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Preface

Computer systems pervade all parts of human activity: transportation systems, energy
supply, medicine, the whole financial sector, and modern science have become
unthinkable without hardware and software support. As these systems continuously
acquire, process, exchange, and store data, we live in a big-data world where infor-
mation is accumulated at an exponential rate.

The urgent problem has shifted from collecting enough data to dealing with its
impetuous growth and abundance. In particular, data volumes often grow faster than
the transistor budget of computers as predicted by Moore’s law (i.e., doubling every 18
months). On top of this, we cannot any longer rely on transistor budgets to automat-
ically translate into application performance, since the speed improvement of single
processing cores has basically stalled and the requirements of algorithms that use the
full memory hierarchy get more and more complicated. As a result, algorithms have to
be massively parallel using memory access patterns with high locality. Furthermore, an
x-times machine performance improvement only translates into x-times larger man-
ageable data volumes if we have algorithms that scale nearly linearly with the input
size. All these are challenges that need new algorithmic ideas. Last but not least, to
have maximum impact, one should not only strive for theoretical results, but intend to
follow the whole algorithm engineering development cycle consisting of theoretical
work followed by experimental evaluation.

The “curse” of big data in combination with increasingly complicated hardware has
reached all kinds of application areas: genomics research, information retrieval (web
search engines, ...), traffic planning, geographical information systems, or communi-
cation networks. Unfortunately, most of these communities do not interact in a
structured way even though they are often dealing with similar aspects of big-data
problems. Frequently, they face poor scale-up behaviour from algorithms that have
been designed based on models of computation that are no longer realistic for big data.

About the SPP 1736

This volume surveys the progress in selected aspects of this important and growing
field. It emerged from a research program established by the German Research
Foundation (DFG) as priority program SPP 1736 on Algorithmics for Big Data (https://
www.big-data-spp.de) in 2013 where researchers from theoretical computer science
worked together with application experts in order to tackle some of the problems
discussed above.

The research program was prepared collaboratively by Susanne Albers, Hannah
Bast, Kurt Mehlhorn, Ulrich Meyer (coordinator), Eugene Myers, Peter Sanders,
Christian Scheideler, and Martin Skutella. The first meetings took place in
Frankfurt/Main in 2012. Subsequently a grant proposal was worked out, submitted to
the DFG on October 15, and the program was granted in the spring meeting of the DFG

https://www.big-data-spp.de
https://www.big-data-spp.de


Senat in 2013. The duration of the program was six years, divided into two periods of
three years each.

A nationwide call for the individual projects attracted over 40 proposals out of
which an international reviewer panel selected 15 funded research projects plus a
coordination project (totalling about 20 full PhD student positions) by the end of 2013.
Additionally, a few more projects with their own funding were associated in order to
benefit from collaboration and joint events (workshops, PhD meetings, summer schools
etc.) organised by the SPP. The members of the priority programme produced about
300 publications with more than 8200 citations by May 2022.

About This Book

The chapters of this volume summarize results of projects realized within the program
and survey-related work. More than half of them centrally deal with various aspects of
algorithms for large and complex networks:

– In “Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit”
(Chapter 1) Eugenio Angriman, Alexander van der Grinten, Michael Hamann,
Henning Meyerhenke, and Manuel Penschuck survey SPP contributions to a scal-
able software library for the analysis of huge networks. While their focus is on
recent algorithmic contributions in the areas of centrality computations, community
detection, and sparsification, they also cover aspects such as current software
engineering principles of the project and ways to visualize network data within a
NetworKit-based workflow.

– In “Generating Synthetic Graph Data from Random Network Models” (Chapter 2)
Ulrich Meyer and Manuel Penschuck report on novel randomized graph instance
generation algorithms which have been developed in SPP collaborations. The
described implementations heavily exploit parallelism and/or cache-efficiency, and
most of them have been integrated into NetworKit, too. Furthermore, several
generators have been used to supplement experimental campaigns of SPP works
described in subsequent chapters including the following.

– In the two chapters “Increasing the Sampling Efficiency for the Link Assessment
Problem” (Chapter 3) and “A Custom Hardware Architecture for the Link
Assessment Problem” (Chapter 4) André Chinazzo, Christian De Schryver,
Katharina Zweig, and Norbert Wehn provide an in-depth treatment of a specific
network motif search problem—both from an algorithmic and a hardware focused
point of view. A link assessment (LA) algorithm can be used to clean up large
network data sets with noisy data.

Using instances of a particular type of random graphs discussed in the network
generation chapter as a null model, the LA algorithm evaluates the structural similar-
ities between the nodes, and thus differentiates meaningful relationships between nodes
from noisy ones. After a detailed discussion of the algorithmic foundations (Chapter 3),
the authors present the design of a dedicated hardware accelerator (Chapter 4) for
solving the LA problem, which—compared to an Intel cluster—uses 38� less memory
and is 1030� more energy efficient.
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– In “Graph-Based Methods for Rational Drug Design” (Chapter 5) Andre
Droschinsky, Lina Humbeck, Oliver Koch, Nils M. Kriege, Petra Mutzel, and Till
Schäfer disuss computational methods for the goal-directed development of new
drugs. The connection to graphs is based on the frequently valid assumption that
chemical molecules with similar structure also show similar effects in a drug.
Hence, molecules are modelled as graphs with attributes and large-scale graph
algorithms for similarity search and clustering come into play. The authors provide
an overview of recent results with a focus on the search for maximum common
subgraphs and their extension to domain specific requirements.

– In “Recent Advances in Practical Data Reduction” (Chapter 6) Faisal N.
Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian Schulz,
and Darren Strash discuss recent algorithm engineering work in the area of
fixed-parameter tractable NP-hard problems. They survey recent trends in data
reduction engineering results for selected problems in NP (like Independent Sets,
Vertex Cover, Treewidth, Steiner Trees, etc.) and P (Minimum Cut and Matching).
Furthermore, the authors describe techniques that may be useful for future imple-
mentations and list a number of open problems and research questions.

– In “Skeleton-based Clustering by Quasi-Threshold Editing” (Chapter 7) Ulrik
Brandes, Michael Hamann, Luise Häuser, and Dorothea Wagner report on SPP
work for community detection on real-world graphs. They extend an earlier
approach by Nastos and Gao who proposed to view community detection as a graph
modification problem where the input is to be transferred into a quasi-threshold
graph with a minimum number of edge additions and deletions and use its resulting
connected components to determine the clustering. As minimizing the number of
edit steps is NP hard, existing solutions rely on heuristics. The authors of the
chapter introduce a new linear time heuristic for the inclusion-minimal variant of
this edit problem and present improvements for the resulting clustering both in
terms of running time and quality.

– In “The Space Complexity of Undirected Graph Exploration” (Chapter 8) Yann
Disser and Max Klimm consider a setting where an agent with small memory has to
visit all vertices of a huge graph at least once. The n vertices are indistinguishable
for the agent but at least the edges have a locally unique color, which can be
exploited for the traversal. The authors revisit results for this setting showing that
H lognð Þ bits of memory are necessary and sufficient for an agent to explore any
graph with n vertices. Subsequently they provide SPP results for collaborative
exploration using several agents each having sublogarithmic memory.

The topics of the chapters in the second part of this volume range from challenges in
scalable cryptography, data streams, and energy-efficient scheduling to generic opti-
mization and text (pre)processing including applications:

– In “Scalable Cryptography” (Chapter 9) Dennis Hofheinz and Eike Kiltz shed light
on the quest for cryptographic methods that keep on working for significantly
increased data set sizes. The security guarantees of currently used RSA encryption
technology, for example, degrade linearly in the number of users and ciphertexts.
This limits their applicability to smaller data sets or requires significantly larger
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keylengths which in turn slows down and complicates the whole process (in par-
ticular if the keylengths are to grow dynamically).

The authors discuss a number of settings in which it is possible to provide alter-
native scalable cryptographic building blocks. In particular, they survey SPP work on
the construction of scalable public-key encryption schemes (a central cryptographic
building block that helps secure communication), but also briefly mention other set-
tings such as “reconfigurable cryptography”.

– In “Distributed Data Streams” (Chapter 10) Jannik Castenow, Björn Feldkord,
Jonas Hanselle, Till Knollmann, Manuel Malatyali, and Friedhelm Meyer auf der
Heide consider a big data scenario where a server is wirelessly connected to a huge
number of sensor nodes that continuously measure data. At each time step the
server needs to calculate a function defined over the current measurements of the
sensors.

Due to the sensors’ restricted compute and battery power, the communication
between server and sensors has to be optimized, for example by minimizing the total
number of messages using clever randomized protocols. The authors review SPP
results for three concrete functions: Top-k-Value Monitoring, Top-k-Position Moni-
toring, and (Approximate) Count Distinct Monitoring.

– In “Energy-Efficient Scheduling” (Chapter 11) Susanne Albers reports on algo-
rithmic techniques for energy reduction in processing environments where machine
parameters can be changed at runtime. In the first part she addresses dynamic speed
scaling: Given a typically superlinear increase of energy consumption with rising
processor speed, the goal is to cleverly use the whole speed range so as to minimize
energy consumption while still providing the desired service. The author in par-
ticular reports on SPP results for multi-processor platforms with heterogeneous
CPUs. She also examines power-down mechanisms (i.e., idle devices can be
transitioned into low-power standby and sleep states) in multi-processor environ-
ments, where the active and idle periods of the components have to be carefully
coordinated in order to maintain a guaranteed performance level.

– In “The GENO Software Stack” (Chapter 12)) Joachim Giesen, Lars Kuehne, and
Sören Laue present a domain specific language for large-scale mathematical opti-
mization called GENO (for generic optimization).

The GENO software generates a solver from a specification of an optimization
problem, i.e. objective function and constraints are specified in a formal language. The
problem specification is then translated into a general normal form, which in turn is
passed on to a general purpose solver with optimized support for various hardware
platforms including GPUs by carefully integrated BLAS (Basic Linear Algebra
Subroutines) calls. The authors show that by putting all the components together the
generated solvers are competitive with problem-specific hand-written solvers and
orders of magnitude faster than competing approaches that offer comparable
ease-of-use.

viii Preface



– In “Algorithms for Big Data Problems in de Novo Genome Assembly” (Chapter 13)
Anand Srivastav, Axel Wedemeyer, Christian Schielke, and Jan Schiemann address
some algorithmic problems related to genome assembly.

Concretely speaking they first present an algorithm which significantly reduces the
input data size without practically impacting the assembly quality. They then turn to the
important subproblem of efficiently counting k-mers for which they provide an
external-memory solution. Further reconstruction steps boil down to the longest path
problem and the Eulerian tour problem. In order to tackle those they present a linear
time (per edge) streaming algorithm for heuristically constructing long paths in undi-
rected graphs, and a streaming algorithm for the Euler tour problem with optimal
one-pass complexity.

– In “Scalable Text Index Construction” (Chapter 14) Timo Bingmann, Patrick
Dinklage, Johannes Fischer, Florian Kurpicz, Enno Ohlebusch, and Peter Sanders
discuss the current state of the art in large-scale computation of text-indices.

When treating distributed, external, and shared memory approaches for different text
indices and their applications the authors point out common techniques that are used in
different models of computation or in the computation of different text indices. While
most of the discussed work solely focuses on the construction of the text indices, they
also show approaches to actually answer queries on text indices in distributed memory.
In addition they discuss real-world applications in bioinformatics and text compression
and future challenges.

We would like to thank all authors who submitted their work, the referees for their
helpful comments, as well as the DFG for accepting and sponsoring the priority pro-
gram SPP 1736 on Algorithms for Big Data. We hope that this volume will prove
useful for further research in big data algorithms.

May 2022 Hannah Bast
Claudius Korzen

Ulrich Meyer
Manuel Penschuck
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Algorithms for Large-Scale Network Analysis
and the NetworKit Toolkit

Eugenio Angriman1(B), Alexander van der Grinten1 , Michael Hamann2,
Henning Meyerhenke1 , and Manuel Penschuck3

1 Humboldt-Universität zu Berlin, Berlin, Germany
{angrimae,avdgrinten,meyerhenke}@hu-berlin.de
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

michael.hamann@kit.edu
3 Goethe University Frankfurt, Frankfurt am Main, Germany

mpenschuck@ae.cs.uni-frankfurt.de

Abstract. The abundance of massive network data in a plethora of applica-
tions makes scalable analysis algorithms and software tools necessary to gen-
erate knowledge from such data in reasonable time. Addressing scalability as
well as other requirements such as good usability and a rich feature set, the open-
source software NETWORKIT has established itself as a popular tool for large-
scale network analysis. This chapter provides a brief overview of the contribu-
tions to NETWORKIT made by the SPP 1736. Algorithmic contributions in the
areas of centrality computations, community detection, and sparsification are in
the focus, but we also mention several other aspects – such as current software
engineering principles of the project and ways to visualize network data within a
NETWORKIT-based workflow.

Keywords: Network analysis · Algorithms · Software package

1 Introduction

Network phenomena surround us, be they social contact networks, organizational struc-
tures, or infrastructure networks such as the energy grid, roads or the (physical) inter-
net. Purely virtual networks such as the world wide web, online social networks, or
co-authorship networks can become particularly large and play an ever increasing role
in our daily lives [8,62]. Traditional data analysis has been and is very successful
in discovering knowledge from non-network (e.g., geometric or relational) data [50].
Yet, networks and their analysis are about “dependence, both between and within vari-
ables” [26]. To uncover implicit dependencies hidden in the data, it thus requires appro-
priate algorithmic techniques (some of which are also covered in Leskovec et al.’s text-
book on mining massive datasets [50]).

Massive networks, often with billions of vertices and edges, pose challenges to
many established analysis concepts and algorithms due to their prohibitive computa-
tional costs. This leads to the ongoing development of efficient and scalable algorithms.
The open-source software package NETWORKIT1 [75 SPP] aims to combine a broad

1 https://networkit.github.io/.

c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-21534-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_1&domain=pdf
http://orcid.org/0000-0002-9709-9478
http://orcid.org/0000-0002-7769-726X
http://orcid.org/0000-0003-2630-7548
https://networkit.github.io/
https://doi.org/10.1007/978-3-031-21534-6_1


4 E. Angriman et al.

range of such algorithms for the analysis of large networks and to make them accessi-
ble via consistent, easy to use, and well-documented frontends. For instance, it offers
a feature-rich Python API which integrates into the large Python ecosystem for data
analysis. Under the hood, the heavy lifting is carried out by performance-oriented algo-
rithms that are implemented in C++ and often use multicore parallelism. The package
is also well suited to develop and evaluate novel algorithmic approaches. As such, NET-
WORKIT received numerous unique scalable algorithms and implementations in recent
years, particularly designed to handle large inputs.

In this chapter, we present a high-level overview of NETWORKIT (Sect. 2) and por-
tray algorithmic research results derived with and for NETWORKIT – mostly those
obtained by projects of SPP 1736. We cover four main topics: centrality algorithms
(Sect. 3), community detection (Sect. 4), graph sparsification (Sect. 5) as well as graph
drawing and network visualization (Sect. 6). While these have been focus areas of NET-
WORKIT development during the lifetime of SPP 1736, the package has been used
in various other application contexts such as quantum chemistry [56 SPP] and digital
humanities [47].

2 NetworKit—An Overview

NETWORKIT is in development since 2013. The architecture of the current codebase
was released in 2014. At the time of writing, NETWORKIT has a regular release cycle
with two new major releases per year. Staudt et al. [75 SPP] describe the package’s state
at the end of 2015. In this section, we consequently focus on the many additions of new
functionality as well as improvements to the code quality that have been realized in the
meantime. This concerns new performance-oriented graph algorithms, engineering to
speed up existing algorithms, more software engineering guidelines and best practices,
as well as the modernization and extension of NETWORKIT’s integration with other
tools within a rich ecosystem (as detailed in Sect. 2.2).

2.1 Design Considerations

NETWORKIT consists of several Python modules wrapping an independently usable
core library that is written in C++. Both parts are connected using Cython and are tightly
integrated to offer consistent interfaces for most features. The package is organized
into multiple modules, each focusing on one (class of) network analytic problem(s).
Important modules deal with network centrality (centrality), community detection
(community and scd) as well as graph generation and perturbation (generators
and randomization). Some novel algorithms in the centrality, community, and
sparsificationmodules that were developed within SPP 1736 are described in more
detail in Sects. 3 to 5. Other important modules that are not covered here include mod-
ules for graph algorithms in the language of linear algebra (algebraic, following
the philosophy of GraphBLAS [45 SPP]), decomposition of graphs into components
(components), distance computations (distance), reading and writing graphs (io),
link prediction (linkprediction), graph coarsening (coarsening), and more.



Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit 5

As a graph data structure, NETWORKIT uses an adjacency array using dynamic
arrays (std::vector) to store vertices and their neighborhoods. It also supports edge
weights and edge IDs. This data structure was chosen over static ones such as CSR
matrices since it allows for efficient dynamic updates. The design is complemented by
several non-trivial algorithms that can efficiently update their results if the underlying
graph changes (i.e., after adding and/or deleting edges).

Many of NETWORKIT’s algorithms use OPENMP for shared-memory paral-
lelism. In fact, several algorithms in NETWORKIT exhibit best-in-class parallel per-
formance [36 SPP]. Based on an empirical comparison [46 SPP] between NETWORKIT

and several distributed frameworks for data and network analysis, NETWORKIT’s speed
advantage usually remains true in comparison to distributed systems with eight-fold
resource consumption. Ref. [46 SPP] finds that a shared-memory machine is sufficient
to solve many network analytic problems on real-world instances and concludes that
shared-memory parallelism should be preferred to distributed graph algorithms as long
as the input graph fits into main memory.

2.2 Ecosystem

In recent years, NETWORKIT matured into an actively maintained open-source project
with more than 140 000 lines of code and a steadily growing number of users and
contributors. By now, the software package exceeds a critical size that warrants efforts
beyond the development of new algorithmic features.

To ease contributions and uphold the code quality, NETWORKIT offers detailed
guidelines and implements a thorough review process. We also make heavy use of unit-
tests, static code analysis and automated code-formatting as part of our continuous inte-
gration pipeline, which targets the three major operating systems. As many new tests
improve the coding standards, we continuously modernize the codebase. Still, back-
wards compatibility is a major concern and manifests itself, for instance, in long-term
compiler support and in as few changes breaking the API as possible (preceded by a
deprecation period of at least one major version release).

Users benefit from a welcoming community, ever-improving documentation, inter-
active examples showcasing most features, a regular release schedule, and growing sup-
port for package managers (currently brew, Conda, pip, and Spack). NETWORKIT nat-
urally interacts with external projects such as GEPHI (see Sect. 6), SIMEXPAL [4 SPP],
and NETWORKX as well as graph repositories and formats including KONECT, SNAP,
and METIS; recent changes make it now even possible to develop standalone NET-
WORKIT Python modules.

Graph data can not only be imported but also be synthesized. To this end,
NETWORKIT offers versatile graph generators in the modules generators and
randomization. Among others, they are designed to generate and supplement datasets
for applications ranging from rapid prototyping to experimental campaigns. Here, we
only mention the supported network models since Chap. 2 surveys novel generation
algorithms obtained during SPP 1736. We include here citations to models or genera-
tors developed for/with NETWORKIT.

– Focus on community structure: Clustered-Random-Graph, LFR, PubWeb, R-MAT,
Stochastic Block Model, Watts-Strogatz
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– Prescribed degrees: Havel-Hakimi, Chung-Lu, Curveball and Global-Curveball
[28 SPP], Edge-Switching

– Preferential attachment processes: Barabási-Albert, Dorogovtsev-Mendes
– Geometrically embedded: Hyperbolic Random Graph [52 SPP,53 SPP,54 SPP,
55 SPP,19 SPP], Geometric Inhomogenous Random Graph [19 SPP], Mocnik [59,
60]

– Basic models: G(n, p), Lattice.

Several generators have dynamic variants simulating the evolution of graphs over time.

3 Centrality Algorithms

One of the most popular concepts used for the analysis of a graph G = (V,E) is cen-
trality. Centrality measures assign a score to each vertex2 (or group of vertices) based
on its structural position or importance; these scores allow a corresponding vertex
ranking [21]. As an example, the well-known PageRank [27] is a centrality measure
originally devised for web page (and eventually search query) ranking. It is impor-
tant to match the underlying research question with the appropriate centrality mea-
sure [77 SPP] and no single measure is universal. Thus, dozens of measures have been
proposed in the literature [21].

As described in more detail below, the centrality research within NETWORKIT

revolves not only around faster algorithms for computing individual scores and top-k
rankings. Another emphasis is placed on two families of centrality-driven optimization
problems (centrality improvement and group centrality) and how to scale approxima-
tion algorithms or heuristics for their solution to much larger input sizes. For a broader
overview, also with a scalability focus, the reader is referred to Ref. [35 SPP].

It should also be noted that fast centrality algorithms can be useful in different
(but related) contexts as well; e.g., scores of several centrality measures are used as
shortcuts for more expensive influence maximization calculations [70 SPP]. Also, using
score distributions for graph fingerprinting (putting graphs into classes where all mem-
bers have similar distributions) is a conceivable use case with the need for numerous
measures that can be computed quickly.

3.1 Individual Centrality Scores

We first discuss centrality measures for individual vertices, i.e., measures that assign
a centrality score to each v ∈ V . During SPP 1736, our focus has been on two
classes of centrality measures: centralities that make use of shortest path computa-
tions (i.e., (harmonic) closeness and betweenness) and algebraic centrality measures
that consider more than just shortest paths (like Katz centrality and electrical closeness).
Figure 1 depicts the distribution of these centralities for a single network, including the
ED Walk centrality that we propose in Ref. [3 SPP].

2 Edge centrality measures are ignored here in the interest of space.
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Fig. 1. Histograms of the distribution of vertex centrality measures of the JAZZ network, which
models the collaboration of Jazz musicians [34].

Betweenness. Betweenness centrality is based on the fraction of shortest paths a ver-
tex participates in. NETWORKIT implements the well-known Brandes algorithm [23]
for exact betweenness and several algorithms for betweenness approximation. For static
graphs, it has an implementation of the KADABRA algorithm [22]; additionally, NET-
WORKIT can approximate betweenness in dynamic graphs [15 SPP]. Both of these
algorithms employ a sampling technique that was originally introduced by Riondato
and Kornaropoulos [66]. More precisely, the algorithms sample pairs (s, t) of source
and target vertices uniformly at random. For each (s, t), a single shortest path is sam-
pled uniformly at random out of all shortest s-t paths. The algorithms count the number
of occurrences of vertices on these paths; they differ in their stopping conditions. The
multi-threaded implementation of the static KADABRA algorithm additionally exploits
a fast data structure for asynchronous synchronization barriers [36 SPP]. To the best of
our knowledge, NETWORKIT’s implementation of KADABRA is the fastest between-
ness approximation code that is available for multi-threaded machines.

In Ref. [39 SPP], this algorithm was extended to work with replicated graphs in
distributed memory. The resulting algorithm obtains good parallel speedups and per-
forms well even on multi-socket shared memory machines due to the fact that it can
avoid NUMA bottlenecks. Since distributed memory algorithms are outside the scope
of NETWORKIT, this implementation is available externally.

Closeness. Closeness centrality also uses the notion of shortest paths: it quantifies
the importance of a vertex v ∈ V depending on how close v is to all the other ver-
tices of the graph [11]. It is defined as c(v) := (n− 1)/(∑w∈V d(v,w)) and computing
it for a single vertex requires to run a single-source shortest path (SSSP) algorithm.
The textbook algorithm to identify the top-k vertices with highest closeness centrality
computes c(v) for each vertex of the graph by running n SSSPs, which is impracti-
cal for large-scale networks. NETWORKIT improves on this by providing an algorithm
which finds the top-k vertices with highest closeness centrality along with their exact
value of c(·) [12 SPP]. Even though the worst-case running time of the algorithm is also
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Ω(|V ||E|), experimental evaluation on real-world data shows that, for small values of k,
the algorithm is in practice much more efficient than the textbook algorithm and other
state-of-the-art strategies.

NETWORKIT additionally implements a batch-dynamic version of this algo-
rithm [18 SPP,2 SPP], which also addresses harmonic centrality [21,67] – an alter-
native definition of closeness centrality introducing support for disconnected graphs.
Experiments on both real-world and synthetic instances demonstrate that, for mod-
erately large batches of edge updates, the dynamic algorithm is up to four orders of
magnitude faster than a static recomputation from scratch.

Electrical Closeness. Electrical resistance is a distance function on graphs that is con-
structed by interpreting the graph as a network of electrical resistors and by measuring
the effective resistance between vertices in this network. If the usual distance function
(based on shortest-path distances) in the definition of closeness is replaced by effective
resistance, one obtains the definition of electrical closeness. This centrality measure has
been gaining attention due to the fact that it considers paths of any length. NETWORKIT

has an efficient approximation algorithm to compute electrical closeness [6 SPP]. This
algorithm exploits a well-known connection between electrical networks and uniform
spanning trees to approximate electrical closeness faster than previous numerical algo-
rithms (including the numerical algorithm from Ref. [17 SPP]) and can handle graphs
with hundreds of millions of edges.

As part of our work on electrical closeness, NETWORKIT gained support for vari-
ous numerical algorithms. These are typically either used as subprocedures of our algo-
rithms or for performance and/or quality comparisons; however, they can also be called
as standalone numerical solvers. Experiments with an (in terms of theoretical analysis)
fast Laplacian solver revealed severe limitations in practice [43 SPP] – which is why it
was discarded. Instead, we included a fast implementation [17 SPP] of the lean alge-
braic multigrid algorithm (LAMG) [51], which is particularly well-suited to solve series
of Laplacian linear systems with identical system matrices.

Katz Centrality. NETWORKIT also implements an approximation algorithm for Katz
centrality that can handle graphs with billions of edges within a few minutes [38 SPP].
The algorithm utilizes lower and upper bounds on the centrality score of each vertex
and improves these bounds until the Katz centrality ranking is computed with sufficient
precision. In comparison to earlier combinatorial algorithms for Katz centrality, our
algorithm is the first to obtain a provable approximation bound and/or the correctness
of the ranking. It is also at least 50% faster than numerical methods. NETWORKIT pro-
vides a parallel implementation of this algorithm that can also handle dynamic graphs.
In Ref. [38 SPP], we additionally provide a GPU-based implementation which is not
part of NETWORKIT.

3.2 Improving One’s Own Centrality

One possible way to improve one’s ranking position in a web search is to attract links
from influential web pages. For some time, this led to so-called link farming [49] for
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search engine optimization. More generally, beyond web search, one wants to increase
the centrality of a vertex by adding a specified number of new edges incident to it.
Crescenzi et al. [30] addressed this problem for closeness centrality. As a follow-up
to that work, Ref. [13 SPP] considered two betweenness centrality improvement prob-
lems: maximizing the betweenness score of a given vertex (MBI) and maximizing the
ranking position of a given vertex (MRI). The paper proves that both problems are
hard to approximate. Unless P = NP , MBI cannot be approximated within a factor
greater than 1− 1

2e and for MRI there is no α-approximation algorithm for any constant
α ≤ 1. The paper also proposes a simple greedy algorithm for MBI that performs well in
practice and provides a (1−1/e)-approximation. This way, MBI can be approximated
for (most) networks with up to 105 edges in a matter of seconds or a few minutes. The
greedy algorithm’s implementation builds, among others, upon a dynamic algorithm for
betweenness centrality [16 SPP] that can update the betweenness scores of all vertices
much faster after small graph changes (such as the insertion of one or few edges).

3.3 Group Centrality Optimization

Group centralities are network-analytic measures that quantify the importance of vertex
groups [31]. In contrast to centrality measures that apply to individual vertices, the goal
of these measures is to determine how well the entire group jointly “covers” the graph;
i.e., the group centrality score is not determined by the scores of individual vertices.

NETWORKIT includes various group centrality algorithms to approximate sets of
vertices that maximize the group centrality score. Most of the algorithms are based on
submodular optimization. For example, NETWORKIT implements a greedy algorithm
to approximate group degree and the group betweenness maximization algorithm by
Mahmoody et al. [57]. New algorithms developed as part of SPP 1736 are the GED-
Walk approximation algorithms from Ref. [3 SPP] and various group closeness algo-
rithms; these algorithms are described below. A very recent addition to NETWORKIT is
an approximation algorithm for group forest closeness centrality; for details we refer to
Ref. [37 SPP].

Group Closeness. Group closeness measures the importance of a group of vertices S⊂
V as the reciprocal of the sum of the distances from S to the vertices in V \S, where the
distance from S to a vertex v ∈V is defined by the minimum d(S,v) :=minu∈S d(u,v).
Finding the group S� with highest group closeness is known to be an NP-hard opti-
mization problem [29,1 SPP]. Thus, in practice, the problem is addressed on large-scale
networks either with heuristics or approximation algorithms. NETWORKIT provides a
greedy heuristic [14 SPP] that computes a set of vertices with high group centrality. On
small enough instances where it is feasible to compute the optimum, it has been shown
that the algorithm yields solutions with nearly optimal quality.

An alternative heuristic, which allows to trade quality for speed, is based on
local search. NETWORKIT implements a family of local search heuristics for group
closeness maximization that achieve different trade-offs between quality and running
time [5 SPP]. In general, they are one to three orders of magnitude faster than the greedy
algorithm. At the same time, our algorithms retain 80%—and, in numerous cases, even
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more than 99%—of the greedy algorithm’s solution quality. NETWORKIT also includes
the first approximation algorithm for group closeness maximization [1 SPP] (for undi-
rected graphs) which yields solutions with higher quality than the greedy algorithm at
the cost of additional running time.

A major limitation of group closeness is that it can only handle (strongly) connected
graphs – the distance between unreachable vertices is either undefined or infinite, and
an infinite denominator results in group closeness score of zero. Another group central-
ity measure that also handles disconnected graphs is group harmonic centrality, which
is defined as GH(S) := ∑u∈V\S d(S,u)−1. Maximizing GH has been shown to be an
NP-hard problem [1 SPP] as well and two approximation algorithms for group har-
monic maximization have been introduced in Ref. [1 SPP]; both of them are available
in NETWORKIT.

GED-Walk. GED-Walk (GED = group exponentially decaying) is an algebraic group
centrality measure that was introduced in Ref. [3 SPP]. Similarly to Katz centrality
(which only applies to individual vertices), GED-Walk counts the number of walks
(and not paths) in the graph. Unlike Katz centrality, it counts walks that cross the group
of vertices (instead of counting walks that start (or end) at certain vertices). Computing
GED scores can essentially be done via sparse matrix-vector multiplication; hence, the
measure can be computed faster than centrality measures that involve the computation
of shortest paths. In Ref. [3 SPP], we propose a greedy algorithm that computes a group
with approximately maximal GED-Walk centrality. The algorithmic approach is based
on techniques derived from our Katz algorithm [38 SPP] and iteratively refines bounds
on the group centrality score. In experiments, GED-Walk maximization turns out to
be at least one order of magnitude faster than the corresponding greedy algorithms for
group betweenness and group closeness. When applied within semi-supervised vertex
classification, GED-Walk improves the accuracy compared to various existing mea-
sures.

4 Community Detection

Community detection aims to detect subgraphs that are internally densely and exter-
nally sparsely connected. From this fuzzy idea, many formalizations and algorithms
have been developed [32]. A division of the graph into disjoint communities is the most
frequently studied setting. The most popular quality measure for this setting is modular-
ity [63]. As it is NP-hard to find the (clustering with) optimal modularity score [24],
heuristics are used in practice. A very popular one is the Louvain algorithm [20]. While
it is already quite fast, it is purely sequential in its original formulation and thus does
not exploit the many cores available in modern processors. Already the earliest work in
NETWORKIT includes the development of a parallel variant of the Louvain algorithm
named PLM [72]. This first work also includes a fast parallel label propagation algo-
rithm named PLP and an ensemble algorithm that combines several runs of PLP with a
final step where PLM is used. Later improvements to PLM, including the parallelization
of additional steps, made PLM so fast that it outperformed the ensemble approach both
in terms of speed and quality [74 SPP]. Further, a refinement round similar to Ref. [68]
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has been introduced that further increases the quality at the expense of a slightly longer
running time. PLM was later used in a case study on correspondences between clus-
terings [33 SPP]. With such correspondences one can reveal how one clustering differs
from another one, e.g., when computed with different algorithms or after minor graph
changes.

If only a community around a specific vertex or a set of vertices (so-called seed
vertices) is desired, we do not need to detect communities that cover the whole graph.
Many such algorithms greedily add new vertices until a local minimum of a certain
quality function is reached. A first study on such local community detection algo-
rithms [71 SPP] based on NETWORKIT has shown that they are quite slow and impre-
cise in comparison to PLM. A more recent study [41 SPP] shows that many local com-
munity algorithms detect a community in which the seed is not strongly connected.
Only algorithms that employ further guidance, e.g., using edge scores based on trian-
gles, are able to correctly identify a community the seed vertex is embedded in. The
study further shows that the results of all local community detection algorithms can be
improved by starting with the largest clique in the subgraph induced by the neighbors
of the seed vertex. For this, the possibility to combine two local community detection
algorithms has been added to NETWORKIT – a first one that detects the clique and then
a second one that expands this clique into a community [41 SPP]. This allows changing
both the seeding strategy and the latter expansion step.

For the experimental evaluation of community detection algorithms, suitable input
instances are required [7]. Ideally, instances from applications of community detec-
tion with known ground truth communities should be used for this. However, they are
frequently either quite small, unavailable due to privacy concerns or commercial inter-
ests, or the available ground truth data cannot be recovered from the graph’s struc-
ture [32,65]. For this reason, synthetically generated benchmark graphs with generated
ground truth communities are frequently used. The most popular one is the LFR bench-
mark graph generator [48], of which NETWORKIT also provides an implementation
for the case of unweighted, undirected graphs with disjoint communities [73 SPP] (see
also Chap. 2). Due to a partial parallelization and more efficient data structures, exper-
iments show a speedup compared to the original implementation of 18 to 70 using 16
cores [73 SPP]. When the similarity between a detected and a (possible) ground truth
community is low, it is often not clear if such a similarity could also be achieved by
chance. Therefore, Hamann et al. [41 SPP] also introduced a simple baseline algorithm
using a BFS that stops when the same number of vertices as contained in the ground
truth community have been visited and returns them as community. Together with addi-
tional methods for the evaluation of the found communities, NETWORKIT thus provides
a comprehensive framework for the development, evaluation, and application of local
community detection algorithms.

Nastos and Gao [61] suggest quasi-threshold graphs, i.e., graphs that do not contain
a path or cycle of four vertices as vertex-induced subgraph, as a model for communities
in social networks. As a given graph is usually not a quasi-threshold graph, they suggest
to insert and delete as few edges as possible to transform a graph into a quasi-threshold
graph. The connected components are then considered as communities. The first scal-
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able heuristic for this problem [25 SPP] has been implemented in NETWORKIT, for
details we refer to Chap. 7.

5 Graph Sparsification

Centrality measures suggest that certain vertices or edges are more important than oth-
ers. In graph sparsification, the idea is to exploit this fact to obtain a subset of the
vertices and/or edges that preserve key properties of the graph, i.e., to select vertices
and edges that are important for these properties. Properties of the graph can be pre-
served either directly or in a scaled version. For example, the degree distribution cannot
be exactly preserved when we remove edges, but we can preserve the general shape
of the degree distribution. Graph sparsification can provide insights into the structure
of a graph, as it provides insights on how much redundancy there is and which edges
are important for certain properties. An application of these insights is speeding up
other network analysis tasks or making them possible in the first place by reducing the
graph’s size such that the running time and memory requirements are reduced [69]. Fur-
ther, some of these sparsification techniques can also remove noise from the graph such
that, e.g., more informative drawings can be generated [64 SPP]. In NETWORKIT, we
provide a set of edge sparsification algorithms [40 SPP]. Given a graphG= (V,E), they
identify subsets E ′ ⊂ E of the edges such that G′ = (V,E ′) preserves certain properties
of G. We currently do not consider vertex sparsification, i.e., filtering vertices while
maintaining properties of the graph – since in many network analysis tasks (like ver-
tex centralities or community detection), we are interested in a result for every vertex.
If some vertices were no longer part of the graph, we would need to extrapolate their
results, requiring an additional post-processing step for every network analysis task.

With its diverse set of network analysis algorithms, NETWORKIT provides the ideal
testbed for sparsification algorithms. A study [40 SPP] compares a set of six existing
and one novel sparsification algorithm as well as five novel variants of the existing
algorithms using NETWORKIT. The study shows that these sparsification algorithms
can be classified into three groups: those that primarily preserve edges within densely
connected areas, those that primarily preserve connectivity between different areas, and
those that are almost or completely random. The algorithms in the first group strengthen
the formation of communities and either keep or increase the average local clustering
coefficient as already suggested by previous work [69,64 SPP]. The novel local degree
technique, on the other hand, keeps distances in the graph and thus the diameter small,
see Fig. 2 for an example. As the results show, it is also good at preserving vertex
centralities. Completely random filtering also works surprisingly well at preserving a
wide range of network properties. The study shows that all methods perform better for
most measures if, instead of directly filtering edges globally, a vertex of degree d keeps
its top de neighbors for some exponent e< 1. This local filtering step has been proposed
before [69] for a single sparsification algorithm and the study suggests to apply it to all
considered algorithms. In particular, this preserves connectivity of the graph quite well
and in general leads to a more even distribution of the preserved edges.

All of these sparsification algorithms can be decomposed into two steps: A first
step that assigns each edge a score and a second step that only keeps a certain frac-
tion of the highest-rated edges. Even the local filtering step can be implemented as a
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Fig. 2. Drawing using GEPHI [9] of the JAZZ network [34] (left) and a sparsified version con-
taining 15% of the edges (right) using the novel local degree algorithm. Vertex size and color is
proportional to degree. (Color figure online)

transformation of edge scores. This makes it possible to easily combine existing and
new algorithms. Further, the resulting scores can be considered as edge centrality mea-
sures that permit a ranking of the edges. With the help of visualization software like
GEPHI [9] (Sect. 6), the scores can also be visualized or used for interactive filtering of
edges.

6 Graph Drawing and Network Data Visualization

In exploratory network analysis, one needs to evaluate several properties of the network,
which requires writing code to run algorithms and plot their results. To speed up this
process, NETWORKIT provides a dedicated profiling module that allows non-expert
users to run several network analysis algorithms as a single program and visualize their
results in a graphical report that can be rendered in a Jupyter Notebook or exported as an
HTML or a LATEX document. As thoroughly explained in Ref. [75 SPP], first the report
lists global properties of the networks such as the size and the density. Then it provides
an overview of the distribution of several centrality networks as histograms (as shown
in Fig. 1, Sect. 3), followed by a more detailed statistical analysis. Finally, the report
includes a matrix with the Spearman correlation coefficients between the rankings of
the vertices according to the considered centrality measures; an example for the JAZZ

network is shown in Fig. 3.
When dealing with large graphs, statistical overviews as the ones mentioned are

indispensable, since the well-known vertex-edge diagrams do not even scale to graphs
of medium size (without further adjustments). For small graphs, however, visualizations
such as those diagrams can be very valuable. In general, the goal of graph visualiza-
tion [10] is to represent graphs in a form that is meaningful to the human eye. Popular
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Fig. 3. Spearman’s correlation coefficients between vertex rankings obtained with different cen-
trality measures for the JAZZ network. Darker [lighter] block shades indicate higher [smaller]
correlation values.

Fig. 4. Visualization example with GEPHI of the KARATE graph. Red vertices have the highest
harmonic centrality, blue vertices the lowest. (Color figure online)

application areas for graph visualization are biology (e.g., genetic maps), chemistry
(e.g., protein functions) [42], social network analysis [47], and many more. GEPHI [9]
is a popular Java-based GUI application to explore and visualize graphs. NETWORKIT’s
gephi module [40 SPP] allows to use GEPHI to visualize graphs along with addi-
tional vertex- or edge attributes with minimal effort. Figure 4 shows the visualization in
GEPHI of the popular KARATE graph obtained by the ForceAtlas2 graph drawing algo-
rithm [44] and by coloring the vertices according to their harmonic centrality score.

Graph drawing actually precedes visualization in most cases. It is the process of
computing meaningful coordinates for the graph vertices where such information is not
supplied with the graph. NETWORKIT’s approach for the most part is to use the graph
drawing capability in GEPHI. It has, however, also an implementation of an algorithm
for the maxent-stress objective function, following Ref. [58 SPP]. Here, the main inten-
tion is to solve an optimization problem that computes the three-dimensional structure
of biomolecules, given distance information between some atom pairs. To this end, the
original algorithm received several application-specific adaptations [76 SPP], e.g., to
be able to handle noisy data appropriately. As a result, the new algorithm by far out-
performs its competitors in terms of speed and flexibility, and often even produces a
superior solution quality.
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7 Conclusions

The main design goals of NETWORKIT (speed, rich feature set, usability, and integra-
tion into an ecosystem) prove to be very useful for users, but they can also be challeng-
ing for the developers. One lesson learned to keep an academic open-source project of
this size manageable and alive, is to combine best practices in both software engineering
and algorithm engineering [4 SPP]. For example, a proper modularization allows easier
reuse and combination of components, leading to a better extensibility and maintainabil-
ity. These keywords are well-known in software engineering, but they also have their
effect in algorithm design and implementation – in particular a simplified exploration
of the design space in experimental algorithmics. NETWORKIT has already proved to
be very useful in this respect for developers.

We have seen that approximation and parallelism can bring us a long way regarding
scalability. They are the obvious, but certainly not the only choices for acceleration:
exploiting the structure of the data, e.g., small vs. large diameter [12 SPP], can yield
significant speedups on real-world data—even in the context of exact computations and
potentially on top of parallelism.

NETWORKIT is constantly improved and extended – according to the resources
available to the project. There are numerous ideas for larger updates from various angles
– of which we mention only two representative ones: inherent support for attributes
within (some of) the algorithms and further/improved integration with other tools. The
latter is particularly geared towards a closer connection with machine learning, both on
an algorithmic and a software tool level. Given the current interest in machine learning
for data analysis, complete workflows within one seamless toolchain including NET-
WORKIT and tools such as SCIKIT-LEARN can be expected to be very attractive for
users from many domains.
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Abstract. Network models are developed and used in various fields of science
as their design and analysis can improve the understanding of the numerous com-
plex systems we can observe on an everyday basis. From an algorithmics point of
view, structural insights into networks can guide the engineering of tailor-made
graph algorithms required to face the big data challenge.

By design, network models describe graph classes and therefore can often
provide meaningful synthetic instances whose applications include experimental
case studies. While there exist public network libraries with numerous datasets,
the available instances do not fully satisfy the needs of experimenters, especially
pertaining to size and diversity. As several SPP 1736 projects engineered prac-
tical graph algorithms, multiple sampling algorithms for various graph models
were designed and implemented to supplement experimental campaigns. In this
chapter, we survey the results obtained for these so-called graph generators. This
chapter is partially based on [43 SPP].

Keywords: Random graphs · Graph generator · Sampling · Parallel ·
Distributed · External memory

1 Motivation

Networks are the very fabric that makes societies [5,40]. As such, humanity is seeking
to understand their structures, rules, and implications for centuries (see also Chapter 1).
The practical importance of networks, however, only sky-rocketed with the advent of
the information age. Nowadays, modern computers offer sufficient storage and process-
ing capacity to map out most aspects of human life and the world we inhabit. They are
fed by billions of interconnected sensors and computerized personal devices that pro-
duce enormous volumes of network data to be exploited.

Computer science provides the means to face this big data challenge. However, a
formal grammar capturing the inner structure of the data expected to be processed is
required to provide tailor-made solutions. Network models are just that: a mathematical
tool to describe and analyze realistic graphs. Research into and applications of these
models are deeply intertwined with various fields of science.

Networks are commonly modeled by so-called random graphs and, therefore, rep-
resent probability distributions over the set of graphs [8]. These distributions are almost
always parametrized (e.g., for the graph size or density) and typically follow implicitly
c© The Author(s) 2022
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from some randomized construction algorithm. Popular models are designed such that
we1 can expect certain topological properties from a randomly drawn instance: a par-
ticularly interesting goal is to reproduce the loosely defined class of complex networks
which, among others, encompasses most social networks.

By expressing network models as random graphs, we inherit a rich set of tools
from combinatorics, stochastics, and graph theory. In algorithmics we may, for instance,
assume that meaningful inputs are random instances of a suitable network model. Then
we can derive realistic formal performance predictions using average-case analysis,
smoothed complexity, et cetera. In practice, such results tend to be more relevant than
worst-case analysis based on pathologic structures that are implausible in applications.

Network models also enable or supplement experimental campaigns as a versa-
tile source of synthetic data with controllable independent variables. Synthetic bench-
marks are especially useful in the context of large instances where real data is typically
unavailable in sufficient size, quantity, or variety. Even if the data exists, procuring and
archiving it may be difficult for legal or technical reasons; this threatens the independent
reproducibility of results and thus infringes on one of science’s cornerstones [45].

1.1 Structure

In Sects. 1.2 and 1.3, we introduce the definitions and notation used in this chapter.
The main part of the chapter is then organized by the network model type. Section 2
discusses the notation of random graphs in detail and introduces sampling algorithms
for the G (n, p) and G (n,m) models.

Sections 3 to 5 deal with random graph classes that focus on the distribution of
degrees. Preferential attachment models, and especially the BA model by Barabási
and Albert, explain the emergence of powerlaw degree distributions in growing net-
works; we discuss suitable sampling algorithms, so-called (graph) generators, in Sect. 3.
The R-MAT, also capable of producing powerlaw degree distributions, is presented in
Sect. 4. In Sect. 5, we consider several solutions for the following problem: given a list
of degrees, produce a uniform sample from the set of all simple graphs that satisfy
these degrees. Section 6 discusses geometrically embedded random graphs including
the popular Random Hyperbolic Graphs.

Finally, in Sect. 7, we introduce network analysis and generator software supported
by the SPP 1736.

1.2 Notation

A graph G = (V,E) models a set of objects (nodes) V = {v1, . . . ,vn} and their con-
nections E (edges). Throughout this chapter, we will denote the numbers of nodes
and edges as n = |V |, and m = |E| respectively. A graph class is called sparse if
m=O(npolylogn) and dense if m=Θ(n2).

Edges can encode a direction (i.e., E ⊆ V × V ) or be undirected (i.e., E ⊆
{{u,v}|u,v ∈V}). If not stated differently, we assume undirected graphs. An edge that

1 In the interest of readability, “we” is used quite casually in this chapter. Please note that it also
appears regularly in the context of work of others.
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exists multiple times is called multi-edge and part of a multi-graph. A graph without
multi-edges or self-loops (edges between one node) is called simple.

Two nodes u and v connected by an edge e are neighbors or said to be adjacent; the
nodes u and v, in turn, are incident to the edge e. The number of neighbors of a given
node u ∈ V is called its degree deg(u). A sequence (deg(v1), . . . ,deg(vn)) is called a
degree sequence. The related concept of a degree distribution refers to the probability
distribution of the degree of a randomly sampled node (possibly in a randomly sam-
pled graph). Many observed networks exhibit a powerlaw degree distribution where the
probability of degree k is proportional to k−γ for some 2 < γ (and often γ < 3). A prop-
erty applies with high probability (w.h.p.) if it holds with probability of at least 1−x−α

for α ≥ 1 where x depends on the context and is often the problem size n or m.

1.3 Models of Computation

The design of an algorithm is heavily influenced by the assumed model of computation.
If not state differently we suppose the unit-cost RAM in which operations for control-
flow, data access, and basic arithmetic are handled in constant time. For shared-memory
parallel algorithms, its parallel variant PRAM is used. In a parallel context, we use
the term processing unit (PU) to refer to an abstract machine executing a sequential
algorithm (e.g., a core in a CPU or an individual processor in a distributed computer
cluster). A problem is said to be pleasingly parallel if it consists of sufficiently many
subproblems that can trivially be computed independently.

To model the cost of data transfer, the external memory model by Aggarwal and Vit-
ter [1] assumes a two-level memory hierarchy. It consists of an internal memory of size
M and an unbounded external disk which holds the algorithm’s input and output. Com-
putation is free, but is only possible on data in internal memory and therefore has to be
move to and fro. Data access is block-oriented and transfers B data items per I/O. Read-
ing and writing N contiguous items is referred to as scanning and requires scan(N) =
Θ(N/B) I/Os. Sorting such items triggers sort(N) =Θ((N/B) logM/B(N/B)) I/Os and
constitutes a lower-bound for most intuitively hard problems.

Analogously, the cost of communication is often a bottleneck for distributed
machines consisting of interconnected processors. Communication-agnostic algorithms
are an extreme case of communication avoidance. Each PU is only aware of its rank, the
total number of PUs, and some input configuration. However, exchange of any further
information during the execution of the algorithm is prohibited.

2 Random Graphs and the G(n, p) and G(n,m)Models

A random graph is a probability distribution P : G → [0,1] where G is the set of all
graphs. Virtually all random graph models2 are parameterized and thus form families of
probability distributions. The underlying distributions are typically specified implicitly,
and often have a finite support defined by some combinatorial constraints.

2 In the literature the terms random graph and random graph model are commonly used inter-
changeably, and may even refer to a random instance sampled from a model. We adopt the
former simplification for the sake of readability.
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As an example, consider the popular G (n, p) model introduced by E. Gilbert [20] in
1959. In its original formulation, the model’s support consists of all 2n(n+1)/2 undirected
graphs with exactly n nodes. The probability distribution is given indirectly via the
following sampling algorithm:

“Pick one of these graphs by the following random process. For all pairs of points
[nodes] make random choices, independent of each other, whether or not to join
the points of the pair by a line [edge]. Let the common probability of joining be
p.” [20]

In other words, in a random instance of G (n, p) any edge e exists independently with
probability p. Observe that G(n,1/2) hence implies the uniform distribution of all
graphs with n nodes. It is therefore a so-called maximum entropy model and sometimes
even referred to as the random graph [5].

Erdős and Rényi [17] propose the related and well-known G (n,m) model as the
uniform distribution over all undirected graphs with n nodes and m edges. The models
G (n, p) and G (n,m) with m=

(n
2

)
p are equivalent in the limit of n → ∞.

Neither G (n, p) nor G (n,m) explain the non-trivial structural properties of observed
networks. Since all edges are chosen (mostly) independently with identical probabili-
ties, we do not expect the formation of any complex features. Several ways to formalize
this intuition are discussed in [44 SPP]. Still, the models are commonly used to generate
synthetic data, e.g., as a null-model.

2.1 Sampling from G (n, p) and G (n,m)

Gilbert’s sampling algorithm is designed to communicate the model’s spirit to a human
reader and, as such, is not optimized for performance. The generator thus requires
Ω(n2) work independently of the linking probability p which is suboptimal for non-
dense graphs.

Batagelj and SPP 1736 PI Brandes [6] describe an optimal sequential generator
requiring work linear in the number m of edges produced. The algorithm fixes a conve-
nient order of all possible edges (i.e., a bijection π : [

(n
2

)
] → {{u,v}|u,v ∈V ∧u �= v})

and considers them in this sequence. Since each edge in a G (n, p) graph is the result of
an independent Bernoulli trial, the number of “non-edges” between any two successful
trials follows a geometric distribution. The generator therefore draws a random geomet-
ric variate, jumps over that many non-edges, writes out the next edge, and repeats until
all possible edges have been considered.

Since all edges are drawn independently, the generator can be parallelized by parti-
tioning the sequence of possible edges into independent sub-problems of roughly equal
size. Later, Bringmann and Friedrich [9] give an exact variant of the algorithm that does
not require real-valued arithmetic to sample the skip distances.

Sampling from G (n,m) is more challenging than G (n, p) since faithful G (n,m)
generators can not assume independent trials. This is due to the fact that partially sam-
pled edges and non-edges affect the probability distribution of the remaining candi-
dates. While Batagelj and Brandes remark that their G (n, p) generator can be extended
to G (n,m) by modifying the skip distance distribution accordingly, they continue to
develop a more efficient alternative requiring work linear in the number of edges pro-
duced [6].
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In the following, we however focus on a parallel approach by Funke et al. [18 SPP]
and showcase general divide-and-conquer techniques used to yield communication-
agnostic generators. The resulting generator is a variant of a parallel sampling algo-
rithm [47 SPP] for the related problem of randomly selecting m distinct elements from
a finite universe (i.e., sampling without replacement).

For simplicity’s sake, we only consider the directed variant of G (n,m).3 In order to
parallelize, we partition the set of nodes V into disjoint subsets V1, . . . ,Vp of roughly
equal size. Then, processing unit i is tasked to produce the mi out-going edges of nodes
in Vi. By definition of G (n,m), we require that ∑i mi = m. Observe that this is the
only dependency between subproblems. Thus, if mi is known a priori, PU i can work
independently.

Consequently, we need to find a communication-agnostic way to agree on a con-
sistent and randomly chosen m = (m1, . . . ,mP) where each PU only needs to know its
own value mi. The vector m follows a multinomial hypergeometric distribution where
the number of “positive instances” for the i-th entry are given by the number n · |Vi|
of potential edges processed by PU i. Under the assumption that the number P of PUs
satisfies P = O(n/ logn) the values of mi are sufficiently concentrated to bound the
complexity of the previous local sampling to O((n+m)/P) w.h.p..

A traditional distributed generator may sample m on a central PU and then broadcast
the values—this is, however, not possible in a communication-agnostic setting since
it incurs a communication volume Ω(P). Alternatively, each PU can independently
sample m with pseudo-random number generators that use a common seed value. This
approach requires expected time Θ(P) and, thus, dominates the total runtime for P =
ω(

√
m).

Thus, we rather follow a divide-and-conquer approach which works for various
distributions and is also used in Sect. 6.3. Roughly speaking, each mi corresponds to a
leaf in a binary tree of depth O(logP). At each inner node, we draw a random variate x
from an appropriately parametrized hypergeometric distribution and interpret x as the
number of edges to be produced in the left subtree. Each PU follows its unique path
from the root to the i-th leaf to sample its own value of mi. To achieve consistent values,
the sampling at each inner node is carried out using a pseudo-random number generator
whose seed is deterministically derived from a unique node index.

The authors show that combining these ideas yields a communication-agnostic gen-
erator with a runtime complexity of O((n+m)/P+ logP) w.h.p..

3 Preferential Attachment

Barabási and Albert [4] propose a simple stochastic process to explain the emergence of
scale-free networks and show that two ingredients, namely growth and selection bias,
suffice to yield networks with powerlaw degree distributions.4

3 The undirected [18 SPP] variant only differs in the partitioning of the parallel subproblems.
4 Earlier, Price [50] proposed a similar process inspired by Pólya urns [16]. The author applies it

to citation networks with a known powerlaw in-degree distribution [46]. The more widespread
BA model is sometimes interpreted as a special case of Price’s model.
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At its core, their BA model relies on preferential attachment, a positive feedback
loop in dynamic systems where selecting an item at one point in time increases the
probability of selecting it again in the future. It is proverbially summarized as “the rich
get richer”.

Based on this idea, the authors describe the following random graph. Starting with
an arbitrary seed graph G0 with n0 vertices and m0 edges, we iteratively add n− n0

nodes—one node at a time. For each new node, we choose d neighbors at random
where the probability to select node v is proportional to the degree of v at that time.

The main algorithmic challenge of BA lies in this dynamic weighted sampling.
Depending on the assumed model of computation, quite different solutions are avail-
able. Batagelj and Brandes [6] observe that each node with degree k appears exactly
k-times in the edge list produced so far. Therefore, the underlying dynamic weighted
sampling problem can be reduced to uniformly selecting entries from the edge list,
leading to the linear-time generator BB-BA.

As BB-BA requires unstructured I/Os, it cannot efficiently produce graphs that do
not fit into main memory. Meyer and Penschuck [36 SPP] introduce TFP-BA and MP-
BA, the first two I/O-efficient sampling approaches for random graph models based on
preferential attachment. The authors initially focus on BA graphs to demonstrate the
techniques and subsequently discuss additional features such as seed graphs exceeding
main memory, nodes with inhomogenous initial degrees, the inclusion of uniform node
sampling, directed graphs, and edges between two randomly chosen nodes.

– TFP-BA is a simple and easily generalizable sequential generator inspired by BB-
BA. Rather than reading from random positions in the edge list, TFP-BA first pre-
computes all necessary read operations and sorts them by the memory address they
read from. As the algorithm produces the edge list monotonously moving from
beginning to end, it scans through the sorted read request and forwards the still
cached values to the target positions using an I/O-efficient priority queue. This app-
roach requires O(scan(m0)+ sort(m)) I/Os, where m0 is the number of edges in the
seed graph and m is the number of edges produced.

– MP-BA is a parallel generator that offloads a number of subtasks onto a general-
purpose graphics processor. The algorithm implements dynamic weighted sampling
using a binary tree T partially stored in external memory. Each node u of the gen-
erated graph corresponds to a leaf in T labeled with the degree of u; any inner node
stores the total weight of all leaves contained in its left subtree.
In order to select a neighbor, MP-BA first has to sample a leaf according to the cur-
rent degree distribution and then increment the leaf’s weight to account for the newly
gained edge. The key insight is that we can do both in a single top-down traversal
from the root to the sampled leaf. This allows us to combine the queries for sampling
and updating into a single operation and, in turn, to coalesce queries into batches.
MP-BA requires O(sort(n0 +m)) I/Os, where n0 is the number of nodes in the seed
graph and m is the number of edges produced.
The algorithm uses two forms of parallelism: firstly, T is cut at a certain depth to pro-
cess the subtrees rooted there pleasingly parallel. In order to handle the high volume
of requests near T ’s root, a dedicated PRAM algorithm processes multiple requests
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to the same tree node in parallel. MP-BA’s implementation executes the latter part
on a GPU for maximal throughput.

Sanders and Schulz [48 SPP] describe CA-BA, a communication-agnostic generator
for distributed-memory parallelism. Their algorithm builds on top of BB-BA and uses
pseudo-randomization to avoid all lookups to edges generated. By doing so, several PUs
can work on the problem without exchanging information other than an initial broadcast
of the seed graph and a few parameters. In contrast to the original algorithm, CA-BA
does not maintain an edge list to sample from explicitly. To simplify the description, we
still presume its existence as a concept for addressing.

In order to add an edge, the generator needs to place the indices of the two incident
nodes into the edge list. Recall that each generated edge consists of a newly introduced
node and a randomly selected neighbor. By convention, we store the former at even
positions of the edge list, and the latter at odd positions. Since by definition of the BA
model, each newly introduced node is initially incident to exactly d edges, all entries at
even positions follow from a simple index transformation.

Sampling random neighbors involves a shared random hash function h(·) with the
property that h(i)< i. Then, in order to choose the node index of the random neighbor to
be written to the edge list’s i-th position, we conceptually copy the value from position
j = h(i). To do so, we distinguish three cases:

1. If j < 2m0, we need to retrieve a value from the seed graph which is a simple read
access to the input data. It is the only case where an actual memory access needs to
be carried out.

2. If j ≥ 2m0 and j is even, we can compute the value stored there using the aforemen-
tioned index transformation.

3. If j ≥ 2m0 and j is odd, we retrace the sampling carried out. To do so, we recurse
on j′ = h( j) = h(h(i)).

The first two cases imply constant work on a unit-cost RAM. Since we assume h(·) to be
a random function, the first two cases are chosen with probability of at least 1/2. Thus,
the recursion of the last case has an expected depth of at most 2 and is O(logm) with
high probability. Assuming h(·) can be evaluated in constant time, CA-BA therefore
requires expected linear work.

4 R-MAT

R-MAT [15] graphs are a well-accepted network model which is especially known for
its use in the Graph500 benchmark [38]. The model is defined for graphs on 2k nodes
and m edges. To sample an edge, we recursively subdivide the adjacency matrix into
four quadrants, assign them probabilities pa + pb + pc + pd = 1 provided as model
parameters, and randomly select one. We repeat this k times until we reach a matrix
of size 1 × 1 which corresponds to the edge. Depending on the model, we either allow
multi-edges, or reject and resample to avoid duplicates. Undirected graphs are possible
and typically imply additional symmetry constraints on the quadrant probabilities. For
certain sets of parameters, the model exhibits similarities to observed networks such a
powerlaw degree distribution [34].
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Following the recursive definition, there exists a bijection between each possible
edge and the set of words Σ k over Σ = {a,b,c,d} where each x ∈ Σ represents the
quadrant chosen. A naive R-MAT generator explicitly samples the k characters, one
after another, and thus requires Ω(logn) work per edge.

Hübschle-Schneider and Sanders [27 SPP] propose a communication-agnostic
scheme that instead samples edges in constant time under the reasonable assumption
that m= Ω(n). The algorithms performs a preprocessing step to construct an urn which
contains nα path fragments (for some α < 1) weighted by their probabilities in time
O(n), e.g., by considering all words Σ � of fixed length � = log2

√
n= k/2.

To draw an edge we sample 
k/�� = O(1) fragments. We then concatenate them
using bit-parallel shifting and masking operations available in virtually all modern com-
puters. Both steps require only constant time per edge.

5 Simple Graphs from Prescribed Degree Sequence

The sampling of random graphs matching a prescribed degree sequence is a common
task in network analysis. Its various applications range from to the construction of null-
models (e.g., Chapter 3) to use-cases as building blocks in graph generators. Instances
of the latter are the popular LFR benchmark [28] or the derived ReCon [51 SPP] model
to generate scaled-replicas of an input graph.

The computational cost of this approach heavily depends on the exact formulation
of the model. Two models with linear work sampling algorithms are the Chung-Lu
(CL) model and the Configuration Model (CM). The CL model produces the pre-
scribed degree sequence only in expectation (see [44 SPP] for details). The CM, on the
other hand, exactly matches the prescribed degree sequence but permits self-loops and
multi-edges. These parallel edges affect the uniformity of the model [39, p. 436] and
are inappropriate for certain applications; however, erasing them may lead to significant
changes in topology [49 SPP]. In the following, we focus on simple graphs (i.e., with-
out self-loops or multi-edges) matching a prescribed degree sequence exactly. Several
generators and models for such graphs were considered within the SPP 1736.

5.1 The Edge Switching Markov Chain Model

The Fixed-Degree-Sequence-Model (FDSM) is a common solution to obtain simple
graphs from a prescribed degree sequence. It first manifests a biased deterministic graph
(e.g., using the HAVEL-HAKIMI algorithm [23,26]) and then uses an Edge Switching
(ES) Markov chain process [21] to perturb the graph. In each step, the process selects
two edges uniformly at random and exchanges their incident nodes—by doing so the
degrees of all nodes involved do not change. If a step were to result in a self-loop or
multi-edge, it is rejected without replacement. Despite intensive research, it remains an
open problem to find practical upper bounds on the Markov chain’s mixing time; i.e.,
the number of steps required to obtain a uniform sample. In practice, a small multiple
of the number of edges typically suffices (cf. Chapter 3).

The main issue when implementing ES is the large number of unstructured accesses
to memory; for each switch it is necessary to identify the involved nodes, check whether
the updated edges already exist, and finally to write out the updates.
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Hamann et al. [25 SPP] describe EM-LFR, an I/O-efficient pipeline to sample large
instances from the LFR model. From an algorithmic point of view, two central parts
of the pipeline are EM-HH and EM-ES which together implement FDSM. EM-HH
is designed to avoid memory accesses as best as possible especially for graphs with
powerlaw distributions. EM-ES, on the other hand, batches Θ(m) individual swaps and
processes them out-of-order without changing the outcome; due to the large number of
swaps in each batch, we can amortize the I/O volume and stream through the whole
graph a constant number of times rather than executing Θ(m) more expensive unstruc-
tured accesses.

Later, [24 SPP] propose a modification of the FDSM model and provide empirical
evidence of faster mixing. The previous combination of EM-HH followed by EM-ES
starts with a highly biased simple graph. The novel EM-CM/ES takes another route: It
starts with a random but non-simple graph and switches edges until a simple random
graph is obtained. It uses an I/O-efficient generator for the Configuration Model and a
variant of EM-ES which accepts non-simple inputs without increasing its I/O complex-
ity. The modified algorithm executes all switches that neither increase the multiplicity
of a given edge nor introduce self-loops. Non-simple edges are also switched more fre-
quently than legal edges to accelerate the repair phase. Observe, however, that it does
not suffice to rewire non-simple edges using the presented variant of ES as it produces
a biased sample [2,3]. Instead, additional ES steps are necessary.

Brugger et al. [12 SPP] implement ES in hardware (see Chapter 4 for details). Their
design maintains the graph in a hybrid data structure combining an adjacency list to
efficiently sample edges and an adjacency matrix for fast edge existence queries. Then,
the authors investigate two cases:

– First they perturb several independent graphs pleasingly parallel where each graph
is stored in a dedicate physical region (DRAM channel) of common memory chips.
In this setting, the authors optimize the memory controller to address channels inde-
pendently and interleave these requests.

– In a second step, parallelism within a single ES run is exposed using the following
observation: If the graph is sufficiently large, the probability that a short run of mul-
tiple switches target a common edge is small (cf. birthday problem). The authors
therefore describe a hardware design that checks whether 12 contiguous switches
are collision-free and if so, execute them in parallel.

5.2 Curveball

Curveball (CB) [52] is a more recent process but structurally similar to ES; instead of
selecting random edges, CB selects two random nodes u �= v, and trades their neighbor-
hoods as follows. CB begins by freezing all edges that either connect u and v themselves
or link to neighbors which u and v have in common. Then, the remaining neighbors are
randomly shuffled while maintaining the degrees of u and v. A single CB trade can
therefore inflict “more change” to a graph than a single edge switch; depending on the
processed graph, a state in CB’s Markov chain may have up to 2Θ(n) neighbors while
the degrees in ES’s chain are bounded by O(n4) [13]. Empirical data suggests that
fewer trades are necessary to mix a graph (though each trade may require more work).
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CB exposes more data locality than ES since all information required to carry out
a trade is contained in the two neighborhoods. This is in contrast to ES, which requires
additional unstructured reads to prevent a switch from introducing multi-edges. Note,
however, that an undirected edge is classically stored twice—once for each endpoint.
In this scenario, frequent unstructured updates are necessary and negate the previously
mentioned locality benefits.

The I/O-efficient EM-CB algorithm [14 SPP] thus relies on a dynamic data struc-
ture and assigns each edge only to the endpoint that is traded next. EM-CB uses the
external-memory technique Time Forward Processing (TFP, see [35]) to ensure that
the complete neighborhood of a node is available when needed.

The algorithm works in batches. At the beginning of each batch, it samples the
node pairs to be traded within the batch and organizes them in dedicated indices. These
auxiliary data structures are used to address the TFP messages and to determine which
endpoint of an edge will be traded first. EM-CB requires O(r[sort(n)+ sort(m)]) I/Os
to carry out r global trades (see below).

Carstens et al. [14 SPP] generalize Global Curveball (G-CB) to undirected graphs.
An undirected global trade is a sequence of �n/2 single trades such that the neigh-
borhood of each node is traded at most once. They show that the process converges
to a uniform distribution over the set of all graphs and give empirical evidence of its
superior performance compared to CB.

Since each node participates once5 in a global trade, we can interpret a global trade
as a random permutation of nodes where we trade pairwise adjacent nodes. The authors
then propose an algorithm that eliminates the auxiliary data structures by maintaining
the permutation implicitly using a collision-free (on the relevant domain) and invertible
hash function, and finally give a parallel version of it.

6 Geometrically Embedded Random Graphs

Random Hyperbolic Graphs (RHGs) are a popular network model which naturally
exhibits many features commonly observed in complex networks. RHG assigns each
node a position on a two-dimensional hyperbolic disk of radius R. These positions are
conveniently expressed in polar coordinates where each point is located in terms of its
distance r (radius) to the disk’s center and an angular coordinate θ .

In the so-called Threshold RHG [22], we connect all pairs of points (ri,θi) and
(r j,θ j) with i �= j whose hyperbolic distance d(pi, p j) is smaller than R, where

cosh(d(pi, p j)) = cosh(ri)cosh(r j)− sinh(ri)sinh(r j)cos(θi −θ j). (1)

Thus, the hyperbolic distance is a function of the relative and absolute positions of both
points; the closer a point is to the disk’s center, the more neighbors it is expected to have.
We obtain a powerlaw degree distribution with a controllable exponent by choosing an
appropriate radial density for the randomly placed points.

5 For simplicity, we assume here that n is even.
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Binomial RHG extends Threshold RHG by adding a positive temperature parame-
ter T that affects the local cohesion. In the binomial variant, each pair of nodes pi �= p j is
independently connected by an edge with probability pT (d(pi, p j)) defined as follows:

pT (d) =
[

exp

(
d−R

2T

)
+1

]−1

(2)

Binomial RHG contains Threshold RHG as pT becomes a step function for T → 0.
Looz and Meyerhenke [31 SPP] propose an extension of the RHG model to generate
dynamic graph data sets: their model adds movement of nodes which in turn translates
to a stream of edge insertions and deletions.

6.1 Efficient Generators Based on Geometric Data Structures

A naive RHG generator that checks each node pair for an edge requires Ω(n2) work
and little parallel depth6. All efficient generators we are aware of reduce the computa-
tional complexity in a two step process: they cheaply identify a set of edge candidates
(i.e., a super-set of the true result), and then filter the candidates more carefully. The
identification typically exploits geometrical or stochastic arguments, while the filtering
process tends to involve costly per edge distances computations.

All geometric generators discussed in the remainder of this chapter use one of two
geometric partitioning schemes, namely a quad-tree or a band structure.

– Looz et al. [32 SPP] describe NKQUAD, the first sub-quadratic work RHG gen-
erator. NKQUAD is based on a polar quad-tree which recursively subdivides the
space into four quadrants each (i.e., each inner tree-node introduces two cuts, one
in the angular and one in radial dimension, respectively). The generator then iter-
ates over all nodes and computes for each v ∈ V the neighbor candidates Cv. The
set Cv consists of all nodes in quad-tree leaf cells which intersect the hyperbolic cir-
cle of radius R around v. The identification of such leafs is simplified by working
in the Poincare projection which translates hyperbolic circles into (radially shifted)
Euclidean circles. The authors show that such a query examines O(

√
n+ |Cv|) leafs

w.h.p., leading to total work of O((n3/2 +m) logn) w.h.p..
Later, Looz and Meyerhenke [30 SPP] generalize the data structure and extend the
generator to Binomial RHG while maintaining the asymptotic complexity. The effi-
cient sampling of low-probability edges is implemented by bounding the probability
to connect to any edge within a leaf from above. These bounds are used to carry
out geometric jumps (cf. Sect. 2) followed by rejection sampling to account for the
over-estimation.

– Looz et al. [33 SPP] improve NKQUAD by proposing NKBAND featuring a novel
partitioning scheme. NKBAND covers the hyperbolic disk with Θ(logn) disjoint
concentrical bands where each band is maintained as an array of points sorted by
their angles. To find the neighbor candidates of a node v in band bi, the algorithms
considers bi and all bands containing larger radii. For each such band b j, the smallest
and largest angular coordinate of a potential neighbor of v in b j is computed; then

6 Dependencies may arise from the output format, e.g., from a need for compaction.
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two binary search yield the left- and right-most candidates in the sorted array. By
doing so, the authors effectively over-estimate the upper half of the hyperbolic circle
around node v by a discrete stack of shrinking band-segments. The generator has
an empirical runtime of O(n logn+m). Later, Looz [29 SPP] extends NKBAND to
Binomial RHG using ideas similarly to the generalization described for NKQUAD.

6.2 A Fast and Memory-Efficient Streaming Generator for RHG

As the geometric data structures discussed for NKQUAD, NKBAND, and HYPERGIRGS

have a large memory footprint that can render them unsuitable for accelerator hardware
with a small dedicated memory, [42 SPP] presents HYPERGEN, a streaming genera-
tor for Threshold RHGs which instead samples the points on demand. The genera-
tor requires O([n1−α d̄α + logn] logn) words of memory w.h.p.. For realistic average
degrees d̄ = o(n/ log1/α(n)) this is a significant asymptotic reduction over classical
approaches.

