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Preface

The ocean accounts for about 71% of Earth’s surface, yet many aspects remain
a mystery. Understanding ocean circulation, biogeochemical cycles, and various
marine resources directly impact human activities in the 21st century. The enhanced
utilization of satellites and autonomous observation platforms has acquired in-situ
and remotely sensed data at high spatial and temporal resolutions for the past four
decades, entering the Big Ocean Data Era. However, the human capacity to filter,
curate, and analyze these data is limited. In the era of big data, efficiently obtaining
helpful information frommassive data has become a new challenge in oceanographic
research.

Artificial intelligence technology has been ubiquitously applied across scientific
domains and disciplines and achieved tremendous success. For example, machine
learning approaches have been widely used in computer vision, medical, or geophys-
ical fields. Machine learning is an application of artificial intelligence that aims to
provide systems to learn from experience without human intervention automatically.
With the rapid increase in computing power in recent years, deep learning, a more
advanced machine learning technology has begun to show its powers in solving very
complex, nonlinear, high-dimensional problems. Promisingly, these artificial intelli-
gence approaches also have enormous potential to improve the quality and extent of
ocean research by identifying latent patterns and hidden trends, particularly in large
datasets that are intractable using other traditional methods. In addition, the new
data-driven and learning-based methodologies may propose novel computationally
efficient strategies to improve oceanographic research.

v



vi Preface

This book brings together state-of-the-art studies on the broad theme of artifi-
cial intelligence applications in oceanography, including pure data-driven forecasts,
dataset reconstruction, and detection or extraction of oceanic features from remote
sensing imagery. The comprehensive contributions clarify the tremendous poten-
tial for artificial intelligence technology to contribute to rapid advances in ocean
science and may inspire readers of related disciplines. As the editors of this book, we
would like to thank all the contributors for their fruitful cooperation and the editorial
assistance from Dr. Shuangshang Zhang.

Qingdao, China
December 2021

Xiaofeng Li
Fan Wang
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Artificial Intelligence Foundation
of Smart Ocean

Xiaofeng Li, Fan Wang, Yuan Zhou, and Keran Chen

1 The Development of Artificial Intelligence

Artificial intelligence (AI) is the core driver for the fourth technological revolution,
following the revolutions in steam technology, electricity technology, and computers
and information technology. Since its emergence in the 1950s, AI has fully improved
productivity, affected and changed the production structure and production relations.
Understanding thehistoryofAIplays an indispensable role in the subsequent research
and the development of AI technologies. AI can be divided into three generations,
according to the difference in the drive mode. The subsequent subsections introduce
each of these three generations of AI.

1.1 The First-Generation AI

Turing proposed the “Turing Test” in 1950 [49]. It states that if a machine can answer
a series of questions posed by a human tester within five minutes, and more than
30% of its answers can deceive the tester into thinking that they are answered by
a human, then the machine can be considered intelligent. In the same year, Turing
predicted the feasibility of intelligent machines. The “Turing test” can be seen as the
genesis of AI. Newell and Simon [41] developed the first heuristic program in the
world: Logic Theorist. It successfully proved 38 theorems in the book: “Principles of
Mathematics”, by simulating human thinking activities. This program successfully
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2 X. Li et al.

Fig. 1 The research field of the first generation of artificial intelligence. The first generation of AI is
knowledge-driven AI, which mainly conducts research on knowledge representation and reasoning.
Production rules, predicate logic, semantic network and knowledge graph are common knowledge
representations. Inductive reasoning, deductive reasoning, Monotonic reasoning and deterministic
reasoning are mainstream reasoning methods

demonstrated the feasibility of the predictions posed by Turing, and it is considered
the first successful AI program. In August of the same year, the concept of “artificial
intelligence” was first introduced by John McCarthy, Herbert Simon, and a group
of scientists from different fields at Dartmouth College. Thus, AI stands on the
stage of history as an independent discipline. Newell and Shaw [40] invented the
first AI programming language, the information processing language (IPL). It used
symbols as basic elements and proposed a reference table structure instead of storing
addresses or arrays. McCarthy [36] developed a list processing language based on
the IPL, which was widely used in the AI community.

The first generation of AI is known as knowledge-driven AI; these AIs allow
machines to learn by imitating the process of human reasoning and thinking. As
shown inFig. 1, the core steps can be divided into twoparts, knowledge representation
and knowledge reasoning.

Knowledge representation is required to allow machines to achieve intelligent
behavior. It represents human-understood knowledge in a certain data structure that
allows machines to understand and complete the processing. The methods of knowl-
edge representation include predicate logic, production rules, semantic network rep-
resentation, and knowledge graphs.

Predicate logic can describe how the humanmindworks. From the logical system,
propositional logic is the simplest logical system, and it is used to describe declarative
sentences using truth values. For example, “the sea is blue”; the “true” and “false”
of each proposition is called the truth value. Propositions can be divided into atomic
propositions and positions. An atomic proposition is a proposition that cannot be split
into simpler declarative sentences. Compound propositions are detachable proposi-
tions consisting of atomic propositions and connectives. However, they both have
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limited expressive power and can only represent established facts. Thus, predicate
logic is developed based on propositional logic. It uses connectives and quantifiers
to describe objects, and predicates on objects to represent the world. Predicates
of objects refer to the properties of objects or the relationships between objects.
A constant symbol, a predicate symbol and a function word comprise a predicate.
Constant symbols represent objects and predicate symbols represent relationships
or attributes. For example, the constant symbol Susan, the predicate symbol mother,
and the function word nurse compose the predicate logic “nurse(mother(Susan))”,
which indicates that the mother of Susan is a nurse. Predicate logic representation
has certain advantages: naturalness, accuracy, rigor, and ease of implementation.
However, it cannot represent uncertain knowledge, and when it is used to describe
too many things, it becomes inefficient.

Production rules are used to describe the cause-effect relationships between things.
For example, if an animal is a mammal and has a long trunk, then the animal is an
elephant. The generative system consists of a rule base, comprehensive database, and
control system. The rule base is used to represent a set of rules for inferring conclu-
sions from premises. The database is used to store known conditions, intermediate
results, and final conclusions. The control system is used to select suitable rules for
inference from a rule base.

Semantic network representation is a network graph that represents knowledge
through entities and their semantic relationships. It consists of nodes and arcs. Nodes
represent entities, which are used to describe various things, concepts, situations,
attributes, states, events, actions, etc., and arcs represent semantic relations, such as
the instance relations, classification relations, membership relations, attribute rela-
tions, inclusion relations, temporal relations, location relations, etc. These basic units
are interconnected to form a semantic network.

A knowledge graph is essentially a semantic network that reveals the relation-
ships between entities, allowing a formal description of entities and their interrela-
tionships in the objective world. The study of knowledge graphs originated from a
semantic web. Tim Berners Lee [2] proposed the concept of a semantic web at the
XML Conference in 2000, expecting to provide services such as information proxy,
search proxy, and information filtering by adding semantics to web pages. In 2005,
Metaweb was established in the United States to develop an open knowledge base
for web semantic services. It extracts entities (people or things) in the real world
and relationships between them based on public datasets such as Wikipedia and the
United States Securities andExchangeCommission (SEC), and then stores themwith
a graph structure on a computer. In 2010, Google acquired MetaWeb and acquired
its semantic search technology. In 2012, Google formally put forward the concept
of a knowledge graph, aiming to improve the capability of the search engine and
enhance the search experience of users based on knowledge graphs.

Reasoning is a formof thinking that logically derives newconclusions fromknown
premises. Knowledge reasoning represents the process of using knowledge, which is
one of the core issues inAI research. It uses previous knowledge to derive conclusions
by reasoning, and solves the corresponding problems. Reasoning can be divided into
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deductive reasoning and inductive reasoning, depending on how the conclusion is
derived. Where deductive reasoning is a reasoning process from general to special,
inductive reasoning is a reasoning process from special to general. Reasoning can
also be divided into monotonic and nonmonotonic reasoning, depending on whether
the conclusions derived in the reasoning process increase monotonically. Monotonic
means that the number of propositions known to be true strictly increases as the
reasoning progresses. According to the certainty of reasoning, reasoning can also
be divided into deterministic and non-deterministic reasoning, where deterministic
means that the knowledge used in reasoning and the conclusions derived are either
true or false, whereas non-deterministic means that the knowledge used in reasoning
and the conclusions derived are probabilistic.

In the era of knowledge-driven AI, the emergence of expert systems has brought
AI into a period of vigorous development. An expert system is an intelligent computer
program that introduces the knowledge of a specialized field. Through knowledge
representation and reasoning, it can simulate the decision-making process of human
experts to solve the problems in this field and provide suggestions for the users. The
first expert system was DENDRAL [4], developed by Feigenbaum in 1968. It was
used to analyze the molecular structure of organic compounds bymass spectrometry.
In the 1970s, the idea of expert systems was gradually accepted. A series of expert
systems were developed to solve problems in different fields at that time, such as
MYCIN [46] for diagnosis and treatment of blood infection diseases, MACSYMA
[35] for symbolic integration and theorem proving, and PROSPECTOR [14] for
seismic exploration. Subsequently, the application field of expert systems expanded
rapidly, and the difficulty of dealing with problems increased continuously. Several
tool systems for building and maintaining expert systems have been developed. In
the 1980s, the development of expert systems gradually became specialized, creating
huge economic benefits.

Although scientists at that time had great expectations for knowledge-driven AI,
there were some fundamental problems in its development. The first problemwas the
interaction problem. Traditional methods could only simulate the thinking process
of human beings, but could not simulate the complex interactions between humans
and the environment. The second problem was the expansion problem. Traditional
methods were only applicable to the development of expert systems in specific fields,
and could not be extended to complex systems with larger scales and wider fields.
The third problem was the application problem. Research on traditional methods
was detached from themainstream computing (software and hardware) environment,
which seriously hindered the practical application of expert systems. Constrained by
the above mentioned problems, the first generation of AI eventually declined.
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1.2 The Second-Generation AI

First-generation AI is based on symbols, which believe that sensory information is
expressed in a certain encoding way. Second-generation AI establishes a stimulus-
response connection in a neural network. This ensures the generation of intelli-
gent behavior through connections. Figure2 illustrates the development of second-
generation AI

In 1958, Rosenblatt established the prototype of an artificial neural network, the
perceptron, which followed the idea of connectionism. The perceptron was inspired
by two aspects. One was the neuron mathematical model proposed by McCulloch
and Pitts in 1943 [37]: the threshold logic circuit, which converted the input of
neurons into discrete values. The second was from the Hebb learning rate proposed
by D.O.Hebb in 1949 [23], that is, the neurons fired at the same time are connected.

In 1969, Minsky and Papert [38], pointed out that perceptron could only solve
linearly separable problems. In addition, it was not practical when the number of
hidden layers increased as it lacked an effective learning algorithm. The criticism
of the perceptron posed by Minsky proved to be fatal; thus, second-generation AI
declined for more than 10 years.

Regarding difficulty, through the joint efforts of many scholars, significant
progress has been made in both neural network models and learning algorithms.
In addition, mature theories and technologies have gradually formed over the past
30 years.

For example, the gradient descent method was proposed by the French mathe-
matician Cauchy [5]. The method is used to solve the minimum value along the
direction of gradient descent or to solve the maximum value along the direction of
the gradient rise.

Another example is the back-propagation (BP) algorithm [43]. The algorithm
consists of a forward propagation process and a BP process. In the forward propa-
gation process, the input information enters the hidden layer through the input layer.
Then, the information is processed layer by layer and passed to the output layer.

Fig. 2 The development history of the second generation of artificial intelligence. The second-
generation AI has developed since the advent of the perceptron in 1958. The birth of AlphaGo in
2016 entered a period of rapid development
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If the desired output value cannot be obtained in the output layer, the sum of the
squares of the error between the output value and the expected value is taken as the
objective function. In the BP process, the partial derivative of the objective function
to the weight of each neuron is obtained layer by layer as the basis for modifying
the weight. The learning of the network is completed using the weight modification
process. When the error reaches the expected value, the network learning ends.

Regarding the loss function, a series of improvements have been made, such
as the cross-entropy loss function [28]. Cross entropy is an important concept in
Shannon’s information theory, and is mainly used to measure the difference in infor-
mation between two probability distributions. The performance of a language model
is typically measured using cross-entropy and complexity. Cross-entropy means the
difficulty of text recognition within a model or the average number of bits used to
encode eachword froma compression viewpoint. Complexitymeans to use themodel
to represent the average number of branches in this text. Cross entropy is introduced
to the neural network field as a loss function. We used p to represent the distribution
of the true markers and q to represent the predicted marker distribution of the trained
model. The cross-entropy loss function measures the similarity between p and q.

Algorithm improvements, such as regularization methods, prevent over-fitting
[52]. Regularization involves imposing constraints that minimize the empirical error
function. Such constraints introduce prior distributions to the parameters and have a
guiding effect. When optimizing the error function, they tend to choose the direction
that reduces the gradient and satisfies the constraints; hence, the final solution tends to
conform to prior knowledge. At the same time, regularization solves the ill-posedness
of the inverse problem.The resulting solution exists uniquely anddepends on the data.
The influence of noise on the ill-posed is weak. If the regularization is appropriate,
the solutionwill not overfit, even if the number of uncorrelated samples in the training
set is small.

Newnetwork architectures have been developed, such as convolutional neural net-
works (CNNs) [13], recurrent neural networks (RNNs) [33], long short-termmemory
neural networks (LSTM ) [25], and deep belief networks (DBN) [24].

CNNs are a type of feedforward neural network (FNN) that includes convolu-
tion calculations and has a deep structure. A CNN has the abilities of representation
learning and can perform the shift-invariant classification of the input information
according to its hierarchical structure. A CNN is constructed by imitating the biolog-
ical visual perception mechanism, which can perform both supervised and unsuper-
vised learning. The convolution kernel parameter sharing in the hidden layer and the
sparsity of inter-layer connections enable the CNN to perform smaller calculations
to extract features.

An RNN is a type of recursive neural network in which all node cyclic units are
connected in a chain. RNNs have applications in natural language processing (NLP)
fields, such as speech recognition, languagemodeling, machine translation, and other
fields. An RNN can be combined with a convolution operation to handle computer
vision problems.

The LSTM network is a time RNN, which is specifically designed to solve the
long-term dependence problem in general RNNs. When receiving new input infor-
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mation, the network first forgets all the long-term information that it does not require.
Afterward, it learns which part of the new input information has use value and saves
them in long-term memory. Finally, the network learns which part of the long-term
memory can work immediately.

A DBN is a deep neural network with multiple hidden layers. It is a combination
of unsupervised feature learning and supervised parameter adjustment. It performs
unsupervised greedy learning using stacked restrictedBoltzmannmachines to extract
high-level and abstract features from the original data. It uses a BP neural network
to reversely fine-tune the parameters to realize the supervised learning of data.

Together, these works ushered in a new era of second-generation AI based on
deep learning. Owing to the universality of deep neural networks, these networks can
approximate any function. Therefore, using deep learning to determine the function
of the data has a theoretical guarantee.

In 2014, deep learning was pointed out to be vulnerable to spoofing and attacks.
Owing to the uncertainty of observation and measurement data, the acquired data
must be incomplete and contain noise. In this case, the choice of the neural network
structure is extremely important. If the network is too simple, there is a risk of
underfitting; if it is complicated, overfitting occurs. Although the risk of overfitting
can be reduced to a certain extent through various regularization methods, it will
inevitably lead to a serious decline in the promotion ability if the quality of the data
is poor.

1.3 The Third-Generation AI

The third generation of AI needs to solve the shortcomings of the first and second
generations of AI. To establish sound AI theory, developed AI technology must
be safe, credible, reliable, and scalable. Only when the above conditions are met
can a real technological breakthrough be achieved, which will produce new inno-
vative applications of AI. The best current approach is an organic combination of
the first-generation knowledge-driven approaches and the second-generation data-
driven approaches. The combined use of knowledge, data, algorithms, and arithmetic
power results in a more powerful AI.

Research on third-generation AImust move towardsmakingAI capable of power-
ful knowledge and reasoning. For this purpose, we need to draw on classic examples,
such as the Watson conversational system, which was introduced in 2011. The fol-
lowing lessons on knowledge representation and inference methods from this system
are worth learning. First, automatic generation of structured knowledge representa-
tions from a large amount of unstructured text. Second, a method for representing
knowledge uncertainty based on the knowledge quality scoring. Third, an approach
based on multiple reasonings to achieve the uncertainty reasoning. The develop-
ment of third-generation AI requires strong knowledge and reasoning capabilities,
in addition to strong perception. There have been some tentative efforts to apply
the principle of sparse discharge to the computation of ANN layers [26]. Specifi-
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cally, the network is trained with simple background images, such as “human,” “car,”
“elephant,” and “bird”, as training samples. The neurons representing these “cate-
gories” appear in the output layer of the neural network. The network responds to
the contours of the human face, car, elephant, and bird. In this way, the semantic
information of the “whole object” is extracted, thus making the neural networks per-
ceptive. However, this approach can only extract part of the semantic information,
it cannot extract different levels of semantic information; therefore, further research
is needed. Furthermore, the third generation of AI also needs to interact with the
environment. Reinforcement learning has made good progress in many areas, such
as video games [39, 50], board games [47, 48], robot navigation and control [11, 44],
and human-computer interaction. In some tasks, the performance of reinforcement
learning approaches used in the networks even surpasses that of humans.

Attempts on the third generation of AI have emerged in the academic commu-
nity. Zhu et al. [56] proposed the use of a triple-space fusion model, that is, a model
that fuses both dual-space and single-space approaches. The model has the oppor-
tunity to be interpretable and robust. When the model can convert sensory signals
such as vision and hearing into symbols, the machine has the opportunity to develop
comprehension capabilities, which will help solve the problem of interpretability
and robustness of the model. If the symbols in the machine can be generated by
the perception of the machine, then the symbols and symbolic reasoning can gen-
erate intrinsic semantics, which can hopefully solve the problem of interpretability
and robustness of machine behavior at the root. Among the models proposed by
Zhu et al. [56], the single-space model is based on deep learning and suffers from
being uninterpretable and having poor robustness. The dual-space model mimics
the working mechanism of the brain; however, the model has some uncertainties.
For example, the machine can establish “intrinsic semantics” through the reinforce-
ment learning of the environment, yet it is not certain whether these semantics are
consistent with the “intrinsic semantics” acquired by humans through perception.
Therefore, there are many uncertainties associated with this approach. Despite these
difficulties, we still believe that machines that take steps in this direction will edge
closer to true AI. The single-space model is based on a deep learning algorithm that
fully uses the computational power of the computer. In some aspects, it already out-
performs humans. However, there are many uncertainties in this approach, and it is
still unknown how much progress can be made through algorithmic improvements.
Therefore, to achieve the goal of third-generation AI, the best strategy is to simulta-
neously advance along two lines, namely, the convergence of the three spaces. This
will maximize the working mechanism of the brain and make full use of the com-
puting power of the computer. The combination of the two approaches is expected
to lead to a more powerful AI.

The third generation of AI is a new form of AI driven by data and knowledge in
concert. It fits perfectly with our need to explore the ocean using the ocean and its
data. This new form ofAI technologywill be a powerful tool for people to understand
the ocean and further develop it. The combination of AI technology and research in
the ocean field will open a new chapter in oceanographic research.



Artificial Intelligence Foundation of Smart Ocean 9

At present, third-generation AI is still in its initial stage, and the AI used in
academia and industry is mainly second-generation. Among the second-generation
AI technologies, deep neural network-based AI technologies are the most represen-
tative. Therefore, the rest of this paper introduces common neural network structures
and their applications.

2 The Architecture of Deep Neural Networks

2.1 Deep Feedforward Neural Network

A deep FNN is a typical deep learning model that can be viewed as a mathematical
function. It realizes the complex mapping from input to output using a combination
of nonlinear functions. The following section introduces the neuron algorithm, BP
algorithm, single-layer FNN, and multi-layer FNN.

2.1.1 Neuron

A biological neuron usually contains multiple dendrites and axons. Dendrites are
used to receive signals transmitted from other neurons, and the axon has multiple
endings for transmitting signals to other connected neurons. PsychologistMcCulloch
and mathematician Pitts proposed an abstract neuronal model based on biological
neurons in 1943 [37].

A complete neuron can be viewed as a computational process of “input, numerical
computation, and output.” The “numerical computation” consists of “a linear part
and a non-linear part.” Figure3 shows a typical biological neuron and neuron model.

This neuron contains three inputs, a1, a2, a3, and one output. By assigning the
corresponding weights w1, w2, and w3 to each input, the output of the linear part can
be expressed as

z = a1 ∗ w1 + a2 ∗ w2 + a3 ∗ w3 + b (1)

where b is the bias term.
The nonlinear part is implemented by the activation function, and the output of

the neuron can be expressed as

y = f (z) (2)

where f (·) is the activation function.
The activation function is a nonlinear mapping relationship and must adhere to

the following three conditions:

(1) It must be a continuous and differentiable (can be non-differentiable at finite
points) nonlinear function.
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Fig. 3 Comparison of a biological neuron and neuron model. The left side shows a biological
neuron. It consists of a nucleus, a cell body, an axon, dendrites and axon terminals. The right
side shows a neuron model. It can be viewed as a computational process of “input, numerical
computation, and output”

Fig. 4 Function diagrams of some common activation functions

(2) The activation function and its derivative should be simple; overly complex
functions are not conducive for network efficiency.
(3) The value domain of the derivative should be limited to a suitable interval; this
is beneficial for improving network efficiency.

Common activation functions are shown in Fig. 4.
In a neural network, the process of the input going through the neuron to compute

the output is called a forward propagation algorithm.
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2.1.2 Backpropagation Algorithm

It is not enough to know only the neuron in neural networks because the parameters w
and b need to be learned. Therefore, it is necessary to introduce a BP algorithm to
update the parameters.

In supervised learning, we have a dataset containing the inputs and the corre-
sponding outputs. We call the correct output a label. The purpose of training a neural
network is to learn the correct mappings of inputs to outputs.

First, we assign random values to the parameters w and b, and generate the pre-
dicted values using the forward propagation algorithm. We define a cost function
J (w, b) to represent the closeness of the predicted output to the label. We use cross-
entropy as the cost function in classification problems where the output is a discrete
variable, and the mean-squared error is used as the cost function in regression prob-
lems where the output is a continuous variable.

The optimization formulas for the cross-entropy cost function and the mean-
squared error cost function are expressed as follows:

min J (w, b) = −
K∑

i=1

yi log pi (3)

min J (w, b) = 1

K

K∑

i=1

(yi − pi )
2 (4)

where K is the number of samples, yi is the label value of the i-th sample, and pi is
the predicted value of the i-th sample.

Thus, the objective is transformed into solving for the parameter values that min-
imize the cost function J (w, b). The gradient descent algorithm is generally used to
solve optimization problems. The gradient indicates that the directional derivative
of a function at that point has a maximum value along that direction. The specific
process is as follows: it first randomly selects a set of parameter values. Then, it com-
putes the predicted output and the cost function J (w, b), and computes the gradient
of the cost function J (w, b) on w and b. Finally, we use the gradient to update w and
b so that the cost function takes the minimum value. The modified expressions for
the parameters w and b are expressed as:

w := w − α
∂ J (w, b)

∂w
(5)

b := b − α
∂ J (w, b)

∂b
(6)

where α is the learning factor and denotes the step length of each gradient descent.
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The process of updating the parameters w and b along the gradient direction to
minimize the cost function is called the gradient descent algorithm.

The BP algorithm is a specific implementation of the gradient descent method on
deep neural networks. Owing to the deepening of the network layers, the gradient
of the parameters of each layer must be computed from backward to forward for the
cost function and be continuously updated.

2.1.3 Single-layer Feedforward Neural Network

The FNN is the most common type of neural network in which neurons are arranged
in layers. Each layer has several neurons, and each neuron is connected only to the
neurons in the previous layer. Neurons in each layer only receive the input signal
from the previous layer and output the processed signal to the neurons in the next
layer. The first layer is called the input layer and the last layer is called the output
layer. The remaining intermediate layers are called hidden layers; these can be one
or more layers. The signal enters the network from the input layer and is transmitted
layer by layer to the output layer. There is no feedback in the entire network, and
the output does not affect the network model or network input. This section depicts
a single-layer FNN containing one hidden layer as an example; this will allow us to
introduce the basic principles of FNNs.

Figure5 shows the general structure of a single-layer FNN, where x (n)
m denotes

the n-th feature of the m-th sample, and the number of neurons in the input layer is
the same as the number of features of the sample. y(k)

m denotes the k-th output of the
m-th sample and k is the number of neurons in the output layer, where k ≥ 2 for the
classification problem and k = 1 for the regression problem.

The learning process of single-layer FNNs consists of forward propagation and
BP; this is illustrated below with a simple network in Fig. 6. The input is propagated
forward along the direction of the network structure to the output layer, and then the
weights and bias are updated by the BP algorithm.

In the forward propagation, information is propagated from the input layer to the
output layer after being processed by the hidden layer, and the state of the neurons in
each layer only affects the state of neurons in the next layer. Assuming that the input
layer is the 0-th layer, the output of the neurons in the hidden layer and the output
layer can be expressed as:

h(1)
1 = ϕ(1)(x (1)

m ∗ w11
1 + x (2)

m ∗ w21
1 + x (3)

m ∗ w31
1 + b(1)

1 ) (7)

h(1)
2 = ϕ(1)(x (1)

m ∗ w12
1 + x (2)

m ∗ w22
1 + x (3)

m ∗ w32
1 + b(1)

2 ) (8)

y = ϕ(2)(h(1)
1 ∗ w11

2 + h(1)
2 ∗ w21

2 + b(2)
1 ) (9)

where wij
l denotes the connection weight of the i-th neuron in layer l − 1 to the j-th

neuron in layer l, b(l)
j denotes the bias used to compute the linearweighted summation
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Fig. 5 Thegeneral structure of single-layer feedforward neural networks. Theblue, gray, andyellow
neurons form the input layer, hidden layer, and output layer of the neural network, respectively

Fig. 6 A simple single-layer feedforward neural network
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of the j-th neuron in layer l, ϕ(l) denotes the activation function of the neuron in layer
l, h(1)

j denotes the output of the j-th neuron in the hidden layer, and y denotes the
output of the neuron in the output layer.

In BP, the gap between the network output and the real value is first calculated;
this is called the loss function. Subsequently, the gradient of the parameters, such
as the weight and bias term, is calculated, and the parameters are updated by the
gradient descent to minimize the loss function. The learning process of the network
is continuously iterated to optimize the network model until the loss function is
sufficiently small or the maximum number of learning times is reached.

When the structure and weights of a neural network are determined, the network
forms a nonlinear mapping from the input to the output. For a single-layer FNN,
if the number of neurons in the hidden layer is large enough, it can approximate
any continuous function on a bounded region with arbitrary accuracy and can solve
complex nonlinear classification tasks well.

2.1.4 Multi-layer Feedforward Neural Network

A network that contains multiple hidden layers between the input and output layers
is called a multi-layer FNN, which can also be called a deep FNN. Depth refers to
the number of layers in a neural network model. The greater the number of layers
designed, the greater the depth and complexity of the model. A deep FNN has better
classification and memory ability, as well as a stronger function fitting ability. It
can handle more complex data structures or data whose structures are difficult to
predefine. Figure7 shows a neural network containing four hidden layers.

Fig. 7 A multi-layer feedforward neural network containing four hidden layers
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The output of the network can be expressed as follows:

z(l) = W (l) ∗ a(l−1) + b(l) (10)

a(l) = fl(z
(l)) (11)

where fl(•) denotes the activation function of neurons in layer l,W (l) and b(l) denote
theweightmatrix and bias from layer l − 1 to layer l, respectively, z(l) and a(l) denote
the net input and output of neurons in layer l.

Deep FNN also uses a BP algorithm to optimize the networkmodel. The represen-
tation ability of the network is greatly enhanced because of the increase in the number
of layers and parameters. However, the network is prone to overfitting; that is, small
errors can be obtained from the training data, and large errors are obtained from
the test data. Therefore, appropriate regularization techniques need to be applied to
improve the generalization ability of the network model.

Deep FNNs are the basis of many AI applications. They can perform complex
data processing and pattern recognition tasks. However, they cannot process image
data well. The networks require a large number of neurons and parameters when
processing the image data; with high computational ability requirements and low
computational efficiency, these networks are prone to overfitting.

2.2 Deep Convolutional Neural Network

The biggest advantage of CNNs over FNNs is the reduction of parameters. This
allows researchers to build and design larger models to solve complex problems. For
example, a picture in jpg format with a resolution of 480 × 480 is represented in
the computer as a 480 × 480 × 3 tensor, and the three dimensions correspond to
the height, width, and the number of channels of the 3D tensor. If this image data is
fed into an FNN, each neuron in the first hidden layer in this network needs to be
connected to 691,200 (480 × 480 × 3) tensor elements. The number of parameters
required for one of these neurons is over 600,000. Thus, the number of single-layer
network neurons required for FNNs to deal with complex problems is enormous.
Therefore, the hidden layer of the FNN requires a large number of parameters to
extract the tensor features. This fully connected mechanism of FNNs is inefficient in
handling large input data. Compared with the fully connected layer of the FNN, the
convolutional layer requires fewer parameters to extract the tensor features. CNNs
are widely used in many fields because of their efficient features.

This section contains four subsections. Section 2.2.1 introduces the mechanism
of the CNNs and their basic structures. Section 2.2.2 introduces the mechanism of
full CNNs. Section 2.2.3 introduces typical CNN structures. Section 2.2.4 introduces
the problems and shortcomings of deep convolutional networks.
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2.2.1 Mechanism of Convolutional Neural Network

CNNs obtain their names from themathematical linear operations between thematri-
ces called convolutions. ACNN is a representation learningmethodwith amultilayer
structure, which mainly consists of a convolutional layer, pooling layer, and a fully
connected layer. The convolutional and fully connected layers contain parameters,
whereas the pooling layer does not. As shown in Fig. 8, the image is input to the CNN
and then passes through the convolutional and pooling layers alternately, which flat-
tens the image features into a feature vector of dimension one. The CNN finally
outputs the result through the fully connected layer. The convolutional and pooling
layers are equivalent to feature extraction structures, which are used to extract fea-
tures from the input tensor. The fully connected layer is equivalent to a classifier,
which is used to classify the flattened feature vector.

As the name implies, the convolutional layer is the most important operation
in a CNN, and the parameters of the convolutional layer are mainly located in the
convolutional kernel. The convolution kernel is usually represented by a small-size
tensor that only acts on a local region within the space of the input tensor.

Taking the most widely used two-dimensional convolution as an example, the
specific process of the convolution operation is shown in Fig. 9a. The convolution
operation selects all local regions in the spatial dimension of the input features that
are consistent with the size of the convolution kernel. The calculation is shown in
Fig. 9a. The input tensor shares the convolution kernel parameters in the channel
dimension when performing the convolution operation. The convolution operation is
a three-dimensional inner product operation between the shared convolution kernel
parameters along the channel and the features of the same spatially localized region
on different channels. The corresponding result is a scalar of the center position of
the corresponding spatially localized region. The output corresponding to a single
convolution kernel is a two-dimensional feature map, and the number of convolution
kernels in the convolution layer is the same as the number of channels in the output
tensor.

There is some degree of information overlap between the output results of the
convolutional layer and its neighboring outputs in the spatial dimension. This may
lead to information redundancy. As shown in Fig. 9b, the input feature map size of
the convolution operation is 7 × 7. If the selected convolution kernel size is 3 ×

Fig. 8 Overview of the convolutional neural network architecture. The architecture mainly consists
of several convolution layers, pooling layers and full connection layers
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Fig. 9 Illustration of Convolution Implementation Mechanism. a Convolution kernel parameters
are shared in the input tensor channel dimension. b The sliding mechanism of the convolution
kernel in the dimension of the input tensor space. c Padding operation in the process of convolution
implementation

3, then there will be an overlap of six elements between two adjacent convolution
operations. If the step size parameter is set to two, there will be an overlap of three
elements between two adjacent convolution operations. The size of the output feature
map of the convolution operation is 3 × 3. A reasonable increase in the step size
reduces the overlap between adjacent convolution operations and reduces the size of
the output feature.

Convolution operations lose information about edge features, which is an inherent
drawback of convolution operations. A simple and effective method is padding. As
shown in Fig. 9c, if the size of the convolution kernel is 5 × 5 and the padding
parameter is set to two, the size of the output featuremap of the convolution operation
can be kept consistent with the input to avoid the loss of the edge information.

Although the convolutional layer can serve to reduce the number of connections
between the output neurons and the input features, the number of neurons is not sig-
nificantly reduced during the execution of the convolutional operation, and the feature
dimensionality remains high.Tomake themodel easier to optimize, pooling layers are
introduced to the CNN. The pooling layer is often located between two convolutional
layers and is designed to perform feature selection and reduce the dimensionality
of the feature mapping. There are two mainstream pooling approaches: maximum
pooling and average pooling. As shown in Fig. 10, a 2 × 2 filter is used on the input
features with a spatial dimension of 4 × 4 and slides with a step size of two. The
maximum and average feature values in the corresponding position of each filter are
determined, and the maximum pooled feature map and the average pooled feature
map are the outputs.
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Fig. 10 Comparison of two
different pooling operations

The fully connected layer in a CNN is composed of the single-layer feedforward
network introduced in the previous section. The number of layers of this fully con-
nected layer can be chosen according to the specific needs of the task. Compared
with the convolutional layer, the fully connected layer contains a large number of
parameters and dense connections. Therefore, more fully connected layers will lead
to a more difficult model optimization; thus, the number of fully connected layers in
mainstream CNNs does not exceed three.

2.2.2 Mechanism of a Fully Convolutional Neural Network

In contrast to the CNN, the fully CNN does not contain a fully connected layer;
its structure is shown in Fig. 11. Each element of the output layer of the convolu-
tional and pooling operations represents the local information of the input features,
whereas the fully connected layer depicts the global information of the input features;
thus, the convolutional and pooling operations can preserve the spatial dimensional
information of the input tensor. A fully CNN composed of all convolutional and
pooling operations can output a feature map that retains the spatial location infor-
mation. Compared to traditional CNNs, fully CNNs are more suitable for tasks such
as image segmentation, where both the input and output are images.

2.2.3 Common Convolutional Neural Networks

During the development of CNNs, several representative networks have emerged,
such asVGGNet,ResNet, andDenseNet. In this section,we introduce these networks.

VGGNet has two structures of 16 and 19 layers, as shown in Fig. 11. All the
convolution kernels in the VGGNet network are of size 3 × 3. VGGNet cascades
three sets of convolution operations with a kernel size of 3 × 3 and a step size of
one. These three sets of convolution operations are equivalent to one convolution
operation with a kernel size of 7 × 7. This has two main benefits. First, a deeper
network structure will learnmore complex nonlinear relationships, whichwill lead to
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Fig. 11 Overview of the fully convolutional neural network architecture. The input and output of
this architecture are pictures

better results for the model. Second, this reduces the number of parameters required
to perform the convolutional operations.

In 2015, Kaiming He proposed a 152-layer ResNet to win the 2015 ILSVRC com-
petition with a top-1 error record of 3.6%. The proposed ResNet was revolutionary
because the network introduced a residual mechanism. Compared to the traditional
convolutional module, the convolutional module in the residual network learns only
a small variation in the input features. The output of the residual convolution module
is equivalent to the superposition of the input features and the amount of variation in
the input features. When BP is performed, the residual structure retains some of the
gradient information and alleviates the gradient disappearance problem. Therefore,
the ResNet model is deeper and has a better performance.

ResNet uses jump connections to pass gradients directly from the back layer to
the front layer. However, features that have been jump-connected and features that
have been convolutionally transformed need to be summed before they can be output.
This may affect the information propagation in the network. In response, Huang et
al. [27] proposed the network structure of DenseNet, which is based on ResNet.
Unlike ResNet, which only forms a jump-connected module with the previous layer,
DenseNet achieves feature reuse by directly connecting each layer to its preceding
layer. Compared to ResNet, DenseNet not only reduces the error rate but also reduces
the number of parameters in the network.

2.2.4 The Shortcomings of Convolutional Neural Network

The convolutional operations of CNNs can be divided into one-dimensional, two-
dimensional, and three-dimensional convolutions according to the dimensions of
the convolutional kernel. One-dimensional convolution is mainly applied to tasks
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related to one-dimensional sequence signals, such as EEG signal analysis, speech
signal processing, and radio signal classification. Two-dimensional convolution is
mainly used in the image field, such as image super-resolution and image denoising;
image restoration, such as the image processing field, image recognition, and target
detection, and semantic segmentation, such as the computer vision field. Three-
dimensional convolution is commonly used in medical CT image segmentation and
video motion recognition, etc.

Although CNNs have powerful feature extraction capabilities, they are based on
the assumption of mutual independence between consecutive input samples. There-
fore, the network is difficult to apply to tasks where there is an inherent logical
relationship between successive inputs.

2.3 Deep Recurrent Neural Network

2.3.1 Mechanism of Convolutional Neural Network

Jordan [29] proposed Jordan Network in 1986 and designed a memory mechanism
that fed back the output of the entire network to the input layer of the network the
next moment. One of the foundational works done on RNNs is the simple recurrent
networks (SRNs),whichwasproposedbyElman in1900 [12].TheSRNwasmodified
on the Jordan Network, and the output of the hidden layer in the network is shown
below. Feedback to the input layer occurs at any given moment. The Jordan Network
uses the entire network as a loop, whereas the SRN only uses the hidden layer as
a loop. Therefore, the SRN is more flexible to use; it also avoids the problem of
conversion between network output dimensions and input dimensions.

The structures of the SRN and the widely used RNN are similar. The output value
of the RNN at the next moment is jointly determined by multiple past moments. In
fact, there is often a problem that the output of the network is affected by the future
inputs.

Driven by similar ideas, Schuster and Paliwal [45] improved the traditional RNN
by designing a bidirectional cyclic neural network (bidirectional RNN, BRNN). The
BRNN is a superposition of twoRNNs in opposite directions. Each hidden layermust
record two values for both the positive and negative directions. The final output value
depends on the RNN calculated in the forward and backward directions (Fig. 12).

Hochreiter and Schmidhuber [25] proposed an LSTM. In RNNs, owing to the
uncertain attenuation of information in the cyclic structure, it takes a lot of time to
learn to store information over a certain time interval through the BP of the periodic
structure. In this problem, the solution used by LSTM is the structure of the input
gate, and the output gate is designed in the RNN to control the state and output of the
loop unit at any given time. Gers et al. [16] proposed that LSTM did not have a clear
prior end mark when processing long sequence inputs. Hence, the original LSTM
added a forget gate mechanism, which allowed the LSTM to learn to reproduce at the
appropriate time and set itself to release the internally stored information. One year
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Fig. 12 The structure of the recurrent neural network. The blue neuron represents the time series
of sequential input. The purple neuron represents the output of the recurrent network. The pink
neurons represent the information transmitted in the middle

later, Gers and Schmidhuber [15], made improvements to the LSTM again, adding
a peephole connection; the value memorized in the last moment was also used as
the input of the gate structure; thus the structure of LSTM gradually improved to its
present-day state.

Graves and Schmidhuber [18] proposed a bidirectional LSTM (BLSTM), which
combined the BRNN and LSTM. Graves et al. [19] applied the LSTM to handwritten
text recognition tasks, which overcame the difficulty faced by traditional models in
segmenting scribbled and overlapping text. The offline text recognition rate was
74.1%, which was the best at that time. Graves et al. [20] combined deep networks
and RNNs and proposed a deep recurrent network based on LSTM, which was
applied to speech recognition tasks. The error in the TIMIT dataset was only 17.7%,
which was the best at that time. In 2014, Cho et al. [7], simplified its gate structure
by replacing the input gate, forget gate, and output gate of LSTMwith an update gate
and reset gate, and proposed a gated recurrent unit for the first time. For traditional
statistical machine translation, the encoder-decoder model was proposed.

Owing to the further development of the LSTM, the LSTM has been widely used
in various applications of natural language processing and many variants have been
developed. Next, we introduce LSTM and ConvLSTM in detail.

2.3.2 Mechanism of LSTM

Recurrent connections can improve the performanceof neural networks by leveraging
their ability to understand sequential dependencies. However, the memory produced
from recurrent connections can be severely limited by the algorithms employed
for training the RNNs. To date, all models have been affected by the explosion or
disappearance of gradients in the training phase, which renders the network unable
to learn the long-term order dependence in the data. The LSTM was specifically
designed to solve this problem.

LSTM is one of the most commonly used and effective methods for reducing the
vanishing gradient and exploding gradient. It changes the structure of the hidden
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Fig. 13 The structure of LSTM

unit, and the input and output of the neural unit are controlled by the gates. These
gates control the information flow of hidden neurons and retain the features extracted
from the previous time steps.

As illustrated in Fig. 13, an LSTM-based recurrent layer maintains a series of
memory cells ct at time step t. The activation of the LSTM units can be calculated
by:

ht = ot × tanh(ct ) (12)

where tanh(·) is the hyperbolic tangent function, andOt is the output gate that controls
the extent to which the memory content is exposed. The output gates are updated as:

ot = σ(WT
o × f Tt +UT

o × ht−1 + bo) (13)

where Wo and Uo are the input-output weight matrix and memory-output matrix,
respectively, and bo is the bias. The memory cell ct is updated by partially discarding
the present memory contents and adding new contents of the memory cells c̃t

ct = ft ⊗ ct−1 + it ⊗ c̃t (14)

where ⊗ is the element-wise multiplication. The new memory contents are

c̃t = tanh(WT
c × f Tt +UT

c × ht−1 + bc) (15)

Here,Wc andUc are the input-memoryweight matrix and hiddenmemory coefficient
matrix, respectively; bc is the bias; it is the input gate, which modulates the extent
to which the new memory information is added to the memory cell; ft is the forget
gate, which controls the degree to which the contents of the existing memory cells
are forgotten. The gates are computed as follows:

it = σ(WT
i × f Tt +UT

i × ht−1 + V t
i × ct−1 + bi ) (16)

ft = σ(WT
f × f Tt +UT

f × ht−1 + V t
f × ct−1 + b f ) (17)
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where Wi ,Ui , and Vi are the input-memory weight matrix of the input gate, hidden-
memory coefficient matrix, and output weight matrix of the previous cell state,
respectively; W f , U f , and V f are the input-memory weight matrix of the output
gate, hidden-memory coefficient matrix, and output weight matrix of the previous
cell state, respectively; bi and b f are the biases.

2.3.3 Mechanism of convLSTM

The CNN does not have additional complex operations of artificial neural networks
for preprocessing and spatial distribution. Therefore, it uses a unique fine-grained
feature extraction method to automatically process the spatial data. When dealing
with time features, LSTM can effectively avoid the disappearance of valid informa-
tion because of the long data interval span. There are certain limitations if parallel
CNN and LSTM are used to extract spatial and temporal features. For example, in
a parallel structure composed of a CNN and LSTM, the input and output of the two
are relatively independent, and the extraction of the relationship between different
features is ignored.

Conv-LSTMwas born out of a precipitation prediction problem [54]. The problem
is as follows: given a map of the precipitation distribution for the first few hours,
predict the precipitation distribution for the next few hours. This was accomplished
by replacing the input-to-state and state-to-state parts of the LSTM from feedforward
calculations to convolution calculations. A cell diagram is shown in Fig. 14.

Fig. 14 The structure of Conv-LSTM
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The principle of Conv-LSTM can be expressed by the following formula:

ft = σ(Wx f ∗ xt + Whf ∗ ht−1 + Wcf ◦ ct−1 + b f ) (18)

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi ) (19)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (20)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wc0 ◦ ct−1 + bo) (21)

ht = ot ◦ tanh(ct ) (22)

where ∗ denotes the convolution and x, c, h, i, f, o are tensors. We can imagine Conv-
LSTM as models that work on the eigenvectors of two-dimensional grids. It can
predict the time-space features of the central grid based on the time-space features
of the points around them.

2.4 Deep Generative Adversarial Network

CNNs and RNNs have been widely used in various fields, and have achieved good
results. However, these methods need to rely on a large amount of labeled data. In
actual research, we often encounter insufficient training sample data. This situation
will lead to a decline in the recognition accuracy of our model. A generative adver-
sarial network (GAN) can generate realistic sample data. If these generated sample
data are used to train the model, the problem regarding the amount of training sample
data can be solved. At present, GANs have been widely used in the fields of image
and vision.

2.4.1 Architecture of Generative Adversarial Network

GAN [17] originated from the two-person zero-sum game. The two-person zero-sum
game is a concept in game theory, which says that the sum of the interests of both
parties in the game is always zero or remains unchanged. If one party gains, the other
party must have a corresponding loss. GAN is composed of two parts: a generator
and a discriminator. These two parts can be regarded as the two parties of the game.
The optimization process of a GAN is equivalent to the two-person zero-sum game
process.

The purpose of theGAN is to learn the distribution of real data, which can generate
realistic data. The implementation of a GAN is shown in Fig. 15.

The generator G is used to capture the distribution of real data, and random noise
is used as an input to generate the sample data. To capture the real data distribution,
first, a random noise z that obeys the prior distribution Pz(z) is given. Then the
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Fig. 15 The basic structure of the generative adversarial network

mapping space G(z; θ g) is constructed using Pz(z). The mapping space G(z; θ g) is
a generative model of the parameters θg . The random noise z is used as the input of
the generator, and sample data is generated through the mapping space G(z; θ g).

The discriminatorD is used to determinewhether the input sample is a real sample
or a generated sample, which is equivalent to a two-classifier. Defining the mapping
function D(z; θd), the input sample outputs a scalar between zero and one through
the mapping function. This scalar represents the probability that the input sample is
a real sample; the mapping function D(z; θd) is a discriminator for the parameters
θd . It should be noted that the input of the discriminator consists of two parts. One
part is the sample generated by the generator, and the other part is the real sample x
that obeys the real data distribution.

2.4.2 Training of Generative Adversarial Network

In the GAN training process, generator G and discriminator D compete with each
other, continuously alternating the iterative optimization. Finally, they gradually
reach an equilibrium. The optimization function of GAN is as follows:

max
G

max
D

V (D,G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(z)))] (23)

where D(x) represents the probability that the real sample x is identified as a real
sample after passing through the discriminator. G(z) represents the sample data gen-
erated by random noise z through the generator. D(G(x)) represents the probability
of the generated sample data being judged as a real sample after passing through the
discriminator.

