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Abstract

This thesis deals with the development of a model-based adaptive test de-
sign strategy with a focus on steady-state combustion engine calibration.
The first research topic investigates the question how to handle limits in
the input domain during an adaptive test design procedure. The second
area of scope aims at identifying the test design method providing the best
model quality improvement in terms of overall model prediction error.
To consider restricted areas in the input domain, a convex hull-based so-

lution involving a convex cone algorithm is developed, the outcome of which
serves as a boundary model for a test point search. A solution is derived
to enable the application of the boundary model to high-dimensional prob-
lems without calculating the exact convex hull and cones. Furthermore,
different data-driven engine modeling methods are compared, resulting in
the Gaussian process model as the most suitable one for a model-based cal-
ibration. To determine an appropriate test design method for a Gaussian
process model application, two new strategies are developed and compared
to state-of-the-art methods. A simulation-based study shows the most ben-
efit applying a modified mutual information test design, followed by a newly
developed relevance-based test design with less computational effort. The
boundary model and the relevance-based test design are integrated into a
multicriterial test design strategy that is tailored to match the requirements
of combustion engine test bench measurements. A simulation-based study
with seven and nine input parameters and four outputs each offered an av-
erage model quality improvement of 36% and an average measured input
area volume increase of 65% compared to a non-adaptive space-filling test
design. The multicriterial test design was applied to a test bench measure-
ment with seven inputs for verification. Compared to a space-filling test
design measurement, the improvement could be confirmed with an aver-
age model quality increase of 17% over eight outputs and a 34% larger
measured input area.

vii





Kurzzusammenfassung

Diese Arbeit befasst sich mit der Entwicklung einer modellbasierten adap-
tiven Versuchsplanungsstrategie für die Anwendung in der Applikation des
Stationärverhaltens von Verbrennungsmotoren. Der erste Forschungsteil
untersucht, wie sich Grenzen im Eingangsraum in die Versuchsplanung eines
adaptiven Prozesses einbinden lassen. Ein weiterer Fokus liegt auf der Iden-
tifikation einer modellbasierten Versuchsplanung, die eine bestmögliche Ver-
besserung der globalen Modellqualität hinsichtlich des Prädiktionsfehlers
ermöglicht.
Es wird ein Grenzraummodell auf Basis der konvexen Hülle unter Zu-

hilfenahme eines Algorithmus zur Bestimmung eines konvexen Konus ent-
wickelt, das als Grundlage für eine Versuchsplanung in beschränkten Ein-
gangsräumen verwendet wird. Um die Anwendbarkeit bei hochdimensio-
nalen Problemstellungen zu gewährleisten, wird ein Verfahren vorgestellt,
das eine Berechnung auch ohne die Bestimmung der exakten konvexen
Hülle und konvexen Konen ermöglicht. Des Weiteren werden verschiede-
ne Methoden zur datengetriebenen Modellbildung des Verbrennungsmotors
verglichen, wobei das Gauß-Prozess Modell als die geeignetste Modellie-
rungsmethode hervorgeht. Um die bestmögliche Versuchsplanungsmethode
bei der Anwendung des Gauß-Prozess Modells zu ermitteln, werden zwei
neue Strategien entwickelt und mit verfügbaren Methoden aus der Litera-
tur verglichen. Eine simulationsbasierte Studie zeigt, dass eine angepasste
Mutual Information Methode die besten Ergebnisse liefert. Ein neu ent-
wickeltes relevanzbasiertes Verfahren erreicht die zweitbesten Ergebnisse,
bietet aber einen geringeren Berechnungsaufwand als das Mutual Infor-
mation Verfahren. Das Grenzmodell und das relevanzbasierte Verfahren
werden in einem multikriteriellen Versuchsplanungsverfahren zusammen-
geführt, das an die Anforderungen von Messungen an einem Verbrennungs-
motorenprüfstand angepasst ist. In einer simulationsbasierten Studie mit
sieben bzw. neun Eingangsparametern und jeweils vier Ausgängen konnte
eine durchschnittliche Modellqualitätsverbesserung von 36% und eine mitt-
lere Vergrößerung des vermessenen Eingangsraumvolumens von 65% im
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Vergleich zu einer nichtadaptiven raumfüllenden Versuchsplanung gezeigt
werden. Das multikriterielle Versuchsplanungsverfahren wurde anhand von
Prüfstandsmessungen mit sieben Eingangsparametern verifiziert. Im Ver-
gleich zu einer raumfüllenden Versuchsplanung konnte eine mittlere Modell-
qualitätsverbesserung über alle acht Ausgänge von 17% und ein um 34%
vergrößertes vermessenes Eingangsraumvolumen erreicht werden, wodurch
die Ergebnisse der Simulationen bestätigt werden konnten.
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1 Introduction

The optimization of a technical system, and in the scope of this thesis
the optimization of an internal combustion engine, relies on different ap-
proaches to find an optimal solution within the shortest possible time. In
the past several methods were investigated to find solutions that satisfy
different challenging requirements. To understand both the requirements
as well as the method that is addressed in this thesis, the following will
discuss the scope of application and the differentiation of the adaptive test
design method to other existing methods.

1.1 Motivation

The process of combustion engine calibration is defined as the adjustment
of maps and curves that are part of the engine control unit (ECU) soft-
ware. Among other necessary tasks, the functions inside the ECU calculate
the desired values for all actuators to operate the engine in each situation.
By changing the content of the maps and curves, which is the task of a
calibration engineer, the actuator behavior is influenced. Two conflicting
requirements are the main drivers of combustion engine calibration. On
the one hand, there are legislative requirements that restrict the combus-
tion exhaust gas composition. Over the years the limits for the different
exhausted gases are restricted further, where the reduction of hazardous
emissions is in conflict to the reduction of environmental gases like carbon
dioxide. On the other hand, the customer demands larger, more comfort-
able vehicles with an increasing amount of driver assistant systems. These
demands have in common that they could lead to an increase of vehicle
weight and its driving resistance in case no counteractive measures are in-
troduced, which could result in a higher fuel consumption and therefore
higher carbon dioxide emission. Next to the application of lightweight
structures, another possibility to overcome these conflicting requirements
is the development of more efficient engines that unfortunately increase the

1



1 Introduction

calibration complexity due to a raising amount of actuators. Quintuple
injection [Hei+13] or a variable compression ratio combined with a tur-
bocharger and a variable intake and exhaust camshaft in gasoline engines
[KMK17; Nis20] are only an excerpt of today’s complex technical solutions
in mass production vehicles to lower the fuel consumption and meet the
legislative requirements. Modern diesel engines offer up to 20 actuator pa-
rameters to find an optimal solution for. With each additional actuator
to be calibrated, the need of steady-state measurement increases exponen-
tially due to the curse of dimensionality that is firstly described in [Bel61]
and explained well in [HTF09].

The steady-state base calibration is a very early step within the engine
calibration process. Figure 1.1 illustrates the placement of steady-state
ECU calibration phases within the overall engine development process.
Further calibration tasks, e.g. the on-board diagnostics or the drivability
calibration, take place within the development process. However, these are
not addressed in this thesis. Especially the transient calibration process
strongly differs from the steady-state one and will not be focused. The
main difference regarding the measurement procedure is the necessity to
excite the engine dynamically for transient calibration, which is not the
case for a steady-state calibration. The steady-state calibration can be
done in very different ways. Most of the methods to achieve a high quality
have steady-state measurements in common but differ very much in the
effort to be spent. Due to the curse of dimensionality, some methods are
not applicable to tests in which a high amount of actuators are varied. A
full factorial test design reaches its limits quickly, because a large amount
of tests increasing exponentially with the dimension is necessary. A one-
factor-at-a-time optimization will not find the optimal solution with high
certainty, as interacting influences between the inputs are not taken into
consideration. Thus the identification of a surrogate model is a widely used
method to find the optimal settings offline by means of an engine simulation
model with only little measurement effort. The ECU maps and curves then
are filled in a way that the functions generate the optimal setting found
offline.
A crucial step in this model-based calibration process is the test design

composition, that defines the steady-state measurements necessary to train
a statistical model. This test design could be static, identified in advance of
all measurements, or dynamically updated by an adaptive strategy during

2



1.1 Motivation

Concept Study

Prototype Development

Preproduction Development

Production
Validation

Development Time

� Baseline Engine
Mapping and ECU
Calibration

� Emission
Development

ECU Optimization

Figure 1.1: Schematic extraction from the engine development process as described in
[HD16]

the measurement campaign. The benefit of an adaptive test design is clearly
the possibility to involve system knowledge into the further test design and
therefore improve the surrogate model quality outcome. However, there
are two different ways to implement the whole process of determining an
optimal solution for the actuator settings by a surrogate model, for which
reason the objective of the adaptive design can be very different. These
two approaches are the online optimization procedure, which implements
the full process of optimal actuator setting search, and the engine model
identification procedure, that aims at reproducing the combustion engine in
a wide range as precise as possible for a subsequent offline actuator setting
search.

1.1.1 Online Optimization

Finding an optimal actuator setting at a minimal possible calibration engi-
neer intervention is the main objective of a calibration method development.

3



1 Introduction

*

Figure 1.2: Schematic representation of an online optimization process. *Illustration
source: [Ami+19]

An appropriate practice is to shift most of the work done offline in office
to be executed by an algorithm online at the test bench during the engine
tests. Hence, the process as shown in figure 1.2 arose that, in theory, only
makes it necessary to define the system inputs, outputs and an optimiza-
tion definition. In case unknown limitations are present, a boundary search
is an optional preceding step before entering an iterative optimization loop.
Within this loop, a test design stage defines the next measurements to be
performed, followed by the execution of this test plan. A surrogate model
is updated that is used to solve the optimization problem. The optimal set-
ting validation step checks the quality of the currently identified optimal
solution. In case the deviation between modeled and measured optimum is
higher than allowed, a further refinement is necessary and a next iteration
takes place.
This optimization process has its clear strength in automating most of

the calibration process and additionally reduces the necessary measure-
ments to find an optimal solution significantly. However, this process also
has some drawbacks to be revealed. The most unacceptable property is
the necessary definition of the optimization problem in advance and the fo-
cused measurement towards the identification of this optimal solution. In
practice, several optimization loops take place during a steady-state actua-
tor calibration. The criteria regarding the emission calibration can change
due to an altered exhaust aftertreatment system for example. Also the
running smoothness criteria could change once the engine is tested within
the vehicle. Another human factor could and does often apply, which is
an incomplete or erroneous optimization problem. The measurements con-
ducted to solve the optimization problem strongly focus the problem itself.

4



1.2 Objectives and Outline

A change of the optimization target thus forces an additional almost com-
plete iteration including measurements at the test bench. To avoid any
additional measurements once any target changes, the process could be
split into model identification and optimization problem solving, as will be
discussed in the following section.

1.1.2 Combustion Engine Model Identification

A necessary condition to solve an optimization problem with high quality is
the presence of a most exact surrogate model possible of the combustion en-
gine. The identification process of this model is clearly different and follows
other targets than the online optimization process. Figure 1.3 illustrates
the adaptive test design procedure for the data-driven model identification.
An optimal solution is to focus an iterative test planning method that aims
at identifying a model with high quality in the largest possible measure-
ment range. Therefore the identification of engine boundaries, which could
be done in advance of the model identification process, should be integrated
into the iterative procedure as a test design criterion. The adaptive test
design process then follows the steps test planning, which objective is to
find test points that maximally contribute to the design targets, steady-
state measurement of the previously defined test points, a model training
or update at the test bench as well as a model validation to rate the cur-
rent model quality and define a potential abortion criterion. As shown
in figure 1.3 the optimization step is completely detached from the model
identification process and is done subsequently in office.
In contrast to a non-adaptive approach with a boundary search in ad-

vance, the adaptive test planning target is a multicriterial optimization
problem. The major aim is to find a design algorithm that fulfills the op-
timization targets best and also complies with the real-time constraint to
not interrupt the measurement process at the test bench, which is the main
focus of this thesis.

1.2 Objectives and Outline

The identification of a combustion engine model is an often described
method in literature. Plenty of different non-calibration and calibration
focusing test design, modeling and optimization algorithms have been in-
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*

Figure 1.3: Schematic representation of the adaptive surrogate model identification pro-
cess. The optimization problem solving process step, which aims at finding an
optimal solution for the ECU calibration, is shown for the sake of complete-
ness, even though it is not part of the encapsulated engine model identification
process. *Illustration source: [Ami+19]

troduced that are applied in the field of combustion engine model identifica-
tion. Boundary search is a described method as well with some applications
focusing engine calibration. Adaptive test design methods are present in lit-
erature as well. However, combining the two given criteria boundary search
and model quality focusing test design is a field seldom examined. For this
reason, the existing methods will be analyzed, whereupon alternative and
new approaches to improve the weaknesses will be discussed, implemented
and tested. The scope of application is the base ECU calibration including
emission development. Since the model-based calibration (MBC) applies
within both, diesel and gasoline engine calibration, the methods have to be
applicable within both processes. In addition to MBC topics, there are fur-
ther applications for identifying an overall engine model within the engine
development process. Hardware comparison studies in the advance develop-
ment field shall be introduced as an example. Since a change in hardware,
e.g. a different injector or an added tumble valve, could change the overall
engine behavior, a comparison of several hardware settings always requires
a full engine model including the influence of all other significant param-
eters. For instance, given an optimization criterion the optimal injection
pattern could differ if the fuel injectors are changed. Hence, an interac-
tion between injector type and injection pattern is present that cannot be
neglected.
Next to the performance of algorithms, some more criteria apply in the

scope of a process that a development staff has to apply. Developing hard-
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to-tune algorithms delivering excellent results applied by an algorithm ex-
pert should not be the focus within engine calibration. Calibration en-
gineers commonly focus the thermodynamical processes of a combustion
engine rather than the mathematics behind an applied algorithm. Ad-
ditionally, time pressure within calibration projects prevents engineers to
learn new complex methods [IS20]. Therefore, a model-based calibration
process should fulfill the requirement of an easy application without the
necessity to adjust non-tangible parameters.
This thesis is structured as follows. The subsequent chapter 2 examines

the state of the art regarding statistical modeling, test design strategies,
boundary detection methods, and currently existing adaptive test design
methods. The exact research topics as well as detailed requirements for the
development of a newly adaptive test design strategy will be described as
well. In chapter 3, two open research topics are addressed that consider
engine boundaries within an adaptive test design method. The developed
methods will be discussed as well as tested in a simulation environment.
Two further open questions in the field of a model-based adaptive test de-
sign strategy are addressed in chapter 4 without considering engine bound-
aries. Present and newly developed methods are compared in a simulation
environment to find the most effective model-based test design approach.
A combination of model-based design with considering engine boundaries
in a user-friendly environment, based on the results of the preceding chap-
ters, is developed in chapter 5. Its performance is again examined in a
simulation environment. A real world test of the multicriterial approach at
an engine test bench and its results will be shown in chapter 6. The final
chapter 7 concludes the obtained results and gives a proposal for further
research topics within the addressed field.

7
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To consider and discuss the main topics of this study, the fundamental al-
gorithms have to be introduced. The most important base of an adaptive
test design method is the underlying model, which has to be trained by
measurements. Different usual model classes, their advantages and disad-
vantages as well as the decision making are discussed in section 2.1. For
each model type, different adjusted test design methods exist, to gain most
knowledge and achieve a high-quality model, once trained. A review of
different test design methods and their matching model types is given in
section 2.2.
In contrast to computer experiments, real measurements are mostly con-

strained in the output domain. Since the output constraints restrict the
input domain, it is beneficial to take boundaries into account during test
design. The often non-known restrictions need to be identified and de-
scribed. A detailed introduction of boundaries and the basics about the
identification and description of those are captured in section 2.3.
The fourth section 2.4 deals with an overview of existing adaptive test

design approaches. A conclusion is given regarding their general focus,
utilized model classes, and test design methods. Since not all questions are
answered by the existing procedures and in relation to the most beneficial
model classes and test design methods, the open questions are discussed in
the last section 2.5 and the topics of this research are outlined.

2.1 Data-Driven Combustion Engine Modeling

A combustion engine can be modeled by two main different types of mod-
els. A physically-based model can be established to represent the engine’s
behavior. This model type has the advantage that, once adjusted, it extrap-
olates well and an adjustment to changed engine hardware can be applied
without rebuilding the whole model. However, the effort to compose a
physically-based model is high and several necessary outputs cannot be
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explained well. Data-driven models are therefore utilized, because their
ability to reproduce the combustion process and the exhaust emissions is
much better. Given a model architecture matching the area of application,
no deep model setup knowledge is necessary to train such a model, unlike
physically-based models. These properties and the accurateness of data-
driven models are the main reasons for their broad application in the field of
combustion engine calibration and why they are investigated in this thesis.
Several different data-driven model types are utilized in terms of combus-
tion engine modeling. The most important and common model types are
introduced in the following sections.

2.1.1 Polynomial Model

The polynomial model is a widely used approximation method for combus-
tion engine processes. The model structure complexity is very low, which
is why the physical interpretability by an engineer is given. Having a look
at the relation between a measurement y and its representation by a poly-
nomial model given by [Fah+13]

y = β0 + β1x1 + β2x2 + ...+ βkxk + ϵ (2.1)

with error term ϵ, the impact of each of the k inputs xi is addressed by its
belonging factor βi. This representation assumes a linear behavior between
the process output y and the inputs xi, which will result in a high model
error in engine modeling. However, the parameters xi also can be seen as
a substitution of input combinations of higher order. A polynomial model
of degree l can be written as

y = β0 +

k∑︂
i1=1

βi1xi1 +

k∑︂
i1=1

k∑︂
i2=1

βi1,i2xi1xi2 + ..+

k∑︂
i1=1

..

k∑︂
il=1

βi1,..,ilxi1 ..xil + ϵ

(2.2)
which still is linear in the parameters βi. If the product of the xi is substi-
tuted by parameter t, (2.2) is expressed by

y =
m∑︂
i=0

βiti + ϵ with t0 = 1 (2.3)
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2.1 Data-Driven Combustion Engine Modeling

given the number of termsm. The calculation for the amount of parameters
is given in [Nel20].
To train a fixed polynomial structure given some measurement data, the

weights β need to be determined. Since the identification of a true param-
eter vector β is practically impossible due to a measurement and a bias
error, as will be described later, the hat notation is introduced to declare
the estimated weights β̂. Given n measurements, a regression matrix M
and an estimated weight vector β̂ are represented by

M =

⎡⎢⎢⎢⎣
1 t1,1 t1,2 · · · t1,m
1 t2,1 t2,2 · · · t2,m
...

...
...

. . .
...

1 tn,1 tn,2 · · · tn,m

⎤⎥⎥⎥⎦ β̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
β0̂
β1̂
β2̂
...

βm̂

⎤⎥⎥⎥⎥⎥⎥⎦ (2.4)

The expected output then is expressed as a matrix multiplication by

ŷ = Mβ̂. (2.5)

Due to the measurement and the bias error, a measurement y deviates from
an estimation ŷ, which is why a residual vector e is added to the modeled
output

y = ŷ + e = Mβ̂ + e (2.6)

declaring the residuals as the deviation between modeled output and mea-
surement. The aim of a training is therefore to minimize the residual term.
Since this model type is linear in its parameters, the least squares method
can be applied. (2.6) is squared and rearranged to resolve for the squared
residual vector

e⊤e = (y −Mβ̂)⊤(y −Mβ̂). (2.7)

A minimum error is determined by setting the first derivative of (2.7) to
zero. The result is resolved for β̂

β̂ = (M⊤M)−1M⊤y (2.8)

and can be solved simply. It can be shown, that a maximum likelihood
(ML) estimation of the parameter vector β leads to the same result as the
least squares method. Assuming the noise term normally distributed as
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Figure 2.1: Bias Variance Trade-off [HTF09]

ϵ ∼ N (0, σ2I), an ML estimation is applicable and results in a minimiza-
tion of the least squares term (2.7) [Fah+13].

In many practical use cases a dense parameter vector leads to overfit-
ting. The number of terms rises exponentially with the dimension and the
polynomial degree. The flexibility of a model grows the same way, which is
why it is increasingly able to explain measurement noise as process behav-
ior. A model with low training error could be strongly overfitted and leads
to a very high error in test data that is not used for training. Figure 2.1
shows this correlation. Very complex models show overfitting, which leads
to a high variance in test data. If the complexity is low, both the training
error and the test error are high. However, to apply polynomial models to
high dimensional processes with suitable quality, term selection procedures
are utilized. The methods described in literature [Fah+13; HTF09; Nel20;
Jam+13] differ in their resulting quality and computational complexity.
Also for combustion engine modeling, there is no appropriate method that
applies best to all system outputs. Although polynomial models trained
with a term selection procedure can reduce overfitting, the necessary flexi-
bility in terms of nonlinearity to explain engine behavior in the whole speed
and load domain is not given. Hence, the term selection procedures are not
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Figure 2.2: Single-hidden-layer or 3-layer artificial neural network architecture

described in detail but model types with higher flexibility are required.
These are explained in the subsequent sections.

2.1.2 Artificial Neural Network

The artificial neural network is a model class that is based on the brain
architecture of intelligent creatures. The idea from a signal processing
point of view is to map a high amount of multi-dimensional input data to
one or several outputs in the same way as a brain is able to. A schematic
representation of a single-hidden-layer artificial neural network, also called
3-layer network, is given in figure 2.2. From a mathematical point of view,
the input data x is mapped by an activation function f(·) and the inner
nonlinear basis functions Φj(x) given a weight vector β to the output

y(x,β) = f

⎛⎝ m∑︂
j=1

βjΦj(x) + β0

⎞⎠ (2.9)

where m is the number of neurons in the hidden layer. In multilayer per-
ceptron (MLP) networks another activation function h(·) is applied to the

13



2 State of the Art

basis functions

y(x,β) = f

⎛⎝ m∑︂
j=1

βj h

(︄
dim∑︂
i=1

βj,ixi + βj,0

)︄
+ β0

⎞⎠ (2.10)

where dim is the number of input dimensions. If the output layer consists
of more than one neuron, (2.10) extends to

yk(x,β) = f

⎛⎝ m∑︂
j=1

βk,j h

(︄
dim∑︂
i=1

βj,ixi + βj,0

)︄
+ βk,0

⎞⎠ (2.11)

with k indexing the output number and system outputs respectively. A
constant input neuron x0 = 1 and a hidden neuron without an input can
be applied, which simplifies the mapping to

yk(x,β) = f

⎛⎝ m∑︂
j=0

βk,j h

(︄
dim∑︂
i=0

βj,ixi

)︄⎞⎠ (2.12)

which represents the full MLP network architecture as shown in figure 2.2.
In terms of model-based calibration, a regression is performed. Hence, the
activation function of the output layer, which is necessary in classification
application, is not used and a regression MLP network is defined by

yk(x,β) =
m∑︂
j=0

βk,j h

(︄
dim∑︂
i=0

βj,ixi

)︄
. (2.13)

The most common activation functions h(·) are the logistic sigmoid or the
tanh function [Bis06]. The MLP is a very flexible network in case the num-
ber of hidden neurons m is high. Given the data, m needs to be defined
prior to the training. In case a high amount of hidden neurons is given, the
MLP tends to overfit the data and has a low prediction quality. In practical
applications, either the amount of hidden neurons is parameterized manu-
ally or a high quantity is defined and a regularization term called weight
decay is added to the error function during training. The regularization
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strength is defined by the value λ in the error function

Ẽ(β) = E(β) +
λ

2
β⊤β (2.14)

and rewards small weights during training. The training of an MLP always
is a nonlinear optimization problem. The activation function maps the
input in combination with the weights in the hidden layer to a nonlinear
output behavior. Therefore, the training of an MLP is very time consuming
and often results in a local optimal solution if a local optimization proce-
dure is applied [Nel06].

Next to the MLP network, radial basis function (RBF) networks [HJ01;
Bis06] are often utilized. This type of neural network differs from MLP
by the type of basis function Φj(x). While MLP creates nonlinearity by
applying an activation function to the linear mapping, the RBF base is a
symmetric basis function, which is activated by the distance to the center
of each neuron. Introducing the radial basis function to (2.13) gives

yk(x,β) =
m∑︂
j=0

βk,j Φj (||x− cj ||) (2.15)

with a centered neuron at each location cj and the vector norm ||·||. To
avoid overfitting, typically fewer centers are defined than training points.
This leads to more complex training because next to the weights and basis
function parameters, the center locations need to be found. The most
common radial basis function for the RBF network is the Gaussian function

Φj(x) = exp(−||x− cj ||2
2σ2j

) (2.16)

with the impact range of neuron j defined by the variance σ2j . The shape
of each basis function is elliptic if a covariance matrix Σj is utilized instead
of a fixed variance term σ2j

Φj(x) = exp(−1

2
(x− cj)

⊤Σ−1
j (x− cj)) (2.17)

which significantly increases the amount of parameters to train. A compro-
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mise on amount of parameters and quality is a diagonal covariance matrix,
where a rotation of the ellipsoids is prohibited but a dimension specific
width still is present [Nel06].

Next to Gaussian shaped basis functions, thin-plate splines are sometimes
applied [HJ01]. The basis function choice mainly depends on the process
to approximate. A general judgment of a best-performing basis function is
not applicable. Since the combustion engine outputs behave very different,
even in terms of model-based calibration none of the basis functions applies
best for all outputs.
The training of an RBF network strongly depends on the assumption

of the basis functions definition. In case the location cj and width Σj is
optimized together with the weights βk,j a nonlinear optimization is present.
In practical applications, different procedures are described, which first
define the centers and then optimize the weights. The main advantage of
the sequential optimization is the determination of the weights, which are
calculated by least squares if the basis function is defined. The location of
the centers is the most challenging problem, which is done for example by
randomized selection, clustering, or a stepwise selection [Nel06].

2.1.3 Local Linear Model Network

A main advantage of RBF or MLP neural networks is their flexibility, which
comes with a main disadvantage, namely the degree of freedom regarding
parameterization and training. Driven by the target to design a flexible
model class with low training and adjustment effort, local linear model
networks are developed that are able to reproduce the combustion engine
behavior within the whole engine operating range. The influence of actua-
tors to outputs often changes strongly within the input domain, as for ex-
ample injection parameters have varying influence on soot emissions within
different operating areas and for a different fuel pressure. Polynomial mod-
els as described in section 2.1.1 are not able to represent this behavior
accurately. Local linear model networks are introduced to divide the input
domain into areas of high nonlinearities and model each zone with an own
model of low complexity. The composition of those low complexity models
is able to model more complex behavior. The base model structure is a
neural network at which each zone is defined by a neuron and its activation
function. Several different partitioning algorithms exist, as described in
[Har14] for example. The two most important model network types in the
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segment of combustion engine modeling, which are based on tree structures,
shall be presented.

Local Linear Model Tree

The local linear model tree (LOLIMOT) was introduced in [NSI96]. The
idea behind this model structure is to separate the input domain axis-
orthogonally in areas of strong nonlinearity. For each zone, a local polyno-
mial model is trained and combined with the neighbor zones by a validity
function. The base of the validity function is given by Gaussian functions
in the input domain [Har14] as

τi(x) = exp

(︃√︂
(x− ci)⊤Σ

−1
i (x− ci)

)︃
(2.18)

with the center of each function defined by ci and the corresponding co-
variance matrix Σi. Due to the axis-orthogonal separation, the covariance
matrix for this model type is a diagonal matrix

Σi =

⎡⎢⎢⎢⎣
σ2i,1 0 · · · 0

0 σ2i,2 · · · 0
...

...
. . .

...
0 0 · · · σ2i,dim

⎤⎥⎥⎥⎦ (2.19)

given the variance in dim dimensions for the particular partial model i. A
scaling of the Gaussian functions results in validity functions. The sum of
all validity functions τi is always one, which is the so-called partition of
unity:

ζi(x) =
τi(x)∑︁M
j=1 τj(x)

(2.20)

An example of three Gaussian functions and the corresponding validity
function is shown in figure 2.3. The training of a LOLIMOT consists of
two parts. The polynomial model in each zone is trained by least squares
with low effort. The identification of the zone locations takes more effort
because a combined training of all splits results in a nonlinear optimization
problem. That is why a tree structure is applied for LOLIMOT, which
can be trained iteratively. The zone with the highest error is split into two
zones in an axis-orthogonal way through the center. To find the direction all
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Figure 2.3: Gaussian membership function (left) and validity function (right) [Har14]

possible mutations are executed and the most improving one is used. The
input domain is split until a defined abortion criterion is reached, which
could be the maximum amount of zones, a defined training error, or a
validation error. Figure 2.4 exemplarily shows the iterative split procedure
in a two dimensional input domain. The width of each zone and also the
smoothness of local model transition is defined by the covariance matrix
Σi. For LOLIMOT, the σi,j are defined by the dimension specific width
of the corresponding local model ∆ij and a smoothness factor of kσ = 1/3
[Har14] to

σi,j =
1

3
∆ij . (2.21)

The mean advantages of the axis-orthogonal separation of the input do-
main are the good interpretability and the low amount of parameters to
train. A projection of the Gaussian functions to one-dimensional repre-
sentations enables practitioners to understand the partitioning in practical
applications. However, this model type also has disadvantages in some
cases. Given a process with strong nonlinear behavior in the direction of
the input axes the splitting works very well and the process behavior can
be explained with low effort and high quality. In case high changing gradi-
ents exist on the input domain diagonal, many axis-orthogonal separations
are necessary to explain the behavior [Har14]. This is not only a problem
of training duration but mainly a problem of necessary amount of mea-
surement. The more splits that are performed, the more training data is
necessary to provide enough data for each local model. For this reason, the
hierarchical local model tree is introduced and presented in the following.
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66 4 Nichtlineare Optimierung der Struktur lokaler Modellnetze

5. Überprüfe Abbruchbedingung: Wenn die Abbruchbedingung erfüllt ist, findet keine
weitere Teilung mehr statt und der Algorithmus ist beendet. Ansonsten gehe zu
Schritt 2.

Zum Abbruch des Algorithmus sind mehrere alternative Kriterien möglich, beispielsweise
die maximale LM-Anzahl, ein geforderter Modellfehler, verschiedene Validierungstechniken
oder statistische Informationskriterien. Eine ausführliche Diskussion dazu findet sich in den
Kapiteln 3.5 und 4.4.
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Bild 4.6: Vier mögliche Iterationen von Lolimot [116].

Die Gültigkeitsbereiche jedes lokalen Modells werden durch normierte Gauß’sche Zugehö-
rigkeitsfunktionen µi definiert. Diese sind achsenorthogonal ausgerichtet und durch folgende
nichtlineare Parameter eindeutig bestimmt: den Zentrumsvektor ci und die Kovarianzma-
trix ⌃i. Die Kovarianzmatrix ⌃i ist wegen der Orthogonalität nur auf der Diagonalen
mit den Standardabweichungen �ij des i-ten LM in die j-te Raumrichtung besetzt. Wie
in Bild 4.7 dargestellt, ist die Breite der LM mit dem Parameter �ij festgelegt. Um die
Glattheit der Modellübergänge einstellen zu können, werden die �ij mit einem Proportio-
nalitätsfaktor k� multipliziert, der standardmäßig den Wert k� = 1/3 annimmt. Dann ist
�ij = k� ·�ij.

Figure 2.4: Exemplary LOLIMOT partitioning sequence with 4 iterations in a two-
dimensional input domain with inputs u1 and u2 [Nel20]
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Hierarchical Local Model Tree

The main difference between the described LOLIMOT algorithm and the
hierarchical local model tree (HILOMOT) is the way the separation is done
in the input domain. While LOLIMOT only searches for axis-orthogonal,
centric splits, the splitting hyperplane can be located axis-oblique anywhere
in the considered zone with the HILOMOT. Unlike LOLIMOT, the search
for an axis-oblique partitioning is a nonlinear optimization problem. A
dense, symmetrical covariance matrix is the result if Gaussian functions
are used as base for the validity function. Following multilayer perceptron
networks, usually sigmoid functions

ζi(x) =
1

1 + exp(αi)
(2.22)

with the exponent
αi = −κ [1 x]⊤ pi (2.23)

are used to identify the validity function for each split. αi defines the
smoothness of the sigmoid function and mainly controls the transition be-
tween the zones. Since this function type is fully defined by the split direc-
tion parameter vector pi with n+1 entries for each split and the smoothness
constant κ, fewer parameters need to be optimized as compared to Gaussian
functions [Har14].
The training is also iteration-based and starts with a one-zonal polyno-

mial model. In each iteration, the worst zone is identified by model error
and a split is executed. The initialization subset of hyperplanes for the
split is generated by all axis-orthogonal hyperplanes and one in the same
direction of the preceding split hyperplane, passing through the center of
the zone. Starting with the hyperplane from the initialization subset that
leads to lowest model error, the split direction and location is optimized in
a nonlinear way. As optimization criterion the normed root mean squared
error (NRMSE) of the training data is used. The same abortion criteria as
for LOLIMOT apply for the HILOMOT training as well. Figure 2.5 shows
an exemplary axis-oblique splitting procedure of the input domain by using
the HILOMOT algorithm.
Especially for high dimensional process behavior, as it occurs in combus-

tion engine calibration applications, HILOMOT shows better results re-
garding the model error compared to LOLIMOT [Har14]. The axis-oblique
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Figure 2.5: Exemplary HILOMOT partitioning sequence with 5 iterations in a two-
dimensional input domain with inputs u1 and u2 [Har14]
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Figure 2.6: Comparison of model error over number of model parameters, which is the
sum of partitioning and local model parameters, for HILOMOT+ (left) and
LOLIMOT (right) for input dimensions one to five [Har14]

split direction highly improves the model flexibility, which is necessary for
nonlinear process modeling. A further improvement is achieved by an ad-
ditional term selection procedure during the HILOMOT training as also
introduced in [Har14]. During each iteration, the significant terms of the
considered local polynomial model of given maximum order are selected
and the necessity of a split is considered. The improvement of this so-
called HILOMOT+ compared to the classical LOLIMOT model is shown
in figure 2.6. The amount of model parameters at the same error level is
significantly reduced, which increases exponentially with the dimension.

