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Preface

Multi-Winner voting is the process of selecting a fixed-size set of representative
candidates based on voters’ preferences. It occurs in applications ranging from
politics (parliamentary elections) to the design of modern computer applications
(collaborative filtering, dynamic Q&A platforms, diversifying search results). All
these applications share the problem of identifying a representative subset of alter-
natives—and the study of Multi-Winner voting is the principled analysis of this
task.

This book provides a thorough and in-depth look at Multi-Winner voting based
on approval preferences. One speaks of approval preferences if voters express their
preferences by providing a set of candidates they approve. Approval preferences thus
separate candidates in approved and disapproved ones, a simple, binary classification.
The correspondingMulti-Winner voting rules are called Approval-Based Committee
(ABC) rules. Due to the simplicity of approval preferences, ABC rules are widely
suitable for practical use.

Recent years have seen a rising interest in ABC voting. While Multi-Winner
voting has been originally a topic studied by economists and political scientists, a
significant share of the recent progress has occurred in the field of computational
social choice. This discipline is situated at the intersection of artificial intelligence,
computer science, economics, and (to a lesser degree) political science, combining
insights and methods from these distinct fields. The goal of this book is to present
fundamental concepts and results for ABC voting and to discuss the recent advances
in computational social choice. The main focus is on axiomatic analysis, algorithmic
results, and relevant applications.

Vienna, Austria
Warsaw, Poland

Martin Lackner
Piotr Skowron
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Chapter 1
Approval-Based Committee Voting

1.1 Introduction

What is multi-winner voting? In a multi-winner election, we are given a set of candi-
dates, a set of voters, the preferences that each voter has over these candidates, and
a desired size k of the committee to be elected. The goal is to select a committee of
exactly k candidates based on the voters’ preferences.

Using this broad understanding of what multi-winner elections are, we encounter
them in many vastly different scenarios ranging from everyday life to technical
applications. A prototypical multi-winner election is the democratic selection of a
representative body, such as a parliament,1 a faculty council, or a board of trustees.
Moreover, selecting finalists in a competition, based on judgements of experts, is
also an instance of multi-winner elections—here the experts act as voters and the
contestants as candidates. Other possible applications of multi-winner election rules
have been identified in the artificial intelligence, economics, and broader computer
science literature:

1. finding group recommendations [29, 30, 32], where the possible recommenda-
tions can be thought of as candidates and individual group members as voters,

2. collaborative filtering [11, 18], where, for example, related movies are recom-
mended based on large data collections,

1 Most countries use legislatures based on political parties for electing parliaments. However, in
some countries open-list systems are used (e.g., in Austria, Belgium, Finland, Latvia, Luxembourg,
Netherlands, Sweden, and Switzerland); these systems (also) allow voters to vote for individual
candidates rather than only for political parties. Indeed, a few important arguments for allowing to
vote for individual candidates have been raised. For example, when voting for individual candidates,
the elected candidates are more committed to the electorate rather than to their political parties. At
the same time, open-list systems allow the candidates to focus on campaigning for the citizens’ votes
rather than on gaining influence within their party [2, 3, 12, 13]. For a more general, comparative
analysis of different electoral systems, we refer the reader to the relevant political science literature
[17, 20, 28, 31].

© The Author(s) 2023
M. Lackner and P. Skowron, Multi-Winner Voting with Approval Preferences,
SpringerBriefs in Intelligent Systems, https://doi.org/10.1007/978-3-031-09016-5_1
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2 1 Approval-Based Committee Voting

Fig. 1.1 An approval ballot.
Here, the voter decided to
approve two of the five
candidates. In this
hypothetical election, the
five candidates are
19th-century academics who
are relevant to this book

Victor D’Hondt

Gustaf Eneström

Vilfredo Pareto

L. Edvard Phragmén

Thorvald N. Thiele

3. diversifying search results [33], where users sending a search query can be inter-
preted as voters and the possible search results correspond to candidates,

4. locating public facilities [16, 32], where the candidates are possible locations in
which facilities can be built,

5. the design of dynamic Q&A platforms [21], where participants propose and
upvote questions to be asked in a Q&A session,

6. selecting validators in consensus protocols (blockchain) [9, 10], with the users of
the protocol corresponding to both voters and candidates, and

7. genetic programming [14], a technique to solve global optimisation problems.

The outcome of a multi-winner election should clearly depend on the available
preference information. In a political election, this preference information is typically
elicited with (paper) ballots; in a computer application, this information is shaped
by the design of the user interface. In this book, we are looking at the approval-
based model of multi-winner elections. The approval-based model is based on the
assumption that the available preference information for each voter is a separation
between approved and non-approved candidates, as illustrated in Fig. 1.1. That is,
each voter submits approval preferences via a subset of candidates—this subset
consists of the candidates approved by the voter.2 The main object of this book are
approval-based committee voting rules (ABC voting rules), i.e., functions that select
one or more committees given an approval-basedmulti-winner election. Importantly,
we require that ABC voting rules are deterministic (and not randomised).

To illustrate a multi-winner election with approval preferences, consider the fol-
lowing simple example. There are 100 voters and 5 candidates a,b,c,d,e: 66 voters
approve the set {a, b, c}, 33 voters approve {d}, and one voter approves {e}. Assume
we want to select a committee of size three. If we count by how many voters each
candidate is approved, we see that a, b, and c are approved most often (66 times).
This can be seen as a good reason to choose the committee {a, b, c} based on these
preferences; this committee contains the “strongest” candidates. Note, however, that
this committee essentially ignores the preferences of 34 voters. Instead, one could
choose the committee {a, d, e}, in which every voter finds one approved candidate.

2 The other main variant of multi-winner elections is based on rankings, where each voter orders
the candidates from the most to the least preferred one. We only briefly consider ranking-based
multi-winner elections in this book (Sect. 6.1)—for a more substantial overview we refer the reader
to a book chapter by Faliszewski et al. [15].
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A more proportional committee would be {a, b, d}: here, the 66 voters approving
{a, b, c} (which are roughly two-thirds of the population) have two approved candi-
dates in the committee (two-thirds of the committee). All of these committees are
sensible and it is easy to find arguments for and against them. For now, let us just
observe that we need a principled way in which we can distinguish the properties of
committees and ABC voting rules.

In recent years, much progress has been made in the field of ABC elections.
This can be seen when comparing the content of this book with the comprehensive
overviews by Kilgour [22] and Kilgour and Marshall [23], published in 2010 and
2012, respectively. Indeed, multi-winner elections have been extensively studied
from the perspective of economics (in the field of social choice theory [22, 23]),
political science (in the context of political elections and voting systems [17, 31])
and artificial intelligence (in the field of computational social choice [8]). The goal
of this book is to provide an up-to-date summary of the state of the art. A particular
focus is put on axiomatic and algorithmic analysis; this line of work is prevalent in
social choice theory and computational social choice.

Broadly speaking, we want to answer two main questions in this book:

(1) What are the main properties of established ABC rules? Based on which prin-
ciples can one choose a good ABC rule for a given application? (The answer to
this question usually depends on the types of properties that the reader considers
particularly important for his or her application.)

(2) What are the practical limitations of using a particular rule, and how can one deal
with these limitations? This question encompasses, e.g., algorithmic questions
regarding computational complexity, and the possibility of conflicting axiomatic
properties.

Before we delve into ABC voting rules, let us first take a step back and dis-
cuss advantages and disadvantages of making collective decisions based on approval
preferences.

1.2 Advantages and Drawbacks of Approval Ballots

There are several arguments for using approval ballots in multi-winner elections
(i.e., to work with approval preferences). Compared to the ranking-based model,
where voters provide complete rankings of candidates (i.e., linear orders), providing
approval preferences requires much less cognitive effort from the voters. Thus this
kind of voting is often more practical and preferable due to its clear meaning. Brams
and Herschbach [7] and Aragones et al. [4] discuss positive effects of using approval
ballots on voters’ participation, and Brams and Herschbach [7] further argue that
using approval ballots can reduce negative campaigning; Brams and Fishburn [5]
discuss other possible positive implications of using approval ballots in political
elections. In fact, approval ballots are often used for voting in scientific societies
(see, e.g., the work of Brams and Fishburn [6]). Further experimental studies explore
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the possibility of using approval ballots in political elections and their conclusions
are largely positive [1, 26, 27, 34]. Approval ballots are widely used in participatory
budgeting [19]. These are elections where the citizens decide through voting how to
spend a municipal budget (we discuss this setting in Sect. 6.4).

In general, the approval-based model has the advantage of a simple yet expressive
preferencemodel. This simplicity grants definitions ofmore complex conceptswithin
this model (e.g., proportionality, strategyproofness, etc.) a solid intuitive grounding.

The simplicity of approval ballots necessarily also has downsides. An important
underlying assumption is that the preferences of voters are separable, i.e., voters are
not given the possibility to specify relations between candidates. For example, it is
not possible for a voter to indicate that she believes that a certain group of candidates
would work particularly well together in the elected committee or that she thinks that
two candidates should never be elected together. We discuss several related models
that allow voters to specify this kind of information in Sect. 6.6.

Approval ballots imply a dichotomy between candidates: approved and disap-
proved candidates. While it is generally clear how to interpret the set of approved
candidates, it is less clear how to interpret the set of disapproved candidates, i.e., its
complement. Generally, it can be assumed that a voter prefers approved candidates
to be included in the winning committee, that is, adding an approved candidate to the
committee will increase a voter’s satisfaction. For disapproved candidates, the situa-
tion is less clear as the voter may be either neutral about whether these candidates are
included or opposed to their inclusion (or a mixture of these two cases). As the ABC
model does not allow to distinguish between neutral and negative candidates, this
information cannot be taken into account by ABC rules.We discuss the trichotomous
(three-valued) model in Sect. 6.2. Generally, moving from dichotomous preferences
(the ABC model) to trichotomous preferences results in a vastly different model,
with its own advantages and disadvantages.

A much more elaborate discussion of the approval-based model can be found in
the Handbook of Approval Voting [25].

1.3 Python Code

This book is closely connected with the abcvoting Python library [24]. The ABC
rules discussed in this book are available as Python code at https://github.com/
martinlackner/abcvoting and are directly usable, e.g., in numerical experiments.
To give a flavour how abcvoting looks like, we show here the code to compute
winning committees for Proportional Approval Voting (PAV), an important ABC
rule.

from abcvoting.preferences import Profile
from abcvoting import abcrules

# a preference profile with 5 candidates (0, 1, 2, 3, 4)
profile = Profile (5)

https://github.com/martinlackner/abcvoting
https://github.com/martinlackner/abcvoting
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# add six voters , specified by the candidates that they approve;
# the first voter approves candidates 0, 1, and 2,
# the second voter approves candidates 0 and 1, etc.
profile.add_voters ([{0,1,2}, {0,1}, {0,1}, {1,2}, {3,4}, {3 ,4}])

# compute winning committees
committees = abcrules.compute_pav(profile , committeesize =3)

Many examples from this book are also available in the abcvoting library, includ-
ing the counterexamples from Appendix A. If the reader prefers a Python-based
hands-on approach, this library can be a useful tool.

1.4 Mathematical Notation and Prerequisites

We use the following basic notation. We write N to denote the set of non-negative
integers and R to denote the set of real numbers. Given a real number x , the floor
function �x� returns the largest integer≤ x . Similarly, the ceiling function �x� returns
the smallest integer ≥ x . For each t ∈ N, we let [t] denote the set {1, . . . , t}. For a
set X , we write |X | to denote its cardinality. We further write P(X) to denote the
powerset of X , i.e., the set of all subsets of X .

A weak order is a binary relation on a set X which is complete and transitive. A
linear order is a weak order that is antisymmetric; we refer to linear orders also as
rankings. Observe that weak orders may contain ties between elements (in contrast
to linear orders).

We use the standard asymptotic notation O(.), o(.) and �(.), denoting upper,
lower, and tight bounds up to constant factors, respectively.

We assume that the reader is familiar with basic concepts regarding algorithms
(such as polynomial-time vs exponential-time algorithms, the concepts of fixed-
parameter and approximation algorithms) and computational complexity theory
(such as NP-hardness, NP-completeness, reductions). These concepts are, however,
only required for Chap. 5.

1.5 Structure of the Book

This book is structured as follows. In Chap. 2, we give detailed descriptions and
examples for many approval-based committee rules. Only parts of this chapter are
required for understanding the remainder of the book; these parts are marked with a
bar on the side of the page. Chap. 3 provides an overview of basic axiomatic prop-
erties of ABC rules. We discuss which of these properties are satisfied by the rules
introduced in the previous chapter. In Chap. 4, we focus on a major topic in recent
years: proportional representation. We discuss concepts of proportionality (but also
concepts of non-proportionality) and their relation to other axiomatic properties.
Chap. 5 discusses the computational results concerning the complexity of comput-
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ing winning committees, and algorithmic questions related to proportionality and
strategyproofness. In Chap. 6, we provide an overview of related formalisms and
their connection to ABC rules. Finally, in Chap. 7, we provide an outlook on impor-
tant research directions and list some specific open questions. This book contains a
technical appendix, Appendix A, with proofs and counterexamples that we were not
able to find in the published literature.
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Chapter 2
Dramatis Personae: ABC Rules

In this chapter, we define the basic ingredients of approval-based committee (ABC)
voting: candidates, voters, preferences, and committees. Most importantly, we
present the main characters of this book: ABC voting rules. We introduce and define
the most important ABC rules and discuss the main classes they belong to. These
include Thiele methods and their sequential variants, Monroe’s rule, Phragmén’s
rules and its derivatives, as well as non-standard ABC rules.

2.1 The Formal Model

We now define the basic ingredients of approval-based committee (ABC) voting:
candidates, voters, preferences, committees, and ABC rules.

2.1.1 Candidates, Voters, and Preferences

Let C be a finite set of available candidates (also called alternatives). We assume
that voters’ preferences are available in the form of approval preferences, i.e., voters
distinguish between alternatives they approve and those that they disapprove—due
to this dichotomy such preferences are also called dichotomous preferences. Hence
a voter’s preference over candidates can be represented by a set of approved alterna-
tives. Let N ⊆ N denote a finite set of voters.

An approval profile is the collection of all voters’ preferences; formally it is a func-
tion A : N → P(C). We say that A(i) ⊆ C is voter i’s approval ballot. Throughout
the book, we use n = |N | to denote the number of voters and m = |C | to denote the
number of alternatives. Further, we write N (c) to denote the subset of voters that
approve candidate c, i.e., N (c) = {i ∈ N : c ∈ A(i)}.

© The Author(s) 2023
M. Lackner and P. Skowron, Multi-Winner Voting with Approval Preferences,
SpringerBriefs in Intelligent Systems, https://doi.org/10.1007/978-3-031-09016-5_2
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Fig. 2.1 Graphical representation of the approval profile from Example 2.1. Each candidate is
represented by one or several boxes that appear in a single row in the figure, and that are marked
with a candidate-specific colour. A voter approves those candidates whose corresponding boxes
appear above the voter. For example, voter 1 approves candidates a and b and voter 4 approves
candidates a and c

Example 2.1 An academic society chooses a steering committee. Such a committee
consists of four persons (k = 4) and there are seven candidates competing for these
positions, C = {a, b, c, d, e, f, g}. All members of the society are eligible to vote
and may provide approval ballots to indicate their preference. In total, 12 ballots
have been submitted (N = [12]):

A(1) : {a, b} A(2) : {a, b} A(3) : {a, b} A(4) : {a, c}
A(5) : {a, c} A(6) : {a, c} A(7) : {a, d} A(8) : {a, d}
A(9) : {b, c, f } A(10) : {e} A(11) : { f } A(12) : {g}.

Figure 2.1 shows a graphical representation of this approval profile. In this figure,
each column correspond to one voter (one approval set) and each candidate appears in
only one row—each candidate is approved by the voters that appear below the boxes
that represent the candidate. Colours are used to distinguish different candidates.

Sometimes, we are only interested in how often a specific approval set occurs in
an approval profile and thus ignore the names (identifiers) of the voters who cast the
approval ballots. In such cases, we do not specify the concrete mapping from N to
approval sets but use the following notation:

3 × {a, b} 3 × {a, c} 2 × {a, d} 1 × {b, c, f }
1 × {e} 1 × { f } 1 × {g}.

The reader may ponder which steering committee of size k = 4 should be selected
given this approval profile—there is certainly more than one sensible choice. In the
following chapter, we will see how different voting rules decide in this situation.

We do not make assumptions about the size of approval ballots, as we assume
that it is the voters’ decision how many candidates she approves. In applications,
however, there is sometimes an upper limit on howmany candidates can be approved
(often the desired committee size). Such a requirement has hardly any effect on the
results presented in this book. In a richer model where voters have underlying, non-
dichotomous (i.e., non-binary) preferences, such a restriction would become more
relevant; this effect has been analysed by Xiao et al. [47] and Godziszewski et al.
[20]. The main conclusion is that it is typically better to give the voters freedom in
choosing how many candidates they wish to approve.
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2.1.2 Committees and ABC Rules

As we have seen in Example 2.1, committees are sets of candidates. Typically, we
are interested in committees of a specific size, which we denote by k. The input
for choosing such a committee is an election instance E = (A, k) consisting of a
preference profile A and a desired committee size k. Note that given A, we can derive
N and C from this function: N is the domain of A and—under the mild assumption
that all candidates are approved by at least one voter—C is the union of all function
values, i.e., C = ⋃

i∈N A(i). Thus we do not mention N and C in this notation.
Let us now define the key concept of this book: approval-based committee voting

rules (short: ABC rules). An ABC rule is a voting method for choosing committees,
i.e., an ABC rule takes an election instance as input and outputs one or more size-k
subsets of candidates. We refer to these size-k subsets as winning committees.

If an ABC rule outputs more than one committee, we say that these committees
are tied. An ABC rule is resolute if it always outputs exactly one committee. In
practical settings, it is often undesirable to have more than one winning committee.
Consequently, in many concrete voting systems a tiebreaking method is included so
that a resolute outcome is guaranteed. This tiebreaking method is typically a random
process. Aswe assume that anABC rule is a deterministic process, we further assume
that all randomisation is done before the election (or at least before the ABC rule
is applied). Under this assumption, a randomised tiebreaking method corresponds
to a fixed (linear) tiebreaking order over committees; if more than one committee is
winning, this tie is resolved by picking the winning committee that is maximal in the
tiebreaking order. In this sense, our model incorporates voting systems that rely on
randomised tiebreaking.1

Someof theABCrules defined in the following are resolute, i.e., they always return
a single winning committee, and some are irresolute.Most rules can be defined either
way; we have chosen the more natural definition for each rule.

For the following definitions, we assume that we are given an election instance
E = (A, k) with a voter set N and a candidate set C .

2.2 Thiele Methods

In the single-winner setting, i.e., if k = 1, there are few reasonable voting rules
when presented with approval ballots. The arguably most natural rule is Approval
Voting. Approval Voting selects those alternatives that are approved by themaximum
number of voters, all of which are (co-)winners according to this rule. Most ABC
rules introduced in this chapter are equivalent to Approval Voting for the case k = 1
(we discuss notable exceptions in Sect. 2.7). There is, however, one ABC rule that

1 For a more careful study of randomised tie-breaking, one would have to model the outcome of a
randomised ABC rule as a probability distribution over potentially winning committees. Note that
this distribution is not necessarily uniform.
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extends the reasoning of Approval Voting to k > 1 in the most natural manner; this
rule is therefore called Multi-Winner Approval Voting (short: AV).2

Rule 1 (Multi-Winner Approval Voting, AV) This ABC rule selects the k candi-
dates which are approved by most voters. Formally, the AV-score of an alternative
c ∈ C is defined as scoreAV(A, c) = |N (c)| = |{i ∈ N : c ∈ A(i)}| and AV selects
committees W that maximise scoreAV(A,W ) = ∑

c∈W scoreAV(A, c).

Example 2.2 Let us consider the instance of Example 2.1:

3 × {a, b} 3 × {a, c} 2 × {a, d} 1 × {b, c, f } 1 × {e} 1 × { f } 1 × {g}.

To compute winning committees according to AV, we count how often each alterna-
tive is approved: a: 8 times, b: 4, c: 4, d: 2, e: 1, f : 2 and g: 1. We want to select the
four most-approved alternatives. These are a, b, c, and there is a tie between d and
f (both having the fourth highest number of approvals). Hence, AV returns two tied
committees: the sets W1 = {a, b, c, d} and W2 = {a, b, c, f }. It is noteworthy that
W1 leaves three voters completely unsatisfied with the chosen alternatives, whereas
W2 results in only two completely unsatisfied voters.

We continue with an ABC rule that can be seen as the exact opposite of AV.
Whereas AV disregards whether some voters completely disagree with a commit-
tee, the Approval Chamberlin–Courant rule grants as many voters as possible at
least one approved alternative in the committee. This rule was first mentioned by
Thiele3 [44], and then independently introduced in a different context by Chamber-
lin and Courant [12].

Rule 2 (Approval Chamberlin–Courant, CC) The CC rule outputs all committees
W that maximise scoreCC(A,W ) = |{i ∈ N : A(i) ∩ W �= ∅}|.
Example 2.3 Considering again the instance of Example 2.1, there is exactly one
committee that grants each voter (at least) one approved candidate:W = {a, e, f, g}.
This is the winning committee according to Approval Chamberlin–Courant. While
this committee indeed provides some satisfaction for every voter, it includes alter-
natives (e and g) that are approved only by single voters.

2 Let us brieflymention variants of AV that are widely used in political settings: BlockVoting, where
voters may not approve more than k candidates (or sometimes exactly k), Limited Voting, where
voters may approve at most s candidates with s < k, and Single Non-Transferable Vote (SNTV),
which is Limited Voting for s = 1. Note that properties of AV do not necessarily transfer to these
input-restricted variants and vice-versa. For example, forcing voters to approve exactly k candidates
appears to have severe negative consequences, as demonstrated by Elkind et al. [14] in numerical
experiments. In this book we consider only AV, which allows arbitrary approval ballots as input.
3 Thorvald Nicolai Thiele (1838–1910) was a Danish astronomer and mathematician. He was pro-
fessor of astronomy at the University of Copenhagen and director of the Copenhagen University
Observatory. He is most known for his work in mathematics, in particular in statistics [26, 30, 45,
46]. The contributions of Thiele to voting theory are discussed in detail by Janson [22].
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The two ABC rules we discussed so far—AV and CC—can be seen as extreme
points in the spectrum of ABC rules captured by the class of Thiele methods. This
class, introduced by Thiele in the late 19th century [44], encompasses all rules that
maximise the sum of the voters’ individual satisfaction, subject to a chosen definition
of how satisfaction ismeasured. The unifying assumption is that a voters’ satisfaction
with a committeeW is solely determined by the number of approved candidates in this
committee, i.e., voter i’s satisfaction is determined by a functionw (|W ∩ A(i)|). By
choosing differentw-functions, a very broad spectrum of ABC rules can be covered.

Rule 3 (Thiele methods, w-Thiele4) A Thiele method is parameterized by a non-
decreasing function w : N → R with w(0) = 0. The score of a committee W given
a profile A is defined as

scorew(A,W ) =
∑

i∈N
w (|W ∩ A(i)|) ;

the w-Thiele method returns committees with maximum score.

Indeed,AV is thew-Thielemethodwithw(x) = x , andCC is thew-Thielemethod
with w(x) = min(1, x). This is an immediate consequence of the respective defini-
tions.

The following Thiele method is arguably one of the most important: Propor-
tional Approval Voting, in short PAV. Also this rule was defined in Thiele’s original
paper [44]. The definition (and properties) of PAV crucially depend on the sequence
of harmonic numbers.

Rule 4 (Proportional Approval Voting, PAV) Let h(x) = ∑x
j=1

1/ j denote the
sequence of harmonic numbers. PAV is h-Thiele, i.e., it is the w-Thiele rule with
w(x) = h(x). In other words, PAV assigns to each committee W the PAV-score,
scorePAV(A,W ) = ∑

i∈N h (|W ∩ A(i)|), and returns all committees with maximum
score.

By using the sequence of harmonic numbers h(·), we introduce a flattening satis-
faction function for voters, akin to the law of diminishing returns. As a consequence,
PAV balances the (justified) demands of large groups with the conflicting goal of sat-
isfying small groups. Indeed, as wewill see in Chap. 4, Proportional Approval Voting
achieves this balance in a proportional fashion. Figure 2.2 shows a visualisation of
the defining w-functions of different Thiele methods:

wAV(x) = x wPAV(x) =
x∑

i=1

1/i wCC(x) =
{
0 if x = 0,

1 if x ≥ 1.

Note that also visually the function defining PAV is “in between” AV and CC.

4 The class of Thiele methods is sometimes also referred to as weighted PAV rules [3]; we prefer the
term Thiele methods as only few rules in this class are actually proportional. Kilgour and Marshall
[23] refer to this class as generalised approval procedures.
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Fig. 2.2 Defining
w-functions for three Thiele
methods: Multi-Winner
Approval Voting (AV),
Proportional Approval
Voting (PAV), and Approval
Chamberlin–Courant (CC)
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Example 2.4 Given the instance of Example 2.1:

3 × {a, b} 3 × {a, c} 2 × {a, d} 1 × {b, c, f } 1 × {e} 1 × { f } 1 × {g},

PAV selects the committee W = {a, b, c, f }. For one voter (the one that approves
{b, c, f }) this committee contains three approved alternatives, for six voters this
committee contains two approved alternatives, for three voters W contains one
approved alternative, and two voters are not at all satisfied with W . Thus, we have
scorePAV(A,W ) = (1 + 1/2 + 1/3) + 6 · (1 + 1/2) + 3 · 1 = 83/6 and this value is opti-
mal. Coincidentally,W is one of the two committees produced byAV, namely the one
with fewer dissatisfied voters. It appears that PAV strives for a compromise between
AV and CC—this is an intuition that we will discuss in more detail later (Sect. 4.5).

Other Thiele methods that have been studied in the literature are the class of
p-geometric rules [42], threshold procedures [19, 23], and Sainte-Laguë Approval
Voting (SLAV) [25].

Thiele methods pick committees that maximise a certain welfare of the voters and
thereby belong to a broader class of welfarist rules.

Definition 2.1 Awelfare vector induced by a committeeW specifies, for each voter,
her satisfaction from W (measured as the number of candidates she approves inW ):

welf(W ) = (|A(1) ∩ W |, |A(2) ∩ W |, . . . , |A(n) ∩ W |).

An ABC rule R is welfarist if there is a function f : NN → R, mapping welfare
vectors to scores, such that for each instance (A, k) we have

R(A, k) = argmax
W⊆C with |W |=k

f (welf(W )).
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In this definition, f (welf(W )) can be viewed as the welfare that voters gain from
W . For Thiele methods, f (welf(W )) = scorew(A,W ), i.e., welfare is the sum of
the voters’w-scores. The class of welfarist rules also allows for an aggregation other
than summation. For example, one can define f (welf(W )) as the satisfaction of
the least-satisfied voter—akin to egalitarian aggregation [29]. Another example of a
welfarist rule is a dictatorial rule which compares welfare vectors lexicographically
given a fixed order of voters: the first voter in this order is a dictator and only if the
dictator is indifferent between two outcomes, the second-in-place may decide, and
so on.

These other forms of aggregation have been studied in the context of multi-winner
electionswith ranking-based preferences (for the egalitarian aggregation see thework
of Aziz et al. [4] and Skowron et al. [41]; for OWA-based aggregation see the work
of Elkind and Ismaili [13] and Faliszewski et al. [17]). For approval ballots, we are
aware of only two works that consider such aggregations. Computational properties
of CC and Monroe rules based on the egalitarian aggregation are considered by
Betzler et al. [5]. Amanatidis et al. [1] consider OWA-based aggregation but for
other types of welfare of individual voters. Specifically, the satisfaction of voters
with a committee is measured via the Hamming distance, which is in contrast to the
definition of welf(W ). The most important rule based on the Hamming distance is
Minimax Approval Voting, which we discuss in Sect. 2.7.

2.3 Sequential Variants of Thiele Methods

Thiele methods are defined via optimisation statements: given an objective function,
Thiele methods return all committees that maximise this function. Instead of com-
puting the true optimum (which is computationally hard, as we will see in Chap.
5), one can define sequential procedures that construct an approximate solution. We
define here two classes of sequential procedures: sequential and reverse sequential
Thiele methods. Both classes have been introduced in Thiele’s original paper [44]
(see Janson’s survey for further historical remarks [22]). Furthermore, both classes
can be seen as greedy approximation algorithms for Thiele methods; we return to
this analogy in Sect. 5.2.3.

Let us begin with sequential Thiele methods: starting with an empty committee,
they add committee members one by one, in each step the one that increases the
objective function the most.

