
Pabble protocol statements and local protocol. If a statement involves the
All role as sender, receiver or both, it is a collective operation. Figure 15.9
shows that translated blocks of MPI code do not use if-statements to dis-
tinguish between sending and receiving processes. This is because collective

Label(Type) from P[rootRole] to All; // One-to-Many: (a) Scatter

Label(Type) from All to P[rootRole]; // Many-to-One: (b) Gather

Label(Type) from All to All; // Many-to-Many: (c) All-to-All

Global Protocol

Collective operation: (a) Scatter
1 rbuf = (Type *)calloc(meta.buflen(Label), sizeof(Type));
2 #pragma pabble kernel Label
3 sbuf = pabble_sendq_dequeue();

4 MPI_Scatter(sbuf, meta.buflen(Label), MPI_Type,
5 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);

6 pabble_recvq_enqueue(Label, rbuf);

7 #pragma pabble kernel Label
8 free(sbuf);

Output C/MPI Backbone

Collective operation: (b) Gather
1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs, sizeof(Type));
2 #pragma pabble kernel Label
3 sbuf = pabble_sendq_dequeue();

4 MPI_Gather(sbuf, meta.buflen(Label), MPI_Type,
5 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);

6 pabble_recvq_enqueue(Label, rbuf);

7 #pragma pabble kernel Label
8 free(sbuf);

Output C/MPI Backbone

Collective operation: (c) All-to-All
1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs, sizeof(Type));
2 #pragma pabble kernel Label
3 sbuf = pabble_sendq_dequeue();

4 MPI_Alltoall(sbuf, meta.buflen(Label), MPI_Type,
5 rbuf, meta.buflen(Label), MPI_Type, ...);

6 pabble_recvq_enqueue(Label, rbuf);

7 #pragma pabble kernel Label
8 free(sbuf);

Output C/MPI Backbone

Figure 15.9 Collective operations: Pabble collectives and their corresponding MPI
backbones.



348 Protocol-Driven MPI Program Generation

primitives in MPI are executed by both the senders and the receivers, and
the runtime decides whether it is a sender or a receiver by inspecting the
rootRole parameter (which is a process rank) in the MPI_Scatter or
MPI_Gather call. Otherwise the conversion is similar to their point-to-point
counterparts in Figure 15.4.

15.6.7 Process Scaling

In addition to the translation of Pabble statements into MPI code, we
also define the process mapping between a Pabble protocol and a Pabble-
generated MPI program. Typical usage of MPI programs can be parame-
terised on the number of spawned processes at runtime via program argu-
ments. Hence, given a Pabble protocol with scalable roles, we describe the
rules below to map (parameterised) roles into MPI processes.

A Pabble protocol for MPI code generation can contain any number of
constant values (e.g. const M = 10), which are converted in the backbone
as C constants (e.g. #define M 10), but it can use at most one scalable
constant [13], and will scale with the total number of spawned processes. A
scalable constant, defined in Section 15.5.1.1 as constant type (3), is written:

const N = 1..max;

The constant can then be used for defining parameterised roles, and used
in indices of parameterised message interaction statements. For example, to
declare an N ×N role P, we write in the protocol:

global protocol P (role P[1..N][1..N])

which results in a total of N2 participants in the protocol, but N is not
known until execution time. MPI backbone code generated based on this
Pabble protocol uses N throughout. Since the only parameter in a scalable
MPI program is its size (i.e. number of spawned processes), the following
code is generated in the backbone to calculate, from size, the value of C
local variable N:

MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs); // # of processes

int N = (int)pow(meta.nprocs, 1/2); // N = sqrt(meta.nprocs)

15.7 Merging MPI Backbone and Kernels

15.7.1 Annotation-Guided Merging Process

To combine the MPI backbone with the kernels, our aspect-oriented design-
flow inserts kernel function calls into the MPI backbone code. The insertion



15.7 Merging MPI Backbone and Kernels 349

points are realised as #pragmas in the MPI backbone code, generated from
the input protocol as placeholders where functional code is inserted. There
are multiple types of annotations whose syntax is given as:

#pragma pabble [<entry point type>] <entry point id> [(param0, ...)]

where entry point type is one of kernel, type or predicate, and entry point
id is an alphanumeric identifier.

15.7.2 Kernel Function

#pragma pabble kernel Label defines the insertion point of kernel func-
tions in the MPI backbone code. Label is the label of the interaction
statement, e.g. Label(T)from Sender to Receiver, and the annotation
is replaced by the kernel function associated to the label Label. Programmers
must use the same pragma to manually annotate the implementation of the
kernel function. The first row in Table 15.1 shows an example.

15.7.3 Datatypes

#pragma pabble type TypeName annotates a generic type name in the
backbone, and also annotates the concrete definition of the datatype in the
kernels. In the second row of Table 15.1, the C datatype T is defined to
be void since the protocol does not have any information to realise the
type. The kernel defines T to be a concrete type of double, and hence our
tool transforms the typedef in the backbone into double and infers the
corresponding MPI_Datatype (MPI derived datatypes) to the built-in MPI
integer primitive type, i.e. MPI_Datatype MPI_T = MPI_DOUBLE. From the

Table 15.1 Annotations in backbone and kernel
Generated MPI backbone User supplied kernel Merged code

K
er

ne
l

Fu
nc

tio
n

#pragma pabble kernel Label

#pragma pabble kernel Label

void kernel_func(int label)

{ ... }

kernel_func(Label);

D
at

at
yp

es

#pragma pabble type T

typedef void T;

MPI_Datatype MPI_T;

#pragma pabble type T

typedef double T;

typedef double T;

MPI_Datatype MPI_T

= MPI_DOUBLE;

C
on

di
tio

na
ls

#pragma pabble predicate Cond

while (1)

{ ... }

#pragma pabble predicate Cond

int condition()

{ ... return bool; }

while (condition())

{ ... }



350 Protocol-Driven MPI Program Generation

given type we can also generate MPI datatypes for structures of primitive
types, e.g. struct { int x, int y, double m } is transformed to its
MPI-equivalent datatype.

15.7.4 Conditionals

#pragma pabble predicate Label annotates predicates, e.g. loop con-
ditions or if-conditions, in the backbone. Since a Pabble communication
protocol (and transitively, the MPI backbone) does not specify a loop con-
dition, the default loop condition is 1, i.e. always true. This annotation
introduces a way to insert a conditional expression defined as a kernel
function. It precedes the while-loop, as shown in the third row of Table 15.1,
to label the loop with the name Label. The kernel function that defines
expressions must use the same annotation as the backbone, e.g. #pragma
pabble predicate Label. After the merge, this kernel function is called
when the loop condition is evaluated.

