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Suffice it to remember what Kant asserted; 
that progress in every science is measured in 
terms of its use of mathematics. (Gori 2004, 44)

1. Introduction

International relations investigates a vast universe of political phenomena, 
most of it constituted by a mix of continuity and discreteness. The duration of 
diplomatic relations among countries, of peace between states, of international 
treaties, and of global international regimes in diverse policy domains are con-
tinuous variables; as are distance between capitals, speed of great power tran-
sitions, and probabilities associated with all international events. By contrast, 
the formal composition of a country’s diplomatic organization, of alliances, 
governmental and nongovernmental international organizations, as well as the 
requisites of effective deterrence and other extant policies, are discrete varia-
bles. Time, space, territories, and emotions are generally continuous, but with 
discrete features such as barriers, thresholds, empty spaces, layers, and bounda-
ries, which are discrete. This hybrid texture of continuity and discreteness—i.e., 
“concreteness,” meaning simultaneously continuous and discrete—is ubiquitous, 
consequential, and fundamental in international relations, as reflected by theory 
and research across the discipline (and throughout social science in general).

Research and analysis of hybrid theories of international relations is conduct-
ed through mathematical tools from the infinitesimal calculus of Newton and 
Leibniz and discrete calculus developed in recent decades. Both are needed to 
understand real-world international phenomena that are otherwise not know-
able through purely historical or narrative discussions (Gillespie 1976; Kline 
1985; Cioffi 1998). Until recently, however, infinitesimal and discrete calculi 
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have remained largely disjoint. Here we demonstrate a new unified calculus of 
hybrid functions with novel applications to a small, albeit representative and 
convincing sample of international relations theories. As a scientific system for 
exploration and discovery, this new analysis uncovers novel, significant, and 
often surprising features and properties of international phenomena that are 
otherwise inaccessible and, therefore, remain unknown, through earlier ap-
proaches. This investigation demonstrates results through formal mathemati-
cal and computational analysis supported by visual analytics, similar to the use 
of alternative “diagnostic imagery” in medical analyses or different ensembles 
of observational instruments in scientific research.

The next section provides examples of hybrid phenomena in international 
relations, followed by a section on the methodology of nabladot calculus for 
unified hybrid analysis. The fourth section investigates three specific cases that 
demonstrate hybrid analysis applied to international phenomena. Since our inter-
est is substantive (as in all applied mathematics), we focus mainly on significant 
features of international political phenomena rather than purely mathematical 
themes. The last section provides concluding remarks.

2. Hybridity and hybrid functions in international relations theories

Continuity and discreteness—ontological hybridity—are present in the 
following international phenomena and their respective theoretical explanans:

Peace and other compound international events. All international events—
e.g, political integration, alliance formation, conditions for peace, success of 
international regimes, deterrence requirements, nuclear proliferation contain-
ment, and international communication—are compound events, in the sense of 
probability theory, because they are always caused by several (i.e., more than 
one) conjunctive events (Bittinger and Crown 1982; Bruschi 1990; Goertz and 
Starr 2003). Consequently, the probability of an international event is a function 
of some discrete number of causal conditions required for its occurrence and a 
continuous value of probability associated with each causal event (Wohlstetter 
1968; Cioffi 1998, chs. 5–7).

Growth of great powers or empires (Taagepera’s law). At the actor-level of 
analysis, as an empire expands from some initially small size up to its maxi-
mum size, its growth is governed by a logistic function, where time is strictly 
continuous but the rate of polity expansion is discrete—by chunks of territory 
(provinces, other administrative units, conquered territories bound by natural 
barriers, fortifications, and other limiting factors (Taagepera 1968; 1978; 1979).

Wright-Snyder crisis theory of war. An inter-state war never “comes out of 
the blue” but, rather, originates from a prior crisis (a crisis being a metastable 
phase-transition, in complexity-theoretic terminology). The crisis- and bargain-
ing-based theory explains the onset of interstate war as the violent escalation 
outcome of a process with multiple outcomes, war amongst them. In this theory, 
the probability of war in a given epoch is a function of some discrete number of 
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crises during the epoch and the probability of escalation to war in each crisis 
(Wright 1942, 1271–76, fn. 38; Deutsch 1978; Snyder and Diesing 1977, 13–5 
et passim; Cioffi 1998, 160–63).

Loss-of-power gradient. At the relational or meso-level of analysis, continu-
ity and discreteness over accessible time and space have mixed effects on the ex-
ercise of power (“power projection”) at distances away from home base. While 
the rate of decay can assume positive continuous values, distance from home 
base is discrete (determined by military bases, supply chains, and other discrete 
systems and networks), so the overall function of these two quantities is hybrid 
(Boulding 1962; Wohlstetter 1968).

Size of war alliances (Horvath-Foster law). The frequency of war alliances 
in politico-military history shows a pattern that decreases with the size of the 
alliance. Informally, there have been many small war alliances, very few large 
ones, and an intermediate number in between (Horvath & Foster 1963). This 
is known as a discrete Yule-Simon distribution with continuous parameter and 
is symptomatic of complex systems and generative processes that are far from 
equilibrium; otherwise, the size distribution of war alliances would be normal 
or Gaussian (as in the height or weight of persons).

Warfare and international systemic polarity (Midlarsky’s law). At the sys-
temic or macro-level of analysis, the annual frequency of warfare in the interna-
tional system varies in proportion to the number of great powers in the system, 
known as polarity. However, the frequency of wars increases with marginally 
decreasing increments in systemic polarity, so this too is a hybrid, nonlinear re-
lationship (Midlarsky 1974).

Numerous other instances of international phenomena and corresponding 
theoretical explanations exist in international relations. Here we shall use in-
stances 1, 3, and 6 to demonstrate how and why they are investigated through 
nabladot analysis, as described in the next section.

3. Mathematical methods for hybrid functions in IR

Consider a hybrid function, 
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3. Mathematical methods for hybrid functions in IR

Consider a hybrid function, Z = '(X,Y ), such that ' : (X,Y ) ! Z 2 R, where X and Y
are real-valued continuous and discrete independent variables, respectively.1 Nabladot analysis
of a hybrid function '(X,Y ) begins by (1) clarifying the hybrid domain of ', specifically its
substantive subdomains x 2 X and y 2 Y along each independent variable—such subdomain
always being a bounded subspace of some broader mathematical domain and then, (2) specifying
each variable’s unit of measurement. This initial phase of analysis normally includes various
graphs of ' for visual analysis, which are typically 2D or 3D surface graphs and contour plots of
the hybrid function under investigation. As we shall see, ensembles of these interrelated graphs
constitute theoretical landscapes—complete with singularities, basins, escarpments, canyons, and
other topographic features—that provide sometimes surprisingly faceted or nuanced explanations
and deeper understanding of each of the hybrid functions.

The next phase—and first properly analytical step in theoretical analysis—is to closely examine
the causal effect of each independent variable on the dependent variable of interest, which is how
the emergent field (dependent variable Z) is generated by the hybrid domain—given that ' maps
the former (causes) onto the latter (effects). This consists of two steps that examine absolute
and standardized effects, respectively. First, the first-order derivative and first-order difference
of hybrid function are separately calculated, graphed, and examined, to understand absolute
variations with respect to changes in X (continuous independent variable) and Y (discrete). This
phase maintains the original units of measurement corresponding to each variable, since derivatives
and differences are simple rates of change.

Second, the point elasticity and the arc elasticity of ', denoted by ⌘x and ⌘y, respectively,
are calculated to understand how patterns of variation in percentage change in each independent
variable compare independent of units of measurement (which is what elasticity operators ⌘x(Z)
and ⌘y(Z) are designed to investigate).2 Additional graphs and visual analytics are used as well to
better understand the structure and effects of elasticities—and add to the theoretical landscape of
each hybrid function. This second phase results in transformed standardized dimensional space
without units of measurements, making all independent variables and their direct effect on the
dependent variable directly comparable. These results lead to one or more dominance principles,
which are law-like statements that specify which independent variable has greatest causal effect on

1 We shall restrict attention to scalar hybrid functions, although vector hybrid functions also arise in nabladot
analysis of scalar functions, as we shall see later in section .4., just as they do in classical analysis. Surveys
of mathematical methods in political science and international relations include Cioffi (1979), Ashford et al.
(1993), Moore and Siegel (2013).

2 Economists call this “comparative statics,” a phrase we shall not use here because time can be an independent
variable of interest (e.g., as in Taagepera’s law of empires) which—by definition—is not static.
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(Horvath & Foster 1963). This is known as a discrete Yule-Simon distribution with continuous
parameter and is symptomatic of complex systems and generative processes that are far from
equilibrium; otherwise, the size distribution of war alliances would be normal or Gaussian (as
in the height or weight of persons).

6. Warfare and international systemic polarity (Midlarsky’s law). At the systemic or macro-level
of analysis, the annual frequency of warfare in the international system varies in proportion to
the number of great powers in the system, known as polarity. However, the frequency of wars
increases with marginally decreasing increments in systemic polarity, so this too is a hybrid,
nonlinear relationship (Midlarsky 1974).

Numerous other instances of international phenomena and corresponding theoretical explanations
exist in international relations. Here we shall use instances 1, 3, and 6 to demonstrate how and
why they are investigated through nabladot analysis, as described in the next section.

3. Mathematical methods for hybrid functions in IR

Consider a hybrid function, Z = '(X,Y ), such that ' : (X,Y ) ! Z 2 R, where X and Y
are real-valued continuous and discrete independent variables, respectively.1 Nabladot analysis
of a hybrid function '(X,Y ) begins by (1) clarifying the hybrid domain of ', specifically its
substantive subdomains x 2 X and y 2 Y along each independent variable—such subdomain
always being a bounded subspace of some broader mathematical domain and then, (2) specifying
each variable’s unit of measurement. This initial phase of analysis normally includes various
graphs of ' for visual analysis, which are typically 2D or 3D surface graphs and contour plots of
the hybrid function under investigation. As we shall see, ensembles of these interrelated graphs
constitute theoretical landscapes—complete with singularities, basins, escarpments, canyons, and
other topographic features—that provide sometimes surprisingly faceted or nuanced explanations
and deeper understanding of each of the hybrid functions.

The next phase—and first properly analytical step in theoretical analysis—is to closely examine
the causal effect of each independent variable on the dependent variable of interest, which is how
the emergent field (dependent variable Z) is generated by the hybrid domain—given that ' maps
the former (causes) onto the latter (effects). This consists of two steps that examine absolute
and standardized effects, respectively. First, the first-order derivative and first-order difference
of hybrid function are separately calculated, graphed, and examined, to understand absolute
variations with respect to changes in X (continuous independent variable) and Y (discrete). This
phase maintains the original units of measurement corresponding to each variable, since derivatives
and differences are simple rates of change.

Second, the point elasticity and the arc elasticity of ', denoted by ⌘x and ⌘y, respectively,
are calculated to understand how patterns of variation in percentage change in each independent
variable compare independent of units of measurement (which is what elasticity operators ⌘x(Z)
and ⌘y(Z) are designed to investigate).2 Additional graphs and visual analytics are used as well to
better understand the structure and effects of elasticities—and add to the theoretical landscape of
each hybrid function. This second phase results in transformed standardized dimensional space
without units of measurements, making all independent variables and their direct effect on the
dependent variable directly comparable. These results lead to one or more dominance principles,
which are law-like statements that specify which independent variable has greatest causal effect on

1 We shall restrict attention to scalar hybrid functions, although vector hybrid functions also arise in nabladot
analysis of scalar functions, as we shall see later in section .4., just as they do in classical analysis. Surveys
of mathematical methods in political science and international relations include Cioffi (1979), Ashford et al.
(1993), Moore and Siegel (2013).

2 Economists call this “comparative statics,” a phrase we shall not use here because time can be an independent
variable of interest (e.g., as in Taagepera’s law of empires) which—by definition—is not static.
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
graphic analyses.

The main results of nabladot analysis shed new light on fundamental, real-world, substantive
properties and features of the original hybrid function under investigation, features that remain
hidden or inaccessible through other forms of analysis. Each main formal expression is accompanied
by an interpretation in plain English, although this is not always possible without some loss of
precision or clarity. Some results can be somewhat complicated nonlinear functions that do not
further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
continuous and discrete dimensions, respectively, rather than create new unit vectors for each variable.