It can be seen that the optimization function of the GAN is equivalent to a min-
max optimization problem. This optimization function has two steps. The first step
is to optimize the discriminator D, and the second step is to optimize generator G.
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The objective function can be regarded as alternately optimizing the following two
objective functions:

max
D

V (D,G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(z)))] (24)

min
G

V (D,G) = Ez∼Pz(z)[log(1 − D(G(z)))] (25)

The label of the real sample is artificially defined as one, and the label of the
generated sample is zero. The purpose of the discriminator is to distinguish between
true and false samples. Thus, the discriminator hopes that D(x) is as close to one as
possible, and D(G(x)) is as close to zero as possible. Using sample data to optimize
the discriminator based on these two conditions is equivalent to maximizing V(D,G).
The purpose of the generator is to generate sufficiently realistic sample data; hence,
the generator hopes thatD(G(z)) is as close to one as possible. For this purpose, using
sample data to optimize the generator is equivalent to minimizing V(D,G).

It should be noted that the parameters of G or D are always fixed, and the param-
eters of the other part are updated during training. Finally, P(z) and Pdata(x) are
infinitely close. The generator can generate samples in which the discriminator can-
not distinguish authenticity.

2.4.3 Typical Generative Adversarial Networks

The conditional GAN [30] adds constraints to the standard GAN to guide the data
generation process, thereby generating controllable samples. It solves the problem
of GAN image generation being too free and difficult to control. The constraint
condition can be the category label or semantics of the image. The implementation
process of the conditional generation confrontation network is illustrated in Fig. 16.

The deep convolution generative adversarial network (DCGAN) [51] combines
CNN and GAN to optimize the original GAN model from the network structure.
DCGAN replaces the generator and discriminator in the original GAN with two
CNNs to improve the quality of sample generation and the speed of model conver-
gence.

2.4.4 Application of Generative Adversarial Network

A GAN can generate real-like samples without explicitly modeling any data distri-
bution in the process of generating samples. Therefore, GANs have a wide range of
applications in many fields, such as images and text.

One function of theGAN is to generate the data.A limitation of the development of
deep learning is the lack of training data; only GAN-generated data can compensate
for this shortcoming. For example, given the text description of a bird, such as some
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Fig. 16 Common Generative Adversarial Network Structure. a conditional generative adversarial
nets. A network with conditional constraints (green tensors in the figure) b deep convolutional
generative adversarial networks. A network composed of convolutional layers

Fig. 17 Cross-modal image generation. The generative adversarial network can realize the task of
generating from text to image

black and white on its head and wings, and a long orange beak, a trained GAN can
generate images that match the description. Figure17 shows the application of GAN
in image generation

Another important application of GAN is image super-resolution, which refers
to the process of recovering high-resolution (HR) images from low-resolution (LR)
images. This is an important class of image processing techniques in computer vision
and image processing. It enjoys a wide range of real-world applications, such asmed-
ical imaging, surveillance, and security amongst others. Other than improving image
perceptual quality, it also helps to improve other computer vision tasks. However,
generally, this problem is very challenging and inherently ill-posed since there are
alwaysmultiple HR images corresponding to a single LR image. As shown in Fig. 18,
relying on powerful image generation capabilities, GAN can decode and encode LR
images into HR images.

The task of image translation can also be achieved through GAN. Image trans-
lation is the conversion of one (source domain) image to another (target domain)
image. During the translation, the content of the source domain image will remain
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Fig. 18 Schematic diagram of super resolution. In the computer vision community, the super-
resolution task makes blurry images clear. In oceanography, the purpose of the super-resolution
task is to improve the temporal and spatial resolution of the numerical field

Fig. 19 Schematic diagram of image translation. This task merges two images to get a brand-new
image, the generated image retains the content of one input and the style of the other input

unchanged. Nevertheless, the style or other attributes will be the same as the target
domain, as shown in Fig. 19.

Image restoration is a technology that uses the learned image information to com-
plement or modify the damaged image. Image restoration has various applications
such as image completion and image deblurring. Owing to its good ability to fit the
real distribution, GAN has shown good results in image restoration.

2.4.5 Problems of Generative Adversarial Network

GANhas become apopular research topic in recent years.Despite its recent genesis, it
has developed rapidly and hasmade important contributions inmanyfields. However,
owing to problems such as model collapse and gradient disappearance, its generation
effect, training efficiency, and application range are still restricted.

(1) Low image-generation diversity
The diversity of image generation has always been an important issue in the field

of GAN research. Traditional GAN algorithms can only fit simple datasets with
small sizes, and the complexity of image generation is low. Therefore, the GAN
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algorithm has been developed for image diversity. The existing GAN algorithm can
generate indistinguishable high-quality images; however, many factors restrict the
development of image diversity, which often conflict with other factors such as image
size and model complexity.

(2) Insufficient model training efficiency
GAN has training instability problems, which are caused by model collapse and

gradient disappearance. In addition, the complex model structure and redundant
information causes the training cycle to be too long.

(3) The application field has not been extensively studied
GAN has been used in many fields in a relatively short period; Nonetheless, it is

mostly limited to image processing. Many algorithms mention only their achievable
functions without explaining their use-value. This development is slow in other fields
such as NLP.

3 Perceptual Understanding Based on Neural Network

3.1 Recognition Based on Neural Network

Various neural network architectures support awide variety of perceptual understand-
ing applications. Currently, research on neural networks in natural language process-
ing, visual data processing, speech signal processing, etc. is progressing rapidly. They
have been widely used in industrial fields such as intelligent security, medical health,
and industrial inspection. Figure20 briefly depicts the applications of neural network-
based deep learning research in some important fields. This section introduces neural
network-based recognition, segmentation, and prediction applications.

3.1.1 Problem Description

Neural network-based recognition tasks involve both the extraction of features from
the model input content and the establishment of mapping relationships between the
extracted features and the identifiable attributes of the sample (category, location,
etc.). The advent of CNNs has led to the rapid development of neural networks
for visual recognition tasks. In this subsection, the classification, localization, and
detection in recognition tasks are described.

Figure21 depicts the flow of a neural network-based recognition task. First, the
input image is subjected to a CNN to extract key features and represent them in a
one-dimensional feature vector. Then, this feature vector is input to the classification
module, localization module, or target detection module according to the different
tasks; the corresponding output results are subsequently obtained. The classification
module is used to determine the category of the target in the input image. The
localization module is used to determine the location of the target in the picture.
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Fig. 20 Deep learning-based applications in computer vision. It briefly depicts applications of
neural network-based deep learning research in some important fields

Fig. 21 Overview of a neural network-based recognition task. It contains the three basic computer
vision tasks of classification localization and detection

The target detection module is a combination of classification and localization, that
is, it determines the location of the target in the input image and its corresponding
category. The next section describes each of these three recognition tasks and their
corresponding modules.

3.1.2 Classification

In computer vision, image classification is a crucial job. The objective of image
classification is to discern what category the object in the image belongs to, such as
whether it is a cat or a dog. As shown in Fig. 22, according to the difficulty of the
classification task, it can be subdivided into dichotomous classification task, multi-
classification task, or multi-label classification task, etc. The image classification
task can be expressed by the following equation.

C = f f c[ fconv+pool(x)] (26)
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Fig. 22 Overview of a classification-based neural network. It includes binary classification, multi-
class classification and multi-label classification

C denotes the category, fconv+pool denotes the convolutional and pooling layers, X
denotes the input image, and ffc denotes the fully connected layer.

Binary classification is the most basic type of image classification. It is used to
identify whether the input image contains a certain category; the classification results
are represented by zeros and ones. The binary classification task is used to identify
whether the target is visible in the input. If the model result is zero, then it means
that the input image does not contain the target object and vice versa.

Multi-category image classification ismorewidely used than binary classification.
Its purpose is to classify the corresponding target class of an image that contains only
one target class. Multi-category tasks are used to identify the specific category of the
target in the input image, and the picture input to the network often contains only
one category of targets. Multi-category image classification has now been integrated
into all aspects of life and has been effectively used in a variety of sectors, such as
facial recognition.

Multi-label classification is used to identify all the categories present in the input
images. The pictures processed by this task often contain several different labels,
and these labels are compatible with each other. The multi-label classification task
can describe the information of pictures more graphically and has a more realistic
meaning.

The success of deep learning classification tasks is inextricably linked to the
development of supervised learning. The construction of large-scale datasets and the
development of computational resources have made it possible to train the neural
network parameters. The loss function, a metric used to measure how well a model
predicts results, is an important component of the classification task and plays an
important role in BP to update the network parameters. The purpose of the loss
function is to update the parameters of the model to achieve better prediction results.
Take the most commonly used cross-entropy loss function as an example, its loss
function can be written as follows.

Loss = −
n∑

i=1

yi log(p(xi )) (27)
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Fig. 23 Comparison of categories between traditional classification and fine-grained image clas-
sification. Fine-grained image classification can be used to distinguish different types of fighter
jets

where p(xi ) denotes the probability value that sample x is predicted to be the i-th
category, yi denotes the true label of the corresponding input sample x in the i-th
category, which is one if it belongs to the i-th category, and zero otherwise.

For datasets such as ImageNet, which hasmore than 10million images and 20,000
classes, the image classification level computer has surpassed that of humans; how-
ever, deep neural networks are not effective when recognizing subclasses under tra-
ditional categories, that is, discriminating betweenmagpies and sparrows, etc., under
the category of birds. Furthermore, the training of the model requires a large number
of manually labeled tags, which is expensive. The cost of labeling increases expo-
nentially with the number of targets and the difficulty of discernibility. To address
these two challenges, fine-grained image classification and unsupervised image clas-
sification have emerged.

The distinction of fundamental categories and the performance of finer subcate-
gories are the foundations of fine-grained image classification. Fine-grained image
classification may be used to discriminate between sub-categories, such as various
types of fighter airplanes, as illustrated in Fig. 23. Fine-grained image categoriza-
tion may also be used to discern between different automobile types and battleship
models, for example. This categorization has a wide range of practical uses.

Fine-grained images have a more similar appearance and features than coarse-
grained images. In addition, there are the effects of poses, perspective, illumination,
occlusion, and background interference, etc. in the acquisition. As a result, the data
has a huge inter-class variability and a modest intra-class variability. This makes
classification more difficult.

The above classification tasks are achieved via supervised learning. Each sample
has its corresponding label, and the deep neural network is used to continuously
learn the features corresponding to each label and achieve the classification. In this
case, the size of the dataset and the quality of the labels often play a decisive role
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in the performance of the model. High-quality datasets naturally bring difficulties in
labeling and need a lot of human and financial resources. The aim of unsupervised
image classification is to classify samples into several classes without using label
information, thus greatly reducing the labor and time costs associated with data
labeling.

3.1.3 Localization

The purpose of image localization is to determine the location of the target in the input
image. An image is input to the model, and the model outputs the center coordinates,
width, and height of the target location in the image. The result is a rectangular box
with the location of the target in the input image, represented by the horizontal and
vertical coordinates of the rectangular box and its width and height.

For example, a typical regional proposal network (RPN) incorporates a dichoto-
mous classification problem, that is, whether the object in the location is an object
or not. Rectangular boxes of different sizes and aspect ratios are first generated on a
sliding window and labeled positively or negatively. The sample data for the RPN is
organized as a binary classification labeling problemwith multiple rectangular boxes
within the input image and the presence or absence of objects within each rectangular
box. The RPN maps each sample to a probability value and four localization values.
The probability value reflects the probability of having an object in a rectangular
box, and the four localization values are used to regress the center horizontal and
vertical coordinates and the width and height of the target object location.

3.1.4 Detection

The image detection problem is equivalent to a combination of localization and
classification problems. It needs to locate the location of the target and to deduce the
class of the located target.

Current mainstream target detection algorithms can be divided into two-stage and
one-stage detection. The former frames detection as a “coarse to fine” process, while
the latter defines it as a “one-step completion”

The two-stage detection algorithm is relatively slower but more effective. Take the
most typical two-stage target detection algorithm, faster RCNN, as an example. As
shown in Fig. 24a, the first stage locates the target location in the input image through
the region suggestion network. Then in the second stage, the localized targets are
classified; finally, the rectangular box of the localized targets and their categories
are obtained. There is a certain sequence between the two stages of this model,
which makes a stronger connection between localization and classification. This
approach allows for more robust results. The single-stage detection algorithm is fast
but less accurate. Taking themost typical two-stage target detection algorithmYOLO
v3 as an example, YOLO directly generates both coordinates and probabilities for
each category at a time using regression, as shown in Fig. 24b. This improves the
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Fig. 24 Two representative detection framework architecture diagrams. a Faster RCNN, most
typical two-stage target detection algorithm. b YOLO v3, an one-stage target detection algorithm

computational speed of the model but leads to poorer results because of the lack of
correlation between localization and classification.

There are twomainmeasures for the target detection task: IoUand confidence. The
IoU was introduced in the previous section, and the other metric, confidence, is used
to measure the confidence level of the detected targets. The higher the confidence
level, the more certain the model is about the output.

Object detection has both classification and localization capabilities and has
numerous applications. Examples include face detection, text detection, remote sens-
ing target detection, pedestrian detection, and automatic detection of traffic signs and
traffic signals. Target detection is widely used in military investigations, disaster res-
cue, and urban traffic management, and has gained wide attention in the fields of
automatic driving, video surveillance, and criminal investigation, etc.

3.2 Segmentation Based on Neural Network

Neural network-based segmentation is most often found in vision tasks. The follow-
ing section introduces image segmentation as an example.

Image segmentation is different from image classification and monitoring. The
task of image classification is to identify the content of an image, whereas the task of
image monitoring is to identify the content of an image and also monitor its location.
Image segmentation is a pixel-level image classification task based on classifying
each pixel of an image.
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3.2.1 Problem Description

Image segmentation is a key operation in image processing. It refers to the use of
several disjoint regions to represent a complete image, based on the references of
grayscale, luminance, texture, and other characteristics of the image. It can simplify
the representation of the image. Features show similarity or consistency in the same
region, while they show clear differences in different regions.

Existing image segmentation is generally divided into semantic segmentation,
instance segmentation, and panoramic segmentation, as shown in Fig. 25.

The semantic segmentation is to give each pixel a class label without distinguish-
ing each instance of the same category. Instance segmentation is a combination of
object detection and semantic segmentation. First, it detects the object in the image
and then uses semantic segmentation on the detected objects. Moreover, it also dis-
tinguishes between different instances of the same kind. Panoramic segmentation is
a combination of semantic segmentation and instance segmentation. It gives each
pixel a class label while also distinguishing between different instances of the same
kind.

Fig. 25 Division of image segmentation tasks. According to the different segmentation tasks, image
segmentation can be divided into semantic segmentation, instance segmentation and panoramic
segmentation
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Fig. 26 Example of semantic segmentation based on neural networks. The image above represents
an application in city street view. The image below represents an application in amarine environment

3.2.2 Semantic Segmentation

Semantics refers to the contents of an image. Semantic segmentation is performed
on a pixel-by-pixel basis to label the class based on the semantics of the image, as
shown in Fig. 26. Semantic segmentation uses feature extraction and classification
to mark pixels of cars as blue, pixels of trees as green, pixels of buildings as gray,
and so on.

There are three algorithm evaluation metrics for neural network-based semantic
segmentation: accuracy, execution time, and memory consumption. Among these,
execution time is the most important measure. In practical applications, datasets are
generally very large, and computer hardware facilities are limited, and only a short
execution time can make image segmentation more popular in daily applications.
While memory consumption is also an important factor affecting semantic segmen-
tation, memory is expandable in most scenarios. Accuracy is the most critical metric
for semantic segmentation. Pixel accuracy and mean IoU are the common forms of
accuracy. The number of successfully categorized pixels divided by the total number
of pixels is the pixel accuracy. The mean IoU calculates the ratio of the intersection
and the union of two sets, and in the field of semantic segmentation, the true and
predicted values are the embodiment of the two sets.

The initial neural network-based semantic segmentation models are AlexNet,
VGGNet, and ResNet. The emergence of fully convolutional networks later broke
the previous segmentation method; thus, the accuracy in the PASCSL VOC dataset
has substantially improved. FCN has greatly promoted the development of semantic
segmentation algorithms. SegNet [1], RefineNet [32], PSPNet [55], and DeepLab [6]
have been proposed one after another, and all of them have achieved good results.

3.2.3 Instance Segmentation

The network architecture of semantic segmentation aims to optimize the accuracy
of segmentation results and improve segmentation efficiency; this should allow for
applications in the field of image semantic real-time processing. However, seman-
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Fig. 27 Example of semantic segmentation based on neural networks. The mask and label of each
object in the figure need to be segmented

tic segmentation can only judge categories and cannot distinguish individuals, and
it is impossible to accurately understand semantic information or parse scenes in
many complex real scenarios. The emergence of an instance segmentation algorithm
effectively solves this problem.

The concept of instance segmentation was first proposed by Hariharan et al. [21],
who aimed to detect objects in the input image and assign category labels to each
pixel of the object. As shown in Fig. 27, unlike semantic segmentation, instance seg-
mentation is able to distinguish between different instances with the same semantic
category in the foreground.

Instance segmentation is essentially a combination of semantic segmentation and
object detection. It not only has the characteristics of semantic segmentation to
classify images at the pixel level but also has the characteristics of object detection
to locate different instances of the same category in an image.As shown in Fig. 27, the
instance segmentation technique based on deep neural networks usually consists of
three parts: the image input, instance segmentationmodel, and the segmentation result
output. First, a deep network model is designed according to the actual requirements,
and the original image data is directly input to the network to extract image features.
After the high-level abstract features are obtained, the instance segmentation model
is used to process. The processing can first determine the location and category of
object instances via object detection. It then performs segmentation in the selected
region, or it can first implement the semantic segmentation task and then distinguish
different instances. The final output is an instance segmented image with the same
resolution as the input image.

In recent years, instance segmentation techniques have been rapidly developed.
Mask R-CNN [22], which was developed based on the two-stage detector faster
RCNN [42], is a direct and effective instance segmentationmethod. It has become the
basic framework for some instance segmentation tasks because of its high accuracy
and stability. YOLACT [3], an instance segmentation algorithm extended from a
single-stage detector with high-speed detection, achieves real-time segmentation of
video information and can obtain efficient processing ability with a small loss of
accuracy.
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3.2.4 Panoptic Segmentation

Panoramic segmentation combines the tasks of semantic segmentation and
instance segmentation to generate a global unified segmented image. Instance seg-
mentation only detects the objects in the image and segments the detected objects.
Panoramic segmentation detects and segments all objects in the image including the
background, achieving a panoramic understanding of the image. Figure28 shows the
panoramic segmentation. The information predicted by the panoramic segmentation
is the most comprehensive, which includes not only the category classification of
all pixel points using semantic segmentation but also the function of distinguishing
between different instances in the instance segmentation task.

Compared to semantic segmentation, the difficulty of panoramic segmentation is
to optimize the design of the fully connected network so that its network structure
can distinguish between different categories of instances. The goal of panoramic
segmentation is to assign a semantic label and an instance an ID to each pixel in the
image, where the semantic label refers to the category of the object and the instance
ID corresponds to different numbers of similar objects. Therefore, the overlapping
phenomenon in instance segmentation cannot occur in panoramic segmentation.

The basic process of panoramic segmentation is shown in Fig. 29; it is mainly
divided into feature extraction, semantic segmentation and instance segmentation
processing, and sub-task fusion. The purpose of feature extraction is to obtain the fea-
ture representation of the input image and provide the necessary information for the
two subsequent tasks. It relies on deep neural networks, and the main networks used
include VGGNet, ResNet, MobileNet. The extracted features are shared by semantic

Fig. 28 Example of panoramic segmentation based on neural networks. Panoramic segmentation
task is a combination of semantic segmentation task and instance segmentation task

Fig. 29 The processing flow of panoramic segmentation
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segmentation and instance segmentation. The semantic segmentation branch pro-
duces semantic segmentation predictions, while the instance segmentation branch
produces instance segmentation predictions. The subtask fusion processes and fuses
the prediction results of the above two branches in an appropriate way to produce
the final panoramic prediction. Many works have been done to adopt the above basic
process, such as JSIS-Net [9], AU-Net [31], Single network [10], OANet [34], etc.

Image segmentation can convert images into more meaningful and analyzable
content expressions, which can effectively improve the processing efficiency of sub-
sequent vision tasks. It is the basis of the computer vision scene being able to under-
stand images and plays an important role inmany scenes. In the field ofmedical image
processing, by processingCT images of the organs of patients, it can accurately locate
the boundaries of lesions; it can also automatically determine the location, shape,
and size of the diseases, and assist doctors in lesion detection. In the field of remote
sensing image processing, it can efficiently survey and plan the geographic spatial
information such as topography and landform, water pattern direction, urban dis-
tribution, and farming planning. In the field of automatic driving, it can judge the
surrounding environment of the road based on real-time road scenes, including lane
line direction, traffic signs, and safety position of oncoming pedestrians or vehicles;
it aims to provide correct guidance to vehicles and ensure driving safety. In the field
of intelligent security, the object in the surveillance video is located and screened;
it aims to play the role of security warning or object tracking. Furthermore, image
segmentation can also be applied to augmented reality, text extraction, and industrial
sorting, etc.

With the improvement of computer performance and the continuous optimization
of image segmentation algorithm architecture, image segmentation technology based
on deep neural networks has become an important task. While pushing the network
in the direction of being lightweight, real-time, and highly accurate, more attention
should be paid to technology implementation and scene promotion.

3.3 Prediction Based on Neural Network

This section introduces the application of neural networks to prediction problems.We
will expand on regression, time-series prediction, one-dimensional signal prediction,
and two-dimensional video prediction.

3.3.1 Regression

The link between the independent and dependent variables is predicted using regres-
sion [8]. The learning of the regression issue is similar to that of function fitting:
select a function curve that fits the known data and accurately predicts the unknown
data.
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According to the number of independent variables, regression problems are split
into unary andmultiple regressions. It is separated into linear andnonlinear regression
based on the relationship between the independent and dependent variables.

The square loss function is the most often used loss function for regression learn-
ing. The least-squares approach may be used to tackle the regression problem in this
scenario.

Tasks in many fields can be formalized as regression problems. For example,
regression can be used in the business field as a tool for market trend forecast-
ing, product quality management, customer satisfaction surveys, and investment risk
analysis.

3.3.2 Time Series Prediction

A time series is a sequence of numbers arranged in a specific order, and this order is
usually determined by time [53]. It is an important means for people to understand
the objective world and natural phenomena.

The development of time-series prediction is divided into two periods. The early-
stage was before World War II, and financial and economic forecasting was the key.
The second stage was from the mid-war to the 21st century. In this period, the appli-
cation areas were more extensive; these include meteorology, aerospace, electronic
computers, and mechanical vibration, etc. Time-series prediction has become a hot
field pursued by experts in academic research.

The rapid development of artificial intelligence has a significant impact on time-
series predictionmethods. Currently, commonly used time-series predictionmethods
can be divided into traditional methods and methods based on deep learning.

Traditional time-series prediction methods are usually not ideal for non-wide
stationary time series. Moreover, they are limited in forecasting by complex and
highly nonlinear time series.

The emergence of neural networks has solved these problems. Neural networks
have good learning capabilities. They can learn the underlying laws of the time series
throughmultiple iterations based on the data itself. Compared to traditional methods,
neural network methods are more accurate and can be applied to most time series.
Among them, RNNs usually perform better when dealing with time-series problems.

3.3.3 One-dimensional Signal Prediction

Neural networks are also widely used in the prediction of one-dimensional signals.
In recent years, some scholars have discovered that high-frequency oscillation sig-

nals have a certain correlation with particular diseases, which may help to improve
the accuracy of lesion location and promote the success rate of clinical operations.
On the other hand, these findings and applications can help us understand the patho-
physiological mechanism of human brain electrical activity and explore preventive
treatments that predict disease.
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3.3.4 Two-dimensional Video Prediction

Video prediction technology predicts subsequent video frames when several lengths
of continuous video frames are provided [55]. It is an important topic in the field of
computer vision and has significant application prospects.

Fig. 30 Two-dimensional time series prediction. The typhoon position at time-1 to time-n are
known, and the typhoon position at time n +1 is predicted

For example, in unmanned driving tasks, researchers can use the image infor-
mation of historical frames to analyze the trajectory information of pedestrians and
vehicles outside the car. In this way, the computer can predict the location of the
objects outside the vehicle and make judgments in advance. Traffic accidents can
also be avoided, and the safety of unmanned driving can also be improved.

In oceanography, the forecast of meteorological elements and ocean elements in
a certain sea area is similar to the forecast of video sequences. The gridded two-
dimensional sea area corresponds to a frame in the video, and the change of the sea
area in a certain period corresponds to the change of the video frame on the timeline.
As shown in Fig. 30, the figure depicts the neural network prediction of a typical
typhoon path in the seas of eastern China. The neural network encodes the offshore
wind current field in the eastern China sea at each known moment and predicts the
process of the wind current field in the future through the RNN.
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Forecasting Tropical Instability Waves
Based on Artificial Intelligence

Gang Zheng, Xiaofeng Li, Ronghua Zhang, and Bin Liu

1 Sea Surface Temperature and Tropical Instability Waves

With the development of earth observation satellites and various active and passive
sensors, massive ocean data have been acquired. For instance, the cumulative satel-
lite data archive volume at the National Oceanic and Atmospheric Administration’s
National Centers for Environmental Information reached ~7.5 petabytes in 2016.
The projected volume by 2030 is ~50 petabytes [32]. Many oceanic gridded prod-
ucts (e.g., sea surface temperature (SST), sea surface winds, and sea surface height)
have been generated from such deluges of satellite data. These products provide an
unprecedented golden opportunity for in-depth research and demonstrate the urgent
need to develop effective methods to explore time-series data. SST can be measured
from space and has the longest history among satellite-derived oceanic products
widely used to reveal the evolution of various important oceanic phenomena such
as El Niño, western boundary current, and tropical instability wave (TIW) [18].
Thus, SST is a critical parameter in understating physical oceanography, biological

G. Zheng · B. Liu
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

X. Li (B) · R. Zhang
CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
e-mail: lixf@qdio.ac.cn

R. Zhang
Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

B. Liu
College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

Key Laboratory of Marine Ecological Monitoring and Restoration Technologies,
Ministry of Natural Resources, Shanghai 200137, China

© The Author(s) 2023
X. Li and F. Wang (eds.), Artificial Intelligence Oceanography,
https://doi.org/10.1007/978-981-19-6375-9_2

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6375-9_2&domain=pdf
mailto:lixf@qdio.ac.cn
https://doi.org/10.1007/978-981-19-6375-9_2


46 G. Zheng et al.

oceanography, and atmosphere-ocean interaction; it is also a key input parameter
for climate and weather modeling. The models in traditional statistical analysis have
relatively limited complexity. This could make the models not work well, when used
to model the oceanic phenomena that are complicated by nature.

Recently, another new research and application front that utilizes available tremen-
dous data using deep learning (DL) technology has emerged. With DL, substantially
more complex models can be built to mine rules deeply hidden in SST data. DL is
a subset of machine learning that teaches computers to learn and make decisions or
predictions based on input data. The deep neural network (DNN) technique is one
of the most popular and powerful DL techniques, achieving successes in computer
vision and speech recognition [15, 17]. A DNN is a multilayer neural network (NN).
In most network layers of a DNN, input values are weighted, combined, and then
transformed by an activation function to incorporate nonlinearity into the network.
The output values of a network layer are linked to the next layer as input. All weights
of aDNNare iteratively optimized by combining error backpropagation and gradient-
based optimization to make the DNN suitable for finding the underlying relationship
among its inputs and outputs. Such a multilayer structure allows the DNN to learn
data features with multiple abstraction levels, which is impossible to imagine by the
human brain [15]. Convolutional layers, named for their mathematical form, are a
core type of network layer widely used in DNNmodels. In a convolutional layer, the
output value at a specific site is calculated by weighting and combining the nearby
sites’ input values. Each output site shares the same weights. Thus, a convolutional
layer has fewer weights to be optimized than a traditional fully connected layer that
uses independent weights to connect all input and output sites. As a result, using
the convolutional layer is particularly efficient in processing multi-dimensional data.
Therefore, compared with traditional statistical models, DNN-based DL models can
be much more complex and thus, after trained by a large quantity of sample data, can
more efficiently learn the inherent characteristics behind them. Recently, DL appli-
cations in the prediction of future images in videos have drawn extensive attention
in the field of computer vision [24, 35]. Ocean SST forecasting is similar to image
prediction in videos, where future SST maps are forecasted based on the previous
maps using a DL model. Because of the abovementioned similarities, we believe
DL technology will help us to model oceanic phenomena in a different and promis-
ing way that is driven by ever-increasing big ocean data, although DL applications
in oceanography and other geosciences just begin in recent years [31]. Therefore,
using the large accumulated amount and long time series of satellite SST data, we
can build a pure data-driven SST forecasting model that capture the spatial-temporal
variations of a complicated yet important oceanic phenomenon, TIW, which has
effects on transport of heat, mass and momentum in the ocean, air-sea and biophysi-
cal interactions, climate change, etc. As an internally generated ocean variabilitywith
time scales of approximately 15-40 days, TIWs produce large perturbations to phys-
ical and biological fields in the ocean, including SST. Furthermore, TIW-produced
SST perturbations induce almost instantaneous atmospheric surface wind responses,
forming TIW-scale interactions between the atmosphere and ocean. Although TIWs
are dominantly controlled by the background ocean state, TIW evolution and pre-
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dictability are affected by air-sea coupling at TIW scales. TIW forecasting is a chal-
lenging task because the spatial-temporal variation of TIW is significant, with large
shape distortions and deformations and seasonal and interannual variability caused
by the El Niño-Southern oscillation. Both high-resolution grids of the space domain
discrezation and realistic parameterizations of the relevant physical processes are
required, when we use numerically model TIWs. All these lead to substantial dif-
ficulties in realistic simulation of TIW-related oceanic and atmospheric responses
and the coupled air-sea interactions. Dynamical equation-based numerical modeling
for TIWs requires not only high spatial resolution but also realistic parameteriza-
tions of the relevant physical processes. As a result, substantial difficulties exist in
realistically simulating TIW-related atmospheric responses and the coupled air-sea
interactions. Therefore, the data-driven model was applied to the SST field in the
eastern equatorial Pacific Ocean to show that the TIW propagation can be forecasted
by the data-driven model.

Satellite-derived SSTs have long been assimilated into numerical models to
improve their forecasts. Recently, the NN-based strategy was proposed to perform
a similar role as data assimilation. For example, in [27], a NN model is used to
find the bias correction term in a numerical SST forecasting model. Compared with
a numerical model, a data-driven forecasting model is much simpler and compu-
tationally efficient. The forecast made by a data-driven model relies only on prior
data of minimal physical parameters or even one parameter. As another example, an
SST pattern time series can be expanded as the sum of products of time-dependent
principal component scales and corresponding space-dependent eigenvectors follow-
ing empirical orthogonal function (EOF) analysis. Thus, the forecast of the SSTs at
grids can be approximately reduced to the forecasts of several SST leading principal
components [40]. Recently, NN models were developed to directly forecast SSTs
without EOF approximations, including both site-specific and -independent models.
A site-specific model considers the site difference, so makes SST forecasts with
different NN models at different sites [26]. However, as each site needs building a
NN model, the computation coat is high in the NN-training phase of a site-specific
model, and sufficient NN-training samples are also required at each site. When use a
site-independent model to forecast SSTs, different sites share the same SST forecast
model [2, 42, 44]. This makes site-independent models more efficient. However,
when forecasting a future SST at one site, these recent models only utilize the prior
SST series at the very close neighboring sites. The models may have limitations over
a large area because the SST patterns controlled by large-scale phenomena could
be related to each other within a vast ocean area. Thus, maybe a wider SST series
centering at a forecast site should be utilized to forecast the future SST.

In the following section, we introduce a multi-scale scheme DNN with four
stacked composite layers for SST forecasting in the eastern equatorial Pacific Ocean,
which overcomes the shortcomings of previous data-driven SST forecasting models.
The idea of a multi-scale scheme has achieved notable successes in the field of com-
puter vision, e.g., DNN applications in semantic segmentation [21, 33], but has not
been explored in the oceanography field. Considering the natural differences among
different sites, we also build a space-dependent but time-independent bias correction
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map and then combine it with the multi-scale DNN to develop the final data-driven
SST forecasting model, named the DL model for brevity.

The developed DL model was applied to forecast the SST pattern variations asso-
ciated with the TIWs in the eastern equatorial Pacific Ocean. TIWs are an important
ocean dynamic phenomenon in both the equatorial Pacific andAtlantic Oceans. They
were first captured in the current meter records and infrared satellite images in the
1970s [6, 18]. One prominent characteristic of Pacific TIWs is its cusp-shaped and
westward-propagating waves at both flanks of the equatorial Pacific cold tongue
where the north flank has stronger signal. Previous studies have estimated the wave-
length, period, and phase speed of TIWs from various data sources, and their values
are typically within the ranges of 600 to 2000 km, 15 to 40 days, and 17-86 km/day
[3, 4, 12, 13, 19, 28, 29, 38, 39]. Previous studies also suggested that the generation
of TIWs could be the result of barotropic and baroclinic instability processes of the
meridional and vertical shear among the westward South Equatorial Current, the
eastward Equatorial Undercurrent, and the North Equatorial Counter Current [4, 23,
30, 34]. As a result, TIWs are inactive/active during boreal spring/fall, because the
current shear is weaker/stronger at that time. Moreover, TIWs are suppressed and
even indiscernible during strong El Niño years when the Pacific cold tongue and the
related equatorial current shear are tooweak and vice versa duringLaNina years [39].
Conversely, TIWs also have feedback to the El Niño-Southern Oscillation, affecting
its asymmetry and irregularity [1, 10, 11]. The physical and biological processes of
TIWs are complicated. As has been widely illustrated, TIWs have a profound effect
on the distribution of SST, sea surface height anomaly, chlorophyll-α, rain, salinity,
and winds in the eastern equatorial Pacific Ocean [3, 14, 28, 29, 38]. TIW induces
horizontal convection and vertical mixing in the upper sea [12, 13, 20, 25]. The
mixing reaches even the lower half of the thermocline, a fact that is still not well
considered in most physical models [20]. TIWs affect the equatorial chlorophyll-α
concentration by transporting nutrients to the upper ocean [7, 9, 43]. Conversely,
modeling analyses indicate that chlorophyll-α may modulate solar radiation in the
upper ocean and weaken TIWs [36, 37]. TIWs also interact with the atmosphere
because of the sea surface wind modulation caused by the TIW-induced SST anoma-
lies [21, 41, 45–47]. Moreover, a spatial correlation between SST and cloud patterns
is observed during the TIW seasons. The clouds appearing in the warm troughs of
the TIWs are usually generated by cool low-level winds crossing the SST fronts
and, in turn, dampen the TIW-induced SST anomalies by reducing the incident solar
radiation over the warm troughs [5]. More comprehensive physical models for TIW
studies are still ongoing, and many of the above-mentioned aspects should be con-
sidered to make the models more realistic [12, 14, 20, 36, 37, 45–47], which is a
difficult challenge. In contrast, the time series of data contain all these factors. Owing
to the strong data-mining ability, a data-driven DL model can automatically learn
comprehensive rules of SST spatial-temporal variations from the data, and does not
depict various complex processes by using physical equations.
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2 Data and Model of SST Forecasting

There are two parts in the model: a DNN and a constant map. The DNN is multi-
scale, having a network structure of four stacked composite layers for different spatial
resolutions. The DNN uses the SSTs from the preceding fourteen steps to estimate
the SSTs at the following step. The interval between the two steps is five days.
The DNN-made estimation is followed by the correction with the constant map for
reducing bias. The details are given below.

2.1 Satellite Remote Sensing SST Data

The DL model was built and tested with the SST products of Remote Sensing Sys-
tems. The products were made from both microwave and infrared sensor measure-
ments. Our studied area is a rectangular region spanning from 120 ◦W to 180 ◦W in
longitude and from 10 ◦S to 10 ◦N in latitude. The products from 2006 to 2019 were
collected in our study. These 9-km-grid products were averaged to the 18-km-grid
SST data. The SST data were divided into two parts according to time. The first part
(1st Jan 2006–31st Dec 2009) and the second part (1st Jan 2010–31st Mar 2019)
were used to build and test the DL model, respectively. By considering that TIWs
have about a fifteen-to-forty-days temporal scale, the time step of the DL model is
set to five days. Based on the preceding thirteen and current-step SST maps, the
DL model forecasts the SST map at the following future time step, the fifth step.
Therefore, a sample in our study is an SST series consisting of sequent fifteen SST
maps. Then, the SST series was shifted day by day to get the second, third, fourth,
etc. The DL model forecasts the fifteenth-step SST map in each series based on the
first-fourteen-steps SST maps. The forecasted SST map was then validated using the
series’s fifteenth-step SST map. Approximately one thousand four hundred series
were generated in the first part of the SST data, and three thousand four hundred
series samples were generated in the second part of the SST data. It should be noted
that a significant El Niño event occurred during the period of 2014–2016, which is
covered by the second part of the SST data.

2.2 Architecture and Training of the DL Model

As shown in Fig. 1, the DL model is composed of a trained multi-scale DNN and a
time-independent bias-correction map. The DNN is a stack of four composite layers.
And each composite layer has four cascaded convolutional layers.In this region,the
value of SSTs range from 16 ◦C to 34 ◦C, and the range was rescaled to [−1, 1]. In
order to fed to the corresponding composite layers at different stack levels, a 2 × 2
average pooling operation was used to downsample the SST maps. These composite
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Fig. 1 The DL model receives SST maps at the previous and current time steps and then outputs
the SST map at the future time step. The major part of the DL model is a DNN having four stacked
composite layers. The bias correction map is added to the DNN output to obtain the forecasted SST
map
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layers process the SSTmaps at different spatial resolutions. The lower the stack level,
the higher the resolution. Except the top level,each higher resolution composite layer
at a lower stack level requires the output of the composite layer at the upper stack
level. And the output need to be up-sampled. The input of theDNNconsists of 14 SST
maps at the current step and the previous 13 steps. Considering the input SST map
at the current time step is more correlative to the future SST map, the DL model also
directly linked the input SST map at the current step to the last convolutional layer
alongwith the up-sampled output of the lower resolution composite layer at the upper
stack level. The rectified linear unit function has better error gradient propagation
[8], so it was used as the activation for the first three convolutional layers of each
composite layer. The tanh activation was used for the last convolutional layer of each
composite layer except for the bottom composite layer. The tanh activation rescales
the output of each composite layer to [−1, 1] that matches the input range of the
higher resolution composite layer where the output is fed after the up-sampling. The
activation of the last convolutional layer of the bottom composite layer is a linear
function and is used to make the DNN output unbounded. The four convolutional
layers of each composite layer include 8, 16, 32 and 1 channels. The kernel sizes of
the four convolutional layers of the top composite layer are all 3 × 3. Those of the
other composite layers are 5 × 5, 3 × 3, 3 × 3 and 5 × 5, respectively.

For a general network layer, one site in the output map is connected to multiple
sites in the input map. Thus, the value at the output site is only dependent on the
values at these input sites rather than the whole input map. These input sites form
the receptive field of the output site. For instance, the input sites inside a receptive
field of a convolutional layer are weighted and connected to the corresponding output
site by the convolution kernel. The receptive field can be enlarged by using average
pooling layers to down-sampling the inputs before feeding them to the subsequent
layer. Then, the output can be treated with the same number of up-sampling layers
to restore the resolution. SST variations in different locations may be correlated by
oceanic phenomena with large scales. Considering this, we use the SST series of a
wider area to forecast the SST at the area center. Therefore, theDNN is designed to be
multi-scale to obtain the wider receptive field. After three down- and up-samplings
among the four composite layers, the receptive field size of the whole DNN extended
by about twelve times. For forecasting TIWs, this size is large enough.

The SST-map-series samples for building the DNN were divided into the training
and validation datasets, according to the ratio of 3:1. The input area is set to be larger
than the output (forecast) area in order to ensure that the input area covers the whole
DNN receptive field. The following loss function is used to optimize the DNN:

Loss =
K∑

k=1

∑

(m,n)∈Gridsoutput

(
SST (k)

output(m, n) − SST (k)
true(m, n)

)2
(1)

where SST (k)
true(m, n) is the fifteenth-step satellite SSTmap. k denotes the kth sample,

and K is the sample number of the training or validation dataset. (m, n) denote the
grid (m, n) of the output area, and Gridsoutput is the grid set. SST (k)

output(m, n) is the
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DNN-forecasted SST. The Adam algorithm [16] was used to optimize the DNN
parameters on the training dataset, and the maximum number of epochs was set to be
2500. The optimization was implemented using the CUDA technique on a NVidia
Quadro M4000. The memory of the graphics card is eight GB. In order to avoid
overfitting to the training dataset, the loss value on the validation dataset was also
calculated during the optimization procedure. The smallest loss value (the validation
dataset) was achieved at the one hundred and twenty-nineth epoch costing about one
hundred and fourteen minutes. The parameter values corresponding to the smallest
loss value were adopted.

Parameters in convolutional layers are the same for different sites. In addition,
there is no optimizable parameter in both average pooling and up-sampling layers.
Thus, the DNN is independent of the site. However, the environmental background
of the study area is inhomogeneous. There is a spatial trend that the SST is overall
higher in the west than in the east. This may cause evolution differences among the
SST pattern in different areas. Therefore, an SST correction map is included in the
DLmodel, which is added to the DNN-forecasted SSTmap tomake the final forecast
(Fig. 1). By using the samples during the training period, this SST correction map is
generated by calculating the bias of the DNN at each grid after the optimization.

The operating efficiency of the developed DL model is very high. It only takes
about 1 minute to forecast SSTs for all testing samples on an ordinary desktop
computer.

3 SST Forecast of TIWMotion Using the DLModel During
the Testing Period (2010/01–2019/03)

Figure 2a–c shows the satellite SST maps of the testing period, and Fig. 2d–f shows
the SST forecast result by the DL model. The maps are matched closely in shape,
where themost notable feature is the characteristic of TIWs that propagate westward.
The characteristic is cusp-shaped and irregular deformations.

Fig. 2 Satellite SST maps a to c and DL-forecasted SST maps d to f
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Fig. 3 The outputs at three consecutive time steps (the same to the steps in Fig. 2) of the fourth-
(top)-stack-level composite layer of the DNN a to c, the third-stack-level composite layer, the
third-stack-level composite layer d to f, the second-stack-level composite layer g to i, and the
first-(bottom)-stack-level composite layer j to l

Figure3 shows the output of the four composite layers in Fig. 1 at three continuous
time steps and visualized from the first (bottom) to the fourth (top) stack level of
the DNN. For the sake of clarity, the coarse-resolution results at higher levels are
converted to the initial resolution using the nearest neighbor interpolation method.
Then the results are rescaled to [−1, 1]. All outputs show a westward propagating
signal similar to the satellite SST maps as shown in Fig. 2a–c. These maps are
extracted from the DNN network during the training period(2006-2009) and show
the temporal and spatial characteristics of TIW. Related parameters in the network
are learned by DNN from sample data. The TIWs’ motion can be forecasted by these
features.

The forecasted and satellite SSTmaps’meridional averages (MAs) are calculated.
The maximum detrended cross-correlation between the MAs at the current time step
and the next step along the equator can estimate the westward propagation speed of
the SST pattern.

During TIW Seasons, MAs calculated by SST can reflect the westward propaga-
tion signal of the SST pattern. The forecast area exists an approximately linear zonal
trend of SST,which iswarm in thewestern part and cold in the eastern part.Moreover,
the trend is superimposed with the above signal. An instance of two zonal sequences
of SSTMAs at the longitudes of the grids of the forecast area and at two consecutive
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Fig. 4 Procedure of estimating SST pattern zonal speed: a Two zonal sequences of SSTMAs at the
longitudes of the grids are calculated from the SST maps at two times, where blue and red denote
the first time and the second time, respectively. The first sequence is satellite MAs, and the second
sequence is forecasted by the DL model. b Two sequences of SST MAs after their linear trends
are removed. c Cross-correlations of the two sequences after the linear trends are removed. d An
enlarged image of the green box in Fig. 4c, where the three green points are the maximum discrete
cross-correlation and the two cross-correlations at the neighboring discrete zonal lags. e The three
green points can be interpolated with a quadratic curve (black line), and the zonal lag corresponding
to the peak of the curve is considered as the exact zonal lag with the maximum cross-correlation.
The speed can then be estimated by dividing the exact zonal lag by the time interval

time steps is given (Fig. 4a). The red lines represent the MAs of the DL-forecasted
SST map after five days(one time step), and the blue lines represent the MAs of
the satellite SST map sequence. The westward propagation of the signal becomes
more obvious after removing the linear zonal trend of the SST MAs(Fig. 4b). The
two sequences of detrended SST MAs series’s cross-correlations can be calculated
at the discrete zonal lags (Fig. 4c) , and can find the discrete lag with the maximum
cross-correlation and its two neighboring discrete lags (Fig. 4d). A quadratic curve
can interpolate the cross-correlation of three discrete lags. The peak lag of the inter-
polated curve is considered to be the exact lag of the maximum cross-correlation
between two non-trending SST MA sequences(Fig. 4e).In mathematical form, this
is

lagexact = 1

2
· y1(lag2

2 − lag32) + y2(lag32 − lag12) + y3(lag12 − lag22)

y1(lag2 − lag3) + y2(lag3 − lag1) + y3(lag1 − lag2)
(2)
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Fig. 5 Temporal variation of the SST pattern associatedwith TIWwestward propagation during the
testing period.Wecalculated theMAsof the satellite and forecastedSSTmaps and then estimated the
speed of the SST pattern westward propagation based on the maximum detrended cross-correlation
along the equator between the MAs of the satellite SST map at the current time step and those of
the satellite or predicted SST map (brown dashed curve: the speed calculated by satellite/satellite
pairs, green solid curve: the speed calculated by satellite/DL-predicted pairs, orange dotted curve:
the daily Niño3.4 index)

where lag1, lag2, and lag3 are the three discrete lags, and, y1, y2, and y3 are the
corresponding cross-correlations. Finally, the propagation speed can be obtained by
dividing the exact lag by the time interval.

