






6 Validation at a Combustion Engine Test Bench

A&D ORION

AVL PUMA Open�IAV KIS4 ETAS INCA

IAV Kasai

Figure 6.2: Schematic representation and interaction of the relevant systems at the engine
test bench. The shown modules are only an extract of all necessary modules
for the test, but they represent the main structure and communication chan-
nels.

PUMA Open� as well as ETAS INCA to set the ECU parameters on the
one hand and observe measurement channels to react to engine limits on the
other hand. A connection between IAV Kasai and A&D ORION enables
the automation system to retrieve a next test point information on demand
and send the measurement result to the test design system. The developed
interface setup as shown in figure 5.6 in chapter 5 is utilized for this test.
The engine is equipped with in-cylinder pressure sensors at each cylinder.
The data processing of the pressure sensors and knock evaluation of the
processed data is done by the IAV KIS4 system. A test setting overview is
given in figure 6.2. For the non-adaptive approach, the exact same setting
is set-up without the necessity to connect IAV Kasai with A&D ORION.
The pre-calculated space-filling test plan is applied to A&D ORION, which
performs a measurement for each row sequentially. Both the EGR rate as
well as the MFB50 are controlled by A&D ORION to the desired value,
where all other parameters directly access actuators. Each test point is set
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vectorial with limit observation. In case a limiting boundary is reached, a
surrogate measurement is executed near the boundary.

6.2 Results

The comparison of the non-adaptive and the adaptive multicriterial ap-
proach are compared in two different ways. First, the model quality trend
as well as the convex hull volume growth are analyzed. Both criteria are
significant to achieve models that are valid in a wide range with a high
quality prediction ability. In a second step, an optimization problem is
solved at different measurement phase steps, where the result is validated
at the test bench to compare the outcome quality.

6.2.1 Model Quality and Measured Domain

In a post-processing step, all models are trained for each measurement
step but with rating the model quality with all measured validation points.
This is done for both procedures, which enables the comparison of both
methods regarding their model quality evolution. Additionally, the convex
hull of all training points is calculated to rate the measured input domain
trend. For model training the IAV Kasai GPM modeling algorithm with
automatic box cox transformation is used, which is a very common way
for a calibration engineer to train models. The validation error is normed
to the mean plus standard deviation of all measured data. A convex hull
is calculated at each step by the data normed to [0,1]7 with the complete
measured data range as bounds.
The convex hull volume evolution for both measurement campaigns is

shown in figure 6.3. Contrary to the expectation that the adaptive approach
volume at least develops at the same level as the non-adaptive approach,
during the first 100 measurements a lower volume is present for the adap-
tive approach. This is mainly due to the reason that both the test points
as they are planned and measured boundary points are considered during
the test design. The non-adaptive approach only considers test points and
is not able to incorporate measurements to the test design. This procedure
on the one hand increases the space-filling quality but on the other hand
could lead to a lower hull volume, as is present in this measurement. How-
ever, starting from approximately 60 measurements the adaptive procedure
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Figure 6.3: Convex hull volume trend during the measurement campaign for both test
design methods. A higher volume states a larger measured area and is to be
preferred. The maximum volume of 1 is the highest possible value if no limits
are present and the convex hull fully includes the test space.

demonstrates its advantage and reduces the candidate set by the prediction
of immeasurable areas. The convex hull volume increase rate rises and is on
a high level nearly during the entire measurement campaign, whereas the
non-adaptive hull volume increase rate declines. At the end of the measure-
ment, a nearly 34% higher volume is present for the adaptive approach,
which is a significant increase at a similar measurement duration level.

The model quality difference, rated by the validation point set, is shown
in figure 6.4. An AUC value is calculated for each trend and for both meth-
ods, providing a quality rating for the whole measurement campaign. The
AUC value for each particular output of the adaptive result is set in rela-
tion to the non-adaptive result and the difference is calculated to obtain a
deterioration or improvement value for the adaptive approach. A signifi-
cant increase in model quality is offered for all outputs with an exception
for the particle emission model. From an overall point of view, an average
model quality improvement, rated by the AUC criterion, of 11% is achieved
despite the deterioration of the model quality of one output. Considering
the relative model error at the end of the measurement campaign, a mean
model error decrease by 17% is achieved over all outputs. In addition
to the measured volume increase, this offers a good possibility to identify
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Figure 6.4: Relative AUC criterion for each output, calculated for the validation RMSE
over the entire measurement campaign. The relative deviation of the AUC
value of the adaptive multicriterial approach to the non-adaptive space-filling
design is shown. A negative value is an improvement in model quality,
whereas a positive value shows a deterioration by using the adaptive ap-
proach.