2.1.4 Gaussian Process Model

The utilization of the Gaussian process model (GPM) in model-based en-
gine calibration has a young history. Even though it was introduced in
1960 under the name Kriging in the area of meteorology and geostatis-
tics as an interpolation method for spatial modeling, the GPM in terms
of machine learning was introduced in 1996 by Williams and Rasmussen
[WR96]. The popularity was achieved by the publication of Rasmussen
and Williams in 2006 [RW06] where the basics, algorithmic improvements,
and also an implementation is described. This made the complex proba-
bilistic theory accessible for a broader engineering application range. Also
the implementation details significantly improved the training performance,
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which is crucial for the expensive training of a GPM. The first important
comparison of GPM and state-of-the-art-utilized model classes in engine
calibration was made in 2011 by Berger, Rauscher and Lohmann [BRL11]
and Berger and Rauscher [BR11] respectively. Earlier publications indicate
the introduction of GP-based modeling techniques, as for example Kruse,
Ulmer and Schulmeister in 2007 [KUS07], but do not mention the GPM
directly.
The derivation of a GPM and its similarity to other model types is most

easy to understand if the Bayesian linear model is introduced first. The
base of this model is again the linear model

f(x) = xβ. (2.24)

If the inputs first are projected into feature space, the linear model is able
to represent nonlinearities, but the model stays linear in its parameters and
takes the form

f(x) = Φ(x)β (2.25)

with the basis function Φ(x). Noise is added to the function

y = f(x) + ϵ (2.26)

as independent, identically distributed Gaussian noise with ϵ ∼ N (0, σ2n),
given the noise variance σ2n. The noise assumption is important for engineer-
ing applications, as the function values will always differ from experiment
results. In a Bayesian framework, inference on the parameters is made by
Bayes’ rule

posterior =
likelihood× prior

marginal likelihood
. (2.27)

Hence, the likelihood and the prior for the linear model needs to be derived.
Given the Gaussian distributed noise, the likelihood is defined by

p(y|Φ(X),β) =

n∏︂
i=1

p(yi|Φ(xi),β) =

n∏︂
i=1

1√
2πσn

exp(−(yi − Φ(xi)β)
2

2σ2n
)

=
1

(2πσ2n)
n/2

exp(− 1

2σ2n
|y − Φ(X)β|2)

= N (Φ(X)β, σ2nI)
(2.28)
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and gives rise about the probability of the measurements y given the pa-
rameters β. The prior probability distribution needs to be conjugate to the
likelihood, which in this case is a Gaussian distributed prior on the weights

β ∼ N (0,Σp) (2.29)

with zero mean and covariance matrix Σp. Only the likelihood and the
prior depend on the weights β. Therefore, the posterior probability is only
dependent on the enumerator in (2.27) and one can write

p(β|Φ(X),y) ∝ p(y|Φ(X),β)p(β). (2.30)

Due to the Gaussian posterior and its conjugate Gaussian prior, the terms
of the prior and likelihood that depend on the weights are necessary solely.
The constant values are neglected and after applying some mathematics
the resulting posterior is

p(β|Φ(X),y) ∼ N (
1

σ2n
A−1Φ(X)y,A−1) (2.31)

with A = σ−2
n Φ(X)Φ(X)⊤ +Σ−1

p . The complete derivation of (2.31) can
be gathered from [RW06].
The most probable solution for the weights β, also called the maximum

a posteriori (MAP), is given by (2.31). A procedure to make predictions
with this distribution is to calculate the mean value for the weights and use
(2.25) to make predictions by

f(x∗) = Φ(x∗)β̄ (2.32)

with β̄ as the mean of (2.31) and x∗ as the input data to make predictions
for. This gives rise about the mean value but one would miss the vari-
ance of the prediction. Therefore, in the Bayesian setting a prediction is
made by putting a weight on each possible weight value by using the MAP
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distribution and average over the outcome

p(f∗|Φ(x∗),Φ(X),y) =

∫︂
p(f∗|Φ(x∗),β)p(β|Φ(X),y)dβ

= N (
1

σ2n
Φ(x∗)

⊤A−1Φ(X)y,Φ(x∗)
⊤A−1Φ(x∗).

(2.33)
The resulting distribution again is Gaussian with mean value same as en-
tering the MAP mean to (2.32) but with given variance.
The Bayesian linear model is a good choice if the basis function architec-

ture Φ(x) is given and the parameters need to be determined. It is robust
concerning overfitting, because the prior distribution

p(β) =
1√

2πΣp

exp(−1

2
β⊤Σpβ) (2.34)

acts as a penalty, reducing the posterior probability for high weights. This
regression also is called ridge regression [HK70]. However, in many appli-
cations, and also in combustion engine modeling, the best matching basis
function is not known in advance. At this point the GPM takes place. In-
stead of making inference in weight space, this model type directly infers
the function in function space. Therefore, only a mean function m(x) and a
covariance function k(x,x′) is required and the Gaussian process is defined
as

f(x) ∼ GP(m(x), k(x,x′)). (2.35)

In many applications, the mean function is set to zero. The most com-
mon use to generate the covariance matrix is the squared exponential (SE)
covariance function

k(xi,xj) = σ2f exp(−
1

2l2
|xi − xj |2) + σ2nδij (2.36)

with the Kronecker delta δij being one if and only if i = j and zero oth-
erwise. σ2n represents the measurement noise variance and is added only
to the training inputs, because again independent identically distributed
Gaussian noise is assumed. The parameter l2 is called length scale and con-
trols the smoothness of the process. σ2f defines the overall signal variance.
As described, one important disadvantage of the Bayesian linear model is
the basis function, which needs to be defined in advance. In [RW06], it is
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shown that the SE covariance function used in a Gaussian process behaves
in the same way as a Bayesian linear model with an infinite number of basis
functions.

Given the covariance function, the prior distribution over functions p(f |X)
is defined by N (0,K(X,X)). To make predictions only from the prior,
the joint distribution of training outputs and test outputs[︃

y
f∗

]︃
∼ N

(︃
0,

[︃
K(X,X) + σ2nI K(X,X∗)

K(X∗,X) K(X∗,X∗)

]︃)︃
(2.37)

is used. K(X,X) defines the covariance matrix of all training inputs with
each other. K(X,X∗) is the covariance matrix of all training inputs and
the test inputs and K(X∗,X∗) is the covariance matrix only of the test
inputs. The identity matrix I has one entry on its main diagonal and
zeros elsewhere. As this distribution is a joint Gaussian, the distribution
between training and test inputs is Gaussian as well, which is an important
characteristic.
In making predictions, the prior distribution is not of high importance.

More interesting is the posterior distribution over functions, which incorpo-
rates the training outputs into the prediction. Therefore, the joint Gaussian
distribution needs to be conditioned on the observations, which gives

f∗|X,X∗,y ∼ N (K(X∗,X)[K(X,X) + σ2nI]
−1y,

K(X∗,X∗)−K(X∗,X)[K(X,X)

+ σ2nI]
−1K(X,X∗)).

(2.38)

Given this multivariate Gaussian distribution, the GPM is fully defined
and predictions can be made given measurement data. In Gaussian pro-
cess regression the main goal is not to find weights, because the function
space view does not map weights to training data but infers directly from
training data to prediction. A prediction in the Bayesian linear model as
in (2.33) is only dependent on the weights and not on the training data
anymore. This is different in the GPM, as the mean in (2.38) is still de-
pendent on the training data but without any weights. However, to train
a GPM it is necessary to tune the covariance function. In case of the SE
covariance function (2.36), the length scale, measurement noise, and signal
variance need to be optimized. These parameters are called hyperparame-
ters and therefore the training differs from finding weights in a linear model.
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Two optimization procedures are mainly utilized. As typical for Bayesian
settings, the maximum likelihood procedure applies to GPM as well. An
alternative approach is to optimize the predictive probability in a cross-
validation setup. Within this research, the length scale parameter l2 has
one entry for each input dimension and is therefore a vector of length dim,
which is the amount of inputs. The input specific value enables the GPM
to offer a variable flexibility in each dimension, which is necessary for an
application in model-based calibration.

Marginal Likelihood Optimization

In contrast to the linear parametric model, the GPM has no weight pa-
rameters. The only way of adjusting the model to the data are the hyper-
parameters of the SE covariance function (2.36). One may first think of a
maximization of the hyperparameter posterior

p(θ|y,X) =
p(y|X,θ)p(θ)

p(y|X)
(2.39)

but there is no appropriate solution to approximate p(y|X). Hence, the
likelihood p(y|X,θ) is optimized, which in the application of a GPM is
called marginal likelihood. This is due to the fact that this term is the
marginal likelihood in the posterior over parameters following Bayes’ rule

p(β|y,X,θ) =
p(y|X,β)p(β|θ)

p(y|X,θ)
. (2.40)

The marginal likelihood of a Gaussian process is thus defined by the integral
over the likelihood of the data times the prior over functions

p(y|X,θ) =

∫︂
p(y|f ,X)p(f |X)df (2.41)

and gives rise about the probability of the data given the inputs.
The prior does not depend on the hyperparameters directly but is affected

by them through the covariance matrix of the training data K := K(X,X)
in its Gaussian distribution

p(f |X) ∼ N (0,K) (2.42)
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and hence the marginal likelihood also depends on the hyperparameters.
A maximization of the marginal likelihood is possible by changing the hy-
perparameter vector θ. The likelihood of the data is given by a factorized
Gaussian

p(y|f ,X) ∼ N (f , σ2nI) (2.43)

leading to the log marginal likelihood

log p(y|X,θ) = −1

2
y⊤(K + σ2nI)

−1y− 1

2
log |K + σ2nI| −

n

2
log 2π. (2.44)

The second term 1/2 log |K + σ2nI| acts as a regularization and penalizes
complex functions. Even though the marginal likelihood optimization is
penalized, it still is an optimization only on the training data and takes all
training data into account. This can lead to significant overfitting, which
is why the cross-validation training is introduced.

Cross-Validation Optimization

The cross-validation method takes place in many model selection methods
and generalization assessment of trained models [HTF09]. The most pop-
ular method is the leave one out cross-validation (LOOCV) procedure. To
judge the generalization quality of a given model structure, it is trained
n − 1 times each with n − 1 training data, leaving out each training sam-
ple once. The mean of all prediction errors of the omitted training sample
is the LOOCV error. In terms of a model, the weights β of the model
are determined in each training with fixed basis function. However, the
procedure in Gaussian process regression is slightly different, because the
model consists of hyperparameters and does not estimate weights from the
training samples but uses the full data for predictions. In Gaussian pro-
cess LOOCV error estimation, the hyperparameters stay fixed and only one
training point is excluded from prediction respectively. The leave one out
log predictive probability becomes

LLOO(X,y,θ) =

n∑︂
i=1

log p(yi|X,y−i,θ) (2.45)
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with the predictive log probability for training sample i

log p(yi|X,y−i,θ) = −1

2
log σ2i −

(yi − µi)
2

2σ2i
− 1

2
log 2π. (2.46)

The mean µi and variance σ2i are calculated by (2.38) where training sample
i is removed from y and X but is used for X∗ instead. In contrast to the
marginal likelihood optimization, the leave one out log predictive probabil-
ity maximization provides a solution to train the hyperparameters avoiding
excessive overfitting. Since simplifications are present to solve (2.45), the
computational effort is only slightly higher compared to (2.44). However,
solving the derivative of the leave one out log predictive probability is more
time consuming, leading to a higher time demand to train the hyperparam-
eters compared to the marginal likelihood optimization [RW06].

2.1.5 Model Type Comparison

An important decision to make during this research is the choice of model
type to develop the methods for. The test design is the main objective
of an adaptive test design. In section 2.2, the criteria regarding training
point distribution for the different model types will be introduced. Since
these can be unequal, the model choice defines the algorithms that apply
best during adaptive test design. Hence, a comparison of the introduced
model types and the selection of the most suitable one form the base for
this development.
The objective of model choice is not to select the best suitable type for an

efficient adaptive test design but more to identify the best suitable one for
model-based calibration. However, the model also should be applicable to
an adaptive test design procedure. For instance, a model training without
user interaction must be possible and therefore is treated as constraint
for the selection. Some studies are already carried out regarding model
comparison in terms of model-based calibration. The results will be shown
and extended in this section.
The criteria for the selection mainly follow the studies of [BRL11] and

[Tie15]. In the study of Berger [BRL11], the GPM is compared to polyno-
mial models, MLP networks and the tree structure models LOLIMOT and
HILOMOT. The common criteria to evaluate within model-based calibra-
tion are
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� applicability to high-dimensional problems,

� amount of necessary training data,

� ability to represent strong nonlinear process behavior (accuracy),

� robustness against overfitting,

� approved for automatic model training,

� uncertainty representation.

A more detailed comparison is done by [Nel20]. This comparison is ex-
tended in [Tie15] by GPM in a dynamic system identification scope. Since
the evaluation criteria are very similar for steady-state and dynamic mod-
eling, the comparison can be transferred and adjusted. Additional to the 6
already shown criteria from [BRL11], further model-based relevant criteria,
rated in [Tie15], are

� sensitivity to noise,

� interpretation,

� incorporation of prior knowledge,

� training speed / training of large data set,

� uneven data distribution,

� extrapolation behavior.

There exist many more criteria, which are neglected in the scope of adap-
tive test design. Criteria like iterative modeling and model recalibration
seem to be relevant but as long as a new model training is possible they
are not for an adaptive test design. The only disadvantage of bad model
recalibration capability is the training speed, because a full training always
needs more computational effort. The criterion sensitivity to noise is part
of the model accuracy and therefore will be combined. Additionally to
the criteria, weights are introduced. Most important are the model per-
formance criteria accuracy and overfitting as well as the applicability to
high-dimensional problems, as they frequently occur in model-based cali-
bration. Measurements are expensive in MBC and the amount of necessary
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data is therefore a crucial criterion as well. A medium weight is introduced
for criteria that are important but less significant than the performance
topics. Automatic model training is relevant to enable non-experts to train
a model with high quality and especially apply a model to an adaptive
test design strategy. To achieve reliable results, the model uncertainty
representation is a relevant criterion as well. A high training speed is im-
portant for a manual iterative optimization and for an adaptive test design
strategy that trains a model several times during the measurement cam-
paign. The model sensitivity to the sample distribution correlates with the
amount of necessary data but can be influenced by a test design strategy
and therefore obtains a low weight. Interpretability and prior knowledge
incorporation are seldom demanded in MBC. Interaction plots are used to
verify the model behavior and replace the model interpretation necessity.
Prior knowledge can be incorporated for example during the test design
by restricting the design area. Since data-driven models are not able to
extrapolate accurately compared to physically-based models, extrapolation
is mostly restricted in MBC applications by only incorporating the mea-
sured region during evaluation. Therefore, the extrapolation behavior is
weighted low as well. Table 2.1 shows the rated model classes and the
weights respectively.
The GPM performs very well in most criteria with a final sum of 45

and a weighted mean of 4.1, outperforming the other model types in both
weighted and unweighted result. Especially the highly important topics
accuracy, high-dimensional application, and necessary training data are
very high rated for the GPM. The good accuracy can be explained by a
comparison to MLP: The use of a GPM can be interpreted as an MLP
with infinite amount of neurons or basis functions, respectively [Nea96;
RW06]. Hence, the basic flexibility of a GPM does not depend on the
architecture like with all other model classes. Even in HILOMOT, a local
model type needs to be specified. However, the flexibility of a HILOMOT
and also MLP with a high amount of neurons is sufficient for model-based
calibration, which is why they are rated very well. Only polynomial models
suffer from their low complexity. A raise of model order in polynomial
models yet results in higher oscillation and therefore in overfitting and
a wrong representation of the true process. Overfitting can be handled
well by statistical term selection but the oscillation behavior would stay.
In model-based calibration, the amount of measurements is one critical
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Table 2.1: Rating of different model types. The higher the value, the better is the rating
with 1 as worst and 5 as best rating.

Weight Polynomial NN HILOMOT GPM

Accuracy 3 31 41 42 52

High-Dimensional
Application

3 21 41 42 52

Amount of
Necessary Data

3 33 5 23 53

Overfitting 3 53 3 4 3

Automatic Model
Training

2 3 3 5 4

Uncertainty
Representation

2 22 12 32 52

Training Speed 2 41 11 42 22

Training Sample
Distribution

2 12 52 3 32

Interpretation 1 31 21 42 52

Prior Knowledge
Incorporation

1 21 21 42 32

Extrapolation 1 12 32 32 52

Sum 23 29 33 40 45

Weighted Mean - 2.8 3.3 3.6 4.1

1 ∼ [Nel20] 2 ∼ [Tie15] 3 ∼ [BRL11]
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task to address. Measurements are done at a very cost-intensive engine
test bench, which is why a high weight is put on the criterion amount of
necessary data. Especially the HILOMOT model has a low rating, because
the training is performed in each zone only with the belonging training
data. Since the individual local model does not know about the process
behavior in the neighboring zone, this property can lead to an inaccurate
representation in the zone transition areas. GPM and neural networks
in contrast take all measurement into account for model training. Due
to the amount of coefficients, polynomial models need a high amount of
data for complex process assumptions. A comparison of model quality
at a low amount of training data is derived in [BRL11] where the GPM
shows significantly better results as compared to a polynomial model. A
contrary result is found in [Ran+13] where the polynomial model is rated
slightly better regarding the necessary amount of training data compared
to a GPM. However, the GPM still will be rated high, because the amount
of necessary data rises with the complexity of the process and polynomial
model complexity, respectively. The rating of polynomial models and GP
models in [Ran+13] regarding accuracy is similar to [Tie15] and [Nel20].
In modeling with GPM and neural networks, overfitting is a significant

issue to cope and needs to be taken into account strictly. Automatic model
training is important in terms of an adaptive test planning procedure, be-
cause it relies on a trained model without user interaction. Polynomial
models and neural networks in particular suffer from the fixed basis func-
tion. The split algorithm in HILOMOT is a nonlinear optimization and
therefore only the polynomial order of the local models needs to be de-
fined. Low order local models already achieve very flexible global model
results [Har14]. Alternatively, the HILOMOT+ with automatic term se-
lection could be applied. The only drawback of GPM regarding automatic
model training is overfitting. Therefore, regularization needs to be consid-
ered accurately.

The training speed of a model becomes less and less important. Com-
puter hardware is continuously getting more powerful and the main train-
ing operations are easy to be solved by parallel computing processes for
all model classes. Regarding the adaptive test design the training speed
needs to be taken into account, because the model needs to be trained for
further test point calculations. The effort to train the GPM is high due
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to a necessary matrix inversion. However, this is not a strong restriction
for the application but more a boundary constraint to be observed. More
relevant is the training sample distribution. Neural networks are rated to
be very robust for uneven distribution by [Tie15], but since all these model
types are black box models it is hard to predict the true process in unseen
areas, even in terms of interpolation.

Having a look at the overall rating, the Gaussian process model performs
best and is closely followed by the HILOMOT. It is easy to judge which
model type suits best for model-based calibration in most cases, because
the main disadvantages of the GPM are training speed, training sample
distribution, prior knowledge incorporation, and overfitting. As already
stated, training speed is becoming less and less relevant. Training sample
distribution must be addressed precisely by the test design and is a main
target of the adaptive test design methodology anyway. Regularization
could be considered during model training to cope with overfitting in case
the LOOCV optimization does not fulfill the requirements. The incorpora-
tion of prior knowledge for test planning is a topic that will be discussed for
GPM within this research. The most decisive features good accuracy and
low amount of necessary training data are perfectly fulfilled by the GPM.

2.2 Model Specific Test Design Requirements

Section 2.1.5 deals with the comparison of different model types, which
are typically applied in model-based calibration processes to describe the
behavior of combustion engines. The training sample distribution is one
aspect for the comparison of the model types as shown in table 2.1. Each
model type reacts different to optimal distributed measurements where the
optimum is again dependent on the model type. For that reason, the de-
sign of experiments (DoE) method is introduced with different types of test
designs. The first methodology for designing an experiment was already in-
troduced in 1926 by Ronald Fisher [Fis26]. Today, many different methods
exist to plan experiments, suited to the model class that shall be applied
to the measurements. Four different general model classes are introduced
in section 2.1. The matching test planning methods are discussed in the
following.
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2.2.1 Optimal Test Design

The optimal test design is a group of different test point distribution cre-
ation methods, which all have different optimization objectives. The most
popular and widely used one is the D-Optimal test design. As any optimal
test design, it is only applicable to a given parametric model structure.
The D-Optimal test design optimizes the test points to have a distribu-
tion that shows a minimized variance of model parameters after model
training [Mon08]. All optimal designs are based on the Fisher information
matrix (M⊤M)−1, which is part of the least squares estimate for model co-
efficients in linear modeling (refer to (2.8)). The D-Optimal test design can
be calculated by minimization of the determinant of the Fisher information
matrix or, more suitable, by maximization of the inverse

Mopt,D = argmax
M

(det(M⊤M)). (2.47)

Another popular test plan creation method is the G-Optimal test design,
which minimizes the maximum prediction variance. The test design is
created by computing a solution for M that minimizes the maximum value
of the hat matrix [Sch96; SBH10]

Mopt,G = argmin
M

(max(M(M⊤M)−1M⊤)). (2.48)

Several further optimal test design methods exist, such as A-, C- and E-
Optimal designs to minimize the model coefficient variance and I- and V-
Optimal designs to minimize the prediction variance [Kow17].

What all test design methods have in common is that there is no closed
solution computable. The main procedure to generate an optimal test de-
sign is a candidate exchange method. A start design is initialized and then
test points are exchanged iteratively from the design matrix by a candi-
date set. The most suitable solution will be declared as optimal solution,
even if the global optimum is not found in most cases. An example for an
efficient generation of D-Optimal test designs is the DETMAX-Algorithm,
introduced by Mitchell [Mit74], which iteratively adds or substitutes points
from the design matrix, leading to a higher determinant value of the in-
formation matrix in each iteration. This algorithm was adjusted by Welch
to cope G- and V-Optimal designs as well [Wel84]. Several further algo-
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rithms with local and also global optimization procedures exist, which can
be found in literature.

The optimal design procedure is often applied to linear parameter models
with given basis functions. Therefore, they are mainly applied in polyno-
mial model utilization. The more general formulation of the Fisher informa-
tion matrix [Kay93] given a data set with N measurements and assuming
Gaussian noise is

[I(β)]ij =
1

σ2

N∑︂
k=1

dŷk
dβi

dŷk
dβj

(2.49)

and is applicable also to models that are nonlinear in their parameters.
However, to find a test design becomes more expensive. Also the choice
of model parameters e.g. in neural networks in practice is inappropriate.
Given some rough prior knowledge, the split locations in LOLIMOT models
can be defined [MTI03; Sta+11], whereupon an optimal design can be found
prior the experiment.

2.2.2 Bayesian Experimental Design

The major problem in experimental design is the uncertainty about the
model parameters that need to be determined. As Cochran [Coc73] pointed
out very well in his article about experiments for nonlinear functions: “You
tell me the value of θ and I promise to design the best experiment for
estimating θ”, which shows that experiments are easily designed if the
parameters are known. θ in this sense are the model parameters, stated as
β in this research. However, in most applications the aim of experiments
is to gather information to determine the unknown parameters.
Most important in Bayesian experimental design is the choice of a utility

function, which decides about the optimization criterion. One common
method for linear model types is the Bayesian D-Optimal test design, which
is strongly related to the non-Bayesian D-Optimal test design presented in
section 2.2.1. The Bayesian D-Optimal test design originates from using
Shannon information and therefore from the maximization of the Kullback-
Leibler divergence between the prior and posterior distribution

U(X) =

∫︂
log(p(β|y,X))p(y,β|X)dβdy (2.50)
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as base for the utility function [CV95]. This leads to the design criterion

ψ(X) =

∫︂
log det(nI(β,X) +R)p(β)dβ (2.51)

where nI(β,X) represents the Fisher information matrix. In case a linear
model is considered, the Fisher information matrix does not depend on β
and (2.51) is simplified [CV95]. While the non-Bayesian scheme maximizes
the determinant of the Fisher information matrix (2.47), the Bayesian D-
Optimal test design incorporates the prior assumption on the parameters.
The result still is the maximization of the determinant of the Fisher in-
formation matrix but with an additional term, which originates from the
prior distribution. The term R is the variance of the prior suggestion and is
called the covariance matrix of the parameters. Solving (2.51) for a linear
model leads to

ψlinear(M) = −k
2
log(2π)− k

2
+

1

2
log det(σ−2(MM⊤) +R)) (2.52)

with the amount of parameters k and the design matrix M . A Bayesian D-
Optimal test design for a linear model can be found by maximizing (2.52),
which can be simplified to

Mopt,D,Bayes = argmax
M

(det(M⊤M +R)). (2.53)

The complete derivation of (2.53) and also other Bayesian optimal experi-
mental designs, as e.g. Bayesian G-Optimal design, can be found in [CV95]
for example. A utilization of Bayesian D-Optimal design in terms of MBC
for a linear model is discussed and shown in [ZD11]. In that research, the
Bayesian scheme is used to optimize the D-Optimal test design to incor-
porate space-filling test points by means of an adjusted prior covariance
matrix. The disadvantage of non-Bayesian D-Optimal test design can be
that many tests are executed at the input domain borders and none or just
a few are planned space filling, which is addressed.
Considering nonlinear models, the integral in (2.51) has no closed so-

lution and is of non-convex shape, which makes it hard to find a global
optimum. One solution would be to put an assumption on the parameter
vector β0 and find the best solution for ψ(M) by considering the gradients
of the nonlinear model [CV95]. The disadvantage of this method is the
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need for appropriate prior knowledge, since the guess about the parameter
vector decides about the quality of the result. Other solutions are shown
by numerical approximations of the integral, e.g. by Monte Carlo simula-
tion, gridding methods [Rya+15] or Markov chain Monte Carlo simulation
[CMP96].

2.2.3 Space-Filling Test Design

The space-filling test design methods try to reach an evenly distributed
test point collection. They are not used to generate an optimal test design
for a given model structure but more to cope with unknown input correla-
tion. The basic idea is to generate a test design that gathers most possible
knowledge in each region of the input domain. Typical low-discrepancy
sequences are the Halton and Faure [War95; SBH10] as well as the Sobol
sequence [Sob67]. The most utilized one is the Sobol sequence, which is cal-
culable with low effort and creates a high-quality test design even in high
dimensional space. The Sobol sequence counts as a quasi-random sequence
and therefore shows a low discrepancy, which is a measure of uniform dis-
tribution. A low discrepancy is equivalent to a high space-filling quality.
The Sobol sequence mainly consists of direction numbers for each dimen-
sion that are generated by a primitive polynomial and initial numbers and
have to be defined. Each dimension has its own polynomial and direc-
tion numbers respectively. Given these direction numbers, the sequence in
each dimension is calculated by an exclusive or operation of the preceding
sequence value xn and the direction number vj(n)

xn+1 = vj(n) ⊕ xn. (2.54)

The direction number vj(n) is chosen from the binary representation of the
sequence step n, where the rightmost zero entry counts. For instance, in
sequence step n = 7 with binary representation 72 = 0111 the fourth direc-
tion number is selected. The most popular guide on the implementation of
a Sobol sequence is shown in [BF88].
Another method for the creation of low-discrepancy test designs is the

iterative selection of candidates from a list that fulfills some distance crite-
rion. A very popular one is the maximin criterion, presented by Johnson,
et. al in 1990 [JMY90]. The first point selection is done at random or with
a fixed selection and all further test points are added iteratively until the
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necessary amount of test points is reached. The selection criterion is based
on the Euclidean distance, whereas the distance of all points belonging to
the test set to all potential candidate points is determined. For all candi-
dates, the closest test set point is selected, resulting in a distance vector
for each potential new candidate. From the distance vector, the maximum
value is determined, the corresponding candidate is selected and ultimately
added to the test set. Given a candidate set S and a test point set X, both
of dimension dim, a new point is found by

x′ = argmax
S

min
x∈X

d(x,S). (2.55)

The maximin method creates very uniform test sets with low discrepancy
but the result strongly depends on the initial selected test point. In case
the candidate amount and distribution is sufficient, maximin test designs
can result in a distribution with low input dimension specific density. This
kind of test design can be useful, as it shows properties of an orthogonal
test design, which is advantageous if each main effect needs to be recognized
well. However, orthogonal test designs show poor behavior if one input has
low or no effect on the output for example. In this case, a lot of mea-
surements are taken without any process information gain. In experiments
with non-discrete steps for each input variable, as they mainly take place
in MBC, orthogonal test designs require a lot of measurements to identify
each main effect. For these reasons, the Latin hypercube design (LHD)
is introduced, which aims to find a design with test points evenly spread
across each input dimension [SWN18]. The basic idea how to generate an
LHD is to separate each input into discrete steps, with the input domain
to be separated into hypercubes. As an example, if for each input 3 steps
are assigned in a 2-dimensional input domain, it can be split into 9 squares.
By permutation of the steps, an LHD can be found, where the design

X =

⎡⎣1 1
2 2
3 3

⎤⎦ (2.56)

would be a valid design. It is easy to recognize that test points only placed
at the principal diagonal is not a satisfying design. Other permutations can
be found, but another criterion is needed to judge a good design. There-
fore, the maximin and LHD is combined by Morris and Mitchell to use
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the strength of both test designs [MM95]. An initial LHD is created and
optimized by a random selection exchange algorithm. Two values in only
one randomly selected column are exchanged if the new design raises the
maximin distance measure. Further, more efficient algorithms to create
such designs are introduced e.g. in [JH08].

Space-filling test designs such as orthogonal, sequence-based, maximin,
and LH designs or any combination of those can be applied to any type of
regression model. Using polynomial models, the introduced optimal test
designs are preferred if the model structure is known. However, in case no
correlation of the input-output mapping is known in advance, the space-
filling test designs are preferred.

2.2.4 Maximum Entropy Design

Another test design for discrete design spaces is based on the change of
Shannon entropy. Originated in [Lin56], the idea is to maximize the infor-
mation content of the test, based on the prior assumption of the parameters
[SW87]. The entropy difference by selecting a test design X is defined by

Ent(Θ)− Ey{Ent(Θ|y,X)} (2.57)

with parameter space Θ and response y. A test design contributes most to
entropy change if the term Ey{Ent(Θ|y,X)} is minimized, which is mainly
affected by the test design. If a model y with independent, identically
distributed error ϵ is assumed, the entropy gain by a test can be expressed
as

Ent(Θ)− Ey{Ent(Θ|y,X)} = Ent(y|X)− Ent(ϵ). (2.58)

For linear models it can be shown that a maximum entropy test design is
equal to a Bayesian D-Optimal test design [SW00] as expressed by (2.53).
Independent if a linear or nonlinear model underlies, the maximum en-
tropy design demands to solve an integral over the parameter space for the
calculation of the entropy. The test design dependent term

Ent(y|X) = −
∫︂

log(p(y|X))p(y|X)dy (2.59)
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contains the marginal probability distribution of the observation

p(y|X) =

∫︂
p(y, θ|X)p(θ)dθ (2.60)

which is analytically intractable if the parameter space is continuous and
not defined. A solution is to define different prior assumptions (K-point
priors) and to put a weight on each assumption, which converts the integral
into a calculable product [SW00]. In non-parametric models, as for example
the Gaussian process model is, there is no need to solve the integral. The
entropy of a multivariate Gaussian and a GPM respectively is defined by

Ent(yGPM |X) = Ent(N (µ,K)) =
1

2
log |K|+ dim

2
(log 2πe) (2.61)

with dimension dim [CT91]. The entropy strongly depends on the covari-
ance matrix K, which in Gaussian process regression is adjusted to the
data by the hyperparameter. Therefore, to generate a maximum entropy
design for a GPM an assumption on the hyperparameter needs to be made,
whereupon a test design by maximizing the entropy can be approximated.
In case the input specific correlation lengths of a measurement noise free
Gaussian process are equal, that is σn = 0 and l1 = l2 = ... = li in (2.36),
the maximum entropy design is similar to a space-filling distribution, with
a more boundary focused design for increasing li [SWN18].

2.2.5 Test Design Conclusion

The most important test design methods are presented that match the
introduced model types in section 2.1. The test design that should be
applied depends on the experiment, knowledge, and model type. Once the
model type is defined, the prior knowledge about the system to identify is
crucial for the test design.
If no knowledge exists, an equal test distribution in the input domain,

which is provided by a space-filling test design, is preferred. In case a poly-
nomial model or Bayesian linear model should be applied and the maximum
degree and input interactions are known, an optimal test design is the first
choice. If additionally prior distributions for the parameters can be as-
sumed, the Bayesian test design or the entropy-based test design should
be the choice. More complex is the selection of the test design applying
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model types like neural networks or local linear model networks. Since
the parameters at neural networks are hard to guess without any measure-
ments, space-filling test designs are frequently applied. In LOLIMOT, it
is possible to define the splits prior to the test and fix the model degree
in each zone. With this assumption, an optimal test design is calculable.
For HILOMOT models, the non-orthogonal splits are again hard to guess,
which is why space-filling test designs are preferred. In GPM applications
an entropy-based test design or space-filling test design is applicable. If
prior knowledge about the hyperparameters is available, the entropy-based
test design could be preferred, because it is calculable in reasonable accu-
racy and incorporates the input impact through the length scale.

The conclusion about the introduced test design mainly counts for tests
that are designed prior any measurement. An iterative test design during
testing yields more possibilities, because the guess about the non-known
parameters can be updated after each test. This procedure and the test
design potentially contributing the most is introduced in section 2.4.

2.3 Boundary Detection Methods

Contrary to computer experiments, combustion engine tests consist of crit-
ical boundaries where a test execution can potentially damage the engine.
These boundaries are reached if input parameter combinations are applied
that have an effect on different measurable physical quantities. A very sim-
ple example is the knocking and misfiring boundary in gasoline engines,
which is mainly affected by the ignition timing. Very advanced ignition
can cause strong knocking, which leads to high pressure oscillation in the
burning chamber and therefore can damage the piston and piston rings.
Retarding the ignition at some time leads to misfiring, where the ignition
energy is not able to inflame the gasoline and air mixture anymore. This
unburned mixture reaches the exhaust aftertreatment where it is burnt
and releases high exothermic energy. The rise of temperature inside the
catalyzer can cause damage to the substrate and catalytic material and
consequently has to be prevented. This example is a very simple one-
dimensional boundary problem. During engine calibration, the boundary
problems arise as multi-dimensional, because interactions between input
parameters cause non-orthogonal boundaries in the input domain. Fur-
ther common physical boundaries to prevent damage at gasoline engines
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Figure 2.7: Schematic boundaries in a two dimensional input domain. The intake valve
opening strongly interacts with the external EGR rate regarding non-drivable
area. The amount of fresh air filling (upper right) and misfire (upper left)
restrict the combinations.

are the maximum turbo charger turbine speed, temperature and pressure
before turbo charger turbine, maximum pressure and temperature inside
manifold, and the maximum peak pressure inside the combustion chamber.
An example for an interaction between two input parameters is given

in figure 2.7. A variation of the intake valve timing and the external ex-
haust gas recirculation (EGR) rate is shown qualitatively for a constant
cylinder fresh-air filling at partial engine load and for fixed exhaust valve
timing. The marked area is a non-drivable area for two reasons. An early
intake valve opening (Miller-cycle [EKP08]) results in a high amount of
internal exhaust gas. Adding EGR is possible only in a low amount, since
the burning stability is reduced if the amount of exhaust gas is increased,
causing a misfire at a high exhaust gas amount. A very late intake valve
opening (Atkinson-cycle [EKP08]) shows a low amount of internal exhaust
gas. However, the intake valve keeps open during the compression stroke
and fresh air is emitted. To achieve the same amount of cylinder fresh-air
filling a higher degree of supercharging needs to be applied, which has some
limit. Additional EGR reduces the fresh-air filling further more.

43



2 State of the Art

In diesel engine calibration, the amount of damaging parameter is nearly
the same. Due to the different combustion principle, knocking does not
occur and the exhaust temperature in general is lower. However, the max-
imum peak pressure, misfire, turbocharger speed, intake and exhaust gas
temperature and pressure need to be monitored as well. Since the diesel
engine is operable in a larger range, a popular method is to restrict the
input domain by calibration target restrictions in the output domain. As
an example, even if the target is not known in detail in advance of the test,
the maximum allowed nitrogen oxide emissions could be applied as weak
limit. Several of such targets can be used to restrict the modeling domain,
leading to higher model quality at the same amount of measurements. Ex-
amples for the application of calibration targets and damaging limits can
be found e.g. in [Mur+15] and [Cha+09] for diesel engine calibration and
in [Dwy+13] and [WKO15] for gasoline engine calibration.
The engine boundaries, whether they are damaging or calibration target

boundaries, need to be recognized during the test. The usual application of
test points is a stepwise, vector-based adjustment of the parameters with
boundary monitoring, see e.g. [SV17; Sta+13; Bau+13]. In case a limit is
reached, a surrogate measurement is executed near the boundary. The test
plan quality suffers from this condition because the optimality criterion is
not met anymore if surrogate measurements are executed. One approach
to hold the test design criterion is to identify the engine boundaries prior
to the test design phase. Once the boundaries are known, it is possible to
incorporate the restrictions during the test design phase and near-optimal
solutions can be found. Furthermore the quality of boundary search is
important for the engine model outcome. Data-driven models as intro-
duced in section 2.1 have poor extrapolation behavior [BRL11] compared
to physical models [Nel20]. Hence, the area to measure the training data
in should be as large as possible. Different methods for boundary detection
and boundary modeling to describe the gained knowledge are introduced
in the following sections.