Figure 5 shows the estimated speeds mainly ranges from 0 to 100 km/day [3,
4, 12, 13, 19, 28, 29, 38, 39]. The green solid curve represents the SST pattern
propagation velocity predicted by the DL model. The red dashed curve represents
the velocity estimated by the satellite/satellite SST MA pairs. The two curves are in
good agreement. Both curves show very consistent TIW seasonal fluctuations.In the
TIW season, TIW controls the motion of the SST pattern. Thus, the DL-forecasted
SST pattern propagation velocity can be regarded as the TIW speed. Nevertheless,
the SST pattern is inert, and there is no apparent westward motion in the no- or
weak-TIW seasons.

The DLmodel can also forecast recursively. In this recursive frame, the forecasted
SST, the present satellite SST, and the previous 12 satellite SSTswere used to forecast
the SST at the second recursive step, and then, the two forecasted SSTs, the current
satellite SST and the previous 11 satellite SSTs were utilized to forecast the SST at
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Fig. 6 Satellite-observed SST a to c and DL model-forecasted SST d to f

the third recursive step. Therefore, the DL model recursively forecasts the SST in
the subsequent steps (the fourth, fifth, sixth, etc. recursive steps). Figure6 shows an
example of the recursively forecasted SST maps at the subsequent three time steps
after the final time step in Fig. 2. As can be seen from the figure, the DL model can
still work well and forecast the TIWs’ westward motion in general.

4 Interannual Variation in TIWWestward Propagation

The daily Niño3.4 index data were also overlaid on Fig. 5, and denoted by orange
dotted curve. The data was provided by the KNMI (the Royal Netherlands Meteoro-
logical Institute) Climate Explorer. Fig. 5 shows that the DL-forecasted TIW speed
values and the Niño3.4 index values are 180 degrees out of phase. There is a major El
Niño event from 2014 to 2016, and the TIW speeds were almost zero for the weak-
ening of meridional SST gradients during this time. The measurements of mooring
and Argo float from 2000 to 2010 also validate this fact, in which TIW kinetic energy
and occurrence probability show negative correlation with the Niño3.4 index [11].
The correlation coefficient between the Niño3.4 index values and the speed values
estimated from satellite/satellite SST MA pairs is -0.38, with a P-value close to zero
and a 95% confidence interval of (−0.35,−0.41). The corresponding statistic results
for the DL-forecasted speeds are -0.53, with a P-value close to zero and (−0.50,
−0.55).

5 Zonally Westward Propagation of TIWs

Figure7 gives the zonal TIWwestward propagation speeds at 2-degree latitude bands,
whichwere estimated from the satellite/satellitemaps and the satellite/DL-forecasted
SSTmaps, respectively. As can be seen from the figure, the estimated speed distribu-
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Fig. 7 Zonal TIWwestward propagating speeds at 2-degree latitude bands. aDistribution of speeds
estimated from satellite/satellite SSTMApairs and distributions of forecasted speeds estimated from
b satellite/DL-forecasted SST MA pairs. The white blanks denote outliers beyond the range from
0 to 100 km/day

tions are consistent with each other and their temporal fluctuations are similar during
TIW seasons. The fluctuations are also similar to the curves in Fig. 5. Furthermore,
the equatorial bands have higher speeds than the higher-latitude bands. All these
results are in agreement with the previous findings for the reason that TIWs at dif-
ferent latitudes are controlled by different dynamic mechanisms with their speeds
determined by equatorial wave processes [22, 38].

6 Accuracy During the Testing Period (2010/01–2019/03)

The root mean square error (RMSE) and bias variation of the DL model over time
were calculated during the testing period and are given in Fig. 8. From the figure,
it can be seen that the RMSE and bias are generally stable. The RMSE fluctuates
between 0.15 ◦C to 0.45 ◦C, while the bias fluctuates between −0.15 ◦C to 0.15 ◦C.
Due to the rapid change of the SST pattern, the RMSE of the DL model is larger
during the TIW seasons (Fig. 8a). There are approximately 3300 samples at each
grid point. The RMSE and bias at each grid were calculated, and the RMSE and
bias spatial distributions of the DL model are given in Fig. 9. The RMSE of the cold
tongue area is higher than other areas. This is caused by the large spatial gradient
and fast temporal variation of the SST in the cold tongue area. In the study area, the
global RMSE of all grids and all samples is 0.29 ◦C and the bias is −0.01 ◦C.

For the recursive forecasting, the global RMSE and bias of the DL model from 5
days to 150 days after the current time step (i.e., recursive steps 1 to 30) are given in
Fig. 10. It can be found that the DL model’s accuracy declines with the evolution of
time. It should be noted that there will be no satellite SST in the model input after 14
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Fig. 8 RMSE a and bias b temporal trends. The RMSE and bias temporal trends were calculated
sample by sample from the forecasting errors at all grids

Fig. 9 RMSE a and bias b spatial distributions. The RMSE and bias spatial distributions were
calculated grid by grid from the forecasting errors of all samples

recursive steps. Even so, the RMSE does not grow rapidly and is still smaller than
0.80 ◦C at the 15th recursive step. Meanwhile, the magnitude of the DL model’s bias
is also smaller than 0.10 ◦C at the 30th recursive step.

7 Conclusions

In this chapter, a data-driven DL SST forecasting model using the DNN technique
was built. The DL model accurately forecasted the spatial-temporal variation of the
SST pattern with a RMSE of 0.29 ◦C and the TIW’s propagations that agree well
with actual satellite observations.

The DL model is different from previous models. The DL model consists of a
multi-scale DNN with four stacked composite layers and a time-independent but
site-dependent bias correction map. In this design, the DL model takes the spatial
dependence of a site-specific forecast over a large surrounding area and the bias
correction of the DNN at different sites into consideration. The DLmodel was tested
for nine years without overlapping with the training period. The results show that
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Fig. 10 The global RMSE and bias of DL model implemented recursively concerning the number
of recursive steps. In the recursive model, the DL-forecasted SST at a future time step is fed back
to the model input to forecast the SST at the next future time step. The recursive steps from 1 to
30 are correspond to 5 days to 150 days after the current time step. After 14 recursive steps, there
is no satellite SST map at the model input, and all input SST maps are from the model’s forecast.
The global RMSE and bias were calculated from the forecasting errors of all samples at all grids at
each recursive step

the DL model effectively forecasts the SST variation associated with TIWs. The
DL-forecasted TIW speed is in good agreement with that estimated from the satellite
SST maps. Both of the speeds present the consistent seasonal cycle and interannual
modulation, and the interannual modulation is negatively correlatedwith the Niño3.4
index. TIW speeds are higher in equator than other latitudes. The DL model can also
forecast SSTs at future steps in a recursive manner, although the accuracy degrades
with time for the loss of actual satellite SST input.

The developed model results show DNN’s great potential for marine forecasting
utilizing gridded data. Compared with numerical forecasting models, DL forecast
models are straightly driven by real measurements and elude the complex process,
including model parameterizations and approximations, various physical equations,
and a substantial computational burden. DL models are able to forecast accurately
with the help of a few physical parameters’ prior information. In our case, only one
SST parameter was used. Almost all of theDLmodel’s computational cost is spent on
the iterative optimization of the weights. Emerging technologies on hardware, e.g.,
CUDA, can easily speed up this learning procedure. If the DNN has been trained
and obtained the bias correction map, the DL model can make an efficient forecast
with no iteration. Therefore, it can work very rapidly. In our case, it only takes
about one minute to forecast the SST pattern of the testing period by an ordinary
desktop computer. As far as DNN is a data-driven technology, whether training or
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using, sufficient data is always the basic requirement. Fortunately, sufficient data and
DNN’s outstanding learning capability fully cater to the growing amount of marine
satellite observations in the era of remote sensing big data.
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Sea Surface Height Anomaly Prediction
Based on Artificial Intelligence

Yuan Zhou, Chang Lu, Keran Chen, and Xiaofeng Li

1 Significance of Sea Surface Height Anomaly Prediction

Sea surface height anomaly (SSHA) is one of the essential parameters for investi-
gating ocean dynamics and climate change [4, 6, 32] and indicates mesoscale ocean
dynamics features such as currents, tides, ocean fronts, and water masses. In addi-
tion, it is an important parameter for marine disaster emergency response [10, 30, 37,
39]. Historically, sea-level changes were computed using the tide gauge data [15],
[40]. Compared with sparsely distributed tide gauge stations, recently, the advent
of satellite altimetry has enabled constant sea-level measurements that include the
entire sea area. The use of altimetry allows to acquire a particular sea-level change
to the terrestrial reference frame, thus offering high-precision data for studying sea
level [1, 8, 13, 25, 34].

2 Review of SSHA Predicting Methods

To predict sea-level changes, numerous approaches based on satellite altimetry data
have been proposed, which can be categorized according to the type of model used
as physical-based [7, 16, 27] and data-driven models [3, 31].

Physical-based models estimate sea-level changes by statistically combining
related physics and dynamics equations. Reference [7] predicted the annual and
semi-annual global average sea-level changes by employing a hydrological model.
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Reference [16] compared the future worldwide and regional sea-level anomalies
caused by the emissions of greenhouse gas in the 21st century in accordance with
the Hadley Center climate simulations (HadCM2 and HadCM3). Reference [27]
attempted to predict worldwide seasonal sea-level anomalies ahead of 7months by
developing the dynamic atmosphere-ocean coupled model.

Data-driven models build mapping correlations between sea-level anomaly
records by using statistical methods and are comparatively more accurate in the
prediction of sea-level changes. Reference [3] forecasted seasonal sea-level anoma-
lies in the North Atlantic based on the auto-regressive integrated moving average. By
using the least-squares (LS) method, [31] forecasted the global average and gridded
sea level anomalies of the eastern equatorial Pacific by using a polynomial-harmonic
model. To assess the sea-level changes on themid-Atlantic coast of the United States,
[12] developed a technique based on empirical mode decomposition (EMD). Refer-
ences [33] and [28] respectively studied sea level anomalies based on the changes in
earth’s temperature and ice sheet flow by using semi-empirical methods. Reference
[14] proposed a hybrid model that combines the EMD, LS, and singular spectrum
analysis to predict long-run sea-surface anomalies in the South China Sea (SCS).
Reference [17] employed evolutionary support vector regression (SVR) and gene
expression programming to predict sea-level anomalies in the Caspian Sea by using
previous sea-level records. They also combined SVRwith empirical orthogonal func-
tion (EOF) [18], wherein they adopted SVR for predicting sea-level anomalies in the
tropical Pacific and simultaneously applied EOF for extracting the main components
with the aim to lower data dimensions.

Deep learning (DL) is a data-driven approach that iswell adapted to nonlinear rela-
tionships. Recently, DL has been used for forecasting time-series data [9, 19, 22, 36,
42]. The similarity between SSHA pattern prediction and time-series data prediction
has prompted researchers to propose a variety of data-driven models for predicting
SSHAs by using DL. Reference [5] adopted an RNN network for predicting and ana-
lyzing sea-level anomalies. RNN networks outperform simple regression models by
extracting and fusing the characteristics of the time dimension [11]. Reference [23]
proposed a DL model that integrates long short-term memory (LSTM) network with
an attention mechanism [2] to reliably predict SSHAs. Reference [38] developed the
merged-LSTM model and showed that it is superior to several advanced machine
learning approaches in predicting sea-surface anomalies.

The aforementioned RNN/LSTM forecasting strategies focus on temporal change
modeling, where constant state data updating is practiced within every LSTM unit
over time. They perform SSHA estimation by utilizing the former SSHA series
either at a single site or at its tightly adjoining sites, thus failing to consider the
veiled information of the SSHA series at the remaining associated remote positions.
However, the sea level of a region is influenced by both nearby and distant areas. In
addition, spatial deformations and temporal dynamics have equal significance in the
prediction of forthcoming SSHA fields.

In addition, the former approaches can only predict the SSHA at a single grid and
not the SSHA over the entire region. In terms of each grid in the region, the models
must be trained. Thus, to forecast the value of all grids in the area, each grid must be
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trained numerous times to acquire diverse network parameters. In addition, the high
model storage and retraining time are not acceptable.

In the following section, we introduce an SSHA prediction method named multi-
layer fusion recurrent neural network (MLFrnn).MLFrnn can be used in the temporal
and spatial domains and can accurately predict the SSHA map for the entire region.

3 Multi-Layer Fusion Recurrent Neural Network
for SSHA Field Prediction

We introduce a classical spatiotemporal forecasting architecture in Sect. 3.1 and then
present the network architecture of MLFrnn Sect. 3.2. Finally, the multilayer fusion
cell as the fundamental building block of MLFrnn is discussed in Sect. 3.3.

3.1 A Classical Spatiotemporal Forecasting Architecture:
ConvLSTM

Spatiotemporal zone modeling is necessary for the prediction of SSHA fields, an
unachievable task using the RNN/LSTM forecasting strategies. For extracting spa-
tiotemporal information from time-series data, [35] developed ConvLSTM, a variant
of LSTM where three-dimensional (3D) tensors are used for representing all of the
inputs, gates, cell states, and hidden states. ConvLSTM utilizes convolution opera-
tors to capture spatial characteristics by clearly encoding the spatial information into
tensors. The critical equations of ConvLSTM are as follows:

ft = σ
(
Wx f ∗ Xt + Whf ∗ Ht−1 + b f

)

it = σ (Wxi ∗ Xt + Whi ∗ Ht−1 + bi )

gt = tanh
(
Wxg ∗ Xt + Whg ∗ Ht−1 + bg

)

Ct = ft � Ct−1 + it � gt
ot = σ (Wxo ∗ Xt + Who ∗ Ht−1 + bo)

Ht = ot � tanh (Ct )

(1)

In this architecture, ∗ denotes the convolutional operator,� denotes theHadamard
product, and σ refers to a sigmoid activation function with a value of [0, 1] describ-
ing the amount of to-be-transmitted information about the state. The cell state con-
veyance is dependent on it ,gt , ft and ot which helps avoid fast gradient disappearance
by capturing the state in the memory and helps alleviate the problem of long-run
dependency.

By stacking ConvLSTM, an encoder-decoder network can be obtained, as shown
in Fig. 1. The ConvLSTMnetwork takes Xt as the input of the first layer and X̃t as the



66 Y. Zhou et al.

Fig. 1 ConvLSTM network

prediction result of the n-th layer. In addition, the ConvLSTM transmits hidden states
in both vertical and horizontal directions. The update of the cell state is restricted
within every layer of ConvLSTM and transmitted only in horizontal directions. The
cell states of various layers are mutually irrelevant. Thus, every ConvLSTM layer
will completely ignore cell states at lower layer. Moreover, the original layer (the
lowest layer) does not reflect the memory contents of the deepest layer (the n-th
layer) at the prior time step.

3.2 Architecture of MLFrnn

The states of differentConvLSTM layers are collectively irrelevant, and the interlayer
connections are not explored sufficiently. To tackle this problem, the MLFrnn was
developed in this study for the estimation of SSHA fields. AsMLFrnn’s fundamental
building element, a novel type of multilayer fusion cells was designed that enable
spatiotemporal trait acquisition at the nearby and remote positions for the SSHA
fields. These features are delivered both horizontally and vertically.

Let’s denote the SSHA field at time step t by Xt . The SSHA field can then be
predicted based on the former t-days observations, as follows:

X
′
t+1 = argmax

Xt+1

p ( Xt+1| X1, X2, ..., Xt ) (2)
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Fig. 2 MLFrnnmodel for forecasting SSHAfields. The red and purple arrows respectively indicate
the directions of the information flows for inputs and forecasts, whereas the green arrows denote
the flow direction of the cell/hidden state information that is transmitted both transversely and
longitudinally. The blue arrows show the flow direction of relevance state information constituting
the pristine-deepest layer connection

where p(·) represents a conditional probability and X
′
t+1 is the forecast SSHA field

at time step t + 1.
Figure2 presents the architecture of the MLFrnn model. It can extract cell state

Cn
t and hidden state Hn

t (t denotes time and n represents the number of layers) for
storing long-run and short-run memories. The cell state is expressed in vertical and
horizontalways rather than horizontally as inConvLSTM.To study SSHAvariations,
the MLFrnn model fuses cell states and hidden states from diverse layers.
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Additionally, in ConvLSTM, the pristine and deepest layers are irrelevant at the
prior time step. To overcome this limitation, a supplementary relevance state Rn

t is
added, which accomplishes the spatial trait storage for the SSHA fields and their
straight transverse updating. In the subsequent time step, the pristine layer is fed
with the relevance state of the deepest layer Rn=4

t , to allow a more abundant spatial
feature.

The forecast of the SSHA field X̃t is acquired by adopting a 1 × 1 convolution
operation to the hidden state from the deepest layer Hn=4

t .

3.3 Multi-layer Fusion Cell

A recurrent forecasting module and a feature fusion module constitute a multilayer
fusion cell, which completely fuses cell state, hidden state as well as relevance
state to study the variations of SSHA fields (Fig. 3a). The structure of the recurrent
forecasting module is presented, and then the feature fusion module is discussed.

3.3.1 Recurrent Forecasting Module

The recurrent forecasting module can simultaneously encode the relevance state and
the cell state. As shown in Fig. 3b, the structures in the red box encode the relevance
state, and the structures in the blue box encode the cell state. Subsequently, the
recurrent forecasting module extracts the hidden states transferred to the next time
step cell via the output gate.

(1) Encoding relevance states: The time-series data Xt and relevance state Rn−1
t

are considered as inputs. The input gate i
′
t , forgetting gate f

′
t , and input-modulation

gate g
′
t control the update of all the relevance states. The equations for encoding

relevance states are:

f
′
t = σ

(
W

′
x f ∗ Xt + Wr f ∗ Rn−1

t + b
′
f

)

i
′
t = σ

(
W

′
xi ∗ Xt + Wri ∗ Rn−1

t + b
′
i

)

g
′
t = tan h

(
W

′
xg ∗ Xt + Wrg ∗ Rn−1

t + b
′
g

)

Rn
t = f

′
t � Rn−1

t + i
′
t � g

′
t

(3)

(2) Encoding cell states: The time-series data Xt and hidden state Hn
t−1 are con-

sidered as inputs. The input gate it , forgetting gate ft , and input-modulation gate gt
control the update of all the cell states. The equations for encoding cell states are:
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Fig. 3 Multilayer Fusion Cell. a Structure of multilayer fusion cell: The multilayer fusion cell
consists of a recurrent forecasting module and a feature fusion module. Concentric circles denote
concatenation. b Recurrent forecasting module: The extraction of relevance states is shown in the
red box. The extraction of cell states and hidden states is presented in the blue box
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ft = σ
(
Wx f ∗ Xt + Whf ∗ Hn

t−1 + b f
)

it = σ
(
Wxi ∗ Xt + Whi ∗ Hn

t−1 + bi
)

gt = tan h
(
Wxg ∗ Xt + Whg ∗ Hn

t−1 + bg
)

Ĉn
t = ft � Cn

t−1 + it � gt

(4)

(3) Extracting hidden states: The output gate of the recurrent forecasting module
relies on Ĉn

t , H
n
t−1, and Rn

t . The output gate extracts the hidden state from the cell
and relevance states as the output. The equations for extracting hidden states are:

ot = σ
(
Wxo ∗ Xt + Who ∗ Hn

t−1 + Wco ∗ Ĉn
t + Wro ∗ Rn

t + bo
)

Ĥ n
t = ot � tan h

(
W1×1 ∗ [

Ĉn
t , R

n
t

])} (5)

where ∗ is the convolutional operator,� denotes the Hadamard product, and σ repre-
sents a sigmoidal activation function with a value of [0, 1], describing the amount of
each to-be-transmitted information about the state. The recurrent prediction module
implements the spontaneous application of broad-spectrum receptive fields by using
a series of convolutional operators so that the evolutions at the adjoining and distant
sites of the SSHA domain can be portrayed [21].

3.3.2 Feature Fusion Module

Figure4 shows the feature fusion module. In this study, Ĥ n
t−1 was concatenated with

the hidden state from the former layer Hn−1
t as one of the inputs for feature fusion

module. Ĉn
t−1 was concatenated with cell state from the former layer Cn−1

t and taken
as another input. The feature fusion module can be defined as

ft = σ
(
Wcf ∗

[
Cn−1
t :̂ Cn

t

]
+ Whf ∗

[
Hn−1

t :̂ Hn
t

]
+ b f

)

it = σ
(
Wcf ∗

[
Cn−1
t :̂ Cn

t

]
+ Whi ∗

[
Hn−1

t :̂ Hn
t

]
+ bi

)

gt = tan h
(
Wcg ∗

[
Cn−1
t :̂ Cn

t

]
+ Whg ∗

[
Hn−1

t :̂ Hn
t

]
+ bg

)

ot = σ
(
Wco ∗

[
Cn−1
t :̂ Cn

t

]
+ Who ∗

[
Hn−1

t :̂ Hn
t

]
+ bo

)

Cn
t = ft � Conv3∗3

[
Cn−1
t :̂ Cn

t

]
+ it � gt

Hn
t = ot � tan h

(
Cn
t

)

(6)

The cell and hidden states from different layers are integrated using the feature
fusing module. While the states from the shallow layer comprise the nearby location
information on a local scale, the states from the deep layer comprise the remote
location information on a global scale. For the generation of subsequent SSHAfields,
the local and worldwide information is integrated using the feature fusing module.
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Fig. 4 Feature fusion module

4 Experimental Results and Discussion

The experimental results of the MLFrnn model are presented. First, the study area,
dataset, and implementation details are presented. Next, the MLFrnn is compared
with the currently available approaches. Moreover, the prediction results of the
MLFrnn in different seasons are revealed. Finally, the impact of the different fusion
modules and the number of layers on SSHA prediction is discussed.

4.1 Study Area and Dataset

As a semi-enclosed basin, the SCS connects the Pacific Oceanwith the Indian Ocean.
In addition, it features a complex seafloor topography accompanied by mesoscale
eddies and frequent storm surges. It is considered as an area where oceanic and
atmospheric modes exert a strong influence on the sea level [26, 29, 41, 43]. As a
result, the fluctuating features of SSHA in the SCS are suitable for confirming the
performance of the proposed network model. A subarea of the SCS was chosen as
our study area, spanning 4.875◦N-19.625◦N and 109.875◦E-119.625◦E (red box in
Fig. 5).

The altimeter data of satellites were sourced from different sensors, includ-
ing Envisat, ERS-1/2, GFO, Jason-1/2/3, and T/P. The data generation was based
on archiving, confirming, and interpreting satellite oceanographic (AVISO) data,
while the data distributor was Copernicus Marine Environment Monitoring Service
(CMEMS). The mean everyday data (0.125◦N-25.125◦N, 100.125◦E-125.125◦E)
between January 1, 2001 and May 13, 2019 were utilized for experimentation, with
a spatial resolution of 1/4◦ latitude × 1/4◦ longitude. The training set comprised the
SSHA fields recorded between January 1, 2001 and May 1, 2016, while the test set
consisted of the SSHA fields recorded between May 2, 2016 and May 13, 2019.
Among 6647 sequences of grouped data, 5570 sequences belonged to the training
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Fig. 5 Study area (boxed in red)

set, and 1077 sequences belonged to the test set. There were 31 tensors in every
sequence, and the inter-tensor temporal interval was set as 1day. In this study, the
initial 10 tensors were regarded as the input, whereas the subsequent 21 tensors were
regarded as the prediction reference. Prior to model feeding, the augmentation of
data was accomplished using horizontal mirroring.

4.2 Implementation Detail

The spatial zone of themonitoredSSHAfieldwas considered a H × W grid involving
Lmeasurements.Accordingly, a 3D tensor Xt with dimensions L × W × H wasused
to denote the daily SSHA data. A tensor sequence X1, X2, ..., Xt was established
by the monitoring results across t time steps from a temporal perspective. Prior to
MLFrnn model feeding, the foregoing tensors were normalized within a [0, 1] scope.
The normalization procedure allowed better centralization of data so that the model
training and convergence could be accelerated. In the following experiments, H and
W were set as 100, L was set as 1, and t was set as 10.
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At themodel training stage, all the initial state parameterswere assigned as zero for
the hidden states Hn

t=0, cell states C
n
t=0, and relevance states R

n
t=0. Upon completion

of 80,000 iterations, the training procedure was terminated, and every iteration had
a mini-batch size of 8. The learning rate was 0.003 at baseline value, which was
progressively decreased by a factor of 0.9 per 2500 iterations [24]. The MSE was
adopted as the loss function, and the optimizer proposed by Adam [20] was used. A
rapid decrease in the loss function was noted, ultimately converging to a small value.
The repeated training outcomes differed only slightly.

For assessing the performance of the MLFrnn model, the following three metrics
were adopted: the mean absolute error (MAE), the root mean square error (RMSE),
and Pearson’s correlation coefficient (r).

4.3 Experiment Results and Discussion

To predict the SSHA field for 21d ahead and assess the performance of MLFrnn
against the strong recent baseline ConvLSTM, the MLFrnn model was studied
experimentally. The MLFrnn model was compared with the currently available DL
approaches, namely the merged LSTM and attention-based LSTM from space and
time dimensions (LSTM + STA).

In Table1, the RMSE values of the MLFrnn and ConvLSTM models with a
varying number of layers are presented for comparison. MLFrnn outperformed Con-
vLSTM in terms of predictive capacity, and with an increase in the time step, serious
performance degradation was noted for ConvLSTM. Moreover, MLFrnn exhibited
superior SSHA field predictability compared to ConvLSTM owing to the blending
of spatiotemporal features (both local and global).

Table 1 RMSE values of SSHA field prediction 1–21 days ahead of four-layered
MLFrnn (MLFrnn-4), single-layered ConvLSTM (ConvLSTM-1), and four-layered ConvLSTM
(ConvLSTM-4)
Prediction lead (day) 1 2 3 4 5 6 7

ConvLSTM-1 0.00416 0.00678 0.00988 0.01350 0.01757 0.02191 0.02643

ConvLSTM-4 0.00353 0.00557 0.00802 0.01080 0.01389 0.01716 0.02054

MLFrnn-4 0.00324 0.00506 0.00714 0.00946 0.01200 0.01466 0.01739

Prediction lead (day) 8 9 10 11 12 13 14

ConvLSTM-1 0.03103 0.03564 0.04021 0.04474 0.04918 0.05353 0.05779

ConvLSTM-4 0.02396 0.02735 0.03067 0.03389 0.03698 0.03991 0.04266

MLFrnn-4 0.02014 0.02288 0.02557 0.02821 0.03078 0.03326 0.03565

Prediction lead (day) 15 16 17 18 19 20 21

ConvLSTM-1 0.06195 0.06602 0.07000 0.07389 0.07771 0.08145 0.08511

ConvLSTM-4 0.04523 0.04762 0.04983 0.05186 0.05372 0.05542 0.05696

MLFrnn-4 0.03795 0.04017 0.04230 0.04436 0.04634 0.04826 0.05012
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Table 2 SSHA field predictability (RMSE) of four-layered MLFrnn (MLFrnn-4), LSTM + STA,
and merged LSTM

Prediction
lead (day)

1 2 3 4 5

Merged
LSTM

0.0028 0.0059 0.0088 0.0120 0.0160

LSTM + STA 0.0038 \ \ \ \
MLFrnn-4 0.00324 0.00506 0.00714 0.00946 0.01200

Fig. 6 Summertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 1–7 days ahead, a 10-daymonitoring of the SSHA field was accomplished. a SSHA-field
observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts

The predictive behavior of the MLFrnn model was compared with that of LSTM
+ STA and merged LSTM (Table2). The SSHA estimation data for the latter two
models were available only for 1 and 5d ahead, respectively. Therefore, MLFrnn
was compared at identical prediction times. Interestingly, despite the design purpose
of MLFrnn to estimate the future 21-day SSHAs, it was noted to be superior in the
case of short-period prediction as well because the vector input shortcoming with
the LSTMwas surmounted by theMLFrnn model, which can accomplish concurrent
SSHA field elucidation for spatiotemporal architectures.

For the performance characterization of the MLFrnn model, we studied the
MLFrnn prediction outcomes across various seasons. The summertime and winter-
timeMLFrnn predictions are displayed in Figs. 6, 7, 8, 9, 10, and 11, where the SSHA
observations, MLFrnn forecasts and, their deviations are presented in a top-bottom
order. Quite evidently, there were small and permissible differences in the observa-
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Fig. 7 Summertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 8–14 days ahead, a 10-daymonitoring of the SSHAfieldwas accomplished. a SSHA-field
observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts

Fig. 8 Summertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 15–21 days ahead, a 10-day monitoring of the SSHA field was accomplished. a SSHA-
field observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts

tions made from the forecasts. As suggested by this finding, the SSHA predictability
of MLFrnn is preferable across various seasons.
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Fig. 9 Wintertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 1–7 days ahead, a 10-daymonitoring of the SSHA field was accomplished. a SSHA-field
observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts

Fig. 10 Wintertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 8–14 days ahead, a 10-daymonitoring of the SSHAfieldwas accomplished. a SSHA-field
observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts
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Fig. 11 Wintertime MLFrnn qualitative findings for SSHA forecasts. To achieve SSHA-field esti-
mation for 15–21d ahead, a 10-day monitoring of the SSHA field was accomplished. a SSHA-field
observations. b SSHA-field forecasts. c Deviations of SSHA-field observations from forecasts

4.4 Ablation Study

To explore the contributions of the feature fusion module and the number of layers,
an ablation study was conducted experimentally for the following models:

(1) The two-layered MLFrnn based on the feature fusion module (MLF(F)-2).
(2) The three-layered MLFrnn based on the feature fusion module (MLF(F)-3).
(3) The four-layered MLFrnn based on the feature fusion module (MLF(F)-4).
(4) The four-layeredMLFrnn based on a 3 × 3 convolution as feature fusionmodule

(MLF(Conv)-4).

The RMSE values are displayed in Fig. 12 for the future 21-day forecasts obtained
using various models. MLF(F)-4 was compared withMLF(Conv)-4. The SSHA field
evolutions were forecasted by MLFrnn by using the feature fusionmodule; thus,
exhibiting higher accuracy. This was probably due to the preferable modeling of
long-term SSHA dependencies by the MLFrnn owing to the feature fusion module.

Further comparison was made concerning the SSHA field predictive behaviors
among the models having a different number of layers. MLFrnn-4 outperformed
others in terms of predictability. The broader SSHAs from peripheral zones were due
to the increased number of layers, which facilitated better accuracy of the forecasts.
TheMAEcomparisons of the 1-21-daySSHA-field forecasts obtained using different
models are presented in Fig. 13. The similarities in the trend of these data to the
RMSEs in Fig. 12 were noted.
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Fig. 12 Comparison of the RMSE values regarding the future 1–21-day SSHA-field forecasts
obtained using different fusion modules and number of layers

The correlation coefficient reveals the degree of linearity among the investigated
parameters. The Pearson’s correlation coefficient values (r) of SSHA forecasts and
observations on the entire samples were determined and compared (Fig. 14). As is
clear, compared to the remaining three models, MLFrnn-4, having a feature fusion
module, exhibited greater r values all along. Moreover, a slower decrease in r was
observedMLFrnn-4 as compared to the other threemodels. This confirms the positive
linearity between the SSHA field (forecasted using the feature fusion module-based
MLFrnn-4) and the true value.

5 Conclusion

In this chapter, we first introduced the significance of SSHA prediction and then
presented a review of currently available SSHA prediction methods. Next, an SSHA
forecasting model named MLFrnn was proposed. The main advantages of MLFrnn
can be summarized as follows:
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Fig. 13 Comparison of the MAE values regarding the future 1–21-day SSHA-field forecasts
obtained using different fusion modules and the number of layers

(1) The proposedMLFrnnmodel can acquire spatiotemporal traits from both nearby
and distant sites. Existing RNN/LSTM-based studies emphasize temporal mod-
eling while disregarding spatial information. In contrast, the proposed MLFrnn
model prominently improves the SSHA predictability bymodeling both the tem-
poral variations and the spatial evolutions of the SSHA fields.

(2) MLFrnn enables prediction for the entire SSHA map rather than single-site
forecasts of the SSHA. Prior approaches could achieve SSHA estimation for
only one grid and required repeated model training for performing predictions
for the entire zone. In contrast, the MLFrnn model can perform predictions for
the entire SSHA map accurately.

(3) In this study, a type of multilayer fusion cells was developed for MLFrnn to fuse
local and global spatiotemporal characteristics. In addition, reliable modeling of
the SSHA field evolutions was achieved using the SSHAs from both nearby and
remote locations.

Finally, we selected the SCS as study area and presented the experimental results
of the MLFrnn model on the daily average satellite altimeter SSHA data for nearly
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Fig. 14 Comparison of the Pearson’s correlation coefficient values r regarding the future 1–21-day
SSHA-field forecasts obtained using different fusion modules and the number of layers

19years. The experimental results demonstrated that the MLFrnn model is effective
and has better performance than the currently available DL networks in predicting
the SSHA field.
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Satellite Data-Driven Internal Solitary
Wave Forecast Based on Machine
Learning Techniques

Xudong Zhang, Quanan Zheng, and Xiaofeng Li

1 Introduction

Internal solitary wave (ISW) is a ubiquitous phenomenon in the world’s oceans,
particularly in continental and marginal waters [4, 10, 13, 28]. ISWs are generated
at the mixed layer beneath the ocean surface and show less obvious manifestations
on the ocean surface. ISWs can travel hundreds of kilometers while maintaining their
waveform or amplitude, owing to nonlinear and dispersion effects. The resort force
of ISWs is the reduced gravity, which promises the generation of large-amplitude
ISWs. ISWs in the South China Sea (SCS)were observedwith amplitude over 240m.
The length of wave crest (LWC) of ISWs can also extend to several hundreds of
kilometers. ISWs are found to travel across the whole northern SCS, the Andaman
Sea, and the Sulu-Celebes Sea within a few days.

Ocean habitats, off-shore engineering, oceanmilitary, oceanmixing, and sediment
resuspension can all be affected by the propagation and breaking of ISWs. While the
wave crest of ISWs can be extended to hundreds of kilometers, the ISW scale across
the wave crest only ranges from several hundreds of meters to several thousand. ISW
propagation speed ranges between 2.0–3.0m/s in the deep ocean and 1.0–2.0m/s
on the continental shelf. The across wave crest features of ISWs means the ISW
will pass by a fixed location within a few tens of minutes. Considering the fast
propagating and large amplitudes of ISWs, the ISWs are extremely dangerous to
submarine or underwater vehicles. The propagation of ISWs will be accompanied
by ISW-induced currents, and severe shear forces will endanger the safety of off-
shore equipment, such as oil rigs. The propagation of large amplitude ISWs will
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induce strong vertical mixing in the ocean and affect the distribution of suspension
or sediments [8]. The importance of ISW makes the forecast of ISW propagation a
meaningful but challenging task.

Global observation, random generation, fast propagation, and significant impact
on the ocean have made ISWs a hot topic for decades. Various methods have been
used to study ISWs, such as numerical models, in-situ observations, and satellite
observations. Remote sensing techniques have developed rapidly and show signif-
icant advantages in ISW studies [10, 11]. To describe ISW propagations, various
theories were developed, such as the Korteweg-de Vries equation (KdV) equation,
the Benjamin-Ono (BO) equation, and the numerical models. The KdV equation for
the propagation of ISWs is given by

ηt + c0ηx + αηηx + γ ηηxxx = 0 (1)

Here η is the amplitude of the solitary wave and c0 is the linear phase speed. When
the nonlinear term α is balanced with the dispersion term γ , one gets the solitary
wave with an analytical form

η (x, t) = η0sech
2 [(x − ct) /L] (2)

c = c0
(
1 + η0

2h

)
(3)

L =
√
12γ

αη0
(4)

where η0 is the maximum amplitude, L is the characteristic length, h is the water
depth, and g is the acceleration due to gravity. The KdV equation is commonly used
to describe the propagation speed of ISWs, but the ISW amplitude needs to serve as
preliminary information. Different theories have been developed for ISW propaga-
tions in different ocean areas, each with its advantages and disadvantages. Here we
introduce a new data-driven model to forecast ISW propagation. The forecast model
was trained using big data collected from multi-source remote sensing imageries.
The model performance shows better results than the traditional equations and is
more robust for errors included in the model inputs.

In the following chapter, we will first briefly overview the achievement of ISW
studies using satellite observations. Then, machine learning techniques applied to
the ISW studies will be introduced, and the establishment of the ISW forecast model
will be presented. The model discussions and future works will be introduced in the
last part of this chapter.
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2 Satellite Observations of ISWs

Space-borne synthetic aperture radar (SAR) and optical satellite images are com-
monly used in ISW studies. SAR is an active microwave radar with all-weather,
all-time, long-distance, and high-resolution detection advantages. The imaging prin-
ciple of ISWs on SAR images is the Bragg backscattering mechanism [1]. Currents
induced by ISW (usually refers to the first-mode depression ISW) modulate micro-
scale waves on the sea surface, making convergent and divergent regions appear in
the front and back of the wave, respectively. The sea surface roughness increases in
the convergent region where the Bragg backscatter signal is enhanced and appears
as a bright stripe on SAR images. The sea surface roughness decreases in the diver-
gent region where the Bragg backscatter signal becomes weaker and appears dark on
the SAR image. Figure1a and b show that ISWs manifest as bright-dark stripes on
SAR images. Although spatial resolutions of SAR images are relatively high, their
time resolution is relatively low. The limited swath of SAR images also imposes
restrictions on ISW studies. SAR images are generally used to study the mechanism
of ISWs, such as inversion of amplitude [26], propagation speed [15], and energy
analysis [17].

The imagingmechanism of ISWon optical images is the quasi-specular reflection.
Optical remote sensing uses sunlight as the light source and receives ocean infor-
mation from the sunlight reflected by the sea surface. The characteristics of ISW
in optical images are more complicated than SAR images. Similarly, for depression
ISW, the characteristics of different locations on the optical image are different. They
may appear as bright-dark or dark-bright strips in sun-glint areas or non-sun-glint
areas. Figure1c and 1d show satellite observations of ISWs in the Sulu-Celebes Sea.
Multiple ISW packets can be observed propagating in different directions with long
wave crests.

Optical remote sensing images have advantages of high time resolution and wide
swath. TakeModerate-Resolution Imaging Spectroradiometer (MODIS) image as an
example, its swath can reach 2330km, and the same ocean area can be observed twice
in one day. In addition, the spatial resolution of optical satellites launched in recent
years has also been greatly improved. For example, the highest spatial resolution of
GF-1 remote sensing images of China’s high-resolution series can reach 2m, and the
spatial resolution of GF-2 images has reached less than 1m. However, the optical
satellite images are heavily affected by the weather conditions, such as clouds and
rain, which will limit its observation capability. Benefiting from the wide swath
and high temporal resolution of optical satellite images, the temporal and spatial
distribution characteristics of ISWs were studied in different ocean areas.

SAR and optical satellite images provide rich data sources for the research of
ISWs. The generation mechanism, distribution, and propagation of the ISWs have
been reported. Since the forecast of ISWs is significant for ocean environments, engi-
neering,mixing, andmilitary, the forecast of ISWs ismeaningful. The ISWforecast is
mainly conducted using empirical or numerical models [30]. In the SCS, ISWs have
been predicted based on thewest propagating barotropic tide in the Luzon Strait. ISW
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Fig. 1 Satellite detection of ISWs in the Andaman Sea a, South China Sea b, Sulu Sea c, and
Celebes Sea d. a composite map of Sentinel-1 images acquired on 10 March 2019; b ENVISAT
ASAR image acquired on 5 May 2004; c MODIS image acquired on 14 March 2020; d MODIS
image acquired on 28 March 2020
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positions can be predicted according to the distance to the Luzon Strait. Based on
the relationship between the ISW generation and the tide information, [6] forecasted
the possible ISW occurrence in the north region of the Andaman Sea. The ISWs are
generated at multiple sources and have complex patterns as revealed in Fig. 1. The
complex pattern of ISWs makes the forecast more difficult. The complexity of mul-
tiple sources and wave crest merging during the propagation make it hard to apply
the empirical method. The numerical model needs large computation resources and
is difficult to setup for ISWs propagating in the coastal areas. To overcome these
difficulties, we proposed a machine learning model to forecast ISW propagation in
different oceans with different ISW characteristics.

3 Machine-Learning-Based ISW Forecast Model

Machine learning techniques are fast evolving and have already demonstrated
tremendous promise in oceanographic research [5, 23, 24]. Liu et al. [16] explored
extracting coastal inundation mapping information from SAR imagery by applying
deep learning techniques. Machine learning also allows for the creation of connec-
tions between multi-dimensional data. Pan et al. [19] employed textural information
taken from optical satellite images and ocean environmental factors to determine the
amplitude of ISWs using the back-propagation (BP) algorithm. Li et al. [12] used a
U-net-based method to obtain ISW wave crest from satellite images and conducted
a thorough evaluation of the use of machine learning approaches in satellite image
information mining. Machine-learning approaches have previously been proven to
offer benefits in maritime applications due to their high nonlinear mapping ability
and multi-dimensional data processing.

The propagation of ISW is influenced by ISW features as well as the ocean
influencing factors, such as topography and seasonal variations. Machine learning
techniques are an excellent option to manage multi-dimensional impacting elements
with no defined relationship, making them a strong choice for ISW propagation
model construction.

3.1 Model Establishment

We use a fully connected neural (FCN) network to build relationships between the
ISW propagations and its impacting factors [25, 29]. Figure2 depicts a sketch map
of the FCN network. We use the error back-propagation (BP) technique to train the
FCN network. The desired output is calculated by the forward calculation procedure,
and the back-propagation of errors between the model and the desired output is used
to adjust the model. The weights of the neural network can be automatically adjusted
based on the errors inversely fed into the model. The built dataset is categorized
into the training dataset and validation dataset. The validation dataset watches the
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Fig. 2 Sketch map of an FCN network. The different thickness of lines connecting different neural
indicate different weights

training procedure while the training dataset is employed for model training. The
model will be trained for several epochs after being initialized randomly. The model
will stop training and be further validated by a test dataset once it achieves the best
validation results.

The forecastmodel’s input parameters aremadeupof ISWproperty-related inputs,
i.e., the Peak-to-Peak (PP) distance and the LWC [31], as well as ocean environment-
related inputs such as longitude, latitude, mixed layer depth, density difference, and
water depth. Satellite imagesmay be used tomeasure an ISW’sLWCandPP distance.
The water depth can be interpolated from the ETOPO1 dataset. The World Ocean
Atlas (WOA) 2018 dataset, where the temperature and salinity can be obtained, may
be used to estimate ocean stratification. The buoyance frequency peak corresponds
to the depth of the mixed layer.

There are twomodules in themodel: propagation speed and direction (PS and PD)
module. Seven input parameters are included and the output layer is the propagation
speed anddirection. The initial propagation direction is an extra input parameter in the
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Fig. 3 Model structure for the ISW forecast model

PD module that is used to resolve occasions with cross-propagating ISWs. Figure3
depicts the model framework for the ISW predictionmodel. Locations, ocean param-
eters, and ISW characteristics of an initial ISW location found from satellite images
may all be gathered and used as model inputs. Wemay run the model for several time
steps to get the expected ISW positions at each time step using the model’s predicted
ISW propagation velocity and direction. The Levenberg-Marquardt algorithm-based
training function ‘trainlm’was chosen for its quick convergence rate [22]. The hyper-
bolic tangent sigmoid transfer (tansig) function is used to activate hidden layers,
whereas the linear transfer (pureline) function is used to activate hidden and output
layers. We used an early stopping strategy to combat the problem of over-fitting [20].

3.2 Model Training

Both optical and SAR images can be applied to extract the training data. TheMODIS
sensors are onboard the National Aeronautics and Space Administration (NASA)
satellites Terra and Aqua. TheMODIS image has a swath of 2330km and the highest
spatial resolution of 250m. The Ocean and Land Color Instrument (OLCI) has five
camera modules on board Sentinel-3. The OLCI has a swath of 1440km and the best
spatial resolution of 300m. We use 123 MODIS images and 33 OLCI images in the
Andaman Sea and 149 MODIS images and 8 VIIRS images in the Sulu-Celebes Sea
to build the dataset.

On satellite images, ISWs appear as bright-dark bands. ISW locations can be saved
as the GIS formatted file which is used to extract the spatial position. The LWC can
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Fig. 4 Procedure to build the training dataset from satellite images. aA subset of theMODIS image
showing three ISWpackets, the PP distance can bemeasured from the satellite image. The insertmap
shows the extracted profile of the ISW and how the PP distance is measured; b extracted locations of
ISW, the LWC was calculated from extracted wave crests, and how the initial propagation direction
is obtained; c subset of the extracted dataset, the brown shaded area shows model input parameters
and the green shaded area indicates model output parameters

be obtained using ISW labels and the PP distance equals the positive and negative
peaks of the ISW profiles [31]. The propagation direction of the input ISW wave
crest is introduced to solve cross-propagating ISW problems. A detailed procedure
of how to build the training dataset is shown in Fig. 4.

We estimate the phase speed of ISWs based on the difference of ISW locations
and image acquisition time. One utilizes the location and time difference of the ISWs
to get the ISW propagation speed if an ISW was detected on two quasi-synchronous
images.We assume the time difference between two ISWs in the same satellite image
equals the period of the semi-diurnal tide [7, 9]. In the Andaman Sea, 1189 samples
were extracted, while in the Sulu-Celebes Sea, 1546 samples were extracted. The
training and independent test datasets were created from these samples, which were
split by 80/20%.

Figure5shows the results of PS and PD modules for ISWs in the Andaman Sea.
The Sulu-Celebes Sea forecast model yields similar results. The root mean square
(RMSE) of the training (test) datasets for the PS module is 0.19m/s (0.20m/s), while
the correlation coefficients (CC) are 0.90 (0.88). The results demonstrate that the
loss of the forecast decreases over time, and the PS module’s mean square error
(MSE) obtains its optimal validation performance at epoch 37. The PD module has
an RMSE of 10◦, and the CCs are over 0.99. The gradient was steadily reduced, and
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Fig. 5 Loss of the propagation velocity module aand the propagation direction module b for ISW
forecast model

at epoch 16, the PD module obtained its optimal performance. The MSE does not
decrease and validation tests rise at epoch 16, the model stops training.