4 Use of the partial derivative with respect to Y (a discrete variable) instead of the partial difference—which
is often used in approximations—produces a measurable error that varies in magnitude depending on the
structure of ' and values of Y . Measurable discrepancies between the two operators (nabladot and classical
nabla) are demonstrable but beyond the present scope due to space limitations (Cioffi 2021).
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where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4
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Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
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further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
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effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
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inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
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and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:
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where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
graphic analyses.

The main results of nabladot analysis shed new light on fundamental, real-world, substantive
properties and features of the original hybrid function under investigation, features that remain
hidden or inaccessible through other forms of analysis. Each main formal expression is accompanied
by an interpretation in plain English, although this is not always possible without some loss of
precision or clarity. Some results can be somewhat complicated nonlinear functions that do not
further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
continuous and discrete dimensions, respectively, rather than create new unit vectors for each variable.

4 Use of the partial derivative with respect to Y (a discrete variable) instead of the partial difference—which
is often used in approximations—produces a measurable error that varies in magnitude depending on the
structure of ' and values of Y . Measurable discrepancies between the two operators (nabladot and classical
nabla) are demonstrable but beyond the present scope due to space limitations (Cioffi 2021).
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
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further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
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5. Size of war alliances (Horvath-Foster law). The frequency of war alliances in politico-military
history shows a pattern that decreases with the size of the alliance. Informally, there have
been many small war alliances, very few large ones, and an intermediate number in between
(Horvath & Foster 1963). This is known as a discrete Yule-Simon distribution with continuous
parameter and is symptomatic of complex systems and generative processes that are far from
equilibrium; otherwise, the size distribution of war alliances would be normal or Gaussian (as
in the height or weight of persons).

6. Warfare and international systemic polarity (Midlarsky’s law). At the systemic or macro-level
of analysis, the annual frequency of warfare in the international system varies in proportion to
the number of great powers in the system, known as polarity. However, the frequency of wars
increases with marginally decreasing increments in systemic polarity, so this too is a hybrid,
nonlinear relationship (Midlarsky 1974).

Numerous other instances of international phenomena and corresponding theoretical explanations
exist in international relations. Here we shall use instances 1, 3, and 6 to demonstrate how and
why they are investigated through nabladot analysis, as described in the next section.

3. Mathematical methods for hybrid functions in IR

Consider a hybrid function, Z = '(X,Y ), such that ' : (X,Y ) ! Z 2 R, where X and Y
are real-valued continuous and discrete independent variables, respectively.1 Nabladot analysis
of a hybrid function '(X,Y ) begins by (1) clarifying the hybrid domain of ', specifically its
substantive subdomains x 2 X and y 2 Y along each independent variable—such subdomain
always being a bounded subspace of some broader mathematical domain and then, (2) specifying
each variable’s unit of measurement. This initial phase of analysis normally includes various
graphs of ' for visual analysis, which are typically 2D or 3D surface graphs and contour plots of
the hybrid function under investigation. As we shall see, ensembles of these interrelated graphs
constitute theoretical landscapes—complete with singularities, basins, escarpments, canyons, and
other topographic features—that provide sometimes surprisingly faceted or nuanced explanations
and deeper understanding of each of the hybrid functions.

The next phase—and first properly analytical step in theoretical analysis—is to closely examine
the causal effect of each independent variable on the dependent variable of interest, which is how
the emergent field (dependent variable Z) is generated by the hybrid domain—given that ' maps
the former (causes) onto the latter (effects). This consists of two steps that examine absolute
and standardized effects, respectively. First, the first-order derivative and first-order difference
of hybrid function are separately calculated, graphed, and examined, to understand absolute
variations with respect to changes in X (continuous independent variable) and Y (discrete). This
phase maintains the original units of measurement corresponding to each variable, since derivatives
and differences are simple rates of change.

Second, the point elasticity and the arc elasticity of ', denoted by ⌘x and ⌘y, respectively,
are calculated to understand how patterns of variation in percentage change in each independent
variable compare independent of units of measurement (which is what elasticity operators ⌘x(Z)
and ⌘y(Z) are designed to investigate).2 Additional graphs and visual analytics are used as well to
better understand the structure and effects of elasticities—and add to the theoretical landscape of
each hybrid function. This second phase results in transformed standardized dimensional space
without units of measurements, making all independent variables and their direct effect on the
dependent variable directly comparable. These results lead to one or more dominance principles,
which are law-like statements that specify which independent variable has greatest causal effect on

1 We shall restrict attention to scalar hybrid functions, although vector hybrid functions also arise in nabladot
analysis of scalar functions, as we shall see later in section .4., just as they do in classical analysis. Surveys
of mathematical methods in political science and international relations include Cioffi (1979), Ashford et al.
(1993), Moore and Siegel (2013).

2 Economists call this “comparative statics,” a phrase we shall not use here because time can be an independent
variable of interest (e.g., as in Taagepera’s law of empires) which—by definition—is not static.
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
graphic analyses.

The main results of nabladot analysis shed new light on fundamental, real-world, substantive
properties and features of the original hybrid function under investigation, features that remain
hidden or inaccessible through other forms of analysis. Each main formal expression is accompanied
by an interpretation in plain English, although this is not always possible without some loss of
precision or clarity. Some results can be somewhat complicated nonlinear functions that do not
further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
continuous and discrete dimensions, respectively, rather than create new unit vectors for each variable.

4 Use of the partial derivative with respect to Y (a discrete variable) instead of the partial difference—which
is often used in approximations—produces a measurable error that varies in magnitude depending on the
structure of ' and values of Y . Measurable discrepancies between the two operators (nabladot and classical
nabla) are demonstrable but beyond the present scope due to space limitations (Cioffi 2021).
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 are calcu-
lated next, along with corresponding graphs for investigating the resulting vec-
tor field. Each pair of plots for a vector field and corresponding norm should 
use identical domains to facilitate understanding through comparative analy-
sis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs. 
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, 
Laplacian, Hessian, and Jacobian are subsequently calculated to shed addition-
al (and usually new) light on the original function 

NABLADOT ANALYSIS OF HYBRID THEORIES IN INTERNATIONAL RELATIONS

5. Size of war alliances (Horvath-Foster law). The frequency of war alliances in politico-military
history shows a pattern that decreases with the size of the alliance. Informally, there have
been many small war alliances, very few large ones, and an intermediate number in between
(Horvath & Foster 1963). This is known as a discrete Yule-Simon distribution with continuous
parameter and is symptomatic of complex systems and generative processes that are far from
equilibrium; otherwise, the size distribution of war alliances would be normal or Gaussian (as
in the height or weight of persons).

6. Warfare and international systemic polarity (Midlarsky’s law). At the systemic or macro-level
of analysis, the annual frequency of warfare in the international system varies in proportion to
the number of great powers in the system, known as polarity. However, the frequency of wars
increases with marginally decreasing increments in systemic polarity, so this too is a hybrid,
nonlinear relationship (Midlarsky 1974).

Numerous other instances of international phenomena and corresponding theoretical explanations
exist in international relations. Here we shall use instances 1, 3, and 6 to demonstrate how and
why they are investigated through nabladot analysis, as described in the next section.

3. Mathematical methods for hybrid functions in IR

Consider a hybrid function, Z = '(X,Y ), such that ' : (X,Y ) ! Z 2 R, where X and Y
are real-valued continuous and discrete independent variables, respectively.1 Nabladot analysis
of a hybrid function '(X,Y ) begins by (1) clarifying the hybrid domain of ', specifically its
substantive subdomains x 2 X and y 2 Y along each independent variable—such subdomain
always being a bounded subspace of some broader mathematical domain and then, (2) specifying
each variable’s unit of measurement. This initial phase of analysis normally includes various
graphs of ' for visual analysis, which are typically 2D or 3D surface graphs and contour plots of
the hybrid function under investigation. As we shall see, ensembles of these interrelated graphs
constitute theoretical landscapes—complete with singularities, basins, escarpments, canyons, and
other topographic features—that provide sometimes surprisingly faceted or nuanced explanations
and deeper understanding of each of the hybrid functions.

The next phase—and first properly analytical step in theoretical analysis—is to closely examine
the causal effect of each independent variable on the dependent variable of interest, which is how
the emergent field (dependent variable Z) is generated by the hybrid domain—given that ' maps
the former (causes) onto the latter (effects). This consists of two steps that examine absolute
and standardized effects, respectively. First, the first-order derivative and first-order difference
of hybrid function are separately calculated, graphed, and examined, to understand absolute
variations with respect to changes in X (continuous independent variable) and Y (discrete). This
phase maintains the original units of measurement corresponding to each variable, since derivatives
and differences are simple rates of change.

Second, the point elasticity and the arc elasticity of ', denoted by ⌘x and ⌘y, respectively,
are calculated to understand how patterns of variation in percentage change in each independent
variable compare independent of units of measurement (which is what elasticity operators ⌘x(Z)
and ⌘y(Z) are designed to investigate).2 Additional graphs and visual analytics are used as well to
better understand the structure and effects of elasticities—and add to the theoretical landscape of
each hybrid function. This second phase results in transformed standardized dimensional space
without units of measurements, making all independent variables and their direct effect on the
dependent variable directly comparable. These results lead to one or more dominance principles,
which are law-like statements that specify which independent variable has greatest causal effect on

1 We shall restrict attention to scalar hybrid functions, although vector hybrid functions also arise in nabladot
analysis of scalar functions, as we shall see later in section .4., just as they do in classical analysis. Surveys
of mathematical methods in political science and international relations include Cioffi (1979), Ashford et al.
(1993), Moore and Siegel (2013).

2 Economists call this “comparative statics,” a phrase we shall not use here because time can be an independent
variable of interest (e.g., as in Taagepera’s law of empires) which—by definition—is not static.
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 become accessible 
to direct investigation through formal tools of nabladot calculus and analysis. 
A novel and valuable feature of this approach is that nabladot calculus provides 
exact results in analytical investigations where the classical infinitesimal calcu-
lus of hybrid IR functions would provide approximations with errors over the 
discrete domain of independent variable(s).

4. Applications to areas of international relations

Here we shall investigate three illustrative cases of IR theories and research 
areas—numbered 1, 3, and 6 in section 2—where hybrid functions play a central 
role in describing and explaining political phenomena. The scientific purpose is 
to deepen our understanding and provide foundations for more advanced analy-
sis. Each “case study” follows the analytical procedure just outlined in section 3.

4.1 Case 1: Peace and other international events

All international events in the real world are “compound” because they are 
always produced by necessary conditions specific to the event. Such causal neces-
sity is universal—a fundamental axiom in all domains of international relations 
theory. For example, consider the event defined by the following expression:
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Here we shall investigate three illustrative cases of IR theories and research areas—numbered 1, 3,
and 6 in section .2.—where hybrid functions play a central role in describing and explaining political
phenomena. The scientific purpose is to deepen our understanding and provide foundations for
more advanced analysis. Each “case study” follows the analytical procedure just outlined in section
.3..

4.1 Case 1: Peace and other international events

All international events in the real world are “compound” because they are always produced by
necessary conditions specific to the event. Such causal necessity is universal—a fundamental axiom
in all domains of international relations theory. For example, consider the event defined by the
following expression:

S ⌘ “a state of stable peace exists between two countries.” (2)

This is a compound event because S requires the following set of causally necessary conditions,
each of which constitutes an event by itself:

1. Neither state will pursue issues deemed as highly threatening to the other, as opposed to
acting completely oblivious or independently of extant foreign interests.