HYPERGEN executes a sweep-line algorithm and stores the set of nodes that may
still find neighbors in its sweep-line state; we refer to them as candidates. Roughly
speaking, the algorithm randomly samples points with non-decreasing angular coordi-
nates.7 For each new point, the algorithm identifies all sufficiently close candidates and
emits edges to them. The generator then marks the point a candidate itself and advances
the sweep-line. HYPERGEN stops the sweep-line at additional points, e.g., to prune can-
didates whose distances to the sweep-line are so large that they cannot find neighbors
anymore.

To manage the computational cost of maintaining the sweep state, HYPERGEN

includes conservative approximations that do not infringe on the generator’s faithful
reproduction of RHGs. They exploit the distribution of points as well as properties of
the hyperbolic distance function. The majority of points can be quickly pruned from
the algorithm’s state. In contrast, the few points that have small radii stay candidates
for a significantly longer period of time. To accommodate the different requirements,
HYPERGEN partitions the hyperbolic disk into Θ(logn) concentrical bands. Each band
has its own sweep-line and state which remain synchronized with the states of its adja-
cent bands.

Observe that, due to the angular periodicity of the hyperbolic disk, points sampled
late (i.e., with angles near 2π) can be adjacent to points discovered and pruned much
earlier. HYPERGEN accounts for this by restarting the sampling process until all candi-
dates of the first phase are processed. It exploits pseudorandomness to obtain consistent
point coordinates in both phases.

Parallelization is possible by splitting the disk into segments of equal size. Some
care has to be taken to manage the dependencies near the segments’ borders. HYPER-
GEN also significantly accelerates the frequent distance computations by preparing aux-
iliary values per point. This removes all transcendental functions (here sinh, cosh, and
cos) from Eq. (1). Refined versions of these techniques carry over to Sects. 6.3 and 6.4.

The implementation of HYPERGEN is designed with SIMD (Single-Instruction-
Multiple-Data) in mind and is explicitly vectorized. It uses SIMD instructions to com-

7 This is an over-simplification of the sweep-line’s behavior (cf. [42 SPP]).
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pute eight hyperbolic distances simultaneously (which is only possible because we first
removed the aforementioned transcendental functions).

6.3 Communication-Agnostic Generators for RHG

Funke et al. [19 SPP] present RHG, a communication-agnostic generator for Threshold
RHG. The generators RHG and HYPERGEN were developed independently at roughly
the same time, and share ideas to sample specific subsections of the hyperbolic disk
using pseudorandomization. While HYPERGEN uses a monotonous sweep-like motion
optimized for memory usage, RHG uses less structured queries. These “random” queries
are answered using a fine-grained partitioning of the hyperbolic space which inge-
niously allows random access to any cell (the geometry is similar to the one discussed
in Sect. 6.1).

For huge graph instance, the number of nodes may be too large to sample —let
alone store— all nodes on every distributed machine. Fortunately, a key property of
relevant RHG graphs is that most nodes only have a very local neighborhood, i.e., a
hyperbolic circle around each node suffices to compute all its links. Observe that many
of these subsets overlap due to common edges. In general, there is no balanced mapping
of nodes to processing units without overlaps. Thus, any two PUs with overlapping
subsets have to have a consistent view of the underlying region of hyperbolic space.

We achieve this by partitioning the hyperbolic space into k cells. Then, the fol-
lowing process reproducibly samples points within a cell. First, a hash function f is
used to seed a pseudorandom number generator with the value f (i). For each cell i, we
seed a pseudorandom generator with a value deterministically derived from the cell’s
index i and, subsequently, use the generator to sample the ni points contained within the
cell. By construction, this process yields consistent results even if executed by multiple
independent processing units.

The only information missing is the number ni of points in cell i. The vector
N= (n1, . . . ,nk) follows a multinomial hypergeometric distribution due to the side con-
dition that exactly n points need to be scattered in total, i.e., ∑i ni = n. All PUs obtain
consistent values for N using common seeds for their pseudorandom generators analo-
gously to the divide-and-conquer approach in Sect. 2.1.

In [18 SPP], this techniques is combined with HYPERGEN (see Sect. 6.2) yield-
ing the communication-agnostic sweep-line generator SRHG which consistently outper-
forms RHG. We demonstrate its scalability to up to 32 768 cores and produce a graph
with n= 239 nodes in less than a minute.

6.4 GIRG-Based Generator

Bringmann et al. propose Geometric Inhomogenous Random Graphs as a flexible and
simple model, that asymptotically contains RHG [11]. Roughly speaking, the model
embeds a graph into an d-dimensional torus and uses node weights to control the degree
sequence similarly to the Chung-Lu model. The authors also give an expected linear
time sampling algorithm for GIRGs [10] which we engineer adapt8 it to Binomial RHGs

8 Bringmann et al. already discuss the applicability to RHG. The models are however not iden-
tical [7 SPP], and HYPERGIRGS closes this gap.
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in [7 SPP]. We refer to our algorithms as GIRGS and HYPERGIRGS, respectively. To the
best of our knowledge, GIRGS is the first practically efficient generator for the GIRG
model. Here, we focus on RHGs since the algorithmic treatment of both models is very
similar.

HYPERGIRGS first samples all points and builds a data structure that can be inter-
preted as a polar quad-tree. While the structure is similar to the previous state-of-the-art
generator NKQUAD (see Sect. 6.1), differences in details result in a polynomial gap in
their running times. In the following, we refer to nodes of the quad-tree as tree-nodes
(to distinguish them from the hyperbolic nodes contained).

Bringmann et al. propose the following neighborhood search which is adapted by
HYPERGIRGS. For simplicity, we initially restrict ourselves to Threshold RHGs. The
generator enumerates all pairs of tree-nodes that may contain point pairs sufficiently
close to imply an edge. This is done in a pessimistic and oblivious fashion, i.e., without
considering the actual points represented by the tree-nodes. HYPERGIRGS then emits
edges by testing all point pairs contained in each previously enumerated pair of tree-
nodes. To avoid asymptotically significant overheads, the algorithm pairs tree-nodes as
high up in the quad-tree as possible without adding unintended distance computations.

The quad-tree needs to support efficient random access to all points contained within
any tree-node at any depth. Similarly to [10], HYPERGIRGS achieves this using z-order
space-filling curves [41] to map the tree to memory. This choice allows us to efficiently
build and query the quad-tree using Morton codes [37].

In case of Binomial RHGs with T > 0, any node pair has a positive (yet mostly
negligible) probability pT (d) to be connected. HYPERGIRGS therefore has to consider
all tree-node pairs—even those with a tiny connection probability. In the latter case,
the connection probability is bounded from below. Then, we use geometric jumps fol-
lowed by rejection sampling to prune the search space. The authors also engineer an
exact look-up table-based sampling scheme to reduce the evaluation of transcendental
functions during the computation of linking probabilities pT (d).

HYPERGIRGS processes the tree-node pairs pleasingly parallel. As a special feature,
its implementation guarantees reproducibility in the sense that two runs with the same
set of parameters and seed values output the same set of edges (though not necessarily
in the same order). At the time of writing, the implementation of HYPERGIRGS is the
fastest sequential RHG generator and competitive for shared-memory parallelism.

7 Software Packages

From a practical point of view, it is crucial that a generator interacts well with the soft-
ware used to analyze the emitted graphs. A common choice is to write the produced
graph into a file which then can be processed by a tool of choice. There are, however,
notable drawbacks of this approach; for one, there are a plethora of file formats which
may be incompatible. Also reading and writing files can have surprisingly high over-
heads (e.g., [42 SPP]).

The network analysis framework NetworKit (partially supported by the SPP 1736)
includes generators for all network models that are discussed in depth in this chapter.
As detailed in Chapter 1, this software package combines various types of graph algo-
rithms efficiently implemented in C++ with an easy to use Python interface. The tight
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interaction between network generation and analysis promises a fast and convenient
processing pipelines.

KaGen is a graph generator suite for distributed computing and contains a num-
ber of communication-agnostic generators [18 SPP]. The suite includes generators for
the following models accessible via a common interface G (n, p), G (n,m), Kronecker
Graph , Random Geometric Graph , Random Delaunay Triangulation, Barabási-Albert ,
and Threshold RHG.

Acknowledgements. The authors thank Mario Holldack and Hung Tran for valueable discus-
sions and their insightful comments.
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Abstract. Complex graphs are at the heart of today’s big data challenges like
recommendation systems, customer behavior modeling, or incident detection sys-
tems. One reoccurring task in these fields is the extraction of network motifs,
which are subgraphs that are reoccurring and statistically significant. To assess
the statistical significance of their occurrence, the observed values in the real net-
work need to be compared to their expected value in a random graph model.

In this chapter, we focus on the so-called Link Assessment (LA) problem,
in particular for bipartite networks. Lacking closed-form solutions, we require
stochastic Monte Carlo approaches that raise the challenge of finding appropriate
metrics for quantifying the quality of results (QoR) together with suitable heuris-
tics that stop the computation process if no further increase in quality is expected.
We provide investigation results for three quality metrics and show that observing
the right metrics reveals so-called phase transitions that can be used as a reliable
basis for such heuristics. Finally, we propose a heuristic that has been evaluated
with real-word datasets, providing a speedup of 15.4× over previous approaches.

Keywords: Link Assessment · Edge switching · Curveball · Random graphs

1 Introduction

The data deluge phenomenon is ever more present. We, as a society, generate and store
far more data than what we can make use of right now [7]. Among the reasons for
that are: 1. new approaches to acquire data, ranging from internet traffic recordings to
high throughput DNA sequencing; and 2. the reduction in price per bit of data storage
technologies, which motivates companies and researchers to be less selective about
what data to be stored. These are by no means disadvantages over past methodologies,
instead, they open new possibilities for data analysis that require methods that are more
efficient and more robust against noise.

Complex network analysis is a tool-set of methods commonly used to extract infor-
mation from large amounts of data, as long as the data can be meaningfully represented
as a network. One popular method is the so-called Link Assessment (LA), whose goal is
to refine the data based on the principle of structural similarity (or homophily), i.e., enti-
ties that are alike tend to share a large proportion of their neighbors. Although the
assumption of homophily is most common in social network analysis, mainly unipar-
tite networks, it has been shown useful in a large range of contexts, including bipartite
networks (such as a user rating / movie network) [24 SPP].
c© The Author(s) 2022
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For unipartite networks, such as a protein-protein interaction database [12] or social
networks [24 SPP], the LA may serve as a data-cleansing method, evaluating whether
each existing link is likely to be a true positive and whether each non-existing link
is likely to be a true-negative. This should not be confused with the link prediction
problem, which is already well-researched [17], but poses a slightly different question:
Given a snapshot of a network at time t, which of the yet unconnected node pairs are
predicted to be connected at t+1?

For bipartite networks, such as genes that are associated with diseases [11] or prod-
ucts that are bought by costumers [10], the LA is a systematic way of projecting such
networks to one of their sides [27]. This so-called one-mode projection transforms a
bipartite network into a unipartite one by connecting the nodes on one of the sides
based on their connections to the other side, while the nodes of the other side are
discarded (see Sect. 2). Since most methods and tools for network analysis focus on
general graphs, the one-mode projection of bipartite networks is a particularly useful
pre-processing step to their analysis [27]. In this chapter, therefore, we focus on the LA
for bipartite networks.

The LA is closely related to a vast body of research that includes the link prediction
[17,20], recommendation systems [2], and node similarity in complex network analy-
sis [16,18]. Known approaches for such problems can be divided into supervised and
unsupervised learning. Supervised learning approaches require a ground truth, i.e., a
subset of the network whose links or labels are known to be correct. In general, these
ground truths, or training sets, are manually annotated and therefore are often the bot-
tleneck in the data-mining pipeline [26]. Moreover, the ground truths are often split into
a training set and a test set, where the test set is used to estimate the quality of results
(QoR). Unsupervised learning methods, on the other hand, require no ground truth,
instead, they rely only on the structure (or other properties) of the data itself. Thus, in
many cases, the QoR cannot be directly estimated. In conclusion, these methods should
only be applied to specific types of data set for which their robustness has already been
validated.

As stated earlier, the LA is an unsupervised method that assumes the relationships
in the network to adhere to the notion of homophily, where alike nodes tend to have
a larger common neighborhoods than one would expected from merely their degrees
in a randomly constructed graph. In practice, the LA is based on Markov chain Monte
Carlo (MCMC) methods that generate a large set of such random graphs. These MCMC
methods are known to eventually converge, but their parameters are unknown. When-
ever a ground truth is available, the QoR is assessed by, for e.g., the ratio of correctly
identified pairs of alike nodes over the total number of pairs listed in the ground truth,
i.e., the PPVk (see Sect. 2.1). Else, one must ensure that the MCMC has converged.

In this chapter we summarize specific aspects for creating an LA problem solver,
give insights into available metrics for measuring the QoR, and propose an appropriate
heuristic that can speed up the run time by a factor of 15.4× compared to a conservative
approach.
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2 Link Assessment Based on z*

Several node similarity measures have been proposed by different scientific communi-
ties, such as the Jaccard index, the Pearson correlation coefficient, or the hypergeom
[12]. In [24 SPP], we have introduced a new similarity measure, the z* that has shown
to be the most robust one across a range of datasets from protein-protein interactions to
movie ratings to social network.

Given a bipartite graph G((Vl ,Vr),E) with verticesVl andVr and edges E, we define
coocc(u,v) as the number of co-occurring neighbors of nodes u and v. Most node simi-
larity measures inherently depend on this quantity, but differ in how they are normalized
based on the structure of the network. The similarity scores between nodes of the side-
of-interest, sayVl , are the basis for the one-mode projectionG((Vl ,Vr),E)⇒G′(Vl ,E ′),
where E ′ are edges between nodes in Vl . Some similarity measures use a simple factor
based on properties of the two nodes, u and v (e.g., Jaccard index), while others are the
result of a comparison to the expected value from a null-model (e.g., hypergeom).

The z* falls in the second category, as a combination of the p-value and the z-score
statistics of the node-pairwise co-occurrences. Node pairs are ranked more similar if
their p-value is smaller and ties are broken by their z-score [24 SPP]. Of key impor-
tance is the null-model used–the fixed degree sequence model (FDSM). The FDSM
is a random graph model that preserves the degree sequence of the original network
while randomizing its nodes’ interconnections, or edges. While it has been shown that
the FDSM is a superior null-model than simpler graph models [13,14,27], closed-form
expressions for the expected co-occurrences, cooccFDSM(u,v), are not known. These
quantities are instead estimated by a random sampling procedure, known as a Markov
chain Monte Carlo (MCMC) approach. Algorithm 1 describes the complete calculation
of the z*.

2.1 Ground Truth and PPVk

Throughout this chapter, we discuss a variety of results for the Link Assessment (LA)
using as an example the Netflix Prize dataset1. By setting a threshold, the data are
represented as a bipartite graph between users and movies, where an edge (u,v) means
that user u liked (4 or 5 stars in the 1–5 scale) movie v. By finding significant co-
occurrences between any two movies (v,w), a one-mode projection can be obtained
[27]. The projection to the movies side was preferred because the users are anonymized,
therefore it would be impossible to generate a ground truth of known similar users.

We quantify the quality of the LA by the positive predictive value (PPVk) based on a
ground truth dataset that contains only pairs of known non-random association, namely
movie sequels like Star Wars and James Bond. The PPVk is the fraction of correctly
identified pairs from the ground truth in the set of the k highest ranked pairs of movies,
where k is the number of pairs in the ground truth (see [3 SPP] for an example).

Building a ground truth for real datasets requires orthogonal information about the
data (information that is not available for the LA method being tested) as well as an

1 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data.

https://www.kaggle.com/netflix-inc/netflix-prize-data
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Algorithm 1: The complete Link Assessment algorithm, calculating the similarity
measure z*
Data: Graph G((Vl ,Vr);E) with vertices Vl and Vr and edges E, Vl being the vertices of

interest;
Result: A z*-score (p-value and z-score) for all pairs of vertices (u,v) ∈ (Vl ×Vl);

1 Calculate coocc(u,v) ∀ (u,v) ∈ (Vl ×Vl); G0 := G;
2 for i := 1 to |samples| do
3 Gi := Gi−1;

4 Graph randomization:
5 for |swaps| do
6 Choose two edges at random in Gi and swap them, if no duplicate edge arises

from the swap;

7 Coocc computation:
8 Calculate coocci(u,v) ∀ (u,v) ∈ (Vl ×Vl);

9 Calculate p-value and z-score, i.e., the z*:
10 p-value(u,v) := (|{i : coocci(u,v)> coocc(u,v) ∀ i ∈ 1..|samples|)}| ∀ (u,v) ∈ (Vl ×Vl);
11 cooccFDSM(u,v) := {coocci(u,v) ∀ i ∈ 1..|samples|} ∀ (u,v) ∈ (Vl ×Vl);

12 z-score(u,v) := mean(cooccFDSM(u,v))−coocc(u,v)
stddev(cooccFDSM(u,v))

∀ (u,v) ∈ (Vl ×Vl);

reliable method, such as assuming that movies within a sequel are non-randomly sim-
ilar. Therefore, reliable ground truths are rare, limiting the range of input datasets for
which the PPVk can be measured.

Recently, however, we have discovered a systematic way of generating synthetic
graphs for which the ground truth can be directly extracted, based on the benchmarks
proposed in [14]. With that, we are able to conduct experiments for reliably compar-
ing the efficiency and QoR of several LA approaches over an arbitrary range of input
datasets. However, this work is still ongoing.

2.2 Random Graph Models

Network mofits are subgraphs whose occurrence in the observed data is statistically sig-
nificant when compared to a random graph model (a null-model). The choice of such
a null-model must be well-suited to test the investigator’s hypothesis, and an inappro-
priate null-model can result in misinterpretation of the observed data [8]. The fixed
degree sequence model (FDSM) is considered most appropriate for the identification
of motifs, and in many cases, only simple graphs should be considered, i.e., no self-
loops nor multi-edges. Unfortunately, closed-form expressions for the expected motif
frequency over all possible simple graphs with a prescribed degree sequence are not yet
known. Therefore, we commonly rely on a comparatively inefficient MCMC approach
based on sequential mixing of the sampled graph states.

In [23 SPP] and [22 SPP], we have looked at different null-models, which can be
more efficiently generated, as an approximation for the FDSM, as well as developed
equations with the same intention. While some 3-node subgraph frequencies can be
well approximated by simple equations, the case for the node-pairwise co-occurrences



Increasing the Sampling Efficiency for the Link Assessment Problem 43

is more complex. For very regular degree sequences, i.e., all nodes have similar degrees,
an equation based on the simple independence model is sufficient to estimate the
individual node pairs co-occurrences. As the degree sequence becomes more skewed,
the true values from the FDSM diverge from the approximation. Even a more intri-
cate approximation for the individual co-occurrences [19, p. 441], whose sum almost
matches the true value, becomes inaccurate for high-degree nodes. Since skewed degree
sequences are abundant in real networks, such approximations cannot be widely used.

2.3 Co-occurrence Gradient in the FDSM

In another attempt to avoid the costly MCMC sampling approach for estimating the
expected co-occurrences in the FDSM, we have analyzed the co-occurrence gradients
throughout the Markov chains–a so-called mean-field approach, borrowed from statis-
tical physics. In this approach, we first find the differential equation that describes the
expected change, i.e., gradient, in co-occurrence after one single step in the graph mix-
ing Markov chain. If the gradient is sufficient to describe the dynamics of the chain, a
closed-form solution for the expected co-occurrences could be derived (see [1] for an
example of a successful attempt), or at least an iterative, direct method that is not based
on sampling.

In order to fully describe the dynamics of the mixing chains, the co-occurrences gra-
dient, Δcoocc = Δcoocc(coocc), must be a function of only the co-occurrence matrix,
coocc. If additional parameters are needed, their dynamics must also be represented in
differential equations. As it turned out, however, the co-occurrences gradient can only
be found if the structure of the graph is taken into account, i.e., coocc is not sufficient.
Table 1 exemplifies such insufficiency by showing that a centrosymmetric coocc matrix
(middle) does not result in a equally centrosymmetric Δcoocc matrix (right).

Table 1. An example of a adjacency matrix (left) whose row-pairwise co-occurrence (coocc)
matrix (middle) is not sufficient to calculate the expected coocc gradient (right). For the sake of
clarity, the gradient values w.r.t. the edge switching chain (right) are shown without normalization
by the number of possible swaps trials per step, |E|2 = 112.

c1 c2 c3 c4 c5
r1 0 0 0 1 1

r2 0 0 1 0 1

r3 0 1 1 1 0

r4 1 0 0 1 0

r5 0 0 0 1 1

r1 r2 r3 r4 r5
r1 − 1 1 1 2

r2 1 − 1 0 1

r3 1 1 − 1 1

r4 1 0 1 − 1

r5 2 1 1 1 −

r1 r2 r3 r4 r5
r1 − −4 6 0 −16

r2 −4 − 2 12 −4

r3 6 2 − −2 6

r4 0 12 −2 − 0

r5 −16 −4 6 0 −

In fact, the expected change in co-occurrence, a node pairwise relation, can only be
given by the interaction between the neighborhoods of three nodes. This becomes clear
once we realize that coocc(i, j) can only be changed if the neighborhood of a third node
k is modified since the degree sequences are fixed. In turn, the dynamics of the node
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3-wise relations can only be described by 4-wise relations, and so on. Therefore, we
conclude that a full description of the dynamics of the mixing chains w.r.t. the pairwise
co-occurrences is not feasible.

3 The Benchmarking Problem

In general, comparing different system implementations is a non-trivial task. The rea-
son is that plenty of parameters influence the final system behavior, such as the under-
lying system architecture, the selected algorithms, the chosen software implementation
language, compilers, or communication and memory infrastructures. Besides, the per-
formance of a system can heavily depend on the input data, in particular if adaptive
(“self-tuning”) methods are used. Thus, fairly comparing implementations requires an
in-depth analysis of the relevant factors and the target application domains first.

In this context, we distinguish between the application or problem (the actual task
to be carried out), the employed model or algorithm and its final implementation on
a specific architecture. The latter three make up the final system solution that we are
evaluating.

Let us look more closely at an example: We define the application or problem
as “recommend movies to a client who has already watched several other movies”, a
generic task, e.g., in a video streaming service. The choice of an appropriate algorithm
for this task is crucial for the overall system behavior: We can, e.g., select a graph-
based approach as discussed in this chapter, statistical analysis, or machine learning
based methods [15]. Each of those can be implemented in pure software on a generic
computer architecture, in hardware, or in a hybrid hardware/software setting that com-
bines programmable architectures such as central processing units (CPUs) with hard-
ware accelerators. The selection of an appropriate underlying system architecture is
strongly linked to the chosen algorithm, since there may be strong interactions between
those two. Some algorithms are more friendly for being implemented in hardware or
accelerators (in particular if they allow high parallel processing), while others may fit
more to programmable (i.e., in general sequential or control-driven) architectures. Thus,
fixing algorithm and architecture in the system design flow is an iterative and heavily
interdependent process that requires a deep understanding of both domains and the tar-
get application, since the latter may impose additional restrictions or constraints on the
other ones. In particular, low-level parameters such as selecting appropriate data struc-
tures for efficient memory accesses or custom data types with reduced-precision can
lead to strong increases in performance and energy efficiency, but may also impact the
QoR (see Chapter 4).

However, evaluating/comparing systems always requires well-defined metrics. In
order to allow comparisons over architectural borders, those metrics need to be inde-
pendent of the underlying system architecture and/or employed software. “Operations
per second” for example is still a widespread metric in the high-performance computing
(HPC) domain, but cannot be applied to systems that incorporate hardware accelera-
tors (mainly data-flow architectures with hard-wired circuits) in which no “operations”
exist. Thus, we propose application-level metrics that are not related to the selected
algorithms or architectures. Examples are “run-time for a specific task”, “consumed
energy for a run”, and “achieved QoR for a specific task”.
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In the above-mentioned example “recommend movies to a client who has already
watched several other movies”, we could, e.g., compare a software implementation run-
ning on a CPU-based cluster with a (hybrid) hardware-accelerated architecture. After
deciding that we are going to implement a graph-based approach over other available
options, we can still select the specific algorithm for the LA part (e.g., Edge Switch-
ing (ES) or Curveball (CB), see Sect. 4), the number of processing elements (PEs),
the amount of hardware acceleration (if any), the memory hierarchy, communication
infrastructure, the data structure (e.g., matrix vs. adjacency list), and the data types
(e.g., floating-point precision) that impact both storage demands and required compu-
tational effort. It is obvious that a large number of degrees of freedom leads to an over-
whelming amount of possible system solutions that all solve the same task, but with
different characteristics.

While “run-time for a specific task” and “consumed energy for a run” can be mea-
sured or estimated with rather straight-forward approaches, determining the “achieved
QoR for a specific task” is much harder to quantify. The reason is that in general mul-
tiple ways for measuring quality exist that must be investigated more specifically in
order to determine which metric provides the most meaningful insights for the speci-
fied application.

In addition, stochastic parts of the selected algorithm (e.g., based on former system
states, random numbers, or early stopping criteria/heuristics) may even lead to varia-
tions over different runs with the same input data. Thus, a robust quality metric not
only needs to provide a meaningful quantitative statement of the achieved QoR but
should also be determined in a way that minimizes stochastic impacts on the result. In
the LA part of our example (“recommendation system”), we could, e.g., use the PPVk
[24 SPP] as a direct measure of the results or autocorrelation [6 SPP] or perturbation
[25] as QoR measure for the mixing itself.

A generic approach for tackling these issues are benchmark sets that try to cover
specific application areas with typical data points. Most of them consist of so-called bat-
teries that combine multiple tests into larger task lists to minimize set up/initialization
and read-out overhead and to reduce stochastic effects.

In order to stop a stochastic process when a sufficient QoR is achieved, we employ
heuristics that perform online tracking of specific QoR measures together with desired
target values (so-called early stopping criteria). Once the target is achieved, the pro-
cessing is stopped. For the Link Assessment (LA) problem with the ES chain, we have
analyzed how the PPVk changes over the number of samples and swaps throughout the
processing [4 SPP]. We are using two data sets, the Netflix competition data set and a
medium-size MovieLens data set2. More detailed insights are given in Fig. 5.

Figure 4 and Fig. 5 clearly show that the PPVk saturates abruptly when a specific
number of samples or swaps is achieved (a so-called phase transition). From this
moment on, further processing does not increase the QoR any more. Thus, we can
stop when we detect the phase transition of the PPVk and use this as an early stopping
criterion for this task.

2 The 100k MovieLens data set, available from http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/
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From this criterion, we can derive an appropriate heuristic that we incorporate into
the final implementation. One crucial aspect for such a heuristic is its stability, i.e., it
must be ensured that it works reliably for the allowed range of input data sets for a given
application and that it stops the processing at the earliest possible time when the desired
QoR is achieved. We present appropriate heuristics for the LA in Sect. 5.1.

4 Edge Switching vs. Curveball

Generating random samples from the fixed degree sequence model (FDSM) remains
the most accurate method for estimating the expected co-occurrences between nodes,
and therefore also for performing the Link Assessment (LA). Exact sampling schemes,
where random graph samples are generated from scratch and exactly uniformly at ran-
dom, were proposed but their computational complexity is O(n3) [9]. Most commonly,
the random graphs are generated by sequentially mixing the original graph’s edges,
specifically using the Edge Switching (ES) Markov chain. Strona et al. [25] proposed a
new algorithm, coined the Curveball (CB), which instead of switching a pair of edges,
randomly trades the neighborhoods of two nodes. The CB was quickly proven to con-
verge to the uniform distribution and adapted for different types of graphs [5] (see
Chapter 2 for more details about the Curveball algorithm).

The mixing time of a Markov chain refers to the number of steps in the chain
required to reach any possible state with equal probability3, i.e., to disassociate the
final, random state from the initial state [21]. While the true mixing time of neither
Markov chain, the ES or the CB, is known, first empirical results suggested that the
CB was a more efficient method of randomizing a graph [5,25]. These are based on
the perturbation score and discussed in terms of the number of steps in the respective
Markov chains. In practice, however, one CB step may take much longer than one ES
step, so an actual runtime comparison between implementations is more meaningful.

In this section, we show the runtime comparison between two versions of the CB
algorithm and an ES implementation. The Sorted-lists Curveball (SCB) iterates through
two randomly selected nodes’ neighborhoods (lists) in order to find, shuffle and re-
assign the disjoint set of neighbors. Although finding the disjoint set is facilitated by
keeping sorted lists, after the re-assignment they must be re-sorted in preparation for the
next trade, so the overall complexity is O(degmax × logdegmax) per trade, where degmax
is the maximum node degree of the network. The Hashed-lists Curveball avoids sorting
the lists by creating a temporary hash-map of each neighborhood. The complexity of
the HCB depends on the properties of the hash-map used, but in general is between
O(degmax) and O(deg2max) per trade. Finally, the ES uses two redundant data structures
to accomplish a complexity of O(1) per swap: the adjacency lists to randomly pick two
existing edges; and the adjacency matrix to check whether they can be swapped.

4.1 Perturbation Score

The perturbation score [25] is the number of different entries between the adjacency
matrices of the original graph and the random sample. Since each step in the edge

3 Within an arbitrary error margin.
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switching chain can only swap two edges, at most four entries of the adjacency matrix
are modified in each step. The perturbation score, although maybe not a true estimator
for the total mixing time, is a direct measure of the distance of the shortest path between
two states of the ES chain.

The first comparison between the randomization algorithms was conducted using
the Netflix Prize dataset. Figure 1 shows the relative perturbation4 vs. the runtime for
a curveball (the SCB) and the ES implementation (shown are averages of at least 10
repetitions). The bottom-most subplot refers to the complete dataset, while the first two
refer to random subsets of 10000 and 100000 users, respectively. Since the curveball
algorithm is sensitive to the number of adjacency lists (=number of columns in the adja-
cency matrix), both Movies x Users and Users x Movies representations are simulated.
In this analysis, irrespective of the amount of data and number of adjacency lists, the
ES implementation is at least 2× faster than SCB.

Fig. 1. Relative perturbation achieved by ES and SCB vs runtime for different subsets of the
Netflix Prize dataset. Machine: Intel(R) Xeon(R) E5 2640v3 @ 2.60 GHz.

Besides the surprising results showing that the ES implementation using both the
adjacency lists and matrix is faster than the CB based on sorted adjacency lists (fur-
ther discussed in Sect. 4.2), another interesting effect can be seen in Fig. 1: Mixing the

4 We define the relative perturbation as the perturbation score normalized by its maximum value
among all mixing chains and repetition runs.
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Users side of the bipartite network is always faster than mixing the Movies side, irre-
spective of the number of users and movies. An explanation for that may be in the
degree distribution of the two types of nodes, users and movies, do not show the same
shape. Figure 2 shows the degree distribution densities for users and movies nodes for a
subset of 100000 randomly selected users of the Netflix Prize dataset. While relatively
more movies have very low or very high degrees, user degrees concentrate in the mid-
dle, a trend that holds for any subset of randomly selected users (not shown). Given
that a curveball trade consists of shuffling the disjoint neighborhoods of two randomly
selected nodes, a higher mixing efficiency is expected when the two nodes have similar
degrees. Therefore, we conclude that, when mixing bipartite graphs using the curveball
Markov chain, it is advantageous to perform the trades between nodes from the least
skewed degree distribution side, at least with respect to the perturbation score vs. the
runtime. Note that the ratio between the number of nodes of the two sides does not play
a major role w.r.t. the runtime (see Fig. 1), contrary to the belief of the original curveball
algorithm inventors [25].

Fig. 2. The degree distribution densities of users and movies for a subset of the Netflix Prize
dataset containing good ratings from 100000 random users. Users’ degrees are more concentrated
in the middle while movies’ degrees have a more skewed distribution, with many very low and
many very high degree movies.

4.2 Runtime Comparison with NetworKit

In [6 SPP], an I/O-efficient implementation of the curveball trades for simple, unipar-
tite graphs is proposed. Its key feature is the introduction of a trade sequence that is
lexicographically sorted before the curveball trades are performed, resulting in a more
efficient memory access (see Chapter 2 or [6 SPP] for more details). In cooperation with
the Group of Algorithm Engineering from the Goethe University Frankfurt, we compare
our ES, SCB, and HCB implementations to a bipartite version of their curveball.

Figure 3 shows the runtime comparison results between our ES, SCB, and HCB
and the NetworKit CB [6 SPP] implementations. Each mixing chain executes 20 super
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Fig. 3. Runtime comparison of the ES and three curveball implementations. The numbers over
the colored bars indicate the average runtime in milliseconds for 10 super steps (see text). The
black, thin bars indicate the standard deviation of 10 runs. NetworKit CB is consistently faster (at
least 2x faster) and scales better than our ES, HCB, and SCB implementations. Machine: Intel(R)
Xeon(R) CPU E5-2630v3 @ 2.40 GHz. (Color figure online)

steps, i.e., 10×#Users for the curveball and 10×#Edges5 for the edge switching, which
considers, in expectation, 20 times the state of each edge, which is when both ES and
CB converge in quality according to the autocorrelation thinning factor [6 SPP].

Figure 3 shows that NetworKit CB is at least 2× faster than our CB implementa-
tions, as well as faster than the ES. From Fig. 1 we see that our ES is between 1.5× to
2.5× faster than the SCB, which in turn is between 2× and 3× slower than NetworKit
CB. Therefore it is safe to assume that there is a CB implementation that is at least
as fast as our ES even according to the perturbation6. Furthermore, it becomes evident
from Fig. 3 that the CB–both our SCB and NetworKit’s–scales consistently with the
size of the graph, while the ES appears to have higher factors.

With these results, we conclude that the Curveball algorithm can indeed be effi-
ciently implemented in software, and scales better than the ES. However, it also became
clear that there can be huge differences in results interpretation depending on the qual-
ity metric being regarded (perturbation or auto-correlation), and it is not clear which is
the most relevant.

5 Phase Transition and Heuristics

Instead of a steady increase in the quality of the LA with the underlying MCMC param-
eters, mainly the mixing length and number of samples, we actually see a flat low

5 Notice the factor 0.5× between the super step definition in [6 SPP] and here. This is due to the
representation of unipartite, undirected graphs [6 SPP] requiring duplicated edges, one in each
direction, while bipartite graphs do not.

6 Unfortunately, a direct comparison w.r.t. the perturbation turned out to be difficult because of
incompatibilities between the structures of the source codes.



50 A. Chinazzo et al.

quality followed by a sudden and steep increase. This phase transition-like behavior
was first reported in [4 SPP], further discussed in [3 SPP], and is shown in Fig. 4. The
LA quality, measured by the PPVk, is plotted against the number of samples, the main
parameter w.r.t. the total runtime of the method.

Fig. 4. Link assessment quality (PPVV ) over number of samples. For a wide variety of data sets,
narrow phase transitions are present. Similar phase transitions are also seen for the number of
edge swaps (see Fig. 7 in [3 SPP]). (Color figure online)

Fig. 5. Quality over number of swaps. For a wide variety of data sets, narrow phase transitions are
present, similarly to what can be observed varying the number of samples. (see Fig. 2 in [4 SPP]).
(Color figure online)

The complete Netflix dataset (blue), e.g., requires 384 samples to reach a PPVk
of 0.4206±0.0019, while 16,384 samples only increase this value to 0.4217±0.0012.
While, on one hand, it indicates that a low number of samples is required, the steep tran-
sition also cautions us against taking too few samples, since 64 samples instead of 384
would result in roughly half the quality (0.20±0.03) and 48 samples (0.001±0.001) is
no better than a random guess. Therefore, this is not mainly a trade-off problem, where
more resources (samples) bring better quality, but rather a threshold problem, at which
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the quality transitions steeply from its minimum to its maximum. Finding this threshold
can be done via online heuristics, as is discussed in Sect. 5.1.

5.1 Heuristics for MCMC Parameters

Continuing the sampling procedure after the maximum LA quality is reached results in
increased runtime for no benefit. Therefore, being able to reliably assess when max-
imum quality has been reached can represent great speedups for the complete link
assessment method. For example, compared to the commonly used 10,000 samples,
we see in Fig. 4 that, for the complete Netflix dataset, the LA reaches maximum quality
at around 384 samples, which would represent a speedup of > 25×.

Figure 4 also shows that the tipping point depends on the dataset. However, we
were not able to find correlations between the input dataset and the required number of
samples, and so an analytic formula could not be derived.

Even though the mechanism that causes the phase transitions is not yet completely
understood, we know that it must be related to the stability of the ranking of the most
significant pair of nodes. We have tested multiple methods to evaluate the stability of
the final result by comparing it with the previous one [4 SPP,3 SPP]. A good estimator
for the final quality should also present a phase transition-like behavior, as does the
quality itself. In [3 SPP] we described in detail our successive attempts to find a reliable
heuristic, going from the number of matching pairs at the very top of the ranking, to
more sophisticated correlations methods, and finally the internal PPVk method. The
internal PPVk method consists of creating an internal ground truth based on the top
ranked node pairs at each iteration and using it to calculate the PPVk after a new (group
of) sample(s) is drawn. This measure turned out to be stable and well correlated to the
observed phase transition of the actual quality, based on the real ground truth.

A rather similar heuristic, in the sense that it also presents a phase transition-like
behavior, was devised for assessing the required amount of mixing (w.r.t. the number of
edge swaps) necessary [3 SPP]. It is based on the fact that the average cooccFDSM(a,b)
of two nodes a, b only depends on their degrees. Therefore, we expect to see a con-
verging behavior of multiple node pairs that have the same degree pair if the amount of
mixing is sufficient (see Fig. 10 in [3 SPP]).

Table 2 summarizes the speedups achieved by applying each and the two heuris-
tics for the number of swaps and samples presented in [4 SPP,3 SPP]. In all cases, the
heuristics accelerate the overall LA (all overheads are accounted for) when compared
to the safe number of swaps (|E|× log |E|) and samples (10000) without any significant
degradation of its quality. The largest graph seems to benefit the most from either and
both heuristics. For the smallest graph, the Movielens data, the overhead of the swaps
heuristic becomes significant, shadowing the increased randomization speed during the
actual sampling. Also, it still requires around one-third of the 10000 samples for the
internal PPVk to converge.

Notice that we can clearly see an interdependence between the number of swaps and
the number of samples. For example, using a more conservative set of parameters for the
swaps heuristic results in 8×107 edge swaps and 454 samples for the complete Netflix
data, almost ten times more swaps but 4 times fewer samples as the less conservative
alternative. This is expected since the relevance (or entropy) of each new sample is
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Table 2. Runtime and quality comparisons of the LA with and without heuristics [3 SPP]. The
swaps heuristic has three parameters: the convergence threshold, θmin; the number of groups of
node pairs with the same degree pair, Ng; and the number of node pairs per group, Np. The
samples heuristic also takes three parameters: the internal PPVk threshold, α ; the size of the
internal ground truth, k′; and the number of samples between evaluations, samplesstep.

Data set Samples Edge swaps Runtimea PPV

State-of-the-art

Netflix, 487k users 10,000 109 20 h 0.422

Netflix, 100k users 10,000 2.6×108 5.5 h 0.425

MoviesLens 10,000 1.5×107 877 s 0.290

Swap heuristic:

Netflix, 478k usersc 10,000 6.3×106 (160x) 0.2 + 6.8 h (2.9x) 0.418 (−0.9%)

Netflix, 478k usersd 10,000 8.0×107 (13x) 0.8 + 9.6 h (1.9x) 0.424 (+0.1%)

Netflix, 100k usersb 10,000 6.8×107 (4x) 0.2 + 3.4 h (1.5x) 0.424 (−0.2%)

MovieLensb 10,000 1.5×106 (10x) 24 + 554 s (1.5x) 0.290 (0.0%)

Sample heuristice:

Netflix, 487k users 640 109 1.42 h (14x) 0.418 (−0.9%)

Netflix, 100k users 2,944 2.6×108 1.66 h (3.3x) 0.419 (−1.3%)

MovieLens 3,456 1.5×107 326 s (2.7x) 0.291 (+1.0%)

Combined heuristice:

Netflix, 487k usersc 1,664 6.3×106 0.2+1.3 h (13.3x) 0.420 (−0.5%)

Netflix, 487k usersd 454.4 8.0×107 0.8+0.5 h (15.4x) 0.419 (−0.7%)

Netflix, 100k usersb 3,072 6.8×107 0.2+1.2 h (3.9x) 0.420 (−1.1%)

MoviesLensb 3,949 1.5×106 24+252 s (3.2x) 0.290 (0.0%)
aWhen appropriate, reported as (Swap heuristic runtime) + (LA core runtime)
bSwap heuristic parameters: Np = 4; Ng = 24; θmin = 0.01
cSwap heuristic parameters: Np = 36; Ng = 36; θmin = 0.05
dSwap heuristic parameters: Np = 36; Ng = 36; θmin = 0.005
eSample heuristic parameters: samplesstep = 128; k′ = 0.2% |VR|2; α = 0.95.

directly related to the amount of mixing between samples - the more independent the
samples, the more information each of them adds to the poll. In this case, the more
conservative choice is slightly faster.

The trade-off between the amount of mixing between samples and the required total
number of samples provides an effective measure of the quality of each random sample.
As the quality measure is independent of the mixing chains, we have used it to com-
pare the effectiveness of different chains and their runtimes. An online heuristic that
optimizes this trade-off is also under investigation.

5.2 Phase Transitions as Mixing Quality Estimation

Earlier results from the implementation of heuristics to find appropriate parameters for
the MCMC sampling showed that there exists a trade-off between the amount of mixing
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Fig. 6. The phase transitions in the link assessment quality of the Netflix 10k dataset for increas-
ing mixing lengths of a) Edge Switching, b) Curveball in Movies, and c) Curveball in Users.
The vertical line-width represent the standard deviation of 10 independent simulations. Mixing
lengths are given in super steps, where 1 super step (Sect. 4.2) is a) |E|/2, b) |M|/2, and c) |U |/2.

and the number of samples required for convergence (Table 2). This insight led us to
investigate how the PPVk phase transitions behave when we vary the mixing length of
the chains.

Figure 6 shows the LA quality phase transitions w.r.t. the number of samples for
increasing mixing chain lengths and three different mixing chains. As expected, the
phase transitions are shifted to the right (more samples are required) as the mixing
length decreases. If the mixing length is sufficient, however, increasing it further may
not significantly change the result. This behavior can be explained by the correlation
(or level of independence) between consecutive samples, which is expected to decrease
exponentially with the amount of mixing. If enough mixing is performed, the sampling
procedure became virtually as efficient as it can be, as if each sample was drawn uni-
formly at random. If the correlation between each consecutive sample is measurable,
the sampling efficiency is degraded, therefore the phase transitions both start later and
become less steep.

Figure 6 also shows that there can be a great difference in the efficiency of the
Curveball algorithm whether we choose to mix (b) movies or (c) users, even if the mix-
ing lengths are normalized w.r.t. the adjacency matrix dimensions. Similar behavior was
already observed in Fig. 1, where mixing the users’ neighbors was faster in reaching the
maximum perturbation. Surprisingly, however, mixing the movies side instead of users
is more effective when the LA quality is regarded. To better expose this controversy, we
can find the number of samples required to reach a certain PPVk threshold, say 0.3 in
this case. If the perturbation was a good predictor of the sampling efficiency, we would
expect the number of samples to be the lowest only when the maximum perturbation is
reached.

Figure 7 shows the perturbation and the number of samples required to reach the
threshold PPVk of 0.3 versus the amount of mixing. For the edge switching (ES) and the
Curveball in users (CB_C), there seems to exist a strong (inverse) correlation between
the perturbation and the number of samples. When the Curveball mixes the movies
neighborhoods (CB_R), however, the perturbation is far too conservative. While the
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Fig. 7. The perturbation (left axis) and the number of samples until the PPVk reaches 0.3 (right
axis) vs the mixing length for the Netflix 10k dataset. The error bars represent the standard devi-
ation of 10 independent simulations. Mixing chains: Curveball in Users (CB_C); Curveball in
Movies (CB_R); Edge Switching (ES).

minimum number of samples of around 1200 is reached at 2.5 super steps, only at 150
super steps does the perturbation reaches its maximum value - an overdo of 60×.

6 Summary and Conclusion

In this chapter, we summarize strategies for increasing the sampling efficiency for the
Link Assessment (LA) problem. Although we provide specific results for the latter one,
our approach is generic and can be applied to related applications. Since in many cases
no closed-form solutions exist, stochastic Markov chain Monte Carlo (MCMC) need to
be employed. However, their main drawbacks are the high computational demand and
the lack of reproducibility of exact numerical results due to their stochastic components.
In addition, different algorithms may be used for generating the MCMC samples (edge
switching vs. curveball), and their performance on different compute architectures can
vary strongly. In many cases, it is not clear which algorithm is the best one for a specific
data set on a specific architecture with respect to performance or quality.

Thus, we highlight the importance of application-level benchmark sets together with
application-level, numerical measures for the quality of results (QoR) of specific runs.
Such benchmarks allow a fair and quantitative comparison of non-architecturally linked
metrics such as “energy per run”, “time per run”, or “quality of the results”. In addition,
for many real-world data sets, we do not have any kind of ground truth that could serve
as a test oracle when evaluating the achieved quality. In order to overcome this issue, we
propose to construct meaningful benchmark batteries (together with ground truths) for
specific application domains artificially that cover the main tasks and the corner cases
equally.

Furthermore, we consider the PPVk being a good quality measure for the LA prob-
lem. However, since it is strongly linked to the ground truth not available in many cases,
we have investigated alternative metrics such as autocorrelation or perturbation. Those
also allow the construction of unsupervised systems that are able to determine a “suf-
ficient” QoR on their own. We clearly observe correlations between the latter ones and
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the PPVk in Fig. 7, but a comprehensive analysis of any formal causalities between them
is currently ongoing.

Finally, we propose a working heuristic for an LA solver based on edge switching
that exploits observable phase transitions of the PPVk as an early stopping criterion
for the MCMC process. This heuristic provides speedups of up to 15.4× compared to
solvers that use conservative approaches.
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Abstract. Heterogeneous accelerator enhanced computing architectures
are a common solution in embedded computing, mainly due to the con-
straints in energy and power efficiency. Such accelerator enhanced systems
dispatch data- and computing-intensive tasks to specialized, optimized
and thus efficient hardware units, leaving most control flow tasks for the
more generic but less efficient central processing units (CPUs). Nowadays,
also high-performance computing (HPC) systems are becoming more het-
erogeneous by incorporating accelerators into the computing nodes.

In this chapter, we introduce the concept of heterogeneous comput-
ing and present the design of a hardware accelerator for solving the
Link Assessment (LA) problem, in introduced Chapter 3. The hardware
accelerator integrates its main dedicated processing units with a cus-
tomized cache design and light-weight data path. We provide detailed
area, energy, and timing results for a 28 nm application specific integrated
circuit (ASIC) process and DDR3 memory devices. Compared to an CPU-
based cluster, our proposed solution uses 38x less memory and is 1030x
more energy efficient for processing a users-movies dataset with half a mil-
lion edges.

Keywords: Link assessment · Application specific · Custom
hardware · DRAM

1 Introduction

Nowadays, we live in the era of the so-called data deluge, i.e., the increase in pro-
duced data supersedes the progress in the available compute performance. This
poses heavy challenges on data-centric (statistical) methods, algorithms, and com-
pute systems [18]. Among others, selecting the appropriate data structures, het-
erogeneity, and parallelization schemes are crucial for achieving high comput-
ing performances with low energy demands. For example central processing unit
(CPU)-based systems can only access data stored in memory as complete words
(cache lines) and work with fixed data types. In contrast, dedicated hardware
accelerators allow custom bit widths and data types. This can not only save energy
due to avoiding unnecessary data transfers and operations but also allowing direct
bit-wise operations like, e.g., accessing one-bit-column entries in a matrix.
c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 57–75, 2022.
https://doi.org/10.1007/978-3-031-21534-6_4
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In general, standard computing architectures based on CPUs and graph-
ics processor units (GPUs) are moving data around heavily. However, in mod-
ern technologies, data transfers and storage in general consume much more
power than the actual computing [5]. In particular, accessing (off-chip) dynamic
random-access memory (DRAM) is a very time- and energy-consuming task.
This leads to the concept of the so-called data-driven or dataflow computing,
e.g., employed in the Google TensorFlow architecture [5]. Such architectures
focus on the data stream and manipulate data on-the-fly, avoiding unnecessary
storage and data transfers.

In addition, in data centers, servers alone only consume around one-third of
the total power, while the rest is required for cooling, communication, storage,
and building supply [8]. Seen from a different perspective, the maximum available
power budget of a system (or a data center) is a hard limit for the available
computing power. The latter can only be increased by installing compute systems
with a higher power efficiency (e.g., incorporating special hardware accelerators,
for instance with a dataflow architecture). Thus, reducing the power demand
of the compute servers in combination with the smart reduction of inter-server
communication can lead to a total of 2-3x power savings in the data center itself.

Modern system on chips (SoCs) in the mobile, embedded, and Internet-of-
Things (IoT) domain are heavily heterogeneous systems with plenty of custom
components for dedicated purposes such as audio decoding, video en- and decod-
ing, radio transmission, or sensor data pre-processing in a mobile phone. In par-
ticular for mobile devices, there are hard limits for both energy (battery capac-
ity) and power (maximum heat dissipation). However, over the last decades we
see more and more heterogeneity also in the data centers [1,5]. Examples are
general purpose graphics processor units (GPGPUs), the Intel Xeon Phi acceler-
ator cards, or the field programmable gate array (FPGA)-based Amazon EC2 F1
instances released in 20171. One of the major reason is the so-called Dark Silicon
phenomenon: In modern chip technologies, only a small amount of transistors
can be active at a time in order to avoid overheating (and thus destruction)
of the device [7]. This also poses a heavy challenge for the classical multi-core
approach - more cores of the same type do not provide more computation power
if they cannot be powered up all at the same time.

Nevertheless, end-users are not at all interested in the underlying technology
of the services they use. Nowadays, most services are distributed over an infor-
mation technology (IT)-infrastructure from IoT nodes, mobiles, edge servers, and
data centers [13]. Thus, the overall application is partitioned and disseminated
on various parts of the IT-infrastructure, all with probably different computing
architectures and characteristics. As an example, consider a real-time navigation
service from Google or Apple: The Global Positioning System (GPS) coordinates
collected by (maybe external) GPS receivers are sent to the SoC of the mobile
that acts as a human-machine interface (HMI), displaying the route. However,
the route itself is calculated in a data center of the service provider. In addition,
GPS data from other service users is employed for estimating traveling times
and traffic jams, and incorporated in the route calculation.
1 See https://aws.amazon.com/ec2/instance-types/f1/. Last accessed on 24/11/2022.

https://aws.amazon.com/ec2/instance-types/f1/
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In this chapter, we give an overview of hardware-assisted compute systems
for applications based on the Link Assessment (LA) algorithm. The LA algo-
rithm can be used to clean up large network data sets with noisy data. It assesses
the structural similarities between the nodes, and thus differentiates meaning-
ful relationships between nodes from noisy ones [19 SPP]. The LA algorithm
as presented in Chapter 3 can be employed on a large scale of applications,
e.g., recommendation systems, protein-protein interaction analyses in biology,
or business analytics and marketing [3 SPP].

In Sect. 2 we give a short overview about the fundamentals of hardware (HW)
and hardware/software (HW/SW) design both for custom application specific
integrated circuit (ASIC) and FPGA architectures. Section 3 provides detailed
insights in our proposed HW architecture for the Link Assessment (LA) algo-
rithm. Performance data and comparisons are given in Sect. 4. Section 5 con-
cludes this chapter.

2 Basics of Hardware and Systems Design

Custom, dedicated hardware compute architectures are substantially different
from standard programmable architectures such as CPUs or GPUs. They are
tailored for a specific task, avoiding all unnecessary overhead in storing/moving
data, for control architectures, and over-precision data types. This increases both
compute performance and power/energy efficiency, at the cost of low to zero
flexibility after design. In contrast to a program written for CPUs, hardware
architectures, in general, do not receive and execute instructions. Instead, their
behavior is encoded in the circuit itself.

Hardware accelerators are electrical (abstracted: digital) circuits that focus
on data manipulation. They can be realized in three ways:

– As circuits with various discrete components on a printed circuit board
(PCB),

– As a fixed geometry on silicon (a so-called application specific integrated cir-
cuit (ASIC))), or

– On an underlying configurable hardware architecture such as a programmable
logic device (PLD), in particular an field programmable gate array (FPGA).

Nowadays, most systems are realized on a so-called system on chip (SoC). In
contrast to discrete circuits realized on PCBs, a SoC combines most components
on a single piece of silicon. For that purpose, various processing elements (PEs)
are attached to a communication infrastructure (a bus or a network on chip
(NoC)). In addition, external input/output (I/O) interfaces are provided for
receiving from and sending data to the outside world. An example for such a
SoC structure is given in Fig. 1.

In general, not all PEs are developed by the system designer (team) on their
own. Instead, many component architectures are available for purchasing as so-
called intellectual property (IP), i.e., as hardware geometry or as design data
given in a hardware description language (HDL) or a logical netlist. They mostly
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ship with an equivalent software model that can be used for behavioral analysis,
testing, and debugging purposes. IP cores can somehow be compared to software
libraries in programming since they offer predefined functionalities that can be
incorporated into the overall systems. However, most IP cores are closed-source
and only available on a commercial basis. In contrast to software projects, open-
source hardware platforms such as opencores.org are very limited, both from
their available contents and their technology.

Fig. 1. Example for a SoC with processing elements, interconnect, and interfaces
(By en:User:Cburnett - Own work in Inkscape based on en:Image:ARMSoCBlock
Diagram.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=286
6881)

https://commons.wikimedia.org/w/index.php?curid=2866881
https://commons.wikimedia.org/w/index.php?curid=2866881
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2.1 Hardware/Software System Design Flow

The generic (classic) design flow2 for custom computing systems is shown in
Fig. 2. It is much more complex than a pure software development flow. The
flow starts with a so-called hardware-software-partitioning that determines which
parts of the overall behavior will be realized in hardware or software. While
considering available hardware and software IP in conjunction with functional
and non-functional requirements such as throughput, energy/power limitations,
or quality aspects, the system (architecture) platform is determined. After a
preliminary simulation, the actual implementation of the hardware and software
components starts. Finally, the system components, their interaction, and the
final system behavior are validated.

Since we expect software development flows to be well-known by the readers
of this chapter, we will focus on the hardware development part in the following.

2.2 FPGA Basics

Hardware architectures realized in an application specific integrated circuit
(ASIC) can no longer be changed after production (they are fixed geometries in
silicon). In contrast, a programmable logic device (PLD) is shipped as a device
with plenty of available hardware units that can be connected after production.
This programming or configuration can be either one-time3 or multiple times. A
prominent example for the latter is a field programmable gate array (FPGA).

FPGAs are hardware devices that come with a large amount of flexible small
hardware units, so-called lookup tables (LUTs). They are basically very small
random access memorys (RAMs) that are written during the boot process (“con-
figuration”) of the FPGA. Besides, FPGA provide a complex and flexible inter-
connect system that is configured together with the LUTs. Furthermore, special
components such as Block RAMs (BRAMs), fixed bitwidth multiply-accumulate
(MAC) units, multipliers, and I/O components are available.

FPGAs do not have a functional behavior before being initially configured.
Some types can even be (partially) re-configured during operation, i.e., chang-
ing (parts of) the circuit while the rest of the system continues running. Thus,
systems equipped with FPGAs allow a very high level of flexibility and dynam-
ics (however, at the cost of an immensely complex design flow, see Fig. 2). In
addition, combined CPU/GPU-FPGA systems are available, both in the high-
performance computing (HPC)/data center and the embedded SoC domain.

The acquisition of the FPGA vendors Altera by Intel in 2015 and Xilinx
by AMD in 2020 shows the potential of this technology for the future of the
computing landscape.

2 A lot of different elaborate system design flows exist [2,11,17] that are omitted here
for the sake of clarity.

3 One-time programmable devices are physically modified during the programming,
e.g., by burning connections or melting so-called antifuses that create a conducting
connection afterwards.



62 A. Chinazzo et al.

The proposed hardware architecture for computing the Link Assessment
(LA) algorithm can be realized both on ASICs and FPGAs. In the following,
we present our architecture in detail and illustrate the differences compared to
classical CPU implementations.

Fig. 2. Generic design flow for a SoC (By Traced by User:Stannered - en:Image:So
CDesignFlow.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
1864027)

https://commons.wikimedia.org/w/index.php?curid=1864027
https://commons.wikimedia.org/w/index.php?curid=1864027
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3 Hardware Architectures for the Link Assessment
Computation

Many applications in the big data context are based on fast and reliable identifi-
cation of so-called network motifs in large networks, i.e., those subgraphs whose
occurrence is significantly higher than expected in a random graph model [15].
This enables analyzing large-scale biological data in bioinformatics, connections
in social networks, incident detection, and general graph data cleaning proce-
dures by LA [22 SPP].

Network motif detection is actively investigated in current research, but
mainly from the algorithmic point of view. From the implementation side, nearly
all available work deals with mapping the motif detection problem on parallel
CPU and GPU based clusters [9,14].

For the Link Assessment (LA) algorithm, we consider a special variant
of motifs, the so-called co-occurrence (coocc) which is defined as the number
of common neighbors between two nodes of graph. Formally, coocc (u, v) =
|N(u) ∩ N(v)| for any pair of nodes u, v ∈ G, where N(u) is the neighbor-
hood of node u in graph G. Throughout this chapter, we use the shorthand
“coocc matrix of a network/graph” in place of “the set of all node-pairwise
cooccs of a network/graph,” or coocc(G) = {coocc(u, v) ∀u, v ∈ G}. For a
bipartite graph, G = G(Vl, Vr;E), with vertex partitions Vl and Vr and edges
E ⊂ (Vl × Vr), the coocc matrix can be defined for either partition, e.g.,
coocc(Vl) = {coocc(u, v)∀(u, v) ∈ (Vl ×Vl)}, in which case Vl is called the side of
interest. In this chapter, we focus on bipartite graphs.

The coocc(u, v) by itself is a way of quantifying the similarity of nodes u
and v. However, it is a strongly biased quantifier, e.g., w.r.t. the degree of the
nodes. The LA algorithm reduces such biases by comparing the observed coocc of
the real network with its expected value for a random graph model (null-model),
namely the fixed degree sequence model (FDSM) [22 SPP,19 SPP]. As the name
suggests, the FDSM is the set of all graphs configurations that share the same
degree sequence as the observed graph, and it has been shown to provide more
robust results than simpler null-models [22 SPP]. Since closed-form solutions for
the expected co-occurrences, cooccFDSM (u, v), are not known, these quantities
are estimated by a random sampling procedure, known as a Markov chain Monte
Carlo (MCMC) approach.

The MCMC approach is divided in two main steps: (1) the randomization
of the graph by repeatedly swapping its edges until an uncorrelated, and hence
unbiased sample of the FDSM is reached, and (2) the computation of the sample’s
cooccs. Of key importance are (a) the number of swap trials between samples
and (b) the number of samples drawn from the FDSM. For the interested reader,
Chapter 3 presents the LA in more detail, including an in depth analysis of the
effect of those parameters, (a) and (b), on the final quality of the results as well
as on the total runtime of the algorithm. In fact, MCMC sampling is the most
time consuming part of the LA algorithm.

Once enough samples have been created and evaluated, the node-pairwise
similarities are calculated as the probability of finding, in the FDSM, a
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coocc(u, v) greater or equal than that of the original graph. The higher the
probability, the lower the similarity between (u, v). The probability is estimated
first by the p-value and ties are broken by the z-score (see Chapter 3).

In Sect. 3.2 we show that the LA performance is strongly bounded by the
speed of the random accesses to the main memory. Aiming to reduce the effects
of this unavoidable constraint, in 2015 we have presented the first dedicated
embedded hardware accelerator optimized for this task [4 SPP]. Precisely tailored
cache memories and computational units for the coocc calculation help reduc-
ing the number of random accesses by using a rather naive representation of the
graph, which is not optimal for CPUs. This work is the basis for a granted patent
[21 SPP].

In a follow-up work [3 SPP], we exploit the granularity of DRAM devices
to increase the efficiency of main memory accesses during the random graph
creation (the null model). We demonstrate the performance of our design with
the Netflix Prize data set4 and show that a single ASIC instance has a speedup
of 5.6x compared to a 10-node Intel cluster while requiring 38x less memory and
1030x less energy.

3.1 Data Structures

The Link Assessment (LA) requires two main pieces of information: The graph
and the co-occurrence and similarity measures matrices.

The graph is used by both compute kernels, i.e., the edge swapping (see
Chapter 2) and the coocc calculation. The edge swapping kernel consists of ran-
domly selecting two edges, (u,w) and (v, x) for u, v ∈ Vl and w, x ∈ Vr, and
swapping their connections, to get (u, x) and (v, w), if this does not modify the
degree sequences of Vl and Vr. For the edge swapping to have a constant com-
pute complexity, the data structures must provide direct access to existing edges
of the graph (random edge selection) and a constant time check for the existence of
the new, swapped edges (to preserve the degree sequences). While the adjacency
list representation of the graph solves the first task, its adjacency matrix solves
the second. Using only one of the data structures would drastically slow the edge
swapping procedure. Therefore, we make use of both graph representations, as
formalized next.

Given a bipartite graph G(Vl, Vr;E) consisting of the vertex partitions Vl and
Vr and the edges E ⊂ (Vl × Vr), an adjacency matrix A = (Vl × Vr) is stored.
An entry in the matrix is Au,w = 1 if (u,w) ∈ E, with nodes u ∈ Vl, w ∈ Vr. It
is sufficient to store A with one bit per entry and a total storage requirement of
|Vl| · |Vr| bits. The adjacency list representation is simply the list of all edges E,
requiring |E|(�log2 |Vl|� + �log2 |Vr|�) bits.

One coocc half-matrix is necessary for storing the real graph cooccs. It is
a half-matrix since coocc(u, v) = coocc(v, u), and each pair of nodes (u, v) ∈
(Vl × Vl) must be evaluated. A second and identical structure is necessary for

4 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data. Last accessed
on 24/11/2022.

https://www.kaggle.com/netflix-inc/netflix-prize-data
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storing the cooccs of each random graph sample. Instead of keeping as many
coocc half-matrices as the number of samples, the similarity measures, p-value
and z-score, are updated after each sample. For the p-values, a single half-matrix
is required. For updating the z-score, it is sufficient to keep the sum and the sum-
of-the-squares of the samples’ coocc.

A summary of the memory footprint of each data structure is shown in
Table 1.

Table 1. Memory footprint of the data structures for the LA

Variable Required bits

Adj. matrix |Vl| · |Vr|
Adj. list |E|(�log2 |Vl|� + �log2 |Vr|�)
cooccori(u, v) �log2(|Vr|)�
coocci(u, v) �log2(|Vr|)�
p-value count �log2(|samples|)�
∑

i coocci(u, v) �log2(|Vr| · |samples|)�
∑

i coocci(u, v)
2 �log2(|Vr|2 · |samples|)�

3.2 Memory Boundedness

In order to demonstrate the memory boundedness of the LA, we use the roofline
model [20] to profile a parallel, optimized CPU implementation of the algorithm.
The roofline model is a visualization tool intended to evaluate the efficiency of
computation kernels w.r.t. the underlying hardware. The maximum performance
of the hardware is bounded, of course, by its maximum number-crunching speed,
but also by the memory access bandwidth. These bounds are represented by the
black lines (the Rooflines) in Fig. 3. The performance of a computing kernel is
measured in operations per second, i.e., how busy the processor really is. Only
integer operations (INTOP) are considered because the LA does not use floating-
point numbers, and the G in GINTOP stands for Giga, i.e.„ billions of integer
operations. The arithmetic intensity is defined as ratio between the number of
operations over the total memory traffic, being measured in operations per byte.

The performance and arithmetic intensity of the edge swapping and the coocc
computation kernels were measured by Intel Advisor5. They are presented in
Fig. 3. We can see that the performance of the kernels are 1.3GINTOP/s for
edge swapping and 2.2GINTOP/s for the coocc calculation. This is far from
the attainable value by the CPU (109GINTOP/s). This is because of the low
arithmetic intensity of both kernels, as is expected from their tasks. The edge
swapping kernel, for example, needs to access multiple random memory locations
to only check for the existence of an edge, hence many bytes are accessed but

5 https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-
roofline.html.

https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
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very little processing happens. Most of the time, this kernel is simply waiting
for the data to be loaded, what we call a memory stall. During the stall, no
processing occurs.

The impact of the stalls on the total runtime are given per memory hierarchy
level. We can see that more that half of the total runtime is spend waiting for the
DRAM. Moreover, the DRAM stalls account for almost 80% of the edge swapping
runtime. This is expected from the intrinsically random memory access pattern
of the edge swapping, which means that the cached data is hardly ever used.

Fig. 3. Roofline analysis of the main compute kernels for the Link Assessment: Edge
swapping and co-occurrence computation. Both kernels are strongly memory bounded,
with 79% and 54% of the runtime spent in DRAM stalls for the edge swapping and
coocc kernels, respectively. Machine: Intel Xeon E5-2640 v3 (16 cores at 2.6 GHz) with
2 × 32 GB DRAM.

3.3 Co-occurrence Calculation

Calculating the node-pairwise coocc of a given graph is the most time consuming
part of the LA. Using the adjacency matrix, we iterate through each pair of rows
(nodes in Vl) and count the number of columns (nodes in Vr) where both elements
are 1, i.e., both edges exist. The computational complexity of this procedure is,
therefore, O(|Vl|2 · |Vr|).

Through the adjacency list, the complexity can be amortized to
O(

∑
Vr

deg(w)2), where deg(w) is the degree of node w ∈ Vr. This particu-
larly benefits networks whose degrees follow a power-law distribution, as is the
case of most real networks [22 SPP]. For a CPU implementation of the LA, the
adjacency list approach is preferred, even though the memory access pattern is
unstructured (see Sect. 3.2).
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From a hardware architecture design perspective, however, the adjacency
matrix approach can be easily implemented with blocks of bit-wise ANDs fol-
lowed by an adder tree, what we call coocc module. Due to the small size of such
an operational block, it can be replicated multiple times, reaching a degree of
parallelism that is not feasible in CPUs. To make use of such high parallelism
without being constrained by the DRAM bandwidth requires a well-designed
cache layout.

Calculating the coocc between all pairs of vertices in Vl in a naive way requires
to load the same data many times. For example, calculating the coocc between
u, v ∈ Vl requires edges connected to u and v, or in other words the two rows u
and v of the matrix A. When the coocc is later calculated between u and w, the
same row Au needs to be loaded. This leaves huge potential for an optimized
memory hierarchy and algorithms to minimizing data transfer.

We presented an appropriate solution for this issue in 2015 [4 SPP]: The key
idea was to add a row-cache to the coocc module. The row-cache must be able
to store one complete row of the adjacency matrix.

Having k parallel coocc units, we use their caches to store a consecutive block
of k rows Au, .., Au+k−1. Then we stream one by one all following rows through
the coocc modules, starting with Au+k. With each new row Av the modules
can calculate the coocc of all pairs of the cached rows (u, v), .., (u + k − 1, v).
Algorithm 1 formalizes this scheme.

Algorithm 1: Implementation of the coocc computation step for K coocc mod-
ules
Data: Graph G((Vl, Vr);E) stored as adjacency matrix A = (Vl × Vr), Vl being

the side of interest
Result: coocc for all pairs of vertices (u, v) ∈ (Vl × Vl)

1 for u := 1 to |Vl| step K do
2 k := 0
3 for v := u to |Vl| do
4 Stream row Av from DRAM
5 if k ≥ 1 then
6 Compare the streamed row with all previously cached rows 1 to k

and calculate the coocc for the pairs: (u, v), .., (u+ k − 1, v)

7 if k < K then
8 k := k + 1
9 Store the streamed row in cache k

The main advantage of this scheme is solving the scaling problem. While
adding m times more modules reduces the runtime by a factor of m, it does
not increase the requirements for external bandwidth since only one row has to
be streamed through all the blocks at each given time. This allows us to place
hundreds, if not thousands, of coocc units next to each other, providing massive
speedups.
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Figure 4(a) shows the data path tailored to this task, consisting of an adder
tree and accumulator. Each edge cache has a capacity of 64 kB, targeting a
frequency of 400MHz. For a 64 bit double data rate (DDR) channel at 800MHz,
we get 256 edges per cycle when running the coocc units at 400MHz. That means
the adder tree has a width of 128 adders at the top and a depth of seven stages.
Four coocc modules are synthesized in a single cell and combined in a grid of 5
times 12, for a total of 240 coocc modules. To distribute the data to the caches
or to stream further rows of the matrix a tree-like replication network is used,

Fig. 4. The coocc and result module (b) works on one dataset after another, always
updating the same result. It loads one row of the graph into the caches (local memory
(LMEM)) and first calculates the coocc before calculating the similarity measures. The
coocc module (a) consists of an efficient adder tree operating on blocks of l edges per
cycle. While the similarity measures, lower half in (b), consists of several arithmetic
blocks and it is only called once per row, making it possible to share most of the
resources.

Fig. 5. ASIC layout in 28 nm technology. It consists of 240 coocc modules, three DRAM
controllers (green) and IO logic. The swap randomization block is not visible here due
to its small size .(Color figure online)
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while for the results a shift register over the whole chip is used. That makes the
architecture perfectly scalable.

In total, this architecture accumulates the coocc from 240 × 256 = 61, 440
matrix columns per cycle, or ∼24.5×1012 columns per second. In a comparison
with the fastest CPU based population count [16] running at 3.4GHz, that
represents a speed up of ∼59×.

The rest of the design is occupied by memory controllers and IO, see Fig. 5.
For the memory controllers, we have estimated the numbers based on the corre-
sponding publications [6,10]. The whole ASIC has a size of 51.2mm2 and average
power consumption of 11.7W.

Partial-Line Cache Optimization. In a follow-up work [3 SPP], we further
increased the efficiency of the hardware architecture by introducing the concept
of partial line caches. Since the area of the coocc modules are dominated by
their cache, reducing the cache size enables much higher degrees of parallelism.
However, if the coocc modules cannot hold an entire row of the adjacency matrix,
the partial results must be temporarily stored, raising the question of the optimal
cache size for achieving the best performance.

As will be detailed in Sect. 3.4, higher granularity DRAM channels (shorter
word-sizes) can be used to accelerate the graph randomization step. However,
they increase the latency of accessing the adjacency matrix rows, therefore pre-
senting the worst-case for the coocc computation.

In Fig. 6 we have simulated the time it takes to process the adjacency matrix
with the time it takes to store the partial result on average for one line segment
when using a channel word-size of 8-bit (the smallest possible). Since those oper-
ations are pipelined, the optimal cache size is given by the Pareto front between
the two operations. The smallest latency is reached for a cache size of 8 kB.

Pareto Front

per co-occ module cache size (KB)

Partial Cooc ResultAdjacency Matrixlatency (us)

64 56 48 40 32 24 16 12 10 8 4 2
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Fig. 6. Latencies of accessing the input data stored in Adjacency Matrix rows in com-
parison with latency for storing partial coocc results, assuming the same channel width
for both memories involved in the design. The Pareto front is the maximum of each.
Numbers are for 8-bit channel DRAMs.
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While in the first design 240 coocc modules with 64 kB caches have been
used, 8 kB caches allow us to increase the number of modules up to 1920 for the
same total cache size. This results in a similar total chip area, from 51.2mm2

to 57.3mm2, as the caches dominate the coocc module in both cases. With this
approach, we could further reduce the runtime of the coocc computation by a
factor of 8× when using the same 64-bit channels, or maintain the same speed
when using 8-bit channels.