the engine behavior more accurately in a larger range with exactly the
same amount of test bench measurement time. The deterioration in model
quality for PN, however, is an undesirable outcome but could have several
reasons. The PN emission model could suffer from the relevance-based test
design, which could be supposed due to the worsened soot model within the
simulation investigation study, see figure 4.13 for reference. The soot mass
model (MS) is the reason why this is not likely. The soot mass and parti-
cle emissions in a gasoline engine are strongly correlated. While the soot
mass model offers an 11% improvement, the particle model shows an 11%
deterioration. A more likely reason to this is the poor reproducibility of
particle measurements. A hint to this relation is given by figure 6.5, where
the normalized validation error trend is shown for the particle emissions
(left) and for comparison for the MFB50 output (right). While the MFB50
model shows a smooth decrease in model error at a significantly lower rel-
ative error with clearly better performance of the adaptive approach, the
particle model error develops roughly from measurement to measurement.
This shows the high uncertainty in model training, due to a high process
and measurement noise. However, both approaches have a similar model
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error evolution starting from 140 training points and reach nearly the same
level with the full training data. This is different for all other outputs,
which show a lower model error for the adaptive approach at the end of
the measurement campaign. All remaining model error trends for both
methods can be found in appendix F.

The improvement of the model quality and of the measured input domain
volume increase by using the adaptive multicriterial test design were sim-
ilar to the simulation-based results, shown in chapter 5. Figure 6.6 shows
a box plot for all AUC values (lower box) and model test errors (upper
box) gathered by the adaptive design in the 7-dimensional simulation as
described in section 5.2 with 295 training points. The values are given
as the normed deviation to the non-adaptive design results. The dots do
not show outliers but represent the deviation of the normed values for the
models trained by the test bench measurements. The test design influence
on the test bench results mostly corresponds to the simulation outcome,
which indicates the validity of the simulation model introduced and ap-
plied in this thesis. An exception is present for the AUC value of the PN,
Torque and BSFC model exceeding the simulation result range. The devi-
ation between the simulation-based and the measurement-based outcome
can be explained by two reasons. Firstly, the validation point sets offer
different properties, which has a high impact on the test error validity. The
number of validation test points and the point set distribution are very dif-
ferent between simulation and measurement. Additionally, the validation
points used during simulation were gathered noise free, while the measured
validation points at the test bench observe the same noise as the training
points. A second reason is the utilized noise model that does not discrim-
inate between the outputs. The applied relative noise level was assumed
to be equal for each output. Both of these influences are responsible for
the deviation but the results still offer a comparability regarding the test
design method influence.

6.2.2 Optimization Problem

A very practical investigation to judge the outcome of the adaptive mul-
ticriterial approach is to solve an optimization problem. A main target in
engine calibration is to find a setting with lowest possible fuel consumption
to meet the legislation targets regarding CO2 emissions. At the same time,
other exhaust emissions may be taken into consideration, but a limit for
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Figure 6.5: Model quality trend given the amount of training points, assessed by the
normed validation RMSE for the outputs particulate number (left) and the
center of combustion (right) for both, the non-adaptive and the adaptive
approach.
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Figure 6.6: Box plot representing the model validation error AUC value (lower box) and
the model validation error (upper box) each with 295 training points for the
7-dimensional simulation result introduced in chapter 5. The dots represent
the results of the test bench measurement and indicate the comparability
between simulation and test bench measurement. The data is calculated as
the relative deviation of the model quality given the adaptive and the non-
adaptive test design results for each output and for all simulation repetitions.
A negative value corresponds to an improvement by the adaptive test design
method.
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the given operating point is not present in this case. Additionally, the emis-
sions are commonly considered during a global map optimization, e.g. by
meeting accumulated limits. The optimization problem to be solved here is
an example to find a suitable setting with lowest possible fuel consumption.
However, as a constraint the waste gate position has to be considered as it
must not be lower than a defined threshold given the input setting. In case
it would be fully closed, an engine load increase would not be possible by
closing the waste gate anymore and therefore this constraint has to be met.
This problem can be solved by a gradient-based optimization procedure
considering the relevant modeled outputs. The global map optimization
tool IAV OptiMap, which is part of IAV Kasai, is used to find an optimal
setting for lowest fuel consumption fulfilling the waste gate constraint. The
optimization problem can be formulated as

min
x∈co(X)

BSFC(x) such that WG(x) ≥ t (6.1)

given the threshold t. Another study is conducted to rate the model quality
at an earlier state of measurement. Therefore a model is trained with 200
training points for both methods and the same optimization problem is
solved. All four different optimized settings are measured at the test bench
and compared.