Rule 5 (Sequential w-Thiele, seq-w-Thiele) For each w-Thiele method, we define
its sequential variant, seq-w-Thiele, as follows. We start with an empty committee
W0 = ∅. In each round r ∈ {1, . . . , k}, we compute Wr = Wr−1 ∪ {c}, where c is a
candidate that maximises scorew(A,Wr−1 ∪ {c}), i.e., the candidate that improves
the committee’s score the most. If more than one candidate yields a maximum score,
we break ties according to some given tie-breaking order. The seq-w-Thiele rule
returns Wk.
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Two sequential Thielemethodswill be of particular interest here: sequentialwPAV-
Thiele and sequentialwCC-Thiele.We refer to these two rules as seq-PAV and seq-CC.
In contrast, the sequential variant of AV (seq-wAV-Thiele) is not relevant to us as it
is equivalent to AV. This is because the AV-score (scoreAV) of candidates is not
influenced by the other candidates in the committee.

Example 2.5 Since the instance of Example 2.1 yields the same result for PAV and
seq-PAV (and also for CC and seq-CC), we take a look at a different profile:

3 × {a, b} 6 × {a, d} 4 × {b} 5 × {c} 5 × {c, d}.

For k = 2, PAV selects the committee {a, c} with a PAV-score of 19. (Each voter
except those that approve only candidate b has exactly one approved candidate in the
committee.) Let us contrast this result with seq-PAV. All sequential Thiele methods
with w(1) > 0, including seq-PAV, select the candidate with the largest number
of approvals in the first round—the winner according to (single-winner) Approval
Voting. Thus, d is selected in the first round as it gives an AV-score of 11. In the
second round, we choose between a (increasing the score by 6) and b (increasing the
score by 7) and c (increasing the score by 7.5). Hence, seq-PAV returns the committee
{c, d} with a PAV-score of 18.5.

Similarly to sequential Thiele methods, reverse sequential Thiele methods build
committees sequentially, but here one starts with the set of all candidates and sequen-
tially removes the candidate that contributes the least to the committee’s score.5

Rule 6 (ReverseSequentialw-Thiele, rev-seq-w-Thiele)For eachw-Thielemethod,
we define its reverse sequential variant, rev-seq-w-Thiele, as follows. We start with
Wm = C, the set of all candidates. Each round, the candidate with the least marginal
contribution to the score is removed. To be precise, in each round r from m − 1
down to k, we compute Wr = Wr+1 \ {c}, where c is a candidate that maximises
scorew(A,Wr+1 \ {c}), i.e., the candidate whose removal decreases the committee’s
score the least. If more than one candidate does that, we break ties according to some
given tie-breaking order. The rev-seq-w-Thiele rule returns Wk.

In the remainder of the book, we will only encounter reverse sequential PAV
(rev-seq-PAV) from the class of Reverse Sequential w-Thiele methods.

Example 2.5 (continued) For rev-seq-PAV, we start with the full set of candidates
W4 = {a, b, c, d} and remove the candidate with the least marginal contribution:
removing a decreases the score by 4.5, removing b decreases the score by 5.5, c by
7.5, and d by 5.5. Thus, a is removed and W3 = {b, c, d}. Now, we again compute
the marginal contributions: for b it is 7, for c it is 7.5, and for d it is 8.5. We obtain
W2 = {c, d}, which is the winning committee. We see that for this instance seq-PAV
and rev-seq-PAV yield the same winning committee. This does not hold in general.

5 This idea of removing candidates with the lowest score can also be found in ranking-based voting
rules such as STV or Baldwin [48].
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An election instancewhere PAV, seq-PAV, and rev-seq-PAVall yield different win-
ning committees can be found in Janson’s survey [22, Example 13.3]. The example
is due to Thiele [44] and is significantly larger than the examples presented here.

Aswe havementioned in Sect. 2.2,mostABC rules coincidewithApprovalVoting
for k = 1. Reverse Sequential PAV is an exception. This is, however, not a conse-
quence of the underlying assumptions how ballots are interpreted, but a consequence
of how the rule is computed (i.e., in a reverse fashion).

Example 2.6 To see that rev-seq-PAV is a non-standardmethod, consider the profile:

1 × {a, b} 1 × {a, b, c}1 × {a, b, d} 2 × {a, c, d} 1 × {b} 1 × {c}1 × {d}.

In the first round, the marginal contribution of a is 1/2 + 4 · 1/3; the marginal con-
tribution from the other candidates is at least 2. Thus, candidate a is removed in the
first round, even though it has the highest approval score.

Finally, let us mention a paper by Faliszewski et al. [18] which considers and
compares several heuristic algorithms for approximating multi-winner rules (e.g.,
via simulated annealing). This line of work has not yet been extended specifically to
Thiele methods, though the ideas in their work can be applied to the ABC setting.

2.4 Monroe’s Rule

Monroe’s rule [27] is an ABC rule6 related to the Chamberlin–Courant rule. It also
aims atmaximising the number of voterswho are represented by at least one candidate
in the elected committee. The main difference is that each committee member can
represent at most 1/k-th of the voters.

Rule 7 (Monroe) Given a committee W, a Monroe assignment for W is a function
φ : N → W such that each candidate c ∈ W is assigned roughly the same number of
voters, i.e., for all c ∈ W it holds that 
n/k� ≤ |φ−1(c)| ≤ 
n/k�. The candidate φ(i)
can be viewed as the representative of voter i . Let �(W ) be the set of all possible
Monroe assignments for W. The Monroe-score of a committee W is defined as the
number of voters that have a representative assigned that they approve (given an
optimal Monroe assignment), i.e., scoreMonroe(A,W ) = maxφ∈�(W ) |{i ∈ N : φ(i) ∈
A(i)}|. Monroe returns all committees with a maximum Monroe score.

6 AlthoughMonroe defined his rule in the original paper primarily for linear preference orders [27],
he considered themodified version based on approval ballots the “most promising option” for actual
(political) use. If the distinction between these two rules is necessary, the approval-based version is
often denoted as α-Monroe; we do not need this distinction as we focus solely on approval ballots.



18 2 Dramatis Personae: ABC Rules

a
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c

d

c

f e f g

1 2 3 4 5 6 7 8 9 10 11 12

b b a c c c a a b e e e

Fig. 2.3 An optimalMonroe assignment for Example 2.7: the top row shows the assigned represen-
tative for each voter. For example, the assigned representative of voter 1 is b; voter 12 is dissatisfied
with her assigned representative e

Example 2.7 Consider again the profile of Example 2.1:

A(1) : {a, b} A(2) : {a, b} A(3) : {a, b} A(4) : {a, c}
A(5) : {a, c} A(6) : {a, c} A(7) : {a, d} A(8) : {a, d}
A(9) : {b, c, f } A(10) : {e} A(11) : { f } A(12) : {g}.

We first note that the desired committee size k = 4 divides the number of voters
(n = 12) and hence Monroe assigns exactly 3 voters to each committee member.
One optimal Monroe assignment (among many) is shown in Fig. 2.3 and given by
φ−1(a) = {3, 7, 8}, φ−1(b) = {1, 2, 9}, φ−1(c) = {4, 5, 6}, φ−1(e) = {10, 11, 12}.
The Monroe score of this assignment is scoreMonroe(A,W ) = 10, since only vot-
ers 11 and 12 are assigned to a representative (candidate e) that they do not approve.
In total there are six winning committees; committee {a, b, c, e} is one of them.

Monroe’s rule has also a natural sequential version called Greedy Monroe, which
was introduced by Skowron et al. [41].7 We present GreedyMonroe here in a slightly
simpler, more practical fashion, where dissatisfied voters are not assigned to groups.

Rule 8 (Greedy Monroe) This ABC rule proceeds in k rounds: In each round r ∈
{1, . . . , k}GreedyMonroe assigns a candidate to a group of voters Gr of size at most
nr (defined below); this candidate is added to the committee. The maximum size of
a group, nr , is defined as follows: for d = n mod k, we set n1 = · · · = nd = 
n/k�
and nd+1 = · · · = nk = 
n/k�. In round r + 1, let Nr+1 denote the voters that have
not yet an assigned committeemember, i.e., Nr+1 = N \ (G1 ∪ · · · ∪ Gr ). Candidate
cr+1 is chosen as the candidate c that maximises |{i ∈ Nr+1 : c ∈ A(i)}| among
those not contained in the committee yet (using a tiebreaking order on candidates if
necessary). Now, if there are at most nr+1 not yet assigned voters that approve cr+1,
then Gr+1 = {i ∈ Nr+1 : cr+1 ∈ A(i)}; if there are more than nr+1 such voters, a
tiebreaking order on voters is used to assign exactly nr+1 from these voters to Gr+1.
Greedy Monroe outputs the committee {c1, . . . , ck}.

7 Greedy Monroe is called Algorithm A in the original paper [41] and is defined therein only for
instances where k divides n. The first general definition was given in [15].
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Example 2.8 In our running example (Example 2.1) given by

A(1) : {a, b} A(2) : {a, b} A(3) : {a, b} A(4) : {a, c}
A(5) : {a, c} A(6) : {a, c} A(7) : {a, d} A(8) : {a, d}
A(9) : {b, c, f } A(10) : {e} A(11) : { f } A(12) : {g},

Greedy Monroe first picks candidate a as it is approved by most voters. We assume
that ties among voters are broken in increasing order, so G1 = {1, 2, 3}. Now c is
chosen since it is the only candidate with four supporters among the remaining vot-
ers (N2 = {4, . . . , 12}). The corresponding group of voters is G2 = {4, 5, 6} (again
choosing voters with smaller indices first). Now there are two candidates left that are
approved by two voters in the remaining set (N3 = {7, . . . , 12}): candidates d and f .
We choose d by alphabetic tiebreaking and so we set G3 = {7, 8}. Finally, there is
one candidate that has two supporting voters in N4 = {9, . . . , 12}: f is approved
by voters 9 and 11; thus G4 = {9, 11}. A Monroe assignment corresponding to
this committee {a, c, d, f } is, e.g., given by φ−1(a) = {1, 2, 3}, φ−1(c) = {4, 5, 6},
φ−1(d) = {7, 8, 10}, andφ−1( f ) = {9, 11, 12}. In this instance, GreedyMonroewas
able to find a committee with an optimal Monroe score, but this does not hold in
general.

2.5 Phragmén’s Rules

Phragmén8 introduced a number of voting rules, most of which are based on a form
of cost-sharing (or load balancing). The core idea is that placing a candidate in the
winning committee incurs a cost, or load, that has to be shouldered by the voters who
approve this candidate. The goal is to choose a committee that allows for as equal as
possible a distribution of its cost. In this way, the preferences of as many voters as
possible are taken into account.

Phragmén’smain proposal is calledPhragmén’s Sequential Rule (seq-Phragmén).
Even though Phragmén’s Sequential Rule can be considered one of the most appeal-
ing ABC rules, it remained unknown tomany social choice researchers until recently.
Fewpublications before 2017mention Phragmén’smethods; notable exceptions are a
survey by Janson [21] (in Swedish) and a paper byMora and Oliver [28] (in Catalan).
Since 2017 several papers have proven Phragmén’smethod to be a particularly strong
ABC rule, in particular being a proportional ABC rule that is both polynomial-time
computable and committee monotone.

8 Lars Edvard Phragmén (1863–1937) [10, 22, 31, 43] was a Swedish mathematician and an actu-
ary. He was a professor of mathematics at Stockholm University and long-time editor of Acta
Mathematica. His best known mathematical work is the Phragmén-Lindelöf principle in complex
analysis [39], but he also published several works on election methods [34–38] and was involved
in Swedish electoral reforms; see Janson’s survey [22] for a comprehensive summary of his work
on election methods.
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We present two (equivalent) formulations of seq-Phragmén. The first is concep-
tually simpler, while the second gives a clearer picture how the rule is computed in
practice.

Rule 9 (Phragmén’s Sequential Rule, seq-Phragmén) This ABC rule is based on the
assumption that placing a candidate in the winning committee incurs a cost (or a
load) of 1, which is distributed among the set of voters that approve this candidate.

Continuous formulation:We assume that each voter has a budget which constitutes
his or her voting power. Voters start with a budget of 0 and this budget continuously
increases as time advances. At time t, the budget of each voter is t . As soon as a group
of voters that jointly approve a candidate has a total budget of 1, the joint candidate
is added to the winning committee. Then the budget of all involved voters is reset
to 0; only voters that do not approve the selected candidate keep their current budget.
This process continues until the committee is filled. If at some point two candidates
could be added to the committee at the same time, a tie-breaking order is used to
decide which candidate is selected.

Discrete formulation: seq-Phragmén works in rounds; each round one candidate is
added to the committee. Let yr (v) denote the load assigned to (or cost contributed
by) voter v after round r ≤ k. We naturally start with y0(v) = 0 for all v ∈ N . Let
{c1, . . . , cr−1} be the candidates added to the committee in rounds 1 to r − 1. To
determine the next candidate cr to add, we compute for each candidate c ∈ C \
{c1, . . . , cr−1} the maximum load that would arise from adding cr :

�r (c) = 1 + ∑
i∈N (c) yr−1(i)

|N (c)| ;

the load of voters in N (c) would increase to this amount if c were added to the
committee. Note that the load is distributed so that all voters approving c end up
with the same total load; this is so to minimise the maximum load. Now, to keep the
maximum load as small as possible, seq-Phragmén chooses the candidate c with a
minimum �r (c), i.e.,

cr = argmin
c∈C\{c1,...,cr−1}

�r (c).

If two or more candidates yield the same maximum load, a tie-breaking method is
required (typically some fixed order on C). After choosing cr , the voter loads are
adapted accordingly:

yr (i) =
{

�r (cr ) if i ∈ N (cr ),

yr−1(i) if i /∈ N (cr ).

The rule returns the winning committee {c1, . . . , ck}.
To see that these two formulations are equivalent, note that for a winning commit-

teeW = {c1, . . . , ck} (selected in this order) themaximum loads in each round �r (cr )
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directly corresponds to the time points at which sufficient budget was available to
pay for cr . From this point of view, the discrete formulation is only the explicit calcu-
lation of time points at which sufficient budget is available to place a new candidate
in the committee.

Example 2.9 Let us again consider our running example (Example 2.1):

3 × {a, b} 3 × {a, c}2 × {a, d}
1 × {b, c, f } 1 × {e}1 × { f } 1 × {g}.

We use the continuous formulation to describe the method, but it is easy to repeat the
calculations using the discrete formulation. Figure 2.4 shows a visualisation of the
procedure, which we will now explain step by step. The first time sufficient budget is
available to add a candidate to the committee is at time t1 = 1/8. At this point, voters
{1, . . . , 8} can jointly pay for candidate a. Now the budgets of voters 1 to 8 are reset
to 0; the remaining voters have a budget of 1/8 each.

A second candidate can be added to the committee at time t2 = 11/32. Voters 1, 2,
3, 9 approve candidate b; their respective budgets are (7/32, 7/32, 7/32, 11/32) (note that
voters 1, 2, and 3 have budgets that are by 1/8 lower than that of voter 9). At this time,
also voters 4, 5, 6, 9 (who all approve candidate c) have a joint budget of 1. We use
alphabetic tiebreaking and select b.

Candidate c is then added as a third candidate at time t3 = 55/128. At this point,
voters 4, 5, and 6 have budgets of 39/128, and voter 9 has a budget of 11/128; that is in
total 1. Note that these numbers follow from the fact that voters 4–6 already paid 1/8

each for selecting candidate a and voter 9 paid 11/32 for selecting candidate b.
Finally, at time t4 = 5/8 the last candidate, d, is added to the committee. At this

point, the two voters approving d (voters 7 and 8) have budgets of 5/8 − 1/8 = 1/2,
in total 1. Thus, seq-Phragmén returns the committee {a, b, c, d}. When repeat-
ing this calculation using the discrete formulation, one obtains the final loads
y4 = (t2, t2, t2, t3, t3, t3, t4, t4, t3, 0, 0, 0).

Phragmén also discussed optimisation-based analogues of seq-Phragmén. These
rules are based on choosing a committee that optimises an objective function (in a
similar way as Thiele methods optimise an objective function). We will discuss the
most notable optimisation-based method: leximax-Phragmén9 [8, 22, 37].

Rule 10 (Phragmén’s Leximax Rule, leximax-Phragmén) Each candidate in the
committee incurs a load (or cost) of 1 which has to be distributed among voters
approving this candidate. Given a committee W = {c1, . . . , ck}, a valid load distri-
bution for W is a function �W : W × N → [0, 1] which satisfies (1) if �W (c, i) > 0

9 Phragmén discusses optimisation variants of his rule in [37] and proposes to minimise the maxi-
mum load (see [22]); this rule has been referred to as opt-Phragmén ormax-Phragmén. Brill et al. [8]
show that it is more sensible to use a lexicographic comparison of loads instead of only considering
the maximum load. We thus only discuss leximax-Phragmén (referred to as opt-Phragmén in [8]).
Further optimisation variants exist, such as minimising the variance of loads [8, 22, 37].
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then voter i approves c, and (2)
∑

i∈N �W (c, i) = 1 for all c ∈ W. Let �̄W =(∑
c∈W �W (c, i)

)
i∈N denote the vector of total loads assigned to the voters.

To compare two (valid) load distributions, we use a lexicographic order. Given a
valid load distribution �W for W, let sort(�̄W ) denote the tuple �̄W sorted from largest
to smallest. Let �W and �W ′ denote two valid load distributions for committees W
and W ′, respectively. We say that �W is lexicographically smaller than �W ′ if there
exists an index j ≤ |N | such that the first j entries of sort(�̄W ) and sort(�̄W ′) are
equal and the ( j + 1)-st entry of sort(�̄W ) is strictly smaller than the ( j + 1)-st entry
of sort(�̄W ′).

Let �min
W denote a lexicographically smallest valid load distribution for commit-

tee W. Then, leximax-Phragmén returns all committees W for which �min
W is lexico-

graphically minimal in the set {�min
W ′ : W ′ ⊆ C and |W ′| = k}. Note that if leximax-

Phragmén returns two committees W1 and W2, then sort(�̄min
W1

) = sort(�̄min
W2

).

Example 2.10 In our running example, leximax-Phragmén behaves differently
than seq-Phragmén. When looking for a committee that has the lexicographi-
cally smallest load distribution, we find committee W = {a, b, c, f } with �̄min

W =
(3/8, 3/8, 3/8, 3/8, 3/8, 3/8, 3/8, 3/8, 1/2, 0, 1/2, 0). This load distribution is depicted in
Figure 2.5. Committee W is the only winning committee; for example, com-
mittee W ′ = {a, b, c, d} (the winning committee of seq-Phragmén) has �̄min

W ′ =
(3/7, 3/7, 3/7, 3/7, 3/7, 3/7, 1/2, 1/2, 3/7, 0, 0, 0), which is lexicographically larger.

2.6 Phragmén-Like Rules

We now discuss a very recent addition to the zoo of ABC rules: the Method of Equal
Shares [32, 33] (this method had been originally named Rule X). This rule can be
viewed as a variant of seq-Phragmén,where the voters are given some budget upfront,
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c
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11/32
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5/8

Fig. 2.4 A visualisation of seq-Phragmén (upper part) applied to the election instance of Example
2.1 (lower part). In the upper part all regions of the samecolour (corresponding to the samecandidate)
have an area of 1, which is the budget spent on this candidate



2.6 Phragmén-Like Rules 23

a
b b

c

d

c

f e f g

1 2 3 4 5 6 7 8 9 10 11 12

ac f f
b

3/8

1/2

Fig. 2.5 A visualisation of leximax-Phragmén (upper part) applied to the election instance of
Example 2.1 (lower part). In the upper part all regions of the same colour (corresponding to the
same candidate) have an area of 1, which is the budget spent on this candidate

rather than receiving it continuously. This rule is polynomial-time computable and
even surpasses the proportionality guarantees of seq-Phragmén.

Rule 11 (Method of Equal Shares) The rule proceeds in two phases. The first phase
consists of at most k rounds; in each round one candidate is added to the committee.
In the second phase the committee is completed in one of several possible ways.

For the first phase, we assume each voter is initially given a budget of k/n. Let xr (i)
denote the budget of voter i after round r; thus x0(i) = k/n. As with seq-Phragmén,
putting a candidate in the committee incurs a cost of1. In roundr + 1, we consider the
set of candidates that have not yet been placed in the committee andwhose supporters
can afford to pay for them, i.e., all candidates c for which

∑
i∈N (c) xr (i) ≥ 1. Let this

set be Cr ⊆ C. If Cr is empty, then we conclude the first phase and move to phase
two. Otherwise, for each candidate c ∈ Cr we ask what is the minimal budget ρ(c)
such that each voter approving c pays at most ρ(c) and all voters who approve c pay
1 in total, i.e., what is the minimal value ρ(c) that satisfies:

∑

i∈N (c)

min(ρ(c), xr (i)) = 1.

(Such a ρ(c) always exists, since otherwise c would not be contained in Cr .) We select
the candidate c that minimises ρ(c) (using some fixed tiebreaking if necessary), and
reduce the budget of voters who approve c accordingly—for each i ∈ N we set

xr+1(i) =

⎧
⎪⎨

⎪⎩

xi (r) − ρ(c) if c ∈ A(i) and xi (r) ≥ ρ(c),

0 if c ∈ A(i) and xi (r) < ρ(c),

xi (r) if c /∈ A(i),

i.e., voters who approve c either pay ρ(c) or their remaining budget.
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The second phase is only relevant if fewer than k candidates have been put in the
committee W so far. If |W | < k, we have to add k − |W | additional candidates to W.
Many properties of the Method of Equal Shares do not depend on the specific way
in which these k − |W | candidates are selected.10 A concrete and recommendable
way to fill the committee is to use seq-Phragmén but with initial budgets defined in
the following fashion: When using the continuous formulation, we set the starting
budget of each voter to their budget after the first phase of the Method of Equal
Shares; this starting budget increases as usual as time advances. Alternatively, we
can use the discrete formulation of seq-Phragmén: if the first phase ends with round
r ′, the starting loads are y0(i) = −xr ′(i). Then seq-Phragmén proceeds as usual
until the desired committee size is reached.

The name of the rule corresponds to the two elements of its definition. First, each
voter is initially given an equal share of the budget that she can spend for “buying”
candidates. when a candidate is selected, its cost is split as equally as possible among
the voters who approve the candidate (each voter covers an equal share of the cost
of the candidate).

Example 2.11 Consider once again our running example. Each voter is initially
given a budget of 1/3. In the first round candidate a is selected and each of the
first 8 voters pays 1/8 for this. In the second round, C2 = ∅ since no candidate has
sufficiently endowed supporters. For example, the budget of voters who approve b
is in total

3 · (1/3 − 1/8) + 1/3 < 1

and thus insufficient to pay for b. This ends the first phase of the rule.
In the second phase, the voters start receiving additional budget. Voters 1 to 8 start

with a budget of 1/3 − 1/8; voters 9 to 12 start with a budget of 1/3. At time t2 = 1/96,
voters 1 to 8 have a budget of 1/3 − 1/8 + t2 each and voters 9 to 12 have a budget of
1/8 + t2 each. Hence the voters who approve b (1, 2, 3, 9) have enough money to pay
for b:

3 · (1/3 − 1/8 + t2) + (1/3 + t2) = 1.

The same is true for the voters who approve c. Let us assume that we resolve the tie
in favour of b: b is selected and the voters 1, 2, 3 and 9 are left without budget. Next,
at time t3 = 37/384 candidate c is selected (voters 4–6 contribute 1/3 − 1/8 + t3 and
voter 9 contributes t3 − t2, with the required total of 1). Finally, at time t4 = 7/24 we
select d (2 · (1/3 − 1/8 + t4) = 1). Committee W = {a, b, c, d} is the only winning
committee. In this example, the Method of Equal Shares returns the same committee
as seq-Phragmén.

10 An exception is the priceability axiom, see Sect. 4.3; this axiom is dependent on how to extend
the committee to its full size. The proposed completion via seq-Phragmén fulfils priceability.
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Since in Example 2.11 only one candidate is selected in the first phase of the
Method of Equal Shares, we provide one additional example which better illustrates
the first phase of this rule and also shows that seq-Phragmén and theMethod of Equal
Shares may produce different committees.

Example 2.12 Consider the following approval profile given by

A(1) = A(2) = A(3) = {c, d} A(4) = A(5) = {a, b}
A(6) = A(7) = {a, c} A(8) = {b, d}.

The goal is to select a committee of size k = 3. Thus, voters start with a budget of
3/8.

In this example, candidate c is selected in the first roundwith each approving voter
(1, 2, 3, 6, 7) paying 1/5. Next, candidate a is selected. Voters 4 and 5 contribute 13/40,
voters 6 and 7 contribute their remaining budget (7/40). None of the remaining can-
didates achieves a total budget of 1 and thus the second phase starts. The starting
budgets for seq-Phragmén are (7/40, 7/40, 7/40, 1/20, 1/20, 0, 0, 3/8). At time t = 1/40 can-
didate d is selected: voters 1 to 3 can contribute 7/40 + t = 1/5 each and voter 8 can
contribute the remaining 3/8 + t = 2/5. Hence, the Method of Equal Shares selects
the committee {a, c, d}. The voters’ payments in the two phases are illustrated in
Fig. 2.6.

In contrast, seq-Phragmén picks {b, c, d}. These candidates are selected in order
c, b, d at time t1 = 1/5, t2 = 1/3, and t3 = 29/60, respectively.

Let us discuss three further rules that are related to Phragmén’s rules. The first is
the Expanding Approvals Rule [2]. This rule is defined for weak-order preferences

a
b b

c c
d d

1 2 3 4 5 6 7 8

a
a

c c1/5
13/403/8

first phase of the Method of Equal Shares

a
a

c c

d
d

1/5
13/403/83/8 + t

second phase: completion by Phragmén

Fig. 2.6 A visualisation of the Method of Equal Shares applied to the election instance of Example
2.12 (lower part). In the two upper figures, all regions of the same colour (corresponding to the
same candidate) have an area of 1, which is the budget spent on this candidate
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and has favourable axiomatic properties in this setting. It is less convincing for
approval preferences11 and thus we do not consider it further. The second rule is the
maximin support method [40], which is similar to seq-Phragmén. It is an iterative
rule based on a form of load balancing, but in contrast to seq-Phragmén all loads can
be redistributed each round. A first analysis showed that themaximin support method
and seq-Phragmén share many axiomatic properties [40], and a recent manuscript
by Cevallos and Stewart [11] shows that the maximin support method provides a
constant factor approximation of leximax-Phragmén—in contrast to seq-Phragmén.
In the light of the latter paper, one may view the maximin support method as a
polynomial-time approximation of leximax-Phragmén (in the same sense as seq-
PAV approximates PAV), whereas seq-Phragmén can rather be viewed as a largely
independent rule. We focus in this book on seq-Phragmén as it is better studied and
conceptually simpler. Still, the maximin support method is an interesting ABC rule
that should be analysed in more depth.

Finally, Phragmén also introduced a method now referred to as either Phragmén’s
first method, Eneström’s method, or method of Eneström–Phragmén12 [9, 16, 22].
This rule can be viewed as an analogue of Single Transferable Vote (STV) with
approval ballots.

Rule 12 (Eneström–Phragmén)Thismethod is based onaquota q,which is typically
chosen tobe either theHarequotaq = n

k or theDroopquotaq = n
k+1 . Candidates are

selected in a sequential fashion. All voters start with a weight of 1. In each round, we
compute for each unselected candidate the total weight of approving voters, i.e., the
score of an unselected candidate c is the sum of weights of all voters approving c. The
candidate with the maximum score is added to the committee (using a tie-breaking
if necessary); let this candidate be c′ and its score s. Now, the weights are adapted:
If s > q, then the weights of all voters in N (c′) are multiplied by s−q

s . Thus, the total
weight of voters in N (c′) is reduced by q. If s ≤ q, the weights of voters in N (c′) are
set to 0. This step is repeated until k candidates are selected.

As Eneström–Phragmén is not as well studied as Phragmén’s rules, we do not
discuss it further, but we note that further analysis could prove this rule to be of
independent interest.13

11 For approval preferences, the Expanding Approvals Rule (EAR) can be rather indecisive. For
example, in profiles where no candidate reaches a specified quota and every voter approves only
one candidate, EAR selects an arbitrary committee and thus ignores the voters’ preferences. For a
practical application, EAR would have to be augmented with an additional mechanism that handles
such cases.
12 It is not completely clear whether Phragmén or Gustaf Eneström (1852–1923) should be credited
with thismethod.However, it appears to be justifiable to simply credit both of them; see the historical
summary provided by Janson [22, Footnote 38].
13 The most substantial analysis of Eneström–Phragmén is due to Camps et al. [9]. Most notably, it
is not committee monotone (in contrast to seq-Phragmén, cf. Sect. 3.3), but it satisfies proportional
justified representation (as seq-Phragmén does, cf. Definition 4.5).
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2.7 Non-Standard ABC Rules

Asmentioned at the beginning of this chapter, most ABC rules coincide with (single-
winner) Approval Voting for k = 1. If we understand an approval ballot as indicating
those alternatives that a voter likes, then for k = 1 it is indeed very natural to select the
most-approved alternative. Thus, we refer to rules that differ from Approval Voting
for k = 1 as non-standard ABC rules. In addition to rev-seq-PAV, which we already
showed to be non-standard, we present two further non-standard rules. The first one,
Minimax Approval Voting (MAV) introduced by Brams et al. [7], interprets approval
ballots as the voter’s exact description of the desired outcome. If a voter approves
a set X , then she indicates that all these alternatives should be chosen; any sub- or
superset is less desirable. In addition, MAV is an egalitarian rule in the sense that it
only pays attention to the least-satisfied voter.