15.8 Related Work

The general approach of describing parallel patterns and reusing them with
different computation modules can date back to [4] by Darlington et al.,
where parallel patterns are described as higher order skeleton functions,
written in a functional language. Parallel applications are implemented as
functions that combine with the skeletons and transformed. Their system
targets specialised parallel machines, and our approach targets MPI, a stan-
dard for parallel programming in a range of hardware configurations. The
approach, also known as algorithmic skeleton frameworks for parallel pro-
gramming, is surveyed in [7]. Some of these tools also target MPI for
high-level structured parallel programming, and only works with a limited set
of parallel patterns. Our code generation workflow based on Pabble supports
generic patterns written in Pabble and guarantees communication safety in
the generated MPI code.

15.9 Conclusion

In this chapter we presented a protocol-based workflow for constructing
safe and efficient parallel applications. The framework consists of two
parts, a safe-by-construction parallel interaction backbone, generated from
the Pabble protocol language, and an aspect-oriented compilation workflow



References 351

to mechanically insert computation code into the backbone. Our approach
simplifies parallel programming by making use of parallel communication
patterns, described with our Pabble protocol description language, and build-
ing independent kernel code around the patterns as sequential C code. This
approach is flexible, where multiple sets of kernels can share a common par-
allel communication pattern, since the computation and the communication
are maintained separately.

Acknowledgements This work is supported EPSRC projects EP/K034413/1,
EP/K011715/1, EP/L00058X/1 and EP/N027833/1; and by EU FP7 612985
(UpScale).

References

[1] L. Bettini, M. Coppo, L. DAntoni, M. D. Luca, M. Dezani-Ciancaglini,
and N. Yoshida. Global Progress in Dynamically Interleaved Multiparty
Sessions. In CONCUR 2008, volume 5201 of LNCS. Springer, 2008.

[2] J. a. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre,
P. Diniz, and Z. Petrov. LARA: an aspect-oriented programming
language for embedded systems. In AOSD ’12. ACM Press, 2012.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05. ACM
Press, 2005.

[4] J. Darlington, A. Field, P. Harrison, P. H. J. Kelly, D. W. N. Sharp, and
Q. Wu. Parallel programming using skeleton functions. In PARLE’93,
1993.

[5] P.-M. Denielou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised Multi-
party Session Types. Logical Methods in Computer Science, 8(4):1–46,
October 2012.

[6] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov. Automated, scalable debugging of MPI programs with Intel
Message Checker. In SE-HPCS ’05. ACM Press, 2005.

[7] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skele-
ton Frameworks: High-level Structured Parallel Programming Enablers.
Softw. Pract. Exper., 40(12):1135–1160, 2010.

[8] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1999.



352 Protocol-Driven MPI Program Generation

[9] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous
Session Types. JACM, 63(1):9:1–9:67, 2016.

[10] J. K. Lee and J. Palsberg. Featherweight X10. In PPoPP ’10. ACM
Press, 2010.

[11] J. Magee and J. Kramer. Concurrency – state models and Java programs
(2. ed.). Wiley, 2006.

[12] N. Ng, J. G. Coutinho, and N. Yoshida. Protocols by Default: Safe
MPI Code Generation based on Session Types. volume 9031 of LNCS.
Springer, 2015.

[13] N. Ng and N. Yoshida. Pabble: Parameterised Scribble for Parallel
Programming. In PDP 2014, pages 707–714, 2014.

[14] N. Ng and N. Yoshida. Pabble: parameterised Scribble. SOCA, 9(3–4),
2015.

[15] Pabble project on GitHub. https://github.com/pabble-lang
[16] Scribble homepage. http://scribble.org/
[17] X10 homepage. http://x10-lang.org
[18] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble Protocol

Language. In TGC 2013, volume 8358 of LNCS. Springer, 2013.



16
Deductive Verification of MPI Protocols

Vasco T. Vasconcelos1, Francisco Martins1, Eduardo R. B. Marques2,
Nobuko Yoshida3 and Nicholas Ng3

1LaSIGE, Faculty of Sciences, University of Lisbon, PT
2CRACS/INESC-TEC, Faculty of Sciences, University of Porto, PT
3Imperial College London, UK

Abstract

This chapter presents the PARTYPES framework to statically verify C pro-
grams that use the Message Passing Interface, the widely used standard for
message-based parallel applications. Programs are checked against a protocol
specification that captures the interaction in an MPI program. The protocol
language is based on a dependent type system that is able to express var-
ious MPI communication primitives, including point-to-point and collective
operations. The verification uses VCC, a mechanical verifier for concurrent C
programs. It takes the program protocol written in VCC format, an annotated
version of the MPI library, and the program to verify, and checks whether the
program complies with the protocol.

16.1 Introduction

Message Passing Interface (MPI) [3] is a portable message-passing API for
programming parallel computers running on distributed memory systems.
To these days, MPI remains the dominant framework for developing high
performance parallel applications.

Usually written in C or Fortran, MPI programs call library functions to
perform point-to-point send/receive operations, collective and synchronisa-
tion operations (such as broadcast and barrier), and combination of partial
results of computations (gather and reduce operations). Developing MPI
applications is an error-prone endeavour. For instance, it is quite easy to

353



354 Deductive Verification of MPI Protocols

write programs that cause processes to wait indefinitely for a message, or
that exchange data of unexpected sorts or lengths.

Verifying that MPI programs are exempt from communication errors
is far from trivial. The state-of-the-art verification tools for MPI programs
use advanced techniques such as runtime verification [7, 15, 16, 21] and
model checking [5–7, 15, 17, 20]. These approaches frequently stumble upon
the problem of scalability since the search space grows exponentially with
the number of processes. It is often the case that the verification of real
applications limits the number of processes to less than a dozen [18].

We approach the problem of verifying C+MPI code using a type theory
for parallel programs. In our framework—PARTYPES—types describe the
communication behaviour programs, that is, protocols. Programs that con-
form to one such type are guaranteed to follow the protocol and not to run into
deadlocks. The verification is scalable, as it does not depend on the number
of processes or other input parameters.

A previous work introduces the type theory underlying protocol spec-
ification, shows the soundness of the methodology by designing a core
language for parallel programming and proving a progress result for well-
typed programs, and provides a comparative evaluation of PARTYPES against
other state-of-the-art tools [10].

This chapter takes a pragmatic approach to the verification of C+MPI
code, by explaining the procedure from the point of view of someone inter-
ested in verifying actual code, omitting theoretic technical details altogether.
Protocols are written in a dependent type language that includes specific
constructors for some of the most common communication primitives found
in MPI programs. The conformance of a program against a protocol is
checked using VCC, a software verifier for the C programming language [1].
In a nutshell, one checks C+MPI source code against a protocol as follows:

1. Write a protocol for the program, that can be translated mechanically to
VCC format;

2. Introduce special, concise marks in the C+MPI source code to guide the
automatic generation of VCC annotations required for verification;

3. Use the VCC tool to check conformance of the source code against the
protocol.

If VCC runs successfully, then the program is guaranteed to follow the
protocol and to be exempt from deadlocks, regardless of the number of
processes, problem dimension, number of iterations, or any other parameters.
The verification process is guided by two tools—the Protocol Compiler and



16.2 The Finite Differences Algorithm and Common Coding Faults 355

the Annotation Generator—and by the PARTYPES MPI library. All these can
be found at the PARTYPES website [14]. The tools and the library almost
completely insulate the user from working with the VCC language.