A slightly worse result of the BSFC is present for the optimization by
the adaptive approach (figure 6.7 left). A deterioration of 0.6% and 2%
in relation to the non-adaptive approach is the result for the model with
200 and 297 training points, respectively. It could be assumed that the
deterioration of BSFC over training points for the adaptive approach is
a result of a worse model prediction compared to the non-adaptive one.
However, considering the result of the constrained WG position (figure 6.7
right) explains the higher deviation. While the waste gate position crite-
rion is hardly met for the non-adaptive approach in both measurements, a
reduction from 10% to 5% deviation from the target is given for the adap-
tive approach with increasing number of training points. Neither a good
result, nor a clear improvement over training points is the outcome for the
non-adaptive approach.
This optimization problem is a showcase that demonstrates the necessity

of a good overall model quality for several outputs. In engine calibration,
more complex optimization problems have to be faced, especially for map
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Figure 6.7: Measured optimization results for both, the adaptive and the non-adaptive
approach. Left: Result for the fuel consumption. Since the reference is the
non-adaptive space-filling approach, only the adaptive multicriterial design is
shown. Right: Measured deviation of the waste gate position in relation to
the optimization constraint t.

optimizations in the whole engine operation area and with several more
outputs to be considered.

6.3 Chapter Summary

In this chapter, a real-world-based validation of the methods developed
is presented. The multicriterial adaptive test design approach, which is
based on a combination of a model focusing and an unknown region test
design, was applied to an engine calibration problem with 7 different input
parameters to vary. The same problem was measured with a non-adaptive
space-filling test design. The implementation of the multicriterial design
to IAV Kasai and the developed interface to A&D ORION was applied at
an engine test bench to execute the adaptive test design procedure. The
validation measurements of both approaches were combined to assess the
model quality trend by 109 measurements. Both the overall model quality
for 8 different outputs and its measured input domain was compared as well
as an optimization problem was solved and reviewed by measurements.

175



6 Validation at a Combustion Engine Test Bench

An increase of the measured input domain by 34% was present with all
measurements by using the adaptive test design approach. The average
model quality increase trend, rated by the AUC criterion, showed a mean
improvement of 11% over all eight outputs. When observing just the out-
come with all measured training points, an increase of model quality by
17% was the outcome.
The optimization of the fuel consumption, given the waste gate position

as a constraint, showed the importance to achieve a high model quality for
several outputs. A significant difference regarding the observance of the
waste gate criterion could be noted, with an up to 21% better matching
for the adaptive approach at an only 2% deterioration of fuel consumption.
All results except the model quality trend of the particulate number out-

put could be optimized compared to a non-adaptive space-filling approach.
The AUC value for the PN model, rating the model quality improvement
progress, showed an 11% deterioration for the adaptive approach but with
the same resulting error level by training the model with all data. Since
this study conducted all measurements only once due to the high test bench
costs, a result validation and especially the determination of the method
influence on soot emissions has to be conducted in further studies. Espe-
cially soot emissions tend to show very high process and measurement noise,
which is why a single result is not robust regarding the effect of a test de-
sign. However, a comparison to the simulation-based results offered a good
comparability, showing a similar relative model quality improvement.
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7 Conclusion and Outlook

This thesis deals with the adaptive test design methodology within the
field of steady-state combustion engine calibration. The main focus was
the development of a user-friendly adaptive test design process that is able
to handle restrictions in the design domain and at the same time reduces
the test bench measurement effort compared to non-adaptive procedures.
The criteria to judge the outcome of a measurement campaign were defined
to be the covered input domain to prohibit model extrapolation as well
as the average model quality. A convex hull volume gave rise about the
covered area of the measured test design. Model quality was judged by
the RMSE of an additional test measurement set in the restricted input
domain, comparing model prediction and the true process outcome within
a simulation environment and additional test measurement data within
a test bench measurement campaign. An additional weak criterion for
the method development was the test duration. An adaptive test design
procedure should not extend the measurement time per test point. With
these design criteria, the following topics were addressed.

Measured domain volume increase

Many existing adaptive test design strategies do have in common that
they utilize either a regression model or a tunable geometrical model. A
main disadvantage of a regression model is the missing ability to repre-
sent piecewise-defined measurement channels like knocking or misfire. The
convex hull approach as a non-tunable deterministic model, which is often
used during optimization to prohibit a trained model from extrapolation, is
not applicable within an adaptive test design strategy, because it does not
permit an enlargement of the measured region. Therefore, the two research
topics

� how to incorporate piecewise-defined limit behavior and

� achieve a continuous measured input domain volume increase
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were addressed. To provide a solution to these topics, an extension of the
convex hull model was developed. Measured limit points are treated as
hard limits in the input domain, whereas hull boundary points not labeled
as limit points are extended geometrically without any tunable parameters.
This approach includes all theoretically possible convex areas within the
design domain into the hull. Two different solutions were introduced that
present a fast calculation in low dimensional problems by calculating the
exact convex hull given its hyperplanes and use linear algebra methods
to extend the design domain. In case the number of input parameters
exceeds six, an iterative test point search is applied without calculating
the exact design domain. The convex hull test is performed by solving
the convex set solution by means of the GJK algorithm [GJK88], whereas
the hull extension is derived by a modified convex cone algorithm. A low-
discrepancy test design was applied in the restricted but extended area that
gives a compromise between model quality enhancement for a GPM and
at the same time increases the measured input domain volume due to its
characteristic to plan test points far away from existing ones.