2.3.1 Manual Boundary Detection

A very simple method to find engine boundaries is a manual adjustment
of each input parameter to its minimum and maximum value at different
engine operating points. A practical solution is to stepwise increment or
decrement the parameter value manually until the minimum or maximum
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Figure 2.8: Boundary detection by single parameter minimum/maximum variation with
given initial point. An exemplary solution for the example from figure 2.7 is
shown.

value is reached or any limit is exceeded. To execute this procedure no
automation system or complex algorithm is needed and it can be executed
by each test bench operator, which are the main advantages. However,
manual boundary detection has severe disadvantages. From a financial
point of view, this procedure is very cost intensive because an unmanned
operation during night or weekend is impossible. Another, more crucial
disadvantage is the resulting boundary resolution.
Having a look at figure 2.8, the information about the boundary trend

in this two-dimensional input domain is very low and strongly depends on
the starting point. If only two inputs exist, one could say that manually
more extreme combinations could be tested, but a vectorial setting of sev-
eral inputs at the same time takes high effort and could end up very slow,
because each step requires a sequential setting of all parameters. To over-
come the complex measurement, reduce the test time, and allow unmanned
operation, automatic boundary detection is introduced.
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2.3.2 Automated Boundary Detection

Automated tests have the main advantage that it is possible to operate the
boundary detection continuously night and day. Additionally, adaptive ap-
proaches can be applied to automatically involve already identified bound-
aries. Several different procedures are introduced in literature to identify
the engine operable area. The most simple procedure is non-adaptive and
executes a fixed star shaped search. Starting from a save base point, a
central composite design (CCD) is used as target [Gsc+01; For+03], see
figure 2.9 left. The vectorial setting starts from the base point and slowly
approaches the particular test point with fixed step size. If a boundary is
identified, the last valid step is used as boundary point and the base point is
approached. Another non-adaptive solution is explained in [Mur+15]. In-
stead of a CCD design, a uniform design with a high amount of test points
is calculated. The setting of the parameters is executed very fast just to
judge if a limit occurs on the target vector or not. A near-boundary point
is not identified but the result is a high amount of test points in operable
and in non-operable areas.

Adaptive procedures always start with an initial measurement of several
test points. The rapid hull determination (RHD) procedure utilizes the
initial measurement information to calculate a convex hull [RA05]. The
following search directions are the normal vectors of the hyperplanes, where
the center of gravity of the particular facet is used as starting point. Fig-
ure 2.9 right shows this procedure exemplary for one iteration. Refer to
section 2.3.3 for the explanation of the convex hull model. Compared to
non-adaptive methods, the main advantages are the insensitivity regarding
the starting point and the more rapidly growing detected area. A solution
based on this method but which recognizes non-convex shaped test spaces
is shown in [KSR06]. Further enhancements incorporate an estimation of
the distance from the facet to the real boundary. The most promising test
points can be selected from the estimation by the distance of the bound-
ary to the hyperplane or by the amount of estimated obtained volume
after measurement [RA05]. A search path optimization, based on the RHD
methodology, to reduce the adjustment duration and a steady-state value
estimation from the continuous adjustment is shown in [Yos+11].

46



2.3 Boundary Detection Methods

Late Intake Valve Opening

In
cr
ea
si
n
g
E
G
R

R
at
e

Late Intake Valve Opening
In
cr
ea
si
n
g
E
G
R

R
at
e

Figure 2.9: Left: Central composite design (CCD) boundary search as used in [Gsc+01]
and [For+03]. Right: Rapid hull determination procedure (RHD) with one
iteration and an input domain corner search as basic measurement [RA05].

2.3.3 Boundary Modeling

Once the boundaries and therewith the engine operable area is identi-
fied, the gained information needs to be processed. The most appropriate
method to apply the boundary knowledge is the training of a surrogate
boundary model, which is evaluable with any input combination. The sur-
rogate model then can be used to calculate test designs as introduced in
section 2.2.1 including the optimality criterion inside the operable area. A
main differentiation about boundary modeling is the shape of the expected
boundary. Convex and non-convex boundaries exist in practical applica-
tions and the resulting surrogate models are varying in their complexity
and behavior. A hull is convex if any two inside lying points can be con-
nected by a straight line without exiting the hull as is exemplarily shown
in figure 2.10. Different types of both assumptions shall be introduced in
the following sections.

Convex Boundary Modeling

The most applied and conventional boundary model is the convex hull
model. The convex hull is a geometric model that is determinable without
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Figure 2.10: Left: Convex hull of a given point set. Each linear connection of two points
inside the hull stays inside. Right: Non-convex hull of a given point set.
Some linear connections of two points inside the hull exit the hull.

any parameter training. Two different modeling types can be utilized. The
most convenient one is the calculation of all enfolding hyperplanes of a
given point set. Given the normal vectors and orthogonal distances to the
origin, the convex hull is defined by the Hesse normal form and any test
point can be checked if it is inside the convex space by

Ax⊤ − b ≤ 0 (2.62)

for the normal vector matrix A, the given test point x and the distances b.
An appropriate algorithm to determine the normal vectors and distances
in a multidimensional domain is the quickhull algorithm [BDH96], which
iteratively searches for the solution. Starting with an initial hull, in each
iteration the furthest point is added and the hyperplanes are determined.
For more information refer to [Bar19]. Another strictly convex method is
to use the convex set of a point set to represent any point in the multidi-
mensional domain. The convex set solution is defined by

co(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓

k∑︂
i=1

αi = 1 and 0 ≤ αi ≤ 1 ∀i
}︄

(2.63)

for a given point set X. A given test point v is tested to be inside or
outside the convex area by finding a solution to the αi within the given
constraints to represent v. If no solution can be found, v is not part of
co(X). The search for a solution is challenging though and procedures
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were developed to reduce the testing effort. A utilization and comparison
of a fast algorithm to the hyperplane-based convex hull model is introduced
in chapter 3.

Non-Convex Boundary Modeling

In non-convex boundary modeling geometric procedures as well as proba-
bilistic solutions are present. A simple, geometric approach is described in
[Kow17], where a Delaunay triangulation of the point set is calculated. As
boundary point labeled test points, which are inside the hull and not part of
the convex hull border, are identified as non-convex areas. A vector start-
ing at a central point to each non-convex boundary point is calculated and
extended. All simplices that are beyond the boundary point are excluded
from the triangulation. The new outer hyperplanes define the non-convex
boundary model.
Another geometric non-convex hull is based on directed hypercones and

introduced in [DKR17]. Either based on a central point or on a sequen-
tial construction from test point to test point, hypercones with a defined
opening angle are designed that construct the non-convex hull. Similar to
a convex hull, this approach enlarges the hull by additional measurements
and defines non-measured regions as outside. However, the size of the hull
strongly depends on the opening angle parameter that needs to be defined
or optimized, and on the construction method itself.
A so-called “potato model” is first mentioned in [Knö+03] and well de-

scribed in [Zag14]. It is based on a central point inside the hull and uses
projections of measured hull points onto a unit sphere. The factor for ex-
tension or compression to reach the unit sphere by the vector from the
central point towards the boundary point gives rise about the distance of
the boundary from the unit sphere at a defined vector angle. The factor
is a function of the Euclidean distances of the boundary points to the cen-
ter and is therefore continuously available for each angle. Combined with a
confidence term, unseen areas are interpreted as inside the hull and the hull
shrinks towards measured boundaries. A radius needs to be defined that
specifies the hull increase within unseen areas and which is a free parameter.
This boundary model type is able to describe non-convex boundaries due
to the exact incorporation of measured limit points. However, examples for
two dimensions are given in [Zag14], but to the best of the author’s knowl-
edge, a quality result for high dimensional input domains is not published.
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The resulting hull strongly depends on the central point because the unit
sphere is created on its base.

Non-geometric and non-convex approaches are compared to the convex
hull approach in [Kie14]. Two classification models are mainly used for the
comparison in terms of engine calibration. The prediction error variance
(PEV)-based method is a probabilistic approach, using the variance of a
given polynomial structure to determine the area where measurements are
executed. The variance of a polynomial model only depends on the de-
sign matrix and the measurement noise. It is therefore independent of the
output if the model structure is fixed. Additional to the model structure,
the variance level needs to be defined at which a test point is found to be
outside the measured area. The second approach used in [Kie14] is the sup-
port vector machine (SVM) model originating from the machine learning
domain. An SVM tries to separate labeled data sets by a hyperplane with
highest possible margin. Since a hyperplane is a linear separator, a kernel
can be applied to separate the data in feature space and therefore achieve
a nonlinear separation in original space. To train an SVM, the kernel for
the mapping as well as a tuning parameter have to be identified, usually
application-dependent by the user. In [Kie14] an approach for a leave-
one-out-based optimization is investigated. The SVM approach, however,
demands at least two labeled data sets. A similar but probabilistic-based
classification is utilized in [Sch+15] in terms of engine calibration. The
authors use a GPM classification model as described in [RW06] to discrim-
inate operable and non-operable test points and to make predictions for
unseen areas. Since it is developed in terms of an adaptive test design
framework and is not focused on boundary modeling for a given consistent
measurement data set, this method will be described in detail in section 2.4.
Examples for the discussed non-convex boundary modeling methods for a
given data set in a two-dimensional input domain are shown in figure 2.11.

Given a point set, there is one main difference between convex and non-
convex boundary modeling. Due to the convexity definition, only one ex-
act solution exists for convex boundary modeling if all points are part
of the boundary. Contrarily, the hull precision in non-convex boundary
modeling strongly depends on the boundary model. Except the Delau-
nay triangulation-based method (figure 2.11 (I)), the presented algorithms
need to be parameterized and their quality therefore is strongly depen-
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(I) (II) (III)

(IV) (V)

Figure 2.11: Exemplary representation of different non-convex hull description methods
for the same data set. The circle without filling represents the base point,
the filled circles are measured boundary points. (I): Concave hull represen-
tation based on a Delaunay triangulation [Kow17]. The asterisk marks the
simplex which is erased. (II): Hypercone-based non-convex hull as intro-
duced in [DKR17]. The central point construction method is shown with
an opening angle of π/4. A point is inside the hull if it lies in any hyper-
cone. (III): Potato model as described in [Zag14] with parameters ri = 0.9
and dmax =

√︁
n/2. (IV): Prediction error variance (PEV) boundary model

[Kie14] with quadratic polynomial model with interaction, linear term and
constant. The level for discrimination needs to be defined use-case selec-
tively. (V): Schematic representation of a support vector machine (SVM)
model [Kie14] with discrimination in feature space. Since points of inside
and outside label class are essential to train the model, arbitrary test points
are represented by dotted points.
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dent on the implementation. The main disadvantage of the triangulation
is the performance: To calculate the hull, a Delaunay triangulation has
to be performed, which effort and data storage is nonlinearly increasing
with the dimension. The convex hull calculation, however, suffers from
the same property but at a significantly lower level. In terms of MBC,
input domains up to 12 dimensions and 2000 test points are applied, where
hyperplane-based methods collapse without the utilization of a computer
cluster.

2.3.4 Boundary Incorporation during Test Design

In section 2.2, different test design strategies are shown to maximize the
information content of each single measurement regarding model quality.
However, the test design strongly depends on prior assumptions about the
design space regarding engine boundaries and physical actuator boundaries.
If any information about the boundaries is available, it can be incorporated
into the test design. Possible information could be boundary detection
measurements and known parameter input restrictions with or without in-
teractions or simply non-relevant input domain areas. The consideration of
the boundaries is necessary because each deviation of measured and desired
test points could lead to a decrease in the resulting engine model quality.

In practical applications, two different characteristic types of MBC test
designs exist. The classic approach is to measure the hypercube input
domain with restrictions regarding input and output limits. Another ap-
proach is executed if a good base calibration already exists but needs to be
refined. The so-called variation around the base aims to allow variations
only slightly around a given base map in the engine speed and load domain.
The most important fact with this design is that for each speed and load
grid point a different minimum and maximum value for each input exists.
The upper and lower limits are commonly applied as maps for each param-
eter [Bau+13; Bol+13]. An example for a variation around the base for the
fuel rail pressure is shown in figure 2.12.

Common commercial software solutions to define and calculate an MBC
test design, such as IAV Kasai [IAV20] or ETAS ASCMO [ETA20a], include
4 different types of input constraints:

� Map-based constraints define a lower and upper boundary for each
engine speed and load grid point.
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Figure 2.12: Map-based constraint example for the fuel rail pressure. The base map is
shown in black. The blue surfaces map the upper and lower limits and
constrain the design space dependent on engine speed and load.

Table-based constraints define a lower and upper boundary for se-
lected engine speed and load grid points. Interpolation is done lin-
early. The main difference to a map-based constraint is the way it is
defined, because there is no need to define a lower and upper bound-
ary for each speed and load grid point.

Inequation constraints flexibly define any type of boundary with in-
teraction between any amount of input parameter. They are hard to
define, but also complex interactions can be incorporated in order to
prevent overlapping of multiple injections for example.

A boundary model constraint can incorporate boundary search results
as introduced in the preceding sections.

While table- and map-based constraints only apply for a global DoE in-
cluding engine speed and load, inequations and boundary models are also
applied at local DoEs with only one operating point. It mainly depends
on the way the test design is computed how those constraints are incor-
porated. The easiest but also very fast solution is a discretization by a
low-discrepancy candidate set as by a Sobol sequence for example. The
sequence is executed iteratively and each sequence member that does not
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fulfill the constraints is rejected until a defined amount of candidates is gen-
erated. The first n sequence members could be applied as a low-discrepancy
test plan directly. To find a test design which fulfills other criteria, like the
maximum entropy criterion for example, an exhaustive search or a greedy
algorithm is applicable using the generated candidates. Another solution
without a candidate set would be a gradient descent optimization (see e.g.
[CT17]) with nonlinear constraints. Compared to a greedy algorithm, this
way is much more exhaustive in case the amount of candidates is low and
also the risk of ending up in local optima is higher. A global optimization,
as e.g. a particle swarm optimization introduced in [EK95] or a genetic
algorithm (refer to [Kra17]), could be applied, which again is much more
exhaustive than a local, gradient-based algorithm. However, with a global
optimization the highest test design quality can be achieved because the
global optimum can be found without a limiting discretization.

2.4 Adaptive Test Design

The adaptive test design, also called active learning procedure, has a longer
history especially in classification tasks as speech recognition or image clas-
sification. The aim here is to selectively use data from a data stream or
database to feed the model with. The main problem is to generate the
labeled data, where often human interaction is necessary. Therefore, ac-
tive learning is used to minimize the labeling effort. A good overview of
several methods is given in [Set09]. Although the focus is on classification
model training, regression problems are very similar and the methods can
be adapted to it. However, in MBC, the requirements are a bit different
and the development history needs to be considered.
The evolution of MBC can be divided into three steps. When MBC was

introduced, boundaries where mainly not considered and all tests were de-
signed in a user-defined input domain. The first main advancement was
the introduction of a preceding boundary detection and the utilization of
boundary models, where the system identification measurements are ex-
ecuted within the modeled boundaries. An obvious enhancement of this
process is the adaptive test design. Instead of planning all measurements
in advance of the test, information from already taken measurements can
be used for subsequent tests during the measurement campaign. Several
procedures exist with different focuses. On the one hand, methods are
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developed to incorporate the boundary identification into the system iden-
tification process. Using an adaptive test design framework, subsequent
tests can be planned with a focus on model quality on the other hand. The
most important adaptive test design procedures shall be introduced in the
following. For a better understanding, a classification of the methods and
their process is defined as follows. An overview is given in table 2.2.

Table 2.2: Classification of non-adaptive and adaptive test design strategies in terms of
MBC

Name
Fixed Design
Boundary
Search

Adaptive
Boundary
Search

Adaptive
Model Quality
Improvement

1-Stage Offline - - -

2-Stage Offline x - -

1-Stage Half Adaptive
(Focus Boundaries)

- x -

1-Stage Half Adaptive
(Focus Model Quality)

- - x

2-Stage Half Adaptive x - x

2-Stage Full Adaptive - x x

1-Stage Full Adaptive - x x

� 1-Stage Offline: Pre-calculated test design, which is measured with-
out any adaptation.

� 2-Stage Offline: Boundary finding in the first stage and measurement
of a pre-calculated test design with boundary knowledge incorpora-
tion in the second stage.

� 1-Stage Half Adaptive (Focus Boundaries): Adaptive boundary search
with pre-calculated test design. Points that cannot be applied are e.g.
skipped.

� 1-Stage Half Adaptive (Focus Model Quality): Adaptive test design
only focusing model quality improvement, while boundaries are not
considered.
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� 2-Stage Half Adaptive: Measurement of fixed boundary search design
in first stage with subsequent adaptive test design that focuses model
quality improvement considering first stage boundaries.

� 2-Stage Full Adaptive: Adaptive boundary search in first stage and
adaptive test design focusing model quality improvement in a subse-
quent stage considering first stage boundaries.

� 1-Stage Full Adaptive: Joint adaptive test design incorporating bound-
ary search and model quality improvement as combined criterion.

The existing adaptive test design methods are additionally subdivided by
their focus. The next section deals with an introduction of boundary search
focusing methods. Since the most adaptive procedures focus on the model
quality, the following sections are structured by the applied model type
dealing with local model network, neural network, and GPM-based pro-
cedures. Each introduced method is additionally classified by the defined
categories.

2.4.1 Boundary Search Focusing Methods

Different to the introduced methods for boundary detection in section 2.3.2,
the boundaries can be considered during an adaptive test design with the
focus on generating measurements to train a specific model architecture.
The objective of this method is to achieve a similar test point distribution
as if the boundaries would be known in advance. The most simple method
is to run an initial test design [Sam09] and use its measurement to calculate
a boundary model for the subsequent test design. This procedure is inde-
pendent of the model type because each test design criterion is applicable as
in a non-adaptive approach. The method is equivalent to an automatized
2-Stage Offline process.
An extension is the calculation of test points iteratively with an update

of the boundary model after each measurement. A procedure following this
approach with the utilization of a discriminating hyperellipsoid is shown
in [BGC07]. Unfortunately there is no detailed description neither of the
boundary model calculation nor of the boundary exploration strategy. From
a general methodological point of view, this adaptive test design also does
not exploit the beneficial possibilities it offers. However, since it utilizes
a boundary model that is iteratively updated and a test design that is
adaptively planned, the method is classified as 1-Stage Full Adaptive.
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2.4.2 Local Model Network-Based Methods

An adaptive test design approach based on a LOLIMOT model is intro-
duced in [Kow17]. The main focus of this method is the identification of
the model parameters. The input domain is defined by a non-convex hull
model as shown in figure 2.11 (I), which is found in a first step by a fixed
initial measurement. In the main measurement procedure, an iterative test
design is applied, where a set of test points is calculated in each iteration.
Different criteria are applied, depending on the change of model structure
(i.e. number of splits and local polynomial order) during the last iteration.
In case the model structure changed, the test design criteria for the subse-
quent iteration focuses on generating information for the model structure.
This is done by a combination of space-filling test points and a criterion
called model quality decrease. A model committee is used to identify test
points that probably result in a model quality decrease. The committee
provides an estimated measurement by averaging the output of all belong-
ing models. This estimation is applied to train the model in charge and
the quality change can be observed. It is assumed that a non-matching
model structure is the reason for the quality decrease and therefore this
test design method is applied where the structure still changes.
In case the model structure remained constant during the last iteration,

criteria focusing the local model quality are applied. If an optimization cri-
terion is defined, the candidate nearest to the estimated optimum is added
to the test design. Additionally, test points that lead to the highest model
quality increase and the highest model parameter change are added for the
subsequent iteration. The base for these estimations is again the model
committee to generate the estimated measurement output for each candi-
date. This adaptive procedure can be classified as 2-Stage Half Adaptive.

An enhancement of the LOLIMOT-based approach is an adaptive test
design with using axis-oblique partitioning. The axis-orthogonal splitting
procedure suffers from nonlinear processes with significant change in di-
agonal input domain directions. Also high-dimensional modeling is con-
siderably improved by axis-oblique partitioning, as shown in section 2.1.3.
Adaptive test design procedures using axis-oblique partitioning with tree-
based splitting are introduced e.g. in [HJ11; Sta+13; HN13; Har14]. The
most simple procedure is shown in [HN13], called HilomotDoE. The worst
local model is determined where both the bias and variance error is consid-
ered. A next test point is then planned space filling in the worst partition.
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A more complex procedure is shown in [Har14] where a method called bag-
ging [HTF09] is used. Therefore, several data sets are randomly created
from the collected data and a HILOMOT model is trained for each data set.
The resulting model is built by averaging the output over all trained mod-
els. A next test point is placed at the location with highest variance of the
bagging model. This procedure mainly generates test points in strong non-
linear areas but has the disadvantage that the computational effort is very
high to generate the different models. These methods do not incorporate a
boundary search, which means the boundaries need to be investigated prior
to the adaptive test design measurements. Therefore, these procedures are
classified as 2-Stage Half Adaptive.

Another solution is investigated in [Sta+13] called custom output range
(COR), using an axis-oblique local model network as described in [HJ11].
The main differences to HilomotDoE are the recognition of engine bound-
aries and a relevant input domain as well as the test design method. At
first, a fixed initial test design is executed that provides the measurement
for the drivable input domain and to train the first models. A convex hull
is applied as boundary model for the subsequent iterative test design. The
input domain is further restricted by the COR methodology, which puts
a constraint on the current model outputs respectively. Candidates in the
input domain leading to estimated output values outside a defined range
are not taken into account during each iteration. The desired effect is to
identify the system only in calibration-relevant areas and therefore reduce
the amount of necessary measurements. Within this input area, a next test
point is planned by a modified space-filling criterion. The maximin pro-
cedure is applied in a combined input-output domain, resulting in a more
dense test point distribution in nonlinear model output regions. Another
possibility is to apply the maximin procedure only in the output domain, as
proposed in [Sta+14]. Compared to the test design in the combined domain,
this approach leads to a similar result in a presented theoretical example
with strong nonlinearity. This procedure offers a combined approach for
boundary search and model quality improvement and is therefore classified
as 1-Stage Full Adaptive.

2.4.3 Neural Network-Based Methods

The applications of neural networks for an adaptive test design in terms
of MBC are rarely present. Only little literature is available where MLP
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or RBF networks are used. Since local model networks outperform classic
neural networks especially in terms of interpretability, uncertainty repre-
sentation and training speed, they are rarely considered for an application
at the test bench. However, the first outstanding application of an adaptive
test design procedure with the scope of MBC was introduced in [Pol+03]
and utilizes MLP networks among others. The main idea is to create the
model variance with a model committee, which firstly was investigated in
[SOS92]. This so-called query by committee (QBC) method is applied in
the mbminimize algorithm that implements MLP networks and linear mod-
els like polynomial models for the variance calculation. A next test point
is added at the input domain location with highest deviation of the model
committee outputs. Since this procedure could lead to several measure-
ments in the same region, a confidence term, which penalizes close test
points, is introduced in [Sun+07] to stabilize the QBC algorithm. Addi-
tionally a weighting is applied that allows finding optimal test points for the
optimization of several outputs with different importance. A solution for
the incorporation of engine boundaries within the mbminimize algorithm is
given in [Knö+03]. The test design does not focus the boundary identifica-
tion but a limit model is incorporated to restrict the input domain for the
further test point search. Since the search space should not be restricted
excessively, different approaches are proposed like the “potato model”, fur-
ther confidence-based models, output-driven regression models as used in
the COR methodology, and also geometric models. An evaluation of the
different model types is not given, which is why they are not explained here
further. The utilization of a boundary model with a test design focusing
model quality improvement allows this methodology to be classified as 1-
Stage Full Adaptive.

Another procedure shall be presented whose specialization is not a test
design for model quality improvement but rather one to investigate the
boundaries. The argumentation of [SV17] is the occurrence of calibration
optima mostly near boundaries. Hence, the best model would end up in
a good description of the measured area, but if the optimum is not part
of it the best solution will not be found. For that reason, the authors
use an iterative test design with a simple space-filling design in a mod-
eled boundary area. The boundary model in this case is comparable to
the COR methodology with a response model for each limit parameter.
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These models are used to generate information back in the input domain
to constrain the input-driven space-filling design. The maximin solution to
generate the space-filling design in this case is not driven by a fixed can-
didate set but the authors use a nonlinear optimization to place new test
points during each iteration. Although the test design is weak regarding
model quality improvement and does not exploit its possibilities in terms of
output behavior incorporation, this procedure is classified as 1-Stage Full
Adaptive because it updates the space-filling test design in each iteration
with adaptive boundary knowledge incorporation.

2.4.4 Gaussian Process-Based Methods

The usage of GPM in adaptive test design strategies has great acceptance.
Thus many different methods exist for a selective test point choice. The
well uncertainty estimation in GP regression provides a good base to de-
sign algorithms, which aim to iteratively optimize the overall or regional
model quality. Several algorithms are introduced in non-MBC applications
and some of them are also investigated with focus on MBC and combined
with boundary modeling. Present methods in non-MBC and in MBC ap-
plications shall be shown. Similar to an optimal test design for polynomial
models with a given structure, the test point location in the input domain
can be chosen to reduce the estimated uncertainty of a GPM. During on-
line modeling, the GPM is updated after each measurement, which is why
the uncertainty estimation changes dramatically. Typical procedures aim
to reduce the mean variance by searching for a test point that reduces the
integrated mean squared error (IMSE), or to reduce the maximum vari-
ance by the examination of the maximum mean squared error (MMSE)
[Sac+89].
The reduction of the maximummean squared error is focused in [Gen+15]

in a sensor calibration problem. In each iteration, the sequential test design
adds the candidate to the design that minimizes the maximum variance of
the GPM if added to the covariance matrix. The maximum variance is
detected by a predefined grid at which the variance is evaluated and the
maximum value observed. The test point search is done with a genetic
optimization algorithm to find the global optimal candidate to be added
to the test design. In each iteration of the optimizer, the inversion of the
covariance matrix of training points K(X,X) has to be done (refer to
(2.38)), which makes it computationally expensive for a high amount of
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training points. Since the use case here is a sensor calibration with 3 in-
puts, the amount of maximum training data is low and also no boundary
search is necessary. The use of maximum variance in a different way is used
in an MBC online optimization framework in [Ber12]. Subsequent to an
initial measurement phase a next test point is added to a sequential design
that shows the highest prediction variance. No further explanation about
the search for the next test point is made. However, since the maximum
variance is not determined after the test point is added but the one is used
which shows maximum uncertainty prior measurement, the search is less
expensive than the method by [Gen+15]. Engine boundaries are not con-
sidered in this framework, for which reason it is classified as 1-Stage Half
Adaptive (Focus Model Quality).
A good solution to calculate the IMSE is presented in [BP15]. The au-

thors show an analytic solution to the integration over the input domain
for GPM with squared exponential covariance function. Additionally, a
combined criterion for IMSE and MMSE is shown to enhance the opti-
mization stability, because the IMSE function shows rough behavior with
several local minima. The use case, at which this solution is experienced,
is a physical model of a compression spring force with 4 varied geometrical
parameters. Next to minimum and maximum values of the inputs, further
boundaries cannot be considered in this procedure because the analytic in-
tegration only works for the whole input domain, meaning a hypercube.
This methodology can hardly be applied to MBC without the integration
of a boundary model to the calculation.

Methods that are based on the predictive information content of subse-
quent measurements seem to be very beneficial. The most obvious way is
to maximize the entropy, which in GPM only depends on the covariance
matrix as shown in (2.61). Since the model can be re-trained during the
adaptive test design based on the new measurements, the hyperparameters
of the GPM change in each iteration. With changing hyperparameters the
covariance matrix entries vary for which reason it makes a difference to
calculate an entropy-based test design during or in advance of the tests.
In [Rai15] an iterative entropy-based test design is simulatively compared
to space-filling and maximum variance-based design strategies for different
process shapes. No clear advantage of any of the strategies is exhibited and
therefore a change of the test design criterion during the measurement is
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developed. It is shown that for different process shapes also different test
design strategies are necessary, which makes it hard to automatize.

Entropy-based test designs often show the disadvantage that they over-
estimate the information content in near boundary areas [GKS05]. To
overcome this problem, mutual information (MI)-based test designs are
used. The calculation of the MI between already seen and non-seen areas
can be considered as to penalize the entropy near already taken measure-
ments. This procedure is introduced in optimal sensor-placement problems
[GKS05], used in people-tracking problems [ZKN12] and also transferred to
MBC with several outputs but with a low amount of inputs [Xie16]. The MI
criterion for a Gaussian random variable Y , an input domain discretization
candidate set S and test points X can be formulated by

I(X;S \X) = Ent(Y |X)− Ent(Y |S \X). (2.64)

With setting X̄ = S \X the MI for a test point x∗ given a trained GPM
is calculated by

I(x∗) =
σ2x∗ −Kx∗XK−1

XXKXx∗

σ2x∗ −Kx∗X̄K−1
X̄X̄

KX̄x∗
. (2.65)

If a candidate set S is defined, as e.g. a grid or a Sobol sequence, a next
test point can be found by determining the candidate that maximizes I(x∗)
[GKS05]. To solve (2.65), however, is computationally expensive if a large
number of candidates is present, because the matrix K−1

X̄X̄
needs to be

inverted, which has size (ncand − nmeas) × (ncand − nmeas). Since the in-
put domain volume grows exponentially with the dimension, the amount
of candidates for a similar discretization quality needs to grow with the
same amount. Even though the matrix inversion only needs to be done
once per test point search, the covariance matrix multiplication in the de-
nominator is also dependent on the candidate set size and is performed
for each potential next test point. For these reasons, the application of
the MI criterion in literature raises from spatial problems and is applied
in MBC only in low-dimensional calibration work. The MBC use case in
[Xie16] starts with an initial test design that necessarily has to cover the
whole input domain, because boundary finding methods are not considered.
This procedure is classified as 1-Stage Half Adaptive (Focus Model Quality).
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The presented procedures using GP regression models do not take engine
boundaries into account. Two further solutions shall be presented, which
aim for MBC and consider the exploration of the engine operating space
additionally. The presented method in [The+16] actually is not developed
for MBC at an engine test bench but rather to optimize drivability inves-
tigations with a vehicle. The limitations in output space are defined by
calibration constraints rather than engine or vehicle damaging limits. The
presented algorithm is applicable to engine test bench experiments anyway.
The procedure consists of three steps, starting with an initial measurement
campaign as usual. The second phase aims at the exploration of the input
domain. Test points are iteratively calculated by means of a D-Optimal
test design assuming a linear model. This type of test design focuses the
boundaries and therefore calculates test points mainly at the borders of
the input domain. The boundary model is constructed by a combination
of the models and a distance criterion. For each output a model is cal-
culated. Input combinations leading to values outside the boundaries in
the output domain are not considered. Additionally, a distance criterion to
already measured test points in the input domain is defined. Test points
which are far away from already taken measurements are also refused. The
restrictive behavior of the combination of both criteria is described to be
tunable. By means of this adjustment possibility a more restrictive and
therefore exhaustive search or a more risky search with a high likelihood
of limit violations is executable. The third phase simply adds space-filling
test points to the experienced measurements within the boundaries, de-
fined by the boundary model. Even though three phases are described, the
initial test phase is necessary as start for any type of adaptive procedure.
However, the second phase is solely used as boundary search and the last
phase as model quality improvement phase. Since there is a switching cri-
terion between a boundary search and model quality improvement phase,
this procedure is classified as 2-Stage Full Adaptive.
Another procedure also uses output modeling to incorporate boundaries

but in a different way than all previously described methods. A first,
probability-based method is discussed in [Sui+15] regarding safe online
optimization and is explored in terms of movie recommendation and a ther-
apeutic example. This method aims to find the maximum function value
but without falling below a lower limit during exploration. However, more
interesting in terms of MBC is the algorithm introduced in [Sch+15] that
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is based on a similar boundary estimation procedure. A combined binary
classification and regression method based on a Gaussian process is used
during an iterative test design. Therefore the Gaussian likelihood function
is set-up as a product of a regression and a classification likelihood. It
is possible to approach both labeled data and continuous data with this
solution. Labeled data is generated by means of the test bench automa-
tion, which provides the information about drivability after each test point
is tried to be set. Continuous data is gathered by the measurement of
each limit channel. However, due to the classification likelihood that is
non-Gaussian, an analytic solution for the GPM posterior and marginal
likelihood does not exist. A computational expensive approximation has to
be performed, which here is based on the Laplace approximation. Unfor-
tunately the hyperparameter selection by marginal likelihood optimization
as shown in section 2.1.4 is much more exhaustive than in GP regression
[RW06]. For this reason, the hyperparameters for the boundary model are
suggested to be fixed and not varied during the adaptive test design. For
the implementation in an adaptive test design, the drivable operating range
is examined by the mean value of the boundary model µg∗, where the pre-
diction variance σg∗ is used to lower the probability of a misprediction for
drivable test points, given a confidence term ν to regulate the “safeness”
behavior

µg∗ − νσg∗ ≥ 0. (2.66)

In this definition, a positive-labeled test point is defined as inside the bound-
ary where a negative value means non-drivability. In each iteration, (2.66)
is applied as constraint for a variance-based optimization where a test point
is determined that shows highest prediction uncertainty. A practical exam-
ple at an engine test bench, only to show the performance of the boundary
model, is given in [Har+16]. The classification model itself is trained with
labeled data, i.e. after the approach and measurement each point is spec-
ified as drivable or non-drivable by the automation system. A pre-defined
test plan is used as test point selection base and in each iteration the next
test point is estimated by the model to be drivable or not. In case it is
assumed to be non-drivable, it is simply skipped.
A more relevant practical application using the same boundary model but

additionally the iterative, variance-based test design, is given in [Sch+17].
Unfortunately, both examples mainly consider the feature of not hitting a
boundary during the measurement phase but do not compare the applied
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methods to a classic, non-adaptive approach in terms of model accuracy
or measurement duration. In the second part of [Sch+17], an extension is
proposed, where not only labeled data is used for the boundary model but
the continuous data of an output serves as training data for a discriminative
model. The authors argue that this leads to a better prediction of the
boundary and therefore less limit violations during the measurement. The
regression output is mapped to a unit interval by a risk function, which
also defines the mapping shape and therefore the conservatism of domain
exploration. In [Sch+18] it is mentioned that also several outputs can be
combined to one discriminative model by the risk function, but a procedure
is not given. Several solutions could be applied, for example to take the
maximum risk over all outputs as training input. A comparison with the
binary classification model by [Har+16] is given, which on the one hand
shows a safer prediction of the boundary but on the other hand does not
offer an improvement of model quality.
Another benefit of the discriminative model is to overcome the issue of

hyperparameter estimation in GP classification models, because a GP re-
gression model is trained [Sch+18] and the marginal likelihood can be solved
without approximation. The iterative online training of hyperparameters
of the boundary model reduces the amount of pre-knowledge necessary for
the process parameterization. During the measurement, the missing expert
knowledge is learned by optimization and simplifies the application with-
out loss of quality. Whichever boundary model is applied, the safe active
learning called procedure is a 1-Stage Full Adaptive approach.