ISWs in various ocean locations have varied features. In the Andaman Sea, we
observe cross-propagating ISWs, while in the Sulu-Celebes Sea, we observe ISWs
propagating in the opposite direction. We trained the model 30 times with and with-
out initial primary propagation directions to see how they affected the predicted
outcomes. Models having an initial major propagation direction as input performed
better, with a reduced RMSE and more stable model performance, as illustrated in
Fig. 6. The model without initial primary propagation directions had large deviations
and lower correlation coefficients, indicating lower model generalizability. For cir-
cumstanceswith cross-propagating ISWpatterns, it is required to add the propagation
direction of the ISW wave crest in the model inputs.

3.3 Model Validation

The forecast model was validated for ISWs in the Andaman Sea and Sulu-Celebes
Sea. The ISWs created by successive semi-diurnal tides in the Andaman Sea is
depicted in Fig. 7. On the MODIS image, three ISW wave packets propagating east-
ward can be seen. IW1 and IW2 have LWCs of 146.41 and 242.26km. IW1 and
IW2 have PP distances of 1391.48 and 731.54m. IW1 (IW2) parameters are used as
model inputs, while IW2 (IW3) acts as model validation. In Fig. 7b and c, the time
step is 6.21h, and ISW positions after one time step are depicted with dashed lines.
The model results (satellite observations) after one semi-diurnal tide are indicated
by the black (red) lines in Fig. 7b and c. The model predicted results appear to be in
good agreement with satellite data.
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Fig. 6 Model tests with (blue lines) or without (orange lines) the propagation direction of ISW
wave crests

Weestablished three parameters, namely root-mean-square error (RMSE), Fréchet
distance (FD), and CC, to qualitatively examine the effectiveness of the constructed
ISW forecast model. The FD is a strict evaluation factor that considers the placement
and order of points of the ISW wave crest. IW1 and IW2 have RMSEs of 6.10 and
2.50km; the FDs is 18.28 and 9.06km, and the CCs are 0.96 and 0.89, respectively.
In the Andaman Sea, we examined 8 examples for ISWs, including distinct locations
with different ISW features. Table1 shows the statistical findings. The average CC
value is 0.95, and the average FD is 11.46km, showing that the model-predicted ISW
positions and satellite observations have a good degree of agreement.

The results of the model validation for ISWs propagating in the Sulu-Celebes Sea
are shown in Fig. 8. Three ISW wave packets have been detected moving northward
(southward) in the Sulu (Celebes) Sea. For these threewave packets, the leading ISWs
are called IW1, IW2, and IW3. The model input is the wave crest IW1 (IW2), and the
model validation is IW2 (IW3). With solid black lines, the model predicted results
are illustrated in Fig. 8. We can observe that the model outputs and satellite data are
typically in agreement. Table2 shows the statistical results of the nine validation
instances that we gathered. The RMSE is 12.92km, the FD is 18.73km, and the CC
is 0.98, which indicates the model performs well.

ISWs are consecutively generated by semi-diurnal cycles, so more than one tidal
cycle can be observed by satellite images. We also tested the forecast model on these
ISWs. The model runs iteratively to estimate ISW positions, the model predicted
ISW locations is the input for the estimation of the next tidal cycles. The time
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Fig. 7 MODIS images acquired on 9May, 2017. The ISW locations extracted from satellite images
are represented with red lines. The solid (dashed) black lines represent forecast positions after
12.42h (6.21h)
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Table 1 Statistical results of forecast model in the Andaman Sea

RMSE (km) Fréchet distance (km) Correlation Coefficient

Case 1 2.69 13.90 0.95

Case 2 2.99 10.66 0.97

Case 3 6.10 18.28 0.96

Case 4 2.50 9.06 0.89

Case 5 3.15 10.43 0.93

Case 6 2.37 6.42 0.93

Case 7 4.12 12.66 0.97

Case 8 1.79 10.28 0.99

Average 3.21 11.46 0.95

step is 6.21h, three MODIS images were utilized to assess model performance.
The predicted ISW positions are displayed as solid black lines. The forecast model
estimated ISW positions were consistent with satellite observations, as shown in
Fig. 9a and b. The deviations between satellite observations and model estimations
are particularly pronounced in Fig. 9c. Because of the complex terrain in the north
region of the Andaman Sea, significant variations in the PP distance of ISWs may
impact model estimations.

The forecast model estimates were tested after two semi-diurnal tide cycles in
the Sulu-Celebes Sea using a MODIS image collected on 29 October 2019 with
distinct ISW signals. Figure10a depicts the results. The Sulu-Celebes Sea ISW sites
identified as IW1 are utilized as model input. In Fig. 10b, the ISW prediction is
displayed after three semi-diurnal tidal cycles. After two or three semi-diurnal tidal
cycles, the model estimations coincide well with satellite measurements.

4 Influence Factors on the ISW Forecast Model

While the model is validated and shows high accuracy as described above, some
affecting factors will be discussed. When utilizing the estimated ISW positions of
the first semi-diurnal tidal cycle as the model input for the following forecast, errors
may be included. Based on the ISW locations, the locations and ocean environment
characteristics could be changed, and the LWC could be computed. The ISW PP
distance will remain constant in the forecast model’s subsequent iterative runs. The
predicted outcome deviationswill accumulate, resulting inmore severe discrepancies
in the subsequent iterative prediction. Influences of the time step, input parameter
errors, the influence of seasonal variations, and comparison with the KdV equation
were discussed in this section.

Because ISWs are frequently generated by semidiurnal tidal cycles, the time
step is set to 12.42h by default. When the time step is changed, we will see how
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Fig. 8 Forecast model validation cases in the Sulu-Celebes Sea. MODIS image acquired on 18
May 2015 and 29 October 2019 (upper left and right) and corresponding forecast results (lower
left and right)

it affects the model outcomes. Figure11 depicts the effect of the model running
with various time increments. We compared the model forecast results with satellite
observations using time increments from 1/4 to one semi-diurnal tidal cycle. ISWs
propagate from IW1 to IW2, the depth of water changes from about 2,000m to
around 1,000m. The results are poorer using a time step equals 12.42h compared
with smaller time steps. The model results were nearly the same when time steps
were 3.11 and 4.14h, and the disparity with the time step equals 6.21h was similarly
low. As a consequence, we infer that the ISWs cross over the steep isobaths when the
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Table 2 Statistical results for validation cases in the Sulu-Celebes Sea
Date IWs RMSE (km) Fréchet Distance (km) Correlation

coefficient

Sulu Sea 18 May 2015 IW1 14.98 16.27 1.00

IW2 4.72 9.02 0.99

04 Aug. 2016 IW1 6.66 11.45 1.00

29 Oct. 2019 IW1 14.57 25.77 0.97

IW2 5.56 6.15 1.00

Celebes Sea 03 Mar. 2014 IW1 17.06 30.42 0.96

24 Mar. 2015 IW1 17.05 23.24 0.93

29 Oct. 2019 IW1 16.10 27.56 1.00

IW2 19.54 18.75 1.00

Average 12.92 18.73 0.98

Fig. 9 Model results for ISW propagation after two semi-diurnal tidal cycles

terrain changes dramatically; a lower time step may enhance the prediction result. If
the terrain changes gently, the time step may be set to be a large one.

There are eight input parameters for the model which were taken from satellite
images or publicly accessible datasets. The forecast model’s outcomes will be influ-
enced by the inaccuracy made in the input parameters. Except for the PP distance
and initial propagation direction, all input parameters were modified when we ran
the model repeatedly. In the following model predictions, initial ISW PP distance
and propagation direction at the starting point will be used as corresponding inputs.
When ISWs were not clearly spotted owing to unsatisfied imaging conditions, the
PP distance may introduce errors. In four locations of the Andaman Sea, the effects
of mistakes in PP distances and ISW propagation direction on the model estimations
were studied. Figure12 depicts the results.

An inaccuracy of ±10◦ was considered to analyze its impacts on the model pre-
dictions. The time step is 6.21h, and the results are presented in Fig. 12a and b. The
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Fig. 10 Iterative forecast results for ISWs propagating after a two and b three semi-diurnal tidal
cycles. ISWs are extracted fromMODIS images acquired on a 29 October 2019 and b 25 February
2015. Black lines: model forecast results. Red lines: satellite observations of the ISW locations.
Dashed lines: ISW locations every semi-diurnal tidal cycle

model predicted ISW positions that were near to each other and satellite data which
promise the model tolerance on initial propagation direction errors.

Given that a one-pixel inaccuracy resulted in an error of ±300m to the PP dis-
tances, we compare the results with different PP distance inputs. In theAndaman Sea,
two locations with significant and modest water depth fluctuations were examined.
The results reveal that, despite the varying inaccuracies in the ISW PP distance, the
predicted ISW positions were close to satellite measurements.

The results demonstrate that the proposed forecastmodel is extremely forgiving of
inaccuracies in input parameters like the ISW PP distance and propagation direction
of the input ISW wave crest. Minor inaccuracies in some input parameters had no
effect on the model’s performance because the ISW propagation was defined by
eight factors. Despite this, the model produced results that were close to satellite
data. It’s important to remember that input parameter mistakes will accumulate over
time when a model runs iteratively. However, the model’s predictions were remained
valid after two or three tidal cycles, according to results presented in Fig. 10.

The stratification of the ocean fluctuates because of precipitation and other rea-
sons, ISW propagation is impacted by seasonal variations. The dry season in the
Andaman Sea starts from January to April and the rainy season start from May to
November.We estimate ISW propagation in four Andaman Sea locations throughout
the dry and wet seasons to see how seasonal differences affected the model’s results.

March (August) was selected to represent the dry (rainy) season. The density
information was calculated from the WOA2018 dataset. In the two seasons, there
were differences in the depth and density of the mixed layer. The predicted outcomes
of the forecast model are displayed in Fig. 13. The model-predicted ISW positions
were near to each other and also close to the satellite observations in Cases 13a,
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Fig. 11 Comparison of the model forecast results with different time steps

13b, and 13d. The ISW predictions in Fig. 13c exhibited more significant dispari-
ties between the outcomes. The findings suggest that ISW propagation shows small
seasonal fluctuations in cases a, b, and d, whereas there are disparities in cases c.

Figure13 depicts the buoyancy frequency of four locations in two seasons. The
buoyancy frequency distribution in Fig. 13g and h showed more significant incon-
sistencies than in Figs. 13e and f. In the dry season, Fig. 13g and 13h had two peaks,
while in the rainy season, there was only one peak. The most significant difference is
found in Fig. 13g, indicating the most substantial fluctuations in ocean stratification.
A larger buoyancy frequency peak indicates stronger ocean stratification. The ISW
propagates faster with a larger density difference [27]. This explains why, in Fig. 13c,
ISW spread quicker during the rainy season.
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Fig. 12 Influence of input parameter errors for initial main propagation directions (a, b) and PP
distances (c, d)

The nonlinear propagation velocity of ISWs are described by the KdV equation
[3, 18]:

Cp = C0 + α

3
A0. (5)

Where C0 is the linear phase speed, α is the nonlinear coefficient, and A0 is the ISW
amplitude. The ISW propagation velocity is related to the ISW amplitude which is
normally unknown [21]. Based on previous studies [2, 14], the amplitudes of ISWs
in the Sulu-Celebes Sea vary from 30 to 90m. To compare the predicted results,
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Fig. 14 Comparison of the forecast results of the proposed model and the KdV equation (upper
panels) and sensitivity of the model results to the ISW amplitude (lower panels)

we set the ISW amplitude to 60m. Figure14 depicts the comparison results. The
RMSE (FD) between the KdV-predicted ISW positions and satellite observations
is 44.06km (59.42km). The developed model estimation has an RMSE (FD) of
14.67km (28.35km). The findings reveal that the proposed model’s predicted ISW
positions are closer to satellite results. The KdV equation produces a larger ISW
propagation velocity error as compared to satellite data.

ISW amplitudes range from tens to hundreds of meters. The anticipated ISW
positions will deviate as a result of this uncertainty. Generally, we assume the linear
propagation speed to 2.5m/s, the mixed layer depth to 100m, and the water depth is
3000m. After one semi-diurnal tidal cycle, a 20m uncertainty in the ISW amplitude
results in an ISW position error of 32.42km. Figure14 shows the forecast results
for three ISW amplitudes (30, 60, and 90m) using the KdV equation. The results
reveal that ISW locations predicted by the KdV equation are sensitive to ISW ampli-
tudes. Because of the amplitude uncertainty, the predicted ISW positions will shift.
Without any unknown characteristics, input parameters of the proposed model may
be assessed from satellite observations or publically accessible datasets. When input
parameters include errors, the proposed forecast model is more resilient.
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5 Conclusions and Future Works

To forecast ISW propagations, the ISW forecast model was built using machine
learning techniques in this chapter. The training dataset was built using samples
extracted from satellite observations and the publicly accessible datasets ETOPO1
and WOA 2018. An FCN network with eight input parameters, which include ocean
elements and ISW features, was proposed. The proposed forecast model can predict
ISWpositions after propagating several time stepswhengiven an initial ISWposition.
The model’s estimation is close to satellite data.

The impact of the model’s time step on the predicted outcomes was investigated.
When propagating ISWs pass over isobaths, a smaller time step yields better results.
Measurements of the PP distance and propagation direction of the given ISW wave
crest are easy to have errors. The PP distance and propagation direction of the given
ISW wave crest is not modified in subsequent predictions when the forecast model
runs repeatedly. The impact of input errors on model estimations was also investi-
gated. The findings reveal that the proposed model is not sensitive to input parameter
mistakes. An error of ±300m on the PP distance and 10◦ on the propagation direc-
tion did not affect the model estimation greatly. This result demonstrates that the
proposed forecast model can still provide reliable results with errors included. The
impact of seasonal variation on ISW propagation was investigated. The findings sug-
gest that differences were discovered as a result of seasonal fluctuations in ocean
stratification. Comparison with the KdV equation indicates that the forecast model
produced superior forecast results and was more resilient.

In contrast to numericalmodels, the forecastmodel does not needprior knowledge,
a rigid boundary, or beginning conditions. Only satellite observations and publicly
available datasets are used. Hence, the model provides an alternate but easy way
to forecast ISW propagation and can be readily modified to apply to other ocean
regions. The initial position of an ISW wave crest is all that is required to run our
forecast model. The machine learning algorithms used here have a lot of potential in
oceanographic research for multi-dimensional data processing and forecasting.
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AI-Based Subsurface Thermohaline
Structure Retrieval from Remote Sensing
Observations

Hua Su, Wenfang Lu, An Wang, and Tianyi Zhang

1 Introduction

The ocean acts as a heat sink and is vital to the Earth’s climate system. It regulates
and balances the global climate environment through the exchange of energy and
substances in the atmosphere and the water cycle. As a huge heat storage, the ocean
collects most of the heat from global warming and is sensitive to global climate
change. The global ocean hold over 90% of the Earth’s increasing heat as a response
to the Earth’s Energy Imbalance (EEI), leading to substantial ocean warming in
recent decades [24, 36]. Subsurface thermohaline are basic and essential dynamic
environmental variables for understanding the global ocean’s involvement in recent
global warming caused by the greenhouse gas emissions.Moreover, many significant
dynamic processes and phenomena are located beneath the ocean’s surface, and there
are many multiscale and complicated 3D dynamic processes in the ocean’s interior.
To completely comprehend these processes, it is necessary to accurately estimate the
thermohaline structure in the global ocean’s interior [43].

The ocean has warmed dramatically as a result of heat absorption and seques-
tration during recent global warming. Meanwhile, the heat content of the ocean has
risen rapidly in recent decades [3, 14]. The global upper ocean warmed significantly
from 1993 to 2008 [6]. The rate of heat uptake in the intermediate ocean below 300m
has increased much more in recent years [2]. It shows that the warming of the ocean
above 300m slows down, while the warming of the ocean below 300m speeds up.
The ocean system accelerates heat uptake, leading to significant and unprecedented
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heat content increasing and worldwide ocean warming, particularly in the subsur-
face and deeper ocean. This has caused the global ocean heat content hitting a record
high in recent years [14, 15]. In addition, the ocean salinity as another key dynamic
variable is also crucial for investigations on ocean variability andwarming. The salin-
ity mechanism has been proposed to expound how the upper ocean’s warming heat
transferred to the subsurface and deeper ocean [12], which highlights the importance
of salinity distribution in the heat redistribution and the process of ocean warming.
Furthermore, the global hydrological cycle is modulated by ocean salinity [4]. The
thermohaline expansions, which contribute significantly to sea-level rise, are also
linked to ocean temperature and salinity [9]. Therefore, to improve the understand-
ing of the dynamic process and climate variability in subsurface and deeper ocean,
deriving and predicting subsurface thermohaline structure is critical [31].

Due to the sparse and uneven sampling of float observations and the lack of time-
series data in the ocean, there are still large uncertainties in the estimation of the
ocean heat content and the analysis of the ocean warming process [13, 42]. In the
era of ship-based measurement, large areas of the global ocean are without or lack of
in-situ observation data, especially in the Southern Ocean. The data obtained by the
traditional ship-based method not only has limited coverage, but also can’t achieve
uniform spatiotemporal measurement, hindering the multi-scale studies on the ocean
processes. Since 2004, the Argo observation network has achieved the synchronous
observation for the upper 2000m of the global ocean in space and time [39, 51].
However, the number of Argo floats is currently insufficient and far from enough for
the global ocean observation, which cannot provide high-resolution internal obser-
vation and cannot meet the requirements of global ocean processes and climate
change study. Given that satellite remote sensing can obtain large-scale sea surface
range and high-resolution sea surface observation data, satellite remote sensing has
become an essential technique for ocean observation. Although sea surface satellites
can provide large-scale, high-resolution sea surface observation data, they cannot
directly observe the ocean subsurface temperature structure [1]. Since many subsur-
face phenomena have surface manifestations that can be interpreted with the help of
satellite measurements, it is able to derive the key dynamic parameters (especially
the thermohaline structure) within the ocean from sea surface satellite observations
by certain mechanism models. Deep ocean remote sensing (DORS) has the ability
to retrieve ocean interior dynamic parameters and enables us to characterize ocean
interior processes and features and their implications for the climate change [25].

Previous studies have demonstrated that the DORS technique has a great potential
to detect and predict the dynamic parameters of ocean interior indirectly based on
satellite measurements combined with float observations [41, 43]. DORS methods
mainly include numerical modeling and data assimilation [25], dynamic theoretical
approach [30, 48, 50], and empirical statistical and machine learning approach [23,
41]. The accuracy of numerical and dynamic modeling for subsurface ocean sim-
ulation and estimation at large scale is not guaranteed due to the complexity and
uncertainty of these methods. Reference [47] empirically estimated mesoscale 3D
oceanic thermal structures by employing a two-layer model with a set of parameters.
Reference [35] determined the vertical structure and transport on a transect across
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the North Atlantic Current by integrating historical hydrography with acoustic travel
time. Reference [34] estimated the 4D structure of the Southern Ocean from satellite
altimetry by a gravest empirical mode projection. However, in the big ocean data
and artificial intelligence era, data-driven models, particularly cutting-edge artificial
intelligence or machine learning models, perform well and can reach high accu-
racy in DORS techniques and applications. So far, the empirical statistical and AI
models have been well developed and applied, including the linear regression model
[19, 23], empirical orthogonal function-based approach [32, 37], geographically
weighted regression model [43], and advanced machine learning models, such as
artificial neural networks [1, 45], self-organizing map [10], support vector machine
[28, 41], random forests (RFs) [43], clustering neural networks [31], and XGBoost
[44]. Although traditional machine learningmethods havemade significant contribu-
tions to DORS techniques, they are unable to consider and learn the spatiotemporal
characteristics of ocean observation data. In the big earth data era, deep learning
has been widely utilized for process understanding for data-driven Earth system sci-
ence [38]. Deep learning techniques offer great potential in DORS studies to help
overcome limitations and improve performance [46]. For example, Long Short-Term
Memory (LSTM) can well capture data time-series features and achieves time-series
learning [8], and Convolutional Neural Networks (CNN) take into account data spa-
tial characteristics to easily realize spatial learning [5]. Deep learning technique has
unleashed great potential in data-driven oceanography and remote sensing research.

This chapter proposes several novel approaches based on ensemble learning and
deep learning to accurately retrieve and depict subsurface thermohaline structure
from multisource satellite observations combined with Argo in situ data, and high-
light theAI applications in the deep ocean remote sensing and climate change studies.
We aim to construct AI-based inversion models with strong robustness and general-
ization ability towell detect and describe the subsurface thermohaline structure of the
global ocean. Our newmethods can provide powerful AI-based techniques for exam-
ining subsurface and deeper ocean thermohaline change and variability which has
played a significant role in recent global warming from remote sensing perspective
on a global scale.

2 Study Area and Data

The ocean plays a significant role inmodulating the global climate system, especially
during recent global warming and ocean warming [51]. It serves as a significant heat
sink for the Earth’s climate system [12], and also acts as an important sink for the
increasing CO2 caused by anthropogenic activities and emissions. The study area
focused here is the global ocean which includes the Pacific Ocean, Atlantic Ocean,
Indian Ocean, and Southern Ocean (180◦ W~180◦ E and 78.375◦ S~77.625◦ N).

The satellite-based sea surfacemeasurements adopted in this study include sea sur-
face height (SSH), sea surface temperature (SST), sea surface salinity (SSS), and sea
surface wind (SSW). Here, the SSH is obtained from AVISO satellite altimetry. The
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SST is acquired fromOptimumInterpolationSea-SurfaceTemperature (OISST) data.
The SSS is obtained from the SoilMoisture and Ocean Salinity (SMOS). The SSW is
acquired from Cross-Calibrated Multi-Platform (CCMP). The longitude (LON) and
latitude (LAT) georeference information are also employed as supplementary input
parameters. All sea surface variables above have the same 0.25◦ × 0.25◦ spatial reso-
lution. The subsurface temperature (ST) and salinity (SS) data are fromArgo gridded
products with 1◦ × 1◦ spatial resolution. This study adopted Argo gridded data for
subsurface ocean upper 1,000m with 16 depth levels as labeling data. We initially
applied the nearest neighbor interpolation approach to unify the satellite-based sea
surface variables to 1◦ × 1◦ spatial resolution.

All the aforementioned satellite-based sea surface variables andArgo gridded data
should be subtracted their climatology (baseline: 2005–2016) to obtain their anomaly
fields in order to avoid the climatology seasonal variation signal [41]. In this study,
We primarily focus on the nonseasonal anomaly signals, which are more difficult to
detect but more significant for climate change. We applied a maximum-minimum
normalization approach to normalize the training dataset to the range of [0, 1]. The
testing dataset was likewise subjected to the corresponding normalization, which can
effectively prevent data leakage during the modeling.

3 Retrieving Subsurface Thermohaline Based on Ensemble
Learning

Here, the specific procedure of subsurface thermohaline retrieval based on machine
learning approaches contains three technical steps. Firstly, the training dataset for
the model was constructed. We selected the satellite-based sea surface parameters
(SSH, SST, SSS, SSW) as input variables for AI-based models, and the subsurface
temperature anomaly (STA) and salinity anomaly (SSA) from Argo gridded data
were adopted as data labels for training and testing. Moreover, all the input surface
and subsurface datasets were uniformly normalized and randomly separated into
a training dataset (60%) and a testing dataset (40%), which were utilized to train
and test the AI-based models, respectively. Secondly, the model was trained using
the training dataset. The model’s hyper-parameters were tuned by using Bayesian
optimization approach, and then a proper machine learning model was well set up
using the optimal input parameters. Finally, the prediction was performed based on
the trained model. We predicted the STA and SSA by the optimized model, and then
evaluated the model performance and accuracy by determination coefficient (R2) and
root-mean-square error (RMSE).

3.1 EXtreme Gradient Boosting (XGBoost)

Gradient Boosting Decision Tree (GBDT) as a boosting algorithm is an iterative
decision trees algorithm and is composed of multiple decision trees [16]. EXtreme
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Fig. 1 Spatial distribution of the a Argo STA and the b XGBoost-estimated STA in December
2015 at 600m depth

Gradient Boosting (XGBoost) is an upgraded GBDT ensemble learning algorithm
[11], as well as an optimized distributed gradient boosting library. XGBoost imple-
ments an ensemble machine learning algorithm based on decision tree that adopts
a gradient boosting framework, and also provides a parallel tree boosting that solve
many data science problems in an efficient, flexible and accurate way. To achieve the
optimal model performance, the parameter tuning is essential during the modeling.
XGBoost contains several hyper-parameters which are related to the complexity and
regularization of the model [49], and they must be optimized in order to refine the
model and improve the performance. Here, we used the well-performed Bayesian
optimization approach to tune the XGBoost hyper-parameters.

Figures1–2 show the spatial distribution of subsurface temperature and salinity
anomalies (STA and SSA) of the global ocean from the XGBoost-based result and
Argogridded data inDecember 2015 at 600mdepth. It is clear that both theXGBoost-
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Fig. 2 Spatial distribution of the a Argo SSA and the b XGBoost-estimated SSA in December
2015 at 600m depth

estimated STA and SSAwere significantly consistent with the Argo gridded STA and
SSA at 600m depth. The R2 of STA/SSA between Argo gridded data and XGBoost-
estimated result is 0.989/0.981, and the RMSE is 0.026 ◦C/0.004 PSU.

3.2 Random Forests (RFs)

Random Forests (RFs) are a popular and well-used ensemble learning method for
data classification and regression. Reference [7] proposed the general strategy ofRFs,
which fit numerous decision trees on various data subsets by randomly resampling
the training data. RFs adopt averaging to improve the prediction accuracy and control
overfitting, and correct for the decision tree’s tendency of overfitting. RFs have been
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Fig. 3 Spatial distribution of the a Argo STA and the b RFs-estimated STA in June 2015 at 600m
depth

effectively applied in varying remote sensing fields [21, 53] and generally perform
very well. Several advantages make RFs well-suited to remote sensing studies [20,
52].

The basic strategy of RFs is to grow a number of decision trees on random subsets
of the training data [40], and determine the decision rules, and choose the best split
for each node splitting [29]. This strategy performs well compared to many other
classifiers and makes it robust against overfitting [7]. RFs only require two input
parameters for training, the number of trees in the forest (ntree) and the number of
variables/features in the random subset at each node (mtr y), and both parameters are
generally insensitive to their values [29].

Figures3–4 show the spatial distribution of subsurface thermohaline anomalies
of the global ocean from RFs-based result and Argo gridded data in June 2015 at
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Fig. 4 Spatial distribution of the a Argo SSA and the b RFs-estimated SSA in June 2015 at 600m
depth

600mdepth. It is clear that the spatial distribution and pattern betweenRFs-estimated
results and Argo gridded data are quite similar. The R2 of STA/SSA between Argo
data and XGBoost-estimated result is 0.971/0.972, and the RMSE is 0.042 ◦C/0.005
PSU.
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4 Predicting Subsurface Thermohaline Based on Deep
Learning

The predicting process for subsurface thermohaline based on deep learning includes
three steps. Firstly, the training dataset combined satellite-based sea surface parame-
ters (SSH,SST, SSS, SSW)withArgo subsurface data as training labelwere prepared.
Secondly, we carried out a hyperparameter tuning based on a grid-search strategy to
achieve an optimal deep learning model by training. Here, we set up the time-series
deep learning models by adopting the time-series data as the training dataset and
the rest as the testing dataset, so as to realize time-series subsurface thermohaline
prediction. Finally, the performance measures of RMSE and R2 were adopted to
evaluate the model performance and accuracy.

4.1 Bi-Long Short-Term Memory (Bi-LSTM)

The LSTM is a sort of recurrent neural network [22], which is well-suited to time-
series modeling and has been widely applied in natural language processing and
speech recognition. The primary principle behind LSTM is to leverage the target
variable’s historical information. Unlike traditional feedforward neural networks,
the training errors in an LSTM propagate over a time sequence, capturing the time-
dependent relationship of the training data’s historical information [18]. Bi-Long
Short-Term Memory (Bi-LSTM) is an upgraded LSTM algorithm. The Bi-LSTM
consists of two unidirectional LSTM that processes the input sequence forward and
backward meanwhile, and captures the information ignored by the unidirectional
LSTM.

To ensure the Bi-LSTMmodel can achieve good performance and high accuracy,
it is necessary to select and tune the proper hyperparameters as the input of Bi-LSTM
model. Here, we randomly picked 20% of the training dataset for Bi-LSTM hyperpa-
rameter tuning, so as to achieve the optimal model input. The Bayesian optimization
approach was utilized in this study to obtain the best number of layers and neurons
for Bi-LSTM network. By model testing, we finally selected a neural network with
three layers and neuron counts of 32, 64, and 64 for respective layer. Moreover, the
batch normalization was conducted after the hidden layer of each network. Accord-
ing to the previous practice, the optimal performance could be effectively attained
with mini-batch sizes ranging from 2 to 32 [33]. Thus, the best batch size was set
to 32 for the model. In addition, the optimal epoch of the STA network was set to
257, while the best one of the SSA network was set to 81. Moreover, We adopted
the RMSE, R2, and Spearman’s rank correlation coefficient (ρ) to obtain the opti-
mal Bi-LSTM timestep. The results demonstrate that the Bi-LSTM model performs
optimally when the network timestep is set to 10. Thus, the timestep here was set as
10.
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Table 1 The different datasets feeded to Bi-LSTM model

Target month Training dataset Predicting dataset Testing dataset

2015.12 2010.12–2015.11 2015.03–2015.12 2015.12

We employed the data from December 2010 to November 2015 as the training
dataset and the data in December 2015 as the testing dataset. The testing dataset
adopted the target month dataset for performance evaluation (Table1). In general,
Bi-LSTM was characterized by a whole temporal sequence in both training and
prediction, but for the accuracy validation, we only focused on the target month.

Fig. 5 Spatial distribution of the a Argo STA and the b LSTM-predicted STA in December 2015
at 200m depth
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Fig. 6 Spatial distribution of the a Argo SSA and the b LSTM-predicted SSA in December 2015
at 200m depth

Whenconstructed the input dataset forBi-LSTM,we restructured thedata grid bygrid
with time sequence according to the rule of X j=1

i=1 , X
j=2
i=1 ...X

j=60
i=1 , X j=1

i=2 ...X
j=60
i=2 ,…,

X j=1
i=24922...X

j=60
i=24922 (i represents the grid point, j represents the month).

Figures5–6 show the spatial distribution of subsurface temperature and salinity
anomalies of the global ocean from the LSTM-predicted result and Argo gridded
data in December 2015 at 200m depth. It is clear that the LSTM-predicted result can
accurately retrieve and capture most anomaly signals in the subsurface ocean. TheR2

of STA/SSA between Argo gridded data and LSTM-predicted result is 0.728/0.476,
and the RMSE is 0.378 ◦C/0.055 PSU.

Figure7 is the meridional profile (at longitude 190◦) for Argo gridded and LSTM-
predicted STA for vertical comparison and validation. The results presented that the
two vertical profiles are highly consistent in the vertical distribution pattern, and over
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Fig. 7 The meridional vertical profile of the STA in December 2015 at the longitude of 190◦ for a
Argo gridded data, and b LSTM-predicted result

99.75%of the profile pointswerewithin±1 ◦Cprediction error, while over 99.44%of
the profile pointswerewithin±0.5 ◦Cerror. Figure8 is the samemeridional profile for
Argo gridded and LSTM-predicted SSA for vertical comparison and validation. The
results indicated that the two vertical profiles match well in the vertical distribution
pattern, and over 99.55% of the profile points were within ±0.2 PSU prediction
error, while over 99.36% of the profile points were within ±0.1 PSU error. The
results demonstrated that the model prediction performance for STA and SSA are
excellent with high accuracy.
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Fig. 8 The meridional vertical profile of the SSA in December 2015 at the longitude of 190◦ for
a Argo gridded data, and b LSTM-predicted result

4.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a well-known deep learning algorithm.
[17] proposed a neural network structure, including convolution and pooling layers,
which can be regarded as the first implementation of the CNN model. On this basis,
[27] proposed the LeNet-5 network, which used the error backpropagation algorithm
in the network structure and was considered a prototype of CNN. Until 2012, the
deep network structure and dropout method were applied in the ImageNet image
recognition contest [26], and significantly reduced the error rate, which opened a
new era in the image recognition field. So far, the CNN technique has already been
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Fig. 9 Spatial distribution of the a Argo ST and the b CNN-predicted ST in December 2015 at
200m depth

widely utilized in a variety of applications, including climate change and marine
environmental remote sensing applications [5]. Here, the CNN algorithm combined
with satellite observations was employed to predict ocean subsurface parameters.

We utilized the CNN approach to retrieve ocean subsurface temperature (ST)
and salinity (SS) based on satellite remote sensing data directly. Figures9–10 show
the spatial distribution of subsurface thermohaline of the global ocean from the
CNN-predicted and Argo gridded data in December 2015 at 200m depth. The R2 of
STA/SSA between Argo gridded data and CNN-predicted result is 0.972/0.822, and
the RMSE is 0.924 ◦C/0.293 PSU.
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Fig. 10 Spatial distribution of the a Argo SS and the b CNN-predicted SS in December 2015 at
200m depth

5 Conclusions

This chapter proposes several AI-based techniques (ensemble learning and deep
learning) for retrieving and predicting subsurface thermohaline in the global ocean.
The proposed models are proved to estimate the subsurface temperature and salinity
structures accurately in the global ocean through multisource satellite remote sens-
ing observations (SSH, SST, SSS, and SSW) combined with Argo float data. The
performance and accuracy of the models are well evaluated by Argo in situ data. The
results demonstrate that the AI-basedmodel has strong robustness and generalization
ability, and can be well applied to the prediction and reconstruction of subsurface
dynamic environmental parameters.
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We employ XGBoost and RFs ensemble learning algorithms to derive the sub-
surface temperature and salinity of the global ocean, and the R2/RMSE of XGBoost
retrieved STA and SSA are 0.989/0.026 ◦C and 0.981/0.004 PSU, and the R2/RMSE
of RFs retrieved STA and SSA are 0.971/0.042 ◦C and 0.972/0.005 PSU. Moreover,
Bi-LSTM and CNN deep learning algorithms are adopted to time-series predicting
of subsurface thermohaline, the R2/RMSE of Bi-LSTM predicted STA and SSA are
0.728/0.378 ◦C and 0.476/0.055 PSU, the R2 / RMSE of CNN predicted ST and SS
are 0.972/0.924 ◦C and 0.822/0.293 PSU (CNN to predict the ST and SS directly).
Overall, ensemble learning algorithms which are suited for small data modeling can
be used to well retrieve mono-temporal subsurface thermohaline structure, while
deep learning algorithms which are fit for big data modeling can be well adopted to
predict time-series subsurface thermohaline structure.

In the future, we can employ longer time-series of remote sensing data for mod-
eling and utilize more advanced deep learning algorithms to improve the model
applicability and robustness. We should further promote the application of AI and
deep learning techniques in the deep ocean remote sensing and data reconstruction
for revisiting global ocean warming and climate change. The powerful AI technol-
ogy shows great potential for detecting and predicting the subsurface environmental
parameters based on multisource satellite measurements, and can provide a useful
technique for promoting the studies of deep ocean remote sensing as well as ocean
warming and climate change during recent decades.

References

1. AliM, SwainD,Weller R (2004) Estimation of ocean subsurface thermal structure from surface
parameters: a neural network approach. Geophys Res Lett 31(20)

2. Allison L, Roberts C, Palmer M, Hermanson L, Killick R, Rayner N, Smith D, Andrews M
(2019) Towards quantifying uncertainty in ocean heat content changes using synthetic profiles.
Environ Res Lett 14(8):084037

3. Balmaseda MA, Trenberth KE, Källén E (2013) Distinctive climate signals in reanalysis of
global ocean heat content. Geophys Res Lett 40(9):1754–1759

4. Bao S, Zhang R, Wang H, Yan H, Yu Y, Chen J (2019) Salinity profile estimation in the Pacific
Ocean from satellite surface salinity observations. J Atmos Oceanic Tech 36(1):53–68

5. Barth A, Alvera-Azcárate A, LicerM, Beckers JM (2020) DINCAE 1.0: a convolutional neural
network with error estimates to reconstruct sea surface temperature satellite observations.
Geosci Model Develop 13(3):1609–1622

6. Boyer T, Domingues CM, Good SA, Johnson GC, Lyman JM, Ishii M, Gouretski V, Willis JK,
Antonov J, Wijffels S et al (2016) Sensitivity of global upper-ocean heat content estimates to
mappingmethods, XBT bias corrections, and baseline climatologies. J Clim 29(13):4817–4842

7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
8. Buongiorno Nardelli B (2020) A deep learning network to retrieve ocean hydrographic profiles

from combined satellite and in situ measurements. Remote Sensing 12(19):3151
9. Cazenave A, Meyssignac B, Ablain M, Balmaseda M, Bamber J, Barletta V, Beckley B, Ben-

veniste J, Berthier E, Blazquez A et al (2018) Global sea-level budget 1993-present. Earth
System Science Data 10(3):1551–1590



AI-Based Subsurface Thermohaline Structure Retrieval ... 121

10. Chen C, Yang K, Ma Y, Wang Y (2018) Reconstructing the subsurface temperature field by
using sea surface data through self-organizing map method. IEEE Geosci Remote Sens Lett
15(12):1812–1816

11. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp
785–794

12. Chen X, Tung KK (2014) Varying planetary heat sink led to global-warming slowdown and
acceleration. Science 345(6199):897–903

13. Cheng L, Zhu J (2014) Uncertainties of the ocean heat content estimation induced by insuf-
ficient vertical resolution of historical ocean subsurface observations. J Atmos Oceanic Tech
31(6):1383–1396

14. Cheng L, Abraham J, Zhu J, TrenberthKE, Fasullo J, Boyer T, Locarnini R, ZhangB,Yu F,Wan
L et al (2020) Record-setting ocean warmth continued in 2019. Adv Atmos Sci 37(2):137–142

15. Cheng L, Abraham J, Trenberth KE, Fasullo J, Boyer T, Locarnini R, Zhang B, Yu F, Wan
L, Chen X et al (2021) Upper ocean temperatures hit record high in 2020. Adv Atmos Sci
38(4):523–530

16. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. In: The
Annals of Statistics, pp 1189–1232

17. Fukushima K, Miyake S (1982) Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets.
Springer, pp 267–285

18. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
19. Guinehut S, Dhomps AL, Larnicol G, Le Traon PY (2012) High resolution 3-D temperature

and salinity fields derived from in situ and satellite observations. Ocean Sci 8(5):845–857
20. Guo L, Chehata N, Mallet C, Boukir S (2011) Relevance of airborne lidar and multispectral

image data for urban scene classification using Random Forests. ISPRS J PhotogrammRemote
Sens 66(1):56–66

21. Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the Random Forest framework
for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

22. Hochreiter S, Schmidhuber J (1997) Long short-termmemory. Neural Comput 9(8):1735–1780
23. Jeong Y, Hwang J, Park J, Jang CJ, Jo YH (2019) Reconstructed 3-D ocean temperature

derived from remotely sensed sea surfacemeasurements formixed layer depth analysis. Remote
Sensing 11(24):3018

24. Johnson GC, Lyman JM (2020)Warming trends increasingly dominate global ocean. Nat Clim
Chang 10(8):757–761

25. Klemas V, Yan XH (2014) Subsurface and deeper ocean remote sensing from satellites: An
overview and new results. Prog Oceanogr 122:1–9

26. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. Adv Neural Inf Process Syst 25:1097–1105

27. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

28. Li W, Su H, Wang X, Yan X (2017) Estimation of global subsurface temperature anomaly
based on multisource satellite observations. J Remote Sens 21:881–891

29. Liaw A, Wiener M et al (2002) Classification and regression by Random Forest. R news
2(3):18–22

30. Liu L, Xue H, Sasaki H (2019) Reconstructing the ocean interior from high-resolution sea
surface information. J Phys Oceanogr 49(12):3245–3262

31. Lu W, Su H, Yang X, Yan XH (2019) Subsurface temperature estimation from remote sensing
data using a clustering-neural network method. Remote Sens Environ 229:213–222

32. Maes C, Behringer D, Reynolds RW, Ji M (2000) Retrospective analysis of the salinity vari-
ability in the western tropical Pacific Ocean using an indirect minimization approach. J Atmos
Oceanic Tech 17(4):512–524

33. Masters D, Luschi C (2018) Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612

http://arxiv.org/abs/1804.07612


122 H. Su et al.

34. Meijers A, Bindoff N, Rintoul S (2011) Estimating the four-dimensional structure of the South-
ern Ocean using satellite altimetry. J Atmos Oceanic Tech 28(4):548–568

35. Meinen CS, Watts DR (2000) Vertical structure and transport on a transect across the North
Atlantic Current near 42◦N: Time series and mean. J Geophys Res: Oceans 105(C9):21869–
21891

36. Meyssignac B, Boyer T, Zhao Z, Hakuba MZ, Landerer FW, Stammer D, Köhl A, Kato S,
L’ecuyer T, Ablain M, et al (2019) Measuring global ocean heat content to estimate the Earth
Energy Imbalance. Front Marine Sci 6:432

37. Nardelli BB, Santoleri R (2005)Methods for the reconstruction of vertical profiles from surface
data: Multivariate analyses, residual GEM, and variable temporal signals in the North Pacific
Ocean. J Atmos Oceanic Tech 22(11):1762–1781

38. Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N et al (2019)
Deep learning and process understanding for data-driven Earth system science. Nature
566(7743):195–204

39. Roemmich D, Gilson J (2009) The 2004–2008 mean and annual cycle of temperature, salinity,
and steric height in the global ocean from the Argo program. Prog Oceanogr 82(2):81–100

40. Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests.
Remote Sens Environ 115(10):2564–2577

41. Su H, Wu X, Yan XH, Kidwell A (2015) Estimation of subsurface temperature anomaly in
the Indian Ocean during recent global surface warming hiatus from satellite measurements: A
support vector machine approach. Remote Sens Environ 160:63–71

42. SuH,WuX,LuW,ZhangW,YanXH(2017) Inconsistent subsurface anddeeper oceanwarming
signals during recent global warming and hiatus. J Geophys Res: Oceans 122(10):8182–8195

43. Su H, Li W, Yan XH (2018) Retrieving temperature anomaly in the global subsurface and
deeper ocean from satellite observations. J Geophys Res: Oceans 123(1):399–410

44. Su H, Yang X, Lu W, Yan XH (2019) Estimating subsurface thermohaline structure of the
global ocean using surface remote sensing observations. Remote Sensing 11(13):1598

45. SuH, ZhangH, GengX, Qin T, LuW,YanXH (2020) OPEN:A new estimation of global ocean
heat content for upper 2000 meters from remote sensing data. Remote Sensing 12(14):2294

46. Su H, Zhang T, Lin M, Lu W, Yan XH (2021) Predicting subsurface thermohaline structure
from remote sensing data based on long short-term memory neural networks. Remote Sens
Environ 260:112465

47. Takano A, Yamazaki H, Nagai T, Honda O (2009) A method to estimate three-dimensional
thermal structure from satellite altimetry data. J Atmos Oceanic Tech 26(12):2655–2664

48. Wang J, Flierl GR, LaCasce JH, McClean JL, Mahadevan A (2013) Reconstructing the ocean’s
interior from surface data. J Phys Oceanogr 43(8):1611–1626

49. Xia Y, Liu C, Li Y, Liu N (2017) A boosted decision tree approach using bayesian hyper-
parameter optimization for credit scoring. Expert Syst Appl 78:225–241

50. Yan H, Wang H, Zhang R, Chen J, Bao S, Wang G (2020) A dynamical-statistical approach to
retrieve the ocean interior structure from surface data: SQG-mEOF-R. J Geophys Res: Oceans
125(2):e2019JC015840

51. Yan XH, Boyer T, Trenberth K, Karl TR, Xie SP, Nieves V, Tung KK, Roemmich D (2016)
The global warming hiatus: Slowdown or redistribution? Earth’s Future 4(11):472–482

52. Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting individual tree
attributes from airborne laser point clouds based on the random forests technique. ISPRS J
Photogramm Remote Sens 66(1):28–37

53. Zhang Y, Zhang H, Lin H (2014) Improving the impervious surface estimation with combined
use of optical and SAR remote sensing images. Remote Sens Environ 141:155–167



AI-Based Subsurface Thermohaline Structure Retrieval ... 123

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from this
chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ocean Heat Content Retrieval
from Remote Sensing Data Based
on Machine Learning

Wenfang Lu and Hua Su

1 Introduction

In recent decades, the imbalance in the top-of-atmosphere radiation, termed the
Earth’s energy imbalance (EEI) [49], has been continuously promoted changes in
the global climate system, leading to continued global warming. The EEI must be
accurately quantified in order to investigate and comprehend the past, present, and
future state of climate change [38], which is defined by the net heat gaining in the
Earth’s climate system calculating the difference between the energy entering into
and reflected by the Earth [50]. Due to its small magnitude compared with solar
radiation, the EEI is difficult to quantify accurately [38]. Yet, more than 93% of the
EEI of the Earth system is sequenced in the ocean as ocean heat content (OHC)
changes [5, 7]. Naturally, this is due to the large heat capacity and gigantic volume
of seawater, which accounts for ~71% of the world’s surface area and ~97% of total
water volume. Therefore, the OHC variability is slower and can better capture low-
frequency climate variability. These make OHC the most suitable variable to detect
and track EEI changes than sea surface temperature (SST) [26, 50].

OHC is driven by both human activity and natural variability. The anthropogenic
forcing has been reflected in the OHC, leading to speeding OHC warming rate [35],
and therefore the former serves as an essential indicator of ocean variability. In turn,
OHC also feedbacks to the climate change [10, 25]. On the multi-decadal timescale
natural variability, the global OHC is of high relevance to the Earth’s heat balance
[3]. OHC is also closely associated with the El Niño Southern Oscillation (ENSO),
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dominating the interannual variability. In recent years, hemispheric asymmetry of
OHC changes has emerged, which can be likely explained by internal dynamics
instead of different surface forcing [39]. The world ocean of 2021 was the hottest
ever recorded by human beings despite the La Niña conditions [17]. In summary, the
accurate quantification of the OHC is crucial to understanding EEI [10, 50].

Remote sensing can provide wide and near-real-time coverage as well as a vast
collection of spatial and temporal information. However, in most circumstances,
only water surface can be seen from the remote sensing which cannot penetrate to
the ocean’s interior. Recently, a series of subsurface and deeper ocean remote sensing
(DORS)methodswere developed to unlock the enormous potential of remote sensing
data in sensing the ocean interior [31]. Particularly, Artificial Intelligent (AI)methods
have provided cutting-edge tools and infrastructures [41].