The newly developed strategy was applied in a simulation environment
comparing the new strategy with a non-adaptive low-discrepancy test de-
sign. The new strategy provided a 45% larger measured input domain vol-
ume in a 9-dimensional test case and a doubled volume in a 7-dimensional
test case. The model quality slightly improved as well, which in combina-
tion offers a huge benefit for a subsequent ECU setting optimization.

Model quality optimization

Since engine test bench measurements are very cost intensive, it is an on-
going requirement to reduce the necessary amount of measurements during
the engine development process as far as possible. With the focus on a
GPM, the objective was to find a most beneficial test design strategy for
the optimization of the model quality with respect to the amount of mea-
surements. Another common requirement within model-based calibration
is to consider several outputs. Applying an adequate test design strategy
therefore has to fulfill the requirement to optimize several models at the
same time. To the state of the art, typical procedures were to optimize
several outputs in a batch mode or with a round-robin procedure. From
these requirements, the two research topics
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� to find the optimal adaptive test design strategy and

� how to deal with more than one output

were derived.
To find the optimal test design strategy, the most promising strategies

from literature, in particular the maximum entropy and the mutual infor-
mation test design, were considered and compared to a newly developed
mixture of low discrepancy and maximum variance as well as a relevance-
based test design. Since the mutual information test design is in its defined
setting not applicable to problems with a high amount of possible test point
candidates, a simplification was introduced and used for the comparison.
Based on the different test design strategies, a combined test design for sev-
eral outputs was developed for each algorithm, providing a non-parametric,
simultaneous optimization for all outputs. These design strategies comply
with the objective to find a test point that maximally contributes to all out-
puts. As an exception, the solution for the variance-based design generates
a test point for the worst model only, which is equivalent to a round-robin
procedure.
As a result from a simulation including all strategies with a combined

output optimization, the simplified mutual information test design outper-
formed all other designs. The relevance-based test design however pro-
vided the second-best results, but for a significantly lower computational
complexity. The variance-based and the entropy-based test design showed
disappointing results with even worse performance than a non-adaptive
low-discrepancy design in some test cases. Compared to a non-adaptive
low-discrepancy test design, the model quality improvement for the mod-
ified mutual information design was found to be 21% on average over all
outputs of a seven- and a nine-dimensional test case, whereas the relevance-
based test design still shows an improvement of 15%.

Multicriterial approach

To obtain a user-friendly test design and measurement process including
both measurement domain volume increase as well as model quality op-
timization, a multicriterial test design strategy was developed. Based on
a low-discrepancy test design method, with each test point a decision is
made if it should mainly contribute to a volume increase or model quality
improvement. With this procedure, an automatic decision can be made
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which test design method should be applied next to obtain a continuous
volume increase and model error reduction without any user intervention.
The extended convex hull boundary model as well as the relevance-based
test design are incorporated into this strategy. The relevance-based test
design was chosen for calculation performance reason. However, the model
quality focused design could be easily exchanged within the multicriterial
strategy due to its modular architecture. To comply with all requirements
of a model-based calibration process, further topics were addressed. Since
the test plan is not completely calculated in advance of the measurements,
a validation point design strategy is applicable. Additionally, a sorting of
test points to accelerate the engine tests was necessary and therefore was
implemented. The test design strategy was integrated into the commer-
cial model-based calibration software IAV Kasai with an open interface to
be applicable to any type of automation system. With this integration,
a compromise to satisfy all four open research topics simultaneously was
achieved.

The multicriterial design strategy was applied in a simulation environ-
ment, simulating a global measurement including engine speed and load for
testing its ability to cope with a common meander sort option. The results
were compared to a non-adaptive test design with a sorted test plan. An
overall model quality improvement of 36% was the outcome over two dif-
ferent simulation configurations with four outputs each. The convex hull
volume increased 110% for a seven-dimensional test and 20% for a nine-
dimensional test case in addition to the model quality improvement. In
most cases, the calculation duration per test point was significantly lower
than the target of 300 seconds. However, in case the input domain is
strongly restricted, the test point search duration increases, which led to
0.7% of the test points within the strongly restricted seven-dimensional test
case to exceed the limit. The comparison of the validation point settings
showed a diverse result. While the validation error within the relevant area
was mostly clearly improved by the adaptively planned validation point
design, especially outputs with strong gradients near the boundary were
found to be sensitive regarding the error estimation. The newly developed
design puts a higher weight on validation points inside the measured do-
main, which is why the boundary-near estimation suffers from this design.
Excluding this effect, a significant improvement of the true validation error
estimation was achieved planning the validation points adaptively.
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In a real world example at the engine test bench, varying seven dif-
ferent inputs of a gasoline engine without speed and load showed similar
results as the simulation. The model quality evolution of eight out of nine
outputs was optimized up to 27% compared to a non-adaptively planned
measurement campaign. A slight deterioration was present for the particle
emission model quality trend but with a similar resulting model quality
using all measurements. The hull volume exhibited a 34% larger measured
region applying the multicriterial design strategy. The resulting models
were used to solve an optimization problem, where the better results of the
adaptively planned strategy were confirmed.