2.4.5 Method Summary

The preceding sections introduced several strategies with very different
scopes and implementations. A summary of all methods, their classifi-
cation, and specific realization details is shown in table 2.3. The amount of
GPM-based strategies is noticeable. The diversity of all methods in terms
of general procedure, boundary model type, and test design criterion is re-
markably high, which makes it hard to guess what combination should be
applied. To judge the efficiency of a procedure, evaluation criteria and pro-
cess requirements have to be established, which is part of the subsequent
section.
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ö+

03
]

1
-S
ta
ge

F
u
ll

A
d
a
p
ti
ve

M
L
P

n
et
w
or
k

“P
ot
at
o
M
o
d
el
”

M
o
d
el

co
m
m
it
te
e
d
is
se
n
t

(Q
B
C
)

[S
V
1
7]

1
-S
ta
ge

F
u
ll

A
d
a
p
ti
ve

N
eu
ra
l

n
et
w
or
k
w
it
h

li
n
ea
r
b
as
e

fu
n
ct
io
n
s

O
u
tp
u
t-
d
ri
ve
n

b
ou

n
d
ar
y
m
o
d
el

S
p
ac
e
fi
ll
in
g

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

66



2.4 Adaptive Test Design

T
a
b
le

2
.3
:
M
B
C

a
d
a
p
ti
v
e
te
st

d
es
ig
n
p
ro
ce
d
u
re

ov
er
v
ie
w

(C
o
n
ti
n
u
ed
)

M
et
h
o
d

C
la
ss
ifi
ca
ti
on

R
eg
re
ss
io
n

M
o
d
el

B
ou

n
d
ar
y
M
o
d
el

T
es
t
D
es
ig
n
C
ri
te
ri
o
n

[G
en
+
1
5
]

1
-S
ta
ge

H
a
lf

A
d
a
p
ti
ve

(F
oc
u
s
M
od
el

Q
u
a
li
ty
)

G
P
M

n
o
m
o
d
el

M
ax

im
u
m

va
ri
a
n
ce

p
ri
or

m
ea
su
re
m
en
t

[X
ie
1
6]

1
-S
ta
ge

H
a
lf

A
d
a
p
ti
ve

(F
oc
u
s
M
od
el

Q
u
a
li
ty
)

G
P
M

n
o
m
o
d
el

M
u
tu
al

in
fo
rm

at
io
n
(M

I)

[T
h
e+

1
6
]

2
-S
ta
ge

F
u
ll

A
d
a
p
ti
ve

G
P
M

O
u
tp
u
t-
d
ri
ve
n

b
ou

n
d
ar
y
m
o
d
el

/
M
ax

im
u
m

in
p
u
t

d
is
ta
n
ce

D
-O

p
ti
m
al

/
S
p
ac
e
fi
ll
in
g

[S
ch
+
1
5
]

1
-S
ta
ge

F
u
ll

A
d
a
p
ti
ve

G
P
M

O
u
tp
u
t
d
ri
ve
n

(C
om

b
in
ed

G
P

cl
as
si
fi
ca
ti
on

an
d

re
gr
es
si
on

)

M
ax

im
u
m

va
ri
a
n
ce

[S
ch
+
1
8
]

1
-S
ta
ge

F
u
ll

A
d
a
p
ti
ve

G
P
M

O
u
tp
u
t
d
ri
ve
n
(G

P
re
gr
es
si
on

)
M
ax

im
u
m

va
ri
a
n
ce

67



2 State of the Art

2.5 Open Questions and Research Topics

It is reasonable that an adaptive test design approach is able to excessively
raise the model quality given a defined amount of measurements. However,
the introduced methods differ in their target regarding engine boundary
identification, applied model type and model error decrease and its assess-
ment. Next to these indicators, another important requirement to the MBC
process and its methods is the difficulty of application. If a lot of param-
eterization tasks have to be done with the requirement of methodological
expert knowledge, a calibration engineer will have trouble with the exer-
cise. Another demand is the applicability to many different measurement
tasks. Due to very diverse engine configurations and also calibration tasks,
the same methodology needs to be reasonable for different shapes of input
domains and output behavior. A boundary search therefore is indispens-
able. Following these requirements, a 1-Stage Full Adaptive process seems
to be the best solution, because a 2-stage approach always needs to have a
switch criterion, which is hard to automatize without parameterization.
As acquired in section 2.1.5 and also the amount of different adaptive test

design strategies indicates, the GPM is the first choice for an MBC task.
Within this research the GPM with cross-validation optimization training
is applied. The most critical property of this model class in an adaptive
test design process is the training effort, which needs to be considered accu-
rately. In case the model training takes too long and no alternative solution
is given to calculate a new test point, the test duration will increase and
the quality per test time ratio is lowered. Only two solutions for a 1-Stage
Full Adaptive process with GPM are known, which are related and were
presented in the preceding section. However, several topics still are not
covered by these processes and need to be investigated.

Piecewise-defined limit behavior is a topic that the process deals with in
case the classification GPM is used. With the regression discrimination
model, it is nearly impossible to reproduce piecewise-defined output func-
tions that exhibit a constant value in wide ranges and a sharp increase near
the operable area boundary. One example would be the misfire behavior.
Its value is specified as the rate of misfire events that happened during
the past combustion cycles. During most operation it has value 0 because
each cycle burns well and one always tries to avoid misfire. In case a mis-
firing happens, either the automation system or the test bench operator
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tries to get rid of this operation status, because it likely can damage the
catalyst due to high exothermic energy and therewith a high temperature
raise. Measurements with misfire values unequal to 0 are therefore very un-
likely and are tried to be prohibited by operation. As an example function
consider

f(x) =

⎧⎪⎨⎪⎩
1 x < −20

−0.1x− 1 −20 ≤ x ≤ −10

0 x > −10

(2.67)

with x representing the spark timing in advance of the top dead center. A
function value of 1 equals 100% misfire. A test bench measurement with
lowest spark timing might be done at x = −10, lower spark timing values
would be applied during test point setting only temporarily. For such an
approached test point the classification GPM knows that it is part of the
non-operable area due to its label. A regression model only experiences the
mean measurement of the surrogate test point, which has value 0 though.
The classification GPM however does not offer hyperparameter training,
which is essentially required for an easy to apply procedure.

The optimal adaptive test design strategy for an MBC application with
a GPM is, to the best of the author’s knowledge, not present in litera-
ture. Many different test design strategies are proposed to achieve a max-
imum knowledge gain for a specific model. A comparison of entropy and
variance-based test design with a non-adaptive low-discrepancy one is given
in [Rai15] in terms of a GPM application. No clear solution could be dis-
covered for an easy to apply strategy and besides these test designs others
are possible. The question about the optimal adaptive test design for a
universal MBC application therefore still is not clarified. The type of test
design naturally depends on the problem. In MBC the most often used
model quality criterion yet is the generalization error, defined by validation
measurements evenly spread over the input domain. A best-matching test
design approach has to be found that satisfies different process behaviors,
which is rated in terms of generalization error.

More than one output is a common use case in almost each calibration
task. All proposed methods, both within GPM designs and also other
model class-specific test design strategies, do not take into consideration
a test design matching several outputs. In literature, some proposals are
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made like a round-robin approach [Klö09] or a batch optimization [Kle+13].
With a batch procedure, where a test design focuses only one output until a
criterion is reached, an automatic switch has to be developed or calibrated.
In addition, this procedure is not a multicriterial test design optimization,
because only one output is taken into consideration at a time. A round-
robin procedure, that calculates a single test point for each output without
considering the other outputs, is not multicriterial as well and suffers from
a uniform weighting of each output, where the model quality is not con-
sidered. Hence, an optimization strategy for several outputs has to be
investigated.

A continuous measured input domain volume increase is another very im-
portant property of a full adaptive test design strategy. Many of the adap-
tive test designs do not consider an extension of the measured area. The
trained models should only be examined within their measured area. An op-
timal calibration solution outside this area hence would be not recognized.
The known 1-Stage Full Adaptive solutions do consider engine boundaries
but do not consider how to enlarge them consequently while at the same
time optimizing the model quality. A strategy for this has to be developed
and is one of the research topics.

The criteria to rate an MBC methodology have to be defined to judge
the quality of a developed process. The main goals of a measurement result
are defined by

� measured input domain size,

� average model quality,

� test duration.

In high dimensional input domain problems, it is hard to judge the mea-
sured domain size. Especially when the measurable area is non-convex,
there is no criterion to identify the covered area easily. As long as it is
convex, the best solution is to consult the convex hull volume, which is
calculable in a post-processing step. Another reason to use this volume as
criterion is that often the convex hull is used [IAV20; Bau+13; SI09] to
prevent model extrapolation and therefore it is one decisive measure for
the subsequent optimization quality.
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Figure 2.13: Common basic steady-state test bench measurement procedure

The average model quality is another main reason to utilize an adaptive
test design procedure. Different to an online optimization, the search for
an optimal solution is executed in an offline, post-processing step. There-
fore, the model has to reflect the engine behavior in the whole measurable
domain as good as possible. A common method to judge the generalization
capability of a data-driven model is to separate the measurement data into
a training and a test data set [Har15; RRC19; Fah+13]. The deviation of
the model prediction and the measured test data provide an information
about the model quality. The average model quality is judged by the mean
squared error (MSE) [Fah+13] or root mean squared error (RMSE), given
the model prediction and test measurements.
The test duration is the third criterion that needs to be examined. It is

mainly influenced by the test automation and the task. The automation
procedure and its optimization is not part of this research. However, there
is an automation procedure affecting criterion that has to be fulfilled by
the test design. The time between a new measurement is provided by the
automation system and a new test point has to be provided by the design
methodology is very restricted. In case the calculation duration is too long,
the test automation suffers from a delay. That is, the model quality per time
ratio is another important criterion. Instead of directly incorporating the
ratio, an assumption of a minimum time per measurement of 300 seconds
is introduced. If the steady-state measurement procedure is examined, the
available duration is shorter though. A typical automation system sequence
is the one shown in figure 2.13. Most important is the duration between the
end of the measurement and the action to set a next operating point. The
test design algorithm’s available duration to provide a next test point must
not be longer. A faster reset of the set parameter compared to the approach
is common, mostly because there will be no limit violation and the base
point is drivable per definition. Sometimes a direct reset is executed as
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well. Hence, this duration is set as criterion to a maximum of 30 seconds
from experience.

The introduced open questions are examined during the following chap-
ters. Each chapter covers more than one question. The following chapter 3
mainly treats the questions piecewise-defined limit behavior and a contin-
uous measured input domain volume increase, where the other questions
are considered as constraints only. Chapter 4 deals with an answer for an
optimal adaptive test design strategy for more than one output but does
not consider boundaries. Chapter 5 combines the developed strategies to
find an answer to all questions, given the test design calculation duration
constraint.
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One main criterion a 1-Stage Full Adaptive test design procedure, as defined
in chapter 2, has to fulfill is the adaptive boundary search. A boundary
model must be selected or developed to design the boundaries for a test
point selection. The model is the base to describe the search area for any
type of test design algorithm. Steady state information about piecewise-
defined engine limits like misfire is rarely provided by the measurement
procedure, which is why a regression-based model shows a major drawback
and is not considered. There are possibilities to incorporate this informa-
tion, by training a dynamic model to the parameter adjustment path and
perform a steady state estimation for example. This method yet contradicts
the requirement of an easy to apply adaptive test design and is therefore
not considered during this research.
A boundary model selection is mainly affected by the assumption of the

boundary shape. Different model types are introduced in section 2.3.3,
where most of the models design a non-convex boundary shape. Compared
to a convex boundary modeling, all non-convex methods are substantially
more complex regarding either mathematical operations, tuning factors, or
both. The application of such a model type should only be done if the
process guarantees to show non-convex boundary behavior. Otherwise a
convex hull approach is a better option from tuning perspective because
there is a unique parameterless solution. However, a convex hull also has
some drawbacks. The calculation time and memory demand raises expo-
nentially with the dimension. In high-dimensional input domains the hull
is not calculable and storable with common computational equipment. If
the convex hull is applied to an adaptive test design, an extension strategy
needs to be developed as well. The convex hull of a given point set only
designs the interior of this point cloud, but the feasible operating range
always is larger.
This chapter is organized as follows. The first section 3.1 describes for

which reason only convex boundaries are taken into consideration in this
research. The subsequent section 3.2 studies the possibility to design a
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convex hull within high-dimensional input domains and suggests how to
use this boundary model within an adaptive test design approach. In sec-
tion 3.3, procedures are developed to expand the convex hull area, which is
necessary for an application within an adaptive test design. The section 3.4
applies the designed algorithms to a simulation and compares the results
to a non-adaptive approach before the chapter is summarized in the last
section 3.5.

3.1 Definition of Boundary Shape

One often discussed topic in model-based calibration is the occurrence of
non-convex boundary shapes. Many studies deal with modeling and com-
parison of boundary models regarding synthetic or designed non-convex
shapes. However, only few test bed measurements are published that show
non-convex boundaries with a test design planned in a convex area. In
[Kie14], synthetic data is generated from real test bench measurements.
The results show slightly non-convex behavior in case an artificial limit
is applied to the standard deviation of mean indicated cylinder pressure
within a test case with camshaft variation in the whole engine operating
range at a gasoline engine. Unfortunately, the used limit values are not
discussed. The tests highlight a different level of non-convexity for differ-
ent input domain dimensions but with the same model, which indicates
changed artificial limits between the tests.

To the author’s best knowledge, there are only spark timing boundaries
described in literature that show significant non-convex boundary shapes in
terms of combustion engine calibration where a convex test plan is applied.
Slightly non-convex shapes often occur due to the limit behavior of the au-
tomation system and the non ideal reproducibility of combustion engines.
Additionally, the test definition could offer non-convex definitions of input
limits. The following sections introduce methods to deal with spark timing
boundaries and a non-convex test domain definition without losing infor-
mation when a convex boundary model is used. The precision improvement
of modeling slightly non-convex boundaries, caused by the test automation
or reproducibility, are not as significant as the gain in mathematic sim-
plification of the hull model and all applicable methods. Hence, a convex
boundary model is the base for all developed methods, where a solution is
given for the two non-convex cases.

74



3.1 Definition of Boundary Shape

Figure 3.1: Non-convex engine operating boundary varying the spark timing and engine
load [KSR06]

3.1.1 Spark Timing Boundaries

The concave hull determination method as shown in figure 2.11 (I) and
introduced in [Kow17] is developed based on the knocking boundary be-
havior of gasoline engines. The base for this development is the measured,
non-convex boundary shape in [KSR06] of engine knocking and running
smoothness varying engine load and spark timing, as shown in figure 3.1.
In most steady-state calibration tasks, the spark timing is no variation pa-
rameter for the engine model. A very common use case is to identify the
engine behavior at the optimal combustion spark timing, which means a
combustion center of 50% mass fraction burned (MFB50) at 8◦ crank angle
(CA). The spark therefore needs to be controlled by the automation system
during the adjustment of parameters, which easily can be done by a test
bench automation system such as A&D ORION [AD20] with a parallel run-
ning controller for example. The controller also needs to react to knocking
and maximum in cylinder peak pressure and operates the spark timing to
stay near the boundary. Usual engine control units provide a functional
correlation between spark timing and engine torque that has to be cali-
brated. Since the engine torque has nearly no delay regarding the spark
timing, a very fast spark sweep from knocking border or maximum peak
pressure to exhaust temperature limit or misfire can be executed as pub-
lished in [Röp+07]. To derive the torque shape, there is no need of fitting
a dynamic model. In case an exhaust temperature model or an emission
model is required, a dynamic model with steady state estimation is ap-
plicable, where, however, the post processing effort is significantly higher.
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Nevertheless, the non-convex boundary shape described by knocking and
running smoothness is replaceable by a full spark sweep and an indepen-
dent modeling. Since this procedure is state of the art, easy to apply and
does not significantly increase the measurement duration, the spark timing
boundaries are no reason to apply a complex non-convex boundary model
to an adaptive test design.

3.1.2 Non-Convex Test Domain Definition

An often occurring non-convex input domain appears if constraints are ap-
plied by the calibration engineer. As discussed in section 2.3.4, different
types of constraints are applicable to the hypercube input domain in the
beginning of an MBC process. Especially map-based input constraints (see
figure 2.12) lead to non-convex shapes per definition, except the base map
is plane. Another typical task in both gasoline and diesel engine calibration
is to find the optimal injection pattern. Defined distances between the end
and the beginning of two sequential injections must be met for hardware
reasons. Also the start of injections must be in sequence and has to be con-
sidered by the test design. All of these injection constraints are applicable
by inequations that lead to a non-convex input domain.

In terms of an adaptive test design strategy with incorporation of engine
boundaries, these constraints do not need to be considered by a boundary
model. The test domain is restricted by the defined inequations and table-
and map-based constraints. The boundary model only needs to represent
additional engine limits occurred during the test. The resulting input do-
main is the intersection set of the boundary model including its extension,
as will be shown in section 3.3, and the predefined input constraints.

3.2 High-Dimensional Boundary Model

The amount of convex hull-describing hyperplane elements rises exponen-
tially with the dimension and in worst case also with the amount of test
points. An example of number of hyperplanes for a varying amount of
test points and with increasing dimension is shown in figure 3.2. The test
points are randomly sampled on the surface of a unit sphere, which is the
worst case scenario for a convex hull calculation, because all points are
part of the hull surface. The calculation is done with the qhull algorithm
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Figure 3.2: Amount of necessary hyperplanes to describe a unit sphere with raising di-
mension and amount of points

[Bar19], which automatically removes tiny hyperplanes, which is why the
calculation is not deterministic but gives a good imagination. In case the
hull described by hyperplanes has to be stored or used for an evaluation, a
normal vector and a distance value has to be determined for each element.
The normal vector size again grows linearly with the dimension. To get
an idea about the computing duration: The calculation given 1500 points
in 8 dimensions lasts approximately 167 seconds on an Intel Core i5-
7300U CPU with 2.6GHz using the convhulln function in MathWorks
MATLAB R2016b, which calls the qhull algorithm. The calculation of
the normal vectors and distances is not included.
For adaptive test design methods with more than 10 inputs the determi-

nation of the convex hull is not suitable. Hence, a convex set algorithm is
introduced that tries to find a solution for (2.63) given a test point and a
hull-describing point set. The Gilbert-Johnson-Keerthi algorithm (GJK),
presented in [GJK88], is an iterative procedure, which selectively tests hy-
perplanes for their orthogonal distance to the given test point. The main
difference to a convex hull procedure is the advantage that not all hull-
describing hyperplanes need to be calculated to check a given point. A
detailed description of the algorithm can be found in appendix A.
Depending on the use case the one or the other method is faster. Once

the hull hyperplanes are determined, the duration to evaluate a test point
is faster than applying the GJK algorithm. As long as the hull-describing
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Figure 3.3: Calculation duration difference between convex set evaluation with GJK algo-
rithm and convex hull evaluation including hull training for randomly sampled
training and evaluation points in an 8-dimensional domain. Positive values
state a benefit of convex set evaluation duration. The zero crossing shows
the equality in evaluation duration for both methods.

dataset is used for the evaluation of a high amount of test points, the
convex hull hyperplane calculation overhead is legitimated by the shorter
evaluation duration. In an adaptive test design procedure, the convex hull
could change with every measurement and the amount of test points to
check is comparatively low. An example for the trade-off between both
methods given the amount of test points and amount of hull training points
is shown in figure 3.3 for an 8-dimensional case with randomly created
test and hull training points. The duration difference contains both the
hull training and evaluation duration for the convex hull determination
method. The zero crossing line indicates where the transition from one
to the other method is suitable. Increasing the amount of training points
the advantage of the GJK algorithm raises. Also the benefit of convex
hull evaluation for a higher amount of test points is lowered. With lower
dimension the zero crossing takes place at a higher amount of training
and evaluation points, which highlights that the convex hull determination
method rather should be applied at lower dimensions. This information
leads to the conclusion that the convex hull only should be used with a low
amount of training points and at low dimensions. The zero crossings for
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Figure 3.4: Zero crossing (see figure 3.3) for different dimensions for randomly sampled
points. The area above each line shows a faster calculation for the convex
hull approach. The area beneath indicates a faster calculation if the GJK
algorithm is used.

different dimensions more accurately suggest where which algorithm should
be used. In figure 3.4 the zero crossing lines are shown in relation to the
amount of training and evaluation points for dimension 7 and 8. With
this scope of point amount, no zero crossing exists at lower and higher
dimensions. At dimensions less than 7, the convex hull approach is faster
and at dimensions higher than 8 the GJK algorithm performs better.
Within an adaptive test design method, it is important how the boundary

constraint is applied. The main two different ways of a next test point
search are a global or local optimization of the cost function with constraints
or an evaluation of the cost function with only candidates fulfilling the
constraints. During an iterative optimization, no matter if it is a global or
local optimization, the boundary constraint needs to be evaluated at each
step. This type is applicable if the convex hull equations are calculated
and the evaluation effort is low. In case the GJK algorithm is used, the
function calls need to be as low as possible. This behavior should be kept
in mind when introducing a test point search strategy.
The search area for a next test point must not be the convex hull area

only. In case this region is applied only, a further determination of the true
boundaries at a given stage is not possible, assuming a strict convex shape.
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Therefore, the search area has to be expanded as to define a new region for
a test point selection where measurements are likely feasible. A method is
introduced in the following section to extend the convex hull boundaries.

3.3 Search Area Expansion

A search area should be defined by a combination of existing knowledge
about engine boundaries, regardless of whether they are engine damag-
ing or calibration target limits, and a boundary shape estimation in the
unmeasured area. The most adaptive test design procedures presented in
section 2.4 utilize an output-driven model to estimate the boundary shape,
which has the main disadvantage to not consider piecewise-defined limits.
A good alternative solution is the “potato model” that extends the range
between hull-describing points. A disadvantage of this solution is the ne-
cessity for a tuning parameter. The calibration engineer is forced to apply a
radius to define how fast the hull extends between boundary points, which
is hard to guess, especially for different dimensional problems and tasks.

A solution for the search area definition is the linear extension of convex
hull hyperplanes, as figured out in [SS17a], where the extrapolated area
prohibits test points that do not strictly keep the convex hull definition.
The idea is to define a sub-area driven by each boundary point and defined
by the particular joint hyperplanes. Only as boundary labeled hull points
are considered because those give rise about the true boundary shape. In-
stead of extending the convex hull, a next test point simply must not lie
within any of the sub-areas. The definition of the exclusion area B is exem-
plarily shown in figure 3.5 for a 2-dimensional input domain with no other
constraints and three boundary labeled hull points. Depending on whether
a convex hull with all hyperplane definitions is known or not, the method
to identify the exclusion area B is a different one. The next two sections
introduce procedures for both conditions.

3.3.1 Hyperplane-Based Exclusion Procedure

In case the convex hull with all its hyperplanes, given by normal vectors and
origin distances, is known, B can be identified by using the joint boundary
point hyperplanes to evaluate the Hessian normal form (2.62). A candidate
set S can be checked for being part of B or not by a sequential procedure.
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x1 x2
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B

Figure 3.5: Definition of the exclusion area with predicted sub-areas B and labeled
boundary points xi

Each as boundary labeled hull point is considered and the joint hyperplanes
with normal vector and origin distance are selected. The distance d of a
candidate sk is calculated by the Hessian normal form, where sk is part
of the sub-area in case all distances are positive. This contradicts (2.62),
because the normal vector of a convex hull points outside the hull and
therefore a point is part of the sub-area if it lies on the other side of all
joint hyperplanes. Figure 3.6 points out this behavior. The algorithm stops
early in case all candidates are already assigned to any sub-area. In case
a low-discrepancy candidate set is provided the early stop is very unlikely.
In a sequential procedure with only a single candidate check this abortion
criterion is necessary to avoid unnecessary calculations. The full algorithm
to test a candidate set for being part of B or not is shown in algorithm C.1
in appendix C.

During engine test bench measurements the applied test point distance
to the boundary can differ due to a changing automation system configura-
tion for example. Even though it should be avoided, in practice it happens
that the parameterization is changed by the calibration engineer. There-
fore, slightly non-convex boundary measurements can occur, which result
in an error, because the boundary labeled point is not part of the convex
hull. Those points need to be projected onto the convex hull surface and
integrated to it. A simple procedure is applied as follows. The hyperplane
with lowest distance to the inside lying boundary point is determined by
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x1 x2

x3 a23a13

d13 > 0, d23 > 0

d13 > 0
d23 < 0

d13 < 0
d23 > 0

Figure 3.6: Hyperplane normal vector and distance definition for the joint hyperplanes
of boundary point x3 with normal vectors a13, a23 and resulting distances d.

the Hessian normal form distance calculation. The intersection of the nor-
mal vector of this hyperplane, starting at the boundary point, and the
hyperplane is identified solving the linear equation

xj + λa = o+ δD (3.1)

where o is any boundary point of the considered simplex and D is a ma-
trix of simplex direction vectors, preferably calculated by all other joint
boundary points of the simplex. The result for the intersection point can
be derived by solving⎡⎢⎢⎢⎣

λ
δ1
...

δn−1

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎝
⎡⎢⎣a1 d1,1 . . . d1,n−1

...
...

. . .
...

an dn,1 . . . dn,n−1

⎤⎥⎦
⊤
⎞⎟⎟⎠

−1 ⎡⎢⎣o1...
on

⎤⎥⎦ (3.2)

and applying either λ or δ. The determined intersection point is added to
the hull and incorporated during the exclusion area check.

3.3.2 Iterative Exclusion Procedure

The iterative exclusion procedure takes place if the hyperplanes of a set of
points are not determined, i.e. when the GJK algorithm is applied instead of
a convex hull calculation. Since the joint hyperplanes of a labeled boundary

82



3.3 Search Area Expansion

point are not present, a different calculation has to be applied to test a given
candidate about its affiliation.
Basically, the joint hyperplanes of a convex hull boundary point equal

the convex cone generating hyperplanes of the point set and can be inferred
by the convex cone and convex set definition. A convex cone is defined by

cone(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓αi ≥ 0 ∀i

}︄
(3.3)

which is the same representation of an area as (2.63), except that the con-
dition about the αi is different. The missing sum condition allows to quit
the convex hull area and also includes the origin to the convex cone. How-
ever, a negative αi is prohibited, which is why the joint hyperplanes of a
boundary point, if given as the origin, are exactly the convex cone limit-
ing hyperplanes. To find a linear combination for a given candidate sk for
(3.3) there is no closed solution. An iterative procedure, derived from the
GJK algorithm [GJK88], is presented in [ZC09] to find the closest point
on cone(X) for sk. A detailed explanation of the algorithm is given in
appendix B.
The coordinate system origin is the same as the convex cone origin if

the cone is defined by (3.3). Hence, the cone-generating points and the
candidate at first need to be translated by the considered boundary point
xi by xj − xi ∀xj ∈ X resulting in Xt and by st = s − xi. Similar to
the hyperplane-based method, the cone-generating hyperplanes need to be
negated. Another, more appropriate way is to mirror the candidate at the
new origin and test for being part of the convex cone or not. That is, if and
only if −st ∈ cone(Xt), then sk is part of the sub-area. This check has to
be done for all as boundary labeled points to determine if sk ∈ B. The full
algorithm to check a candidate set S for being part of the exclusion area
B is shown in algorithm C.2 in appendix C.
A characteristic of the convex cone algorithm is, that in case the bound-

ary point under consideration is slightly inside the convex hull the whole in-
put domain is identified as inside the convex cone. During engine test bench
measurements the applied test point distance to the boundary can differ
depending on the automation system configuration for example. There-
fore, slightly non-convex boundary measurements can occur, which force
the convex cone algorithm to exclude all candidates in the input domain.
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All labeled boundary points need to be checked if they belong to the convex
hull building points, where the GJK algorithm can be applied for. Labeled
boundary points that do not contribute to the convex hull first have to
be projected onto the hull surface. This is quite important for a simple
reason. In case points are part of the same hyperplane, where the non-hull
contributing point is labeled as boundary, a huge area of the non-measured
area can be defined as exclusion area. Figure 3.7 illustrates this behav-
ior. The hyperplanes are not known, which is why a simple orthogonal
projection onto the surface, as shown in the hyperplane-based strategy, is
not possible. Another procedure is introduced to find an almost optimal
solution. The aim is to only project the considered boundary point onto
the most appropriate hyperplane. The criterion, which is used, is a support
vector starting at the hull center point to the considered point. The hull
center point γ is calculated as the center of gravity of all points contributing
to the hull, which is, for simplicity of calculation, not the volumetric hull
center. To determine the volumetric hull center, a Delaunay triangulation
of the boundary points would be necessary, which calculation duration con-
tradicts the gained benefit of a convex set application. Hence, the support
vector is calculated and normed to the unit length by

vsn =
xj − γ

|xj − γ| . (3.4)

For all points xi ∈ X, a support value ρ(xi) is calculated by

ρ(xi) = (xi − xj)v
⊤
sn (3.5)

considering the as boundary labeled point xj . The point xi with the highest
support, which is the point that has the furthest projection on the support
vector, is projected onto the support vector by

xip = ρ(xi)vsn. (3.6)

The point xip is located on the convex hull hyperplane that intersects the
extended vector xj − γ if the intersection is perpendicular or slightly out-
side the hull. Applying the GJK algorithm to xip to find the closest point
on the convex hull delivers a surrogate point xih on the intersected convex
hull hyperplane.
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Figure 3.7: Left: Exclusion area definition in case 3 points are part of the same hyper-
plane. x4 is labeled as boundary point and therefore the joint hyperplanes
hold the same normal vector and origin distance. Due to the convex crite-
rion, a large area is defined as exclusion area B. Right: Construction of a
surrogate point for an in hull located boundary point. A support vector is
calculated by the hull point center of gravity γ and the boundary point x4.
The furthest support point x3 is projected onto the support vector to x3p.
The nearest hull point x3h for x3p is determined by the GJK algorithm.

In the very rare case the furthest boundary point lies on the support
vector, the surrogate point xih is the same as the boundary point, which
is not the target of the algorithm and a wrong solution. In this case, a
random noise is added to the support vector vs and it is normed again to
change the support vector direction slightly. The full algorithm is shown
in algorithm C.3 in appendix C.

The iterative exclusion procedure is called iterative, contrary to the
hyperplane-based method, because a candidate set has to be checked it-
eratively and there is no joint calculation for several candidates. The dis-
tance determination within the hyperplane method for one boundary point
is a matrix operation, which is jointly calculable for a whole candidate set.
However, both methods have to loop over all labeled boundary points or
until the abortion criterion is reached. The iterative procedure suffers from
a higher amount of operations compared to the hyperplane-based method.
Depending on the complexity of the test design algorithm, it is more rea-
sonable to first calculate a next test point and then check this candidate for
being part of the exclusion area or not. The erased candidates are persisted
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and not accounted in a subsequent test point search, because the convex
assumption does not allow them being inside the measurable area again.

3.4 Simulation-Based Investigation

A verification of the theoretical considerations is done regarding the re-
quirements listed in section 2.5. A comparison measurement at an engine
test bench is very expensive in terms of both money and effort, which is
why the verification is done by simulation models. This additionally offers
the possibility to run repeated tests for statistical validity. The subsequent
sections define the objectives in detail, the architecture of the simulation
model, and show the results of a comparison to a non-adaptive approach.

3.4.1 Objectives

The two main objectives to verify are the continuous increase of the mea-
sured input domain size and the increase of the average model quality. The
measured input domain size is calculated by means of the convex hull cal-
culation and the volume the hull incorporates. The MATLAB® function
convhulln is called in each iteration to determine the hull volume. A steady
increase and a high volume result are the main criteria.
The average model quality is determined by a huge validation set. A

Sobol sequence is generated in the whole input domain. Points are iter-
atively added to the validation set, which fulfill all boundary constraints
of the simulation model. 10000 validation points are generated by this
method and evaluated by the simulation model in each iteration without
adding any noise. The validation RMSE r is calculated as the RMSE of
the noise free validation points and the model predictions.
A model structure independent test design is chosen to focus the effect

of the boundary detection method only. Hence, new test points are gener-
ated by the maximin algorithm, given a Sobol sequence with 30000 candi-
dates, which is different to the validation point sequence. The boundary
incorporation-based method is compared to a strict space filling, planned
in advance into the unit hypercube input domain [0,1]dim. The first 10 test
points are designed similar for both methods. For the adaptive approach
an iterative test design is applied in each iteration. A next test point is
planned by maximin and the result is checked for being part of B. In case
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Figure 3.8: Bisection method with 2 iterations to find a near boundary surrogate mea-
surement. The outer area marking is not shown for better visualization of
bisection, only the boundary shape is shown. Example from figure 2.7.

it is a part, the candidate is erased from the candidate set and a next test
point is planned by maximin until a solution is found that is not part of B.
If a planned test point is not within the simulated boundaries, a simple

iterative bisection method takes place to find the closest surrogate mea-
surement location within the boundaries. For this surrogate measurement
identification, a vectorial adjustment is assumed, starting at a given base
point. The bisection method is exemplary shown in figure 3.8 for two iter-
ations. During the simulation the bisection is iteratively applied until the
bisection length reaches a threshold of ϵt = 2.22 · 10−11 and the solution
is within the bounds. The simulation model is executed at this surrogate
location and the output is used for model training. Both, the original test
point and the surrogate location are used as inclusions for the subsequent
adaptive test design iteration.

3.4.2 Simulation Model

The impact of design space restrictions on the model quality is different for
various processes. Within this simulation, the relevant factor for the model
quality is the space-filling test design quality that is affected by the design
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space restriction. The identification of a strong oscillating or nonlinear
process, however, is much more influenced by a low space-filling quality than
the identification of a linear one. Different simulation models are introduced
to demonstrate the quality change provoked by the boundary incorporation
strategy. In engine test bench measurements, the same input setting does
not exactly reproduce the same output if measured several times. Different
to computer experiments, the measurements exhibit diverse noise types. A
simulation of engine test bench measurements therefore has to incorporate
artificial noise. Both, the simulated processes and the artificial noise model
are introduced in the following sections.

Process Models

The goal of the developed methods is to improve the identification of mea-
surable variables to describe the combustion engine behavior by means of
steady state test bench measurements. Dependent on the type of engine,
the detailed engine hardware, and the calibration target several variables
are of interest that behave different and sometimes show opposite trends on
an input variation. The most relevant engine calibration parameters have
smooth gradient changes. However, some are more difficult to model like
for example soot emissions in both diesel and gasoline engines. Four differ-
ent mathematical model types are implemented and used for the simulative
verification.

A nonlinear function, called radcosn, is provided by [Pol02] and aims
in a two dimensional case (radcos2) at representing the behavior of the
fuel consumption of gasoline engines while varying the intake and exhaust
camshaft [Rai15]. This function is referenced by several optimization and
test design algorithms (see e.g. [Zag14; Rai15]) because it represents a
realistic problem with several local minima. The generic, multidimensional
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radcosn function is described by

yradcosn(x) = cos

(︃
9
√︂
x21 + x22 + 2

)︃
+

1

2
cos(8x1(1 + x3 + ...+ xdim) + 2)

+ 15((x1 − 0.4)2 + (x2 − 0.4)2)2

+
15√

dim− 2

dim∑︂
i=3

(xi − ai(bix1 + 1− x2)− 0.2)2

(3.7)

with bi = 1+ 5(i− 3), ai =
0.6
1+bi

and dimension dim. The radcos2 function
is exemplarily shown in the bottom left plot in figure 3.9.
Another smooth but strong nonlinear process is a mixture of a hyper-

bolic and a Gaussian function, introduced in [Har14] to compare different
combustion engine modeling algorithms. The function is defined by

yGH(x) =
1

1 + 10
∑︁dim

j=1
1

dim(1− xj)
+

29

44
exp

(︄
−1

2

dim∑︂
i=1

(︂ xi
0.25

)︂2)︄
(3.8)

for a given input vector x with dimension dim. This function also shows
several local minima and high gradient changes but at the same time has
a smooth behavior, which represents typical combustion engine character-
istics. The mixture model is shown in a two dimensional case in figure 3.9
bottom right.
The CEC2009 competition [Zha+09] provides different models, where the

cost function for an optimization shows several optima. For all models a
Pareto front exists, which is the same especially in diesel engine optimiza-
tion. The constrained problem 1 consists of two functions that have an
inverse trend. Additionally, a constraint is defined to serve as a boundary
information for the simulation environment. The first output is defined by

yCEC1(x) = x1 +
2

|J1|
∑︂
j∈J1

(︄
xj − x

0.5
(︂
1+

3(j−2)
dim−2

)︂
1

)︄2

(3.9)
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and the second by

yCEC2(x) = 1− x1 +
2

|J2|
∑︂
j∈J2

(︄
xj − x

0.5
(︂
1+

3(j−2)
dim−2

)︂
1

)︄2

(3.10)

with J1 = {j|j is odd and 2 ≤ j ≤ dim} and J2 = {j|j is even and 2 ≤
j ≤ dim}. The search space constraint is given with

yCEC1 + yCEC2 − a| sin [Nπ(yCEC1 − yCEC2 + 1)] | − 1 ≥ 0 (3.11)

with N being an integer and a ≥ 1
2N . The 2009 contest specifies N = 10

and a = 1, which is adopted for the simulation model. The functions are
exemplarily shown in the two upper plots of figure 3.9 in a 3-dimensional
input domain with fixed second input, because the first output function is
defined for at least 3 inputs.
In addition to the artificial model types, a data-driven combustion engine

model is applied as well. A diesel engine is measured with a space-filling
test design at an engine test bench. Next to engine speed and engine load
7 further inputs are varied. The input impact on the relevant outputs

� carbon monoxide (CO),

� fuel mass flow (ṁfuel),

� exhaust temperature before turbine (TBefTurbine) and

� soot mass flow (ṁSoot)

is modeled by a GP model. The model configuration is shown in figure 3.10.
The model is used with fixed speed and load values for simplification. With
changing speed and load many different effects arise that make it more diffi-
cult to precisely judge the main effect of different test design algorithms. As
an example, consider the adjustment of speed and load, which should not
be done arbitrarily during a test run. Each operating point change takes a
long time during an automated test run, which is why the test points are
commonly sorted in a meandering shape. This problem is considered in
chapter 5.