To measure the distance between an approval set and a committee, we rely on the
Hamming distance:

Definition 2.2 Given two sets X,Y , we define the Hamming distance between X
and Y as the size of their symmetric difference: dham(X,Y ) = |X \ Y | + |Y \ X |.
Rule 13 (Minimax Approval Voting, MAV) MAV selects committees W that min-
imise the largest Hamming distance among all voters, i.e., MAV minimises
maxi∈N dham(A(i),W ).

Example 2.13 To see that MAV does not correspond to Approval Voting for k = 1,
consider the following approval profile:

99 × {a} 1 × {b, c}.

The Hamming distance dham between the committee W1 = {a} and the approval set
{b, c} is 3. In contrast, for the committeeW2 = {b} (or {c})wehavedham({b, c},W2) =
1 and dham({a},W2) = 2. Thus, MAV selects either b or c, even though these alter-
natives are approved by only a single voter.

Remark 1 It is interesting to note that ifwe replace themax operator in the definition
of MAV by a sum, we obtain the Multi-Winner Approval Voting rule (Rule 1).

Remark 2 MAV, as defined, has a major shortcoming. Consider the following slight
modification of Example 2.13:

99 × {a} 1 × {a, b, c}.

For all size-1 committees, the Hamming distance to {a, b, c} is 2. Hence, all three
committees are equally preferable according to MAV—even though candidate a is
approved by every voter (and b and c by only one voter). We see that MAV might
disregard a unanimous choice. This problem can be remedied by also considering the
second-least satisfied voter in case of ties, and the third-least in case there is still a tie,
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and so on until a difference between the committees is found.More formally, for each
committee W , we compute dham(A(1),W ), dham(A(2),W ), . . . and sort this tuple
of length |N | in decreasing order; we denote this tuple of distances DW . Instead of
considering only the first entry in these tuples, we could lexicographically sort them.
That is, a committee W1 is preferred to a W2 if there exists an index i ≤ n such that
DW1(i) < DW2(i) and DW1( j) = DW2( j) for all 1 ≤ j < i . In our example, we have
D{a} = (2, 0, 0, . . . ) and D{b} = D{c} = (2, 2, 2, . . . ); with this modification {a} is
the only winning committee. To the best of our knowledge this modification of MAV
has not been studied in the context of voting. However, it is equivalent to the Gmax
belief merging operator for the Hamming distance [24].

The second non-standard rule is Satisfaction Approval Voting14 (SAV). SAV is
a variation of AV where each voter has one point and distributes it evenly among
all approved candidates. As a consequence, voters who approve more candidates
contribute a lesser score to the individual approved candidates.

Rule 14 (Satisfaction Approval Voting, SAV) The SAV-score of a committee W is
defined as

scoreSAV(A,W ) =
∑

i∈N

|W ∩ A(i)|
|A(i)| .

SAV returns all committees with a maximum SAV-score.

Note that SAV is not a Thiele method since the total number of candidates that a
voter approves influences the SAV-score.

Example 2.14 To see that SAV does not correspond to Approval Voting for k = 1,
consider

1 × {a} 3 × {b, c, d, e}.

The SAV-score of a is 1 and for b, c, d, and e it is 3/4. Thus, SAV selects {a} even
though it is approved by only one voter.
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Chapter 3
Basic Properties of ABC Rules

In the previous chapter we have seen a wide array of ABC rules. Considering how
much they differ in their definitions, it can be expected that they differ also in the
properties they exhibit. In this chapter we consider basic properties of ABC rules.
These properties describe the behaviour of such rules and offer insights into the nature
of specific ABC rules. Table 3.1 offers an overview of most properties discussed in
this chapter. This table also includes a rough dichotomy of the rules concerning
their computational complexity. Rules that are in P can be computed efficiently,
whereas rules that are NP-hard are computationally more demanding; we discuss
this dichotomy and further complexity results in Sect. 5.1.

3.1 Anonymity, Neutrality, and Resoluteness

Anonymity and neutrality are two of the most basic properties in the social choice
literature [1, 20, 23]. Anonymity states that the identity of voters should not influence
the outcome: it should be irrelevant whether voter i approves A(i) and voter j
approves A( j) or vice versa. Formally, an ABC ruleR satisfies anonymity if for all
election instances (A, k) with voter set N and bijections π : N → N it holds that
R(A, k) = R(A ◦ π, k). All but one rule introduced in Chap. 2 satisfy anonymity;
the exception is Greedy Monroe which uses a fixed tiebreaking order on voters.1 A
typical example of a voting rule that fails anonymity is any dictatorial rule (a rule
considering only the preferences of a single distinguished voter, e.g., of voter 1).

Neutrality is the counterpart to anonymity but applies to candidates: it states that
all candidates should be treated equally. Formally, an ABC ruleR satisfies neutrality
if for all election instances (A, k) with candidate set C and bijections π : C → C

1 Ifwe definedGreedyMonroe so that it returns all committees that can result from some tiebreaking,
then the rule would be anonymous.
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Table 3.1 Basic properties of ABC rules
Pareto
efficiency

Committee
monoton.

Support
monot. with
add. voters

Support
monot.
without add.
voters

Consist. Inclusion-
strategypr.

Comput.
complexity

AV Strong ✓ ✓ ✓ ✓ ✓ P

CC Weak × ✓ cand ✓ ? NP-hard

PAV Strong × ✓ cand ✓ × NP-hard

seq-PAV × ✓ cand cand × × P

seq-CC × ✓ cand cand × × P

rev-seq-PAV × ✓ ✓ cand × × P

Monroe × × × cand × × NP-hard

Greedy
Monroe

× × × cand × × P

seq-
Phragmén

× ✓ cand cand × × P

leximax-
Phragmén

× × cand cand × ? NP-hard

Method of
Eq. Shares

× × × cand × × P

MAV Weak × ✓ cand × × NP-hard

SAV Strong ✓ ✓ ✓ ✓ × P

it holds that R(A, k) = R(π∗ ◦ A, k), where π∗ is the natural extension of π to a
bijection from P(C) to P(C) defined by π∗(X) = {π(c) : c ∈ X} for each X ⊆ C .
The rules that fail neutrality are usually those that require some form of tiebreaking.

The third and equally fundamental propertywe discuss here is resoluteness. Recall
that an ABC rule is resolute if it always returns exactly one winning committee. An
ABC rule can either be resolute or neutral, but not both. To see this, consider an
approval profile where all voters approve candidates {a, b} and k = 1: either a rule
returns two winning committees or decides in favour of one of the two candidates.
Clearly, any rule can be made resolute by imposing a tiebreaking between winning
committees. Conversely, if a resolute rule is defined by a tiebreaking order over
candidates (this includes all rules in Chap. 2 that fail neutrality), it can be made
neutral by returning all committees that win according to some tiebreaking order. In
this way, one can trade neutrality against resoluteness.

Finally,wemention that an in-depth treatment of the interplay between anonymity,
neutrality, and resoluteness—albeit in the setting of single-winner elections—can be
found in the work of Ozkes and Sanver [25] and Campbell and Kelly [5].
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3.2 Pareto Efficiency and Condorcet Committees

Pareto efficiency2 is a very general concept to compare two outcomes given the
preferences of individuals: outcome Y dominates outcome X if (1) every individual
weakly prefers outcome Y to X (i.e., everyone likes Y at least as much as X ), and
(2) there is at least one individual that strictly prefers Y to X . Pareto efficiency,
broadly speaking, means that dominated outcomes are avoided. This concept can be
directly translated to our setting by defining when a voter prefers committee W1 to
W2. This requires a so-called set extension, i.e., a way how to extend preferences
over individual items to sets of items; we refer the reader to the survey of Barberá et
al. [4] for a comprehensive overview. Here, we use the Pareto efficiency definition
by Lackner and Skowron [17] and assume that W1 is preferred to W2 if W1 contains
more approved candidates.

Definition 3.1 A committee W1 dominates a committee W2 if

1. every voter has at least as many approved candidates in W1 as in W2 (for i ∈ N
it holds that |A(i) ∩ W1| ≥ |A(i) ∩ W2|), and

2. there is one voter with strictly more approved candidates (there exists j ∈ N
with |A( j) ∩ W1| > |A( j) ∩ W2|).

A committee that is not dominated by any other committee (of the same size) is
called Pareto optimal.

An ABC rule R satisfies strong Pareto efficiency if R never outputs domi-
nated committees. An ABC rule R satisfies weak Pareto efficiency if for all elec-
tion instances (A, k) it holds that if W2 ∈ R(A, k) and W1 dominates W2, then
W1 ∈ R(A, k).

Table 3.1 summaries which rules satisfy Pareto efficiency.3 It may be surprising
that rather few ABC rules satisfy this kind of Pareto efficiency. Indeed, among the
rules introduced in Chap. 2 only Thiele rules, SAV, and MAV satisfy weak Pareto
efficiency [17], and among those, e.g., AV, PAV, and SAV satisfy strong Pareto effi-
ciency (but not CC and MAV, for details see Proposition A.1). (Although, we recall
that these results rely of course on our chosen set extension.)

To see an example how a rulemay fail Pareto efficiency, it is instructive to consider
Monroe’s rule:

Example 3.1 ([17, Example 3]) Consider the approval profile

2 × {a} 1 × {a, c} 1 × {a, d} 10 × {b, c} 10 × {b, d}.

For k = 2, Monroe selects {c, d} as the (only) winning committee with a Monroe-
score of 22. Committee {c, d} is however dominated by {a, b}: every voter approves

2 Named after Vilfredo Pareto (1848–1923), an Italian economist [8].
3 For details, in particular counterexamples, we refer the reader to [17]. Although this paper does
not discuss the Method of Equal Shares, the counterexample for seq-Phragmén [17, Example 2]
also works for this method.
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a candidate in {a, b} but only 22 voters approve one in {c, d}. Thus, every voter is
either equally satisfied or better off with committee {a, b}. This example shows that
Pareto efficiency clashes with Monroe’s goal to assign representatives to groups of
similar size.

One may wonder whether it is sensible to improve an ABC rule R that is not
Pareto efficient in the following way: given an election instance E , if W ∈ R(E) is
dominated by another committee, then instead output all Pareto optimal committees
that dominate W . There are two main objections against this idea: First, this modi-
fication may destroy other axiomatic properties (e.g., Pareto efficiency and perfect
representation, which is discussed in Sect. 4.3, are incompatible). Second, finding
Pareto improvements is a computationally hard task:

Theorem 3.1 (Aziz and Monnot [3, Theorem 2]) Given an election instance (A, k)
and committee W, it is coNP-complete to determine whether W is Pareto optimal.

As a consequence of Theorem 3.1, we cannot expect to obtain polynomial-time
computable, Pareto efficient ABC rules by modifying existing rules as described
above. Note, however, that polynomial-time computable, Pareto efficient ABC rules
exist, e.g., AV and SAV. Thus, finding a Pareto optimal committee is possible in
polynomial-time.

A related property to Pareto efficiency has been proposed by Darmann [6]: a
committeeW is aCondorcet committee if for everyother committeeW ′, for amajority
of voters V ⊆ N (|V | > |N |/2) it holds that |A(i) ∩ W | > |A(i) ∩ W ′| for all i ∈ V .
Similarly to Theorem 3.1, deciding whether a given committee W is a Condorcet
committee is coNP-complete. However, in contrast to Pareto optimality, it is also
coNP-complete to decide whether a Condorcet committee exists [6]. To the best
of our knowledge, it has not been analysed which ABC rules output a Condorcet
committee if it exists.

3.3 Committee Monotonicity

Committee monotonicity (also referred to as house monotonicity or committee
enlargement monotonicity) is a property that is highly desirable in some settings:
if the committee size k is increased to k + 1, then a winning committee of size k
should be a subset of a winning committee of size k + 1. Since this property is partic-
ularly useful for resolute rules, we define it exclusively for resolute rules. Appropriate
definitions for irresolute rules can be found, e.g., in papers of Elkind et al. [9] and
of Kilgour and Marshall [14] (called upward- and downward-accretive in the latter
work).

Definition 3.2 A resolute ABC rule R is committee monotone if for all election
instances (A, k) it holds that W ⊆ W ′, where W is the single winning committee in
R(A, k), and W ′ is the single winning committee inR(A, k + 1).



3.4 Candidate and Support Monotonicity 37

To see why committee monotonicity can be an essential requirement in some
applications, consider the following situation. A group can jointly acquire k items
and uses an ABC rule to fairly select those. Once these k items are purchased, it
turns out that one additional item can be afforded. If the used ABC rule is committee
monotone, it is clear which item to acquire next. However, if the rule is not committee
monotone, then the selection for k + 1 items might contain several items that were
not contained in the selection of k items, a useless recommendation.

Another example is a hiring process where it is not determined up-front how
many candidates are to be hired. Here it is useful that a committee monotone rule
actually produces a ranking of candidates: which one should be hired if only one
position is available, which one if a second position is to be filled, etc. This connection
between committee monotone ABC rules and rankings has been explored in-depth
by Skowron et al. [32].

However, committee monotonicity also reduces the flexibility of voting rules and
thus comes at a price. For example, we will see in Chap. 4 that committee monotone
rules are typically less proportional (although a formal proof for this statement is
missing). Thus, if the setting does not dictate committee monotonicity, it may be
advantageous to set this axiom aside. A more elaborate discussion of this topic can
be found in the paper of Elkind et al. [9].

Table 3.1 showswhich of the considered rules are committeemonotone, assuming
that these rules aremade resolute by fixing a tiebreaking order among candidates. AV,
seq-PAV, seq-CC, rev-seq-PAV, seq-Phragmén, and SAV are committee monotone;
this follows immediately from their corresponding definitions. Counterexamples for
the remaining rules can be found in Appendix A, Proposition A.2.

3.4 Candidate and Support Monotonicity

Candidate monotonicity deals with a seemingly obvious requirement: if the support
of a candidate increases (i.e., more voters approve this candidate), then this cannot
harm the candidate’s inclusion in a winning committee. However, this property is
not satisfied by some ABC rules, in particular, if we demand such a monotonicity
to also hold for groups of candidates. In addition, there is a difference depending on
whether an existing voter changes her ballot, or if a new voter enters the election.

Candidate monotonicity axioms for ABC rules have been considered in a number
of papers [2, 13, 16], but the paper by Sánchez-Fernández and Fisteus [27] should
be highlighted for the most in-depth analysis.4

Further, we write A+X to denote the profile Awith one additional voter approving
X , i.e., A+X = (A(1), . . . , A(n), X), and Ai+X to denote the profile A where voter
i additionally approves the candidates from X .

4 Monotonicity is also studied in great detail by Elkind et al. [9] and Faliszewski et al. [10]; these
works, however, largely focus on multi-winner voting with voters’ preferences given as rankings
(cf. Sect. 6.1).
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Definition 3.3 (Sánchez-Fernández and Fisteus [27]) An ABC ruleR satisfies sup-
port monotonicity without additional voters if for every election instance (A, k),
i ∈ N , and candidate set X ⊆ C it holds that

1. if X ⊆ W for all W ∈ R(A, k), then X ⊆ W ′ for all W ′ ∈ R(Ai+X , k), and
2. if X ⊆ W for some W ∈ R(A, k), then X ⊆ W ′ for some W ′ ∈ R(Ai+X , k).

An ABC rule R satisfies support monotonicity with additional voters if for any
election instance (A, k) and candidate set X ⊆ C the properties above hold for A+X

instead of Ai+X .

If an ABC rule satisfies these axioms only for singleton sets (X = {c}), we speak
of candidate monotonicity with/without additional voters.5

The analysis of ABC rules with respect to these axioms is mostly due to Jan-
son [13], Sánchez-Fernández and Fisteus [27], and Mora and Oliver [22]. We sum-
marise the results in Table 3.1. There, the symbol✓means that support monotonicity
is satisfied, “cand” means that candidate monotonicity is satisfied but not support
monotonicity, and × means that the rule fails even candidate monotonicity. Detailed
counterexamples related to support monotonicity can be found in Proposition A.3 in
the appendix.

If one is interested in ABC rules that are—in a sense—fair to candidates, then
candidatemonotonicity (bothwith andwithout additional voters) is generally a desir-
able property. Hence, the fact thatMonroe, GreedyMonroe, and theMethod of Equal
Shares fail the axiom can be seen as a serious argument against these rules. Monroe
and the Method of Equal Shares, however, have other distinguished advantages (dis-
cussed in Chap. 4) that may override this downside. In settings where a fair treatment
of candidates is not necessary (e.g., because candidates represent inanimate objects
to be chosen), candidate monotonicity should not be a concern.

3.5 Consistency

Consistency is an axiom describing whether a rule behaves consistently with respect
to disjoint groups: if the outcome of an election is the same for two disjoint groups,
then a voting rule should arrive at this outcome also if these two groups are joined
into a single electorate. This axiom is a straightforward adaption of consistency as
defined for single-winner rules by Smith [34] and Young [36] and was first discussed
in the context of ABC rules by Lackner and Skowron [18]. In the following, for two
profiles A and A′ we write A + A′ to denote the joint profile where A and A′ are
concatenated.

5 Sánchez-Fernández and Fisteus [27] further introduce weak support monotonicity with/without
population increase. These notions are slightly stronger than their candidate monotonicity counter-
parts (i.e., they imply candidate monotonicity with/without additional voters).
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Definition 3.4 An ABC rule R satisfies consistency if for every k ≥ 1 and two
profiles A : N → P(C) and A′ : N ′ → P(C) with N ∩ N ′ = ∅, if R(A, k) ∩
R(A′, k) �= ∅ then R(A + A′, k) = R(A, k) ∩ R(A′, k).

Monroe’s rule, for example, does not satisfy consistency:

Example 3.2 Let profile A be

A(1) : {a, y} A(2) : {a, y} A(3) : {b, y} A(4) : {b, y}

and profile A′ be

A(5) : {y} A(6) : {a} A(7) = A(8) = A(9) = A(10) : {a, x}
A(11) : {y} A(12) : {b, y} A(13) = A(14) = A(15) = A(16) : {b, x}.

For k = 2, Monroe returns for profile A the winning committees {a, b}, {a, y}, and
{b, y}, all of which having a Monroe-score of 4. For profile A′, Monroe returns the
winning committee {a, b}, with a Monroe-score of 10; the corresponding Monroe
assignment groups voters 5–10 and 11–16. Now, let us consider the profile A + A′.
Consistency would demand that {a, b} is the unique winning committee, as it is the
only committee winning in both A and A′. Committee {a, b} has a Monroe-score
of 14 in A + A′. This score, however, is not optimal: {x, y} has a Monroe-score
of 15; the corresponding Monroe assignment groups voters {1, . . . , 6, 11, 12} and
{7, . . . , 10, 13, . . . , 16}. Thus, {a, b} is not winning and consistency is violated.

Broadly speaking, the only rules satisfying consistency are so-called ABC scoring
rules [18]. These are defined similarly to Thiele methods but are more general, as
the satisfaction of a voter may depend on the number of candidates approved by this
voter:

Definition 3.5 A scoring function is a function f : N × N → R satisfying f (x, y) ≥
f (x ′, y) for x ≥ x ′. Given such a scoring function, we define the score ofW in A as

score f (A,W ) =
∑

i∈N
f (|A(i) ∩ W |, |A(i)|).

The ABC scoring rule defined by a scoring function f returns all committees with
maximum score.

By definition, eachThielemethod is anABCscoring rule,whereas SAV is an example
of an ABC scoring rule that is not a Thiele method. Further, it follows immediately
from the definition of welfarist rules (Definition 2.1) that an ABC scoring rule is
welfarist if and only if it is a Thiele method.

Lackner and Skowron [18] axiomatically characterised the class of ABC scoring
rules. This characterisation is in a slightly different model than the one we use in
this book: the characterisation applies to ABC ranking rules instead of ABC rules
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(as defined in Sect. 2.1). ABC ranking rules output a weak order over committees (a
ranking with ties over committees) instead of just distinguishing between winning
and losing committees (as we assume here). However, note that every ABC ranking
rule defines an ABC rule (top-ranked committees are winning).

The following characterisation uses two axioms we have not mentioned so far:
weak efficiency and continuity. Both are rather weak axioms. Intuitively, weak effi-
ciency requires that approved candidates are preferable to non-approved candidates,
and continuity states that a sufficiently large majority can force a committee to win.

Theorem 3.2 (Lackner and Skowron [18]) An ABC ranking rule is an ABC scoring
rule if and only if it satisfies anonymity, neutrality, consistency, weak efficiency, and
continuity.

As both weak efficiency and continuity are generally satisfied by sensible voting
rules, one can conclude that ABC scoring rules essentially capture the class of con-
sistent ABC ranking rules.6 In Sect. 4.1, we will discuss how this result can be used
to obtain further axiomatic characterisations, e.g., of PAV.

3.6 Strategic Voting

Strategic voting is a phenomenon central to social choice theory. Sometimes, it is
preferable for voters to misrepresent their preferences to change the outcome of
an election; this is often referred to as “manipulation”. The famous impossibility
theorembyGibbard [12] andSatterthwaite [28], showing that all “reasonable” single-
winner voting rules are susceptible to manipulation, is considered one of the main
results in the field. The Gibbard–Satterthwaite theorem applies to elections where
voters provide linear rankings over alternatives. As our approval-based setting uses
a much more restricted form of preferences, strategyproofness is not completely out
of the picture.

We are going to consider two forms of strategyproofness here: Cardinality-
strategyproofness and inclusion-strategyproofness (taken from Peters [26], see the
work of Gärdenfors [11] and Taylor [35] for more general discussions of strate-
gyproofness in social choice). Cardinality-strategyproofness assumes that voters are
concerned only about the number of approved candidates in the committee (and do
not distinguish them), whereas inclusion-strategyproofness assumes that voters may
have more complex preferences, so a successful manipulation must produce a com-
mittee including all approved candidates that were already included in the original
committee.

6 In the setting of single-winner rules a similar result holds: a social welfare function is a scoring
rule if and only if it satisfies anonymity, neutrality, consistency, and continuity, as shown by Smith
[34] and Young [36]. Moreover, a similar characterisation holds for committee scoring rules, as
shown by Skowron et al. [33]. Committee scoring rules can be viewed as analogues of ABC scoring
rules in the multi-winner model with preferences given as rankings (see Sect. 6.1); the proof of
Theorem 3.2 builds upon this result.
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To simplify the discussion, we assume resoluteness, i.e., we assume a (determin-
istic) tiebreaking order to resolve ties between committees. To clarify what it means
that a voter misrepresents their true preferences, we use the concept of i-variants:
Given profiles A and A′, both with the same set of voters N , we say that A′ is an
i-variant of A if A( j) = A′( j) for all j ∈ N \ {i} with j �= i . Let us first define both
notions for resolute ABC rules.

Definition 3.6 A resolute ABC ruleR satisfies cardinality-strategyproofness if for
all profiles A and A′ where A′ is an i-variant of A and for all k ≥ 1 it holds that
|R(A, k) ∩ A(i)| ≥ |R(A′, k) ∩ A(i)|.
Definition 3.7 A resolute ABC rule R satisfies inclusion-strategyproofness if for
all profiles A and A′ where A′ is an i-variant of A and for all k ≥ 1 it holds that
R(A, k) ∩ A(i) is not a strict subset of R(A′, k) ∩ A(i).

Cardinality-strategyproofness is a stronger notion than inclusion-
strategyproofness in the sense that all cardinality-strategyproof ABC rules are
also inclusion-strategyproof. This follows from the fact that |R(A, k) ∩ A(i)| ≥
|R(A′, k) ∩ A(i)| (as required in Definition 3.6) implies thatR(A, k) ∩ A(i) cannot
be a strict subset of R(A′, k) ∩ A(i) (as required in Definition 3.7).

Among the rules considered in this book, only AV satisfies any of the mentioned
strategyproofness axioms. Specifically,AVsatisfies both inclusion-strategyproofness
and cardinality-strategyproofness if AV is made resolute by any tiebreaking order on
candidates (for details see Proposition A.4). None of the other ABC rules considered
in this paper satisfy these axioms, see Table 3.1 for an overview and Proposition A.4
for details. However, even AV is not strategyproof in a stronger sense when voters
have underlying, non-dichotomous preferences (as discussed, e.g., by Niemi [24]).

Both cardinality- and inclusion-strategyproofness can be generalised to irresolute
ABC rules via set extensions, i.e., by defining howvoters compare sets of committees.
For example, Lackner and Skowron [16] propose a rather strong extension based on
stochastic dominance. The resulting axiom, called SD-strategyproofness, implies
cardinality-strategyproofness. AV satisfies SD-strategyproofness and can even be
characterised in the class of ABC scoring rules (Definition 3.5) as the only rule
satisfying SD-strategyproofness [16]. We note, however, that under more holistic
models, e.g., models where voters have underlying non-dichotomous (non-binary)
preferences, even AV is no longer strategyproof (see, e.g., [7, 19, 21, 31]). Another
natural extension is the Kelly (or cautious) extension: a voter prefers R(A′, k) to
R(A, k) if every committee inR(A′, k) is preferable to every committee inR(A, k).
A more substantial discussion of strategyproofness of irresolute ABC rules can be
found in the paper of Kluiving et al. [15].

We further discuss strategyproofness in Sect. 4.6 in the context of proportion-
ality. We will see that even weak forms of proportionality are incompatible with
strategyproofness.
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Finally, we note that Scheuerman et al. [29, 30] have conducted a behavioural
experiment in which they analysed how the voters vote under non-dichotomous pref-
erences, when they are uncertain about other voters’ preferences, and when AV is
used to select the winning candidates. These results suggest that the voters may use
different (sometimes suboptimal) heuristics when making decisions which candi-
dates they should approve. This shows that strategic voting in a practical setting can
differ substantially from the axiomatic analysis we have presented here.
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Chapter 4
Proportionality

A key difference among ABC rules is how they treat minorities of voters, i.e., small
groups with preferences different from larger groups. Let us illustrate this issue with
the following simple example.

Example 4.1 Consider the approval-based preference profile with 60 voters approv-
ing A = {a1, . . . , a10}, 20 voters approving B = {b1, . . . , b6}, 10 voters approv-
ing C = {c1, c2}, 8 voters approving D = {d1, d2, d3, d4}, and 2 voters approving
E = {e1, e2, e3}; assume our goal is to pick a committee of ten candidates. Given
this instance AV returns committee A, and in some cases this is a reasonable choice
(e.g., when the goal of the election is to select finalists of a contest). Yet, when the
goal is to select a representative body that should reflect voters’ preferences in a pro-
portional fashion, this committee violates very basic principles of fairness. Indeed,
the voters who approve committee A constitute 60% of the population, yet effec-
tively they decide about the whole committee; at the same time the group of 20%
who approve B is ignored. A committee that consists of six candidates from A, two
candidates from B, one candidate fromC , and one candidate from D is, for example,
a much more proportional choice.

In Example 4.1, picking an outcome that is intuitively proportional is easy due to
a very specific structure of voters’ approval sets—each two approval sets are either
the same or disjoint. Finding a proportional committee in the general case, when
any two approval sets can arbitrarily overlap, is by far less straightforward, and to
some extent ambiguous. Several approaches that allow one to formally reason about
proportionality have been proposed in the literature.

The goal of this chapter is to discuss the many faces of proportional representa-
tion. Proportionality, at its core, is a notion of fairness that grants smaller and larger
groups of voters a fair consideration of their preferences.1 The concrete definitions

1 The concept of proportionality alsofinds application beyondvoting, such as proportional clustering
in machine learning [22, 49].
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Table 4.1 Proportionality of ABC rule. There are three rules which perform particularly well in
terms of proportionality: PAV, Phragmén’s sequential rule, and the Method of Equal Shares. The
mark † means that the result holds only when the number of voters n is divisible by the committee
size k. References of the form (A.x) refer to propositions in Appendix A

Proportionality

degree

EJR PJR JR Laminar
prop.

Priceability Apportionment

AV 0 [68] None

PAV − 1 [4] [3] [3] [3] D’Hondt [13]

seq-PAV ≈ 0.7 − 1
(for k ≤ 200) [68]

D’Hondt [13]

rev-seq-
PAV

? D’Hondt [13]

CC ≤ 1 (Example 4.6) [3] None

seq-CC ≤ 1 (Example 4.6) [3] None

seq-
Phragmén

−1)/2 [68] [12] [12] [56] [56] D’Hondt [13]

M. Equal
Shares

±1)/2 (A.10) [56] [56] [56] [56] [56] D’Hondt [56]

leximax-
Phragmén

1 [68] [12] [12] [56] D’Hondt [13]

Monroe ≤ 1 (Ex. 4.6) † [66] [3] LRM † [13]

Greedy
Monroe

≤ 1 (Ex. 4.6) † [66] (A.7) LRM † (A.5)

MAV 0 (A.10) None

SAV 0 (A.10) None

of what proportionality exactly means, however, differ. In this chapter, we review
the main approaches to proportionality and identify ABC rules which can be con-
sidered proportional. Table4.1 and Fig. 4.1 provide an overview of this analysis; the
corresponding concepts are explained in this chapter.