Different remote sensing data were applied to derive subsurface thermal infor-
mation via various methods [18, 31, 32, 52]. These early initiatives demonstrated
the concept of DORS to tackle the issue of data sparsity. Recent research has
shown that surface remote sensing data may be effectively used to retrieve STA via
machine-learning or AI approaches. For instance, [27] and [23] proved that subsur-
face structureswere dominated by the first baroclinicmode, and thus can be estimated
from SSH. By merging remote sensing data with a Self-Organization Map (SOM)
approach, [51] further confirmed the theory’s credibility in the Northern Atlantic
Ocean. Reference [36] used a clustered shallow neural network (NN) to obtain sub-
surface temperature, demonstrating the promise of NNs as a category of generic
techniques with powerful regression capabilities. Other relevant contributions have
been made [2, 8, 20, 21, 23], to mention a few.

Among the several methodologies, neural networks (NN), as the foundation of
contemporary deep learning breakthroughs, have demonstrated the capability in the
regression problems of the ocean subsurface estimation [2, 27–29, 48]. Yet, the
application of NNmodels to temporally extrapolate remote sensing data was limited.
This is partly because of the difficulty in time series estimation, and the fact that STA
was indirectly influenced by the surface signals in the deep ocean. The exact physical
controls are fundamentally nonlinear. In this regard, OHC is more tightly coupled
with the surface forcing [40], which may lead to a more physically consistent DORS
application. So far, only a few studies have used surface data to retrieveOHC [27, 54].
In the ground-breaking work of [27], an NN was trained to derive discrete site-wise
Indian Ocean OHC. Given that different ocean basins have different OHC dynamics
and thus linkages to the surface, the first goal of this study is to determine whether
this approach can be extended to the entire global ocean.Wewill answer this question
by developing an NN model driven by big data to estimate OHC, that is accurate for
the global ocean and for temporally extending OHC data to the pre-Argo era of 1993
onward to 2004.

The method will also be used to generate an OHC product using this NN
approach, hindcasting the OHC before the Argo era. Since the early 2000s, when
Argo floats have been continuously deployed, the ability to accurately quantify OHC
has unprecedented increased [44]. To present, a network of over 4000 Argo floats
has been detecting robust climate signals in the global ocean’s large-scale dynamic
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features. However, prior to the Argo era, there was no reliable full-coverage ocean
interior data. As a result, there are discussions and debates regarding various climate
issues. Consider the trend of heat redistribution during the “hiatus” period between
1998 and the late 2010s, when global warming appeared to be slowing [53]. Vari-
ous climate signals have been detected, each backed by different data products [45],
which puts a strain on the quality of ocean interior data in order to give compre-
hensive and effective support for climate research throughout this time period [53].
For example, there are two broad opinions on driving processes: one is the Atlantic
meridional overturning circulation-controlled mechanism [11], and the other is Indo-
Pacific-originated mechanisms [33].

In this chapter, we describe the NN model yielding an NN-based global OHC
product named Ocean Projection and Extension neural Network (OPEN) [47]. The
technical details will be described with a focus on the NN approach. This chapter
is structured as follows. After presenting data in Sect. 2, the NN method is detailed
in Sect. 3. We also present the design of experiments to optimize the network. In
Sect. 4, we first test the sensitivity of the network parameters and structure. The OHC
is then reconstructed, extended to the pre-Argo era, from 1993 to 2020. In addition,
OPEN and other renowned near-global OHCproducts are evaluated in terms of linear
trends and variabilitymodes. Finally, in Sect. 5, we summarize the results and provide
prospects for future studies.

2 Data

A summary of all data sets utilized in this chapter is shown in Table1, including
an Argo-based three-dimensional temperature product to derive OHC, multi-source
satellite remote sensing data, and OHC products from different sources.

The sea surface height (SSH) is from the Absolute Dynamic Topography products
ofArchiving,Validation, and Interpretation of SatelliteOceanographic (AVISO). The
SST is from the Optimum Interpolation Sea Surface Temperature (OISST). The sea
surface wind (SSW) is from the Cross Calibrated Multi-platform (CCMP). These
three products have a common spatial resolution of one quarter. The sea surface
salinity (SSS) is adopted from the Soil Moisture Ocean Salinity (SMOS) product.
The SMOS product has a spatial resolution of one degree. We linearly interpolated
all the products to a one-degree grid except for SSS.

The OHC ‘ground truth’ was derived from Roemmich and Gilson [44] gridded
Argoproduct,which consists of 27 standard levels of 0–2000m.Thevariables include
pressure, temperature, and salinity. Dynamic heights were also provided from the
T/S profiles. It has a monthly time interval from 2005 to the present, and a spatial
resolution is 1◦ × 1◦. By definition, the OHC can be calculated by conducting depth
integral of temperature T from the surface to a particular level z.

OHC = ρCp
∫ z

0
T dz (1)
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https://www.catds.fr/Products/Available-products-from-CEC-OS/CEC-Lops-SSS-SMOS-SMAP-OI-L4
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https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_026
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_026
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002
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In the integration, ρ is the seawater density and Cp is the heat capacity. Constant
values of 1025 kg · m−3 and 3850 J · kg−1 · K−1 were applied. OHC300, OHC700,
OHC1500, and OHC2000 refers to the OHC of top 300, 700, 1500, and 2000m,
respectively, where integration is done. The reference of OHC, with regard to the
climatologicalmean of 2005–2015,was then computed and removed to provideOHC
anomalies. Hereafter, we report OHC anomaly unless otherwise indicated.

Other near-global OHC products will be compared with the OPEN product. These
data sets are: National Centers for Environmental Information (NCEI) data by [35],
Institute of Atmospheric Physics (IAP) data by [13], EN4 from the Met Office of
United Kingdom by [22], empirical DORS-based ARMOR3D data by [23], and
numerical reanalysis GLORYS2V4. Among these data products, NCEI, IAP, and
EN4 are all optimal interpolated (mapped) one-degree products from a common col-
lection of discrete station and profiling data. The source of the in-situ data includes
Argo profilers, conductivity-temperature-depth (CTD), and expendable bathyther-
mograph (XBT). The ARMOR3D and GLORY2V4 both have a 0.25-degree resolu-
tion. Because we only use basin OHC summations, the different resolution is not an
issue.

3 Method

3.1 Neural Network

The NN with a total of o layers (h as hidden layers) applied in this chapter can be
generally formularized as:

Neurons in input layer : h1 = f1(x; θ1) = σ1

(
b1 +

f eatures∑
i

w1xi

)
(2)

Neurons in hidden layer(s) : h2 = f2(h1; θ2) = σ2

⎛
⎝b2 +

neurons∑
j

w2h1, j

⎞
⎠ (3)

...
Neuron in output layer : ŷ = fo(ho−1; θo) (4)

For a regression problem, one may express mathematically an NN as an approx-
imation function ŷ = f(x; θ) from the inputs x to the OHC ŷ with parameters θ . θ

include weights w, biases b, and activation functions σ for each neuron in the hidden
layer.

Generally, in a network, one input layer, one ormore hidden layers, and one output
layer are essential. Layers inter-connects each other in a manner of stacks. The input
layer collects input features and hence has the same number of neurons. Each neuron
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in each layer computes the weighted average from its previous layer’s outputs. The
neuron then computes the nonlinear outputs with its activation function. And the
next layer receives the output results from its previous layer. The number of neurons
is often described as the width, with the number of hidden layers as the depth, i.e., a
deep NN has more hidden layers.

Such anNN is essentially an optimization problem to find the parameters θ leading
to the minimized cost function J, which is the mean squared error. This can be
formularized as:

argθmin J (θ) =
∑

(x,y)∈Tr

(y − ŷ)2

N
(5)

In the equation, Tr refers to the training set with to N samples in a training set.
We applied a Bayesian regularization for the NN, following our previous study of
[36]. Our experience suggests that by smoothing the cost function J, the Bayesian
regularization approach can efficiently avoid overfitting [19]. This trait is advanta-
geous for temporal projection because smoothness is more likely to work effectively
when fresh data are provided. An ensemble technique was applied. Six subsets of
training periods were defined, that starts from 2005, 2006, 2007, 2008, 2009, and
2010, and ends in 2013, 2014, 2015, 2016, 2017, and 2018, respectively. Except for
the training period, all remaining data were utilized as the testing set. The uncertainty
may be evaluated using three times standard deviations, which are distributed across
six ensemble members. For each depth, a distinct NN was trained. Once the remote
sensing data are provided, the OHC field can be derived. The ensemble average will
be reported as our hindcast of OHC in the following chapters.

3.2 Design of Experiments

The NN relies heavily on the proper combination of sea surface variables. In AI
field, these variables are referred to as input features. One may certainly train NN
for any unrelated input-output data, yet this often results in overfitted NN. It is
envisaged that an NN model can successfully extrapolate to unknown data provided
there is a clear input-output relationship that the NN can learn. Furthermore, in
the practice of optimization, choosing the greatest feature combination might be
paradoxical at times [46]. As a result, features are frequently chosen haphazardly
in a process known as feature engineering. The availability of historical data also
influences feature selection. In the current study, to find the best combination of the
features, we designed 16 experiments as shown in Table2. For these experiments,
we chose the OHC300 in January 2011 as the target to be hindcasted with the tuned
NN and a data subset from the 12months of 2010 as the training data. Note that
the conclusions here are insensitive to the data subsetting. Case A and Case R are
included in each case. Case R uses remote sensing SSH, in addition to the surface
SST and SSS, while Case A employs those from the (surface) Argo data of the
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uppermost level. Both experiment series shared the same SSW data set. This is
to test if Argo ‘surface’ data can be transited to remote sensing OHC estimation.
In addition, we designed several experiments to evaluate the role of temporal and
spatial information, involving day of year (DOY), longitude (LON), and latitude
(LAT). At last, the normalized root-mean-square error (NRMSE) and determination
coefficient (R2) were used to measure the network performance. NRMSE is the ratio
of root-mean-square error to corresponding standard deviation.

4 Results and Analysis

4.1 Optimization of Feature Combinations

Table2 shows the R2 and NRMSE values. Overall, the SSH anomaly is the lead-
ing factor affecting OHC, followed by the SST anomaly. This can be seen from the
retrieval accuracy for Case 1, which has already very high retrieval accuracy con-
sidering these two features (Table2). Cases 1A and Case 1R show that the accuracy
is fairly good, with the retrieved OHC explaining 70% of the variance. The retrieval
accuracy with satellite data is slightly higher. This could be because Argo’s SSH is
actually the dynamic height integrated from temperature and salinity [44] while the
contribution from volume changes was missing. Consistent with our previous work
[36], it is clear that including spatiotemporal information, i.e., LON, LAT, and DOY,
enhances the training for both data sets substantially when comparing Case 1 and
Case 2. We suspect that including DOY improves the NN because it allowed it to
learn the seasonal cycle, which is the most dominating signal in OHC. By comparing
Cases 2 and Case 4, or Cases 1 and Case 3, we can find that SSW only improves the
accuracy by ~1%. When comparing Cases 1 and Case 5, SSS increases the retrieval
in Case R, but has a suppressing effect of 6% of Argo data. This is because Argo SSS
differs to a large extent from the remote sensing SSS. When utilizing the measured
SSS to train and the remotely sensed SSS to predict, this discrepancy resulted in con-
siderably lower accuracy. On the other hand, Case R is generally better than Cases A.
This is not surprising, given that SSH primarily represents the inner dynamics of the
first baroclinic mode [9, 40], as well as the mismatch between dynamic height and
satellite-based absolute dynamic topography. Not surprisingly, directly using remote
sensing data for the training is a better way. Case 8R had the highest accuracy suc-
cessfully captured 80% variabilities; nevertheless, because SSS is only available for
recent years, the feature combination in Case 4R is chosen as the optimized network
features.



132 W. Lu and H. Su

Table 2 Design of experiments and corresponding results for testing OHC300a

Experimentb Input Features R2 (Case A/Case R) NRMSE (Case A/Case
R)

Case 1A, Case 1R SSH SST 0.69/0.71 0.39/0.38

Case 2A, Case 2R SSH SST DOY LON
LAT

0.79/0.80 0.36/0.34

Case 3A, Case 3R SSH SST SSW 0.70/0.72 0.38/0.38

Case 4A, Case 4R SSH SST SSW DOY
LON LAT

0.79/0.80 0.36/0.34

Case 5A, Case 5R SSH SST SSS 0.64/0.71 0.40/0.39

Case 6A, Case 6R SSH SST SSS DOY
LON LAT

0.67/0.79 0.49/0.35

Case 7A, Case 7R SSH SST SSS SSW 0.64/0.72 0.41/0.38

Case 8A, Case 8R SSH SST SSS SSW
DOY LON LAT

0.71/0.81 0.44/0.33

a These values were achieved after training with 2010 data (12months), while the testing was
performed with January 2011 data. Noting that all these features are anomalies
b Case R indicates that SSH and SST are from remote sensing data. Case R indicates those are from
the surface record of Argo. The underlines indicate variables are different in Case A and Case R.
Notice that these differences are merely in the training; in the testing, all are from remote sensing
products

4.2 Deep, or Shallow—That Is the Question

One comment perspective is a deep NN has a stronger capability to regress the com-
plex hidden relationship between input and output features. Theoretically, the univer-
sal approximation theorem demonstrated that a one-hidden-layer NN with sufficient
neurons can approximate any continuous function [24]. To confirm this concept in
retrieving the OHC, the optimal hyperparameters will be discovered using a grid-
search method. We designed several experiments in which the NN was deepened
from two hidden layers to six. The performance of networks with different hyperpa-
rameters is examined using a subset of data (Fig. 1).

As Fig. 1 demonstrates, as the neuron number increases, the retrieving accuracy
of two-/three-layer networks first improves, then declines. Generally, three-layer
networks have steeper declines, i.e., being more prone to overfitting. This means that
keeping a basic shallow network structure is better for the current issue. We also
observe that increasing the complexity of NN reduces linear trends. The following
part will deal with the global and basin-wide warming trends of OHC. These results
agree with our previous application of NN for subsurface temperature estimation
[36]. In summary, adding more hidden layers to a network can improve its capacity
to fit a complicated input-to-output mapping function. It might, however, raise the
probability of overfitting and make the training more difficult.

The choice of activation functions is also influencing (Fig. 1). For two-layer net-
works, the combination of ReLU and sigmoid functions is not as good as the sigmoid
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Fig. 1 Determination coefficients as a function of the number of neurons for differentNNstructures.
Different activation function combinations and hidden-layer numbers are represented by different
line colors. The training data is OHC300 of 2005–2013, while testing data is those of 2017. The
configuration of Case 4 was adopted. Sig means the activation function of tangential sigmoid

function alone. The ReLU activation, on the other hand, outperforms all three-layer
networks. Furthermore, the ReLU activation function is predicted to bemore efficient
than the sigmoid function in terms of computation, but this advantage is negligible
for shallow networks. This result shows that for a shallow NN, the nonlinear sigmoid
function is a better choice, emphasizing the above-mentioned universal approxima-
tion theorem [24]. The optimum NN design was determined by these studies to be a
three-layer NN with three neurons and a combined sigmoid with ReLU activation.
This architecture will be used to report findings by default in the following text.

4.3 Data Reconstruction

We used the ensemble approach to train the model using data from 2005 to 2018.
We further hindcasted the data from 1993, the earliest year with global altimetry
coverage, to the year 2020. OPEN OHC data are compared to six datasets, i.e.,
NCEI, EN4, IAP, ARMOR3D, and GLORYS2V4, with an emphasis on interannual
variabilities and decadal trends. These data sets are summarized in Table1.

Figure2 presents OHC300, OHC700, and OHC2000 from OPEN and Argo for
January 2011 (as Table2). The NRMSE values were 0.36, 0.34, and 0.37 for the
three depth integrals, while the retrieval R2 is 0.80, 0.82, and 0.80, respectively.
Across different depths, the accuracy changes are small, suggesting the robustness
of NN networks. The spatial distribution hindcasted by OPEN closely agrees with
the Argo OHC. The spatial distribution of the OHC is dominated by the ENSO
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Fig. 2 The ocean heat content (OHC) in Joule for OPEN-hindcast and Argo data in January 2011
for (top) 0–300m; (middle) 0–700m; and (bottom) 0–2000m. The OHC reference is from 2005 to
2015

fluctuation. In the tropical Indo-Pacific waters, the OHC has high values for all
depths; in the eastern tropical Pacific, the OHC is lower. This pattern suggests a
La Niña state, consistent with a multivariate Niño index of -1.83. In the southern
hemisphere, the meandering of the Agulhas retroflection is discernable, showing
alternating warming and cooling patterns [6]. For different depths, the OHC patterns
are consistent; however, the magnitude is different, which gradually increases with
depth. The most major difference is between OHC300 and OHC2000. Significant
OHC changes can be found in the Pacific and Indian seas for OHC300, while changes
can be found in all basins for OHC2000.

For hindcasting 1993–2004, by using IAP data as the true value, Fig. 3a shows the
pattern correlation of the hindcasted OPENOHC, while the temporal correlation and
errors are displayed in Fig. 3b–d. The total R2 was higher than 0.98, with an NRMSE
of 12%. The R2 and NRMSE interannual fluctuations are quite minimal, indicating a
consistent performance. For long-term temporal extrapolation, this is preferable. In
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Fig. 3 Comparing OPEN OHC300 with the IAP data set. a Pattern RMSE and NRMSE showing
as time series. Spatial maps of temporal b RMSE, c determination correlation, and d NRMSE

1997, there is an extremely high error, which is most likely due to the strong ENSO
signature of this year. ENSO might disturb the ocean surface, causing the network
to deviate from its learned association.

At the extension of the western boundary current system, OPEN’s error is rela-
tively higher, as well as in the two zonal bands cross the subtropical Pacific Ocean
in the northern and southern hemispheres at ~25◦, and in the Agulhas retroflection
region. All these systems have nonlinear circulation and complex dynamics. In other
regions, OPEN has a high correlation and low RMSE in terms of site-wise OHC time
series but also presents heterogeneous structures. Overall, the hindcast of OHC300
in the global ocean presents ~10% error with respect to the spatiotemporal standard
deviation of OHC300.

Table3 summarizes the statistic matrix between OPEN OHC and other products.
The R2 are all greater than 0.988 (OHC300: 0.993; OHC700: 0.988; OHC1500:
0.988; OHC2000: 0.989) when compared to the Argo OHC over the training period
(2005–2018), whereas the NRMSE values are all less than 11% (OHC300: 0.09,
OHC700: 0.109, OHC1500: 0.111, and OHC2000: 0.106). The best agreement
between OPEN and EN4 products can be found, while differs from IAP (Table3).
In summary, OPEN OHC can be reliably reconstructed to the pre-Argo period since
the overall accuracy is high.

We further compare the global OHC300 from all the products shown in Fig. 4,
and the corresponding linear trends for two distinct time periods of 1993–2010 and
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Table 3 Accuracy of OPEN compared with other data sets

Matrix Argo IAP EN4 ARMOR3D GLORYS2V4

OHC300 R2 0.993 0.984 0.990 0.991 0.988

RMSE
(×1019 J)

0.841 1.237 0.964 0.907 1.062

NRMSE
(%)

8.6 12.0 8.2 8.5 10.1

OHC700 R2 0.988 0.971 0.986 0.987 0.982

RMSE
(×1019 J)

1.642 2.542 1.767 1.713 2.009

NRMSE
(%)

10.9 15.8 9.2 9.6 11.9

OHC1500 R2 0.988 0.958 0.985 0.984 0.975

RMSE
(×1019 J)

2.256 4.111 2.472 2.563 3.142

NRMSE
(%)

11.1 19.1 9.2 10.8 13.5

OHC2000 R2 0.989 0.953 0.985 0.982 0.972

RMSE
(×1019 J)

2.333 4.755 2.643 2.957 3.645

NRMSE
(%)

10.6 20.3 8.9 11.2 14.2

Fig. 4 12-month moving averaged global OHC300 (unit: ZJ, i.e., ×1021 J) referred to the 2005–
2014 period. The thick black line with gray envelopes is the ensemble average and three standard
deviations for six OPEN ensemble members
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Table 4 Warming ratesa of the global ocean OHC at different depths in ×1022 J/decade

Depth (m) EN4 GLORYS2V4 ARMOR3D IAP NCEI OPEN

OHC trends

0–300 4.86/3.93b 6.95/6.12 7.45/5.68 4.62/4.18 3.78/3.83 3.71/3.95

0–700 7.86/7.11 12.41/9.88 13.15/8.71 6.93/6.68 5.81/5.70 7.92/8.16

0–1500 10.46/10.31 15.55/13.55 18.31/12.92 9.19/9.07 –c 9.78/10.63

0–2000 10.98/11.20 16.05/14.61 18.83/13.41 9.79/9.77 – 10.10/11.21
a These trends were computed from the 12-month moving mean of the global integration of each
product
b The two values are for 1993–2010 and 1998–2015 periods
c NCEI (Levitus) data only available for upper 700m

1998–2015. In the second period, the surface warming hiatus occurred. From the
trends, it is reflected the global ocean’s ongoing warming. For instance, in 2018 and
2019, record high were reached in the OHC [15, 16]. Interannual variabilities such
as the ENSO fingerprinted the OHC, showing an abrupt high in 1997 and 1998.
This signal is less visible for deeper OHC (0–700, 0–1500, and 0–2000m), but more
so for the upper OHC300. Because the OHC300 is more sensitive to the surface
thermal forcings, the ENSO signature is more prominent. In Table4, it is noticeable
that OPEN has a higher OHC warming trend than IAP, while that of EN4 is very
close to the latter. Since the two data sets were both from mapping techniques from
a similar database of in-situ observation, this similarity is not surprising, especially
for OHC300 and less so for the deeper OHC. In these depths, two statistic-based
products (GLORYS2V4 and ARMOR3D) present even larger inconsistency and
stronger trends. Summarizing across all the products in Fig. 4, our NN-based OPEN
product agrees well with other products, falling within the range of all data sets.
Similarly for OPEN and ARMOR3D, the OHC300 presents a high bias after the
year 2015, which is likely due to the same source of remote sensing data as the
major inputs of estimation. Further improvements can be achieved by using more
sophisticated AI approaches, which are ongoing efforts to predict OHC by the use of
time sequence learning and spatial autoencoding-decoding structures.Given the large
uncertainties among various estimations and the core role of OHC in understanding
ocean warming and heat transfers in the Earth system, the importance of accurate
quantifying the OHC is further emphasized.

For different ocean basins, the OHC variabilities and trends are shown in Fig. 5
and Table5. The representative pattern of linear trends of IAP and OPEN is shown in
Fig. 6. For all the major basins of oceans, there are consistent warming trends exist,
which reflects the overall ocean warming by the anthropogenic forcing. Consistent
with the findings of [33], during the two time periods, steadily highest OHC increase
can be found in the Indo-Pacific basins and the warm pool area. This highlighted the
Indo-Pacific role driving the recent global warming hiatus. In contrast, the Southern
Ocean illustrated the lowest warming rates; this estimationwas accompanied by large
uncertainties, which can be attributed to the lowArgo coverage therein. From 1993 to
2010, IAP and OPEN both present a basin-wide dipole warming and cooling pattern



138 W. Lu and H. Su

Fig. 5 12-month moving averaged OHC300 (unit: ZJ, i.e., ×1021 J) for four major ocean basins.
Because Argo data has a shorter temporal coverage so the reference here is 2005–2014. The thick
black line with gray envelopes is the ensemble average and three standard deviations for six OPEN
ensemble members

Table 5 The OHC linear trendsa for different ocean basins (unit: ×1022 J/decade)

Basin EN4 GLORYS2V4 ARMOR3D IAP OPEN

OHC trends

Atlantic ocean 1.27/0.62b 2.24/1.25 1.93/0.88 1.27/0.66 1.47/1.28

Pacific ocean 2.29/1.33 3.52/3.12 3.49/1.93 1.88/1.57 2.57/2.45

Indian ocean 0.80/1.36 1.26/1.75 1.43/1.50 0.95/1.48 1.17/1.36

Southern
ocean

−0.15/0.12 −0.25/−0.15 0.16/0.36 0.01/0.20 0.14/0.30

a These trends were computed from the 12-month moving mean of the regional integration of each
product
b The two values are for 1993–2010 and 1998–2015 periods

in the PacificOcean, with positive trends in thewestern part and negative trends in the
east (Fig. 6). The structure mimics the Pacific Decadal Oscillation negative pattern,
which was supported by the transition from positive to negative phase reported in
literature [37]. For the later period, both the IAP and OPEN show bulk warming
Indian Ocean, but less homogeneous for other basins. These consistencies prove the
capability of OPEN data to reflect OHC trends in both Argo and pre-Argo eras.

We now focus on the inconsistency. Compared with the majority of data sets,
OPEN differs to the largest degree for the Pacific. Because the ENSO’s signature is
exaggerated in the Pacific and lower in the other oceans. For OPEN, a significant
jump after 2015 can be unexpectedly seen for the Pacific OHC, which is not found
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Fig. 6 Linear trends for (left) IAP and (right) OPEN OHC300. The upper row shows those of
1993–2010 and the lower row is for 1998 to 2015. Zeros are depicted with black lines

in the global OHC (Fig. 4). Further speculation shows that the different references
contributed to approximately half of this jump, i.e., OPEN has a lower reference
compared to ARMOR3D and GLORYS2V4. On the other hand, OPEN OHC300
presents aminimal envelope of uncertainty in the Pacific basin (Fig. 5), which implies
that the jump is not due to random errors but contains mostly systematic biases. To
reduce the error, one option is to utilize amore sophisticated deepenedNN, such as the
deep convolutionalNN thatwill be discussed in the following chapters of this book, to
extract the complicated link between surface variables and OHC. Alternatively, one
can also adopt the strategy to use the clustering technique to subset the global ocean
into distinct thermal provinces, each can be represented by a simple but different
surface-subsurface relationship and thus better estimated by NN. This strategy has
been shown viable in our previous effort [36]. These will be tested in future research.

We notice that IAP has a reference that is about 10% higher than that of Argo
and OPEN. To further examine this mismatch, we show the non-anomaly OHC300
from these three products, which is one particular snapshot as an example (Fig. 7).
The IAP product is significantly larger, i.e., warm bias, than OPEN and Argo, which
is especially noticeable in the Pacific Ocean’s subtropical gyres, despite the fact that
the three products show relatively similar patterns. This is very likely due to the
errors of the XBT correction scheme of IAP. Compared with more accurate CTD
measurements, the XBT measurements have a well-documented warm bias, despite
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Fig. 7 Non-anomaly OHC300 (non-anomaly, unit: J) for a Argo, b IAP, and c OPEN showing a
particular snapshot at April average of 2018

Fig. 8 The PCs (left), EOFs of OPEN (middle), and EOF of IAP (right) from EOF analysis
of OHC300, with the corresponding percentage of explanation shown in the title. The explained
percentage of eachmode is listed above the corresponding EOFs. Before EOF analysis, linear trends
and high-frequency signals (higher than 12months) were removed

the advanced time-varying correction recently developed [12, 34], which accounts
for ~0.5 ◦C warm bias. Yet, noting that this error is systematic, there are limited
signatures in the decadal trends, but this highlights the value of having additional
independent OHC datasets.

To further demonstrate the OHC300’s spatiotemporal variability, we apply the
empirical orthogonal function (EOF) analysis to OPEN and IAP (Fig. 8). The EOF
analysis was conducted after linear trends and seasonal variation (by a 12-month
lowpass filter) were removed. Those spatial EOFs and temporal PCs show high
agreements between OPEN and IAP data sets (Fig. 8). For instance, the first mode
accounts for 41.2%variability in IAP and 40.7% inOPEN,which is very close to each
other. Only some small differences can be found in the corresponding PC1 (Fig. 8a).
The EOF both have a tropical Pacific dipole higher in the warm pool and lower in
the western part. In the extratropic, the difference is still small. Other modes present
some visibly larger differences, but considering the smaller percentage (<12%) of
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these modes, the contribution to the OHC difference is small. The same conclusions
will be drawn by analyzing OPEN and other products, further demonstrating the
validity of OPEN.

5 Summary and Conclusions

In this chapter, we describes the AI technique of DORS and its application for
studying climate change. An NN approach was developed to estimate OHC from
remote sensing data sets, yielding a new ocean heat content estimation, which was
termed Ocean Projection and Extension neural Network (OPEN) product [47]. By
using the 1◦ × 1◦ gridded Argo OHC data as the true values, and taking advantage
of remote sensing products of SSH, SST, and SSW with near-global coverage and
higher spatiotemporal resolution, we trained four NNs, each for estimating the OHC
from the surface to 300, 700, 1500, and 2000m depth. The NNs were trained with
the 2005–2018 data in a way that enables the temporal extrapolation of OHC. By
testing a variety of architecture of NN and feature combinations, the NN was opti-
mized.Generally, a simple shallowNNwas favorable for temporal extrapolation. The
final choice for NN architecture had three hidden layers, each with three neurons.
In this way, the four-depth OPEN OHC product was extended to the 1993 period
covering the pre-Argo era, with a very high accuracy of R2 > 0.95 and NRMSE <

20%. We also estimated the uncertainty of OHC by using an ensemble technique,
which demonstrated that OPEN also had low uncertainties from the NN technique.
Comparisons of OPEN against other widely applied OHC data sets showed the good
performance of OPEN in terms of trends and variabilities.

Various contributions have emphasized the need for more trustworthy OHC prod-
ucts for the sake of understanding the Earth’s climate, e.g., [42, 54]. As we men-
tioned before, all estimations are subjected to different sources of uncertainties. In-
situ mapping-based products (IAP, EN4, and NCEI) have inconsistent observation
records and uncertainties in mapping schemes. Numerical models (GLORYS2V4)
may incorporate imperfect representations of physics. Despite the favorable perfor-
mance of the NN-basedOPEN product, it has limitations. It was trained from gridded
Argo data. Although the gridded Argo product is often treated as observation, it is
subjected to its own mapping and instrumental errors. For instance, [30] has found a
larger errors of such product in western boundary current systems, where nonlinear
dynamics are characterized. The unevenly distributed Argo profiles also contributed
to the spatial errors.

For the oceanography community, one haunting skepticism toAI technique is that:
what can these techniques do to solve real-world oceanography problems? To date,
many applications of AI oceanography are still very preliminary, ‘in their infancy’
[55], far away from product-level outcomes. This chapter shows a promising appli-
cation of AI techniques in climatic and ocean sciences, in addition to the currently
available DORS studies. Presumably, the application of OPEN will also serve as
a base for future AI studies. Several future directions of AI application concern-
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ing OHC and its climatic effects are: (1) extending the global OHC product to a
longer time span, favorably covering several quick-warming and particularly surface
warming ‘hiatus’ periods to understand the phenomenology [53]; (2) generating a
downscale OHC product with higher spatial/temporal resolution; (3) developing AI
method that digging into multiple datasets and digesting physics laws; and (4) pro-
jecting future OHC. These are all playgrounds where the AI Oceanography approach
can unleash its potential.
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Detecting Tropical Cyclogenesis Using
Broad Learning System from Satellite
Passive Microwave Observations

Sheng Wang and Xiaofeng Yang

1 Introduction

Tropical cyclone (TC), as one of the most violent phenomena of air-sea interac-
tion, often brings disastrous storm surges and flooding and causes significant dam-
age to human life, agriculture, forestry, fisheries, and infrastructure. Therefore, the
knowledge of TC track, intensity, structure, and evolution is required to guide severe
weather forecasting and risk assessment. Generally, the formation of TCs needs
the support of dynamic environmental conditions and thermodynamically favorable
environmental conditions [19]. Because only a small percentage of convective dis-
turbances are developing into TCs, it is still challenging to predict the TC formation
accurately.

Since the Dvorak Technique (DT) was proposed and developed [8, 21, 28], it
has been wildly used in TCs intensity estimation [14, 22, 25, 29] and TC formation
prediction [6, 20, 32, 33]. However, DT is based on the infrared technique, whose
observations may be obscured by significant convection or cirrus clouds. In contrast,
microwave radiation images can capture the strong convective areas and cloud orga-
nization. Therefore, it is potential to predict the formation of TCs with microwave
remote sensing data.

With the advancements in high-performance computing, machine learning meth-
ods based on big datasets are wildly used in tropical cyclogenesis detection of TC
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formation. Based on the decision tree method, a series of classification rules are
constructed to predict future tropical cyclone (TC) genesis events, and the overall
prediction accuracy is 81.72% [35]. Using the dataset establishedwithWindSat wind
products, [23] established a classification model for tropical cyclogenesis detection.
The validation shows that the model produced a positive detection rate of approx-
imately 95.3% and a false alarm rate of 28.5%. This study confirmed the poten-
tial of microwave remote sensing observation in detecting typhoon formation [23].
Recently, based on the internal structure information of tropical cyclones obtained
by satellite remote sensing, [27] effectively improved the prediction accuracy of the
rapid enhancement process of tropical cyclones and reduced the false alarm rate
using the machine learning method. Moreover, [13] compared different machine
learning algorithms’ TC formation detection performance. Their results prove that
the machine learning method performs better than the traditional linear discriminant
analysis.

However, with the continuous accumulation of remote sensing data, traditional
machine learningmethods cannot deal withmassive data perfectly. Fortunately, pow-
erful deep learning has demonstrated its more significant superiority over traditional
physical or statistical-based algorithms for image information extraction [18]. In
ocean remote sensing applications, the deep learning methods are used in hurricane
intensity estimation [7, 24], sea ice concentration prediction [5, 9, 11], sea sur-
face temperature estimation [1, 30] and other fields [10, 26, 37]. A deep learning
approach has been proposed to identify tropical cyclones (TCs) and their precursors
based on twenty-year simulated outgoing longwave radiation (OLR) calculated with
a cloud-resolving global atmospheric simulation [19]. In the Northwest Pacific in the
period from July to November, the probability of detection (POD) of the model is
79.9–89.1%, and the false alarm ratio (FAR) is 32.8–53.4%. In addition, this study
reveals that the detection performance is correlated with the amount of training data
and TC lifetimes.

Although deep learning is increasingly widely used in ocean remote sensing [18],
the disadvantages of deep learning are also evident. It requires high computing power
and a long training time. Moreover, most deep learning models do not have incre-
mental learning capacity, which means the model needs to be retrained if updating
the dataset. In ocean remote sensing, the satellite-based data increases every day,
so the size of datasets is expected to expand further to improve the generalization
ability and identification accuracy of models. Therefore, the defect of no incremental
learning is not friendly to storage resources or model update times. Fortunately, the
capacity of incremental learning of the Broad Learning System (BLS) [3] makes it
have the potential to be applied in the field of ocean remote sensing. Meanwhile,
the BLS is a time-cost-friendly learning strategy due to its flatted network. These
advantages can compensate for the disadvantage of its accuracy compared with deep
learning, so it has been widely used as soon as it is proposed. Recently, it has suc-
cessfully been applied in seismic attenuation modeling [16], model updating [17],
hyperspectral imagery classification [34], and crack detection [36].

In this chapter, we proposed a tropical cyclogenesis detection algorithm based
on Special Sensor Microwave Imager (SSM/I) brightness temperature data. The
proposedmodel based onBLS has three unique features: low hardware requirements,
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fast computation speed, and incremental learning ability. In Sect. 2, the dataset used in
this study is presented. In Sect. 3, the details of BLS are introduced. The experimental
results are shown in Sect. 4, and the conclusion is given in Sect. 5.

2 Data Description

The dataset used in this chapter is extracted from the brightness temperature (TB)
observations acquired by SSM/I. This series of instruments is carried onboard
DefenseMeteorological Satellite Program (DMSP) near-polar orbiting satellites. The
SSM/I is a conically scanning sensor that measures the natural microwave emission
from the Earth in the spectral band from 19GHz to 85GHzwith different polarization
(See Table1). The parameters derived from these radiometer observations include
surface wind speed, atmospheric water vapor, cloud liquid water, and rain rate [31].
Comparing the feature of TB images in different channels/polarizations, the 37GHz
H-polarization (37H) channel is selected due to its clear description of the features
of disturbances and tropical cyclones.

To collect the sample images covered TCs or non-developed disturbances (non-
TC), the TC best tracks and tropical cloud cluster (TCC) tracks during 2005–2009 are
used as auxiliary data. This information can be obtained from the International Best
Track Archive for Climate Stewardship dataset (IBTrACS) [15] and Global Tropical
Cloud Cluster dataset [12], respectively. The time resolution of these two datasets is
three hours. Note that not all the best track records in the TC evolution period are
used, but those during the TC formation period are selected. Specifically, the time
when the TC maximum wind speed reaches 25 knots for the first time is defined
as the starting time. Then, the 72h after this time is defined as the TC formation
period [23]. For the TCC tracks, only the records that have not developed into TCs
are selected. The preprocessing steps for extracting the TC and non-TC images are
described as follow:

(1) For each TC/non-TC track record, determine thematching SSM/I TB datawithin
the absolute time difference of 1.5h.

(2) Take the track record as the image center position, and extract the sub-images
with the size of 8◦ × 8◦ from the SSM/I TB observations.

(3) The sub-images with more than 60% non-empty pixels are retained as qualified
samples (see Fig. 1); otherwise, the invalid data will be excluded (see Fig. 2).

Table 1 Channel characteristics of SSM/I

Band/GHz Polarization Spatial resolution/km×km

9.35 V/H 69 × 43

23.235 V 50 × 40

37.0 V/H 37 × 28

85.5 V/H 15 × 13
∗ H-horizontal polarization, V-vertical polarization
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Fig. 1 Qualified samples: a valid TC samples and b valid non-TC samples
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Fig. 2 Unqualified samples: a invalid TC samples and b invalid non-TC samples
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Following the above steps, 880 TC samples and 6268 non-TC samples were
obtained from the SSM/I observations in 2005–2009. Due to the significant number
difference between the two samples, only 2506 non-TC samples in 2005–2006 and
880 TC samples in 2005–2009 were selected to form the final dataset. Each sample
is in the size of 224 × 224 pixels with RGB channels. Finally, These two datasets
are randomly divided into the training set and the testing set in the ratio of 4:1,
respectively.

3 Broad Learning System for Tropical Cyclogenesis
Detection

Once the dataset is established, the tropical cyclogenesis detection can be executed
with the broad learning system. In contrast to deep learning methods, the BLS pro-
vides a time-cost-friendly learning strategy due to its flatted network. The main
structure of BLS consists of the input layer, node layer, and output layer. Specifi-
cally, the node layer includes the feature nodes and enhancement nodes. Generally,
the input data is mapped to feature nodes with random weights. Then, the feature
nodes are further mapped to enhancements with new random weights. Finally, the
final weights of BLS can be trained by estimating the output data with these fea-
ture nodes and enhancement nodes. Figure3 shows the architecture of this study, the
definition of variables are: X is the input data, F is the feature node, and E is the
enhancement node. Y is the respective classification labels of the input data X. The
details of BLS are presented as follows.

3.1 Broad Learning Model

Assume that the input data is X, so the feature vector F mapped with random weight
can be described as

Fi = φ(XWei + bei ), i = 1, . . . , n (1)

where Fi is the i-th feature node, We and be are the random weights and biases
with the proper dimensions, respectively. Denote Fn ≡ [F1, . . . , Fn], which is the
concatenation of all the first n groups of mapped features. Then, the enhancement
nodes can be given by:

Em = ξ
(
FnWhm + bhm

)
(2)

where Em is the m-th enhancement node, Wh and bh are the random weights and
biaseswith the proper dimensions, respectively. Similarly, the concatenation of all the
firstm groups of enhancement nodes are denoted as Em ≡ [E1, . . . , Em]. Therefore,
the broad model can be represented as the equation of the form
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Fig. 3 The architecture of BLS

Y = [
F1, . . . , Fn | ξ

(
FnWh1 + bh1

)
, . . . , ξ

(
FnWhm + bhm

)]
Wm

= [F1, . . . , Fn | E1, . . . , Em]W
m

= [Fn|Em]Wm

(3)

where Wm = [Fn | Em]+Y are the connecting weights for the broad structure to
be computed and [Fn | Em]+ is the pseudo-inverse of [Fn | Em]. In a flatted net-
work, pseudo-inverse can be considered a very convenient approach to solving the
output-layer weights of a neural network. However, a straightforward solution is too
expensive, especially when the training samples and input patterns suffer from high
volume, high velocity, and/or high variety [4]. Under this situation of the expensive
cost for directly computing the pseudo-inverse, the solution can be approximated by
ridge regression:

A+ = [Fn | Em]+ = (λI + [Fn | Em][Fn | Em]T )
−1[Fn | Em]T (4)

where λ is the regularization parameter. Finally, the model weights are given by

W = A+Y (5)
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During the BLS computation, it should be noted that the number of enhancement
nodes is a hyperparameter (N3), and the number of feature nodes is the combination
of two hyperparameters: the number of feature windows (N1) and the number of
nodes in each feature window (N2). Here, the Bayesian optimization method is used
to find the optimal model hyperparameters, and it can be easily executed with the
Hyperopt package [2].

3.2 Incremental Learning of BLS

When a deep learning model works not well, the number of convolutional kernels
or the number of convolutional layers will increase. This will lead to expensive
computation and long time costing. However, BLS usually uses incremental learning
to address the low model accuracy caused by insufficient mapping nodes. Generally,
the incremental learning part can improve the model performance. There are two
ways to expand the broad structure: (1) increment of enhancement nodes and feature
nodes, and (2) adding input data.

3.2.1 Increment of the Feature Nodes and Enhancement Nodes

Assume that the initial BLS has n feature nodes and m enhancement nodes that is
A = [Fn | Em]. In the adding process, the (n+1)-th feature node is given by:

Fn+1 = φ
(
XWen+1 + ben+1

)
(6)

So that the corresponding enhancement node to this feature node is given by:

Eexm = [ξ (
Fn+1Wex1 + bex1

)
, . . . , ξ

(
Fn+1Wexm + bexm

)] (7)

Then, there are additional p enhancement nodes added to the BLS structure, and
the (m+1)-th enhancement node is given by

Em+1 = ξ
(
FnWhm+1 + bhm+1

)
(8)

Therefore, the final node layer matrix is combined as

A
′ = [A | Fn+1 | Eexm | Em+1] (9)

Then, the pseudo-inverse of A
′
is computed with

(A
′
)+ =

[
A+ − DBT

BT

]
(10)
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where D = (A)+[ Fn+1

∣∣ Eexm

∣∣ Em+1],

BT =
{
C+ C �= 0

(1 + DT D)−1BT A+ C = 0
(11)

and C = [ Fn+1

∣∣ Eexm

∣∣ Em+1] − AD. Finally, the new weights are

W
′ =

[
W − DBTY

BT Y

]
(12)

As seen in Eq.12, the updated weights consist of the initial and the new parts.
There is no need to re-calculate the pseudo-inverse for the whole nodes but only
compute the added nodes.

3.2.2 Increment of the Input Data

The increment of feature nodes and enhancement nodes mentioned above are for
the fixed dataset. However, in most learning models, the input dataset is the core
factor influencing the prediction accuracy. As for deep learning, once some new
data is added to the training dataset, the existing model needs to be retrained. This
is time-consuming and reduces the timeliness of model updating and application.
Fortunately, there is no need to retrain the whole model for BLS after adding input
data. The BLS will train only the added ones.

Denote Xa as the new inputs, the respective increment of mapped feature nodes
and enhancement nodes are:

Fn
x = [φ (

XaWe1 + be1
)
, . . . , φ

(
XaWen + ben

)] (13)

Ex
m = [ξ (

Fn
x Wh1 + bh1

)
, . . . , ξ

(
Fn
x Whm + bhm

)] (14)

where theWei ,Whi and bei , bhi are randomly generated during the initial BLS. Hence,
the updating matrix is

A
′ =

[
A
AT
x

]
(15)

where AT
x = [Fn

x | Ex
m]. The associated updating pseudo-inverse could be deduced

as follows:

Wx
n = W + (Ya − AT

x W )B (16)
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where Ya are the respective labels of additional Xa . Similar to the two increment
processes mentioned above, only the pseudo-inverse associated with new inputs is
calculated. It greatly improves the update speed of the BLS model.

4 Results

Before training the model, one should determine the hyperparameters first. For the
basic BLS, the hyperparameters include the number of feature windows (N1), the
number of nodes in each feature window (N2), and the number of enhancement nodes
(N3). To compare the training time andmodel accuracy, the classical ResNet50model
is also applied to the same dataset. For this ResNet50 model, the initial learning rate
is 10–3, the multiplicative factor of learning rate decay is 0.5, the batch size is 16,
and the number of epochs is 20. Before training the ResNet50 network, all input
images were resized to 224 × 224. To fairly compare the training time of these two
networks, the training tasks were operated on a computer with an Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz and 64GB RAM.

4.1 Basic BLS Results

Using the Hyperopt, the hyperparameters are optimized as: N1 = 5,N2 = 24,N3 =
2332. The training and testing accuracies and training time of these two methods are
shown in Table2. The testing accuracy of BLS is 86.83%, which is slightly lower
than the 91.88% of ResNet50. On the other hand, though the ResNet50 is operated
with an accelerating GPU, the training time of 2090.45 s is still 20 times than 60.52 s
of BLS. Therefore, BLS has obvious advantages in computational efficiency, but it
is not as accurate as the deep learning network because it is insensitive to the image
features. Furthermore, we compared the hit rate (HR) and false alarm rate (FAR) of
these twomodels. Table3 lists the HR and FAR for the training and testing processes.
The testing HR and FAR are 81.14 and 11.18%, respectively. Compared to the 79.9–
89.1% of HR and 32.8–53.4% of FAR of existing deep learning research [19], our
results are competitive. But it should be noted that the size of the dataset used in [19]
is 50000 TCs and 500000 non-TCs, which is significantly larger than our dataset.