3.4 Swap Randomization

With the accelerated coocc computation, the generation of each sample, i.e.,
the randomization of the graph becomes the bottleneck. Edge swapping is a
strictly sequential operation in that any swap can depend on the result of the last
swap, therefore its parallelization is not as straightforward as instantiating more
processing units. Nevertheless, we addressed this bottleneck by exploiting the
fine-grained access to DRAM [3 SPP], what is only possible when implementing
our own memory controller, as well as a collision-aware swap parallelization.

Fine Grained DRAM Access. Most modern CPU have a fixed size interface
of 64 bits with the DRAM. DRAM devices, however, can have higher granularity
interfaces of, e.g., 8 bits (×8), and they are physically combined into groups of 8
devices to build the 64 bits interface. A fixed burst length of 8 DRAM accesses
fills up one cache line of 512 bits, or 64 bytes. For any modern CPU, one cache
line, i.e., 512 bits, is the minimum amount of data that can be loaded from
DRAM.

Since the swap randomization operates only on single integers and single bits,
reducing the word length of the DRAM interface increases the “computations per
loaded bit” (the arithmetic intensity, see Fig. 3) immensely. Indirectly, of course,
it also increases the performance because the swap randomization is bounded by
the random memory access latency.

We have derived an alternative hardware architecture that slightly modifies
the memory controller in order to address each of the DRAM devices (with 8 bit
interfaces) independently [3 SPP]. Normally, the memory controller addresses all
8 DRAM devices of a memory channel as if it was a single device, i.e., it sends the
same commands and addresses to all devices. This allows the memory channel
to share the command and address lines for all devices, saving energy and area
at the cost of having a common address space. The data lines (8 or 64 per ×8 or
×64 device), on the other hand, cannot be shared, as the data in each DRAM
device must be transferred independently. By introducing a chip select signal
and interleaving the commands to each DRAM device, we can transform the
common address space into 8 independent ones. This works because, during the
DRAM latency (data request to data ready), the DRAM device ignores address
and command lines, as they get internally saved at the request moment. That
way, we can load only 8× 8 = 64 bits instead of 8× 64 = 512 bits in one DRAM
device access. This is a slight modification in the memory controller and channel,
but one that could not be accomplished without custom hardware design.
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For that scheme to be the most efficient, it requires that the data stored
in each DRAM device to be independent. That is, each DRAM chip holds its
own copy of the graph, as shown in Fig. 7(b). With that we can read or write
8 random numbers in the same time with a ×8 channel compared to a single
with one ×64 channel, as shown in Fig. 7(c)(d). This scheme speeds up the swap
randomization by a factor of 4× up to 8×.

Figure 7(a) shows the alternative architecture using two ×64 memory chan-
nels. This design is more suitable whenever the coocc calculation is the bottleneck
of the algorithm, while the design in Fig. 7(b) provides faster graph randomiza-
tion. This trade-off is depicted in Sect. 4.

Fig. 7. Showing the ASIC for two memory configurations: ×64 (a) and ×8 (b) channels.
In the case (a) only two graphs are stored and one swap unit is active, while in case (b)
23 graphs are stored and 22 swap units are active. Architecture (a) is useful for small
number of swaps, while architecture (b) is useful for high number of swaps. Showing
how the different random reads are performed for a ×64 channel (c) and ×8 channels
(d). By interleaving the random accesses of 8 swap units with chip select over one
command and address channel, 8 reads can be performed for (d) in the same time as
one read for (c). This results in an 8× speedup.

Collision-Aware Swap Parallelization. Edge swapping is an inherently
sequential operation in that every step can depend on the previous ones. For



72 A. Chinazzo et al.

large graphs with millions of edges, we access the memory at random locations
for billions of chained swaps. Even then, we can divide the edge swapping chain
into chunks that can be processed in parallel, if we make sure that none of the
swaps depend on the previous ones in the same chunk. These chunks can be
reordered by the memory controller in order to ensure the minimum amount of
random accesses.

We have simulated the performance of the swap parallelization for different
chunk sizes with the DRAMSys tool [12]. For that, we created trace files that
describe the access pattern to the DRAM. The speedup saturates at 2.5× for
a chunk size of N = 12 parallel swaps. Since N is small, checking for collisions
between swaps is much faster than writing the swapped edges back to DRAM,
therefore it does not incur any time overhead.

Table 2. Cluster ASIC Comparison

Implementation Memory Runtime Power Energy
[GB] [hour] [W] [MJ]

Low number of swaps (|nodes| ln |nodes|):
ASIC (1920 modules, 64-bit channels)a 5.3 1.51 20.1 0.11
10 node Intel clusterb 202 8.5 (5.6x) 3700 114 (1030x)
ASIC (240 modules, 64-bit channels)c 4.6 9.0 (6.0x) 15.8 0.51 (4.6x)
High number of swaps (|edges| ln |edges|):
ASIC (1920 modules, 8-bit channels)a 30.9 11.1 13.3 0.53
10 node Intel clusterb 202 16 (1.4x) 3300 190 (360x)
ASIC (240 modules, 64-bit channels)c 4.6 483 (44x) 10.9 19 (36x)
anode including: ASIC with 1920 coocc modules, 28 nm; 48 GB DDR3 memory (×64
or ×8 channels); board (ethernet, clocks), power supply.
beach node: 2×Intel Xeon X5680 @ 12 × 3.33 GHz, 32 nm; 48 GB DDR3 memory
cnode including: ASIC with 240 coocc modules, 28 nm; 8 GB DDR3 memory (×64
channel); board (ethernet, clocks), power supply.

4 Performance Comparison

For demonstrating the performance of our design we have calculated the simi-
larity measures for the Netflix Prize data set6, specifically the good ratings (4
or 5 stars) from users to movies. The resulting graph has 17,769 movies, 478,615
users, and 56,919,190 edges. In this case, Vl are the the movies, Vr the users.

In practice, the number of swaps in the randomization process is chosen
between |nodes| ln |nodes| = 6,259,639 and |edges| ln |edges| = 1,016,414,121.
To demonstrate that our design qualifies for the full range, we compare it for
both of those extremes. The exact number in practice usually depends on the
6 Available at https://www.kaggle.com/netflix-inc/netflix-prize-data. Last accessed

on 24/11/2022.

https://www.kaggle.com/netflix-inc/netflix-prize-data
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nature of the graph. A heuristic for determining the optimal number of swaps is
discussed in Chapter 3.

Table 2 compares our ASIC and our optimized cluster implementations of the
LA algorithm. The cluster implementation was developed specifically for this ref-
erence work and tested on two Intel Xeon X5680 @ 12 × 3.33 GHz, 32 nm server
nodes. Optimization involved the selection of an algorithm that minimizes com-
puting time for the given memory resources, removing locks by data partitioning,
and data access linearization [4 SPP,3 SPP].

Our first ASIC design (240 coocc modules) has a runtime performance com-
parable to the cluster implementation if a low number of swaps is necessary.
Notice, however, that it becomes almost useless (takes 20 days to complete) if
|edges| ln |edges| swaps are required. This is clear since in this first architecture
we only focused on accelerating the coocc calculation. Still, the total energy
consumption is 10x lower (notice that the total energy takes into account the
total runtime). This goes to show the amount of energy overhead for software
implementations, or how much energy can be saved by task specific ASICs. This
conclusion is interesting for both ends of the computing spectrum: The embed-
ded computing systems that are limited by battery capacity, size, and power
constraint, and the high performance computing, limited by energy expenses
and power dissipation issues.

Our second design shows how reconfigurability can address data-dependent
bottlenecks (i.e., the coocc or the edge swapping). By using smaller word-sizes
(×8 channels), we can accelerate both the coocc and edge swapping in such a way
that the Link Assessment becomes 45% faster than the cluster implementation
while consuming 360x less energy. When fewer swaps are necessary, the word-size
can be increased to ×64 channels, further reducing the coocc computation time
(the primary bottleneck), reaching a speed up of 5.6x compared to software.
The total energy economy, in this case, is even more impressive: From 114 MJ
in software to only 0.11 MJ in the custom design. This is partially due to the
large reduction of 38x in main memory footprint, from 202 GB to 5.3 GB.

5 Conclusion

Further increasing computational performance in modern technologies has
become a key challenge for the whole hardware and software industry. Phenom-
ena such as Dark Silicon force system designers to move to highly heterogeneous
systems, consisting of a large amount of highly dedicated hardware accelerators
in combination with classical programmable architectures such as CPUs and
GPUs. Since hardware accelerators focus on specific tasks, they can be much
more power/energy and compute efficiently than the latter ones.

In this chapter, we present a hardware architecture for the Link Assessment
(LA) algorithm, used for cleaning up noise data in large graphs. Processing and
analyzing large graphs will remain a key application in HPC for the next decades.
Since the current bottleneck for speeding up this task is fast random access
to memory, with standard DRAM architectures and controllers on commodity
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HPC nodes we experience a hard performance limit, together with high energy
consumption.

Our proposed architecture uses custom data structures and exploits bit-wise
access to the data in order to overcome these limitations. On a 28 nm ASIC device
with a DDR3 controller it is 1030x more energy efficient compared to a standard
compute cluster, using 38x less memory in total. We show multiple optimization
techniques that are specific to custom hardware designs, such as a slight memory
controller modification that reduces the average random access latency; and a
tailored cache design that enables scalable parallelism w.r.t. memory bandwidth.
The architecture is fully flexible and can also be ported as an FPGA accelerator
solution. This clearly illustrates the potential of hardware accelerators for the
LA in particular and the graphs analysis domain in general.

Transferring the concepts to other algorithms such as Curveball (see Chapter
2) is the subject of ongoing work.
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Abstract. Rational drug design deals with computational methods to accelerate
the development of new drugs. Among other tasks, it is necessary to analyze huge
databases of small molecules. Since a direct relationship between the structure of
these molecules and their effect (e.g., toxicity) can be assumed in many cases, a
wide set of methods is based on the modeling of the molecules as graphs with
attributes.

Here, we discuss our results concerning structural molecular similarity
searches and molecular clustering and put them into the wider context of graph
similarity search. In particular, we discuss algorithms for computing graph simi-
larity w.r.t. maximum common subgraphs and their extension to domain specific
requirements.

Keywords: Drug discovery · Cheminformatics · Graph similarity · Molecular
similarity · Maximum common subgraph · Maximum similar subgraph ·
Structural graph set clustering · Subgraph mining · Molecular library · BRD4

1 Introduction

The era of big data has reached academic and industrial pharmaceutical drug research
in the last decade, which has changed how drugs are developed. Nowadays, large col-
lections of bioactivity data and large databases of potentially synthesizable molecules
exist. Publically available bioactivity databases like ChEMBL [4] or Pubchem [25] con-
tain over 16 million data points about molecules that modulate protein or drug target
functions. This allows data-driven decision via in-depth data mining and knowledge
discovery approaches, e.g., the identification of similar molecules for the prediction of
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a known protein target or unwanted side effects. The extraction of molecular features
enables an increasingly reliable prediction of properties such as toxicity or oral avail-
ability.

The chemical space of drug-like molecules provides another source of big data. The-
oretical analysis of the comprehensive chemical space estimates around 1062 molecules
with a typical drug size. Among those, around 166 billion molecules are described by
the chemical universe database GDB-17 that was build up using 17 standard atoms that
occur within drugs [47]. The REAL space1, a large collection of commercially avail-
able chemical compounds, contains about 15.5 billion molecules that are potentially
synthesizable. Finally, the current version of the ZINC database [55] contains over 750
million purchasable compounds that were already synthesized.

Several established tools and work-flows are available that utilize bioactivity data or
the chemical space for the rational development of bioactive molecules [20 SPP]. These
approaches are based on the common basic assumption that similar molecular struc-
tures have similar bioactivities. A classical approach for identifying similarity between
molecules is to use molecular fingerprints that are fixed size vectorial representations
of structural characteristics, e.g., extended-connectivity fingerprints [46]. Although this
form of representation allows fast comparisons and the usage of fast vector-based tools,
vectorization suffers from an information loss and can lead to inaccurate discrimination
of similar molecules. This becomes a problem for the above described ’big’ molecu-
lar databases since the available similarity measures do not discriminate enough. Thus,
similarity searches in such databases contain too many false positives, which hampers
further processing.

A more accurate comparison of molecules is directly based on the graph repre-
sentation of the chemical structures. This representation allows the modeling of the
molecules as graphs with attributes and the use of graph-theoretic concepts, algorithms
and tools to analyze molecular databases. Figure 1 shows two similar molecules and
their graph representation. The atoms are modeled as vertices, and the bonds between
the atoms as edges. Attributes for the graph could be, e.g., a label for the vertices pro-
viding the atom name and a label for the edges encoding the binding type.

Unfortunately, the use of molecular graphs to compare two molecules based on the
concept of isomorphism is notoriously much more time consuming compared to molec-
ular fingerprint-based similarity search. Additionally, a comparison based on the maxi-
mum common substructure (maximum common subgraph) between two molecules may
fail in the identification of molecules with similar chemical properties since the classi-
cal definition of a common substructure is too strict under some circumstances. There-
fore, novel methods are urgently needed for the analysis of the still increasing amount
of molecular data. The focus of the interdisciplinary project “Graph-based Methods
for Rational Drug Design” has been the development of new structural approaches
w.r.t. molecular similarity search and molecular clustering. This chapter presents some
of the main results and puts them into a wider context of graph similarity.

Preliminaries and mathematical definitions are provided in Sect. 2. State-of-the-art
methods for comparing graphs w.r.t. the size of their Maximum Common Subgraph
(MCS) in the context of molecular graphs are discussed in Sect. 3. For drug design,

1 https://enamine.net/library-synthesis/real-compounds.

https://enamine.net/library-synthesis/real-compounds
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Fig. 1. Two similar molecules (Sildenafil and Vardenafil) and their corresponding graphs. The
colors display the atom types (nodes) and bond types (edges).

it is often advisable to preserve certain molecular substructures –such as rings, blocks,
or bridges– in comparisons since they have special biochemical properties as a whole.
This method for comparing molecules can be further improved by incorporating chem-
ical knowledge about reasonable atom or substructure substitutions that presumably do
not affect bioactivity considerably. Figure 1 shows an example of two drugs with atom
substitutions in the bicyclic structure that do not affect bioactivity. In our model of
similarity, it is allowed to change certain structures of the graphs and still mark them
as structurally equivalent. Thus, we have introduced the Maximum Similar Subgraph
(MSS) problem. Our findings, including algorithms and experimental results, are dis-
cussed in Sect. 3.2.

Clustering analysis is used for a variety of tasks in drug discovery. This includes
complexity reduction, structure activity relationship reasoning in visual analytics, nov-
elty analysis of de novo databases (see Sect. 5.3), diversity analysis, structured sam-
pling, and many more. Cluster analysis on huge molecular databases is the topic in
Sect. 4. First, we discuss computational and information-theoretic challenges before we
present a scalable state-of-the-art structural clustering algorithm (StruClus) that tackles
these challenges. In Sect. 5, we discuss some selected successful applications in ratio-
nal drug design in the context of this priority program. In a scaffold-focused analysis
of bioactivity data, we discovered an unexpected similarity in ligand binding between
two important drug targets (BRD4 and PPARγ) in cancer therapy (cf. Sect. 5.2). This
discovery was possible using Scaffold Hunter, an open-source tool developed in our
group to support the drug discovery process (cf. Sect. 5.1). In Sect. 5.3, we present
CHIPMUNK, a new virtual database of more than 95 million synthesizable small
molecules. Using StruClus, it was possible to demonstrate the novelty of the database
in comparison to existing molecular libraries.



Graph-Based Methods for Rational Drug Design 79

Fig. 2. Example: A common subgraph C of the graphs G and H. Dashed arrows indicate the
subgraph isomorphism.

2 Preliminaries

An undirected labeled graph G= (V,E, l) consists of a finite set of vertices V (G) =V ,
a finite set of edges E(G) = E and a labeling function l :V

⊎
E → L, where L is a finite

set of labels. An edge {u,v} connects two vertices u,v ∈ V , u �= v. A (simple) path of
length n is a sequence of vertices (v0, . . . ,vn) such that {vi,vi+1} ∈ E and vi �= v j for
i �= j, i, j = 0, . . . ,n−1. A tree is a graph in which any two vertices are connected by a
unique path. A graph is called planar if it admits a drawing on the plane without edge
crossings, and it is outerplanar if such a drawing is possible in which every vertex lies
on the boundary of the outer face.

For our similarity approaches based on subgraph isomorphisms, we need the fol-
lowing definitions. Let G and H be two undirected labeled graphs. A (label preserv-
ing) subgraph isomorphism from G to H is an injection ψ : V (G) → V (H), where
∀v ∈ V (G) : l(v) = l(ψ(v)) and ∀u,v ∈ V (G) : {u,v} ∈ E(G) ⇒ {ψ(u),ψ(v)} ∈
E(H)∧ l({u,v}) = l({ψ(u),ψ(v)}). If there exists a subgraph isomorphism from G
to H, we say H supports G, G is a subgraph of H, H is a supergraph of G or write
G ⊆ H. If additionally {u,v} ∈ E(G) ⇐ {ψ(u),ψ(v)} ∈ E(H) for all u,v ∈V (G), then
ψ is an induced subgraph isomorphism. If there exists a subgraph isomorphism from G
to H and from H to G, the two graphs are isomorphic. A common subgraph (cf. Fig. 2)
of G and H is a graph C that is subgraph isomorphic to G and H. A maximum common
subgraph (MCS) is a common subgraph of maximum size (vertices plus edges).

A graph G = (V,E) with |V | ≥ 3 is called biconnected if G \ {v} is connected for
each v ∈ V . A maximal biconnected subgraph of a graph G is called block. An edge
{u,v} ∈ E(G) not contained in any block of G is a bridge. A vertex v of G is called
cutvertex, if G \ {v} consists of more connected components than G. A BC-tree BCG

of a graph G consists of a node for each block and bridge in G and all the cutvertices
of G. Two nodes (blocks or bridges) b,b′ in a BC-tree are connected through the path
bcb′ if they share the cutvertex c ∈V (G). Figure 3 exemplifies a graph and its BC-tree.
Let S and G be graphs, and ψ : V (S) → V (G) be a subgraph isomorphism. Then ψ is
block-and-bridge-preserving (BBP) if any two edges in different blocks in S map to
different blocks in G, and each bridge in S maps to a bridge in G.

The support supp(G,G ) of a graph G over a set of graphs G is the fraction of
graphs in G that support G. G is said to be frequent if its support is larger or equal than
a minimum support threshold suppmin. A frequent subgraph G is maximal if there exists
no proper frequent supergraph of G.
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Fig. 3. A connected graph (left side) and its BC-tree (right side). The BC-trees’ block nodes
are depicted as green squares; the bridge nodes as blue squares. The white filled circles are the
cutvertices. The associated subgraphs of G are depicted above the blocks and bridges. (Color
figure online)

3 Molecular Similarity Based on Graphs

An essential criterion of molecular similarity in drug design is not only the similarity in
chemical structure but also the similarity in biological activity or bioactivity. In order
to obtain molecular similarities meeting this requirement, we introduce a graph-based
method, which addresses the following problem.

Definition 1. Given two molecular graphs G and H, the maximum similar subgraph
problem is to find chemical meaningful subgraphs of G and H with equivalent bioac-
tivity.

Starting from this informal description, we introduce clearly defined graph-theoretical
problems extending the maximum common subgraph paradigm. Since scalability is a
critical concern, algorithmic aspects and complexity results must be taken into account
and related to the specific properties of molecular graphs. These graphs are almost
always planar and often outerplanar [18]. Since the number of bonds per atom is limited,
the vertex degrees are bounded. It can be observed that all the graphs representing small
molecules have a small tree width. The tree width of a graph essentially measures the
similarity of a graph to a tree structure. Trees have tree width 1, and graphs that can
be constructed via parallel or serial merges (series-parallel graphs) have tree width 2.
Typically, molecular graphs have vertex and edge attributes that are either discrete labels
or numerical values.

We proceed with a discussion of similarity approaches based on the maximum com-
mon subgraph paradigm and the specific challenges when applied to molecular graphs.
Then, new graph-based methods are introduced, which address these challenges as part
of the maximum similar subgraph problem.

3.1 Challenges and Approaches in Comparing Molecular Graphs

The maximum common subgraph problem is to find a common subgraph in two given
graphs of maximum size. In the domain of cheminformatics, the maximum common
subgraph problem has been extensively studied [12,44,50]; see [28 SPP] for a recent
survey. In this domain, it is often referred to as the maximum or largest common sub-
structure problem. This problem is known to be N P-hard. With trees as input and
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output, the problem was shown to be polynomial-time solvable [35], but bioactive
molecular graphs are not trees in general. The fact that they are mostly outerplanar
does not directly lead to efficient algorithms since the maximum common subgraph
problem restricted to outerplanar graphs remains N P-hard. Instead of developing
maximum common subgraph algorithms for more general graph classes, which has
been proven difficult, a different approach represents molecules simplified as trees [41].
Then, vertices typically represent groups of atoms, and their comparison requires rating
the similarity of two vertices by a weight function. However, similar to fingerprints, this
goes along with a loss of information. Especially when comparing to large molecular
databases, e.g., to rank the molecules regarding their similarity, this loss of information
can lead to a reduced distinctiveness [21 SPP].

For molecular graphs, there is a variation of the maximum common subgraph prob-
lem of high practical relevance. There, the block (i.e.,connected set of molecular rings)
and bridge (i.e.,molecular chain) structure of the input graphs must be retained by the
common subgraph, i.e.,the underlying subgraph isomorphism is block-and-bridge pre-
serving (BBP). This variation is denoted block-and-bridge preserving maximum com-
mon subgraph problem (BMCS) and requires the common subgraph to be connected
and the associated subgraph isomorphisms to be BBP. There is a variant of the problem
where the subgraphs are not necessarily (vertex) induced. This edge induced variant
is denoted as BMCES. For both variants, it has been shown that they yield meaning-
ful results for cheminformatics and are computable in polynomial time on outerplanar
graphs [50,21 SPP,10 SPP].

In [50], a BMCES algorithm was proposed for outerplanar molecular graphs. Con-
trary to the original claim of O(n2.5) for a graph with n vertices, the algorithm allows
no better bound than O(n4) on its running time [30 SPP]. A previously suggested algo-
rithm regarding the BMCS problem for input graphs with tree width k≤ 2 has a running
time of O(n6) [32 SPP]. In the case of outerplanar input graphs, the running time can
be reduced to O(n5). An essential part of this algorithm is the decomposition of the
graphs into their BC- and SPQR-trees, which decompose the graphs into their bicon-
nected and three-connected components. A maximum solution is then computed via a
dynamic programming approach on the blocks and bridges.

Following the above result, we presented a faster approach tailored to outerpla-
nar graphs [10 SPP]. On such graphs G and H, this algorithm achieves a running
time of O(|G| |H|Δ(G,H)), where Δ(G,H) = 1 if G or H is biconnected; otherwise,
Δ(G,H) = min{ΔC(G),ΔC(H)}, where ΔC(G) and ΔC(H), respectively, is the max-
imum degree of all cutvertices in G and H, respectively. For outerplanar molecular
graphs, the time bound is O(|G| |H|) since they have bounded degree. The first major
ingredient is a fast dynamic programming approach on the BC-trees of the input graphs,
where we exploit the similarity between the maximum weight matching instances that
we have to solve [9 SPP]. Here, we use an algorithm for the maximum weight matching
problem with a running time depending on the smaller vertex set. The second ingre-
dient is a quadratic time algorithm to find a biconnected maximum common subgraph
between two blocks b1 and b2. This is realized by enumerating all maximal (with respect
to inclusion) biconnected common subgraphs between the two blocks. Each maximal
solution C can be computed in time O(|C|). The total size of all maximal solutions per
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block pair (b1,b2) isO(|b1| |b2|); hence the total algorithm’s running time isO(|G| |H|).
Along the edges and vertices with different labels, the maximal solutions are split into
smaller biconnected components. Among all those components, we keep one of maxi-
mum size.

For non-outerplanar graphs, we use a clique reduction to compute biconnected max-
imum common subgraphs between two blocks if at least one is not outerplanar. In
the reduction, we enumerate c-cliques as presented in [8,27]. Among them, we keep
a biconnected c-clique of maximum size. This approach reduces the practical running
time compared to a pure clique-based algorithm operating on the whole graphs since the
computational demanding clique problem must be solved for small components only.
In contrast to the BMCES algorithm of [50], the above-described technique enables our
algorithm to compute a solution for any two molecular graphs and lower the practical
running time for graphs with multiple blocks, even if they are not outerplanar.

We evaluated the practical running time of our algorithm [10 SPP] by comparing it
to the BMCES algorithm from [50]. In our experiments, we used a dataset of 29 000
randomly chosen pairs of outerplanar molecular graphs from the NCI Open Database,
GI502, with an average of 22 vertices (atoms) and a maximum of 104 vertices. Our
algorithm outperformed the competitor by a factor of 84 on average. The experimen-
tal results align with our theoretical correction [30 SPP] of the running time analysis
given in [50]. It should be noted that the BMCES algorithm is already much faster
than a general clique-based MCS algorithm [50]. Our BMCS algorithm outperforms
such a general algorithm by several orders of magnitudes. The practical differences of
the results w.r.t. the vertex and edge induced variants is marginal, and we observed a
disagreement in only 0.4% of the comparisons.

While our basic BMCS algorithm is fast in theory and practice, the primary goal is to
find a meaningful common subgraph. It was observed that allowing disconnected com-
mon subgraphs improves the validity, given that the connected components are arranged
consistently in both graphs [34,51]. However, solving the general disconnected variant
isN P-hard even in trees. Moreover, small variations of the chemical elements (vertex
labels) might be tolerated. We tackle these challenges in the next subsection.

3.2 Maximum Similar Subgraph Based Similarities for Molecules

This subsection presents several problem fields where the classical MCS definition is
too strict w.r.t. molecular bioactivity. We show how these problem fields can be theo-
retically approached under the MSS definition and how they can be solved program-
matically by integration in the MCS algorithms. Subsequently, we evaluate our MSS
approach in comparison with several established molecular similarity measures.

From a chemical point of view, the two drugs shown in Fig. 1 are almost identical
and are expected to have nearly identical properties w.r.t. bioactivity. However, anMCS-
based comparison would interpret a large part of the molecules as different due to the
nitrogen switch in the bicyclic ring system. In other words, the exchange of a nitrogen
and carbon atom in an aromatic ring should influence the molecular similarity only
to a small extend under the maximum similar subgraph problem definition. In addition,

2 http://cactus.nci.nih.gov.

http://cactus.nci.nih.gov
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Melphalan

Chlorambucil

BMCS BMCS
embedding

Fig. 4. Molecular graphs of Melphalan (top) and Chlorambucil (bottom). The BMCS on the left
(red) maps less vertices than the BMCS embedding on the right (blue, green). The atoms on the
right side (O, O, H) may be added to the embedding by mapping the green paths to each other.
(Color figure online)

atom types like aromatic nitrogen or carbon can be grouped by their properties and such
atom type groups can be used as representation instead. Thus, by softening the matching
constraints in the MSS problem, a much larger substructure should be identified in the
two molecules in comparison to the MCS approach. This problem can be solved with
an atom type group representation [39] and a score in the range [0,1]∪{−∞} to group
mappings (mapping of vertices with atom type group labels), where {−∞} forbids the
mapping. Hence, the objective is to maximize the weight of all mapped groups instead
of the number of mapped vertices. The complete weight matrix is listed in Table III.2.3
of [19].

Additionally, we allow the mapping of disjoint paths of bridges (more precisely,
the path’s endpoints while skipping the inner vertices) to each other [11 SPP] in our
MSS approach, i.e.,we allow some kind of disconnection. We denote this technique
embedding, following [17]. This is useful, e.g., if two molecules differ only in the length
of a chain connecting similar or identical substructures. To prevent arbitrary long paths,
we introduce a linear penalty depending on the length of such paths. An example of two
molecular graphs that profit from the described approach is depicted in Fig. 4.

In summary, we developed an algorithm applicable to molecular graphs that
addresses the maximum similar subgraph problem by (i) using the established BMCS
concept, (ii) allowing disconnectivity by mapping paths to edges, and (iii) supporting
weight functions between labels. Moreover, our algorithm is efficient in theory and
practice for the vast majority of molecular graphs.

In order to evaluate the quality of our MSS approach, we used a similar setup as
in [40] and compared it to state-of-the-art chemical fingerprint methods. Our main
question was whether the MSS approach produces meaningful results when used to
rank molecules. In the following, we present the key evaluation results for the single-
assay benchmark, which consists of rather similar molecules that have been ranked by
the authors w.r.t. decreasing order of activity.
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First, we analyzed different layers to represent the molecules. Among them are the
chemical elements representation (e.g., N for nitrogen) and the file conversion (fconv)
atom type groups [39]. We discovered that the latter representation based on the weight
matrix of Table III.2.3 of [19] performed best for the single-assay benchmark. As sim-
ilarity coefficient, we used Bunke and Shearer’s [43], which performed best among
the tested ones. It is defined asW/max{k, l}, whereW is the weight of the maximum
common subgraph, and k, l are the sizes of the input graphs.

Compared to other methods, the very popular ECFP4 fingerprint showed the best
match with the reference ranking followed by our MSS embedding approach. This
is followed by RDKit7 (fingerprint of all subpaths up to path length 7), MSS with-
out embedding, RDKit6, and the BMCS approach. Other fingerprint methods ranked
in between. Extended-Connectivity Fingerprints (ECFPs) capture the neighborhood of
the non-hydrogen atoms in circular layers up to a given diameter (e.g., 4 in the case
of ECFP4). Thus, their features, similarly to the MSS, also represent the presence of
particular small substructures. However, the advantage of our MSS approach is that
it explicitly computes the similar substructures of the molecules and a concrete map-
ping between the atoms (vertices). It also achieved a high distinctiveness between the
results, which is important to virtually screen large (big data) molecular libraries. The
additional feature of mapping disjoint paths to each other showed improved results on
the ranking benchmarks. More detailed results, as well as additional tests, can be found
in [19].

4 Clustering Analysis

As mentioned in the introduction, clustering is used for a variety of use cases in drug
discovery. In the following, we will focus on the task to cluster large scale molecu-
lar datasets of labeled graphs. An application of the presented approach is given in
Sect. 5.3.

Definition 2. A clustering of a graph dataset —i.e.,a multiset of labeled graphs— X
is a partition C = {C1, . . . ,Cn} of X , that maximizes cluster homogeneity and often
separation.

The concrete definitions of homogeneity and separation differ in different clustering
methods. Common measures for homogeneity are diameters or radii, density, or rela-
tive closeness to cluster representatives. Separation is often defined over the minimum
distance between cluster elements or some aggregated cluster features. In contrast to
homogeneity, separation is not always considered by clustering algorithms. For exam-
ple, it is challenging to find a suitable definition of separation for projected clustering
algorithms, since each cluster is linked to its own subspace and by that is incomparable
to other clusters. Meta algorithms can be used to tune some of the clustering algo-
rithms that do not optimize separation directly to achieve well-separated clusterings.
For example, the number of clusters can be used as such a tuning parameter for the
classical k-means algorithm [56].
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4.1 Challenges and Approaches in Molecular Cluster Analysis

A major design decision for clustering algorithms is the data representation. Most clas-
sical clustering algorithms rely on vectorial data interpreted as points in some prede-
fined space (e.g.,R\ with l2-norm) or, more generally, on pairwise distances or kernels.
Exchangeable distances or kernels are very versatile since it allows the clustering algo-
rithm to be adapted to the specific clustering task. However, the explicit vector space
representation with a fixed norm is often beneficial in terms of computational com-
plexity. For example, it allows the explicit calculation of centroids, easy extraction of
subspaces, or the use of binning. With these methods, it is often possible to avoid cal-
culating a quadratic number of pairwise distances during the clustering process.

To fit a graph dataset into this models, the graphs must be either transformed into
vectors (e.g., by using structural fingerprints or Weisfeiler-Lehman features [38]) or
kernels/distances must operate directly on graph data (e.g., graph kernels [31] or the
distance given in Sect. 3). However, while preferable in terms of generality, these gen-
eralized methods have weaknesses in the discussed domain.

First, both methods tend to produce (intrinsic) high-dimensional datasets [29].
While a high dimensionality may even be beneficial in supervised learning, intrinsic
high dimensional datasets are linked to the so-called concentration effect [5] in the
unsupervised setting. This effect causes the pairwise distances to lose their relative con-
trast, i.e.,the distances converge towards a common value. The concentration effect is
closely related to a bad clusterability [1,57]. Furthermore, it causes metric index struc-
tures to be inefficient. Subspace or projected clustering methods, which are usually used
in such a setting, come with an extra computational burden and are usually limited to
vector space.

Second, the transformation to reasonably sized vectors is lossy and non-reversible.
This causes the clustering results to be hard to interpret since cluster features, centroids,
or subspaces are not in the application domain. Thus, these methods fail to provide a
domain specific explanation about cluster commonalities.

As a consequence of these issues, structural clustering methods have been devel-
oped, which provide cluster descriptions or interpretations directly in the graph domain.
This is accomplished by various constructs, including subgraph isomorphisms, (max-
imum) common subgraphs [6], frequent subgraphs [57], graph edit operations [23],
and set medians [14,23]. For example, a cluster description can be given in the form
of common subgraphs. Since most of these sub-problems are themselves challenging
N P-hard problems, structural clustering algorithms are often limited to small datasets
(e.g., [14,23,58]) or very special graph classes (e.g., trees [3]). As a consequence of the
computational complexity, some of these clustering algorithms are hybrid approaches,
which utilize approximations in vector space in order to map the results back into the
graph domain. For example, the clustering algorithms in [14,23] calculate a cluster
median in vector space but assign graphs to clusters w.r.t. the graph edit distance. A
hierarchical k-means clustering in vector space is used as a starting point in [6]. It is
later refined in order to increase the size of the common substructures. To the best of
our knowledge and besides our own work, the only structural clustering algorithm for
larger-scale datasets of general labeled graphs is presented in [54]. In this algorithm,
each partition element of a vectorial pre-clustering is further partitioned with a struc-
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Fig. 5. Real world clusters with representatives (grey boxes) generated by StruClus. Colors rep-
resent node labels. (Color figure online)

tural algorithm. The pre-clustering is designed to only separate graphs that are also
separated by the structural variant with a high probability if the structural clustering
would be applied to the whole dataset.

4.2 StruClus: Scalable Structural Graph Set Clustering

StruClus [49 SPP] is a structural projected clustering algorithm that is tailored towards
our setting of large-scale datasets (� 106 graphs) of small labeled graphs (druglike
molecules are limited in their maximum size for biological reasons). Its linear runtime
w.r.t. to the dataset size, the usage of various sampling strategies, and a parallelizable
algorithm design make StruClus scalable and very fast in practice. It incorporates homo-
geneity and separation constraints for high-quality results.

A central concept of StruClus is the usage of cluster representatives sets R(C) for
each C ∈ C (cf. Fig. 5 for a real-world example) that contain frequent subgraphs of the
cluster members. They are beneficial in terms of computational complexity since they
enable graph-cluster comparisons without looking at the cluster members (similar to
the concepts of centroids or medoids). Additionally, they lead to human interpretable
clusters by explaining the cluster content in the application domain.

The main objective of StruClus is to maximize homogeneity in the sense that the
large fraction of the nodes and edges of the cluster members are covered by some sub-
graph isomorphism from the representatives. Similar to the classical k-means algorithm,
this is achieved by an iterative optimization procedure that updates the representatives
and re-assigns the cluster members to the best fitting cluster. However, the number of
clusters is not pre-defined but adapted to the dataset structure with the help of clus-
ter splitting operations on inhomogeneous clusters. Additionally, clusters with similar
representatives are merged in order to maintain a well separated clustering.

Performance-wise, the major challenge lies in the discovery of suitable representa-
tivesR(C) for each clusterC. Since the number of frequent subgraphs may be exponen-
tial w.r.t. the maximal graph size in the cluster, StruClus utilizes a randomized maximal
frequent subgraph sampling method. This is implemented by a random exploration of
the frequent subgraphs of each C, which form a meet-semilattice with partial ordering
derived from the sub and supergraph relation (cf. Fig. 6). Each random exploration starts
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Fig. 6. Example for a meet-semilattice of subgraphs ordered by the subgraph isomorphism rela-
tion. Node colors indicate labels. Maximal frequent subgraphs are marked with a blue background
color. (Color figure online)

with the empty graph and moves up in the lattice until a maximum frequent subgraph is
reached. Since the support is monotonically decreasing for the supergraph relationship,
it is possible to prune the search space with the minimum support threshold suppmin.

The above-described maximum frequent pattern sampling is complemented with a
new error bound stochastic sampling strategy over the cluster members to determine
whether a graph pattern is frequent. A subset of the maximal frequent subgraphs given
by this twofold sampling procedure is then selected by ranking the frequent subgraphs
w.r.t. to the above homogeneity criteria.

In comparison with structural clustering competitors, such as [14,23,53,54,58],
StruClus is able to raise the maximum dataset size by multiple orders of magnitude,
reaching into the domain of large-scale de novo databases. At the same time, StruClus
outperforms structural competitors with a suitable performance for medium to large-
scale datasets in terms of quality. Figure 7 shows an extract of an in-depth evaluation
given in [49 SPP] w.r.t. to quality and performance on a real-world dataset (heterocy-
cle) and a synthetic dataset. The heterocycle dataset consists of composed molecules
classified by their reaction types. The synthetic dataset has common subgraphs for a
class of graphs and is used to perform analysis with varying parameters. In Sect. 5.3,
we present a real-world use case of StruClus.

5 Rational Drug Design Applications

In this section, we present successful applications of the above approaches. Addition-
ally, we present our tool Scaffold Hunter, that brings the scientific findings into the
realm of practical drug design.

5.1 Scaffold Hunter

Scaffold Hunter [26,48 SPP] is open-source software for the analysis and visualization
of molecular data with the aim to support the user in elucidating structure-activity-
relationships. To this end, it features several structural classification schemes with ded-
icated visualizations and techniques to indicate chemical properties such as biological
activity, e.g., by mapping values to colors, cf. Fig. 8. A fundamental structure-based
concept is based on common core structures, so-called scaffolds, which can be orga-
nized hierarchically in a scaffold tree [52]. This approach forms the basis for several
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Fig. 7. StruClus evaluation in comparison with SCAP [54], Proclus [2], and Kernel K-Means [16].
Graphlet –i.e.,small induced subgraph– frequencies are used for Proclus and Kernel K-Means.

views, which show the scaffold tree in a radial layout, in the form of a tree map or a set
of scaffolds as a molecule cloud [13]. The view is inspired by the popular word cloud
method, where the importance of words is indicated by their size. Here, scaffolds are
scaled according to the number of molecules in the dataset containing them.

Following a different concept, structure-based hierarchical clustering is supported
by means of chemical fingerprint similarity. Specifically for very large data sets, we
have developed a heuristic method based on metric indexing [29]. The result can be
visualized as a dendrogram that can be linked to a table or a heatmap. The heatmap visu-
alizes property values in a matrix using color coding, where the columns are ordered in
accordance with the dendrogram. This allows identifying whether chemical properties
align with the structural similarity.

Several publications have shown that Scaffold Hunter is useful in various research
tasks such as scaffold hopping, target prediction, chemical space analysis, and natural
product simplification [7,26,33,45,21 SPP].
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(a) Scaffold tree and dendrogram view (b) Heatmap, treemap and cloud view

Fig. 8. Scaffold Hunter allows to visualize molecular data in various linked views.

Fig. 9. Co-crystal structure of BRD4 in complex with one of the identified novel inhibitors
(6g0e@pdb).

5.2 BRD4

In this study, an unexpected similarity in ligand binding between the bromodomain-
containing protein 4 (BRD4) and the peroxisome-proliferator activated receptor gamma
(PPARγ) was identified. Both are important drug targets in cancer therapy, cardiovas-
cular diseases, and inflammation processes [15,24]. The starting point was a scaffold-
focused analysis of bioactivity data using the command-line version of Scaffold Hunter
[48 SPP]. This analysis revealed a bicyclic scaffold that can be found, amongst oth-
ers, in known ligands for BRD4 and PPARγ . Compounds with similarity to known
PPARγ ligands were subsequently selected and tested on BRD4. Interestingly, the hit
rate, which means the number of actives on BRD4, was unexpectedly high. Some of
the novel inhibitors were successfully co-crystallized. One example is shown in Fig. 9.
Further analyses of both proteins support the discovery of an unexpected relationship
between the two drug targets [21 SPP] because they also show a high similarity of their
binding sites. Based on this result, it seems possible to develop a drug that modulates
both proteins with synergistic effects. Such a dual modulator would have the poten-
tial to have implications for the prevention or treatment of resistances against BRD4
inhibitors, which could already be observed [42]. Thus, this study demonstrates the
successful application of a graph-based method in a prospective drug discovery study.
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Fig. 10. Per cluster database distribution for the novelty analysis of CHIPMUNK. The green
share is the MCR-CHIPMUNK sublibrary, blue is ChEMBL, red are commercially available
compounds. The plot shows that some clusters are (almost) exclusively covered by CHIPMUNK.
[taken from [22 SPP], printed with permission from Wiley] . (Color figure online)

5.3 Chipmunk

CHIPMUNK (CHemically feasible In silico Public Molecular UNiverse Knowledge
base) [22 SPP] is a novel virtual library of small molecules which are synthesizable
from purchasable reactants. The goal of such de novo libraries is the expansion of the
known chemical and bioactivity space in order to enable virtual analytical processes
to extract meaningful novel molecular structures, e.g., for drug discovery. The in silico
simulated reactions are chosen such that they are synthesizable in reality with a high
probability. Altogether, CHIPMUNK covers over 95 million compounds.

In the evaluation of CHIPMUNK, it was shown that the content of the library
has interesting chemical properties and that the library covers previously undiscovered
regions of the chemical and bioactivity space. The former aspect was analyzed using
descriptor-based methods. It revealed that CHIPMUNK nicely covers the physicochem-
ical space of protein modulators and protein-protein interaction modulators. StruClus
(cf. Sect. 4.2) was used for the evaluation of the latter aspect, the novelty analysis. Addi-
tionally, StruClus itself was evaluated to prove that it creates useful clusterings w.r.t. to
chemical properties (refer to [22 SPP] for further details). Thus, molecules of the same
cluster exhibit similar chemical and biological properties with a high probability.

To analyze the novelty of CHIPMUNK, several libraries of commercially avail-
able compounds (ZINC [55], MolPort3, and eMolecules4) as well as the large scale
ChEMBL [4] bioactivity database were clustered in conjunction with CHIPMUNK.
The former libraries serve as known chemical space, whereas the latter serves as known
bioactivity space. The clustering revealed a large portion of clusters consisting purely
of CHIPMUNK compounds (cf. Fig. 10 for an example).

Thus, it was displayed that CHIPMUNK encompasses regions that are uncovered
by existing databases but yet with protein modulator or protein-protein interaction mod-

3 https://www.molport.com/.
4 https://www.emolecules.com/.

https://www.molport.com/
https://www.emolecules.com/


Graph-Based Methods for Rational Drug Design 91

Fig. 11. The Cover Feature shows three chipmunks involved in the creation, analysis, and clus-
tering of the synthesizable virtual molecule library CHIPMUNK. Nearly 100 million compounds
were generated with in silico reactions on accessible building blocks, and their descriptor profile
was analyzed. [taken from [22 SPP], printed with permission from Wiley]

ulator like physicochemical properties. It can be concluded that CHIPMUNK offers the
potential to contain future drugs.

The CHIPMUNK library is publicly available together with the clustering results.
Areas of the chemical space –i.e.,clusters– that overlap with the ChEMBL library can be
used to relate novel molecules given in CHIPMUNK to already known molecules from
ChEMBL (in terms of structural similarity). This is helpful to relate already existing
knowledge to the CHIPMUNK library. Thus, it may help in identifying the biological
targets for the CHIPMUNK compounds.

6 Conclusion and Outlook

Graph-based methods for the analysis of molecular data sets are particularly appealing
because they can reveal subtle structural differences and allow interpretation in terms
of substructures. The complexity of the related graph-theoretical problems, however,
makes their applications to large data sets challenging. We have developed newmethods
based on common substructures, which take the specific constraints in cheminformatics
into account and exploit the properties of molecular graphs. Thereby, our techniques
become efficient in both theory and practice. The application to molecular similarity
search shows that our approach produces chemically meaningful rankings of molecules.
Thus, it is well suited for virtual screening in large molecular databases. Moreover, we
have developed a structural clustering algorithm, which represents clusters by common
substructures and scales to very large databases with millions of molecules. Our meth-
ods have been proven to be useful in various research tasks in rational drug design. The
success of our approaches has also been appreciated in 2018, when we were invited to
the cover feature of the June issue of ChemMedChem (cf. Fig. 11).
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During the writing of this survey, our project is still ongoing. Currently, we develop
a distributed algorithm to mine representative sets of subgraphs for a variety of different
use cases, including but not limited to the development of a fully distributed structural
clustering algorithm. For this, the discussions and results within the SPP have been very
useful (cf. Chap. 14).

Within our project, we have also developed other approaches to algorithmic data
analysis. E.g., we have studied Graph Neural Networks (GNN) and their use to gen-
erate molecular representations for application in virtual screening approaches. Here,
GNNs performed worse than fingerprint-based multilayer perceptrons, which questions
the use of simple GNNs to obtain molecular representations [36 SPP,37 SPP]. Future
work will show if more complex graph-based representations will be able to replace
molecular fingerprints as suitable input. For these learning approaches, it will be help-
ful to also learn with large generated graph families (cf. Chap. 2 and Chap. 3). Together
with Christian Schulz, we investigate the applicability of kernelization (cf. Chap. 5), i.e.,
the iterative reduction of the problem to smaller instances, to common subgraph prob-
lems in large graphs. Matching problems build a connection with Chap. 13, which also
is concerned with life science applications. Jointly we have worked on new streaming
algorithms approximating the bipartite matching problem.

Acknowledgement. This work was supported by the German Research Foundation (DFG), pri-
ority programme Algorithms for Big Data (SPP 1736). At the start of this project, all authors
were members at TU Dortmund University. Permission for reprinting Fig. 11 and Fig. 10 has
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Abstract. Over the last two decades, significant advances have been made in the
design and analysis of fixed-parameter algorithms for a wide variety of graph-
theoretic problems. This has resulted in an algorithmic toolbox that is by now
well-established. However, these theoretical algorithmic ideas have received very
little attention from the practical perspective. We survey recent trends in data
reduction engineering results for selected problems. Moreover, we describe con-
crete techniques that may be useful for future implementations in the area and
give open problems and research questions.

Keywords: Data reduction · Kernelization · Fixed-parameter algorithms ·
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1 Introduction

Many important real-world optimization problems are NP-hard: it is believed that no
polynomial time algorithm exists that always finds an optimal solution. However, many
NP-hard problems have been shown to be fixed-parameter tractable (FPT): large inputs
can be solved efficiently and provably optimally, as long as some problem parameter is
small. Over the last two decades, significant advances have been made in the design and
analysis of fixed-parameter algorithms for a wide variety of graph-theoretic problems.
This has resulted in an algorithmic toolbox that is by now well-established. However,
these theoretical algorithmic ideas have received very little attention from the practi-
cal perspective. Until recently, few fixed-parameter algorithms have been implemented
and tested on real data sets, and their practical potential is far from understood. Tra-
ditionally, algorithms are designed using simple models of problems and machines. In
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turn, important results are provable, such as performance guarantees for all possible
inputs. This often yields elegant solutions being adaptable to many applications with
predictable performance for previously unknown inputs.

In contrast to algorithm theory, taking up and implementing an algorithm is part
of application development. Unfortunately, transferring results from theory to practice
is a slow process and sometimes the theoretically-best algorithms perform poorly in
experiments. Hence, practitioners often do not read research papers from the theoretical
algorithms community. This causes a growing gap between theory and practice: Realis-
tic hardware with its parallelism, memory hierarchies, etc. is diverging from traditional
machine models. This gap is also partially due to the fact that the research community
working on algorithmic problems is fairly separated. On the one hand, there are “hard
core” algorithms researchers that are focused mainly on theoretical work and rarely
participate in conferences in application areas. On the other hand, researchers of appli-
cation areas publish their work in conferences and journals of their respective fields,
and often do not visit theory conferences. In contrast to algorithm theory, algorithm
engineering uses an innovation cycle where algorithm design based on realistic mod-
els, theoretical analysis, efficient implementation, and careful experimental evaluation
using real-world inputs closes gaps between theory and practice and leads to improved
application code and reusable software libraries (see www.algorithm-engineering.de). This
yields results that practitioners can rely on for their specific application.

On the one hand, experimental results can trigger new theoretical questions and
suggest new properties of inputs that are relevant parameters to use in theoretical anal-
ysis. On the other hand, the rich toolbox of parameterized algorithm theory offers a
rich set of algorithmic ideas that are challenging to implement and engineer in prac-
tical settings. By applying techniques from fixed-parameter algorithms in nontrivial
ways, algorithms can be obtained that perform surprisingly well on real-world instances
for NP-hard problems. The viability of this approach has been demonstrated in recent
years through the Parameterized Algorithms and Computational Experiments Chal-
lenge (PACE) [28,54,55,58], in which teams compete to solve real-world inputs using
ideas from parameterized algorithm design. Many researchers from all over the world
have participated in that challenge. Moreover, the viability of this approach has recently
been demonstrated by a wide range of papers. Since the engineering part in the area has
recently gained some momentum, we survey recent results and techniques that have
started to bridge the gap between theory and practice that is currently observed in the
area.

Theoretical Context. All known exact and deterministic algorithms that solve NP-hard
problems require time that is at least super-polynomial in the total size of the input.
However, some problems can be solved by algorithms that run in time which is expo-
nential only in the size of a fixed parameter while polynomial in the size of the input;
those are called fixed-parameter algorithms. Here, the parameterized problem can be
solved efficiently for small values of the fixed parameter. Formally, a parameterized
problem is a language L ⊆ Σ ∗ ×N, where Σ is a finite alphabet. The second component
is called the parameter of the problem. A parameterized problem L is fixed-parameter
tractable if the question (x,k) ∈ L can be decided by an algorithm in running time

www.algorithm-engineering.de
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f (k) · |x|O(1), where f is a computable function depending on k only. The correspond-
ing complexity class is called FPT.

TheW hierarchy [56] is an important hierarchy for the complexity of parameterized
problems. A parameterized problem is in classW [i], if we can transform every instance
(x,k) to a decision circuit (a combinatorial circuit with only a single output gate) with
weft at most i, such that the circuit outputs true if and only if (x,k) ∈ L. The weft of
a combinatorial circuit is the maximum number of gates with more than two inputs
on any path from input to output. Downey et al. [56] show that FPT =W [0] and that
W [0] ⊆W [1] ⊆W [2] ⊆ ·· · ⊆W [poly].

Fixed-parameter tractability is closely related to data reduction and kernelization.
Data reduction rules, or simply reductions, reduce the size of a graph while retaining the
ability to compute an optimal solution. A graph on which a collection of data reduction
rules have been exhaustively applied is called a reduced graph. In kernelization, the
reduced graph is called a kernel K . More formally, given an binary encoded instance
(x,k) ∈ {0,1}∗ × N of some parameterized problem L, a kernelization for L produces
an instance (x′,k′) in polynomial time that satisfies: (x′,k′) ∈ L ⇔ (x,k) ∈ L and |x′|+
k′ ≤ f (k) where f is a computable function. Note that f only depends on the problem
parameter k. So roughly speaking, kernelization can be thought of as a preprocessing
routine that reduces a given problem instance to its “most difficult part”. The function f
measures the kernel size. If f (k) = O(kc) for some constant c then the kernel is called
polynomial kernel, and we say the problem admits a polynomial kernel.

Many exact algorithms for parameterized problems combine these data reductions
with branching. These algorithms are called branch-and-reduce algorithms. First, the
algorithm aims to reduce the graph size by exhaustively applying reduction rules until
there are no further data reductions possible or they are prohibitively expensive. Then,
the algorithm picks an edge e ∈ E (or a vertex v ∈ V , depending on the problem) and
branches the problem into multiple subproblems, one subproblem for each potential
state of e in regard to the problem. As an example, for the maximum cut problem or the
multiterminal cut problem, branching creates two subproblems, one in which e is part of
the cut and one in which e is not part of the cut. The branch-and-reduce algorithm then
continues to apply reduction rules to both of these subproblems and continues branching
when there are no further reductions possible. The branch-and-reduce algorithm returns
the best result over all branches.

Organization. The rest of the paper is organized as follows. We first survey recent data
reduction engineering results for selected NP-hard problems, and then for problems in P.
We then describe concrete techniques that may be useful for future implementations in
the area. Lastly, we give open problems and research questions.

2 Recent Advances for NP-Hard Problems

2.1 Maximum Independent Set and Minimum Vertex Cover

Given an undirected graph G= (V,E), the goal of the maximum independent set (MIS)
problem is to compute a set of vertices I ⊆ V such that (1) no two vertices in I are
adjacent to one another, (2) the set I has maximum cardinality among all such sets. The
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complement of an independent set I, V \ I, is called a vertex cover. The MIS problem
and the complementary problem of finding a minimum vertex cover (MVC) are well-
studied NP-hard optimization problems [75] that attract both researchers and practi-
tioners alike. Furthermore, there is no polynomial time algorithm that approximates the
MIS size within a factor O(n1−ε) for any constant ε > 0, unless P =NP [173]. Finally,
MIS is W [1]-hard [56] when parameterized by solution size k. This makes it unlikely
that the problem is fixed-parameter tractable in k [56]. On the other hand, MVC is
fixed-parameter tractable in solution size k [56].

Exact Approaches. In recent years, the bridge between theoretically efficient algo-
rithms and their practical applicability has been significantly reduced. In particular,
the branch-and-reduce paradigm, i.e., branching algorithms that use a wide variety of
reduction rules, have been (1) shown to achieve theoretical running times that are among
the best for both MIS and MVC [69,170], and (2) are able to solve large real-world net-
works in practice [5]. However, most often the approaches used in practice only use a
small subset of the reduction rules that have been proposed to achieve good theoretical
running times.

Abu-Khzam et al. [4] introduced and analyzed the crown reduction rule (and the
usage of data reduction rules in this context in practice). Even though the crown rule
is not as powerful as the linear programming (LP)-based rule [133] when considering
the worst-case size of the resulting kernel, they experimentally verified that it often
performs as well as the LP-based rule and is significantly faster in many cases. Fur-
thermore, they show that the LP-based rule is most useful for fairly sparse graphs and
should be avoided for dense graphs, as it yields little to no reduction in size.

Later, Akiba and Iwata [5] were the first to show the practicality of the branch-and-
reduce paradigm for MVC (and MIS) compared to other state-of-the-art approaches
like branch-and-bound and branch-and-cut. Their algorithm uses a wide spectrum of
reduction rules that form the foundation of much subsequent work. This includes both
conceptually simple reduction rules like degree-1 and degree-2 vertex folding [69], as
well as more complicated but practically significant rules like unconfined [169] and an
LP-based rule [95,133]. Many of these reduction rules work by removing vertices that
are part of some MIS. We illustrate this by briefly covering the degree-1 and degree-2
vertex fold reduction rules: (1) In the degree-1 reduction rule (see Fig. 1) one removes
vertices v of degree one (and their neighbors), as they are always in at least one MIS.
To see this, note that v or its neighbor w must be in some MIS I, otherwise I∪{v} is an
independent set of larger cardinality. If w is in I, one can obtain an independent set of
the same size by removing w from I and adding v instead. (2) For the degree-2 vertex
fold (see Fig. 2) one removes vertices v with exactly two neighbors u and w that are not
adjacent to each other. In this case a new vertex v′ is inserted and connected to the union
of the neighborhoods of u and w yielding a reduction of the graph size by two vertices.
Finally, if v′ is part of an MIS I′ of the reduced graph, then I = (I′ \ {v′})∪{u,w} is
an MIS of the original graph. Otherwise, I = (I′ \ {v′})∪{v} is an MIS of the original
graph. Using their branch-and-reduce algorithm, Akiba and Iwata were able to solve a
large variety of instances including social networks, web graphs and road networks. A
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v

u

Fig. 1. Degree-1: Vertices v and u can be removed.

v

wu
v′

Fig. 2. Degree-2 vertex fold: Vertices v,u and w can be removed. In this case a new vertex v′ is
inserted.

similar approach that uses a quantum annealer to solve instances once they are small
enough was recently presented by Pelofske et al. [140].

Although Akiba and Iwata [5] use a sophisticated set of reduction rules, Strash [155]
showed that many of the more complicated rules are not necessary to compute an
MIS in many large complex networks. Furthermore, the initial reduction rules applied
to compute a reduced graph often have a bigger impact on performance, compared
to further techniques used during the branch-and-reduce approach. Recently, Stall-
mann et al. [153] supported this idea by showing that networks G with a small nor-
malized average degree (nad(G)) can be efficiently handled by simple reduction rules.
The nad(G) of a network G on n vertices is defined as the average degree of G normal-
ized using a factor of 200/n if the average is larger than 20. Otherwise, if the average
degree is at most 20, nad(G) is the same as the average degree of G. Additionally, the
authors make use of the so-called degree spread t/b, where t is the degree at the 95th
percentile and b at the 5th percentile. Based on these characteristics, the authors devise
thresholds that indicate (1) if reductions should be used at all, (2) if more complex rules
provide a significant benefit.

Open Problem 1. What are graph characteristics and properties that determine the
success of specific reduction rules?

Recently, Hespe et al. [92] won the PACE Challenge 2019 vertex cover track by using
a portfolio of exact approaches for MIS, MVC and maximum clique. In particular
they use the reduction rules of Akiba and Iwata as an initial preprocessing step. After-
wards, an initial solution is computed using the state-of-the-art local search algorithm
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by Andrade et al. [7]. Finally, they switch between the branch-and-reduce algorithm of
Akiba and Iwata [5] and the clique solver by Li et al. [119], which are applied to either
the original graph or the graph resulting from the preprocessing step.

Heuristic Approaches. Reductions are also heavily used in many state-of-the-art
heuristic approaches. Lamm et al. [114,113 SPP,150 SPP] use the same set of reduc-
tions originally used by Akiba and Iwata to develop an evolutionary algorithm that is
able to compute high quality solutions for large graphs that are infeasible for branch-
and-reduce. The authors use reductions for both preprocessing (to compute a kernel)
and during the algorithm itself. In particular, they select vertices that are part of many
highly fit individuals, which are independent sets, in their population. These vertices
are then added to the resulting independent set, which includes removing them and their
neighbors from the graph. Afterwards, reduction rules are applied and the evolutionary
algorithm is called recursively on the resulting graph.

The idea of excluding a subset of vertices that are likely to be part of a high-quality
independent set, is also explored by Gao et al. [73]. To select these vertices they per-
form multiple runs of a state-of-the-art local search algorithm (either NuMVC [33] or
FastVC [34]). Vertices that are present in all resulting solutions are then added to the
final solution and a new graph consisting of the remaining vertices and their corre-
sponding edges is constructed. Afterwards, a final run of the local search on this graph
is executed and its solution is combined with the previously removed vertices.

Dahlum et al. [51,150 SPP] combine both simple exact reduction rules as well as
inexact reductions with the ARW local search algorithm [7]. In particular, they remove
cliques of up to size three (an exact reduction) and the top 1% high-degree vertices
(an inexact reduction). The reasoning behind their inexact reduction is that high-degree
vertices are not likely to be in a large independent set. Additionally, these vertices pose a
significant bottleneck for local search. The authors also compare their algorithm against
an algorithm that uses the data reduction rules of Akiba and Iwata as a preprocessing
step. A similar preprocessing approach that only uses a subset of reduction rules is also
presented by Cai et al. [37]. In particular, they use the degree-0, degree-1, degree-2 and
domination rules.

Chang et al. [42] also make use of the idea of combining simple reduction rules
that can be applied in (near-)linear time with an inexact reduction rule that removes
high-degree vertices. For this purpose, they introduce the reducing-peeling framework
that switches between the two types of reductions. Furthermore, they present a set of
degree-2 path reductions that are special cases of the folding reduction. Combining
these new rules with the degree-0, degree-1, dominance and an LP-based reduction
rule, they propose an efficient preprocessing algorithm that is then combined with the
ARW local search algorithm.

Open Problem 2. Can one derive (near-)linear time special cases of the more complex
reductions like the unconfined reduction that are not covered by existing reductions?

In order to quickly achieve smaller reduced graphs than what is possible by using sim-
ple reduction rules, Hespe et al. [93,150 SPP] provided the first shared-memory data
reduction based on the rules of Akiba and Iwata. For this purpose they make use of both
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graph partitioning and parallel bipartite maximum matchings. The graph partitioning
library KaHIP [148] is used to compute a partition of that graph which allows parallel
execution of reduction rules that only need to check highly localized subgraphs, where
bipartite maximum matchings are used to enable the parallel execution of the LP-based
reduction rule. Furthermore, the authors present two speedup techniques for kerneliza-
tion: (1) dependency checking that prunes applicability checks for certain reductions
and (2) reduction tracking that stops their algorithm once the application of reduction
rules only decreases the graph size by a negligible amount.

Open Problem 3. Can the techniques used by Hespe et al. [93] be extended to a dis-
tributed memory setting? How can one efficiently apply reductions in distributed mem-
ory?

Alsahafy and Chang [6] recently proposed an algorithm that combines the reducing-
peeling framework with the exact clique solver MoMC by Li et al. [119]. Their algo-
rithms splits reduction rules into two sets: ones that can be updated and applied incre-
mentally (similar to Hespe et al. [93]), and ones that can not. Additionally, they contin-
uously compute and maintain the connected components of the graph, which are then
reduced individually. If a reduced component is small enough, it is then transformed
into its complement and solved by MoMC. To ensure that components continue to get
smaller, they use the same inexact reduction rule as Chang et al. [42] and then continue
recursively on the resulting components. The authors also present a new exact reduction
rule called the pyramid reduction.

Lastly, Lavallee et al. [118] evaluated a structural rounding approach for vertex
cover. The main idea is to first edit a graph to a well-structured graph which can be
solved more easily, and then apply a “lifting” algorithm to the partial solution to recover
an approximation on the input network. Lavallee et al. find that their algorithm can
outperform standard 2-approximation algorithms and that simpler lifting strategies are
highly competitive with more sophisticated strategies.

Weighted MIS. Due to the significant practical results achieved for the unweighted
case, there has been an increasing interest in generalizing these techniques for the
weighted maximum independent set (WMIS) and weighted minimum vertex cover
(WMVC) problems. For both problems, one is given an additional real-valued vertex
weighting function w :V → R

+. In case of the WMIS problem one is then tasked with
finding an independent set, such that the sum of the weights of its vertices is maximum
among all possible independent sets. Analogously, for the WMVC one is tasked with
finding a vertex cover of minimum weight.

Recently, Li et al. [120] used a set of four reduction rules during the initial construc-
tion phase of a local search algorithm. In particular, they use weighted reduction rules
that are able to remove degree one and degree two vertices. They then use these reduc-
tion rules exhaustively in the beginning of their algorithm to obtain an improved initial
solution. Their local search algorithm called NuMWVC is able to compute high quality
solutions on a large variety of instances. This includes many instances commonly used
for the unweighted case, which have been given vertex weights drawn from a uniform
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distribution. Since there are not many publicly available weighted instances, this is a
common approach that is also used in other works [35,77,172,115 SPP]

Wang et al. [165] also make use of reduction rules for vertices with degree at most 2
as a preprocessing step for a branch-and-bound solver. Furthermore they evaluate dif-
ferent degree-based heuristics for selecting branching vertices and use pruning based
on the best solution found so far.

Lamm et al. [115 SPP] proposed a practically efficient branch-and-reduce algorithm
for the WMIS problem that is able to solve a large number of real-world instances.
For this purpose they develop a comprehensive set of practically efficient reduction
rules. These include both generalizations of previous weighted and unweighted reduc-
tion rules, as well as two “meta reductions” which serve as a general framework for
the other rules. They use these rules to build a branch-and-reduce algorithm that uses
many of the approaches that worked well in the unweighted case. In particular, they use
local searches to compute initial solution which can be used for pruning, treat connected
components individually and make use of dependency checking. Finally, they show that
their reduction rules can be used to improve the performance of other state-of-the-art
algorithms

Zheng et al. [172] propose an exact and heuristic approach that both make use of
reduction rules for vertices of degree at most 2. Their exact approach is a branch-and-
reduce algorithm that applies these reduction rules recursively. However, the authors
do not provide any details on the bounds or branching strategies used during the
algorithm. Their heuristic approach is inspired by the reducing-peeling framework of
Chang et al. [42]. Thus, it exhaustively applies their reduction rules and subsequently
removes high-degree vertices to extend the space of possible reductions.

Gellner et al. [77] proposed new practically efficient variants of the struction rule
by Ebenegger et al. [59]. The struction is a reduction that is able to be applied to arbi-
trary vertices in a graph, but comes at the cost of potentially increasing the overall
number of vertices. Thus the authors propose three new variants of the struction that
aim to limit the number of newly created vertices. Furthermore, they derive practically
efficient special cases of their reduction rules and use them as a preprocessing step in
the branch-and-reduce solver of Lamm et al. [115 SPP]. The algorithm is able to pro-
duce the smallest-known reduced graphs, solves more instances than previous exact
approaches and has a running time that is comparable to heuristic algorithms.

Open Problem 4. Can other problems also benefit from reductions that may temporar-
ily increase the graph size? If so, how much of an increase should be allowed to remain
practical?

2.2 Finding and Enumerating Maximum Cliques

Given an undirected graph G = (V,E), the goal of the maximum clique (MC) problem
is to compute a set of vertices C ⊆ V such that (1) all vertices in C are adjacent to
one another, (2) the set C has maximum cardinality among all such sets. As mentioned
in the previous section, MC solvers are often used in the context of independent sets.
This is due to the fact that a clique of G is an independent set in the complement graph
Ḡ= (V, Ē) with Ē = {{u,v} | u,v ∈V ∧{u,v} �∈ E}. Thus, one can leverage maximum
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clique algorithms for finding independent sets by computing the complement graph.
Since many algorithms for finding maximum independent sets aim to perform well
on sparse graphs, the resulting complement graphs that need to be handled by clique
algorithms will often be dense. Fortunately MC has been more extensively studied for
dense instances than for sparse instances. Like MIS and MVC, finding a maximum
clique is also an NP-hard optimization problem [75]. Furthermore, unless P=NP, there
is no polynomial time algorithm that approximates the MC size within a factorO(n1−ε)
for any constant ε > 0 [173]. Finally, MC isW [1]-hard [56] parameterized by solution
size k, making it unlikely that the problem is fixed-parameter tractable in k. However,
it is fixed-parameter tractable under different parameterizations, e.g., when parameter-
ized with the degeneracy of the graph [64]. All previous observations also hold for the
maximum clique enumeration (MCE) problem of enumerating all maximum cliques in
a graph.

Eblen et al. [60] presents a maximum clique solver (MCF) that adapts some of the
reduction rules that have already been shown to work well for MVC and MIS. In partic-
ular, their algorithm begins by greedily computing a large cliqueC which is then used as
a lower bound in order to remove vertices of degree less than |C|−1 [1]. Next, they use
an adaptation of the degree-0 reduction rule previously used inMVC algorithms, as well
as a rule based on heuristic colorings [160] to remove additional vertices. The authors
also investigate the use of other reduction rules including an adaptation of the degree-1
reduction rule used in MVC algorithms. Finally, they compare applying reduction rules
as a preprocessing method for a branch-and-bound solver against running them in a
branch-and-reduce solver. Their experiments indicate that the branch-and-reduce app-
roach performs better on real-world genome data.

Eblen et al. [60] then use the previous MCF solver to develop several approaches for
the maximum clique enumeration (MCE) problem based on the algorithm by Bron and
Kerbosch [30]. In particular, they develop two reduction rules based on MCF: First,
they propose a reduction rule that uses MCF to compute a maximum clique cover
and removes vertices not adjacent to this cover. Second, they propose a second data-
driven preprocessing rule that computes so-called essential vertices, i.e., vertices that
are present in every maximum clique. Vertices that are not adjacent to these vertices are
subsequently removed from the graphs. Their experiments indicate that this rule works
particularly well on large transcriptomic graphs, that often have a small set of essential
vertices. However, its performance degrades for networks that do not have a small set
of essential vertices, e.g., for uniform random graphs.

Open Problem 5. Can one give similar data-driven reduction rules for other types of
networks, e.g., social networks or road networks?

Verma et al. [164] propose another type of reduction rule based on k-communities. A k-
community is defined as a subgraph G′ = (V ′,E ′) where each edge {u,v} ∈ E ′ connects
vertices that have at least k common neighbors in G′. Subsequently, a subset of vertices
V ′ ⊆V is called a k-community if there is a k-community with vertex setV ′ in G. Note,
that a clique of size k is a (k− t)-community for any t ∈ {2, . . . ,k}. They then derive
a reduction rule which computes a lower bound on the clique size based on maximum
(k−2)-communities and prune vertices with a smaller degree. They then combine this
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reduction rule with the k-core based approach of Pardalos and Resende [1] and show
that the resulting algorithm works well for handling large low-density graphs.

Chang [40,41] notes that even though many real-world networks are usually sparse,
MC has been more extensively studied for dense instances. Thus, the authors pro-
pose a branch-and-reduce algorithm that leverages the existing work on MC for dense
instances by transforming an instance of MC over a sparse graph to instances of k-clique
finding (KCF) over dense subgraphs. For this purpose, the authors iteratively compute
small and dense subgraphs (so-called ego networks) that are then handled by a KCF
solver. In order to reduce the size of the subgraphs that are handled by this solver, their
algorithm uses a combination of well-known upper bounds and lightweight reduction
rules. In particular, they use five reduction rules for KCF, most of which are targeted
toward removing vertices of high degree. The authors also present a heuristic algorithm
for MC, as well as a two stage approach for MCE that makes use of their exact algorithm
to compute the size of the largest clique. Furthermore, they show that the reduction rules
used for MC can also be adapted for MCE.

Weighted MC. Recently, Cai and Lin [36] proposed the first (and only) practical algo-
rithm for the (vertex-)weighted maximum clique (WMC) problem that uses reduction
rules. The WMC problem is a generalization of MC where one is given an additional
real-valued vertex weighting function w : V → R

+. Subsequently, one is tasked with
finding a clique, such that the sum of the weights of its vertices is maximal among all
possible cliques. In order to solve WMC on large sparse graphs, Cai and Lin [36] inter-
leave clique construction with reduction rules. To be more specific, they gradually add
“beneficial” vertices to a clique using an approximation of the benefit of a vertex. This
is done by computing the mean of a cost-efficient upper and lower bound for each vertex
and then selecting vertices using a dynamic best from multiple selection [34]. Finally,
if a new best clique is found, the graph is reduced using two reduction rules. Both rules
make use of the fact that one is able to remove vertices where an upper bound on any
maximum clique containing this vertex is smaller than the weight of the current best
clique. For their rules, the authors then propose two different upper bounds that make
use of the neighborhood of a vertex.

k-plexes. A k-plex is a generalization of a clique where each vertex is allowed to have
several missing connections, i.e., not every vertex has to be connected to all other ver-
tices in the k-plex [151]. In particular, a k-plex is a subset S ⊆V such that the degree of
every vertex in the induced subgraph G[S] is at least |S|− k. Furthermore, |S| is called
the size of the k-plex and the maximum k-plex problem (MK) is that of finding a k-plex
of maximum size.