But before we delve into this topic, let us answer the question why proportionality
has such a prominent place in this book. The main reason is that this reflects the
attention this topic has received. Since 2015, when Aziz et al. [3] first introduced
(extended) justified representation (Sect. 4.2), there has been rapid progress in the
understanding of proportionality in ABC elections. This progress has been along
two trajectories: (i) defining stronger and stronger proportionality properties and (ii)
finding (computationally tractable) ABC rules satisfying these properties. In many
situations, a proportional committee corresponds to a fair selection of candidates.
Thus, this line of research canbeviewedas the search for amaximally fairABCvoting
rule. The following sections (Sects. 4.1–4.4) provide an overview of this exciting
endeavour.

However, non-proportional rules are certainly also relevant and even necessary
in many applications. For example, when shortlisting candidates for a prize, we
may want to select the “best” candidates without considerations of a proportional
selection. Or if we want to form a group that deliberates a topic, we would like to
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stable priceability
(Section 4.3)

the core
(Definition 4.10)

FJR
(Definition 4.7)

core subject to priceability
with equal payments

(Section 4.4)

priceability
(Definition 4.8)

EJR
(Definition 4.3)

PJR
(Definition 4.5)

JR
(Definition 4.6)

lower quota
(Section 4.1)

incompatible
perfect representation

(Definition 4.9)

Fig. 4.1 The relation between different proportionality axioms. An arrow from property A to B
means that A implies B

include as many diverse opinions as possible and thus we do not give a higher weight
to popular opinions. In general, much less work has been done on analysing and
understanding non-proportional rules and this topic deserves much more attention.
In Sect. 4.5, we summarise the existing literature and discuss concepts of “non-
proportionality”.

The two final sections of this chapter are dedicated to the interplay of proportion-
ality and strategyproofness (Sect. 4.7) and considerations of proportionality when
candidates have external attributes (Sect. 4.6).

4.1 Apportionment

One approach to reasoning about proportionality of voting rules is to first identify
a class of well-structured preference profiles where the concept of proportionality
can be intuitively captured, and then to examine the behaviour of voting rules on
such well-structured profiles. We focus here on so-called party-list profiles, which
are election instances of the form as we have seen in Example 4.1.

Definition 4.1 (Party-list profiles) We say that an approval profile A = (A(1),
. . . , A(n)) is a party-list profile if for each two voters i, j ∈ N we have that either
A(i) = A( j) or that A(i) ∩ A( j) = ∅. We say that an election instance (A, k) is a
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party-list instance if (i) A is a party-list profile, and (ii) for each voter i ∈ N we have
that |A(i)| ≥ k.

Party-list profiles closely resemble political elections with political parties, hence
the name of the domain. In such elections, voters are typically asked to vote for
exactly one party. To see the connection to party-list profiles, note the following: If
A is a party-list profile, then the sets of voters and candidates can be divided into p
disjoint groups each, N = N1 ∪ · · · ∪ Np and C ⊇ C1 ∪ · · · ∪ Cp, so that all voters
from group Ni , i ∈ [p], approve exactly the candidates from Ci (and no others). The
candidates from Ci can be thought of as members of some (virtual) party, and the
voters from Ni are those who cast their vote on party Ci .

In such elections, where the voters do not vote for individual candidates but rather
eachvoter casts a single vote for onepolitical party, the problemof distributing seats to
political parties is called the apportionment problem. The concept of proportionality
in the apportionment setting has been extensively studied in the literature and is well
understood—for a detailed overview we refer the reader to the comprehensive books
by Balinski and Young [5] and by Pukelsheim [62].

We see from Definition 4.1 that the apportionment problem can be viewed as a
strict subdomain of approval-based multi-winner elections, and consequently ABC
rules can be viewed as functions that extend apportionment methods to the more
general setting of approval profiles. This connection was already known and referred
to by Thiele [73] and Phragmén [59]. In a more systematic fashion, Brill et al. [13]
showed such relations between various ABC rules and methods of apportionment.
To properly explain this relation, let us first define three prominent apportionment
methods, used in parliamentary elections all over the world.

In the following, we assume that there are p political parties, consisting of the
candidate sets C1, . . . ,Cp. By ni we denote the number of votes cast on party Ci .
Further, in line with our usual notation, k denotes the number of committee seats that
we want to distribute among the parties.

Apportionment Rule 1 (D’Hondt method2) The D’Hondt method proceeds in k
rounds, in each round allocating one seat to some party. Consider the r-th round,
and let si (r) be the number of seats that are currently assigned to party Ci ; thus,∑

i∈[p] si (r) = r − 1. The D’Hondt method assigns the r-th seat to the party Ci with
the highest ratio ni

si (r)+1 (using a tiebreaking order between parties if necessary).

2 Victor D’Hondt (1841–1901) was a Belgian professor of law and active proponent of proportional
representation [24, 25]. The D’Hondt method is also known as the Jefferson method. Thomas
Jefferson (1743–1826) was president of theUnited States, and proposed thismethod to allocate seats
in theHouse ofRepresentatives to states.D’Hondt’s proposalwas specificallymeant for proportional
representation in parliaments. D’Hondt developed this method independently of Jefferson, even
though Jefferson’s proposalwas earlier and largely similar. The name “Jeffersonmethod” is typically
used in the U.S., while “D’Hondt method” is prevalent in Europe.
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Apportionment Rule 2 (Sainte-Laguë3 method) The Sainte-Laguë method is
defined analogously to the D’Hondt method, but in the r-th round it allocates the
r-th seat to the party Ci which maximises the ratio ni

2si (r)+1 .

Both the D’Hondt and the Sainte-Laguë method belong to the class of divisor
methods. Divisor methods differ in the formula for the ratio used to distribute seats
to parties. The aforementioned books by Balinski and Young [5] and by Pukelsheim
[62] discuss this important class of apportionment methods in much more detail.

Apportionment Rule 3 (Largest remainder method, LRM4) The largest remainder
method first assigns to each party

⌊
k · ni

n

⌋
seats—this way at least k − p + 1 seats

are assigned. Second, it assigns the remaining r < p seats to the r parties with the
largest remainders k · ni

n − ⌊
k · ni

n

⌋
, assigning each party at most one seat.

Example 4.2 Consider a party-list representation of the profile from Example 4.1.
We have five parties, A, B, C , D, and E , each getting, respectively, 60, 20, 10, 8,
and 2 votes; the committee size is k = 10. The computation of the D’Hondt method
can be followed in the left table below:

A B C D E

ni 60 20 10 8 2
ni/2 30 10 5 4 1
ni/3 20 6 2/3 3 1/3 2 2/3 2/3

ni/4 15 5 2 1/2 2 1/2

ni/5 12 4 2 1 3/5 2/5

ni/6 10 3 1/3 1 2/3 1 1/3 1/3

ni/7 8 4/74/74/7 2 6/7 1 3/7 1 1/7 2/7

ni/8 71/2 2 1/2 1 1/4 1 1/4

A B C D E

ni 60 20 10 8 2
ni/3 20 6 2/32/32/3 3 1/3 2 2/3 2/3

ni/5 12 4 2 1 3/5 2/5

ni/7 8 4/74/74/7 2 6/7 1 3/7 1 1/7 2/7

ni/9 6 2/32/32/3 2 2/9 1 1/9 1 8/9 2/9

ni/11 5 5/115/115/11 1 9/11 10/11 8/11 2/11

ni/13 4 8/13 1 7/13 10/13 8/13 2/13

ni/15 4 1 1/3 2/3 8/15 2/15

In the subsequent rounds the D’Hondt method allocates seats to parties A, A, A
(by tie-breaking), B, A, A, A (by tie-breaking), B (by tie-breaking), C , and A. For
example, in the fourth round, when A is already allocated 3 seats and B is allocated
none, the rule will give the next seat to B rather than to A, because 20

0+1 > 60
3+1 .

Summarising, seven seats will be allocated to party A, two seats to party B, and one
seat to party C ; the remaining parties will get no seats. In the diction of ABC rules,
winning committees are exactly those that consist of seven candidates from A, two
candidates from B and one candidate from C .

3 As it is the case with the D’Hondt/Jefferson method, this rule has been developed independently
in Europe and in the U.S. and goes by different names: Sainte-Laguë is used in Europe (in particular
in the context of proportional representation in parliaments) and Webster is the name used in the
U.S. literature. Sainte-Laguë (1882–1950) was a French mathematician and proposed this method
in 1910 [65]. Daniel Webster (1782–1852) was a U.S. statesman and proposed this method in
1832 [5].
4 The largest remainder method is also known as the Hamilton method, as it was proposed in the
U.S. by Alexander Hamilton (1755–1804). His proposal was abandoned in favour of Jefferson’s
method [5].
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The computation of the Sainte-Laguëmethod is illustrated in the above right table.
It will allocate six seats to A, two seats to B, one seat to C , and one seat to D.

The largest remainder method first assigns to parties A, B, C , D, and E—
respectively—6, 2, 1, 0, and 0 seats. Then, the remainders are considered:

A B C D E
ni 60 20 10 8 2⌊
k · ni

n

⌋
6 2 1 0 0

Remainder 0 0 0 0.8 0.2
Seats 6 2 1 1 0

There is one unassigned seat which will be given to the party with the largest remain-
der, namely to D. Thus, LRM will allocate six seats to A, two seats to B, one seat to
C , and one seat to D.

The D’Hondt method, the Sainte-Laguë method, and LRM exhibit particularly
appealing properties. For example, the D’Hondt method satisfies lower quota, which
means that a party i which receives ni out of n votes must be allocated at least
�k · ni/n	 committee seats. The largest remainder method satisfies not only lower
quota but also upper quota: a party i with ni out of n votes must not receive more
than 
k · ni/n� seats. However, the largest remainder method fails an important axiom
called population monotonicity, which states that an increase in support must not
harm a party. In contrast, populationmonotonicity is satisfied byD’Hondt and Sainte-
Laguë. For further details, we refer the interested reader to the aforementioned books
on apportionment methods [5, 62].

We are now ready to formulate the main results of Brill et al. [13]:

Theorem 4.1 (Brill et al. [13]) PAV, sequential PAV, seq-Phragmén, and leximax-
Phragmén extend the D’Hondt method of apportionment. Phragmén’s variance-
minimising rule5 extends the Sainte-Laguë method of apportionment. If n is divisible
by k, then Monroe’s rule extends the largest remainders method.

Theorem 4.1 lists ABC rules that behave proportionally on party-list profiles and
thus these rules can be considered good contenders for being proportional in the
general ABC model. In addition, we show in the appendix that also Greedy Monroe
extends the largest remainder method when n is divisible by k (Proposition A.5), but
both Monroe’s rule and Greedy Monroe do not if n is not divisible by k (Proposition
A.6).

Lackner and Skowron [44] strengthened the results of Brill et al. [13], providing
a strong argument in favour of PAV:

Theorem 4.2 (Lackner and Skowron [44]) PAV is the unique extension of the
D’Hondt method that satisfies neutrality, anonymity, consistency, and continuity.

5 This rule is similar to leximax-Phragmén but minimises the variance of loads instead of the
maximum load, see [12, 36] for a precise definition.
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Lackner and Skowron [44] further show that this result can be generalised to arbi-
trary divisor-based apportionment methods. For example, the Sainte-Laguë method
yields the w-Thiele method with w(x) = ∑x

j=1
1

2 j−1 .

4.2 Cohesive Groups

In party-list profiles (Definition 4.1), voters can be arranged in groups with identical
preferences. Then, proportionality requires that a large-enough group of voters with
identical preferences deserves a certain number of representatives in the elected
committee (proportional to the size of the group). This approach can be generalised
to groups with non-identical but similar preferences. We now discuss axioms that
relax the requirements for groups of voters to be entitled to representatives. These
axioms are based on the concept of �-cohesiveness:

Definition 4.2 For � ≥ 1, a group V ⊆ N is �-cohesive if:

(i) |V | ≥ � · n
k , and

(ii)
∣
∣⋂

i∈V A(i)
∣
∣ ≥ �.

An �-cohesive group consists of an �/k-th fraction of voters, thus, intuitively, such
a group should be able to control at least �/k · k = � committee seats. Further, an
�-cohesive group agrees on � candidates, so one can ensure each member of the
group gets � representatives by selecting only � candidates. It is, hence, tempting
to require that for each �-cohesive group V , each voter from V should be given at
least � representatives in the elected committee. Unfortunately, this would be too
strong—there exists no rule that would satisfy this property.

Example 4.3 (Aziz et al. [4]) Consider a profile A with four candidates (a, b, c, d)
and 12 voters, with the following approval sets:

A(1) : {a, d} A(4) : {a, b} A(7) : {b, c} A(10) : {c, d}
A(2) : {a} A(5) : {b} A(8) : {c} A(11) : {d}
A(3) : {a} A(6) : {b} A(9) : {c} A(12) : {d}.

Let k = 3. The group {1, 2, 3, 4} is 1-cohesive, as it has a commonly approved
candidate (a) and is of size 12

3 = 4. If we want to give each voter in this group
a representative, candidate a has to be in the winning committee (voters 2 and 3
only approve a). Now observe that also the groups {4, 5, 6, 7}, {7, 8, 9, 10}, and
{10, 11, 12, 1} are 1-cohesive. Thus, also candidates b, c, and d have to be in every
winning committee. This is impossible as we are interested in committees of size 3.
We see that it is impossible to satisfy every voter in 1-cohesive groups.

We see from this example that the requirement that each voter from an �-cohesive
group should have at least � representatives in the elected committee is simply too
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strong.6 However, it can be weakened a bit without losing much of its intuitive
appeal. We start our discussion with extended justified representation (EJR) [3] and
proportionality degree [4, 66, 68, 69].7 The former concept is formulated as an
axiom, the latter as a proportionality guarantee specified by a function.

Definition 4.3 (Extended justified representation, EJR) An ABC rule R satisfies
extended justified representation (EJR) if for each election instance E = (A, k),
each winning committee W ∈ R(E), and each �-cohesive group of voters V there
exists a voter i ∈ V with at least � representatives in W , i.e., |A(i) ∩ W | ≥ �.

Example 4.4 Let us revisit Example 4.3. The committee {a, b, c} satisfies the condi-
tion of EJR: every 1-cohesive group contains at least one voterwith one representative
in {a, b, c}. For example, for the 1-cohesive group {10, 11, 12, 1}, the voters 10 and
1 have a representative in the committee. Note that in this example actually all size-3
committees satisfy the EJR condition; also there are no �-cohesive groups for � ≥ 2.

Definition 4.4 (Proportionality degree) Fix a function f : N → R. An ABC rule
R has a proportionality degree of f if for each election instance E = (A, k), each
winning committee W ∈ R(E), and each �-cohesive group of voters V , the average
number of representatives that voters from V get in W is at least f (�), i.e.,

1

|V | ·
∑

i∈V
|A(i) ∩ W | ≥ f (�).

At first, it might appear that even for large cohesive groups, EJR gives a guar-
antee only to a single voter within this group. However, the EJR property applies
to any group of agents: Let V be an �-cohesive group. If we remove a voter with �

representatives (who, by EJR, is guaranteed to exist), the resulting group will be at
least (� − 1)-cohesive. Consequently, in such a group there must exist a voter with
at least � − 1 representatives, etc. As a consequence of this argument, EJR implies
a proportionality degree of at least fR(�) = �−1

2 [66]. The other direction does not
hold: even an ABC rule with a proportionality degree of fR(�) = � − 1 may fail
EJR (cf. Proposition A.8).

Example 4.3 also shows that there exists no rule with a proportionality degree of
f (�) = �:

Example 4.5 Consider again the profile of Example 4.3. Assume, there exists
a rule R with a proportionality degree of fR(�) = � and let k = 3. The group
{1, 2, 3, 4} is 1-cohesive, so in order to ensure that these voters get on average one

6 In a very recent work, Brill et al. [16] explore this intuitive (but unachievable) requirement—
called individual representation—in much more depth. In particular, they show that all ABC rules
presented in this book sometimes fail individual representation even for elections where such a
committee exists. In addition, they study conditions under which individual representation can be
satisfied.
7 The concept of proportionality degreewas initially referred to asaverage satisfaction of �-cohesive
groups [4, 66]. Skowron et al. [69] called an almost equivalent property κ-group representation.
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representative, candidate a must be selected. By applying the same reasoning to
{4, 5, 6, 7} we infer that b must be selected. Analogously, we conclude that c and d
must be selected. However, there are only three seats in the committee, a contradic-
tion.

Aziz et al. [4] generalise the above example and prove that there exists no rule with
a proportionality degree of f (�) = � − 1 + ε for ε > 0. PAV matches this bound,
and thus has an optimal proportionality degree. Below we include the proof of this
result, since a similar idea is often used in the analysis of proportionality properties
of Thiele methods.

Theorem 4.3 (Aziz et al. [3, 4]) PAV has a proportionality degree of � − 1. It also
satisfies EJR.

Proof Consider an election E = (A, k) and let W be a winning committee accord-
ing to PAV. Let N and C denote the sets of voters and candidates in E , respec-
tively. We will show that for each �-cohesive group of voters V it holds that
1

|V | · ∑
i∈V |A(i) ∩ W | > � − 1. This proves that PAV has the proportionality degree

of � − 1. We can further conclude that there exists a voter i ∈ V with |A(i) ∩ W | >

� − 1, and hence PAV also satisfies EJR.
Towards a contradiction assume there exists an �-cohesive group of voters V with

1
|V | · ∑

i∈V |A(i) ∩ W | ≤ � − 1. We will show that there exists a pair of candidates,
c ∈ W and c′ /∈ W , such that scorePAV(A, (W ∪ {c′}) \ {c}) > scorePAV(A,W ). This
would indicate that we can replace one member of W with another not-selected
candidate so that the new winning committee has a higher PAV-score than W . This
would contradict the fact that W is a winning committee.

For convenience, for a set of candidates X and a candidate y we will use the
notation:

�(X, y) = scorePAV(X ∪ {y}) − scorePAV(X),

i.e., �(X, y) is the marginal contribution of y given X .
Since 1

|V | · ∑
i∈V |A(i) ∩ W | ≤ � − 1 and V is �-cohesive, there exists a not-

selected candidate c′ ∈ C that is approved by all the voters from V . If we add this
candidate to the committee W , the PAV-score will increase by:

�(W, c′) =
∑

i∈N (c′)

1

|A(i) ∩ W | + 1
≥

∑

i∈V

1

|A(i) ∩ W | + 1
.

From the inequality between the arithmetic and harmonic means we further get that:

�(W, c′) ≥ |V |2
∑

i∈V (|A(i) ∩ W | + 1)
≥ |V |2

|V |(� − 1) + |V | = |V |
�

≥ n

k
.

The last inequality follows from �-cohesiveness.
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Now, consider a committee W ′ = W ∪ {c′}, and observe that

∑

c∈W ′
�(W ′ \ {c}, c) =

∑

c∈W ′

∑

i∈N (c)

1

|A(i) ∩ W ′| =
∑

i∈N

∑

c∈A(i)∩W ′

1

|A(i) ∩ W ′|

=
∑

i∈N : A(i)∩W ′ �=∅
|A(i) ∩ W ′| · 1

|A(i) ∩ W ′| ≤ n.

As a result, there exists c ∈ W ′ such that �(W ′ \ {c}, c) ≤ n
k+1 . Consequently:

scorePAV(A, (W ∪ {c′}) \ {c}) = scorePAV(A,W ) + �(W, c′) − �(W ′ \ c, c)
≥ scorePAV(A,W ) + n

k
− n

k + 1
> scorePAV(A,W ).

This yields a contradiction and completes the proof. �

In contrast to PAV, the two sequential variants of PAV, seq-PAV and rev-seq-PAV,
do not satisfy EJR. However, the proportionality guarantees of Theorem 4.3 also
hold for a local-search variant of PAV [4], which—in contrast to PAV itself—runs in
polynomial time. Thus, EJR and a proportionality degree of � − 1 are achievable in
polynomial time. Aziz et al. [4] also construct a second polynomial-time computable
(but rather involved) rule that satisfies EJR. More recently, Peters and Skowron [56]
prove that theMethod of Equal Shares, which is also computable in polynomial time,
satisfies EJR. Among the rules introduced in Chap. 2, PAV and the Method of Equal
Shares are the only ones that satisfy EJR. An overview of the proportionality degree
of rules can be found in Table4.1.

Let us now consider two properties that are weaker than EJR.

Definition 4.5 (Proportional justified representation, PJR [66]) An ABC rule R
satisfies proportional justified representation (PJR) if for each election E = (A, k),
each winning committeeW ∈ R(E), and each �-cohesive group of voters V it holds
that

∣
∣W ∩ (⋃

i∈V A(i)
)∣
∣ ≥ �.

Definition 4.6 (Justified representation, JR [3]) An ABC rule R satisfies justified
representation (JR) if for each election E = (A, k), each W ∈ R(E), and each 1-
cohesive group of voters V there exists a voter i ∈ V who is represented by at least
one member of W , i.e., |W ∩ A(i)| ≥ 1.

PJR and JR are much weaker properties than EJR; in particular EJR implies PJR,
which in turn implies JR. Example 4.6, below, illustrates that the stronger of the two
axioms, PJR, can be satisfied even by rules that could be considered very bad from
the perspective of proportionality degree (and, thus, also from the perspective of
approximating EJR). On the other hand, there exist rules with good proportionality
degree that do not satisfy even JR—this happens, e.g., when a rule does not provide
sufficient guarantees for 1-cohesive groups (although it might satisfy EJR for � ≥ 2).
Generally, justified representation cannot be viewed as a proportionality axiom as
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it grants even large group only a single representative in the selected committee. In
contrast, PJR can be viewed as a moderate proportionality requirement, significantly
weaker than EJR but stronger than, e.g., lower quota on party-list profile. We refer
to Table4.1 for an overview which rules satisfy JR and PJR.

Example 4.6 Fix k and consider the following instance:

ck+1

ck+2

· · ·
c2k

c1

V1

c2

V2

c3

V3

· · ·
· · ·

ck

Vk

There are 2k candidates. The voters can be divided into k equal-size groups so
that the voters from the i th group, in the diagram denoted as Vi , approve ci and
{ck+1, . . . , c2k}. Committee {c1, . . . , ck} (marked blue) satisfies PJR, but clearly,
{ck+1, . . . , c2k} (markedgreen) is amuchbetter choice from theperspective of propor-
tionality degree. Also, {ck+1, . . . , c2k} satisfies the EJR condition while {c1, . . . , ck}
does not. This example shows that PJR implies no better proportionality degree than
f (�) = 1.

Given that there are rather few rules satisfying EJR, Bredereck et al. [11] per-
formed computer simulations for several distributions of voters’ preferences and
verified how hard it is on average to find a committee that satisfies the condition
imposed by EJR. They concluded that �-cohesive groups for � ≥ 2 are quite rare,
and that a random committee among those that satisfy the much weaker condition of
JR is quite likely to satisfy EJR as well. Their second conclusion was that JR, PJR,
and EJR, while highly desired, do not guarantee on their own a sensible selection
of committees, and one needs to put forward additional criteria. Specifically, they
showed that there are often many committees satisfying these conditions, and these
committees may vary significantly. Bredereck et al. [11] derived their conclusions
from the analysis of specific distributions of voters’ preferences; it would be desirable
to analyse this phenomenon more broadly, e.g., for other types of distributions.

Recently, Peters et al. [57] introduced an even stronger axiom, called fully justified
representation (FJR), where the precondition of �-cohesiveness is relaxed. In EJR
we say that a group of voters V is �-cohesive if |V | ≥ � · n/k and if there exists a set
T of � candidates such that each voter from V approves all � candidates from T .
In the definition of FJR, on the other hand, we only require that there must exist an
integer β such that each voter from V approves at least β candidates from T . FJR
enforces that at least one member of V must have at least β representatives in the
elected committee. Note that EJR corresponds to FJR with a fixed value of β = �.
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Definition 4.7 (Fully justified representation [57]) Given an integer value β and
a subset of candidates T ⊆ C , we say that a group of voters V is weakly (β, T )-
cohesive if |V | ≥ |T | · n/k and if for each voter i ∈ V it holds that |A(i) ∩ T | ≥ β.
An ABC rule R satisfies fully justified representation (FJR) if for each election
E = (A, k), each winning committee W ∈ R(E), each integer β and T ⊆ C , and
each weakly (β, T )-cohesive group of voters V , there exists a voter i ∈ V such that
|W ∩ A(i)| ≥ β.

For the time being, the only known rule that satisfies FJR is rather artificial and
specifically tailored to the definition of the axiom [57]. It is an open question whether
there exists a natural ABC rule which satisfies FJR together with other desirable
properties.

All proportionality concepts discussed in this section ensure that cohesive groups
are guaranteed a certain representation in the elected committee.Cevallos andStewart
[19] argue that in some contexts—for example when using ABC rules for selecting
validators in the blockchain protocol—it is equally important to ensure that groups
are not over-represented. To the best of our knowledge formal axioms capturing this
intuitive requirement are still missing.8

To sum up, when considering proportionality axioms based on cohesive groups,
PAV stands out as the most proportional rule. TheMethod of Equal Shares comes at a
close second (its proportionality degree is lower) but it is computable in polynomial
time. If we desire a committee monotone rule, then seq-Phragmén is a very good
choice: it has a proportionality degree of fPhrag(�) = �−1

2 [68], i.e., the proportionality
degree that is implied by EJR, and satisfies PJR [12]. Also seq-PAV is a good choice:
for reasonable sizes of committees seq-PAV has a better proportionality degree than
seq-Phragmén; on the other hand, it satisfies neither PJR nor JR.

4.3 Laminar Proportionality and Priceability

The properties that we discussed in Sect. 4.2 (extended justified representation and
the proportionality degree) and the axiomatic characterisation given in Theorem
4.2 all indicate that PAV provides particularly strong proportionality guarantees.
Specifically, one could interpret these results as suggesting that PAV is a better
rule—in terms of proportionality—than Phragmén’s sequential rule and the Method
of Equal Shares. However, drawing such a conclusion based on the so-far presented
results would be too early. In the following we explain that proportionality can be
understood in at least two different ways and that the axioms we discussed so far
capture and formalise only one specific form of proportionality. We explain that
Phragmén’s sequential rule and the Method of Equal Shares provide very strong
proportionality guarantees, but with respect to an interpretation of proportionality
that is not captured by properties based on cohesive groups, and which is—to some
extent—incomparable with the type of proportionality guaranteed by PAV.

8 We note that the upper quota axiom in the apportionment setting can be viewed as such an axiom.



4.3 Laminar Proportionality and Priceability 57

Let us start by illustrating the difference in how PAV and Phragmén’s sequential
rule (and the Method of Equal Shares) operate with the following example.

Example 4.7 ([56]) There are 15 candidates and 6 voters—the voters’ approval sets
are depicted in the diagram below. The committee shaded in blue in the left-hand
side picture is the one that is selected by the Phragmén’s sequential rule and by the
Method of Equal Shares. The committee shaded in the right-hand side picture is
chosen by PAV.

c1
c2
c3

c4 c5 c6

c7
c8
c9

c10
c11
c12

c13
c14
c15

1 2 3 4 5 6

(a) seq-Phragmén and Equal Shares

c1
c2
c3

c4 c5 c6

c7
c8
c9

c10
c11
c12

c13
c14
c15

1 2 3 4 5 6

(b) PAV

The approval sets of voters 1, 2, and 3 are disjoint from those of voters 4, 5, and 6.
It seems intuitive that the first three voters, who together form half of the society,
should be able to decide about half of the elected candidates. Phragmén’s sequential
rule and the Method of Equal Shares select committees where the first three voters
approve in total half of the members, thus the behaviour of these rules is consistent
with the aforementioned understanding of proportionality. PAV follows a different
principle: In the committee depicted in (a), each of the first three voters approves 4
candidates; each of the remaining three voters approves only 2 committee members.
PAV notices that this is the case, and tries to reduce the societal inequality of voters’
satisfaction by removing one representative of voter 1 and adding one to 4; similarly,
PAV considers that it is more fair to remove the representatives of 2 and 3, and add the
candidates liked by 5 and 6. On the one hand, PAV prefers to pick a committee that
minimises the societal inequality in the voters’ satisfactions (measured as the number
of approved committee members). On the other hand, it punishes voters 1, 2, and
3 for being agreeable and “easy to satisfy” with fewer committee members—PAV
allows them to decide only about one quarter of the committee.

Example 4.7 illustrates that PAV and Phragmén’s sequential rule (and the Method
of Equal Shares) follow two different types of proportionality. PAV implements a
welfarist type of proportionalitywhich is primarily concernedwith thewelfare (satis-
faction) of the voters. This type of proportionality is captured, e.g., by the properties
discussed in Sect. 4.2. PAV also satisfies the Pigou–Dalton principle of transfers,
which says that given an election (A, k) and two committees, W and W ′, which
in total get the same numbers of approvals (scoreAV(A,W ) = scoreAV(A,W ′)), the
one which minimises the societal inequality should be preferred [56]. Phragmén’s
sequential rule and the Method of Equal Shares, on the other hand, implement pro-
portionality with respect to power, which—informally speaking—says that a group
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consisting of an α fraction of voters should be given a voting power that enables
to decide about an α fraction of the committee. In other words, the type of propor-
tionality of Phragmén-like rules is not mainly concerned with the welfare of groups
but with the justification of welfare, achieved by endowing each voter with the same
amount of virtual budget that represents the voting power.