The rest of this chapter is organised as follows. The next section intro-
duces a running example and discusses typical faults found in MPI programs.
Then Section 16.3 describes the protocol language and Sections 16.4 and 16.5
provide an overview of the verification process. Section 16.6 discusses related
work and Section 16.7 concludes the chapter.

16.2 The Finite Differences Algorithm and Common
Coding Faults

This section introduces a running example and discusses common pitfalls
encountered when developing MPI programs.

The finite differences algorithm computes an approximation of derivatives
by the finite difference method. Given an initial vector X0, the algorithm
calculates successive approximations to the solution X1,X2, . . . , until a pre-
defined maximum number of iterations has been reached. A distinguished
process, say the one with rank 0, disseminates the problem size (that is, the
length of array X) through a broadcast operation. The same process then
divides the input array among all processes. Each participant is responsible
for computing its local part of the solution. When the pre-defined number of
iterations is reached, process rank 0 obtains the global error through a reduce
operation and collects the partial arrays in order to build a solution to the
problem (Figure 16.1, left). In order to compute its part of the solution, each
process exchanges boundary values with its left and right neighbours on every
iteration (Figure 16.1, right).

Figure 16.2 shows C+MPI source code that implements the finite differ-
ences algorithm, adapted from a textbook [4]. The main function describes the

Figure 16.1 Communication pattern for the finite differences algorithm.



356 Deductive Verification of MPI Protocols

Figure 16.2 Excerpt of an MPI program for the finite differences problem.

behaviour of all processes together; the behaviour of each individual process
may diverge based on its process number, designated by rank, and set on
line 5 using the MPI_Comm_rank primitive. The number of processes (procs
in the figure) is obtained through primitive MPI_Comm_size on line 6. Rank 0
starts by reading the problem size and the corresponding input vector X0

(lines 8–9, variables n and work). The same participant then broadcasts the
problem size (line 11, call to MPI_Bcast) and distributes the input vector to
all other participants (line 13, call to MPI_Scatter).

Each participant is then responsible for computing its part of the solution.
The program enters a loop (lines 16–35), specifying point-to-point message
exchanges (MPI_Send, MPI_Recv) between each process and its left and



16.2 The Finite Differences Algorithm and Common Coding Faults 357

right neighbours, based on a ring topology. The various message exchanges
distribute boundary (local[0] and local[local_n+1]) values necessary
to local calculations. Different send/receive orders for different ranks
(lines 19–22, lines 24–27, and lines 29–32) aim at avoiding deadlock sit-
uations (MPI_Send and MPI_Recv are blocking, synchronous, unbuffered
operations). The loop ends when a pre-defined number of iterations is
attained. Once the loop is over, rank 0 computes the global error through a
reduction operation (MPI_reduce, line 36) and gathers the solution obtaining
from each process (including itself) a part of the vector (MPI_Gather, line 37).

For space reasons we have omitted a few actual parameters in some
calls to MPI operations: the ellipsis in Figure 16.2 denote parameters 0
(the message tag number) and MPI_COMM_WORLD (the communicator) in all
operations, except in MPI_Recv where they denote, in addition, parameter
&status.

The code in Figure 16.2 is extremely sensitive to variations in the struc-
ture of MPI operations. We distinguish five kinds of situations that are further
discussed below:

1. Type mismatches in messages,
2. Array length mismatches in messages,
3. Missing send or receive operations,
4. Wrong send-receive order in messages, and
5. Incompatible MPI operations for the different processes.

The first two situations are related to how MPI primitives describe data
transmitted in messages: usually in the form of a pointer to a buffer, the length
of the buffer, and the type of elements in the buffer. A type mismatch in a
message exchange occurs when, for example, one replaces MPI_FLOAT by
MPI_DOUBLE in line 19. Then process rank 0 sends a value of type double,
while process rank procs-1 expects a float. An array length mismatch
happens, for example, if one replaces 1 with 2 as the second parameter on
line 19. Then process rank 0 sends two floating point numbers, while process
rank procs-1 expects exactly one (line 24). It should be emphasised that these
mismatches are caught at runtime, if caught at all.

The last three cases all lead to deadlocks. In general, MPI programs enter
deadlocked situations when a communication operation is not matched by
all the processes involved. For example, the omission of the send operation
on line 19 will leave process rank procs-1 eternally waiting for a message to
come on line 24. For another example, exchanging the two receive operations
in lines 21 and 22 leads to a deadlock where ranks 0 and 1 will be forever
waiting for one another.



358 Deductive Verification of MPI Protocols

Incompatible MPI operations for the different processes come in different
flavours. For example, replacing the receive operation by an MPI_Bcast on
line 24 leads to a situation where process rank 0 tries to send a message,
while rank procs-1 tries to broadcast. For another example, replace the root
process of the reduce operation at line 36 from 0 to rank. We are left with
a situation where each process executes a different reduce operation, each
trying to collect the maximum of the values provided by all processes. For a
last example, enclose the gather operation on line 37 by a conditional of the
form if(rank == 0). In this case process rank 0 will be forever waiting for
the remaining processes to provide their parts of the array.

16.3 The Protocol Language

This section introduces the protocol language, following a step-by-step
construction of the protocol for our running example.

In the beginning, process rank 0 broadcasts the problem size, a natural
number. We write this as

broadcast 0 natural

That process rank 0 divides X0 (an array of floating pointing numbers) among
all processes is described by a scatter operation.

scatter 0 float[]

Now, each process loops for a given number of iterations, nIterations.
We write this as follows.

foreach iteration: 1..nIterations

Variable nIterations must be somehow introduced in the protocol. It
denotes a value that must be known to all processes. Typically, there are two
ways for processes to get to know this value:

• The value is exchanged, resorting to a collective communication opera-
tion, in such a way that all processes get to know it, or

• The value is known to all processes before computation starts, for
example because it is hardwired in the source code or is read from the
command line.

In the former case we could add another broadcast operation in the first
lines of the protocol. In the latter case, the protocol language relies on the val
constructor, allowing a value to be introduced in the program:

val nIterations: positive



16.3 The Protocol Language 359

Either solution would solve the problem. If a broadcast is used then
processes must engage in a broadcast operation; if val is chosen then no
value exchange is needed, but the programmer must identify the value in the
source code that will replace variable nIterations.

We may now continue analysing the loop body (Figure 16.2, lines 17–
34). In each iteration, each process sends a message to its left neighbour and
another message to its right neighbour. Such an operation is again described
as a foreach construct that iterates over all processes. The first process is 0;
the last is size-1, where size is a distinguished variable that represents the
number of processes. The inner loop is then written as follows.

foreach i: 0..size -1

When i is the rank of a process, a conditional expression of the form
i=size-1 ? 0 : i+1 denotes the process’ right neighbour. Similarly, the left
neighbour is i=0 ? size-1 : i-1.