Table 2 The results for BLS and ResNet50

Model Training accuracy (%) Testing accuracy (%) Training time

BLS 99.96 86.83 60.52 (CPU)

ResNet50 98.30 91.88 2090.45 (GPU)
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Table 3 HR and FAR of BLS and results of [19]

Prediction accuracy (%) BLS (%) Matsuoka et al. [19] (%)

HR 81.14 79.9–89.1

FAR 11.18 32.8–53.4

Table 4 Prediction accuracy with different hyperparameters

Feature nodes
(N1, N2)

Enhancement
nodes

Training time
(s)

Testing
accuracy (%)

HR (%) FAR(%)

5, 24 2332 58.68 86.83 81.14 11.18

5, 24 1000 57.59 86.24 72.57 8.98

5, 24 1500 59.78 85.35 75.43 11.18

5, 24 2000 58.28 84.62 74.29 11.78

5, 24 2500 58.82 85.50 74.88 10.78

5, 24 3000 59.68 85.50 74.86 10.78

6, 24 3000 68.01 84.47 77.71 13.17

7, 24 3000 73.34 86.24 78.28 10.98

8, 24 3000 77.02 85.50 78.86 12.18

In contrast to the massive number of hyperparameters, the BLS only has primary
hyperparameters to influence the prediction accuracy. To know the prediction perfor-
mance of BLS influenced by different combinations of these three hyperparameters,
we trained the same dataset several times, and the results are listed in Table4. The
combination of the number of feature nodes and enhancement nodes is essential for
the accuracy of the model. It shows that the more nodes, the longer the training
time, but the changing trend of model testing accuracy, HR, and FAR is inconsistent.
However, the optimized hyperparameter combination has the highest HR because
the optimization process takes the HR as the selection standard. Therefore, It is
indispensable to determine these parameters using the optimization algorithm.

4.2 Incremental Learning Results

The capacity of incremental learning is the prominent superior feature of BLS to
most traditional deep learning models. For most deep networks, the structures are
fixed once the training process is finished. In contrast, the BLS can be updated by
adding new nodes or updating the dataset. There is no need to retrain the whole
network, which significantly saves the costing time of model updating. The dataset
size is 3386, and we set the initial size as 1386 with the adding input patterns of 400.
First, we trained the initial model with the initial samples. Then, the incremental
learning method was operated to add corresponding input patterns each time until
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Table 5 Prediction accuracy and CPU time of incremental learning

Number of inputs Training accuracy (%) Testing accuracy (%) Training time (s)

707 100.00 26.33 31.53

708–1107 27.46 61.83 28.93

1108–1507 53.35 74.11 28.79

1508–1907 63.14 74.11 28.43

1908–2307 69.53 74.11 28.56

2308–2707 74.03 74.11 29.09

all training samples were input. During these incremental learning steps, the value
of hyperparameters is still as N1 = 5,N2 = 24,N3 = 2332. The results are shown
in Table5 and note that the testing dataset is unchanged during the incremental
learning. The results in the table show that with the size of inputs increasing, the
training accuracy grows. For the initial process, the small size of the dataset leads
to unreasonable accuracies. Because the test dataset for each incremental learning is
the same, the testing accuracy tends to be stable.

4.3 Case Study: Hurricane Wilma (2005)

Once the model training/testing processes are finished, the model hyperparameters
(N1, N2, and N3) and the weights of nodes (feature nodes and enhancement nodes)
are fixed. Based on the trained BLS, the prediction task of specific TC cases can
be executed. Here, we select Hurricane Wilma (2005) as the study case to validate
the effectiveness of the proposed model. Wilma was an extremely intense hurricane
over the northwestern Caribbean Sea. It had the all-time lowest central pressure for
an Atlantic basin hurricane. According to the statistics, twenty-three deaths have
been directly attributed to Wilma, and the total economic losses reached 16 billion
to 20 billion dollars. As the best tracks in Table6 shown, Wilma developed into a
tropical storm (TS) from tropical depression (TD) at 06:00 UTC 17 October, and
then strengthened into a hurricane (HU) at 12:00 UTC 18 October. We planned to
collect the samples from 18:00 UTC 15 October to 15:00 UTC 18 October during
the data preparation. However, there were only four qualified samples were retained
(see Fig. 4). The corresponding best track records of Fig. 4a–d are 00:00 UTC 17
October, 12:00UTC 17October, 00:00UTC 18October, and 12:00UTC 18October,
respectively.

Table7 lists the prediction results of these four samples. It shows that Fig. 4b
is incorrectly classified into a non-TC label, and the remaining three samples are
correctly identified. Figure4a is the first sample captured by SSM/I during Wilma’s
formation time, and its correct classification means the proposed model can detect
tropical cyclogenesis as early as possible. Figure4c, d are the observations during
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Table 6 The best track information during the formation time of Wilma (2005)

Time (UTC) Status Longitude Latitude Wind speed

10–15 18:00 TD 78.50◦ W 17.60◦ N 25

10–15 21:00 TD 78.66◦ W 17.61◦ N 25

10–16 00:00 TD 78.80◦ W 17.60◦ N 25

10–16 03:00 TD 78.91◦ W 17.55◦ N 27

10–16 06:00 TD 79.00◦ W 17.50◦ N 30

10–16 09:00 TD 79.10◦ W 17.49◦ N 30

10–16 12:00 TD 79.20◦ W 17.50◦ N 30

10–16 15:00 TD 79.30◦ W 17.51◦ N 30

10–16 18:00 TD 79.40◦ W 17.50◦ N 30

10–16 21:00 TD 79.52◦ W 17.49◦ N 30

10–17 00:00 TD 17.60◦ W 17.40◦ N 30

10–17 03:00 TD 79.61◦ W 17.18◦ N 32

10–17 06:00 TS 79.60◦ W 16.90◦ N 35

10–17 09:00 TS 79.64◦ W 16.59◦ N 37

10–17 12:00 TS 79.70◦ W 16.30◦ N 40

10–17 15:00 TS 79.75◦ W 16.12◦ N 42

10–17 18:00 TS 79.80◦ W 16.00◦ N 45

10–17 21:00 TS 79.86◦ W 15.89◦ N 50

10–18 00:00 TS 79.90◦ W 15.80◦ N 55

10–18 03:00 TS 79.88◦ W 15.70◦ N 57

10–18 06:00 TS 79.90◦ W 15.70◦ N 60

10–18 09:00 TS 80.04◦ W 15.91◦ N 62

10–18 12:00 HU 80.30◦ W 16.20◦ N 65

10–18 15:00 HU 80.68◦ W 16.44◦ N 70

∗TD-Tropical Depression, TS-Tropical Storm, HU-Hurricane

Wilma’s mature period, and its TC structure is relatively stable and complete. So it
is predictable to obtain the correct results. However, the negative result of Fig. 4b
proves that the quality of samples brings uncertainty and error to themodel prediction.
Specifically, compared with the other three samples, Fig. 4b loses nearly half of the
TC system information, which reduces the number of effective pixels and damages
spiral or TB distribution characteristics of TCs. This could be the main reason for
the poor prediction.

However, not all samples with missing information will be incorrectly identified,
but the core TC system information loss will lead to misclassification. To verify this
conclusion, we select the tropical storm Hilda (2009) as the test case. Figure5 shows
Hilda’s four qualified TC samples, and Table8 lists the corresponding prediction
results. It shows that all the samples are correctly classified though parts of informa-
tion lost in Fig. 5. In particular, the size of the missing part in Fig. 5a, b is similar to



160 S. Wang and X. Yang

Fig. 4 The bright temperature images during the formation of Wilma (2005)

Table 7 Prediction results for the four samples of Wilma (2005)

Time of samples
(UTC)

Label Prediction label Result Operating time
(s)

0–17 01:22 1 1 True <0.01

10–17 13:15 1 0 False <0.01

10–18 01:07 1 1 True <0.01

10–18 12:59 1 1 True <0.01

∗ Label 1-TC, Label 0-non-TCC

that in Fig. 4b, but there is less TC system information in the missing part. The TC
structure and TB distribution pattern are not contaminated significantly. Therefore,
these two samples can still be correctly identified. All in all, the proposed model can
well detect tropical cyclogenesis with high-quality data.
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Fig. 5 The bright temperature images during the formation of Hilda (2009)

Table 8 Prediction results for the four samples of Hilda (2009)

Time of samples
(UTC)

Label Prediction label Result Operating time
(s)

08–22 14:37 1 1 True <0.01

08–22 02:10 1 1 True <0.01

08–23 14:02 1 1 True <0.01

08–25 03:20 1 1 True <0.01

∗ Label 1-TC, Label 0-non-TC
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5 Conclusion

In this study, a tropical cyclogenesis detection model is proposed using BLS. In
contrast to the deep networkmethods, the newmodel is a lightweight flatted network,
leading to lower computation and shorter training time. Meanwhile, the capacity
of incremental learning of BLS is consistent with the continuously updated and
accumulated remote sensing data. Adding new input data does not need to retrain
the whole updated dataset. Based on the dataset consisting of 3386 TB images, the
testing accuracy, HT, and FARof BLS are 86.83%, 81.14%, and 11.18% respectively.
This study confirms the applicability of BLS in the binary classification problem in
ocean remote sensing. It also proves the possibility of detection of TC formation
from satellite microwave TB data.

Although theBLShas showngreat power in the classification problem, twodefects
need to be addressed: (1) the BLS is insensitive to the features of images, which will
lead to poor accuracy when the image features are complicated. Inspired by the
powerful ability of convolution neural network (CNN) to capture and learn image
features, we will add a feature extracting mode before our BLS to improve its image
processing ability. (2) The size of the dataset is too small to support the learning
requirements perfectly. There are three ways to expand the dataset: One is to add
the TB data from other channels (e.g., 19H/V), the other is to obtain samples in a
longer period, and the last is to utilize the TB observations from other microwave
radiometers (e.g., Microwave Imager onboard FengYun series satellites).
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Tropical Cyclone Monitoring Based on
Geostationary Satellite Imagery

Chong Wang, Qing Xu, Xiaofeng Li, Gang Zheng, and Bin Liu

1 Introduction

Tropical cyclones (TCs) are extreme weather processes developed over the tropical
ocean. They are called typhoons in the northwestern Pacific and hurricanes in the
eastern Pacific andAtlantic. TheNorthwest PacificOcean is the basinwith the largest
number of TCs in the world [5, 11], where TCs can be observed throughout the year
[48]. TCs can cause huge losses to marine production and transportation, such as
sweeping away the fishing nets, destroying the fish ravens and cages for breeding,
leading to the death of a large number of fish and shellfish, destroying the breakwaters
and offshore oil platforms, overturning ships and aircraft, etc. After landing, they
usually cause hazardous disasters such as storm surges, mountain torrents, urban
waterlogging, landslides and debris flows owing to the destructive wind and low
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pressure, which poses a serious threat to coastal areas and brings great damages to
human life and property.

The annual number of TCs generated in the Northwest Pacific Ocean accounts
for 36% of the total number of TCs in the world [55]. In this basin, TCs occur most
frequently from July to September. They can easily develop into super TCs under
the action of high temperature and high humidity. Under the influence of marine and
atmospheric environment, TCs usually move from the southeast to the northwest.
Many countries have listed the TC as one of the major natural disasters affecting
national public security, and clearly proposed to strengthen the research on key
technologies of TC monitoring and early warning [20, 54].

Locating the TC center and estimating its intensity have been widely considered
as an important part of TCmonitoring bymeteorological forecasting agencies. Under
the background of global warming, the intensity of global TCs shows a significant
increasing trend [20]. Accurate TC center position and intensity information can
better initialize the numerical models and make them more accurate to predict the
intensity and movement direction of TCs, especially the rapidly strengthening TCs
[20, 50], and thus help people to take precautions in advance and reduce losses.

Traditional TC monitoring platforms include coastal stations, buoys, oil drilling
platforms, etc.. But the recorded TC data is very few due to the sparse distribution
of these platforms. With the development of airborne remote sensing technology,
real-time observation of TCs in a large space and time range is realized by using
airborne radars or radiometers, but is still limited by extreme weather conditions.
Since 1970, a major breakthrough has been made in satellite remote sensing. Many
countries have launched geostationary meteorological satellites in succession, which
can realize real-time and continuous observation of the earth. Spaceborne sensors
generally have high spatial resolution and have become an important tool for TC
monitoring. Although there are more and more observation methods, the monitoring
of TCs still relies on the experience of experts to a certain extent. Particularly, there
is a lack of objective and effective monitoring methods for weak TCs at the stage of
formation or extinction.

A variety of TC center location methods based on infrared images, scatterometer
data or synthetic aperture radar images have been developed. These methods can be
divided into four categories. The first category is subjective method, which locates
the TC center based on the forecaster’s experience judgment on the Central Dense
TC Overcast in the satellite images [7–10, 37]. The second is the threshold method,
which is used to segment and identify the TC’s eye area from satellite images and
determine the morphological center of the eye area [2, 14, 28, 30, 32, 47]. The third
is the spiral curve method. As is well known, the structure of the TC cloud system
is not symmetrical, but spiral. The concept of spiral can be expressed by vector
distance and the spiral center is the TC center [23, 51]. The fourth category is wind
vector or cloud motion wind (CMW) method, which uses the wind field retrieved by
scatterometers or time series of infrared satellite images to establish the relationship
between the wind vector or CWM and the movement variation of a TC so as to locate
the TC center [17, 21, 31, 33, 34, 40, 52, 57].
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For TC intensity estimation using satellite images, two traditional methods are
Dvorak technology [7, 10, 12, 19, 56] and empirical regression method [3, 16, 24,
26, 36, 38, 42–44]. The Dvorak technology was first proposed by Dvorak in 1975 [7]
and has been operated for more than 40 years. The method assumes that the rotation
and shape of a TC eye area are related to the strengthening and weakening of a TC,
and TCs with similar intensities have similar morphological characteristics. In the
empirical regression method such as the deviation-angle variance technique (DAVT)
[3], the TC intensity is determined by establishing the relationship between the TC
intensity and different characteristics. Both methods rely on high levels of artificial
features converted from satellite images of TCs. However, it is difficult to obtain
general characteristics of TCs and establish empirical regression models for TCs at
different development stages and in different regions.

In the past few years, meteorologists and oceanographers have introduced the con-
volutional neural network (CNN) into TC monitoring. CNN is a kind of feedforward
deep neural network, which is trained through back propagation algorithm, and its
inspiration comes from the natural visual cognitive mechanism of organisms [22].
A complete CNN model consists of convolutional layers, pooling layers and full
connection layers. The convolution layer is used to extract features from the image,
the pooling layer filters and reduces the number of features, and the full connection
layer learns the relationship between these features and the model output. The CNN
model not only avoids the complex image preprocessing, but also does not depend
on the priori knowledge of TCs, and thus can meet the requirements of automatic
and objective TC center location and intensity estimation.

The CNNhas achieved great success in image classification and target recognition
[15, 22, 24, 26, 38, 42, 43, 46] and also shows great application potential in TC
intensity estimation. Pradhan et al. [36] collected 8138 TC images over the North
Pacific Ocean and the Atlantic Ocean from 1998 to 2012, and labelled the images
into eight categories based on the Saffir-Simpson hurricane scale and the HURDAT2
Best Track dataset. They used the CNN model to classify the TCs and then the
maximum wind speed (MWS) was calculated according to the probability of each
TC category. The root mean square error (RMSE) of the derived MWS is 10.19 kt.
However, there are green shorelines in the satellite images used in their study, which
may affect the accuracy of TC intensity estimation [16]. Combinido et al. [6] used a
CNN regression model to estimate TC intensity, but the RMSE of the MWS (13.23
kt) was larger than that of the CNN classification model proposed by [36]. Also
with the CNN regression model, Chen et al. calculated the intensity of TCs in the
global ocean based on more TC images [36, 44] and the RMSEwas reduced to 10.58
kt. Recently, Tian et al. combined the CNN classification and regression models to
estimate TC intensity [3], and they obtain a smaller RMSE of 8.91 kt.

The above results show that the CNN classification model or regression model
performs well in TC intensity estimation. Compared with the Dvorak technology, the
CNNmodel does not rely on the subjective judgment of the forecaster, which ensures
the objectivity of the method. Compared with the empirical regression method, the
neural network reduces the requirement of the knowledge level of the person who
uses thismethod. In addition, although theTCcenter position is necessary in theCNN
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model, the information is only used to cut the input images. Therefore, compared
with the empirical regression method, the CNN model does not require a very high
TC positioning accuracy.

In conclusion, the accuracy of TC center location and intensity estimation technol-
ogy has been greatly improved in recent years, but there are still some limitations. For
operational TC monitoring, objective, we need a fast and robust objective method,
and the CNN just meets this requirement. In this chapter, a set of CNN models were
designed to determine the TC center position and intensity from Himawari-8 geosta-
tionary satellite images in the Northwest Pacific Ocean. By discussing the influence
of the sensor channel, the number of satellite images and the configuration of the
neural network on the model performance, an optimal CNN model was developed
for automatic TCmonitoring. The data and structure of the CNNmodel are described
in Sect. 2. Sect. 3 and 4 present TC center location and intensity estimation results,
respectively. Section5 is the summary.

2 Data and Methodology

2.1 Data

The JapanMeteorologicalAgency (JMA) launched theHimawari-8 (H-8) geostation-
arymeteorological satellite in October 2014. The Advanced Himawari Imager (AHI)
onboard H-8 provides observations of different regions at different modes: Full Disk
(global scope), Japan Area (scope of two Japanese regions), Specific Area (scope of
two regions), and Landmark Area (scope of two regions). The Full Disk and Japan
area are fixed, while the other two specific areas and landmark areas can be adjusted
flexuously. The scanning range is shown in Fig. 1 (60 ◦S-60 ◦N, 80 ◦E-160 ◦W). The
on orbit working life of H-8 is 8 years [4]. After calibration and calibration test, the
data were provided since July 2015 http://www.eorc.jaxa.jp/ptree.

AHI’s 16 channels cover the whole Northwest Pacific: three visible, three near-
infrared, and ten thermal-infrared channels. Full-disk observations are taken every
10 minutes. The brightness temperature data from five infrared (IR, Channels 7, 8,
13, 14, and 15, see Table 1 for details from http://www.eorc.jaxa.jp/ptree.) channels
was obtained.

Based on AHI data, we collected 6,690 satellite images of 97 TCs over the North-
west Pacific with a time interval of 3 hours during the whole life cycle of the TCs
from 2015 to 2018, and the image resolution is 5 km. As shown in Fig. 2, the bright-
ness temperature data of 5 channels (7, 8, 13, 14, 15) with higher transmittance near
the large window (center wavelength are 3.9, 6.2, 10.4, 11.2, 12.4 μm, respectively)
were selected to locate TC center and estimate TC intensity. Channel 7 is mainly used
for observing cloud and natural disasters in the lower layer, channel 8 for observ-
ing water vapor content in the upper and middle layer, channel 13 for observing

http://www.eorc.jaxa.jp/ptree
http://www.eorc.jaxa.jp/ptree
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Fig. 1 Himawari-8 satellite scanning range

cloud images and cloud top conditions, and channels 14 and 15 are mainly used for
observing cloud images and sea surface temperature [4].

We use the TC Best Track dataset provided by the tropical cyclone information
center of China Meteorological Administration (CMA) http://tcdata.TC.org.cn as
ground truth data. The data set was compiled by Shanghai Typhoon Institute. The
TC Best Track dataset over the Northwest Pacific from 1949 to 2019 includes the TC
number and name, time, longitude and latitude of the TC center, the MSW (2 minute
average wind speed), the minimum air pressure, etc.. The time interval is 6 hours
before 2017 and has been encrypted to 3 hours for landing TCs since 2017. Starting
from 2018, the Best Track data has provided 3-h TC information 24 hours before the
landing activities [1, 45]. Consistent with H-8 satellite observations, we downloaded
the Best Track data of 97 TCs over the Northwest Pacific during 2015-2018.

http://tcdata.TC.org.cn
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Table 1 Himawari-8 channel setup [4]

Channel Wavelength
(μm)

Observation object

1 0.46 Vegetation, aerosol observation and color image synthesis

2 0.51 Vegetation, aerosol observation and color image synthesis

3 0.64 Sublayer cloud and color image synthesis

4 0.86 Vegetation and aerosol observation

5 1.6 Cloud phases

6 2.3 The effective radius of cloud droplets

7 3.9 Sublayer cloud and natural disasters

8 6.2 Water vapor in the upper and middle layers

9 7.0 Water vapor in the middle layers

10 7.3 Water vapor in the middle layers

11 8.6 Cloud phases and SO2

12 9.6 O3

13 10.4 Cloud image and cloud top image

14 11.2 Cloud image and sea surface temperature

15 12.3 Cloud image and sea surface temperature

16 13.3 Cloud height

Fig. 2 Bright temperature(unit: K) image of different channels of “Soudelor” obtained by AHI on
Himawari-8 satellite at 18:00 (UTC) on August 15, 2015 a channel 7, b channel 8, c channel 13, d
channel 14, e channel 15. The image space range is 1255 km×1255 km
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2.2 Data Pre—Processing

We selected H-8 satellite images synchronized with the 6-h Best Track dataset to
design the CNN-based TC center location (CNN-L) model. There are 3298 images
in total, amongwhich 1971 are used formodel training, 657 for validation and 670 for
testing. For each training or validation image, we re-extracted a sub-image covering
an area of 1500 km× 1500 km (pixel size 301× 301), and then cut the pixel size from
301 × 301 to 151×151 three times by moving it up, down, left or right randomly.
Finally, we labeled the processed image with the number and direction of moving
pixels. For example, if a TC center is shifted left by 5 pixels, and up by 10 pixels, the
image is labeled (−5, 10). The test images were only cropped. Finally, we obtained
5913 training images, 1971 validation images, and 670 test images with a reduced
size of 151×151.

More training images may also help to improve the CNN-based TC intensity
estimate (CNN-I) model performance. Hence, before the estimation of TC intensity,
we interpolated theMSWprovided by theBest Track dataset every 3 hours to increase
the data samples. The total of 6690 3-h images with a size of 251 × 251 was labeled
correctly according to eight categories using the Saffir–Simpson hurricane wind
scale (H1 to H5) along with intensity categorization for the tropical storm (TS) and
tropical depression (TD) as TC intensity categories (Table 2). The total 6690 images
are divided into the training, validation and testing images with 4014, 1338 and 1338
images, respectively. Studies show that the rotation of images in a CNN model can
reduce the sensitivity of orientation and does not affect the classification accuracy.
Therefore, the normalized training and validation images were artificially rotated
90 ◦, 180 ◦ and 270 ◦ clockwise. In this way, the number of images is increased by
three times, and finally, we obtained 16,056 training images and 5352 validation
images for the construction of the CNN based TC intensity estimation model.

Table 2 Saffir-Simpson hurricanewind scale and related classifications (TheSaffir–SimpsonTeam,
2012). MSW is ten-minute averaged maximum sustained wind speed

Symbol Category MSW (kt)

NC No Category ≤ 20

TD Tropical depression 20–33

TS Tropical storm 34–63

H1 Category 1 64–82

H2 Category 2 83–95

H3 Category 3 96–112

H4 Category 4 113–136

H5 Category 5 ≥137
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2.3 Methodology

The convolutional neural network (CNN)model consists of convolutional layers (C),
pooling layer (P) and fully connected layer (FC). The convolutional layer is used to
extract image features. In order to reduce the number of features and speed up the
calculation, the pool layer uses the filtering methods such as maximum, average and
minimum values to process these features. The nonlinear relationship between the
filtered features and the output results is learnt by the full connection layer. To prevent
overfitting, a dropout layer is usually added before the full connection layer [26],
which invalidates part of the connection between the upper and lower layers. CNN is
usually designed as a feed forward network that can be trainedwith a backpropagation
algorithm. When the error propagates back in the model, the network is optimized
by updating the weights and deviations to minimize the value of the loss function
[22].

The CNN model architecture for TC monitoring is shown in Fig. 3. It consists of
one input layer, four convolutional layers, four pooling layers, one dropout layer, two
fully connected layers, and one output layer. Table 3 lists the parameter setting of
the CNN model as shown in Fig. 3. The parameters include the convolutional kernel
shape, output shape and number of parameters, as well as the convolution kernel
shape used in each convolution layer, the filter shape used in each pooling layer and
the step size. Taking the CNN model shown in Fig. 3 as an example, the satellite

Fig. 3 Framework of the CNN based TC center location model
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Table 3 The MLE of CNN based TC center location model

Model number Wavelength (μm) MLE (km)

CNN-L 1 10.4 40.3

CNN-L 2 11.2 40.5

CNN-L 3 2.3 40.1

image with a size of 151×151 was input into the CNN model. The first convolution
operation is performed on the satellite image. The size of each convolution kernel
was 10×10, and the step size was 2. In this process, the model needs to learn 3232
parameters; In the first pooling layer, 32 feature images with the size of 3×3 and
step size of 2 are filtered, and 32 feature images with the size of 38×38 are obtained
by using the maximum pooling method. After four convolutional layers and four
pooling layers, 256 abstract feature images of the size of 3×3 are finally generated.
These feature images are expanded into 1-dimensional data of the size of 2304, input
into the dropout layer (the dropout rate is 0.5), and then connected with the first fully
connected layer. The model needs to learn 2360320 parameters. Finally, the model
output is obtained in the output layer. In the whole training process, the model needs
to learn a total of 2915298 parameters.

For TC center location and intensity estimation from multi-channel satellite
images, the input channel, the image resolution and model parameters would affect
the training efficiency and accuracy of the CNN model. By Setting up a group of
sensitivity experiments to investigate the influence of different factors on the model
performance, we aim to develop an optimal CNN model for TC monitoring.

3 TC Center Location

The CNN model for TC center location, i.e., the CNN-L model, as shown in Figure
3.3 is established in this section. We use the mean location error (MLE) to evaluate
the performance of the model:

MLE =

n∑

i=1

√
(xi − x ′

i )
2 + (yi − y′

i )
2

n
(1)

where n is the number of test images; (x, y) and (x’, y’) are TC center positions from
the Best Track data and CNN-L model outputs, respectively.
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Fig. 4 Himawari-8 Channel 7 images of TCs: a Halola (9:00 UTC on 13 July 2015), b Soudelor
(18:00 UTC on 30 July 2015), c Atsani (12:00 UTC on 16 August 2015), d Meranti (12:00 UTC
on 14 September 2016)

As shown in Fig. 4, there are sometimes some noises in the image of channel 7 or
8 due to the sensor calibration problem, which would seriously affect the TC location
accuracy. Therefore, we only use the images of channels 13, 14 and 15 as the input
of the CNN-L model.

We take TC “Maria” occurring during 4 July to 11 July, 2018 as an example.
Figure5 shows the TC center location results using the network configuration listed
in Table 3. The mean location errors between different CNN-L model outputs and
observations are similar, suggesting that the image channel has little effect on the
accuracy of the TC center location model.

Using Channel 15 data as the input of the CNN-L 3 model, a variety of network
configurations listed in Table 4 were further tested. CNN-L 3, CNN-L 4, and CNN-L
5models all consist of three or four convolutional layers, three or four pooling layers,
and two FC layers. However, each model has a different number of kernels in the
convolutional layers. The stride and zero-padding, the shape of the FC layer, and the
dropout in each model are listed in Table 4. One can see that CNN-L 3 produces
the lowest MLE, indicating that too many or few convolutional layers do not help to
improve the CNN-L model.

The results of CNN-L 3model for different categories of TCs are shown in Figs. 5,
6 and Table 5. Strong TCs generally demonstrate a more distinct and stable structure
and more obvious TC eye area than weak TCs. As a result, the mean location error
of the CNN-L 3 model also decreases rapidly with the increase of TC intensity. The
averageMLEs ofH1-H5 andH4-H5TCs are 30 km and less than 25 km, respectively.
As shown in Table 5, the accuracy of our CNN based TC center location model is
comparable to that of some techniques that also locate TCs from IR images with
spatial resolutions of 2.5–12.5 km (Table6).
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Fig. 5 CNN based TC center location model results for TC “Maria” occurring from 4 July to 11
July, 2018 at different stages: a Tropical depression, b Tropical storm, c Category 1, d Category
2, e Category 3, f Category 4. The red, yellow and purple dots represent the TC center positions
determined by the CNN-L model with brightness temperature of Channels 13, 14 and 15 as the
input, respectively. The blue dot shows the TC center position from the Best Track dataset provided
by CMA
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Table 4 Results of the CNN based TC center location models with different parameters(For exam-
ple, C1 means the first convolutional layer and P1 means the first pooling layer, C1(32@3 × 3)
denotes 32 kernels in the first convolutional layer with a size of 3 × 3)

Model number Parameters MLE (km)

CNN-L 3 C1(32@10 × 10), P1(3×3) 40.1

C2(64@5 × 5),P2(3 × 3)

C3(128@3 × 3), P3(3 × 3)

C4(256@3 × 3), P4(2 × 2)

Dropout = 0.5, FC1024, FC128

CNN-L 4 C1(32@10 × 10), P1(3 × 3) 42.3

C2(64@5 × 5), P2(3 × 3)

C3(128@3 × 3), P3(3 × 3)

Dropout = 0.5, FC1024, FC128

CNN-L 5 C1(32@10 × 10), P1(3 × 3) 41.8

C2(64@8 × 8), P2(3 × 3)

C3(128@4 × 4), P3(3 × 3)

C4(256@4 × 4), P4(2 × 2)

Dropout = 0.5, FC1024, FC128

Fig. 6 Mean location error (km) of the CNN-L 3 model for different categories of TCs. Numbers
in brackets represent the number of samples in the test group for this category

Table 5 Mean location error (km) of the CNN-L 3 model

TC category NC TD TS H1 H2 H3 H4 H5

Data number 17 203 298 99 43 33 18 3

MLE (km) 90 53 37 32 25 28 21 15
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Table 6 Performance of the CNN model in this study and other methods for TC center location

Literature MLE (km)

Pal P et al. [32] 11–79

Jin S et al. [23] 42.1

Our model 40.1

4 TC Intensity Estimation

Similar to Sec.3, the influence of the selection of input data and model parameters on
the performance of the CNN based TC intensity estimation model, i.e., the CNN-I
model shown in Fig. 7, is investigated in this section. The possible solution of the
side effects of imbalanced dataset is also discussed.

We evaluate the performance of the CNN-I model from three aspects:
(1) Accuracy

The number of exact-hits, which refers to the correct classification of a TC with
the highest confidence, is the accuracy metric.
(2) Root mean square error (RMSE) and mean average error (MAE) of TC intensity

For categories TD through H4, we define the estimated intensity or MSW of a
TC as the weighted average of the two highest categories for their probabilities.

Fig. 7 Framework of the CNN based TC intensity estimation model
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Table 7 Results of the CNNbased TC intensity estimationmodel with images of different channels
as the input

Model number Wavelength (μm) Accuracy (%) RMSE (kt)

CNN-I 1 3.9 78.1 12.14

CNN-I 2 6.2 78.2 12.41

CNN-I 3 10.4 80.3 11.40

CNN-I 4 11.2 80.3 11.54

CNN-I 5 12.3 80.5 11.28

CNN-I 6 3.9,12.3 81.0 11.25

CNN-I 7 6.2,12.3 81.3 11.03

CNN-I 8 10.4,12.3 81.5 11.05

CNN-I 9 11.2,12.3 80.7 11.71

CNN-I 10 3.9,10.4,12.3 82.7 10.76

CNN-I 11 6.2,10.4,12.3 82.5 10.89

CNN-I 12 3.9,6.2,10.4,12.3 82.9 10.64

Otherwise, we use the mean speed of the category that has the highest confidence.
The MSW (W) is evaluated as [35]:

W = U1 × P1 + U2 × P2 (2)

where P1 and P2 are the probabilities which output by the model of the TC categories
with the highest and second-highest confidence, respectively;U1 andU2 are themean
wind speed of the corresponding category.
(3) Confusion matrix and classification report

As shown in Table 9, The confusionmatrix depicts a model’s overall classification
performance. The number along the diagonal line in a confusion matrix represents
the number of correctly identified images for any category. A CNN model’s pre-
cision (P), recall (R, or confidence of detection), and f1-score (F1) are described
in the classification report. The ratios of real positive class values to total positive
classifications and the number of positive class values in the test data, respectively,
are P and R. F1 = 2P × R/(P + R) is the harmonic mean of recall and precision.

Table 7 shows the results of the CNN based TC intensity estimation model based
on 1338 test images with the model parameters shown in Fig. 7.

As shown in Table 7. for CNN-I models with single-channel input, Channels 13-
15 can achieve a higher accuracy. Channels 14 and 15 correspond to the thermal-IR
bands, which are often used to observe the cloud and calculate surface temperature
(SST). From a different perspective, the data support the conclusion of [41] that TC
intensity is connected with the temperature deficit of cloud top against sea surface.
We first combined Channel 15 with the other channels in CNN-I 6 through CNN-I
9 models to examine the use of multi-channel combination in TC intensity estimate.
Comparing CNN-I 9 with CNN-I 5, we can see that the combination of Channels
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15 with 7, 8 or 13 improves the model performance, while Channel 14 has little
contribution to the improvement of the model because its wavelength is close to
Channel 15. These two thermal infrared channelsmay provide redundant information
for TC intensity estimation, resulting in data redundancy.

With the input of more (3 or 4) channels of data, the 4-channel model CNN-I 12
produces the best result with an accuracy of 82.9% and a RMSE of 10.64 kt. This
is also consistent with some theoretical studies, indicating that the information of
water vapor, cloud characteristics, the brightness temperature difference of cloud top
and sea surface provided by the combination of channels 7, 8, 13 and 15, plays an
important role in TC intensity estimation [29, 49, 53]. Through the combined input
of multi-channel satellite images, the CNN-I model can learn the complex nonlinear
relationship between various elements and TC intensity.

A variety of network configurationswere tested further using theCNN-I 12model,
and the results are showed in Table 8. Four convolutional layers, four pooling layers,

Table 8 Results of the CNN based TC intensity estimation model with different parameters

Model number Parameters Accuracy RMSE (kt)

C1(16@10 × 10), P1(3×3)

C2(32@5×5), P2(3×3)

CNN-I 13 C3(64@3×3) P3(3×3) 82.9% 10.64

C4(128@3×3), P4(3×3)

Dropout = 0.5, FC1024, FC128

C1(32@10× 10), P1(3×3)

C2(64@5× 5), P2(3×3)

CNN-I 12 C3(128@3×3) P3(3×3) 84.8% 10.19

C4(256@3×3), P4(3×3)

Dropout = 0.5, FC1024, FC128

C1(64@10×10), P1(3×3)

C2(128@5×5),P2(3×3)

CNN-I 14 C3(256@3×3) P3(3×3) 80.1% 11.48

C4(512@3×3), P4(3×3)

Dropout = 0.5, FC1024, FC128

C1(32@10×10), P1(3×3)

C2(64@5×5), P2(3×3)

CNN-I 15 C3(128@4×4) P3(3×3) 77.8% 12.59

C4(256@3×3), P4(3×3)

Dropout = 0.5, FC1024, FC128

C1(32@10×10), P1(3×3)

C2(64@5×5), P2(3×3)

CNN-I 16 C3(128@3×3), P3(3×3) 86.0% 10.06

C4(256@3×3), P4(3×3)

Dropout = 0.5, FC1024, FC128
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and two fully connected layers make up CNN-I 13-16 models. For CNN-I 12 to
CNN-I 15, the number of convolution kernel in the convolutional layer increases
gradually. The model’s accuracy improves slightly as the number of convolution
kernels increases (CNN-I 13), but it decreases dramatically beyond a certain range
of kernel numbers (CNN-I 15). Although more kernels allow for the extraction of
more feature maps, these maps may not always have a favorable impact on the
model’s improvement. In addition, the decrease of the model performance with the
increasing number of convolution kernel may also be associated with the number of
training samples. More complex CNN models need to learn more parameters. It is
difficult to obtain a high accuracy when the difference between the training sample
size and the number of model parameters is too large. Compared with the CNN-I 12
model, CNN-I 14 changes the step size of the convolution kernel operation, but the
accuracy is reduced.

Recently, Woo et al proposed the spatial attention and channel attention mech-
anism, which is based on the study of human vision [54]. As show in Fig. 8, after
adding the spatial and channel attention layers, the CNN-I 17model gives the highest
accuracy (86.0%) and the lowest RMSE (10.06 kt) of the MWS. The CNN based
TC intensity estimation model can focus on the key factors revealed by the attention
mechanism, which helps to improve the accuracy of the model.

In general, the CNN-I 16 multi-category classification model does a good job at
estimating TC intensity. However, as demonstrated in Tables 9, 10, the classification
results for TC categories with little training samples are not particularly satisfactory.
For example, there are 62 samples in theH3 category, but only 48 have been identified
correctly. Only 77.0% of the H3 category is accurate. The degradation is caused by
an imbalance in the training data across different types of TC datasets. Taking H3 as
an example, the H3 category accounts for only 2.3% of total training numbers. Even
if most of the H3 images are misclassified during the training step of the CNN-based
TC intensity estimation model, the loss will only increase somewhat.Because the
CNN adjusts the weight value of each layer in response to the loss, the network will
struggle to learn the features of a category if there are few samples. As a result, the
accuracy of the CNN-I model for H2 category is lower.

We use Focal_loss function to replace the original loss function in the CNN
TC intensity estimation model. This function aids a model’s learning of features by
raising the category’sweightwith fewer data in loss, and has demonstrated excellence
in the field of target recognition. In this way, In the event of limited samples, the
model canbetter learn theTCcategory’s relevant attributes. TheFocal_loss function’s
definition is as follows: [27]:

FL(pt ) = −at (1 − pt )
rlog(pt ) (3)

where pt is the output of model for NC to H5 category, at is the weight coefficient
which is determined by the proportion of the number of NC to H5 category to the
total data, and r is the empirical parameter. The values of at and r for each TC
category used in this study are shown in Table 11. The accuracy of the TC intensity
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Fig. 8 Schematic diagram of spatial and channel attention layers in the CNN based TC intensity
estimation model a, channel attention b, and spatial attention c. “+” and “×” are plus and multiply
signs, respectively

estimation model (CNN-I 17) using the Focal_loss function is improved to 86.6%,
and the RMSE is reduced by 2.1%.

In many domains, multi classification can be transformed into target recognition
or binarization problem [18]. In this study, we further used eight binary models to
replace the multi-classification model, and each binary model can learn the TC char-
acteristics corresponding to each intensity category. Eight CNN based TC intensity
estimation binary models were constructed to identify NC to H5 category, respec-
tively.

The configuration of each model in Table 12 is the same as that of CNN-I 16.
The Focal_loss with values of at and r listed in Table 11 was also used. We changed
the classification label to “1” or “0”, which represents the intensity of whether a TC
corresponds to a particular category. If the maximum sustained wind speed of a TC
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Table 9 Confusion matrix of the CNN-I 16 multi-classification model

MODEL
CATEGORY

ACTUAL CATEGORY

NC TD TS H1 H2 H3 H4 H5 Total

NC 22 3 0 0 0 0 0 0 25

TD 11 349 29 1 0 0 0 0 390

TS 0 29 495 18 3 1 1 0 549

H1 0 4 27 145 14 2 2 0 194

H2 0 0 0 12 58 6 0 0 76

H3 0 1 1 2 8 48 4 0 64

H4 0 0 0 0 2 5 29 1 37

H5 0 0 0 0 0 0 0 3 3

Total 35 386 552 178 85 62 36 4 1338

Table 10 Classification report of the CNN-I 16 binary classification model

TC Category P(%) R(%) F1(%)

NC 63 88 73

TD 90 89 89

TS 89 90 89

H1 81 74 78

H2 68 76 72

H3 77 75 76

H4 80 78 79

H5 75 100 85

Total 86 86 86

Table 11 Values of at and r in FOCAL_LOSS function

TC Category NC TD TS H1 H2 H3 H4 H5

r 2 2 2 2 2 2 2 2

at (%) 97 70 60 86 94 95 97 99.7

sample is 52.0 kt, which belongs to the TS category, the corresponding label of this
image is “1” in the binary model which is responsible for judging the TS category,
and "0" in the other binary models.

As shown in Table 12, the CNN-I 18 binarymodel has amuch higher performance
than that of the multi-classification model CNN-I 16. Compared with CNN-I 17, the
accuracy of CNN-I 18 is improved to 88.9%, and the RMSE is reduced to 8.99 kt. The
results show that the introduction of the Focal_Loss function and the transformation
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Table 12 Results of the CNN based TC intensity estimation multi models with/without Focal_loss
function and binary model

Model number Method Accuracy(%) RMSE (kt)

CNN-I 16 CNN multi model 86.0 10.06

CNN-I 17 CNN multi model
with Focal_loss

86.6 9.84

CNN-I 18 CNN binary model
with Focal_loss

88.9 8.99

Table 13 Confusion matrix of the CNN-I 18 binary classification model

MODEL
CATEGORY

ACTUAL CATEGORY

NC TD TS H1 H2 H3 H4 H5 Total

NC 24 2 0 0 0 0 0 0 26

TD 11 354 24 2 0 0 0 0 391

TS 0 25 511 14 1 0 0 0 551

H1 0 2 14 152 12 3 0 0 183

H2 0 2 2 7 62 4 2 0 79

H3 0 1 1 3 9 52 4 0 70

H4 0 0 0 1 1 3 30 0 35

H5 0 0 0 0 0 0 0 4 4

Total 35 386 552 178 85 62 36 4 1338

of the multi-classification model into eight binary classification models helps to
reduce the side effects caused by the imbalanced dataset.

The CNN-I 18 binary classification model’s confusion matrix and classification
report are shown in Tables 13 and 14. The number of exact-hits for NC, TD, TS, H1,
H2, H3, and H4 all rose when compared to the results from the multi-classification
model (Tables 9 and 10). The precisions of H1-H4 classification have improved by
4.9%, 7.4%, 9.1%, and 3.8%, respectively.

Table15 compares the performance of the CNN model and other TC intensity
estimation methods. The RMSE of the maximum wind speed estimated by the CNN
based TC intensity estimation model proposed in this study is smaller than that of
the DAVT technique or most CNN regression or classification models, which proves
the potential of the CNN method in TC monitoring.
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Table 14 Classification report of the CNN-I 18 binary classification model

TC Category P(%) R(%) F1(%)

NC 69 92 79

TD 92 91 91

TS 93 93 93

H1 85 83 84

H2 73 78 76

H3 84 74 79

H4 83 86 85

H5 100 100 100

Total 89 89 89

Table 15 Comparison of our
model and other methods

Literature RMSE (kt)

Kossin et al. [25] 13.2

Ritchie et al. [39] 12.7

Fetanat et al. [13] 12.7

Pradhan et al. [36] 10.2

Chen et al. [3] 10.6

Tian et al. [45] 8.9

Our model 8.9

5 Summary

Accurately locating the TC center and estimating its intensity is an essential step for
forecasters and emergency responders to make disaster warnings. In this chapter, a
set of CNN-based model has been developed to automatically identify TC’s center
(CNN-L model) and intensity (CNN-I model) from H-8 geostationary satellite IR
imagery, which can provide a reliable technical and information support for TC
prediction and early warning systems.

Results show that the selection of satellite image channels has a significant impact
on the performance of the TC intensity estimation model but hardly affects the TC
center location model. Network parameters play an essential role in both models.
The mean distance between the TC centers identified by the CNN-L model and by
the Best Track dataset is 30 km for TCs in categories H1–H5. The accuracy of our
CNN-L model is comparable to some techniques that locate a TC center based on
its morphological features in IR images. Using four-channel (Channels 7, 8, 13, and
15) IR imagery, we found that the CNN-I 16 model has the best performance among
the multi-classification models.

For TC categories with smaller training datasets, due to the unbalanced dis-
tributions of TC categories, the multi-classification model cannot produce a very
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good result. By introducing the Focal_loss function in the CNN model and adopt-
ing eight binary classification networks, the side-effect of the unbalanced training
data is reduced. In TC intensity estimate, the binary classification model CNN-I 18
gives a substantially lower RMSE (8.99 kt) of the maximum wind speed than the
multi-classification model.
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Reconstruction of pCO2 Data in the
Southern Ocean Based on Feedforward
Neural Network

Yanjun Wang, Xiaofeng Li, Jinming Song, Xuegang Li, Guorong Zhong,
and Bin Zhang

1 Introduction

The ocean plays a vital role in regulating global climate change, About ~30% of
total emissions since the pre-industrial period has been stored in the ocean, However,
about 50% of the oceanic uptake of anthropogenic carbon takes place in the Southern
Ocean. It dominates the global heat and carbon dioxide absorption, therefore, many
scientists regard the Southern Ocean as the main research region. The “Southern
Ocean” (< 35 ◦S) was proposed by scientists around 2000 and was determined to be
the fifth largest ocean in the world. It is the only ocean that completely surrounds
the earth but is not divided by continents. It has important differences from ocean
currents in the Pacific, Indian and Atlantic oceans—Antarctic Circumpolar Current
(ACC). Moreover, the Southern Ocean is also an important region for global carbon
absorption and release. Before industrial time, due to the influence of upwelling
in the Southern Ocean, it has become a major carbon source region [6]. With the
influence of human activities, the atmospheric pressure gradient shifted and turned
into a carbon sink region. In the following section, We use the SOCAT dataset to
build a Feedfoward neural network (FFNN), based on this network we reconstruct
the Southern Ocean pCO2 data and calculate the CO2 flux changes in the region,
compare with other method, Our algorithm is compared with two neural network
algorithms and has a smaller root mean square error.
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1.1 Observations of pCO2 in Southern Ocean

Many data of the carbonate system can only be obtained by in-situmeasurement. Due
to the harsh environment of the SouthernOcean, the data collection is lacking. For sea
surface data, through the continuous efforts of the scientists, the Surface Ocean CO2

Atlas [13] has complies and quality control of ship data, fixed-point observation
data, and drifting buoy data to formed a relatively complete observation data set
(Fig. 1). This data set contains the pCO2 data which can be used to calculate the
sea-air carbon dioxide flux. We will use this database as the truth value to construct
our neural network and reconstruct the pCO2 gridded data of the entire Southern
Ocean.

Fig. 1 1998-2018 SOCAT data observation heat map
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1.2 Comparison of Reconstruction pCO2 Data

The results obtained by some traditional atmospheric inversions algorithms are
greatly affected by the amount of observational data [17, 20]. Some spatial and
temporal interpolations are based on empirical relationships between carbon dioxide
and alternative variables, and are mainly concentrated in areas with relatively rich
observations.