2. Each state may prefer to negotiate over colliding interests, before escalating to war.

3. When states do negotiate, they may—depending on conditions—find a nonviolent resolution.

The universal existence of such necessary conditions makes S a compound event, by definition.
Specifically, every international event E is produced by causal conjunction (operator ^) of

necessary events—i.e., set-theoretic intersection (operator \) or Boolean logic product (operator
AND). Let {Xi}ni=1 denote a set of N necessary events that produce E. Causal production of E is
specified by an event function,  E : {Xi} ! E, which maps necessary events in {Xi} onto E using
causal conjunctions. The number of events in a compound event (its “size” or “conjunctivity”), is
called cardinality, |E| = {1, 2, 3, · · · , n} ⇢ N , which is always a natural number (positive integer),
so cardinality (or “event size”) is always a discrete variable. For example, compound event S in
equation 2 (“a size 3 event”) is first-order conjunctive with respect to its three causally necessary
events.5 Formally, we can summarize these ideas through the following expression:

E (  (E) = E1 ^ E2 ^ · · · ^ En =

n̂

i=1

Ei. (3)

Next, an international event E has probability Pr (E) that is determined by the naturally uncertain
occurrence of necessary conditions—a type of causation known as probabilistic causality (Salmon
1980; Suppes 1984; Eels 1991). Based on Kolmogorov’s (1933) fundamental theorem of compound
events, the joint probability E of compound event E is given by the following expression:

Pr(E) = Pr(E1) · Pr(E2) · . . . · Pr(En) =

nY

i=1

Pr(Ei), (4)

where events Ei are independent; when they are not independent, conditional probabilities are
used and, by Kolmogorov’s theorem, they still multiply. Letting Pr(E) = E and Pr(Ei) = pi, since

5 An event function  is also called indicator function, structure function, or production function, in areas of
mathematics, engineering, and economics, respectively.
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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5	 An event function 

NABLADOT ANALYSIS OF HYBRID THEORIES IN INTERNATIONAL RELATIONS

4. Applications to areas of international relations

Here we shall investigate three illustrative cases of IR theories and research areas—numbered 1, 3,
and 6 in section .2.—where hybrid functions play a central role in describing and explaining political
phenomena. The scientific purpose is to deepen our understanding and provide foundations for
more advanced analysis. Each “case study” follows the analytical procedure just outlined in section
.3..

4.1 Case 1: Peace and other international events

All international events in the real world are “compound” because they are always produced by
necessary conditions specific to the event. Such causal necessity is universal—a fundamental axiom
in all domains of international relations theory. For example, consider the event defined by the
following expression:

S ⌘ “a state of stable peace exists between two countries.” (2)

This is a compound event because S requires the following set of causally necessary conditions,
each of which constitutes an event by itself:

1. Neither state will pursue issues deemed as highly threatening to the other, as opposed to
acting completely oblivious or independently of extant foreign interests.

2. Each state may prefer to negotiate over colliding interests, before escalating to war.

3. When states do negotiate, they may—depending on conditions—find a nonviolent resolution.

The universal existence of such necessary conditions makes S a compound event, by definition.
Specifically, every international event E is produced by causal conjunction (operator ^) of

necessary events—i.e., set-theoretic intersection (operator \) or Boolean logic product (operator
AND). Let {Xi}ni=1 denote a set of N necessary events that produce E. Causal production of E is
specified by an event function,  E : {Xi} ! E, which maps necessary events in {Xi} onto E using
causal conjunctions. The number of events in a compound event (its “size” or “conjunctivity”), is
called cardinality, |E| = {1, 2, 3, · · · , n} ⇢ N , which is always a natural number (positive integer),
so cardinality (or “event size”) is always a discrete variable. For example, compound event S in
equation 2 (“a size 3 event”) is first-order conjunctive with respect to its three causally necessary
events.5 Formally, we can summarize these ideas through the following expression:

E (  (E) = E1 ^ E2 ^ · · · ^ En =

n̂

i=1

Ei. (3)

Next, an international event E has probability Pr (E) that is determined by the naturally uncertain
occurrence of necessary conditions—a type of causation known as probabilistic causality (Salmon
1980; Suppes 1984; Eels 1991). Based on Kolmogorov’s (1933) fundamental theorem of compound
events, the joint probability E of compound event E is given by the following expression:

Pr(E) = Pr(E1) · Pr(E2) · . . . · Pr(En) =

nY

i=1

Pr(Ei), (4)

where events Ei are independent; when they are not independent, conditional probabilities are
used and, by Kolmogorov’s theorem, they still multiply. Letting Pr(E) = E and Pr(Ei) = pi, since

5 An event function  is also called indicator function, structure function, or production function, in areas of
mathematics, engineering, and economics, respectively.
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cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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Figura 1. Probability of an international event E(P,N) as a hybrid function of the probability P of N necessary
conditions for its occurrence. (a) 3D surface of hybrid function E = PN ; (b) contour plot of (a); (c) 3D surface of

@pE, the first-order partial derivative of E(P,N) with respect to P ; (d) contour plot of (c); (e) 3D surface of
∆nE, the first-order partial difference of E(P,N) with respect to N ; (f) contour plot of (e).
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =
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= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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Th ese fi rst insights begin to shed light on the nature of international events 
as a function of their necessary conditions. However, causal probability P and 
event size N are measured in diff erent units (probability and number of events, 
respectively), so absolute rates of change (equations 7 and 8) fail to explain which 
variable has dominant eff ect on E. To solve this problem we obtain and analyze 
standardized (or percentage) rates of change in E with respect to P and N (called 
elasticities), as in Figure 2. Calculating the point elasticity and the arc elasticity 
of E with respect to P and N, respectively:
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These first insights begin to shed light on the nature of international events as a function
of their necessary conditions. However, causal probability P and event size N are measured
in different units (probability and number of events, respectively), so absolute rates of change
(equations 7 and 8) fail to explain which variable has dominant effect on E. To solve this problem
we obtain and analyze standardized (or percentage) rates of change in E with respect to P and N
(called elasticities), as in Figure 2. Calculating the point elasticity and the arc elasticity of E with
respect to P and N , respectively:

⌘pE = N (for P ’s percentage effect on E, in Figures 1c and d) (9)
⌘nE = (P − 1)N (for N ’s percentage effect on E, in Figures 1e and f). (10)

We see immediately that these standardized effects on E are very different from the earlier absolute,
unit-based effects (equations 7 and 8).

The point elasticity—percentage change in the probability of an international event with
respect to percentage change in P—is constant, as in Figures 2a and b, meaning that a percentage
variation in probability of an international event E relative to a percentage variation in causal
probability P is determined solely by event size N and is independent of P . By contrast, arc
elasticity—percentage change in E with respect to percentage change in N—is linear in both
independent variables, as in Figures 2c and d, resulting in a nonlinear scalar field as evidenced by
the contour plot.

Comparing the two elasticities (equations 9 and 10) answers the universal question concerning
which of the two causal variables has the dominant or greater effect on the probability of an
international event. Since N > (P − 1)N , this means that point elasticity ⌘p is greater than the
arc elasticity ⌘n. Therefore, E is more sensitive to change in P (probability of necessary causal
events) than to change in cardinality N—a result that may be called dominance principle for

international events.
Although their effects differ, in reality both variables have joint, concurrent effects on inter-

national events. The joint effects of P and N on E can be better understood by calculating the
gradient of E with respect to both variables using the nabladot operator, as follows:

r·E = @pP
N i+∆nP

N j (11)

= NP (N−1) i+ (P − 1)PN j, (12)

which is a two-dimensional vector function E =  (P,N). The emergent vector field of this hybrid
gradient is in Figure 2e and corresponding vector magnitude or norm |E|(P,N), which is a scalar
function, is shown in Figure 2f. We see immediately that norm |E| is very similar to @pE in
Figures 1e and d, which is not an intuitive result or obvious insight that could be obtained from
casual comparison between the two dissimilar equations for the arc elasticity (equation 8) and the
magnitude of E.

This concludes the first analysis of our three “case studies.” The next two are presented in
slightly abbreviated form to omit some procedural repetitions while maintaining the method
outlined in section .3.. Analysis of the probability of international events in this first case leads us
to investigate the probability of war onset—a special class of international event of fundamental
historical significance since early antiquity and of theoretical interest (at least) since Thucydides—in
the next section.
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These first insights begin to shed light on the nature of international events as a function
of their necessary conditions. However, causal probability P and event size N are measured
in different units (probability and number of events, respectively), so absolute rates of change
(equations 7 and 8) fail to explain which variable has dominant effect on E. To solve this problem
we obtain and analyze standardized (or percentage) rates of change in E with respect to P and N
(called elasticities), as in Figure 2. Calculating the point elasticity and the arc elasticity of E with
respect to P and N , respectively:

⌘pE = N (for P ’s percentage effect on E, in Figures 1c and d) (9)
⌘nE = (P − 1)N (for N ’s percentage effect on E, in Figures 1e and f). (10)

We see immediately that these standardized effects on E are very different from the earlier absolute,
unit-based effects (equations 7 and 8).

The point elasticity—percentage change in the probability of an international event with
respect to percentage change in P—is constant, as in Figures 2a and b, meaning that a percentage
variation in probability of an international event E relative to a percentage variation in causal
probability P is determined solely by event size N and is independent of P . By contrast, arc
elasticity—percentage change in E with respect to percentage change in N—is linear in both
independent variables, as in Figures 2c and d, resulting in a nonlinear scalar field as evidenced by
the contour plot.

Comparing the two elasticities (equations 9 and 10) answers the universal question concerning
which of the two causal variables has the dominant or greater effect on the probability of an
international event. Since N > (P − 1)N , this means that point elasticity ⌘p is greater than the
arc elasticity ⌘n. Therefore, E is more sensitive to change in P (probability of necessary causal
events) than to change in cardinality N—a result that may be called dominance principle for

international events.
Although their effects differ, in reality both variables have joint, concurrent effects on inter-

national events. The joint effects of P and N on E can be better understood by calculating the
gradient of E with respect to both variables using the nabladot operator, as follows:

r·E = @pP
N i+∆nP

N j (11)

= NP (N−1) i+ (P − 1)PN j, (12)

which is a two-dimensional vector function E =  (P,N). The emergent vector field of this hybrid
gradient is in Figure 2e and corresponding vector magnitude or norm |E|(P,N), which is a scalar
function, is shown in Figure 2f. We see immediately that norm |E| is very similar to @pE in
Figures 1e and d, which is not an intuitive result or obvious insight that could be obtained from
casual comparison between the two dissimilar equations for the arc elasticity (equation 8) and the
magnitude of E.

This concludes the first analysis of our three “case studies.” The next two are presented in
slightly abbreviated form to omit some procedural repetitions while maintaining the method
outlined in section .3.. Analysis of the probability of international events in this first case leads us
to investigate the probability of war onset—a special class of international event of fundamental
historical significance since early antiquity and of theoretical interest (at least) since Thucydides—in
the next section.
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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These first insights begin to shed light on the nature of international events as a function
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⌘pE = N (for P ’s percentage effect on E, in Figures 1c and d) (9)
⌘nE = (P − 1)N (for N ’s percentage effect on E, in Figures 1e and f). (10)

We see immediately that these standardized effects on E are very different from the earlier absolute,
unit-based effects (equations 7 and 8).
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respect to percentage change in P—is constant, as in Figures 2a and b, meaning that a percentage
variation in probability of an international event E relative to a percentage variation in causal
probability P is determined solely by event size N and is independent of P . By contrast, arc
elasticity—percentage change in E with respect to percentage change in N—is linear in both
independent variables, as in Figures 2c and d, resulting in a nonlinear scalar field as evidenced by
the contour plot.

Comparing the two elasticities (equations 9 and 10) answers the universal question concerning
which of the two causal variables has the dominant or greater effect on the probability of an
international event. Since N > (P − 1)N , this means that point elasticity ⌘p is greater than the
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events) than to change in cardinality N—a result that may be called dominance principle for
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Comparing the two elasticities (equations 9 and 10) answers the universal question concerning
which of the two causal variables has the dominant or greater effect on the probability of an
international event. Since N > (P − 1)N , this means that point elasticity ⌘p is greater than the
arc elasticity ⌘n. Therefore, E is more sensitive to change in P (probability of necessary causal
events) than to change in cardinality N—a result that may be called dominance principle for

international events.
Although their effects differ, in reality both variables have joint, concurrent effects on inter-

national events. The joint effects of P and N on E can be better understood by calculating the
gradient of E with respect to both variables using the nabladot operator, as follows:

r·E = @pP
N i+∆nP

N j (11)

= NP (N−1) i+ (P − 1)PN j, (12)

which is a two-dimensional vector function E =  (P,N). The emergent vector field of this hybrid
gradient is in Figure 2e and corresponding vector magnitude or norm |E|(P,N), which is a scalar
function, is shown in Figure 2f. We see immediately that norm |E| is very similar to @pE in
Figures 1e and d, which is not an intuitive result or obvious insight that could be obtained from
casual comparison between the two dissimilar equations for the arc elasticity (equation 8) and the
magnitude of E.