To send a message from process rank r1 to process rank r2 containing
a value of a datatype D, we write message r1 r2 D. In this way, to send a
message containing a floating point number to the left process, followed by a
message to the right process, we write.

message i (i=0 ? size -1 : i-1) float
message i (i=size -1 ? 0 : i+1) float

So, now we can assemble the loops.

foreach iteration: 1..nIterations
foreach i: 0..size -1 {

message i (i=0 ? size -1 : i-1) float
message i (i=size -1 ? 0 : i+1) float

}

Once the loop is completed, process rank 0 obtains the global error.
Towards this end, each process proposes a floating point number representing
the local error. Rank 0 then reads the maximum of all these values. We write
all this as follows:

reduce 0 max float

Finally, process rank 0 collects the partial arrays and builds a solution Xn

to the problem. This calls for a gather operation.

gather 0 float []

Before we put all the operations together in a protocol, we need to discuss
the nature of the arrays distributed and collected in the scatter and gather



360 Deductive Verification of MPI Protocols

operations. In brief, the scatter operation distributes X0, dividing it in small
pieces, while gather collects the subarrays to build Xn. So, we instead write:

scatter 0 float[n]
...
gather 0 float[n]

Variable n, describing the length of the global array, must be introduced
in the protocol. This is typically achieved by means of a val or a broadcast
operation. In this case n stands for the problem size that was broadcast before.
So we name the value that rank 0 provides as follows.

broadcast 0 n:natural

But n cannot be an arbitrary non-negative number. It must evenly
divide X0. In this way, each process gets a part of X0 of equal length, namely
length(X0)/size, and we do not risk accessing out-of-bound positions when
manipulating the subarrays. So we would like to make sure that the length
of X0 equal divides the number of processes. For this we use a refinement
datatype. Rather that saying that n is a natural number we say that it is
of datatype {x: natural | x % size = 0}. The complete protocol is in
Figure 16.3.

As an aside, natural can be expressed as {x: integer | x >= 0}. Sim-
ilarly, positive abbreviates {x: integer | x > 0}, and float[n] abbrevi-
ates a refinement type of the form {x: float[] | length(x) = n}.

Further examples of protocols can be found in a previous work [10] and at
the PARTYPES web site [14]. The current version protocol language supports:

1 protocol FiniteDifferences {
2 val nIterations : positive
3 broadcast 0 n: {x: natural | x % size = 0}
4 scatter 0 float[n]
5 foreach iteration : 1 .. nIterations
6 foreach i: 0 .. size -1 {
7 message i (i = 0 ? size -1 : i-1) float
8 message i (i = size -1 ? 0 : i+1) float
9 }

10 reduce 0 max float
11 gather 0 float[n]
12 }

Figure 16.3 Protocol for the finite differences algorithm.



16.3 The Protocol Language 361

• Different MPI communication primitives such as message, broadcast,
reduce, allreduce, scatter, gather, and allgather;

• Control flow primitives, including sequential composition (;), primitive
recursion (foreach), conditional (if-then-else), and skip (that is, the
empty block of operations).

Protocols are subject to certain formation rules [10], including:

• Variables must be properly introduced with val, broadcast, allreduce;
• Ranks must lie between 0 and size-1;
• The two ranks in a message must be different;
• The length of arrays in scatter and gather must equally divide size.

The PROTOCOLCOMPILER checks protocol formation and, in addition,
generates a C header file containing the VCC code that describes the protocol.
The tool comes as an Eclipse plugin; it may alternatively be used on a web
browser from the PARTYPES web page [14]. Figure 16.4 shows a screenshot
of Eclipse when the compiler did not manage to prove that the value of
expression i=size ? 0 : i+1 lies between 0 and size-1.

Figure 16.4 Protocol compiler running under the Eclipse IDE.



362 Deductive Verification of MPI Protocols

16.4 Overview of the Verification Procedure

This section and the next present the PARTYPES methodology. Figure 16.5
illustrates the workflow of the verification procedure. Two inputs are
required:

• The C+MPI source code (example in Figure 16.2);
• The protocol for the program (example in Figure 16.3).

First, the C+MPI source code must be adapted for verification, the reason
being that VCC accepts only a subset of the C programming language. Then,
special marks are inserted in the C source code. One of our tools, the ANNO-
TATIONGENERATOR (AG in the figure), expands the marks. The output is C
source code with VCC annotations, which we denote by C+MPI+VCC. The
VCC annotations allow the verification of the C code against the protocol.

A second tool, the PROTOCOLCOMPILER (PC in the figure), checks
protocol formation and generates a C header file containing the protocol in
VCC format. At this point two C header files need to be included in the C
source code: the PARTYPES MPI library, and the protocol in VCC format.
The PARTYPES MPI library, mpi.h, is a surrogate C header file containing
the type theory (as described in a previous work [10]) in VCC format and
available at PARTYPES web page [14].

The C code is now ready to be submitted to VCC. The outcome is one of
three situations:

• VCC signals success. We know that the C+MPI code, as is, conforms
to the protocol, hence is exempt from all the problems discussed in
Section 16.2;

Figure 16.5 Workflow of the verification procedure for C+MPI programs.



16.4 Overview of the Verification Procedure 363

• VCC complains presenting the list of failed assertions. In this case, the
source of the problem may lie at three different places:

• the protocol does not capture the communication pattern of the
program and needs to be rectified;

• the C+MPI program is not well annotated, either because it
needs additional marks or because some existing marks are
misplaced;

• the C+MPI program itself has a fault that needs to be fixed. In our
example, the problem size (stored in variable n) must be a multiple
of the number of processes (stored in variable procs), so that the
source code may conform to the protocol. Since the problem size
is the value of function read_problem_size (line 8, Figure 16.2),
we may add an explicit contract to the function:

int read_problem_size(int procs)
_(ensures \result >=0 && \result%procs ==0);

{
...

}

In such cases PARTYPES users must make use of the VCC
specification language.

• VCC times out. This situation typically happens when the underlying
SMT solver fails to check some refinement condition. The PARTYPES

user should revise protocol refinements and possibly rewrite them. For
instance, to describe that the process with rank i sends a floating
point value to its right neighbour in a ring topology, we could have
written

message i (i+1)%size float

It is well-known that non-linear integer arithmetics is undecidable in
general and inefficiently supported by SMT solvers. Expressions such
as (i+1)%size may complicate the verification procedure, possibly
leading to timeouts. Instead, we include in our protocol (Figure 16.3)
an equivalent proposition that is more amenable for the solver, namely,
i=size-1 ? 0 : i+1.