A restriction on the output of the artificial models needs to be introduced
for the simulation of an artificial boundary. Even though the CEC2009
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Figure 3.9: Representation of the used generic process models. Top left: First output
of the 3-dimensional CEC2009 competition model with N = 10 and a = 1
with a variation of the first and third parameter [Zha+09]. Top right: Second
output of the 3-dimensional CEC2009 competition model with N = 10 and
a = 1 with a variation of the first and third parameter [Zha+09]. Bottom left:
Radcos2 function [Pol02]. Bottom right: Mixture of hyperbolic and Gaussian
function with two inputs [Har14].

competition model provides a constraint, more restrictive boundaries are
introduced for all outputs additionally. Within the artificial model, lower
bounds restrict the output and therefore the input domain. The outcome of
the boundaries, especially the CEC2009 model boundary, is non-convex in
some areas. A convex surrogate model is created, which is trained by 10000
Sobol-based candidates. Only those candidates fulfilling all constraints are
the input to a convex set-based hull model. During the simulation, this
hull model specifies the model boundaries. The diesel engine simulation
model provides a convex hull model that corresponds to the real measured
input domain and is used to define the valid evaluation range of the GP
models within this simulation. No more constraints need to be applied for
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Figure 3.10: Diesel engine simulation model structure

this model type. An overview over the restrictions for both model types is
given in table 3.1.

The diesel engine simulation model is always used with all inputs except
speed and load. A higher input dimension is represented and tested by the
artificial simulation models. These are calculable with an arbitrary amount
of inputs, for which reason an input dimension of 9 is chosen to be a good
compromise between a high-dimensional test and a common application of
combustion engine identification.

Table 3.1: Boundary constraints definition

Model Type Dimension
Lower
Bound

Upper
Bound

Further
Restriction

Artificial 9
0.5, 0.4, 2,

0.15
-

CEC2009
Constraints

Diesel Engine 7 - -
Convex
Hull
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Noise Model

The observation of engine test bench measurements does not only highlight
simple i.i.d. Gaussian noise in the output signals. To approximate an output
noise free steady-state value, a recording of all parameters is executed at the
engine test bench for 30-60 seconds. Each focused parameter is averaged
over the recorded duration to subtract parts of the measurement device
noise. If only i.i.d. noise on the output would be present, a mean steady
state measurement would be able to identify the real process output with
high certainty. Unfortunately, the three types of noise

� actuator noise ϵi,

� plant noise ϵp and

� measurement device noise ϵo

are present. An oscillation in actuators is always present, because the ECU
continuously controls the desired engine operating status. The oscillation
amplitude and frequency is significantly changing for different ECU calibra-
tion stages and operating conditions. A part of the oscillation is considered
by the mean measurement, but in case the input/output mapping is nonlin-
ear the measurement deviates from the real process output for the averaged
input setting. A second, hard to reproduce noise type is caused by the fact
that a combustion engine behaves different over run time due to wear and
carbonization. Also operating conditions such as the ambient pressure and
humidity are typically not controlled in an engine test cell and have an
influence on the engine behavior. These long-term effects also have to be
considered by the simulation noise model as plant noise. The third noise
type is the measurement device noise. The noise level is significantly re-
duced by the mean measurement but a drift of the measurement device
occurs as well. Especially exhaust gas analyzers exhibit a short-term drift.
A common procedure is to calibrate the exhaust gas analyzers daily to
reduce the measurement device error.
The measurement device noise is assumed to be i.i.d. and is therefore

considered by a Gaussian noise. The highest noise is expected for exhaust
gas analyzers. Since these are calibrated daily, a good knowledge about
their measurement deviation is present. A relative deviation of the cali-
bration gas more than 1.5% before calibration and 1% after calibration is
commonly accepted and is exceeded seldom. Therefore, the measurement
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device noise is assumed with a standard deviation of σo = 0.01, because in
most cases 1% deviation is not exceeded but there also exists a significant
probability (31.73% for this definition) that the error level is exceeded. The
application of a plant noise is more challenging though. A measurement
of the plant noise is very time consuming and expensive due to the long
term effect. As a random trend noise a Wiener process is applied, because
this type of noise shows a correlated noise given a duration. The Wiener
process can be defined by the normal distributed change over a time step
dt by

dW ∼
√
dtN (0, σ2w). (3.12)

A noise is added to each simulation model output by the definition of an
independent Wiener process for each output. The time delta is assumed
to be dt = 1 as a measurement-based time step, because no measurement
is present to identify the real process noise. Each process sample deals as
plant noise level for a single simulation. The noise magnitude is thus only
controlled by σ2w. A systematic error has a variable impact on different
parameters, which is why a noise value is generated for each model output
separately but with the same noise variance. As an example the combustion
chamber carbonization in gasoline engines can be taken into consideration.
The knocking sensitivity is raised because the self ignition risk at hot carbon
spots is higher than at the clean piston and valve surfaces. The gas exchange
of fresh and exhaust gas is not influenced remarkably by the carbonization,
while the exhaust emissions are influenced variously. A test design method
has to handle these effects and therefore the simulation environment needs
to provide the necessary conditions. From test point to test point, the trend
and noise level can turn. The process noise indeed is not independent, but
the dependency is hard to identify. The Wiener process noise is added to
indicate a dependent noise randomly by its definition. Random samples
from a Wiener process with σw = 0.0005 are shown in figure 3.11 and are
found to be suitable for the reconstruction of real measurements. Both, the
measurement device and plant noise are added as relative noise.
Next to the plant and measurement device noise the input noise is con-

sidered. A Gaussian i.i.d. noise represents the controller deviation from
the demanded values during a measurement. Different than the output
noise, the input noise and its influence on the output by the plant model is
calculated 600 times for each mean measurement. This represents a typi-
cal measurement duration of 60 seconds with a sample rate of 10Hz. The
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Figure 3.11: Wiener process samples over 500 measurements given a Gaussian standard
deviation of σw = 0.0005 and a sample discretization of dt = 1.

variance of the input noise is assumed to be the same for each input and
is added relatively as well. Investigations offer a linear noise magnitude
dependency on signal magnitude in most cases. Even the MFB50 control
noise has a strong dependency on the absolute value. It could be assumed
to be independent on the output magnitude, because an MFB50 around
the top dead center (0 ◦CA) offers noise as well. However, the dissent-
ing behavior is explained by the more fluctuating combustion process at
late MFB50 locations, which is reflected by higher controller noise. The
simulation function with added noise is defined by

y(x, j) =

∑︁m
k=1 f(x(1 + ϵi))

m
(1 + ϵp)(1 + ϵo)

=

∑︁m
k=1 f(x(1 + σ2i ξi))

m
(1 +W (j))(1 + σ2oξo)

(3.13)

with ξ being a normal random variable with E(ξ) = 0 and var(ξ) = 1 and
j as the measurement number. During the simulation, the function output
with input noise is sampled 600 times for each output, meaning m = 600.
The process and output noise is only added once.
Investigations of the input noise level in diesel and gasoline engines show

a typical maximal averaged input noise standard deviation of σi = 0.02,
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Figure 3.12: Overall simulation model architecture with i.i.d. Gaussian input noise ϵi,
i.i.d. Gaussian output noise ϵo and Wiener process-based plant noise ϵp

which is related to the signal magnitude. Controlled physical parameters
as for example the EGR rate, the air mass or the rail pressure exhibit a
higher input noise than positioning controller as for example the variable
valve timing or the injection timing. However, during the simulation a
worst case scenario is created, where each input experiences an individual
noise but with the same relative noise level. The overall simulation model
including input, plant, and output noise is given in figure 3.12.

3.4.3 Discussion

Each simulation is run 20 times to judge the average improvement and
fluctuation range. Figure 3.13 shows the mean relative validation error for
each output for the diesel engine simulation model. The validation error r
is normed to the sum of the arithmetic mean and the standard deviation
of all validation point output values yval for the particular output i by

rrel,i =
ri

yval,i + std(yval,i)
· 100. (3.14)

The shadowed area is the standard deviation range, calculated by all 20
simulation runs at each simulation step. The validation error decreases, as
expected, asymptotically with the number of training points. The fluctua-
tion between the simulation runs seems to be different for the outputs but
is a result of a different error level and is thus explained by axes scaling.
The input variation has a strong influence on the CO and soot emissions
but a lower one on exhaust temperature and fuel consumption. The sim-
ulated condition is only one operating point by what the low impact on
exhaust temperature and fuel consumption is explained. To describe it in
a different way: The CO and soot functions are considerably more complex
in this test case compared to the fuel consumption and exhaust tempera-
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Figure 3.13: Top four plots: Relative validation error trend for all 4 outputs of the diesel
engine simulation model with 7 inputs (model structure as defined in fig-
ure 3.10). The average validation RMSE is shown solid and the standard
deviation between all 20 simulation runs is given as shadowed area for error
stability estimation. Bottom left: Convex hull volume trend for the space-
filling test design and the adaptive test design during the simulation of the
diesel engine identification with 7 inputs. Bottom right: Relative amount
of cumulated erased candidates for each iteration by using the adaptive test
design method.
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ture functions. This property can be recognized by the amount of error and
therefore the different scaling. While the relative error of fuel consumption
and exhaust temperature is generally very low, the error of the emissions
is significantly higher. With both the adaptive and simple space-filling test
design the models are able to learn the process behavior. The uncertainty
in process identification is approximately similar for both methods. How-
ever, the adaptive test design is able to reduce the validation error slightly
faster than the non-adaptive approach in most cases. The error decrease
for the CO emissions is very similar but all other 3 outputs show a faster
decrease of error for the adaptive approach. Also the validation error at
the end of the simulation is lower in all cases for the adaptive approach.

Additional to the better process identification, the measurement covered
input region is increasing significantly faster for the adaptive approach, as
can be seen in figure 3.13 in the bottom left plot. Starting from 130 train-
ing points, a faster growth of the convex hull volume is achieved, resulting
in a volume nearly twice as with the non-adaptive approach. The volume
shown is normed to the unit hypercube to have a maximum value of 1.
Since convex boundaries are present within the input domain, a volume of
1 is not reachable. The faster volume increase is explained by two differ-
ent effects. Firstly the adaptive approach includes both the planned and
the measured points to design the next test point. In case a test point
is not applicable and a surrogate measurement is executed at the bound-
ary, two inclusions are generated instead of only the designed test point
as with the non-adaptive approach. The second and more important in-
fluence is the candidate erase strategy as introduced in this chapter. Once
information about the boundaries is gathered the strategy applies and the
exclusion area B starts growing. Boundary measurements near already
taken measurements are not likely taken anymore. The bottom right plot
in figure 3.13 shows this fact in dependency on the number of measured
training points. The relative amount of candidates that are erased because
they are part of the exclusion area B is shown. Simultaneous to the start
of the exponential increase of erased candidates, the convex hull volume
starts to increase significantly faster than with the non-adaptive approach.
During an optimization, this considerably higher model evaluation range
could lead to a better optimum that potentially would not be identified
with the non-adaptive approach. Together with the lower validation error
an optimal solution is also identifiable with higher certainty. Another view
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is offered by the evaluation of measurement duration decrease by means
of the adaptive approach. The hull volume level with 500 non-adaptively
planned measurements is reached with the adaptive approach by 290 mea-
surements. This offers a measurement time reduction of 42% by using the
adaptive approach considering the measured input domain.
The simulation results of the artificial models in a 9-dimensional input

domain are given in figure 3.14. A distinct validation error decrease trend
by using the adaptive approach is not present for the CEC2009 competition
model outputs. A slightly better, though not clearly differentiable decrease
in the validation error of output 2 of the CEC2009 model is noticeable
compared to the space-filling test design. The ambiguous behavior is indi-
cated by the standard deviation as well, since it shows a high fluctuation
between each simulation run, especially for the adaptive test design. A
different situation is given for the radcosn validation error, which reaches a
significantly lower value by using the adaptive test design. The test design
is crucial for this function, because it exhibits several local optima and has
a high dynamic shape. A severe resulting validation error level for both
strategies points this out with a clearly higher validation error compared
to all other outputs. At the Gaussian hyperbolic function the same lowest,
saturated error is achieved for both test design methods, where the low
error is reached significantly quicker with the adaptive test design. The
overall validation error situation gives rise that the effect of the boundary
estimation has a positive influence on the test design. No increase in vali-
dation error is determined and the validation error trend and resulting level
is clearly improved for the radcosn and Gaussian hyperbolic function even
in this comparatively high-dimensional input domain.
The resulting convex hull volume is significantly improved during the

whole simulation as shown in the bottom left plot in figure 3.14. As with
the 7-dimensional example, the hull volume starts to increase faster with
the adaptive test design at that point where the exclusion area strategy
starts excluding candidates. Candidates are erased continuously, while new
boundary information is provided. After 800 measurements, a hull with
approximately 45% higher volume is the result of the adaptive test design
strategy. Or from the efficiency point of view, the hull volume by 800
measurements with the non-adaptive approach is reached already with 585
measurements with the adaptive approach. This is a decrease of almost
27% measurement duration. Even though the input domain offers a very
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Figure 3.14: Top four plots: Relative validation error trend for the 4 artificial models
CEC1, CEC2, radcosn and Gaussian hyperbolic function as shown in fig-
ure 3.9. 9 inputs are used for all models. The average validation RMSE is
shown solid and the standard deviation between all 20 simulation runs is
given as shadowed area for error stability estimation. Bottom left: Convex
hull volume trend for the space-filling test design and the adaptive test de-
sign during the simulation of the artificial functions with 9 inputs. Bottom
right: Relative amount of cumulated erased candidates for each iteration by
using the adaptive test design method.
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high dimension, a substantial improvement is achieved by the exclusion
area strategy.

3.5 Chapter Summary

The main target of this chapter was to investigate a strategy that is able
to identify, predict, and deal with engine boundaries during a test bench
measurement with an adaptive test design method, where an amount of
inputs more than 7 has to be considered. A boundary model and a bound-
ary prediction for the non-known area was introduced to serve as the base
for the adaptive test planning. The convex hull-based model and extension
strategy answered the open questions how to deal with and achieve

� piecewise-defined limit behavior and

� a continuous measured input domain volume increase

and also involved the criterion to pay attention to more than one output,
which is, however, not answered. Since the hull model only incorporates
taken measurements in the input domain and their information about the
boundary status, piecewise-defined limit behavior is representable. The
output behavior is not incorporated, which is why output limits like engine
misfire, knocking or other outputs with strong gradients could be included.
This advantage is in contrast to output-driven boundary modeling strate-
gies, which are hardly able to represent piecewise-defined limits.
The continuous measured input domain volume increase is achieved by

a space-filling test design, where only test points within the predicted non-
boundary area are taken into account. These areas are identified by the
convex boundary criterion. Only parts outside the measured area that
could possibly fulfill the convex hull criterion are taken into account. An
underlying Sobol-based candidate set enables the maximin algorithm to find
a next space-filling test point, where user defined convex and non-convex
input domain restrictions are involved. Since the developed methods are
geometrically based and rely on the convex hull criterion, no user configu-
ration is mandatory for parameterization.
The developed test design strategy is validated by two different simu-

lation models. A diesel engine simulation model with 7 inputs, based on
a Gaussian process model, and a combination of four different artificial

101



3 Adaptive Test Space Restriction

models with 9 inputs dealt as process models. Gaussian noise was added
on the input and output and a Wiener process-based plant noise provided
the necessary non-continuous system behavior during a measurement cam-
paign. The simulation results were compared to a space-filling test design
that was planned in advance by means of the same candidate set as applied
to the adaptive approach. The criteria to evaluate were the resulting con-
vex hull volume, which corresponds to the measured area, and the model
validation error. The error was calculated as RMSE by a validation point
set with 10000 measurements without noise within the true boundary area.

A significant increase of the convex hull volume of 45% within the 9-
dimensional test case with 800 measurements and nearly 100% with 500
measurements within the 7-dimensional test case could be achieved. The
validation error also exhibits a moderate to significant reduction, both dur-
ing each measurement campaign and also with the maximum amount of
measurements tested. Compared to the space-filling test design planned in
advance, the validation error is not reduced for all outputs but does not
increase for any output with using the adaptive approach.
The developed method contributes to a considerable reduction of mea-

surements, with up to 42% in the 7-dimensional simulation and up to 27%
in the 9-dimensional simulation, or an increase of model evaluation area
and at the same time reduces the overall validation error. Compared to
state of the art methods, the algorithms are able to incorporate piecewise-
defined limit behavior and at the same time increase the measured input
domain volume significantly.
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In the preceding chapter, it was discussed how engine operating boundaries
can be involved into the test design during an adaptive test design strategy.
The resulting model quality could be optimized by a boundary estimation
due to a more reliable measurement in terms of drivability of planned test
points. In case no process information is present, a low-discrepancy test
design is the most appropriate way to calculate a test plan for collecting
information to train a GP model. Knowledge about the process behavior
is generated during a measurement campaign that additionally can be in-
cluded into the test point search during an adaptive test design. The quality
of a low-discrepancy test design, calculated by the maximin definition (2.55)
for example, is raised during the adaptive test design in case the test points
cannot be applied as designed due to the occurrence of engine boundaries.
However, this procedure does not incorporate process knowledge about the
input-output mapping. Especially for strong nonlinear functions or a dif-
ferent influence of the input parameters on the output, a low-discrepancy
test design is not the first choice. Some sequential test design strategies are
already discussed in chapter 2. For instance, a sequential maximum entropy
design can be applied within a GPM application. The process knowledge is
incorporated by the entropy through the covariance function of the GPM.
Since the hyperparameters of the squared exponential covariance function
are updated, the covariance matrix changes in each iteration and the en-
tropy change for a given test point location is different compared to a fixed
hyperparameter assumption. This calculation is an easy method but does
not deliver satisfying results for a general application (refer to section 2.4.4
and [Rai15]). Further strategies exist, see e.g. [Rai15; Xie16], but are not
compared or even applicable in engine calibration. Additionally, no clear
solution for the optimization of several outputs is given in literature.

The aim of this chapter is to identify a best-fitting solution for the adap-
tive test design, which improves model error reduction for one or several
outputs compared to a low-discrepancy test design given the specified con-
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ditions. Three different new or modified implementations of test design
methods are given and compared to state-of-the-art methods by a sim-
ulative investigation. The uncertainty-based test design (section 4.1), a
relevance-based test design (section 4.2), and an adjusted MI test design
(section 4.3) are explained. A simulation is set up and the results are dis-
cussed in section 4.4. The last section 4.5 summarizes the model-based test
design chapter.

4.1 Uncertainty-Based Test Design

The GP model is able to predict the uncertainty at any input domain lo-
cation by means of the prediction variance (2.38). Since this information
is present, the test design is able to utilize it and place new test points
where a high uncertainty is assumed. This method is very easy to apply
and fast to calculate. However, it also has some disadvantages. The qual-
ity of this test design is strongly related to the model training quality. In
case the hyperparameter estimation is of low quality the test point selec-
tion will result in a poor test design as well. In a worst case scenario the
true process will never be identified correctly, because the test point selec-
tion prohibits an adequate hyperparameter training, which then results in
a poor test point selection again. An example for this kind of misleading
test design is shown in figure 4.1 in the upper plot. The aim is to identify
the function f(x, y) = x4 + y4, where no noise is added to the function. A
GPM is trained by means of cross-validation as described in section 2.1.4
after each iteration. The first 5 test points are given by the corners and the
center location. A full factorial candidate set is used to select each next
test point from. As can be seen, the GPM with maximum variance test
design does not describe the influence of the input parameter y correctly
(figure 4.1 bottom right). The influence of x is reproduced very well and a
lot of measurements are planned at the border because the variance shows
a high level at strong gradients.

Another problem with the variance-based test design is, similar to other
output-driven test design methods, the dependency on only one process out-
put. The variance of different outputs can be inverse proportional, leading
to a high informative measurement for one output but a non-informative
one for the other. For these two reasons a combined approach is being
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Figure 4.1: Top: Space-filling test design by maximin calculation and maximum variance
test design for the function f(x, y) = x4 + y4 without noise. The GPM is
trained after each new measurement and the latest model is used for the max-
imum variance identification. Bottom left: GPM regression with 40 space-
filling training points. Bottom right: GPM regression with 40 maximum
variance-based training points.
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introduced that joins the benefits of both, variance-based and space-filling
test designs.

The base of the combined approach is the maximin test design, applied
to a given low-discrepancy candidate set S like a Sobol sequence. The
uncertainty for each candidate is added to the distance criterion of max-
imin to achieve a combined rating for each candidate. A variance value is
determined for all candidates by the current model of a given output by

v = VarGP(S). (4.1)

The distance and variance have to have the same domain for an equivalent
rating. All uncertainty values are therefore normalized to [0,1] given the
minimum and maximum variance, resulting in v′. The same counts for the
minimum distance of each candidate, given by the inner part of (2.55) to
retrieve

d = min
x∈X

d(x,S) (4.2)

with already measured test points X. The minimum distance vector d is
min-max normalized to d′ and the normalized variance values are added
for the rating. The next test point then is identified by

x′ = argmax
S

(d′ + v′). (4.3)

This procedure takes the variance of only one output into account. How-
ever, due to the incorporation of the discrepancy, this kind of test point
generates information also for all other outputs. On the one hand, this
test design is a compromise of a model-based and a uniform test design
and will not generate as much information for one output as possible. On
the other hand, it is a robust design, which will not result in a misleading
measurement as given in figure 4.1. In the worst case, the incorporation of
the variance will lead to the same result as if only the distance criterion is
consulted. In best case, more information for the considered model is gen-
erated, where at the same time at least the same information is produced
for all other models as with a strict space-filling design.
The combined test design aims at a process behavior that offers differ-

ent gradients dependent on the input domain location. A high benefit is
present if the output does change only slightly in large areas but changes
rapidly in small areas. Such an extreme test case is defined by the function
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f(x) = x31 + x32 for {x ∈ Rdim>2| − 1 ≤ x ≤ 1}. With dim = 4 a simulation
is executed, where a relative Gaussian input noise with σi = 0.02 and a
relative Gaussian output noise with σo = 0.05 are added. The simulation
run is repeated 30 times to have a statistical valid result. The first 8 test
points are given by the input domain center and 7 corner points. A full
factorial grid with 18 grid points per input is used as candidate set and a
grid with 32 grid points per input as validation set, which is not used for
model training. The mean validation RMSE for 72 iterations is shown in
figure 4.2. Whereas the space-filling distribution does not reach the low
validation error level, the combined approach favors test points within the
strong-gradient areas. This behavior results in a lower overall validation
error, because the model is able to predict the process outcome within the
high-gradient area more accurate. As the space-filling criterion is incorpo-
rated, the low-gradient area still is predicted at high precision. Additionally
the combined approach reaches the low error level with less test points than
the space-filling distribution. The variance criterion detects the high un-
certainty in critical areas and favors a test point selection within these,
leading to a faster model quality gain. Compared to the space-filling test
design, the standard deviation of the model error is higher using the com-
bined approach. This behavior reflects the variation of hyperparameter
training, which results in a different test point selection. At some itera-
tions, a slightly worse validation error can be reached, but in most cases
a significantly reduced validation error is achieved. At 58 test points the
combined approach results in a stable, high-quality model with nearly no
difference between each simulation run.
In case several process outputs have to be modeled, a decision has to

be made which model is consulted for uncertainty prediction. An adjusted
round-robin procedure is suggested, where the worst models are favored.
The model quality is not determined by the validation error only but also by
means of a comparison of the worst RMSE to the measurement repetition
error [IAV20]. The worst RMSE is the highest value of the training et, val-
idation ev and LOOCV RMSE el. This value is normalized to the standard
deviation of all measurements y to

νw =
max(et, ev, el)

σ(y)
(4.4)

and represents the worst normalized error for the considered output. A
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Figure 4.2: Validation error trend for a simulation with a space-filling test design by the
maximin algorithm and the variance-based combined approach. The simula-
tion is executed 30 times. For both methods, the mean (solid line) and the
±σ interval (shadowed area) is shown.

threshold is defined by all repetition measurements

δ = mean(0.18k,
σ(xr,1)

σ(y)
,
σ(xr,2)

σ(y)
, ...,

σ(xr,k)

σ(y)
) (4.5)

for k different repetition settings xr,1, ...,xr,k. A status value is derived
by classification for each model. The worst normalized model error νw is
compared to the threshold δ in the interval

status =

⎧⎪⎨
⎪⎩

1 for νw ≤ δ

2 for δ < νw ≤ 2δ

3 for νw > 2δ.

(4.6)

Models with higher status values are preferred for variance evaluation to
identify the next test point by the combined method. If only one test point
is requested the model with highest status number is used. In case several
models have the same highest status number, a model is selected randomly.
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4.2 Relevance-Based Test Design

4.2 Relevance-Based Test Design

An adaptive test design algorithm has to find a next test point to gain
as much information as possible for the training of a given model type.
The GP model as discussed in section 2.1.4 is trained by hyperparameter
selection given measurement data. Once selected, the hyperparameters,
and especially the length scale values l2, present an assumption about the
impact of each single input on the output. This influence can be utilized
for a test point selection. Inputs with a low impact on the output do not
necessarily have to be observed as detailed as inputs with a high impact.
The length scale l gives rise about how far one has to move in the input

domain to significantly change the value of the function. Hence, the inverse
of the length scale is proportional to the input impact. The incorporation
of the length scale values is done by a space-filling test point selection in a
distorted input domain. A Sobol-based candidate set S is distorted by the
inverse of the length scale values

sd = l−1 ◦ s ∀s ∈ S (4.7)

with the Hadamard or element-wise product ◦. Applying the maximin
criterion on the distorted candidate set Sd

x′
d = argmax

Sd

min
xd∈Xd

d(xd,Sd) (4.8)

with the distorted, already measured test points Xd results in a new test
point in the distorted domain. The back transformation

x′ = l ◦ x′
d (4.9)

gives the new test point x′ that fulfills the relevance-based test design
criterion.
As an example the function f(x) = 2x1+3 sin(4x2) with {x ∈ R2| − 1 ≤

x ≤ 1} is considered, which is represented in figure 4.3. The input x1 has
a simple linear influence, while the input x2 offers a sinusoidal correlation
with short wavelength. It is easy for a model and especially for a GP model
to identify the linear influence of input x1, as long as two test points show
a significant distance from each other in the x1 domain. The input x2
needs a well distributed test point design with a high resolution of that
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Figure 4.3: Artificial test function f(x) = 2x1 + 3 sin(4x2) in the input domain [-1,1]2

input. Since the test function offers no interaction between both inputs,
it is comparatively easy to identify and is only used to demonstrate the
influence of a relevance-based test design. A simulation shows the benefit
of the relevance-based test design. A space-filling distribution, calculated
by the maximin algorithm, is compared to the relevance-based test design.
The adaptive, relevance-based test design is generated by fixed relative
length scales of lrel,1 = 15 and lrel,2 = 1, which are not changed during
the simulation. Provided no prior knowledge about the process is given,
this behavior is not applicable in a real test. The estimated length scales
after each measurement have to be used instead of fixed relative length
scales. However, it is chosen to demonstrate the relevance-based test design
potential. A relative Gaussian input noise with σi = 0.02 and a relative
Gaussian output noise with σo = 0.05 are added and the simulation is run
30 times for statistical validity. Figure 4.4 shows the validation error for
both the space-filling and the relevance-based test design, calculated by
10000 grid-based validation points.

An obviously relevant gain in information about the process is generated
by the relevance-based test design compared to the space-filling design. The
test function is roughly identified 3 test points earlier than by the reference
test design, which only is able to identify the process given 12 training
points. A detailed identification is firstly present at 22 test points by the
space-filling distribution, while the relevance-based design has a very low
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Figure 4.4: Validation error trend for a simulation with a space-filling test design by
the maximin algorithm and the relevance-based approach. The simulation
is executed 30 times. For both methods the mean (solid line) and the ±σ
interval (shadowed area) is shown.

validation error already at 11 training points. Due to the high informative
test design to identify the sinusoidal influence, nearly no deviation between
the test runs is present. A contrary property is given with the space-filling
distribution, which causes difficulties until 22 training points, noticeable by
the higher standard deviation.

During an adaptive test design campaign the relevance-based algorithm
is strongly dependent on the quality of length scale estimation. In case
a high mismatch between the optimal and the estimated length scale is
present, the test point distribution results in a very low quality design.
In a worst case scenario, the true process is never identified, because the
length scale estimation forces the relevance-based test design to find test
points in non-informative areas again. To prohibit such a behavior, the
maximum relative length scale is restricted by an upper bound. A relative
length scale is calculated by

lrel =
li

min(l)
for i = 1, ..., dim (4.10)

with the restriction of lrel ≤ 30, resulting in a relative length scale do-
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main of [1, 30]. The upper bound of 30 is chosen as a compromise between
information gain and robustness.

In case several outputs need to be optimized a similar procedure as in-
troduced in section 4.1 is applicable, considering only the model with low-
est quality. However, a more integrated procedure shall be introduced to
achieve a continuous optimization of all outputs other than with a round-
robin or a batch optimization. The length scales of all models are combined
to a mean length scale that is used for the relevance-based test design. The
arithmetic mean of all relative length scales for input i is calculated

lrel,i = lrel,i,1, lrel,i,2, ...lrel,i,k (4.11)

for k outputs. The relative length scales again need to be normed and
restricted to [1, 30]. A weighting to favor a test design for outputs with low
quality is applicable by a weighted arithmetic mean function. For instance,
the inverse quality status values (4.6) or a calibration engineer’s rating
could be used.

The space-filling test design in a distorted input domain allows a test de-
sign that contradicts the Latin hypercube design criteria. On the one hand,
this is no criterion for the relevance-based test design, on the other hand,
it provides a further improvement possibility if both criteria are combined.
A test point calculated by the maximin definition in the distorted input
domain is slightly moved by a local optimization in the following way. A
loss function analyzes the dimension individual minimum distances to all
given training points in the non-distorted domain by

L(x′) = −
dim∑︂
i=1

min
xi∈X

(|x′i − xi|) (4.12)

with the measured test points X. The minimization of the negative di-
mension specific distances aims at slightly shifting the given test point
away from the measured ones in a 1-dimensional projection. Constraints
are introduced to not deteriorate the relevance-based test design criterion
and keep the test point within the input domain bounds. A nonlinear op-
timization constraint limits the loss of the space-filling criterion. Since the
relevance-based test design rating is calculated in the distorted domain, the
constraint is necessarily applied herein instead of the original domain. A
loss of 5% is permitted for the search. The aim of the optimization is not
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to find a globally different test point but to shift the given one slightly.
Therefore, hard bounds keep the search area small. Half of the Euclidean
distance to the closest training point

dmax = max
Sd

min
xd∈Xd

d(xd,Sd) (4.13)

is added or subtracted from the optimization start point x0, respectively,
and used as bounds by

x′i,d ≥ xi,0 − dmax
2

x′i,d ≤ xi,0 +
dmax
2

for i = 1, ..., dim. (4.14)

Additionally, the distorted input domain bounds

x′i,d ≥ 0

x′i,d ≤ 1
li,rel

for i = 1, ..., dim (4.15)

define an upper and lower constraint.
As an example, figure 4.5 is considered. A measurement at 5 different

locations is given and a next test point has to be found for a next measure-
ment. A simple space-filling test design computes a test point that neither
respects an estimated influence of the input to the output nor considers the
LH criterion. Assuming relative length scales of l1,rel = 3 and l2,rel = 1,
the relevance-based test design applies the space-filling criterion in the dis-
torted input domain, which is shown in the right plot. The horizontal axis
shrinks due to the low relevance, while the vertical axis stays the same
and is weighted significantly higher regarding the distance. Therefore, the
space-filling test point calculated in the original domain does not fulfill the
criterion anymore. A solution to fulfill the relevance-based criterion is a test
point that mainly increases the density in the vertical domain. However, the
relevance-based test point’s horizontal location is exactly the same as two
already taken measurements and gives a linear dependency in the vertical
domain. To overcome this situation, the relevance-based point is slightly
shifted, where the maximin criterion in the distorted domain is worsened
marginally, while the dimension dependent distance to the measurements
is significantly increased in the original domain.
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Figure 4.5: Demonstration of different test design strategies. Based on taken mea-
surements, a next measurement is planned space-filling, relevance-based or
relevance-based and shifted by LH criterion. The taken measurements serve
as inclusions for each test design. Left: Test design in the original domain.
Right: Test design in the length scale-based distorted domain with length
scales l1,rel = 3 and l2,rel = 1.

4.3 Mutual Information

The mutual information criterion as described in section 2.4.4 is not used
commonly in terms of adaptive test design within model-based calibration.
Even though it reduces the disadvantages of the entropy test design, there
is one main reason why it is used seldom and is difficult to apply. The
computational complexity to find a next test point by the calculation of

I(x∗) =
σ2x∗ −Kx∗XK−1

XXKXx∗

σ2x∗ −Kx∗X̄K−1
X̄X̄

KX̄x∗
(2.65 revisited)

for each potential test point x∗ is very high and strongly depends on the
candidate set size if an input domain discretization is the base. If used in
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an adaptive test design, the computational time to find a next test point
is crucial and limitations have to be met. That is, a solution has to be
investigated to enhance the test point search speed by the MI criterion.
Since the MI cost function always has several local maxima, a global search
is indispensable. A low-discrepancy candidate set seems to be favored over
an exhaustive global optimization. The amount of candidates can easily be
regulated, which is directly proportional to the calculation time. Addition-
ally, a candidate set is strictly necessary to calculate the denominator in
(2.65).
One possibility to enhance the calculation duration without the reduc-

tion of potential next candidates is to lower the computational effort for
the entropy estimation regarding the unknown region in the denominator.
As discussed, the most calculation expense is generated by the inverted
covariance matrix of unmeasured candidates. If the size of the covariance
matrix K−1

X̄X̄
is reduced, the MI calculation duration for each candidate

can be improved significantly. A Sobol sequence is used as candidate set,
where a reduction of candidates does not necessarily lower the input do-
main coverage. A possible solution is to use the first n candidates without
those already measured. The mutual information still is calculated for the
whole given candidate set but with a reduced amount of candidates in X̄.
The unknown region entropy estimation suffers from a candidate reduction,
however, which has to be investigated.
A more coordinated method is the estimation of the unknown region en-

tropy by a specifically designed candidate set. A space-filling test point
distribution seems to be a reasonable solution, where already measured
training points are used as inclusions during the calculation. This distribu-
tion could be more reliable for the estimation of entropy regarding unknown
regions compared to a non-designed distribution. As an example consider
figure 4.6. A measurement is performed at 10 locations in a 2-dimensional
input domain. The base for the estimation of the unknown region entropy
is given by 20 candidates, fulfilling the space-filling criterion for the given
measurements. This procedure is very different to simply use the candidate
set, because X̄ could completely change with each iteration. The perfor-
mance has to be tested within a simulation environment and compared with
the simple candidate-based solution.