Outlook

On the base of the introduced adaptive test design strategy, some improve-
ments could be investigated in future work:

� Focused hull enlargement: The combination of a geometric exclu-
sion area as introduced with the prediction of possible boundaries in
the model extrapolation area would enable the test design algorithm
to selectively plan test points outside the current measured domain
but with the focus on hull enlargement only. This strategy could com-
bine the safety of the convex region approach incorporating piecewise-
defined limit behavior with the flexibility and continuous prediction
of the regression model approach shown in [Sch+18]. However, the
model quality focus could disappear. Thus the model quality and the
hull volume increase have to be judged in common carefully.

� Biased model quality improvement: In advance of a measure-
ment campaign, the calibration engineer mostly knows which outputs
are hard to model and which are most important to solve the opti-
mization problem. A biased test design could be investigated that
aims at optimizing some outputs more than others, either by the
engineer’s choice or by the model quality. The relevance-based test
design as introduced in this thesis puts the same weight on the length
scales of each output. However, a non-uniform weighting could be ap-
plied to improve some models more than others without introducing
a round-robin or batch mode optimization. A similar approach could
be applied to the mutual information test design, which is investi-
gated with a uniform weighting over all outputs as well. A bias could
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be applied to change the information content of each candidate by
user’s choice or by a model quality rating.

� Calculation performance improvement: With the proposed de-
sign, an interruption in the measurement process could appear, espe-
cially in strongly constrained input domains. Some simple procedures
are proposed to provide a test point with reduced quality on demand.
However, different solutions could be investigated as a compromise
between quality reduction and time loss. Since the convex cone strat-
egy offers the part with most computational complexity, it could be
exchanged by a model prediction strategy in case the automation
system demands a next test point. For test cases without piecewise-
defined limit channels, a general combination of the mutual infor-
mation test design with a regression model-based boundary model is
another approach to reduce calculation duration and incorporate the
mutual information test design.
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A GJK Algorithm

The base equation for the GJK algorithm as introduced in [GJK88] is the
definition of the convex hull co() of a given point set X with size k in a
domain of dimension dim by

co(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓

k∑︂
i=1

αi = 1 and 0 ≤ αi ≤ 1 ∀i
}︄
. (A.1)

That is, a given test point t is checked if it is part of the convex hull if any
combination α is found, which fulfills the constraints and represents t if
(A.1) is applied.
The GJK algorithm is used to find a non-unique solution for α. It as-

sumes the test point to be the origin, which is why the point set X is
shifted by the test point t to Xt. A point on the surface of the convex
hull is determined iteratively, which shows least distance to the origin. The
algorithm consists of two main calculations steps. A simplex is created by
the selection of maximum dim + 1 points from Xt. For the selection, a
support value is assigned to each hull vertex by a support vector v. The
starting support vector can be random. In this implementation, it is used
as the vector starting at the test point and pointing to the center of gravity
of the hull building points

v = mean(X) (A.2)

which is derived only by the center of gravity, since the test point is the
origin. The support values are the distances from the test point to the
perpendicular projection of the hull vertices on the support vector by

si = x⊤
t v ∀ xt ∈ Xt. (A.3)

The vertex with lowest support min(s) is added to the simplex generating
vertices Vj in iteration j. The second step is the distance calculation of the
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origin to the current simplex Vj . To calculate the minimum distance, all
1...(dim+1)-dimensional elements of a simplex have to be considered, which
means all vertices, lines, planes, etc. In [GJK88] the so-called Johnson
distance algorithm [Joh87] is proposed. A different way is to define a set
of linear equations for each element, as derived in [Cam97], which can be
solved. The linear equations are created by the assumption that the closest
point has to be perpendicular to all lines within the considered object. That
is, if the object is a 2-dimensional simplex described by 3 points x1, ...,x3,
the perpendicular projection of the origin on the plane is defined by two
linear equations

(x2 − x1)x1α1 + (x2 − x1)x2α2 + (x2 − x1)x3α3 = 0

(x3 − x1)x1α1 + (x3 − x1)x2α2 + (x3 − x1)x3α3 = 0
(A.4)

with the restriction of only positive values for all αi. Another restriction
is
∑︁3

i=1 αi = 1 which forces the perpendicular projection being within
the bounds of the simplex and not anywhere on the plane. With these 3
equations in matrix notation the linear equation set⎡⎣ 1 1 1