The rest of this section describes the source code adaptation required
to run VCC. In general, the original C+MPI source code requires routine
adjustments in order to be accepted by VCC. Adjustments comprise the



364 Deductive Verification of MPI Protocols

deletion or the replacement of code that is not supported by VCC. In
particular we:

• delete functions with a variable number of arguments (such as printf
and scanf);

• suppress all floating point arithmetic;
• replace multidimensional by single dimensional arrays and adjust the

code accordingly.

VCC is a verifier for concurrent C. Even though C+MPI code is generally
single-threaded, VCC tries to verify that the source code is thread-safe
in any concurrent environment that respects the contracts on its functions
and data structures. This complicates the verification process and demands
additional VCC annotations that are not directly related to the verification
of the adherence of code to protocols. In particular, the PARTYPES user
needs to guarantee that memory accesses do not introduce data races. He
does so by proving that memory locations are not concurrently written (i.e.,
\thread_local in VCC terms) upon reading, and not concurrently written or
read upon writing (\mutable or \writable).

In our running example, and in order to facilitate the explanation and
to concentrate on the adherence to the protocol, we inlined all subsidiary
functions in the main function, made all arrays local to main, and omitted
the code concerned with the actual computation of the finite differences.
This greatly simplifies the annotation process as we must only deal with
local memory, and do not have to cope with other verification demands such
as maintaining loop invariants or proving that integer arithmetics does not
overflow. Such adjustments must be exerted with great care so as not to alter
the interactive behaviour of the original program.

16.5 The Marking Process

This section completes the PARTYPES methodology for checking C+MPI
code by addressing the marking step.

In general, simple protocols require no marks. Imagine the protocol

reduce 0 sum integer

describing a simple algorithm where each process computes its part of the
solution and process rank 0 collects the solution by adding the parts. Because
the protocol uses a simple communication primitive no source code marking
is required.



16.5 The Marking Process 365

We require no marking for the MPI primitives supported by PARTYPES

since their usage is taken care of by the contracts provided in the PAR-
TYPES MPI library (mpi.h). The PARTYPES user must aid verification
through appropriate marks when more advanced protocol features come into
play, such as dependent functions (val), primitive recursion (foreach), and
conditionals (if-then-else).

We start with val. We have seen in Section 16.3 that this primitive
introduces a constant in the protocol:

val nIterations: positive

Users must provide the actual program value for nIterations. Analysing
the code in Figure 16.2, one realises that the protocol variable nIterations
corresponds to the program constant NUM_ITER. We then add the mark

@apply(MAX_ITER)

after the three MPI initialisation primitives (MPI_Init, MPI_Comm_rank, and
MPI_Comm_size), that is, after line 6.

Next, we address foreach. Again, we seek the assistance of the user in
pointing out the portion of the source code that matches each occurrence of
this primitive. In the protocol of Figure 16.3, loop

foreach iteration: 1 .. nIterations

is meant to be matched against the for loop in Figure 16.2 starting at line 16.
We then introduce the mark

@foreach(iter , 1, NUM_ITER)

just before the body of the for loop, thus associating the protocol loop
variable and its bounds with those in the C code.

For the inner loop in the protocol (that is, lines 6–9 in Figure 16.3) we
could proceed similarly would the source code be perfectly aligned with the
protocol, as in the excerpt below meant to replace lines 18–33 in Figure 16.2:

for (i = 0; i < procs; i++) {
if (rank == i)

MPI_Send (& local[1], 1, MPI_FLOAT , left , ...);
else if (rank == left)

MPI_Recv (& local[0], 1, MPI_FLOAT , i, ...);
if (rank == i)

MPI_Send (& local[local_n], 1, MPI_FLOAT , right , ...);
else if (rank == right)

MPI_Recv (& local[local_n +1], 1, MPI_FLOAT , i, ...);
}



366 Deductive Verification of MPI Protocols

However, efficient implementations do not exhibit loops to implement
this kind of foreach protocols. The loop in the protocol states that each
process (0, . . . , size-1) must send a message to its left and to its right
neighbour. This means that each process will be involved in exactly four
message passing operations: send left, send right, receive from left, receive
from right. Therefore the above for loop can be completely unrolled into a
series of conditional instructions, each featuring two message send and two
message receive operations, as witnessed by the code in Figure 16.2, lines
18–33.

How do we check foreach protocols against conditional instructions in
source code? A possible approach would be to let the verifier unroll the
protocol loop. This may work when size is known to be a small natural
number. In general, however, protocols do not fix the number of processes.
That is the case with our running example which must run on any number of
processes (starting at 2, for processes cannot send messages to themselves).
In such cases VCC takes size to be a 64 bits non-negative integer. This poses
significant difficulties to the unrolling process both in terms of memory and
verification time.

In the running example, the apparent mismatch between the protocol
and the program is that there are three different behaviours in the program
depending on the rank (Figure 16.2, lines 18–33), while the protocol specifies
a single behaviour, namely:

message i (i = 0 ? size -1 : i-1) float
message i (i = size -1 ? 0 : i+1) float

At first sight, it may seem as if the protocol does not specify the required
diversity of behaviours, but in fact it does. To see why, let us unroll the inner
foreach loop. This is what we get when we omit the type of the message
(float):

message 0 size -1; message 0 1; // when i = 0
message 1 0; message 1 2; // when i = 1
...
message size -2 1; message size -2 size -1;// i = size -2
message size -1 size -2; message size -1 0 // i = size -1

From the unrolled protocol we conclude that the behaviour of process
rank 0 is the following:

1. send a message to its left neighbour (size-1);
2. send a message to its right neighbour (1);



16.5 The Marking Process 367

3. receive a message from its right neighbour; and, finally,
4. receive a message from its left neighbour.

The behaviour is straightforward to obtain: just identify the messages
that mention rank 0, and use a send when 0 is the source of the message
or a receive otherwise. This exactly coincides with the four send/receive
operations in the C code for rank 0, lines 19–22.

For the last rank (that is, size-1) the relevant send/receive operations are
the following:

1. receive a message from its right neighbour (0);
2. receive a message from its left neighbour (size-2),
3. send a message to its left neighbour; and, finally,
4. send a message to its right neighbour.

This pattern coincides with the source code, lines 24–27. All other
behaviours (when rank is between 1 and size-2) are similarly obtained and
are left as an exercise for the interested reader. The pattern thus obtained
should match the code, lines 29–32. Notice that the order of the messages
is important, and that we have identified as many behaviours as there are
conditional branches in the source code (lines 18–33).

Based on this analysis, and in order to guide the verification process we
seek the help of the user by selecting the relevant foreach steps (iterations)
in each branch of the program. A relevant step for rank k corresponds to
one foreach iteration where either the source or the target of a message
appearing in the loop body is k. A step that does not mention k (as source
or target) is equivalent to skip, the empty protocol, and hence irrelevant for
verification purposes. In order to check that all non-relevant steps are skip,
we must provide the loop bounds (0 and procs-1 in this case), in addition to
the relevant steps.