This concludes the first analysis of our three “case studies.” The next two are presented in
slightly abbreviated form to omit some procedural repetitions while maintaining the method
outlined in section .3.. Analysis of the probability of international events in this first case leads us
to investigate the probability of war onset—a special class of international event of fundamental
historical significance since early antiquity and of theoretical interest (at least) since Thucydides—in
the next section.
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Figura 2. Elasticities and gradient of the probability of an international event E. (a) 3D surface of point elasticity
⌘p(E) respect to causal probability P ; (b) contour plot of (a); (c) 3D surface of arc elasticity ⌘n(E) with respect
to number of necessary conditions N ; (d) contour plot of (c); (e) vector field of the dot-gradient vector function

r·E; (f) contour plot of (e).
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4.2 Case 2: Crisis dynamics and onset of war

Explaining the outbreak of international war as caused by a prior crisis esca-
lation process—which includes challenging and resistance moves, bargaining, 
signaling, and other events, as opposed to some other causal mechanism—was 
first proposed by Quincy Wright (Wright 1942, 1271, fn. 38) and later extend-
ed and generalized by Glenn H. Snyder (Snyder  Diesing 1977, 13–7 et passim). 
The frame of reference here is the inter-state relational level of analysis and the 
specific explanandum is the probability W of a state being at war over a period of 
time, called an epoch in probability theory.6 During an epoch a country expe-
riences a number C of crises (defined as episodes during which hostilities may 
occur), each individual crisis having probability ω of escalating to war. As a re-
sult, the probability of no war over C crises is (1 – ω)C (by Kolmogorov’s theo-
rem), so a country’s epochal probability of war is given by

W = 1 – (1 – ω)C� (13)

which is a bivariate nonlinear hybrid function, where ω is continuous over the 
closed unit probability interval [0, 1] and C ≥ 2 is discrete. The case when C = 1 (a 
single crisis during an entire epoch) is trivial, since W(ω, 1) = ω, as is easily shown.

The politically relevant domain is bound by 0 ≤ ω ≤ 1 and 2 ≤ C 
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all probabilities are continuous variables (i.e., E and pi are variables, not events), we can rewrite
equation (4) in simpler notation:

E = p1 · p2 · . . . · pn =

nY

i=1

pi (5)

= PN , (6)

where P is the probability of causal events and N ⌘ |E| is the cardinality or event size. Note that
equation 6 is a hybrid function, because probability is continuous on the unit interval of real numbers
[0, 1]—which lies between (and includes) impossibility (E = 0) and certainty (E = 1.0)—while
event size is always a discrete or natural number (of necessary conditions).

The politically relevant domain of interest—in this case—is bound by 0  P  1 and 2  N / 20
along causal probability and size dimensions in the hybrid (p, c) domain. Specifically, equation 6 is
a hybrid function linearly dependent in P and exponentially in N , so this means that changes in
either variables will cause different political effects on the probability of an event.

The 3D surface graph of equation 6 is in Figure 1a, which shows values of the probability E of
an international event rising through a steep escarpment as causal probability P increases and
cardinality N decreases. The contour plot in Figure 1b shows the graph looking straight down,
which highlights the ample basin floor where causal probability is very low (0  P / 0.9), flanked
by the steep north-south escarpment along the east edge as P ! 1.0.

Note that change caused by each variable differs, as shown in Figures 1c through f. Calculating
the partial derivative and partial difference of E with respect to P and N , respectively:

@pE = NPN−1 (for P ’s effect on E, in Figures 1c and d) (7)

∆nE = PN+1 − PN (for N ’s effect on E, in Figures 1e and f). (8)

We see immediately that changes in causal probability P and event size N have different effects
on the probability of an international event E, besides the trivial observation that any change on
either variable has some effect on E (since @pE > 0 and ∆NE < 0, per equations 7-8). To wit:

Opposite political effects. Whereas change in causal probability P has proportional or positive
effect on E, change in event size N has an opposite effect. This is shown by the purple deep
bottom in Figure 1c versus the high red plateau in Figure 1e; both features observed over
approximately the same underlying (p, n)-domain.

First- and second-order effects. Whereas the contour plot of E(P,N) shows strictly concave
isocontours (Figure 1b), the contours of the derivative @pE (Figure 1d) also show a convex,
mild spur protruding on the southwestern wall of the escarpment, near p = 0.75 (third
contour, between green and blue elevations), which means more complex change for small-size
events. This is a second-order effect and not at all intuitive from the basic model (equation
6 and Figures 1a and b).

Second-order effects caused by changes in event size. The graphs of the change in E with
respect to event size, ∆nE (equation 8 and Figures 1e and f), show a pronounced ravine
or canyon along the north-south direction dropping into a deep precipice at relatively high
values of P as N ! 2. Interestingly, in this case all the isolines have mixed concavity (low
P ) and convexity (higher P values), which is another second-order effect.

Geometrically opposite extrema. The extreme high range of @pE in Figures 1c and d and
the extreme low range of ∆nE in Figures 1e and f have opposite (or inverse) geometries
with some common similarities: the former rises from a flat basin to an escarpment while
the latter drops from a large plateau toward a deepening canyon that dives into a deep
well. Both features are indicative of major political effects on event probability E caused by
underlying changes in causal probabilities P and event size N .
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 20 (same 
as before, both equations being functions of compound events).

The 3D surface graph of W(ω, C) is in Figure 3a, which shows the probability 
of war rising rapidly to a maximal plateau as escalation probability ω and C in-
crease. The contour plot in Figure 3b looks straight down, which highlights the 
broad plateau where war probability converges to 1, flanked by the steep north-
south escarpment along the west edge as ω → 0.

Each variable increases W in a different way, as shown in Figures 3c through 
f. Calculating the partial derivative and partial difference of W with respect to  
ω and C, respectively:
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4.2 Case 2: Crisis dynamics and onset of war

Explaining the outbreak of international war as caused by a prior crisis escalation process—which
includes challenging and resistance moves, bargaining, signaling, and other events, as opposed
to some other causal mechanism—was first proposed by Quincy Wright (Wright 1942, 1271, fn.
38) and later extended and generalized by Glenn H. Snyder (Snyder & Diesing 1977, 13–17 et
passim). The frame of reference here is the inter-state relational level of analysis and the specific
explanandum is the probability W of a state being at war over a period of time, called an epoch
in probability theory.6 During an epoch a country experiences a number C of crises (defined
as episodes during which hostilities may occur), each individual crisis having probability ! of
escalating to war. As a result, the probability of no war over C crises is (1−!)C (by Kolmogorov’s
theorem), so a country’s epochal probability of war is given by

W = 1− (1− !)C , (13)

which is a bivariate nonlinear hybrid function, where ! is continuous over the closed unit probability
interval [0, 1] and C ≥ 2 is discrete. The case when C = 1 (a single crisis during an entire epoch)
is trivial, since W (!, 1) = !, as is easily shown.

The politically relevant domain is bound by 0  !  1 and 2  C / 20 (same as before, both
equations being functions of compound events).

The 3D surface graph of W (!,C) is in Figure 3a, which shows the probability of war rising
rapidly to a maximal plateau as escalation probability ! and C increase. The contour plot in
Figure 3b looks straight down, which highlights the broad plateau where war probability converges
to 1, flanked by the steep north-south escarpment along the west edge as ! ! 0.

Each variable increases W in a different way, as shown in Figures 3c through f. Calculating
the partial derivative and partial difference of W with respect to ! and C, respectively:

@!W = C(1− !)C−1 (for !’s effect on W , in Figures 3c and d) (14)

∆cW = !(1− !)C (for C’s effect on W , in Figures 3e and f). (15)

Changes in escalation probability ! and number of crises C have clearly different effects on epochal
war probability W , although both functions are positively valued:

Congruent political effects. Change in either escalation probability ! or number of crises C
has a direct effect on W , as shown by strictly positive values of the graphs of derivatives and
differences in Figure 3c through f.

First- and second-order effects. Whereas the contour plot of W (!,C) shows strictly concave
isocontours (Figure 3b), contours of the derivative @!W (Figure 3d) also show a convex, mild
spur protruding on the southwestern wall of the escarpment, near p = 0.2, a second-order
effect in opposite direction to the previous case (Figure 1d) and, again, not apparent from
the basic model (equation 13 and Figures 3a and b).

Second-order effects caused by changes in number of crises. The graphs of the change
in E with respect to number of crises, ∆cW (equation 14 and Figures 3e and f), show a
pronounced spur along the north-south direction descending from a high value of W along
low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
symmetry: the former protrudes from the C boundary at low values of ! and C, while
the latter extends from the !-boundary from low values (p ⇡ 0.2) toward high values of C.
Both features are indicative of nonlinear effects on war probability W caused by underlying
changes in crisis escalation ! and number of crises C.

6 While Wright formulated the high-level crisis-probability framework, Snyder completed it by providing the
probabilistic causal mechanism (Suppes 1984) within the crisis branching process.
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isocontours (Figure 3b), contours of the derivative @!W (Figure 3d) also show a convex, mild
spur protruding on the southwestern wall of the escarpment, near p = 0.2, a second-order
effect in opposite direction to the previous case (Figure 1d) and, again, not apparent from
the basic model (equation 13 and Figures 3a and b).

Second-order effects caused by changes in number of crises. The graphs of the change
in E with respect to number of crises, ∆cW (equation 14 and Figures 3e and f), show a
pronounced spur along the north-south direction descending from a high value of W along
low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
symmetry: the former protrudes from the C boundary at low values of ! and C, while
the latter extends from the !-boundary from low values (p ⇡ 0.2) toward high values of C.
Both features are indicative of nonlinear effects on war probability W caused by underlying
changes in crisis escalation ! and number of crises C.

6 While Wright formulated the high-level crisis-probability framework, Snyder completed it by providing the
probabilistic causal mechanism (Suppes 1984) within the crisis branching process.
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Second-order effects caused by changes in number of crises. The graphs of the change
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pronounced spur along the north-south direction descending from a high value of W along
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Changes in escalation probability ω and number of crises C have clearly dif-
ferent effects on epochal war probability W, although both functions are posi-
tively valued:
Congruent political effects. Change in either escalation probability ω or num-
ber of crises C has a direct effect on W, as shown by strictly positive values of the 
graphs of derivatives and differences in Figure 3c through f.

6	 While Wright formulated the high-level crisis-probability framework, Snyder completed it 
by providing the probabilistic causal mechanism (Suppes 1984) within the crisis branching 
process.



NABLADOT ANALYSIS OF HYBRID THEORIES IN INTERNATIONAL RELATIONS

43 

First- and second-order effects. Whereas the contour plot of W(ω, C) shows strictly 
concave isocontours (Figure 3b), contours of the derivative 
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4.2 Case 2: Crisis dynamics and onset of war

Explaining the outbreak of international war as caused by a prior crisis escalation process—which
includes challenging and resistance moves, bargaining, signaling, and other events, as opposed
to some other causal mechanism—was first proposed by Quincy Wright (Wright 1942, 1271, fn.
38) and later extended and generalized by Glenn H. Snyder (Snyder & Diesing 1977, 13–17 et
passim). The frame of reference here is the inter-state relational level of analysis and the specific
explanandum is the probability W of a state being at war over a period of time, called an epoch
in probability theory.6 During an epoch a country experiences a number C of crises (defined
as episodes during which hostilities may occur), each individual crisis having probability ! of
escalating to war. As a result, the probability of no war over C crises is (1−!)C (by Kolmogorov’s
theorem), so a country’s epochal probability of war is given by

W = 1− (1− !)C , (13)

which is a bivariate nonlinear hybrid function, where ! is continuous over the closed unit probability
interval [0, 1] and C ≥ 2 is discrete. The case when C = 1 (a single crisis during an entire epoch)
is trivial, since W (!, 1) = !, as is easily shown.

The politically relevant domain is bound by 0  !  1 and 2  C / 20 (same as before, both
equations being functions of compound events).

The 3D surface graph of W (!,C) is in Figure 3a, which shows the probability of war rising
rapidly to a maximal plateau as escalation probability ! and C increase. The contour plot in
Figure 3b looks straight down, which highlights the broad plateau where war probability converges
to 1, flanked by the steep north-south escarpment along the west edge as ! ! 0.