Gao et al. [72] present multiple theoretical properties that allow the removal of
vertices based on a lower bound on the maximum k-plex size. Based on these proper-
ties they propose four reduction procedures which are then used in a branch-and-reduce
algorithm. In particular, they then use an extension of the algorithm by Jiang et al. [100]
to compute an initial lower bound and then use this bound to exhaustively apply their
linear-time vertex reduction and the more costly subgraph reduction rules for prepro-
cessing. Afterwards they use different sets of reduction rules depending on the type
of branch (selecting or discarding a vertex). The authors also present a type of targeted
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branching that aims to select vertices which lead to a larger reduction in size. The result-
ing algorithm is able to solve multiple previously infeasible real-world instances and is
considerably faster than previous state-of-the-art solvers (e.g., [168]).

Open Problem 6. Can targeted branching be used for other problems? For example,
the most commonly used branching strategy for independent sets is degree-based and
does not take any reduction rules into account.

Conte et al. [46] investigated reduction rules for the problem of enumerating all maxi-
mum k-plexes. For this purpose, they introduce the concepts of coreness and cliqueness.
Coreness states that vertices of a k-plex of size at leastmmust have a degree not smaller
than m−k. Thus, vertices with a smaller degree can iteratively be removed, resulting in
the computation of (m−k)-cores. Cliqueness states that every vertex of a k-plex of size
at least m is part of a clique not smaller than �m/k. Therefore, vertices with a degree
less than �m/k can be removed from the graph. Furthermore, if one knows the size of
the maximum clique ω the search space for the size of the maximum k-plex can be lim-
ited to [ω,ω ·k]. Based on these observations the authors then present an algorithm that
begins by computing the size of a maximum clique. Afterwards a lower bound for the
size of the maximum k-plex p∈ [ω,ω ·k] is guessed. If this guess turned out to be wrong
(i.e., all k-plexes found are smaller than p), the interval bounds are updated and a new
lower bound is guessed. Otherwise, all k-plexes with maximum size are returned. Their
algorithm is able to reduce a large set of instances by up to 99% and achieves running
times that are multiple orders of magnitude faster than previous approaches [14].

2.3 Maximum Cuts

The max-cut problem originates from important applications in physics and operations
research [10]; therefore, it has long been the subject of engineering more and more
sophisticated algorithms which solve large-scale instances arising in practice. In par-
ticular, max-cut is one of the few problems where engineers and practitioners alike are
interested in finding optimal solutions (rather than just approximate ones). Formally, the
max-cut problem takes as input an edge-weighted graph G and seeks a bipartition of the
vertex set V of G into two disjoint parts, V1 and V2, which maximizes the weight of the
edges which cross the bipartition, that is, edges whose one endpoint is in V1 and the
other endpoint is in V2. The state of the art for max-cut though is that even after much
effort, optimal solutions are still unknown for several benchmark instances. Those rea-
sons are the key motivations for engineering effective, and efficient, kernelization rules.
The objective is to reduce the given graph G to a new instance G′ of smaller size, such
that a maximum cut in G can be recovered efficiently from any maximum cut in G′. To
the best of our knowledge, preprocessing rules with theoretical guarantees have been
studied so far mainly for the unit-weight max-cut. That special case of max-cut, where
all edges have the same (unit) weight, is still NP-hard. The goal is thus to find a bipar-
tition (V1,V2) which maximizes the size of the cut, which is the number of edges with
one endpoint in V1 and the other endpoint in V2. To measure the effectiveness of pre-
processing rules for unit-weight max-cut, one introduces an integer parameter k. This
parameter measures the difference between the size of the maximum cut, and the value
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m/2− (n− 1)/4, which is the well-known lower bound on the size of the maximum
cut in any m-edge n-vertex graph, due to Edwards and Erdős [61,62]. There is a set of
preprocessing rules, devised by Etscheid and Mnich [66 SPP] which compresses anym-
edge n-vertex graph G in linear time to a graph G′ on just O(k) vertices, while allowing
to recover the maximum cut of G. This set of rules strengthened earlier work by Crow-
ston et al. [47 SPP], and is moreover the asymptotically best possible. To understand the
practical relevance of those rules, Ferizovic et al. [68 SPP] expanded and engineered
them. They demonstrated their significant impact on benchmark data sets, including
synthetic instances, and data sets from the VLSI and image segmentation application
domains. Their experiments revealed that current state-of-the-art solvers can be sped
up by up to multiple orders of magnitude when combined with their data reduction
rules. On social and biological networks in particular, the preprocessing enabled them
to solve four instances that were previously unsolved in a ten-hour time limit with state-
of-the-art solvers; three of these instances are now solved in less than two seconds. It is
possible to expand the work on preprocessing for unit-weight max-cut to instances with
all positive weights. However, designing practically-efficient preprocessing rules for the
general max-cut problem, which also provides theoretical guarantees on the kernel size,
remains a challenge. Recent work in this direction was done by Lange et al. [116], who
designed reduction rules for general max-cut. They showed the efficacy of their rules
on instances from computer vision, biomedical image analysis and statistical physics,
and for those instances managed to obtain substantial size reductions.

Open Problem 7. Is it possible to engineer efficient reduction techniques for max-cut
with general edge weights?

2.4 Treewidth and Treedepth

Many NP-hard graph problems can be efficiently solved when the input graph is a tree.
A tree decomposition maps vertices of a graph to vertices in a tree, which allows tech-
niques for trees, especially dynamic programming, to be adapted to arbitrary graphs.
However, the quality of the tree decomposition impacts the efficiency of such algo-
rithms. Treewidth [146] is one measure of this quality, which has been extensively stud-
ied in parameterized algorithms literature, which we now describe.

Formally, a tree decomposition of a graph G = (V,E) is a family of subsets X ⊆
2V \{∅} of V called bags, together with a tree T = (X ,F), such that

– V = ∪X∈X X ,
– for all {u,v} ∈ E there exists a bag X ∈ X such that u,v ∈ X , and
– for all v ∈ V , the bags Xv = {X ∈ X | v ∈ X} containing v induce a connected
subgraph T [Xv] (which is necessarily a subtree of T ).

The width of a tree decomposition of G is one less than the cardinality of its largest bag,
that is, maxX∈X {|X |}− 1. The treewidth of G, denoted tw(G), is the minimum width
over all tree decompositions of G.

Unsurprisingly, computing tw(G) is NP-hard and deciding if tw(G) ≤ k for some
positive integer k is NP-complete. This treewidth problem is a canonical problem
with many theoretical and practical results in the literature. It is fixed-parameter
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tractable with running time 2O(k3)n [21], implying it has a kernel exponential in
k3 [32]. The problem does not have a kernel size subexponential in k unless NP ⊆
coNP/poly [22]. Hence, most work focuses on constructing tree decompositions of
small width, either approximately [23], or exactly using methods such as positive-
instance driven dynamic programming [156]. Both the first and second PACE Chal-
lenges had a treewidth track [55]. However, polynomial kernels exist for other parame-
ters. Bodlaender et al. [25] give polynomial kernels of size O(fvs(G)4) and O(vc(G)3),
where fvs(G) is the size of a minimum feedback vertex set and vc(G) the size of a min-
imum vertex cover of G, respectively. Their work is inspired by data reduction rules
that are known to work well in practice (discussed below), and also includes new rules
based on the notion of “clique seeing” paths. Jansen [98] improved the latter kernel to
size O(vc(G)2) by introducing a new reduction rule to efficiently find independent sets
whose elimination has a predictable effect on the treewidth. To the best of our knowl-
edge, no experiments have been done with clique seeing paths or Jansen’s reduction.

Open Problem 8. Is the rule of Jansen [98] effective in practice?

Much work has been done in making practical data reductions for the treewidth prob-
lem. In early work, Arnborg and Proskurowski [8] introduced reduction rules for rec-
ognizing and characterizing partial 3-trees. Bodlaender et al. [27] categorized these
reductions into six types (islet, twig, series, triangle, buddy, and cube) and extended
these rules, showing them to be highly effective at reducing graph size in practice [27].
Of note here are two variations of well-known reductions from other problems: simpli-
cial vertices and twins of degree 3. They further give a reduction for almost simplicial
vertices (vertices with all but one neighbor inducing a clique). On graphs with up to
3 032 vertices, the reductions quickly remove 77% of vertices on average, whereas the
simplicial vertex reduction alone remove 51% of vertices on average. The worst per-
forming instances had 30% of their vertices removed. Den van Eijkhof et al. [63] gen-
eralized many of these reduction rules. They not only introduce new weighted variants,
but generalize most previous reductions with a “contraction” reduction rule, and further
introduce a reduction for twins of higher degree.

Later, Bodlaender et al. [26] introduced the concept of a safe separator, which
decomposes the graph into subgraphs that can be solved independently. It was already
known that clique separators were safe [136]; however, they generalize the concept and
introduce other easy-to-find separators. They further show that previous reduction rules
are subsumed by their safe separator technique. In experiments, their reductions decom-
posed 33 out of 40 instances. When run as a preprocessing step, their technique speeds
up an existing triangulation heuristic, sometimes by multiple orders of magnitude. How-
ever, it only gives modest speedups over preprocessing using existing reductions.

Open Problem 9. How effective are existing treewidth reductions on large sparse
graphs (e.g.,with millions of vertices) in practice?

Open Problem 10. Can heuristic methods be used to efficiently find safe separators in
practice?

A related concept exists for decompositions into rooted trees. A treedepth decompo-
sition of a graph G = (V,E) is a rooted forest F , together with an injective mapping
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φ : V (G) → V (F) such that, for each edge (u,v) ∈ E, one of φ(v) or φ(u) is an ances-
tor of the other. The treedepth of G, denoted by td(G), is the minimum height of any
treedepth decomposition of G. The treedepth problem, deciding if td(G) ≤ k for some
positive integer k, is NP-complete [142].

Many similar results exist for the treewidth and treedepth problems. Reidl et al. [145]
give a fixed-parameter tractable algorithm for treedepth k, with running time 2O(k2)n,
implying the existence of a kernel of size exponential in k2, and no subexponential kernel
exists unless NP ⊆ coNP/poly [22]. However, when parameterized on the vertex cover
number vc(G), the problem has a kernel of size O(vc(G)3) [109], which is achieved
through two simple reduction rules that also apply to treewidth: removing simplicial
vertices and adding edges between vertices with at least k common neighbors.

However, as far as we are aware, there are significantly fewer experimental works
with data reduction rules for treedepth. The 5th PACE Challenge in 2020 was dedicated
to exact and heuristic solutions for treedepth. The winning solver by Trimble [161] did
not employ any data reduction rules (instead using symmetry breaking together with
a variety of lower bounding techniques); however, the second place solver by Korho-
nen [112] applies the simplicial vertex rule by Kobayashi and Tamaki [109] and a gen-
eralization of their common neighbor rule. Korhonen further introduces a new reduction
rule based on the Schäffer’s linear-time algorithm [149] for computing the treedepth of
trees. This rule replaces a tree subgraph G[T ] having |N(V \T )| = 1 with a subgraph
of size td(G[T ]2). As far as we know there are no published results on the efficacy of
these reduction rules. Of further interest is that this algorithm uses minimal separator
enumeration. We conclude with the following open problems.

Open Problem 11. How effective are the reductions of Kobayashi and Tamaki [109]
and Korhonen [112] in practice?

Open Problem 12. Does the notion of a safe separator extend to the treedepth prob-
lem?

2.5 Hitting Set

Given a set S along with a collection C of its subsets, the hitting set problem asks
for a subset of S, of minimum cardinality, that has a non-empty intersection with each
and every member of C. Hitting set is the dual of set cover, which seeks a minimum-
cardinality subset ofC whose union is S. If the elements of S andC are treated as red and
blue vertices, respectively, of a bipartite graph, the equivalent graph theoretic problem
is known as red-blue dominating set (RBDS).

Hitting set is NP-hard, andW [2]-hard when parameterized by the solution size [56].
It becomes fixed-parameter tractable when each member of C is of size bounded by a
constant d. In this case the problem is often referred to as d-Hitting Set and it corre-
sponds to RBDS restricted to (red-blue) graphs where each red vertex has at most d
neighbors. The problem is also known to be fixed-parameter tractable when parameter-
ized by |C|, but this particular parameter is expected to be large in practice. The most
popular reductions for Hitting Set are due to Weihe [166]. They are simply based on
removing any possible redundant elements from S and C. In this context, an element
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of S is redundant if all members of C that contain it contain another element; while a
member ofC is redundant if it is a superset of another member ofC. The application of
these two rules alone proved to be highly effective on large public transportation net-
works resulting in a huge reduction in size as pointed out recently by Bläsius et al. [15].

More sophisticated reduction algorithms appeared in the context of kernelization for
d-hitting set [2,129,134]. The kernelization approach of Abu-Khzam [2] was adopted
byMellor et al. [125] and proved to be effective in the context of multiple drug selection
for cancer therapy. Moreover, linear-time algorithms that can obtain a kernel of size
O(kd) were presented by van Bevern [162] and Fafianie and Kratsch [67]. Practical
implementations of these algorithms have been addressed recently by van Bevern and
Smirnov [163] where they were shown to be more efficient than the reduction procedure
ofWeihe [166] for small d (up to 5), but can result in more effective data reduction when
combined with the reduction rules of Weihe [166].

2.6 Steiner Trees

Given an undirected graph with non-negative edge weights as well as a subset of the
vertices (terminals), the Steiner tree problem is to find the lightest tree spanning the
terminals. There has been a wide range of implementations tackling the Steiner tree
problem. Data reductions have long been used for the problem, see, e.g., Polzin [141]
or Daneshmand [52]. Daneshmand [52] in particular has shown already in 2004 that
many Steiner tree problem instances can be solved by reduction- and heuristic-based
approaches.

Recently there have been two implementation challenges, the 11th DIMACS Imple-
mentation Challenge in 2014 and the 3rd PACE Challenge [28] in 2018. Here, we focus
on the most successful implementations of the 3rd PACE Challenge and the approaches
that have been published afterwards. The PACE Challenge had three tracks overall –
two exact tracks with one focusing on algorithms for problems with few terminals and
one focusing on problems with low treewidth, as well as one heuristic track.

The implementation of Iwata and Shigemura [96] won the track with problems
that have few terminals. Their algorithm is based on the dynamic programming for-
mulation of Erickson-Monma-Veinott [65] which has a theoretical running time of
O(3tn+2t(n logn+m)) with t being the number of terminals. Iwata and Shigemura
use a novel separator-based pruning technique to speed up their implementation (while
keeping the worst-case bound of Erickson-Monma-Veinott). This technique allows
them to prune a large number of entries in the dynamic programming table.

The track with problems that have low treewidth was won by SCIP-Jack [143,144]
due to Koch and Rehfeldt. This approach is based on the branch-and-cut principle and
was already very successful during the 11th DIMACS Implementation Challenge. For
the PACE Challenge, the authors use data reductions that typically reduce the number
of edges in the problems by more than 90%. Many instances can already be completely
solved by presolving. Moreover, on the remaining instances that can not be presolved,
the authors use heuristics to find strong upper and lower bounds quickly. The authors
find that in more than 90% of cases that the heuristic already finds the optimum solu-
tion on the instances that have not been presolved. Lastly, the branch-and-cut proce-
dure is used to compute lower bounds and prove optimality. Later, the approach was
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improved [152] to run in distributed memory and thus, by using up to 43 000 cores,
managed to solve additional previously unsolved instances or improved on the previ-
ously best known solution.

Open Problem 13. Are there new reductions that have not yet been tried in practice
that could help to solve more instances to optimality in practice?

Open Problem 14. Can existing reductions for the standard Steiner tree problem be
transferred to the more general multi-level Steiner tree problem?

2.7 Minimum Fill-In

The minimum fill-in problem is a critical problem that accelerates Gaussian elimination
when solving sparse linear systems [147]. Given a matrix A representing the sparse
linear system Ax = b, the goal is to find a permutation matrix P that minimizes the
number of non-zeros introduced when factorizing A = PAPT . Equivalently, treating A
as the adjacency matrix of a graph G = (V,E), we wish to minimize the number of
edges introduced in an elimination ordering, defined as follows. An elimination step
removes a vertex v ∈ V and its incident edges, and adds edges between non-adjacent
vertices in NG(v), producing an elimination graph Gv. An elimination ordering of G is a
permutation v1v2..vn of all the vertices in G, and the fill-in of the ordering is the number
of edges introduced by eliminating vertices v1,v2, . . . ,vn in this order. The minimum fill-
in is the smallest fill-in given by any elimination ordering. We are often interested in
not just computing the minimum fill-in, but an elimination ordering that has minimum
fill-in.

Not only is the minimum fill-in NP-hard to compute [171], no polynomial time
approximation scheme exists for the problem unless P =NP [39]. However, the problem
is fixed-parameter tractable [103], when the input parameter k is the minimum fill-
in. The fastest known fixed-parameter algorithm for the problem is due to Fomin and
Villanger [71], with running time 2O(

√
k logk) +O(k2nm), where the additive O(k2nm)

term is the time to compute a kernel of O(k3) vertices [102]. Note that this algorithm
is subexponential in the minimum fill-in k and, moreover, is nearly optimal: Cao and

Sandeep [39] showed that no algorithm with running time 2O(k1/2−δ ) · nO(1) exists for
any positive constant δ , assuming the exponential time hypothesis holds. The smallest
known kernel for the problem is due to Natanzon et al. [132] has 2k2 + 4k vertices.
The reductions all have the same flavor and are derived for the equivalent problem of
chordal completion: finding the minimum number of edges to add to the graph so that
it is chordal. Kernelization is done by partitioning the vertices into two sets A and B
where B induces a chordal graph and A contains vertices from every chordless cycle
in G. The set A is formed by repeatedly finding chordless cycles in G[B] via the MCS
algorithm [157,158] and moving a subset of their vertices to A until G[B] is chordal.
Then essential edges are added to the chordless cycles induced by A, which is the kernel.

In practice, the minimum fill-in problem is extremely hard to solve exactly. Indeed,
in the 2nd PACE Challenge in 2017, the winning solver for the minimum fill-in problem
only solved 54 out of 100 instances [55], when each instance is given a 30-min time
limit. The top three submissions all used kernelization [102] together with dynamic



Recent Advances in Practical Data Reduction 113

programming over potential maximal cliques [29,156]. The first place submission by
Kobayashi and Tamaki used generalized variants of the data reduction rules of Bodlaen-
der et al. [24], and the third place submission performed preprocessing adapted from
the safe separator technique for treewidth [26] in addition to kernelization [102].

However, heuristics, including nested dissection [78] and minimum-degree order-
ing [159], work quite well in practice for real-world (typically sparse) graphs. Early
researchers noted that indistinguishable vertices may be eliminated together, and there-
fore may be collapsed into a representative vertex while ordering [9,57]. This reduc-
tion speeds up the minimum degree algorithm by more than a factor two in experi-
ments [79]. Ost et al. [137 SPP] recently introduced new data reduction rules based
on twins, simplicial vertices, and path compression, and experiments show that they are
highly effective in practice when applied before running nested dissection. For road net-
works, when used as a preprocessing step with other inexact reductions, their techniques
give speedups of between 1.79 and 6.37 over nested dissection while simultaneously
reducing the fill-in. On social networks, their reductions yield speedups of between
1.72 and 3.92 on 19 out of 21 social networks tested, and the fill-in was reduced on all
but one instance.

Open Problem 15. How effective are the reductions by Ost et al. [137 SPP] when com-
bined with other reductions [132]?

Open Problem 16. Is branch-and-reduce feasible for the minimum fill-in problem?

2.8 Vertex Coloring

Given an unweighted, undirected simple graph G= (V,E), the q-coloring problem asks
if there exists an assignment of at most q colors to all vertices in V such that no two
adjacent vertices have the same color (i.e., a proper coloring). The problem of finding
the minimum number χ(G) of colors for which a proper coloring of G exists is known
as the chromatic number problem.

These problems have received considerable attention by the parameterized algo-
rithms community; however, somewhat surprisingly, there is a wide divide between
theory and practice. In theory, a kernel parameterized on only the number of col-
ors is unlikely: since graph coloring is NP-hard for q = 3 colors [74], this would
give a constant-sized kernel, implying P=NP. Therefore, research has focused
on other parameters.

When considering the treewidth tw(G) of the graph G, if G is given together with a
tree decomposition of width k ≥ tw(G), dynamic programming over the tree decom-
position gives an algorithm solving q-coloring in time qkkO(1)n [49, Theorem 7.9].
Assuming the Strong Exponential Time Hypothesis (SETH) no algorithm of running
time O(q− ε)tw(G) exists [122] for any ε > 0. Using the same technique, the chromatic
number can be computed in time kO(k)n [49, Theorem 7.10]. Since these algorithms
are fixed-parameter algorithms, the result due to Cai et al. [32] implies kernels of size
qkkO(1) and kO(k) exist for q-coloring and chromatic number, respectively. Treewidth is
often small for sparse graphs in practice; however, as far as we know, these techniques
have not been tried in practice, leading to the following open problem.
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Open Problem 17. How effective is dynamic programming over a tree decomposition
for q-coloring (or chromatic number) on sparse graphs in practice?

Another parameter of interest is size of a minimum vertex cover. Recently, Jansen
and Pieterse [99] gave a kernel parameterized on the number q ≥ 3 of colors and the
size k of a minimum vertex cover, having size O(kq−1 logk) bits, which is optimal up
to a factor of kO(1) [97]. Their result also applies for a tighter parameter, when k is
the size of the twin cover. Their technique uses constraint satisfaction with low-degree
polynomials. However, in practice, sparse graphs often have a minimum vertex cover
size that is linear in the number of vertices. Thus, to be useful in practice, the actual
kernel would need to have significantly smaller size. However, to date no one has tested
their method in practice, leading to our next open problem for q-coloring.

Open Problem 18. How effective are the reductions of Jansen and Pieterse [99] in
practice?

The data reductions that have been implemented in practice are simple and without
theoretical guarantees on the size of the reduced graph; however, they are also very
effective on large sparse graphs. In particular, in experiments for a branch-and-cut algo-
rithm, Mendéz-Díaz and Zabala [126] first preprocess the input graph by computing a
large maximal clique K of k vertices, which is a lower bound on the chromatic number.
They then iteratively remove each vertex v of degree at most k−1 (resulting in a k-core),
which is possible since χ(G) = χ(G−{v}). They further give a rule to remove certain
vertices with non-neighbors in K. In experiments on 63 graphs of up to 5 231 vertices
from the second DIMACS Implementation Challenge1, their data reductions reduced
all graphs between 1–93%, working best on sparse instances. 36 of the 63 instances
were reduced by at least 25%, and 21 instances were reduced by at least 50%. The
largest percentage reduction was 93% for the homer instance, reducing from 561 to 38
vertices.

Verma et al. [164] extend this technique. They first compute lower and upper bounds
for the chromatic number, and then iteratively apply the k-core reduction to heuristi-
cally color graphs for decreasing values of k. Their key contribution is beginning with
an exact coloring of the k-core, which gives a better bound than an initial clique. With
this technique they are able to exactly find the chromatic number for very large sparse
graphs with up to millions of vertices, with running time varying from seconds to hours.
In total they solve 33 of 53 instances from SNAP2 and the tenth DIMACS Implemen-
tation Challenge3. Lin et al. [121] extended the low degree reduction to remove entire
independent sets of vertices with low degree, which in some cases is orders of magni-
tude faster than the algorithm of Verma et al. [164]. However, they are not able to solve
any additional instances.

We finally note that a crown reduction exists for the dual coloring problem, which
asks if the graph has an (n − k)-coloring [70]. Crown reductions are particularly
effective in practice for other problems, specifically the minimum vertex cover prob-
lem. In theory, for dual coloring, the crown reduction produces a kernel of size at

1 http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.
2 http://snap.stanford.edu/data.
3 http://www.cc.gatech.edu/dimacs10/.

http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
http://snap.stanford.edu/data
http://www.cc.gatech.edu/dimacs10/
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most 3k− 3 [70, Theorem 4.9]. As far as we are aware, no one has performed experi-
ments with this reduction, leading to our final open problem for graph coloring.

Open Problem 19. How effective is the crown reduction [70, Theorem 4.9] for graph
coloring in practice?

2.9 Cluster Editing

The cluster editing problem is as follows: given a graph G = (V,E), transform it into
a vertex-disjoint union of cliques by inserting and deleting a minimum number of
edges,i.e., by making a minimum number of editions in the graph. The problem is also
known as correlation clustering and has many applications, especially in computational
biology [17]. The parameterized complexity of the cluster editing problem using the
number of edits k as a parameter is well-studied. The currently best known algorithm
in theory is due to Böcker [16] and has running time O(1.62k+n+m), where m is the
number of edges.

There has been a wide range of methods applying fixed-parameter techniques in the
area. Dehne et al. [53] presented the first practical implementation of a fixed-parameter
based method for cluster editing. Their algorithm is exact and implements the kernel-
ization routines of [82] and adds ideas to bound the search space for the parameter k
via linear programming. Gramm et al. contributed three reduction rules. For example,
if two vertices u and v have more than k common neighbors then the edge {u,v} has to
be in the solution and is added if it is not present. Moreover, if u and v have more than k
non-common neighbors, i.e., vertices that are either neighbors of u but not v or vice
versa, then the edge {u,v} does not belong to the solution. Lastly, if u and v have more
than k common and more than k non-common neighbors, then the given instance has
no solution. Overall, their method performs best using a refined branching method with
re-kernelization. Interestingly, the experimental analysis of their algorithm shows that
binary search may not be the best way to implement a fixed-parameter based approach
for cluster editing.

Guo [83] later gave parameter-independent data reductions based on critical cliques,
obtaining a linear kernel of 4k vertices, which was improved by Chen and Meng [45]
to 2k. Böcker et al. [20] introduced additional parameter-independent data reductions
and find that preprocessing is possible if the number of edge modifications is signifi-
cantly smaller than the number of vertices in the graph. In addition to the parameter-
independent rules they combine their technique with the parameter-dependent reduc-
tions from above with lower and upper bounds. Böcker et al. find that they can effec-
tively reduce graphs that satisfy k ≤ 25|V |, whereas the reductions due to Guo [83] are
only effective for k ≤ |V |/2. Their experiments show that computing exact solutions
for cluster editing is no longer limited to small or almost transitive graphs. Afterwards,
Böcker et al. [18,19] extended their results to the weighted version of the problem in
which the weight of an edge yields the cost of deleting or inserting it, and the goal is to
apply a set of edge modifications with minimum total weight. To this end, they include
non-trivial extensions of the data reduction rules of the unweighted case. Addition-
ally, they present a technique to merge vertices which drastically improves the running
time of their algorithm. Recently, Bastos et al. [135] combine exact methods with local
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search heuristics. More precisely, the authors propose a GRASP and an ILS metaheuris-
tic with different neighborhoods as well as a new reduction rule for the problem. They
show that the used data reduction rules can speed up linear programming for some
instances up to 95% decreased runtime after using reduction rules and 41% decreased
runtime on average on the instances that the solver could solve to optimality.

Open Problem 20. Is it possible to compute small kernels in practice if the parame-
ter k is larger than 25|V |? Are there any specific data reduction rules for that case?
If an instance in practice does not reduce well, does that help to obtain bounds on the
parameter k?

Since the parameter k is often large compared to the number of vertices, fixed-parameter
algorithms may not always be practical. There has been several attempts to use other
parameters such as the number of missing edges per cluster as well as the number of
edges between clusters [85], the total number of edge modifications per vertex [3,110].
Abu-Khzam [3], using local parameters that bound the amount of (either or both) edge
addition and deletion per vertex resulted in a number of reduction rules, showed how to
solve much larger problem instances and apply the problem effectively in data analysis
[11,12].

2.10 Multiterminal Cut

The multiterminal cut problem with k terminals is defined as follows: Its input is an
undirected edge-weighted graph G = (V,E,w) with edge weights w : E �→ N>0 and its
goal is to divide its set of vertices into b blocks such that each block contains exactly
one terminal and the weight sum of the edges running between the blocks is minimized.
It is a fundamental combinatorial optimization problem that was first formulated by
Dahlhaus et al. [50] and Cunningham [48]. It is NP-hard for all b≥ 3 [50], even on pla-
nar graphs, and reduces to the minimum s-t-cut problem, which is in P, for b = 2. The
minimum s-t-cut problem aims to find the minimum cut in which the vertices s and t
are in different blocks. Most algorithms for the multiterminal cut problem use minimum
s-t-cuts as a subroutine. Dahlhaus et al. [50] give a 2(1−1/b) approximation algorithm
with polynomial running time. Their approximation algorithm uses the notion of iso-
lating cuts, i.e., a minimum cut separating a terminal from all other terminals. They
prove that the union of the b−1 smallest isolating cuts yields a valid multiterminal cut
with the desired approximation ratio. The currently best known approximation algo-
rithm by Buchbinder et al. [31] uses linear program relaxation to achieve an approxi-
mation ratio of 1.323.

Marx [123] proves that the multiterminal cut problem is fixed-parameter tractable
when parameterized by multiterminal cut weight W (G). Chen et al. [44] give the first
fixed-parameter tractable algorithm with running time of 4W (G) · nO(1), later improved
by Xiao [167] to 2W (G) ·nO(1) and by Cao et al. [38] to 1.84W (G) ·nO(1).

Recently, Henzinger et al. [88] engineer an algorithm that combines the branch-
and-bound formulation of Xiao [167] with existing and new data reduction rules for
the problem and present a shared-memory parallel branch-and-reduce algorithm for the
multiterminal cut problem. Experiments indicate that this is orders of magnitude faster
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than previous ILP formulations for the problem that have been employed by prac-
titioners. Later, reduction rules were combined with local search algorithms for the
problem [87 SPP]. The algorithm uses a wide variety of reduction rules with vary-
ing computational complexity; using vertex neighborhoods, edge connectivities, artic-
ulation points, maximum flows and more criteria to reduce the problem size; Hen-
zinger et al. [87 SPP] report size reductions of up to multiple orders of magnitude in
some instances, which make large instances solvable in practice. Additionally, they give
an inexact algorithm that aggressively prunes subproblems which likely do not yield an
improved solution.

Open Problem 21. Is there an efficient way to find semi-isolated small clusters that
can be contracted (either exact or inexact contraction)?

Open Problem 22. The algorithm by Henzinger et al. [88] uses only reductions that
guarantee that the optimal solution remains in the graph. Are there reductions that do
not guarantee optimality but give good performance in practice?

3 Recent Advances for Problems in P

3.1 Minimum Cut

Given an undirected graph with non-negative edge weights, the minimum cut problem
is to partition the vertices into two sets so that the sum of edge weights between the
two sets is minimized. The size of a minimum cut is often also referred to as the edge
connectivity of a graph [91,130]. Gomory and Hu [81] observed that a (global) mini-
mum cut can be computed with n−1 minimum s-t-cut computations. For the following
decades, this result by Gomory and Hu was used to find better algorithms for global
minimum cut using improved maximum flow algorithms [105]. Hao and Orlin [84]
adapt the push-relabel algorithm to pass information to future flow computations. When
a push-relabel iteration is finished, they implicitly merge the source and sink to form a
new sink and find a new source. Vertex heights are maintained over multiple iterations of
push-relabel. With these techniques, they achieve a total running time of O(mn log n2

m )
for a graph with n vertices and m edges, which is asymptotically equal to a single run
of the push-relabel algorithm.

However, for minimum cut algorithms to be viable for applications they must be
fast on small data sets and scale to large data sets. Thus, an algorithm should have either
linear or near-linear running time, or have an efficient parallelization. All existing exact
algorithms have non-linear running time [84,91,105], the fastest of which is the deter-
ministic algorithm of Henzinger et al. [91] with running time O(m log2 n log log2 n).
Although this is arguably near-linear theoretical running time, it is not known how
the algorithm performs in practice. Even the randomized algorithm of Karger and
Stein [105], which finds a minimum cut only with high probability, has O(n2 log3 n)
running time, although this was later improved by Karger [104] to O(m log3 n) and
recently improved further by Gawrychowski et al. [76] to O(m log2 n). The algorithm
of Karger and Stein can be seen as probabilistic data reduction algorithms as they con-
tract random edges to reduce the problem size, and give the correct answer with a certain
probability.
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Padberg and Rinaldi [138] give a set of heuristics for edge contraction. Chekuri
et al. [43] give an implementation of these heuristics that can be performed in time lin-
ear in the graph size. Using these heuristics it is possible to sparsify a graph while pre-
serving at least one minimum cut in the graph. If their algorithm does not find an edge
to contract, it performs a maximum flow computation, giving the algorithm worst case
running time O(n4). However, the heuristics can also be used to improve the expected
running time of other algorithms by applying them on interim graphs [43].

Open Problem 23. Some reductions of Padberg and Rinaldi [138] potentially check
each triangle in a graph. Can pruning be used to efficiently identify which subset needs
to be checked?

Nagamochi et al. [130,131] give a minimum cut algorithm that does not use any flow
computations. Instead, their algorithm uses maximum spanning forests to find a non-
empty set of contractible edges. The intuition behind the algorithm is as follows: sup-
pose you have an unweighted graph with minimum cut value exactly one. Then any
spanning tree must contain at least one edge of each of the minimum cuts. Hence,
after computing a spanning tree, every remaining edge can be contracted without losing
the minimum cut. Nagamochi, Ono and Ibaraki extend this idea to the case where the
graph can have edges with positive weight as well as the case in which the minimum
cut is bounded by λ̂ and show how edges are identified using one modified breadth
first search. This contraction algorithm is run until the graph is contracted into a single
vertex. The algorithm has a running time of O(mn+n2 logn). Stoer and Wagner [154]
give a simpler variant of the algorithm of Nagamochi, Ono and Ibaraki [131], which
has a the same asymptotic time complexity. The performance of this algorithm on real-
world instances, however, is significantly worse than the performance of the algorithms
of Nagamochi, Ono and Ibaraki or Hao and Orlin, as shown in experiments conducted
by Jünger et al. [101]. Both the algorithms of Hao and Orlin, and Nagamochi, Ono and
Ibaraki achieve close to linear running time on most benchmark instances [43,101].

Based on the algorithm of Nagamochi, Ono and Ibaraki, Matula [124] gives a
(2+ ε)-approximation algorithm for the minimum cut problem. The algorithm con-
tracts more edges than the algorithm of Nagamochi, Ono and Ibaraki to guarantee a
linear time complexity while still guaranteeing a (2+ε)-approximation factor. Inspired
by random contractions, Henzinger et al. [89,150 SPP] first gave an shared-memory
parallel algorithm without guarantees on the cut size. The algorithm is randomized, and
has running time O(n+m) when run sequentially. It repeatedly reduces of the input
graph size with both heuristic and exact techniques, and then solve the smallest remain-
ing problem with exact methods. The core idea of the inexact algorithm is that edges
in densely connected regions (i.e., inside a cluster of a clustering) are unlikely to be
in a minimum cut. The algorithm further uses exact reduction rules from Padberg and
Rinaldi [138]. For example, given a bound λ̂ on the minimum cut, one can obviously
contract each edge having weight larger than λ̂ , without losing optimality. Experimen-
tal results indicate that the algorithm finds optimal cuts on almost all instances. At the
same time, even when run sequentially, the algorithm is significantly faster (up to a
factor of 4.85) than other state-of-the-art algorithms.

Later, Henzinger et al. [86,150 SPP] engineered the fastest known exact minimum
cut algorithm for the problem. To do so, the authors incorporate the proposed inexact
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method, use better-suited data structures and other optimizations as well as paralleliza-
tion of exact methods. More precisely, the exact algorithm uses the inexact minimum
cut algorithm from above [89,150 SPP] to obtain a better approximate bound λ̂ for the
problem (recall that the algorithm almost always gave the correct result). As known
reduction techniques depend on this bound, the better bound enables us to apply more
reductions and to reduce the size of the graph much faster. For example, edges whose
incident vertices have a connectivity of at least λ̂ , can be contracted without the contrac-
tion affecting the minimum cut. The new exact algorithm outperforms the state-of-the-
art by a factor of up to 2.5 already sequentially, and when run in parallel by a factor of
up to 12.9. Similar reduction rules were later used by Henzinger et al. [90 SPP,150 SPP]
to find all minimum cuts in graphs.

3.2 Matching

A matching M of a graph G = (V,E) is a subset of edges such that no two elements
of M have a common endpoint. Many applications require the computation of match-
ings with certain properties, like being maximal (no edge can be added to M without
violating the matching property), having maximum cardinality, or having maximum
total weight ∑e∈Mw(e), where w is a positive weight function that assigns weights to
edges. Although these problems can be solved optimally in polynomial time, optimal
algorithms are not fast enough for many applications involving large graphs where we
need near linear time algorithms. For example, the most efficient algorithms for graph
partitioning rely on repeatedly contracting maximal matchings, often trying to maxi-
mize some edge rating function w. We refer to Holtgrewe et al. [94] for details and
examples. For the maximum cardinality matching problem, already in the 1980s data
reduction rules were proposed by Karp and Sipser [107]. The rules are able to deal with
vertices that have degree smaller than two. For example, it is quite easy to see that a
vertex having degree zero can be removed from the graph, or if a vertex has degree one,
then there is always a maximum matching that has this edge matched.

Möhring and Müller-Hannemann [128] were among the first to use the rules to
speed up heuristic algorithms for the general maximum cardinality problem. As exact
algorithms for the matching problems typically search for augmenting paths, they can
be sped up by using a good initial matching. Hence, later Langguth et al. [117] analyzed
the effects of various initializations on the total running time of several exact algorithms
for the bipartite maximum cardinality problem and are able to achieve significant speed-
ups.

Korenwein et al. [111] implement (near-)linear time data reduction rules for the
unweighted case as well as the positive-integer-weight case. Applied reductions include
Karp-Sipser rules, as well as rules due toMertizios et al. [127] who have also shown that
the maximum cardinality matching problem admits a kernel with at most 12k vertices
and 13k edges where k is the feedback edge number. Moreover, Koana et al. [111]
transfer results from vertex cover to the matching problem, e.g.,crown and LP-based
data reductions. Experiments indicate that using data reduction rules can speed up state-
of-the-art solvers by a factor of 4.7 for the unweighted case and 12.72 on average in the
weighted case.
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Open Problem 24. Can the reduction rules due to Koana et al. [111] be exhaustively
applied in linear time? Are there more rules that can be transferred from vertex cover
to the matching problem that can be applied in near-linear time?

Kaya et al. [108] also use Karp-Sipser-based kernels for bipartite graph matching.
In particular, the authors describe an efficient implementation as well as modifica-
tions to reduce time complexity on worst-case instances. Their implementation is
about a factor 2 faster then the general purpose implementation of Koana et al. [111].
Recently, Panagiotas and Uçar [139] engineer fast almost optimal algorithms for bipar-
tite graph matching. To this end, the authors investigate two randomized algorithms by
Karp et al. [106] and Goel et al. [80] and convert them to efficient heuristics for bipar-
tite graphs. In particular, the algorithm by Karp [106] incorporates Karp-Sipser rules.
Both of their heuristics run in near linear time and obtain matchings whose cardinality
is more than 99% of the maximum.

Open Problem 25. Is it possible to implement the degree-2 vertex Karp-Sipser rule in
linear time?

4 Engineering Techniques

Engineering techniques are necessary to make data reduction algorithms scale in prac-
tice. We give a short overview of techniques that are currently used in practice.
The techniques we reference here include dependency checking, reduction tracking,
plateau/increasing data transformations, limiting to simple and fast reductions, reduce
and peeling, limited reductions, on-the-fly reductions and lastly parallelization.

Dependency checking allows pruning of reductions when they will provably not
succeed, therefore significantly reducing the number of failed reductions. To compute a
kernel, algorithms typically apply their reductions r1, . . . ,r j by iterating over all reduc-
tions and trying to apply the current reduction ri to all vertices. If ri reduces at least one
vertex, they restart with reduction r1. When reduction r j is executed, but does not reduce
any vertex, all reductions have been applied exhaustively, and a kernel is found. Trying
to apply every reduction to all vertices can be expensive in later stages of the algorithm
where few reductions succeed. The algorithm may repeatedly attempt to apply the same
reduction to a vertex even though the graph has not changed sufficiently to allow the
reduction to succeed. Checking dependencies between reductions [93], allows to avoid
applying certain local reductions when they will provably not succeed, e.g.,if their rel-
evant neighborhood did not change since the reduction was last checked. Therefore
dependency checking keeps a setD of viable candidate vertices: vertices whose relevant
neighborhood has changed and vertices that have never been considered for reductions.
Then reductions are only applied to candidates that are in the set D. This avoids a lot of
work and can speed up data reduction significantly.

Reduction Tracking. The algorithm by Hespe et al. [93] stops local reductions when
they are not effectively reducing the global graph sizes. It is not always ideal to apply
reductions exhaustively—for example, if only few reductions will succeed and they
are costly. During later stages of a data reduction algorithm, local reductions may lead
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to very few graph changes. Therefore, it may be better to stop local reductions early
instead of performing them exhaustively and switch to global, more expensive reduc-
tions that may change the graph more significantly. Although the resulting graph is
kernel-like, it may be possible to reduce it further. Such a graph is called a quasi ker-
nel. Note, however, that this is a trade-off between size of the reduced graph and data
reduction speed.

Plateau/Increasing Transformations. The general scheme in data reduction is to apply
reductions exhaustively until non of the available reductions can be applied anymore.
Gellner et al. [77] engineer new generalized data reduction and transformation rules
for the weighted independent set problem. A key feature of this work are some trans-
formation rules that can increase the size of the input. Surprisingly, these so-called
increasing transformations can simplify the problem and also open up the reduction
space to yield even smaller irreducible graphs later throughout the algorithm. Overall,
for the weighted independent set problem, this yields significant speed ups and enables
the authors to solve more instances to optimality than previously possible.

Simple Reductions. Often the smallest kernels (or seemingly equivalently, the most
varied reductions) give the best chance at finding solutions. For instance, the reduc-
tions used by Akiba and Iwata [5] for the maximum independent set problem are the
only ones known to compute an exact solution on certain large-scale graphs, and these
reductions are further successful in computing exact solutions in an evolutionary app-
roach [114]. However it is not always beneficial to compute the smallest kernel possible.
Fast and simple reductions can compute kernels that are “small enough” for local search
to quickly find high-quality, and even exact, solutions much faster than the reductions
used to find the smallest kernels [42,51]. Fast and simple reductions can even be used
to solve many large-scale instances exactly [155] just as quickly as the algorithm by
Akiba and Iwata [5].

Reduce and Peel. Lamm et al. [114] showed that including reductions in a branch-and-
reduce inspired evolutionary algorithm for the independent set problem enables finding
exact solutions much faster than provably exact algorithms. To this end, reductions
are applied exhaustively. Once a reduced graph is computed, vertices that are unlikely
to be in the solution, e.g.,vertices having a very large degree, are removed from the
graph and hence excluded from the solution. The algorithm then proceeds recursively.
Chang et al. [42] improved on this result by implementing reduction rules to reduce
the lead time for kernelization for local search. They introduce “reducing–peeling” to
find a large initial solution for local search. This technique can be viewed as computing
one path through the search space of a branch-and-reduce algorithm: they repeatedly
exclude high-degree vertices and reduce the graph until it is empty, then they take the
solution found as an initial solution for local search.

Limited Reductions. Sometimes reductions can be very expensive, for example if their
running time depends on the number of edges in the neighborhood of a certain vertex.
However, as mentioned above it is often not necessary to compute the smallest possible
kernel in practice. Hence, a common technique in practice is to exclude such reductions,
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for example, if the degree of a vertex is too large. An application of this technique is
due to Ost et al. [137 SPP] for the vertex ordering problem, where the simplicial vertex
reduction rule is limited to vertices of degree at most 18.

On-the-Fly Reductions. Data reduction can be used as a preprocessing step to exact
algorithms. However, reductions are also used to reduce the size of the search space
of local search algorithms without losing solution quality. Dahlum et al. [51] apply a
set of simple reductions on the fly for the independent set problem. For this algorithm,
they use simple reductions that do not require changing the neighborhoods of vertices.
Instead, vertices are marked as removed, e.g.,simplicial vertices. This speeds up local
search significantly.

Parallelization. A general technique to speed up algorithms is parallelization. Also in
data reduction parallelization is used to speed up preprocessing times. For example,
“local” reduction rules have been parallelized by using graph partitioning techniques,
i.e., each process works on a subgraph and applied reductions only in his subgraph [93].
At the same time, there are also attempts [93] to parallelize more expensive “global”
reductions, e.g., reductions that need to access the whole input instance.

Targeted Branching. Branch-and-reduce algorithms often make use of vertex selection
strategies that are carried over from existing branch-and-bound approaches. However,
these selection strategies often do not take into account that removing certain vertices
from the graph might result in an increase of the reduction space, which in turn might
lead to smaller search trees. Gao et al. [72] thus present a dynamic vertex selection
strategy that also takes into account one of their reduction rules and uses a degree-
based selection as a fallback. Their experiments indicate that this strategy is able to
provide better results when compared to a purely degree-based selection rule.

Data-Driven Reductions. Eblen et al. [60] show the benefits of using application-
specific reduction rules that exploit prior knowledge of the input space. In particular,
they use a reduction rule that is based on the empirical evaluation of large transcrip-
tomic graphs and is able to drastically reduce the running time of their algorithm on
similar instances. However, this comes at the drawback of a decrease in performance
for random graphs.

5 Open Problems and Future Work

We already discussed problem-specific open problems throughout this article. Here,
we list some general open questions that apply to a range of problems touched in this
survey. For example, in a branch-and-reduce algorithm can we branch to specifically
get graphs that reduce better using the available portfolio of reductions? As a concrete
example, as stated above, it may be helpful to end up with a lot of independent con-
nected components and to achieve this one may be able to branch on a small vertex
separator first. For most problems, what makes an instance hard to reduce is currently
unknown, e.g., when does which data reduction rule work well in practice and why?
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From the theory perspective of a practitioner, it would be better to have an analysis of
the expected kernel size, rather than the worst case so as to get more realistic results
in practice. One does not always need a single optimal solution, but a diverse set of
high-quality solutions. Theoretical approaches for this have been proposed [13], how-
ever, they remain untested in practice. Probabilistic reductions have not yet been tried
in practice. On the other hand, most of the dynamic techniques that maintain a problem
kernel have also not yet been implemented. A problem that needs careful investigation
is the order in which reduction rules are applied, e.g., when is it good to apply which
reduction rule first? Lastly, consider an instance for a problem on which you already
applied all data reduction rules at hand exhaustively. Moreover, assume that you already
have an optimal solution on the reduced instance. Is it possible to discover new rules by
applying machine learning techniques on such instances?
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Erdős bound. Algorithmica 72(3), 734–757 (2014). https://doi.org/10.1007/s00453-
014-9870-z

https://doi.org/10.1137/S0097539799359683
https://doi.org/10.1137/S0097539799359683
https://doi.org/10.1145/362342.362367
https://doi.org/10.1137/15M1045521
https://doi.org/10.1137/15M1045521
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1613/jair.3907
https://doi.org/10.1613/jair.3907
https://doi.org/10.24963/ijcai.2018/196
https://doi.org/10.1613/jair.5443
https://doi.org/10.1613/jair.5443
https://doi.org/10.1016/j.ipl.2013.12.001
https://doi.org/10.1016/j.ipl.2013.12.001
https://doi.org/10.1016/j.ic.2020.104514
https://doi.org/10.1145/3292500.3330986
https://doi.org/10.1007/s00778-020-00602-z
https://doi.org/10.1007/s00778-020-00602-z
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1145/3097983.3098031
https://doi.org/10.1145/3097983.3098031
https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.1007/s00453-014-9870-z


126 F. N. Abu-Khzam et al.

48. Cunningham, W.H.: The optimal multiterminal cut problem. In: Reliability of Com-
puter and Communication Networks, pp. 105–120 (1989). https://doi.org/10.1090/
dimacs/005/07

49. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3

50. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The
complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994). https://doi.
org/10.1137/S0097539792225297

51. Dahlum, J., Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Accelerating
local search for the maximum independent set problem. In: Goldberg, A.V., Kulikov,
A.S. (eds.) SEA 2016. LNCS, vol. 9685, pp. 118–133. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38851-9_9

52. Daneshmand, S.V.: Algorithmic approaches to the Steiner problem in networks. Ph.D.
thesis, Universität Mannheim, Germany (2004). http://bibserv7.bib.uni-mannheim.de/
madoc/volltexte/2004/176/index.html

53. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster edit-
ing problem: implementations and experiments. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006). https://
doi.org/10.1007/11847250_2

54. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond, F.A.:
The first parameterized algorithms and computational experiments challenge. In: Pro-
ceedings of IPEC 2016, LIPI, vol. 63, pp. 30:1–30:9 (2016). https://doi.org/10.4230/
LIPIcs.IPEC.2016.30

55. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized
algorithms and computational experiments challenge: the second iteration. In: Proceed-
ings of IPEC 2017, LIPI, vol. 89, pp. 30:1–30:12 (2017)

56. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

57. Duff, I.S., Reid, J.K.: Exploiting zeros on the diagonal in the direct solution of indef-
inite sparse symmetric linear systems. ACM Trans. Math. Softw. 22(2), 227–257
(1996). https://doi.org/10.1145/229473.229480

58. Dzulfikar, M.A., Fichte, J.K., Hecher, M.: The PACE 2019 parameterized algorithms
and computational experiments challenge: the fourth iteration (invited paper). In: Pro-
ceedings of IPEC 2019, LIPI, vol. 148, pp. 25:1–25:23 (2019). https://doi.org/10.4230/
LIPIcs.IPEC.2019.25

59. Ebenegger, C., Hammer, P., De Werra, D.: Pseudo-boolean functions and stability of
graphs. In: North-Holland mathematics studies, vol. 95, pp. 83–97 (1984). https://doi.
org/10.1016/S0304-0208(08)72955-4

60. Eblen, J.D., Phillips, C.A., Rogers, G.L., Langston, M.A.: The maximum clique enu-
meration problem: algorithms, applications, and implementations. In: BMC Bioinfor-
matics, p. S5 (2012). https://doi.org/10.1186/1471-2105-13-S10-S5

61. Edwards, C.S.: Some extremal properties of bipartite subgraphs. Can. J. Math. 25(3),
475–485 (1973). https://doi.org/10.4153/CJM-1973-048-x

62. Edwards, C.: An improved lower bound for the number of edges in a largest bipartite
subgraph. In: Recent Advances in Graph Theory, pp. 167–181 (1975)

63. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for
weighted treewidth. Algorithmica 47(2), 139–158 (2007). https://doi.org/10.1007/
s00453-006-1226-x

64. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse real-
world graphs in near-optimal time. J. Exp. Algorithmics 18, 3–1 (2013). https://doi.
org/10.1145/2543629

https://doi.org/10.1090/dimacs/005/07
https://doi.org/10.1090/dimacs/005/07
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792225297
https://doi.org/10.1137/S0097539792225297
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1007/978-3-319-38851-9_9
http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2004/176/index.html
http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2004/176/index.html
https://doi.org/10.1007/11847250_2
https://doi.org/10.1007/11847250_2
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/229473.229480
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1186/1471-2105-13-S10-S5
https://doi.org/10.4153/CJM-1973-048-x
https://doi.org/10.1007/s00453-006-1226-x
https://doi.org/10.1007/s00453-006-1226-x
https://doi.org/10.1145/2543629
https://doi.org/10.1145/2543629


Recent Advances in Practical Data Reduction 127

65. Erickson, R.E., Monma, C.L., Jr., A.F.V.: Send-and-split method for minimum-
concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987). https://doi.org/
10.1287/moor.12.4.634

66 SPP. Etscheid, M., Mnich, M.: Linear kernels and linear-time algorithms for finding
large cuts. Algorithmica 80(9), 2574–2615 (2017). https://doi.org/10.1007/s00453-
017-0388-z

67. Fafianie, S., Kratsch, S.: A shortcut to (sun)flowers: kernels in logarithmic space or
linear time. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9235, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0_25

68 SPP. Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., Strash, D.: Engineering
kernelization for maximum cut. In: Proceedings of ALENEX 2020, pp. 27–41 (2020).
https://doi.org/10.1137/1.9781611976007.3

69. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the anal-
ysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.1145/
1552285.1552286

70. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Param-
eterized Preprocessing. Cambridge University Press, Cambridge (2019). https://doi.
org/10.1017/9781107415157

71. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-
in. SIAM J. Comput. 42(6), 2197–2216 (2013). https://doi.org/10.1137/11085390X

72. Gao, J., Chen, J., Yin, M., Chen, R., Wang, Y.: An exact algorithm for maximum
k-plexes in massive graphs. In: Proceedings of IJCAI 2018, pp. 1449–1455 (2018).
https://doi.org/10.24963/ijcai.2018/201

73. Gao, W., Friedrich, T., Kötzing, T., Neumann, F.: Scaling up local search for minimum
vertex cover in large graphs by parallel kernelization. In: Proceedings of ACAI 2017,
pp. 131–143 (2017). https://doi.org/10.1007/978-3-319-63004-5_11

74. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems.
In: Proceedings of STOC 1974, pp. 47–63 (1974). https://doi.org/10.1145/800119.
803884

75. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., San
Francisco, Calif. (1979). A Guide to the Theory of NP-Completeness

76. Gawrychowski, P., Mozes, S., Weimann, O.: Minimum cut in O(m log2 n) time. In:
Proceedings of ICALP 2020, LIPI, vol. 168, pp. 57:1–57:15 (2020). https://doi.org/10.
4230/LIPIcs.ICALP.2020.57

77. Gellner, A., Lamm, S., Schulz, C., Strash, D., Zaválnij, B.: Boosting data reduc-
tion for the maximum weight independent set problem using increasing transfor-
mations. In: Proceedings of ALENEX 2021, pp. 128–142. https://doi.org/10.1137/1.
9781611976472.10

78. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.
10(2), 345–363 (1973). https://doi.org/10.1137/0710032

79. George, A., Liu, J.W.: The evolution of the minimum degree ordering algorithm. SIAM
Rev. 31(1), 1–19 (1989). https://doi.org/10.1137/1031001

80. Goel, A., Kapralov, M., Khanna, S.: Perfect matchings in O(n logn) time in regular
bipartite graphs. SIAM J. Comput. 42(3), 1392–1404 (2013). https://doi.org/10.1137/
100812513

81. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4),
551–570 (1961). https://doi.org/10.1137/0109047

https://doi.org/10.1287/moor.12.4.634
https://doi.org/10.1287/moor.12.4.634
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1137/11085390X
https://doi.org/10.24963/ijcai.2018/201
https://doi.org/10.1007/978-3-319-63004-5_11
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/800119.803884
https://doi.org/10.4230/LIPIcs.ICALP.2020.57
https://doi.org/10.4230/LIPIcs.ICALP.2020.57
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/0710032
https://doi.org/10.1137/1031001
https://doi.org/10.1137/100812513
https://doi.org/10.1137/100812513
https://doi.org/10.1137/0109047


128 F. N. Abu-Khzam et al.

82. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-
parameter algorithms for clique generation. In: Petreschi, R., Persiano, G., Silvestri, R.
(eds.) CIAC 2003. LNCS, vol. 2653, pp. 108–119. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-44849-7_17

83. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci.
410(8), 718–726 (2009). https://doi.org/10.1016/j.tcs.2008.10.021

84. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a graph. In:
Proceedings of SODA 1992, pp. 165–174 (1992)

85. Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., Telle, J.A.: Generalized graph
clustering: recognizing (p,q)-cluster graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS,
vol. 6410, pp. 171–183. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16926-7_17

86. Henzinger, M., Noe, A., Schulz, C.: Shared-memory exact minimum cuts. In: Proceed-
ings of IPDPS 2019, pp. 13–22 (2019). https://doi.org/10.1109/IPDPS.2019.00013

87 SPP. Henzinger, M., Noe, A., Schulz, C.: Faster parallel multiterminal cuts. Technical report
(2020). https://arxiv.org/abs/2004.11666

88. Henzinger, M., Noe, A., Schulz, C.: Shared-memory branch-and-reduce for multiter-
minal cuts. In: Proceedings of ALENEX 2020, pp. 42–55 (2020). https://doi.org/10.
1137/1.9781611976007.4

89. Henzinger, M., Noe, A., Schulz, C., Strash, D.: Practical minimum cut algorithms.
ACM J. Exp. Algorithmics 23 (2018). https://doi.org/10.1145/3274662

90 SPP. Henzinger, M., Noe, A., Schulz, C., Strash, D.: Finding all global minimum cuts in
practice. In: Proceedings of ESA 2020, pp. 59:1–59:20 (2020). https://doi.org/10.4230/
LIPIcs.ESA.2020.59

91. Henzinger, M., Rao, S., Wang, D.: Local flow partitioning for faster edge connectivity.
SIAM J. Comput. 49(1), 1–36 (2020). https://doi.org/10.1137/18M1180335

92. Hespe, D., Lamm, S., Schulz, C., Strash, D.: WeGotYouCovered: the winning solver
from the PACE 2019 challenge, vertex cover track. In: Proceedings of CSC 2020, pp.
1–11 (2020). https://doi.org/10.1137/1.9781611976229.1

93. Hespe, D., Schulz, C., Strash, D.: Scalable kernelization for maximum independent
sets. J. Exp. Algor. 24(1), 1–22 (2019). https://doi.org/10.1145/3355502

94. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: Proceedings of IPDPS 2010, pp. 1–12 (2010). https://doi.org/10.1109/
IPDPS.2010.5470485

95. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow.
In: Proceedings of SODA 2014, pp. 1749–1761 (2014). https://doi.org/10.1137/1.
9781611973402.127

96. Iwata, Y., Shigemura, T.: Separator-based pruned dynamic programming for Steiner
tree. In: Proceedings of AAAI 2019, pp. 1520–1527 (2019). https://doi.org/10.1609/
aaai.v33i01.33011520

97. Jaffke, L., Jansen, B.M.P.: Fine-grained parameterized complexity analysis of graph
coloring problems. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017.
LNCS, vol. 10236, pp. 345–356. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57586-5_29

98. Jansen, B.M.P.: On sparsification for computing treewidth. Algorithmica 71(3), 605–
635 (2014). https://doi.org/10.1007/s00453-014-9924-2

99. Jansen, B.M.P., Pieterse, A.: Optimal data reduction for graph coloring using low-
degree polynomials. Algorithmica 81(10), 3865–3889 (2019). https://doi.org/10.1007/
s00453-019-00578-5

100. Jiang, H., Li, C., Manyà, F.: An exact algorithm for the maximum weight clique prob-
lem in large graphs. In: Proceedings of AAAI 2017, pp. 830–838 (2017)

https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-642-16926-7_17
https://doi.org/10.1007/978-3-642-16926-7_17
https://doi.org/10.1109/IPDPS.2019.00013
https://arxiv.org/abs/2004.11666
https://doi.org/10.1137/1.9781611976007.4
https://doi.org/10.1137/1.9781611976007.4
https://doi.org/10.1145/3274662
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.1137/18M1180335
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1145/3355502
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1137/1.9781611973402.127
https://doi.org/10.1137/1.9781611973402.127
https://doi.org/10.1609/aaai.v33i01.33011520
https://doi.org/10.1609/aaai.v33i01.33011520
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1007/s00453-014-9924-2
https://doi.org/10.1007/s00453-019-00578-5
https://doi.org/10.1007/s00453-019-00578-5


Recent Advances in Practical Data Reduction 129

101. Jünger, M., Rinaldi, G., Thienel, S.: Practical performance of efficient mini-
mum cut algorithms. Algorithmica 26(1), 172–195 (2000). https://doi.org/10.1007/
s004539910009

102. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion prob-
lems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5),
1906–1922 (1999). https://doi.org/10.1137/S0097539796303044

103. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion prob-
lems on chordal and interval graphs: minimum fill-in and physical mapping. In:
Proceedings of FOCS 1994, pp. 780–791 (1994). https://doi.org/10.1109/SFCS.1994.
365715

104. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000). https://
doi.org/10.1145/331605.331608

105. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4),
601–640 (1996). https://doi.org/10.1145/234533.234534

106. Karp, R.M., Kan, A.H.G.R., Vohra, R.V.: Average case analysis of a heuristic for the
assignment problem. Math. Oper. Res. 19(3), 513–522 (1994). https://doi.org/10.1287/
moor.19.3.513

107. Karp, R.M., Sipser, M.: Maximummatchings in sparse random graphs. In: Proceedings
of FOCS 1981, pp. 364–375 (1981). https://doi.org/10.1109/SFCS.1981.21

108. Kaya, K., Langguth, J., Panagiotas, I., Uçar, B.: Karp-Sipser based kernels for bipartite
graph matching. In: Proceedings of ALENEX 2020, pp. 134–145 (2020). https://doi.
org/10.1137/1.9781611976007.11

109. Kobayashi, Y., Tamaki, H.: Treedepth parameterized by vertex cover number. In: Pro-
ceedings of IPEC 2016, LIPI, vol. 63, pp. 18:1–18:11 (2016). https://doi.org/10.4230/
LIPIcs.IPEC.2016.18

110. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Appl. Math. 160(15), 2259–2270 (2012). https://doi.org/10.1016/j.dam.2012.
05.019

111. Korenwein, V., Nichterlein, A., Niedermeier, R., Zschoche, P.: Data reduction for max-
imum matching on real-world graphs: theory and experiments. In: Proceedings of ESA
2018, LIPI, vol. 112, pp. 53:1–53:13 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.
53

112. Korhonen, T.: SMS in PACE 2020. Technical report (2020). https://arxiv.org/abs/2006.
07302

113 SPP. Lamm, S., Sanders, P., Schulz, C.: Graph partitioning for independent sets. In: Bampis,
E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 68–81. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20086-6_6

114. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal
independent sets at scale. J. Heurist. 23(4), 207–229 (2017). https://doi.org/10.1007/
s10732-017-9337-x

115 SPP. Lamm, S., Schulz, C., Strash, D., Williger, R., Zhang, H.: Exactly solving the maxi-
mum weight independent set problem on large real-world graphs. In: Proceedings of
ALENEX 2019, pp. 144–158 (2019). https://doi.org/10.1137/1.9781611975499.12

116. Lange, J.H., Andres, B., Swoboda, P.: Combinatorial persistency criteria for multicut
and max-cut. In: Proceedings of IEEE Conference Computer Vision Pattern Recogni-
tion, pp. 6093–6102 (2019). https://doi.org/10.1109/CVPR.2019.00625

117. Langguth, J., Manne, F., Sanders, P.: Heuristic initialization for bipartite matching
problems. ACM J. Exp. Algorithmics 15 (2010). https://doi.org/10.1145/1671970.
1712656

https://doi.org/10.1007/s004539910009
https://doi.org/10.1007/s004539910009
https://doi.org/10.1137/S0097539796303044
https://doi.org/10.1109/SFCS.1994.365715
https://doi.org/10.1109/SFCS.1994.365715
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/234533.234534
https://doi.org/10.1287/moor.19.3.513
https://doi.org/10.1287/moor.19.3.513
https://doi.org/10.1109/SFCS.1981.21
https://doi.org/10.1137/1.9781611976007.11
https://doi.org/10.1137/1.9781611976007.11
https://doi.org/10.4230/LIPIcs.IPEC.2016.18
https://doi.org/10.4230/LIPIcs.IPEC.2016.18
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://arxiv.org/abs/2006.07302
https://arxiv.org/abs/2006.07302
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.1109/CVPR.2019.00625
https://doi.org/10.1145/1671970.1712656
https://doi.org/10.1145/1671970.1712656


130 F. N. Abu-Khzam et al.

118. Lavallee, B., Russell, H., Sullivan, B.D., van der Poel, A.: Approximating vertex cover
using structural rounding. In: Proceedings of ALENEX 2020, pp. 70–80 (2020). https://
doi.org/10.1137/1.9781611976007.6

119. Li, C.M., Jiang, H., Manyà, F.: On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Comput. Oper. Res. 84, 1–15
(2017). https://doi.org/10.1016/j.cor.2017.02.017

120. Li, R., Hu, S., Cai, S., Gao, J., Wang, Y., Yin, M.: NuMWVC: a novel local search for
minimum weighted vertex cover problem. J. Oper. Res. Soc., 1–12 (2019). https://doi.
org/10.1080/01605682.2019.1621218

121. Lin, J., Cai, S., Luo, C., Su, K.: A reduction based method for coloring very large
graphs. In: Proceedings of IJCAI 2017, pp. 517–523 (2017). https://doi.org/10.24963/
ijcai.2017/73

122. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Trans. Algor. 14(2) (2018). https://doi.org/10.
1145/3170442

123. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–
406 (2006). https://doi.org/10.1016/j.tcs.2005.10.007

124. Matula, D.W.: A linear time 2+ ε approximation algorithm for edge connectivity. In:
Proceedings of SODA 1993, pp. 500–504 (1993)

125. Mellor, D., Prieto-Rodríguez, E., Mathieson, L., Moscato, P.A.: A kernelisation app-
roach for multiple d-hitting set and its application in optimal multi-drug therapeutic
combinations. PLoS ONE 5, 1–13 (2010)

126. Méndez-Díaz, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Discrete
Appl. Math. 154(5), 826–847 (2006). https://doi.org/10.1016/j.dam.2005.05.022

127. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduc-
tion for maximum matching. Algorithmica 82(12), 3521–3565 (2020). https://doi.org/
10.1007/s00453-020-00736-0

128. Möhring, R., Müller-Hannemann, M.: Cardinality matching: heuristic search for aug-
menting paths. Technical Report 439, Technische Universität Berlin, Fachbereich 3
(1995)

129. Moser, H.: Finding optimal solutions for covering and matching problems. Ph.D. the-
sis, Friedrich-Schiller-Universität Jena (2010). http://d-nb.info/999819399

130. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capac-
itated graphs. SIAM J. Discrete Math. 5(1), 54–66 (1992). https://doi.org/10.1137/
0405004

131. Nagamochi, H., Ono, T., Ibaraki, T.: Implementing an efficient minimum capacity cut
algorithm. Math. Prog. 67(1), 325–341 (1994). https://doi.org/10.1007/BF01582226

132. Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the
minimum fill-in problem. SIAM J. Comput. 30(4), 1067–1079 (2000). https://doi.org/
10.1137/S0097539798336073

133. Nemhauser, G., Trotter, L.E., J.: Vertex packings: structural properties and algorithms.
Math. Prog. 8(1), 232–248 (1975). https://doi.org/10.1007/BF01580444

134. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
hitting set. J. Discrete Algor. 1(1), 89–102 (2003). https://doi.org/10.1016/S1570-
8667(03)00009-1

135. Bastos, L., Ochi, L.S., Protti, F., Subramanian, A., Martins, I.C., Pinheiro, R.G.S.:
Efficient algorithms for cluster editing. J. Comb. Optim. 31(1), 347–371 (2014). https://
doi.org/10.1007/s10878-014-9756-7

136. Olesen, K.G., Madsen, A.L.: Maximal prime subgraph decomposition of Bayesian net-
works. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 32(1), 21–31 (2002). https://
doi.org/10.1109/3477.979956

https://doi.org/10.1137/1.9781611976007.6
https://doi.org/10.1137/1.9781611976007.6
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1016/j.dam.2005.05.022
https://doi.org/10.1007/s00453-020-00736-0
https://doi.org/10.1007/s00453-020-00736-0
http://d-nb.info/999819399
https://doi.org/10.1137/0405004
https://doi.org/10.1137/0405004
https://doi.org/10.1007/BF01582226
https://doi.org/10.1137/S0097539798336073
https://doi.org/10.1137/S0097539798336073
https://doi.org/10.1007/BF01580444
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1007/s10878-014-9756-7
https://doi.org/10.1007/s10878-014-9756-7
https://doi.org/10.1109/3477.979956
https://doi.org/10.1109/3477.979956


Recent Advances in Practical Data Reduction 131

137 SPP. 1 Ost, W., Schulz, C., Strash, D.: Engineering data reduction for nested dissection.
In: Proceedings of ALENEX 2021, pp. 113–127 (2021). https://doi.org/10.1137/1.
9781611976472.9

138. Padberg, M., Rinaldi, G.: An efficient algorithm for the minimum capacity cut problem.
Math. Prog. 47(1), 19–36 (1990). https://doi.org/10.1007/BF01580850

139. Panagiotas, I., Uçar, B.: Engineering fast almost optimal algorithms for bipartite graph
matching: Extended version. Research Report RR-9321, Inria Research Centre Greno-
ble, Rhône-Alpes (2020). https://hal.inria.fr/hal-02463717

140. Pelofske, E., Hahn, G., Djidjev, H.: Solving large minimum vertex cover problems on
a quantum annealer. In: Proceedings of CF 2019, pp. 76–84 (2019). https://doi.org/10.
1145/3310273.3321562

141. Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany (2003). http://scidok.sulb.uni-saarland.de/
volltexte/2004/218/index.html

142. Pothen, A.: The complexity of optimal elimination trees. Technical report, Pennsylva-
nia State University, Department of Computer Science (1988). https://www.cs.purdue.
edu/homes/apothen/Papers/shortest-etree1988.pdf

143. Rehfeldt, D., Koch, T.: SCIP-Jack - a solver for STP and variants with parallelization
extensions: an update. In: Proceedings of OR 2017, pp. 191–196 (2017). https://doi.
org/10.1007/978-3-319-89920-6_27

144. Rehfeldt, D., Koch, T., Maher, S.J.: Reduction techniques for the prize collecting
Steiner tree problem and the maximum-weight connected subgraph problem. Networks
73(2), 206–233 (2019). https://doi.org/10.1002/net.21857

145. Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: A faster parameterized algorithm
for treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 931–942. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7_77

146. Robertson, N., Seymour, P.: Graph minors. II. Algorithmic aspects of tree-width. J.
Algor. 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

147. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl.
32(3), 597–609 (1970). https://doi.org/10.1016/0022-247X(70)90282-9

148. Sanders, P., Schulz, C.: KaHIP v3.00 - Karlsruhe High Quality Partitioning - User
Guide. Technical report (2013). https://arxiv.org/abs/1311.1714

149. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Proc. Lett. 33(2),
91–96 (1989). https://doi.org/10.1016/0020-0190(89)90161-0

150 SPP. Schulz, C.: Scalable Graph Algorithms. Habilitation (2019). http://arxiv.org/abs/1912.
00245

151. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J.
Math. Sociol. 6(1), 139–154 (1978). https://doi.org/10.1080/0022250X.1978.9989883

152. Shinano, Y., Rehfeldt, D., Koch, T.: Building optimal steiner trees on supercomputers
by using up to 43,000 cores. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019.
LNCS, vol. 11494, pp. 529–539. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-19212-9_35

153. Stallmann, M.F., Ho, Y., Goodrich, T.D.: Graph profiling for vertex cover: targeted
reductions in a branch and reduce solver. Technical report (2020). https://arxiv.org/abs/
2003.06639

154. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997).
https://doi.org/10.1145/263867.263872

155. Strash, D.: On the power of simple reductions for the maximum independent set prob-
lem. In: Dinh, T.N., Thai, M.T. (eds.) Proccedings of COCOON 2016. LNCS, vol.
9797, pp. 345–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-
1_28

https://doi.org/10.1137/1.9781611976472.9
https://doi.org/10.1137/1.9781611976472.9
https://doi.org/10.1007/BF01580850
https://hal.inria.fr/hal-02463717
https://doi.org/10.1145/3310273.3321562
https://doi.org/10.1145/3310273.3321562
http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf
https://doi.org/10.1007/978-3-319-89920-6_27
https://doi.org/10.1007/978-3-319-89920-6_27
https://doi.org/10.1002/net.21857
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0022-247X(70)90282-9
https://arxiv.org/abs/1311.1714
https://doi.org/10.1016/0020-0190(89)90161-0
http://arxiv.org/abs/1912.00245
http://arxiv.org/abs/1912.00245
https://doi.org/10.1080/0022250X.1978.9989883
https://doi.org/10.1007/978-3-030-19212-9_35
https://doi.org/10.1007/978-3-030-19212-9_35
https://arxiv.org/abs/2003.06639
https://arxiv.org/abs/2003.06639
https://doi.org/10.1145/263867.263872
https://doi.org/10.1007/978-3-319-42634-1_28
https://doi.org/10.1007/978-3-319-42634-1_28


132 F. N. Abu-Khzam et al.

156. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. In: Proceed-
ings of ESA 2017, LIPI, vol. 87, pp. 68:1–68:13 (2017). https://doi.org/10.4230/LIPIcs.
ESA.2017.68

157. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

158. Tarjan, R.E., Yannakakis, M.: Addendum: simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput. 14(1), 254–255 (1985). https://doi.org/10.1137/
0214020

159. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally
ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967). https://doi.org/
10.1109/PROC.1967.6011

160. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a max-
imum clique with computational experiments. J. Glob. Optim. 37(1), 95–111 (2007).
https://doi.org/10.1007/s10898-006-9039-7

161. Trimble, J.: An algorithm for the exact treedepth problem. In: Proceedings of SEA
2020, LIPI, vol. 160, pp. 19:1–19:14 (2020). https://doi.org/10.4230/LIPIcs.SEA.2020.
19

162. Bevern, R.: Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica 70(1), 129–147 (2013). https://doi.org/10.1007/s00453-013-9774-3

163. van Bevern, R., Smirnov, P.V.: Optimal-size problem kernels for d-hitting set in linear
time and space. Inf. Process. Lett. 163, 105998 (2020). https://doi.org/10.1016/j.ipl.
2020.105998

164. Verma, A., Buchanan, A., Butenko, S.: Solving the maximum clique and vertex col-
oring problems on very large sparse networks. INFORMS J. Comput. 27(1), 164–177
(2015). https://doi.org/10.1287/ijoc.2014.0618

165. Wang, L., Li, C.M., Zhou, J., Jin, B., Yin, M.: An exact algorithm for minimum weight
vertex cover problem in large graphs. Technical report (2019). https://urldefense.
com/v3/__https://www.mdpi.com/2227-7390/7/7/603__;!!NLFGqXoFfo8MMQ!ryv0
VjrmlwLawl0j6PQDtgV3XzU7mM4U8uFD6oX3d4bPcT9yMMYD958fi7tNg1IaVc8
1OzW7E7AEb5NnCFGAplRjt2vxhvOs

166. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceedings
of ALEX 1998, pp. 1–8 (1998)

167. Xiao, M.: Simple and improved parameterized algorithms for multiterminal cuts. The-
ory Comput. Syst. 46(4), 723–736 (2010). https://doi.org/10.1007/s00224-009-9215-
5

168. Xiao, M., Lin, W., Dai, Y., Zeng, Y.: A fast algorithm to compute maximum k-plexes
in social network analysis. In: Proceedings of AAAI 2017, pp. 919–925 (2017)

169. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple max-
imum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104
(2013). https://doi.org/10.1016/j.tcs.2012.09.022

170. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Com-
put. 255, 126–146 (2017). https://doi.org/10.1016/j.ic.2017.06.001

171. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algeb. Dis-
crete Meth. 2(1), 77–79 (1981). https://doi.org/10.1137/0602010

https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.1137/0213035
https://doi.org/10.1137/0214020
https://doi.org/10.1137/0214020
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.1007/s10898-006-9039-7
https://doi.org/10.4230/LIPIcs.SEA.2020.19
https://doi.org/10.4230/LIPIcs.SEA.2020.19
https://doi.org/10.1007/s00453-013-9774-3
https://doi.org/10.1016/j.ipl.2020.105998
https://doi.org/10.1016/j.ipl.2020.105998
https://doi.org/10.1287/ijoc.2014.0618
https://urldefense.com/v3/__https://www.mdpi.com/2227-7390/7/7/603__;!!NLFGqXoFfo8MMQ!ryv0VjrmlwLawl0j6PQDtgV3XzU7mM4U8uFD6oX3d4bPcT9yMMYD958fi7tNg1IaVc81OzW7E7AEb5NnCFGAplRjt2vxhvOs
https://urldefense.com/v3/__https://www.mdpi.com/2227-7390/7/7/603__;!!NLFGqXoFfo8MMQ!ryv0VjrmlwLawl0j6PQDtgV3XzU7mM4U8uFD6oX3d4bPcT9yMMYD958fi7tNg1IaVc81OzW7E7AEb5NnCFGAplRjt2vxhvOs
https://urldefense.com/v3/__https://www.mdpi.com/2227-7390/7/7/603__;!!NLFGqXoFfo8MMQ!ryv0VjrmlwLawl0j6PQDtgV3XzU7mM4U8uFD6oX3d4bPcT9yMMYD958fi7tNg1IaVc81OzW7E7AEb5NnCFGAplRjt2vxhvOs
https://urldefense.com/v3/__https://www.mdpi.com/2227-7390/7/7/603__;!!NLFGqXoFfo8MMQ!ryv0VjrmlwLawl0j6PQDtgV3XzU7mM4U8uFD6oX3d4bPcT9yMMYD958fi7tNg1IaVc81OzW7E7AEb5NnCFGAplRjt2vxhvOs
https://doi.org/10.1007/s00224-009-9215-5
https://doi.org/10.1007/s00224-009-9215-5
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1016/j.ic.2017.06.001
https://doi.org/10.1137/0602010


Recent Advances in Practical Data Reduction 133

172. Zheng, W., Gu, J., Peng, P., Yu, J.X.: Efficient weighted independent set computation
over large graphs. In: Proceedings of ICDE 2020, pp. 1970–1973 (2020). https://doi.
org/10.1109/ICDE48307.2020.00216

173. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput. 3(1), 103–128 (2007). https://doi.org/10.4086/toc.
2007.v003a006

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1109/ICDE48307.2020.00216
https://doi.org/10.1109/ICDE48307.2020.00216
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006
http://creativecommons.org/licenses/by/4.0/


Skeleton-Based Clustering by Quasi-Threshold
Editing

Ulrik Brandes1 , Michael Hamann2(B) , Luise Häuser2, and Dorothea Wagner2
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Abstract. We consider the problem of transforming a given graph into a quasi-
threshold graph using a minimum number of edge additions and deletions. Build-
ing on the previously proposed heuristic Quasi-Threshold Mover (QTM), we
present improvements both in terms of running time and quality. We propose
a novel, linear-time algorithm that solves the inclusion-minimal variant of this
problem, i.e., a set of edge edits such that no subset of them also transforms the
given graph into a quasi-threshold graph. In an extensive experimental evaluation,
we apply these algorithms to a large set of graphs from different applications and
find that they lead QTM to find solutions with fewer edits. Although the inclusion-
minimal algorithm needs significantly more edits on its own, it outperforms the
initialization heuristic previously proposed for QTM.