For example, when rank is 0 the relevant steps are when i is equal to rank,
right, and left, in this order. So we insert the mark

@foreach_steps(rank , right , left , 0, procs -1)

just before the code block in lines 19–22. For rank equal to size-1 the
relevant steps are the right, the left, and the rank, again in this order. The
required mark at line 23 is

@foreach_steps(right , left , rank , 0, procs -1)

and the annotation to include in line 28 is

@foreach_steps(left , rank , right , 0, procs -1).

Figure 16.6 presents the marked version of the program in full.



368 Deductive Verification of MPI Protocols

Figure 16.6 The code of Figure 16.2 with verification marks inserted.

16.6 Related Work

There are different aims and different methodologies for the verification
of MPI programs [6]. The verification of interaction-based properties typi-
cally seeks to establish the absence of deadlocks and otherwise ill-formed
communications among processes (e.g., compatible arguments at both ends
in a point-to-point communication, in close relation to type checking safe
communication). Several tools exist with this purpose, either for static or
runtime verification, usually employing techniques from the realm of model
checking and/or symbolic execution. All these tools are hindered by the
inherent scalability and state-explosion problems. Notable examples include
CIVL [19], DAMPI [21], ISP [15], MOPPER [2], MUST [7], and TASS [20].



16.7 Conclusion 369

In contrast to these tools, PARTYPES follows a deductive verification
approach with the explicit aim of attaining scalable verification. A previous
work [10] conducts a comparative evaluation by benchmarking PARTYPES

against three state-of-the-art tools: ISP [15], a runtime verifier that employs
dynamic partial order reduction to identify and exercise significant process
interleavings in an MPI program; MUST [7], also a runtime verifier, but that
employs a graph-based deadlock detection approach; and TASS [20], a static
analysis tool based on symbolic execution. For the tools and the programs
considered, PARTYPES runs in a constant time (the tool is insensitive to the
number of processes, problem size, and other parameters), in clear contrast
to the running time of all the other tools, which exhibited exponential growth
in a significant number of cases.

In addition to PARTYPES, the theory of multi-party session types [9]
inspired other works in the realm of message-passing programs and MPI
in particular. Scribble [8, 22] is a language to describe global protocols
for a finite set of participants in message-passing programs using point-to-
point communication. Through a notion of projection, a local protocol can
be derived for each participant from a global Scribble protocol. Programs
based on the local protocols can be implemented using standard message-
passing libraries, as in Multiparty Session C [13]. Pabble [12], an extension
of Scribble, is able to express interaction patterns of MPI programs where the
number of participants in a protocol is decided at runtime, rather than fixed a
priori, and was used to generate safe-by-construction MPI programs [11].

In comparison to these works, PARTYPES is specifically aimed at pro-
tocols for MPI programs and the verification of the compliance of arbitrary
programs against a given protocol. In conceptual terms, we address collective
communication primitives in addition to plain point-to-point communication,
and require no explicit notion of protocol projection.

16.7 Conclusion

This chapter presents PARTYPES, a type-based methodology to statically
verify message-passing parallel programs. By checking that a program fol-
lows a given protocol, one guarantees a series of important safety properties,
in particular that the program does not run into deadlocks. In contrast to other
state-of-the-art approaches that suffer from scalability issues, our approach is
insensitive to parameters such as the number of processes, problem size, or
the number of iterations of a program.



370 Deductive Verification of MPI Protocols

The limitations of PARTYPES can be discussed along two dimensions:

• Even though PARTYPES addresses the core features of MPI, it leaves
important primitives uncovered. These include non-blocking operations
and wildcard receive (the ability to receive from any source), among
many others.

• Our methodology is sound (in the sense that it does not yield false
positives) but too intentional at times. For instance, it requires protocol
loops and source code loops to be perfectly aligned, while the type
theory [10] allows more flexibility, loop unrolling in particular.

Acknowledgements This work was supported by FCT (projects Advanced
Type Systems for Multicore Programming PTDC/EIA–CCO/12254,
HYRAX CMUP-ERI/FIA/0048/2013, and the LaSIGE Research Unit
UID/CEC/00408/2013), the NORTE 2020 program (project SMILES,
NORTE–01–0145–FEDER–000020), EPSRC (projects EP/K034413/1,
EP/K011715/1, EP/L00058X/1, and EP/N027833/1), and EU (UPSCALE
FP7 612985, and Betty COST Action IC1201).

References

[1] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system
for verifying concurrent C. In TPHOLs, volume 5674 of LNCS,
pages 23–42. Springer, 2009.

[2] V. Forejt, D. Kroening, G. Narayanswamy, and S. Sharma. Precise
predictive analysis for discovering communication deadlocks in MPI
programs. In FM, volume 8442 of LNCS, pages 263–278. Springer,
2014.

[3] MPI Forum. MPI: A Message-Passing Interface Standard—Version 3.0.
High-Performance Computing Center Stuttgart, 2012.

[4] I. Foster. Designing and building parallel programs. Addison-Wesley,
1995.

[5] X. Fu, Z. Chen, H. Yu, C. Huang, W. Dong, and J. Wang. Symbolic
execution of mpi programs. In ICSE, pages 809–810. IEEE Press, 2015.

[6] G. Gopalakrishnan, R. M. Kirby, S. F. Siegel, R. Thakur, W. Gropp,
E. Lusk, B. R. De Supinski, M. Schulz., and G. Bronevetsky. Formal
analysis of MPI-based parallel programs. CACM, 54(12):82–91, 2011.



References 371

[7] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S.
Müller. MPI runtime error detection with MUST: advances in deadlock
detection. In SC, pages 30:1–30:11. IEEE/ACM, 2012.

[8] K. Honda, R. Hu, R. Neykova, T. C. Chen, R. Demangeon, P. Denielou,
and N. Yoshida. Structuring communication with session types. In COB,
volume 8665 of LNCS, pages 105–127. Springer, 2014.

[9] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL, pages 273–284. ACM, 2008.

[10] H. A. López, E. R. B. Marques, F. Martins, N. Ng, C. Santos, V. T.
Vasconcelos, and N. Yoshida. Protocol-based verification of message-
passing parallel programs. In OOPSLA, pages 280–298. ACM, 2015.

[11] N. Ng, J. G. F. Coutinho, and N. Yoshida. Protocols by default: Safe
MPI code generation based on session types. In CC, volume 9031 of
LNCS, pages 212–232. Springer, 2015.

[12] N. Ng and N. Yoshida. Pabble: parameterised scribble. Service Oriented
Computing and Applications, 9(3–4):269–284, 2015.

[13] N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe parallel
programming with message optimisation. In TOOLS Europe, volume
7304 of LNCS, pages 202–218. Springer, 2012.

[14] Partypes homepage. http://gloss.di.fc.ul.pt/ParTypes.
[15] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Palmer, R. Thakur, and

W. Gropp. Practical model-checking method for verifying correctness
of MPI programs. In PVM/MPI, volume 4757 of LNCS, pages 344–353.
Springer, 2007.