Each variable increases W in a different way, as shown in Figures 3c through f. Calculating
the partial derivative and partial difference of W with respect to ! and C, respectively:

@!W = C(1− !)C−1 (for !’s effect on W , in Figures 3c and d) (14)

∆cW = !(1− !)C (for C’s effect on W , in Figures 3e and f). (15)

Changes in escalation probability ! and number of crises C have clearly different effects on epochal
war probability W , although both functions are positively valued:

Congruent political effects. Change in either escalation probability ! or number of crises C
has a direct effect on W , as shown by strictly positive values of the graphs of derivatives and
differences in Figure 3c through f.

First- and second-order effects. Whereas the contour plot of W (!,C) shows strictly concave
isocontours (Figure 3b), contours of the derivative @!W (Figure 3d) also show a convex, mild
spur protruding on the southwestern wall of the escarpment, near p = 0.2, a second-order
effect in opposite direction to the previous case (Figure 1d) and, again, not apparent from
the basic model (equation 13 and Figures 3a and b).

Second-order effects caused by changes in number of crises. The graphs of the change
in E with respect to number of crises, ∆cW (equation 14 and Figures 3e and f), show a
pronounced spur along the north-south direction descending from a high value of W along
low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
symmetry: the former protrudes from the C boundary at low values of ! and C, while
the latter extends from the !-boundary from low values (p ⇡ 0.2) toward high values of C.
Both features are indicative of nonlinear effects on war probability W caused by underlying
changes in crisis escalation ! and number of crises C.

6 While Wright formulated the high-level crisis-probability framework, Snyder completed it by providing the
probabilistic causal mechanism (Suppes 1984) within the crisis branching process.
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 (Figure 3d) also 
show a convex, mild spur protruding on the southwestern wall of the escarpment, 
near p = 0.2, a second-order effect in opposite direction to the previous case (Figure 
1d) and, again, not apparent from the basic model (equation 13 and Figures 3a and b).
Second-order effects caused by changes in number of crises. The graphs of the 
change in E with respect to number of crises, 
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 (equation 14 and Figures 3e and 
f), show a pronounced spur along the north-south direction descending from a high 
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Explaining the outbreak of international war as caused by a prior crisis escalation process—which
includes challenging and resistance moves, bargaining, signaling, and other events, as opposed
to some other causal mechanism—was first proposed by Quincy Wright (Wright 1942, 1271, fn.
38) and later extended and generalized by Glenn H. Snyder (Snyder & Diesing 1977, 13–17 et
passim). The frame of reference here is the inter-state relational level of analysis and the specific
explanandum is the probability W of a state being at war over a period of time, called an epoch
in probability theory.6 During an epoch a country experiences a number C of crises (defined
as episodes during which hostilities may occur), each individual crisis having probability ! of
escalating to war. As a result, the probability of no war over C crises is (1−!)C (by Kolmogorov’s
theorem), so a country’s epochal probability of war is given by

W = 1− (1− !)C , (13)

which is a bivariate nonlinear hybrid function, where ! is continuous over the closed unit probability
interval [0, 1] and C ≥ 2 is discrete. The case when C = 1 (a single crisis during an entire epoch)
is trivial, since W (!, 1) = !, as is easily shown.

The politically relevant domain is bound by 0  !  1 and 2  C / 20 (same as before, both
equations being functions of compound events).

The 3D surface graph of W (!,C) is in Figure 3a, which shows the probability of war rising
rapidly to a maximal plateau as escalation probability ! and C increase. The contour plot in
Figure 3b looks straight down, which highlights the broad plateau where war probability converges
to 1, flanked by the steep north-south escarpment along the west edge as ! ! 0.

Each variable increases W in a different way, as shown in Figures 3c through f. Calculating
the partial derivative and partial difference of W with respect to ! and C, respectively:

@!W = C(1− !)C−1 (for !’s effect on W , in Figures 3c and d) (14)

∆cW = !(1− !)C (for C’s effect on W , in Figures 3e and f). (15)

Changes in escalation probability ! and number of crises C have clearly different effects on epochal
war probability W , although both functions are positively valued:

Congruent political effects. Change in either escalation probability ! or number of crises C
has a direct effect on W , as shown by strictly positive values of the graphs of derivatives and
differences in Figure 3c through f.

First- and second-order effects. Whereas the contour plot of W (!,C) shows strictly concave
isocontours (Figure 3b), contours of the derivative @!W (Figure 3d) also show a convex, mild
spur protruding on the southwestern wall of the escarpment, near p = 0.2, a second-order
effect in opposite direction to the previous case (Figure 1d) and, again, not apparent from
the basic model (equation 13 and Figures 3a and b).

Second-order effects caused by changes in number of crises. The graphs of the change
in E with respect to number of crises, ∆cW (equation 14 and Figures 3e and f), show a
pronounced spur along the north-south direction descending from a high value of W along
low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
symmetry: the former protrudes from the C boundary at low values of ! and C, while
the latter extends from the !-boundary from low values (p ⇡ 0.2) toward high values of C.
Both features are indicative of nonlinear effects on war probability W caused by underlying
changes in crisis escalation ! and number of crises C.

6 While Wright formulated the high-level crisis-probability framework, Snyder completed it by providing the
probabilistic causal mechanism (Suppes 1984) within the crisis branching process.
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has a direct effect on W , as shown by strictly positive values of the graphs of derivatives and
differences in Figure 3c through f.
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low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
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Having obtained some initial insights on the nature of war probability as a function of crisis
dynamics, we now investigate the Wright-Snyder hybrid model through standardized variables not
based on units and, therefore, enable direct comparisons of causal effects. In this case we shall
proceed by obtaining and analyzing elasticities of W with respect to ! and C, as shown in Figure
4. Calculation of the point elasticity and the arc elasticity of W with respect to ! and C yields
the following set of hybrid equations:

⌘!W =
C!(1− !)C−1

1− (1− !)C
(for !’s percentage effect on W , in Figures 4a and b) (16)

⌘cW = C!(
1

1− (1− !)C
− 1) (for C’s percentage effect on W , in Figures 4c and d). (17)

Based on these equations we see again that these standardized effects on W are quite different
from the absolute, unit-based effects uncovered earlier (equations 14 and 15 and associated
figures). Recalling the meaning of elasticities, here, point elasticity stands for percentage change
in the probability of war onset with respect to percentage change in crisis escalation probability
!, while arc elasticity is the percentage change in epochal war probability W with respect to
percentage change in number of crises C during the epoch. In this case both elasticities are rather
complicated rational hybrid functions, including denominators that are exponential in C (from the
standardizing transformation), as shown in Figures 4a through d. While formal analysis is feasible,
visual analytics of graphs reveal numerous interesting features.

Figures 4a and b both show that point elasticity is high (i.e., war probability is strongly affected
by escalation probability) at low ! values and highest at lowest values of both ! and C (red
levels of the escarpment). This means that the risk of war changes most when crises are few and
escalation probability low. By contrast, at the blue-green levels, war probability W is less sensitive
to such instabilities (greater number of crises and higher escalation probability).

A rather subtle and surprising feature occurs along the front edge of the 3D surface in Figure
4, where point elasticity for all values of ! at the minimal boundary of C = 2 is convex (bulging
up), whereas elsewhere (away from the front edge of the surface) point elasticity is strictly concave
(@⌘ < 0). This makes minimal epochs with only two crises rather special, which is not immediately
intuitive. This particular property vanishes in all epochs with a multiplicity of crises beyond just
two (C ≥ 3). Concavity in point elasticity of W with respect to ! accelerates as the number of
crises surpasses the first single digits.

By contrast, arc elasticity of war probability W is strictly concave, as seen in Figures 4c and d,
convexity in this case being nonexistent (even at low C levels along the front edge).

Comparing the two elasticities (equations 16 and 17) yields the following dominance principle:
epochal probability of war W is more sensitive to change in escalation probability ! than to change
in number of crises C, because point elasticity ⌘! is greater than arc elasticity ⌘c. The different
but joint effects of escalation probability ! and number of crises C on epochal war probability
W are analyzed and understood by calculating the gradient of W with respect to both variables
using the nabladot operator, as follows:

r·W = @!
⇥
1− (1− !)C

⇤
i+∆C

⇥
1− (1− !)C

⇤
j (18)

= C(1− !)C−1 i+ !(1− !)C j, (19)

which is a two-dimensional vector function W =  (!,C). The resulting vector field of this hybrid
gradient is in Figure 4e and corresponding vector magnitude or norm |W|(!,C), now a scalar
function, is in Figure 4f.

We see from these results that both probability vector fields and norms |W| and |E|, in Figures
2e and f and Figures 4e and f, resemble each other—a surprising result from comparative analysis—
based on perfect bilateral vertical symmetries around the P = ! = 0.5 axis. This is another
political property not apparent from simple inspection of the basic models but consistent with
formal fundamental symmetry and equivalence between causal logic conjunction and disjunction
(De Morgan’s laws) associated with the probability of international events (AND-based conjunctive)
and epochal war probability (OR-based disjunctive), respectively.
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Figura 3. Epochal probability of war W (!,C) as a hybrid function of crisis escalation probability ! and number
of crises C: computational imagery from visualization analytics. (a) 3D surface of the hybrid function

W = (1− !)C ; (b) contour plot of (a); (c) 3D surface of @!W , the first-order partial derivative of W (!,C) with
respect to !; (d) contour plot of (c); (e) 3D surface of ∆c, the first-order partial difference of W (!,C) with

respect to C; (f) contour plot of (e).
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4.2 Case 2: Crisis dynamics and onset of war

Explaining the outbreak of international war as caused by a prior crisis escalation process—which
includes challenging and resistance moves, bargaining, signaling, and other events, as opposed
to some other causal mechanism—was first proposed by Quincy Wright (Wright 1942, 1271, fn.
38) and later extended and generalized by Glenn H. Snyder (Snyder & Diesing 1977, 13–17 et
passim). The frame of reference here is the inter-state relational level of analysis and the specific
explanandum is the probability W of a state being at war over a period of time, called an epoch
in probability theory.6 During an epoch a country experiences a number C of crises (defined
as episodes during which hostilities may occur), each individual crisis having probability ! of
escalating to war. As a result, the probability of no war over C crises is (1−!)C (by Kolmogorov’s
theorem), so a country’s epochal probability of war is given by

W = 1− (1− !)C , (13)

which is a bivariate nonlinear hybrid function, where ! is continuous over the closed unit probability
interval [0, 1] and C ≥ 2 is discrete. The case when C = 1 (a single crisis during an entire epoch)
is trivial, since W (!, 1) = !, as is easily shown.

The politically relevant domain is bound by 0  !  1 and 2  C / 20 (same as before, both
equations being functions of compound events).

The 3D surface graph of W (!,C) is in Figure 3a, which shows the probability of war rising
rapidly to a maximal plateau as escalation probability ! and C increase. The contour plot in
Figure 3b looks straight down, which highlights the broad plateau where war probability converges
to 1, flanked by the steep north-south escarpment along the west edge as ! ! 0.

Each variable increases W in a different way, as shown in Figures 3c through f. Calculating
the partial derivative and partial difference of W with respect to ! and C, respectively:

@!W = C(1− !)C−1 (for !’s effect on W , in Figures 3c and d) (14)

∆cW = !(1− !)C (for C’s effect on W , in Figures 3e and f). (15)

Changes in escalation probability ! and number of crises C have clearly different effects on epochal
war probability W , although both functions are positively valued:

Congruent political effects. Change in either escalation probability ! or number of crises C
has a direct effect on W , as shown by strictly positive values of the graphs of derivatives and
differences in Figure 3c through f.

First- and second-order effects. Whereas the contour plot of W (!,C) shows strictly concave
isocontours (Figure 3b), contours of the derivative @!W (Figure 3d) also show a convex, mild
spur protruding on the southwestern wall of the escarpment, near p = 0.2, a second-order
effect in opposite direction to the previous case (Figure 1d) and, again, not apparent from
the basic model (equation 13 and Figures 3a and b).

Second-order effects caused by changes in number of crises. The graphs of the change
in E with respect to number of crises, ∆cW (equation 14 and Figures 3e and f), show a
pronounced spur along the north-south direction descending from a high value of W along
low values of ! as C increases away from the minimal value of 2. All the isolines show mixed
concavity and convexity, which is another second-order effect.