Peters and Skowron [56] discuss two properties—laminar proportionality and
priceability—which aim at formally capturing the high-level idea of proportionality
with respect to power.9 The first of the two properties—laminar proportionality—
is very similar in spirit to proportionality on party-list profiles. The corresponding
axiom identifies a class of well-structured election instances—called laminar elec-
tions—and specifies how a laminar proportional rule should behave on these profiles.
Laminar profiles are more general than party-list profiles and are defined by a recur-
sive structure, similar to the election from Example 4.7.

The second property, which we will discuss in more detail, is priceability. Intu-
itively, we say that a committee W is priceable if we can endow each voter with the
same fixed budget and if for each voter there exists a payment function such that:
(1) voters do not spend more than their allotted budget, (2) voters pay only for the
candidates they approve, (3) each elected candidate gets a total payment of 1; can-
didates that are not elected receive no payments, and (4) there is no group of voters
who approve a non-elected candidate, and who in total have more than one unit of
unspent budget. Priceability is a notion of proportionality as it distributes power to
groups of sufficient size; a large enough group receives enough collective budget to
afford one or more candidates in the committee.

Formally, we obtain the following definition:

Definition 4.8 (Priceability) Given an election instance (A, k), a committee W is
priceable if there exists a per-voter budget p ∈ R+ and pi : C → [0, 1] for each voter
i ∈ N such that:

(1)
∑

c∈C pi (c) ≤ p for each i ∈ N ,
(2) pi (c) = 0 for each i ∈ N and c /∈ A(i),

(3)
∑

i∈N pi (c) =
{
1 if c ∈ W ,

0 otherwise.

(4)
∑

i∈N (c)

(
p − ∑

c′∈W pi (c′)
) ≤ 1 for each c /∈ W .

An ABC rule is priceable if it returns only priceable committees.

Example 4.8 Consider the election instance from Example 4.7. The committees
returned by Phragmén’s sequential rule and by theMethod of Equal Shares are price-
able. For example, considerW1 = {c1, . . . , c6, c7, c8, c10, c11, c13, c14} (the commit-
tee shaded blue in the left figure in Example 4.7). This committee is priceable as wit-
nessed by the following price system: the voters’ budget is p = 2, and the payment
functions are as follows (we only specify the non-zero payments): p1(ci ) = p2(ci ) =

9 Laminar proportionality and priceability are similar in spirit but are logically independent (neither
implies the other).
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p3(ci ) = 1/3 for i ∈ {1, 2, 3} and p1(c4) = p2(c5) = p3(c6) = p4(c7) = p4(c8) =
p5(c10) = p5(c11) = p6(c13) = p6(c14) = 1. Each voter fully spends their budget
of 2.

On the other hand, the committee W2 = {c1, c2, c3, c7, . . . , c15} returned by PAV
(the one shaded blue in the right figure in Example 4.7) is not priceable. Indeed, if
the voters’ budget p were ≤ 2, then the voters 4, 5, 6 could not afford to pay for 9
candidates c7, . . . , c15. If p > 2, then some of the voters 1, 2, 3, say voter 1, would
have a remaining budget of more than 1. Hence, this voter would have more budget
than needed to buy a candidate outside of W2 (e.g., c4), which contradicts condition
(4) in Definition 4.8.

Peters and Skowron [56] generalised Example 4.8 and showed that no welfarist
rule (see Definition 2.1) is priceable. This shows that priceability is inherently not a
welfarist concept. The same is true for laminar proportionality.

Theorem 4.4 (Peters andSkowron [56])Phragmén’s sequential rule and theMethod
of Equal Shares are laminar proportional and priceable. No welfarist rule is lam-
inar proportional nor priceable. No rule satisfying the Pigou–Dalton principle of
transfers is laminar proportional nor priceable.

While priceability is not a welfarist concept, it implies proportional justified rep-
resentation. Further, all priceable rules must be equivalent to the D’Hondt method
of apportionment on party-list profiles (cf. Theorem 4.1). A price system provides
an explicit and easily verifiable evidence explaining that the voters can use their
power (represented through virtual money) to ensure that the candidates from the
committee are selected. This intuitively explains that priceability captures the idea
of proportionality with respect to power—proportionality follows from the fact that
each voter is initially endowed with the same amount of virtual money.

Priceability itself puts rather mild constraints on the payment functions {pi }i∈N .
Recently, Peters et al. [58] introduced a stronger version of the axiom: we say that
a price system (p, {pi }i∈N ) is stable if it satisfies conditions (1)–(3) from Definition
4.8 and the following strengthening of condition (4):

(4*) Condition for Stability: There exists no non-empty group of voters V ⊆ N ,
no subsetW ′ ⊆ C \ W , and no collections {p′

i }i∈V (p′
i : W ′ → [0, 1]) and {Ri }i∈V

(with Ri ⊆ W for all i ∈ V ) such that all the following conditions hold:

1. For each c ∈ W ′:
∑

i∈V p′
i (c) > 1.

2. For each i ∈ V : pi (W \ Ri ) + p′
i (W

′) ≤ p.
3. Each voter i ∈ V approves more candidates in W \ Ri ∪ W ′ than in W , or i

approves as many candidates in W \ Ri ∪ W ′ as in W but
∑

c∈W\Ri
pi (c) +∑

c∈W ′ p′
i (c) <

∑
c∈W pi (c).

In words, it should not be possible for the voters from V to propose a set of candidates
W ′ such that if each voter i ∈ V transferred hermoney from Ri ⊆ W to the candidates
fromW ′, then these candidates would garner more than enough money to be elected,
and each voter from i ∈ V would be happier with W \ Ri ∪ W ′ than with W .
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Stable priceability is a strong condition: stable-priceable committees do not
always exist, and if so, they belong to the core (see Sect. 4.4). On the other hand,
one can check in a polynomial time whether a committee is stable-priceable, and
such committees often exist in practice. Peters et al. [58] also introduced the con-
cept of balanced stable-priceability, which additionally requires that each two voters
must pay the same amount of virtual money for the same candidate. They proved
that balanced stable-priceable committees can be characterised as outputs of slightly
modified version of the Method of Equal Shares.

We mention one more property—perfect representation [66]—which is loosely
related to priceability. It also requires an explanation how voters can distribute their
support/power in away that justifies electing a committee; however, the axiomapplies
only in very specific situations.

Definition 4.9 (Sánchez-Fernández et al. [66]) We say that a committeeW satisfies
perfect representation if the set of voters can be divided into k equally-sized disjoint
groups N = N1 ∪ . . . ∪ Nk (|Ni | = n/k for each i ∈ k) and if we can assign a distinct
candidate from W to each of these groups in a way that for each i ∈ k the voters
from Ni all approve their assigned candidate. An ABC rule R satisfies perfect rep-
resentation ifR returns only committees satisfying perfect representation whenever
such committees exist.

Perfect representation is incompatible with EJR [66] and with weak (and strong)
Pareto efficiency (Proposition A.9), and it is not implied by (nor implies) priceability.
Among the rules considered in this paper, only Monroe [66] and leximax-Phragmén
[12] satisfy perfect representation, as does the variance-based rule by Phragmén
mentioned in Theorem 4.1 [12].

To sum up, if we are mainly interested in the welfarist interpretation of propor-
tionality, as captured by axioms that specify how cohesive groups of voters should
be treated, then PAV is the best among the considered rules. Yet, sequential PAV,
seq-Phragmén, and the Method of Equal Shares perform also reasonably well with
respect to these criteria, and they are computable in polynomial time. Sequential PAV
does not satisfy JR, and so it might discriminate small cohesive groups of voters. On
the other hand, for reasonably small committees sequential PAV has better propor-
tionality degree than seq-Phragmén, and the Method of Equal Shares. The axioms
that well describe the welfarist type of proportionality are EJR and proportionality
degree, and to a lesser extent PJR and JR. If we are interested in proportionality
with respect to power, then we shall also consider the axioms of priceability and
laminar proportionality. In this case the Method of Equal Shares and Phragmén’s
sequential rule are the two superior rules. It is not entirely clear which one of the two
rules is better. On the one hand, the Method of Equal Shares satisfies the appealing
axiom of EJR; on the other hand, Phragmén’s sequential rule is committee monotone
(see Sect. 3.3). In Table4.1, we highlighted the three rules that—with the current state
of knowledge—we consider the best ABC rules in terms of proportionality.
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4.4 The Core

An important concept of group fairness that has been extensively studied in the
context of ABC rules is the core. This notion of proportionality is adopted from
cooperative game theory,10 and was first introduced in the context of multi-winner
voting by Aziz et al. [3].

Definition 4.10 Given an instance (A, k) we say that a committee W is in the core
if for each non-empty V ⊆ N and each T ⊆ C with

|T |
k

≤ |V |
n

, (4.1)

there exists a voter i ∈ V such that |A(i) ∩ T | ≤ |A(i) ∩ W |, i.e., voter i is at least
as satisfied withW as with T . We say that an ABC ruleR satisfies the core property
if for each instance (A, k) each winning committee W ∈ R(A, k) is in the core.

Informally speaking, the core property requires that a group V constituting an α
fraction of voters should be able to control an α fraction of the committee. If such
a group can propose a set T of �αk	 candidates such that each voter in V is more
satisfied with the proposed set T than with the winning committeeW , then the group
V would have an incentive to deviate, hence would witness that committee W is not
stable (and, in some sense, also not fair). If a winning committee is in the core, then
no such deviation is possible.

The core property implies extended justified representation (Definition 4.3):
Assume an ABC rule R satisfies the core property and consider an instance (A, k),
a winning committee W , and an �-cohesive group of voters V . Let T be the set of
� candidates that are approved by all the voters in V (such candidates exist because
V is �-cohesive). Since W is in the core, there must exist a voter i ∈ V such that
|A(i) ∩ W | ≥ |A(i) ∩ T | = �, hence the condition of EJR must be satisfied. While
the notion of core strictly generalises EJR and thus implies strong satisfaction guar-
antees for cohesive groups, it can also be viewed as a concept formalising the idea
of proportionality with respect to power (cf. Sect. 4.3).

It is an important open question whether there exists an ABC rule that satisfies
the core property, or—equivalently—whether the core is always non-empty. For the
time being only partial answers to this intriguing question are known:

1. None of the rules mentioned in Chap. 2 satisfies the property. Since a rule sat-
isfying the core must satisfy EJR, only PAV and the Method of Equal Shares
come into consideration. However, counterexamples for both are known [3, 56].
For PAV, the instance from Example 4.7 shows a violation of the core. A simple
example for the Method of Equal Shares can be found in [60, Example 4].

2. No welfarist rule (Definition 2.1) can satisfy the core property [56].

10 Specifically, the definition used in the literature on multi-winner voting is based on the definition
of the core for cooperative games with non-transferable payoffs [20, 52].
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3. If one restricts the attention to a special subclass of approval profiles, so-called
approval-based party-list profiles as introduced by Brill et al. [15], the situa-
tion changes. Approval-based party-list profiles are approval profiles where each
candidate appears with at least k copies, i.e., for every candidate c it holds that∣
∣{c′ ∈ C : N (c) = N (c′)}∣∣ ≥ k. Approval-based party-list profiles are thus more
general than party-list profiles (cf. Definition 4.1)—intuitively each voter can
approve one or more parties. Brill et al. [15] prove that PAV satisfies the core
property on approval-based party-list profiles. As mentioned before, PAV does
not satisfy the core property in the general case.

4. It is known that the core can be empty in settings that are related to the ABC
model but are more expressive. This is the case, e.g., in committee elections with
ranking-based preferences [23, 60] and in participatory budgeting with additive
utilities [30, Appendix C]; these two settings are discussed Sect. 6.1 and in Sect.
6.4, respectively.

As it remains unclear whether an ABC rule satisfying the core property is an
achievable goal, several works in the most recent literature analysed relaxed notions
of the core. We review these notions in the following.

4.4.1 Relaxation by Randomisation

The first type of relaxation that we consider is a probabilistic variant of the notion,
i.e., the question becomes: “can core-like properties be guaranteed in expectation (ex-
ante)?” Cheng et al. [23] prove that there always exists a lottery over committees that
satisfies the core property in expectation. Let EX∼�(X) denote the expected value of
a random variable X distributed according to a lottery (probability distribution) �.

Theorem 4.5 (Cheng et al. [23]) For each election instance (A, k) there exists a
lottery over committees � such that for each group of candidates T ⊆ C it holds
that

|T |
k

>
EW∼� (N (T,W ))

n
, (4.2)

where N (T,W ) is the set of voters who prefer T over W:

N (T,W ) = {i ∈ N : |A(i) ∩ T | > |A(i) ∩ W |} .

Note that Eq. (4.2) is indeed a negated, probabilistic version of Eq. (4.1), showing
that in expectation there are too few voters to propose a different committee. While
it is not known whether such a lottery � can be found in a polynomial time, Cheng
et al. [23] prove that if we restrict our attention only to sets T of size bounded by a
constant, then for each ε > 0 there is a polynomial-time algorithm that computes �

such that (1 + ε) · |T |
k > EW∼�(N (T,W ))

n .
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4.4.2 Relaxation by Deterministic Approximation

Another approach is to ask whether the core property can be well approximated. A
few notions of approximation have been proposed; Definition 4.11 below unifies the
definitions considered in the literature.

Definition 4.11 We say that an ABC ruleR provides a γ-multiplicative-η-additive-
satisfaction β-group-size approximation to the core if for each instance (A, k), each
winning committee W ∈ R(A, k), each non-empty subset of voters V ⊆ N , and
each subset of candidates T ⊆ C with

β · |T |
k

≤ |V |
n

there exists a voter i ∈ V such that |A(i) ∩ T | ≤ γ · |A(i) ∩ W | + η.

There are two components in Definition 4.11: The satisfaction-approximation
component says that a voter i has an incentive to deviate towards T only if her gain
in satisfaction is sufficiently large, that is, if i’s satisfaction in T is greater at least by
a multiplicative factor of γ and an additive factor of η than her satisfaction inW . The
group-size-approximation component prohibits deviations towards sets T which are
(by a multiplicative factor of β) smaller than k · |V |

n , as imposed by the core. If γ = 1,
then we omit the term “γ-multiplicative” from the name of the property. Similarly,
if η = 0 we omit the term “η-additive”, and if β = 1, then we omit the term “β-
group-size”. The satisfaction-approximation and the group-size approximation are
incomparable.

When considering the problem of approximating the core, we distinguish two
classes of algorithms. The first class contains dedicated approximation algorithms,
which are mostly based on dependent rounding of fractional committees. The second
class consists of established rules, such as PAV or theMethod of Equal Shares, which
can be shown to approximate the core (to some degree).

Jiang et al. [38] present an algorithm that provides 32-group-size approximation
to the core. Their approach is based on dependent rounding of lotteries that are
in expectation in the core (the existence of such lotteries is guaranteed by The-
orem 4.5). Notably, the approach of Jiang et al. [38] extends much beyond the
approval-based preferences; for cardinal utilities they round a lottery that in expecta-
tion 2-approximates the core and obtain a discrete committee with the 32-group-size
approximation guarantee.

Fain et al. [30] present a family of algorithms based on dependent rounding
of fractional committees (returned by a linear program that closely resembles the
formulation of PAV as an integer linear program). For each λ ∈ (1, 2] they provide
an algorithm that guarantees a λ-multiplicative-η-additive-satisfaction 1

2−λ
-group-

size approximation to the core, where η = O
(

1
λ4 log

(
k
λ

))
. Their algorithm naturally

extends to a more general model related to participatory budgeting.
The result of Fain et al. [30] has recently been improved. Munagala et al. [51] pre-

sented a polynomial time algorithm that guarantees 67.37-multiplicative-1-additive-
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satisfaction approximation to the core. They also presented an algorithm that offers
a 9.27-multiplicative-1-additive-satisfaction approximation to the core, yet running
in exponential time. These algorithms, which are based on dependent rounding, can
be also applied to more general types of voters’ preferences.

For commonly known rules the following results are known: Cheng et al. [23]
prove that PAV does not guarantee β-group-size approximation to the core even
for β = �(

√
k). On the other hand, Peters and Skowron [56] prove that PAV gives

2-multiplicative-satisfaction approximation to the core. Further, for each ε > 0 no
rule that satisfies the Pigou–Dalton principle can provide a (2 − ε)-multiplicative-
satisfaction approximation to the core. Thus, PAV can be viewed as giving the
strongest multiplicative-satisfaction approximation to the core subject to satisfying
the Pigou–Dalton principle of transfers. Finally, they show that the Method of Equal
Shares provides O(log(k))-multiplicative-1-additive-satisfaction approximation to
the core.

4.4.3 Relaxation By Constraining the Space of Deviations

Yet another approach to relaxing the core property is to prohibit only certain types
of deviations. As we have already explained at the beginning of this section, EJR
can be viewed as a restricted variant of the core property: It prohibits the deviations
of groups of voters towards outcomes T on which the deviating voters unanimously
agree. Intuitively, if a group V agrees on all candidates from T , then it is easier for
such a group to synchronise and to deviate, thus EJR can be viewed as the minimal
restricted variant of the core. Motivated by the same arguments, Peters and Skowron
[56] considered other restricted variants of the core property.

A committee property is a set of triples (A′, k ′,W ′), where (A′, k ′) is an election
instance andW ′ is a size-k ′ committee.Wewrite A|V for profile A restricted to voters
in V ⊆ N .

Definition 4.12 (Peters and Skowron [56]) Let P be a committee property. Given
an instance (A, k), we say that a pair (V, T ), with V �= ∅, V ⊆ N , T ⊆ C , is an
allowed deviation from a committeeW if (1) |T |

k ≤ |V |
n , (2) |A(i) ∩ T | > |A(i) ∩ W |

for each i ∈ V , and (3) T has property P , i.e., (A|V , |T |, T ) ∈ P . An ABC rule R
satisfies the core subject toP if for each instance (A, k) and each winning committee
W ∈ R(A, k) there exists no allowed deviation.

For example, letPcoh be a committee property such that (A′, k ′,W ′) ∈ Pcoh if and
only if W ′ ⊆ A′(i) for all voters i in the domain of A′; we call Pcoh cohesiveness
(cf. Definition 4.2). Then, EJR can be equivalently defined as the core subject to
cohesiveness.

The Method of Equal Shares satisfies core subject to priceability with equal pay-
ments, which is a variant of priceability that additionally requires that voters must
pay the same amount of virtual budget for the same candidate (cf. Definition 4.8);
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priceability with equal payments is thus stronger than priceability, yet weaker than
cohesiveness [56]. It is an open question whether the core subject to weaker (yet still
natural) types of constraints is always non-empty.

4.5 Degressive and Regressive Proportionality

The notions of proportionality that we discussed in Sects. 4.1–4.4 aimed at capturing
the following intuitive idea: An α fraction of voters should be able to decide about
an α fraction of the committee—in this approach the relation between the size of the
group and its eligibility is linear. In this section we discuss two alternative concepts:
degressive and regressive proportionality. These two concepts should be viewed
more as high-level ideas than formal properties. We first explain them intuitively,
providing an illustrative example, and next we will discuss a few formal approaches
to reasoning about degressive and regressive proportionality.

According to degressive proportionality, smaller groups of voters should be
favoured, i.e., be eligible to more representatives in the elected committee than in
the case of linear proportionality.11 An extreme form of degressive proportionality
is diversity [32]—there, if possible, each voter should be represented by at least one
candidate in the elected committee. At the other end is the idea of regressive propor-
tionality, where the emphasis is put on well-representing large groups. An extreme
form of regressive proportionality is individual excellence [32], where it is assumed
that only the candidates with the highest total support from the voters should be
elected. In fact, these two notions—diversity and individual excellence—are extreme
to the extent that they can no longer be considered notions of proportionality. Exam-
ple 4.9, below, illustrates the ideas of degressive and regressive proportionality, and
the two extreme variants of them—diversity and individual excellence.

Example 4.9 Consider the approval-based preference profile from Example 4.1:

60 voters : {a1, . . . , a10} 20 voters : {b1, . . . , b6} 10 voters : {c1, c2}
8 voters : {d1, . . . , a4} 2 voters : {e1, e2, e3}.

A linearly-proportional committee W1 could consist of six candidates from A, two
candidates from B, one candidate from C , and one candidate from D (this is the
committee selected by the Sainte-Laguë apportionment method). Another linearly-
proportional committee could consist of seven candidates candidates from A, two
from B, one fromC , but none from D (this is the committee selected by the D’Hondt
apportionment method).

11 Degressive proportional apportionment is often used for distributing parliamentary seats among
geographical regions, e.g., in the division of the European Parliament seats among EU countries (see
the book of Rose [64] for a discussion of arguments and negotiations that resulted in a degressive
apportionment rule being used for assembling the European Parliament).
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Table 4.2 Flavors of (dis)proportionality
# Votes 60 20 10 8 2

Example of linear proportionality
(Sainte-Laguë)

6 2 1 1 0

A different example of linear
proportionality (D’Hondt)

7 2 1 0 0

An example of degressive
proportionality

4 3 2 1 0

Another example of degressive
proportionality

3 3 3 1 0

An example of diversity 4 3 1 1 1

Another example of diversity 2 2 2 2 2

An example of regressive
proportionality

8 2 0 0 0

Individual excellence 10 0 0 0 0

In contrast, a degressive-proportional committee W2 could, for example, consist
of four candidates from A, three candidates from B, two candidates from C , and one
candidate from D. Another example of a degressive-proportional committee would
be W3 with three candidates from each of the sets A, B, and C , and one from D.
Committees W2 and W3, however, are not diverse, since two voters who support
E = {e1, e2, e3} are not represented at all. A diverse committee could consist of,
e.g., four candidates from A, three candidates from B, one candidates from C , one
candidate from D, and one candidate from E . A regressive-proportional committee
would include more candidates from the set A = {a1, . . . , a10} at the cost of groups
supported by less voters. For example, a committee that consists of eight candidates
from A and two candidates from B would be regressive-proportional. Table4.2 shows
the example relations between a size of a group and its number of representatives for
different forms of proportionality:

The arguments in favour of degressive proportionality usually come from the
analysis of probabilistic models describing how the decisions made by the elected
committee map to the satisfaction of individual voters participating in the process of
electing the committee (for party-list preferences, an excellent exposition is given
by Koriyama et al. [41]; see also [47, 48]). An interesting concrete example of
degressive proportionality is square-root proportionality devised by Penrose [53]
(see also [70]), where the idea is that the groups of voters should be represented
proportionally to the square-roots of their sizes.12 Further, degressive proportionally
in general, and diversity in particular, are particularly appealing ideas in the context of
deliberative democracy—there, the goal is to select a committee that should discuss
and deliberate on various issues rather than make majoritarian decisions. It is argued
that for deliberative democracy it is particularly important to represent as many

12 This method has been proposed for the United Nations Parliamentary Assembly [17] and for
allocating voting weights in the Council of the European Union [71].
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various opinions in the committees as possible [21, 50], which can be achieved by
maximising the number of voters who are represented in the elected committee.

On the other hand, the idea of regressive proportionality is particularly appealing
when the goal is to select a committee of candidates based on their individual merits,
for example when the goal of an election is to select finalists in a contest or to choose
a set of grants that should be funded (then, the voters act as judges/experts).

In the remaining part of this section we discuss two approaches to formalising
the ideas of degressive and regressive proportionality: axiomatic approaches and a
quantitative approach.

4.5.1 Axiomatic Approaches to Diversity and Individual
Excellence

The axiomatic approach generally applies only to the extreme forms of the degressive
and regressive proportionality, i.e., to diversity and individual excellence, respec-
tively. This approach is similar to the one we discussed in Sect. 4.1: by formalising
the concepts of diversity and individual excellence on party-list profiles (Definition
4.1), we obtain axiomatic characterisations for the more general domain of ABC
rules.

Intuitively, disjoint diversity requires that in party-list profiles as many voters as
possible have at least one representative in the elected committee. Disjoint equality
says that each approval carries the same strength, and so all candidates that are
approved once have the same right for being elected.

Definition 4.13 (Disjoint diversity) An ABC ruleR satisfies disjoint diversity if for
each party-list instance (A, k)with voter sets (N1, . . . , Np) and |N1| ≥ |N2| ≥ . . . ≥
|Np|, there exists a winning committeeW ∈ R(A, k) that contains one candidate for
each of the k largest parties, i.e., for each r ≤ min(p, k) and each i ∈ Nr we have
that A(i) ∩ W �= ∅.
Definition 4.14 (Disjoint equality) An ABC ruleR satisfies disjoint equality if for
each election instance (A, k) where each candidate is approved at most once and the
number of approved candidates is at least k (i.e., |⋃i∈N A(i)| ≥ k), a committee W
is winning if and only if it contains only approved candidates, W ⊆ ⋃

i∈N A(i).

Intuitively, disjoint equality is aimed at capturing the idea of individual
excellence—the candidates that are approved exactly once are virtually indistin-
guishable from the perspective of the support coming from the voters; thus all such
candidates should have equal rights to be selected.

The following theorems show that, similarly to the case of D’Hondt proportion-
ality (Theorem 4.2), the concepts of disjoint diversity and disjoint equality uniquely
extend to the full domain of approval-based preferences if one assumes the natural
axioms of anonymity, neutrality, and consistency (and a fewmore technical axioms).
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Fig. 4.2 A diagram illustrating the relation between defining w-functions of Thiele methods and
the type of proportionality these Thiele rules implement

Theorem 4.6 (Lackner and Skowron [44]) The Approval Chamberlin–Courant rule
is the only non-trivial ABC ranking rule that satisfies anonymity, neutrality, con-
sistency, weak efficiency, continuity, and disjoint diversity. Multi-Winner Approval
Voting is the only ABC ranking rule that satisfies anonymity, neutrality, consistency,
weak efficiency, continuity, and disjoint equality.

Lackner and Skowron [44] provided a similar analysis for intermediate notions
of degressive and regressive proportionality. They conclude that w-Thiele methods
based on w-scoring functions that have a larger slope than the w-function of PAV
are more oriented towards regressive proportionality, whereas w-functions that have
a smaller slope are closer in spirit to the idea of degressive proportionality. This
relation is symbolically visualised in Fig. 4.2.

Jaworski and Skowron [37] constructed a class of rules that generalise Phragmén’s
rule. Intuitively, a degressive variant of seq-Phragmén is obtained by assuming that
the voters who already have more representatives earn money at a slower rate than
those that have fewer. Regressive proportionality is implemented by assuming that
the candidates who are approved by more voters cost less than those that garnered
fewer approvals.

Faliszewski et al. [33] discuss three specific classes of rules that span the spectrum
between individual excellence and diversity. They analyse these rules in the ranking-
based model, that is when voters rank the candidates instead of approving some of
them (see Sect. 6.1). These classes of rules can be analogously defined for approval
ballots. Brill et al. [14], Faliszewski and Talmon [31] extend Monroe’s rule so that it
can implement the idea of regressive proportionality; this is also done in the ranking-
based framework. It would be interesting to see whether their techniques can be
successfully applied to the ABC model.

Finally, Subiza and Peris [72] propose an axiom called α-unanimity (parameter-
ized with α ∈ [0, 1]), which can be seen as a strong diversity axiom. The authors
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propose a voting rule (Lexiunanimous Approval Voting) that satisfies this axiom; this
rule is a refined version of CC. Thiele methods (including CC itself) do not satisfy
this axiom for any α.

4.5.2 Quantifying Degressive and Regressive Proportionality

The second approach to formally reason about degressive and regressive proportion-
ality is quantitative in nature. Lackner and Skowron [43] define two measures—the
utilitarian guarantee and the representation guarantee—that can be used to quantify
how well a given rule performs in terms of individual excellence and diversity.

Recall that scoreAV(A,W ) denotes the total number of approvals a given com-
mittee receives in profile A and scoreCC(A,W ) denotes the number of voters who
approve at least one member of W .

Definition 4.15 (Utilitarian and Representation Guarantee [43]) The utilitarian
guarantee of an ABC rule R is a function κAV : N → [0, 1] that takes as input an
integer k, representing the committee size, and is defined as:

κAV(k) = inf
A

minW∈R(A,k)(scoreAV(A,W ))

maxW : |W |=k(scoreAV(A,W ))
.

The representation guarantee of anABCruleR is a functionκCC : N → [0, 1]defined
as:

κCC(k) = inf
A

minW∈R(A,k)(scoreCC(A,W ))

maxW : |W |=k(scoreCC(A,W ))
.

Note that the utilitarian and the representation guarantee of an ABC ruleR mea-
sure howwell ruleR approximates Multi-Winner Approval Voting and the Approval
Chamberlin–Courant rule, respectively. These two rules embody the principles of
diversity and individual excellence (cf. Theorem 4.6).