[16] M. Schulz and B. R. de Supinski. A flexible and dynamic infrastructure
for MPI tool interoperability. In ICPP, pages 193–202. IEEE, 2006.

[17] S. F. Siegel and G. Gopalakrishnan. Formal analysis of message passing.
In VMCAI, volume 6538 of LNCS, pages 2–18. Springer, 2011.

[18] S. F. Siegel and L.F. Rossi. Analyzing BlobFlow: A case study using
model checking to verify parallel scientific software. In EuroPVM/MPI,
volume 5205 of LNCS, pages 274–282. Springer, 2008.

[19] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.
Edenhofner, M. B. Dwyer, and M. S. Rogers. CIVL: The concurrency
intermediate verification language. In SC, pages 61:1–61:12. IEEE
Press, 2015.

[20] S. F. Siegel and T. K. Zirkel. Loop invariant symbolic execution for
parallel programs. In VMCAI, volume 7148 of LNCS, pages 412–427.
Springer, 2012.



372 Deductive Verification of MPI Protocols

[21] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. de Supinski,
M. Schulz, and G. Bronevetsky. A scalable and distributed dynamic
formal verifier for MPI programs. In SC, pages 1–10. IEEE, 2010.

[22] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol
language. In TGC, volume 8358 of LNCS, pages 22–41. Springer, 2013.



Index

A
Actor model 20, 57
Adaptation 2, 73, 147, 158

B
Behavioral type system 169,

190, 191
Behavioural contracts 2, 28,

45, 143
Binary session types 29, 310
Branching-time logic 52, 53, 56

C
Choreographies 2, 63, 99, 165
Choreography 20, 21, 57, 125
Code generation 1, 182, 348, 350
Communicating finite-state

machines 45, 95, 125, 127
Communication soundness 127,

129, 141, 143
Concurrency 49, 57, 120, 186
Continuation-passing style 198

D
DCR Graphs 99, 105, 115, 120
Deadlock analysis 173, 190, 191
Declarative 99, 102
Dependent types 331, 351, 354
Distributed Applications 1, 27,

29, 148
Distributed programming 287

E
Erlang 20, 57, 64, 68

F
Functional programming 260,

265, 281

G
Global graphs 125, 127,

129, 143

H
Haskell 219, 222, 232, 238

J
Java bytecode 169, 170,

181, 190

L
Linear π-calculus 203, 205, 210
Linearity 200, 219, 229, 259

M
Message-passing

concurrency 222
Microservices 147, 151, 152, 164
Monitorability 56, 74
MPI 329, 332, 333, 370
Multiparty Session Types 315,

329, 331
Multiparty compatibility 45, 125,

127, 143

373



374 Index

O
OCaml 243, 245, 250, 258

P
Pabble 329, 331, 346, 348
Protocols 31, 125, 302, 309

R
Row polymorphism 267, 268
Runtime monitoring 45, 49,

52, 63

S
Scribble 20, 78, 142, 294
Service composition 45

Session types 20, 27, 87, 219
Static analysis 20, 189,

311, 369
Subkinding 265, 270,

272, 282

T
Time 208, 255, 269, 348
Type inference 175, 177,

266, 284

V
Verification 46, 79, 297, 301



About the Editors

Simon Gay received his Ph.D. from Imperial College London and is now
Professor of Computing Science at the University of Glasgow. He is Director
of Research in the School of Computing Science, and leader of the Formal
Analysis, Theory and Algorithms research section. From 2012 to 2016 he was
Chair of COST Action IC1201: Behavioural Types for Reliable Large-Scale
Software Systems.

António Ravara received his Ph.D. from the Technical University of Lisbon
and is now Assistant Professor of Informatics at the NOVA University of
Lisbon. He is a founding member of the NOVA Laboratory for Computer
Science and Informatics (NOVA LINCS), which is a leading Portuguese
research unit in the area of Computer Science and Engineering. From 2012
to 2016 he was Vice-Chair of COST Action IC1201: Behavioural Types for
Reliable Large-Scale Software Systems.

375


	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Acknowledgments
	List of Contributors
	List of Figures
	List of Tables
	List of Abbreviations
	1: Contract-Oriented Design of Distributed Applications: A Tutorial
	1.1 Introduction
	1.1.1 From Service-Oriented to Contract-Oriented Computing
	1.1.2 Honesty Attacks
	1.1.3 Diogenes

	1.2 Specifying Contract-Oriented Services in CO2
	1.2.1 Contracts
	1.2.2 Processes
	1.2.3 An Execution Context
	1.2.4 Adding Recursion

	1.3 Honesty
	1.3.1 A Simple Dishonest Store
	1.3.2 A More Complex Dishonest Store
	1.3.3 Handling Failures
	1.3.4 An Honest Store, Finally
	1.3.5 A Recursive Honest Store

	1.4 Refining CO2 Specifications in Java Programs
	1.4.1 Compilation of CO2 Specifications into Java Skeletons
	1.4.2 Checking Honesty of Refined Java Programs

	1.5 Conclusions
	1.5.1 Related Work
	References


	2: Contract-Oriented Programming with Timed Session Types
	2.1 Introduction
	2.2 Timed Session Types
	2.2.1 Specifying Contracts
	2.2.2 Compliance
	2.2.3 Run-Time Monitoring of Contracts

	2.3 Contract-Oriented Programming
	2.3.1 A Simple Store
	2.3.2 A Simple Buyer
	2.3.3 A Dishonest Store
	2.3.4 An Honest Store
	2.3.5 A Recursive Honest Store

	2.4 Conclusions
	2.4.1 Related Work
	References


	3: A Runtime Monitoring Tool for Actor-Based Systems
	3.1 Introduction
	3.2 Background
	3.2.1 Runtime Monitoring Criteria
	3.2.2 A Branching-Time Logic for Specifying Correctness Properties
	3.2.3 Monitoring μHML

	3.3 A Tool for Monitoring Erlang Applications
	3.3.1 Concurrency-Oriented Development Using Erlang
	3.3.2 Reasoning about Data
	3.3.2.1 Properties with Specific PIDs
	3.3.2.2 Further Reasoning about Data

	3.3.3 Monitor Compilation

	3.4 DetectEr in Practice
	3.4.1 Creating the Target System
	3.4.1.1 Setting up the Erlang Project
	3.4.1.2 Running and Testing the Server

	3.4.2 Instrumenting the Test System
	3.4.2.1 Property Specification
	3.4.2.2 Monitor Synthesis and Instrumentation
	3.4.2.3 Running the Monitored System
	3.4.2.4 Running the Correct Server


	3.5 Conclusion
	3.5.1 Related and Future Work
	References


	4: How to Verify Your Python Conversations
	4.1 Framework Overview
	4.2 Scribble-Based Runtime Verification
	4.2.1 Verification Steps
	4.2.2 Monitoring Requirements