Geometrically opposite spurs. The mild C-grown spur shown by @!W in Figures 3c and d
and the more pronounced !-grown spur in ∆CW in Figures 3e and f have a type of reflective
symmetry: the former protrudes from the C boundary at low values of ! and C, while
the latter extends from the !-boundary from low values (p ⇡ 0.2) toward high values of C.
Both features are indicative of nonlinear effects on war probability W caused by underlying
changes in crisis escalation ! and number of crises C.

6 While Wright formulated the high-level crisis-probability framework, Snyder completed it by providing the
probabilistic causal mechanism (Suppes 1984) within the crisis branching process.
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contrast, at the blue-green levels, war probability W is less sensitive to such in-
stabilities (greater number of crises and higher escalation probability).
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Having obtained some initial insights on the nature of war probability as a function of crisis
dynamics, we now investigate the Wright-Snyder hybrid model through standardized variables not
based on units and, therefore, enable direct comparisons of causal effects. In this case we shall
proceed by obtaining and analyzing elasticities of W with respect to ! and C, as shown in Figure
4. Calculation of the point elasticity and the arc elasticity of W with respect to ! and C yields
the following set of hybrid equations:

⌘!W =
C!(1− !)C−1

1− (1− !)C
(for !’s percentage effect on W , in Figures 4a and b) (16)

⌘cW = C!(
1

1− (1− !)C
− 1) (for C’s percentage effect on W , in Figures 4c and d). (17)

Based on these equations we see again that these standardized effects on W are quite different
from the absolute, unit-based effects uncovered earlier (equations 14 and 15 and associated
figures). Recalling the meaning of elasticities, here, point elasticity stands for percentage change
in the probability of war onset with respect to percentage change in crisis escalation probability
!, while arc elasticity is the percentage change in epochal war probability W with respect to
percentage change in number of crises C during the epoch. In this case both elasticities are rather
complicated rational hybrid functions, including denominators that are exponential in C (from the
standardizing transformation), as shown in Figures 4a through d. While formal analysis is feasible,
visual analytics of graphs reveal numerous interesting features.

Figures 4a and b both show that point elasticity is high (i.e., war probability is strongly affected
by escalation probability) at low ! values and highest at lowest values of both ! and C (red
levels of the escarpment). This means that the risk of war changes most when crises are few and
escalation probability low. By contrast, at the blue-green levels, war probability W is less sensitive
to such instabilities (greater number of crises and higher escalation probability).

A rather subtle and surprising feature occurs along the front edge of the 3D surface in Figure
4, where point elasticity for all values of ! at the minimal boundary of C = 2 is convex (bulging
up), whereas elsewhere (away from the front edge of the surface) point elasticity is strictly concave
(@⌘ < 0). This makes minimal epochs with only two crises rather special, which is not immediately
intuitive. This particular property vanishes in all epochs with a multiplicity of crises beyond just
two (C ≥ 3). Concavity in point elasticity of W with respect to ! accelerates as the number of
crises surpasses the first single digits.

By contrast, arc elasticity of war probability W is strictly concave, as seen in Figures 4c and d,
convexity in this case being nonexistent (even at low C levels along the front edge).

Comparing the two elasticities (equations 16 and 17) yields the following dominance principle:
epochal probability of war W is more sensitive to change in escalation probability ! than to change
in number of crises C, because point elasticity ⌘! is greater than arc elasticity ⌘c. The different
but joint effects of escalation probability ! and number of crises C on epochal war probability
W are analyzed and understood by calculating the gradient of W with respect to both variables
using the nabladot operator, as follows:

r·W = @!
⇥
1− (1− !)C

⇤
i+∆C

⇥
1− (1− !)C

⇤
j (18)

= C(1− !)C−1 i+ !(1− !)C j, (19)

which is a two-dimensional vector function W =  (!,C). The resulting vector field of this hybrid
gradient is in Figure 4e and corresponding vector magnitude or norm |W|(!,C), now a scalar
function, is in Figure 4f.

We see from these results that both probability vector fields and norms |W| and |E|, in Figures
2e and f and Figures 4e and f, resemble each other—a surprising result from comparative analysis—
based on perfect bilateral vertical symmetries around the P = ! = 0.5 axis. This is another
political property not apparent from simple inspection of the basic models but consistent with
formal fundamental symmetry and equivalence between causal logic conjunction and disjunction
(De Morgan’s laws) associated with the probability of international events (AND-based conjunctive)
and epochal war probability (OR-based disjunctive), respectively.
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Based on these equations we see again that these standardized effects on W are quite different
from the absolute, unit-based effects uncovered earlier (equations 14 and 15 and associated
figures). Recalling the meaning of elasticities, here, point elasticity stands for percentage change
in the probability of war onset with respect to percentage change in crisis escalation probability
!, while arc elasticity is the percentage change in epochal war probability W with respect to
percentage change in number of crises C during the epoch. In this case both elasticities are rather
complicated rational hybrid functions, including denominators that are exponential in C (from the
standardizing transformation), as shown in Figures 4a through d. While formal analysis is feasible,
visual analytics of graphs reveal numerous interesting features.

Figures 4a and b both show that point elasticity is high (i.e., war probability is strongly affected
by escalation probability) at low ! values and highest at lowest values of both ! and C (red
levels of the escarpment). This means that the risk of war changes most when crises are few and
escalation probability low. By contrast, at the blue-green levels, war probability W is less sensitive
to such instabilities (greater number of crises and higher escalation probability).

A rather subtle and surprising feature occurs along the front edge of the 3D surface in Figure
4, where point elasticity for all values of ! at the minimal boundary of C = 2 is convex (bulging
up), whereas elsewhere (away from the front edge of the surface) point elasticity is strictly concave
(@⌘ < 0). This makes minimal epochs with only two crises rather special, which is not immediately
intuitive. This particular property vanishes in all epochs with a multiplicity of crises beyond just
two (C ≥ 3). Concavity in point elasticity of W with respect to ! accelerates as the number of
crises surpasses the first single digits.

By contrast, arc elasticity of war probability W is strictly concave, as seen in Figures 4c and d,
convexity in this case being nonexistent (even at low C levels along the front edge).

Comparing the two elasticities (equations 16 and 17) yields the following dominance principle:
epochal probability of war W is more sensitive to change in escalation probability ! than to change
in number of crises C, because point elasticity ⌘! is greater than arc elasticity ⌘c. The different
but joint effects of escalation probability ! and number of crises C on epochal war probability
W are analyzed and understood by calculating the gradient of W with respect to both variables
using the nabladot operator, as follows:

r·W = @!
⇥
1− (1− !)C

⇤
i+∆C

⇥
1− (1− !)C

⇤
j (18)

= C(1− !)C−1 i+ !(1− !)C j, (19)

which is a two-dimensional vector function W =  (!,C). The resulting vector field of this hybrid
gradient is in Figure 4e and corresponding vector magnitude or norm |W|(!,C), now a scalar
function, is in Figure 4f.

We see from these results that both probability vector fields and norms |W| and |E|, in Figures
2e and f and Figures 4e and f, resemble each other—a surprising result from comparative analysis—
based on perfect bilateral vertical symmetries around the P = ! = 0.5 axis. This is another
political property not apparent from simple inspection of the basic models but consistent with
formal fundamental symmetry and equivalence between causal logic conjunction and disjunction
(De Morgan’s laws) associated with the probability of international events (AND-based conjunctive)
and epochal war probability (OR-based disjunctive), respectively.
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4.3 Case 3: Frequency of war and systemic polarity (Midlarsky’s law)

Having just examined the probability of war at the relational level, in this 
last case study we again change our frame of reference, this time turning to the 
systemic level of analysis. The formal theoretical (and empirically supported) 
explanation for the annual frequency of warfare as a result of fundamental po-
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Figura 4. Elasticities and gradient of the epochal probability of war W . (a) 3D surface of point elasticity ⌘!(W )
with respect to crisis escalation probability !; (b) contour plot of (a); (c) 3D surface of arc elasticity ⌘c(W ) with
respect to epochal number of crises C; (d) contour plot of (c) ; (e) vector field of the dot-gradient vector function

r·W ; (f) contour plot of (e).
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Figure 4. Elasticities and gradient of the epochal probability of war W. (a) 3D surface 
of point elasticity ηω(W) with respect to crisis escalation probability ω; (b) contour 
plot of (a); (c) 3D surface of arc elasticity ηc(W) with respect to epochal number of 
crises C; (d) contour plot of (c) ; (e) vector fi eld of the dot-gradient vector function 
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
graphic analyses.

The main results of nabladot analysis shed new light on fundamental, real-world, substantive
properties and features of the original hybrid function under investigation, features that remain
hidden or inaccessible through other forms of analysis. Each main formal expression is accompanied
by an interpretation in plain English, although this is not always possible without some loss of
precision or clarity. Some results can be somewhat complicated nonlinear functions that do not
further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
continuous and discrete dimensions, respectively, rather than create new unit vectors for each variable.

4 Use of the partial derivative with respect to Y (a discrete variable) instead of the partial difference—which
is often used in approximations—produces a measurable error that varies in magnitude depending on the
structure of ' and values of Y . Measurable discrepancies between the two operators (nabladot and classical
nabla) are demonstrable but beyond the present scope due to space limitations (Cioffi 2021).
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litical uncertainty among great powers was pioneered by Manus I. Midlarsky in 
1974. This causal theory is based on aspects of strategic uncertainty rooted in 
Shannon’s information entropy and related concepts. The specific explanandum 
is the annual amount of warfare experienced in the international system, which 
is an emergent property generated not just by crises (as in the previous case) but 
also outright conquest, revenge, colonization, and all other types of wars. In any 
given year, Midlarsky’s theory predicted that annual global war frequency φ is 
determined by systemic polarity Θ among the great powers.7 Formally,

φ = K log Θ, � (20)

which is a hybrid bivariate nonlinear function, where K is a continuous propor-
tionality parameter over the closed interval [1, 10], historically, and systemic po-
larity Θ ≥ 1 is discrete. The case when Θ = 1 (a single hegemonic power) is the 
most peaceful, since φ(Θ = 1) = 0, and the function’s (k, Θ)-domain once again 
lies within Cartesian quadrant I.

The 3D surface graph of equation 20 is illustrated in Figure 5a, which shows 
war frequency rising on a hilly slope as polarity Θ and K increase. The associated 
contour plot in Figure 5b looks “straight down hill,” highlighting the relatively 
mild gradient on the skirting slopes of the hybrid function, which is a surface 
bound by a linear slope along K but a logarithmically convex slope along Θ, a 
radial pattern observable in the plot’s isocontours.

Each independent variable increases φ in a different way, as shown in Fig-
ures 5a and b. Calculating the partial derivative and partial difference of φ with 
respect to K and Θ, respectively:
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4.3 Case 3: Frequency of war and systemic polarity (Midlarsky’s law)

Having just examined the probability of war at the relational level, in this last case study we again
change our frame of reference, this time turning to the systemic level of analysis. The formal
theoretical (and empirically supported) explanation for the annual frequency of warfare as a result
of fundamental political uncertainty among great powers was pioneered by Manus I. Midlarsky
in 1974. This causal theory is based on aspects of strategic uncertainty rooted in Shannon’s
information entropy and related concepts. The specific explanandum is the annual amount of
warfare experienced in the international system, which is an emergent property generated not just
by crises (as in the previous case) but also outright conquest, revenge, colonization, and all other
types of wars. In any given year, Midlarsky’s theory predicted that annual global war frequency φ
is determined by systemic polarity ⇥ among the great powers.7 Formally,

φ = K log⇥, (20)

which is a hybrid bivariate nonlinear function, where K is a continuous proportionality parameter
over the closed interval [1, 10], historically, and systemic polarity ⇥ ≥ 1 is discrete. The case when
⇥ = 1 (a single hegemonic power) is the most peaceful, since φ(⇥ = 1) = 0, and the function’s
(k, ✓)-domain once again lies within Cartesian quadrant I.

The 3D surface graph of equation 20 is illustrated in Figure 5a, which shows war frequency
rising on a hilly slope as polarity ⇥ and K increase. The associated contour plot in Figure 5b
looks “straight down hill,” highlighting the relatively mild gradient on the skirting slopes of the
hybrid function, which is a surface bound by a linear slope along K but a logarithmically convex
slope along ⇥, a radial pattern observable in the plot’s isocontours.