(x2 − x1)x1 (x2 − x1)x2 (x2 − x1)x3

(x3 − x1)x1 (x3 − x1)x2 (x3 − x1)x3

⎤⎦⎡⎣α1

α2

α3

⎤⎦ =

⎡⎣10
0

⎤⎦ (A.5)

is defined and can be solved by left division. The general equation for a
dim-dimensional simplex with (dim+1) vertices is⎡⎢⎢⎢⎣

1 1 · · · 1
(x2 − x1)x1 (x2 − x1)x2 · · · (x2 − x1)xdim+1

...
...

. . .
...

(xn+1 − x1)x1 (xn − x1)x2 · · · (xn − x1)xdim+1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α1

α2
...

αdim+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦
(A.6)

which solution is valid only if αi ≥ 0 ∀i = 1...(dim + 1).
In each iteration of the GJK algorithm, all elements of Vj are checked.

The vertices of the element that contains the closest point are used for
the subsequent iteration and added to Vj+1. The algorithm stops if either
the origin is part of the convex hull and therefore the distance from the
closest point to the origin is zero, or if Vj = Vj−1. The numerical tolerance
for the abortion strongly depends on the computational accuracy and the
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codomain of all given points. To find a universal tolerance, the points can
be normed to a defined codomain, as e.g. [0,1]dim. Within this codomain,
a robust numerical tolerance is found to be ϵ = 2.22 ∗ 10−11. The full
algorithm is shown in algorithm A.1.

Algorithm A.1: Algorithm to find the closest point on a convex hull for given hull
points and a test point by a modified GJK algorithm

Input: Hull Points X, Test Point t, Numerical Tolerance ϵ
Output: Closest Point c, Distance d
1: Shift hull points Xt = X − t
2: Initialize j = 1, V1 = V0 = ∅
3: Calculate support vector
4: Calculate support values s
5: Add vertex with lowest support Vj = (Vj−1 ∪ argminxt∈Xt

(s))
6: if Vj−1 ≡ Vj then
7: Set c = cj−1, d = dj−1

8: return
9: end if

10: Calculate closest point cj on Vj to origin by distance algorithm
11: Calculate Euclidean distance dj = |cj |
12: if dj < ϵ then
13: Set c = cj , d = dj
14: return
15: end if
16: Remove unnecessary vertices from Vj and set Vj+1 = Vj

17: Increment j and return to row 2
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B Convex Cone Algorithm

Given a point set X, a convex cone area cone(X) including the origin is
defined by a linear equation that is constrained by the parameter vector α

cone(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓αi ≥ 0 ∀i

}︄
. (B.1)

A solution to α must be found where each αi must be greater or equal
0 if a test point t shall be checked for being part of the convex cone.
Since this calculation is analytically not solvable, [ZC09] introduced an
iterative convex cone calculation procedure. The algorithm is based on
the GJK algorithm described in chapter A.1 and introduced in [GJK88],
where a support vector is the basic element within each iteration. However,
the support vector h differs in the convex cone algorithm from the GJK
algorithm, because the origin is always part of the cone and the point set
shift by the test point t does not apply. Therefore, the support vector is
defined by the newly found closest point cj in each iteration and the test
point

h = t− cj . (B.2)

A support value is derived for each cone vertex in the same way as in the
GJK algorithm, while the point with the maximum support is added to
the subset Vj respectively. The objective of the iterative algorithm is to
minimize the maximum support value, where a solution is present if the
maximum support converges to zero. While the GJK algorithm maximizes
the support value, the convex cone algorithm is a minimization procedure,
because the support vector originates at the newly found closest point cj
instead of originating at the point under investigation t. The support vector
is initialized to the point t, whereas the subset Vj initially is an empty set.
The algorithm can be summarized to the following steps:

1. Calculate support values s
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B Convex Cone Algorithm

2. If the maximum absolute support value is less ϵ or the maximum sup-
port value did not change, cj−1 is the closest point and the algorithm
stops

3. Add vertex with highest support to Vj

4. Calculate closest point cj on the open cone Vj to t

5. Identify necessary vertices Vj+1 as subset of Vj

6. Calculate new support vector hj+1, increment j and return to step 1

Both algorithms, the GJK and the convex cone algorithm, are very simi-
lar but mainly differ in identifying the closest point cj and the necessary
vertices for the subsequent iteration in step 4 and step 5. For this calcu-
lation, a subalgorithm is introduced in [ZC09]. For the application in this
thesis, the termination tolerance is set to ϵ = 2.22 ∗ 10−9, which is more
imprecise than the GJK tolerance due to a higher amount of calculations
steps in the subalgorithm. The entire convex cone algorithm is described
in algorithm B.1 in detail.
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Algorithm B.1: Convex Cone Algorithm