	4.3 Conversation Programming in Python
	4.4 Monitor Implementation
	4.5 Monitoring Interruptible Systems
	4.5.1 Use Case: Resource Access Control (RAC)
	4.5.2 Interruptible Multiparty Session Types
	4.5.3 Programming and Verification of Interruptible Systems
	4.5.4 Monitoring Interrupts

	4.6 Formal Foundations of MPST-Based Runtime Verification
	4.7 Concluding Remarks
	References

	5: The DCR Workbench: Declarative Choreographies for Collaborative Processes
	5.1 Introduction
	5.1.1 History of the DCR Workbench
	5.1.2 The DCR Workbench

	5.2 Running Example
	5.3 Dynamic Condition-Response Graphs
	5.3.1 Event States
	5.3.2 Relations
	5.3.3 Executing Events
	5.3.4 Formal Development

	5.4 Modelling with the Workbench
	5.4.1 Inputting a Model: The Parser Panel
	5.4.2 Visualisation and Simulation: The Visualiser and Activity Log Panels

	5.5 Refinement
	5.6 Time
	5.7 Subprocesses
	5.8 Data
	5.9 Other Panels
	5.10 Conclusion
	References

	6: A Tool for Choreography-Based Analysis of Message-Passing Software
	6.1 Introduction
	6.2 Overview of the Theory
	6.3 Architecture
	6.4 Modelling of an ATM Service
	6.4.1 ATM Service – Version 1
	6.4.2 ATM Service – Version 2
	6.4.3 ATM Service – Version 3 (fixed)

	6.5 Conclusions and Related Work
	References

	7: Programming Adaptive Microservice Applications: An AIOCJ Tutorial
	7.1 Introduction
	7.2 AIOCJ Outline
	7.2.1 AIOCJ Architecture and Workflow

	7.3 Choreographic Programming
	7.4 Integration with Legacy Software
	7.5 Adaptation
	7.6 Deployment and Adaptation Procedure
	7.7 Conclusion
	References

	8: JaDA – The Java Deadlock Analyzer
	8.1 Introduction
	8.2 Example
	8.3 Overview of JaDA’s Theory
	8.3.1 The Abstract Behavior of the Network Class
	8.3.2 Behavioral Type Inference
	8.3.3 Analysis of Behavioral Types

	8.4 The JaDA Tool
	8.4.1 Prerequisites
	8.4.2 The Architecture
	8.4.3 The Current JVML Coverage
	8.4.4 Tool Configuration
	8.4.5 Deliverables

	8.5 Current Limitations
	8.6 Related Tools and Assessment
	8.7 Conclusions
	References

	9: Type-Based Analysis of Linear Communications
	9.1 Language
	9.2 Type System
	9.3 Extended Examples
	9.3.1 Fibonacci Stream Network
	9.3.2 Full-Duplex and Half-Duplex Communications
	9.3.3 Load Balancing
	9.3.4 Sorting Networks
	9.3.5 Ill-Typed, Lock-Free Process Networks

	9.4 Related Work
	References

	10: Session Types with Linearity in Haskell
	10.1 Introduction
	10.2 Pre-Session Types in Haskell
	10.2.1 Tracking Send and Receive Actions
	10.2.2 Partial Safety via a Type-Level Function for Duality
	10.2.3 Limitations

	10.3 Approaches in the Literature
	10.3.1 Note on Recursion and Duality
	10.3.2 Single Channel
	10.3.3 Multi-Channel Linearity
	10.3.4 An Alternate Approach
	10.3.5 Multi-Channels with Inference
	10.3.6 Session Types via Effect Types
	10.3.7 GV in Haskell

	10.4 Future Direction and Open Problems
	References

	11: An OCaml Implementation of Binary Sessions
	11.1 An API for Sessions
	11.2 A Few Simple Examples
	11.3 API Implementation
	11.4 Extended Example: The Bookshop
	11.5 Related Work
	References

	12: Lightweight Functional Session Types
	12.1 Introduction
	12.2 A First Look
	12.3 The Core Language
	12.3.1 Syntax
	12.3.2 Typing and Kinding Judgments

	12.4 Extensions
	12.4.1 Recursion
	12.4.2 Access Points

	12.5 Links with Session Types
	12.5.1 Design Choices
	12.5.2 Type Reconstruction

	12.6 Conclusion and Future Work
	References

	13: Distributed Programming Using Java APIs Generated from Session Types
	13.1 Background: Distributed Programming in Java
	13.1.1 TCP Sockets
	13.1.2 Java RMI

	13.2 Scribble Endpoint API Generation: Toolchain Overview
	13.2.1 Global Protocol Specification
	13.2.2 Endpoint API Generation
	13.2.3 Hybrid Session Verification
	13.2.4 Additional Math Service Endpoint Examples

	13.3 Real-World Case Study: HTTP (GET)
	13.3.1 HTTP in Scribble: First Version
	13.3.2 HTTP in Scribble: Revised

	13.4 Further Endpoint API Generation Features
	References

	14: Mungo and StMungo: Tools for Typechecking Protocols in Java
	14.1 Introduction
	14.2 Mungo: Typestate Checking for Java
	14.2.1 Example: Iterator

	14.3 StMungo: Typestates from Communication Protocols
	14.3.1 Example: Travel Agency

	14.4 POP3: Typechecking an Internet Protocol Client
	14.4.1 Challenges of Using Mungo and StMungo in the Real World

	14.5 Related Work
	References

	15: Protocol-Driven MPI Program Generation
	15.1 Introduction
	15.2 Pabble: Parameterised Scribble
	15.3 MPI Backbone
	15.3.1 MPI Backbone Generation from Ring Protocol

	15.4 Computation Kernels
	15.4.1 Writing a Kernel
	15.4.1.1 Initialisation
	15.4.1.2 Passing Data Between Backbone and kernel Through queues
	15.4.1.3 Predicates


	15.5 The Pabble Language
	15.5.1 Global Protocols Syntax
	15.5.1.1 Restriction on Constants

	15.5.2 Local Protocols

	15.6 MPI Backbone Generation
	15.6.1 Interaction
	15.6.2 Parallel Interaction
	15.6.3 Internal Interaction
	15.6.4 Control-Flow: Iteration and For-Loop
	15.6.5 Control-Flow: Choice
	15.6.6 Collective Operations: Scatter, Gather and All-to-All
	15.6.7 Process Scaling

	15.7 Merging MPI Backbone and Kernels
	15.7.1 Annotation-Guided Merging Process
	15.7.2 Kernel Function
	15.7.3 Datatypes
	15.7.4 Conditionals

	15.8 Related Work
	15.9 Conclusion
	References

	16: Deductive Verification of MPI Protocols
	16.1 Introduction
	16.2 The Finite Differences Algorithm and Common Coding Faults
	16.3 The Protocol Language
	16.4 Overview of the Verification Procedure
	16.5 The Marking Process
	16.6 Related Work
	16.7 Conclusion
	References

	Index
	About the Editors