Keywords: Quasi-threshold graph · Trivially perfect graph · Graph editing ·
Graph clustering · Community detection

1 Introduction

We consider the problem of clustering a graph by partitioning its nodes. Especially in
the context of social networks, this problem is often referred to as community detec-
tion. The approach taken here is to view community detection as a graph modification
problem. Specifically, Nastos and Gao [25] proposed to edit a given graph into a quasi-
threshold graph and use its connected components to determine the clustering.

A quasi-threshold graph, also known as trivially perfect graph, is the transitive clo-
sure of a rooted forest [33], which can in turn be considered a skeleton of the graph.
Figure 1 shows an example, and we provide a more detailed motivation for this partic-
ular approach in the next section.

As minimizing the number of edits is N P-hard [25], the Quasi-Threshold Mover
(QTM) heuristic [4 SPP] starts from some rooted forest on the nodes of the input graph
and moves nodes within and between trees to reduce the edit distance between the input
graph and the transitive closure of the forest.

Several improvements to QTM are proposed in this chapter. We reduce the run-
ning time of one round of node moves to linear and show that the edits incident to a
single node can be minimized using an additional path sorting step. This ultimately
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Fig. 1. Example quasi-threshold graph. The skeleton is denoted by thick edges, its transitive clo-
sure is dashed, the root is the gray node. (Color figure online)

leads to a linear-time algorithm for inclusion-minimal sets of edits. To also find smaller
solutions, we propose a randomization of local moves. From an extensive experimental
evaluation on empirical graphs we conclude that our modifications yields substantial
improvements over the original QTM algorithm in terms of the size of the edit set.

2 Preliminaries

We consider simple undirected graphsG= (V,E) consisting of n := |V | nodesV that are
connected by a set of m := |E| edges E ⊂ (V

2

)
, i.e., without self-loops or multi-edges.

By N(u) we denote the set of neighbors of u ∈ V and deg(u) := |N(u)| its degree.
Further, let N[u] := N(u)∪{u} be the closed neighborhood of u. The subgraph induced
by a set of nodes X ⊂ V is denoted G[X ]. With Kn, Pn, and Cn we denote the complete
graph, path, and cycle on n nodes, respectively. These will be important as induced
subgraphs, and we write, say, kKn for k copies of Kn.

Quasi-threshold graphs are graphs that contain neither a P4 nor aC4 as node-induced
subgraphs [34]. This is equivalent to an inductive construction in which the base case is
a single node and there are two construction operators: either a universal node (adjacent
to all previous nodes) is added, or the disjoint union of two quasi-threshold graphs is
formed. The inductive construction of a quasi-threshold graph immediately gives rise
to its skeleton forest referred to in the introduction.

2.1 Motivation

Many tasks in network analysis can be understood as first establishing an ideal, and
then recovering that ideal from an empirical situation or at least determining a degree
to which that ideal is met.

Take the most elementary notion, network density, as an example. The two ideal-
ized situations, polar opposites of one another, are graphs nK1 of isolated nodes and
cliques Kn

1. The number of edges in a graph is a straightforward measure of distance
from the ideal case of isolated nodes on an absolute scale of measurement. Since the
number

(n
2

)
of edges in a clique varies with the number nodes n, density is often defined

as the relative number m/
(n
2

)
of edges.

1 It should not be lost on the reader that both names have social connotations [22].
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A formulation of community detection using the same kind of reasoning can be
developed as follows. Motivations for the vast majority of community detection meth-
ods generally state that the intention is to partition a graph into relatively dense sub-
graphs that are sparsely connected between them [17,28]. The idealized situation, with
an undisputed partition into communities, is a cluster graph defined as disjoint unions
of cliques or, equivalently, P3-free graph. Each connected component is a clique, and
these cliques are isolated from each other.

How far is a given graph from a cluster graph, and where are its communities? On
an absolute scale, distance to the ideal situation is measured by counting the number
of edges that need to be added or deleted to complete cliques and make those cliques
independent. In cluster editing, a cluster graph of minimum edit distance is sought,
and its cliques induce a clustering of the original graph. The normalized number of
edges that do not have to be edited is known as performance [13], and cluster editing
is a special case of correlation clustering [1]. Numerous other clustering approaches
are based on objective functions that normalize the difference between a graph and the
cluster graph ideal by taking additional factors such as the number of clusters, size of
clusters, degree in clusters, etc. into account.

Like cluster graphs, quasi-threshold graphs represent an idealized situation, which
we can think of as intersecting communities. To see this, we take two additional steps.

We start from split graphs, which are defined as those graphs that have a par-
tition V = C � P into a clique G[C] and an independent set G[P], or, equivalently,
(2K2,C4,C5)-free graphs. They represent the ideal case of a core-periphery struc-
ture [3], and are characterized by their degrees: if n > d1 ≥ ·· · ≥ dn ≥ 0 is the degree
sequence of a graph, then it is a split graph if and only if the kth Erdős-Gallai inequality
∑k
i=1 di ≤ k(k− 1)+∑n

j=k+1min{k,d j} is actually an equality for the corrected Dur-
fee number h = max{k : dk ≥ k− 1}. In this case, h nodes of highest degree induce
the clique and the others an independent set. The minimum number of edges that need
to be edited to turn a graph into a split graph, known as its splittance [19], is half
the difference between the two sides of the defining inequality, 1

2 (∑
n
j=h+1 d j −∑h

i=1 di).
These edits can be chosen so that h nodes of highest degree induce the clique and the
remaining nodes the independent set. The computationally easy problem of split editing
becomes intractable, for instance, if adapted for density [5] instead of edge numbers or
for multiple cores [6].

By distinguishing a core from a periphery, split graphs also distinguish nodes that
are central (as members of the core) from others that are not (as members of the periph-
ery). Every node in the periphery is adjacent only to nodes in the core, and every node
in the core is adjacent to all other core nodes. Hence, the neighborhood of any periphery
node u ∈ P is a subset of the closed neighborhood of any core node v ∈C, N(u) ⊆ N[v].
This binary classification can be refined by comparing all pairs of nodes according to
this neighborhood inclusion property, known as the vicinal preorder [16]. Schoch and
Brandes [30] have shown retrospectively that this is actually the common ground of
standard notions of centrality.

Graphs characterized by a total vicinal preorder are called threshold or nested
graphs [23,24] and therefore the ideal structure of an undisputed ranking of nodes by
centrality. Threshold editing is intractable, even if the input is a split graph [14], and for
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a number of reasons centrality has been defined via an abundance of indices rather than
the node ranking in a closest threshold graph.

Threshold graphs are the (2K2,C4,P4)-free graphs and therefore a subclass of quasi-
threshold graphs. They can be constructed by adding one node at a time, either as a uni-
versal or isolated node, so that they have a skeleton that is a caterpillar. Each connected
component of a quasi-threshold graph, in turn, can be seen as a group of nested graphs
that intersect at their cores but may branch out into different peripheries.

We have thus motivated quasi-threshold graphs as idealized structures of (disjoint
groups of) intersecting communities. Quasi-threshold editing yields a partition into
communities and in addition for each of them a centralized nesting structure repre-
sented by their skeleton tree.

2.2 Related Work

Quasi-threshold graphs can be recognized in linear time [8,34,4 SPP]. While the first
algorithm [34] computes a skeleton forest if G is a quasi-threshold graph, the other [8,
4 SPP] additionally computes a forbidden subgraph if G is not.

As mentioned, quasi-threshold editing is N P-hard [25]. Due to its characteri-
zation via a finite set of finite forbidden subgraphs, it is fixed-parameter tractable
in the number of edits k [7]. In combination with the certifying recognition in lin-
ear time, this yields a simple O (6k × (n+m)) time algorithm. For the related prob-
lem of quasi-threshold deletion, where edges may be deleted but not added, improved
branching rules have been proposed, reducing the running time from O (4k × (n+m))
to O (2.42k × (n+m)) [21]. Further, ordered enumeration of solutions is also possi-
ble with FPT delay [10]. A polynomial kernel of O (k7) nodes has been introduced
by Drange and Pilipczuk [15], who also show that the problem cannot be solved in
time 2ok ×nO (1) unless the Exponential Time Hypothesis fails.

The first editing heuristic has been proposed by Nastos and Gao [25]. With Quasi-
Threshold Mover [4 SPP], the first editing heuristic with a running time close to linear
has been proposed. Recently, a study on techniques for computing exact solutions has
been published [18 SPP].

For the superclass of cographs, or P4-free graphs [9], the problem of inclusion-
minimal editing has recently been considered [11]. Instead of asking for a set of edge
edits of minimum cardinality, it asks for a set of edge edits such that no proper subset
yields a cograph. While cograph editing is also N P-hard [20], inclusion-minimal
cograph editing can be solved in linear time [11].

3 Quasi-Threshold Mover (QTM)

The Quasi-Threshold Mover algorithm, short QTM, iteratively improves the skeleton
forest to heuristically minimize the number of induced edits. It starts with a given skele-
ton forest, this may be the trivial skeleton where every node is a root which implies that
all edges are deleted. In each round, it iterates over all nodes u in a random order and
possibly moves u to a new position in the forest if this decreases the number of induced
edits. For this, it considers every node v ∈V \{u} as a parent for u. Further, a subset of
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the children of the new parent v may be adopted, i.e., moved below u. In the induced
quasi-threshold graph, u is then connected to v and all its ancestors as well as to all
adopted children and their descendants. Every neighbor x of u in this set of nodes saves
deleting the edges {u,x} but every non-neighbor y of u implies inserting the edge {u,y}.
Therefore, we select the parent v and the children to adopt such that the number of u-
neighbors minus non-neighbors is maximized. Given a potential parent v, we always
adopt children whose subtrees contain more neighbors than non-neighbors of u. We
call those children close children. Using a DFS, we could determine for every node
how many neighbors and non-neighbors are above/below that node and thus allowing
the selection of the best parent and which children are close. However, this gives a
quadratic running time per round. Instead, QTM starts limited local searches starting
from the neighbors of u. They only visit one or two non-neighbors per neighbor. The
idea is that whenever a subtree contains more neighbors than non-neighbors, it will be
fully visited. Thus, the algorithm is able to determine all close children. Similarly, the
best parent is determined by propagating information upwards in the skeleton. As QTM
uses a priority queue to manage nodes during this bottom-up search, the running time
per round is O (n+m logΔ), where Δ is the maximum degree.

In the following, we present several novel improvements for QTM. In Sect. 3.1,
we show how to reduce the running time per round to linear in the number of nodes
and edges. Further, in Sect. 3.2, we present an additional path sorting step that modi-
fies the skeleton forest before every local move of a node u and yields a move that is
optimal with respect to the edits incident to u. This local optimality directly gives us
an inclusion-minimal algorithm as we show in Sect. 3.3. The last improvement is ran-
domization, in Sect. 3.4, we show how we can select uniformly at random among all
possible sets of edits incident to the moved node u.

3.1 Linear Running Time

To realize its bottom-up search, QTM needs to process nodes ordered by depth in the
forest. While it is straightforward to use a bucket per level in the forest, this has the
problem that this yields a running time linear in the depth of the deepest neighbor of u.
It turns out, though, that we do not need to consider deep neighbors. More precisely,
we show that we can ignore neighbors at a depth of more than 2× deg(u). Consider a
node v ∈ N(u) with depth larger than 2× deg(u). If u is connected to v in the edited
graph, this implies that u is also connected to all at least 2× deg(u) ancestors of u.
Among these, there can be at most the remaining deg(u)− 1 neighbors and thus at
least deg(u)+1 non-neighbors. Thus, this implies deg(u)+1 edge insertions. Making u
a root in the forest, i.e., deleting all edges incident to u, causes just deg(u) edits and is
thus better. Therefore, we can ignore neighbors with depth larger than 2× deg(u). We
can thus use a bucket per depth of the remaining neighbors which eliminates the log-
factor of the running time.

3.2 Sorting Simple Paths

QTMminimizes edits with respect to the choice of a parent and adopted children of that
parent. Here we show that an additional sorting step minimizes the edits incident to u
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in the edited graph independently of the chosen skeleton forest. For this, we consider
simple paths, which we define as a maximal path in the skeleton forest in which each
node has exactly one child except for the lowest node. Every node is thus part of exactly
one simple path, which may only consist of the node itself. A crucial observation is that
reordering nodes in simple paths is the only way the skeleton forest can be modified
without affecting the induced quasi-threshold graph.

Lemma 1. Let G be a graph and T a corresponding skeleton forest. It holds that N[u] =
N[v] if and only if u and v are on the same simple path.

Proof. If N[u] = N[v], then u and v are on the same simple path:
Assume otherwise, i.e., that u and v are not on the same simple path in T . Consider

the path Puv between u and v in T . As it is not simple, it contains a node that is not its
lowest node and has at least a child x that is not on Puv. As x is not on Puv, either {u,x} ∈
E and {v,x} /∈ E or vice-versa, depending on whether u is an ancestor of v or v an
ancestor of u. This is a contradiction to N[u] = N[v], thus u and v must be on the same
simple path.

If u and v are on the same simple path, N[u] = N[v]:
An edge {u,v} exists if and only if u and v are in an ancestor-descendant relationship

in the skeleton T . Consider a node u. All ancestors/descendants of u apart from its
simple path are also ancestors/descendants of all other nodes in its simple path. Further,
the nodes in its simple path form a clique. Therefore, N[u] = N[v]. 	

Lemma 2. Let T , T ′ be two different skeletons that induce the same quasi-threshold
graph G. Then the simple paths of u in T and T ′ consist of the same nodes.

Proof. Assume otherwise, i.e., that the simple paths of u in T and T ′ differ. Then there
is a node x that is on the simple path of u in T but not in T ′ (or vice-versa, but assume
w.l.o.g. that it is in T ). As x and u are on the same simple path in T , N[u] = N[x] by
Lemma 1. Lemma 1 also implies that u and x must be on the same simple path in T ′,
which is a contradiction to the existence of x and thus our assumption. Thus, the simple
paths of u must consist of the same nodes in T and T ′. 	

Lemma 3. Let T , T ′ be two skeletons that induce the same quasi-threshold graph G.
Then the only difference between T and T ′ is the reordering of simple paths.

Proof. Assume otherwise, i.e., that there were two skeletons T , T ′ that imply the same
quasi-threshold graph G but differ more than just reordering of simple paths. A forest is
uniquely determined by specifying the set of ancestors of every node. Thus there must
be a node u such that the ancestors of u in T are different from the ancestors in T ′. As a
consequence, there is a node v that is an ancestor of u in T or T ′, but not in both. Assume
w.l.o.g. that v is an ancestor of u in T . Due to T , {u,v} ∈ E. As {u,v} ∈ E if and only
if v is an ancestor of u or v is a descendant of u, v must be a descendant of u in T ′. As u
is an ancestor of v in T , N[u] ⊇ N[v]. As v is an ancestor of u in T ′, N[v] ⊇ N[u] and
thus N[u] = N[v]. Due to Lemma 1, this implies that u and v are together on a simple
path in both T and T ′.
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By Lemma 2, the simple path of u must consist of the same nodes in T and T ′.
Therefore, we can replace the simple path in T by the simple path in T ′ without alter-
ing the resulting graph, and then search for a new pair u, v as described above. This
reordering of the simple path does not change any other simple path. Therefore, if we
apply this procedure repeatedly, it cannot find the same nodes again. Thus, this proce-
dure terminates after at most n steps. As every step just reorders a simple path, the only
difference between T and T ′ was reordering of simple paths. 	


The main idea of path sorting is, before moving a node u, to move all its neighbors
to the top of their respective simple paths. Since it might unify simple paths and thus
enable reordering, u is first removed from the graph. This reordering makes it possible to
choose the lowest neighbor of a simple path as parent without needing to insert edges
to other non-neighbors in it. Note that the order in simple paths does not play a role
when adopting a node c as a child because all nodes in its path become neighbors of u
anyway. We show that this minimizes the number of edits incident to u by considering
an optimal set of edits and its skeleton forest and showing that our forest with reordered
simple paths does not yield more edits.

Lemma 4. Consider a graph G= (V,E), a node u ∈V and a skeleton forest T . Apply-
ing QTM to u on T− which is T with u removed and simple paths reordered such that
neighbors of u are at the top of their simple paths minimizes the number of edits incident
to u.

Proof. Let Q be the quasi-threshold graph with minimum edits incident to u and TQ
a skeleton forest of Q. Let T−

Q be TQ without u, children of u attached to u’s parent.
This keeps all ancestor-descendant-relationships between all nodes except u and thus
all remaining edges. The reverse of this operation is exactly what QTM does: choosing
a parent and potentially adopting some of its children. Thus, QTM can find an optimal
set of edits incident to u in T−

Q . Since, by Lemma 3, T− and T−
Q differ only in the order

of nodes on simple paths, we show that the orderings of T− and T−
Q are equally good.

Consider the parent p and children C of u in TQ. If p is the lower end of its simple
path in T−

Q , we obtain the same ancestor from the lowest node of p’s simple path in T−.
Similarly, for an adopted child c ∈ C, adoption of the highest node of c’s simple path
in T− yields the same descendants. If p is not the lower end of its simple path in T−

Q ,
we distinguish two cases: u adopted p’s only child or u is a leaf node in TQ. In the first
case, neither the position in p’s simple path nor its node order matters as any position
and node order gives the same neighbors and thus edits. If u is a leaf node in TQ and p is
not the lower end of its simple path, the node order matters as u is only connected to p
and p’s ancestors but not the nodes below p on p’s simple path Pp in T−

Q . By Lemma
3, Pp also exists in T−

Q . Every non-neighbor of u among p and its ancestors in Pp causes
an edge insertion while every neighbor of u below p causes an edge deletion. By moving
all neighbors of u to the top of Pp and choosing the lowest neighbor of u on Pp as parent,
we do not get any edits incident to nodes of Pp and thus minimize the edits among all
possible orderings of Pp. This shows that QTM finds a parent and children to adopt
on T− that minimize the number of edits incident to u. 	


What remains to show is that maintaining and sorting all simple paths does not
increase the asymptotic running time of QTM. Simple paths are maintained explicitly
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in a dynamic array, every node stores its simple path and position in it. This allows us
to swap neighbors of the node to move u in constant time to the position of the first
non-neighbor in its simple path, we also store this position. Moving nodes can cause
simple paths to be split or joined. We store simple paths ordered from lowest to highest
node. Whenever simple paths are split or merged, u is adjacent in the edited graph to the
upper part of the path either before or after the move. In a split, we remove the upper
part of the path from its end. In a merge, we add the nodes of the upper path to the lower
path. Both operations are thus linear in the number of neighbors of u before or after the
move. The running time analysis of QTM already accounts for running time linear in
the number of neighbors of u in the edited graph both before and after the move. Thus,
path sorting does not increase the asymptotic running time of QTM.

3.3 Inclusion-Minimal Editing

With the local moving routine of QTM, we can incrementally insert the nodes of a
graph G into an initially empty graph. Due to Lemma 4, this minimizes the number of
edits in each step. Overall, this yields an inclusion-minimal editing of G, as it has also
been shown, e.g., for interval graphs [26]. The basic idea is that if there was a set of
superfluous edits, these edits could have been omitted already at the steps where they
were introduced, violating the local minimality guaranteed by Lemma 4.

This inclusion-minimal editing algorithm can also be considered a one-pass stream-
ing algorithm. To add a node, we need the skeleton of the already seen nodes, which can
be stored in O (log(n)) bits per node. We only consider the edges of every node once,
the only constraint is that when we encounter a node u in the stream, we also need to
get all incident edges that are incident to the already seen nodes.

3.4 Randomized Choices

To accelerate convergence, the original QTM algorithm moves a node u only if this
reduces the number of edits and there is no rule for breaking ties between moves. The
algorithm also never adopts children whose subtrees contain an equal number of neigh-
bors and non-neighbors, as this only swaps edge deletions for insertions. We call such
children indifferent children. We now propose to break ties by choosing uniformly at
random from the best options for u, even if this does not lead to an improvement. The
rationale is that on a plateau of equally good solutions only some may lead to better
solutions in the next move. The same technique can also be applied to the inclusion-
minimal editing, where a more diverse set of solutions can be obtained.

This poses two challenges: we need to find all options, and we may count each of
them only once. In particular, different choices of a parent p and children C to adopt
might actually yield the same quasi-threshold graph and thus only one of them should
be considered. For instance, choosing a parent x without adopting any children is the
same as choosing x’s parent p as parent and adopting x. But we also cannot disregard p,
because adopting a second child of p would yield a different quasi-threshold graph.

Since, according to Lemma 2, the set of simple paths is unique, we can resolve
the ambiguity by ensuring that a node u that is moved is inserted at the bottom of its
new simple path. The lowest node of a simple path does not have exactly one child,
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for otherwise the path would not end there. Accordingly, we ignore positions where u
adopts exactly one child.

Thus, if a potential parent p has exactly one close child and no indifferent children,
we disregard it. If p has one close child, we must choose at least one indifferent child
and thus get 2ci −1 possibilities to choose among the ci indifferent children. If p has at
least two close children, we can choose an arbitrary subset of the indifferent children
and get 2ci possibilities. If p has no close children and at most one indifferent child,
we have only the single option of not adopting the child. If p has no close children
and ci ≥ 2 indifferent children, we have 2ci − ci possible choices among the indifferent
children that do not lead to exactly one child.

In our algorithm, we propagate the number of choices upwards in our bottom-up
search together with the minimum number of required edits and the best parent. When
processing a node that is a suitable parent that achieves the same number of edits, we
choose it with a probability that is proportional to its number of choices for adopting
children divided by the total number of choices aggregated so far. As the number of
choices is exponential in the number of indifferent children, we store the logarithm of
the number of choices to avoid overflows or dealing with huge integers. While this intro-
duces rounding errors when adding numbers that are of different orders of magnitude,
in these cases the chances of choosing one parent instead of the other are vanishingly
small anyway.

QTM already guarantees that we discover nodes whose subtree contains as many
neighbors as non-neighbors, so it is easy to select them. There are some cases though,
where QTM needs to be modified to propagate information about equally good parents.
In particular, this is the case if the current candidate so far shows no benefit over isolat-
ing the node to move. In that case, QTM does not propagate any information as there is
always an ancestor of the current node that is at least as good. We adapt QTM to also
propagate information about equally good parents even if the number of saved edits
is 0. We however do not insert the parent p into the priority queue unless there is an
actual improvement over isolating the node to move. The reason for this is that if p is
a non-neighbor, it causes an additional edit that leads to −1 saved edits. This cannot be
compensated further up in the tree, as otherwise the path above p to the root contained
more u-neighbors than non-neighbors and choosing the parent of p as parent of u and
not adopting any children was better.

4 Experimental Evaluation

We added our extensions to the original QTM implementation in C++ as part of Net-
worKit [31 SPP]2. All experiments were performed on an Intel Core i7-2600K CPU
with 32GB RAM. Each algorithms was executed ten times with ten different seeds and
randomly permuted node ids. By instance, we denote a combination of seed and (per-
muted) graph.

2 Our implementation is available at https://github.com/michitux/networkit/tree/upstream/qtm-
linear.

https://github.com/michitux/networkit/tree/upstream/qtm-linear
https://github.com/michitux/networkit/tree/upstream/qtm-linear
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Fig. 2. Comparison of the different variants of QTM on the COQ protein similarity dataset with
either no initialization or the initialization heuristic. Lines ending with a “x” are algorithms that
need edits for instances that are quasi-threshold graphs and are thus infinitely worse than the best
algorithm.

Our algorithms are evaluated on two datasets. The first consists of 3964 connected
components of the COG protein similarity data [2,27]. Each connected component con-
sists of a symmetric matrix of similarities, and we construct an unweighted graph from
its non-negative entries. Even though the dataset does not include fully connected com-
ponents (i.e., cliques), 1666 components remain that are quasi-threshold graphs and do
not require any edits. We restrict parts of our analysis to the 716 graphs that require at
least 20 edits. As a second dataset we use 100 social networks of Facebook friendships
at US universities and colleges [32].

Unless noted otherwise, QTM is run for a maximum of 400 iterations. We stop
early if an iteration does not result in a node movement. With randomization enabled,
however, we do continue for up to 50 iterations without improvements if nodes had
more than one option.

We use so-called performance profiles [12] to compare the number of edits achieved
by different algorithms. A performance profile indicates the fraction of instances on
which an algorithm performed within a specified percentage of the best algorithm with
the best seed on that graph. For readability, we sometimes divide the plots by vertical
lines indicating intervals of the x-axis with different linear scales.

4.1 Sorting Paths and Randomization

We first examine the impact of sorting paths and randomization on the number of edits.
In a 2×2×2-design, we combine no initialization (a spanning forest of isolated nodes)
and the previous initialization heuristic [4 SPP] with iterations that make or do not make
use of path sorting and randomization.

Figure 2 shows the results for the full COG protein similarity dataset. Despite the
many instances that are, or are almost, quasi-threshold graphs, clear differences arise,
with the old variants performing the worst. As is to be expected, quasi-threshold graphs
are not always recognized without initialization. The variants with just sorting follow
with some margin. Here, the difference between the two initialization algorithms is
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Fig. 3. Comparison of the different variants of QTM on the Facebook 100 dataset with either no
initialization or the initialization heuristic.

almost gone and no quasi-threshold graph requires any edits. This is not the case right
after the first iteration, though, so we can rule out that one iteration of this algorithm is
an alternative inclusion-minimal algorithm.

The versions with just randomization performs even better than with just sorting
paths. However, here, some graphs are not recognized as quasi-threshold graphs and a
clear gap between the two initializations remains. With path sorting and randomization,
the performance is even better, regardless of the initialization 95% of the instances are
as good as the best algorithm and seed, and almost all instances are within 10% of the
best solution.

For the Facebook 100 dataset, the results that are shown in Fig. 3 are slightly dif-
ferent. First, the instances are much more challenging with even the smallest requiring
more than ten thousand edits. There are slight differences between the different solu-
tions which mean that usually there is just one seed and algorithm that achieves the best
result on a graph, explaining why no algorithm has the best solution for more than 10%
of the instances. Also, we are no longer talking about 10% differences in the number
of edits, but at most 2.5%. Still, there are clear differences between the algorithm vari-
ants. The original two variants need at least 0.5% more edits than the best solutions
on almost all instances while the variants with path sorting and randomization need at
most 0.5% more edits than the best solutions on almost all instances. The variants with
path sorting give a good improvement, but unlike in the COG protein similarity dataset,
the differences between the initializations remain. With randomization, the difference
between the two initializations is even larger than the difference between using just
randomization and using both path sorting and randomization.

Overall, we can conclude that using path sorting and randomization significantly
improve the quality of the solutions. However, on the Facebook 100 dataset, initializa-
tion still seems to make a difference, indicating that even with these improvements we
are not able to escape all local minima. Next, we consider the inclusion-minimal editing
as initialization.
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Fig. 4. Comparison of the different initializations of QTM on the COQ protein similarity dataset
(top) and the Facebook 100 dataset (bottom).

4.2 Initialization and Convergence

Apart from the two original initialization methods, we consider three variants of the
inclusion-minimal editing that differ based on the order in which nodes are inserted.
We consider a random order and descending or ascending by degree. For the inclusion-
minimal initialization, we also consider randomization of the chosen position in the
skeleton.

First, we consider just the initialization itself in Fig. 4 for both datasets. Both plots
use as “best algorithm” the algorithm runs with the up to 400 iterations. For the COQ
protein similarity dataset, we can see that even just the initialization algorithms also
match some of the best solutions, which is to be expected as some of them require no
edits. No initialization corresponds to just deleting all edges, and we can see that for
some graphs this is very far from an optimal solution. The inclusion-minimal variants
clearly need less edits than the initialization heuristic, with the randomized order being
best and a not so clear distinction between ascending and descending order. Interest-
ingly, the variants without additional randomization seem to perform slightly better.

On the Facebook 100 dataset, a large fraction of the edges is edited, such that even
just deleting all edges is less than 50% worse than what the best algorithm achieves.
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Fig. 5. Comparison of the different initialization variants of QTM on the COQ protein similarity
dataset (top) and the Facebook 100 dataset (bottom) with both path sorting and randomization
after up to 400 iterations and after 20 iterations.

The initialization heuristic actually needs more edits than just deleting all edges, an
observation already made by Brandes et al. [4 SPP]. The inclusion-minimal initializa-
tion algorithms perform much better than that, even though they do not match any best
results. Again, the randomized order is best, following by ascending and then descend-
ing degree order. We can also clearly see again that not randomizing the choices is
slightly better. This indicates that there might be potential for further optimizing choices
in the inclusion-minimal editing algorithm.

Next, we consider how the choice of the initialization algorithm influences the result
after 20 iterations or up to 400 iterations with both path sorting and randomization
enabled. Figure 5 compares the results for both datasets. For the COQ protein similar-
ity dataset, the results are very close. The initialization heuristic wins both after 20 and
400 iterations, the inclusion-minimal editing with randomized order comes second. The
remaining variants follow, with the descending degree ordering being last. The differ-
ences are small, though, and in some cases the initialization seems to be more important
than the number of iterations.
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Fig. 6. Number of iterations used by QTM. The COQ protein similarity dataset only includes
graphs that require at least 20 edits. Whiskers extend to the 5th and 95th percentile.

For the Facebook 100 dataset, the difference between 20 and 400 iterations is clearly
visible. While the initialization heuristic clearly wins, the number of iterations seems
more important than the initialization. This can be explained by the much larger and
more difficult graphs that also require more iterations as shown in Fig. 6. Here, we
exclude the ascending and descending degree ordered initialization to improve read-
ability.

Without randomization, most instances of the COQ protein similarity dataset con-
verge within 10 iterations. On the Facebook 100 dataset, those algorithms require up to
40 iterations for most instances to converge. Enabling path sorting decreases the num-
ber of required iterations. As the initialization is not counted as an iteration, it is natural
that variants without initialization take an iteration longer in the median on the COQ
protein similarity dataset. The difference between the initialization heuristic and the
inclusion-minimal editing as initialization is small. With randomization enabled, most
instances of the Facebook 100 dataset use all 400 iterations that we allowed. With path
sorting enabled, some more instances converge earlier, i.e., either no move was possible
– which is unlikely here – or no improvement has been found for 50 iterations. For the
COQ protein similarity dataset, most instances finish in a bit more than 100 iterations.
Again, this is less with path sorting.

We conclude that the initialization heuristic introduced by Brandes et al. [4 SPP]
is still unmatched in results even though it is initially worse than the new inclusion-
minimal variants. For the inclusion-minimal editing, a random node order seems to
perform best. Path sorting leads not only to better results of QTM, but also faster con-
vergence. Randomization leads to a much larger number of iterations that yield some
improvements. Here, limiting the number of iterations is required to achieve reasonable
running times but still even with 20 iterations, randomization improves results.
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Fig. 7.Running time per edge and iteration vs. number of edges of QTMwith initialization heuris-
tic, path sorting and randomization on graphs of the two datasets requiring at least 20 edits.

4.3 Running Time

Figure 7 shows the running time per edge and iteration in microseconds for QTM with
initialization heuristic, randomization and path sorting. Although this includes the time
for initialization, we normalized by the number of subsequent iterations. Since initial-
ization time is dominated by the iterations, which in turn are linear in the number of
edges, this normalized running time should be roughly constant. For the COQ pro-
tein similarity dataset, it actually decreases with increasing graph size. Given that this
happens in the range where these graphs have only hundreds of edges, initialization
overheads might play a role. For the Facebook 100 dataset, running times actually
increase slightly with graph size. Between the smallest and the largest graph, we see an
increase from around 0.4µs to 0.6µs. We examined CPU statistics and found increased
cache misses to be a likely explanation. The percentage of cache misses increases while
the number of instructions per edge and iteration is almost constant across the Face-
book 100 dataset.

5 Conclusion

We have extended the fast quasi-threshold editing heuristic QTM with new path sort-
ing and randomization components. We have shown that path sorting both provides
new local optimality guarantees in theory and better results in practice. Our experimen-
tal results indicate that randomization indeed helps escaping local optima, but conver-
gence needs much longer, in particular for large graphs. Still, even with few iterations,
results are improved in practice. We also modified QTM into a linear-time algorithm
for inclusion-minimal edit sets, which serve well as initialization for QTM. While it
reduces the number of edits compared to the previous initialization heuristic, the final
result after convergence are slightly worse.

Therefore, it would be interesting to investigate further ways to escape local minima,
e.g., by moving several nodes at once by some form of contraction. A recent master’s
thesis [29] extends QTM to the weighted quasi-threshold editing problem where every
node pair has a cost and the goal is to find a set of edits with minimum total cost. It
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shows that with non-uniform edit costs, QTM seems to get stuck in local minima and
investigates moving whole subtrees as a remedy. While moving subtrees helps, it also
significantly increases the running time.
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2. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach for
weighted cluster editing. In: APBC, pp. 211–220. Imperial College Press (2008). http://
www.comp.nus.edu.sg/%7Ewongls/psZ/apbc2008/apbc050a.pdf

3. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4),
375–395 (2000). https://doi.org/10.1016/S0378-8733(99)00019-2

4 SPP. Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast quasi-threshold editing. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 251–262. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48350-3 22

5. Brandes, U., Holm, E., Karrenbauer, A.: Cliques in regular graphs and the core-
periphery problem in social networks. In: Chan, T.-H.H., Li, M., Wang, L. (eds.)
COCOA 2016. LNCS, vol. 10043, pp. 175–186. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48749-6 13
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Abstract. We review the space complexity of deterministically exploring undi-
rected graphs. We assume that vertices are indistinguishable and that edges have
a locally unique color that guides the traversal of a space-constrained agent. The
graph is considered to be explored once the agent has visited all vertices. We visit
results for this setting showing that Θ (logn) bits of memory are necessary and
sufficient for an agent to explore all n-vertex graphs. We then illustrate that, if
agents only have sublogarithmic memory, the number of (distinguishable) agents
needed for collaborative exploration is Θ (log logn).

Keywords: Graph exploration · Multi-agent exploration · Space complexity ·
Connectivity · Log-space

1 Introduction

When working with large data sets it is no longer justified to assume the entire input,
or even a significant fraction of it, to be accessible at once. In particular, data may be
spatially distributed along a dynamic network structure, such as the Internet or social
networks. In this setting, the systematic navigation or crawling of the network becomes
an integral component of any algorithmic processing of the data it holds. The theoretical
framework of graph exploration is concerned precisely with the algorithmic problem of
systematically traversing an initially unknown graph.

Generally, the main questions in graph exploration are regarding feasibility, i.e.,how
much computational power is necessary for systematic exploration, and regarding effi-
ciency, i.e.,how quickly a graph can be explored algorithmically. In the context of deal-
ing with large data sets, the feasibility question is of particular importance. The neces-
sary computational power can be captured theoretically by the space complexity of the
exploration problem. Intuitively, the question is what portion of a graph we need to be
able to memorize in order to avoid running in circles.

In this chapter, we review the most important results regarding the space complexity
of undirected graph exploration. In Sect. 2, we introduce the graph exploration frame-
work in more detail. In Sect. 3, we outline a general lower bound on the space com-
plexity of graph exploration of Ω (logn). Reingold’s algorithm for undirected graph
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exploration is presented in Sect. 4. We then turn to collaborative graph exploration by
a set of agents. In Sect. 5, we show that when all agents have sub-logarithmic memory
O (log1−ε n) for some ε > 0, then Ω (log logn) agents are needed to explore any undi-
rected graph with n vertices. Finally, in Sect. 6, we provide a matching upper bound
showing that a team ofO (log logn) agents can explore deterministically any undirected
n-vertex graph, even if each agent has only constant memory.

The aim of this chapter is to survey the key ideas of these results, and we only sketch
proofs on a high level. Whenever possible, intuition is prefered over formal statements,
and many details are omitted to increase accessibility. For a more formal treatment, we
refer to the original papers. Pointers to the relevant literature are given in Sect. 7.

2 Exploration and Feasibility

In the following, we consider an agent initially located at a vertex v0 of an unknown,
edge-colored, undirected graph G= (V,E). We assume the edge-coloring to be locally
unique in the sense that no two edges incident to a common vertex may share a color.
The agent’s perception ofG is limited to observing the set of colors of the edges incident
to its current location. In every step, the agent may choose one of these colors and move
to the other endpoint of the corresponding edge. Importantly, vertices with the same
set of colors adjacent to them are indistinguishable to the agent. The objective of the
agent is to explore G, i.e.,to systematically visit all vertices of G in a finite number of
steps. We are looking for a deterministic traversal algorithm that guarantees to explore
every undirected graph. Regarding randomized traversal algorithms, it is known that a
random walk of length n5 logn visits all vertices of any graph with n vertices with high
probability (Aleliunas et al. [1]). This yields a constant-space perpetual randomized
graph exploration algorithm, i.e., an algorithm that runs forever and eventually visits all
vertices. If n is known, combining this algorithm with a counter counting up to n5 logn
yields a log-space randomized graph exploration algorithm.

To illustrate the difficulty of deterministic exploration in this weak agent model,
consider the exploration of a fully regular graph G, i.e.,a graph where all vertices are
incident to edges of the exact same set of colors (cf. Fig. 1). Even if the agent knows
that G is fully regular, after the first step where it learns the degree of the graph, its
observations contain no information at all. In particular, every deterministic exploration
algorithm must produce the same sequence of colors for any two fully regular graphs
using the same colors. Intuitively, this is the most challenging setting for exploration.
Then, the algorithmic problem reduces to asking for a universal traversal sequence,
i.e.,a sequence of colors that we can follow to eventually visit all vertices, irrespective
of G and v0. Here and throughout, following a color sequence means to perform a
sequence of movement decisions according to it, and we say that a color sequence
explores G if the agent visits all vertices when following it.

The exploration problem is feasible in the sense that a universal traversal sequence
always exists for fully regular graphs. To see this, follow any path in an edge-colored
graph and then return to the starting location by backtracking along the same path to
get a color sequence that is a palindrome. Conversely, following a color sequence that
is a palindrome guarantees to yield a closed tour, irrespective of the graph and the start-
ing location. This means that we can obtain a universal traversal sequence by chaining
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Fig. 1. A regular graph with two different starting locations. By following the color sequence
“green, blue, red”, the agent either moves on a cycle (left) or not (right), but there is no way to
distinguish between these two cases as vertices are indistinguishable. (Color figure online)

together all color sequences that are palindromes in order of increasing lengths. The
resulting sequence is guaranteed to follow every path from the starting location, irre-
spective of the graph, and thus to eventually visit all vertices.

For non-regular graphs, a universal traversal sequence seems unattainable since not
every color needs to be available at every vertex. However, the exploration of an arbi-
trary non-regular graph G= (V,E) can be reduced to the exploration of a fully regular
graph Gfreg = (Vfreg,Efreg) via the construction shown in Fig. 2. To this end, we first
construct a regular graph Greg = (Vreg,Ereg) with bi-colored edges. For every vertex
v ∈ V and each color c of its adjacent edges, we introduce a color copy (v,c) ∈ Vreg,
connect the color copies of v in a cycle and add the original edges between the respec-
tive color copies. The resulting graph has only three colors. The edges in the cycles are
bi-colored with one color pointing to the next color copy, and one color pointing to the
previous color copy. Edges between color copies of different vertices have a third color.
We proceed to eliminate the bi-colored edges in Greg and obtain a fully regular graph
Gfreg. This can be done by first adding an intermediate vertex for each bi-colored edge,
and then mirroring (i.e.,copying) the entire construction and connecting each vertex of
degree 2 with its reflection with the third color.

As explained above, there is a universal traversal sequence for 3-regular graphs and,
thus, the sequence also exploresGfreg. Given a universal traversal sequence forGfreg, we
can explore G with an additional memory overhead that is logarithmic in the maximum
degree of the original graph and, thus, in O (logn). The idea is to perform a virtual
traversal of Gfreg and only actually move in G whenever the virtual traversal transitions
between color copies of different vertices ofG. The memory is used to store which color
copy of its location in G the agent is (virtually) located at in Gfreg, as well as whether
it is at a vertex or its reflection and whether it is located on the intermediate vertex of a
bi-colored edge.

While we have now established the general feasibility of the exploration problem,
the constructed exploration algorithm is not very satisfactory in the sense that it enu-
merates an exponential number of sequences before all vertices are guaranteed to have
been visited. This means that the algorithm requires an exponential number of moves
and a linear memory size to keep track of its current state. Note that as long as the color
sequence remains aperiodic, linear memory is needed to perform an exponential number
of steps and, conversely, making use of a linear number of memory bits means visiting
an exponential number of memory states and thus an exponential running time. In that
sense, there is a direct correspondence between exponential time and linear memory.
From now on, we focus on memory usage only. The natural question in this context
becomes: Can we solve the exploration problem in sub-linear memory?
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Fig. 2. Turning an arbitrary graph G into a regular graph Greg with bi-colored edges and further
into a fully regular graph Gfreg. In the construction, we order the four colors of G cyclically as
yellow-red-green-blue. InGreg, brown edges point to the next color available at the corresponding
vertex in G, teal edges point to the previous color, and purple edges move to a color copy of
another vertex. To construct Gfreg from Greg, an intermediate vertex is added to the center of each
bi-colored edge, the graph is copied, and two corresponding intermediate vertices are connected
by a purple edge. Starting with the color yellow on the left copy in Gfreg, the color sequence
“teal-purple-brown-teal-brown-purple-brown-teal-purple” for Gfreg leads to the movement along
a blue edge and a yellow edge as indicated in G. (Color figure online)
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3 Trapping a Single Agent

To approach the question of how much memory is necessary in general to deterministi-
cally explore a graph G of size n, we first need to realize how insufficient memory can
manifest itself in terms of the inability of the agent to explore: Essentially, the only way
that the agent may fail to explore G in finite time is by getting “trapped” in periodic
behavior that forces it to move on a closed tour eternally, without having visited all
vertices. With this in mind, we make the following definition.

Definition 1. A trap for an exploration algorithm is given by an edge-colored graph G
together with an initial location v0, such that the algorithm never visits all vertices of G
when starting at v0.

We fix a deterministic exploration algorithm A with a finite number b ∈ N of memory
bits and construct a trap of some size n for this algorithm. The size of our trap then
bounds the largest size of graphs that the algorithm can explore. Conversely, since the
construction can be carried out for any deterministic algorithm, we obtain a lower bound
on the required number of memory bits necessary to explore graphs of size (up to) n.

To construct a trap G for A , first observe that A has at most 2b different memory
states at its disposal. Our construction ensures thatG is a fully regular graph of degree 3,
using a fixed set of three colorsC. As observed in the previous section,A is sure to yield
the same sequence S of colors for all fully regular graphs using colorsC and irrespective
of the initial location v0. Since A has at most 2b different states, it must enter at least
one state for the second time within the first 2b steps. Assume the same state is entered
in steps 1 ≤ i < j ≤ 2b. Then the behavior of A and, consequently, S must become
periodic after step i, i.e.,S = (c1, . . . ,ci−1)⊕ S∞

p , where ’⊕’ denotes concatenation of
sequences, and Sp is a finite subsequence of S of length j− i.

Consider the infinite walkW = (v0,v1,v2, . . .) induced by S in the infinite 3-regular
tree where the set of colors of the edges incident to each vertex isC; cf. Fig. 3 (top). By
definition, A is in the same memory state after steps i and j, implying that it follows
the same infinite color sequence starting at vi in steps i+1, i+2, . . . as it does starting at
v j in steps j+1, j+2, . . . . Assume that vi = v j. Then, the algorithm moves on a closed
tour of length j− i after step i while having visited at most i+ j− i = j ≤ 2b differ-
ent vertices. We can now take the subgraph G of the infinite tree induced by all edges
incident to vertices inW as our trap. Note that this graph need not be fully regular, but
we can add missing edges by mirroring G as before (cf. Sect. 2) and connecting corre-
sponding vertex pairs of degree smaller three by an edge of a color they are missing.
This decreases the number of missing colors at all vertices of degree smaller three and
needs to be repeated at most once to make the graph fully regular.

In the case vi �= v j the algorithm may visit an infinite number of different vertices.
The intuitive idea now is to “close a loop” by ensuring that both the edges of color
ci+1 = c j+1 at vi and at v j lead to the same vertex. Of course, we cannot simply replace
the edge of color c j+1 at v j by the edge {v j,vi+1} of the same color, since we also need
to keep the edge {vi,vi+1} of this color. However, we can achieve the same result by
“folding” vi onto v j, i.e.,by identifying vi = v j and identifying the predecessors of vi
alongW and their neighborhoods accordingly. More precisely, we identify each vertex
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Fig. 3. Construction of a trap for a single agent with b bits of memory. Top: After at most 2b steps
in a fully regular graph, the same memory state must repeat (purple vertices). Bottom: Closing a
loop to trap the agent on a closed walk. (Color figure online)

v adjacent to vi with the unique vertex v′ adjacent to v j such that the colors of the edges
{vi,v} and {v j,v′} coincide. We repeat this process for all vertices vi−1, . . . ,v0 along
W ; cf Fig. 3 (bottom). Afterwards, we again take the subgraph induced by {v0, . . . ,v j}
together with their neighbors as our trap, making it fully regular as before.

In either case, we have constructed a trap of size n= O (2b). Since we can perform
this construction for any deterministic algorithm with b memory bits, this implies a
lower bound of Ω (logn) on the required number of memory bits to explore every graph
of size up to n ∈ N. We have shown the following.

Theorem 1 (Fraigniaud et al. [12]). The number of memory bits needed for undi-
rected, deterministic graph exploration is Ω (logn).

4 Reingold’s Algorithm

We will see that the lower bound shown in Sect. 3 on the memory needed to explore an
undirected graph deterministically is tight, i.e.,undirected graphs with n vertices can be
explored deterministically with O (logn)memory. This algorithmic result follows from
a famous result of Reingold [16] in which he established that USTCON ∈L . Here,L is
the class of problems solvable with logarithmic memory and USTCON is the problem of
deciding, for a given undirected graph G= (V,E) and two designated vertices s, t ∈V ,
whether s and t are connected in G. The algorithm devised by Reingold for his proof
can be turned into a log-space exploration algorithm, which we outline in the following.
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We first argue that fully regular graphs with constant degree and good vertex expan-
sion can be explored with logarithmic memory. Suppose the graph G is fully regular
with constant degree d and enjoys the property that there is a constant ε > 0 such that
for all vertex sets S ⊂ V with |S| ≤ n/2 there are at least (1+ ε)|S| vertices that are
connected by an edge to a vertex in S. An upshot of this vertex expansion property is
that the graph has at most logarithmic diameter. Indeed, for an arbitrary vertex u ∈ V
there are more than n/2 vertices within a distance of k= log(n/2)

log(1+ε) +1 of u, so that every
pair of vertices has a common vertex within distance k and, thus, the diameter is at most
2k ∈ O(logn). Similar to the argument in Sect. 2, it suffices to enumerate all returning
color sequences of length 2k which can be done with O (logn) space.

Regularity can be achieved with the transformation from G to Greg explained in
Sect. 2. Here, we stick to Greg with its bi-colored edges instead of transforming Greg

further into Gfreg since the bi-colored edges of Greg do not harm our further arguments.
We proceed to describe further transformations that turn Greg into another regular graph
Gexp with good vertex expansion. Let G be a fully d-regular graph with n vertices and
letH be a c-regular graph with d vertices where c and d are constants. Then the replace-
ment product G r©H is the graph where each vertex v in G is replaced by a copy of H
that we call the cloud of v. The edges within a cloud keep the colors that they have in
H. For each edge of G, we introduce an edge with a new inter-cloud color between the
respective vertices in the corresponding clouds; cf. Fig. 4. The resulting graph G r©H is
fully regular with degree c+1. Based on the replacement product G r©H, we introduce
another graph product, the zig-zag product G z©H. The zig-zag-product G z©H has the
same set of vertices as the replacement product G r©H, but only edges between vertex
clouds of different vertices. Specifically, let (u, i) be a vertex belonging to the cloud of
u, and (v, j) be a vertex belonging to the cloud of v. Then, the edge {(u, i),(v, j)} is
contained in the replacement product if and only if there is path of length three from
(u, i) to (v, j) in G r©H where the middle edge is an edge between different clouds. For
a vertex (u, i) there are exactly c2 such paths starting in (u, i): the first degree of free-
dom is to choose one of c colors (within the current cloud), then change the cloud with
an inter-cloud edge, and then choose one of c colors for the second cloud. Associating
each of these c2 color combinations with a new color in G z©H, we obtain that G z©H
is fully regular with degree c2. We note that this construction also works if G has bi-
colored edges by allowing inter-cloud edges also between different copies of vertices
of H. In any case, we may end up with a graph G z©H having bi-colored edges. Sup-
pose that H is of constant size and that we have a traversal sequence for G z©H. Then,
every edge traversal in G z©H corresponds to three edge traversals in G r©H. We maintain
a stack of future edge traversals in G r©H. Since H has constant degree, so has G r©H,
and we can store this stack with up to three colors in constant memory. In this way, we
obtain a traversal sequence for G r©H with constant memory overhead. From a traversal
sequence for G r©H, we further obtain a traversal sequence for G by memorizing the
current copy of the vertex of H within the current cloud similar to the virtual traversal
ofGfreg in Sect. 2. AsH has constant size, this requires only constant memory overhead.
We conclude that a traversal sequence for G z©H can be used to traverse G with constant
memory overhead.



The Space Complexity of Undirected Graph Exploration 159

Fig. 4. The replacement product G r©H and the zig-zag-product G z©H for two graphs G and H. In
the replacement product G r©H, edges within a cloud keep the colors they had in H, here brown
or teal. The edges between clouds get a new inter-cloud color, here purple. Every edge in G z©H
corresponds to a path of length three in G r©H where the middle edge is purple, e.g.,an edge color
gold in G z©H corresponds to a path in G r©H that is teal-pink-brown. (Color figure online)

It is left to show that we can transformGreg into a graph with good vertex expansion.
In order to show that a d-regular graph has good vertex expansion, it suffices to show
that the second largest eigenvalue λ of the normalized adjacency matrix is bounded
from above by a constant strictly smaller than 1; cf. Tanner [21], Alon and Milnan [3],
and Alon [2]. For the normalized adjacency matrix M = (mu,v)u,v∈V , the entry mu,v is
defined as 1/d times the number of edges from u to v. For ease of notation, we call a d-
regular graph on n vertices an (n,d,α)-graph if λ ≤ α . We use the following properties
of the second largest eigenvalues of regular graphs:

1. Alon and Sudakov [5]:
A d-regular, connected, non-bipartite n-vertex graph is a

(
n,d,1− 1

dn2

)
-graph.

2. Basic linear algebra:
Taking the k-th power of a graph means introducing an edge for each k-edge path
in the original graph. If G is an (n,d,λ )-graph, then its k-th power is an (n,dk,λ k)-
graph.
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3. Alon and Roichman [4] (cf.discussion in Reingold et al. [17, § 5]):
There exists a (c16,c,1/2)-graph for some constant c.

4. Reingold et al. [17]:
Let G be an (n,d,λ )-graph and let H be a (d,c,1/2)-graph. Then G z©H is an(
nd,c2, 18 (3λ +

√
9λ 2+16)

)
-graph.

Let H be a (c16,c,1/2)-graph with c constant as in Property 3.. For an arbitrary graph
G on n vertices, first construct Greg. Let G0 be equal to Greg except that c16 − 3 self
loops are added to each vertex. Let � = 2
log(c16n4)�. For i = 1, . . . , �, define Gi =
(Gi−1 z©H)8, i.e.,to obtain the next graph in the sequence, we first apply the zig-zag
product with H and then take the 8-th power of the resulting graph. Note that this is
well-defined since Gi−1 z©H has degree c2, so that Gi = (Gi−1 z©H)8 has degree c16,
and Gi z©H is defined. Any traversal sequence for Gi can be transformed with constant
memory overhead to a traversal sequence for Gi−1, since it involves taking the zig-zag
product with a graph of constant size and power 8 (which requires to memorize up to
7 additional steps). Thus, a traversal sequence for G� can be transformed to a traversal
sequence for G0 and, hence, an exploration sequence for G with memory overhead of
O (�) =O (logn). It remains to show that G� has good vertex expansion. We claim that
λ (Gi) ≤ max{λ (Gi−1)2,1/2} for all i = 1, . . . , �. To prove the claim, let λ = λ (Gi−1)
and note that, by Property 4.,

λ (Gi−1 z©H) ≤ 1
8

(
3λ +

√
9λ 2+16

)
≤ 1

8

(
3λ +5

)

= 1− 3
8

(
1−λ

)
< 1− 1

3

(
1−λ

)
,

implying λ (Gi)<
(
1− 1

3 (1−λ )
)8

by Property 2. If λ < 1
2 , then λ (Gi)<

(
5
6

)8
< 1

2 .
Otherwise, it is straightforward to verify that the function f (x) = (1− 1

3 (1− x))4 is
convex on [0,1] and 1 ≥ f (1) as well as 1/2 ≥ f (1/2). We conclude that f (x) ≤ x for
all x ∈ [1/2,1], in particular

(
1− 1

3

(
1−λ

))4

≤ λ ,

implying λ (Gi) ≤ λ 2. Finally, the graph G0 is regular with degree c16 and has at most
n2 nodes. By Property 1. this implies that λ (G0) ≤ 1− 1

c16n4
. With the claim above, we

obtain

λ (G�) ≤ max

{(
1− 1

c16n4

)2�

,
1
2

}

≤
{((

1− 1
c16n4

)c16n4
)2

,
1
2

}

≤
{(

1− 1
e

)2

,
1
2

}

=
1
2
.

As we sketched above, the transformation from G to G� requires only logarithmic
memory and can be conducted locally, i.e.,a traversal sequence for G� can be trans-
formed into an exploration sequence for G with logarithmic space overhead. Finally,
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we eliminate the bi-colored edges of G� as in Sect. 2. Since this construction increases
the diameter of the graph by at most a factor of 2, it has still a logarithmic diameter,
so that a traversal sequence can be constructed with logarithmic space. This yields the
following result.

Theorem 2 (Reingold [16]).Undirected graphs can be deterministically explored with
an agent that has O (logn) bits of memory.

5 Trapping Multiple Agents

After having established that Θ (logn) memory bits are necessary and sufficient for
deterministic exploration with a single agent, we now investigate whether this bound
can substantially be lowered by allowing additional agents. More precisely, we con-
sider a setting with k ≥ 2 deterministic and distinguishable agents that behave as before
individually, but move in a synchronized fashion and may exchange information while
co-located at a vertex. To see that allowing collaboration makes a fundamental differ-
ence, even for k = 2, observe that, for example, two agents can distinguish closed tours
simply by leaving one of them at the starting location; cf. Fig. 1. This additional power
is also evidenced by a drastically increased difficulty of constructing traps: For a long
time, the smallest known traps for k agents, with s memory states each, had a size of
O

(
ss

.·s )
withO (k) levels in the exponent (Fraigniaud et al. [13], Rollik [18]), compared

to the singly exponential bound of Theorem 1.
To see that a substantially different approach is needed to trap multiple agents, recall

the construction in Sect. 3: The intuitive idea was to add vertices along a tree until the
agent enters a memory state for the second time, at which point we close a loop. Since
the number of memory states available to the agent is bounded by a constant, namely 2b,
this yielded a trap of singly exponential size in b. The key difference when allowing
multiple agents is that the behavior of the agents no longer only depends on their col-
lective memory state. It now might make a difference in the behavior of the algorithm at
what points agents meet – which is exactly the reason, why they can distinguish cycles,
as explained above. This means that the behavior of the algorithm may depend in a
non-trivial way on the positions of the agents in the graph, relative to each other. As we
increase the number of vertices n, the number of such configurations grows as nk, and
we can no longer hope for configurations to ever repeat.

The key idea to overcome this is to force the agents to stay “close” to each other,
which ensures that the number of configurations stays bounded and allows us to use
the same general approach as before. The following informal definition generalizes the
notion of a trap to multiple agents.

Definition 2. A k-barrier Bk in a graph G for an algorithmA is a subgraph of G whose
removal disconnects the graph into two connected components, with the property that
no agent ever traverses Bk from one component to the other without at least k other
agents entering Bk during the traversal.

In particular, a 1-barrier plays the role of a simultaneous trap for every individual agent.
Note that agents may behave differently from one another, so we need to deal with each
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Fig. 5. Sketch of the construction of an i-barrier. Boxes indicate (i−1)-barriers.

one using a separate construction. We have seen in Sect. 3 how to construct a trap for
a single agent, and we can essentially chain traps together for the individual agents in
order to obtain a 1-barrier. We will now describe how to recursively construct i-barriers
for i∈ {2, . . . ,k}. Once we have constructed a k-barrier, we have the desired trap for the
set of all k-agents.

The idea of the recursive construction of an i-barrier is to use the same approach as
in the trap for a single agent, but replacing every edge by an (i− 1)-barrier; cf. Fig. 5.
More precisely, we fix any set of i agents and assume that only these agents enter our
construction. Since, on a meta-level, edges are now (i−1)-barriers, the agents can only
traverse these “meta-edges” if they all enter the corresponding barrier, i.e.,if they stay
somewhat close together. Essentially, throughout the traversal, all agents are guaranteed
to be located in one of the three (i− 1)-barriers surrounding some meta-vertex. Of
course, the same is true recursively within every (i−1)-barrier containing at most i−1
of the agents. By a careful recursive inspection, the total number of configurations of
the agents can be bounded independently of the number of meta vertices. This allows
a similar approach as before: Add meta-vertices until a configuration repeats and close
a loop to obtain a trap. To obtain an i-barrier, we again need to chain traps for every
subset of i agents together.

With some refinement and a thorough analysis, it can be shown that this yields a
k-barrier, and thus a trap, of size O(s2

5k
) for k agents with s memory states each. In

other words, the agents can explore graphs of size up to n ≤ s2
5k
, i.e.,logn ≤ 25k · logs

has to hold. Assuming that each agent has O (log1−ε n) bits of memory for some
ε ∈ (0,1), i.e.,just shy of the number needed to explore the graph on its own, we
obtain logs = O(log1−ε n). Combining both bounds and taking logarithms yields
k= Ω

(
log

( logn
log1−ε n

))
= Ω (log logn). This means that we need at least k= Ω(log logn)

agents to explore undirected graphs of size n, even if every agent has almost enough
memory to explore on its own!

Theorem 3. (Disser et al. [10 SPP]). Deterministic exploration of undirected graphs
needs at least Ω(log logn) agents if we allow O(log1−ε n) bits of memory for every
agent, where ε > 0.
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6 Multi-agent Exploration

We outline the design of a collaborative exploration algorithm that matches the lower
bound of Theorem 3, i.e.,we show that O (log logn) agents with sub-logarithmic mem-
ory are sufficient to explore unknown graphs of size up to n. Observe that O (logn)
agents are trivially sufficient by Reingold’s algorithm (Theorem 2), since we can let
agents move together and make each one responsible for maintaining a constant num-
ber of memory bits.

We start with a single agent with a constant number m0 ∈ N of memory bits and
show how to iteratively boost its memory by using a small number of additional agents.
First consider how much progress, in terms of visiting vertices, the agent is able to
accomplish on its own. For a single agent, we already know Reingold’s algorithm which
needs logarithmic space. Expressed differently, executing Reingold’s algorithm withm0

bits of available memory guarantees that the agent visits a number of distinct vertices
of order Ω (2m0), or completes the exploration.

These vertices can be visited multiple times, and, in general, there is no way of
knowing the order in which the vertices appear during the traversal T produced by
Reingold’s algorithm. However, using one additional agent to mark vertices and mul-
tiple repetitions of traversal with Reingold’s algorithms for different positions of the
additional agent, it can be shown that we can treat T as a simple cycle without self
intersections. Assuming that the agent has this cycle T of length Ω (2m0), for some
constant c ∈ N, that it can navigate systematically, it can position a constant number
a ∈ N of additional agents along T . Since agents are distinguishable, there are |T |a
configurations that can be established in this way. The key idea now is to use the con-
figuration of the agents along T as a form of virtual memory state, in order to boost the
amount of memory available to the agent.

The number of memory bits that can be encoded in this way is m1 = log |T |a, which
is of order am0. This means that we have boosted the initial memory capacity roughly
by a factor of a. Having more (virtual) memory at its disposal, the agent can now recur-
sively repeat the procedure, again boosting the memory by another factor of a, and
so on. After log logn levels of recursion, the amount of virtual memory is of order
alog logn ·m0 = Ω (logn). But we already know that this is sufficient to complete the
exploration, by Theroem 2.

For this approach to yield the claimed bound, it is crucial to argue that only a con-
stant number of agents and memory bits are needed in each recursive level, not only
to encode, but also to manipulate the virtual memory. In particular, in each move per-
formed in some level of the recursion, the agents encoding the virtual memory on lower
recursive levels need to be moved in the graph to stay in the same positions relative
to the agent. It can be shown that this is indeed possible with a constant overhead in
agents, and we obtain the following tight result.

Theorem 4. (Disser et al. [10 SPP]). Undirected graphs can be deterministically
explored with O (log logn) agents, even if we only allow constant memory for every
agent.
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7 Bibliographic Notes

The first exploration algorithms were designed for mazes. A maze is a subgraph of
the two-dimensional grid where the vertices are indistinguishable and each edge is
labeled with its cardinal direction. To facilitative the exploration, the agent is sometimes
equippedwith a set of distinguishable pebbles that can be dropped and retrieved at nodes.
After initial non-tight results (Blum and Sakoda [7], Budach [8], Shah [20]), it has been
proven that an agent with finite memory needs two pebbles to explore any maze (Blum
andKozen [6]) and that one pebble does not suffice (Hoffmann [14]). BlumandKozen [6]
further showed that also two agents with finite memory can explore all mazes.

General undirected graphs are harder to explore. The lower bound of Θ (logn) on
the memory needed by a single agent to explore all undirected vertex graphs determinis-
tically given in Sect. 3 is due to Fraigniaud et al. [12]. Aleliunas et al. [1] showed that a
randomwalk of length n5 logn explores an undirected n-vertex graphwith high probabil-
ity. The deterministic algorithm exploring undirected vertex graphs explained in Sect. 4
is due to Reingold [16].We here follow the presentation of the algorithm and the analysis
of Reingold’s original paper. There are also alternative proofs for this result that avoid the
use of the zig-zag-product; see Rozenman and Vadhan [19]. Reingold’s algorithm con-
structs a universal exploration sequence. This concept was introduced by Koucky [15].

Regarding the exploration of a graph by a set of cooperating agents, Blum and
Kozen [6] showed that three agents with finite memory cannot explore all finite undi-
rected planar graphs. Rollik [18] strengthened this result showing that for any number
k ∈ N of agents with s ∈ N states, there is a trap of size O

(
ss

.·)
with 2k+1 levels in the

exponent, i.e.,a graph that the agents cannot explore. Fraigniaud et al. [13] improved
this bound to k+ 1 levels in the exponent. The non-planar trap of size O

(
s2

5k)
given

in Sect. 5 is due to Disser et al. [10 SPP]. This result implies that if each agent has a
sublogarithmic memory ofO (log1−ε n)with ε > 0, thenO (log logn) agents are needed
to explore all undirected n-vertex graphs. Another consequence from their construc-
tion is that a single agent with sublogarithmic memory needs O (log logn) pebbles to
explore all undirected n-vertex graphs. The result that O (log logn) agents with con-
stant memory can explore all undirected n-vertex graphs presented Sect. 6 is due to
Disser et al. [10 SPP]. They actually showed that a single agent with constant memory
and O (log logn) pebbles can explore the graph and provide a general reduction from
agents to pebbles. They further proved that their algorithm runs in polynomial time. For
results regarding the exploration time needed by an agent with unconstrained memory,
see Dudek et al. [11] and Chalopin et al. [9].
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Abstract. In our modern digital society, cryptography is vital to protect the
secrecy and integrity of transmitted and stored information. Settings like digital
commerce, electronic banking, or simply private email communication already
rely on encryption and signature schemes.

However, today’s cryptographic schemes do not scale well, and thus are not
suited for the increasingly large sets of data they are used on. For instance, the
security guarantees currently known for RSA encryption—one of the most com-
monly used type of public-key encryption scheme—degrade linearly in the num-
ber of users and ciphertexts. Hence, larger settings (such as cloud computing, or
simply the scenario of encrypting all existing email traffic) may enable new and
more efficient attacks. To maintain a reasonable level of security in larger scenar-
ios, RSA keylengths must be chosen significantly larger, and the scheme becomes
very inefficient. Besides, a switch in RSA keylengths requires an update of the
whole public key infrastructure, an impossibility in truly large scenarios. Even
worse, when the scenario grows beyond an initially anticipated size, we may lose
all security guarantees.

This problematic is the motivation for our project “Scalable Cryptography”,
which aims at offering a toolbox of cryptographic schemes that are suitable for
huge sets of data. In this overview, we summarize the approach, and the main find-
ings of our project. We give a number of settings in which it is possible to indeed
provide scalable cryptographic building blocks. For instance, we survey our work
on the construction of scalable public-key encryption schemes (a central crypto-
graphic building block that helps secure communication), but also briefly mention
other settings such as “reconfigurable cryptography”. We also provide first results
on scalable quantum-resistant cryptography, i.e., scalable cryptographic schemes
that remain secure even in the presence of a quantum computer.