Lackner and Skowron [43] show that the utilitarian guarantee of PAV, sequential
PAV, and seq-Phragmén is �(1/

√
k); their representation guarantee is 1/2 + �(1/k).

CC and seq-CC achieve a better representation guarantee (of 1 and 1 − 1/e, respec-
tively), but their utilitarian guarantee is only�(1/k). In that sense, these three propor-
tional rules (PAV, sequential PAV, and seq-Phragmén) can be viewed as a desirable
compromise between the two guarantees. On the other, the authors also show that
proportional rules are never an optimal compromise. Finally, p-geometric rules—
the Thiele rules defined by wp-geom(x) = ∑x

i=1 (1/p)i—for different values of the
parameter p span the whole spectrum from AV to CC. By adjusting the parameter
p, one can obtain any desired compromise between the utilitarian and representation
goals.

Elkind et al. [29] extend this work by considering the “price” of justified represen-
tation axioms: what are the optimal utilitarian and representation guarantees when
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requiring justified representation (Definition 4.6) or extended justified representation
(Definition 4.3)? Their results show that already justified representation implies a
utilitarian guarantee of no better than 2/

√
k; the same holds for EJR. The consequences

for the representation guarantee are less pronounced: JR does not restrict the repre-
sentation guarantee (e.g., CC satisfies JR and has a representation guarantee of 1)
and EJR is compatible with a representation guarantee of 3

4 .

4.5.3 An Experimental View on Degressive and Regressive
Proportionality

Godziszewski et al. [35] visualised the structure of the committees produced by
various ABC rules on histograms. They performed computer simulations in which
the candidates and the voters were represented as points in the two-dimensional
Euclidean space. Intuitively, a point corresponding to a voter or a candidate might
represent their position in the spectrum of possible opinions regarding various issues.
In each simulation the candidates and the voterswere drawn froma given distribution,
and a preference profile was constructed from the positions of the voters and the
candidates. The main idea was that the voters are more likely to approve candidates
whose corresponding points are closer to them, since their opinions resemble views
of such candidates. Given a preference profile, a specific ABC rule was used to find
a winning committee, and the points corresponding to the selected candidates were
marked with red dots on the histogram of the respective rule. The experiment was
repeatedmultiple times, and each time the dotswere put on the same histogram. Thus,
the density of red dots in a given area represent the probabilities that the candidates
from this area are chosen for the winning committee. This idea was first proposed
by Elkind et al. [28] in the context of ranking-based elections.

Such histograms give valuable insights into the nature of voting rules. We depict
several of them in Fig. 4.3. In the left column of the figure, we depict distribu-
tions of the points representing the voters and the candidates: red areas correspond
to the candidates, green areas to the voters, and olive areas correspond to both.
The subsequent columns depict distributions of the elected candidates for six ABC
rules. These histograms already illustrate the very different natures of the considered
rules. For example, the distributions obtained for PAV and the sequential Phragmén’s
rule closely resemble distributions of the voters (which is exactly what one would
expect from proportional rules), CC puts more emphasis on representing as diverse
a spectrum of voters as possible, AV selects candidates that are in the centres of the
distributions—the choice that corresponds to individual excellence. The Method of
Equal Shares induces histograms that are in some sense between PAVandAV. Finally,
the behaviour of Minimax AV (MAV) is inconsistent with our intuitive interpretation
of proportionality in the Euclidean model.
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distribution AV CC MAV PAV Eq. Shares Phragmén

Fig. 4.3 Visualising the outcomes of some selected ABC rules (from [35])

The conclusions from this experimental exercise are to a large extent consistent
with the conclusions coming from the axiomatic analysis. For a more detailed dis-
cussion we refer to the original work [35].

4.6 Proportionality and Strategic Voting

The ABC rules that we have considered in the context of proportionality are all
prone to manipulations (cf. Sect. 3.6). In this section we explain that this is not a
coincidence—achieving proportionality and strategyproofness at the same time is
inherently impossible. This impossibility was first proven by Peters [54, 55] for
resolute rules (rules that always return a single winning committee), even for very
weak formulations of the desired axioms. (Earlier work by Aziz et al. [2] and Janson
[36] already showed that certain proportional rules—such as PAV, seq-PAV, and seq-
Phragmén—are not strategyproof.)

Theorem 4.7 (Peters [54, 55]) Suppose k ≥ 3, the number n of voters is divisible
by k, and m ≥ k + 1. Then there exists no resolute ABC rule R which satisfies the
following three axioms:

1. weak proportionality: for each party-list election (A, k) where some singleton
ballot {c} appears at least n/k times (|{i : A(i) = {c}}| ≥ n/k), candidate c must
belong to the winning committee, i.e., c ∈ R(A, k),

2. weak efficiency: a candidate who is approved by no voter may not be part of the
winning committee, unless fewer than k candidates receive at least one approval,

3. inclusion-strategyproofness13 (as defined in Sect. 3.6).

Kluiving et al. [40] prove a similar result for irresolute rules (i.e., when rules are
allowed to output multiple tied winning committees), using cardinality-strategy-
proofness and Pareto efficiency. Further, Duddy [27] proves a related impossibility

13 This axiom can be further weakened to allow voters only to manipulate by reporting subsets of
their true approval sets.
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result for irresolute rules using slightly different axioms; this result also requires a
form of Pareto efficiency.

Lackner and Skowron [42] showed that AV is the only ABC scoring rule (Sect.
3.5) that satisfies SD-strategyproofness; this result can also be seen as an impos-
sibility result concerning proportionality and strategyproofness within the class of
ABC scoring rules. Further, they quantified the trade-off between strategyproofness
and proportionality. For various ABC rules they empirically measured their level
of strategyproofness by assessing the fraction of profiles, for which there exists a
voter who has an incentive to misreport her approval set. They concluded that rules
which are more similar to AV (i.e., rules that follow the principle of regressive pro-
portionality) are less manipulable than proportional rules. The rules that follow the
principle of degressive proportionality are the most manipulable. A similar conclu-
sion was obtained by Barrot et al. [6], but there the authors analysed a different class
of rules—namely those based on the Hamming distance, and spanning the spectrum
from AV to Minimax Approval Voting.

Since in the general case, there exist no proportional strategyproof ABC rule,
Botan [9] restricted the analysis to three specific types of manipulations: (1) subset
manipulations, where a voter can manipulate only by submitting a subset of her true
approval set, (2) superset manipulations, where each voter can only send a superset
of her true preferences, and (3) disjoint manipulations, where a manipulation can be
performed only by submitting a subset of candidates disjoint from the true approval
set of the voter. They showed that for party-list preference profiles (see Definition
4.1) all Thiele methods are cardinality-strategyproof14 against subset, superset, and
disjoint manipulations.

4.7 Proportionality with Respect to External Attributes

In Sects. 4.1–4.6, we have considered formal concepts that capture, in various ways,
what it means that the structure of the elected committee proportionally reflects the
(approval-based) preferences of the voters. In other words, we have considered pro-
portionality with respect to the preferences given by the voters. In this section, we
briefly consider a framework that approaches the concept of proportionality quite
differently: we analyse proportionality with respect to external attributes of the can-
didates.15

Let us start by recalling the apportionment setting that we discussed in Sect. 4.1. In
the apportionment model we are given a set of candidates, each candidate belonging
to a single political party; for each political party we are given a desired fraction

14 Formally, Botan [9] defines strategyproofness for irresolute rules and states their results for the
general class of Gärdenfors preference extensions [34]. These extensions define preference relations
over sets of winning committees and thus can be applied to irresolute rules.
15 A noteworthy real-world example is the Lebanese Parliament, where an equal representation of
Christians and Muslims (64 seats each) is mandated [26].
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of seats the party should ideally get in the elected committee (typically, this is the
fraction of votes cast on the party). The goal is to pick the committee that matches the
desired fractions as closely as possible. Thus, one can say that in the apportionment
setting there is one external attribute, which is the party affiliation, each candidate
has a certain value of this attribute, and the goal is to pick the committee where the
different values of the attribute are represented proportionally to the given desired
fractions.

Now, assume that there are twoattributes—each candidate has a political affiliation
and a geographic region that she represents. For each value of each attribute we
are given a desired fraction of seats that the candidates with this attribute value
should get. This setting is called bi-apportionment, and it is discussed in detail in a
book chapter by Pukelsheim [61] (several articles study the bi-apportionment setting
from a computational perspective [46, 63, 67]). The model of bi-apportionment has
been further extended to an arbitrary number of attributes by Lang and Skowron
[45].16 There, the authors analysed axiomatically and algorithmically two rules that
extend the D’Hondt method and the largest remainder method to the multi-attribute
apportionment.

The desired fractions in the (multi-attribute) apportionment model can be based
on the voters preferences, or they might be given exogenously, e.g., by imposing
certain quotas, specifying how many candidates with given attribute values should
be included in the winning committee. Taking one specific interpretation, namely
assuming the voters are asked to approve attribute values, Kagita et al. [39] proposed
several other rules for selecting committees. They formulated axioms, requiring that
the selected committee should consist of candidates whose attribute values propor-
tionally represent voters’ preferences. Unfortunately, none of the rules they propose
satisfies any of these axioms. In general our axiomatic understanding of the multi-
attribute apportionment model is still not well-advanced.

In the final part of this section we will consider a model which takes into account
both the voters’ preferences over candidates, and external constraints based on
attributes of the candidates. Instead of defining this model formally, we provide
an illustrative example.

Example 4.10 Assume we want to select a representative committee. Such a com-
mittee should be gender-balanced, containing 50%ofmale (M) and50%of female (F)
committee members. Additionally, the committee should represent people from dif-
ferent educational backgrounds: at least 25% and at most 50% of its members should
have a bachelor’s degree (B), between 40% and 60% should have an upper-secondary
education (U), and between 10% and 25%—a primary or lower-secondary educa-
tion (P). Finally, the selected committee should contain at least 25%young people (Y)

16 The multi-attribute model finds its application, e.g., in the process of sortition. In sortition one
needs to select a committee of ordinary people who will discuss certain controversial matters,
and come up with recommendations helping the governments make decisions. In this process it is
important to select a committee consisting of people who are representative for the whole society.
Currently, randomised algorithms are mostly used for such selections [8]. The multi-attribute model
provides alternative methods that take advantage of information regarding attributes of the potential
committee members.
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and at least 50% senior people (S). The pool of candidates from which we can select
members of such a committee is given in the table below. Additionally, seven voters
express their preferences via the following approval ballots.

Name Gender Education Age
c1 F B Y
c2 M U Y
c3 M U S
c4 F P S
c5 M U Y
c6 M U Y
c7 M U Y
c8 F B S

A(1) = {c1, c2, c3}
A(2) = {c3, c5}
A(3) = {c7, c8}
A(4) = {c3, c4, c5, c7}
A(5) = {c1, c8}
A(6) = {c6}
A(7) = {c1, c2, c6}

Assume we want to select k = 4 committee members. The winning commit-
tee according to AV would be W1 = {c1, c3, c7, c8} (for simplicity, we assume the
ties are broken lexicographically c8 � c7 � · · · � c1), and according to PAV, the
winning committee would be W2 = {c1, c3, c6, c8}. However, each of these two
committees violates the attribute-level constraints. The committee maximising the
AV-score and the PAV-score subject to these constraints would be, respectively,
W3 = {c1, c3, c4, c7} and W4 = {c3, c4, c6, c8}.

As can be seen in Example 4.10, score-based ABC rules (in particular Thiele
methods) are suitable for this approach: the winning committee is the one with the
highest score that satisfies all external constraints. Following this approach, Bred-
ereck et al. [10] and Celis et al. [18] considered the model of multi-winner elections
with external constraints, but where the qualities of the committees are assessed via
a general set function f . The function f may in particular depend on the voters’
ballots, for example we can set f (W ) = scoreAV(A,W ). Aziz [1] studied a similar
model, but assuming there is a global ranking over C that represents the objective
qualities of the candidates. There, the goal is to select the lexicographically best
committee subject to the multi-attribute constraints, which are treated more softly
than in case of Bredereck et al. [10] and Celis et al. [18]. Let us also mention that
Bei et al. [7] studied a related model, but there the goal is to select the committee
of maximal cardinality that satisfies the attribute-level constraints. We will consider
algorithmic aspects of these and related approaches in Sect. 5.3.

Note that this approach is not compatible with rules that do not naturally provide
a ranking of committees by scores (e.g., seq-Phragmén or the Method of Equal
Shares). It is an interesting question how to adapt these rules to the model with
external constraints.
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Chapter 5
Algorithms and Computational
Complexity

In this chapter, we discuss computational problems related to ABC rules and algo-
rithms that solve these problems. We start by discussing the computational complex-
ity of ABC rules. As many ABC rules are computationally difficult, a thorough algo-
rithmic analysis is paramount to a practical application of these rules. We consider
algorithmic techniques such as integer linear programming, fixed-parameter algo-
rithms, approximation algorithms, and algorithms for structured domains. Moreover,
we discuss computational questions related to proportionality and to strategic voting.

5.1 Computational Complexity

How computationally expensive is it to find a winning committee according to a
given ABC rule? Clearly, this question is of major importance for the practical use
of an ABC rule. Here, we distinguish only two types of complexity: ABC rules that
are computationally easy, i.e., computable in polynomial time, and ABC rules that
are computationally expensive, i.e., those that are NP-hard. Note that this is only a
coarse dichotomy; we discuss its implications further below.

Let us first consider the class of Thiele methods. Out of the three most prominent
Thielemethods, two areNP-hard (CC and PAV) and one is computable in polynomial
time (AV). A polynomial-time algorithm for AV is straightforward: for each alterna-
tive cwe compute its approval score scoreAV(A, c) = |{i ∈ N : c ∈ A(i)}| and select
the k alternatives with the largest scores. To be able to claim NP-hardness of an ABC
rule R, we have to fix a decision problem; we choose the following for rules based
on scores: given an approval profile, is there a committee with R-score at least s?
The NP-hardness of CC has been shown by Procaccia et al. [55]; the NP-hardness
of PAV by Skowron et al. [59] and Aziz et al. [1] (for different decision problems).
A more general result shows that a large class of Thiele methods is NP-hard:
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Theorem 5.1 ([59, Theorem 5]) Let w : N → R be a non-decreasing function for
which w(i) − w(i − 1) > w(i + 1) − w(i) for some i ∈ N. Given an approval pro-
file profile A, a committee size k, and a bound s, it is NP-hard to decide whether
there exists a committee of size k with aw-score of at least s, i.e., scorew(A,W ) ≥ s.

Note that this theorem does not apply to AV, which is indeed polynomial-time
computable. Interestingly, a similar result also holds for 2D-Euclidean preferences.
We say that an approval profile is 2D-Euclidean if the voters and the candidates can
be represented in the two-dimensional Euclidean space so that for each voter i the
following holds: if i approves a candidate c, then she also approves all candidates
that are closer to i than c. The following theorem applies, e.g., to PAV and CC.

Theorem 5.2 (Godziszewski et al. [36]) Let w : N → R be a non-linear and con-
cave function. Given a 2D-Euclidean approval profile profile A, a committee size k,
and a bound s, it is NP-hard to decide if there is a k-size committee with a w-score
of at least s.

Winning committees of sequential and reverse sequential Thiele methods can
be computed in polynomial time; this follows immediately from their definitions.
The same holds for Greedy Monroe, seq-Phragmén, the Method of Equal Shares,
and SAV. In contrast, appropriate decision problems for Monroe’s rule [55], lexical-
Phragmén [15], and MAV [40] are NP-complete. The NP-hardness for MAV also
holds for 2D-Euclidean preferences [36]. These complexity results are summarised
in Table 3.1.

To conclude, the complexity classification discussed here should not be misun-
derstood in implying that NP-hard ABC rules are impractical and should be avoided.
There is a wide range of algorithmic techniques available to solve NP-hard problems,
and many disciplines in computer science encounter (and routinely solve) compu-
tationally hard problems. Instead the message here is the following: When using a
polynomial-time computable rule, even very large instances can be expected to be
solved quickly. ForNP-hard rules, amore thorough analysis is necessary to determine
how large instances can be solved (cf. Sect. 5.2).

5.2 How to Compute Winning Committees?

The arguably most central algorithmic question is: how to compute winning com-
mittees for an ABC voting rule? Clearly, the answer significantly differs from rule to
rule. Rules that can be computed in polynomial time generally do not require sophis-
ticated algorithms. In particular, algorithms for AV, SAV, as well as for sequential and
reverse sequential Thiele methods follow immediately from their corresponding def-
initions. Algorithms for Phragmén’s sequential rule and the Method of Equal Shares
are slightly more involved but also do not require more than a careful adaption of
the corresponding mathematical definitions. (Note that for seq-Phragmén it is more
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convenient to implement its discrete formulation.) For rules that are NP-hard to com-
pute, we discuss four algorithmic methods in the following: integer linear programs,
fixed-parameter algorithms, approximation algorithms, and algorithms for structured
domains.

5.2.1 Integer Linear Programs (ILPs)

The most common approach to compute NP-hard ABC rules is to employ integer
linear program (ILP) solvers, such as Gurobi or CPLEX. These are fast, general
purpose solvers used for hard optimisation problems. To use such a solver, one has
to encode an ABC rule as a integer linear program, i.e., a system of linear inequalities
constraining a linear expression that is maximised or minimised. We will see two
examples of ILPs in the following. Several ILPs (including these two) are available
in the abcvoting Python library [38].

The ILP displayed in Fig. 5.1 shows how PAV can be expressed in such a form.
This particular ILP formulation for PAV is taken from Peters and Lackner [51]. Two
types of variables are used here: xi,� intuitively encodes that voter i approves at least
� candidates in the committee, and yc encodes that candidate c is contained in the
winning committee. Given an election instance (A, k), this ILP maximises the PAV-
score expressed in (5.1). Further it ensures that exactly k candidates are selected with
Eq. (5.4) and that xi,� indeed encodes that voter i approves at least � candidates in
the committee with Eq. (5.5). Note that it can occur that xi,� = 0 and xi,�+1 = 1, but
this is never an optimal solution since 1

�
> 1

�+1 . It is easy to see that this ILP can
be adapted for computing other Thiele methods by adjusting the optimisation goal
in (5.1). Another ILP formulation is due to Skowron et al. [59]. This ILP is applicable
to a larger class of multi-winner rules (OWA rules).

As a second example of an ILP encoding, we present one for MAV in Fig. 5.2.
Here, yc encodes whether candidate c is contained in the winning committee, di,c
encodes whether voter i disagrees with the decision of whether c is in the committee

maximise
n∑

i=1

k∑

�=1

1
�

· xi,� (5.1)

subject to: xi,� ∈ {0, 1} for i ∈ [n], � ∈ [k] (5.2)
yc ∈ {0, 1} for c ∈ C (5.3)
∑

c∈C

yc = k (5.4)

k∑

�=1

xi,� =
∑

c∈A(i)

yc for i ∈ [n] (5.5)

Fig. 5.1 An ILP for computing PAV
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minimise D

subject to: di,c ∈ {0, 1} for i ∈ [n], c ∈ C

yc ∈ {0, 1} for c ∈ C
∑

c∈C

yc = k

di,c = 1 − yc for c ∈ A(i) (5.6)
di,c = yc for c ∈ C \ A(i) (5.7)
∑

c∈C

di,c ≤ D (5.8)

Fig. 5.2 An ILP for computing MAV

or not, and D is the maximum Hamming distance between a voter and the chosen
committee. Constraints (5.6) and (5.7) fix the value of di,c, i.e.,

di,c =
{
0 if (c ∈ A(i) and yc = 1) or (c /∈ A(i) and yc = 0),

1 otherwise.

Then,
∑

c∈C di,c is the Hamming distance between the committee defined by yc
and A(i). Due to Constraint (5.8), these sums are ≤ D for all voters. Hence, by
minimising D, we minimise the maximum distance.

Lastly, for Monroe’s rule, Pottho and Brams [54] discuss ILP formulations, and
for lexical-Phragmén an ILP is due to Brill et al. [15].

5.2.2 Fixed-Parameter Algorithms

Fixed-parameter algorithms have received some attention for ABC rules. The main
idea is to identify a parameter of the problem (ideally one that is small in practice)
and search for algorithms that require only polynomial time when this parameter is
constant. A fixed-parameter tractable (FPT) algorithm for a parameter p is one with
a runtime of O( f (p) · poly(m, n)), where f is an arbitrary, typically exponential
function. Let us mention three natural parameters in the context of multi-winner
elections: the number of candidates (m), the committee size k, and the number of
voters n.

Let us first discuss the parameter m, i.e., the number of candidates. As there are(m
k

) ≤ mm committees, it is possible to consider each possible committee in an FPT
algorithm. This bound gives trivial (and uninteresting) FPT results for most NP-
hard rules. For example, for w-Thiele methods one can compute scorew(A,W ) for
each committee W and pick those with maximum score. An interesting exception
is Monroe, where it is not immediately obvious how to compute the Monroe score
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of a given committee in polynomial time. This is achievable via a reduction to the
min-cost max-flow problem, described by Procaccia et al. [55].

For the parameter committee size k, most results are negative: First, Betzler et
al. [9] show for Monroe and CC that it is W[2]-hard to verify whether a committee
exists with at least a certain Monroe-/CC-score. These hardness results continue to
hold even if the number of unrepresented voters is used as an additional parameter
[9]. Second, Misra et al. [48] show an analogous W[2]-hardness result for MAV.
Third, Aziz et al. [1] show for all Thiele methods with 2w(1) > w(2) that testing
whether a committee is winning is coW[1]-hard.1 All these results imply that one
cannot hope for an FPT algorithm computing these ABC rules, i.e., it is unlikely that
an algorithm exists with a runtime of, e.g., O(2k · poly(m, n)).

The parameter n, the number of voters, is a natural choice ifmulti-winner elections
are conducted in small groups and leads to interesting algorithms. Betzler et al. [9]
show that CC and Monroe can be solved in time nn · poly(m, n). In a similar vein,
Faliszewski et al. [32] show an FPT result with respect to n for a large class of
multi-winner voting rules (including Thiele methods). Their algorithm is based on
mixed integer linear programming andLenstra’s result [41] that (mixed) integer linear
programs can be solved in FPT time with the number of variables as parameter.2 The
results from Faliszewski et al. [32] have been substantially generalised by Bredereck
et al. [13], including an FPT result for Thiele methods with weighted voters.

Moreover, Betzler et al. [9] provide a thorough and detailed parameterized com-
plexity analysis for CC and Monroe for further parameters (e.g., the number of
unrepresented voters) but find mostly hardness results. Yang and Wang [64] give an
overview of further parameterized results; however, the concrete results announced
in this short paper are not published yet.

To conclude, let us report on a positive result for MAV: MAV can be computed in
time O(d2d), where d is the optimal MAV-score, as shown byMisra et al. [48].3 This
runtime is essentially optimal subject to a standard complexity theoretic assumption,
as shown by Cygan et al. [22].

5.2.3 Approximation Algorithms

The most natural approximation algorithm for Thiele methods are their sequential
variants, as described in Sect. 2.3. Sequentialw-Thiele provides a very good approxi-
mation ofw-Thiele [44, 59]; this follows directly from amore general approximation
result for submodular set functions by Nemhauser et al. [49].

1 The condition 2w(1) > w(2) excludes AV but is satisfied for PAV and CC.
2 We refer the interested reader to Gavenčiak et al. [34] a general overview of how integer linear
programming can be used to find FPT algorithms.
3 Misra et al. [48] claimed that the runtime of their algorithm is dd ; this was corrected later [22,
43].
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Table 5.1 Guarantees of the approximation algorithms for the most prominent Thiele methods.
The approximation ratios of the algorithms of Lu and Boutilier [44] and Dudycz et al. [24] are tight
unless P = NP. They are also tight for the algorithms that run in f (k) · no(k) time assuming the Gap
Exponential Time Hypothesis (Gap-ETH). The approximation ratio of the algorithm of Barman et
al. [4] is tight assuming Unique Games Conjecture

w-function Approximation ratio References

CC w(x) = min(x, 1) 1 − 1/e Lu and Boutilier [44]

�-best w(x) = min(x, �) 1 − ��

e�·�! Barman et al. [4]

PAV w(x) = ∑x
i=1

1
i 0.7965 Dudycz et al. [24]

SLAV w(x) = ∑x
i=1

1
2i−1 0.7394 Dudycz et al. [24]

Penrose w(x) = ∑x
i=1

1
i2

0.7084 Dudycz et al. [24]

Theorem 5.3 (Lu and Boutilier [44] and Skowron et al. [59]) Sequentialw-Thiele is
a 0.63-approximation algorithm forw-Thiele.More specifically, Sequentialw-Thiele
achieves a w-score of at least 1 − (1 − 1/k)k ≥ 1 − 1/e ≥ 0.63 times the optimal w-
score.

Dudycz et al. [24] designed an algorithm that gives stronger approximation guar-
antees than (1 − 1/e) for w-Thiele methods for which the derivatives of the defining
w-function decrease slower than a geometric sequence. The algorithm is based on
pipage rounding of the fractional solution returned by a linear program. Barman et al.

[4] provided a
(
1 − ��

e�·�!
)
-approximation algorithm for the w-Thiele function with

w(x) = min(x, �). Table5.1 summaries the guarantees of the best approximation
algorithms for most prominent Thiele methods. Notably, under standard assump-
tions, all these guarantees cannot be improved within the class of algorithms running
in polynomial time.

One can also find approximation algorithms for the corresponding minimisation
problem: for w-Thiele, instead of maximising the w-score, one can equivalently
minimise the difference from the theoretical optimum of n · w(k), i.e., to minimise
the w-loss defined as lossw(A,W ) = n · w(k) − scorew(A,W ). The minimisation
and the maximisation variants of the problem have the same optimal solutions, but
they differ in terms of approximability. If the optimal committeeW has a high score,
i.e., if scorew(A,W ) is close to n · w(k), then an approximation algorithm for the
minimisation variant would be superior. For instance, if for the optimal committeeW
we have scorew(A,W ) = 0.95 · n · w(k), then a 2-approximation algorithm for the
minimisation variant of the problem is guaranteed to return a solution with the score
at least as high as 0.9 · n · w(k). On the other hand, a 1/2-approximation algorithm for
themaximisation variantmay return a committeewith score equal to 0.475 · n · w(k).
Conversely, if the the optimal committee has a significantly lower score than n · w(k),
then a good approximation algorithm for the maximisation variant of the problem
will produce better committees.

Byrka et al. [17] present a 2.36-approximation algorithm for PAV according to this
lossw measure. This algorithm is based on dependent rounding of a linear program
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solution. It is notable that this result does not hold for arbitrary weights; in particular,
such an approximation algorithm does not exist for CC under the assumption that
P �= NP [17]. While seq-PAV can be viewed as a voting rule in its own right, this
is more debatable for such a rounding-based algorithm. In particular, it cannot be
expected to satisfy nice axiomatic properties such as committee monotonicity, and
thus constitutes first and foremost an approximation of PAV.

Skowron [57] describes two alternative algorithms that for certain Thiele methods
(including PAV and CC) can provide arbitrarily good approximation guarantees and
that work in FPT time for the parameter (k, t), where t is the upper-bound on the
number of candidates each voter approves. Thus, these algorithms are practical only
when the desired size of the committee k and the approval sets of the voters are
all small. Moreover, Skowron [57] shows that if each voter approves sufficiently
many candidates, then Sequential w-Thiele provides an even better approximation
guarantee than 0.63. Analogous results, but with the focus on CC, are due to Skowron
and Faliszewski [58].

For MAV, stronger approximation results hold: Byrka and Sornat [16] and Cygan
et al. [22] present polynomial-time approximation schemes (PTAS) for MAV, i.e.,
polynomial-time approximation algorithms that achieves arbitrary (but fixed) preci-
sion; previous work established first a 3-approximation algorithm (LeGrand et al.
[40]) and then a 2-approximation algorithm (Caragiannis et al. [18]).

5.2.4 Algorithms for Structured Domains

The fourth and final algorithmic technique is to consider structured preference
domains. Here, the assumption is that preference profiles possess some combina-
torial structure that gives algorithmic advantages. We refer the interested reader to a
survey by Elkind et al. [27] that discusses this topic more broadly. For our purpose
here, we would like to discuss only two restrictions: candidate and voter interval
(defined by Elkind and Lackner [25], based on previous work by Dietrich and List
[30], Faliszewski et al. [23], List [42]), but we note that many other restrictions exist
and have been studied extensively [25, 26, 33, 50, 62, 63].

A profile A belongs to the candidate interval (CI) domain if there exists a linear
order of candidates such that for each voter i ∈ N , the set A(i) appears contiguously
on the linear order. Similarly, a profile A belongs to the voter interval (VI) domain
if there exists a linear order of voters such that for each voter c ∈ C , the set N (c)
appears contiguously on the linear order. The CI domain is closely related to the
single-peaked domain for arbitrary ordinal preferences and the VI domain is similar
to the single-crossing domain; this is analysed in more detail by Elkind and Lackner
[25].

Under the assumption that preferences belong either to the CI or VI domain, the
computational complexity can change dramatically: MAV is solvable in polynomial
time if the given approval profile belongs either to the CI or VI domain [43]. Further,
Thiele methods (Peters and Lackner [51]) and Monroe’s rule (Betzler et al. [9]) can
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be solved in polynomial time if the given approval profile belongs to the CI domain.
It remains an open problem whether the same holds for the VI domain.