Input: point set X, considered point t
Output: closest point tc, distance dist, isInside bIn
1: ϵ = 2.22 ∗ 10−9

2: j = 1,V1 = ∅
3: calculate support vector h1 = t
4: s0 = inf
5: while true do
6: for all xi ∈ X do
7: calculate support values si,j = x⊤

i hj

8: end for
9: if max(sj) < ϵ ormax(sj) == max(sj−1) then

10: tc = cj−1

11: dist = Euclidean distance |tc − t|
12: bIn = all(abs(sj)) < ϵ
13: return
14: end if
15: add hull point with highest support Vj = Vj ∪ argmax

X
(s)

16: Find closest point cj on open cone Vj by subalgorithm given in
[ZC09]: [cj , relatedV ertices] = coneDist(Vj)

17: Vj+1 = relatedV ertices
18: hj+1 = t− cj
19: j = j + 1
20: end while
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C Exclusion Area Check

The exclusion area check is given by two different algorithms. In case the
convex hull-building hyperplanes are present, a simpler calculation can be
applied, because the joint hyperplanes of a hull vertex can be identified
and the check for the exclusion area is based on the point hyperplane dis-
tance calculation. The full algorithm for the exclusion area check for given
hyperplanes is shown in algorithm C.1.

Algorithm C.1: Exclusion area check for a candidate set given hyperplanes

Input: Candidates S, Normal Vectors A, Origin Distances b,
Hull Points X, Boundary Labels o

Output: p
1: p = false[length(S)]
2: for all xi ∈ X do
3: if not o[i] then
4: continue
5: end if
6: find joint hyperplanes Aj , bj for xi

7: for all sk ∈ S do
8: calculate distances d = Ajs

⊤
k − bj

9: if all d > 0 then
10: p[k] = true
11: end if
12: if all in p then
13: return p
14: end if
15: end for
16: end for
17: return p

A more complex case is present if only the convex hull building point set
with boundary labels is given. The hull hyperplanes are unknown and a cal-
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C Exclusion Area Check

culation of those is not the objective for the exclusion area check. Therefore
the convex cone algorithm as described in appendix B takes place. How-
ever, for each boundary point some precalculations are necessary to achieve
the conditions to apply the convex cone algorithm. To test a point labeled
as a boundary point of the given hull points, it has to be the origin, because
the convex cone algorithm always applies the origin as cone starting point.
Therefore all considered points are shifted by the boundary point. The cone
then is spanned by all convex hull points, whereas the outside pointing cone
is the desired one. This is achieved by mirroring the considered candidate
s at the new origin. Applying the convex cone algorithm to find the closest
point on the cone starting at the mirrored candidate offers the necessary
information if the given candidate is part of the particular exclusion area.
The full algorithm is detailed in algorithm C.2 and the preconditioning is
exemplarily shown in figure C.1.

Slightly non-convex hull points lead to a misinterpretation if the convex
cone algorithm is utilized. In this case, a repositioning has to be applied
that projects the test point on the nearest hull-building hyperplane. The
procedure for this repositioning is explained in algorithm C.3. Points that
are labeled as boundary points but do not contribute to the convex hull
can simply be identified by the GJK algorithm.
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Algorithm C.2: Exclusion area check for a given candidate set by the convex cone
algorithm

Input: Candidates S, Hull Points X, Boundary Labels o
Output: p
1: p = false[length(S)]
2: for all xi ∈ X do
3: if not o[i] then
4: continue
5: end if
6: Xt = xj − xi ∀xj ∈ X
7: for all sk ∈ S do
8: st = sk − xi

9: if −st ∈ cone(Xt) then
10: p[k] = true
11: end if
12: if all in p then
13: return p
14: end if
15: end for
16: end for
17: return p
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C Exclusion Area Check

Algorithm C.3: Projection procedure for inside hull lying boundary point

Input: Hull Points X, Labeled Boundary Point inside Hull xj

Output: Surrogate Point xih

1: calculate center of gravity γ = mean(X)
2: find support vector vs = xj − γ
3: norm support vector vsn = vs |vs|−1

4: for all xi ∈ X do
5: calculate support ρ(xi) = (xi − xj)v

⊤
sn

6: end for
7: find point xi,max with maximum support max(ρ)
8: if xi,max lies on vsn then
9: add slight random noise to support vector

10: norm support vector
11: end if
12: project maximum support point xi,max,p = ρ(xi,max)vsn
13: find closest point on hull by GJK xi,max,h

14: return xi,max,h
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Figure C.1: Exemplary illustration of the exclusion area check for a test point x′⋆ by a
convex cone generated by xi. In this example −x′⋆

t is inside cone(X) and
therefore x′⋆ is part of exclusion area B.
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D Mutual Information Test Design
Comparison