Both process models as described in section 3.4.2 are tested for their sen-
sitivity to a candidate reduction within the MI criterion. A variation of the
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Measured Test Points X

Unknown Region Surrogate Candidates X̄

Figure 4.6: Example situation for a mutual information calculation. 10 measurements are
performed and a space-filling distribution is utilized for the entropy estimation
regarding unknown regions in (2.65).

amount of candidates for both strategies is applied for the estimation of the
unknown region entropy. The test cases offer 9 or 7 inputs, respectively, a
relative Gaussian input noise with σi = 0.02, a Wiener process noise with
σw = 0.0005 and a relative Gaussian output noise with σo = 0.01, where
the noise is applied as defined in (3.13). Each simulation is run 5 times. A
candidate set of 30000 Sobol distributed points in the unit input domain
is the base for the iterative test point selection. The simple candidate re-
duction method selects the first n candidates to calculate the denominator
covariance matrices. For calculation duration reasons a maximum of 2000
candidates is examined for the simple candidate reduction method. The
space-filling unknown region entropy calculation utilizes the full candidate
set to select candidates from, where a maximum amount of 2000 points is
gathered in each iteration. The maximum amount of 2000 surrogate points
is applied because it already is very expensive in terms of computing time.
A higher amount of surrogate points would likely exceed the maximum
duration for a test point search, dependent on the test case, as will be
discussed. A validation error is calculated as the RMSE between model
prediction and measurement given 10000 space-filling distributed valida-
tion points and normed by (3.14).
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Figure 4.7 shows the validation error decrease result for the radcosn out-
put during the artificial model simulation. Each line expresses the mean
value over all 5 simulation runs. The adaptive test design only focuses
the radcosn function output for all shown adaptive test design procedures.
The space-filling distribution is calculated in advance in the normed, non-
distorted domain. The first 10 test points are the same for all methods.
The upper diagram shows the effect of the mutual information test design
with the simple candidate-based procedure. As expected, the validation
error highlights a strong relationship to the amount of training points.
However, a distinct benefit in a candidate increase for the unknown region
entropy estimation is not directly observable. This contradicts the assump-
tion, that a simplification of the unknown region entropy calculation will
lower the quality of the test design. Even the space-filling-based unknown
region entropy method in the bottom diagram does not show an increase
in model quality during the whole simulation compared to the simple can-
didate selection mutual information-based method. A high difference is
apparent compared to the space-filling test design though. Independent of
the unknown region entropy estimation, all methods highlight a significant
increase in model quality during the whole simulation.
A different point of view is given by figure 4.8. Since there is no big differ-

ence between the simple method and the space-filling-based MI method, the
space-filling method is shown only. The main statement of this graph is the
possible reduction of the amount of necessary measurements by using the
MI test design instead of a non-adaptive space-filling design. The horizontal
distance in figure 4.7 between each MI simulation run and the space-filling
test design simulation is plotted. The reference is the MI validation error,
meaning the validation error at 150 training points with the MI test de-
sign with 1500 space-filling candidates is reached over 150 points later, at
300 test points, with the space-filling test design. No data is present for
more than 394 training points, because the level of validation error is never
reached by the space-filling test design within the simulation. It is impor-
tant to consider the point deviation to judge the effective time reduction by
using the adaptive test design. If the different amount of space-filling can-
didates are compared in this view, an explicit best solution could neither
be given. An amount of 500 candidates seems to perform slightly worse
between 300 and 400 training points, but until 300 measurements all point
deviations are nearly the same. The same representation is given for the
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Figure 4.7: Logarithmic represented validation error trend for the mutual information
test design with different unknown space entropy estimations. Each line de-
scribes the mean value from 5 simulation runs for the model output radcosn.
The space-filling test design is shown as reference for a non-adaptive method.
Top: MI test design with fix Sobol-based unknown region surrogate candi-
dates. Bottom: MI test design with space-filling unknown region surrogate
candidates calculated by maximin in each iteration.
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Figure 4.8: Point deviation for different mutual information test design validation er-
rors for the radcosn output function within the 9-dimensional artificial model
simulation. A positive value corresponds to the amount of test points that is
reduced by MI compared to a non-adaptive space-filling test design to reach
the same validation error. The distance can be thought of as the length of a
horizontal line in figure 4.7 from each validation error value starting at the
MI test design error to reach the space-filling test design error.

CO output of the 7-dimensional simulation in figure 4.9. Following a slight
negative value in the beginning of the simulation, a significant reduction
of measurements is achieved by each amount of candidates as well. Only
an amount of 1500 candidates shows a worse performance than all other
methods during the first 180 measurements. Contrary to the 9-dimensional
test case, an amount of 500 space-filling candidates seems to be the best
solution. However, the effect of a candidate reduction is different than as-
sumed and a low amount of candidates to estimate the unknown region
entropy seems to be reasonable as well.
To rate all different candidate reduction strategies within both simula-

tions, two different metrics are introduced. As first metric, the area under
the curve (AUC) criterion is applied to the validation error results. The
lower the area under a validation error trend is, the better the model quality
improvement capability is. The second criterion is defined by the regres-
sion coefficients of an exponential function. A least squares estimate of the
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Figure 4.9: Point deviation for different mutual information test design validation errors
for output CO within the 7-dimensional diesel engine GP model simulation.
A positive value corresponds to the amount of test points that is reduced by
MI compared to a non-adaptive space-filling test design to reach the same
validation error.

function
f(x) = ea log(x)+b (4.16)

trained to each trend gives the regression parameters a and b. The lower
their value, the faster the validation error reduction is. Most important
is the coefficient a, which explains the decrease rate with the amount of
training points, where b is only an offset to the exponent. However, b is
comparatively low in all test cases but has an impact on the performance.
It can be seen as a multiplicative factor to the exponential decrease. There-
fore, the sum of both parameters is taken to judge the quality. The result
for both simulations is shown by a ranking in figure 4.10. The ranking is
based on the AUC and a+ b data with a lower rank given for lower partic-
ular values, meaning the lowest rank equals the best performing method.
The full data is given in table D.1 in appendix D. Both criteria show nearly
the same rating within the 7-dimensional simulation and identify the space-
filling-based MI design as the best method with still no clear solution to
the amount of candidates but a very bad quality for 1500 space-filling can-
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Figure 4.10: Rating for different MI-based test design strategies and a non-adaptive
space-filling test design. The ranking for both rating methods, AUC and
a + b, is based on the results shown in table D.1 in appendix D. A rank of
1 equals the best, rank 9 the worst performing method. Top: Results of the
7-dimensional diesel engine simulation for the output CO. Bottom: Results
of the 9-dimensional artificial model simulation for the output radcosn.

121



4 Model-Based Test Design

didates. A similar situation is present for the 9-dimensional test case with
a surprising performance of the simple method with 500 candidates and a
poor performance of the space-filling-based MI with 1000 candidates. The
amount of candidates regulates the tendency for a next test point to be
planned near the boundary. As described, the maximum entropy design
tends to plan test points mainly near the input domain boundaries. If the
amount of candidates to calculate the unknown region entropy is reduced
the design converges to a maximum entropy design. The variation of the
unknown region candidate amount gives rise to a low amount of candidates
being sufficient to reduce the tendency of a mostly near-boundary design.
The best mean performance is therefore given by the space-filling planned
MI design. A low amount of candidates with this test design seems to be
more robust and provides good results in both simulations.

Another important criterion to judge the applicability of the mutual in-
formation algorithm is the duration to calculate a next test point. During
the adaptive test design a fast calculation is necessary for a continuous
measurement procedure. The present simulation is executed on a modern
desktop computer with an Intel® Core� i5-8500 3GHz processor and 32
gigabyte RAM. The duration for the calculation of the last test point is
given in figure 4.11 for the different amount of candidates in X̄ for both
methods within the 9-dimensional radcosn simulation. As expected, the
calculation duration increases exponentially due to the matrix product and
matrix inversion in the denominator in (2.65). The space-filling-based pro-
cedure takes slightly longer, because the matrix X̄ has to be computed by
maximin instead of a simple selection of the first n candidates. However,
the difference is low compared to the absolute calculation duration. With
each simulation run the calculation duration increases exponentially as well.
The absolute cost is irrelevant in this example, because only the amount of
already measured test points defines the matrix inversion cost of K−1

XX in
the nominator of (2.65). The maximum amount of test points is restricted
to 500 in this example and contributes to the calculation duration, but is
unnecessary for the relative comparison. However, if the method is applied
to a test with a higher amount of necessary test points, the exponentially
increasing calculation duration has to be considered. The application of 500
space-filling candidates is strongly favored compared to a higher amount. In
case the MI has to be computed for several outputs, a calculation duration
of over 40 seconds is not acceptable. The increase in calculation duration
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Figure 4.11: Average calculation duration for the 500th test point by mutual information
within the 9-dimensional simulation in dependency of the amount of candi-
dates in X̄ used for the unknown space entropy calculation

to find the space-filling candidates is very low and could be applied if only
500 candidates are used. Since the different amount of candidates does not
offer a significant increase in model quality and a robust solution is given
if 500 space-filling points are applied, this method is judged to be the best
compromise for the following investigations.
To apply the mutual information criterion to a process with multiple

outputs different methods are possible. A solution to gather as much infor-
mation as possible for all outputs is to calculate a mean information content
for each candidate. The mutual information for each candidate and each
model is computed first. Then the candidate with highest averaged infor-
mation content for k models

x′
MI = argmax

s∈S

k∑︂
i=1

Ii(s) (4.17)

is selected as next test point. A weighting or a normed mean informa-
tion content could also be applied, if a calibration engineer’s preference is
present.

123



4 Model-Based Test Design

4.4 Simulation-Based Investigation

The benefits of the algorithms developed in this chapter have to be tested
and investigated regarding their effect within a measurement campaign.
Similar to the simulation-based investigations in chapter 3, the model-based
test design algorithms are tested in a simulation environment, which con-
figuration is described and which results are discussed in this section.

4.4.1 Objectives

The effect of the introduced algorithms on a real engine identification pro-
cess is unknown. The assumptions have to be proven, where the aim is to
gain most possible knowledge about the process with the smallest amount
of measurements. The influence of engine boundaries on the design is not
considered here. An isolated test on model quality enhancement is executed
in a unit hypercube input domain without restrictions. The procedure to
judge the model quality is the application and consultation of a uniformly-
distributed validation point set with 10000 test points. The validation
RMSE calculated by model prediction and true process outcome rates the
averaged overall model quality.

The algorithms are compared to a model-independent space-filling test
point distribution calculated in advance of the measurements. Since the
relevance-based test design with added LH criterion is a combination of two
test design methods, an additional test design method is used for compar-
ison. A model-independent space-filling test point distribution is the base
for a LH optimized distribution. Each maximin calculated design point is
shifted by the same optimization algorithm as discussed in section 4.2. A
loss of 5% maximum distance in the original domain is permitted. The
constraints and optimization procedure are the same as defined for the LH
optimized relevance-based design. The maximum entropy test design of-
ten utilized in adaptive test design strategies is simulated additionally for
comparison.
The results have to be compared mainly regarding their ability to quickly

reduce the validation error. This error type rates the generalization ability
within the input domain, which is the main objective of the model-based
test design introduced here. However, not only the resulting model quality
with a defined number of iterations has to be conducted, but the error
decrease trend over iterations is a necessary criterion to find a solution
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that reduces the error at each measurement stage. Commonly, the available
measurement time at engine test benches is low, which is why the necessary
amount of measurements to reach a model error saturation is hardly been
given.

4.4.2 Simulation and Noise Model

The process models for the comparison of the introduced adaptive test
design procedures are the same as introduced in section 3.4.2. Both the
artificial models as well as the diesel engine simulation model serve as test
functions. The focus of the simulation is to assess each method’s influence
on model quality. Therefore, the model boundaries are not considered
except the minimum and maximum values for each input. The test design
is planned within a unit hypercube and all measurements are taken as they
are planned without respect to any boundary restrictions.
The application of a noise model is necessary for this investigation as well.

Different test designs have very diverse impact if noise is applied or not.
An i.i.d. Gaussian input noise, Wiener process-based plant noise and i.i.d.
Gaussian output noise is applied as described in section 3.4.2. The input
noise is considered with σi = 0.02, the Wiener process is generated with the
length of the particular simulation measurement amount and σw = 0.0005
and an output noise with σo = 0.01 is applied.

Each simulation is repeated 10 times for both the artificial and the diesel
engine simulation model. The adaptive test designs each utilize their intro-
duced method to find a test point that optimizes all outputs simultaneously.
Within the adaptive maximum entropy design, the test point with highest
average entropy increase is used. A 7-dimensional test with 400 measure-
ments is investigated with the diesel engine simulation and a 9-dimensional
test with 500 measurements with the artificial test functions. Compared
to the adaptive test design simulation (refer to chapter 3), the amount
of tests in the 9-dimensional test case is reduced for simulation duration
reason. Each test design strategy provokes a model training after each
measurement, leading to very high computation times. The simulation was
performed on a computer with two Intel® Xeon® E5-2680 v3 CPUs with
12 cores each. Nonetheless, a simulation run took around 36 hours for the
9-dimensional test, which is why the maximum amount of test points was
reduced.
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4.4.3 Discussion

The tests are judged by a normed validation error, calculated by (3.14).
Figure 4.12 shows the error development for the diesel engine simulation.
Regarding the general model error the soot emission output stands out
with the highest and non-converged model error after 400 measurements.
None of the test design methods is able to reduce this effect considerably.
However, there are differences between all methods for each output. Espe-
cially within the first drop of validation error until 150-200 measurements
the MI test design performs clearly best with the exception of the soot
mass flow output. Overall the MI criterion and the relevance-based test
design perform very well, while the performance of all other test design
strategies differs from output to output. A better assessment is achieved, if
the AUC criterion is considered to compare the strategies objectively. For
each output and each averaged validation error trend, the area is calculated
and the normed deviation to the space-filling test design is determined for
easier comparison. A desired outcome should be as low as possible, which
gives the lowest area and therefore lowest validation error during the whole
measurement process. The AUC values for the 7-dimensional simulation
are shown in figure 4.13. The diagram illustrates the relative deviation to
the non-adaptive space-filling test design with a negative value showing an
AUC reduction. The MI test design delivers the best overall performance
with a reduction of 3–15% compared to a non-adaptive space-filling test
design. The most improvement for a single output is given by the relevance-
based test design for the exhaust temperature output. However, this test
design performs worse for the soot emission output, where the non-adaptive
space-filling LH design performs best. The maximum entropy also shows
good results for all outputs but is worse compared to the MI test design.
A disappointing performance is given by the variance-based test design,
which performs worse than the space-filling design for three outputs and
worst within the adaptive approaches for nearly each output with only a
single exception.

The analysis of the 9-dimensional artificial model allows a more detailed
differentiation of the investigated test design methods, because their im-
pact on the validation error trend is higher. The normalized validation
error trend is given in figure 4.14 for all 4 model outputs. Especially for
the radcosn function a very diverse error trend is visible during the mea-
surement, while the error level after 500 measurements is nearly the same
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Figure 4.12: Comparison of different test design methods by the validation error decrease
for the four outputs of the diesel engine simulation model with seven inputs.
The simulation is run 10 times and the validation error is averaged and
normed to the mean plus standard deviation of all validation simulations.
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Figure 4.13: Relative AUC value for each test design and each output within the 7-
dimensional diesel engine simulation. The relation is given as the relative
deviation to the space-filling test design as reference for each test design
method. A negative value defines a smaller area and therefore improves the
validation error compared to the space-filling test design.

for all methods. The absolute error level is considerably higher than for all
other outputs, which makes it most important to find a good test design
that is able to reduce the error level as quickly as possible. The error trend
is very different for the Gaussian hyperbola function, with which the error
during the first 100 measurements is nearly the same for all methods but
a clear differentiation between all methods is visible from that point on.
Both CEC outputs show a different behavior for all methods during the
whole simulation.
The MI test design clearly outperforms all other methods for all out-

puts. This behavior is underlined by figure 4.15, where the relative AUC
deviation to the space-filling test design is plotted for all methods and
each output. The relevance-based test design shows a slightly worse per-
formance, which is surprisingly only a little better than the space-filling
LH test design. However, the effect of the relevance-based part of this test
design is visible by comparing it to the space-filling LH design. A very bad
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Figure 4.14: Comparison of different test design methods by the validation error decrease
for the four outputs of the 9-dimensional artificial model. The simulation is
run 10 times and the validation error is averaged and normed to the mean
plus standard deviation of all validation simulations.
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Figure 4.15: Relative AUC value for each test design and each output within the 9-
dimensional artificial model simulation. The relation is given as the relative
deviation to the space-filling test design as reference for each test design
method. A negative value defines a smaller area and therefore improves the
validation error compared to the space-filling test design.

performance is given by the maximum entropy design, which is significantly
worse than the non-adaptive space-filling test design for all outputs. The
variance-based test design shows a similar, non-satisfying result as with
the 7-dimensional simulation. From a validation error performance point
of view, the MI test design outperforms all other test designs, especially
during the error decrease phase but also at error saturation for the artificial
models. However, this test design is the most computationally intensive de-
sign. The relevance-based test design offers a much lower computational
cost at a comparative but minor worse error decrease performance. The
mean normed validation error deviation relative to the space-filling test de-
sign over both simulations results in a 21% better performance for the MI
test design, a 15% better performance for the relevance-based test design,
and an 11% better performance for the LH space-filling design.
Another important criterion to judge the test design is the fluctuation

between each measurement campaign. Since 10 test runs are performed, an
analysis of the different error trends is possible. To simplify the compari-
son, box plots are derived from the simulation result. Figure 4.16 shows box
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plots for the AUC criterion for each output and each test design method
within the 7-dimensional simulation. The relative deviation to the median
of the space-filling test design result is given for each method. The ex-
pectation that the box size as well as the range of values is lowest for the
non-changing space-filling and space-filling LH design is not fulfilled for
each output. This means that an adaptive approach can also improve the
model quality outcome robustness. The MI criterion offers a very small
quantile for all outputs but with a high range for the output CO. However,
even the worst run performs better than the median of a space-filling de-
sign. Except for the soot emission output, the relevance-based test design
offers low box sizes and the lowest overall for the exhaust temperature. The
variance-based and the maximum entropy design do not stand out, neither
to be very fluctuating nor to be very stable. The MI design outstandingly
performs in the 9-dimensional test case regarding the fluctuation between
each simulation run, as can be seen in figure 4.17. For each output, it
offers the smallest box, highlighting this method as a notably stable one.
The bad performance of the maximum entropy design is even worsened by
its high fluctuation. A similar result is present for the variance-based test
design, showing the highest overall fluctuation. The relevance-based test
design offers less variation than the non-adaptive space-filling design and a
similar one to the space-filling LH design, which also performs well regard-
ing the variation between the simulation runs. Concluding the fluctuation
analysis, a similar result is present as the mean value analysis showed. The
MI criterion is exceedingly robust beside its good overall performance. The
relevance-based test design provides well and robust results, albeit worse
than the MI criterion from both points of view. The adaptive maximum
entropy and variance-based method perform worse than the non-adaptive
space-filling LH design.
It strongly depends on the computer hardware and further necessary

computations, which test design should be applied. The relevance-based
test design is applicable to each standard hardware, because the computa-
tional cost is hardly higher than for a space-filling test design but it yields
much better performance. The MI test design offers the best performance
but for a very high computational cost. A decision has to be made in
an overall examination of the requirements. In terms of this research, the
consideration is given in the subsequent chapter 5, where a combined test
design approach is developed to meet all objectives.
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Figure 4.16: Box plots for the AUC value for each test design and each output within the
7-dimensional diesel engine simulation. The AUC values show the relative
deviation to the median of the space-filling result. A negative value defines
a smaller area and therefore improves the validation error compared to the
space-filling test design. The whiskers reach from the minimum to the max-
imum value, which is why no outliers are present.

4.5 Chapter Summary

Within this chapter, different new and modified adaptive test design strate-
gies were introduced to reduce the test error of a GPM as fast as possible
and to identify a given process with highest possible accuracy. The three
introduced methods were

a variance-based design,

a relevance-based design and

an entropy-based modified mutual information design.
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Figure 4.17: Box plots for the AUC value for each test design and each output within
the 9-dimensional artificial model simulation. The AUC values show the
relative deviation to the median of the space-filling result. A negative value
defines a smaller area and therefore improves the validation error compared
to the space-filling test design. The whiskers reach from the minimum to
the maximum value, which is why no outliers are present.

These designs were compared in a simulation-based environment to a state-
of-the-art adaptive maximum entropy design, a non-adaptive space-filling
design, and a non-adaptive LH-based space-filling design. The non-adaptive
designs were chosen to generally measure the influence of the newly de-
veloped designs compared to non-adaptive approaches. The impact was
additionally compared to the often applied adaptive maximum entropy de-
sign. As simulation models, a diesel engine model and an artificial function
model were used.
The two performed simulations showed in general, that the entropy-based

MI test design is able to reduce the model error for all outputs during a
measurement campaign compared to a space-filling test design. Also the
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average model error reduction is best compared to all other investigated
methods. A ranking in terms of error reduction for the adaptive methods
could be identified to be

1. MI test design

2. Relevance-based test design

3. Maximum entropy test design

4. Variance-based test design

with the MI test design as the best method. The relevance-based test
design, which uses the Gaussian process length scale parameter as criterion,
was comparable but slightly worse than the MI test design. However, the
MI test design offers a significantly higher calculation cost. The variance-
based test design was not able to generally reduce the model error compared
to the space-filling test design. The maximum entropy design performed
well within the diesel model simulation but even worse than the space-filling
design within the artificial model simulation.

This chapter considered the two open questions

� to find the optimal adaptive test design strategy and

� to handle more than one output.

A solution especially for the optimal adaptive test design strategy was
provided. Since both questions are strongly related, there is no simple
answer for a best method if more than one output is present. However,
solutions were given for the most important test design strategies namely
the MI and the relevance-based test design and how a test point is calculated
if several outputs are present. The final result to judge the test design
performance already incorporated a test design strategy for four different
outputs, for which reason both questions were answered within this chapter
in a combined simulation.

Test space restrictions were not considered within the search for the
best test design. All simulations were performed without any limits in the
output domain. The subsequent chapter 5 will find a solution to embed the
most promising test design into an environment considering output limits
as well.
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The main target of this research is to identify an overall strategy for an
adaptive test design method that focuses on two criteria. On the one hand,
the observed input domain has to be as large as possible, to find a best
solution for a subsequent multicriterial optimization task with constraints.
In case the measured area does not reflect the optimum, an optimization
procedure is not able to solve the cost function appropriately. On the
other hand, the model quality of the relevant process outputs needs to be
increased as fast as possible in terms of measurement amount. The opti-
mization result significantly benefits from a high model quality to achieve
an optimal solution with high certainty.
The last two chapters introduced several methods for both criteria, where

a particular best method was identified meeting the objectives. How-
ever, these methods where considered individually without any connection.
Within this chapter, a combined approach is developed. A strategy is in-
troduced for an overall adaptive test design, dealing with the optimization
of both given criteria.
First of all, a combined methodology is developed and incorporated in

section 5.1 into an overall test design strategy considering validation points,
sorting options and the initial measurement phase. The proposed strategy
is tested within a simulation environment for two different test cases in
section 5.2. The results are compared regarding model and validation error
quality. The calculation duration per test point for the adaptive approach is
furthermore evaluated, as it is a crucial criterion for an adaptive procedure
running during a test. The last section 5.3 summarizes the findings of the
multicriterial adaptive test design.

5.1 Method Combination

The test design criteria taken into consideration are in some ways conflict-
ing. While a boundary search always tries to find measurements at the
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input domain boundary area to enhance the identified area size, the model
quality is increased by a test design focusing high-gradient areas and a gen-
erally (potentially distorted) low-discrepancy-based distribution. At each
design step during an adaptive procedure, this conflict of objectives has to
be solved to find the best compromise. In the following sections, a detailed
objective of the combination is given, whereupon a design procedure to
combine the most improving strategies with low particular improvement
loss is described. The design process is integrated into a non-expert appli-
cable implementation approach, where practical problems like an applied
sorting and a data exchange with an automation system are solved.

5.1.1 Objective of the Combination

The main issue of the conflicting targets of a boundary search and model
quality focusing test design is described by figure 5.1. A boundary search
test design tries to reflect the boundary shape as best as possible. Espe-
cially at nonlinear borders many test points need to be placed for an exact
boundary description. Test points within the boundary area are not con-
sidered, because they do not contribute to the boundary description model.
A non-distorted space-filling test design, which is assumed to be an optimal
solution to focus model quality in this example, does also reflect the area
inside the boundaries. To identify the process behavior, both, boundary
measurements and space-filling measurements lying inside the hull, need to
be collected. The boundary measurements are only slightly influenced by
the boundary shape. A space-filling criterion also takes measurements at
linear boundaries because the distance criterion has to be met independent
of the boundary shape. This example shows the different test designs if the
boundaries are already known. In case they are not, the deviation in the
resulting measurement could be even higher.

The combination of both criteria can be very challenging. The objective,
however, is strongly affected by the criterion of the overall test. In sequen-
tial procedures, the boundaries are investigated in advance of the test design
(2-Stage Offline). Within an adaptive procedure a sequential identification
is possible and applied as well (2-Stage Full Adaptive, see e.g. [The+16]).
In terms of model quality and measurement duration, a better solution is to
recognize boundaries during a test design that generally focuses the model
quality (1-Stage Full Adaptive). Since the boundary-finding stage has no
defined finish within the 1-Stage Full Adaptive approach, a test outcome
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Figure 5.1: Example for different scopes of test designs. Shown is an optimal solution for
boundary search (circles) and a space-filling test design (crosses), sequentially
created by maximin procedure with a Sobol-based candidate set and starting
with the first entry of the candidate set.

target is needed to weight each criterion. Within this research, the identi-
fication of the measurable area is considered with higher priority. On the
one hand, a high model quality is rated as very important for a good engine
simulation model. A very accurate model within a small measured area is
not able to predict the global behavior on the other hand. The aim should
not be to only select test points that mainly contribute to the boundaries
though. A compromise has to be found, which prioritizes the boundary
search in case only little information is given.

5.1.2 Test Design Process

The process to find a next test point is divided into two phases. These are
not two different stages, but an initial information has to be provided to
be able to apply the adaptive test design methods. The following describes
the target and implementation of an initial test design calculation. The ap-
plication of the model-based test design approach in combination with the
adaptive test space restriction method within a constrained input domain
is given subsequently.
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5 Multicriterial Adaptive Test Design

Initial Test Design

An initial test design has to be found that delivers the most possible infor-
mation for the subsequent adaptive test design. The initial design should
be calculable in advance of the test, which means that only the test speci-
fication has to be given but no measurement is performed. Within the test
specification also input constraints are defined as listed in section 2.3.4.
Since these are discretized by a Sobol candidate set, the initial test design
utilizes the same data base for the test point search.

Commonly no information about the process behavior is given in advance,
which is why a simple low-discrepancy design could be applied. However,
during the beginning of a measurement campaign the main target should
be to identify the operable area. The objective is an initial test design that
maximizes the measured input domain. The number of test points should
be at least dim+1 for dim inputs to be able to calculate a convex hull and
to determine the exclusion area B as investigated in chapter 3. A slightly
higher amount of initial, boundary searching measurements is preferred for
measured area increase and robustification reasons. These measurements
mainly contribute to the boundary search and are crucial for the quality of
the subsequent adaptive design and especially the exclusion area size.

A candidate exchange algorithm is introduced to identify an initial test
design, which maximizes the convex hull volume. A brute-force approach
could be applied as well, but takes a very high amount of calculations. As
an example, a selection of 10 test points from 20 candidates takes 184756
possible solutions, which increases exponentially with the amount of candi-
dates. A solution for 30000 candidates, as used during these investigations,
is therefore unreasonable. An amount of 2 · dim candidates is selected by
maximin in the first step. The convex hull of these candidates, calculated
by the qhull method [Bar19], provides the volume and enables the algo-
rithm to identify if test points lie inside the hull or not. At first the points
lying inside the hull are substituted by candidates, which are assumed to
increase the hull volume greatly. These are identified by an orthogonal
distance criterion to the hull-generating hyperplanes, where the particu-
lar candidate with highest distance is chosen. This criterion follows the
qhull algorithm, where it is used to incorporate a largest possible area as
well. Once all candidates are convex hull-defining vertices, the candidate
exchange procedure is launched. In each iteration, the furthest candidate

138



5.1 Method Combination

I II III

IV

Candidate

Selected Candidate

Objective / Substitute

Convex Hull

Figure 5.2: Initial test plan calculation strategy. Given a candidate set, a test design
with 4 test points is the objective. Therefore 4 initial test points are selected
(I) and points inside the hull are substituted by the hull’s furthest candidates
(II). Subsequently, hull points are exchanged by furthest candidates until
there is no more hull volume increase present (III and IV).

again is identified by the highest orthogonal distance to each hull hyper-
plane. The nearest hull point, defined by the Euclidean distance to the
furthest candidate, is substituted by the considered candidate and the hull
is calculated again. This exchange is executed until the hull volume does
not increase anymore or a maximum amount of iterations is reached. The
algorithm is schematically shown for two inputs in figure 5.2. In this case
the procedure terminates after 4 steps, because the hull volume does not
increase further.

Criteria Combined Adaptive Design

Several possible solutions exist for a combination of boundary search and
selective model quality optimization. Discussed solutions are
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� a configurable switching of targets,

� a model quality focus considering boundary prediction and

� a target compromise.

The configurable switching of targets, which corresponds to a 2-Stage Full
Adaptive approach, offers a necessary switching requirement as main dis-
advantage. Once the process boundaries are identified to an acceptable
quality, the test design switches to a model quality focus. Therefore, the
boundary identification measurements are designed to mainly contribute to
the operable area definition, where their influence on model quality is not
considered. As the requirements for a sufficient boundary quality are hard
to guess for all use cases, the switch criterion has to be user-configurable.
This introduced flexibility forces the user to make a decision and contradicts
the requirement for an easy to apply overall process.
A method that solely focuses on model quality is able to significantly im-

prove the average model quality, as shown in chapter 4. An improvement
is achieved if the boundaries are known well and the test design is ad-
justed accordingly. However, the result about the measured input domain
volume is random and not controlled by the test design method. Addition-
ally, boundaries are mostly not known beforehand. For these reasons, this
approach is inappropriate as well.
A compromise between model quality focus and boundary investigation is

the most suitable procedure. Such a method fulfills the requirement about a
continuous input domain volume increase as well as a model quality focus.
However, the application of a compromising method could end up in a
parametric functionality, which is not the target. The strategy introduced
here follows the two fundamentals:

1. Design space-filling in unknown areas

2. Design model-based in known areas

The area selection for the next test point is defined by the space-filling
criterion in the non-distorted input domain. That is, a next test point
is firstly planned by the maximin criterion. In case the test point is not
part of the convex hull of already taken measurements and not part of the
exclusion area B, it is used as next measurement as it is. Only in case it
is part of the convex hull, the designed point is refused to find another one
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Plan space filling
Point
inside
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Re-plan model-based

Use point as is

No

Yes

Figure 5.3: Decision process for the utilized test design method

that maximally contributes to the model quality within the measured area.
This general procedure is shown in figure 5.3.
The detailed process differs for lower and higher dimensions. For lower

input dimensions, a straightforward procedure is applicable. Since the con-
vex hull hyperplanes are calculable with comparatively low effort, they are
present in each test design iteration. For that reason, the hyperplane-based
exclusion strategy is applied (see section 3.3.1), where it is affordable to
erase all candidates within the exclusion area B from the candidate set S
prior to the main test point search. A next test point is generated by ap-
plying the maximin criterion to the reduced candidate set Sr, given the
already taken measurements X

x′∗ = argmax
Sr

min
x∈X

d(x,Sr). (5.1)

which results in a potential next test point x′∗. In case this test point
is not part of the convex hull of the measurements co(X), it is directly
used as next test point. A possible solution would be to find a test point
that maximally enlarges the convex hull if measurable. However, a space-
filling test point is used, which is a compromise between hull enlargement
and model quality improvement. As the design criterion of a space-filling
test point maximizes the distance to all measurements, it provides a test
point with high Euclidean distance to the measured hull and therefore
still contributes to the hull enlargement strongly. In case it is part of the
convex hull, this test point is refused to find a more appropriate solution
by the model-based test point search. A model quality focused test point
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Calculate Sr = S \B Calculate x′∗ by Sr

Calculate Su = Sr ∩ co(X)

Calculate x′
u by Su

[x′∗ /∈ co(X)]

Figure 5.4: Test point calculation by combined test planning criteria and application of
the hyperplane-based exclusion area check

is calculated with the candidate set Sr being reduced to a set with only
candidates inside the convex hull Su. A next test point is derived from the
reduced set by the particular model-based test design approach. The whole
process for the hyperplane-based exclusion procedure is given in figure 5.4.

Figure 5.5 shows the process for high input dimensions. This proce-
dure takes place in case the convex hull hyperplanes are not calculated, i.e.
for dimensions 7 and 8 in case many test points have to be evaluated for
being part of the convex hull and at dimensions higher than 8 (refer to sec-
tion 3.3.2 for detailed explanation). A main difference to the procedure for
low input dimensions is the iterative approach in both main steps, selecting
a valid candidate by maximin as well as by the model-based method. How-
ever, the crucial decision if a next test point contributes to model quality or
measured input domain volume is made in the very beginning. A potential
next test point x′∗ is designed by maximin to find a space-filling test point
given already taken measurements X and the full candidate set S. In case
this test point is part of the convex hull of the measurements co(X) the
subsequent measurement will not increase the measured area. Therefore,
x′∗ is rejected and a next test point is designed by the model-based design
strategy (figure 5.5 lower path). Since it would be a high effort to only
consider candidates within the convex hull of measurements, a derived po-
tential solution contributing only to model quality x′

u is tested for being
part of the convex hull. If it is not, the candidate is temporarily erased
and the next optimal point is calculated. In case it is part of the convex
hull it is used as next test point. Especially if the convex set solution by

142



5.1 Method Combination

Calculate x′⋆ by S

Calculate x′
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Check x′∗ ∈ B
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[x′
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Figure 5.5: Test point calculation by combined test planning criteria and application of
the iterative exclusion area check

the GJK method is applied, the evaluation cost is directly correlated with
the amount of evaluation points and therefore this iterative approach is
necessary.
Within the upper path of figure 5.5, the procedure is shown for the hull

enlargement strategy. The initially calculated space-filling test point x′∗ is
not part of the measured area co(X), which drives the decision to perform
a boundary search measurement. The derived test point is checked for the
exclusion area B by the convex cone strategy introduced in section 3.3.2.
Only if the selection is part of any local exclusion area, the candidate
is ultimately removed from the candidate set S and the whole algorithm
starts over again. Otherwise the space-filling test point is taken as next
measurement target.
The described structure offers the possibility to implement any type of

design strategy for the model improving path. A rating of different strate-
gies is given in chapter 4 with the MI design as the best overall performing.
Compared to the relevance-based design, this test design offers a higher
calculation duration if the design considers only one output. In case the
test design focuses several outputs, the calculation duration increases mul-
tiplicatively with the amount of outputs. Within the multicriterial test de-
sign, the calculation duration is crucial, because several different calculation
steps could be necessary. Especially within the high dimension approach,
a strategy with low calculation duration should be favored. Therefore, the
second best rated strategy, the relevance-based test design, is applied to
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the multicriterial design. This design requires roughly the same calculation
amount as a space-filling test design. Additionally, due to the combined
calculation for several outputs, the duration does not increase with the
amount of outputs different than with the MI test design.

5.1.3 Overall System Integration

The outcome of the investigations has to be applicable to engine tests at
an engine test bench. Several restrictions and requirements have to be
fulfilled for running the adaptive test design within an MBC process. The
very first requirement is the utilization of an interface to existing test bench
automation systems. The designed algorithms should not only work within
a designed example measurement but have to serve as a methodological
base for different MBC tasks. A lean interface is described and integrated
to the software IAV Kasai. An introduction to the software is given in
appendix E.