Each independent variable increases φ in a different way, as shown in Figures 5a and b.
Calculating the partial derivative and partial difference of φ with respect to K and ⇥, respectively:

@kφ = ln⇥ (for K’s effect on W , in Figure 5c) (21)
∆✓φ = K [ln(⇥ + 1)− ln⇥] (for ⇥’s effect on φ, in Figure 5e). (22)

Here, too, we see that changes in parameter K and polarity ⇥ have clearly different effects on war
frequency φ, in this case through a simple univariate discrete function that is strictly discrete in
⇥, and through a more complicated bivariate hybrid function (Figures 5c and d) with two terms
in both dimensions, respectively.

Congruent political effects. Changes in parameter K or polarity ⇥ have proportional effects
on φ, as shown by strictly positive values of both graphs of derivatives and differences in
Figures 5c (2D) and e (3D), respectively. The graph of @kφ lacks a contour plot, since it has
univariate domain in ⇥.

Isomorphism of φ and @kφ. War frequency φ and its rate of change with respect to K are
isomorphic, as shown by Figure 5c and the estimated hybrid function φ̂(K,⇥) fitted to
original data in Figure 5d (redrawn from Midlarsky 1974, 420, fig. 3).

Deceptive simplicity. Aside from the relatively simple convexity of war frequency φ induced by
systemic polarity ⇥, this theoretical model seems rather uncomplicated, as would appear
from diagnostic images in Figure 5. However, such an impression may be superficial, as
shown next by the second part of the analysis on elasticities and vector fields.

7 Midlarsky’s theory remains one of the most complete and empirically validated formal theories in international
relations—and, surprisingly, one of the least known among conflict researchers. The initial validation based
on 1815-1945 war onset data should not be retested on earlier and later datasets.
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Here, too, we see that changes in parameter K and polarity Θ have clearly dif-
ferent effects on war frequency φ, in this case through a simple univariate discrete 
function that is strictly discrete in Θ, and through a more complicated bivariate hy-
brid function (Figures 5c and d) with two terms in both dimensions, respectively.
Congruent political effects. Changes in parameter K or polarity Θ have pro-
portional effects on φ, as shown by strictly positive values of both graphs of de-
rivatives and differences in Figures 5c (2D) and e (3D), respectively. The graph 
of 
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shown next by the second part of the analysis on elasticities and vector fields.

7 Midlarsky’s theory remains one of the most complete and empirically validated formal theories in international
relations—and, surprisingly, one of the least known among conflict researchers. The initial validation based
on 1815-1945 war onset data should not be retested on earlier and later datasets.
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Having just examined the probability of war at the relational level, in this last case study we again
change our frame of reference, this time turning to the systemic level of analysis. The formal
theoretical (and empirically supported) explanation for the annual frequency of warfare as a result
of fundamental political uncertainty among great powers was pioneered by Manus I. Midlarsky
in 1974. This causal theory is based on aspects of strategic uncertainty rooted in Shannon’s
information entropy and related concepts. The specific explanandum is the annual amount of
warfare experienced in the international system, which is an emergent property generated not just
by crises (as in the previous case) but also outright conquest, revenge, colonization, and all other
types of wars. In any given year, Midlarsky’s theory predicted that annual global war frequency φ
is determined by systemic polarity ⇥ among the great powers.7 Formally,

φ = K log⇥, (20)

which is a hybrid bivariate nonlinear function, where K is a continuous proportionality parameter
over the closed interval [1, 10], historically, and systemic polarity ⇥ ≥ 1 is discrete. The case when
⇥ = 1 (a single hegemonic power) is the most peaceful, since φ(⇥ = 1) = 0, and the function’s
(k, ✓)-domain once again lies within Cartesian quadrant I.

The 3D surface graph of equation 20 is illustrated in Figure 5a, which shows war frequency
rising on a hilly slope as polarity ⇥ and K increase. The associated contour plot in Figure 5b
looks “straight down hill,” highlighting the relatively mild gradient on the skirting slopes of the
hybrid function, which is a surface bound by a linear slope along K but a logarithmically convex
slope along ⇥, a radial pattern observable in the plot’s isocontours.

Each independent variable increases φ in a different way, as shown in Figures 5a and b.
Calculating the partial derivative and partial difference of φ with respect to K and ⇥, respectively:

@kφ = ln⇥ (for K’s effect on W , in Figure 5c) (21)
∆✓φ = K [ln(⇥ + 1)− ln⇥] (for ⇥’s effect on φ, in Figure 5e). (22)

Here, too, we see that changes in parameter K and polarity ⇥ have clearly different effects on war
frequency φ, in this case through a simple univariate discrete function that is strictly discrete in
⇥, and through a more complicated bivariate hybrid function (Figures 5c and d) with two terms
in both dimensions, respectively.

Congruent political effects. Changes in parameter K or polarity ⇥ have proportional effects
on φ, as shown by strictly positive values of both graphs of derivatives and differences in
Figures 5c (2D) and e (3D), respectively. The graph of @kφ lacks a contour plot, since it has
univariate domain in ⇥.

Isomorphism of φ and @kφ. War frequency φ and its rate of change with respect to K are
isomorphic, as shown by Figure 5c and the estimated hybrid function φ̂(K,⇥) fitted to
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from diagnostic images in Figure 5. However, such an impression may be superficial, as
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7 Midlarsky’s theory remains one of the most complete and empirically validated formal theories in international
relations—and, surprisingly, one of the least known among conflict researchers. The initial validation based
on 1815-1945 war onset data should not be retested on earlier and later datasets.
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Figura 5. Annual frequency of war φ(K,⇥) as a hybrid logarithmic function of systemic polarity ⇥ (Midlarsky’s
law): (a) 3D surface of the hybrid function φ = K ln⇥; (b) contour plot of (a); (c) 2D graph of @kφ, the
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4.3 Case 3: Frequency of war and systemic polarity (Midlarsky’s law)

Having just examined the probability of war at the relational level, in this last case study we again
change our frame of reference, this time turning to the systemic level of analysis. The formal
theoretical (and empirically supported) explanation for the annual frequency of warfare as a result
of fundamental political uncertainty among great powers was pioneered by Manus I. Midlarsky
in 1974. This causal theory is based on aspects of strategic uncertainty rooted in Shannon’s
information entropy and related concepts. The specific explanandum is the annual amount of
warfare experienced in the international system, which is an emergent property generated not just
by crises (as in the previous case) but also outright conquest, revenge, colonization, and all other
types of wars. In any given year, Midlarsky’s theory predicted that annual global war frequency φ
is determined by systemic polarity ⇥ among the great powers.7 Formally,

φ = K log⇥, (20)

which is a hybrid bivariate nonlinear function, where K is a continuous proportionality parameter
over the closed interval [1, 10], historically, and systemic polarity ⇥ ≥ 1 is discrete. The case when
⇥ = 1 (a single hegemonic power) is the most peaceful, since φ(⇥ = 1) = 0, and the function’s
(k, ✓)-domain once again lies within Cartesian quadrant I.

The 3D surface graph of equation 20 is illustrated in Figure 5a, which shows war frequency
rising on a hilly slope as polarity ⇥ and K increase. The associated contour plot in Figure 5b
looks “straight down hill,” highlighting the relatively mild gradient on the skirting slopes of the
hybrid function, which is a surface bound by a linear slope along K but a logarithmically convex
slope along ⇥, a radial pattern observable in the plot’s isocontours.

Each independent variable increases φ in a different way, as shown in Figures 5a and b.
Calculating the partial derivative and partial difference of φ with respect to K and ⇥, respectively:

@kφ = ln⇥ (for K’s effect on W , in Figure 5c) (21)
∆✓φ = K [ln(⇥ + 1)− ln⇥] (for ⇥’s effect on φ, in Figure 5e). (22)

Here, too, we see that changes in parameter K and polarity ⇥ have clearly different effects on war
frequency φ, in this case through a simple univariate discrete function that is strictly discrete in
⇥, and through a more complicated bivariate hybrid function (Figures 5c and d) with two terms
in both dimensions, respectively.

Congruent political effects. Changes in parameter K or polarity ⇥ have proportional effects
on φ, as shown by strictly positive values of both graphs of derivatives and differences in
Figures 5c (2D) and e (3D), respectively. The graph of @kφ lacks a contour plot, since it has
univariate domain in ⇥.

Isomorphism of φ and @kφ. War frequency φ and its rate of change with respect to K are
isomorphic, as shown by Figure 5c and the estimated hybrid function φ̂(K,⇥) fitted to
original data in Figure 5d (redrawn from Midlarsky 1974, 420, fig. 3).

Deceptive simplicity. Aside from the relatively simple convexity of war frequency φ induced by
systemic polarity ⇥, this theoretical model seems rather uncomplicated, as would appear
from diagnostic images in Figure 5. However, such an impression may be superficial, as
shown next by the second part of the analysis on elasticities and vector fields.

7 Midlarsky’s theory remains one of the most complete and empirically validated formal theories in international
relations—and, surprisingly, one of the least known among conflict researchers. The initial validation based
on 1815-1945 war onset data should not be retested on earlier and later datasets.
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Having just examined the probability of war at the relational level, in this last case study we again
change our frame of reference, this time turning to the systemic level of analysis. The formal
theoretical (and empirically supported) explanation for the annual frequency of warfare as a result
of fundamental political uncertainty among great powers was pioneered by Manus I. Midlarsky
in 1974. This causal theory is based on aspects of strategic uncertainty rooted in Shannon’s
information entropy and related concepts. The specific explanandum is the annual amount of
warfare experienced in the international system, which is an emergent property generated not just
by crises (as in the previous case) but also outright conquest, revenge, colonization, and all other
types of wars. In any given year, Midlarsky’s theory predicted that annual global war frequency φ
is determined by systemic polarity ⇥ among the great powers.7 Formally,

φ = K log⇥, (20)

which is a hybrid bivariate nonlinear function, where K is a continuous proportionality parameter
over the closed interval [1, 10], historically, and systemic polarity ⇥ ≥ 1 is discrete. The case when
⇥ = 1 (a single hegemonic power) is the most peaceful, since φ(⇥ = 1) = 0, and the function’s
(k, ✓)-domain once again lies within Cartesian quadrant I.

The 3D surface graph of equation 20 is illustrated in Figure 5a, which shows war frequency
rising on a hilly slope as polarity ⇥ and K increase. The associated contour plot in Figure 5b
looks “straight down hill,” highlighting the relatively mild gradient on the skirting slopes of the
hybrid function, which is a surface bound by a linear slope along K but a logarithmically convex
slope along ⇥, a radial pattern observable in the plot’s isocontours.

Each independent variable increases φ in a different way, as shown in Figures 5a and b.
Calculating the partial derivative and partial difference of φ with respect to K and ⇥, respectively:

@kφ = ln⇥ (for K’s effect on W , in Figure 5c) (21)
∆✓φ = K [ln(⇥ + 1)− ln⇥] (for ⇥’s effect on φ, in Figure 5e). (22)

Here, too, we see that changes in parameter K and polarity ⇥ have clearly different effects on war
frequency φ, in this case through a simple univariate discrete function that is strictly discrete in
⇥, and through a more complicated bivariate hybrid function (Figures 5c and d) with two terms
in both dimensions, respectively.

Congruent political effects. Changes in parameter K or polarity ⇥ have proportional effects
on φ, as shown by strictly positive values of both graphs of derivatives and differences in
Figures 5c (2D) and e (3D), respectively. The graph of @kφ lacks a contour plot, since it has
univariate domain in ⇥.

Isomorphism of φ and @kφ. War frequency φ and its rate of change with respect to K are
isomorphic, as shown by Figure 5c and the estimated hybrid function φ̂(K,⇥) fitted to
original data in Figure 5d (redrawn from Midlarsky 1974, 420, fig. 3).

Deceptive simplicity. Aside from the relatively simple convexity of war frequency φ induced by
systemic polarity ⇥, this theoretical model seems rather uncomplicated, as would appear
from diagnostic images in Figure 5. However, such an impression may be superficial, as
shown next by the second part of the analysis on elasticities and vector fields.