Keywords: Public-key cryptography · Security reductions

1 Introduction and Motivation

Motivation: Public-Key Cryptography. . . Public-key cryptography, introduced by
Diffie and Hellman [13] in 1976, is at the heart of modern cryptography. A public-
key encryption (PKE) scheme can be used to transmit messages securely by encrypt-
ing them. The main feature that distinguishes PKE schemes from earlier encryption
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schemes (and in particular from symmetric encryption schemes such as AES) is the
existence of two separate keys: the encryption (or, public) key is used to encrypt mes-
sages, while the decryption (or, secret) key is used to decrypt ciphertexts.

Among the first suggested PKE schemes were the RSA scheme of Rivest, Shamir,
and Adleman [35], and the scheme of Merkle and Hellman [31]. Later on, many more
followed, e.g., [6,9,12,15,20,32]. Today, PKE schemes are crucially used to protect
large-scale systems. For instance, PKE schemes secure Internet browsers [37] (includ-
ing e-banking applications such as HBCI, the home banking computer interface stan-
dard), Internet auctions [10], or simply email [39]. We stress that such applications can-
not be solved with more classical methods of encryption (like symmetric encryption)
alone. However, symmetric encryption schemes like AES do play a role in making such
applications more efficient.

It has become a standard requirement that a cryptographic scheme (and in particular
a PKE scheme) should come with provable security guarantees. Indeed, the insecurity
of a cryptographic scheme can have catastrophic consequences (think of an electronic
voting scheme), and is usually not immediately detectable. Hence, security cannot be
achieved using a trial-and-error method, and should be argued beforehand.

The dangers of a missing security proof are best demonstrated by the PKCS Inter-
net browser encryption standard [36,37]. This de facto standard defines how browsers
should encrypt their communication when accessing sensitive websites, e.g., for e-
banking, or e-commerce. An older version of that standard [36] used a PKE scheme
without security proof, and was subsequently broken by Bleichenbacher [8]. This
caused massive media attention, and made expensive updates necessary. As a result,
the updated standard [37] relies upon a variant of the RSA PKE scheme with (heuristic)
security proof.

We stress that a security proof always refers to a formal security model which covers
the possible attacks in practice. Goldwasser and Micali [20] gave the first formal secu-
rity notion, and proved a simple (but comparatively inefficient) PKE scheme secure in
this sense. Later on, more efficient provably secure PKE schemes were devised (e.g.,
[9,12]), and the considered security notions were refined (e.g., [14,32,33,38]).

. . . in a Big Data Scenario. Now consider the following simple but realistic example
scenario. Namely, imagine that every owner of a smartphone encrypts all of his/her
Internet communication (using a state-of-the art PKE scheme). Such an encryption
already takes place for selected Internet connections, and usually for communication
with email servers. However, for this example, we will assume that all communication
is encrypted. This leads to a large-scale setting in which both the number of users and
the number of encryptions is in the (large) millions. For simplicity, let us assume that
there are nU = 230 users, each performing nC = 230 (i.e., about one billion) encryptions.1

We would like to derive provable security guarantees for the used encryption in this
setting. This means that we would like to have a formal statement that the only way
to break any instance of the used encryption scheme is to solve a (preferably well-

1 Of course, many practical settings may actually involve fewer users or encryptions. To derive
meaningful universal security guarantees, however, we are assuming what seems plausible in
some realistic applications (like browser encryption or messaging apps).
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understood) mathematical problem. Unfortunately, most existing PKE schemes do not
scale well in this setting. For instance, the best known security guarantees for the PKCS
encryption standard [37] degrade linearly in the number of users and ciphertexts. This
means that while the scheme—implemented with current parameters and keylengths—
is believed to be secure against attacks of complexity 280, the best guarantees we can
currently derive for the same scheme in a 230-user, 230-ciphertext setting are almost
trivial. (Namely, in that setting, we can only guarantee that any attack on the scheme
must have complexity at least 220, i.e., the equivalent of less than a second of computing
time on a modern desktop PC.)2

Goals of the “Scalable Encryption” Project. The central goal of the “Scalable Encryp-
tion” project is to provide security models and cryptographic schemes that do scale
well to Big Data scenarios. In particular, we provide cryptographic constructions that
feature a “tight security proof” (i.e., a security reduction which gives guarantees that do
not degrade in the size of the application setting). In the following, we will present and
highlight the main contributions of the project.

2 Tightly Secure Cryptography

Our first and central concrete goal was to construct cryptographic schemes (and in par-
ticular PKE and signature schemes) with security guarantees that do not degrade in
larger settings. Technically, we have aimed at constructing cryptographic schemes with
a tight security reduction to a standard computational assumption. Several of our works
prepared in the course of the “Scalable Cryptography” project have dealt with this topic.

At the core of all of these techniques lies the observation that some computa-
tional problems (such as computing discrete logarithms in a cyclic group) are re-
randomizable. That means that one problem instance I can be re-randomized to obtain
many problem instances I1, . . . , In. The solution of any instance Ii will then also yield a
solution for the original instance I. To show scalable security of, say, a PKE scheme,
one would then start from a single instance I, and seek to embed many re-randomized
problem instances Ii in different instances of the PKE scheme. (For instance, a problem
instance Ii might correspond to the public key of a PKE instance, while the correspond-
ing problem solution might correspond to the secret key.) If an adversary breaks any
PKE instance, this leads to a solution for Ii, which in turn yields a solution for I. In other
words, breaking any PKE scheme instance (from a selection of many PKE instances) is
no easier than breaking a single given problem instance I.

There are a number of interesting computational problems (which are known to be
cryptographically useful) with this re-randomizability property. However, the difficulty
in executing the aforementioned strategy is to deal with active adversaries (that may,
e.g., send maliciously formed ciphertexts to an honest user of the encryption scheme to
see how this user reacts). Such adversaries may require a security reduction as above to
also exhibit at least partial knowledge about the secret key of honest users. This makes

2 We are also cautious when making assumptions about attacker complexity, and will typically
assume liberal upper bounds. It should be noted, however, that current (publicly known) super-
computers are known to achieve almost 260 floating-point operations per second.
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embedding a given challenge (with an unknown solution) into PKE instances much
harder (since the embedded problem instance might also be easier to solve given that
partial knowledge about the secret key).

In our work, we have found various technical ways to embed problem instances
into PKE and other cryptographic schemes. Namely, in our work [5] (published at the
TCC 2015 conference), we have presented a general framework for constructing PKE,
signature, and key exchange schemes with tight security proofs even in the face of
adaptive corruptions. We note that the emphasis of this work does not lie in practi-
cal schemes. We merely describe a general paradigm to achieve an additional security
property (security against adaptive corruptions) in large scenarios.

Our work [28] (published at the PKC 2015 conference) presents an identity-based
encryption (IBE) scheme secure in large scenarios. While there are previous IBE
schemes whose security does not degrade in the number of users, our scheme is the
first IBE scheme whose security properties do not degrade in the number of ciphertexts.
Hence, our scheme is the first IBE scheme suitable for the (very realistic) scenario of
a large number of encryptions per user. The techniques developed in this work could
furthermore be used in our next work, [16] (published at the EUROCRYPT 2016 con-
ference) to develop a tightly secure PKE scheme. Our scheme is the first PKE scheme
for large scenarios that does not require a mathematical pairing. As a consequence, our
scheme is based upon a very standard computational assumption (the Decisional Diffie-
Hellman assumption), and very efficient. This work has been awarded the “Best Paper”
at the EUROCRYPT 2016 conference.

Most tightly secure encryption schemes (including the ones from [28] and [16])
share the disadvantage of a large public key. The work [25] (published at the TCC 2016
conference) presents a technique to obtain tightly secure encryption and signature
schemes with small public keys (and ciphertexts, resp. signatures). Indeed, we could
show that the concepts introduced in [25] lead not only to tightly secure public-key
encryption schemes with short public keys (published in [17] at the CRYPTO 2017 con-
ference), but also to tightly secure structure-preserving signature schemes (published in
[1,18] at the CRYPTO 2017 and EUROCRYPT 2018 conferences), and identity-based
encryption schemes [27] (published at ASIACRYPT 2018).

At this point, it might be interesting to explain the importance of structure-
preserving cryptographic building blocks (like our signature schemes from [1,18]).
Informally, a structure-preserving building block is one in which all public operations
are algebraic (in a formally defined sense). As a consequence, it is possible to effi-
ciently conduct non-interactive zero-knowledge proofs about their execution (e.g., using
the highly efficient proof system of Groth and Sahai [21]). In other words, it is possi-
ble to efficiently and publicly prove, e.g., knowledge of a signature without releasing
that signature. This enables applications like anonymous credentials (i.e., secure digi-
tal identities) which rely on not releasing all available information publicly. Our tightly
secure structure-preserving signature schemes are the first of their kind, and form highly
flexible and universal components for scalable such systems.

Our work [7] (published at the PKC 2015 conference) provides a new framework
for obtaining digital signatures with a tight security reduction from standard hardness
assumptions. Concretely, we show that any Chameleon Hash function can be trans-
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formed into a tree-based signature scheme with tight security. Our framework explains
and generalizes most of the existing schemes as well as providing a generic means for
constructing tight signature schemes based on arbitrary assumptions, which improves
the standardMerkle tree transformation. Moreover, we obtain the first tightly secure sig-
nature scheme from the SIS assumption and several schemes based on Diffie-Hellman
in the standard model.

Our paper [23] (also published at the PKC 2015 conference) considers security
notions for public-key encryption in a slightly more realistic multi-challenge model. We
show that two well-known and widely employed public-key encryption schemes—RSA
Optimal Asymmetric Encryption Padding (RSA-OAEP) and Diffie-Hellman Integrated
Encryption Standard (DHIES)—are secure in this model. Surprisingly, our reductions
are optimal in terms of tightness in the sense that they are as tight as the ones for stan-
dard security. In the follow-up work [24] (to be published at the ASIACRYPT 2016
conference) we derive new and tight bounds for the composition of symmetric and
asymmetric primitives. In particular, we consider the realistic cases where the symmet-
ric part consists of popular modes of operation like CTR, CBC, CCM, and GCM.

We also investigate a similar generic encryption technique, the “Fujusaki-Okamoto”
method to achieve secure encryption. Namely, in [26] (published at the TCC 2017 con-
ference), we show that variants of this method achieve tight security or security against
quantum computers. Similarly, and even more generically, the work [19] (published
at the PKC 2018 conference), investigates the tightness of the generic “KEM-DEM”
paradigm to achieve efficient public-key encryption schemes.

In the paper [29] (published at the CRYPTO 2016 conference), we perform a con-
crete security treatment of digital signature schemes obtained from canonical identi-
fication schemes via the Fiat-Shamir transform. If the identification scheme is ran-
dom self-reducible and satisfies the weakest possible security notion (hardness of key-
recoverability), then the signature scheme obtained via Fiat-Shamir is unforgeable
against chosen-message attacks in the multi-user setting. Previous reductions incor-
porated an additional multiplicative loss of N, the number of users in the system. As
an important application of our framework, we obtain a concrete security treatment for
Schnorr signatures in the multi-user setting.

In the work [3] (published at the CRYPTO 2017 conference), we consider the
“memory-tightness” of security reductions, as opposed to the “runtime-tightness” more
commonly considered (in particular in most of the works from the previous subsec-
tion). Interestingly, this work finds that sometimes, security reductions have an inherent
intrinsic memory usage (i.e., the reduction necessarily requires a significant amount of
memory to perform its job), and that sometimes this memory usage grows with the size
of the application setting. This yields another dimension of relations between differ-
ent problems (and the security of certain cryptographic schemes), and shows that the
scalability of cryptographic schemes can be a multi-faceted question.

The work [4] (published at the EUROCRYPT 2020 conference) which does not con-
sider security guarantees (as given, e.g., by a security reduction), but instead investigates
how the best concrete attacks on cryptographic schemes scale to larger scenarios. As a
result, this work gives lower bounds (and thus also security guarantees) by more directly
considering all possible attacks in a generalized setting, the generic group model.
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The results we have surveyed so far are concerned with the quality of a security
reduction as a measure of scalability. This is a very important factor when deriving
concrete security guarantees, but not the only one. For instance, in our work [22] (pub-
lished at the TCC 2016 conference), we have formalized the notion of reconfigurable
cryptographic schemes. A reconfigurable scheme allows to adapt its security parameter
(i.e., the quantitative level of given security guarantees) on the fly, without changing all
registered user public keys (e.g., for encryption or signature schemes). Hence, reconfig-
urable cryptographic schemes avoid an expensive update of potentially huge public key
databases.

This work also contains proof-of-concept PKE and signature schemes. In these
schemes, every user has a long-term public key and secret key. The security of these
long-term keys is based on very weak assumptions from the realm of secret-key cryp-
tography: in our PKE scheme, for instance, the public key is the image of the secret key
under a generic pseudo-random generator. These long-term keys are not directly used
to encrypt or decrypt. Instead, they are used to derive short-term keys (e.g., for the RSA
PKE scheme) of any desired bitlength that are then used for encryption or decryption.

3 Post-Quantum Cryptography

The security of all currently used asymmetric (public-key) cryptography relies on the
intractability of only two number-theoretic intractability problems, namely the factor-
ing problem and the discrete logarithm problem over elliptic curves and finite fields.
This “monoculture” poses a dangerous security threat as, in the not too unlikely sce-
nario of scalable quantum computers, Shor’s algorithm will render all the asymmetric
cryptosystems in current use immediately insecure: All data transmitted over encrypted
channels - past and present - will immediately become public. This in particular also
holds for the cryptography considered in the previous section. Leading international
tech companies like Google and Microsoft are currently investing in building quantum
computers. It can only be speculated whether large intelligence agencies are already
in possession of a cryptologically useful quantum computer. For that reason, a num-
ber of standardization bodies (such as NIST) are currently selecting quantum-secure
asymmetric cryptosystems. Promising candidates for building quantum-resistant asym-
metric cryptosystems are, amongst others, based on finding solutions to certain difficult
problems regarding codes and lattices. In this project we also worked on the founda-
tions to find truly practical, and at the same time, provably secure encryption schemes,
key exchange protocols, signature schemes, and more complex protocols based on well
understood and meaningful hard mathematical problems over codes and lattices.

In the context of cryptography, a lattice is a (full-rank) discrete subgroup of Rn,
commonly described by a basis. Basic lattice-based cryptosystems have already existed
for almost two decades and are arguably among the most promising candidates for
quantum-resilience. They are simple and efficient in that their algorithms consist mostly
of matrix operations, and they currently resist sub-exponential and quantum attacks.
Drawing on the seminal work of Ajtai in 1996 [2], we are able to connect the average-
case complexity of lattice problems (upon which the security of our schemes is based) to
their complexity in the worst case. The latter property is unique among all known hard-
ness assumptions and is one of the many reasons why people believe in its intractabil-
ity. In this context the “learning with errors” (LWE) problem emerged as a suitable
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abstraction for a hard problem on lattices since it was shown that solving this problem
would imply breaking a few well-studied lattice-problems in the worst case, such as the
approximate shortest vector problem.

In [11] (published at EuroS&P 2018) we proposed Kyber, a simple and fast encryp-
tion scheme. The design of Kyber has its roots in the seminal LWE-based encryption
scheme of Regev [34]. Since Regev’s original work, the practical efficiency of pas-
sively secure LWE encryption schemes has been improved by observing that the secret
key can come from the same distribution as the noise and also noticing that“LWE-like”
schemes can be built by using a square (rather than a rectangular) matrix as the public
key. Kyber does some further efficiency improvements such as dropping several bits
from the public-keys and ciphertexts to save bandwidth. At the core of its security anal-
ysis lies the security reduction of the Fujusaki-Okamoto transformation [26] already
mentioned in Sect. 2, which transforms any passively secure encryption scheme into
one withstanding active adversaries. The key feature here is that the security reduction
is tight, i.e., it does not degrade with the number of evaluations of the hash function.
This, together with Kyber’s extremely fast performance, makes it very suitable for big-
data scenarios. As of 2020, Kyber has been selected by the NIST as one of the finalists
of its Post-Quantum Cryptography Standardization process for public-key encryption.3

4 Open Questions

Although the project significantly advanced our understanding of scalable security (and
in particular scalable security guarantees), many questions remain. First, we are still
missing technical tools to tackle the tight security of all cryptographic building blocks:
the tight security (and thus the scalability) of hierarchically organized schemes (such
as HIBE or hierarchical signature schemes) is not well-understood, and most known
results (such as [30]) are negative. Besides, there are few results about the scalability
of new and modern cryptographic building blocks such as obfuscation or functional or
homomorphic encryption schemes. Even though these building blocks are extremely
powerful (and imply a multitude of other building blocks and tasks), their scalability is
currently unclear.

Moreover, the interplay between cryptanalytic attacks and the guarantees given by
security reductions is generally not well-understood. The work of [4] is a promising
step in this direction, but there remains a lot to be done.
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Abstract. We consider a scenario where a server is wirelessly connected
to countless sensor nodes that continuously measure data. The task of the
server is to monitor the sensors’ data. More precisely, at each time step
the server calculates a function defined over the current measurements of
the sensors. Since the sensors only have small computational power and
tight battery constraints, the communication between the server and the
sensors should be as small as possible, i.e., we aim at minimizing the
total number of messages that is transferred.

There are various conceivable problems for the setting above. We
demonstrate our approaches on the following three: In the Top-k-Value
Monitoring Problem, the server aims at identifying the k largest values.
The Top-k-Position Monitoring Problem shifts the task to identify the
sensors observing these values. Finally, the Count Distinct Monitoring
Problem obliges the server to determine the number of distinct values
currently observed.

For all three problems, we not only present communication-efficient
protocols for one time step, we also show how it can be exploited if
the input at sensors is similar between consecutive time steps to reduce
the total communication on the long term. Thereby, we utilize different
techniques – involving sampling, dynamic data structures, filter-based
approaches, and combinations of them – to demonstrate their potential
and their limits in the broad setting described above.

Keywords: Top-k · Count distinct · Distributed monitoring ·
Distributed data streams

1 Introduction

Envision a scenario where a set of tiny, lightweight sensors is distributed in a
hazardous area (e.g., an ocean, high mountains or in space) to monitor the envi-
ronment. The sensors are connected to one or multiple central servers which have
the task to track the measurements of the sensors, i.e., the servers have to com-
pute a function of the sensor values at every point in time. This task is easy to
solve as long as the sensors continuously send their current measurements to the
servers and the latter ones have enough memory and computational power to do
computations on the sensor data at every point in time. Realistic applications,
however, require a huge number of sensors (e.g., because the area is very large,
c© The Author(s) 2022
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sensors are error-prone, sensors have only a limited battery lifetime, . . . ) that
cannot be handled by modern server hardware, or the number of required severs
might be uneconomically expensive. Additionally, sending the measured data
of the sensors continuously to the servers leads to a rapid decrease of the sen-
sors’ batteries. Therefore, to build a feasible system, the communication between
sensors and servers needs to be severely reduced.

We consider two types of randomized algorithmic approaches to reduce the
communication: The first approach is based on Monte Carlo algorithms. Sen-
sors decide randomly to communicate their current observed value to the server.
The probability of sending a message depends on the significance of the current
observed value: If the impact on the output function is small, the probability of
sending a message is low; if the impact is high also the probability of sending a
message is high. Thus, the server is not aware of all changes in the sensor values
but with a high probability it gets to know all significant changes. With this app-
roach, the server is able to compute a correct output with a high probability. In
some scenarios (for instance in safety-critical systems), the application demands
to always compute a correct output. Here, we exploit the idea of Las Vegas
algorithms that reduce the number of sent messages with a high probability but
always compute the exact output. With a low probability many messages may
be sent, however the server can always be sure to compute the correct output.
All in all, these two approaches build a trade-off between reducing the commu-
nication and computing correct outputs, while the randomization helps to keep
the trade-off small.

Considering the scenario described above, we are interested in multiple prob-
lems. In the Top-k-Value Monitoring problem, the server is interested in the k
largest values observed by the sensors at any time. In contrast to that, the Top-
k-Position Monitoring problem tackles the case where the server is interested in
the actual sensors measuring the k largest values, e.g., to track if large values
and the set of sensors observing them are correlated. As in a lot of cases a rough
estimate on the top k positions is sufficient, we also address the Approximate
Top-k-Position Monitoring problem. Besides the largest values, the server might
also be interested in how many different values are observed to get an overview
on the global situation. This is captured in the (Approximate) Count Distinct
Monitoring problem.

The aforementioned problems have in common that in practice a lot of com-
munication can be avoided compared to a naïve approach that gathers all sensor
data at every time step at the server. For example, consider the (Approximate)
Count Distinct Monitoring problem. If a subset of the sensors observes identical
values, not all of them need to communicate their observation to the server. See
Fig. 1 for a depiction. Here, a horizontal block indicates a set of sensors observing
the same value at the same time. Optimally, only one of them would need to
communicate the value to the server. Additionally, if the value that is observed
by a fixed sensor does not change significantly as time goes, the sensor does not
need to notify the server all the time. Furthermore, observations of sensors that
are not of interest should not be communicated. This can be seen when consid-
ering the Top-k-Value Monitoring problem. It would be best if all sensors not
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Fig. 1. We consider a central server that is connected to a set of sensor nodes. As
time goes, each sensor observes a sequence of values (indicated by the dots below the
sensors). Among others, communication can be avoided if a group of sensors observes
the same value at the same time (horizontal blocks).

observing one of the k largest values do not communicate at all. Note, that for
this it is required that all the sensors can receive information from the server.
In our model, we allow the server to have a cheap broadcast channel. This can
be assumed, as the central server has no need to reduce its power consumption
as opposed to the sensors.

In this paper, we examine how communication can be minimized in the prob-
lems above. Our focus is especially a theoretical analysis of techniques that allow
to capture the idea that sensor data might not change arbitrarily between con-
secutive time steps. We examine, among other things, how to use dynamic data
structures and restrictions on the adversary dictating the inputs at sensor nodes,
such that an algorithm can keep/update an existing solution for more than one
time step and reduce the overall communication.

We begin in Sect. 2 by a formal introduction of our model and the problems
we consider. We also introduce a major technique that we use called filters. After-
wards, we establish computational primitives in Sect. 2.3. In Sect. 3 we deal with
the Top-k-Value Monitoring problem followed by the Top-k-Position Monitoring
problem in Sect. 4 and the (Approximate) Count Distinct Monitoring problem
in Sect. 5.

This paper surveys results from [1 SPP,4 SPP,8 SPP,9 SPP,10 SPP] . We
only give short sketches of algorithms and proofs. For technical details, please
look at the papers above. A detailed description of the current state of the art
is presented in [10 SPP].

2 Model

In our setting there are n nodes connected to a single server. The nodes are
uniquely identified by IDs from the set {1, . . . , n} and each node i receives
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(v1
i , v2

i , v3
i . . .) as a stream of data. At time t, a node i observes vt

i ∈ N and
does not know any vt′

i , t′ > t. The superscript t is omitted if it is clear from the
context.

Following the model in [3], we allow that between any two consecutive time
steps, a communication protocol exchanges messages between the server and the
nodes. The communication protocol is allowed to use a number of rounds poly-
logarithmic in n and max1≤i≤n(vt

i). Nodes can only send messages to the server
and they are able to store a constant number of integers, compare two integers
and perform Bernoulli trials with success probability 2i/n for i ∈ {0, . . . , log n}.
The server can communicate to one node directly or utilize a broadcast-channel
to send one message to all nodes simultaneously. All communication methods
described above incur unit communication cost per message, the delivery is
instantaneous, and we allow a message at time t to have a size which is log-
arithmic in n and max1≤i≤n(vt

i).
A time step t defines a point in time at which the sensor nodes obtain a

new piece of input (vt
i for node i at time t). The protocol consists of multiple

(communication) rounds: Each sensor node performs local computations and
may send a message to the server. The server collects all messages, performs
local computations and may send a message via the broadcast-channel to all
sensor nodes.

Since all nodes are synchronized, the server can detect if no sensor sends a
message and the sensor nodes can identify if the server did not send a message.
Furthermore, the server has unrestricted capacity when receiving, i.e., it can
always receive all messages that are send to it.

At the end of each round, when the communication protocol terminated, the
server decides on the output of the function for the current time t and the whole
network proceeds to the next time step t + 1.

We assume that all observed values are pairwise different for the (Approxi-
mated) Top-k-Value and Top-k-Position Monitoring Problems and coupe with a
large number of duplicates considering the (Approximate) Count Distinct Prob-
lem.

2.1 Problems

Our focus here is on three problems; the Top-k-Value Monitoring problem, the
Top-k-Position Monitoring problem and the Count Distinct Monitoring problem.
In the Top-k-Value Monitoring problem, we are interested in the largest observed
values, i.e., the ordering of the values is of special interest. Let st

1, . . . , s
t
n be the

values observed at time t (vt
1, . . . , v

t
n) sorted in descending order.

Definition 1 (Top-k-Value Monitoring). In the Top-k-Value Monitoring
problem, the server has to output st

1, . . . , s
t
k, k ≤ n at each time t.

In contrast to keeping track of the values it might be more of interest to keep
track of the nodes observing the largest values instead (for instance in safety
critical applications). This is considered in the Top-k-Position Monitoring prob-
lem.
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Definition 2 ((Approximate) Top-k-Position Monitoring). In the Top-
k-Position Monitoring problem, the server has to output at each time t the
k nodes observing st

1, . . . , s
t
k – called the top-k. If we are interested in an

approximation, we need some more notation. For any constant ε ∈ (0, 1) let
E(t) := {i | vt

i ∈ ((1−ε)−1 st
k,∞)} be the set of nodes observing values which are

significantly larger than the kth largest one. In the Approximate Top-k-Position
Monitoring problem, at each time t the server has to output E(t) and k − |E(t)|
many nodes not in E(t) observing a value which is at least (1 − ε) st

k.

In the case that multiple nodes observe the same value, one might be more
interested in how many different values are observed. We approach this direction
by the Count Distinct Monitoring problem. Note, that we do not assume all
values to be distinct when discussing this problem.

Definition 3 ((Approximate) Count Distinct Monitoring). For a fixed
time step t, let dt be the number of distinct values observed by all nodes, i.e.,
dt = |{vt

i | i ∈ {1, . . . , n}}|. At each time step t the server has to output dt. In
the approximation variant, the server has to output an (ε, δ)-approximation at
each time step t, i.e.; for two constants 0 ≤ ε, δ ≤ 1, the server has to compute
a value x ∈ [(1 − ε) · dt, (1 + ε) · dt] with probability at least 1 − δ.

Explicitly, the values at times t′ < t do not matter for the output at time t.

2.2 Filter-Based Algorithms

One of our main techniques is the usage of filters. A filter defines for each sensor
an interval of values that do not influence the output function. Filtering the input
for an algorithm occurs in many different contexts. In algorithm engineering,
filtering has turned out to be a valuable tool to decrease the input size to speed
up the computation in certain cases. For instance the Filter-Kruskal algorithm
can accelerate the computation of minimum spanning trees of graphs [12]. It
improves the qKruskal algorithm which combines the original Kruskal algorithm
with the partitioning idea of QuickSort – the edges are not sorted beforehand
but a pivot edge is chosen, the problem is solved recursively on all edges with
smaller weight and afterwards (provided the spanning tree is still incomplete)
on all edges having a larger weight. Filter-Kruskal improves this by not using
all edges of larger weight as an input for the second recursive call but only those
edges which actually connect two different components of the graph, i.e., it filters
all edges that cannot be part of the minimum spanning tree. This idea has also
been applied to different problems later on, e.g., graph matching [11].

Another filtering approach with numerous applications is Kalman Filtering,
also known as Linear Quadratic Estimation. Its goal is to predict the state
of a system based on observations containing inaccuracies. It works in two
steps: First, system parameters are predicted and afterwards, the predictions
are updated as soon as the next observation (measurement with inaccuracies)
arrives using a stochastic weighted average approach. Applications of Kalman
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Filtering can be found in various areas, among others navigation control of vehi-
cles, robot motion planning, and signal processing. It is also provably a valuable
tool for data stream analysis. Similar to our goal, Kalman Filtering is used to
reduce the communication in a sensor server architecture in [5]. Here, Kalman
Filtering is applied on both the server and the sensor side (the sensors provide a
data stream for the server). As long as the sensor observes values that are within
a small deviation of its current prediction, the sensor does not communicate to
the server. Once the deviation exceeds a certain threshold, the sensor updates
the server.

Next, we introduce the formal notion of filters and necessary definitions for
our model. A set of filters is a collection of intervals, one assigned to each node
such that, as long as the observed values at each node are within the given
interval, the value of the output function does not change.

Definition 4. For a fixed time t, a set of filters is defined by an n-tuple of
intervals (F t

1 , . . . , F
t
n), Fi ⊆ N∪{−∞,∞} with vt

i ∈ F t
i , such that as long as the

value of node i only changes within its interval,i.e., it holds vt′
i ∈ F t′

i = F t
i for

t′ ≥ t, the value of the output function does not change. We use F t
i = [�t

i, u
t
i] to

denote the lower and upper bound of a filter interval, respectively.

We assume that nodes are assigned filters by the server. If a node violates its
filter, i.e., the currently observed value is not contained in its filter, the node
may report the violation and its current value to the server. The server then
computes a new set of filters and sends them to the affected nodes. To calculate
a set of filters that works for the entire set of nodes, the server may need to
probe some more nodes before sending out the new filters. At the end of each
time step, no node is allowed to violate its filter. An algorithm following this
approach is called filter-based.

The easiest way of defining a set of filters is to assign the value a node
currently observes as its interval. In this case the usage of filters is not very
beneficial, so we are looking for filters that are as large as possible to minimize
the number of filter changes which is directly related to the number of exchanged
messages.

Our analysis is based on the classical competitiveness approach first used in
[13] and later on formalized by [6]; see also [2] for an overview. We compare
the communication volume of our algorithms to one of an appropriately defined
offline algorithm. In our model, a general offline algorithm knows all the input
streams in advance and can trivially solve the aforementioned problems without
any communication. To still get meaningful results regarding the quality of our
algorithms, we assume the optimal offline algorithm OPT uses filters assigned by
the server to the nodes. To lower bound the cost of OPT , we count the number
of filter updates over time.

Definition 5 (Competitive Algorithms). We call a (randomized) online
algorithm ALG c-competitive if for every instance its (expected) communica-
tion volume is by a factor of at most c larger than the communication volume of
OPT.
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2.3 Computational Primitives

This section is dedicated to three subroutines that will be used in later algo-
rithms. Due to space constraints, we will use these protocols mainly as black-
boxes, see the cited literature for more details. The first subroutine is a protocol
for the Existence problem. In this problem, all nodes observe binary values,
∀i ∈ {1, . . . , n} : vi ∈ {0, 1} and the goal for the server is to output the logical
disjunction.

The Existence Protocol solves this problem in log(n) + 1 rounds. In
each round r = 0, 1, . . . , log n, all nodes that have observed the value 1 send a
message with probability 2r/n to the server. As soon as the first message reaches
the server, the protocol ends (latest if r = log(n) holds).

Theorem 1 (Existence). [9 SPP] There exists an algorithm Existence
Protocol which uses O (1) messages in expectation and at most log n+1 com-
munication rounds to solve the problem Existence.

The Existence Protocol has several applications. Most important for our
research is the detection of filter violations. The server can detect a filter violation
using only a constant number of messages on expectation.

Corollary 1 (Filter Violation). [9 SPP] There is a protocol Existence
Protocol which uses O (1) messages in expectation to identify a filter violation.
In case there are multiple filter violations one is drawn uniformly at random. If
no filter violation occurs no message takes place.

Additionally, the Top-k Protocol is able to solve the Top-k-Value Monitoring
problem. The protocol uses similar ideas as the Existence Protocol: Nodes
draw a height from a geometric distribution and a tree like structure is built.
Initially, s1 is determined by collecting a sample of all values, broadcasting the
largest one and continuing until s1 is determined. The same idea is used to find
s2, . . . , sk.

Theorem 2 (Top-k). [4 SPP] The Top-k Protocol uses k+log(n)+2 mes-
sages in expectation and O (k + log n) expected number of rounds to solve the
Top-k-Value Monitoring problem.

3 Top-k-Value Monitoring

In this section we consider problems regarding the k largest values at the current
time step t. We design and analyze Las Vegas algorithms, i.e., we always output
the correct values and can show that the total communication and number of
rounds are polylogarithmic with high probability.

Consider a general input for the Top-k problem over time. The values might
change over time as well as the nodes holding the Top-k values. As a conse-
quence, in a worst-case situation we cannot reuse any information from previous
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time steps and need to recompute the output from scratch. To counteract this
possibility, we consider two different approaches.

In our first approach, we restrict the number of values which can change
between queries, and parameterize the result in this number. We show that we
can build up a data structure which preserves important information as long
as there are not too many updates. This makes answering queries much more
efficient, as we use the data structure to quickly reduce the number of candidate
nodes which potentially hold the desired result.

In our second approach, we consider filter-based algorithms for the problem.
These algorithms have the advantages discussed in Sect. 2.2, i.e., they are very
effective if the changes in the output are not too large. To conduct a meaningful
worst-case analysis, we consider the competitiveness of the algorithms against a
filter-based offline algorithm.

Before we give the details of our solutions, we shortly mention that our proto-
cols which compute the Top-k from scratch are essentially optimal with respect
to the amount of communication. Intuitively, we can show that an algorithm can-
not do much better than performing a binary search on n values. The algorithm
can always ask a set of nodes for their value, and then broadcast the maximum
to ‘eliminate’ all nodes with a smaller values for the process. Formally, Yao’s
minimax principle considering a random permutation as input can be applied.
Each input occurs with probability (1/n!) and it is shown that any deterministic
algorithm needs at least Ω (log n) messages on expectation which yields:

Theorem 3 ([8 SPP]). Every comparison-based randomized algorithm requires
at least Ω (log n) messages on expectation to compute the maximum in our model.

3.1 Dynamic Distributed Data Structure

In this section we consider a data structure for the rank related problems of
Top-k and k-Select. The k-Select problem asks to identify the data item with
rank k. We consider the approximate version, where we have to output an item
with rank in [(1− ε)k, (1 + ε)k] with probability at least 1− δ. An approximate
version with weaker conditions will also help us to solve the Top-k problem.
For the bounds on communication, we consider the following setting: Only when
there is a query for the Top-k or for k-Select, the output is determined. We allow
the parameters to be different from query to query and, furthermore, we allow
multiple k-Select queries at the same time step.

Our results are based on the idea of maintaining a (distributed) data struc-
ture which is used to answer a query and is informed about each update. More
precisely, at every point in time, the data structure keeps track of an approxi-
mation of a data item with rank k. These approximations can be exploited by
the protocols for a Top-k or k-Select computation to significantly decrease the
communication and, interestingly, also the time bounds, rendering this approach
very powerful.

The data structure supports the following operations: Top-k: Output
{st

1, . . . , s
t
k}, StrongSelect: Output d ∈ {st

(1−ε)k, . . . , st
(1+ε)k} and WeakSelect:
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Output d with st
k·logc1 n ≤ d ≤ st

k·logc2 n, with c1, c2 > 1. The Top-k and
StrongSelect operations answer queries for the Top-k and k-Select problems,
while the operation WeakSelect supports the other two. Our data structure
guarantees the following:

Theorem 4 ([4 SPP]). There is a distributed data structure with expected
amortized total communication cost for an update of O (1/polylog n). The amor-
tized number of rounds for an update is O (1). The data structure is able to
answer a k-Select query correctly with probability at least 1 − δ. For that,
O (1/ε2 log 1/δ + (log log n)2) messages and O (log log n

k ) rounds are required
on expectation. Additionally, the expected total communication cost to answer a
Top-k query is O (k+log log n) and the expected number of rounds is O (log log n).
The output is always correct.

Our data structure is designed as follows. We maintain a Sketch(t) about the data
items received at time t in the server. The task of such a sketch is to maintain
items to answer WeakSelect queries instantly. A Sketch(t) is a subset of data
items denoted by {rt

1, . . . , r
t
m}, where m ≤ log n. We call Sketch(t) correct if

it consists of a set of data items {r1, . . . , rm} such that, for each k = 1, . . . , n,
there exists rk such that st

k·logc1 n ≤ rk ≤ st
k·logc2 n. We say the data item rk is

the representative of the set of data items d with sk·logc1 n ≤ d ≤ sk·logc2 n. To
answer the WeakSelect query for a specific rank in [k · logc1 n, k · logc2 n], we
simply output the representative rk+1.

Computing a Sketch is somewhat expensive, hence we want it to be valid even
after some values have been updated. It is easy to see that for appropriately
chosen constants c1, c2, up to logc n values can change without the property
being lost. In conclusion, we can achieve the stated performance guarantees by
computing a Sketch which is valid for logc n updates, after which we recompute it
from scratch. The WeakSelect operation simply returns an appropriate element
from the Sketch.

Now, recall that there is a protocol for Top-k which uses k + log(n) + 1
messages and O (k + log n) rounds in expectation (Theorem 2). These bounds
hold when the protocol is executed on n nodes without using any information
from previous time steps. We can now utilize our Sketch in the following way:
We execute a WeakSelect operation with input k, such that we receive a data
item d of size at most st

k·logc2 n. Then, we execute the Top-k protocol only for
nodes which hold a data item smaller than d, i.e., we execute the protocol only
on O (k log n) nodes instead of n, yielding the desired bound. The bound on the
StrongSelect operation can be obtained in a similar fashion.

3.2 Filter-Based Algorithm

We turn our attention to filter-based algorithms which we evaluate in the frame-
work of competitive analysis. We are going to compare the algorithm against
an optimal offline algorithm, which knows all of the future input in advance.
To make this analysis meaningful, it is necessary to also restrict the offline algo-
rithm to a filter-based approach. The important part of the filter-based approach
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is that the offline algorithm has to communicate a set of valid filters to the nodes.
In accordance to Definition 4, this means that the offline algorithm at least has
to communicate each time the output changes.

The algorithm works as follows: First, the k largest values are determined
using the Top-k-Protocol of Theorem 2 . Afterwards, the server broadcasts sk

such that all nodes i with vi ≥ sk define their filter to Fi := [vi, vi] and the
remaining nodes i with vi < sk to Fi := [−∞, sk]. Whenever a node with one
of the k largest values observes a different value, a filter violation occurs such
that the node sends a message to the server. Each of the other nodes (those
with filters Fi := [−∞, sk]) that observes a filter violation executes the Top-k-
Protocol (to prevent that every node sends a message). The server unifies and
outputs the k largest values of the nodes without a filter violation from the past
time step and the new values of the current time step. This algorithm has the
following guarantees.

Theorem 5 ([4 SPP]). There is an online algorithm which monitors the Top-
k-Values and is O (k + log n)-competitive against an optimal filter-based offline
algorithm.

4 Top-k-Position Monitoring

In this section we consider monitoring the IDs of the nodes which observe the
Top-k values rather than the values themselves [8 SPP,9 SPP]. The intuitive
advantage is that small updates to the values of the nodes holding the Top-k
do not necessarily mean a change in the Top-k positions. Hence, in a scenario
where there are a lot of small fluctuations in the observed values but the overall
ranking of nodes stays the same, we have to utilize much less communication if
we monitor the nodes.

We only consider filter-based algorithms in this section. For the general app-
roach as in Sect. 3.1, there is no further benefit from monitoring only the posi-
tions, as the entire data structure approach aims at optimizing cases in which
only a fraction of nodes observe new values. On the other hand, it directly pro-
vides a solution for the positions since nodes can always send their IDs along
with their values.

For the filter-based algorithm, we expect less communication due to the rea-
son explained above. In fact, we observe an increase in the competitive ratio for
the position monitoring: Under worst-case input sequences, the offline algorithm
can gain a greater advantage in comparison to the online algorithm.

Theorem 6 ([10 SPP]). Let each sensor node observe values from 1, . . . , Δ.
There is an online algorithm which monitors the Top-k-Positions and has a com-
petitiveness of O (k + log n + logΔ) compared to a filter-based offline algorithm.

4.1 Filter-Based Top-k-Position Monitoring

The main observation for our approach is that for this problem it is sufficient to
send only a single value v which divides the Top-k from the remaining nodes,
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i.e., a value which is between the kth and the (k + 1)st largest value. Based on
this observation, the main task for the online algorithm is to decide where to set
the value v which divides the Top-k and the remaining sensor nodes from each
other. Since no information about the future is known, and the adversary has no
restriction in the process of generating the values that the sensor nodes observe
in future time steps, we simply take the median value.

Top-k Position protocol: Initially identify the kth and (k+1)st largest values
and the respective sensor nodes (using the one-shot protocol). As long as the
Top-k-Positions do not change, define the bound for the filters as the median
value between the kth and the (k + 1)st largest value.

In addition to the execution of the one-shot protocol from Theorem 2, this
strategy yields additional O (logΔ) messages in expectation by applying the
Existence Protocol from Theorem 1 for identifying a filter violation. Viola-
tions can occur until we have found the correct separation between the kth and
(k+1)st largest value, which takes at most logΔ steps, because by choosing the
median value, we essentially perform a binary search for the correct value. Note,
that since the adversary is offline adaptive, it is easy to see that every online
algorithm needs at least Ω(logΔ) messages which easily translates to an overall
lower bound of Ω(k + log n+ logΔ) on the competitiveness for any randomized
online algorithm. By this, the bound in Theorem 6 is asymptotically tight.

While this strategy performs generally well under minimal changes to the
input values, a lot of communication can occur if, e.g., the nodes holding the
kth and (k + 1)st largest values often switch positions, but these values are
almost the same. In such a situation, it might be sufficient not to take note of
the exact Top-k (e.g., for outdoor temperature one degree differences might not
matter to us). We address this by proposing an algorithm calculation positions
for Approximate Top-k as by Definition 2.

4.2 Filter-Based Approx. Top-k-Position Monitoring

In this section we allow the online algorithm to have some errors in its output and
compare against an optimal offline algorithm which solves the exact problem.
Recall that monitoring the Approximate Top-k-Positions allows (only) the online
algorithm to choose nodes as an output which are ’close’ to the kth largest value
(see Definition 2). Observe that filters are allowed to overlap if we consider the
relaxation of the Top-k-Position problem.

We want to make use of the allowed error in the following way: When solving
the exact problem, we had to search the value domain for the correct separation
between the kth and (k + 1)st ranked value. Allowing an error means that we
only need to find an approximation of this separating value, resulting in a faster
search. In fact, if we introduce an additive error (say M), it is easy to see that
the competitiveness compared to a filter-based offline algorithm which solves the
exact problem is reduced from O (k+log n+logΔ) to O (k+log n+log(Δ−M)).

However, if we use the standard notion of a multiplicative error the following
disadvantage occurs: If the values we search for are smaller, the range of values
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which lie within the margin of error also becomes smaller. So in a way, the
criterion for a valid outputs becomes stricter when dealing with smaller values.

To circumvent this shortcoming, we first apply a binary search strategy on a
logarithmic scale which terminates after log logΔ filter violations and stops with
the property that the allowed error can only vary within constant factors. Applying
the approach from the algorithm in Theorem 6 with an early stopping rule, the
following can be achieved:

Theorem 7 ([10 SPP]). Let each sensor node observe values from 1, . . . , Δ.
There is an online algorithm which monitors the Approximate Top-k-Positions
with a competitiveness of O (k+ log n+ log logΔ+ log 1/ε) compared to a filter-
based offline algorithm which monitors the exact Top-k-Positions.

4.3 Approximate Offline Algorithm

In this section, we study a variant in which the optimal offline algorithm is
allowed to introduce an error, i.e., both the online and offline algorithms monitor
the Top-k-Positions approximately. It turns out that it is much more challenging
for online than for offline algorithms to take advantage of the relaxed conditions
for a correct output, resulting in a significantly higher competitive ratio. This
fact is formalized in a lower bound of Ω(n) (for constant k) [9 SPP], which is
much larger than previous upper bounds of O (k + log n + logΔ) for the exact
problem. Intuitively speaking, the online algorithm has to choose where to set
filters, but also has to choose a subset of nodes the output is based on which
significantly increases the lower bound:

Theorem 8 ([10 SPP]). Any filter-based online algorithm which solves the
approximate Top-k Position Monitoring problem cannot be better than
Ω(n + logΔ)-competitive.

We consider two settings in which we compare to an approximate offline algo-
rithm and design algorithms for the respective settings: First, an online algorithm
has the task to solve the problem with the same error ε as the offline algorithm
and second, an online algorithm is allowed to use 2ε, i.e., twice the error of the
offline algorithm.

For the first setting, the online algorithm is allowed to make use of the same
error ε as the offline algorithm, which results in a competitiveness of O (n2 logΔ)
(assuming reasonable values of ε or simply assuming to be constant). Intuitively
speaking, in this scenario the online algorithm has to solve two questions at the
same time: The bounds of the filter intervals, and the choice of the subset of
nodes for the output.

Theorem 9 ([9 SPP]). Assuming ε is a constant, there is an online algorithm
for the approximate Top-k Position Monitoring problem which is O (n2 · logΔ)-
competitive.
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This interaction between the two questions leads to a gap between the lower
bound and the upper bound stated above. To reduce the power of the adversary
but still to consider the problem of choosing a subset of nodes for the output, we
consider an augmented version which allows the online algorithm to use an error
of 2ε compared to ε in the offline algorithm. The algorithm is O (n)-competitive
(again with reasonable assumptions on ε and also on the relation of n and Δ).
In this setting with a constant number of filter violations it is possible to argue
on the placement of filters and thus the combination of filter placement and the
subset of the nodes do not take that much of a role expressed in the following:

Theorem 10 ([9 SPP]). Assuming ε is a constant and logΔ = O (n), there
is an online algorithm for the approximate Top-k Position Monitoring problem
which is O (n)-competitive against an optimal offline algorithm using an error
of 2ε compared to the error of ε of the offline algorithm.

5 (Approximate) Count Distinct Monitoring

In the following section, we consider the Count Distinct Monitoring problem
where the server is tasked to count how many different values are observed at the
sensors. More specifically, we establish an (ε, δ)-approximation of the number of
distinct values dt at time step t. On a high level, our approximation scheme shows
how one can combine both a filter-based approach together with a sampling
technique to shrink the required communication. Due to space constraints, we
only explain our techniques on a high level. For details we refer to [1 SPP].

The key idea for estimating dt is to follow a sampling approach on the values
(not on the nodes). We create a sample out of all values and use the Existence
Protocol (Theorem 1) to identify a representing node for each sampled value,
i.e., one node per value of the sample set observing the value. Then, we monitor
the identified representing nodes to keep track of dt over time. For the monitor-
ing, a filter-based approach is utilized, allowing us to compare the communication
volume of our protocol to a minimal filter-based one as already done in previous
sections.

We are able to achieve an (ε, δ)-approximation that is kept valid for multiple
time steps depending on how much the values change in consecutive time steps
(parameterized by σ). Using the filter-based approach, our analysis relates to
the number of messages exchanged by an optimal filter-based approach (R∗). In
total, we arrive at the theorem below.

Theorem 11 ([1 SPP]). There is an (ε, δ)-approximation for the Count Dis-
tinct Monitoring problem for T time steps that uses O ((σ+δ)R∗ log n

dt
T 1

ε2 log 1
δ )

messages. Here, the change in the number of nodes observing a fixed value
between consecutive time steps is upper bounded by a constant factor σ ≤ 1/2
and R∗ is the minimum number of changes of representatives for a given input.

The bound stated above is comprised of different aspects which are reflected
by factors stemming from a sampling approach Θ(1/ε2 log 1/δ), the fact that
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the number of domain changes is bounded Θ(σ + δ) and the competitiveness of
monitoring the representative for one domain ( O (log n · R∗

v) ) with respect to
R∗

v, the number of representatives to monitor that a value v was observed used
by an optimal offline algorithm.

The bound of the algorithm can also be expressed as O (log n·R∗
S ·1/ε2 log 1/δ)

where R∗
S denotes the optimal number of representatives for the sample set S

throughout the time period T . Furthermore, focusing on the aspect of dynamic
algorithms, the bound can also be expressed as O ((σ+δ) ·T ·1/ε2 log 1/δ). Note
that these bounds are different bounds for the same algorithm and only reflect
different input sequences more properly.

5.1 Computation for One Time Step

The computation for one time step takes place in two phases. First, a constant
factor approximation for dt is created. In the second phase, the constant approx-
imation is used to determine a sufficiently large probability that is broadcasted
to the sensors, which in turn create a sample out of all observed values that is
reported to the server. Based on the size of the sample set and the previously
calculated probability, the server can estimate dt up to a factor of ε with a
probability of at least 1 − δ.

It is crucial here that we do a random experiment for a value, i.e., all sensors
observing the same value should see the same outcome of the random experiment.
This can be achieved by a public coin [7]. A public coin is a random string
consisting of fully unbiased bits that is common for all sensor nodes. It can be
implemented by having the same pseudorandom number generator at each sensor
initialized by a common seed that is broadcasted by the server at the beginning
of each phase of the algorithm. Note that such an approach only increases the
communication complexity by an additive constant. A set of sensors (observing
the same value) is able to do a random experiment together by considering the
same substring of the public coin (which is predefined by the value the sensors
are observing).

For a constant factor approximation we first let the sensors draw a random
number with the public coin based on a geometric distribution, i.e., we generate
a random height hv for each value v. Then the server triggers a communication of
the values of largest height by polling the heights from largest to smallest in syn-
chronous rounds. Thereby, for each value that is communicated, the Existence
Protocol is used (cf. Theorem 1) to bring down the number of communicated
messages to a constant.

After we have a constant factor approximation, we calculate a probability p
which is broadcasted to the sensors. With probability p a value is communicated
to the server in the second phase. Whether or not a value is communicated is
again decided for all sensors observing the value using the public coin. For each
of the values selected in this phase, the Existence Protocol is used again
(cf. Theorem 1) to identify a representing sensor. Such a representing sensor
witnesses that the sampled value is observed. p is chosen with respect to ε,
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δ and the constant factor approximation such that the server can compute an
(ε, δ)-approximation based on the number of received values of the second phase.

In the end, most of the communication happens due to the chosen probability
to have a sufficiently large sample of the observed value. Thus, we arrive at the
theorem below.

Theorem 12 ([1 SPP]). There is an (ε, δ)-approximation algorithm for the
Count Distinct Monitoring problem for one time step using O (1/ε2 log 1/δ) mes-
sages on expectation.

5.2 Monitoring over Multiple Time Steps

In the worst case values might change arbitrarily between multiple consecutive
time steps and a sensor that was used as a representative for a value might
not be of use even after a single round. However, as argued before, one expects
based on practical scenarios that the values that are observed at a fixed sensor
are similar in consecutive time steps. To analyze the quality of our algorithm
with regard to the significance of changes in consecutive time steps, we use a
filter-based approach. The idea is to reuse the results of the (relatively) costly
computation of one time step for consecutive time steps as long as the values are
similar to a certain degree. The filter is implemented by the representing sensors
that are identified, i.e., we compare how many times our protocol has to identify
such a representing sensor compared to how many times an optimal filter-based
algorithm has to do this (R∗).

Recapitulate that using a public coin, a sample set of values was determined.
The server keeps track of the sample after an initial (ε, δ)-approximation is done.
Thereby, any sensor sends a message to the server if it observes a value in the
sample that has not been observed previously. The server estimates based on such
messages how many values are in total newly observed. Similarly, if a represen-
tative for a value in the sample stops observing the latter, a new representative
is searched (using the Existence Protocol, cf. Theorem 1) and if none is
found, the server estimates how many values left in total. Since any filter-based
algorithm has to communicate at some point when an optimal representative
sensor stops observing its value, our result depends on the minimum possible
number of such changes R∗ as it can be seen in Theorem 11.

6 Conclusion

In this work we elaborated on models for dynamic input sequences and designed
and analyzed algorithms which handle these settings. The respective bounds
reflect this by comparing the communication to an optimal filter-based algorithm
or by introducing parameters expressing how ’fast’ an instance changes from time
step to time step. We have also shown that there is an algorithm which combines
these two techniques properly.
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As a next step it would be interesting to see how these techniques perform in
the presence of sliding windows. The fact that sensors are not capable of storing
the entire history of the data stream has an influence on the output quality or
the number of messages the sensors need to send to the server, although these
values might not be relevant for the current time step.

Another aspect on the input streams might have a significant impact on
communication bounds: Assuming the streams have a structured property, e.g.,
be provided by some random process and thus might be assumed to generate
similar observations in consecutive rounds at a respective sensor node. With
such an assumption in mind we assume to get bounds in return which reflect the
communication complexity to be proportional in the ability of projecting future
observations based on past observations.
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Abstract. We review algorithmic techniques for energy conservation in process-
ing environments handling big data sets. Firstly, we address dynamic speed scal-
ing, where processors can run at variable speed/frequency. The goal is to use the
speed spectrum of the processors so as to minimize energy consumption while
providing a desired service. Here we focus on multi-processor platforms with
heterogeneous CPUs. Secondly, we examine power-down mechanisms where idle
devices can be transitioned into low-power standby and sleep states. We consider
power-down mechanisms in massively parallel systems, where the components
have to coordinate their active and idle periods. In particular we focus on data
centers with homogeneous as well as heterogeneous servers.

Keywords: Approximation algorithm · Competitive analysis · Dynamic speed
scaling · Homogeneous processors · Online algorithm · Polynomial-time
algorithm · Power-down mechanisms · Power-heterogeneous processors

1 Introduction

The processing of big data sets crucially depends on powerful hardware environments.
Big data is typically processed in data and computing centers. Nonetheless, today even
a single PC can solve problems with data volumes that were considered huge just a few
years ago. In addition to speed, energy consumption has become a major concern in
computing environments. Information and communications technology (ICT) systems
consume a significant amount of energy. Currently personal computers, data centers and
communication networks use 5–9% of the total electricity worldwide [10,31,34]. It is
anticipated that electricity used by ICT could exceed 20% of the global total by 2030.
Data centers consume about 200 terawatt hours per year, which corresponds to 1.5%
of the global electricity demand [10,34]. This is more than the energy consumption of
many (European) countries.

At the heart powerful hardware environments consist of processing units such as
servers, PCs and – at the bottom level – CPUs. They may operate separately and sequen-
tially but in most cases form parallel and, in particular, massively parallel systems.
Nowadays standard PCs and laptops are equipped with multicore architectures. More-
over, in computing and data centers the available processors are interconnected so that
hundreds or thousands of CPUs can work on the same application.

In this chapter we will review algorithmic techniques for energy savings in hard-
ware and, in particular, processor systems. The study of such approaches has received
c© The Author(s) 2022
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quite some interest over the past 15 years, see e.g., [3,14,21,32] and references therein.
Essentially, there exists two general techniques towards an energy conservation in pro-
cessor systems.

(1) Dynamic speed scaling: Many modern microprocessors can run at variable speed
of frequency. Examples are the Intel Speed Step and the AMD Power Now! processors
as well as the VIA Technologies LongHaul CPUs and the AsAP 1 chips. The speed
changes are implemented at the hardware level and the operating system level. High
processor speed implies high performance. However, the higher the speed the higher
the energy consumption is. The goal is to use the full speed/frequency spectrum of a
processor so as to minimize the overall energy consumption, while providing a certain
service.

(2) Power-down mechanisms: A well-known technique for energy savings is to tran-
sition a given system – such as the display of a desktop, a laptop, or simply a CPU – into
a standby or hibernate mode if it has been idle for a while. The design of power-down
strategies becomes particularly challenging in multi-processor environments, where the
active and idle periods of the components have to be coordinated so that the system can
satisfy a desired processing demand.

In dynamic speed scaling, energy is conserved by optimally exploiting the speed
spectrum of processors. Power-down mechanisms reduce energy consumption by tran-
sitioning idle systems into low-power sleep states. In the following sections we address
both of the above techniques, focusing on results that were achieved within our project
of the SPP 1736.

2 Dynamic Speed Scaling

Dynamic speed scaling has been studied extensively in the algorithms community. Prior
work has considered single-processor environments as well as multi-processor plat-
forms with homogeneous CPUs. In this context a fundamental algorithmic optimization
problem was introduced in a seminal paper by Yao, Demers and Shenker [39]. Specif-
ically, we are given a single variable-speed processor. If the processor runs at speed s,
then the required power is (proportional to) f (s) = sα , where α > 1 is a constant. In
practice, α is typically a small value in the range [2,3]. In fact the cube-root rule for
CMOS devices states that the speed s of a processor is proportional to the cube-root of
the power or, equivalently, that power is proportional to s3. Obviously, when consider-
ing a time horizon, energy consumption is power integrated over time.

Yao et al. [39] define a deadline-based scheduling problem. We are given a sequence
σ = J1, . . . ,Jn of jobs, where each job Jj is specified by a release time r j, a deadline d j

and a work volume wj. If a job Jj is processed at fixed speed s, then it takes wj/s
time units to complete the job. Preemption of jobs is allowed. The goal is to find a
feasible schedule, respecting the deadline constraints, that minimizes the total energy
consumption. For simplicity it is assumed that a processor can run at any speed. In
particular, there are no upper and lower bounds on the speeds. Also speed changes are
instant. Yao et al. [39] prove that the offline variant of the problem, where all jobs are
known in advance, is polynomially solvable.

In the online variant of the problem, the jobs are revealed at their release time. At
any time a scheduling algorithm has to make a decision without knowledge of any future
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jobs. Given a job sequence σ , let A(σ) denote the energy consumed by A on σ and let
OPT (σ) be the minimum energy consumption required for σ . Online algorithm A is
called c-competitive [38] if there exists a constant d such that A(σ) ≤ c ·OPT (σ)+ d
holds for every job sequence σ [38]. The constant d must be independent of σ . We
remark that, for the results presented in this article, the stated competitive ratios hold
without an additive constant. Yao et al. [39] devised two elegant online algorithms,
called Average Rate and Optimal Available. They showed that Average Rate achieves
a competitive ratio of αα 2α−1, for any α ≥ 2. Bansal et al. [21] analyzed Optimal
Available and proved a competitive ratio of αα .

Speed scaling on homogeneous parallel processors, considering again deadline-
based scheduling, was studied in [6,12,23]. It is assumed that job migration is allowed,
i.e. whenever a job is preempted, it may be moved to a different processor. Hence, over
time, a job may be executed on various processors as long as the respective processing
intervals do not overlap. Albers et al. [6] show that the offline problem can be solved
optimally in polynomial time using a combinatorial algorithm. Furthermore they extend
the algorithm Optimal Available and prove a competitiveness of αα . An extension of
Average Rate attains a competitive ratio of αα 2α−1 +1.

2.1 Speed Scaling on Heterogeneous Processors

In [7 SPP,8 SPP] we present a comprehensive study of dynamic speed scaling in het-
erogeneous multi-processor environments. This is a very timely problem as data and
computing centers typically host a variety of hardware architectures. Prior to our work,
Bampis et al. [18] examined a setting where the power functions of all the processors
are convex. For the offline problem they devise an algorithm that returns a solution
within an additive ε of the optimum and runs in time polynomial in the size of the
instance and 1/ε . Gupta et al. [29,30] study speed scaling on heterogeneous platforms
with the objective to minimize energy and the total flow time of jobs.

In [7 SPP,8 SPP] we focus again on classical deadline-based scheduling and assume
that m power-heterogeneous processors P1, . . . ,Pm are given. Let fp(s), 1 ≤ p ≤ m, be
the power function of processor Pp, depending on speed s. We consider two classes of
functions.

1. General power functions: The function fp(s) of each processor Pp is an arbitrary
continuous and monotonically increasing function of s.

2. Standard power functions: Each processor Pp has a power function of the form
fp(s) = sαp , where αp > 1 is a constant. Let α = max1≤p≤m αp.

We assume that job preemption and migration is allowed. In the following let t1 <
t2 < .. . < tl < tl+1 be the sorted sequence of all possible different release times and
deadlines of jobs. Let Ii = [ti, ti+1), for i= 1, . . . , l.

2.2 The Offline Problem with General Power Functions

In a first step we develop an algorithm for the offline problem that is based on linear
programming and applies to a wide family of continuous power functions. Our linear
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program (LP) formulation is more compact than the configuration LP proposed in [18].
The latter one contains an exponential number of variables and requires the use of the
Ellipsoid method, which may not be very efficient in practice. Moreover, the formula-
tion in [18] is solvable only for convex functions.

In order to define our LP, let sLB and sUB be a lower bound and an upper bound on
the speed of any processor in an optimal schedule. We could choose sLB = wmin/∑i |Ii|
and sUB = ∑ j w j/mini |Ii|. Given any constant ε > 0, we geometrically discretize the
interval [sLB,sUB] and define the set of discrete speeds

D= {sLB,sLB(1+ ε),sLB(1+ ε)2, . . . ,sLB(1+ ε)k},

where k = min{i | sLB(1+ ε)i ≥ sUB}. This set contains O( 1
ε log( sUB

SLB
)) speed levels.

We consider the wide class of continuous power functions satisfying the following
invariant. For any small constant ε > 0, there exists a small value ε ′ > 0 such that
f ((1+ε)s)≤ (1+ε ′) f (s) holds for any speed s∈ [sLB,sUB]. Intuitively, a small increase
in the speed does not increase the power function by too much. In the case of standard
power functions we have that ε ′ = (1+ ε)α − 1. Hence ε ′ may depend on ε and the
power function; it is not necessarily smaller than 1. We first show that there exists a
(1+ε ′)-approximate schedule such that, at any time, every processor uses a speed level
that belongs to D.

For the definition of our LP, for each interval Ii and each job Jj such that Ii ⊆ [r j,d j),
we introduce a variable xi, j,p,s, which corresponds to the total amount of time that Jj is
processed during Ii on processor Pp using speed s.

min ∑
i, j,p,s

xi, j,p,s fp(s)

s.t. ∑
i,p,s

xi, j,p,ss ≥ wj ∀ j

∑
p,s

xi, j,p,s ≤ |Ii| ∀i, j

∑
j,s
xi, j,p,s ≤ |Ii| ∀i, p

xi, j,p,s ≥ 0 ∀i, j, p,s

A solution to the above LP specifies an operation of job Jj on processor Pp with pro-
cessing time ∑s xi, j,p,s during interval Ii. Hence, for each Ii, we obtain an instance of
the preemptive open shop problem, which can be solved in polynomial time using the
algorithm by Gonzalez and Sahni [28].

Theorem 1. There exists an algorithm that produces a (1+ ε ′)-approximate schedule
in O(poly(n,m, 1

ε , log( sUB
SLB

)) time.

2.3 The Offline Problem with Standard Power Functions

In this section we focus on standard power functions fp(s) = sαp , 1 ≤ p ≤ m. Such
functions were considered by Yao et al. [39]. In fact, most of the literature on dynamic
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speed scaling focuses on this family of functions. As a main result in [7 SPP,8 SPP]
we prove that the offline problem can be solved in polynomial time using a fully com-
binatorial algorithm that is based on repeated maximum flow computations. In a first
step we show that there exists an optimal schedule that exhibits four specific properties.
These properties will be essential in the design of our algorithm.

First we demonstrate that for any job Jj, 1 ≤ j≤ n, the processor speeds at which the
job is executed are related through the derivative of the power functions. More specifi-
cally, if Jj is partially executed by processors Pp and Pq with speeds s j,p and s j,q, respec-
tively, then f ′p(s j,p) = f ′q(s j,q). This follows from the convexity of the power functions
when analyzing the energy consumed by Jj on processors Pp and Pq. Therefore, for any
job Jj, let Qj = f ′p(s j,p) be the hypopower on processor Pp.

Property 1: Each job Jj is executed with constant hypopower Qj.

The next property implies that, at any time, the available jobs with the greatest
hypopower are executed.

Property 2: For any pair of jobs Jj,Jk and t ∈ [r j,d j)∩ [rk,dk) such that Jj is executed
at time t and Jk is not executed at t, it holds that Qj ≥ Qk.

We assume that the density δ j := wj/(d j − r j) of each job Jj satisfies
δ j ≥ maxp,q(αp/αq)1/(αq−1). Observe that δ j is equal to the minimum average speed
necessary to complete Jj if no other jobs were present. With the assumption on the job
densities we can then show that in an optimal schedule, for each job Jj and processor Pp,
the speed s j,p is at least 1. This allows us to define an order on the processors. We num-
ber the processors P1, . . . ,Pm such that, for any s ≥ 1, it holds that f1(s) ≤ . . . ≤ fm(s).
This implies, α1 ≤ . . . ≤ αm and f ′1(s) ≤ . . . ≤ f ′m(s). We say that Pp is cheaper than Pq
if p < q. The next property states that cheap processors execute, in general, jobs with
greater hypopower, compared to expensive processors.

Property 3: Let I be an interval and Jj,Jk be any pair of jobs executed by processors Pp
and Pq during I, respectively. If p< q, then Qj ≥ Qk.

The final property states that at each time the cheapest processors are occupied.

Property 4: For each interval Ii, there exists an mi with 0 ≤mi ≤m such that P1, . . . ,Pmi

are occupied throughout Ii while Pmi+1, . . . ,Pm are idle.

We proceed with the description of our algorithm. To this end we define problem
instances specified by triples (J,P,I). Here J is a set of jobs, P is a set of proces-
sors and I is a set of disjoint intervals. Initially, J = {J1, . . . ,Jn}, P = {P1, . . . ,Pm} and
I= {I1, . . . , Il}. In general, during each Ii ∈ I, there is a subset J(Ii) ⊆ J of alive jobs Jj
with Ii ⊆ [r j,d j) and a subset P(Ii)⊆ P of available processors that are unused through-
out Ii. Let ni = |J(Ii)| and ai = |P(Ii)|

Let S∗ be an optimal schedule satisfying Properties 1–4. Consider any interval Ii ∈ I.
In Property 4, considering S∗, we have mi = min{ni,ai} because the number of used
processors cannot exceed the number of available processors or the number of alive
jobs. This equation specifies the exact amount of time, say tp, that a processor Pp ∈ P is
used in S∗ as well as the corresponding intervals. The most energy-efficient though not
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necessarily feasible way to schedule the jobs in J is to use the same constant hypopower
Q satisfying

∑
p∈P

tp

(
Q
αp

) 1
ap−1

= ∑
Jj∈J

wj.

We assume for simplicity that the value of Q satisfying the above equation can be com-
puted with arbitrary precision.

If there is a feasible schedule in which all jobs are executed with constant
hypopower Q, then this schedule is optimal and we are done. As we will explain
below, this feasibility problem and the calculation of the corresponding schedule can be
solved using a maximum flow computation. If such a feasible schedule does not exist,
then (J,P,I) can be partitioned into two independent subproblems (J≥Q,P≥Q,I) and
(J<Q,P<Q,I). Here J≥Q and J<Q are the subsets of J that are executed with hypopower
at least Q and smaller Q, respectively, in the optimal schedule S∗. In each interval Ii ∈ I,
Properties 2 and 3 specify the subsets of available processors P≥Q(Ii),P<Q(Ii)⊆ P ded-
icated to the jobs of J≥Q and J<Q that are alive during Ii. The jobs of J≥Q occupy the
cheapest min{ai, |J≥Q(Ii)|} processors during Ii, while the jobs of J<Q use the remain-
ing processors of P(Ii).

The feasibility of (J,P,I) w.r.t. the hypopower Q is based on a maximum flow com-
putation in an appropriate network N(J,P,I,Q). Consider an interval Ii ∈ I and a proces-
sor Pp ∈P(Ii). If Pp runs with hypopower Q in Ii, then its speed is si,p = (Q/αp)1/(αp−1).
We slightly abuse notation and let si,p be the speed of the p-th cheapest available pro-
cessor during Ii and P(Ii) be the set of the the mi cheapest available processors during
Ii.

In the network, there is a source node u0, a node u j for each Jj ∈ J, a node vi,p
for each pair of interval Ii ∈ I and processor Pp ∈ P(Ii), a node vi for each interval
Ii ∈ I, and a sink node v0. The network contains the arc (u0,u j) with capacity wj for
each job Jj ∈ J, the arc (u j,vi,p) with capacity (si,p − si,p+1)|Ii| for each interval Ii, job
Jj ∈ J(Ii) and processor Pp ∈ P(Ii), the arc (vi,p,vi) with capacity p(si,p − si,p+1)|Ii|
for each interval Ii ∈ I and processor Pp ∈ P(Ii) as well as the arc (vi,v0) with infinite
capacity for each Ii ∈ I. We set si,m+1 := 0. This is depicted in Fig. 1, was also introduced
by Federgruen and Groenevelt [25].

If there does not exist a feasible schedule for (J,P,I) with hypopower Q, then the
biseparation into (J≥Q,P≥Q,I) and (J<Q,P<Q,I) is based on the following crucial prop-
erty. Let J′ ⊆ J<Q be any subset of jobs. A job Jj ∈ J \ J′ belongs to J≥Q if and only
if, in the network N(J \ J′,P,I,Q), there exists a minimum (u0,v0)-cut that does not
contain arc (u0,u j). This allows us to identify J≥Q and J<Q. The technical details are
omitted here. In summary Algorithm 1 show a pseudocode description of our strategy.
The following theorem gives the main result.

Theorem 2. Algorithm 1 generates an optimal schedule and runs in polynomial time
O(n4m).

2.4 An Online Algorithm

The online algorithm Average Rate (AVR), proposed by Yao et al. [39] for single-
processor speed scaling with power function f (s) = sα , works with the concept of job
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Fig. 1. The flow network

Algorithm 1: OPT(J,P,I)

1 Compute the optimum hypopower Q for executing (J,P,I);
2 (J≥Q,P≥Q,I), (J<Q,P<Q,I) ← BISEPARATION(J,P,I,Q);
3 if J= J≥Q then
4 return CONSTANTHYPOPOWERSCHEDULE(J,P,I,Q);

5 else
6 S≥Q ← OPT(J≥Q,P≥Q,I);
7 S<Q ← OPT(J<Q,P<Q,I);

8 return S≥Q ∪S<Q;

densities. Again, the density δ j of job Jj is equal to δ j =wj/(d j −r j). Recall that this is
the minimum average speed necessary to complete the job if no other jobs were present.
At any time t, the processor speed s(t) is set to the accumulated density of active jobs,
i.e. s(t) = ∑ j:t∈[r j ,d j) δ j. With this speed profile, available jobs are scheduled according
to the Earliest Deadline First policy.

In order to generalize AVR to the multi-processor setting, we consider a variation
of the above single-processor algorithm, which uses the same processor speed at any
time but applies a different job selection rule. Assume w.l.o.g. that all release times
and deadlines are integers. Moreover, assume that rmin = min1≤ j≤n r j = 0 and dmax =
max1≤ j≤n d j = T . We partition the time horizon into unit-length intervals It = [t, t+1),
0 ≤ i < T . For each job Jj with It ⊆ [r j,d j), the algorithm assigns a work volume of
δ j to interval It . Then it produces an arbitrary schedule of the total work assigned to It
using a fixed speed of s(t) = ∑ j:It⊆[r j ,d j) δ j during the whole It . This modified algorithm
attains the same competitive ratio as the original algorithm AVR because both strategies
always employ the same speed and consume the same energy.

Next we turn our attention to the setting with multiple heterogeneous processors.
Based on the above algorithm variation, we say that a schedule S is an AVR-schedule
if, for every job Jj and interval It ⊆ [r j,d j), the total amount of work of Jj executed
during It on all the processors in S is equal to δ j. We prove that, for each input sequence
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σ = J1, . . . ,Jn, there exists a feasible AVR-schedule SAVR on heterogeneous processors
with general power functions, as described in Sect. 2.2, whose energy consumption is at
most maxp cp+1 times that of the optimum schedule for σ . Here cp is the competitive
ratio of the single-processor AVR algorithm when executed on processor Pp with power
function fp(s).

We are ready to describe our algorithm H-AVR for heterogeneous processors. The
main idea is to generate a (1+ ε)-approximate AVR-schedule using the LP-algorithm
described in Sect. 2.2. More specifically, given the assignment of work into intervals
implied by the definition of AVR-schedules, for each interval It = [t, t + 1) we com-
pute an offline (1+ ε)-approximate schedule for this subinstance of the heterogeneous
speed-scaling problem.