Neural network approaches have been frequently used in the reconstruction of
surface pCO2 in recent years. To recreate the pCO2 data of the Southern Ocean, Gre-
gor et al. employed a support vector machine (SVM) and a random forest (RF). The
root-mean-square errors (RMSEs) were 16.45 μatm and 24.04 μatm, respectively.
Meanwhile, Landschutzer et al. [11] created the SOM-FFNN method by combining
a self-organizing map (SOM) with a feedforward neural network (FFNN) to recreate
pCO2 data from the Southern Ocean. Sea surface temperature (SST), sea surface
salinity (SSS), Mixed Layer Depth (MLD), chlorophyll concentration (CHL), and
other metrics are used as inputs. The study shows that during the period 1980-2000,
the Southern Ocean carbon sink has remained stagnant or even weakened, and con-
tinued to increase after 2002. Both data products showed good interannual and sea-
sonal cyclical changes, but compare with the traditional machine learning algorithm
(SVM and RF), SOM–FFNN show better performance. Denvil-Sommer et al. [3]
employed the Laboratory of Climate and Environmental Sciences (LSCE)–FFNN
method to reconstruct global pCO2 data, which maintained consistency with obser-
vational results. However, compared with the observed data, the Southern Ocean’s
reconstructed data has a larger error than other regionswithmore in situ observations.

In this chapter, we use the Surface Ocean CO2 ATLAS (SOCAT V.6) data from
1998 to 2018 in the Southern Ocean, we applied the (CA)–FFNN method to recon-
struct the monthly and 1 ◦ × 1 ◦ pCO2 data of the Southern Ocean. Due to FFNN
produces more stable data in sparse areas [20], and interpolates the data with small
deviation [12], we use this method to reconstruct the Southern Ocean regional data.
The procedure is separated into two parts. First, each parameter’s correlation index
is calculated and arranged. Second, the pCO2 data in the southern ocean blank area
was interpolated using a relational model employing parameters with reasonably
strong correlation coefficients as input variables of the FFNN. The current scenario,
in which stations with less observation data have larger RMSE values, is improved by
this strategy. As a result, this method might be used to recreate regional data. Finally,
we looked at pCO2 fluctuations in the Southern Ocean on a seasonal, interannual,
and interdecadal scale.
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2 Data and Methods

2.1 Data

The parameters used in the CA method included SST , SST anomaly (SSTA), SSS,
and SSS anomaly (SSSA); these parameters were all from the gridded dataset of
Global Ocean Heat Content Change [2], while anomaly data were obtained by sub-
tracting the average data values from the climatic state data of each month. Chloro-
phyll concentration (Chl-a) were based on satellite remote sensing data from the
European Space Agency’s Global Color Project, while MLD data were obtained
from the French Institute of Marine Development. The u- and v- components of the
wind field at 10 meters above sea level (a.s.l.) were taken from the European Centre
for Medium-RangeWeather Forecasts. All these data except MLD are monthly aver-
ages over a 1 ◦ × 1 ◦ Lat/Lon box. MLD data is monthly averages over 0.5 ◦ × 0.5 ◦.

In this chapter, we convert the fCO2 data in the SOCAT data set to pCO2 data
as the training set and test set of FFNN. Transformation relationship between fCO2

and pCO2 is as follows [10]:

f CO2 = pCO2 · exp
(
p · B + 2δ

R × Tsubskin

)
(1)

where p is the atmospheric pressure (Pa), R is the gas constant (8.314 J K-1 mol-1),
SST is the sea surface temperature (K), Tsubskin is the subskin temperature and B and
δ are the correction coefficients, which are calculated as:

Tsubskin = SST + 0.17 (2)

B

(
m3

mol

)
= (−1636.75 + 12.0408SST − 3.27957 × 10−2SST 2 + 3.16528 × 10−5SST3) × 10−6

(3)

δ

(
m3

mol

)
= (57.7 − 0.118Tsubskin) × 10−6 (4)

The partial pressure of atmospheric CO2 was calculated by the following
formula [14]:

pCO2a = xCO2
[
Peq − VP (H2O)

]
(5)

where xCO2 is the dry air mixing ratio of atmospheric CO2. The relevant data are col-
lected from the reference data ofmarine boundary layer in the Earth SystemResearch
Laboratory of theNationalOceanic andAtmosphericAdministration (NOAA).Addi-
tionally, Peq is the pressure at equilibrium, and VP (H2O) is the steam of seawater
at a given temperature [8]
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VP = 0.61121 × e
(
18.678− Tsubskin

234.5

)
× Tsubskin

257.14+Tsubskin (6)

where the Tsubskin is subskin temperature.
In order to reduce the complexity of calculation of too large data set on neural

network learning, we use Eq.7 to normalize all data.

x
′ = x − min (x)

max (x) − min (x)
(7)

where x is actual value, min(x) is the minimum value of x , max(x) is the maximum
value of x .

Since the Chl-a data in this study did not include relevant records before the
launch of SeaWiFS in 1997, our research period was from 1998 to 2018. The spatial
resolution of all parameter data was 1 ◦ × 1 ◦. Longitude (Lon) and latitude (Lat) are
in 360 ◦ and 180 ◦ coordinate systems, and trigonometric conversion functions were
used to ensure continuity and normalization.

2.2 Nonlinear Neural Network Model for the pCO2
Reconstruction in the Southern Ocean

We use Equations 8 and 9 to calculate the correlation coefficient, and build a covari-
ance matrix between pCO2 and other collected data, as shown in Fig. 3.

Cov (,Y ) = E
[
(X − ux )

(
Y − uy

)]
(8)

ρ = Cov(X,Y )

βxβy
(9)

where u is the mean of the value, β is standard deviation of the value, Cov(X, Y) is
the calculated covariance matrix, and ρ is the correlation coefficient.

We use the parameters with correlation coefficients > 0.1 as the input parameters,
considering the relevance of chemical effects between SST and pCO2 [18], We still
use SST as an input parameter. After correlation analysis, the selected parameters
were the SST, SSSA,MLD, CHL, the u-component (U) of the sea surface wind field,
and the partial pressure of atmospheric CO2 (pCO2a). The established correlation
equations between pCO2 and the main parameters are summarized in Eq.10.

pCO2 = f

(
SST,SSSA,CHL,MLD,

U, aCO2,Lon,Lat

)
(10)

A nonlinear regression model was built using the FFNN. Although an FFNN’s
output data improves and becomesmore accurate as the number of layers and neurons
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Fig. 2 The Structure of our FFNN, The gray square is the dropout layer and dropout rate is 0.5,
blue square is input layer, yellow square is hidden layer, green square is output layer

Fig. 3 Matrix of correlation coefficients. The correlation coefficient value of the x-axis and y-axis
parameters is represented by each colored box. The value of the pCO2 correlation coefficient with
other parameters is contained within the blue box

in the FFNN grows, themodel’s size is also determined by the amount of data utilized
for model training. Because there is less observational data for the Southern Ocean
than for other regions,we built a simple FFNNstructure, the neutral network structure
of which is shown in Fig. 2. The final model at Step 2 has eight layers (six hidden
layers), and the numbers on the figure represent the size of the tensor input to each
layer. A gray square represents the dropout layer, and the dropout rate is 0.5. The
hyperparameters of the neural networkwere determined using k-fold cross-validation
(Fig. 4).

The data were divided into 75%/25% portions used for training/testing sets. The
neural network consists of eight layers, and the middle layer had six completely
connected hidden layers, we added three dropout layers and gave each layer’s dropout
ratio 0.5 to prevent the FFNN from overfitting. Through many tests and detailed
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Fig. 4 k-Fold cross-validation, which was divided into four folds in this study, with 25% data for
testing and the rest for training to create the best neural network. The yellow shape represents test
data, whereas the blue shape represents train data

analyses, the hyperbolic tangent (Tanh) was selected as the activation function of the
neuron, and the using the mean squared error (MSE) as the loss function:

MSE = 1

N

N∑
i=1

(
observedi − predictedi

)2
(11)

where observedi is the observation data, and predictedi is the data predicted by the
FFNN model, and we using RMSProp as the optimization function [21].

In order to control the amount of information, we adjusted the adaptive learning
rate. The CA–FFNNwas then formed by combining amain factor analysis and based
on the parameters, we build a FFNN structure and get a nonlinear regression model
through training.

2.3 Calculation of Carbon Dioxide Flux in the Southern
Ocean

The formula for calculating the carbon dioxide flux at the air-sea interface is [29] :

F = K · � f CO2 = K · (asubskinfCO2w − askinfCO2a) (12)

where a is the solubility of CO2 in seawater (mol kg-1 atm-1), calculated by Weiss
[10]:

ln a = −60.2409 + 93.4517

(
100

Tsubskin

)
23.3585 × ln

(
Tsubskin
100

)
S

×
[
0.023517 − 0.023656 ×

(
Tsubskin
100

)
+ 0.0047036 ×

(
Tsubskin
100

)2
] (13)
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In Equation 12, asubskin is calculated by the subskin temperature, askin is calculated
by the skin temperature. fCO2w is the fugacity of subskin seawater CO2, fCO2w is
the fugacity of subskin seawater CO2, fCO2a is the fugacity of atmospheric CO2, and
K is the exchange rate, which is usually considered as a function of wind speed .

K = �(660/Sc)0.5U 2 (14)

Here, Sc is the Schmidt number of CO2 in seawater at a given Tsubskin temperature,
such that:

Sc = 2073.1 − 125.62 × Tsubskin + 3.6276 × T 2
subskin − 0.043219 × T 3

subskin (15)

where U is the monthly mean wind speed (m/s) at 10 m height from the cross-
calibrated multi-platform ocean surface wind vector analysis product and � is the
scale factor which was evaluated based on different wind speed products (e.g., 0.39,
0.251, 0.31, etc.) and have been used in other studies [14, 24, 28]. Based on an
average wind speed of 6.38 m s–1 in the ECMWF product the scale factor of 0.31
was used to reach a global mean transfer velocity of 16 cm h–1, consistent with the
new radiocarbon-based constraints.

2.4 Evaluation

Due to the limited observation data in the Southern Ocean, the data set used for
verification will be very small, so the segmentation of the data set will lead to huge
differences betweenRMSEandmean absolute error. In order to ensure reliablemodel
verification, we used 100% data to train, test and verify the model, and continuously
optimized the neural network model and the internal weight. Finally, the neural
network was used to predict the observed area. RMSE is calculated to be 8.86 μatm,
while MAE is 5.01.

Figure5 shows that the predicted values are very close to the observed values and
R2= 0.93. In Table 1, we list the RMSE and MAE between the results of different
algorithms and the actual values. SOM-FFNNmerged a self-organizing map (SOM)
and feedforward neural network, and the RMSE is 12.24. LSCE-FFNN employed
the Laboratory of Climate and Environmental Sciences, and the RMSE is 17.40. We
conclude that the CA-FFNN-based models outperform both the SOM–FFNN and
LSCE–FFNN.
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Fig. 5 Scatter fit of product data and observation data with same station

Table 1 Comparison of our Algorithms’ Errors to LSCE-FFNN and SOM-FFNN

Artificial Intelligence
Algorithm

RMSE MAE

FFNN for Southern Ocean 8.86 5.01

LSCE–FFNN [3] 17.40 11.92

SOM–FFNN [12] 12.24 7.36

3 Results and Discussion

3.1 Seasonal Variation in Southern Ocean Sea Surface pCO2

According to the new dataset, the pCO2 data changes periodically with the seasons.
This result is consistent with the seasonal changes in other studies [16, 25, 27]. The
seasonal mean amplitude of ocean surface pCO2 in the southern ocean was 13.02
μatm and our data has similar seasonal variation characteristics compared with the
observational data of the Southern Ocean [15], the pCO2 reaching its minimum in
summer, and increase in winter (Fig. 6), and driven by both biological and physical
factors, pCO2 in the Southern Ocean shows obvious seasonal changes [22], In winter,
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Fig. 6 In SOFS, the product data and real value

Fig. 7 From 1998 to 2018, the normalized mean monthly U-component of wind and pCO2 was
calculated

due to the enhancement of thewindfield in the SouthernOcean, as shown in the Fig. 7,
the Ekman transport caused by the wind field also intensifies [1, 7], strengthening
upwelling and improving the efficiency of the biological pump.

The dissolved inorganic carbon in the bottom layer migrates to the surface layer
under the influence of the upwelling,making the surface pCO2 increase continuously.
With the melting of sea ice in the Southern Ocean in summer, marine primary pro-
ductivity gradually recovers, the Chl-a concentration increases, as shown in Fig. 8,
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Fig. 8 From 1998 to 2018, the average monthly CHL and pCO2 data were normalized

and CO2 in sea water is absorbed through photosynthesis [26], which lead to surface
pCO2 decrease. This period is mainly due to biological factors.

3.2 Annual Variation in Southern Ocean Sea Surface pCO2

Analyzing the inter-annual change of the reconstructed pCO2 data from1998 to 2018,
the mean surface pCO2 of the Southern Ocean increased from 351.88 μatm to 372.65
μatm—a total increase of 20.77 μatm in 21 years and an annual mean increase of
0.99 μatm/yr. As shown in Fig. 9, the Southern Ocean pCO2 has maintained a high
growth rate.

By calculating the linear rate of change in the Southern Ocean spatial region over
a 21-year period, it is found that the pCO2 in most areas is gradually increasing,
as shown in Fig. 10. The growth rate around 35 ◦to 55 ◦ is faster than other regions.

Fig. 9 a is monthly fluctuations in the Southern Ocean’s pCO2 (atm) from 1998 to 2018; b is yearly
fluctuations in the Southern Ocean’s pCO2 (atm) from 1998 to 2018
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Fig. 10 The rate of change in the surface Southern Ocean’s pCO2 (μatm yr-1) concentration

Since 2002, many study results have shown that pCO2 in the Southern Ocean has
maintained a high growth rate [23], and our data also shows this trend.

3.3 Variability in Sea—AirCO2 Flux

As for the rate of change of�f CO2,Most of the Southern Ocean is transforming into
a carbon sink area. The black/red dots in Fig. 11 represent �f CO2 regions toward
positive/negative trends with high change rate. According to the distribution of pCO2

in the Southern Ocean since 1998, the status of inner ring (50 − 70 ◦S) as a carbon
source is changing, while the outer ring (35 − 50 ◦S) has always maintained a strong
carbon sink state, and there is no tendency to weaken. The changes of CO2 flux in
the Southern Ocean calculated by our model are consistency with other models for
the evolution of intensity [19]. Using Eq.12 to calculate the CO2 flux, the Southern
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Fig. 11 Carbon sink when �f CO2 < 0, carbon source when �f CO2>0, Rate of change in the �f
CO2 of the Southern Ocean

Ocean’s CO2 fluxwas found to have changed substantially over the past two decades.
The �f CO2 in the Southern Ocean also changes regularly with the seasons, with
the strongest in early summer and get the weakest at the end of winter (Fig. 13).
Many studies have shown that in early 1990s, the Southern Ocean was saturated
with carbon and regained its vitality at the beginning of the 21st century [4]. The
data products reproduces the strong increase of carbon sinks in the Southern Ocean
since the 21st century (Fig. 14).

In terms of interannual changes, the carbon sink of the Southern Ocean increased
from -0.21 Pg C yr-1 in 1998 to -1.67 Pg C yr-1 in 2018.

One standard deviation was used as an indicator of error:

σn =
√∑n

i=1 (xi − x)2

n2
(16)
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Fig. 12 CO2 flux trends in of the Southern Ocean from 1998 to 2018

where xi is the actual value, x is the mean value of x , n is number of data, and the
error range was within ± 0.0.087 Pg C yr-1.

We found that the carbon sinks in the Southern Ocean did not always maintain a
trend of rapid growth. During 2010-2013, the carbon sinks stagnated. As shown in
Fig. 12, we found the similar phenomenon inmany other reconstructed data [5].Many
studies have shown that changes in the Southern Annular Mode (SAM) led to the
stagnation of carbon sinks in the 1990s [5]. However, the stagnation was not strongly
correlated with the SAM. Stability during this period was mainly due to the weak-
ening of the carbon sink intensity from 35 − 50 ◦S.Changes in this region have also
been attributed to the barometric asymmetry of the Zontal Waves 3 (ZW3) model
[9]. As for models that rely on observational data, it is difficult to capture such large
and subtle inter-annual changes.

As shown in Fig. 16, there is an obvious double-ring structure before 2010, which
is not always a carbon sink. The inner ring (50 − 70 ◦S), change with the seasons. In
April, May, June, July, August, and September, the region serves as a carbon source,
emittingCO2 into the atmosphere. InOctober, November,December, January, Febru-
ary, and March, it absorbs CO2, as shown in Fig. 14. The outer ring (35 − 50 ◦S) is
the main carbon sink region (Fig. 15), and undertakes most CO2 absorption. From
the perspective of the inter-annual changes in the entire region, the Southern Ocean
carbon dioxide flux changes to carbon sinks.

However, with the increase of carbon sink in the outer ring and the weakening
of the carbon source in the inner ring, after 2010 this ring structure is gradually
disappearing. As shown in Fig. 16, most Southern Ocean regions become carbon
sinking regions, because the �f CO2 in the Southern Ocean decrease significantly
since 1998.
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Fig. 13 Changes in �f CO2 values by month and year from 1998 to 2018 (μatm). The gray lines
indicate fluctuations in previous years, whereas the colorful lines represent variations in the year
under consideration
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Fig. 14 Each month’s average CO2 flux in 50 − 70 ◦S (Pg C). The Southern Ocean was a carbon
supply in the red columns, whereas the Southern Ocean was a carbon sink in the black columns

Fig. 15 Each month’s average CO2 flux in 35 − 50 ◦S (Pg C). The Southern Ocean was a carbon
sink, as indicated by the blue columns
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Fig. 16 In the Southern Ocean, mean sea surface CO2 fluxes (Pg C) were measured in 1998, 2003,
2006, 2010, 2014, and 2018

4 Conclusion

In this chapter, we propose a feedforward neural network for reconstructing pCO2

data in the Southern Ocean that is generalizable for reconstructing regional data.
The reconstruction process consists of two steps. First, we collect all parameters
that may have impact on pCO2 from the literature and experimental data and obtain
the covariance matrix of the variables by calculation. The parameters with higher
correlation coefficient values and an effect on the process change of pCO2 were kept
as inputs FFNN, and the final model was constructed and used to reconstruct the
pCO2 data of the Southern Ocean with a monthly temporal resolution and a spatial
resolution of 1 ◦ × 1 ◦ in the second step after continuous and iterative calculation
and optimization.

First of all, we find the key parameters that affect pCO2 in the Southern Ocean
changes. Secondly, use the advantages of neural network technology to interpolate
in the data sparse area, and build a new model by filtering parameters. Finally, in the
Southern Ocean, we compare the new data with the measured data and get the root
mean square error with 8.86 μatm which is better than the data reconstructed from
global data.

The results of our reconstruction demonstrate that pCO2 in the Southern Ocean’s
surface layer varies seasonally and has risen since 2000. It did, however, reach a halt
from 2010 and 2013, after which it resumed its upward trend. In the Southern Ocean,
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carbon dioxide flux is distributed in a double ring shape. The primary carbon sink
region is 35 − 50 ◦S; south of 50 ◦S, seasonal carbon sources and sinks alternated.
Despite the fact that our findings are consistent with earlier studies, the reconstructed
surface pCO2 products require ongoing verification. Our model will improve as the
frequency and range of observations in the Southern Ocean increase.
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Detection and Analysis of Mesoscale
Eddies Based on Deep Learning

Yingjie Liu, Quanan Zheng, and Xiaofeng Li

1 Introduction

Mesoscale eddies are circular currents of water bodies with spatial scales from tens to
hundreds of kilometers and temporal scales from days to years [7]. Mesoscale eddies
play a significant role in the transport of momentum, mass, heat, nutrients, salt, and
other seawater chemical elements across the ocean basins, effectively impacting the
global ocean circulation, large-scale water distribution, air-sea coupling, and biolog-
ical activities [2, 3, 7, 8, 13, 18]. Mesoscale eddies can be generally classified as
either cyclonic eddies (CEs) if they rotate counterclockwise (in the Northern Hemi-
sphere) or anticyclonic eddies (AEs) otherwise. CEs (AEs) drive local upwelling
(downwelling), leading to negative (positive) sea surface height (SSH) anomalies
and sea surface temperature (SST) anomalies. The changes in SSH, SST, chloro-
phyll concentration (CHL), and roughness caused by oceanic eddies can be recorded
by altimeter, infrared, ocean color, and synthetic aperture radar (SAR) remote sens-
ing, respectively. Accurate automatic eddy detection is crucial for monitoring the
dynamics of mesoscale eddies on physical properties, transport, circulation, evolu-
tion, decay, and their impact on other ocean processes. Oceanic eddy detection based
on a variety of remote sensing data has been widely studied.

Automatic eddy identification algorithms that developed based on altimeter SSH
data can be divided into three categories: the physical-parameter-based method that
includes the Okubo-Weiss parameter method [6, 27], the winding angle method [5,
46], and the 2D wavelet method [10]; the flow-direction-based method [39, 48];
and the SSH-based method [7, 18, 38]. Another modern method that is based on
the instantaneous Lagrangian flow geometry [1, 22–25, 40] is proposed to identify
eddies in turbulent flows. Several eddy detection methods were developed based on
satellite SST data. E.g., edge detection method [29], neural network-based method
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[4], SST contour-based method [17], and velocity-geometry method [12], etc. Com-
pared to satellite SSH data, CHL and SAR images have a high spatial resolution,
which makes them effective sources for gaining more comprehensive and detailed
information on mesoscale eddies in the oceans [7, 14, 15, 36]. However, eddy detec-
tion based on CHL and SAR images is still in the stage of case study due to the low
space-time coverage. In conclusion, existing eddy detection algorithms can detect
major circular structures of mesoscale eddies, but more work is still to be done. On
the one hand, eddy detection based on different remote sensing data has its own
advantages and disadvantages. For instance, eddies may temporarily ‘disappear’ or
cannot be detected due to noise and sampling errors of the altimeter SSH data, while
eddy detection using SST is prone to false positives because many other ocean phe-
nomenamay impact SST.On the other hand,with the accumulation of remote sensing
data, some algorithms lack computational efficiency due to contour iterations [49]
or complex calculation processes [40].

Recently, deep learning (DL) [33] technology has exhibited state-of-the-art perfor-
mance in mining the complicated rules hidden in multi-source ocean remote sensing
images [26, 35, 52].Moreover, in comparisonwith traditional statistical andmachine
learning methods, DL technology features a strong ability to learn and model com-
plex relationships [28, 30, 43, 47, 51]. Therefore, it is natural to propose using the
DL-basedmodel to detect mesoscale eddies based on remote sensing images. Lguen-
sat et al. [34] developed "EddyNet" that based on the encoder-decoder networkU-Net
to identify oceanic eddies in the southwest Atlantic. Franz et al. [20] also used the
U-Net to detect and track oceanic eddies in Australia and the East Australia current
regions. Du et al. [15] developed "DeepEddy" based on PCANet and spatial pyra-
mid pooling to detect oceanic eddies based on SAR images. Xu et al. [50] applied
the pyramid scene parsing network to detect eddies in the North Pacific Subtropical
Countercurrent region. These regional studies proved that the DL-based model per-
formed well in detecting mesoscale eddies in territorial seas. The DL-based model
performance on the global mesoscale eddy detection remained unverified. Moreover,
these works use one type of remote sensing data as input to detect mesoscale eddies.

In order to solve the aboveproblems,wepropose aDL-basedglobal eddydetection
model based on the fusion of SSH and SST data in this study. The remainder of
the study is organized as follows. Section 2 firstly illustrates a DL-based model to
identify global mesoscale eddies based on satellite SSH data. Furthermore, Sect. 3
shows a multi-model DL-based eddy detection model developed based on the fusion
of SST and SSH data. Section 4 shows the characterization of global mesoscale
eddies detected by the multi-model DL-based model. Finally, Sect. 5 summarizes
the conclusions of our investigation.
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2 DL–based Eddy Detection Model Based on SSHA Data

2.1 Data

The SSHA product is produced by Ssalto/Duacs and distributed by the Archiving,
Validation, and Interpretation of Satellite Oceanographic (AVISO) and is available
daily on 0.25 ◦ spatial resolution. The product is merged from all available altimeter
missions, including TOPEX/Poseidon (TP), Jason-1&2, European Remote-Sensing
Satellite (ERS)-1&2,Environmental Satellite (ENVISAT),Geosat FollowOn (GFO),
Cryosat-2, Saral/AltiKa, and Haiyang-2A, and covers the period from 1993 to the
present. Since resolving oceanic mesoscale variability requires a minimum of three
altimetermissions [32, 41, 42], only the period from2000 onwardmeets the criterion.

2.2 Method

The DL-based eddy detection model is developed based on the U-Net architecture
consisting of ResNet blocks, hereafter Res-UNet. Although developed initially for
semantic segmentation of biomedical images [38], U-Net [19, 45] achieves success-
ful applications in many fields. Fig. 1 shows the framework of the U-Net, which
is consisted of the encoder-decoder module, bottleneck module, and concatenation
module. The encodermodule extracts information at different resolutions. The output
module contains a convolutional layer and activation layer to yield class confidences
at each pixel.

The ResNet block is designed to deepen the networkwhile alleviating the problem
of network degradation. The input to the ResNet block, xr , is processed in two ways.
A 3×3 convolution is used to obtain a direct linear mapping result; i.e., wr ∗ xr ,
wherewr denotes the convolutional filter.Meanwhile, xr is subjected to the following
processes twice in sequence: batch normalization (BN), a rectified linear unit (ReLU),
and Conv2D. The ReLU layer is used to increase the nonlinearity. By adding the
direct and residual mapping, the ResNet block combines deep-learning and shallow-
learning features, meaning that it can extract more valuable information. The original
information is maintained and passed by the process of linear mapping with a 3×3
convolution, which reduces the possibility of degradation.

2.3 Experiment and Performance

The training and validation datasets of mesoscale eddies are generated automatically
by using the SSH-based method [37], which is similar to the eddy identification
method proposed by Chelton, et al. [7]. Mesoscale eddies from 2000-2013 and 2014-
2015 are used as the training dataset and validation dataset. There are 5114 training
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Fig. 1 Res-UNet based eddy detection model

samples and 730 testing samples. Pixels in each sample are labeled as ‘1’, ‘-1’, and
‘0’ inside anticyclonic eddies (AEs), cyclonic eddies (CEs), and background regions.
The Res-Unet model is trained on an Nvidia GeForce RTX 2070 GPU card using
ADAM optimizer [31] and mini-batches of 16 maps. An early-stopping strategy is
used to stop the learning process when the validation dataset loss stops improving
in five consecutive epochs. The implementation of our model is realized in Python.
The Python interfaces are based on Keras framework [9] with TensorFlow backend.
The dice loss function, which is widely used in segmentation problems, is the cost
function. Given the predicted segmentation P and the ground truth regionG, the dice
coefficient is calculated as:

Dicecoe f (P, G) = 2|P ∩ G|
|P| + |G| (1)

where |.| is the sumof elements in the area.A good segmentation result is explained by
a dice coefficient that is close to 1.By contrast, a lowdice coefficient (near 0) indicates
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Fig. 2 Mesoscale eddies
detected by SSH-based
method and Res-UNet in the
SCS on January 1 2019

poor segmentation performance. A differentiable version of the abovemetric must be
used to train deep neural networks. A soft Dice Coefficient was adopted in this work,
and the output of the softmax layer was directly used to maximize loss calculations.
The coefficient is given as:

so f t Dicecoe f (P, G) =
∑

pi × gi
∑

pi + ∑
gi

(2)

pi is the output of the softmax layer 1 for the correct class and otherwise set as 0.
Finally, the Loss is calculated as:

Loss = 1 − so f t Dicecoe f (P, G) (3)

The loss and accuracy of the Res-UNet model were about 14% and 94% when
training using the ground truth dataset in the South China Sea (SCS) (Fig. 2).

Therefore, theRes-UNetmodel is accurate and reliable enough toobtainmesoscale
eddies in the global ocean. The global SSH and SSTmapswere firstly partitioned into
several regional maps of 80×60 pixels, respectively. Then, applying the Res-UNet
model to SSHAmaps in the same space-time until all the regions have been detected.
Finally, all the regions’ eddies were seamlessly merged to obtain a global eddy map.
Figure3 shows the mesoscale eddies identified by the Res-UNet model on January
1, 2019. There are 3314 (2963 ground truth) AEs and 3407 (3056 ground truth) CEs
in the global ocean. Compared to the SSH-based method, the accuracy of the Res-
UNet based global eddy detection method is 93.79%, and the mean IoU is 88.86%.
Figure3 clearly shows that the Res-UNet model identified many more small-scale
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Fig. 3 Mesoscale eddies detected by the Res-UNet model in the global ocean on January 1, 2019

Fig. 4 An Argo float (red line) is captured by an AE (blue line) that detected by the Dense-UNet
model in the KE region and rotated with the AE on a May 19, 2014, b June 18, 2014, c July 18,
2014, and d September 16, 2014 (the color denotes SSHA)

eddies. Besides, it takes less than 1 minute for the Res-UNet model costs to identify
eddies in the global ocean, while the SSH-based method costs more than 16 hours
[37]. In conclusion, the Res-UNet model can identify many more small-scale eddies
and significantly improve computational efficiency.

Argo floats are associated with short repeating cycles, and they can observe
mesoscale eddies in the global ocean. When trapped in an eddy, they show either a
cyclonic or an anticyclonic trajectory. Therefore, the trajectory data of Argo floats
are utilized to verify the accuracy of the Res-UNet model. In this chapter, the Argo
float (2901556) is used to validate the results of the Res-UNet based eddy detection
model. The Argo float was trapped in the AE and moved as a clockwise loop. Such
a result is consistent with the concept that AEs rotate clockwise in the Northern
Hemisphere (Fig. 4).
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3 DL–based Eddy Detection Model Based on SSHA
and SST Data

In order to solve the problem that eddies may temporarily ‘disappear’ or cannot be
detected due to noise and sampling errors of the SSHA data, SST data that can finely
delineate the eddy structure are added to the model, to detect mesoscale eddies more
accurately.

3.1 Data

The SST dataset is the NOAA Optimum Interpolation (OI) SST product from
Reynolds, et al. [44] on daily and 0.25 ◦ resolution. The OISST dataset is constructed
from infrared satellite observations of the Advanced Very High Resolution Radiome-
ter (AVHRR) with supplemental information provided by in situ observations and
proxy SSTs computed from sea ice concentrations. Error fields were provided, show-
ing an accuracy of about 0.1 ◦C on daily basis. The OISST dataset is available from
1981 onward.

3.2 Method

TheDense-UNet model is comprised of a data fusionmodule and a feature extraction
module (Fig. 5). Considering the complex nonlinear relationship between SST and
SSHA within eddies, the layer-level fusion strategy is used to fusion SSH and SST
data before the feature extraction. The layer-level fusion network can effectively
integrate and fully leverage multi-modal images. Therefore, the data fusion model
was developed based on the hyper-dense connectivity network [11] to integrate and
fully leverage fused SSHA and SST images effectively. Satellite SST and SSHA
data were imported into two streams, respectively. To better model relationships
between SST and SSHA, dense connections, that use linear operations where every
input is connected to every output by weight, were introduced into the model. Dense
connections can relieve the vanishing gradient of networks, and reduce the parameters
of deep networks [11]. Let x1l and x2l denote the outputs of the l th layer in SST
and SSHA streams and Hl is a mapping function composed of a convolution layer
followed by a batch normalization and a ReLU activation function. The output of the
l th layer in a given stream s can then be defined as:

xsl = Hs
l

([
x1l−1, x2l−1, x

1
l−2, x

2
l−2, · · · , x10 , x

2
0

])
(4)

Then, the fusion data xsl are used as input of the U-Net to detect mesoscale eddies.
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Fig. 5 Dense-UNet architecture based on the fusion of SSHA and SST data

3.3 Experiment and Performance

The training and validation datasets of mesoscale eddies are generated automatically
using theSSH-basedmethod [22].Mesoscale eddies during2000-2013 are used as the
training dataset, and mesoscale eddies during 2014-2015 are used as the validation
dataset. There are 5114 training samples and 730 testing samples. Pixels in each
sample are labeled as ‘1’, ‘-1’, and ‘0’ inside AEs, CEs, and background regions. To
evaluate the performance of the Dense-UNet model, we identify mesoscale eddies
in the Kuroshio Extension (KE) and the SCS. The dice loss function is used as the
cost function. As shown in Table 1, the loss based on the SSHA is larger than that
based on the fusion of SSHA and SST. On the contrary, the accuracy based on the
SSHA is lower than that based on the fusion of SSHA and SST.

The Dense-UNet model can be further verified by a case study of a CE in the
KE (Fig. 6). On November 22 and 23, 2013, the CE identified by SSHA split into

Table 1 The loss and accuracy of the Dense-UNet model of different testing datasets in different
ocean regions

Region Dataset Model Dice loss Accuracy

SCS SSHA Res–UNet 0.1455 0.9131

Fusion dataset Dense–UNet 0.0869 0.9490

KE SSHA Res–UNet 0.1637 0.9480

Fusion dataset Dense–UNet 0.1183 0.9640
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Fig. 6 Variations of a CE in the KE at different time during the evolution. The black line represents
the eddy identified by SSHA, while the purple line represents the eddy identified by the fusion of
SST and SSHA

two CEs, while the CE identified by the fusion of SST and SSHA was consistent
with the negative area of SSHA. From December 28, 2013 to January 13, 2014,
the CE identified by SSHA did not cover the negative area of SSHA, while the eddy
boundary identified by the fusion of SST and SSHA completely covered the negative
area of SSHA. Therefore, it can be indicated that the fusion of SSHA and SST data
enhances the accuracy and robustness of eddy detection and can also ensure eddy
tracking’s continuity and accuracy.

In this section, we propose the Dense-UNet method to identify oceanic mesoscale
eddies. Compared to the methods that identify eddies based on one kind of remote
sensing images, Dense-UNet detect eddies based on the fusion of SSHA and SST
data. Using the Dense-UNet model, we perform a comparison experiment using
SSHA data and fusion data in the SCS and KE regions, respectively. As a result, the
Dense-UNet model achieves impressive detection performance based on the fusion
data. The model not only improves eddy detection accuracy and efficiency but also
gives a novel viewpoint on exploring the relationships betweenmarine environmental
variables and mesoscale eddies.
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4 Characterization Analysis of Mesoscale Eddies in the
Global Ocean

4.1 Spatiotemporal Distributions of Eddies in the Global
Ocean

Based on the Dense-UNet model, mesoscale eddies were identified based on 23-year
satellite SSHA and SST data in the global ocean during 1993–2015. In this study, the
research focused on eddies with amplitudes greater than 2 cm and sea surface radii
larger than 35 km, which was based on consideration of the resolution and precision
of the SSH product [16]. Besides, we only consider eddies located in areas where
water depths are greater than 200 m to minimize the impacts of data errors near the
coastal shallow water region. An average of 4,100 mesoscale eddies were identified
daily in the global ocean during the period 1993–2015. The frequency of eddies for
a given geographic resolution (0.25 ◦ latitude by 0.25 ◦ longitude) was defined as an
F-number for simplicity:

F(%) = deddy
dtotal

(5)

where deddy means the days that mesoscale eddies appeared, and dtotal represents
the total number of observation days. In other words, high F-numbers imply a high
intensity of eddy activity and vice versa. The seasonal variability for AEs and CEs
in the global ocean is similar (Fig. 7a-b). In the Southern Hemisphere (SH), eddy
activity is weak in the austral summer (December–February, DJF) and fall (March–
May, MAM), but intensive during the austral spring (September–November, SON)
and winter (June–August, JJA), and vice versa in the Northern Hemisphere (NH).

Figure7c-d shows the spatial distribution of mesoscale eddies in the global ocean.
Mesoscale eddies with lower FF-number were distributed in tropical waters. On
the contrary, mesoscale eddies with higher F-number were widely distributed in
the middle latitude regions, including the Kuroshio Extension region, the Agulhas
Current, the Gulf Stream, the Agulhas Return Current, the East Australia Current,
and the Antarctic Circumpolar Current, etc. Besides, CE activities are more intensive
thanAEs in theWesternBoundaryCurrent regions. In general, the spatial distribution
of global eddies detected in this study has good consistent with previous literature
[7, 18, 49].

4.2 Long-term Variations in Derived Eddy Parameters

The long-term variations in annual mean eddy properties (eddy number, radius,
amplitude, and rotational speed) are shown separately for AEs andCEs in theNH and
the SH. The eddy number is the annual mean eddy census per day, and the percentage
represents the ratio of the annual mean abnormal eddy census per day to the total
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Fig. 7 Spatiotemporal distribution of the F-number of mesoscale eddies in the global ocean from
1993-2015. The graphs andmaps showmeridional variation and spatial distribution of theF-number
of AEs (a, c), CEs (b, d). MAM represents March–May, DJF represents December–February, JJA
represents June–August, and SON represents September–November. The image resolution is 0.25 ◦
by 0.25 ◦

number of eddies. The eddy radius is the distance from its center to the outermost
SSH contour with the maximum average geostrophic speed (U). U = √

u2 + v2,
where u and v are the zonal and meridional components of the geostrophic velocity
anomaly, which can be computed from the SSH gradients:

u = − g

f

∂SSH

∂y
(6)

v = g

f

∂SSH

∂x
(7)

where g is the acceleration due to gravity; ∂x and ∂y are the eastward and northward
distances, respectively; and f is the Coriolis parameter. Eddy kinetic energy is given
as (EKE)= 1

2 (u
2 + v2). The amplitude is the difference in SSHA between the eddy

core and boundary. The rotational speed is the maximum of the average geostrophic
speed around all of the eddy’s closed SSHA contours.

About 2100 CEs and 2000 AEs formed per day as detected by the Dense-UNet
eddy detection model for each global SSHA map. This is close to the result of
Faghmous et al. [18], which identifies approximately 2300 CEs and 2300 AEs for
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Fig. 8 Variations in annual mean parameters of mesoscale eddies in the global ocean from 1993
to 2015. Eddy number a, eddy radius b, eddy amplitude c, rotational speed d, and EKE e. μ

(dotted line) and σ (shading) are mean values and one standard deviation of the annual mean eddy
parameters

each daily SSHA snapshot. The slight difference in eddy number between the two
eddy datasets is possible because there is no limit to the amplitude of eddies in
Faghmous et al. [18]. There were no significant decreasing and increasing trends
in the annual mean eddy parameters for both AEs and CEs during the 1993–2015
period, and the annual mean eddy parameters for eddies in the NH and the SH are
different (Fig. 8). Eddy numbers in the SH are twice as much as that in the NH, which
is consistent with the result in Fig. 7a-b. The annual mean radius for AEs are slightly
larger than that of CEs, which is about 87.0 km and 86.0 km, respectively. The annual
mean amplitude of the CEs is larger than that of the AEs in both hemispheres, and
annual mean eddy amplitude in the SH is larger than that in the NH. The annual mean
eddy amplitude of AEs and CEs in the NH (SH) is 6.14 (6.7) cm and 6.29 (7.37) cm,
respectively. The difference between AEs and CEs on amplitude is expected from
the gradient wind effect of centrifugal force that pushes fluid outward in rotating
eddies [21], thus intensifying the low pressure at the centers of CEs and weakening
the high pressure at the centers of AEs [7].
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Similarly, the annual mean eddy rotational speed and EKE of CEs are also larger
than that of AEs in their respective hemispheres since they were derived from eddy
amplitude. However, the annual mean rotational speed and EKE of eddies in the NH
are larger than in the SH. The annual mean eddy rotational speed of AEs and CEs in
the NH (SH) is 19.73 (18.19) cm/s and 20.91 (19.84) cm/s, respectively. The annual
mean EKE of AEs and CEs in the NH (SH) is 152.95 (113.41) cm/s and 190.00
(145.08) cm/s, respectively.

5 Conclusions

This chapter elaboratedonhow to apply deep learning technology to globalmesoscale
eddy detection.We first developed a deep learning-based eddy detectionmodel based
on SSHA data. The model consists of U-Net and ResNet blocks, called Res-UNet.
The Res-UNet was applied to detect mesoscale eddies in the global ocean. Argo
floats data are used to verify the Res-UNet model. The Argo float was trapped in
the AE and moved as a clockwise loop. Such a result is consistent with the concept
that AEs rotate clockwise in the Northern Hemisphere. Compared to the traditional
eddy detection methods, the Res-UNet eddy detection model can accurately identify
mesoscale eddies and significantly improve computational efficiency. Such a result
proves that deep learning technology has strong learning abilities and can better use
datasets for feature extraction.

Considering that eddies may temporarily ‘disappear’ or cannot be detected due to
noise and sampling errors of the SSHAdata, the study further develops amulti-modal
deep learning model—Dense-UNet model to detect mesoscale eddies based on the
fusion of SSHA and SST data. The Dense-UNet model extracts SSHA information
for determining eddy locations and withdraws SST information to supplement and
confirm eddy features embodied in SSHA data. The results show that the fusion of
SSHA and SST data enhances the accuracy and robustness of eddy detection and
can also ensure eddy tracking’s continuity and accuracy. Based on the Dense-UNet
eddy detection model, mesoscale eddies are detected based on satellite SSHA and
SST data in the global ocean from 1993–2015. The analysis of the spatiotemporal
distribution of the 23-year global eddy dataset revealed that eddies were concen-
trated along western boundary currents. Mesoscale eddies are active in winter in the
North Hemisphere and vice versa in the Southern Hemisphere. The spatiotemporal
distribution of eddies detected by the Dense-UNet model is in good agreement with
previous studies, thus further validating the model’s accuracy.

The long-term variations in annual mean eddy properties (eddy number, radius,
amplitude, and rotational speed) are analyzed separately for AEs and CEs in the
Northern and the Southern Hemisphere. There were no significant decreasing and
increasing trends in the annual mean eddy parameters for both AEs and CEs dur-
ing the 1993–2015 period, but the annual mean eddy parameters for eddies in the
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Northern Hemisphere and the Southern Hemisphere are different. Eddy numbers in
the Southern Hemisphere are twice as much as that in the Northern Hemisphere.
The annual mean radius for AEs is slightly larger than that of CEs in both hemi-
spheres. The annual mean amplitude of the CEs is larger than that of the AEs in both
hemispheres, and the annual mean eddy amplitude in the Southern Hemisphere is
larger than that in the Northern Hemisphere. The annual mean eddy rotational speed
and EKE of CEs are also larger than AEs in their respective hemispheres. However,
the annual mean rotational speed and EKE of eddies in the Northern Hemisphere
are larger than that in the Southern Hemisphere. The difference in eddy parameters
between the two hemispheres is caused by the different generation mechanisms of
mesoscale eddies, which deserves further study. In conclusion, the study extends the
usage of satellite remote sensing big data, enriches the application of deep learning
technology in oceanography, and promotes multidisciplinary research in this aspect.
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Deep Convolutional Neural
Networks-Based Coastal Inundation
Mapping from SAR Imagery: with One
Application Case for Bangladesh, a
UN-defined Least Developed Country

Bin Liu, Xiaofeng Li, and Gang Zheng

1 Introduction

Flooding is a severe natural disaster. It can be caused by various reasons. In the
coastal areas, tropical cyclone-induced coastal flooding is the combined effect of
storm surge-caused sea water inundation and rainfall-induced freshwater flooding.
If tropical cyclone-induced flooding occurs at the same time as the rainy season, the
consequences will be even more serious. If flooding occurs in locations with dense
populations and large cities, it will result in huge loss of life and property [36]. For
example, on August 26–28, 2017, Harvey lingered over the Houston area, a densely
populated place, dumping massive amounts of rain. There were over 80 fatalities as
a result of the extraordinary flooding [33]. Harvey produced over 125 billion dollars
in damage, according to the National Hurricane Center.

Coastal flooding may become considerably severe in the future as a result of
climate change and anthropogenic activities. For starters, greater temperatures may
lead to more moisture in the atmosphere, enhancing the intensity of the flood [34].
Climate warming had increased the average and extreme rainfall of storms Katrina,
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Irma, andMaria, according to Patricola andWehner’s simulations [23]. Human activ-
ities, according to Bilskie et al. [2], can exacerbate the impact of coastal inundation
on infrastructure. The study [38] found that urbanization worsened both the flood
response and the total rainfall from hurricanes. These studies should raise our aware-
ness of increased flooding in highly urbanized and densely populated coastal areas,
both in developed and developing countries.

Accurate flood mapping can help emergency managers create more focused dis-
aster response strategies, as well as researchers better understand flooding dynamics
and study on more accurate forecasting methods. Ground surveys or information
retrieval from remote sensing imagery can be used to map floods. Ground surveys
are direct and exact, but they are expensive, and certain regions are inaccessible to
humans after flooding. Flood mapping from remote sensing data is a means of low
cost, and it could map areas human cannot access. The first remote sensing data
source is optical data. The optical images are easy for human to interpret and then
use. Optical sensors do not work at night and cannot see through cloud. This limits
the applicability of optical remote sensing in information extraction during flooding.
The second data source is radar remote sensing, especially the synthetic aperture
radar (SAR) remote sensing with the ability of providing high-resolution images.
SAR is an useful remote sensing tool for flood mapping since it can imaging floods
at any time of day or night and in almost any weather condition. This ability is espe-
cially useful for mapping the dynamic flooding to understand flooding mechanisms
and provide disaster relief plans.

Traditional flood mapping techniques using SAR data rely on image process-
ing techniques that use backscattering, statistical, and polarimetric information.
These methods include histogram thresholding [3], active contour segmentation
[13], region growing [21], change detection [9, 20], statistical classification [10],
neuro-fuzzy classification [6], multi-temporal statistics [4], pixel-based supervised
[35], and object oriented rule-based classification [25]. Although traditional meth-
ods have achieved good results in some cases and some of them are even used in
practical applications, they mine multi-dimensional SAR data using human-crafted
features and rules to achieve flood mapping. It is difficult for human-crafted features
and rules to guarantee stable performance under a variety of influences, including:
(1) speckle; (2) temporal mis-registration; (3) imaging system parameters [22]; (4)
meteorological factors [12, 18]; and (5) environmental conditions.