5.3 The Algorithmic Perspective on Proportionality

In this section, we briefly review the literature that deals with the computational
problem of finding a proportional committee.

5.3.1 Finding Proportional Committees for Cohesive Groups

We first look at the proportionality concepts that formalise the behaviour of rules
with respect to cohesive groups of voters; see Sect. 4.2.

Note that even the problem of deciding whether in a given instance of election
there exists an �-cohesive group of voters is NP-complete [60]. Similarly, given a
committeeW , deciding whetherW satisfies the EJR condition is coNP-complete [2];
the same holds for the problem of decidingwhetherW satisfies the PJR condition [3].
Checking if a given committee W satisfies JR is computationally easy—for each
candidate one needs to check whether the group of voters approving this candidate
is 1-cohesive, and if so, to check if less than n/k voters from such a group are left
without a representative inW . Checking whether a given committee satisfies perfect
representation (Definition 4.9) is also computationally easy—the problem reduces
to finding a perfect constrained matching in a bipartite graph [56].

While the problem of checking if a given committee satisfies the EJR/PJR condi-
tion is computationally hard, for a given election instance one can find in polynomial
time some committee that satisfies the two conditions (e.g., through the Method of
Equal Shares [52], or through a local-search algorithm for PAV [3]). The situation is
quite different for perfect representation (PR): it is NP-complete to check whether
there exists a PR committee for a given election instance [56]. Consequently, unless
P = NP, there exists no polynomial-time ABC rule that satisfies perfect representa-
tion.

5.3.2 Finding Committees with Attribute-Level Constraints

Next, we move to the model with external attribute-level constraints from Sect. 4.7.
We start by considering the model from Example 4.10, where we have a set

of voters with approval-based preferences over the candidates, the candidates have
attribute values (the attributes can be, e.g., gender, age group, education level, etc.)
and for each attribute value we are given quotas specifying upper and lower lim-
its on the number of committee members with this particular attribute value. Two
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recent works by Bredereck et al. [12] and Celis et al. [20] considered algorithmic
aspects of the problem of finding committees maximising a certain score, subject to
given attribute-level constraints. The authors considered the problem from the per-
spective of approximation algorithms and parameterized complexity theory, as well
as variants of the problem where the attribute-level constraints have certain special
structures.We do not describe their results in detail as the specific results are obtained
for the ranking-based multi-winner model (see Sect. 6.1). However, it is worth men-
tioning that even the problem of finding a committee that satisfies the attribute-level
constraints is computationally hard. Approximation and fixed-parameter tractable
algorithms for this simpler problem were studied by Lang and Skowron [39].

A very similarmodel to the one fromExample 4.10 is constrained approval voting
(CAP) (Brams [10], Potthoff [53]). The main difference to the previously discussed
model is that CAP uses constraints formulated for combinations of attributes. For
example, a constraint can have the following form: “the proportion of young (Y)
males (M) with higher education (H) in the committee should not exceed 14%”.
Specifically, Brams [10] and Potthoff [53] suggest to pick the committee that max-
imises theAV score subject to the aforementioned combinatorial constraints. A direct
translation of CAP into an ILP problem was given by Straszak et al. [61]. In general,
the setting of constrained approval voting has not been thoroughly studied in its full
generality, and the model is fairly unexplored from a computational perspective.

Finally, the computational problem of finding a committee subject to attribute-
level constraints is related to the multidimensional knapsack problem (the main
difference is that in the multidimensional knapsack the candidates can contribute
more than a unit weight to each attribute-level constraint) and to the generic problem
of optimising a submodular function subject to constraints (see, e.g., a survey by
Krause and Golovin [37]). However, this literature usually deals with more general
types of constraints, whereas the voting literature we discussed often concerns more
specific approaches.

5.4 The Algorithmic Perspective on Strategic Voting

Other types of computational problems arise when one analyses how the results
of ABC elections are affected by changes in voters’ preferences. There are several
reasons to study this type of computational problems, andwe briefly summarise them
below. Historically, the first motivation was to use the computational complexity as
a shield protecting elections from strategic manipulations. The reasoning was the
following: if we cannot construct a good rule that is strategyproof (e.g., due to known
impossibility theorems; cf. Sect. 4.6), then we could at least aim at proposing a rule
for which it is computationally hard for a voter to come up with a successful strategic
manipulation. This motivation originated in the context of single-winner elections,
and was first proposed by Bartholdi et al. [6]. This reasoning was later contested
since the analysis of computational complexity is worst-case in spirit. Even for rules
for which the problem of finding a successful strategicmanipulation is NP-hard, such
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manipulations can be found easily in the average case, in particular for many real-life
preference profiles. For a more detailed discussion of these arguments (but with a
focus on single-winner elections), we refer the reader to a survey by Faliszewski and
Procaccia [28], a book by Meir [45], and handbook chapters by Conitzer and Walsh
[21] and Faliszewski and Rothe [29].

In addition to the original motivation to study strategic voting, there are other,
more “positive” applications that do not concern insincere behaviour. For example,
the question of whether one can stop eliciting preferences and safely determine
the winners of an election is equivalent to asking whether a group of (undecided)
voters can still change the outcome of an election. These questions are captured
by the manipulation problems discussed in Sect. 5.4.1. Furthermore, the problem of
deciding whether the result of an election is robust to small changes in the given
preference profile can also be phrased as “bribing” voters to change their ballots so
to change the election result. We discuss the robustness problem in Sect. 5.4.2.

Before we move further, we note that for the case of selecting a single winner
(k = 1) under approval-based preferences, an excellent overview of computational
issues related to strategic voting is given by Baumeister et al. [7].

5.4.1 Computational Complexity of Manipulation

We first consider the computational problem of finding a successful manipulation.
Recall that we write A+X to denote the profile A with one additional voter approving
X , i.e., A+X = (A(1), . . . , A(n), X).

Definition 5.1 Consider an ABC rule R. In the Utility-Manipulation problem,
we are given an election instance (A, k), a utility function u : C → R, and a threshold
value t ∈ R. We ask whether whether there exists a profile A′ that extends A by r
additional voters such that

∑
c∈W u(c) ≥ t for some W ∈ R(A+X , k).

In the Subset-Manipulation problem, we are given an election (A, k), a subset
of candidates L ⊆ C , and a positive integer r . We ask whether there exists a profile
A′ that extends A by r additional voters such that L ⊆ W for some W ∈ R(A′, k).

Intuitively, in Utility-Manipulation we have manipulators with a utility func-
tion describing their level of appreciation for different candidates; the utility function
is additive. The question is whether the manipulators can submit approval ballots
such that they derive a utility of at least t from the elected committee. In Subset-
Manipulation, the goal is slightly different—the manipulators want to ensure that
the candidates from a given set L are all selected. For r = 1, Subset-Manipulation
can be represented as Utility-Manipulation: we assign the utility of one to the
candidates from L and the utility of zero to the other candidates, and set t = |L|.
Observe that it makes sense to consider Utility-Manipulation also in the con-
text of AV—this is because AV is strategyproof only for approval preferences, while
the definition of Utility-Manipulation assumes the manipulators have more fine-
grained preferences.



5.4 The Algorithmic Perspective on Strategic Voting 89

Meir et al. [46] studied Utility-Manipulation for r = 1 and showed that it is
solvable in polynomial time for Multi-Winner Approval Voting with adversarial tie-
breaking,4 Baumeister et al. [8] proved that also Subset-Manipulation is solvable
in polynomial time for AV. (The main focus of both papers is on ranking-based
multi-winner rules, cf. Sect. 6.1.) Aziz et al. [1] show thatUtility-Manipulation is
computationally hard for SAVand PAVwith a given tie-breaking order on candidates.
They further prove that Subset-Manipulation is NP-hard for SAV and coNP-hard
for PAV. For PAV the problem stays hard even if there is only a single manipulator
(r = 1), while for SAV with a single manipulator the problem becomes computable
in polynomial time.

Bredereck et al. [11] studied a more general version of Utility-Manipulation,
where the goal is to check whether there exists a coalition of voters that could
jointly perform a successful manipulation. The authors focused on the �-Bloc rule,
which is a variant of Multi-Winner Approval Voting, where each voter approves
exactly � candidates. Then, the coalition-manipulation problem is computationally
hard in its all variants studied by the authors. On the other hand, if we look at an
egalitarian version of �-Bloc (maximising the number of candidates in the committee
that are approved by the worst-off voter), then the problem becomes computationally
tractable. Another problem related to Utility-Manipulation has been considered
by Barrot et al. [5]: given utility functions of all voters, is there an approval profile
consistent with the utility functions in which a given committee wins.

5.4.2 Computational Complexity of Robustness

The next computational problem that we look at is Robustness, introduced by
Bredereck et al. [14] and adapted to the ABC setting by Gawron and Faliszewski
[35]. In the definition below,we consider the following three operations: the operation
Add adds a candidate to the approval set of some voter, Remove deletes a candidate
from the approval set of a voter, and Swap is a combination of Add and Remove
applied simultaneously to the approval set of a single voter.

Definition 5.2 (Bredereck et al. [14], Gawron and Faliszewski [35]) Consider an
ABC ruleR and an operation Op ∈ {Add,Remove,Swap}. In the Op-Robustness
problem we are given an election instance (A, k) and an integer b. We ask whether
there exist a sequence S of b operations of type Op such that R(A, k) �= R(A′, k),
where A′ is the preference profile obtained from A by applying the operations from
sequence S.

Gawron and Faliszewski [35] have shown that the Op-Robustness problem is
computationally hard for PAV and CC, for each type of the three operations. On
the other hand, the problem can be solved in polynomial time for AV and SAV. The

4 Adversarial tie-breaking means that ties between candidates are broken in disfavour of the manip-
ulators.
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authors also computed the robustness radius—a measure that says how much the
result of an election can change in response to a single change in the preference
profile—for several ABC rules. Notably, they show that for w-Thiele methods with
2w(1) > w(2) (this class includes PAV and CC), a single Add, Remove, or Swap
operation can lead to a completely different winning committee.

Gawron andFaliszewski [35] andMisra and Sonar [47] also considered the param-
eterized complexity of the Robustness problem, and have designed several param-
eterized algorithms for natural parameters, such as the number of voters n and the
number of candidates m. Faliszewski et al. [31] considered a similar problem, but
they asked whether, through a sequence of operations of a given type, one canmake a
particular candidate a member of a winning committee. This question is particularly
relevant if one wants to report to non-winners how close they were to being selected.
Finally, robustness of ABC rules has also been studied by Caragiannis et al. [19];
their analysis is based on a noise model assuming a “ground truth” (i.e., optimal)
committee.
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Chapter 6
Related Formalisms and Applications

In this chapter, we discuss connections of approval-based committee voting with a
number of other applications and formalisms.

6.1 Ranking-Based Multi-Winner Elections

Besides ABC voting, the other classic multi-winner election model is when voters
provide a ranking of candidates from the most to the least preferred one. That is,
in the ranking-based model a voter’s preference is expressed as a linear order of all
candidates instead of a subset of candidates, as it is the case in the ABC model. As it
is the case with approval-basedmulti-winner elections, also the ranking-basedmodel
has attracted much attention in recent years. Alas, at the point of writing this book,
there does not exist a comprehensive overview of this field of research. However,
a very helpful introduction to multi-winner voting in general (with a focus on the
ranking-based model) can found in a book chapter by Faliszewski et al. [32].

When comparing approval-based and ranking-basedmulti-winner rules, it isworth
mentioning that the class of ABC scoring rules (Definition 3.5) has a very close ana-
logue in the ranking-based model, namely the class of committee scoring rules [28].
Indeed, committee scoring rules admit a very similar axiomatic characterisation to
the one given in Theorem 3.2 for ABC scoring rules [64]. The class of committee
scoring rules has been explored in depth by Faliszewski et al. [33]. In particular, the
subclass of OWA-based committee scoring rules corresponds to the class of Thiele
methods in the approval-based model. Other subclasses of committee scoring rules
can be analogously defined for approval ballots, but to the best of our knowledge
they have not been considered in the context of approval-based elections.

The approval-based and ranking-based model can be generalised to the model
where voters provide weak orders over candidates, i.e., ranking with ties. In this
model, approval ballots correspond to a ranking with two levels (approved and dis-
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approved candidates). This variant has been considered, e.g., by Aziz and Lee [4],
but generally attracted much less attention so far. This is due to the fact that the
concepts discussed in this book (e.g., notions of proportionality) do not easily gener-
alise to thismore expressive setting and require substantial conceptual developments.
Further work is required to consolidate the literature from the approval-based and
ranking-based model in a systematic and notationally concise form.

6.2 Trichotomous Preferences and Incomplete Information

In this book we consider the variant of the multi-winner election model where agents
vote by specifying sets of approved candidates. Several recent (mostly algorithmic)
works study an extended variant of this model, where the ballots are trichotomous,
i.e., where each voter can approve, disapprove or remain neutral with regard to a
candidate. This model is discussed in detail by Brams and Fishburn [17] and Lines
[56]. Baumeister and Dennisen [10] and Baumeister et al. [11] generalise AV and
MAV to trichotomous votes and explore related algorithmic questions. This line of
work has been continued by Liu and Guo [58]. Further, Baumeister et al. [12] extend
MAV to the case where each voter assigns each candidate to one of � predefined
buckets, where � is a parameter. Zhou et al. [68] introduce variants of CC, PAV, and
SAV for trichotomous ballots and study questions regarding parameterized complex-
ity. Finally, Talmon and Page [66] define and study notions of proportionality in the
trichotomous setting. In general, many questions regarding the trichotomous model
remain unanswered. In particular, an axiomatic analysis ismostlymissing (withwork
of Alcantud and Laruelle [1] and Gonzalez et al. [40] as notable exceptions).

A model closely related to trichotomous preferences arises if approval ballots
are incomplete due to missing information. In this model, the middle, “neutral”
option corresponds to “unknown”. In practice, voting rules often have to be computed
given incomplete information (such as missing ballots or incomplete ballots; see
the handbook chapter of Boutilier and Rosenschein [16] for a broader discussion).
For ABC rules, a first analysis with focus on AV is due to Barrot et al. [9]. A
more comprehensive treatment by Imber et al. [45] considers the class of Thiele
methods and focuses on computational problems related to incomplete information.
Apart from the three-valued model of incomplete information, as discussed here,
they also propose models where “unknown” candidates are ordered by preference
but it is unclear where to separate them in approved and disapproved candidates.
Finally, Terzopoulou et al. [67] study structured preference domains (cf. Sect. 5.2.4)
in connection with incomplete information.
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6.3 A Variable Number of Winners

Throughout this paper, we assume that the committee size is fixed. In the literature
on multi-winner voting with a variable number of winners [48, 49] (also known as
social dichotomy functions [26]), this assumption is dropped and a voting rule can
return an arbitrary number of candidates—depending on the given election instance.
An example for such a rule, based on approval ballots, is themean rule, which returns
all candidates with an above-average number of approvals (introduced by Duddy et
al. [27], further analysed by Brandl and Peters [19]). Another example is Minimax
Approval Voting (MAV), as discussed in Sect. 2.7. In this setting, MAV returns all
candidate subsets that minimise the largest Hamming distance among all voters.
Other ABC rules do not easily translate to this setting. For example, Thiele methods
always achieve a maximum score for the complete set of all alternatives. Conse-
quently, the formulation of such voting rules often contains a penalty mechanism for
larger sets.

More details, in particular a computational view point and an experimental eval-
uation, can be found in the work of Faliszewski et al. [34]. Further, the special case
of shortlisting rules has been analysed by Lackner and Maly [54]; this work includes
recommendations which voting rules are particularly suitable for shortlisting sce-
narios. Shortlisting in a proportional fashion was studied by Freeman et al. [36];
their focus lies on proportionality guarantees (related to the ones introduced in Sect.
4.2) for variable-sized sets of candidates. Finally, Allouche et al. [2] consider an
epistemic scenario where a “correct” selection of candidates has to be identified;
approval ballots are viewed as noisy estimates of a ground truth.

6.4 Participatory Budgeting

In participatory budgeting (PB), we assume that candidates comewith different costs,
and that the sum of the costs of the selected candidates cannot exceed a given budget.
Thus, multi-winner elections can be viewed as a special case of PB, where the costs
of the candidates are all equal. Typically, candidates correspond to projects in this
setting, each of which has an associated cost to be implemented. For an overview of
different models and approaches to PB, we refer the reader to a recent survey by Aziz
and Shah [5].

Participatory budgeting based on approval ballots is one of the standard models
and is often used in real-world PB referenda. Knapsack voting suggested by Goel
et al. [39] closely resembles AV. Peters et al. [60] showed that the Method of Equal
Shares preserves its proportionality properties in the setting of PB—it satisfies an
adapted version of EJR, and a logarithmic approximation of the core. Aziz et al.
[6] provide a taxonomy of axioms aimed at formalising proportionality in PB; those
axioms are adaptations of JR and PJR (see Sect. 4.2). Talmon and Faliszewski [65]
study other axioms, mostly pertaining to different forms of monotonicity (see Sects.
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3.3 and 3.4) and through experiments provide visualisations of the kind of committees
returned by different participatory budgeting rules. Baumeister et al. [13] consider
the computational complexity of strategic voting. Generally, the assumption is that
projects are independent of each other; Jain et al. [47] study participatory budgeting
without this assumption. Finally, Rey et al. [61] connect participatory budgeting
based on approval ballots with judgement aggregation (see Sect. 6.7), which offers
another possibility to include constraints.

6.5 Budget Division and Probabilistic Social Choice

The goal of a probabilistic social choice function is to divide a single unit of a global
resource between the candidates. Thus, multi-winner elections can be viewed as
instances of probabilistic social choice with the additional requirement that each can-
didate gets either 1/k-th fraction of the global resource, or nothing. For an overview
of results on probabilistic social choice functions, we refer to a book chapter by
Brandt [21].

Several works [7, 15, 20, 25, 31, 59] study probabilistic social choice functions
for approval votes. The particular focus of some of these works is put on formalising
the concepts of fairness and proportionality. Some of these concepts closely resemble
the ones that we discussed in the context of approval-based multi-winner elections
(Sect. 4). For example, Aziz et al. [7] and Fain et al. [31] study the concept of the
core (Sect. 4.4), Aziz et al. [7] additionally consider the axioms of average fair share,
group fair share, and individual fair share—the properties that closely resemble—
respectively—proportionality degree, PJR, and JR (Sect. 4.2), Michorzewski et al.
[59] show the relation between these fairness properties and the utilitarian welfare
of outcomes (cf. Sect. 4.5.2). Bogomolnaia et al. [15] focuses on mechanisms which
are strategyproof, and Duddy [25] proves that strategyproofness is incompatible with
certain forms of proportionality—an impossibility result similar to the ones that we
discuss in Sect. 4.6.

6.6 Voting in Combinatorial Domains

Multi-winner rules output fixed-size subsets of available candidates. An alternative
way of thinking of such rules is that (1) for each candidate c they make a decision
whether c should be selected to the winning committee or not, and (2) there is a
constraint which specifies that exactly k decisions must be positive. Thus, with m
candidates there are m dependent binary decisions (each decision is of the form
“include a candidate in the winning committee or not”) that are made by a multi-
winner rule. These decisions are dependent (related) because of the constraint on the
number of positive decisions.
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The literature on voting in combinatorial domains studies a more general setup,
where a number of decisions (not necessarily binary) need to be made, and where
there exist (possibly complex) relations between the decisions. Similarly, the prefer-
ences of the voters might have complex forms. For example, consider two issues—I1
with two possible decisions Y1 and N1, and I2 with two possible decisions Y2 and
N2. A voter might prefer decision Y2 only if the decision with respect to issue I1 is
Y1; otherwise this voter might prefer N2 over Y2 (see the work of Brams et al. [18]
for a detailed discussion of this example). Various languages have been studied that
allow voters to express such complex combinatorial preferences. For example, in the
context of approval-based multi-winner elections, some of these languages would
allow voters to express the view that a certain group of candidates works particularly
well together, so they should either be all selected as members of the winning com-
mittee or none of them should be chosen, or the view that some candidates should
never be chosen together. In the literature on multi-winner elections, on the other
hand, it is assumed that the preferences of the voters are separable, thus the voters
can only make statements about their levels of appreciation for different candidates.
An interesting middle ground between very general forms of combinatorial prefer-
ences and simple (i.e., separable) preferences was proposed by Barrot and Lang [8]:
conditional approval ballots allow voters to specify their approval ballots conditional
on whether certain candidates are to be included in the committee.

A comprehensive overview of the literature on voting in combinatorial domains
can be found in a book chapter by Lang and Xia [55]. We highlight three works from
this literature that deal with models particularly related to the model of approval-
based multi-winner elections. In public decision making, as studied by Conitzer et
al. [23], the decisions are not related, the preferences of the voters with respect to
decisions on various issues are separable, thus the model closely resembles the one
studied in this book. Themain difference is that in themodel for public decisions there
is no constraint specifying the number of decisions that can be positive. There, the
authors focus on designing fair (i.e., proportional) rules. Themodel of sub-committee
elections, due to Aziz and Lee [3], generalises the ones of multi-winner elections
and public decisions. There, it is assumed that the set of candidates is partitioned and
for each group of candidates there is a threshold bounding the number of candidates
selected from this group.

Another formalism closely related to ABC voting is perpetual voting, introduced
by Lackner [53]. Here, instead of a committee we have time steps and in each step
one candidate is selected. Hence, after k rounds k candidates are picked, which can be
viewed as a committee. Themain difference is that the set of available candidates and
voters’ preferences can change each round. The goal is to provide proportionality over
time, which requires that the decision in round k is made under consideration of the
voters’ satisfaction in previous rounds. This formalismcan be viewed as a special case
of voting in combinatorial domains (with a very specific sequentiality constraint).
Further, due to the sequential structure imposed by time, perpetual voting rules have
close connections with committee monotonic ABC rules (such as seq-Phragmén and
seq-PAV). Similar questions in a utility-based model have been studied by Freeman
et al. [35]. A voting rule related to the setting of perpetual voting is due to Gottlob



100 6 Related Formalisms and Applications

Frege1 [37, 38]. The main difference is that the set of candidates remains the same
in each round and the goal is to achieve a proportionally fair outcome for candidates
(instead of voters). An analysis of this voting system is due to Harrenstein et al. [44].

6.7 Judgment Aggregation and Propositional Belief
Merging

In judgment aggregation, we are given a set of logical propositions and a set of voters
providing true/false valuations for these propositions; the goal is to find a collective,
aggregated valuation. Sometimes it is also required that the collective valuation
must be consistent with exogenous logical constraints. Multi-winner elections can
be represented as instances of judgment aggregation, where for each candidate we
have a single Boolean variable representing whether the candidate is elected or not;
the exogenous constraints can be used to enforce that exactly k from these variables
are set true. A chapter by Endriss [29] in the Handbook of Computational Social
Choice discusses this framework in detail and reviews judgment aggregation rules;
see also the survey by List and Puppe [57].

Propositional belief merging [50–52] is a very general framework, which allows
agents to aggregate their individual positions (beliefs, preferences, judgements,
goals) on a set of issues. Also here this combined, collective outcome has to sat-
isfy given exogenous logical constraints. Approval-based committee voting can be
seen as a special case of propositional belief merging, although the focus of these two
directions of research has little overlap: belief merging operators are analysed with
respect to a set of postulates that are only partially relevant in a voting context. A few
works have made an explicit effort to connect voting and belief merging. A particular
focus in this regard has been the study of belief merging and strategyproofness [22,
30, 41]. Further, Haret et al. [42] consider classic axioms from social choice theory
in the context of belief merging. Finally, Haret et al. [43] introduce and analysed
proportional belief merging operators.

6.8 Proportional Rankings

The theory of multi-winner elections can be applied in a seemingly unrelated setting,
where the goal is to find a ranking of candidates based on voters’ preferences. One can
observe that every committee monotonic (Definition 3.2), resolute ABC rule R can
be used to obtain a ranking of candidates: we put in the first position in the ranking the
candidate that R returns for k = 1; call this candidate c. Committee monotonicity
guarantees that the set of two candidates returned by R for k = 2 contains c; the
other candidate is put in the second position in the ranking, etc.

1 Gottlob Frege (1848–1925) was a German philosopher and logician.
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In particular, if we use a proportional committee-monotonic rule (for example,
seq-Phragmén or seq-PAV) then the obtained ranking will proportionally reflect the
views of the voters in the sense that each prefix of such a ranking, viewed as a
committee, will be proportional; this idea has been studied in detail by Skowron
et al. [63]. Proportional rankings are desirable, e.g., when one wants to provide a
list of recommendations or search results that accommodate different types of users
(cf. diversifying search results [24, 62]), or in the context of liquid democracy [14],
where an ordered list of proposals is presented to voters for their consideration.

Proportional rankings in a dynamic setting, where the rankings also take previ-
ously selected (and now unavailable) alternatives into account, have been studied
by Israel and Brill [46]. This setting arises, e.g., in dynamic Q&A platforms, where
questions are proposed and upvoted. The authors argue that questions that already
have been asked should be taken into account when choosing the next question(s).
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Chapter 7
Outlook and Research Directions

We conclude this book with a list of what we view as particularly important open
problems and research directions. This is followed by a list of more specific or more
technical open questions. These two lists are naturally far from being exhaustive;
many more research directions remain to be explored.

7.1 Main Open Problems and Research Questions

Q1 Axiomatic characterisations: So far, only few axiomatic characterisations of
ABC rules are known. Specifically, such characterisations are known only for
ABCscoring rules andThielemethods.Yet, axiomatic characterisations are essen-
tial if one wants to choose an ABC rule in a principled way. It is thus one of
the major open problems to characterise other ABC rules, in particular, sequen-
tial Thiele methods, seq-Phragmén, the Method of Equal Shares, Monroe’s rule,
Minimax Approval Voting, and Satisfaction Approval Voting. Further, almost no
satisfiable proportionality-related axioms are known for the multi-attribute model
(Sect. 4.7), let alone axiomatic characterisations.

Q2 Committee monotonicity and proportionality: The current state of research
suggests that committee monotonic ABC rules are limited in how proportional
they are, but there is no precise impossibility result known as of now. The main
open question is whether there exist ABC rules that satisfy EJR and committee
monotonicity. Only partial answers are known to this question. For example, it
is known that such a rule can be defined for approval-based party-list elections
(see the work of Brill et al. [5]; mentioned in Sect. 4.4), but there is no clear
generalisation of this rule to the setting of ABC rules. In case such a rule does not
exist, it might be easier to first show that committee monotonicity and the core
property are incompatible.

Q3 The core property: Does there exist an ABC rule that satisfies the core property
(Definition 4.10)? Equivalently, is the core always non-empty? In case the core
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can be empty, what is a sensible ABC rule that outputs a committee in the core
whenever it exists? Can such a rule be computed in polynomial time?

Q4 Analysis beyond the worst-case: With a few notable exceptions, in Chaps. 3
and 4 we discussed axiomatic properties which are worst-case in spirit. A voting
rule fails such an axiom even if there exist only few very unnatural election
instances for which the property is not satisfied. An alternative approach would
be to test if the properties hold for randomly generated instance of elections,
or for elections from datasets containing real-life instance [14]. However, many
common distributions of voters’ preferences are too simplistic and do not capture
the complexity of the voters’ reasoning processes; the real election instances are
rather scarce, and are collected in specific contexts, e.g., assuming that the voters’
know the election rule that will be used to select winners. It is an important task to
develop intermediate approaches that allow for a more fine-grained analysis and
allow to understand which of the rules exhibit most desired properties on election
instances that are likely to occur in practice.

Q5 Relation between axiomatic properties and computability: It is still unclear
which combinations of axiomatic properties of ABC rules can be achieved in
polynomial time. It is known that some rules are NP-hard to compute, but it
is unclear which axiomatic properties of these rules cause computational hard-
ness. For example, it is not known whether the axiom of FJR (see Definition
4.7) is satisfiable by a rule computable in polynomial time. Further, is there a
polynomial-time computable ABC rule that is proportional (e.g., that satisfies
PJR) and satisfies Pareto optimality? Or does there exist a polynomial-time rule
that satisfies consistency and extends D’Hondt? (By Theorem 4.2, such a rule
must violate either neutrality, anonymity, or continuity.)

Q6 Preference data from distribution: An important challenge is to prepare a rep-
resentative database containing sample approval-based elections. Realistic prob-
ability distributions would allow for the automatic generation of synthetic (but
meaningful) election instances, which are important for numerical simulations
and performance tests of algorithms. In comparison to the ranking-based model,
much fewer statistical models for generating approval-based elections are know.
Further, it would be highly desirable to identify a set of distributions that are repre-
sentative and that cover numerous potential types of voters and voting scenarios. A
noteworthy attempt at creating such a representative collection of distributions has
been made for the ranking-based model by Szufa et al. [19]. For ABC elections,
this issue remains to be explored.
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7.2 Further Open Problems

We continue with more specific or more technical open problems.