Theorem 3. H-AVR is (1 + ε)(maxp cp + 1)-competitive for speed scaling with het-
erogeneous processors, where cp is the competitiveness of the single-processor AVR
algorithm when applied to processor Pp with general power function fp(s).

Corollary 1. H-AVR is (1+ ε)(αα 2α−1 + 1)-competitive for speed scaling with het-
erogeneous processors having standard power functions.

2.5 Further Results

We briefly review work by postdoctoral scientists when they were funded within our
project. Article [19] explores dynamic speed scaling, assuming that job preemptions
are not allowed. In some applications it might not be feasible or too expensive to
interrupt and later resume the execution of a job. For the setting with a single pro-
cessor, we develop a polynomial time algorithm achieving an improved approxima-
tion guarantee of (1+ ε)αBα , where Bα is a generalization of the Bell number [19].
For multi-processor environments we develop the first approximation algorithm for the
fully power-heterogeneous setting, where each processor Pp has an individual power
function fp(s) = sαp . The performance factor is equal to Bα((1+ε)(1+wmax/wmin))α .
Here wmax and wmin are the maximum and minimum work volumes of the jobs. Again
α = max1≤p≤m αp.

In [11] we examine the scenario where jobs must be executed subject to an energy
budget. The goal is to maximize the throughput. As a main result we develop polyno-
mial time algorithms based on dynamic programming. In [26] we introduce the new
problem of scheduling jobs over scenarios. In [27] we study a dynamic market schedul-
ing problem where an intermediary interacts with an unknown sequence of agents.

3 Power-Down Mechanisms in Data Centers

Power-down strategies for a single device have been investigated by Irani et al. [33] and
Augustine et al. [17]. The goal is to minimize the energy consumed in an idle period
when the device is not in use. In our work we focus on power-down mechanisms in
massively parallel systems and, in particular, data centers.
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Energy management is a key issue in data center operations [24]. Electricity costs
are a dominant and rapidly growing expense in such centers; about 30–50% of their bud-
get is invested into energy. Surprisingly, the servers of a data center are only utilized
20–40% of the time on average [16,22]. When idle and in active mode, they consume
about half of their peak power. Hence a fruitful approach for energy conservation and
capacity management is to transition idle servers into standby and sleep states. Servers
have a number of low-power states [1]. However state transitions, and in particular
power-up operations, incur energy/cost. Therefore, dynamically matching the varying
demand for computing capacity with the number of active servers is a challenging prob-
lem.

3.1 Heterogeneous Servers

In [4 SPP,5 SPP] we formulate and study an optimization problem that arises in the
energy management of data centers, hosting a large number of heterogeneous servers.
Each server has an active state and several standby/sleep states with individual power
consumption rates. The demand for computing capacity varies over time. Idle servers
may be transitioned to low-power modes so as to rightsize the pool of active servers.
The goal is to find a state transition schedule for the servers that minimizes the total
energy consumed. On a small scale the same problem arises in multi-core architectures
with heterogeneous processors on a chip. One has to determine active and idle periods
for the cores so as to minimize the consumed energy.

More formally, we define the optimization problem Dynamic Power Management
(DPM). A problem instance I = (S,D) is specified by a set of servers and varying
computing demands over a time horizon. Let S = {S1, . . . ,Sm} be a set of heteroge-
neous servers. Each server Si, 1 ≤ i ≤ m, has an active state as well as one or several
standby/sleep states. The states of Si are denoted by si,0, . . . ,si,σi . Here si,0 is the active
state and si,1, . . . ,si,σi are the low-power states. The modes have individual power con-
sumption rates. Let ri, j be the power consumption rate of si, j, i.e., ri, j energy units
are consumed per time unit while Si resides in si, j. The states are numbered in order
of decreasing rates such that ri,0 > .. . > ri,σi ≥ 0. A server can transition between its
states. Let Δi, j, j′ be the non-negative energy needed to move Si from state si, j to state
si, j′ , for any pair 0 ≤ j, j′ ≤ σi. The transition energies satisfy the triangle inequality,
i.e., the energy to move directly from si, j to si, j′ is upper bounded by that of visiting an
intermediate state si,k. Formally, Δi, j, j′ ≤ Δi, j,k+Δi,k, j′ .

Over a time horizon the computing demands are given by a demand profile D =
(T,D). Tuple T = (t1, . . . , tn) contains the points in time when the computing demands
change. There holds t1 < t2 < .. . < tn so that the time horizon is [t1, tn). Tuple D =
(d1, . . . ,dn−1) specifies the demands. More precisely, dk ∈ N0 servers are required for
computing during interval [tk, tk+1), for any 1 ≤ k ≤ n−1. Thus at least dk servers must
reside in the active state during [tk, tk+1). We have dk ≤m, for any 1 ≤ k ≤ n−1, so that
the requirements can be met.

Given I = (S,D), a schedule Σ specifies, for each Si and any t ∈ [t1, tn), in which
state server Si resides at time t. Schedule Σ is feasible if during any interval [tk, tk+1) at
least dk servers are in the active state, 1 ≤ k ≤ n−1. The energy E(Σ) incurred by Σ is
the total energy consumed by all the m servers. Whenever server Si, 1 ≤ i≤m, resides in
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state si, j it consumes energy at a rate of ri, j. Whenever the server transitions from state
si, j to state si, j′ , the incurred energy is Δi, j, j′ . The goal is to find an optimal schedule,
i.e., a feasible schedule Σ that minimizes E(Σ). We assume that initially, immediately
before t1, and at time tn all servers reside in the deepest sleep state, i.e. Si is in si,σi ,
1 ≤ i ≤ m.

In DPM the demand for computing capacity is specified by the number of servers
needed at any time. In data centers it is common practice that a number of required
servers is determined as a function of the current total workload, ignoring specific jobs.
DPM focuses on energy conservation instead of individual job placement. Again, in the
active state, a processor has a fixed energy consumption rate. We investigate DPM as
an offline problem, i.e. the varying computing demands are known in advance. From an
algorithmic point of view it is important to explore the tractability and approximability
of the problem. The offline setting is also relevant in practice. Data centers usually
analyze past workload traces to identify long-term patterns. The findings are used to
specify demands in future time windows.

Given a problem instance I, we first characterize optimal solutions. Property 1 below
implies that there exists an optimal schedule in which a server never changes state
while being in low-power mode. Property 2 states that there exists an optimal schedule
executing state transitions only when the computing demands change. A server powers
up if it transitions from a low-power state to the active state (indexed 0). A server powers
down if it moves from the active state to a low-power state.

Property 1: There exists an optimal schedule with the following property. Suppose that
Si powers down at time t and next powers up at time t ′. Then between t and t ′ Si
resides in a single state si, j, where j > 0.

Property 2: There exists an optimal schedule that satisfies Property 1 and performs state
transitions only at the times of T .

Finally we may assume w.l.o.g. that the power-down energies Δi,0, j are equal to 0,
1 ≤ i ≤ m and 1 ≤ j ≤ σi. If this is not the case we case we can simply fold the power-
down energy Δi,0, j > 0 into the corresponding power-up energy Δi, j,0.

3.2 Servers with Two States

In [4 SPP,5 SPP] we first investigate the variant of DPM in which each server Si has
exactly two states, an active state si,0 and a sleep state si,1, 1 ≤ i≤m. As a main result we
show that an optimal schedule can be computed in polynomial time using an algorithm
that resorts to a min-cost flow computation.

In a first step we argue that we may assume w.l.o.g. that the power consumption
rates in the sleep states are equal to 0. If this is not the case and ri,1 > 0, for some i,
then we can subtract ri,1 from both ri,0 and ri,1. This changes the energy consumption
by a fixed amount of ri,1(tn − t1) over the entire time horizon. To simplify notation let
ri := ri,0 be the power consumption rate of Si in the active state, 1 ≤ i ≤ m. Moreover,
let Δi := Δi,1,0 be the energy needed to transition Si from the sleep state to the active
state.
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Fig. 2. The component Ci for server Si

In the following let I= (S,D) be a given problem instance. We develop an algorithm
that computes an optimal schedule. Based on Property 2, we focus on schedules that
perform state transitions only at the times of T . Given I, our strategy constructs a flow
network N(I) that we describe in the next paragraphs.

Network Components. Network N(I) contains a component Ci, for each server Si,
1 ≤ i ≤ m. Such a component Ci, which is depicted in Fig. 2, consists of an upper path
and a lower path. The upper path represents the active state of Si; the lower path models
the server’s sleep state. The computing demands change at the times t1 < .. . < tn in T .
For any tk, 1 ≤ k ≤ n, there is a vertex ui,k on the upper path. Vertices ui,k and ui,k+1 are
connected by a directed edge (ui,k,ui,k+1) of cost ri(tk+1 − tk), 1 ≤ k ≤ n−1. This cost
is equal to the energy consumed if Si is in the active state during [tk, tk+1). Similarly, for
any tk, 1 ≤ k≤ n, there is a vertex li,k on the lower path. In order to ensure that at least dk
servers are in the active state during [tk, tk+1), if k< n, we need two auxiliary vertices lai,k
and lbi,k. These vertices are again connected by directed edges. There is an edge (li,k, lai,k),
followed by two edges (lai,k, l

b
i,k) and (lbi,k, li,k+1), for any k with 1 ≤ k ≤ n−1. The cost

of each of these edges is 0 because the energy consumption in the sleep state is 0.
The lower and the upper paths are connected by additional edges that model state

transitions. Recall that all servers are in the sleep state at times t1 and tn. For any k with
1 ≤ k ≤ n− 1, there is a directed edge (li,k,ui,k) of cost Δi, representing a power-up
operation of Si at time tk. For any k with 1 < k ≤ n, there is a directed edge (ui,k, li,k) of
cost 0, modeling a power-down operation of Si at time tk. The capacity of each edge of
Ci is equal to 1.

The Entire Network. In N(I) components C1, . . . ,Cm are aligned in parallel and con-
nected to a source a0 and a sink b0. The general structure of N(I) is depicted in Fig. 3.
There is a directed edge from a0 to li,1 in Ci, for any 1 ≤ i ≤ m. Furthermore, there is a
directed edge from li,n to b0, for any 1 ≤ i ≤ m. Each of these edges has a cost of 0 and
a capacity of 1. Vertex a0 has a supply of m, and b0 has a demand of m. Hence m units
of flow must be shipped through C1, . . . ,Cm. Since all edges have a capacity of 1, one
unit of flow must be routed through each Ci, 1 ≤ i ≤ m. Whenever the unit traverses the
upper path, Si is in the active state. Whenever the unit traverses the lower path, Si is in
the sleep state.

In order to ensure that at least dk servers are in the active state during [tk, tk+1),
1 ≤ k ≤ n−1, we introduce additional sources and sinks. Network N(I) has a source ak
and a sink bk with supply/demand dk, for any 1 ≤ k ≤ n− 1. There is a directed edge
from ak to lai,k on the lower path of each Ci, 1 ≤ i ≤ m. Furthermore, there is a directed
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Fig. 3. The network N(I)

edge from each lbi,k to bk, 1 ≤ i ≤ m. The cost and capacity of each of these edges is
equal to 0 and 1, respectively. Since dk flow units have to be shipped from ak to bk,
there must exist at least dk componentsCi in which the flow unit from a0 to b0 traverses
the upper path from ui,k to ui,k+1. Hence the corresponding servers are in the active state
during [tk, tk+1).

Obviously, any feasible schedule Σ in which state transitions are performed only at
the times of T corresponds to a feasible flow of cost E(Σ) in N(I). Unfortunately, the
reverse statement is not true. Since N(I) is a single-commodity flow network, a feasi-
ble flow f does not necessarily represent a feasible schedule. It may happen that flow
shipped out of a source ak is not necessarily routed to bk, 0 ≤ k ≤ n− 1. In particular,
flow leaving ak may be routed to a sink bk′ , where k′ > k, or to b0. Observe that in N(I)
all edge capacities and supplies/demands are integer values. Hence in N(I) there exists
a minimum-cost flow that is integral, i.e., the flow along any edge takes an integer value.
Moreover, there exist polynomial time combinatorial algorithms that compute such an
integral minimum-cost flow [2]. In [5 SPP,4 SPP] we prove that any feasible integral
flow f of costC in N(I) can be transformed so that it corresponds to a feasible schedule
Σ consuming energy C. More specifically, using (non-trivial) flow modification oper-
ations, we ensure that each network component Ci ships exactly on flow unit in each
interval [tk, tk+1). The transformation takes a polynomial number of steps.

Theorem 4. Let I be an instance of DPM in which each server has exactly two states.
An optimal schedule for I can be computed in polynomial time by a combinatorial
algorithm that uses a minimum-cost flow computation.

3.3 Servers with Multiple States

In [4 SPP,5 SPP] we also investigate DPM in the general scenario that each server has
multiple sleep states. In this case DPM becomes NP-hard. We extend our approach
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based on flow computations to design an approximation algorithm. More specifically,
we develop a second algorithm that works with a more complex network in which
each component has several lower paths, representing the various low-power states of a
server. Furthermore, we need a second commodity to ensure that computing demands
are met. With only a single commodity, flow units could switch between lower paths at
no cost, and infeasible schedules would result.

Given a fractional two-commodity minimum-cost flow, our algorithm executes
advanced flow rounding and packing procedures. First, by repeatedly traversing com-
ponents, the algorithm modifies flow so it becomes integral on the upper paths. Then
flow on the lower paths is packed. The final integral flow allows the constructing of a
schedule for DPM. Our algorithm achieves an approximation factor of τ , where τ is the
number of server types in the problem instance. Specifically, the servers can be parti-
tioned into τ classes such that, within each class, the servers are identical. Of course,
the servers of a class are independent and not synchronized. In practice, a data cen-
ter has a large collection of machines but a relatively small number of different server
architectures.

Theorem 5. Let I be an instance of DPM with τ server types. A schedule whose energy
consumption is at most τ times the minimum one for I can be computed in polynomial
time based on a min-cost two-commodity flow computation.

3.4 Homogeneous Servers

In [9] we investigate another algorithmic problem with the objective of dynamically
resizing a data center. Specifically, we resort to a framework that was introduced by
Lin, Wierman, Andrew and Thereska [35,37].

Consider a data center with m homogeneous servers, each of which has two states,
an active state and a sleep state. An optimization is performed over a discrete, finite time
horizon consisting of time steps t = 1, . . . ,T . At any time t, 1 ≤ t ≤ T , a non-negative
convex cost function ft(·) models the operating cost of the data center. More precisely,
ft(xt) is the incurred cost if xt servers are in the active state at time t, where 0 ≤ xt ≤m.
This operating cost captures e.g., the energy cost and service delay, for an incoming
workload, depending on the number of active servers.

Furthermore, at any time t there is a switching cost, taking into account that the
data center may be resized by changing the number of active servers. This switching
cost is equal to Δ(xt −xt−1)+, where Δ is a positive real constant and (x)+ = max(0,x).
Again we assume that transition cost is incurred when servers are powered up from the
sleep state to the active state. A cost of powering down servers may be folded into this
cost. The constant Δ incorporates e.g., the energy needed to transition a server from
the sleep state to the active state, as well as delays resulting from a migration of data
and connections. We assume that at the beginning and at the end of the time horizon
all servers are in the sleep state, i.e., x0 = xT+1 = 0. The goal is to determine a vector
X = (x1, . . . ,xT ) called schedule, specifying at any time the number of active servers,
that minimizes

T

∑
t=1

ft(xt)+Δ
T

∑
t=1

(xt − xt−1)+. (1)
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Fig. 4. Construction of the graph

All previous work [13,15,20,35–37] on the data-center optimization problem
assumes that the server numbers xt , 1 ≤ t ≤ T , may take fractional values. That is, xt
may be an arbitrary real number in the range [0,m]. From a practical point of view this is
acceptable because a data center has a large number of machines. Nonetheless, from an
algorithmic and optimization perspective, the proposed algorithms do not compute fea-
sible solutions. Important questions remain if the xt are indeed integer valued: (1) Can
optimal solutions be computed in polynomial time? (2) What is the best competitive
ratio achievable by online algorithms?

In [9] we present the first study of the above data-center optimization problem
assuming that the xt take integer values. In a first step we examine the offline variant
of the problem, where the convex functions ft , 1 ≤ t ≤ T , are known in advance. Lin
et al. [37] developed an algorithm based on a convex program that computes optimal
solutions if fractional values xt are allowed.

Considering the discrete setting with integer valued xt , we prove that optimal solu-
tions can also be computed in polynomial time. Our algorithm is different from the
convex optimization approach by Lin et al. [37]. More precisely, our strategy works
with an underlying directed, weighted graph G = (V,E). Let [k] := {1,2, . . . ,k} and
[k]0 := {0,1, . . . ,k} with k ∈ N. For each t ∈ [T ] and each j ∈ [m]0, there is a vertex
vt, j, representing the state that exactly j servers are active at time t. Furthermore, there
are two vertices v0,0 and vT+1,0 for the initial and final states x0 = 0 and xT+1 = 0. For
each t ∈ {2, . . . ,T} and each pair j, j′ ∈ [m]0, there is a directed edge from vt−1, j to vt, j′
having weight Δ( j′ − j)+ + ft( j). This edge weight corresponds to the switching cost
when changing the number of servers between time t−1 and t and to the operating cost
incurred at time t. Obviously, Δ( j′ − j)+ + ft( j) = ft( j)+Δ( j′ − j)+ so that the edge
cost properly represents the cost contribution in the objective function, see (1), at time
t. Similarly, for t = 1 and each j′ ∈ [m]0, there is a directed edge from v0,0 to v1, j′ with
weight f1( j)+Δ( j′)+. Finally, for t = T and each j ∈ [m]0, there is a directed edge from
vT, j to vT+1,0 of weight 0. The structure of G is depicted in Fig. 4. In the following, for
each j ∈ [m]0, vertex set Rj = {vt, j | t ∈ [T ]} is called row j.

A path between v0 and vT+1 represents a schedule. If the path visits vt, j, then xt = j
servers are active at time t. The total length (weight) of a path is equal to the cost of the
corresponding schedule. An optimal schedule can be determined using a shortest path
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computation, which takes O(Tm) time in the particular graph G. However, this running
time is not polynomial because the encoding length of an input instance is linear in T
and logm, in addition to the encoding of the functions ft . In [9] we present a polynomial
time algorithm that improves an initial schedule iteratively using binary search. In each
iteration the algorithm constructs and uses only a constant number of rows of G.

Theorem 6. An optimal schedule can be computed in polynomial time O(T logm).

In [9] we also examine the online variant of the data center optimization problem where
the functions ft , 1 ≤ t ≤ T , are revealed over time. We extend an algorithm Lazy Capac-
ity Provisioning proposed by Lin et al. [37] and prove that it achieves a competitive
ratio of 3. We also show that this is best possible. No deterministic online algorithm can
attain a competitive ratio smaller than 3.
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Abstract. GENO (generic optimization) is a domain specific language for math-
ematical optimization. The GENO software generates a solver from a speci-
fication of an optimization problem class. The optimization problems, that is,
their objective function and constraints, are specified in a formal language. The
problem specification is then translated into a general normal form. Problems
in normal form are then passed on to a general purpose solver. In its Iterations,
the solver evaluates expressions for the objective function, constraints, and their
derivatives. Hence, computing symbolic gradients of linear algebra expressions is
an important component of the GENO software stack. The expressions are eval-
uated on the available hardware platforms including CPUs and GPUs from dif-
ferent vendors. This becomes possible by compiling the expressions into BLAS
(Basic Linear Algebra Subroutines) calls that have been optimized for the dif-
ferent hardware platforms by their vendors. The compiler, called autoBLAS, that
translates formal linear algebra expressions into optimized BLAS calls is another
important component in the GENO software stack. By putting all the components
together the generated solvers are competitive with problem-specific hand-written
solvers and orders of magnitude faster than competing approaches that offer com-
parable ease-of-use. While this article describes the full GENO software stack, its
components are of also of interest on their own and thus have been made available
independently.

Keywords: Constrained optimization · Tensor calculus · BLAS

1 Introduction

GENO makes state-of-the-art performance in solving optimization problems easily
accessible. Since optimization problems are ubiquitous in science, engineering and
economics, it is not surprising that they come in many different flavors. Traditionally,
a main distinction is made between discrete and continuous optimization problems.
The focus of GENO is on the continuous case. Prominent examples for classes of con-
tinuous optimization problems are linear programs (LPs), quadratic programs (QPs),
second-order cone programs (SOCPs), and semi-definite programs (SDPs). For these
classes, efficient algorithms and well engineered implementations (solvers) exist for
many years. The solvers are typically called from a programming environment. The
optimization problems’ data are passed to the solver through function calls. It is the
responsibility of the programmer to provide the data in the right format, that is compli-
ant to a standard form for the specific problem class. The burden of reformulating the

c© The Author(s) 2022
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https://doi.org/10.1007/978-3-031-21534-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-21534-6_12


214 J. Giesen et al.

problems in standard form is alleviated by modeling languages that transform a prob-
lem specification into standard form. Popular modeling languages are CVX [12,17] for
MATLAB and its Python extension CVXPY [2,13], Pyomo [19,20] for Python, and
JuMP [14] which is bound to Julia. These languages take an instance of an optimiza-
tion problem and transform it into some standard form of an LP, QP, SOCP, or SDP,
respectively. The transformed problem is then passed to a solver that expects the stan-
dard form. However, the transformation can be computationally inefficient, because the
representation in standard form can be large in terms of the problem size. Also, the
solver is called from within the programming environment only for the given problem
instance. The modeling language plus solver approach has been made deployable in the
CVXGEN [31], QPgen [16], and OSQP [5] projects. In these projects code is gener-
ated for the specified problem class and not just for one problem instance. However, the
problem dimensions need to be fixed and the generated code is optimized only for very
small or sparse problems. There also exist implementations of the modeling language
plus solver approach that are independent from a specific programming environment.
Prominent examples are AMPL [15] and GAMS [8] that are popular in the operations
research community.

GENO differs from previous work by a much tighter coupling of the language and
the solver. GENO does not transform problem instances but whole problem classes,
including constrained problems, into a very general standard form. Since the stan-
dard form is independent of any specific problem instance it does not grow for larger
instances. Hence, the generated solvers can be used like hand-written solvers. They
even reach or surpass the efficiency of hand-written solvers for large dense problems.
Typically, they are orders of magnitude faster than state-of-the-art modeling language
plus solver approaches.

In this article, that is based on the original publications [24,25,28,29], we describe
the full GENO software stack. The tight coupling of modeling language and solver is
achieved in GENO by computing symbolic gradients that are evaluated by the solver
on the given data of the optimization problem. Hence, an important part of GENO’s
software stack is a facility for computing derivatives of linear algebra expressions.
GENO’s modeling language allows to specify whole classes of optimization prob-
lems in terms of the objective function and constraints that are given as vectorized
linear algebra expressions. Neither the objective function nor the constraints need to be
differentiable. Non-differentiable problems are transformed into constrained, differen-
tiable problems. A general purpose solver for constrained, differentiable problems is
then instantiated with the objective function, the constraint functions and their respec-
tive gradients. Using vectorized linear algebra allows a direct mapping onto optimized
implementations of BLAS (Basic Linear Algebra Subroutines) routines. BLAS and its
close relative LAPACK [3] are the de facto standard for the language independent high
performance evaluation of linear algebra expressions. Almost all major hardware ven-
dors provide individual BLAS implementations for their particular hardware, including
CPUs (AMD Blis [43], Intel MKL [10], Arm Performance Libraries [30]) and GPUs
(NVIDIA cuBLAS [11], AMD clBLAS [4]). GENO supports different hardware plat-
forms through the autoBLAS precompiler that translates linear algebra expressions into
optimized BLAS library calls for the addressed hardware.
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The GENO software stack comprises a modeling language (Sect. 2), a generic solver
(Sect. 3), a matrix and tensor calculus (Sect. 4), and an automatic mapping to BLAS
(Sect. 5). The latter three components of GENO’s software stack are of interest in a
broader context than GENO and hence have been made available independently. GENO
is available at www.geno-project.org [27].

2 Modeling Language

GENO’s modeling language uses a MATLAB-like syntax for specifying optimization
problems. MATLAB is a platform for numerical computations using matrices. The
advantages of using matrix expressions are two-fold: First, it allows the user to phrase
an optimization problem without the need of specifying the number of variables nor
the number of constraints. Hence, the generated solver is not tied to a specific instance
but can handle arbitrary-sized problems. Second, it enables direct mappings to BLAS
routines that are much more efficient than the corresponding for-loops.

A specification in GENO has four blocks:

1. Declaration of the problem parameters that can be of type Matrix, Vector, or Scalar,
2. declaration of the optimization variables that also can be of type Matrix, Vector, or

Scalar,
3. specification of the objective function, and finally
4. specification of the constraints, also in a MATLAB-like syntax that supports the

following operators and functions: +, -, *, /, .*, ./, ∧, .∧, ′, log, exp, sin, cos,
tanh, abs, norm1, norm2, sum, tr, det, inv.

See Fig. 1 for some illustrative examples.

Fig. 1. A few optimization problems formulated in the GENO modeling language. The problem
on the left is an unconstrained optimization problem that computes the Rayleigh quotient, the
problem in the middle is the non-negative least squares problem, and the problem on the right
shows an �1-norm minimization problem from the domain of compressed sensing over the unit
simplex.

www.geno-project.org
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GENO’s modeling language also allows the specification of non-smooth optimiza-
tion problems, for instance, problems that employ the norm1 function, that is, the non-
smooth �1-norm. The non-smooth optimization problems that are allowed by GENO can
be written as minx{maxi fi(x)} with smooth functions fi(x) [36], which is a fairly flexi-
ble class that accommodates many of the commonly-encountered non-smooth objective
functions. All problems within this class can be transformed into constrained, smooth
problems of the form

min
t,x

t s. t. fi(x) ≤ t ∀i.

The transformed problems are then solved by a solver for constrained, smooth opti-
mization problems. Hence, within the GENO software stack only a solver for con-
strained, smooth optimization problems is needed. In the next section we describe the
solver that is implemented in the GENO software stack.

3 Generic Optimizer

GENO’s generic optimizer employs a solver for unconstrained, smooth optimization
problems. This solver is then extended to handle also constraints. The choice for the
solver that is implemented within the GENO software stack is motivated by applica-
tions in machine learning. Optimization problems in machine learning typically exhibit
a few dozen up to a few million variables, and the involved data matrices do not have any
special structure and are typically not sparse, that is, at least 10% of the entries are non-
zero entries. These properties exclude second-order optimization algorithms and justify
our choice to implement a slightly modified version of the L-BFGS-B algorithm [9,44]
that can handle smooth optimization problems that have no general constraints, except
possibly bound constraints on the variables. It provides a good trade-off between the
number of iterations and the complexity per iteration. It also does not assume any struc-
ture on the problem data and it is numerically quite robust. On quadratic problems it
shares the same convergence guarantees [22,34] as Nesterov’s optimal gradient descent
method [35] but compared to Nesterov’s method it is parameter free, i.e., no parameters
need to be tuned or known for the specific problem.

3.1 Solver for Bound-Constrained Smooth Problems

The solver for bound-constrained, smooth optimization problems combines a standard
limited memory quasi-Newton method with a projected gradient path approach. In each
iteration, the gradient path is projected onto the box constraints and the quadratic func-
tion based on the second-order approximation (L-BFGS) of the Hessian is minimized
along this path. All variables that are at their boundaries are fixed and only the remain-
ing free variables are optimized using the second-order approximation. Any solution
that is not within the bound constraints is projected back onto the feasible set by a
simple min/max operation [32]. Only in rare cases, a projected point does not form a
descent direction. In this case, instead of using the projected point, one picks the best
point that is still feasible along the ray towards the solution of the quadratic approxima-
tion. Then, a line search is performed for satisfying the strong Wolfe conditions [41,42].
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This ensures convergence also in the non-convex case. The line search also removes the
need for a predefined step length parameter. We use the line search proposed in [33]
which we enhance by a backtracking line search in case the solver enters a region where
the function is not defined.

3.2 Solver for Constrained Smooth Problems

There are quite a few options for solving smooth, constrained optimization problems.
We decided to use the augmented Lagrangian approach [21,38]. It allows to (re-)use
our solver for smooth, unconstrained problems, it is fairly robust, and does not need to
tune any parameters. The augmented Lagrangian method can be used for solving the
following general standard form of an abstract constrained optimization problem

min
x

f (x) s. t. h(x) = 0 and g(x) ≤ 0, (1)

where x ∈ R
n, f : Rn → R, h : Rn → R

m, g : Rn → R
p are differentiable functions, and

the equality and inequality constraints are understood component-wise.
The augmented Lagrangian of Problem (1) is the following function

Lρ(x,λ ,μ) = f (x)+
ρ
2

∥
∥
∥
∥
h(x)+

λ
ρ

∥
∥
∥
∥

2

+
ρ
2

∥
∥
∥
∥

(

g(x)+
μ
ρ

)

+

∥
∥
∥
∥

2

,

where λ ∈ R
m and μ ∈ R

p
≥0 are the Lagrange multipliers, also known as dual vari-

ables, ρ > 0 is a constant, ‖·‖ denotes the Euclidean norm, and (v)+ denotes max{v,0}.
The augmented Lagrangian is the standard Lagrangian of Problem (1) augmented by a
quadratic penalty term. The quadratic term provides increased stability during the opti-
mization process which can be seen, for example, in the case that Problem (1) is a linear
program.

The Augmented Lagrangian Algorithm 1 runs in iterations. Upon convergence, it
will return an approximate solution x to the original problem along with an approxi-
mate solution of the Lagrange multipliers for the dual problem. If Problem (1) is con-
vex, then the algorithm returns the global optimal solution. Otherwise, it returns a local
optimum [6]. The update of the multiplier ρ can be ignored and the algorithm still con-
verges [6]. However, in practice it is beneficial to increase it depending on the progress
in satisfying the constraints [7]. If the infinity norm of the constraint violation decreases
by a factor less than τ = 1/2 in one iteration, then ρ is multiplied by a factor of two.

4 Matrix and Tensor Calculus

The solver at the core of GENO’s generic optimizer, an implementation of the
L-BFGS-B algorithm for bound-constrained smooth problems, runs in iterations. In
each iteration expressions for the objective function and its gradients are evaluated.
Within GENO these expressions, especially the gradients, have to be made available
to the solver. Expressions for objective functions are given in GENO’s modeling lan-
guage that uses a vectorized notation, that is, a notation that avoids explicit indices.
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Algorithm 1. Augmented Lagrangian Method

Input : instance of Problem (1)
Output: approximate solution x ∈ R

n,λ ∈ R
p,μ ∈ R

m
≥0

1 initialize x0 = 0, λ 0 = 0, μ0 = 0, and ρ = 1
2 repeat
3 xk+1 := argminx Lρ (x,λ k,μk)
4 λ k+1 := λ k+ρh(xk+1)
5 μk+1 :=

(

μk+ρg(xk+1)
)

+
6 update ρ
7 until convergence
8 return xk,λ k,μk

The advantage of a vectorized notation is that expressions can be mapped more or less
directly to BLAS calls and thus to highly optimized BLAS implementations. For GENO
we also want this advantage for the gradients. Hence, we need to compute derivatives of
matrix expressions. Although computing derivatives of matrix and tensor expressions is
a fundamental and frequent task, surprisingly, no algorithm existed that would solve this
problem in the general case. In the following, we describe our approach [24,28] that for
the first time allowed to compute derivatives of general tensor expressions. It was shown
in [24] that evaluating derivatives of non-scalar valued functions computed by this app-
roach is two orders of magnitude faster than previous state-of-the-art approaches when
evaluated on the CPU and up to three orders of magnitude faster when evaluated on the
GPU. An implementation of our approach is integrated into the GENO software stack.
It is also available as a standalone tool at www.MatrixCalculus.org [26].

4.1 Problems with Matrix Notation

Computing derivatives for scalar functions, i.e., f (x) : R → R is a straightforward
task and is taught already in high school. One just applies the chain rule repeatedly
and the partial derivatives are multiplied together. For instance, consider the function
f (x) = sin(x2). Its derivative is f ′(x) = cos(x2) ·2 · x. However, this no longer works in
the matrix and tensor case. Compared to the scalar case where only one type of multipli-
cation operator exists, there are several types of multiplication in the matrix and tensor
case. It has been shown that 24 types of different multiplications are necessary for rep-
resenting the derivatives of matrix expressions only in the linear case [37]. Hence, it is
essential to find a good representation of matrix and tensor multiplications.

Furthermore, when computing derivatives of vector and matrix expressions, even
matrix notation is not sufficient to express all derivatives. For instance, for function
f (x) : Rn → R

m, the derivative will be a matrix M ∈ R
m×n. But already its second

derivative will be T ∈ R
m×n×n, i.e., a third order tensor, which cannot be represented

in standard matrix notation. One usually circumvents this by using the vec-operator
that maps a matrix to a vector by stacking its columns on top of each other and using
the Kronecker product. This way, one can flatten some dimensions and emulate higher
order tensors and their multiplications. However, still not all necessary multiplications

www.MatrixCalculus.org
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can be represented this way and it unnecessarily complicates the representation. And
even in the two-dimensional case, i.e., when the derivative is a tensor of order two, it
might have no corresponding representation as a matrix. For instance, consider the sim-
ple quadratic function f (x) = x
Ax, where x ∈ R

n is a vector and A ∈ R
n×n is a matrix.

When computing the derivative of f with respect to x using the chain rule, one has to
compute the derivative of x
 with respect to x, i.e., the derivative of a function that maps
x to its transpose. This is not the identity matrix. In fact, it is not even representable as
a matrix. In the more powerful Ricci notation [39] it would be written as the tensor δi j.
Hence, the right representation of tensors and operators on them, especially multiplica-
tions between them is crucial. In fact, choosing the right representation has led to the
first general and coherent matrix and tensor calculus theory [24]. Before, only a number
of cases could be treated systematically. While the first theory used Ricci notation to
represent tensors and their multiplications it turned out that using a generalized form
of Einstein notation makes the process of computing derivatives even simpler and more
coherent [28].

4.2 Einstein Notation

In tensor calculus one can distinguish three types of multiplication, namely inner, outer,
and element-wise multiplication. Indices are used for distinguishing between these
types. For tensors A,B, and C any multiplication of A and B can be written as

C[s3] = ∑
(s1∪s2)\s3

A[s1] ·B[s2], (2)

where C is the result tensor and s1,s2, and s3 are the index sets of the left argument, the
right argument, and the result tensor, respectively. The summation is over all indices
that appear in at least one of the two multiplication’s arguments A and B and are not
present in the result tensorC. The index set of the result tensor is always a subset of the
union of the index sets of the multiplication’s arguments, that is, s3 ⊆ (s1 ∪ s2). In the
following we denote the generic tensor multiplication as defined in Eq. (2) simply as

C = A∗(s1,s2,s3) B.

This notation is basically identical to the tensor multiplication einsum in NumPy, Ten-
sorFlow, and PyTorch, and to the notation used in the Tensor Comprehension Pack-
age [40].

Note, that the ∗(s1,s2,s3)-notation comes close to standard Einstein notation. In Ein-
stein notation the index set s3 of the output is omitted and the convention is to sum
over all shared indices in s1 and s2. However, this restricts the types of multiplications
that can be represented. The set of multiplications that can be represented in standard
Einstein notation is a proper subset of the multiplications that can be represented by
our notation. For instance, standard Einstein notation is not capable of representing
element-wise multiplications directly. Still, in the following we refer to the ∗(s1,s2,s3)-
notation simply as Einstein notation as it is standard practice in many linear algebra
packages.
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4.3 Tensor Calculus

In the following, let ‖A‖=
√

∑s A[s]2 denote the norm of a tensor A. For vectors it coin-
cides with the Euclidean norm and for matrices with the Frobenius norm. The following
definition generalizes the standard derivative to the multi-dimensional case.

Definition 1 (Fréchet Derivative). Let f : Rn1×n2×...×nk → R
m1×m2×...×ml be a func-

tion that takes an order-k tensor as input and maps it to an order-l tensor as output.
Then, D ∈ R

m1×m2×...×ml×n1×n2×...×nk is called the derivative of f at x if and only if

lim
h→0

‖ f (x+h)− f (x)−D◦h‖
‖h‖ = 0,

where ◦ is an inner tensor product.

Here, the dot product notation D◦h is short for the inner product D∗(s1s2,s2,s1) h, where
s1s2 is the index set of D and s2 is the index set of h. For instance, if D ∈R

m1×n1×n2 and
h ∈ R

n1×n2 , then s1 = {i, j,k} and s2 = { j,k}.
With this definition at hand, we can compute derivatives of matrix and tensor expres-

sions in Einstein notation. As noted in the beginning of this section, derivatives are
usually computed using the chain rule. There are two major orderings in which we can
apply the chain rule; in a forward fashion and in a reverse fashion. These ways are
known as forward mode and reverse mode in the area of algorithmic differentiation
(AD, aka. automatic differentiation) [18]. They will both result in the same derivative
but not necessarily in the same expression for the derivative. The forward mode coin-
cides with what is usually taught in high school and commonly refers to as symbolic
computation of derivatives [23]. Here, we will only describe the reverse mode since this
is the mode that is used within the GENO software stack.

Any expression can be represented as a directed acyclic expression graph (expres-
sion DAG). Figure 2 shows the expression DAG for the objective function of the logistic
regression, i.e.,

1
(y� log(exp(Xw)+1)), (3)

where � denotes the element-wise multiplication.

Fig. 2. Expression DAG for Expression (3).
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The nodes of the DAG that have no incoming edges represent the variables or con-
stants of the expression and are referred to as input nodes. The nodes of the DAG
that have no outgoing edges represent the functions that the DAG computes and are
referred to as output nodes. Let the DAG have n input nodes (variables) and m output
nodes (functions). Note, that the DAG in Fig. 2 has only one output node. We label the
input nodes as x0, ...,xn−1, the output nodes as y0, ...,ym−1, and the internal nodes as
v0, . . . ,vk−1. Every internal and every output node represents an operator whose argu-
ments are supplied by the incoming edges.

When evaluating the DAG, i.e., computing the function values that the DAG repre-
sents for some given input, one proceeds from the input nodes to the output nodes. In
forward mode automatic differentiation one proceeds in the same direction for comput-
ing the derivative and in reverse mode in reverse order, i.e., from output to input nodes.

Each node vi will eventually store the derivative
∂y j
∂vi

which is usually denoted as v̄i,
where y j is the function to be differentiated. This partial derivative is often referred to as

adjoint. These derivatives are computed as follows: First, the derivatives
∂y j
∂yi

are stored
at the output nodes of the DAG. Then, the derivatives that are stored at the remaining
nodes, here called z, are iteratively computed by summing over all their outgoing edges
as follows

z̄=
∂y j
∂ z

= ∑
f :(z, f )∈E

∂y j
∂ f

· ∂ f
∂ z

= ∑
f :(z, f )∈E

f̄ · ∂ f
∂ z

, (4)

where the multiplication is again tensorial. The following theorems specify the type of
tensor multiplication for reverse mode Eq. (4). Their proofs can be found in [29].

Theorem 1. Let Y be an output node with index set s4 and let C = A ∗(s1,s2,s3) B be a
multiplication node of the expression DAG. Then the contribution of C to the adjoint B̄
of B is C̄ ∗(s4s3,s1,s4s2) A and its contribution to the adjoint Ā of A is C̄ ∗(s4s3,s2,s4s1) B.

If the output function Y in Theorem 1 is scalar-valued, then we have s4 = /0 and the
adjoint coincides with the function implemented in all modern deep learning frame-
works including TensorFlow and PyTorch. Hence, our approach can be seen as a direct
generalization of the scalar case.

Theorem 2. Let Y be an output function with index set s3, let f be a general unary
function whose domain has index set s1 and whose range has index set s2, let A be a
node in the expression DAG, and let C = f (A). The contribution of the node C to the
adjoint Ā is

f̄ ∗(s3s2,s2s1,s3s1) f
′(A),

where f ′ is the derivative of f .

In case that the general unary function is simply an elementwise unary function that is
applied element-wise to a tensor, Theorem 2 simplifies as follows.

Theorem 3. Let Y be an output function with index set s2, let f be an elementwise unary
function, let A be a node in the expression DAGwith index set s1, and letC= f (A)where
f is applied element-wise. The contribution of the node C to the adjoint Ā is

f̄ ∗(s2s1,s1,s2s1) f
′(A),

where f ′ is the derivative of f .
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Table 1 shows the individual steps of the reverse mode applied to the expression graph in
Fig. 2. Note, that reverse mode manages to compute the derivative of the output function
with respect to all input variables in one pass. Again, the last column shows the deriva-
tives in matrix notation when a few simplifications have been applied, like removal of
zero and identity tensors. From the first two rows we can read off the derivative of f
with respect to X and the derivative with respect to w. The values of the intermedi-
ate results and common subexpressions v1 and v2 can be substituted again to obtain
the final expression X
 · (y� exp(Xw)� exp(Xw+ 1)). This expression can then be
mapped very easily to a NumPy expression. In the next section, we will discuss how to
map such expressions also to different hard- and software backends.

Table 1. Individual steps of the reverse mode automatic differentiation of the logistic regression
function, i.e., 1
(y� log(exp(Xw)+1)) with respect to all input variables.

Forward trace Reverse derivative trace

x0 = X x̄0 = v̄0 ∗(i, j,i j) x1 = (y� v2 � v1) ·w


x1 = w x̄1 = v̄0 ∗(i,i j, j) x0 = X
 · (y� v2 � v1)
x2 = y x̄2 = v̄4 ∗(i,i,i) v3 = v3

x3 = 1 x̄3 = v̄2 + ȳ0 ∗( /0,i,i) v4 = y� v2 + v4

v0 = x0 ∗(i j, j,i) x1 v̄0 = v̄1 ∗(i,i,i) v1 = y� v2 � v1

v1 = exp(v0) v̄1 = v̄2 = y� v2

v2 = v1 + x3 v̄2 = v̄3 ∗(i,i,i) v−1
2 = y� v2

v3 = log(v2) v̄3 = v̄4 ∗(i,i,i) x2 = y

v4 = v3 ∗(i,i,i) x2 v̄4 = ȳ0 ∗( /0,i,i) x3 = 1

y0 = v4 ∗(i,i, /0) x3 ȳ0 = 1

5 autoBLAS

GENO aims at providing state-of-the-art performance on a wide variety of backends
that include multicore CPUs and GPUs. Hence, it is necessary to generate efficient
code for all these backends. This is the purpose of autoBLAS. GENO does not need to
directly compile the specification of an optimization problem into executable code but it
can map it to an intermediate representation where linear algebra expressions are given
as blocks of autoBLAS code. The autoBLAS precompiler then compiles the interme-
diate code into standard code for the specified backends. autoBLAS itself features an
intuitive syntax for linear algebra expressions that is easy to read and comprehend, and
delegates the details about their execution to highly-efficient implementations of BLAS
routines for the respective backends like for instance AMD Blis [43], Intel MKL [10],
Arm Performance Libraries [30], NVIDIA cuBLAS [11], and AMD clBLAS [4].

5.1 A Simple autoBLAS Example

For illustrating autoBLAS, we discuss a minimal example, namely, a matrix-vector
product. Listing 1.1 shows a snippet of C++ code initializing a set of std::vectors that
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represent vectors and matrices, followed by a pragma-style declaration of an autoBLAS
section. The autoBLAS section first declares two vectors x and y, and a matrix A. Each
declaration comes with a set of name-value pairs, like data=x.data() or rows=rows,
that describe required properties for generating code to evaluate expressions of the
associated variables. The set of supported names and restrictions on values lies in the
responsibility of the selected host-language-context. Here, the C-language context has
been chosen by setting c=c. The currently supported contexts are the C-language, the
Eigen library, the NumPy library, and cuBLAS (CUDA).

Listing 1.1. Example embedding autoBLAS within C++

1 i n t rows = 1 0 ;
2 i n t c o l = 2 0 ;
3 s t d : : v e c t o r < double > x ( rows ) ;
4 s t d : : v e c t o r < double > A( rows ∗ c o l s ) ;
5 s t d : : v e c t o r < double > y ( c o l s ) ;
6 / / i n i t y , A, and x wi th a p p l i c a t i o n s p e c i f i c v a l u e s
7 # a u t o b l a s c=c {
8 V e c t o r x d a t a =x . d a t a ( ) ;
9 V e c t o r y d a t a =y . d a t a ( ) ;

10 M a t r i x A d a t a =A. d a t a ( )
11 rows=rows
12 c o l s = c o l s ;
13 y = A’ ∗ x ;
14 }
15 / / c o n t i n u e u s i n g x , y , and A i n C++

The code in Listing 1.1 is, of course, no valid C++ code and cannot be compiled
directly with a standard C++ compiler. In order to get host-language code for the expres-
sions that are stated in embedded autoBLAS sections, the autoBLAS precompiler has
to be called first. Listing 1.2 shows how to invoke the autoBLAS precompiler on a file
example.c.in. In this simple example, the -b flag is set to select the target routines for
the host-language mappings, here, the standard C-binding cblas.

Listing 1.2. Compiling autoBLAS code

1 $ au tob la s −b c b l a s < example . c . i n > example . c
2 $ gcc example . c −o example

In our specific example, the autoBLAS precompiler replaces the autoBLAS section
in the host-language file with a call to gemv, which is the BLAS routine that computes
matrix-vector products [1]. The generated code, shown in Listing 1.3, is now valid C++
code that can be passed to a conforming compiler like gcc.

Listing 1.3. C++ code generated by the autoBLAS precompiler

1 i n t rows = 1 0 ;
2 i n t c o l = 2 0 ;
3 s t d : : v e c t o r <double > y ( rows ) ;
4 s t d : : v e c t o r <double > A( rows ∗ c o l s ) ;
5 s t d : : v e c t o r <double > x ( c o l s ) ;
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6 // i n i t y , A, and x with a p p l i c a t i o n s p e c i f i c v a l u e s
7 cblas_dgemv ( CblasColMajor , Cb lasTrans , rows , c o l s , 1 . 0 ,
8 A. d a t a ( ) , c o l s , y . d a t a ( ) , 1 , 0 . 0 , x . d a t a ( ) , 1 ) ;
9 // cont inue us ing y , A, and x i n C++

If we want to generate code for the CUDA backend, then we just have to invoke
the autoBLAS precompiler with autoblas -b cuda< example.c.in> example.c.
The generated code, shown in Listing 1.4, is now valid C++/Cuda code that again can
be passed directly to a conforming compiler.

Listing 1.4. C++/CUDA code generated by the autoBLAS precompiler

1 i n t rows = 1 0 ;
2 i n t c o l = 2 0 ;
3 s t d : : v e c t o r <double > y ( rows ) ;
4 s t d : : v e c t o r <double > A( rows ∗ c o l s ) ;
5 s t d : : v e c t o r <double > x ( c o l s ) ;
6 // i n i t y , A, and x with a p p l i c a t i o n s p e c i f i c v a l u e s
7 c u b l a s H a n d l e _ t h a n d l e ;
8 c u b l a s C r e a t e (& h a n d l e ) ;
9 double ∗ d_x ; cudaMal loc (&d_x , x . s i z e ( ) ∗ s i z e o f ( double ) ) ;

10 cudaMemcpy ( d_x , x . d a t a ( ) , x . s i z e ( ) ∗ s i z e o f ( double ) ,
11 cudaMemcpyHostToDevice ) ;
12 double ∗ d_y ; cudaMal loc (&d_y , y . s i z e ( ) ∗ s i z e o f ( double ) ) ;
13 double ∗ d_A ; cudaMal loc (&d_A , A. s i z e ( ) ∗ s i z e o f ( double ) ) ;
14 cudaMemcpy ( d_A , A. d a t a ( ) , A. s i z e ( ) ∗ s i z e o f ( double ) ,
15 cudaMemcpyHostToDevice ) ;
16 cons t double a l p h a = 1 . 0 ;
17 cons t double b e t a = 0 . 0 ;
18 cublasDgemv ( hand le , CUBLAS_OP_T , rows , c o l s , &a lpha , d_A ,
19 c o l s , d_x , 1 , &be ta , d_y , 1 ) ;
20 cudaMemcpy ( d_y , y . d a t a ( ) , y . s i z e ( ) ∗ s i z e o f ( double ) ,
21 cudaMemcpyDeviceToHost ) ;
22 c u d a F r e e ( d_A ) ;
23 c u d a F r e e ( d_y ) ;
24 c u d a F r e e ( d_x ) ;
25 c u b l a s D e s t r o y ( h a n d l e ) ;
26 // cont inue us ing y , A, and x i n C++

5.2 Design

By defining an embedded language of its own, autoBLAS is as intuitive to use as task
specific frameworks like MATLAB when it comes to expressing what to compute.
Additionally, by not being bound to a particular programming language, autoBLAS can
perform any transformation and optimization necessary on the symbolic level at com-
pile time, even beyond the scope of a single statement. Finally, autoBLAS delegates
the task of how to evaluate the optimized expressions by generating the corresponding
BLAS calls. This allows the user to utilize highly efficient BLAS implementations for
the target platform without having to write these calls by hand.
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Figure 3 illustrates the three abstract steps of the autoBLAS compiler. The frontend
is the user-facing part of autoBLAS and comprises both the expression syntax as well as
the context selection. The context specifies attributes of the variables like, for instance,
their memory layout and the BLAS selections available at compile time.

Frontend Core Backend

Fig. 3. The design of autoBLAS is divided in three independent components: the user-facing
frontend, the optimizing core, and the executing backend.

The core implements a set of symbolic optimizations to increase execution perfor-
mance at runtime, while also allocating and reusing memory for temporaries, if nec-
essary. By performing these syntax-tree optimizations independent of a specific target
API, autoBLAS provides a uniform evaluation semantic across different target plat-
forms, hereby, minimizing unpleasant surprises like different operator semantics or
optimization behavior when switching between libraries.

The backend generates code for the optimized expressions for the respective linear
algebra library selected by the caller. Backends define a set of necessary attributes for
evaluating expressions into code. For instance, for the cblas [1] backend, a dense matrix
is often represented by a data pointer, a storage orientation, the number of rows and
columns and the size of the leading dimension. A context is compatible with a specific
backend if it provides all necessary attributes for a particular data type.

An advantage of selecting a BLAS-like backend is, that when later profiling the
code, the user is able to directly refer to potential bottlenecks. This is in contrast to
template-based libraries like Eigen, where the actually called routines are not directly
visible and do not correspond to a particular line within the host-language code.

A major benefit of the separation into frontend, core and backend is that extending
autoBLAS with a new backend is rather simple and in practice merely requires to derive
from a class and implement BLAS-expression to target code mappings. At the same
time, a developer who is extending autoBLAS in this way still benefits from all the
symbolic optimizations implemented in the autoBLAS core.

6 Conclusions

Making generic optimization (GENO) work efficiently requires several fairly different
interoperable software components. In this chapter we have described such components
and their integration into the GENO software stack. By carefully designing, imple-
menting and integrating the components in the GENO software we are able to generate
optimization code that is competitive with problem-specific hand-written solvers and
orders of magnitude faster than competing approaches that are comparably easy to use.
Furthermore, the components, specifically, the generic optimizer, the matrix and tensor
calculus, and autoBLAS, are of independent interest and are also used in other projects
than GENO.
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Abstract. De novo genome assembly is a fundamental task in life sciences. It
is mostly a typical big data problem with sometimes billions of reads, a big puz-
zle in which the genome is hidden. Memory and time efficient algorithms are
sought, preferably to run even on desktops in labs. In this chapter we address
some algorithmic problems related to genome assembly. We first present an algo-
rithm which heavily reduces the size of input data, but with no essential com-
promize on the assembly quality. In such and many other algorithms in bioin-
formatics the counting of k-mers is a botleneck. We discuss counting in external
memory. The construction of large parts of the genome, called contigs, can be
modelled as the longest path problem or the Euler tour problem in some graphs
build on reads or k-mers. We present a linear time streaming algorithm for con-
structing long paths in undirected graphs, and a streaming algorithm for the Euler
tour problem with optimal one-pass complexity.

Keywords: De novo genome assembly · Data reduction · Euler tour ·
Semi-streaming longest path · External memory counting

1 Reduction of Input Data in Genome Assembly

Sequencing is a chemical and physical process in which DNA is ‘crushed’ into very
small parts (‘fragments’) which are ‘read’ to strings called reads, containing information
of the sequence of nucleotides. Reads are of limited length and contain errors (Fig. 1).

Sequencing of big genomes and other samples is a computationally challenging
recent trend for two main reasons:

– sequencing became much cheaper (price decreased by more than 100.000× since
year 2000), so researchers can afford to create much bigger data sets than ever before
(Fig. 2)

– it was discovered that most bacteria (90%–99%) can’t be cultivated, so metagenomic
sequencing is (nearly) the only way to assess them .

1.1 Reads, Coverage and Assembly

A read is a string over the alphabet Σ = {A,C,G,T,N} where A,C,G,T are the four
nuclobases and N is a place holder for an unknown nucleotide. The maximal read length
depends on the sequencing technology used. For the Illumina sequencing technology
the read length initially was 34 and now can be as high as 300. Other sequencers allow
c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 229–251, 2022.
https://doi.org/10.1007/978-3-031-21534-6_13
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Fig. 1. A shortened paired (Illumina) read

for longer reads at the price of a higher error rate (and higher costs). Illumina produces
substitution errors with an error rate of roughly 1%. In most cases, so called paired
reads are generated where in a first step pieces of DNA of a known length are produced
which are than sequenced from both sides (e.g.: a paired read with a read length of 150
contains one string over Σ for the first 150 nucleotides and a second string over Σ for
the last 150 nucleotides).

The sequencer also outputs so-called phred scores quantifying the error probability
of each nucleotide read (Quality Q= −10log10P where P is the error probability).

Genome assembly (or just assembly) is the task to reconstruct the complete genome
of the sequenced species using the reads only (de novo assembly) or the reads and a ref-
erence genome (mapping or reference based assembly). It’s like a puzzle with millions
of small parts, unknown overlaps and a lot of the parts containing errors.

In our work we focus on de novo assembly, or just assembly for the rest of this
chapter.

For a sequencing data set, the coverage of a genomic position A is the number of
reads in the data set which contain A. The coverage of the whole data set is the aver-
age over the coverages of all genomic positions. The empirical ‘optimal’ coverage for
a de novo assembly is about 20 at every position. A coverage higher than 20 means
redundant data. Some sequencing protocols, especially single cell MDA (multiple dis-
placement amplification), produce read sets with an extreme uneven coverage distribu-
tion. Metagenomic data sets may have an uneven coverage distribution, too, when both
abundant and rare species are sequenced. Given a string σ over the nucleotide alphabet,
a k–mer is a sub-string of σ of length k.

GTCTTTTATAAC
GTCTTT
TCTTTT
CTTTTA
TTTTAT
TTTATA
TTATAA
TATAAC

the 6–mers of a string
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Fig. 2. The cost of sequencing a human genome, source: NIH

Most bacteria can’t be cultivated in the lab. Therefore, it is not possible to create a
homogeneous sample of thousands or millions of equal cells as in a ‘normal’ sequencing
setting.

As a consequence, single cell sequencing protocols, like the multiple displacement
amplification (MDA) have been developed which are able to amplify the genome of
a single bacterial cell. A drawback of these methods is a strong amplification bias
(called ‘Preferential amplification’ and ‘Allelic dropout’) between different regions of
the genome, meaning that the coverage of some regions of the genome might overshot
100.000X , while other regions are not covered at all.

A metagenome, introduced by [14], is, according to wiktionary, ’All the genetic
material present in an environmental sample, consisting of the genomes of many indi-
vidual organisms’. In other words, in a metagenomic experiment, you are interested
in

– all the genes/DNA
– of everything living
– at a specific location

The experiment is conducted by collecting a sample from the desired environment, iso-
lating the DNA from it and sequencing it with a Next Generation Sequencing (NGS)
system. There are three different types of metagenomic experiments with different
goals:

– phylogenetic profiling: based upon the 16S ribosomal RNA found in the sample,
reconstruct which families of bacteria live in the probed environment (and how abun-
dant they are). Basis: each (bacterial) cell has ribosomes. The coding genes for these
essential proteins are widely conserved (which makes it possible to identify these
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genes), but they also include less conserved regions which differ between different
families or even species.

– directed/guided assembly of specific genes: based upon some known variants of a
gene (or even whole genomes), all existing variants in a specific environment are to
be assembled.

– de novo assembly of all species in the sample: all genomes of all species in the
probed environment are to be assembled using the output of the sequencer only.

In our work, we focus on de novo assembly.
The main problem of metagenome assembly is non-uniform coverage: some species

in the sample are much more abundant than others. The goal is to assemble all their
genomes. The following issues may arise:

– to be able to assemble the less abundant species in the sample, a high number of
reads have to be generated (→ high coverage sequencing).

– the huge input files force the assembler programs to use huge amounts of RAM and
running time. For bigger projects, even 1TB of RAM might not be enough.

– for the assembler, its often hard to tell whether a rare sequence belongs to a rare
species or whether it is a sequencing error.

1.2 The Bignorm Algorithm

The basic idea of read filtering is to remove reads from a single cell or metagenome
data set without losing information, and in this way to reduce the size of the problem,
possibly escaping the ‘big data curse’. This is possible if only those reads which have
overlapping genomic regions with high coverage are removed. A good read filter should
remove as many reads as possible, without lowering the coverage of the sequenced
genome below the desired threshold at any position and without increasing the error
rate of the data set.

Highly memory efficient algorithms are sought to solve this problem. Brown et al.
invented an algorithm namedDiginorm [1] for read filtering that rejects or accepts reads
based on the abundance of their k–mers. The name Diginorm is a short form for digital
normalization: the goal is to normalize the coverage over all loci, using a computer
algorithmafter sequencing.The idea is to remove those reads from the inputwhichmainly
consist of k–mers that have already been observed many times in other reads. Diginorm
processes reads one by one, splits them into k–mers, and counts these k–mers. In order
to save RAM, Diginorm does not keep track of those numbers exactly, but instead keeps
appropriate estimates using the count-min sketch CMS [4]. A read is accepted if the
median of its k–mer counts is below a fixed threshold, usually 20. It was demonstrated
that successful assemblies are still possible after Diginorm removed high amount of the
data.

Diginorm is a pioneering work. However, the following points, which are important
from the biological or computational point of view, are not covered by Diginorm. We
have included them in our algorithm called Bignorm [29 SPP]:

(i) we incorporate the important phred quality score into the decision whether to
accept or to reject a read, using a quality threshold. This allows a tuning of the
filtering process towards high-quality assemblies by using different thresholds.
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(ii) when deciding whether to accept or to reject a read, we do a detailed analysis of
the numbers in the count vectors. Diginorm merely considers their medians.

(iii) we offer a better handling of the N case, that is, when the sequencing machine
could not decide for a particular nucleotide. Diginorm simply converts all N to A,
which can lead to false k–mer counts.

(iv) we provide a substantially faster implementation. For example, we include fast
hashing functions (see [10,30]) for counting k–mers through the count-min sketch
data structure (CMS), and we use the C programming language and OpenMP.

Let us fix the following parameters:

– N-count threshold N0 ∈ N, which is 10 by default;
– quality threshold Q0 ∈ Z, which is 20 by default;
– rarity threshold c0 ∈ N, which is 3 by default;
– abundance threshold c1 ∈ N, which is 20 by default;
– contribution threshold B ∈ N, which is 3 by default.

When our algorithm has to decide whether to accept or reject a read i ∈ N, it performs
the following steps: If the number of N symbols counted over all read positions is larger
than N0, the read is rejected. Otherwise, those parts of the read having phred scores of
or above Q0 are converted into a vector H of high-quality k–mers.

Using the CMS, it is then checked how many times these k–mers have been seen in
the accepted reads so far (function ĉ(μ)) and two counters hold the results:

b0 := |{μ ∈ H ; ĉ(μ) < c0}|,
b1 := |{μ ∈ H ; c0 ≤ ĉ(μ) < c1}|

Note that the frequencies are determined via CMS counters and do not consider the
position p at which the k–mer is found in the read string. The read is accepted if and
only if at least one of the following conditions is met:

b0 > k, (1)

m(i)

∑
s=1

b1 ≥ B. (2)

The motivation for condition (1) is as follows. According to [15], most errors of
the Illumina sequencing platform are single substitution errors and the probability of
appearance of an erroneous k–mer in the genome, caused by an incorrect reading of a
nucleotide, is quite low. Thus, k–mers produced by single substitution errors are likely
to have very small counter values in the CMS (less than c0 times) and can be considered
as rare k–mers. One such error can only effect at most k k–mers. So if we count more
than k rare k–mers, they most likely are not a result of one single substitution error. If
we assume that the probability of multiple single substitution errors in a read is smaller
than the probability of error-free rare k–mers, we should accept this read.

Condition (2) says that in the read, there are enough (namely at least B) k–mers
where each of them appears too frequently to be a read error (CMS counters at least
c0), but not that abundant that it should be considered redundant (CMS counters less
than c1).
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Algorithm 1: Bignorm
Input: fastq–files as produced by an (Illumina–)sequencer
Result: filtered fastq–files
Parameter: k–mer size k
Parameter: quality threshold Q0
Parameter: rarity threshold c0
Parameter: abundance threshold c1
Parameter: contribution threshold B
Parameter: N-count threshold N0

1 begin
2 initCMS ()
3 foreach read r in input do
4 if count of N in r < N0 then
5 b0 = 0
6 b1 = 0
7 foreach canonical k–mer κ in r do
8 if min (phred_scores (κ)) ≥ Q0 then
9 tκ = getCount(κ)

10 if tκ < c0 then
11 b0+= 1

12 else if tκ ≤ c1 then
13 b1+= 1

14 if b0 > k OR b1 ≥ B then
15 Add r to Output
16 foreach canonical k–mer κ in r do
17 incCount(κ)

Results for Single-Cell Assemblies. We tested Bignorm on 13 bacterial single-cell
data sets and were able to remove up to 90% of the reads without significant loss of the
assembly quality. Some results (median of all samples) (Fig. 3):

Measurement Filtered/Unfiltered (%)

Read count 2.85

Run time SPAdes Assembler 3.57

Largest Contig 97.56

N50 90.84

Mean Phred Score 103.00

Bignorm heavily cuts away redundant reads (mean, Fig. 4, left-hand side) but is
careful in critical regions (P10, Fig. 4, right-hand side).
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Fig. 3. Reads kept

Results for Metagenomic Assemblies. We tested Bignorm on metagenomic data sets.
For data sets with reads of length about 250 base pairs, the results are quite promising
and stable. Compared to the single cell case, the results are not that impressive, but
compared to the State–of–the–art approach of sub-sampling data sets which are too
big to be assembled on the given hardware (this means a certain proportion of reads
is selected randomly), we could show that by read filtering it is possible to get results
which are nearly as good as those of assembling the complete data set, using about
the same amount of RAM and in run time as using the sub-sampling approach. The
following table gives an impression on the results:

Raw Filtered Sub-sampled (3x)

Largest Contig 2183 1731 1356 ± 143

Total length 385282 358036 136552 ± 8406

Genome fraction (%) 15.0 14.0 5.4 ± 0.3

Predicted genes 689 648 262 ± 12

RAM needed (GB) 212 100 96 ± 0.6

Run time (h) 151 52 52 ±2
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Fig. 4. Coverage: mean and critical region

2 Counting k–mers in External Memory (EM)

Many bioinformatics algorithms (e.g., assemblers, error correctors, read normalization)
are based on k–mers, and that requires to count them (mostly for 21 ≤ k ≤ 127). As
bioinformatics data sets are growing much faster than RAM sizes, new computational
models are needed. (We could show that hash–based counting, which is state of the art
in current software, will produce O (n2) hash table dumps when the number of different
k–mers is much bigger than the number of slots in the hash table.)

Some examples of recent k–mer counting algorithms are:

– jellyfish (2) [19]: the standard, hash-based k–mer counter
– dsk [26]: the first EM-based counter
– kmc (2/3) [8,9,17]: the state–of–the–art EM-based counter.
– bloomfish [12]:MPI-based Map–Reduce framework for counting
– squeakr [21]: based on counting quotient filter (a probabilistic data structure)
– turtle [27]: using a Bloomfilter and sort–and–compact algorithm

We need some notations:

– All strings are based on the biological alphabet Σ = {A,C,G,T}.
– So the base set for a k–mer isM := Σ k and m := |M | = 4k.
– The input of a k–mer counter is η ∈ M ×M ×·· ·×M

︸ ︷︷ ︸

n times

=M n.

– Denote by C := {p ∈ M | ∃i≤n : p= ηi} the set of k–mers occurring in the input at
least once, c := |C |.

– Let R be the size (in bytes) of the RAM available.
– Let B the number of bytes needed to count each element of C .
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2.1 Counting in RAM

The straightforward algorithm for small values of k, counting can be done in RAM.
If m ≤ R/B, the following O (n+m) algorithm can be used:

Algorithm 2: trivial counting
Input: fastq–files as produced by an (Illumina–)sequencer
Result: k–mers of input and their number of occurrence in the input

1 begin
2 initialize cm−1

0 = 0
3 foreach canonical k–mer κ in input do
4 cκ = cκ +1

5 for i ← 0 to (m−1) do
6 if ci > 0 then
7 output i,ci

For k = 19 and one Byte per counter, 413 ≈ 275GB of RAM is needed.

Hash–Based Counting. Most state–of–the–art k–mer counting programs are based on
hash algorithms using open addressing:

– Hash table with h entries of size B+ 	 log2m
8 
 = B+ 	 log2 4

k

8 
 = B+ 	 k
4
 → h(B+

	 k
4
) ≤ R

– For hash size h � c the time complexity is O (n+h). But if h ≈ c the run time may
increase to O (nh) and if c > h, the program will fail (or dump to external memory)

– Most existing programs will dump the full hash tables and merge them afterwards
— for bigger data sets, this merging phase may need days and terabytes of exter-
nal memory. The runtime depends linearly on the expected value E[d(h,n)] of the
number of hash table dumps. We can show the following formula for the expected
value.

Theorem 1 (Gallus, Srivastav, Wedemeyer 2021). Counting a set of n elements of a
population with K different, normally distributed types using a hash table of size h, the
expected value of hash table dumps d(h,n) is

E[d(h,n)] = n log(1− h
cn
)

(

1− 1
cn

)

, (3)

where cn = K(1− (1− 1
K )

n) gives the number of different (normally distributed) types
in a set of size n.

This formula is the basis for further quantifying the log-term in (3). If one can show that
this log-term behaves linearly or sublinearly in n in case of including singletons in the
the set of k-mers, it would match experimental observations. In fact, a constant portion
of the k–mers can be assumed as sequencing errors of which each occures exactly once.



238 A. Srivastav et al.

2.2 Counting in External Memory

kmc3 is the presently leading program using the external memory model. It works as
follows:

– the input is parsed into k− x–mers (a combination of up to 3 k–mers)
– they are split into a prefix and a suffix, the suffixes are written to one temporary file
per prefix

– each temporary file is loaded one by one into RAM, sorted (radix sort, library radul)
– the sorted k− x–mers are unified and counted
– written to a pair of special binary files (one index-file for the prefixes and one with
the suffixes and the counts)

Drawback of kmc3: The output files of kmc3 are not completely sorted (due to the
introduction of k− x–mers in kmc2). Therefore,

– they need to be loaded into RAM completely for read out
– exporting to other formats takes more time than counting
– no compression is in place (although the suffix–files are highly compressible)

As a result, even though kmc3 is the fastest EM k–mer counter available (and the fastest
k–mer counter overall under RAM restriction), it is not the perfect choice to be used as
a counting module for an EM assembler.

Based on STXXL 1.4.1 [5], in 2018 Christopher Nehls [20] from Kiel University
developed a k–mer counter called xsc which uses a sorting based approach:

– generate k–mers from input
– sort the k–mers (using the STXXL EM sorter)
– count the k–mers

For k ≤ 32, xsc outperformed jellyfish and was at least competitive to dsk, but
kmc3was always faster. For k> 33 (using uint128 and uint256 classes), xscwas
not competitive to the existing counters. The main bottleneck of xsc is the overloaded
relational operator (operator<).

2.3 Counting Using a Bloomfilter

Roy et.al. [27] stated that more than 50% of all k–mers in a sequencing data set may be
singletons — which are not of interest as they were probably introduced by errors. To
utilise this, their k–mer counter Turtle uses a upstream Bloomfilter to save space and
time in a sorting based approach named ‘sort–and–compact’.

We developed a program which combines the ideas of kmc and the usage of a
Bloomfilter, experiments show that the cost of running a bloomfilter is higher than the
savings (Fig. 5). What is wrong? Say, we have 100 k–mers,

– 50 singletons (occurring once)
– 50 ‘good’ k–mers occurring 100× on average
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Fig. 5. Comparison of run times using or not using a bloomfilter

Our input contains 5050 k–mers, the bloomfilter removes 100→≈ 2% of the input, not
enough to compensate for the running time of the bloomfilter.

Our Current Approach. We have developed the following algorithm which combines
sorting and kmc. Experiments are ongoing work:

Input: fastq–files as produced by an (Illumina-)sequencer
Result: k–mers of input and their number of occurrence in the input

1 begin
2 foreach canonical k–mer κ in input do
3 split κ into prefix and suffix
4 use turtle–like sort–and–compact per prefix
5 if an array is full then
6 dump the sorted array to EM

7 merge arrays

3 A Streaming Algorithm for the Longest Path Problem

In de novo genome assembly, finding a large genome sequence called contig is the fun-
damental problem. It can be understood as computing a very long path in the associated
graph, for example the de Bruijn graph ([3]). Unfortunately, computing the longest path
in a graph is an NP-hard problem and the situation is even more worse if the graph is
very large. In this chapter, we present a new algorithm for computing a long path, which
is surprisingly competitive with RAM-based algorithms.
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Graph streaming is a very efficient concept to handle big graphs, where the num-
ber of edges is far too large for computations in the main memory. The semi-streaming
model was introduced by Feigenbaum et al. [11], and can be briefly described as fol-
lows:

In the semi-streaming model, the algorithm is allowed to use at most
O (n ·polylog(n)) bits of RAM where n is the number of vertices of the input graph.
Because of this restriction, dense graphs where the number of edges is in the order of
ωn ·polylog(n), cannot be processed entirely in RAM. Instead, the edges are presented
in a stream where the edges are in no particular order. Typically, it is desired to call only
a small number of passes (over the input stream).

3.1 Our Tree-Based Algorithm

We give a streaming algorithm for the longest path problem in undirected graphs with
a proven per-edge processing time of O (n) published in the proceedings of the Euro-
pean Symposium on Algorithms in 2016 [16 SPP]. Our algorithm works in two phases,
which we outline here briefly and explain in detail in Sect. 3.1. In the first phase, global
information on the graph is gathered in form of a constant number of spanning trees
T1, . . . ,Tτ . This is possible in the streaming model since roughly speaking, for a span-
ning tree we can “take edges as they come”. A spanning tree can be constructed in just
one pass—we however use multiple passes and limit the maximum degree during the
first passes in order to favor path-like structures and avoid clusters of edges. Exper-
iments clearly indicate that this degree-limiting is essential for solution quality. The
spanning trees fit into RAM, since we consider τ as constant (we will in fact have τ = 1
or τ = 2 in the experiments). After construction of the τ trees, they are merged into one
graph U by taking the union of their edges. Then we use standard algorithms to deter-
mine a long path P in U , isolate P, and finally add enough edges around P to obtain a
tree T .

Then, in the second phase, we conduct further passes during which we test if the
exchange of single edges of T can improve the longest path in it. (A longest path in a
tree can be found by conducting DFS two times [2]; the length of a longest path in a
tree is its diameter.) The main challenge in the second phase is to quickly determine
which edges should be exchanged. We show that this decision can be made in linear
time, hence yielding a per-edge processing time of O (n).