Table D.1: Rating for different MI-based test design strategies and a non-adaptive space-
filling test design by utilizing the CO output of the 7-dimensional diesel model

Method AUC a+ b
Rating
AUC

Rating
Coefficients

Space Filling 494.2 -4.3 4 6

First 500 Candidates 507.5 -4.06 9 8

First 1000 Candidates 497.5 -4.37 6 5

First 1500 Candidates 503.2 -4.22 7 7

First 2000 Candidates 496.4 -4.47 5 4

500 Space-Filling Candidates 493.6 -4.76 3 3

1000 Space-Filling Candidates 491.3 -5.08 2 1

1500 Space-Filling Candidates 503.7 -4.04 8 9

2000 Space-Filling Candidates 489.4 -4.79 1 2
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D Mutual Information Test Design Comparison

Table D.2: Rating for different MI-based test design strategies and a non-adaptive space-
filling test design by utilizing the 9-dimensional radcosn model

Method AUC a+ b
Rating
AUC

Rating
Coefficients

Space Filling 720.8 -2.72 9 9

First 500 Candidates 630.5 -4.38 2 2

First 1000 Candidates 643.7 -4.04 6 6

First 1500 Candidates 639.6 -4.3 5 3

First 2000 Candidates 647.9 -4.05 8 5

500 Space-Filling Candidates 628.6 -4.39 1 1

1000 Space-Filling Candidates 645.8 -3.94 7 8

1500 Space-Filling Candidates 633.5 -4.17 3 4

2000 Space-Filling Candidates 638.2 -4.03 4 7
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E IAV Kasai

The commercial software IAV Kasai [IAV20] is a tool that is designed to
support the model-based engine calibration process. The calibration en-
gineer is assisted during the three phases test design, model training, and
optimization. For each phase, a workflow guides through the necessary
steps to finally achieve an optimized actuator setting. Figure E.1 shows
the software at the last step of the test plan workflow.
The relevant information to design the tests is the definition of the model

inputs and the input ranges, in which information shall be gathered during
the tests. Engine speed and load are defined by a user-specific grid, while
all other inputs are continuously planned by default. To restrict the input
domain, map-, table-, and inequation-based constraints are applicable as
well as previously collected boundary measurements can be involved. With
these definitions, a Sobol candidate set is created to gather test points from,
which are finally selected by means of the maximin algorithm [JMY90].
Since the software is designed to be applicable for any test bench setup,
there is no strictly required automation system to measure the test plan
content. Once the measurement is collected, it is imported and the mod-
eling workflow is started. A data analysis is part of this process with a
model training in the final step. The four different model classes GPM,
HILOMOT, polynomial model, and RBF can be selected. Several model-
ing methods can be applied to each output as well, whereupon an automatic
statistically-based selection of the best performing model is executed.
Once a model is trained for each output, several methods to find the op-

timal settings can be chosen. A simple manual optimization by searching
a minimum or maximum value of an output can be performed by an inter-
active single interaction plot. To set up a more complex optimization, a
map-based and a reference-based optimization plug-in, a local optimization
tool, and a trade-off calculation tool are available. The output of these tools
are either optimized input maps or optimal input values, which need to be
applied to the ECU software by the calibration engineer in a subsequent
step.
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E IAV Kasai

Figure E.1: Exemplary screenshot of the test plan workflow of IAV Kasai. The last work-
flow step with already calculated test points and an exemplary visualization
of the test point distribution is shown. The three main workflow steps are
shown bottom left, the detailed test plan workflow is shown horizontally at
the bottom.
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Figure F.1: Normed validation RMSE model quality trend given the amount of train-
ing points. From top left to bottom right the outputs running smoothness,
exhaust temperature, engine torque and fuel consumptionare shown for the
non-adaptive and the adaptive approach.
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Figure F.2: Normed validation RMSE model quality trend given the amount of training
points. The soot mass output (left) and the waste gate position output (right)
are shown for the non-adaptive and the adaptive approach.
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This thesis deals with the development of a model-based adaptive test design strategy 
with a focus on steady-state combustion engine calibration. The first research topic in-
vestigates the question how to handle limits in the input domain during an adaptive test 
design procedure. The second area of scope aims at identifying the test design method 
providing the best model quality improvement in terms of overall model prediction error. 
To consider restricted areas in the input domain, a convex hull-based solution involving a 
convex cone algorithm is developed, the outcome of which serves as a boundary model 
for a test point search. A solution is derived to enable the application of the boundary 
model to high-dimensional problems without calculating the exact convex hull and cones. 
Furthermore, different data-driven engine modeling methods are compared, resulting in 
the Gaussian process model as the most suitable one for a model-based calibration. To de-
termine an appropriate test design method for a Gaussian process model application, two 
new strategies are developed and compared to state-of-the-art methods.                            
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