Another requirement is the investigation of a test error. Additional test
points have to be planned, which strategy is different in an adaptive test
design compared to a non-adaptive one. A user-given sorting of test points
is an additional challenge for the adaptive test design and is described in
the following.

Interface Definition

The introduction of an adaptive test design process is only successful, if
the developed system is applicable to the engineer’s tool chain with low
effort. The main requirement to the interface of the design method is the
applicability to existing automation systems. Therefore, a well established
interface is preferable to be able to implement it into every existing sys-
tem. The adaptive test design is integrated into IAV Kasai, which already
provides all necessary test definition steps. A test is defined by the in-
put parameters, their ranges, and the different constraints as discussed in
section 2.3.4. The result is a Sobol-based candidate set, fulfilling all user-
designed constraints. This set is the base for the test design process as
introduced in the preceding section.
Given the candidate set and the algorithms implemented in the soft-

ware, an interface is needed for the communication with the automation
system to provide the newly designed test point and to receive the neces-
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Figure 5.6: Interface configuration for IAV Kasai with example implementation for A&D
ORION and interposed Python-based client. The calculation engine is in
charge for the execution of the developed algorithms.

sary measurement data to train the models. A transport control protocol
(TCP)-based socket interface provides a suitable architecture and is avail-
able in all established programming languages. With this interface type, it
is possible to run the algorithms and the automation system on the same
computer or on different computers with communication via network. Fun-
damentally, IAV Kasai opens a socket server, addressable for a client that is
implemented on the automation system’s side. This configuration enables
the automation system to ask for a next test point where the answer is the
next setting to measure. Once the measurement of this setting is done, the
mean measurement result is sent to the server, where it is processed and
stored in the database. The interface definition consists of several addi-
tional meta information in both calls, where at least an information about
the boundary status of a measurement must be provided by the automation
system. The complete communication architecture is given in figure 5.6.
The left side implements all methods as developed in this research, whereas
the right side is exchangeable but implemented in the shown way.
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5 Multicriterial Adaptive Test Design

Validation Test Design

In addition to measurements used to train the GP models, validation mea-
surements are commonly performed to rate the generalization error of a
model. The main target of a validation point set is to access the mean
generalization error of a given model within the input domain. The more
validation measurements are present, the better is the estimation of the
generalization error. However, since the validation measurements are not
used to train the model, each of these measurements does not contribute to
a model quality increase. Hence, a space-filling design is suitable to keep
the amount of measurements at a low level for a good trade-off between
amount of measurements and test quality.

Contrary to a non-adaptive approach, an adaptive test plan calculation
provides the possibility to calculate a validation point setting that is mea-
surable in terms of satisfying the boundary constraints. At each test stage,
the convex area of the measured training points gives rise about the mea-
surable and also interesting region within the input domain. This scope is
utilized to plan a validation point. Space filling in the sense of validation
measurements is only related to already taken validation measurements. A
next space-filling point utilizes the candidate set Sv to design a test point
by maximin

xv = argmax
Sv

min
xv∈Xv

d(xv,Sv). (5.2)

where Sv is given by the intersection of the original candidate set S, reduced
by all model training points X and all candidates not within the already
measured convex hull region

Sv = (S \X) ∩ co(X). (5.3)

The amount of validation points is defined relative to the amount of
measurements. That is, they are iteratively planned during the measure-
ment campaign to always fulfill a user-defined relative amount of validation
points. Irrespective of the stage at which the process is interrupted, the
demanded amount of validation measurements is present. With a growing
convex hull of training data, the generalization error is judged within this
growing area by means of the iterative design approach.
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Test Point Sorting

Different to a non-adaptive test design, a calibration engineer-defined sort-
ing option is a critical issue in an adaptive approach. A very common
option is a meander sorting of engine speed and load. These two parame-
ters, commonly indicating a measurement procedure as global in contrast
to a local identification without varying speed and load, have a high in-
fluence on most engine outputs. Temperatures, in particular, are highly
affected by load but also by speed. A frequent change of these parameters
entails a high effort for the stabilization of temperatures and is reduced by
a meander-based sorting.
In case all tests are known in advance, a sorting could be applied easily.

However, with an iterative approach with only one test point planned in
advance of a measurement, a sorting is not applicable in the usual sense.
Two different procedures are proposed to obtain a pseudo-sorting. The
first solution is to plan a block of test points with the adaptive approach
iteratively. All tests in the reverse direction of the last measurement are
erased from the block and the points left over are sorted by the applied
sorting option. This procedure is exemplarily shown in figure 5.7 for an
increasing speed and load meander sorting option. Once the meander is
fully passed and no more test points remain, the full domain is permitted
for a test point search again and the next measurement is the first after
sorting the block. Two negative properties are present for this approach.
Firstly, a high number of necessary test points leads to a high calculation
duration for a next test point. The introduced methods exhibit a high
computing time, especially for high-dimensional tests, which is why this
approach seems to be non-constructive. Secondly, the valid test points are
calculated with the assumption that the erased test points are going to be
measured. The test design quality could suffers because the next test point
is likely not the next most informative measurement.
Another approach comprises the sorting option during the test point

search. The domain for the test point search is simply reduced to incor-
porate a relatively small scope. That is, starting at the last measurement,
for example only the next 10% of the full domain fulfilling the sorting cri-
terion is approved for a test point search. Since a candidate set is used for
the test design, all candidates not fulfilling this criterion are temporarily
erased. Once the remaining scope does not exhibit the defined width, it is
extended by the necessary width starting at the origin. The transition from
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Figure 5.7: Procedure to erase test points that do not fulfill a meander sorting option
for speed and load. The last measurement is decisive to distinguish between
test points in the wrong and in the right direction. An increasing speed and
a meander sorting of load with initial increase is given for this example.

the end to the beginning is ensured by this procedure. Due to the reduced
amount of candidates valid for the test design and the fact that only one
test point is necessary instead of a block, the test point search duration is
decreased significantly. However, the maximum potential of the test design
methods is not obtained, because the temporary scope of interest is smaller
than the test scope. A method without losing any potential is in conflict
with the sorting option though. The higher the width for the test planning
scope is chosen, the higher the test design quality is. At the same time, the
sorting criterion is fulfilled with lower quality. Since this method chooses a
next test point with respect to the test design criteria and the calculation
duration is significantly lower to a block-based test design, it is chosen with
a scope width of 10% for this research as a compromise between sorting
quality and test information content. This value could be parameterizable
to let the calibration engineer define the importance of his or her applied
sorting.

Calculation Scheduling

In section 2.5 and with figure 2.13, the permitted duration for a next test
point search is defined to be 30 seconds. A higher duration is present be-
tween two test point requests, which is defined to be 300 seconds. To reduce

148



5.1 Method Combination

the probability for the measurement procedure to wait for a test point cal-
culation, at least one maybe non-optimal test point has to be present. After
the initial test design is completely measured, two test points are calculated
and only the first is provided to be measured. Once the measurement is
present, a model training is executed. During the subsequent iteration the
second test point is provided, where another test point is calculated in par-
allel with the existing models. Since this test point is determined without
the measurement of the second test point, it will not provide the maximum
information content. However, only marginal loss is present but the de-
sign algorithm has at maximum the full iteration time of 300 seconds for
a test point calculation available. The scheduling of calculation tasks is
schematically shown in figure 5.8. The main target is to always provide a
next test point without interruption at the beginning of a set parameter
action. Even if the model training calculation duration is longer than the
parameter reset takes, the test design is executed without consideration
of any other tasks. Therefore the model training is interrupted until the
test design completes. Since it can occur that some outputs are not up to
date during the test design calculation, the test point search could slightly
suffer additionally. However, the primary target is to not interrupt the
measurement procedure.
The influence of all given procedures, namely the test design strategy,

the applied sorting procedure, and the test point calculation scheduling, on
the test design quality will be gathered in the subsequent section.
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5.2 Simulation-Based Investigation

5.2 Simulation-Based Investigation

A simulation is performed to judge the effect of the given multicriterial
design strategy. The test design algorithms in their base do not differ from
those introduced in chapter 3 and chapter 4. However, the exclusion area
method was only tested with a space-filling design and the model-based de-
sign was not tested within a restricted input domain. Both performed very
well within their scope, but a final test has to show their combined benefit
by the introduced multicriterial test design. Additionally, the given solu-
tions to the necessary test execution requirements have an influence that
cannot be neglected and that needs to be considered in the overall context.
Therefore, the simulation environment is introduced in the following and
the test results are discussed.

5.2.1 Simulation Environment

The multicriterial structure is implemented to IAV Kasai, which is why the
interface description of figure 5.6 takes place within the simulation. The
iterative exclusion procedure is applied at input dimensions higher than 6,
the hyperplane-based exclusion area check is executed otherwise. Since a
simulation has far lower requirements to the test execution compared to a
real-time engine test, an automation system is not necessary for the simu-
lation procedure. Therefore, the interface to IAV Kasai is implemented in
a MathWorks® MATLAB® environment, in which the simulation models
are present. The same models, including the noise model, as discussed in
chapter 4 are utilized for the simulation-based investigation. The input
noise is set to σi = 0.02, the output noise to σo = 0.01 and the process
noise to σw = 0.0005, which is equal to the preceding simulations. Since
a global test is examined for both models but the number of inputs has
to stay the same, the two post-injection parameters timing and mass (see
figure 3.10) are not varied for the diesel engine model. The inputs for the
artificial model stay the same, where the first two inputs are considered as
speed and load. The test point sorting is configured to be ascending within
speed and load with a meander sorting over load. A validation point share
of 10% in relation to the training points has to be the outcome. The adap-
tive design is compared to a non-adaptive space-filling test design that is
calculated by IAV Kasai and is sorted in advance of the measurement. The
non-adaptive test plan is divided into five blocks, where each fulfills the
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space-filling criterion and the sorting option. Therefore, the test runs five
times through the whole speed and load domain.

The objective of the simulation is to compare both, the average model
quality as well as the measured input domain size. A constrained input
domain is necessary to judge the effectiveness of the combined approach.
Within the 7-dimensional diesel model the convex hull of the model data
is used as restriction. The 9-dimensional artificial model utilizes the same
procedure as described in section 3.4.2 but with a slightly modified lower
bound. This setting leads to an approximate restriction of 47% of the in-
put domain, meaning the measurable area captures 53% of the hypercubic
input domain. The restrictions are given in table 5.1. Each simulation

Table 5.1: Boundary constraints definition

Model Type Dimension
Lower
Bound

Upper
Bound

Further Restriction

Artificial 9
0, 0, 1,
0.1

- CEC2009 Constraints

Diesel Engine 7 - - Convex Hull

setting is run 10 times to allow a statistically confirmed evaluation of the
results and to rate the fluctuation between each run for both methods. A
total amount of 905 training points and 90 validation points are simulated
for both methods in each run.

5.2.2 Discussion

The discussion of the simulation outcome starts with the evaluation of
the most important model quality outcome. Additionally, a comparison
between the validation point designs is given and an assessment of the
calculation duration for the adaptive approach is carried out.

Model Quality

To rate the model error reduction trend over a simulation campaign, the
AUC value is being considered for each output solely. A visualization of
the result values and their fluctuation for the 7-dimensional diesel engine
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simulation is given by the box plots in figure 5.9. Since for all values the
normed deviation to the median of the particular non-adaptive result is
shown, an improvement is identifiable by a negative deviation. However,
the fluctuation, especially the box width, still has to be compared. Both
the average area under the validation error curve as well as the variation
between each simulation run is strongly reduced by the adaptive multicri-
terial method, shown in the upper right diagram. Even the worst run of
each output offers an improvement compared to the median value of the
non-adaptive test design shown by the upper whisker is not exceeding 0%.
The model quality change for the soot model shows the least improvement,
but in comparison to the model-based investigation results in chapter 4, the
change in quality is significantly better. A rate of about 11% of the training
points are planned within the hull, which is by means of the relevance-based
test design. This design method is applied at first after 630 fit measure-
ments, because a higher priority is put on the input domain exposure. To
demonstrate the difference to a solely model-based design, the result for
a simulation without considering boundaries is shown as adaptive model-
based design in figure 5.9 in the lower plot. The differences in average and
fluctuation outcome for the soot and CO model are considerable with even
a deterioration for the soot model compared to the non-adaptive approach.
The fuel mass and temperature before turbine model is still improved but
the quantity is clearly lower compared to the multicriterial approach.
A similar beneficial result is given by comparing the convex hull volume

increase. The mean volume trend for both methods is drawn in figure 5.10.
The difference in the very beginning is on the one hand influenced by the
initial test design that is designed for a maximum volume increase within
the multicriterial design. On the other hand, the non-adaptive approach
has to measure 190 training test points to run through the whole speed and
load domain conditioned by the block-based sorting. The adaptive test de-
sign forces more operating point changes than the non-adaptive approach
in this example. However, with 190 measurements the adaptive approach
still offers a significantly higher volume, which then starts to increase fur-
ther due to the erasure of immeasurable candidates. In case less operating
point changes should be allowed, the candidate scope width could be re-
duced, forcing the adaptive algorithms to find a next test point closer to the
current operating point. A very low scope width is yet not recommended,
because a strong restriction of candidates to choose from lowers the test

153



5 Multicriterial Adaptive Test Design

C
O

ṁ
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Figure 5.9: Result of the 7-dimensional global diesel engine simulation for both test de-
sign methods (top) and for comparison for a solely model-based test design
simulation (bottom) with each 905 training measurements. The boxes show
the fluctuation for the AUC value between the 10 simulation runs with mini-
mum and maximum value given by the whiskers. All values show the relative
deviation to the median AUC value of the particular space-filling design re-
sult.
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design quality. However, with this configuration a significant benefit in
hull volume increase rate could be achieved. Starting from 190 measure-
ments the non-adaptive-based hull volume increase slows down, whereas the
adaptive-based hull volume increase starts to gain further. With 905 train-
ing measurements the convex hull is more than twice as large for the adap-
tive design, meaning the measured area is more than doubled compared
to the non-adaptive design. To complete the comparison to an adaptive,
solely model-based design, the hull volume result is shown as well. A hull
volume that is even lower than the space-filling design is present starting
from about 140 measurements. This trend originates from the distortion
of the input domain. The space-filling criterion is applied in the distorted
domain, whereas the hull volume is calculated in the original domain. Due
to the distorted design, the distance criterion in some input directions is
prioritized lower but their impact on the hull volume is high, leading to
the reduced hull volume increase. This approach therefore would lead to a
very restricted optimization in case the convex hull or any criterion based
on the measured domain is used as an optimization constraint.
Comparing the results of the 9-dimensional artificial model simulation in

figure 5.11, the benefits of the adaptive approach are even higher compared
to the space-filling design. A reduction down to 40% in arithmetic mean for
the AUC value is present for CEC output 2 with a lowest relative AUC in a
single run down to 24% compared to the space-filling design median result.
These values are a huge advantage for the adaptive approach, making it
even better that all other outputs have been optimized as well. The radcosn
function shows the smallest improvement with still 15.5% improvement in
arithmetic mean and median. A single run offered a deterioration for the
Gaussian hyperbola output compared to the non-adaptive median result by
20%, showing the necessity of repetitions in this test case to rate the av-
erage improvement. The fluctuation between the simulation runs changes
slightly with an insignificant reduction in quantile size for the adaptive
approach. However, this still is a positive result, because an adaptive pro-
cedure has to be robust against noisy measurements. A non-adaptive test
design does not react to noise, where an adaptive design could misinterpret
noisy measurements and reduce the test design quality, but this is not the
case with the multicriterial design.
The convex hull volume increase for the 9-dimensional simulation also

highlights a benefit for the adaptive approach during the whole simula-

155



5 Multicriterial Adaptive Test Design

0 100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

Number of Training Points [-]

V
o
lu
m
e
[-
]

Non-adaptive Space-Filling Design
Adaptive Multicriterial Design
Adaptive Model-Based Design

Figure 5.10: Convex hull volume increase for both, the non-adaptive space-filling design
as well as the adaptive multicriterial design averaged over 10 simulation runs
within the 7-dimensional global diesel engine simulation. For comparison,
the result of a simulation with a solely model-based test design is shown
dashed.

tion. The block-based sorting at the non-adaptive simulation is apparent
in the hull increase in figure 5.12 by the sharp kink after each 190 training
points. These kinks are the result of measurements in the different input
regions by the sorting of the first two inputs. A more smooth volume in-
crease is present for the adaptive approach due to a more often operating
point change as discussed with the 7-dimensional simulation result. The
convex hull size results in a 20% higher volume for the adaptive approach.
This smaller improvement compared to the 7-dimensional case is a result
of both, a higher-dimensional test case and less restrictions of the input
domain by simulated boundaries. However, both the hull volume size and
all model qualities are significantly improved by the adaptive multicriterial
test design.
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Figure 5.11: Result of the 9-dimensional global artificial model simulation for both test
design methods with 905 measurements. The boxes show the fluctuation for
the AUC value between the 10 simulation runs with minimum and maximum
value given by the whiskers. All values show the relative deviation to the
median AUC value of the particular space-filling design result.
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Figure 5.12: Convex hull volume increase for both, the non-adaptive space-filling de-
sign and the adaptive multicriterial design averaged over 10 simulation runs
within the 9-dimensional global artificial model simulation
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Validation Design

The objective of a validation error is to achieve an identification quantity
for the prediction capability of a trained model. The validation measure-
ments are not considered during model training but only used to rate the
deviation between the model prediction and the measured process outcome.
These measurements originate from the same process with the same input,
process, and output noise, which is why the deviation between model pre-
diction and validation measurement is never zero. However, the validation
test point location in the input domain is crucial regarding the validity of
the overall validation error rating. For both simulations, the validation er-
ror is rated to compare the adaptive validation test point planning within
the measured area with a non-adaptive space-filling validation point de-
sign in the hyper-cubic input domain. Since the error within the measured
area at each stage of the measurement is most important, a true validation
RMSE rt is calculated by consulting only those candidates of a set with
50000 Sobol-based candidates lying inside the convex hull. In steps of five
training points, the error rt is compared to the validation RMSE given the
planned validation points rp by calculating the RMSE of both trends

r =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(rt,i − rp,i)2 (5.4)

to define a quality criterion for the accuracy of the validation error by us-
ing the planned validation points and given n different count of training
points. The error trend RMSE is calculated for both test design simulation
results, averaged over simulation runs and set in relation. To simply recog-
nize an improvement or deterioration of the adaptively planned validation
point design compared to the non-adaptive design a relative deviation is
calculated by

rrel = 100

(︃
rAdaptive

rNonAdaptive
− 1

)︃
. (5.5)

The results for both simulations and each output are given in figure 5.13.
A very diverse result is the outcome of the validation error comparison.
While the validation error of the adaptive design performs better within
the 7-dimensional diesel engine simulation for 3 outputs up to half of the
non-adaptive error, it shows a significantly worse error for the soot mass
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Figure 5.13: Comparison of the validation point design quality. An RMSE of the vali-
dation RMSE given the planned validation measurements and a large low-
discrepancy test set fulfilling the convex hull constraint is calculated. For
each RMSE of the adaptive multicriterial result a relative deviation to the
result of the non-adaptive space-filling result is provided. A relative devia-
tion is given for each output of the 7-dimensional diesel engine simulation
(left) and of the 9-dimensional artificial model simulation (right).

emission. The high deviation for the soot mass error is mainly explained
by the different size of the measured areas. Due to the large measurement
area with the adaptive approach and the tendency of soot emissions to ex-
hibit high gradients and therefore high values near engine boundary areas,
higher measurement values are taken with the adaptive approach. Within
the non-adaptive approach these areas are not covered by the reference
validation error, which is calculated by candidates only being part of the
measured convex hull. Therefore the reference validation error shows a high
deviation between adaptive and non-adaptive approach. A second reason
for the high deviation is that the adaptively planned validation points tend
to overweight the center of the measured area in contrast to the in advance
planned validation points, which resolve the boundary area more accurate.
Therefore the validation error is underestimated within the adaptive ap-
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5 Multicriterial Adaptive Test Design

proach for processes with high gradients near the boundary area in case
the input domain is strongly restricted.

Up to a third of the error for the non-adaptive approach is achieved
within the 9-dimensional artificial model simulation for the Gaussian hy-
perbola function. An error quality improvement is achieved on average for
the 9-dimensional simulation, with a slight deterioration for two outputs
but a strong improvement for the other two outputs. There are less bound-
aries present within this test case, leading to a good overall result for the
adaptively planned validation points.

Calculation Duration

Attention has to be paid to the calculation duration per test point. A
requirement for the maximum allowed duration was defined to be 300 sec-
onds to avoid undesired waiting times during a test bench measurement.
Figure 5.14 (left) gives an overview over the calculation duration per test
point within the 7-dimensional simulation. At almost each test point count
a duration lower than 300 seconds is present during the simulation. Un-
fortunately, 7 test points exhibit a much higher duration with up to 1350
seconds. The high effort in calculation results from the strongly restricted
input domain, providing only 7.6% operable area, that forces the itera-
tive exclusion procedure to erase several candidates in the estimated non
operable region. Since this calculation is time consuming, such a high du-
ration appears. Once the most candidates within these regions are erased,
the duration only increases slightly with the amount of training points.
This is similar for the 9-dimensional simulation, which does not need to
erase as many candidates, because the restricted area is smaller. Each test
point is calculated much faster than the provided requirement allows in
this test case. Different solutions to reduce the calculation time duration
are possible. The interface between the automation system, in this case
the simulation environment, and IAV Kasai is an asynchronous interface.
Hence, the test design algorithm is executed in a separate task, allowing
the server to interrupt or communicate with the test point search. Once
a test point is demanded but no solution is present, the test point search
could be interrupted with taking the currently checked space-filling test
point as next test point, even though it could be part of an exclusion area.
A loss in test design quality would be the outcome but due to the adap-
tive design taking all measured and planned test points into account it
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Figure 5.14: Calculation duration per test point during the 7-dimensional diesel engine
simulation (left) and the 9-dimensional artificial model simulation (right)
within the last simulation run for the adaptive multicriterial test design

still would be beneficial compared to a non-adaptive test design. Another
reasonable solution is to switch the candidate erase strategy. Two differ-
ent approaches are introduced in chapter 3 to identify candidates being
part of the exclusion area. Within this simulation, the iterative exclusion
procedure (section 3.3.2) is applied. This procedure has the main advan-
tage that it can be utilized in high-dimensional input domains and with a
high amount of convex hull-building test points. However, if the effort to
calculate all convex hull hyperplanes is feasible within the given time du-
ration, the hyperplane-based exclusion procedure (section 3.3.1) provides
a faster solution. Especially for a low amount of hull training points the
hyperplane-based exclusion procedure could be applied, switching to the it-
erative approach once the convex hull calculation duration exceeds a limit.
This solution is only applicable to input dimensions smaller than nine, as
the hull calculation duration will exceed the iterative solution from that
point on (refer to figure 3.4 in section 3.2).
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5.3 Chapter Summary

The four open research topics

� incorporate piecewise-defined limit behavior,

� find an optimal adaptive test design strategy,

� deal with more than one output and

� achieve a continuous measured input domain volume increase

are individually examined in the preceding chapter 3 and chapter 4. This
chapter dealt with the development of a joined test design strategy that
incorporates the findings regarding the treatment of engine boundaries and
model quality improvement methods. The test design process starts with
an initial phase to generate some necessary knowledge about the design
domain. A small initial test plan is created by a volume maximization al-
gorithm, considering configured input domain restrictions by a calibration
engineer. Once the initial test phase is completed, a continuous test design
strategy takes place. This design strategy combines both, the adaptive test
space restriction strategy from chapter 3 and a model-based test design.
As an outcome from chapter 4, the mutual information criterion was con-
sidered as the most powerful design method. However, the relevance-based
test design strategy, which performs second-best, was applied to the com-
bined test design strategy for calculation duration reasons. This test design
process was integrated into a user-friendly environment on the base of the
commercial software IAV Kasai that provides the necessary test design and
modeling framework. The implementation additionally made possible a
scheduling of calculation tasks to use the available idle time slots for all
necessary calculations and prioritize the tasks to avoid unnecessary wait-
ing times at the engine test bench. An adaptive validation point planning
strategy as well as a method to involve user-specific sorting options was
implemented as well.
The framework was tested in a simulation environment with two different

simulation models. A 7- and a 9-dimensional global test were performed
with the combined adaptive approach as well as with a non-adaptive space-
filling test design planned in advance of the simulation. The comparison of
the resulting model quality trend showed a significant improvement of all
outputs in both simulations for the adaptive approach. A reduction of the
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area under the curve (AUC) value for the model error trend highlighted an
improvement of the arithmetic mean over ten simulation runs between 15.5
and 60 percent. Additionally, the measured input domain volume signifi-
cantly increased during the whole simulations for the adaptive approach.
An increase in hull volume of 20% for the 9-dimensional test and an in-
crease of 110% for the 7-dimensional simulation was the outcome of the
simulation runs.
The adaptive validation point design and the non-adaptive design were

compared regarding their ability to predict an estimated true average val-
idation error within the particularly measured input domain. On average,
the adaptively planned validation design significantly improved the vali-
dation RMSE validity compared to the validation points planned in ad-
vance. However, a deterioration was present for the soot output of the
7-dimensional test case, which originates from high output gradients near
the boundary and hence a wrong test error estimation in these areas for
the adaptively planned points. Additionally, the measured input domain
volume was twice as large for the adaptive approach but with the same
amount of validation points. The 9-dimensional test did not show such
behavior, because the input domain was not as restricted as within the
7-dimensional test. Considering the higher measured input domain volume
for the adaptive approach, the proposed validation point design is able to
improve the error estimation. For strongly restricted test domains and out-
puts with high gradients near the boundary the error estimation generated
by this test design has yet to be judged carefully.
From a calculation duration point of view, nearly all test point calcu-

lations stayed below the limit of 300 seconds duration. Within the 7-
dimensional test, seven test point calculation processes did exceed the time
limit due to the strong input domain restriction. This would lead to an in-
terruption of the measurement process within such a test case but does not
abort the process. However, a reduction of quality improvement per test
time could be the outcome. Since the scheduled calculations in IAV Kasai
could handle an interruption, possible solutions to avoid a waiting time
with only little design quality deterioration were proposed.
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6 Validation at a Combustion Engine
Test Bench

Within this research, several new methods were developed and compared.
All comparisons were based on a simulation model that focuses to reproduce
the result of an engine test as best as possible. The model estimates the
process behavior as well as the noise as it occurs at several measurement
process stages. The simulation model has several advantages but a main
disadvantage though. The main advantage of the simulation model is the
possibility to test all introduced methods at very low cost compared to
engine test bench measurements. All test runs could be executed several
times to estimate the average result over several measurement campaigns
and to judge the fluctuation between each campaign and for each method.
The main disadvantage of the simulation model is the difference between
the model outcome and a real engine test outcome. The most influencing
parts of the model are the process model itself as well as the process noise,
which are both difficult to estimate correctly.
For these reasons, the methodology research result is tested in a test

bench environment. This test shall give rise about the overall quality im-
provement the developed methods provide. First, a test is designed regard-
ing the system inputs to vary, the outputs to be modeled, the limits to be
considered, and the conditions the engine is operated in (section 6.1). The
subsequent section 6.2 contains the measurement results, model quality
evaluation, and a quality comparison of an optimization problem solution
for both methods. The findings are summarized in section 6.3.

6.1 Test Definition and Setup

For the comparison, a small-sized passenger car turbo charged four-stroke
gasoline engine with high complexity in terms of input parameters is pro-
vided. The multicriterial adaptive design, as is introduced in the preceding
chapter 5, is conducted for the test and is compared to a non-adaptive
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space-filling test design calculated with IAV Kasai. A local test with-
out varying speed and load is executed. The test focus is to observe the
transition area from naturally aspirated to turbocharged mode, meaning
a relative in-cylinder air mass of 1, at a representative engine speed of
2000 rpm. Seven different parameters, shown in figure 6.1, are varied in
a non-restricted hypercubic input domain. The input parameters are not
named for reasons of confidentiality, but the author declares that this has
no effect on the following results. The eight outputs to be modeled are

� coefficient of variation (COV) to judge combustion stability [Hey88],

� 50% mass fraction burnt (MFB50) to identify the center of combus-
tion [Hey88],

� exhaust temperature before turbine (TBefTurbine),

� engine torque (Torque),

� brake specific fuel consumption (BSFC) [Hey88],

� soot mass (MS),

� particulate number (PN) and

� waste gate position (WG).

Several engine limits take place that restrict the input domain. These are

� temperature after compressor,

� coefficient of variation,

� latest-allowed center of combustion,

� misfire and

� waste gate position

where the waste gate position is restricted to a minimum amount. Since
the EGR rate is varied as one input, the waste gate has to be closed to
ensure the same in-cylinder air mass especially in the observed transition
area. If the EGR rate is raised while the waste gate is fully closed already
the air mass would drop, which has to be prohibited. The spark timing is
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Figure 6.1: Combustion engine test definition with seven engine inputs to be varied and
eight engine outputs to be modeled

automatically controlled during the whole test to a center of combustion of
8 ◦CA or, in case of knocking occurs, to the knocking border. 305 training
points are planned for both methods. 36 validation points are measured by
the non-adaptive approach and 10% validations for the adaptive approach.
Since the adaptive measurement is proceeded unmanned without a restric-
tion for the maximum amount of measurements, a total training point count
of 345 measurements and 34 validation points is recorded within the adap-
tive approach measurement. The first 305 training points are extracted and
all other training measurements are used as additional validation points. In
addition, the validation points of the non-adaptive measurement are added
to the adaptive approach and vice versa. After erasing outliers and adjust-
ing the amount of training points to be equal, both methods exhibit 297
training and 109 validation measurements. The validations are not used
for model training but only to judge the average model prediction quality.

The engine in test is equipped to a combustion engine test bench. The
ECU is controlled by the software ETAS INCA [ETA20b], the engine dyno
control and the engine monitoring is performed by AVL PUMA Open�,
which is the former version of AVL PUMA Open 2� [AVL20]. The test
automation is performed by A&D ORION, which connects to both AVL
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A&D ORION

AVL PUMA Open�IAV KIS4 ETAS INCA

IAV Kasai

Figure 6.2: Schematic representation and interaction of the relevant systems at the engine
test bench. The shown modules are only an extract of all necessary modules
for the test, but they represent the main structure and communication chan-
nels.

PUMA Open� as well as ETAS INCA to set the ECU parameters on the
one hand and observe measurement channels to react to engine limits on the
other hand. A connection between IAV Kasai and A&D ORION enables
the automation system to retrieve a next test point information on demand
and send the measurement result to the test design system. The developed
interface setup as shown in figure 5.6 in chapter 5 is utilized for this test.
The engine is equipped with in-cylinder pressure sensors at each cylinder.
The data processing of the pressure sensors and knock evaluation of the
processed data is done by the IAV KIS4 system. A test setting overview is
given in figure 6.2. For the non-adaptive approach, the exact same setting
is set-up without the necessity to connect IAV Kasai with A&D ORION.
The pre-calculated space-filling test plan is applied to A&D ORION, which
performs a measurement for each row sequentially. Both the EGR rate as
well as the MFB50 are controlled by A&D ORION to the desired value,
where all other parameters directly access actuators. Each test point is set
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vectorial with limit observation. In case a limiting boundary is reached, a
surrogate measurement is executed near the boundary.

6.2 Results

The comparison of the non-adaptive and the adaptive multicriterial ap-
proach are compared in two different ways. First, the model quality trend
as well as the convex hull volume growth are analyzed. Both criteria are
significant to achieve models that are valid in a wide range with a high
quality prediction ability. In a second step, an optimization problem is
solved at different measurement phase steps, where the result is validated
at the test bench to compare the outcome quality.

6.2.1 Model Quality and Measured Domain

In a post-processing step, all models are trained for each measurement
step but with rating the model quality with all measured validation points.
This is done for both procedures, which enables the comparison of both
methods regarding their model quality evolution. Additionally, the convex
hull of all training points is calculated to rate the measured input domain
trend. For model training the IAV Kasai GPM modeling algorithm with
automatic box cox transformation is used, which is a very common way
for a calibration engineer to train models. The validation error is normed
to the mean plus standard deviation of all measured data. A convex hull
is calculated at each step by the data normed to [0,1]7 with the complete
measured data range as bounds.
The convex hull volume evolution for both measurement campaigns is

shown in figure 6.3. Contrary to the expectation that the adaptive approach
volume at least develops at the same level as the non-adaptive approach,
during the first 100 measurements a lower volume is present for the adap-
tive approach. This is mainly due to the reason that both the test points
as they are planned and measured boundary points are considered during
the test design. The non-adaptive approach only considers test points and
is not able to incorporate measurements to the test design. This procedure
on the one hand increases the space-filling quality but on the other hand
could lead to a lower hull volume, as is present in this measurement. How-
ever, starting from approximately 60 measurements the adaptive procedure
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Figure 6.3: Convex hull volume trend during the measurement campaign for both test
design methods. A higher volume states a larger measured area and is to be
preferred. The maximum volume of 1 is the highest possible value if no limits
are present and the convex hull fully includes the test space.

demonstrates its advantage and reduces the candidate set by the prediction
of immeasurable areas. The convex hull volume increase rate rises and is on
a high level nearly during the entire measurement campaign, whereas the
non-adaptive hull volume increase rate declines. At the end of the measure-
ment, a nearly 34% higher volume is present for the adaptive approach,
which is a significant increase at a similar measurement duration level.

The model quality difference, rated by the validation point set, is shown
in figure 6.4. An AUC value is calculated for each trend and for both meth-
ods, providing a quality rating for the whole measurement campaign. The
AUC value for each particular output of the adaptive result is set in rela-
tion to the non-adaptive result and the difference is calculated to obtain a
deterioration or improvement value for the adaptive approach. A signifi-
cant increase in model quality is offered for all outputs with an exception
for the particle emission model. From an overall point of view, an average
model quality improvement, rated by the AUC criterion, of 11% is achieved
despite the deterioration of the model quality of one output. Considering
the relative model error at the end of the measurement campaign, a mean
model error decrease by 17% is achieved over all outputs. In addition
to the measured volume increase, this offers a good possibility to identify
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Figure 6.4: Relative AUC criterion for each output, calculated for the validation RMSE
over the entire measurement campaign. The relative deviation of the AUC
value of the adaptive multicriterial approach to the non-adaptive space-filling
design is shown. A negative value is an improvement in model quality,
whereas a positive value shows a deterioration by using the adaptive ap-
proach.

the engine behavior more accurately in a larger range with exactly the
same amount of test bench measurement time. The deterioration in model
quality for PN, however, is an undesirable outcome but could have several
reasons. The PN emission model could suffer from the relevance-based test
design, which could be supposed due to the worsened soot model within the
simulation investigation study, see figure 4.13 for reference. The soot mass
model (MS) is the reason why this is not likely. The soot mass and parti-
cle emissions in a gasoline engine are strongly correlated. While the soot
mass model offers an 11% improvement, the particle model shows an 11%
deterioration. A more likely reason to this is the poor reproducibility of
particle measurements. A hint to this relation is given by figure 6.5, where
the normalized validation error trend is shown for the particle emissions
(left) and for comparison for the MFB50 output (right). While the MFB50
model shows a smooth decrease in model error at a significantly lower rel-
ative error with clearly better performance of the adaptive approach, the
particle model error develops roughly from measurement to measurement.
This shows the high uncertainty in model training, due to a high process
and measurement noise. However, both approaches have a similar model
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error evolution starting from 140 training points and reach nearly the same
level with the full training data. This is different for all other outputs,
which show a lower model error for the adaptive approach at the end of
the measurement campaign. All remaining model error trends for both
methods can be found in appendix F.