For a set X , we write x unif X to express that x is drawn uniformly at random from
X .

An example run of the Algorithm is shown in Fig. 6.

3.2 Linear Complexity of the Streaming Algorithm

If the cycleC is of length Ω (n), then a naive implementation requires Ω (n2) to find an
edge e′ to remove (temporarily remove each edge on the cycle and invoke the Dijkstra
algorithm). However, we have:

Theorem 2 (Kliemann, Schielke, Srivastav 2016). Phase 2 can be implemented with
per-edge processing time O (n).
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Algorithm 3: Streaming Phase 1: Spanning Tree Construction

Input: connected graph G= (V,E) as a stream of edges, parameter τ ,
degree limit sequence D= (D1 . . .Dq1)

Output: spanning tree of G
1 foreach i= 1, . . . ,τ do
2 Ti := (V, /0)
3 SpanningTree(Ti)

4 U := (V,
⋃τ
i=1E(Ti))

5 find a long path P inU using Warnsdorf’s algorithm
6 T := (V,E(P))
7 SpanningTree(T )
8 return T

Procedure SpanningTree(T)
Input: forest T on V , possibly empty
Output: spanning tree on V

1 r =unif [m]
2 fast-forward the stream to position r
3 for p= 1, . . . ,q1 do
4 while not at the end of the stream do
5 get next edge vw from the stream
6 if T + vw is cycle-free and max{degT (v),degT (w)} < Dp then T := T + vw
7 if |T | = n−1 then break

8 rewind the stream to its beginning

Algorithm 4: Streaming Phase 2: Improvement

Input: connected graph G as a stream of edges, spanning tree T , pass limit q2
Output: a (long) path in G

1 compute longest path P in T with Dijkstra algorithm
2 for q2 times do
3 rewind the stream to its beginning
4 while not at the end of the stream do
5 get next edge e= vw from stream
6 if v ∈V (P) and w ∈V (P) then discard and continue with next iteration
7 T ′ := T + e
8 compute fundamental cycle C in T ′
9 �∗ :=max f∈E(C)\{e} �(T ′ − f )

10 if �∗ > |P| then
11 pick any e′ from the set { f ∈ E(C)\{e} : �(T ′ − f ) = �∗}
12 T := T ′ − e′
13 update P with longest path in T

14 return P
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Fig. 6. Example run of the algorithm’s steps.
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Proof. An O (n) bound is clear for all lines of Algorithm 4, except Line 9 and Line 11.
Denote

�′ := max
f∈E(C)\{e}

max{|P| : P is path in T ′ − f and e ∈ E(P)}

and let R′ ⊆ E(C) \ {e} be the set of edges where this maximum is attained. Then the
following implications hold: �′ ≤ |P| =⇒ �∗ ≤ |P| and �′ > |P| =⇒ �′ = �∗. This is
because if a longest path in T ′ − f is supposed to be longer than P, it must use e (since
otherwise it would be a path in T ). Hence it suffices to determine �′, and if �′ > |P|, to
find an element of R′.

Denote C = (vi, . . . ,vk) the fundamental cycle for some k ∈ N written so that e =
v1vk. When computing �′, we can restrict to paths in T ′ of the form

(. . . ,vs,vs−1, . . . ,v1,vk,vk−1, . . . ,vt , . . .) (4)

for 1 ≤ s < t ≤ k, where vs is the first and vt is the last common vertex, respectively,
of the path and C. For each i, let Ti be the connected component of vi in T −E(C),
i.e., Ti is the part of T that is reachable from vi without using the edges of C. Denote
�(Ti) the length of a longest path in Ti that starts at vi and denote ci := �(Ti)+ i−1 and
ai := �(Ti)+ k− i. Then a longest path entering C at vs and leaving it at vt , as in (4),
has length exactly cs + at . Hence we have to determine a pair (s, t) such that cs + at
is maximum (this maximum value is �′); we call such a pair an optimal pair. If the so
determined value �′ is not greater than |P|, then nothing further has to be done (the edge
e cannot give an improvement). Otherwise, having constructed our optimal pair (s, t),
we pick an arbitrary edge (e.g., uniformly at random) from {vivi+1 : s ≤ i < t}, which
are the edges between vs and vt on C. We show that the following algorithm computes
the value �′ and an optimal pair in O (n).

1 compute c1, . . . ,ck−1 and a2,ak using DFS
2 M := 0; L := 0
3 for i= 1, . . . ,k−1 do
4 if ci > M then
5 M := ci
6 s := i

7 if M+ai+1 > L then
8 L :=M+ai+1
9 t := i+1

10 return (s, t)

The total of computations in Line 1 can be done by DFS in O (n), and the loop in
O (k) ≤ O (n). We prove that the final (s, t) is optimal. For fixed t, the best possible
length cs+ ct is obtained if t is combined with an s < t where cs ≥ c j for all j < t. In
the algorithm, for each t (when t = i+1 in the loop) we combine at with the maximum
max j<t c j (stored in the variable M). Thus, when the algorithm terminates, L = �′ and
cs+ ct = �′.

Corollary 1. Our streaming algorithm (with the two phases as in Algorithm 3 and
Algorithm 4) can be implemented with a per-edge processing time of O (n).
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We turn to the memory requirement. Denote by b the amount of RAM required to store
one vertex or one pointer (e.g., b= 32bit or b= 64bit) and call n ·b one unit.
Theorem 3. Our streaming algorithm (with the two phases as in Algorithm 3 and Algo-
rithm 4) conducts at most 2q1+q2 passes. Moreover, the algorithm can be implemented
such that the RAM requirement is at most (max{4τ, 2τ +4}·n+c) ·b with a constant c.
The proof can be found in [16 SPP].

An experimental study was conducted on randomly generated instances with dif-
ferent structure, including ones created with the generator for hyperbolic geometric ran-
dom graphs [18 SPP]. Different variants of our streaming algorithm are compared with
four RAM algorithms: Warnsdorf and Pohl-Warnsdorf (two related classical heuris-
tics [23,24]), Pongrácz (a recently published heuristic [25]), and a simple randomized
DFS. Experiments show that although we never do more than 11 passes, results deliv-
ered by our algorithm are competitive. We deliver at least 71% of the best result deliv-
ered by any of the tested RAM algorithms, with the exception of preferential attachment
graphs. By considering low percentiles, we observe a similar quality without any restric-
tion on the graph class. This is a good result also in absolute terms, since we observe
that for each graph class and set of parameters, there is one algorithm that on average
gives a path of length 0.84 ·n, i.e., 84% of a Hamilton path. On some graph classes, we
outperform any of the tested RAM algorithms, which makes our algorithm interesting
even outside of the streaming setting.

4 An One Pass Streaming Algorithm for Computing the Euler
Tour in Graphs

Large genome sequences (contigs) can be computed in de novo genome assembly with
so-called de Bruijn graphs on k-mers ([3,22]). Such graphs are directed. For very large
graphs, the computation of an Euler tour cannot be done with known RAM-based algo-
rithms and techniques like semi-streaming or external memory algorithms are sought.
In this chapter, we present a survey on our optimal one-pass streaming algorithm for
computing an Euler tour in an undirected graph. Our algorithm might be helpful to
design a semi-streaming algorithm to compute Euler tours in a directed graph, which is
an open problem.

Let G be a graph on n nodes and m edges given in the form of a data stream. We
study the problem of finding an Euler tour in G. We present a survey on the first one-
pass streaming algorithm computing an Euler tour of G in the form of an edge succes-
sor function with only O(n log(n)) RAM based on our paper [13 SPP]. The memory
requirement is optimal for this setting according to Sun and Woodruff [28].

4.1 The W-Streaming Model and a Lower Bound

The W-streaming model was introduced by Demetrescu et al. [7]. It is a relaxation of
the classical streaming model. At each pass, an output stream is written, which becomes
the input stream of the next pass. For an Euler tour the successor of each edge in the
tour is uniquely defined by its successor function, say δ . Then the output stream has the
following form, where the edges are unordered.
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. . . e δ (e) δ (δ (e)) . . .

Finding an Euler tour in trees in W-streaming has been studied in multiple papers
(e.g., [6]), but the general Euler tour problem has hardly been considered in a streaming
model. There are some general results for transferring PRAM algorithms to the W-
streaming model. In general, lower bounds for the complexity of streaming algorithms
are hard to prove. Interestingly, Sun and Woodruff [28] showed that even a one-pass
streaming algorithm for verifying whether a graph is Eulerian needs Ω(n log(n)) RAM,
and this amount of RAM is also required for a one pass streaming algorithm for finding
an Euler tour.

4.2 The Problem of Cycle Merging

The Euler tour problem in the RAM model can be easily solved by computing edge-
disjoint cycles and merging them. We will see, why this is a problem with limited RAM.
A cycle is a closed walk on the edges of G such that every node is visited at most once.
The following result is well-known in graph theory.

Theorem 4. If a graph with m edges contains an Euler Tour, it can be decomposed into
at most m

3 pairwise edge-disjoint cycles.

In fact, this can be accomplished in one pass.

Theorem 5. During the pass, the edges from the input-stream can be ordered in form
of a sequence of edge-disjoint cycles.

Proof. 1. Start with T := /0
2. While T is cycle-free, add edges from the input stream to T
3. When a cycle occurs in T , store it and delete all its edges from T . Go to Step 2.

At every time, T contains at most n edges.
If T �= /0 at the end, there are some nodes of odd degree, thus G does not contain an
Euler Tour.

Obviously and unfortunately, we cannot store all the cycles in the semi-streaming
model. The challenge is to merge cycles, when they are appearing with respect to the
memory limitation ofO(nlog(n)). We will use the notion of tours or subtours for cycles,
too.

The merging of two tours at one node is easy. We just flip edges in canonical way
and get the new tour:
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Similarly, one can merge several tours at one common node.
The problematic case is the simultaneous merging at two nodes. There is an exam-

ple.

Unfortunately, the result of this merging is two tours, and the merging failed. A
problem only occurs if the cycle shares more than one node with an already existing
tour. In this case, we have to make sure that edge-swapping is performed at exactly one
of these nodes. Every node belongs to at most one tour at a time, thus all nodes of a tour
can get the same label.
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4.3 The W-Streaming Algorithm and Its Analysis

We proceed to the pseudo-code statement of our streaming algorithm.

Algorithm 5: EULER-TOUR

input : Undirected graph G= (V,E), edge by edge on a stream S
output: Euler tour for G, i.e. a successor function δ ∗, if there is one

1 c := 0; F := /0; Eint := /0; for every v ∈V : s(v) := 0, t(v) := 0
2 for every edge e on S do
3 Eint := Eint ∪{e}
4 if Gint = (V,Eint) contains a cycle C then
5 node MERGE-CYCLE (C)

6 if Eint = /0 then
7 ERROR: At least one node with odd degree exists

8 if there exist u,v with t(u) �= t(v) �= 0 then
9 ERROR: Graph is not connected

10 WRITE-F

Procedure Merge-Cycle
input : Ordered directed cycle C = (v1, . . . ,vk) of length k

1 NEW-NODES

2 CHOOSE-NODES

3 WRITE

4 MERGE

5 UPDATE

6 for every edge e ∈C do
7 delete e from Eint

The output stream is a successor function, i.e. e1, δ (e1), e2, δ (e2), . . . For a,b,c ∈
V with (a,b); (b,c) ∈ �E the triple (a,b,c) represents the successor function (a,b) →
δ ((a,b)) = (b,c). So, edge (b,c) is the successor of edge (a,b). The output stream is
not necessarily an ordered trail!

The main result is the following theorem [13 SPP].

Theorem 6 (Glazik, Schiemann, Srivastav, 2017). There exists an one-pass W-
Streaming algorithm with O(n logn) RAM that outputs an Euler tour on the input graph
G (if G contains an Euler tour).

We sketch the proof. Let δ be a successor function. Equivalence classes: e ∈ E :
[e]δ = { f ∈ E; e ≡δ f

︸ ︷︷ ︸

∃k:δ k(e)= f

} We identify the successor function with equivalence classes

on �E.

Lemma 1 (Algebraic Representation [13 SPP], Lemma 1). Let δ be a bijective suc-
cessor function on a directed graph �G= (V,�E). Then ≡δ is an equivalence relation on
�E.
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Lemma 2. Let �G= (V,�E) be a directed graph with bijective successor function δ and
the related equivalence relation ≡δ . Then we have:

(i) Let e ∈ �E and k1,k2 ∈ N with k1 �= k2 and δ k1(e) = δ k2(e). Then |k1 − k2| ≥ |[e]δ |.
(ii) For any e ∈ �E we have δ |[e]δ |(e) = e.

Proof.(i): Fs : �E → �E, s ∈ N, Fs(e′) = δ s(k1−k2)(e′).
– δ k2(e) fixpoint of Fs.
– M := {δ �(e);k2 ≤ � < k1}, |M| ≤ k1 − k2
– [e]δ ⊆ M by fixpoint property of Fs

The assumption k1 − k2 < |[e]δ | implies |M| < |[e]δ | ≤ |M| → contradiction
(ii): r := |[e]δ |. Lets assume for a moment that δ r(e0) �= e0 for some e0.

– M := {δ �(e0);1 ≤ � ≤ r} ⊆ [e0]δ
Case 1: e0 ∈ M. Then

δ 0(e0) = e0 = δ �(e0) for some � < r.

By (i): �−0 ≥ r → contradiction
Case 2: e /∈ M. Then |M| < |[e]δ |. By the pigeonhole principle, there exist 1 ≤

k1,k2 ≤ |[e]δ | with δ k1(e) = δ k2(e) in contradiction to (i).

Further, a structured theorem is needed. For an edge e=(v,w) let e(1) := v, e(2) :=w.

Theorem 7 (Successor function generates Euler tour [13 SPP], Theorem 3). Let
= �G(V,E) be a directed graph with bijective successor function δ such that e ≡δ e′ for
all e,e′ ∈ �E. Then δ is the successor function of an Euler tour for G.

Let δ 0 be the successor function of an edge disjoint cycle decomposition of G. The
algorithm computes a sequence of successor functions δ ∗

0 = δ 0,δ ∗
1 , . . . ,δ ∗

N := δ ∗

Theorem 8. If G is Eulerian, δ ∗ determines an Euler tour on G.

The following lemma is the backbone of the proof and requires substantial work.

Lemma 3 ([13 SPP], Lemma 9). Let k ∈ {0, . . . ,N}. Then, δ ∗
k is bijective and for any

(u,v),(u′,v′) ∈ R∗(E), we have

(i) If (u,v),(u′,v′) are processed edges, then (u,v) ≡δ ∗
k
(u′,v′) ⇔ tk(u) = tk(u′).

(ii) If (u,v) is a processed edge, then tk(u) = tk(v).
(iii) If tk(u) = 0, then (u,v) ≡δ ∗

k
(u′,v′) ⇔ (u,v) ≡δ (u′,v′).

Proof (Proof of Theorem 8). We show: If δ ∗ is bijective and e ≡δ ∗ e′ for all e,e′, then
δ ∗ is an Euler tour by Theorem 3. Then, by Lemma 3, δ ∗ = δ ∗

N is bijective. For the
second property let e,e′ ∈ E, e= (u,v) and e′ = (u′,v′). We show e ≡δ ∗ e′. Now, there
exists an u–u′–path P in G because G is Eulerian. Let P= u x1 x2 . . .xk u′ such a path.

u
x1

x2
xk

u′
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By Lemma 3 (ii), label tN propagates through P:

tN(u) = tN(x1) = tN(x2) = · · · = tN(xk) = tN(u′)
⇒ tN(u) = tN(u′)
⇒

Lemma 3(i)
e ≡δ ∗

N
e′

In future work we may investigate other routing problems and applications for stream-
ing algorithms using Euler tours.
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Abstract. We survey recent advances in scalable text index construction with a
focus on practical algorithms in distributed, shared, and external memory.
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1 Introduction

Texts occur in many different domains, ranging from natural language texts over source
code to DNA and protein sequences, and their amount is ever-increasing. The field of
algorithm and data structure research on strings is often referred to as Stringology. One
important aspect within this line of research is the efficient construction of text indices.
A text index is a data structure that provides additional information for a given text to
speed up answering different types of queries, e.g., pattern matching queries that ask
if (or how often, or where) a pattern occurs in the text. We focus on full-text indices
for possibly unstructured texts, which allow the user to query for arbitrary patterns
(this excludes, e.g., inverted indices). Real-world applications of text indices can be
found, for example, in computational biology where text indices are a crucial part of the
software for DNA alignment [134]. However, the amount of textual data is increasing
significantly faster than the computational capacity of ordinary computers. For example,
in 2008 the 1000 Genomes Project (1KGP) was launched to collect and sequence the
genomes of thousands of people, whereas, in 2020, the 1+Million Genomes Initiative
(1+MG) started to collect at least one million genomes, making this collection 1000
times larger. Therefore, scalable construction algorithms that can handle the massively
growing amount of text are necessary.

In this survey, we discuss the current state of the art in scalable text index construc-
tion. We focus on distributed, external, and shared memory construction algorithms for
different text indices and their applications. While there already exist surveys focussing
on particular indices (e.g., suffix arrays [28,172] or wavelet trees [149,160,63 SPP]),
or models of computation (e.g., external memory [23,56]), this chapter tries to give
c© The Author(s) 2022
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Fig. 1. Relations of text indices. In this article, we consider text indices that have scalable con-
struction algorithms. The labels SM, DM, EM mark whether such construction algorithms in shared,
distributed, and external memory exist. Note that the LZ77 factorization itself is a text compres-
sion and not an index. We use arrows ( ) to denote indices that are used (in practice) to compute
the targeted text index or if they are a special case ( ) of the targeted index. Diamonds ( ) are
used to denote indices that are part of the targeted text index.

a more unified view. To this end, we point out common techniques that are used in
different models of computation or in the computation of different text indices.

This survey is structured as follows. First, in Sect. 2, we introduce models of com-
putation and give an overview of (string) sorting algorithms and further building blocks
that are required as basic tools for text index construction. The main body of work can
be found in Sect. 3. Here, we discuss the scalable construction of different text indices.
We start with the suffix array (SA), one of the most well-researched text indices, and the
longest common prefix (LCP) array, which often accompanies the SA. Next, we take a
look wavelet trees (WT ) and the Burrows-Wheeler Transform (BWT ), which both are
important parts of the FM-index, a compressed text index frequently used in practice.
Then, we discuss algorithms for the suffix tree (ST ) and space efficient representations
thereof. See Fig. 1 for an overview of the text indices and their relations. While most of
the discussed work solely focuses on the construction of the text indices, we also show
approaches to answer queries on text indices in distributed memory. Finally, in Sect. 4,
we show real-world applications of text indices in bioinformatics and text compression
before we address future challenges in Sect. 5.

2 Preliminaries

Let T = T [0] . . .T [n− 2]$ be a text of length n over an alphabet Σ = [0,σ), where
we assume that T is terminated with an end-of-file or sentinel symbol $ with $ /∈ Σ and
$ < α for all α ∈ Σ . A text over an alphabet of size σ = 2 is called bit vector. Usually, bit
vectors do not contain a sentinel. We call T [i.. j) = T [i] . . .T [ j−1] a substring of T for
i, j ∈ [0,n]. The substrings T [0..i) and T [ j..n) are called prefix and suffix for i, j ∈ [0,n].

2.1 Models of Computation

In this section, we introduce models of computation that are relevant for the rest of this
chapter and give pointers to software libraries that are commonly used to implement
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algorithms in those models. The starting point is the sequential random access machine
(RAM) model [182], where we have a single processing element (PE) that contains
multiple registers to perform operations on data and a main memory, which can be
accessed in constant time. However, real-world systems are often more complex and
require more sophisticated models.

One of these models is the external memory (EM) model [4]. Here, we have an
internal memory of size M words and an external memory of unlimited size that is
much slower to access randomly. To compensate for this, transfer between EM and
RAM happens in blocks of B consecutive words. Such a transfer is called I/O operation
(I/O for short). The cost of external memory algorithms is then described by the number
of required I/Os, e.g., scanning through N elements requires Θ

(
N
B

)
I/Os, and sorting N

elements requires sort(N) := Θ
(
N
B logM

B

N
B

)
I/Os. The software libraries STXXL [57]

and TPIE [9] implement the most commonly used external memory algorithms and
data structures. A (practical) relaxation of the model is the semi-external model, where
we allow random access to either the input or output, but not both. The Succinct Data
Structure Library (SDSL) [94] provides implementations of semi-external construction
algorithms for various data structures.

We also consider two parallel machine models, where by p we always denote the
number of available PEs. The first is the parallel random access machine (PRAM),
where all PEs have access to the same (shared) memory. There are various PRAM
variants differentiating between which types of concurrent memory reads/writes are
allowed; for practical algorithms on a multi-core processor one should only use exclu-
sive writes, implying that the Concurrent Read Exclusive Write (CREW) model is best
for analyzing algorithms. In the analysis, the work and depth are of interest. The former
is the total number of operations performed, and the latter is the longest sequence of
sequential dependencies in the algorithm. When implementing shared memory algo-
rithms, Cilk [38] (now deprecated), OpenMP [53], Intel’s TBB [174], Microsoft’s Par-
allel Patterns Library (PPL), or built-in concurrency features of the programming lan-
guage, e.g., thread in C++11, are often used to express parallelism. The Multi-Core
Standard Template Library (MCSTL) [188] provides parallel algorithms and can be
used as the parallel mode of the GNU C++ Standard Library. Recently, ParlayLib [36]
was introduced as a library containing efficient implementations of the parallel algo-
rithms in the C++ Standard Library.

The distributed memory model is our second parallel machine model. Here, com-
munication between different PEs is conducted by sending messages over a network,
and PEs have only local memory. Often, the cost of such a message is given as a startup
cost plus a cost that depends on the size of the message. This is also reflected in the
bulk-synchronous parallel model [200], where algorithms are divided into a sequence
of supersteps consisting of three phases: local work, communication, and synchroniza-
tion. The cost of an algorithm is then the sum of the costs of all supersteps. In prac-
tice, there are two flavors of frameworks for developing distributed algorithms: low-
level interfaces provided by the message passing interface (MPI)1 with its open-source
implementations Open MPI [89] and MPICH [98], and frameworks providing a more

1 MPI standard: https://www.mpi-forum.org/docs (last accessed 2020-07-14).

https://www.mpi-forum.org/docs


Scalable Text Index Construction 255

high-level functionality, e.g., Apache Flink [5], Apache Hadoop (based on MapRe-
duce [54]), Apache Spark [210], and Thrill [29 SPP].

2.2 Building Blocks

Sorting. Sorting is a fundamental and well-studied topic in computer science, and
the many results fill entire volumes [129,146] of related work. Hence, we will only
review recent results for sorting integers in this section, which can be used in vari-
ous of the following text indexing algorithms. In applications, sorting is most often
still performed using classic sequential algorithms [107,159], despite existing more
cache- or instruction-efficient variants [12,65,180,205] and well-developed modern
parallel algorithms for shared-memory machines such as IPS4o [17], or the sorters in
the MCSTL [188], Intel’s TBB [174], the PBBS [186], ParlayLib [36], or Microsoft’s
PPL. Another method of accelerating sorting is by vectorizing comparisons or opera-
tions using SIMD instructions [35,41,87,108,110,207,209].

For sorting integers, there is also the option of using radix sort algorithms, which
have to be implemented carefully for modern CPUs [123,152,173]. Many parallel radix
sorts for shared-memory machines are also available [138,165,192,203], and are most
prominent on GPUs [101,109,154,181,194].

Sorting of data on external memory is a classic subject [4,58], and implementations
are available in specialized libraries like TPIE [8] or STXXL [57].

An entirely different challenge is sorting on highly-scalable distributed shared-
nothing machines, where load balancing, communication, and data redistribution have
to be devised carefully, as PEs do not share memory. Most distributed memory sort-
ing algorithms are based on either Quicksort [1,13,16,133,178,196] or sample sort
[13,15,37,60,96,106,193,14 SPP].

Sorting is often used as a black box for text indexing algorithms, but depending
on the model, machine, or scenario, large performance gains are possible by picking a
better sorting implementation.

String Sorting. Sorting strings is an interesting special case of sorting, especially
for text indexing algorithms, and most classical sorting algorithms have been adapted
to multi-component objects or multi-key data [26,33,123,152,162,189]. Early par-
allel algorithms were formulated in the PRAM model and are based on merging
of tries [102,113]. For external memory, theoretical algorithms were proposed, dis-
tinguishing short and long strings [7], or using hashing [70]. Many well-developed
cache-efficient sequential and shared-memory parallel string sorting algorithms [28,
33,30 SPP] are available in the TLX C++ library2. The fastest sequential ones are engi-
neered variants of radix sort with very little memory overhead, and the fastest shared-
memory parallel one is a string-aware sample sort implementation. These implemen-
tations also support outputting the lengths of the longest common prefixes (LCPs) of
lexicographically adjacent strings at next to zero extra cost.

2 TLX website: https://panthema.net/tlx/ (last accessed 2020-10-18).

https://panthema.net/tlx/
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While in principle the shared-memory parallel algorithms could be adapted to
shared-nothing distributed supercomputers, they neglect that communication volume
is the limiting factor for the scalability of algorithms to large systems [6,39]. The first
distributed string sorting algorithm we developed was a straight-forward adaptation of
merge sort for use in a distributed suffix array construction algorithm [78 SPP]. This
first version still considered strings as unbreakable objects.

Bingmann et al. therefore developed genuine distributed string sorting algorithms
based on multi-way merge sort [34 SPP], which break up the strings into characters. The
strings on each PE are first sorted locally. The PEs then collectively execute a distributed
partitioning algorithm which yields p ranges of equal size with respect to the entire data.
Each range is spread across the p machines in p fragments, and in the next step, each
PE sends its misplaced p− 1 fragments to the corresponding target machine. Finally,
each PE merges the received partition fragments. The appeal of multi-way merging for
communication-efficient sorting is that the local sorting exposes common prefixes of
the local input strings. The Distributed String Merge Sort (MS) exploits this by only
communicating the length of the common prefix with the previous string followed by
the remaining characters. Here, the LCP values also allow us to use the multiway LCP-
merging technique previously developed by Bingmann et al. [30 SPP] in such a way
that characters are only inspected once.

The second algorithm, Distributed Prefix-Doubling String Merge Sort (PDMS), fur-
ther improves communication efficiency by only communicating characters that may
be needed to establish the global ordering of the data (the distinguishing prefix). The
algorithm also has optimal local work for a comparison-based string sorting algorithm.
The key idea is to apply the communication-efficient duplicate detection algorithm by
Sansers et al. [179] to geometrically growing prefixes of each string. Once a prefix has
no duplicate anymore, we know that it is sufficient to transmit only this prefix. The same
idea was also used to make any PRAM algorithm LCP-aware [68 SPP].

An experimental evaluation of MS and PDMS (which are implemented in MPI) on
up to 1280 cores shows that these algorithm are often more than five times faster than
previous non-string-aware algorithms. In the future, we hope that these algorithms will
find their way into general purpose distributed toolkits such as Apache Spark [210] or
Thrill [29 SPP].

Further Building Blocks. The prefix sum (w.r.t. a binary associative operator ⊕) of
n elements A[0], . . . ,A[n− 1] is an array B of n elements with B[i] =

⊕i
k=0A[k] for

i∈ [0,n). In the PRAM model, the prefix sum of n elements can be computed in O (lgn)
depth and O (n) work [112, p. 47]. Due to their ubiquity, algorithms for prefix sums
are part of frameworks used in different parallel models, e.g., distributed [29 SPP] and
shared memory [188].

Rank and select data structures for a bit vector of length n allow us to compute the
number of set (or unset) bits up to position i ∈ [0,n) (rank), and the position of the j-th
set (or unset) bit for j ∈ [1,n] (select), respectively. They are an important ingredient
of wavelet trees (see Sect. 3.2). To the best of our knowledge, the only parallel con-
struction algorithms for rank and select data structures are described by Shun [185] and
require O (lgn) depth and O (n/lgn) work if the n bits are packed into �n/lgn� words.
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Fig. 2. Suffix array and longest common prefix array (see Sect. 3.1) for the text T =
mississippi$. Below, we also show the suffixes in lexicographical order, i.e., the suffixes
represented in the suffix array. There, we also visualize the longest common prefixes of two lexi-
cographically consecutive suffixes in green ( ). (Color figure online)

In practice, only sequential construction has been considered, e.g., [46,147,211]. How-
ever, the construction of the data structures proposed by Zhou et al. [211] heavily relies
on prefix sums and could thus easily be parallelized.

We can generalize binary rank and select queries for a text T . Then, the function
rankα(T, i) counts, for some character α ∈ Σ and a text position i ∈ [0,n), the number
of occurrences of α in T [0..i], whereas selectα (T,k), for some k > 0, finds the position
of the k-th occurrence of α in T . Generalized rank/select queries can be answered effi-
ciently using wavelet trees, which reduce them to O (lgσ) binary rank/select queries
(see Sect. 3.2).

3 Text Indices

A text index provides additional information for a text to speed up answering differ-
ent types of queries. In the following, we give an overview of different construction
algorithms for text indices in the models that we describe in Sect. 2.1.

3.1 Scalable Suffix Array Construction

One of the best-researched text indices is the suffix array (SA), which has been intro-
duced by Manber and Myers [150] and independently by Gonnet et al. [95] as the PAT
array. The SA of a text T of length n is a permutation of [0,n) such that T [SA [i],n) <
T [SA [ j],n) for all 0 ≤ i < j < n, i.e., it lists all suffixes lexicographically. See Fig. 2
for an example. Suffix arrays are a space efficient replacement of suffix trees (ST ) (see
Sect. 3.3). To obtain the same functionality as the STs, SAs are often accompanied by
additional arrays containing further information. Since suffix array construction algo-
rithms sort all suffixes of a text, we use the term suffix sorting synonymously with suffix
array construction.
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When both the text and the SA fit into memory, the SA can be computed in linear
time using the difference cover algorithm [124]. The idea is to sample suffixes and sort
the samples. Using the sorted samples, we can lexicographically compare two suffixes
in constant time. First, we compute SA12 containing all suffixes starting at positions that
are not a multiple of three, i.e., suffixes starting at positions that are congruent to 1 and
2 modulo 3. To this end, we interpret three characters as one (increasing the alphabet
size) and recursively call this algorithm until all characters are unique. Then, the SA0

of all other suffixes is computed using the already computed SA12. To obtain the final
SA, SA0 and SA12 are merged. The algorithm described above is called DC3. It can be
generalized to other difference covers modulo X > 3; then we refer to it as DCX. The
DCX algorithm can easily be adapted to several models of computation where it also is
asymptotically optimal [124]. However, it often impractical due to substantial constant
factor overheads, while induced sorting algorithms (Sect. 3.1) are superior, at least in the
sequential computations. But the latter are hard to parallelize. Closing this gap between
theory and practice is an interesting open problem for algorithm engineering. Note that
all but one [20] sequential linear time suffix sorting algorithms rely on recursion. The
SA can be constructed sequentially with only constant space overhead while retaining
a linear running time [97,141]. For more information on sequential suffix sorting, we
point to two extensive surveys [28,172] and a practical evaluation [19 SPP].

We now give an overview of suffix sorting algorithms in external memory, in shared
memory (briefly touching also GPUs), and in distributed memory. Later, we take a look
at the LCP array, one of the arrays often supplementing the SA.

External Memory. Crauser and Ferragina [52] and Dementiev et al. [56] present EM
prefix doubling algorithms with discarding. The idea of prefix doubling [150] is to
sort all suffixes based on the h-order ≤h, defined by T [i,n) ≤h T [ j,n) ⇔ T [i, i+ h) ≤
T [ j, j+ h) (=h and <h are defined analogously). The h-rank of a suffix is the number
of suffixes that are strictly smaller w.r.t. the h-order. Now, during the k-th iteration, we
compute the 2k-ranks using the 2k−1-ranks: for all suffixes T [i,n), we use the ranks of
T [i, i+2k−1) and T [i+2k−1, i+2k), which are known from the previous iteration. We
stop when ranks are unique; then, each rank is the position of that suffix in the SA. In
practice, we can discard those h-ranks that are unique and not needed to compute other
ranks any more, which can speed up the sorting, as it reduces the number of elements
that we have to sort. For texts with small alphabets, prefix doubling algorithms are in
practice often sped up by alphabet reduction in combination with word packing, e.g.,
[56,81,32 SPP,78 SPP]. Here, an alphabet of size σ is first mapped to [0,σ ′) such that
σ ′ ≤ σ each character of the new alphabet occurs at least once in the text and they retain
their original order. Then, each character is augmented such that it not only stores T [i],
but also the following 	b/lgσ ′
 characters for some suitable bit-width b. This makes
sense, for example, when there are unused bits already reserved in the binary repre-
sentation of the characters, as with DNA (σ ′ = 4) stored in bytes (b = 4). This allows
prefix doubling algorithms to skip the first 	lg(	b/lgσ ′
)
 iterations. Dementiev et
al. [56] also generalize prefix doubling to α-tupling, i.e., considering αk-ranks during
the (k+1)-th iteration and present experimental results for their implementations. Here,
EM DC3 is superior to all prefix doubling/quadrupling (α = 2 and α = 4) algorithms
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w.r.t. running time and I/Os. They also show that for small alphabets, DCX can yield
further improvements when using difference covers of size 31.

Induced sorting (see [144] for a detailed overview) is another prominent approach
for EM suffix sorting. It is also used in the fastest sequential main memory suffix sorting
algorithms [19 SPP] that are called SAIS [164] and DivSufSort3. This technique has
also been generalized to compute the SA of collections of strings [145]. The general
idea of all EM induced sorting suffix sorting algorithms is to: (1) classify all suffixes into
two classes, which can be done in a single scan of the text, (2) sort at most n/2 special
suffixes, which are suffixes from one of the classes that are (in text order) next to a suffix
from the other class, and (3) induce the lexicographical order of all other suffixes using
an EM priority queue. The two most prominently used classification schemes are by
Itoh and Tanaka [111] and Nong et al. [164]. All following external memory algorithms
make use of the latter classification scheme.

Bingmann et al. [31] propose eSAIS following the ideas described above. Addition-
ally, eSAIS can also be used to compute the LCP array, which we define later in this
section. Another EM induced sorting algorithm DSAIS is presented by Nong et al. [163].
However, this algorithm assumes that n=O (M2/B), which limits the scalability, as the
input size is still bounded by the size of the main memory (it is also not faster in prac-
tice than eSAIS [122]). An improved version DSAIS+ by Wu et al. [206] is reported to
be faster than eSAIS and also requires around half the disk space. Another EM induced
sorting algorithm, called fSAIS, is presented by Kärkkäinen et al. [122]. The fSAIS
algorithm introduces multiple improvements compared with eSAIS and DSAIS. First,
it uses the classification by Nong et al. [164] but switches the classes when it comes
to determining the special class, which resolves some corner cases, because now the
last suffix T [n− 1..n) cannot be in the special class. Then, a stable priority queue is
used, making timestamps to keep track of the order of the induced suffices unneces-
sary (compared to eSAIS) and thus reducing the I/O volume. Finally, to avoid random
access on the text, a simplified blockwise preinducing [163] is used, i.e., the text is split
into fixed sized blocks and the characters in each block are ordered in the same way
they are accessed during the inducing phase. In addition to fewer random access, this
makes it unnecessary to store the text positions from which the suffixes is induced. All
these improvements halve the I/O volume of the algorithm compared to eSAIS. Han
et al. [103] recently presented nSAIS, which reduces the I/O volume and required disk
space even further.

Another idea for EM suffix sorting is to split the text into consecutive blocks such
that the SA of the block can be computed in main memory. These partial SAs (plus
additional information that helps later on) are then merged to obtain the final SA [117].
This approach can be parallelized [121] in EM.

Shared Memory and GPGPU. On a PRAM, we are only aware of induced sorting
algorithms. Labeit et al. [132] present a parallel implementation of DivSufSort. Lao et

3 Original implementation without publication: https://github.com/y-256/libdivsufsort (last
accessed 2020-10-18). Fischer and Kurpicz give a detailed description of the algorithm and
extend it to also compute the LCP array [77 SPP].

https://github.com/y-256/libdivsufsort
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al. present a parallel version of SAIS [136] and SACAK [137], the latter being a sim-
plified version of SAIS. Both are faster on repetitive texts than the parallel DivSufSort.
An improved parallel SACAK algorithm, by Xie et al. [208], is the fastest algorithm
on most inputs (in their evaluation, the parallel DivSufSort is only faster on two of the
non-repetitive inputs).

Finally, we also want to mention SA construction using graphics cards (general pur-
pose computation on graphics processing unit, GPGPU). Due to the limited amount
of memory available on graphics cards, these algorithms do not scale well. The domi-
nant techniques used in GPGPUs are prefix doubling: either heavily relying on prefix
sums [195] or using radix sort [169,202]. DCX algorithms have been presented by Deo
and Keely [59] and Wang et al. [202] but are outperformed in practice by the prefix
doubling approaches. The latter also present a DCX-prefix-doubling hybrid, which is
the fastest GPGPU suffix sorting algorithm.

Distributed Memory. In distributed memory, suffix sorting becomes harder than in
RAM, as we have to communicate to obtain access to text that is not locally available
on a PE; we want to avoid random access on data that is not local. There exist distributed
suffix sorting algorithms that are based on merge-sort [128], quicksort [161], and radix
sort [2,88]. The DCX algorithm has also been practically evaluated in distributed mem-
ory [131,155,32 SPP]4.

In practice, variants of prefix doubling are most often used, with different imple-
mentations of how the new ranks are computed. Kitajima and Navarro [127] presented
an early distributed version of Manber and Myers’s [150] prefix doubling algorithm,
but it requires a lot of bookkeeping. Flick and Aluru’s distributed prefix doubling algo-
rithm [81] makes use of the inverse SA that is partly computed based on the currently
considered h-ranks. A further practical improvement is that the algorithm switches to
a different strategy for refining the ranks for small groups of suffixes with the same
rank; this reduces communication even further. In addition, this algorithm is the only
distributed algorithms that supports the computation of the LCP array. Two distributed
prefix doubling algorithm are presented by Bingmann et al. [32 SPP]. Those algorithms
have been implemented in the Thrill framework [29 SPP], which results in some restric-
tions regarding the access to the distributed data. The first algorithm makes use of a
window of size 2k (in the k-th iteration) to obtain the required rank, whereas the second
one is a prefix doubling with discarding algorithm. This idea was later revisited and
implemented using MPI [78 SPP]. Here, the prefix doubling algorithm and distributed
string sorting (see Sect. 2.2) are used as building blocks for a distributed induced sorting
suffix sorting algorithm, which is the most memory efficient distributed suffix sorting
algorithms currently available, but only works efficiently for small alphabets due to a
σ2-factor in space and the number of synchronization steps.

Longest Common Prefix Array. The SA is often accompanied by different arrays
containing useful information to speed up different types of queries. One of the most

4 DC3/7/13 implementation without publication is available at
https://github.com/bingmann/pDCX (last accessed 2020-09-25).

https://github.com/bingmann/pDCX
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important ones is the longest common prefix (LCP) array. It contains the lengths of
the longest common prefixes of lexicographically consecutive suffixes. More formally,
LCP [0] = 0 and LCP [i] =max{� ≥ 0: T [SA [i] ,SA [i]+�)= T [SA [i−1] ,SA [i−1]+�)},
see Fig. 2. The LCP array can be computed sequentially in linear time [125].

There exist LCP array construction algorithms based on prefix doubling in dis-
tributed memory [81]. In external memory, the LCP array can be constructed while
executing eSAIS [31]. Alternatively, it can be computed after the computation of the
SA [115,116]. This EM computation can also be parallelized [118,119]). In GPGPUs,
there exists a parallel version of Kasai et al.’s [125] algorithm [59]. We refer to [183] for
a extensive evaluation of different shared memory LCP array construction algorithms.
The LCP array construction has also been generalized to collections of strings [67,145].

3.2 Compressed Full-Text Index

In the following, we consider a space-efficient alternative to the SA, the FM-index. We
first look at the construction of its two main building blocks, the Burrows-Wheeler
transform and the wavelet tree, and then how it can be combined to finally obtain the
FM-index.

Burrows-Wheeler Transform. The Burrows-Wheeler transform (BWT ) [42] of a text
T of length n is defined by BWT [i] = T [SA [i]−1 mod n]. A different, more verbatim
definition of the BWT is that we sort the strings S0 = T [0] . . .T [n− 1],S1 = T [1] . . .
T [n− 1]T [0], . . . , Sn−1 = T [n− 1]T [0] . . .T [n− 2] (the shifts of T ) lexicographically.
Then BWT is the last character of each of the shifts, when the shifts are read in lexico-
graphic order. We call this the naive approach. See Fig. 3a for an example of the BWT .
The first definition of the BWT can be translated to a simple construction algorithm
based on the SA—for which we have seen many construction algorithms in different
models of computation in Sect. 3.1. However, there are many algorithms that do not
require the computation of the SA. In RAM, the best main memory algorithm can com-
pute the BWT in time O (nlgσ/

√
lgn) for alphabets of size σ ≤ √

lgn [126].
On a PRAM, Hayashi and Taura [104] present a construction algorithm that is based

on the divide-and-conquer paradigm. They first recursively split the text into consecu-
tive slices (until the size of a slice falls below a threshold). After that, partial BWTs
are computed for the slices. These partial BWTs are then merged in parallel. To speed
up merging, additional information, like SA samples and WTs, is used. Liu et al. [143]
present an algorithm that does not merge the partial BWTs directly, but only computes
partial SAs and merges those. However, unlike Hayashi and Taura, they use a single
dedicated PE to merge the partial SAs, which are computed by all other PEs. Again,
additional information, like the LCP array (see Sect. 3.1), is used. The BWT is then
obtained using the final SA. Fuentes-Sepúlveda et al. [86] present a parallel version of
[157] that considers consecutive slices of size Δ = �lg σn� as meta-symbols. The SA
of the concatenation of S1 and S2 (of size 2n/Δ ) is used to compute a partial BWT .
Then, all other shifts Si (Δ −2 many) are merged (each in parallel) with S1. Additional
information obtained by the merging is used to update the partial BWT .
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Fig. 3. Burrows-Wheeler transform of the text T = mississippi$ in (a). In (b), we show the
wavelet tree (assuming σ = 8) of the Burrows-Wheeler transform depicted in (a). The binary
representation of the characters is given in (c). Together, the Burrows-Wheeler transform and the
wavelet tree are the FM-index, which we briefly describe in Sect. 3.2.

Ohlebusch et al. [167] consider the reverse BWT (BWT rev), i.e., the BWT of the
reverse text T rev = T [n− 1]T [n− 2] . . .T [0] that is of interest for short read mapping
(cf. Sect. 4). The sequential version of the algorithm makes use of the wavelet tree of
the BWT of the text, the SA, and the text itself. This leads to independent intervals in
BWT rev that can easily be computed in parallel. Gilchrist and Cuhadar [93] show that
for many applications (cf. Sect. 4.2), the BWT is only required for slices of the text. The
BWT construction for independent slices of the text is easy to parallelize.

Menon et al. [153] give a distributed BWT construction algorithm based on MapRe-
duce. Another distributed algorithm based on merging is presented by Wang et al. [201].
This algorithm is tuned for large collection of DNA reads and first partitions the text
with respect to a common prefix, and then computing the BWT for partitions with a
common prefix—similar to the domain decomposition for wavelet trees (cf. Sect. 3.2).
Ferragina et al. [72] present an EM version of [104] that is based on merging. Also in
EM, prefix free parsing [40,130] is used, which is a technique similar to the one used for
the asymptotically best sequential BWT construction algorithm [126]. The naive BWT
construction has also been parallelized with FPGAs by Trinidad et al. [198]. Here, the
disadvantage is that we actually have to store all shifts Si. This approach is also consid-
ered on GPGPUs by Patel et al. [170].

As with SA and the LCP array, the BWT has also been generalized for a collection
of strings and there exist external memory algorithms for its construction [67,145].
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Wavelet Trees. For our compressed full-text index, we need to answer generalized
rank and select queries (see Sect. 2.2) on the BWT efficiently. The wavelet tree (WT ),
introduced by Grossi et al. [99], is a binary tree data structure that allows answering
both queries in time O (lgσ) and can be stored in n�lgσ�(1+ o(1)) bits of memory.
Each node of the tree represents an interval [a,b] ⊆ Σ and is labeled by a bit vector that
contains one bit for each text position i, in text order, where T [i] ∈ [a,b]. The bit is set
iff T [i] > 	(a+ b)/2
. The root node represents the entire alphabet [a,b] = Σ and is
therefore labeled by n bits, corresponding to the entire text T . A node has two children
if |[a,b]| ≥ 2. Then, recursively, the left child represents the interval [a,	(a+ b)/2
],
and the right child represents [	(a+b)/2
+1,b]. Finally, the leaves represent intervals
of size one or two. Because the alphabet is split in two halves at every node, the tree
has height �lgσ�. Figure 3b shows an example.

Instead of comparing a character to the interval’s middle to determine its bit in a
node, it is more common to look at the �lgσ� bits of the characters’ binary represen-
tations, starting with the most significant bit. Each bit tells whether to go left (zero)
or right (one), i.e., characters encode a path down the WT starting from the root. In
that regard, different codes can be used. A prominent example for using a code other
than binary is the Huffman-shaped WT , which is constructed based on the characters’
canonical Huffman codes. The bit vectors labelling the nodes then require only as much
space as the Huffman-compressed text.

Apart from text indexing, the WT has applications in more areas, as described in
various surveys on the topic [73,100,149,160]. An alternative representation of the
WT—the wavelet matrix (WM)—introduced by Claude et al. [47], is a more efficient
choice when dealing with large alphabets. It only requires negligible extra space com-
pared to the WT and can be used to answer the same queries in the same asymptotic
time. However, when answering queries, fewer constant-time binary rank queries are
needed on the bit vectors than in the WT , making it faster in practice. The similarities
and differences between WT and WM are studied in more in detail by Dinklage [61].
The remainder of this section focuses on algorithms to construct the WT in the compu-
tational models introduced in Sect. 2.1. We will refer to levels of the WT , where level �
describes the set of nodes with depth �.

We first consider sequential construction algorithms. There are various improve-
ments to naïve algorithms to construct the WT : Claude et al. [48] and Tischler [197]
give the most space-efficient algorithms using only O (lgn) bits, but do not provide a
competitive implementation. Da Fonseca and da Silva [84] give an online construction
algorithm, i.e., one where no prior knowledge of the input alphabet is required, that
runs in time O (nlgσ) and uses n�lgσ�+ o(nlgσ) bits of space. The fastest known
algorithms in theory require time O (nlgσ/

√
lgn) and were given by Babenko et al.

[18] and Munro et al. [158]. The latter was implemented by Kaneta [114], proving
that the use of modern CPU instructions can reflect theoretical improvements also in
practice. Kaneta’s results are competitive with the currently known fastest and most
space-efficient algorithm to construct the WT , which has been developed by Fischer et
al. [79 SPP]: it is based on prefix counting and, except for the topmost level, constructs
the WT bottom-up as described in the following. In a first scan of T , we compute the
histogram of T , i.e., the frequencies of all characters, as well as the topmost level of the
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WT , which consists of the characters’ most significant bits in the same order in which
they occur in T . For each remaining level � ∈ [2,�lgσ�), starting with the bottommost
level, we first compute the histogram of T . This is done by combining the frequencies
of every pair in the previous histogram: because a node combines the two intervals of
the alphabet represented by its children, the total frequency of its represented characters
is the sum of the respective frequencies of its children. The histogram for level � allows
us to easily compute the positions of the first bit for every node on level �. In one scan
of T , we can then compute the bits for all nodes on level � and directly write them to the
correct positions. The algorithm requires total time O (nlgσ) and σ�lgn� bits of space
in addition to the input and output. The same technique can be used to construct the
Huffman-shaped WT , where it also yields the best practical results in terms of speed
and space usage.

We now regard the parallelWT construction in the shared memory model. Labeit et
al. [132] gave a recursive algorithm based on the parallel split operation. Here, the avail-
able PEs process T in parallel to compute the bits for the root node. These bits are then
used to perform a parallel split of T for the left and right child, which are recursively
processed in parallel. The number of PEs used to process each child is proportional to
the sizes of the children. Two further techniques for parallelWT construction stand out:
domain decomposition and an algorithm based on sorting. The use of domain decom-
position forWT construction has first been proposed by Sepúlveda et al. [85]. The input
T is partitioned such that every PE receives a slice of size n/p. and computes the entire
WT for its slice using any sequential algorithm, e.g., prefix counting. In a subsequent
step, these WT are merged into the WT for T , which can be done efficiently by con-
catenating the bit vectors contained in the corresponding nodes. Because an arbitrary
sequential construction algorithm can be used locally, domain decomposition can be
tuned to have a very low memory footprint. The algorithm based on sorting, first pro-
posed by Shun [184], constructs the WT top-down, level by level, and makes use of
stable integer sorters, which are well studied for all practically relevant computational
models. The bits of the topmost level can be computed in an initial parallel scan of T ,
similar to the (sequential) prefix counting algorithm. Then, before proceeding to some
level � > 1, the text is reordered by stably sorting the characters according to their �-bit
prefixes, which puts them in the correct positions to compute that level’s bit vector in
a parallel scan of the reordered text. To that end, the algorithm only requires �lgσ�
parallel scans of T . For both algorithms, Shun presents techniques that allow for dif-
ferent trade-offs between work and time [185]. The best known implementations were
given by Fischer et al. [79 SPP], concluding that domain decomposition is the fastest
approach in practice, also for constructing the Huffman-shaped WT .

The parallel construction in distributed memory has been studied by Dinklage et al.
[64 SPP], confirming the practical relevance of domain decomposition, which yields the
fastest running times and best memory efficiency in practice. An important measure for
distributed memory algorithms is the communication volume. During the distributed
domain decomposition, only the merging phase requires communication between the
PEs. They also adapted Shun’s parallel sorting algorithm [184] to distributed mem-
ory and achieved nearly as good running times, albeit requiring more communication.
Because the individually constructed levels need not be partitioned into nodes, the sort-
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ing algorithm has furthermore been found to be better suited than domain decomposi-
tion for constructing the WT for large alphabets.

Finally, we look at WT construction in external memory. Ellert and Kurpicz
[69 SPP] present sequential and parallel external memory algorithms. The sequential
algorithm is based on sorting and works similar to the corresponding parallel algorithm.
Using only a constant amount of main memory, it requires two scans of T for each level
of the WT . They also provide various semi-external algorithms with similar properties,
all of which outperform the semi-external WT construction algorithms from the Suc-
cinct Data Structure Library (SDSL) [94]. Finally, their parallel algorithm makes use of
domain decomposition to distribute work on the available PEs, each PE using a sequen-
tial in-memory algorithm (e.g., prefix counting) to construct a partial WT . Because the
p parts of T may not fit into main memory, each PE furthermore partitions its part into
segments of size k such that a segment and its WT does fit in main memory. They then
process their part segment by segment. The algorithm requires four scans over T for
each level, plus σ random I/O operations for each segment. Naturally, because of the
necessary synchronizations with external memory, the algorithm only scales well up to
a limited number of PEs. Yet, the parallelization achieves a notable speedup in practice.

FM-Index. The FM-index [74] combines the BWT and (Huffman shaped) WTs to a
compressed full-text index. It is widely used, in particular in most DNA read aligners
[134] and in Bioinformatics in general (cf. Sect. 4.1).

To locate a pattern using the FM-index, a backward search is performed. Using
the C array (for each α ∈ Σ , C[α] is the overall number of occurrences of characters
in BWT that are strictly smaller than α , i.e., the rank of α in Σ ) and the WT of the
BWT to answer rankα(i) (on the BWT , cf. Fig. 3) it is possible to search backwards for
a pattern in T [74]: Given an ω-interval [i, j] (i.e., ω is a prefix of T [SA[k] ..n) if and
only if i≤ k ≤ j) and α ∈ Σ , the procedure called backwardSearch(α, [i, j]) returns the
αω-interval [lb,rb], where lb =C[α]+ rankα [i]+ 1 and rb =C[α]+ rankα [ j+ 1]. If
lb > rb, the pattern does not occur in T .

Note that any combination of BWT and WT construction algorithms can be com-
bined to compute the FM-index (in any model of computation). Still, there exist ded-
icated practical PRAM FM-index construction algorithms by Labeit et al. [132] and
Lio et al. [143]. The former combines their parallel SA (see Sect. 3.1) and WT (see
Sect. 3.2) construction algorithms to compute an FM-index (in parallel), whereas the
latter provides a parallel algorithm that computes both the BWT and the FM-index.

3.3 Suffix Trees

A suffix tree (ST ) for a string of length n is a compact trie storing all the suffixes of
T , i.e., the concatenation of the edge labels on the path from the root to leaf i exactly
spells out the suffix T [i..n); see Fig. 4a for an example. Weiner [204] showed that it can
be constructed in linear time provided that the underlying alphabet has constant size.
Farach-Colton et al. [71] gave the first suffix tree construction algorithm that is optimal
for all alphabets. It has linear run-time for alphabets consisting of integers in a poly-
nomial range. The ST is one of the most powerful data structures in string processing,
with applications in fields like bioinformatics or information retrieval, e.g., [21,45].
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Abouelhoda et al. [3] showed that there is a one-to-one correspondence between the
set of all lcp-intervals and the set of all internal nodes of the ST of T . Let us define the
concept of lcp-intervals (see Fig. 4a). An interval [i, j] in the LCP array—for simplicity,
we now assume that LCP [0] = −1 = LCP [n]—is called an lcp-interval of lcp-value � if
(1) LCP [i] < �, (2) LCP [k] ≥ � for all k with i < k ≤ j, (3) LCP [k] = � for at least one
k with i < k ≤ j, and (4) LCP [ j+1] < �. Every index k (i < k ≤ j) with LCP [k] = � is
called �-index or lcp-index. A leaf in the ST corresponds to a singleton interval [k,k].
The parent interval of an lcp-interval [i, j] (or a singleton interval) is the smallest lcp-
interval that contains [i, j] but does not coincide with [i, j].

The drawback of STs is their huge space consumption: even carefully engineered
implementations require 8–20 bytes per input character. It is possible to save a lot of
space by representing the ST topology by a sequence of balanced parentheses. The
sequence BPS, for instance, can be constructed by a depth first search traversal of the
(uncompressed) ST as follows. At each node v (starting at the root), write an opening
parenthesis, recursively process the child nodes of v, and write a closing parenthesis
afterwards (see Fig. 4b). Since the ST has n leaves and up to n− 1 internal nodes, the
BPS needs up to 4n− 2 bits. Based on the BPS, all navigational operations on the ST
can be supported with data structures that require only o(n) bits [177].

The BPS can be constructed in parallel on a shared memory architecture in the
CRCW PRAM model with the help of the LCP array as follows; see [22] for details,
where also the necessary adjustments for the CREW model are explained. Create
two arrays Co and Cc of size n, enumerate all lcp-intervals in parallel, and increment
Co[i] and Cc[ j] for each lcp-interval [i, j]. After that, compute the prefix sum PS of
sum[i+1] =Co[i]+Cc[i], and write Co[i] opening followed by Cc[i] closing parenthesis
at position PS[i] into the bitvector BPS (in parallel). It is possible to enumerate all lcp-
intervals (in parallel) with the help of the arrays PSV (previous smaller value) and NSV
(next smaller value), which are defined as follows:

PSV [i] = max{ j | 0 ≤ j < i and LCP [ j] < LCP [i]}
NSV [i] = min{ j | i < j ≤ n and LCP [ j] < LCP [i]}

Table 1 shows an example (an entry ⊥ means that the value is undefined). The
key observation is that for any index i with 0 < i < n and LCP [i] = � the interval
[PSV [i],NSV [i]− 1] is an lcp-interval of lcp-value � and i is one of its lcp-indices;
for a proof see, e.g., [166, Lemma 4.3.8]. A problem of this approach is that an lcp-
interval with multiple �-indices will occur more than once in the enumeration. To
overcome this problem, such an interval is reported if and only if i is the first (left-
most) �-index of the interval. To this end, previous smaller values (PSV ) are replaced
with previous smaller or equal values (PSEV ), where the array PSEV is defined by
PSEV [i] =max{ j | 0 ≤ j < i and LCP [ j]≤ LCP [i]}. Then [PSV [i] ,NSV [i]−1] appears
in the enumeration if and only if LCP [i] �= LCP [PSEV [i]].

The problem of computing previous smaller and next smaller values, also known
as the all-nearest-smaller-value problem (ANSV), was already solved by Berkman et
al. [27] with O (n) work and in O (log logn) time using O (n/ log logn) processors on a
CRCW PRAM.
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Fig. 4. In (a), the suffix tree for T = mississippi$ (an annotation �-[i, j] within a node shows
the corresponding lcp-interval, i.e., � is the string-depth of the node and [i, j] is the corresponding
interval). The number below the leafs is the starting position of the corresponding suffix. For the
corresponding SA and LCP array see Fig. 2. The BPS of the suffix tree is shown in (b). Matching
parentheses are connected by dotted lines. A leaf in the suffix tree is represented by an opening
parenthesis that is immediately followed by a closing parenthesis; its leaf number (leaf i repre-
sents suffix T [i..n)) is depicted above the two parentheses. The last row shows the positions of
the parentheses in the BPS.

In the following, we will focus on distributed memory. He and Huang [105] pre-
sented a bulk-synchronous parallel adaption of the algorithm invented by Berkman et
al. [27]. Flick and Aluru [82] improved their work in various directions by introducing
a generalized version of the ANSV problem. They showed how to handle duplicate
values, generalized the communication structure, and provided novel proofs. Based
on the improvements on the ANSV problem, they presented a parallel ST construc-
tion algorithm using the suffix- and LCP array that runs in O (n/p+ p) time, which
is work optimal for p = O (

√
n). In a first phase, they represent the ST as an array E
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Table 1. The LCP array with LCP [0] = −1 = LCP [n] for T = mississippi$ (cf. LCP array
in Fig. 2) and the corresponding arrays NSV , PSV , PSEV , and PFE.

0 1 2 3 4 5 6 7 8 9 10 11 12

LCP −1 0 1 1 4 0 0 1 0 2 1 3 −1

NSV ⊥ 12 5 5 5 12 12 8 12 10 12 12 ⊥
PSV ⊥ 0 1 1 3 0 0 6 0 8 8 10 ⊥
PSEV ⊥ 0 1 2 3 1 5 6 6 8 8 10 ⊥
PFE ⊥ ⊥ 1 2 2 1 1 1 1 1 1 10 ⊥

of edges (i, parent(i)). This approach requires a unique representative index for each
node v in the ST . Since v corresponds to an lcp-interval, one can choose the first (left-
most) lcp-index of that lcp-interval as a representative. Moreover, Lemma 1 shows that
the representative of the parent interval can be computed with the help of “previous-
furthest-equal” values, defined for all i with 1 < i < n as follows:

PFE[i] = min{ j | PSV [k] < j < i and LCP [ j] = LCP [k], where k = PSEV [LCP [i]]}

Lemma 1. Recall that, for any index i with 1 < i < n, the interval [lb,rb], where lb =
PSV [i] and rb = NSV [i]− 1, is an lcp-interval and i is an lcp-index of [lb,rb]. In the
following, let m = PFE[i]. If LCP [m] = LCP [i], then m is the representative lcp-index
and i is a different lcp-index of [lb,rb]. From now on we assume LCP [m] < LCP [i].
In this case, we have LCP [m] = LCP [PSV [i]]. If LCP [PSV [i]] < LCP [NSV [i]], then
NSV [i] is the representative lcp-index of the parent interval of [lb,rb]; see [166, Lemma
4.3.9]. Otherwise, PSV [i] is an lcp-index of the parent interval of [lb,rb] and m is the
representative lcp-index of that parent.

Flick and Aluru’s algorithm assumes that all inputs are distributed equally across pro-
cessors with n/p elements per process. It computes PFE and NSV in O (n/p+ p) time.
Since the processor for the range [ np j,

n
p ( j+ 1)− 1] has the corresponding portions of

LCP, PFE, and NSV in local memory, it can compute edges (i, parent(i)) in its range
based on Lemma 1. The parents of leaf nodes in its range can be computed similarly;
see [82] for details. In the second phase of their algorithm, Flick and Aluru show how
edges can be inverted (and analyse the communication complexity). This is because
for pattern matching applications, instead of having parent pointers, each internal node
should point to its children. Other algorithms for distributed ST include [44,50,212].

3.4 Query Answering

Up to this point, we only have considered the construction of different full-text indices.
Since all full-text indices that we have looked at have their origin in RAM, they can
easily be used there by allocating the incoming queries in a round robin fashion to
the PEs. However, in external or distributed memory, the obstacle is that neither the
whole text nor the whole index can be accessed in a random access manner, as in the
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construction algorithms. In this section, we take a look at different approaches to answer
queries in such a setting.

Clifford [49] show how to use a suffix tree in distributed memory to answer different
types of queries. They build the suffix tree using Ukkonen’s algorithm [199]. For this
purpose, the whole text is required at each PE, limiting the scalability of this approach
significantly.

Mäkinen et al. [148] use the compressed suffix array (CSA) [176] in distributed and
external memory. The CSA requires roughly the same space as the compressed text but
also does not need the text to answer queries (unlike the SA); it is a self-index. In main
memory, queries of length m can be answered in O (mlgn) time. They improve query
times by sampling �-length strings instead of characters and encoding the supporting
data structures using Elias delta encoding in combination with lookup tables. This allow
for constant time access to the supporting data structures (not queries). In EM, their
approach can search for a pattern of length m in O (mlgBn) I/Os (which can be reduced
to O ((mlgn)/B) if O (n) bits can be stored in main memory). In distributed memory, m
supersteps are required to answer such a query. During each superstep only a constant
number of words have to be communicated and O (lgn) local work is required.

Arroyuelo et al. [10] compare different layouts of the SA for pattern matching in
distributed memory. When each PE holds a consecutive slice of the SA, we have the
global layout. In addition to the SA, pruned suffixes are stored to speed-up querying at
the local PE. To speed up queries, a trie for the suffixes at the beginning and end of
each slice is built at each PE in order to distribute queries to the PE that can answer it
locally. Next, in the local layout, each PE holds a consecutive slice of the text and builds
a SA only for this local slice. Here, each PE must answer the query locally and return
the result, requiring only a constant number of supersteps but significant local work (as
all PEs always have to search for the query). The multiplex layout is an intermingled
global layout, where the i-th entry of the global SA is stored at PE i mod p in consec-
utive fashion, i.e., the i-th and (i+ p)-th entry are stored consecutively at the same PE.
Corresponding pruned suffixes are stored as in the global layout. The multiplex layout
(and in some cases the global layout) is the most efficient one in their experiments. They
also propose two additional layouts that, however, perform not as well in practice.

The global layout is extended by Fischer et al. [80 SPP]. Instead of answering the
query directly on the SA, a Patricia trie [156] is constructed for each local slice. To
this end, the LCP array (see Sect. 3.1) is required. Furthermore, a global trie is used to
distribute the query to the corresponding PE. These two tries together allow queries to
be answered with a constant number of supersteps.

Flick and Aluru [83] further improve the above two-level designs by developing
the distributed enhanced SA (DESA). One improvement of DESA is to eliminate the
explicitly stored tree structure of the two-level indices. Also, the DESA does not par-
tition the text into consecutive slices of the same size (where queries may have to be
answered on multiple PEs) but partitions the text into more fine grained intervals, such
that all intervals can be processed on a single PE. This approach currently scales best
in practice. The local search is an adapted version of Fischer and Heun’s [75] query
algorithm for enhanced SAs [3]. Hence, they only need the SA, LCP array, range mini-
mum queries (RMQs, returning the positions of the smallest element in a given range),
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and some additional information. To help load balancing queries, the top level trie is
dynamically (based in the input) constructed such that each bottom level index, corre-
sponding to a leaf in the top level trie, covers intervals of size n/cp for a constant c.
To this end, the ANSV problem (cf. Sect. 3.3) is solved. This approach is significantly
better than a static top level lookup table and overall the best in practice.

4 Applications

All previously described text indices have more applications than (exact) pattern match-
ing. They can also be used to answer approximate queries, i.e., when allowing differ-
ences between the pattern and the matched positions. Pockrandt [171] shows how to
transform those queries into exact queries. This is also used in practice in the SeqAn
library [175], which contains efficient algorithms and data structures for the analysis
of biological data (and strings in general). Furthermore, they can be used to compute
succinct de Bruijn graphs, all pairs suffix-prefix overlaps, and maximal repeats [67]. In
the following, we take a more detailed look into two fields where text indices are of
great importance—Bioinformatics (Sect. 4.1) and lossless compression (Sect. 4.2).

4.1 Bioinformatics

The most successful application of index structures in bioinformatics is backward
search based on an FM-index [74] (e.g., in form of the WT of the BWT of the input
string [99], cf. Sect. 3.2). For information on k-mer-based tools, we refer to the recent
survey by Marchet et al. [151].

The most important application of backward search in bioinformatics is read map-
ping. Ultra-high-throughput next-generation sequencing technologies (NGS) have been
commercially available since 2005. In NGS, DNA is fragmented into small pieces, of
which the first few bases are sequenced, yielding several millions of short “reads”, each
30 to 400 base pairs (“DNA characters”) long. The read mapping task is now to align
these reads to a reference genome, i.e., to the known, nearly complete chromosomal
DNA sequences of the organism in question (which may be up to several billion base
pairs long); see [43] for an overview article.

Short read mappers like Bowtie [135] or BWA [140] must be able to deal with
(sequencing) errors. Inexact matching is either based on recursive algorithms that use
backtracking or on the seed-and-extend strategy (exact matches are used as seeds and
the shared seeds are then extended into longer, inexact alignments). The same approach
has also been successfully applied in genome assembly [187] (sequence assembly refers
to aligning and merging reads in order to reconstruct the original sequence). Here, the
fastest implementations only utilize a few threads [24]. Those read mappers usually do
not use parallel construction algorithms, as the reference sequences are short, allowing
a space-efficient sequential algorithm to compute the index in less than an hour.

Alignments of longer sequences (ranging from long read mapping to whole genome
alignment) are also obtained by exact matching and the seed-and-extend method. One
of the earliest tools in comparative genomics is based on suffix trees (and later on suf-
fix arrays) [55], but there are also tools using the BWT [142]. The major principle of
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comparative genomics is that common features of two organisms will often be encoded
within the DNA that is evolutionarily conserved between them. Therefore, comparative
genomic approaches start with making some form of alignment of genome sequences.
Then, they look for orthologous sequences (sequences that share a common ancestry)
in the aligned genomes and check to what extent those sequences are conserved. Nowa-
days, one tries to take multiple genomes simultaneously into account; see [51] for an
overview of pangenomics. When it comes to the alignment of longer sequences, scaling
algorithms are used, e.g., multithreaded semi-external prefix-doubling algorithms [190]
or building multiple partial indices (in parallel) and merging them [191]. Compressed
suffix trees and FM-indices have been used in indexing variation graphs [92] and for
graphical pangenome analysis [21]. In particular, the balanced parentheses sequence
BPS from Sect. 3.3 was used for indexing variation graphs [190] (using the algorithm
described in [168]). Using a dynamic FM-index, sequences can be inserted in batches,
which can easily be parallelized [139].

4.2 Compression

Text indices have been successfully applied to text compression, most notably to com-
pressors based on the BWT (see Sect. 3.2) and on different variants of the Lempel-Ziv
parsing of the text. Intuitively, this link between indexing and compression seems plau-
sible, as in both cases one tries to ‘group’ similar substrings; in the former for listing
occurrences, in the latter for exploiting the repetitiveness to somehow save space. We
only consider compressors that operate over the full text (not restricted to small sliding
windows/blocks); this is important for highly repetitive texts such as DNA collections
of individuals from the same species.

Lempel-Ziv in External Memory. The LZ77-factorization [213] of a text T is defined
as follows: suppose T [0..i) has already been parsed into LZ77-phrases. Then the next
LZ77-phrase is the longest prefix of T [i..n) that has an occurrence in T starting strictly
before i (but possibly ending in T [i..n)), or a single character if T [i] does not occur
before. Given a text index on T , this prefix can be located by iteratively querying for
T [i..i+ 1), T [i..i+ 2), . . . , as long as an occurrence starting before i exists. In main
memory, Fischer et al. [76] have the most space efficient implementation of this idea
using compressed variants of the suffix tree, needing only (1+ ε)n logn+O (n) bits
of space and running in O (n/ε) time. The difficulty in EM is, of course, that such
repeated querying causes too many I/Os. Kärkkäinen et al. [120] avoid this in two ways:
in their EM-LPF algorithm, they first compute the array of longest previous factors in
EM, from which the LZ77 factorization is easily obtained in total sort(n) I/Os. Their
second algorithms, EM-LZScan, divides T into blocks of size Θ (M) and then computes
matching statistics [166, Sect. 5.5.4] of the current block w.r.t. the prefix of T up to the

current block. EM-LZScan needs O
(

n2 logσ
BM logn

)
I/Os in theory, but is significantly faster

in practice than EM-LPF for highly repetitive texts. A different approach was taken by
Dinklage et al. [62 SPP], who show that the flexibility of allowing factor occurrences
also be to the right of their starting position (so-called bidirectional parsings) leads
to a much better throughput than EM-LZScan, while achieving similar compression
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rates. Their algorithm plcpcomp has been successfully applied to texts of size 128 GiB
on a machine with just 16 GiB of RAM. Considering decompression, Belazzougui et
al. [25] show the I/O-complexity to be sort(n/ logσ n) I/Os and also give a practical
implementation; however, this algorithm cannot be applied to the bidirectional variant,
which is much slower at decompression. Other variants of LZ exist, but have so far
not been successfully applied to large datasets, although promising approaches exist for
LZ78 that might lead to semi-external solutions [11].

Parallel Burrows-Wheeler-Based Compression. In Sect. 3.2, we already mentioned
the relevant literature for computing the BWT L. This output can be postprocessed to
compute a compressed version of T , as characters following a similar preceding context
are grouped in L. The postprocessing consists of computing the move-to-front numbers
when processing L from left to right, followed by a Huffman encoding of the resulting
numbers. On the PRAM, Edwards and Vishkin [66] show how to perform those latter
steps in O (logn) parallel time and O (n) work, and report good speedups on FPGA-
hardware over popular tools such as bzip2, although only using moderately-sized inputs.
They also show how to decompress the resulting file within the same complexities. At
their core, the algorithms are reduced to the building blocks prefix sums (cf. Sect. 2.2)
and list ranking. Geared more towards practice, Patel et al. [170] have similar ideas and
show GPGPU implementations; however, they use mergesort for computing the BWT
and report this as their main bottleneck.

We are not aware of any algorithms in external or distributed memory implementing
the full BWT compression pipeline, despite that algorithms for computing the BWT
exist in these models of computation (see Sect. 3.2).

5 Conclusion and Future Work

Advanced text index data structures such as suffix trees, suffix arrays and wavelet trees
are key to handling large data sets in a range of important applications. A combination
of parallel, external, and compressed implementations can approach the requirements
for handling the exploding amounts of available data.

In this short survey, we have discussed a number of techniques for building and
using such data structures. Our impression is that memory hierarchies and compression
by themselves are fairly well understood by now. A range of parallelization approaches
are known but they suffer from a tradeoff between asymptotic scalability and effi-
ciency. In particular, the most efficient sequential and external techniques are inherently
sequential. Hence, a number of important open problems remain. These involve highly
scalable techniques with good constant factors (e.g., for constructing suffix arrays and
LCP arrays with linear work) as well as integration of parallelism, memory hierarchies,
compression and applications. Another interesting research direction is to engineer
recent text indices for highly repetitive data [91] for handling large texts. In principle,
big data frameworks such as Thrill [29 SPP] can handle parallelization and memory
hierarchies automatically but the question remains whether the involved overheads are
acceptable.
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