Q7 The key feature of Monroe’s rule is its underlying assumption that a committee
member can represent only 1/k-th fraction of the voter population. Monroe’s
rule could thus be generalised to many optimisation-based multi-winner rules
by imposing the additional restriction that committee members can represent
(i.e., derive score from) an α-fraction of voters. This idea resembles the group
activity selection problem, where a set of activities is chosen, each of which
has a maximum number of participants, and agents are assigned to activities
subject to their preferences; see the survey of Darmann and Lang [10]. More
generally, adding this “Monroe-style” constraint can be seen as requiring a
homogeneous representation load among chosen committee members. This is a
sensible assumption whenever candidates can satisfy only a limited number of
voters (e.g., if candidates represent consumable goods). This idea of committees
with homogeneous representation loads is largely unexplored.

Q8 Most axiomatic notions for proportionality are only applicable to ABC rules
that extend apportionment methods satisfying lower quota (see Fig. 4.1). This
excludes, e.g., ABC rules that extend the Sainte-Laguë method. As the Sainte-
Laguë method is in certain aspects superior to the D’Hondt method (Balinski
and Young [2] discuss this in detail), it would be desirable to have notions of
proportionality that are agnostic to the underlying apportionment method.

Q9 What is the proportionality degree of rev-seq-PAV?
Q10 Does there exist an ABC rule that satisfies priceability and Pareto efficiency?
Q11 What is the computational complexity of verifying whether a given committee

belongs to the core? Is it possible to find a committee in the core in polynomial
time (if it exists)? In case of computational hardness, can the methods presented
in Chap. 5 be used to obtain algorithms that are fast in practice?1

Q12 We have seen in Sect. 4.6 that proportionality and strategyproofness are typ-
ically incompatible. The corresponding impossibility result for arbitrary, i.e.,
irresolute, ABC rules [13] relies on Pareto efficiency. Since this is a property
that many sensible ABC rules do not satisfy (see Sect. 3.2) it would be desir-
able to strengthen this result by relaxing this condition, e.g., by replacing Pareto
efficiency with weak efficiency. Is this possible or are there ABC rules that are
irresolute, strategyproof, proportional, but not Pareto efficient? Furthermore,
both the result for irresolute [13] rules and for resolute rules [15, 16] rest on
the assumption that the committee size k divides the number of voters. This
assumption is unlikely to hold for large k and thus removing this assumption
would be desirable.

Q13 Aquestion related tomonotonicitywas asked bySánchez-Fernández and Fisteus
[17]: Is there an ABC rules that is proportional (even in a very weak sense,

1 In a very recent preprint, Brill et al. [5] show that it is coNP-complete to verifywhether a committee
is in the core. Note that this does not rule out the the existence of a polynomial-time algorithm finding
a committee in the core, as it is the case for EJR and PJR (cf. Sect. 5.3.1).
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e.g., satisfying JR) and satisfies support monotonicity without additional voters
(Definition 3.3)? As of now, AV and SAV are the only rules known to satisfy
this property and both are not proportional.

Q14 Another question related to monotonicity concerns theMethod of Equal Shares:
while this method exhibits very strong proportionality guarantees (in particular
EJR and priceability), it fails candidate monotonicity with additional voters
(as discussed in Sect. 3.4). Is there an equally proportional ABC rule that also
satisfies candidate monotonicity?

Q15 We mentioned in Sect. 3.1 that ABC rules that require tiebreaking do not sat-
isfy neutrality (e.g., sequential and reverse sequential Thiele methods, Greedy
Monroe, seq-Phragmén, and the Method of Equal Shares are not neutral). These
rules can be made neutral with parallel universes tiebreaking: a committee is
winning under the neutral variant if and only if it is winning for some tiebreaking
order under the original rule. Parallel universes tiebreaking has been analysed
for single-winner rules [4, 7, 11] but not for multi-winner rules. Such a modi-
fication will have an algorithmic impact (trying all permutations of candidates
would require exponential time), but the exact computational complexity of
these neutral rules is not settled. Further, under which conditions can these rules
be computed in polynomial time?

Q16 In Sect. 5.1, we presented a coarse analysis of the computational complexity
of ABC rules. This analysis could be refined by considering the Candidate
Winner problem: given an election instance (A, k) and a candidate c, does
there exist a winning committee W that contains c? This problem has recently
be shown to be �

p
2 -complete for Monroe and CC by Sonar et al. [18]. A similar

analysis for other computationally hard voting rules (such as PAV) is missing.
Q17 Sequential PAVapproximates the optimal PAV-score by a factor of at least 1 − 1

e .
What is the factor for Reverse Sequential PAV? Is it better? The same question
can be asked for other Thiele methods.

Q18 Several approximation algorithms and heuristics have been proposed for PAV,
including seq-PAV, rev-seq-PAV, the approximation algorithm based on depen-
dent rounding ([6], discussed in Sect. 5.2.3), and a local-search algorithm used
for finding EJR committees in polynomial time [1]. The difference between
these algorithms has not been investigated from a practical point of view. The
main question is which of these algorithms should be chosen to approximate
PAV given a very large election?

Q19 Is it possible to compute Thiele methods and Monroe’s rule in polynomial time
if the given preference profile belongs to the voter interval (VI) domain (see
Sect. 5.2.4)?

Q20 The computation of some polynomial-time ABC rules can clearly be paral-
lelised. For example, for AV each candidate can be processed independently of
others. The framework of P-completeness [12] can be used to determine which
ABC rules are inherently sequential (by showing P-completeness) and which
can be parallelised (by showing, e.g., NL-containment). Such work has been
done for single-winner rules [3, 8, 9] but not for multi-winner rules.
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Q21 In real-life elections, it is sometimes required that each voter can approve at
most k candidates. It is interesting to see what are the consequences of such a
requirement in terms of qualities of the committees produced by various rules.
Sometimes, it is even possible to distribute up to k points to candidates, i.e., to
approve candidates more than once. This is clearly beyond the ABC model, but
some concepts and results may transfer to such voting systems.
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Appendix A
Additional Proofs

In this appendix chapter, we provide some proofs and counterexamples that we were
not able to find in the published literature.

In this appendix chapter, we provide some proofs and counterexamples that we
were not able tofind in thepublished literature.Bydefault,weuse alphabetic tiebreak-
ing for ABC rules that require a tiebreaking order among candidates.

A.1 Additional Proofs from Chap. 3

Proposition A.1 All Thiele methods with strictly increasing w-function as well as
SAV satisfy strong Pareto efficiency; CC and MAV fail strong Pareto efficiency.

Proof Observe that if W1 dominates W2 then the w-score of W1 is strictly larger
than that of W2, due to our assumption that w is strictly increasing. Thus, W2 is not
a winning committee for these ABC rules. The same argument holds for SAV.

To see that CC fails strong Pareto efficiency, consider consider the approval profile

1 × {a, c, d} 1 × {b, c, d}.

For k = 2, {a, b} is a winning committee even though it is dominated by {c, d}.
To see that MAV fails strong Pareto efficiency, consider consider the approval

profile

1 × {a, c} 1 × {b, c} 1 × {d, e}.

For k = 1, there is always one voter with Hamming distance 3 to any size-1 com-
mittee. Consequently, all size-1 committees are winning even though {c} dominates
{a} and {b}. �
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Proposition A.2 CC,PAV,Monroe,GreedyMonroe, leximax-Phragmén, theMethod
of Equal Shares, and MAV do not satisfy committee monotonicity.

Proof All counterexamples are implemented (and verified) in the abcvoting
library [2].

First, let us consider the approval profile

2 × {a} 3 × {a, c} 3 × {b, c} 2 × {b},

CC, PAV, Monroe, leximax-Phragmén, and MAV choose {c} for k = 1 and {a, b} for
k = 2.

For Greedy Monroe, consider the approval profile A defined as

A(1) = · · · = A(6) = {a}, A(7) = · · · = A(10) = {a, c}, A(11) = A(12)

= {a, b, c}, A(13) = A(14) = {a}, A(15) = {a, d}, A(16) = · · · = A(18) = {b, d}.

We assume that Greedy Monroe breaks ties between candidates in alphabetic order
and between voters in increasing order. For k = 2 groups have a size of 9, for k = 3
groups have a size of 6. Now, for k = 2, Greedy Monroe first chooses a and assigns
voters 1–9 and then candidate b assigning voters {11, 12, 16, 17, 18}. For k = 3,
Greedy Monroe first chooses a and assigns voters 1–6, then candidate c assigning
voters 7–12, and finally candidate d assigning voters 15–18. We see that {a, b} is not
a subset of {a, c, d}.

For the Method of Equal Shares, consider

A(1) : {a, d, e} A(2) : {a, c} A(3) : {b, e} A(4) : {c, d, f }.

For k = 3, the budget of voters is 0.75. Candidate a is selected in the first round
(due to alphabetic tiebreaking), reducing the budget of voters 1 and 2 to 0.25. Then
candidate c is added (again by tie-breaking); the budget of voter 2 and 4 is decreased
to 0. Only voters 1 and 3 have budget left. Candidate e is chosen last as the only
remaining candidate with sufficient support. We see that the Method of Equal Shares
selects the committee {a, c, e}.

For k = 4, the budget of voters is 1. In the first three rounds, candidates a, c, d,
and e can all be chosen by two voters paying 0.5. By alphabetic tie-breaking, the
Method of Equal Shares chooses a, c, d. In the fourth round, the remaining budgets
are 0, 0, 1, 0 for voters 1–4, respectively. Thus, in the last round, candidate b is
chosen.

We see that the Method of Equal Shares selects {a, c, e} and {a, b, c, d} and
is thus not committee monotone. Note that this example does not use the second
phase of the Method of Equal Shares (based on seq-Phragmén) and thus works
independently of the chosen method how to fill remaining committee seats (i.e., the
second phase). �
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Proposition A.3 Thiele methods, rev-seq-PAV, MAV, and SAV satisfy support mono-
tonicity with additional voters; seq-PAV, seq-CC, seq-Phragmén, and leximax-
Phragmén satisfy candidate monotonicity with additional voters but fail support
monotonicity with additional voters. Further, Monroe, Greedy Monroe, and the
Method of Equal Shares fail candidate monotonicity with additional voters.

AV and SAV satisfy support monotonicity without additional voters; PAV, CC,
seq-PAV, seq-CC, rev-seq-PAV, Monroe, greedy-Monroe, seq-Phragmén, leximax-
Phragmén, the Method of Equal Shares, and MAV satisfy candidate monotonicity
without additional voters; none of these satisfy support monotonicity without addi-
tional voters.

Proof All counterexamples are additionally implemented (and verified) in the
abcvoting library [2].

Support monotonicity with additional voters: Sánchez-Fernández and Fisteus
[6] show that Thiele methods, MAV, and SAV satisfy support monotonicity with
additional voters (referred to as “support monotonicity with population increase” in
their paper)

We prove that rev-seq-PAV satisfies support monotonicity with additional voters
as well: Recall that rev-seq-PAV is resolute by definition. Let X be a subset of the
winning committee and assume we add a voter approving X . We claim that exactly
the same candidates are removed and in exactly the same order. Let us prove this
by induction and assume it holds for rounds m, . . . , �, where � ≤ m (recall that
in rev-seq-PAV we count the rounds in the reverse order). As in rounds m, . . . , �

the same candidates were removed, the marginal contribution of candidates outside
of X is the same. The marginal contribution of candidates contained in X is larger.
Consequently, the candidate with the least marginal contribution is the same as it was
in the original election and thus not a candidate in X . We conclude that an additional
voter approving X does not change the winning committee.

Janson [1] (based on Phragmén [5]) proves that seq-PAV, rev-seq-PAV, and seq-
Phragmén satisfy candidate monotonicity with additional voters. Further, leximax-
Phragmén satisfies candidate monotonicity with additional voters; this is a conse-
quence of the fact that it satisfiesweak supportmonotonicitywith population increase
[6], and the proof for seq-PAV in this paper also holds for seq-CC. A counterexample
showing that seq-Phragmén fails support monotonicity with additional voters can be
found in [1, 3]. Further, counterexamples for leximax-Phragmén and seq-PAV can
be found in [6].

To see that seq-CC fails support monotonicity with additional voters, consider the
following election instance:

3 × {a} 1 × {a, c, d} 1 × {b} 2 × {b, c}
1 × {b, d} 2 × {c} 2 × {d}.

For k = 3, the winning committee according to seq-CC is {a, c, d} (in order c, a, d,
assuming alphabetic tiebreaking). If an additional voter approves {a, d}, seq-CC
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returns {a, b, c} (in order a, b, c, assuming alphabetic tiebreaking) and hence seq-
CC fails support monotonicity with additional voters.

To see that Greedy Monroe fails candidate monotonicity with additional voters,
consider the following election instance:

1 × {b, c, d} 1 × {a, c, f } 1 × {a, d, e} 1 × {c, e}
1 × {a, b} 2 × {d, f } 1 × {b, e} 1 × {b, f }.

For k = 3, the winning committee according to Greedy Monroe is {b, e, f }. If an
additional voter approves {e}, the winning committees changes to {b, c, d}. This
committee does not contain e and henceGreedyMonroe fails candidatemonotonicity
with additional voters.

For the Method of Equal Shares, consider the following instance:

1 × {b, d} 1 × {a, b} 1 × {b, d, e} 1 × {a, e}
2 × {c, d, e} 1 × {c, e} 1 × {a, c, e} 1 × {b, c, d}.

For k = 3, the winning committee according to the Method of Equal Shares is
{a, d, e}. If an additional voter approves {a}, the winning committee changes to
{b, c, e}. As this committee does not contain a, the Method of Equal Shares fails
candidate monotonicity with additional voters.

The Method of Equal Shares also fails candidate monotonicity with additional
voters if only the first phase of the method is considered (i.e., the method may return
fewer than k candidates). For the profile

2 × {a, b, c} 1 × {a, g} 1 × {d, e} 1 × {b, d, f } 1 × {a, f } 1 × {h}
1 × {a, h} 1 × {b, h} 1 × {b, d} 1 × {d, e, f } 1 × {c, e, h}.

The original winning committee is {a, b, e}. If an additional voter approves {e}, the
winning committee changes to {a, d, h} (assuming alphabetic tiebreaking). Thus,
Equal Shares without the 2nd phase also fails candidate monotonicity with additional
voters.

Finally, an example showing that Monroe violates candidate monotonicity with
additional voters can be found in [6].

Support monotonicity without additional voters: AV and SAV satisfy sup-
port monotonicity without additional voters [6]. PAV, CC, seq-PAV, seq-CC,1 rev-
seq-PAV, Monroe, seq-Phragmén, leximax-Phragmén, and MAV satisfy candidate
monotonicity without additional voters [1, 6].

To see that Greedy Monroe satisfies candidate monotonicity without additional
voters, let c be a candidate in the winning committee. Now note that a voter addition-
ally approving c can only lead to c being added in an earlier round. Hence, it is still
contained in the winning committee (which may change, however). An analogous
argument holds for the Method of Equal Shares as well.

1 The proof is only stated for seq-PAV but holds for seq-CC as well.
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PAV,CC,Monroe, leximax-Phragmén, andMAVdonot satisfy the stronger axiom,
i.e., supportmonotonicity without additional voters, as shown by Sánchez-Fernández
and Fisteus [6]. Also seq-Phragmén fails this axiom [1, 3].

For seq-PAV, consider

1 × {c, d} 1 × {a, c} 1 × {a, d} 1 × {a, f }
1 × {b, c} 2 × {b, f } 1 × {c, e}.

For k = 3, the winning committee according to seq-PAV is {a, c, f }. If the first voter
changes her ballot from {c, d} to {a, c, d, f }, the winning committee changes to
{a, b, c} (using alphabetic tiebreaking). Thus seq-PAV fails support monotonicity
without additional voters.

For rev-seq-PAV, consider

2 × {a, e} 2 × {b, c, d} 1 × {d, e} 3 × {c, e} 1 × {b, d, e}
1 × {a, b, c} 1 × {c, d, e} 2 × {a, d, e} 1 × {b, d} 1 × {a, b}
1 × {a, d} 1 × {a, b, d} 1 × {b, c}.

For k = 3, the winning committee according to rev-seq-PAV is {c, d, e}. If the first
voter changes her ballot from {a, e} to {a, c, d, e}, the winning committee changes
to {b, d, e}. As this committee does not contain c, rev-seq-PAV fails support mono-
tonicity without additional voters.

To see that seq-CC fails support monotonicity without additional voters, consider
the profile

1 × {e} 1 × {a} 1 × {a, d} 3 × {b} 2 × {a, c} 1 × {b, c, d} 2 × {c}
2 × {d}.

The winning committee according to seq-CC is {b, c, d}. If the first voter changes
her ballot from {e} to {b, d, e}, the winning committee changes to {a, b, c}. Candi-
date d is no longer contained in the winning committee, hence seq-CC fails support
monotonicity without additional voters.

For the Method of Equal Shares, consider

1 × {b} 1 × {a, b, e} 2 × {b, e} 1 × {c} 1 × {a, c} 1 × {a}.

The original winning committee is {a, b, e}. If the first voter changes her ballot
from {b} to {a, b, e}, the winning committee changes to {a, b, c} (using alphabetic
tiebreaking). This contradicts support monotonicity without additional voters.

For Greedy Monroe, consider k = 2 and

A(1) : {d} A(2) : {c} A(3) : {b} A(4) : {a, c}.
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We assume alphabetic tiebreaking for candidates; for voters we assume that smaller
numbers are selected first. The winning committee is {b, c}. If the first voter addi-
tionally approves {b, c} (the new ballot is {b, c, d}, then b is selected in the first round
(tiebreaking between b and c) and is assigned to voters 1 and 2. In the second round
there is a tie between a, b, and c, and thus a is added to the committee. The winning
committee is now {a, c}, which contradicts support monotonicity without additional
voters. �

Proposition A.4 AV with a fixed tiebreaking order on candidates satisfies
cardinality-strategyproofness and thus inclusion-strategyproofness. CC, PAV, seq-
PAV, seq-CC, rev-seq-PAV, Monroe, Greedy Monroe, seq-Phragmén, leximax-
Phragmén, the Method of Equal Shares, MAV, and SAV do not satisfy inclusion-
strategyproofness.

Proof To see that AV satisfies cardinality-strategyproofness, consider a fixed voter
i . Observe that if i disapproves one of the (truly) approved candidates, say c, then
it may cause at most one additional candidate getting into the winning committee.
However, this will happen only if c is removed from thewinning committee. In such a
case, the satisfaction of i cannot increase. If i approves a not-yet approved candidate,
then this might only cause that this candidate replaces some other candidate in the
committee. Again, such a change cannot increase the satisfaction of the voter. Finally,
a voter changing her ballot can be decomposed into a sequence of changes which
consists of either approving a disliked candidate or disapproving a candidate that is
actually liked. Each such a change cannot increase the satisfaction of the voter, as
we have seen.

All counterexamples are also implemented (and verified) in the abcvoting
library [2]. Note that inclusion-strategyproofness is defined for resolute rules; hence
we assume lexicographic tie-breaking between committees for otherwise irresolute
rules. For tiebreaking between candidateswe assume alphabetic tiebreaking, as usual.

For CC consider the following profile with 5 voters:

1 × {a, b} 3 × {a} 1 × {c}.

We assume an arbitrary tiebreaking between committees and without loss of general-
ity we assume that a tie between committee {a, b} and {a, c} is resolved in favour of
{a, b}. For k = 2, the winning committee according to CC is {a, c} with a CC-score
of 5. If the first voter changes her ballot from {a, b} to {b}, committees {a, b} and
{a, c} are tied with a CC-score of 4. By lexicographic tiebreaking, committee {a, b}
wins and the voter benefited from the manipulation.

For PAV consider the following profile with 6 voters:

1 × {c, d, e} 1 × {a, b} 1 × {b, f } 1 × {a, c, d} 1 × {b, c, f } 1 × {c, e, f }.

For k = 3 the only winning committee is {b, c, f }. If the first voter submits {e}
instead of {c, d, e}, then {b, c, e} will become the only winning committee.
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For seq-PAV consider the following profile with 6 voters:

1 × {a, b} 1 × {b, d} 1 × {c, f } 1 × {a, b, f } 1 × {b, f } 1 × {b, c}.

For k = 3 thewinning committee is {b, c, f }. The first voter can successfullymanip-
ulate by changing her ballot to {a}—then thewinning committee changes to {a, b, f }.

For seq-CC consider the following profile with 12 voters:

1 × {b, e, f } 1 × {a, b} 1 × {d, e, f } 1 × {d, e} 1 × {b, f } 2 × {c, d}
1 × {a, b, c} 1 × {a, c} 1 × {a, b, e} 1 × {a, e, f } 1 × {b, c, d}.

For k = 3 the winning committee is {a, b, d}. The first voter can successfullymanip-
ulate by changing her ballot to {c}—then the winning committee changes to {b, c, e}.

For rev-seq-PAV consider the following profile with 5 voters:

1 × {a, b, c} 1 × {b, d} 1 × {b, c} 1 × {a, d, e} 1 × {b, e}.

For k = 2 the winning committee is {b, d} (using alphabetic tiebreaking). If the first
voter changes her ballot from {a, b, c} to {a}, then {a, b} will become the winning
committee. The first voter prefers this committee to {b, d}, thus she has an incentive
to misreport her preferences.

For Monroe consider the following profile with 12 voters:

1 × {b, d} 1 × {a, b, c} 1 × {b, e} 1 × {d, e} 1 × {e, f } 1 × {b, c, e}
1 × {c, d, e} 1 × {b, c} 2 × {a, f } 1 × {b, c, d} 1 × {a, d}.

For k = 3 the only winning committee is {a, b, e}. If the first voter changes her
ballot to { f }, the winning committee changes to {b, d, f }.

For Greedy Monroe consider the following profile with 4 voters:

1 × {a, b} 1 × {a, c, f } 1 × {a, c, d} 1 × {e, f }.

For k = 2 the winning committee is {a, c}. If the first voter changes her ballot to {b},
then {a, b} becomes the winning committee.

For seq-Phragmén consider the following profile with 6 voters:

1 × {a, b, c} 1 × {a, b} 1 × {b, f } 1 × {c, e} 1 × {b, e, f } 1 × {b, d, f }.

For k = 2 the winning committee is {b, f }. If the first voter changes her ballot from
{a, b, c} to {c}, then the winning committee changes to {b, c}, an outcome that the
voter strictly prefers to the original winning committee.

For leximax-Phragmén consider the following profile:

1 × {a, b} 3 × {b, c, d}.
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For k = 3, committee {b, c, d} is winning with a load of 0.75 distributed to each
voter. If the first voter changes her ballot from {a, b} to {a}, then all committees
are tied with a maximum load of 1. Due to lexicographic tiebreaking {a, b, c} wins,
which this voter strictly prefers to the original winning committee.

For the Method of Equal Shares consider the following profile with 6 voters:

1 × {b, c, d} 1 × {a, b} 1 × {b, d} 1 × {c, d} 2 × {d, e}.

For k = 3 the winning committee is {b, d, e}. The first voter can successfully manip-
ulate by changing her ballot to {c}—then the winning committee changes to {b, c, d}.

For MAV consider the following profile with 6 voters:

1 × {a, b, c} 1 × {b, d} 2 × {a, b, e} 1 × {a, b, d} 1 × {a, b}.

For k = 3 the unique winning committee is {a, b, d}. If the first voter changes her
ballot to {c}, then {a, b, c} becomes the only winning committee.

For SAV consider the following profile with 2 voters:

1 × {a, b, c} 1 × {d, e}.

For k = 1 the winning committees according to SAV are {d} and {e}; committee {d}
is chosen due to lexicographic tiebreaking. If the first voter changes her ballot to {a},
the winning committee will change to {a}, an outcome which is preferred by the first
voter. �

A.2 Additional Proofs from Chap. 4

Proposition A.5 If k divides n, then Greedy Monroe extends the largest remainders
method.

Proof Consider an apportionment instance with p political parties, C1, . . . ,Cp, and
let ni denote the number of votes cast on party Ci . Since n is divisible by k, Greedy
Monroe always tries to assign a candidate to n

k voters. Observe that:

ni − n

k
<

⌊
k · ni

n

⌋
· n
k

≤ ni .

Let k1 = ∑p
i=1�k · ni/n�. In the first k1 rounds Greedy Monroe assigns to each

party Ci exactly �k · ni/n� seats. This is consistent with the first phase of the largest
remainders method. During these rounds, whenever Greedy Monroe assigns a seat
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to a party, it removes n/k of its supporters. Then, each party Ci is left with less than
n
k supporters. Specifically, party Ci is left with the following number of supporters:

ni −
⌊
k · ni

n

⌋
· n
k

= n

k

(
k · ni

n
−

⌊
k · ni

n

⌋)
.

Next, Greedy Monroe will assign the remaining seats to the parties in the order of
decreasing values k · ni/n − �k · ni/n�, that is, it will proceed exactly as the largest
remainders method. �

Proposition A.6 In the general case (when k does not have to divide n), Greedy
Monroe and Monroe do not extend the largest remainders method.

Proof Consider an apportionment instance with 2 parties with, respectively,
50 votes and 31 votes. Assume the committee size is k = 4. For this instance LRM
gives 2 seats to each party. GreedyMonroe can proceed as follows. It starts by giving
the second party a representative and removing the group of 21 voters. Next it can
give 3 representatives to the first party (depending on tiebreaking). The Monroe rule
can also select 3 candidates from the first party and one candidate from the second
party. �

Proposition A.7 Greedy Monroe satisfies justified representation (JR).

Proof Sánchez-Fernández et al. [7] show that Greedy Monroe satisfies PJR if k
divides n, hence it also satisfies JR under this condition. However, Greedy Monroe
satisfies JR also without this additional constraint. Assume towards a contradiction
that GreedyMonroe fails JR for the election instance (A, k) and letW be the winning
committee according to Greedy Monroe. As W does not satisfy JR, there exists a
group of voters V of size at least n/k and a candidate c /∈ W approved by all of them.
Adding candidate c would have increased the Monroe score of the committee by at
least n/k in all rounds. Hence, the candidates contained inW also increased the score
by at least n/k each. Thus,W has aMonroe score of n, i.e., all voters have an approved
candidate in W , which implies that JR is satisfied. �

Proposition A.8 An ABC rule with a proportionality degree of fR(�) = � − 1 may
fail EJR.

Proof Consider the profile

2 × {a, b} 1 × {c, d}

for k = 3. An ABC rule that selects the committee {a, c, d} fails EJR, but may have a
proportionality degree of fR(�) = � − 1. (To fully define such an ABC rule, it could
behave as PAV on all other profiles.) �
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Proposition A.9 An ABC rule cannot satisfy both perfect representation and weak
Pareto efficiency.

Proof Consider the profile

2 × {a, c} 1 × {a, c, d} 1 × {a, d} 1 × {b, d} 3 × {b, c}.

For k = 2, there is exactly one committee that satisfies perfect representation:W1 =
{a, b}. This committee, however, is dominated by W2 = {c, d}. An ABC rule R
satisfies PR if it exclusively returns committees satisfying PR; hence W1 is the only
winning committee and thus R fails weak Pareto efficiency. �

Proposition A.10 The proportionality degree of the Method of Equal Shares is
between �−1

2 and �+1
2 . The proportionality degree of SAV and MAV is 0.

Proof For SAV fix � ∈ N, set the committee size to k = 2� + 1, and consider the
following profile withm = 2k candidates and n = k voters: the first � voters approve
candidates a1, . . . , ak and the next k − � voters approve b1, . . . , bk . SAV will select
the committee {b1, . . . , bk}. The group of the first � voters is �-cohesive, but no voter
gets any representative in the elected committee.

For MAV fix � ∈ N, set the committee size to k = � + 1, and consider the follow-
ing profile with m = 4k + 1 candidates and n = k voters: the first � voters approve
candidates a1, . . . , ak and the next voter approves b1, . . . , b3k+1. MAV will select a
k-element subset of {b1, . . . , b3k+1}. The group of the first � voters is �-cohesive, but
no voter gets any representative in the elected committee.

Finally, we consider the Method of Equal Shares. Since the method satisfies
EJR [4] and EJR implies a proportionality degree of at least f (�) = �−1

2 [7], we get
the lower-bound. For the upper bound consider the following instance. Fix � ∈ N.We
set n = k = �(�+1)

2 and m = k + �. The voters are divided into � groups N = N1 ∪
N2 ∪ . . . ∪ N� such that |Ni | = i for each i ∈ [�]. The set of the first k candidates
is also divided into � groups C = C1 ∪ C2 ∪ . . . ∪ C� such that |Ci | = i for each
i ∈ [�]. The set of remaining � candidates is denoted by A. The voters from Ni

approveCi . Additionally the first voter from each group Ni approves A. TheMethod
of Equal Shares can select the candidates fromC� first. Then the voters from N� have
no money left. Next the candidates from C�−1 are selected, etc. Consequently, the
method can return committee C1 ∪ C2 ∪ . . . ∪ C�. Consider the voters who approve
A. They form an �-cohesive group, but the average number of representatives that
they get equals 1 + 2 + . . . + � = �(�+1)

2 . This completes the proof. �
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