7 Midlarsky’s theory remains one of the most complete and empirically validated formal theories in international
relations—and, surprisingly, one of the least known among conflict researchers. The initial validation based
on 1815-1945 war onset data should not be retested on earlier and later datasets.
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Finally, we can now investigate Midlarsky’s law using standardized variables, as in the previous
cases. First, we calculate and analyze percentage change in φ with respect to K and ⇥, as shown
by the elasticities in Figures 6a and b. Calculation of point elasticity and arc elasticity of φ with
respect to parameter K and polarity ⇥ yields the following set of hybrid equations:

⌘kφ = 1 (for K’s percentage effect on φ, in Figure 6a) (23)

⌘✓φ = ⇥


ln(⇥ + 1)

ln⇥
− 1

�
(for ⇥’s percentage effect on φ, in Figure 6b). (24)

We immediately see that standardized effects on φ are again quite different from earlier unit-
based results (cf. equations 21 and 22 and associated figures). Here, point elasticity represents
percentage change in annual war frequency with respect to percentage change in parameter K,
whereas arc elasticity measures percentage change in φ with respect to percentage annual change
in polarity ⇥. The former has a constant value of 1 while the latter is a rational hybrid function
with logarithms of polarity, as shown in Figures 6a and b, respectively.

Interestingly, arc elasticity (Figure 6b) exhibits a singularity under unipolarity, where φ(k, 1) =
1, indicating a major transition from unipolarity to bipolarity. In this case arc elasticity continues
a rapid drop with increasing polarity, which is the systemic trend experienced in contemporary
history of major powers after the Soviet-American Cold War around 1989.

Comparing the two elasticities (equations 23 and 24; cf. also their respective graphs in Figures
6a and b) yields the following dominance principle: annual frequency of war φ is more sensitive to
percentage change in parameter K than to change in systemic polarity ⇥ under unipolar and bipolar
systemic structures, but the reverse is true under tripolarity and higher-order structures—because
the relationship reverses between ⇥ = 2 and 3. This is a surprising qualitative transition that is
invisible in the original model but is clear once the dimensions are standardized by elasticities.

The different and joint effects of parameter K and polarity ⇥ on war frequency φ can be seen
by calculating the gradient of φ with respect to both variables using the nabladot operator, as
follows:

r· φ = @k (K ln⇥) i+∆✓ (K ln⇥) j (25)
= log⇥ i+K [(ln⇥ + 1)− ln⇥] j, (26)

which is a two-dimensional vector function Φ =  (K,⇥). The resulting vector field of this hybrid
gradient is in Figure 6c, which shows: (i) heterogeneity along the two dimensions; (ii) general
southwest-northeast orientation; (iii) increasing intensity as K increases for low values of polarity
with a hot spot in the NW corner; (iv) divergence from a line at approximately 60 degrees; and (5)
curling associated with divergence.

The corresponding vector magnitude or norm |Φ|, a scalar function, is shown by the contour
plot in Figure 6d, on the same domain as the field. This shows other clear patterns, including a
better view of (i) the hybrid gradient field Φ that drops from the NW region into the uni- and
bi-polar basin at minimal values of K—clearly where the most peaceful worlds are found—and (ii)
a distinct view of the high ridge beyond K ≥ 5 and ✓ ≥ 2.

Given such marked differences between elasticity functions, it is best to investigate the
standardized gradient, as follows:

r· ⇤φ =
K

K ln⇥
@k (K ln⇥) i+

⇥

K ln⇥
∆✓ (K ln⇥) j (27)

= 1i+⇥


ln(⇥ + 1)

ln⇥
− 1

�
j, (28)

which is a two-dimensional vector function Φ⇤ =  ⇤(K,⇥). The resulting vector field of this
hybrid standardized gradient is seen in Figure 6e, which shows differences that are best highlighted
by the corresponding 3D plot in Figure 6e. Here we see that the standardized gradient with respect
to polarity undergoes a precipitous decline from unipolarity to bipolarity, after which it tapers off
much more gradually and this feature is independent of K, consistent with elasticity results.
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southwest-northeast orientation; (iii) increasing intensity as K increases for low values of polarity
with a hot spot in the NW corner; (iv) divergence from a line at approximately 60 degrees; and (5)
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The corresponding vector magnitude or norm |Φ|, a scalar function, is shown by the contour
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better view of (i) the hybrid gradient field Φ that drops from the NW region into the uni- and
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whereas arc elasticity measures percentage change in φ with respect to percentage annual change
in polarity ⇥. The former has a constant value of 1 while the latter is a rational hybrid function
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a rapid drop with increasing polarity, which is the systemic trend experienced in contemporary
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systemic structures, but the reverse is true under tripolarity and higher-order structures—because
the relationship reverses between ⇥ = 2 and 3. This is a surprising qualitative transition that is
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southwest-northeast orientation; (iii) increasing intensity as K increases for low values of polarity
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a rapid drop with increasing polarity, which is the systemic trend experienced in contemporary
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by calculating the gradient of φ with respect to both variables using the nabladot operator, as
follows:

r· φ = @k (K ln⇥) i+∆✓ (K ln⇥) j (25)
= log⇥ i+K [(ln⇥ + 1)− ln⇥] j, (26)

which is a two-dimensional vector function Φ =  (K,⇥). The resulting vector field of this hybrid
gradient is in Figure 6c, which shows: (i) heterogeneity along the two dimensions; (ii) general
southwest-northeast orientation; (iii) increasing intensity as K increases for low values of polarity
with a hot spot in the NW corner; (iv) divergence from a line at approximately 60 degrees; and (5)
curling associated with divergence.

The corresponding vector magnitude or norm |Φ|, a scalar function, is shown by the contour
plot in Figure 6d, on the same domain as the field. This shows other clear patterns, including a
better view of (i) the hybrid gradient field Φ that drops from the NW region into the uni- and
bi-polar basin at minimal values of K—clearly where the most peaceful worlds are found—and (ii)
a distinct view of the high ridge beyond K ≥ 5 and ✓ ≥ 2.

Given such marked differences between elasticity functions, it is best to investigate the
standardized gradient, as follows:

r· ⇤φ =
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which is a two-dimensional vector function Φ⇤ =  ⇤(K,⇥). The resulting vector field of this
hybrid standardized gradient is seen in Figure 6e, which shows differences that are best highlighted
by the corresponding 3D plot in Figure 6e. Here we see that the standardized gradient with respect
to polarity undergoes a precipitous decline from unipolarity to bipolarity, after which it tapers off
much more gradually and this feature is independent of K, consistent with elasticity results.
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which is a two-dimensional vector function Φ* = Ψ* (K, Θ). The resulting vec-
tor field of this hybrid standardized gradient is seen in Figure 6e, which shows 
differences that are best highlighted by the corresponding 3D plot in Figure 
6e. Here we see that the standardized gradient with respect to polarity under-
goes a precipitous decline from unipolarity to bipolarity, after which it tapers 
off much more gradually and this feature is independent of K, consistent with 
elasticity results.

5. Conclusions

We began this chapter by observing that hybrid functions—formal models 
containing a combination of continuous and discrete variables—have been pre-
sent in international relations theory since antiquity, “hiding in plain sight,” but 
their rigorous analysis has been impeded by the generally disjoint nature and 
established practices of infinitesimal calculus and discrete calculus. This prob-
lem has now been resolved by a unified approach that is feasible and fruitful, as 
provided by nabladot calculus.

Analysis of three separate cases in this chapter showed how and why, far 
from being intractable or only amenable to approximations, hybrid functions 
in international relations theory contain numerous interesting features and in-
sightful properties that shed new light on our understanding of international 
phenomena. Nabladot analysis of each hybrid function—and subsequent com-
parative analysis across them—in each case revealed previously unknown and 
often scientifically surprising theoretical landscapes of international phenomena 
ranging from generic international events, to conditions of peace, crisis dynam-
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Figura 6. Elasticities and gradients of the annual frequency of war φ. (a) point elasticity ⌘k(φ) with respect to
scale parameter K; (b) arc elasticity ⌘✓(φ) with respect to systemic polarity ⇥; (c) vector field of the dot-gradient
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the dependent variable of the hybrid function—a fundamental property not always obvious from
simple inspection of the hybrid function under investigation.

The analytical process thus far has focused on scalar properties of the IR hybrid function under
investigation. The first nabladot operation is to calculate the hybrid gradient of Z to discover
the magnitude and direction of changes in Z as a function of changes in X and Y . The result of
applying the nabladot operator (a vector operator) to scalar hybrid function ' is a hybrid vector
function Φ = r· ' with x- and y-components. The hybrid gradient in two dimensions is the scalar
vector product calculated using the new nabladot vector operator r· (note the dot within the nabla
symbol), which is defined as follows:

r· ' ⌘ @x' i+∆y' j, (1)

where, by convention, i and j denote unit vectors along x- and y-dimensions, respectively, and @x
and ∆y denote the first-order derivative and first-order difference with respect to X and Y (Cioffi
2014; 2017; 2019; 2020; 2020).3 Note that the resulting nabladot gradient of hybrid function ' is a
striated vector field with a first-order partial derivative component along the x-axis (continuous)
and a first-order partial difference component along the y-axis (discrete), hence the striation of
the vector field’s topology.4

The absolute and standardized norms of the hybrid gradient r· ' are calculated next, along with
corresponding graphs for investigating the resulting vector field. Each pair of plots for a vector
field and corresponding norm should use identical domains to facilitate understanding through
comparative analysis. Cardinal directions (N, E, S, W) are used for simple orientation in graphs.
Other hybrid operations of nabladot calculus equivalent to the divergence, curl, Laplacian, Hessian,
and Jacobian are subsequently calculated to shed additional (and usually new) light on the original
function Z = '(X,Y ) through the medium of nabladot operators, each supported by additional
graphic analyses.

The main results of nabladot analysis shed new light on fundamental, real-world, substantive
properties and features of the original hybrid function under investigation, features that remain
hidden or inaccessible through other forms of analysis. Each main formal expression is accompanied
by an interpretation in plain English, although this is not always possible without some loss of
precision or clarity. Some results can be somewhat complicated nonlinear functions that do not
further simplify; we prefer them that way rather than introducing artificial approximations which
may be simpler but unrealistic or unnatural objects, unlike real IR phenomena. In most cases an
ensemble of images and visual analytics (Thomas and Cook 2005; Wellin 2013) of complicated
functions can add significant clarity.

Among the most important substantive (and testable) results from nabladot analysis are the
dominance principles mentioned above—they explain which independent variable has dominant
effect on the dependent variable, a major theoretical (and arguably policy) question impossible to
answer ex ante—as well as other characteristic phenomena of interest (e.g., discrete striations,
inflection or “tipping” points, asymptotes and other singularities, constant or invariant subfields,
and others) revealed by geometric and topological information. In addition, interesting scalar
and vector fields of ' become accessible to direct investigation through formal tools of nabladot
calculus and analysis. A novel and valuable feature of this approach is that nabladot calculus
provides exact results in analytical investigations where the classical infinitesimal calculus of hybrid
IR functions would provide approximations with errors over the discrete domain of independent
variable(s).

3 IR scholars rarely consider the presence of vectors in international relations, other than metaphorically. This
analysis demonstrates the rigorous analysis of vectors and vector fields in IR using formal methods from
nabladot calculus, as in the next section. To contain notation, we shall use i and j to denote unit vectors along
continuous and discrete dimensions, respectively, rather than create new unit vectors for each variable.

4 Use of the partial derivative with respect to Y (a discrete variable) instead of the partial difference—which
is often used in approximations—produces a measurable error that varies in magnitude depending on the
structure of ' and values of Y . Measurable discrepancies between the two operators (nabladot and classical
nabla) are demonstrable but beyond the present scope due to space limitations (Cioffi 2021).
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ics, and warfare; all within the unifi ed methods enabled by the hybrid nabladot 
operator and associated concepts, rather than through disjoint calculi or error-
prone approximations.

Th ese new theoretical landscapes and research frontiers are exciting and 
their application is still in a preliminary but already a demonstrably promising 
stage. Dominance principles that rank the infl uence of causal independent vari-
ables, singularities, previously undetected phase transitions, the deep nature of 
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probabilistic causality, and other scientifically intriguing results have intrinsic 
value for our understanding of international relations. As “progressive problem-
shifts”, in the sense of Lakatos (1973; cf. also Gillespie 1976 and Moore 2001), 
this novel and emergent corpus of scientific knowledge also provides rich and 
creative foundations for more advanced analyses that enhance our theoretical 
as well as practical understanding.
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