The improvement of the model quality and of the measured input domain
volume increase by using the adaptive multicriterial test design were sim-
ilar to the simulation-based results, shown in chapter 5. Figure 6.6 shows
a box plot for all AUC values (lower box) and model test errors (upper
box) gathered by the adaptive design in the 7-dimensional simulation as
described in section 5.2 with 295 training points. The values are given
as the normed deviation to the non-adaptive design results. The dots do
not show outliers but represent the deviation of the normed values for the
models trained by the test bench measurements. The test design influence
on the test bench results mostly corresponds to the simulation outcome,
which indicates the validity of the simulation model introduced and ap-
plied in this thesis. An exception is present for the AUC value of the PN,
Torque and BSFC model exceeding the simulation result range. The devi-
ation between the simulation-based and the measurement-based outcome
can be explained by two reasons. Firstly, the validation point sets offer
different properties, which has a high impact on the test error validity. The
number of validation test points and the point set distribution are very dif-
ferent between simulation and measurement. Additionally, the validation
points used during simulation were gathered noise free, while the measured
validation points at the test bench observe the same noise as the training
points. A second reason is the utilized noise model that does not discrim-
inate between the outputs. The applied relative noise level was assumed
to be equal for each output. Both of these influences are responsible for
the deviation but the results still offer a comparability regarding the test
design method influence.

6.2.2 Optimization Problem

A very practical investigation to judge the outcome of the adaptive mul-
ticriterial approach is to solve an optimization problem. A main target in
engine calibration is to find a setting with lowest possible fuel consumption
to meet the legislation targets regarding CO2 emissions. At the same time,
other exhaust emissions may be taken into consideration, but a limit for
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Figure 6.5: Model quality trend given the amount of training points, assessed by the
normed validation RMSE for the outputs particulate number (left) and the
center of combustion (right) for both, the non-adaptive and the adaptive
approach.

−60 −40 −20 0

AUC

Validation Error

Deviation [%]

Figure 6.6: Box plot representing the model validation error AUC value (lower box) and
the model validation error (upper box) each with 295 training points for the
7-dimensional simulation result introduced in chapter 5. The dots represent
the results of the test bench measurement and indicate the comparability
between simulation and test bench measurement. The data is calculated as
the relative deviation of the model quality given the adaptive and the non-
adaptive test design results for each output and for all simulation repetitions.
A negative value corresponds to an improvement by the adaptive test design
method.
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6 Validation at a Combustion Engine Test Bench

the given operating point is not present in this case. Additionally, the emis-
sions are commonly considered during a global map optimization, e.g. by
meeting accumulated limits. The optimization problem to be solved here is
an example to find a suitable setting with lowest possible fuel consumption.
However, as a constraint the waste gate position has to be considered as it
must not be lower than a defined threshold given the input setting. In case
it would be fully closed, an engine load increase would not be possible by
closing the waste gate anymore and therefore this constraint has to be met.
This problem can be solved by a gradient-based optimization procedure
considering the relevant modeled outputs. The global map optimization
tool IAV OptiMap, which is part of IAV Kasai, is used to find an optimal
setting for lowest fuel consumption fulfilling the waste gate constraint. The
optimization problem can be formulated as

min
x∈co(X)

BSFC(x) such that WG(x) ≥ t (6.1)

given the threshold t. Another study is conducted to rate the model quality
at an earlier state of measurement. Therefore a model is trained with 200
training points for both methods and the same optimization problem is
solved. All four different optimized settings are measured at the test bench
and compared.

A slightly worse result of the BSFC is present for the optimization by
the adaptive approach (figure 6.7 left). A deterioration of 0.6% and 2%
in relation to the non-adaptive approach is the result for the model with
200 and 297 training points, respectively. It could be assumed that the
deterioration of BSFC over training points for the adaptive approach is
a result of a worse model prediction compared to the non-adaptive one.
However, considering the result of the constrained WG position (figure 6.7
right) explains the higher deviation. While the waste gate position crite-
rion is hardly met for the non-adaptive approach in both measurements, a
reduction from 10% to 5% deviation from the target is given for the adap-
tive approach with increasing number of training points. Neither a good
result, nor a clear improvement over training points is the outcome for the
non-adaptive approach.
This optimization problem is a showcase that demonstrates the necessity

of a good overall model quality for several outputs. In engine calibration,
more complex optimization problems have to be faced, especially for map
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Figure 6.7: Measured optimization results for both, the adaptive and the non-adaptive
approach. Left: Result for the fuel consumption. Since the reference is the
non-adaptive space-filling approach, only the adaptive multicriterial design is
shown. Right: Measured deviation of the waste gate position in relation to
the optimization constraint t.

optimizations in the whole engine operation area and with several more
outputs to be considered.

6.3 Chapter Summary

In this chapter, a real-world-based validation of the methods developed
is presented. The multicriterial adaptive test design approach, which is
based on a combination of a model focusing and an unknown region test
design, was applied to an engine calibration problem with 7 different input
parameters to vary. The same problem was measured with a non-adaptive
space-filling test design. The implementation of the multicriterial design
to IAV Kasai and the developed interface to A&D ORION was applied at
an engine test bench to execute the adaptive test design procedure. The
validation measurements of both approaches were combined to assess the
model quality trend by 109 measurements. Both the overall model quality
for 8 different outputs and its measured input domain was compared as well
as an optimization problem was solved and reviewed by measurements.
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An increase of the measured input domain by 34% was present with all
measurements by using the adaptive test design approach. The average
model quality increase trend, rated by the AUC criterion, showed a mean
improvement of 11% over all eight outputs. When observing just the out-
come with all measured training points, an increase of model quality by
17% was the outcome.
The optimization of the fuel consumption, given the waste gate position

as a constraint, showed the importance to achieve a high model quality for
several outputs. A significant difference regarding the observance of the
waste gate criterion could be noted, with an up to 21% better matching
for the adaptive approach at an only 2% deterioration of fuel consumption.
All results except the model quality trend of the particulate number out-

put could be optimized compared to a non-adaptive space-filling approach.
The AUC value for the PN model, rating the model quality improvement
progress, showed an 11% deterioration for the adaptive approach but with
the same resulting error level by training the model with all data. Since
this study conducted all measurements only once due to the high test bench
costs, a result validation and especially the determination of the method
influence on soot emissions has to be conducted in further studies. Espe-
cially soot emissions tend to show very high process and measurement noise,
which is why a single result is not robust regarding the effect of a test de-
sign. However, a comparison to the simulation-based results offered a good
comparability, showing a similar relative model quality improvement.
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7 Conclusion and Outlook

This thesis deals with the adaptive test design methodology within the
field of steady-state combustion engine calibration. The main focus was
the development of a user-friendly adaptive test design process that is able
to handle restrictions in the design domain and at the same time reduces
the test bench measurement effort compared to non-adaptive procedures.
The criteria to judge the outcome of a measurement campaign were defined
to be the covered input domain to prohibit model extrapolation as well
as the average model quality. A convex hull volume gave rise about the
covered area of the measured test design. Model quality was judged by
the RMSE of an additional test measurement set in the restricted input
domain, comparing model prediction and the true process outcome within
a simulation environment and additional test measurement data within
a test bench measurement campaign. An additional weak criterion for
the method development was the test duration. An adaptive test design
procedure should not extend the measurement time per test point. With
these design criteria, the following topics were addressed.

Measured domain volume increase

Many existing adaptive test design strategies do have in common that
they utilize either a regression model or a tunable geometrical model. A
main disadvantage of a regression model is the missing ability to repre-
sent piecewise-defined measurement channels like knocking or misfire. The
convex hull approach as a non-tunable deterministic model, which is often
used during optimization to prohibit a trained model from extrapolation, is
not applicable within an adaptive test design strategy, because it does not
permit an enlargement of the measured region. Therefore, the two research
topics

� how to incorporate piecewise-defined limit behavior and

� achieve a continuous measured input domain volume increase
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were addressed. To provide a solution to these topics, an extension of the
convex hull model was developed. Measured limit points are treated as
hard limits in the input domain, whereas hull boundary points not labeled
as limit points are extended geometrically without any tunable parameters.
This approach includes all theoretically possible convex areas within the
design domain into the hull. Two different solutions were introduced that
present a fast calculation in low dimensional problems by calculating the
exact convex hull given its hyperplanes and use linear algebra methods
to extend the design domain. In case the number of input parameters
exceeds six, an iterative test point search is applied without calculating
the exact design domain. The convex hull test is performed by solving
the convex set solution by means of the GJK algorithm [GJK88], whereas
the hull extension is derived by a modified convex cone algorithm. A low-
discrepancy test design was applied in the restricted but extended area that
gives a compromise between model quality enhancement for a GPM and
at the same time increases the measured input domain volume due to its
characteristic to plan test points far away from existing ones.

The newly developed strategy was applied in a simulation environment
comparing the new strategy with a non-adaptive low-discrepancy test de-
sign. The new strategy provided a 45% larger measured input domain vol-
ume in a 9-dimensional test case and a doubled volume in a 7-dimensional
test case. The model quality slightly improved as well, which in combina-
tion offers a huge benefit for a subsequent ECU setting optimization.

Model quality optimization

Since engine test bench measurements are very cost intensive, it is an on-
going requirement to reduce the necessary amount of measurements during
the engine development process as far as possible. With the focus on a
GPM, the objective was to find a most beneficial test design strategy for
the optimization of the model quality with respect to the amount of mea-
surements. Another common requirement within model-based calibration
is to consider several outputs. Applying an adequate test design strategy
therefore has to fulfill the requirement to optimize several models at the
same time. To the state of the art, typical procedures were to optimize
several outputs in a batch mode or with a round-robin procedure. From
these requirements, the two research topics
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� to find the optimal adaptive test design strategy and

� how to deal with more than one output

were derived.
To find the optimal test design strategy, the most promising strategies

from literature, in particular the maximum entropy and the mutual infor-
mation test design, were considered and compared to a newly developed
mixture of low discrepancy and maximum variance as well as a relevance-
based test design. Since the mutual information test design is in its defined
setting not applicable to problems with a high amount of possible test point
candidates, a simplification was introduced and used for the comparison.
Based on the different test design strategies, a combined test design for sev-
eral outputs was developed for each algorithm, providing a non-parametric,
simultaneous optimization for all outputs. These design strategies comply
with the objective to find a test point that maximally contributes to all out-
puts. As an exception, the solution for the variance-based design generates
a test point for the worst model only, which is equivalent to a round-robin
procedure.
As a result from a simulation including all strategies with a combined

output optimization, the simplified mutual information test design outper-
formed all other designs. The relevance-based test design however pro-
vided the second-best results, but for a significantly lower computational
complexity. The variance-based and the entropy-based test design showed
disappointing results with even worse performance than a non-adaptive
low-discrepancy design in some test cases. Compared to a non-adaptive
low-discrepancy test design, the model quality improvement for the mod-
ified mutual information design was found to be 21% on average over all
outputs of a seven- and a nine-dimensional test case, whereas the relevance-
based test design still shows an improvement of 15%.

Multicriterial approach

To obtain a user-friendly test design and measurement process including
both measurement domain volume increase as well as model quality op-
timization, a multicriterial test design strategy was developed. Based on
a low-discrepancy test design method, with each test point a decision is
made if it should mainly contribute to a volume increase or model quality
improvement. With this procedure, an automatic decision can be made
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which test design method should be applied next to obtain a continuous
volume increase and model error reduction without any user intervention.
The extended convex hull boundary model as well as the relevance-based
test design are incorporated into this strategy. The relevance-based test
design was chosen for calculation performance reason. However, the model
quality focused design could be easily exchanged within the multicriterial
strategy due to its modular architecture. To comply with all requirements
of a model-based calibration process, further topics were addressed. Since
the test plan is not completely calculated in advance of the measurements,
a validation point design strategy is applicable. Additionally, a sorting of
test points to accelerate the engine tests was necessary and therefore was
implemented. The test design strategy was integrated into the commer-
cial model-based calibration software IAV Kasai with an open interface to
be applicable to any type of automation system. With this integration,
a compromise to satisfy all four open research topics simultaneously was
achieved.

The multicriterial design strategy was applied in a simulation environ-
ment, simulating a global measurement including engine speed and load for
testing its ability to cope with a common meander sort option. The results
were compared to a non-adaptive test design with a sorted test plan. An
overall model quality improvement of 36% was the outcome over two dif-
ferent simulation configurations with four outputs each. The convex hull
volume increased 110% for a seven-dimensional test and 20% for a nine-
dimensional test case in addition to the model quality improvement. In
most cases, the calculation duration per test point was significantly lower
than the target of 300 seconds. However, in case the input domain is
strongly restricted, the test point search duration increases, which led to
0.7% of the test points within the strongly restricted seven-dimensional test
case to exceed the limit. The comparison of the validation point settings
showed a diverse result. While the validation error within the relevant area
was mostly clearly improved by the adaptively planned validation point
design, especially outputs with strong gradients near the boundary were
found to be sensitive regarding the error estimation. The newly developed
design puts a higher weight on validation points inside the measured do-
main, which is why the boundary-near estimation suffers from this design.
Excluding this effect, a significant improvement of the true validation error
estimation was achieved planning the validation points adaptively.
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In a real world example at the engine test bench, varying seven dif-
ferent inputs of a gasoline engine without speed and load showed similar
results as the simulation. The model quality evolution of eight out of nine
outputs was optimized up to 27% compared to a non-adaptively planned
measurement campaign. A slight deterioration was present for the particle
emission model quality trend but with a similar resulting model quality
using all measurements. The hull volume exhibited a 34% larger measured
region applying the multicriterial design strategy. The resulting models
were used to solve an optimization problem, where the better results of the
adaptively planned strategy were confirmed.

Outlook

On the base of the introduced adaptive test design strategy, some improve-
ments could be investigated in future work:

� Focused hull enlargement: The combination of a geometric exclu-
sion area as introduced with the prediction of possible boundaries in
the model extrapolation area would enable the test design algorithm
to selectively plan test points outside the current measured domain
but with the focus on hull enlargement only. This strategy could com-
bine the safety of the convex region approach incorporating piecewise-
defined limit behavior with the flexibility and continuous prediction
of the regression model approach shown in [Sch+18]. However, the
model quality focus could disappear. Thus the model quality and the
hull volume increase have to be judged in common carefully.

� Biased model quality improvement: In advance of a measure-
ment campaign, the calibration engineer mostly knows which outputs
are hard to model and which are most important to solve the opti-
mization problem. A biased test design could be investigated that
aims at optimizing some outputs more than others, either by the
engineer’s choice or by the model quality. The relevance-based test
design as introduced in this thesis puts the same weight on the length
scales of each output. However, a non-uniform weighting could be ap-
plied to improve some models more than others without introducing
a round-robin or batch mode optimization. A similar approach could
be applied to the mutual information test design, which is investi-
gated with a uniform weighting over all outputs as well. A bias could
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be applied to change the information content of each candidate by
user’s choice or by a model quality rating.

� Calculation performance improvement: With the proposed de-
sign, an interruption in the measurement process could appear, espe-
cially in strongly constrained input domains. Some simple procedures
are proposed to provide a test point with reduced quality on demand.
However, different solutions could be investigated as a compromise
between quality reduction and time loss. Since the convex cone strat-
egy offers the part with most computational complexity, it could be
exchanged by a model prediction strategy in case the automation
system demands a next test point. For test cases without piecewise-
defined limit channels, a general combination of the mutual infor-
mation test design with a regression model-based boundary model is
another approach to reduce calculation duration and incorporate the
mutual information test design.
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A GJK Algorithm

The base equation for the GJK algorithm as introduced in [GJK88] is the
definition of the convex hull co() of a given point set X with size k in a
domain of dimension dim by

co(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓

k∑︂
i=1

αi = 1 and 0 ≤ αi ≤ 1 ∀i
}︄
. (A.1)

That is, a given test point t is checked if it is part of the convex hull if any
combination α is found, which fulfills the constraints and represents t if
(A.1) is applied.
The GJK algorithm is used to find a non-unique solution for α. It as-

sumes the test point to be the origin, which is why the point set X is
shifted by the test point t to Xt. A point on the surface of the convex
hull is determined iteratively, which shows least distance to the origin. The
algorithm consists of two main calculations steps. A simplex is created by
the selection of maximum dim + 1 points from Xt. For the selection, a
support value is assigned to each hull vertex by a support vector v. The
starting support vector can be random. In this implementation, it is used
as the vector starting at the test point and pointing to the center of gravity
of the hull building points

v = mean(X) (A.2)

which is derived only by the center of gravity, since the test point is the
origin. The support values are the distances from the test point to the
perpendicular projection of the hull vertices on the support vector by

si = x⊤
t v ∀ xt ∈ Xt. (A.3)

The vertex with lowest support min(s) is added to the simplex generating
vertices Vj in iteration j. The second step is the distance calculation of the
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origin to the current simplex Vj . To calculate the minimum distance, all
1...(dim+1)-dimensional elements of a simplex have to be considered, which
means all vertices, lines, planes, etc. In [GJK88] the so-called Johnson
distance algorithm [Joh87] is proposed. A different way is to define a set
of linear equations for each element, as derived in [Cam97], which can be
solved. The linear equations are created by the assumption that the closest
point has to be perpendicular to all lines within the considered object. That
is, if the object is a 2-dimensional simplex described by 3 points x1, ...,x3,
the perpendicular projection of the origin on the plane is defined by two
linear equations

(x2 − x1)x1α1 + (x2 − x1)x2α2 + (x2 − x1)x3α3 = 0

(x3 − x1)x1α1 + (x3 − x1)x2α2 + (x3 − x1)x3α3 = 0
(A.4)

with the restriction of only positive values for all αi. Another restriction
is
∑︁3

i=1 αi = 1 which forces the perpendicular projection being within
the bounds of the simplex and not anywhere on the plane. With these 3
equations in matrix notation the linear equation set⎡⎣ 1 1 1

(x2 − x1)x1 (x2 − x1)x2 (x2 − x1)x3

(x3 − x1)x1 (x3 − x1)x2 (x3 − x1)x3

⎤⎦⎡⎣α1

α2

α3

⎤⎦ =

⎡⎣10
0

⎤⎦ (A.5)

is defined and can be solved by left division. The general equation for a
dim-dimensional simplex with (dim+1) vertices is⎡⎢⎢⎢⎣

1 1 · · · 1
(x2 − x1)x1 (x2 − x1)x2 · · · (x2 − x1)xdim+1

...
...

. . .
...

(xn+1 − x1)x1 (xn − x1)x2 · · · (xn − x1)xdim+1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α1

α2
...

αdim+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦
(A.6)

which solution is valid only if αi ≥ 0 ∀i = 1...(dim + 1).
In each iteration of the GJK algorithm, all elements of Vj are checked.

The vertices of the element that contains the closest point are used for
the subsequent iteration and added to Vj+1. The algorithm stops if either
the origin is part of the convex hull and therefore the distance from the
closest point to the origin is zero, or if Vj = Vj−1. The numerical tolerance
for the abortion strongly depends on the computational accuracy and the
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codomain of all given points. To find a universal tolerance, the points can
be normed to a defined codomain, as e.g. [0,1]dim. Within this codomain,
a robust numerical tolerance is found to be ϵ = 2.22 ∗ 10−11. The full
algorithm is shown in algorithm A.1.

Algorithm A.1: Algorithm to find the closest point on a convex hull for given hull
points and a test point by a modified GJK algorithm

Input: Hull Points X, Test Point t, Numerical Tolerance ϵ
Output: Closest Point c, Distance d
1: Shift hull points Xt = X − t
2: Initialize j = 1, V1 = V0 = ∅
3: Calculate support vector
4: Calculate support values s
5: Add vertex with lowest support Vj = (Vj−1 ∪ argminxt∈Xt

(s))
6: if Vj−1 ≡ Vj then
7: Set c = cj−1, d = dj−1

8: return
9: end if

10: Calculate closest point cj on Vj to origin by distance algorithm
11: Calculate Euclidean distance dj = |cj |
12: if dj < ϵ then
13: Set c = cj , d = dj
14: return
15: end if
16: Remove unnecessary vertices from Vj and set Vj+1 = Vj

17: Increment j and return to row 2
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Given a point set X, a convex cone area cone(X) including the origin is
defined by a linear equation that is constrained by the parameter vector α

cone(X) =

{︄
k∑︂

i=1

αixi

⃓⃓⃓⃓
⃓αi ≥ 0 ∀i

}︄
. (B.1)

A solution to α must be found where each αi must be greater or equal
0 if a test point t shall be checked for being part of the convex cone.
Since this calculation is analytically not solvable, [ZC09] introduced an
iterative convex cone calculation procedure. The algorithm is based on
the GJK algorithm described in chapter A.1 and introduced in [GJK88],
where a support vector is the basic element within each iteration. However,
the support vector h differs in the convex cone algorithm from the GJK
algorithm, because the origin is always part of the cone and the point set
shift by the test point t does not apply. Therefore, the support vector is
defined by the newly found closest point cj in each iteration and the test
point

h = t− cj . (B.2)

A support value is derived for each cone vertex in the same way as in the
GJK algorithm, while the point with the maximum support is added to
the subset Vj respectively. The objective of the iterative algorithm is to
minimize the maximum support value, where a solution is present if the
maximum support converges to zero. While the GJK algorithm maximizes
the support value, the convex cone algorithm is a minimization procedure,
because the support vector originates at the newly found closest point cj
instead of originating at the point under investigation t. The support vector
is initialized to the point t, whereas the subset Vj initially is an empty set.
The algorithm can be summarized to the following steps:

1. Calculate support values s
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2. If the maximum absolute support value is less ϵ or the maximum sup-
port value did not change, cj−1 is the closest point and the algorithm
stops

3. Add vertex with highest support to Vj

4. Calculate closest point cj on the open cone Vj to t

5. Identify necessary vertices Vj+1 as subset of Vj

6. Calculate new support vector hj+1, increment j and return to step 1

Both algorithms, the GJK and the convex cone algorithm, are very simi-
lar but mainly differ in identifying the closest point cj and the necessary
vertices for the subsequent iteration in step 4 and step 5. For this calcu-
lation, a subalgorithm is introduced in [ZC09]. For the application in this
thesis, the termination tolerance is set to ϵ = 2.22 ∗ 10−9, which is more
imprecise than the GJK tolerance due to a higher amount of calculations
steps in the subalgorithm. The entire convex cone algorithm is described
in algorithm B.1 in detail.
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Algorithm B.1: Convex Cone Algorithm

Input: point set X, considered point t
Output: closest point tc, distance dist, isInside bIn
1: ϵ = 2.22 ∗ 10−9

2: j = 1,V1 = ∅
3: calculate support vector h1 = t
4: s0 = inf
5: while true do
6: for all xi ∈ X do
7: calculate support values si,j = x⊤

i hj

8: end for
9: if max(sj) < ϵ ormax(sj) == max(sj−1) then

10: tc = cj−1

11: dist = Euclidean distance |tc − t|
12: bIn = all(abs(sj)) < ϵ
13: return
14: end if
15: add hull point with highest support Vj = Vj ∪ argmax

X
(s)

16: Find closest point cj on open cone Vj by subalgorithm given in
[ZC09]: [cj , relatedV ertices] = coneDist(Vj)

17: Vj+1 = relatedV ertices
18: hj+1 = t− cj
19: j = j + 1
20: end while
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C Exclusion Area Check

The exclusion area check is given by two different algorithms. In case the
convex hull-building hyperplanes are present, a simpler calculation can be
applied, because the joint hyperplanes of a hull vertex can be identified
and the check for the exclusion area is based on the point hyperplane dis-
tance calculation. The full algorithm for the exclusion area check for given
hyperplanes is shown in algorithm C.1.

Algorithm C.1: Exclusion area check for a candidate set given hyperplanes

Input: Candidates S, Normal Vectors A, Origin Distances b,
Hull Points X, Boundary Labels o

Output: p
1: p = false[length(S)]
2: for all xi ∈ X do
3: if not o[i] then
4: continue
5: end if
6: find joint hyperplanes Aj , bj for xi

7: for all sk ∈ S do
8: calculate distances d = Ajs

⊤
k − bj

9: if all d > 0 then
10: p[k] = true
11: end if
12: if all in p then
13: return p
14: end if
15: end for
16: end for
17: return p

A more complex case is present if only the convex hull building point set
with boundary labels is given. The hull hyperplanes are unknown and a cal-
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culation of those is not the objective for the exclusion area check. Therefore
the convex cone algorithm as described in appendix B takes place. How-
ever, for each boundary point some precalculations are necessary to achieve
the conditions to apply the convex cone algorithm. To test a point labeled
as a boundary point of the given hull points, it has to be the origin, because
the convex cone algorithm always applies the origin as cone starting point.
Therefore all considered points are shifted by the boundary point. The cone
then is spanned by all convex hull points, whereas the outside pointing cone
is the desired one. This is achieved by mirroring the considered candidate
s at the new origin. Applying the convex cone algorithm to find the closest
point on the cone starting at the mirrored candidate offers the necessary
information if the given candidate is part of the particular exclusion area.
The full algorithm is detailed in algorithm C.2 and the preconditioning is
exemplarily shown in figure C.1.

Slightly non-convex hull points lead to a misinterpretation if the convex
cone algorithm is utilized. In this case, a repositioning has to be applied
that projects the test point on the nearest hull-building hyperplane. The
procedure for this repositioning is explained in algorithm C.3. Points that
are labeled as boundary points but do not contribute to the convex hull
can simply be identified by the GJK algorithm.
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Algorithm C.2: Exclusion area check for a given candidate set by the convex cone
algorithm

Input: Candidates S, Hull Points X, Boundary Labels o
Output: p
1: p = false[length(S)]
2: for all xi ∈ X do
3: if not o[i] then
4: continue
5: end if
6: Xt = xj − xi ∀xj ∈ X
7: for all sk ∈ S do
8: st = sk − xi

9: if −st ∈ cone(Xt) then
10: p[k] = true
11: end if
12: if all in p then
13: return p
14: end if
15: end for
16: end for
17: return p
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Algorithm C.3: Projection procedure for inside hull lying boundary point

Input: Hull Points X, Labeled Boundary Point inside Hull xj

Output: Surrogate Point xih

1: calculate center of gravity γ = mean(X)
2: find support vector vs = xj − γ
3: norm support vector vsn = vs |vs|−1

4: for all xi ∈ X do
5: calculate support ρ(xi) = (xi − xj)v

⊤
sn

6: end for
7: find point xi,max with maximum support max(ρ)
8: if xi,max lies on vsn then
9: add slight random noise to support vector

10: norm support vector
11: end if
12: project maximum support point xi,max,p = ρ(xi,max)vsn
13: find closest point on hull by GJK xi,max,h

14: return xi,max,h
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Figure C.1: Exemplary illustration of the exclusion area check for a test point x′⋆ by a
convex cone generated by xi. In this example −x′⋆

t is inside cone(X) and
therefore x′⋆ is part of exclusion area B.
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D Mutual Information Test Design
Comparison

Table D.1: Rating for different MI-based test design strategies and a non-adaptive space-
filling test design by utilizing the CO output of the 7-dimensional diesel model

Method AUC a+ b
Rating
AUC

Rating
Coefficients

Space Filling 494.2 -4.3 4 6

First 500 Candidates 507.5 -4.06 9 8

First 1000 Candidates 497.5 -4.37 6 5

First 1500 Candidates 503.2 -4.22 7 7

First 2000 Candidates 496.4 -4.47 5 4

500 Space-Filling Candidates 493.6 -4.76 3 3

1000 Space-Filling Candidates 491.3 -5.08 2 1

1500 Space-Filling Candidates 503.7 -4.04 8 9

2000 Space-Filling Candidates 489.4 -4.79 1 2
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D Mutual Information Test Design Comparison

Table D.2: Rating for different MI-based test design strategies and a non-adaptive space-
filling test design by utilizing the 9-dimensional radcosn model

Method AUC a+ b
Rating
AUC

Rating
Coefficients

Space Filling 720.8 -2.72 9 9

First 500 Candidates 630.5 -4.38 2 2

First 1000 Candidates 643.7 -4.04 6 6

First 1500 Candidates 639.6 -4.3 5 3

First 2000 Candidates 647.9 -4.05 8 5

500 Space-Filling Candidates 628.6 -4.39 1 1

1000 Space-Filling Candidates 645.8 -3.94 7 8

1500 Space-Filling Candidates 633.5 -4.17 3 4

2000 Space-Filling Candidates 638.2 -4.03 4 7
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E IAV Kasai

The commercial software IAV Kasai [IAV20] is a tool that is designed to
support the model-based engine calibration process. The calibration en-
gineer is assisted during the three phases test design, model training, and
optimization. For each phase, a workflow guides through the necessary
steps to finally achieve an optimized actuator setting. Figure E.1 shows
the software at the last step of the test plan workflow.
The relevant information to design the tests is the definition of the model

inputs and the input ranges, in which information shall be gathered during
the tests. Engine speed and load are defined by a user-specific grid, while
all other inputs are continuously planned by default. To restrict the input
domain, map-, table-, and inequation-based constraints are applicable as
well as previously collected boundary measurements can be involved. With
these definitions, a Sobol candidate set is created to gather test points from,
which are finally selected by means of the maximin algorithm [JMY90].
Since the software is designed to be applicable for any test bench setup,
there is no strictly required automation system to measure the test plan
content. Once the measurement is collected, it is imported and the mod-
eling workflow is started. A data analysis is part of this process with a
model training in the final step. The four different model classes GPM,
HILOMOT, polynomial model, and RBF can be selected. Several model-
ing methods can be applied to each output as well, whereupon an automatic
statistically-based selection of the best performing model is executed.
Once a model is trained for each output, several methods to find the op-

timal settings can be chosen. A simple manual optimization by searching
a minimum or maximum value of an output can be performed by an inter-
active single interaction plot. To set up a more complex optimization, a
map-based and a reference-based optimization plug-in, a local optimization
tool, and a trade-off calculation tool are available. The output of these tools
are either optimized input maps or optimal input values, which need to be
applied to the ECU software by the calibration engineer in a subsequent
step.
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E IAV Kasai

Figure E.1: Exemplary screenshot of the test plan workflow of IAV Kasai. The last work-
flow step with already calculated test points and an exemplary visualization
of the test point distribution is shown. The three main workflow steps are
shown bottom left, the detailed test plan workflow is shown horizontally at
the bottom.
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Figure F.1: Normed validation RMSE model quality trend given the amount of train-
ing points. From top left to bottom right the outputs running smoothness,
exhaust temperature, engine torque and fuel consumptionare shown for the
non-adaptive and the adaptive approach.
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Figure F.2: Normed validation RMSE model quality trend given the amount of training
points. The soot mass output (left) and the waste gate position output (right)
are shown for the non-adaptive and the adaptive approach.

202



Bibliography

[AD20] A&D. A&D ORION web page. Last accessed on 21.10.2020.
2020. url: https://aanddtech.com/products/automated-
calibration/.

[Ami+19] A. Amini et al. “Spatial Uncertainty Sampling for End to End
Control.” In: 31st Conference on Neural Information Process-
ing Systems (NIPS 2017). 2019.

[AVL20] AVL. AVL PUMA Open 2 web page. Last accessed on
12.11.2020. 2020. url: https://www.avl.com/documents/
10138/2095827/Product+brochure+Puma+Open+2.

[Bar19] C.B. Barber. QHull Webpage. Last accessed on 21.10.2020.
2019. url: http://www.qhull.org/.

[Bau+13] W. Baumann et al. “DoE for Series Production Calibration.”
In: Design of Experiments (DoE) in Engine Development.
Vol. 6. Expert Verlag, 2013, pp. 125–135. isbn: 9783816932178.

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. “The Quick-
hull Algorithm for Convex Hulls.” In: ACM Trans. Math.
Softw. 22.4 (Dec. 1996), pp. 469–483.

[Bel61] R. Bellman. Adaptive Control Processes: A Guided Tour.
1st ed. Princeton University Press, 1961. Chap. 5. isbn: 978-
0691625850.

[Ber12] B. Berger. “Modeling and Optimization for Stationary Base
Engine Calibration.” PhD thesis. Technical University of Mu-
nich, 2012.

[BF88] P. Bratley and B. L. Fox. “Algorithm 659: Implementing
Sobol’s Quasirandom Sequence Generator.” In: ACM Trans.
Math. Softw. 14.1 (Mar. 1988), pp. 88–100. issn: 0098-3500.

203

https://aanddtech.com/products/automated-calibration/
https://aanddtech.com/products/automated-calibration/
https://www.avl.com/documents/10138/2095827/Product+brochure+Puma+Open+2
https://www.avl.com/documents/10138/2095827/Product+brochure+Puma+Open+2
http://www.qhull.org/


Bibliography

[BGC07] A. Buzy, S. Grall, and P. Cotte. “A new generation of Online
Adaptive Design of Experiments: Application to Emissions de-
velopment and Full Load Calibration.” In: Design of Experi-
ments (DoE) in Engine Development. Vol. 3. Expert Verlag,
2007, pp. 76–90. isbn: 9783816927204.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning.
1st ed. Springer Science+Business Media, LLC, New York,
2006. Chap. 5, 6. isbn: 978-0387-31073-2.

[Bol+13] A. Bolduan et al. “From Local Towards Global: Models for
Diesel Engine Calibration.” In: Design of Experiments (DoE)
in Engine Development. Vol. 6. Expert Verlag, 2013, pp. 59–69.
isbn: 9783816932178.

[BP15] E. Burnaev and M. Panov. “Adaptive Design of Experiments
Based on Gaussian Processes.” In: Statistical Learning and
Data Sciences. Ed. by A. Gammerman, V. Vovk, and H. Pa-
padopoulos. Cham: Springer International Publishing, 2015,
pp. 116–125.

[BR11] B. Berger and F. Rauscher. “Evaluation of Gaussian Processes
for Black-Box Engine Modelling.” In: Design of Experiments
(DoE) in Engine Development. Vol. 5. Expert Verlag, 2011,
pp. 376–397. isbn: 9783816930747.

[BRL11] B. Berger, F. Rauscher, and B. Lohmann. “Analysing Gaus-
sian Processes for Stationary Black-Box Combustion Engine
Modelling.” In: IFAC Proceedings Volumes. Vol. 44. 2011,
pp. 10633–10640. isbn: 978-3-902661-93-7.

[Cam97] S. Cameron. “Enhancing GJK: Computing Minimum and Pen-
etration Distances between Convex Polyhedra.” In: Proc. Int.
Conf. On Robotics and Automation 4 (Feb. 1997).

[Cha+09] F. Chaudoye et al. “Modelling engine operating space for DoE
calibration methods.” In: Design of Experiments (DoE) in En-
gine Development. Vol. 4. Expert Verlag, 2009, pp. 107–121.
isbn: 9783816929376.

[CMP96] M. A. Clyde, P. Müller, and G. Parmigiani. Exploring Expected
Utility Surfaces by Markov Chains. Tech. rep. 1996.

204



Bibliography

[Coc73] W. G. Cochran. “Experiments for Nonlinear Functions.” In:
Journal of the American Statistical Association 68.344 (1973),
pp. 771–781.

[CT17] R. W. Cottle and M. N. Thapa. Linear and Nonlinear Opti-
mization. 1st ed. Springer New York, 2017. isbn: 978-1-4939-
7055-1.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. New York, NY, USA: Wiley-Interscience, 1991. Chap. 9.
isbn: 0-471-06259-6.

[CV95] K. Chaloner and I. Verdinelli. “Bayesian Experimental Design:
A Review.” In: Statistical Science 10.3 (1995), pp. 273–304.

[DKR17] N. Didcock, N. Keuth, and A. Rainer. “Non-Convex Hulls
for Engineering Applications.” In: Automotive Data Analyt-
ics, Methods, DoE: Proceedings of the International Calibration
Conference. Vol. 8. Expert Verlag, 2017, pp. 309–320. isbn:
9783816933816.

[Dwy+13] T. P. Dwyer et al. “DoE Framework for GDI Engine Mapping
and Calibration Optimisation for CO2 and Particulate Num-
ber Emissions.” In: Design of Experiments (DoE) in Engine
Development. Vol. 6. Expert Verlag, 2013, pp. 418–432. isbn:
9783816932178.

[EK95] R. Eberhart and J. Kennedy. “A new optimizer using particle
swarm theory.” In: MHS’95. Proceedings of the Sixth Interna-
tional Symposium on Micro Machine and Human Science. Oct.
1995, pp. 39–43.
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