Deep learning (DL) technology, particularly deep convolutional neural network
(DCNN) models, offers a promising route for reliable flood mapping. Instead of
being pre-defined, the features for reliable flood classification in the DCNN models
are mined from the multi-dimensional SAR data directly. These data-driven models
are capable of offering reliable characteristics under a variety of influencing condi-
tions, and they are optimized from data to information in an end-to-end style. This
concept has been proven in a variety of communities, including computer vision [29],
biomedical image processing [7] and geoscience [15, 26, 39]. DCNN-basedmethods
for flood mapping have been proposed recently. Kang et al. [14] demonstrated that a
fully convolutional network, which is one type of DCNN model, can produce more
precise flooding mapping than previous approaches. Rudner et al. [28] presented a
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DCNN-based method for retrieving flooded built-up areas that shows promise. We
[18] presented an modified DCNNmethod for coastal flooding mapping from multi-
temporal dual-polarimetric SAR data that offers reliable results, and this method is
suitable for spatial and temporal investigation of storm-caused coastal flooding. For
flooding mapping in built-up areas from high-resolution SAR imagery, Li et al. [16]
presented an active self-learning DCNN model.

We believe the DCNN models can overcome the difficulties of robust flooding
mapping, based on our past research [18, 19]. The DCNN-based SAR coastal flood-
ing mapping network (SARCFMNet) is described in this chapter. SARCFMNet is a
model designed specifically for coastal flooding mapping. It has two improvements
that increase accuracy and robustness: (1) the physics-aware input information design
fuses temporal and polarimetric information formore reliablemapping and integrates
radar remote sensing mechanisms of flooding extraction into DCNN; (2) the regu-
larization scheme useful for fully-convolutional networks enhance the model’s relia-
bility. The SARCFMNet was trained and tested using a dataset of coastal flooding in
Houston, Texas, induced by Hurricane Harvey in 2017. The flooded regions, which
cover around 4000 km2, are delineated and studied in these images. The contributions
of this study are listed as follows:

• Compared to the commonly used, benchmarking DCNN approach, the SAR-
CFMNet performs better and is more stable. This demonstrates that the design
of physics-aware input information and the regularization scheme can improve
the performance and reliability.

• The spatial and multi-temporal characteristics of the Harvey-caused inundation
are investigated using the mapping results.

• The wind influence is revealed, implying that DCNN models considering wind
impact could improve reliability in practice.

• The cost-sensitive losses for DCNNmodels are investigated, which might be ben-
eficial for more adaptive models that take performance costs into account.

• The trained and tested SARCFMNet model is applied to Bangladesh, which is one
of the United Nations (UN)-defined least developed countries, to get nation-level,
multi-year, high-temporal-resolution flooding maps. This can help us get deeper
understanding of the flooding mechanism of this country.

The chapter is organized as follows. In Sect. 2, we will introduce the dataset used
for the model training and testing. The model is described in Sect. 3. In Sect. 4,
the model performances are presented. In Sect. 5, the multi-year flooding maps of
Bangladesh are given with discussions. Section6 concludes this chapter.
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2 Dataset

2.1 Data Description

The dataset used for the training and testing of the SARCFMNet model is collected
from Sentinel-1 SAR data during the Hurricane Harvey. Around the end of August
2017, Hurricane Harvey caused damage on the Houston region. Six pairs of Sentinel-
1 SAR images were obtained in the research place during this time. The images are
with VH and VV polarizations. One pair is from the Stripmap (SM) mode, while
five pairs the InterferometricWide (IW) swath mode. The products of Ground Range
Detected are utilized. Table 1 lists the data parameters in the dataset. The IW01 pair’s
post-event image is impacted by strong wind. Harvey had degraded to a Topical
Storm by the time this image was taken, but it still delivered powerful winds to the
scene, with the speed of around 20m s−1 [31]. We labeled the flooded regions as
the ground truth using land-cover categories from Google Earth and OpenStreetMap
and Copernicus Emergency Management Service Rapid Mapping products [5].

In Fig. 1, we give a visual illustration of one pair from the data constructing the
dataset, the SM01 pair. In this figure, the first and second rows show the images
of the VV and VH. In these two rows, the first and second columns show pre- and
post-event images respectively. The OpenStreetMap and Google Earth image of the
region are in the third row. Houston’s western and southern areas are covered by the
SM01 pair.

Table 1 Descriptions of the image pairs for generating the dataset in this study
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Fig. 1 Illustration of one image pair constructing the dataset
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Fig. 2 Flowchart of data preprocessing

2.2 Data Preparation

The original SAR images are processed in the following steps, as illustrated in Fig. 2,
to construct the dataset for model training and testing.

1. Application of orbit file: The accurate satellite orbit files are applied for the SAR
products.

2. Filtering with sliding windows: To lessen the impact of speckle on SAR images,
a filter is performed.

3. Radiometric calibration: After this calibration, the pixel values of the SAR images
represent the back-scattering information (σ 0).

4. Conversion to dB: The linear scale σ 0 is converted to decibel (σ 0
dB). The normal-

ized radar cross section (NRCS) images in dB are generated.
5. Terrain correction: The SAR images representing the σ 0

dB information are
geocoded into a geographical coordinate system, which is the World Geodetic
System 84. The ocean is masked out with the digital elevation model (DEM)
information. After this, each pixel occupies 8.9832 × 10−5 degrees.

6. Subset generation: The pre- and post-event images are transformed into the same
coordinate system for each pair of data used to create the dataset. We trimmed
the subsets from the pre- and post-event images by the same coverage.

The pre- and post-event images are geometrically matched after the preprocess-
ing. We cut each pair into 256 × 256, non-overlapping samples with pre- and post-
multiple channels. For all the pairs, the sample numbers are shown in Table 1.

3 Model

The SARCFMNet model is specially tailored from the U-Net model [27] for its
verified effectiveness. The U-Net model was proposed for biomedical image seg-
mentation. Its architecture was created so that it could function with less training
samples while still producing precise segmentations. The proposed SARCFMNet
is shown in Fig. 3a. The network can be divided into two paths. The left path is an
encoding path to extract abstracted features for accurate classification with down-
sampling stage by stage. The right path is a decoding part to up-sample the feature
maps. There are skip connections from the encoding to the decoding path to pro-
vide latter the high-resolution features via concatenation. As illustrated in Fig. 3a,
the encoding phase consists of 3 × 3 convolutions activated by the rectified linear
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Fig. 3 The proposedmodel design. aThe proposed SARCFMNetmodel structure.bThe abstracted
model design can be generalized to multiple ocean remote sensing image information mining
problems
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unit (ReLU) and 2 × 2 max-pooling. 3 × 3 convolutions with ReLU activation and
2 × 2 up-sampling operations constitute the decoding part. The output layer of the
model is a Sigmoid-activated 1 × 1 convolution. Thus, this model can predict the
probability of each pixel as flooding. The loss function of the model is the binary
cross-entropy (BCE) loss [17]. Pixel-wise classification accuracy is used as metric
to evaluate model performance.

In theSARCFMNetmodel, there are two specially-tailoredmodifications designed
for coastal flooding mapping.

1. Physics-aware input information design—Defined by the problem, we design
different input information combinations as in Fig. 3a. For the σ , its superscript
indicates pre- or post-event information, and its subscript shows polarization.
Bi-temporal information with pre- and post-event information from one single
polarization is often used in flooding mapping [3, 10, 14]. This is a direct design.
In this study, based on the radar remote sensing physics, we propose that the VV
and VH polarization information should be fused, since the two polarizations can
compensate each other. In addition, we propose the temporal difference images
should also be used. From Sect. 2.2, we know that the preprocessed images rep-
resent the backscattering information in the log-scale. Therefore, the temporal
difference images σ

post
VV − σ

pre
VV and σ

post
VH − σ

pre
VH represent the log-ratio informa-

tion for VV and VH, respectively. From the previous studies [1], we know the
log-ratio is useful for SAR image change detection. Based on radar remote sens-
ing physics knowledge, the SARCFMNet model fuses temporal, log-ratio, and
polarization together, denoted as DUAL+Diff. This approach can increase the
accuracy and reliability of the DCNN model, making it appropriate for coastal
flooding mapping from SAR remote sensing data. The fused input information
sources are integrated as a data cube. This design can realize information fusion
with little parameter increasing.

2. DCNN-suitable regularization design–For DCNN models, such as the proposed
SARCFMNet, the models’ ability to generalize is limited by model overfitting.
When a model overfits, it might produce excellent results during the training
phase but bad results when used in practice. Dropout is a suitable scheme to
avoid overfitting for fully connected networks, although it is not so helpful for
convolutional layers [8]. From the network design, we can find out there are
no fully connected layers in the model. This is a fully convolutional model. In
this case, we should use a dropout means which is effective for convolutional
layers. Here, we include the SpatialDropout2D (SD2D) layer to leverage channel-
level dropout to accomplish regularization and increase themodel’s generalization
ability, as inspired by Tompson et al. [30].

Themodel can be generalized for multiple problems. Themodel can be abstracted
as a design in Fig. 3b. There are fivemodules: (1)module 1 for encoding; (2)module 2
for decoding, module; (3) module 3 for generating high-level bottleneck features; (4)
module 4 for outputting predictions with adaptive processes; (5) module 5 for fusing
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feature information between skip connections. With suitable information input and
specially-tailored modifications, this abstracted model can realize multi-task pixel-
level ocean remote sensing image information mining [15].

4 Performance Evaluations and Discussions

4.1 Performance Evaluations

The six image pairs yield 10049 samples, as shown in Table 1. We randomly choose
roughly 20% of the samples in each pair to create a sub-dataset with 2000 samples.
This dataset is denoted as the S2000 dataset. The S2000 dataset is used for model
training. During the training process, 70% (1400 samples) are randomly selected
for training, and the other 30% (600 samples) are selected for validation. There is
a hyperparameter for the SpatialDropout2D layer, that is the dropout rate. We set
the dropout rate as 0.5. Thus, the results from the model with the SpatialDropout2D
can be identified by _SD2D0.5. The model training and testing are implemented by
the software framework Keras. The optimizer for the model fitting is Adam. The
batch size is 32. The total number of epochs is 300. The validation set determines
the model parameters. We use one Nvidia GeForce GTX 1080Ti graphics processing
unit (GPU) card. The training time on the S2000 dataset is about 6.7 hours.

The losses and accuracies for the training and validation are documented and
analyzed. The readers can find the details in [18]. The conclusions drawn from the
analyses are listed here.

1. In all the settings, the models are fully trained. With the indication of validation
loss, the models try not to overfit.

2. The usefulness of the log-ratio information—From the performance comparison,
the inclusion of the log-ratio information can improve the model’s performance
for coastal inundation mapping.

3. The usefulness of the dual-polarization fusion—From the performance compar-
ison, the fusion of the polarization information can improve the model’s perfor-
mance for coastal inundation mapping. In addition, the VH polarization can get
better performance than the VV polarization. The possible reason is that VH is
less sensitive to the wind condition during the flooding mapping. We will discuss
this later.

4. The usefulness of the DCNN-suitable regularization design—With the regular-
ization layer suitable for the fully convolutional model, although the performance
decreases in the training processing, the performance increases in the validation
process. This indicates the regularization design can make the model more reli-
able.

On the dataset created in Sect. 2.2, the SARCFMNet trained on the S2000 dataset
is applied. The results are given in Table 2. The input data and regularization scheme
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Table 2 The trained SARCFMNet model’s performance on the dataset

are indicated by the column names. The subset names are indicated by the row names.
There are four numbers in each block of the table. Classification accuracy, recall,
precision, and F1 score are listed in that sequence. The ratio of true positives to the
total number of true positives and false negatives is recall. A greater recall score
indicates that the model misses fewer areas that are actually flooded. The ratio of
true positives to the sum of true positives and false positives is precision. A greater
precision score indicates that the model is less likely to produce incorrect flooding
areas. The F1 score is the harmonic mean of precision and recall, and it leans to
the lower value within precision and recall. The weighted average is shown in the
last row. The number of samples in each subset determines the weights. The best
accuracy and F1 are emphasized by underline. From observation, the block with the
best accuracy has the best F1 score. From this table, we can draw the consistent
conclusions as shown above:
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Fig. 4 Visual evaluation on the IW01 subset. a and b are the pre- and post-event NRCS images for
the VV. c and d are the pre- and post-event NRCS images for the VH. e Ground truth. f Mapping
prediction with the model (DUAL+Diff_SD2D0.5)

1. The fusion of dual-polarization information improves the model’s coastal inun-
dation mapping performance.

2. The model gets better performance on VH polarization than VV polarization.
3. The DCNN-suitable regularization improves performance and robustness of the

model.

The visual evaluation on the IW01 subset, used as an example for presentation,
is shown in Fig. 4. In this figure, the first and second rows show the images of
the VV and VH. In these two rows, the first and second columns show pre- and
post-event images, respectively. The ground truth and flooding prediction using the
model (DUAL+Diff_SD2D0.5) are shown in Fig. 4e, f. By comparing Fig. 4e, f, we
can observe that the mapping prediction is very close to the ground truth, indicating
that the presented model is effective.
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4.2 Spatial and Temporal Characteristics

After we apply the trained SARCFMNetmodel on the dataset described in Sect. 2, we
can analyze the spatial and temporal characteristics of 2017 Harvey-induced coastal
inundation.

The imagepair SM01 is selected as a case for the geospatial analysis. Thepredicted
flooding mapping is shown in Fig. 5a. In order to perform the geospatial analysis, we
collect useful supporting data. They are shown in Fig. 6. The supporting data include:
(1) The elevation data of the scene, from theUnited StatesGeological Survey (USGS)
National Elevation Dataset [32], and shown in Fig. 6a; (2) The land cover types of
the scene, from the 2016 National Land Cover Database (NLCD) [37], and shown
in Fig. 6b with legend; (3) the historical water occurrence data of the scene, from the
Global Surface Water Mapping Dataset (1984–2015) [24], and shown in Fig. 6c.

We can derive certain geospatial analytic findings with the mapping predictions
and supporting data:

1. General analysis—In this scene, the total flooding area is about 284 km2 (about
3% of the scene). We use a disk-shape average filter (radius = 100 pixels) to
process the flooding map, and create a flooding heat map for the scene. In Fig. 5b,
the heat map is placed onto the pre-event image. In the southern part of Houston,
severely flooded regions are densely scattered, as shown in the heat map.

2. Relation with elevation—The elevation distribution of the flooded and non-
flooded areas in the scene is analyzed and shown in Fig. 7a. It shows the elevation
distribution of the flooded areas is different from that of the non-flooded areas, and

Fig. 5 Subset SM01 for the geospatial analysis. a Coastal inundation prediction from the SAR-
CFMNet model. b Inundation heat map generated from the prediction
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Fig. 6 Supporting data for the spatial analysis. a The elevation data of the scene, from the United
States Geological Survey (USGS) National Elevation Dataset; b The land cover types of the scene,
from the 2016 National Land Cover Database (NLCD); c the historical water occurrence data of
the scene, from the Global Surface Water Mapping Dataset (1984–2015)

the former is obviously lower. It is more likely that flooding occurs and remains
in lower regions, in this scene, the southern part.

3. Relation with land cover types—The proportion of land cover types affected by
the flooding is illustrated in Fig. 7b. It demonstrates that pasture and cultivated
crops are the dominant land cover types in flooded regions. They account for more
than 76% of flooding. They are the main land cover types in the southern part
which is severely flooded. The flooding may severely damage local agriculture.
However, we have to realize that even if the hurricane caused severe flooding
in the urban areas, the inner city flooding cannot be easily extracted by pure
image-based analysis.
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Fig. 7 Geospatial analysis for the SM01 subset. a The elevation distribution of the flooded and
non-flooded areas. b The proportion of land cover types affected by the flooding. c The historical
water occurrence of the flooded areas

4. Relation with historical water occurrence—The flooding is extracted from ana-
lyzing the pre- and post-event images. We have to be sure that the flooding is not
caused by seasonal or periodic surface water increasing. For the flooded areas,
the historical water occurrence is analyzed and shown in Fig. 7c. It reveals that,
in flooded areas, the historical water occurrence is extremely close to zero. It
signifies that the predicted flooding is abnormal, and people should be alert to it.

For SM01, IW01, IW04, and IW05, the mapping products have an overlapping
region. The multi-temporal study of the mapping results will be performed in this
region. Figure8 depicts the temporal analysis. Figure8a shows a Moderate Reso-
lution Imaging Spectroradiometer (MODIS) image of Harvey in August 26, 2017.
The region for temporal analysis is illustrated as the green rectangle. The flooding
duration probability of the overlapping zone is shown in Fig. 8b. It can assist us
in comprehending the temporal evolution of floods. The locations with the highest
probability are likely to be the last to vanish. Pixels with a probability < 0 lack all
of the mapping products needed for temporal analysis.
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Fig. 8 Temporal analysis of SARCFMNet-generated flooding maps of IW01 (August 29), IW05
(August 30), SM01 (September 4), and IW04 (September 5). a A Moderate Resolution Imaging
Spectroradiometer (MODIS) image shows Harvey in August 26, 2017. b The flooding duration
probability of the region, which is illustrated as green rectangle in a. c Temporal flooding transi-
tion from IW01 to IW05 of the region, which is illustrated as red rectangle in b. d flooding area
proportions

Figure8d shows flooding area proportions of the product sequence, IW01 (August
29), IW05 (August 30), SM01 (September 4), and IW04 (September 5). It shows how
the flooded areas in the region reduce over time as the product sequence progresses.
We may calculate that the shrinkage rate is around 1% of the region area (roughly
23 km2) each day using regression analysis.

We discover a phenomenon of delayed flooding after the examination of the
product sequence. One area does not show flooding in IW01 (August 29), but shows
flooding in IW05 (August 30). In Fig. 8b, a region is marked in a red rectangle. In
Fig. 8c, the temporal flooding transition from IW01 to IW05 is examined . The region
is in Glen Flora, Texas .We check the news [11] and discover that the Colorado River
(Texas) began flowing through and across the region on the evening of August 29
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(local time). This is why the flooding is captured by IW05 (sensing time: 12:22 UTC,
August 30), but not by IW01 (sensing time: 00:26 UTC, August 29). The reason for
the delayed flooding deserves further studying.

4.3 Discussions of Performance

In this part, we discuss the performance of the proposed model in two aspects: first,
the influence of wind; and second, cost-sensitive losses to adjust the performance.

The influence of wind is a factor seldom discussed in floodingmapping. However,
in the case of storm-induced coastal flooding mapping, this is a practical issue. In
order to map coastal flooding, we may encounter the following scenario: the storm
has already generated coastal flooding, which is captured by remote sensing data;
nevertheless, the storm has not yet left the scene and is still delivering strong winds.
In this case, the wind can have adverse effects on inundation mapping, since the
strong wind increases the water areas’ backscattering. In this study, we also face
this situation. Strong wind influences the IW01’s post-event image, as described in
Sect. 2.1.We use a toy example to demonstrate the impact ofwind on the performance
of the DCNN model.

400 samples are chosen from IW01 and IW03 to create IW01_selected and
IW03_selected. Then, using the DUAL+Diff architecture, we train two models on
IW01_selected and IW03_selected, and test them on IW01 and IW03. There are
four scenarios here: (1) IW01_selected training, IW01 testing; (2) IW01_selected
training, IW03 testing; (3) IW03_selected training, IW01 testing; (4) IW03_selected
training, IW03 testing. Table 3 contains their results. The column names in this table
denote the training subsets, whereas the row names denote the testing subsets. The
numbers in each block indicate classification accuracy, recall, and precision. The
numbers on the table’s diagonal show training scene is the same as testing scene.
The performances are excellent for obvious reasons. Outside of the table’s diagonal,

Table 3 Toy experiment results of wind influence
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performance drops sharply. The model of IW01_selected training and IW03 testing
presents low precision.Wemay deduce from the aforementioned information that the
IW01_selected’s post-event imaging is impacted by severe wind. In this situation,
the subset IW01_selected convinces the model to find flooding areas with higher
backscattering in the post-event image. This will cause false positive predictions and
lower precision, if the model is tested on IW03. Based on the similar logics, we may
understand the model of IW03_selected training and IW01 testing presenting low
recall.

Based on the explanations from the toy example, we can get a better understanding
of the total performance evaluation listed in Table 2. We can have two observations.

1. The model trained on VH polarization has better performance than that trained
on VV polarization. The possible explanation is VH is less sensitive to the wind
conditions.

2. The S2000 dataset is created from data of different wind conditions, the model
trained on the S2000 dataset performs better in terms of balance. However, the
results, particularly those tested on IW01 and IW03, still show the impact of wind.
This tells us, in the future research, the DCNN models should be aware of the
wind conditions. It is a direction to further improve the performances.

a. Since VH is less sensitive to wind conditions, the model can only use VH
polarization. However, we can not deny that VV has its own advantages for
flooding mapping. Maybe this is a design with much information loss.

b. The wind information can be input together with the image information, and
the dual-polarization information fusion can be realized in amore flexible way.

In the deep learning-based paradigm for image understanding, the loss functions
play an important role. They set the end rules for the models, making the predictions
close to targets. The closeness is measured by losses. In this study, the BCE loss is
useful and suitable for binary classification. The BCE loss can be adjusted according
to user-defined costs. Accordingly, the performances will be adjusted. We use the
toy experiments of two models with the DUAL+Diff design, one of IW01_selected
training and IW01 testing, and one of IW03_selected training and IW03 testing.

The BCE loss is used first, and the results are shown in Table 4. The numbers in
each block are classification accuracy, recall, and precision. From the first row, BCE
is capable of balancing accuracy and recall.

In real applications, the usersmay have personalized needs, higher recall or higher
precision. These personalized needs can be understood as cost-defined requests. If
users believe that the cost of low recall is very great, the model must improve recall at
the price of precision. Based on the similar logics, if users believe that the cost of poor
precision is very great, the model must improve precision at the price of recall. To
meet these requirements, cost-sensitive losses are utilized. The type-definedweighted
α-balanced BCE (αBBCE) loss [17] is one technique to build cost-sensitive losses:

LαBBCE = − 1

N

N∑

i=1

{
αyi log ŷi + (1 − α)(1 − yi ) log

(
1 − ŷi

)}
(1)
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Table 4 Toy experiment results of cost-sensitive losses

where the i th pixel’s label is denoted as yi ; the prediction is denoted as ŷi ; the
pixel number is denoted as N ; the weight is denoted as α ∈ [0, 1]. The accuracy of
flooding is given more weight during training as α is higher. Given that the flooding
pixel number is significantly less than non-flooding pixel number, a larger value for α
is appropriate. The value of α in this experiment is 0.8. The αBBCE loss is effective,
as seen in Table 4’s second row. Because the accuracy of flooding is given more
weight during training, recall is increased at the price of precision.

Another technique to build a cost-sensitive loss is to utilize the Fβ score directly:

LFβ = 1 − (
1 + β2

) P · R
β2 · P + R︸ ︷︷ ︸

Fβ score

(2)

where R and P is recall and precision, respectively. β is a positive real weight. Mini-
mizing the Fβ loss can increase the Fβ score. If β is greater than 1, optimizing recall
receives more attention during training. If β is less than 1, precision optimization is
given more attention. This is clearly a more direct way of controlling the recall and
precision in the results by their importance. The 3rd and 4th rows of Table 4 show the
results of the Fβ loss, β = 2 and β = 0.5, respectively. The results confirm that the
Fβ loss is an effective way for adjusting recall and precision in the results according
to their importance: (1) For β = 2, recall is increased at the price of precision; (2)
For β = 0.5, precision is increased at the price of recall.
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Here, we use toy examples to show the design of cost-sensitive losses. There are
two points should be aware of for designing these losses.

1. There is a performance tradeoff between recall and precision (there is no free
lunch).

2. There is one more hyper-parameter should be pre-defined. This one more hyper-
parameter gives us more control over the performance.

5 Application Case in Bangladesh

Bangladesh is a participating country in the Belt and Road Initiative, and it is one of
the UN-defined least developed countries. Bangladesh is located on the coast of the
Indian Ocean and has a low-lying terrain. Under the influence of the rainy season
and tropical cyclones, severe flooding occurs every summer, especially from June to
October. Flooding poses a huge threat to the safety of people’s lives and property in
the country, and has become an obstacle to the country’s development. This chapter
uses the SARCFMNet model to carry out a nation-level, multi-year, high-temporal-
resolution flooding mapping of Bangladesh from 2016 to 2020. This can deepen
our understanding of the flooding mechanism in Bangladesh, and provide powerful
technology and data support for disaster mitigation and flood forecasting.

In order to provide the nation-level, multi-year, high-temporal-resolution flood-
ing mapping products for Bangladesh from 2016 to 2020, we use the following
processing for Sentinel-1 data based on the preprocessing introduced in Sect. 2.2.

1. For each year,we select images fromFebruary toMarch of that year to put together
a nation-level pre-event image.

2. For each year, from a time window of each month from June to October, we select
images to put together a nation-level post-event image.

3. The SARCFMNet model trained on the S2000 dataset is performed on the image
pairs to get the nation-level flooding mapping result.

From the aforementioned steps, we provide 45 nation-level flooding mapping
results:

1. Year 2016: From June toOctober, one nation-level floodingmap is provided every
month.

2. Year 2017: From June to October, two nation-level flooding maps are provided
every month, the first and second halves of the month.

3. Year 2018: From June to October, two nation-level flooding maps are provided
every month, the first and second halves of the month.

4. Year 2019: From June to October, two nation-level flooding maps are provided
every month, the first and second halves of the month.

5. Year 2020: From June to October, two nation-level flooding maps are provided
every month, the first and second halves of the month.
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In 2016, since the temporal resolution of Sentinel-1 SAR data is relatively low,
there is one nation-level flooding map per month. From 2017 to 2020, there are two
nation-level flooding maps per month.

The flooding maps have the following characteristics:

• Spatial extent: Bangladesh
• Temporal extent: 2016–2020

Fig. 9 Bangladesh nation-level flooding occurrence probability maps from 2016 to 2020. The
flooding occurrence probability map is generated from the flooding maps of each year from June
to October
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Fig. 9 (continued)

• Spatial resolution: 3 arcsecond, consistent with main world-level DEM products
• Temporal resolution: half a month (For 2016, a month)

Based on the flooding maps, we first analyze the flooding occurrence probability
each year, which is shown in Fig. 9. The flooding occurrence probability map is
generated from the flooding maps of each year from June to October. This shows
that, each year, the spatial distribution of high flooding occurrence probability is
relatively stable. For each year, there are some flooded areas, which are not flooded
areas for other years. Based on the products, these phenomena can be analyzed case
by case.

Based on the flooding maps, we then analyze the flooding extent each year, which
is shown in Fig. 10. From this analysis, we can get the following information:

1. We already know that the flooding mainly happens from June to October in
Bangladesh due to rainy season and tropical cyclones. In the yearly flooding
extent from 2016 to 2020, we can narrow down that the most severe flooded time
window is from the second half month of July to the first half month of August.

2. For each year from 2016 to 2020, the peak flooding area is around 2e4 km2.

The above two analyses just show the usefulness of the providedfloodingmaps.By
using nation-level, multi-year, high-temporal-resolution flooding mapping products
ofBangladesh from2016 to 2020,we can performmore spatial and temporal, targeted
analyses. Hopefully, this can deepen our understanding of the flooding mechanism
in Bangladesh, and provide powerful information support for disaster mitigation and
flood forecasting.



248 B. Liu et al.

Fig. 10 Bangladesh nation-level flooding extent area from 2016 to 2020. In 2016, in the label of
x-axis, the 00 after month means there is one flooding map product each month. From 2017 to 2020,
in the label of x-axis, the 01 after month means the product of the first half of the month, and 02
means the second
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6 Conclusions

The SARCFMNet model of mining multi-temporal and dual-polarimetric SAR data
for coastal inundation classification is presented in this chapter. The SARCFMNet
is built on U-Net, a benchmarking deep learning model for pixel-level classifica-
tion that we have modified for the challenges of coastal inundation mapping from
SAR imagery: 1) radar remote sensing physics-driven input information design; and
2) regularization suitable for fully convolutional networks. We present two study
cases in this chapter. First, the SARCFMNet is trained and evaluated using a dataset
derived from 2017 Hurricane Harvey-influenced Houston, Texas. Six image pairs,
with ground truth delineated by human with the help of Google Earth and Open-
StreetMap, are used to test the proposed SARCFMNet model. The average mapping
accuracy and F1 score are 0.98 and 0.88, respectively. They are better than the
benchmarking deep learning model for pixel-level classification. This verifies the
usefulness of the proposed designs. The geospatial study of Harvey-caused floods
is performed using the flooding predictions and indicates Harvey’s massive impact
on agriculture. The multi-temporal study estimates the flooding decreasing rate and
uncovers a delayed-inundation phenomenon. Second, the trained and verified SAR-
CFMNet model is applied to Bangladesh, which is one of the UN-defined least
developed countries, to get nation-level, multi-year, high-temporal-resolution flood-
ing maps. The flooding maps of Bangladesh are from 2016 to 2020, with spatial
resolution of 3 arc second and temporal resolution of half a month (for 2016, a
month). This can help us get deeper understanding of the flooding mechanism of
this country. In addition, impact of meteorological factors in DCNN-based flooding
mapping models and cost-sensitive losses are discussed. We propose that this model
can be easily and readily generalized to other multi-temporal ocean remote sensing
imagery information mining problems.
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Sea Ice Detection from SAR Images
Based on Deep Fully Convolutional
Networks

Yibin Ren, Xiaofeng Li, Xiaofeng Yang, and Huan Xu

1 Introduction

The changes in global sea ice volume, distribution, and movement reflect the interac-
tion of the atmosphere-cryosphere-hydrosphere and the global climate change [30].
Sea ice study is also significant because it causesmarine navigation and transportation
safety concerns. Since the classification of sea ice and open water provides valuable
information for safe navigation, sea ice classification and monitoring draw extensive
attention [8, 37, 39]. Satellite remote sensing, such as optical camera, microwave
radiometer, and synthetic aperture radar (SAR), has been the most effective way to
monitor sea ice in the polar regions [21, 40]. SAR images have been the primary
source for sea ice classification and monitoring, due to its high spatial resolution,
wide-coverage, and ability to penetrate clouds [7].

Series of studies have been devoted to classifying sea ice and open water on SAR
images, including threshold-based methods, expert systems, and machine learning
methods. Multi-Year Ice (MYI) Mapping System (MIMS) is a typical threshold-
based model, and it can quickly map MYI in uncalibrated SAR images [13]. The
representation of expert systems is the Advanced Reasoning using Knowledge for
Typing Of Sea ice (ARKTOS) [38]. ARKTOS performs a fully automated analysis
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of SAR sea ice images by mimicking the reasoning process of sea ice experts. For
machine learning methods, the regression model is an early exploration. Lundhaug
and Maria [29] proposed a multivariate regression method to model the relationship
between the mean and standard deviation of the backscattering coefficients and air
temperatures with sea ice types and water. Their experiments showed the correlation
coefficients between predicted and actual values were higher than 0.90. Karvonen
[20] developed a modified pulse-coupled neural network (PCNN) to classify the
sea ice in the Baltic Sea. Zhang et al. [47] proposed a k-means-based model which
combines microwave scatterometer and radiometer data to classify sea ice types.
Zakhvatkina [45] extracted textural features from the gray-level co-occurrencematrix
(GLCM) and input the features into an artificial neural network (ANN)-based model
to classify sea ice and the open water. Similarly, researchers combined the GLCM
with other machine learning algorithms, such as Markov random field (MRF) [6]
and support vector machine (SVM) [25] to classify sea ice from SAR images.

Overall, the main drawback of the aforementioned traditional methods is that
they need prior expert knowledge and sophisticated manual engineering to extract
features for discriminating between sea ice and open water. This drawback has been
a common challenge faced by the earth system science in the era of big data [33].

Deep learning (DL) technology addresses thementioned challenge [19]. A typical
DL model consists of deep neural networks (DNN), which accepts input data in a
raw format and automatically discover the required features [24]. In recent years,
DL has been successfully applied in oceanography, geography, and remote sensing,
which has helped humans gain further process understanding of earth system science
problems [27, 32–34, 43]. A deep convolution neural network (CNN) is a particular
type of DNN composed of CNN layers. A CNN layer connects to the local patches
of the previous layer through convolution kernels to extract local spatial features
[22]. Since CNN-based methods have achieved great success in image classification,
researchers employed CNN to extract features automatically to improve the accuracy
and efficiency of sea ice classification. Yan and Scott [44] introduced an early CNN-
based model AlexNet [2], and transfer learning to classify sea ice and open water.
Li et al. [26] proposed a CNN-based model to classify sea ice and open water from
Chinese Gaofen-3 SAR images . Wang et al. [42] constructed a CNNmodel consists
of three CNN layers and two fully connected neural network layers to classify sea
ice near the Bering Strait. [16] integrated transfer learning and dense CNN blocks
to form a transferred multilevel fusion network (MLFN). The MLFN outperformed
the PCAKM [5], the NBRELM [15], and the GaborPCANet [12] in classifying sea
ice and open water.

More and more researchers are trying to construct DL-based models to achieve
end-to-end classification between sea ice and openwater. Though the aforementioned
DL-based models deliver excellent performances, several issues still exist. First,
classification accuracy needs to be further improved. Especially for the medium-high
resolution SAR images, fine-grained objects such as small floes, sinuous ice-water
boundaries, and ice channels need to be well classified. Second, the information
of SAR images, such as dual-polarization information and incident angle (IA), are
not fully utilized by most DL-based models. The benefit of fusing dual-polarized
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information has been demonstrated in the conventional method [25], and the IA
affects the radar backscattering intensity. All this information should be considered
to improve classification accuracy. Third, most of the existing models are validated
by independent images, and their applicability to more challenging tasks, such as
classifying a series of images from freezing to melting, remains to be verified.

Aiming to solve the issues mentioned above, we propose a dual-attention U-Net
model, DAU-Net, to classify sea ice and open water on SAR images. U-Net was
initially developed for the semantic segmentation of biomedical images [35]. It is
designed to workwith fewer training samples but is still able to yield precise segmen-
tations. The effectiveness of employing U-Net to solve classification or segmentation
problems of geoscience has been demonstrated [11, 28, 46]. Therefore, we use the
U-Net as the backbone of the classification model. The dual-polarized information
and the IA of SAR images are utilized as the model inputs. To extract more charac-
teristic features from the multiple input information, we integrate the dual-attention
mechanism [14] to optimize the origin U-Net. Finally, we use SAR images near the
Bering Sea to train and evaluate the model. We validate the applicability of DAU-Net
by a series of SAR images of Bering Strait and compare the classification results with
the sea ice products of the National Snow and Ice Data Center (NSIDC).

2 Data

2.1 Study Area

The study areas are the Bering Sea and Bering Strait, which locates near the out
edge of the sea ice on the Pacific side of the Arctic (Fig. 1). The Bering Strait is the
only channel for water exchange between the Pacific Ocean and the Arctic Ocean,
showing strong atmosphere-sea-ice interactions and supports one of the world’s most
productive and valuable fisheries with ever increasing commercial vessel activities
[9]. Therefore, sea ice detection and monitoring in this region are of great interest to
scientific research communities and commercial fishing and transportation industries.

2.2 SAR Images

The SAR images are obtained from Sentinel-1A in the interferometric wide-swath
(IW) mode with a swath width of 250 km. The images are the ground range
detected (GRD) productswithVV+VH (vertical emitting and vertical and horizontal
receiving, respectively) polarizations. The IA is between 30.00-46.00 degrees. The
range and azimuth resolutions are 5 and 20 m, respectively, with a sampling space
of 10 m.
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Fig. 1 The location of the study area

The data set consists of 34 SAR images as shown in Table 1, and is divided into
three subsets: 1) the training set, 2) the testing set, and 3) the applicability validation
set (Fig. 1). The model training set includes 15 images (No.1 – No.15 in Table 1).
The testing set is the No.16 image in Table 1, and we used this image to evaluate
the model performance by metrics. The applicability validation set is a series of
images covering the Bering Strait. The series contains six images, each of which is
mosaicked from three single Sentinel-1A images, a total of 18 Sentinel-1A images
(No.17–No.34 in Table 1). The image series covers the whole ocean process from
freezing tomelting of the Bering Strait. Therefore, we could validate the applicability
of thewell-trainedmodel bymonitoring the entire cycle of sea ice in theBering Strait.

2.3 NSIDC Sea Ice Products

The sea ice products of the NSIDC [41], namedMultisensor Analyzed Sea Ice Extent
- Northern Hemisphere (MASIE-NH), are employed as a reference for the applica-
bility discussion. The product is based on the Interactive Multisensor Snow and Ice
Mapping System (IMS) results produced by the National Ice Center (NIC). NIC uti-
lizes visible imagery, passive microwave data, and NIC weekly analysis products to
create their data product. MASIE-NH provides measurements of daily sea ice extent
and sea ice edge boundary for the Northern Hemisphere and 16 Arctic regions in a
polar stereographic projection at both 1 and 4 km grid cell sizes [41]. We choose the
1 km MASIE-NH products as the reference.
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Table 1 Information of the SAR images

No. Imaging Date Center Location Function

1 13/12/2018 169.13W, 63.21N training

2 25/12/2018 169.78W, 61.74N

3 25/12/2018 169.13W, 63.21N

4 06/01/2019 169.78W, 61.74N

5 18/01/2019 169.78W, 61.74N

6 04/02/2019 171.77W, 61.87N

7 06/02/2019 167.82W, 61.43N

8 11/02/2019 169.78W, 61.74N

9 14/03/2019 167.19W, 62.93N

10 14/03/2019 167.84W, 61.48N

11 19/03/2019 169.78W, 61.74N

12 24/03/2019 171.77W, 61.87N

13 26/03/2019 167.20W, 62.93N

14 31/03/2019 170.35W, 60.25N

15 24/04/2019 169.13W, 63.21N

16 24/04/2019 169.78W, 61.74N testing

17 13/12/2018 166.90W, 67.66N applicability validating

18 13/12/2018 167.72W, 66.17N

19 13/12/2018 168.42W, 64.70N

20 25/12/2018 166.90W, 67.66N

21 25/12/2018 167.72W, 66.17N

22 25/12/2018 168.42W, 64.70N

23 31/03/2019 166.90W, 67.66N

24 31/03/2019 167.72W, 66.17N

25 31/03/2019 168.42W, 64.70N

26 12/04/2019 166.90W, 67.66N

27 12/04/2019 167.72W, 66.17N

28 12/04/2019 168.42W, 64.70N

29 24/04/2019 166.90W, 67.66N

30 24/04/2019 167.72W, 66.17N

31 24/04/2019 168.42W, 64.70N

32 06/05/2019 166.90W, 67.66N

33 06/05/2019 167.72W, 66.17N

34 06/05/2019 168.42W, 64.70N
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2.4 Data Preprocessing

We use SNAP 3.0 [10] to perform radiometric calibration and boxcar filtering on
all SAR images. As the size of the source SAR image is too large, we downscale
each image to 1/3 of the original image size, about 8,000×5,000 pixels. Although the
spatial resolution is downscaled from 10m to 30 m, it is still much higher than that of
the MASIE-NH products (1 km). It is far more detailed than could be expected from
existed manual or operational automatic classifiers [25]. We scale all pixel values to
0-1. All IA values are scaled to 0-1, referred by 0◦-90◦.

The SAR images are labeled into two classes, 1 for sea ice and 0 for openwater, by
the annotation tool LabelMe [36] to obtain the ground truth labels. As the resolutions
of existing sec ice products are much lower than that of the Sentinel-1A images [25],
the labeling process is based on visual interpretation. For regions that are difficult
to distinguish, we refer to the 1 km MASIE-NH products to label them. In this
way, most of the pixels in the SAR images could be labeled correctly. Due to the
limitations of SAR image noise and manual labeling, there are inevitably a few
mislabeling pixels, and some small sea ice objects cannot be accurately labeled.
This is a common problem in the supervised learning field. For most classification
missions, such mislabeled pixels account for a small proportion of all pixels and do
not affect the convergence of the model [17].

We divide all images (VV, VH, and IA) into 256×256-pixel chips as the model
inputs. Fig. 2 takes the VV channel as an example to show the SAR image chips and
the corresponding ground truth labels.

Fig. 2 Image chips (VV channel) and the corresponding labels. a–h SAR image chips with
256×256-pixel. i–p Labels corresponding to the a–h SAR images
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3 Method

3.1 Overall Structure of DAU—Net

The backbone of the proposed DAU-Net is a U-Net model. The U-Net is named
for its almost symmetric encoder-decoder network architecture like a “U” shape
and is designed to work with fewer training samples but still able to yield precise
segmentations. The encoder extracts abstracted, downscaled high-level featuremaps.
The decoder restores the resolution of the high-level feature maps. The intermediate
feature maps extracted by encoder and decoder are connected to form multi-scale
featuremaps for pixel-level classifications. The encoder can be amatureDNNmodel,
such as VGG16, ResNet18, ResNet34, etc [4, 23].

Discriminant feature representations are essential for improving classification
accuracy. To achieve a high accuracy classification between sea ice and open water
in medium-high resolution SAR images, we need more characteristic features to
discriminate fine-grained objects such as small floes, sinuous ice-water boundaries,
and ice channels. Therefore,we integrate a dual-attentionmechanism into the original
U-Net and form a DAU-Net model to improve the feature representations of sea ice
and open water. The dual self-attention mechanism means position attention module
(PAM) and channel attention module (CAM), which could capture the long-range
dependencies in spatial and channel dimensions. It has been demonstrated effective
in classical image segmentation [14].

The PAM captures long-range dependencies in spatial dimension by a self-
attention mechanism. For a feature map, the feature value at a specific position
is updated by aggregating feature values at all positions with a weighted summation.
The weights are determined by the feature similarities between the corresponding
two positions. Any two positions with similar features can contribute to mutual
improvement regardless of their distance in the spatial dimension. Similarly, the
CAM employs the self-attention mechanism to capture the channel dependencies
between any two-channel maps. Each channel map is updated by a weighted sum
of all channel maps. Finally, the outputs of these two attention modules are fused to
enhance the feature representations further.

Overall, as shown in Fig. 3, the DAU-Net consists of five parts: inputs, encoder,
attention, decoder, and output. Each input unit consists of three channels of a
256×256-pixel SAR image: VV,VH, and IA. The encoder is the ResNet-34, amature
model for image recognition, and it extracts abstracted, downscaled feature maps for
accurate classification. The attention part performs position attention and channel
attention on the extracted feature maps to capture long-range dependencies in spatial
and channel dimensions. The outputs of the two attention modules are fused to form
more characteristic features transmitted to the decoder. The decoder module rescales
the downscaled feature maps to the original size. Skip connections link the encoder
feature and decoder feature. Next, we will detail the encoder, attention, decoder, and
output modules.
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Fig. 3 Model design. a The model’s input: VV, VH, and IA channels. b The model’s encoder.
c The attention modules. D. The model’s decoder. e The model’s output

3.2 Encoder

He et al. [18] proposed the residual network (ResNet) to increase the number of hid-
den CNN layers to more than one hundred. The ResNet family includes ResNet-18,
ResNet-34, ResNet-50, and ResNet-101, where the number represents the num-
ber of CNN layers. Large numbers mean more CNN layers, more parameters, and
more training complexity. The ResNet family has been widely used in semantic seg-
mentation and object detection. Considering the depth of the model, the number of
trainable parameters, and the complexity of sea ice texture, we choose ResNet-34 as
the encoder for DAU-Net. The comparisons between the ResNet-34 and the other
ResNet-based encoders are carried out in the F part of Section IV.

The encoder consists of 33 CNN layers of the ResNet-34, including five stages.
The first stage is one CNN layer with 7×7 kernel size and 2×2 strides. After the first
stage, the original image size is downscaled to 128×128. The remaining four stages
are composed of 3, 4, 6, and 3 ResNet blocks and a total of 16 ResNet blocks, Fig. 3.
Each ResNet block contains two stacking CNN layers with a shortcut connection
linking the input of the block and the output of the 2nd CNN layers [18]. The number
of convolutional kernels in the five stages is 64, 64, 128, 256, and 512. The original
ResNet34 model uses four 2×2 max-pooling layers that are stacked on four ResNet
stages to downscale the feature map. Here, we discard the last max-pooling layer
and retain the first three max-pooling layers. The activation function of each CNN
layer is ReLU [1]. After encoding, the origin inputs are transformed into 512 16×16
feature maps. Following, these high-level features are transmitted to the attention
part.
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3.3 Attention

The 512 16×16 feature maps extracted by the encoder are fed into the PAM and
CAM to capture spatial and channel dependencies. The outputs of these two attention
modules are fused and transformed into the decoder.

3.3.1 PAM

Since CNN adopts local connection, the features captured by CNN are local. For
semantic segmentation, local features generated by fully CNN are not representative
enough, which could lead to misclassifications [31]. The PAM addresses this issue.
The PAMupdates the feature value at a specific position by aggregating feature values
at all positions with a weighted summation. Thus, the global spatial dependencies
of any two positions could be captured. These global features are fused with local
features to formmore characteristic features. Following,wewill detail the calculation
of PAM.

As shown in Fig. 4a., letH,W, andC represent thewidth, height, and channels, and
A∈ R

H×W×C is a local feature map extracted from the model inputs. The white/dark
regions represent sea ice/water features. There are some inaccurate features in A,
especially the regions marked by the red rectangle. Then A is fed into all three CNN
layers to generate three feature

maps B∈ R
H×W×C , C∈ R

H×W×C , and D∈ R
H×W×C , as shown in Fig. 4b. B is

reshaped to B1 ∈ R
N×C , where N = H × W is the number of pixels. C is reshaped

and transposed toC1 ∈ R
C×N . Then, matrix multiplication is performed between B1

and C1. Then, the multiplication result is activated by a softmax layer to calculate
the spatial attention map S ∈ R

N×N . The softmax activation [3] normalizes S by row
and makes the sum of each row is 1. The more similar feature representations of
the two positions contribute to a higher correlation between them, generating a large
value in S.

Fig. 4 Flow of PAM. a before PAM, some water pixels are misclassified. b PAM. c after PAM, the
misclassified pixels are corrected
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The global dependencies of any two positions in the feature map modeled by S.
D is reshaped to D1 ∈ R

N×C . S is multiplied by D1 to generate As∈ R
N×C :

asi j = Si · D1
j , j ∈ [1,C] (1)

where asi j is an element of As , Si is the ith row of S and D1
j is the jth column of D1.

As is reshaped to A1∈ R
H×W×C . For each channel of A1, the element of a position is

the weighted sum of elements across all positions in the corresponding channel of D
based on the weights in S. Therefore, A1 has a global contextual view and selectively
aggregates contexts according to the spatial attention map. A1 is multiplied by a
scale parameter α and added to the input feature map A in element-wise to obtain
the output EH×W×C :

E = αA1 + A (2)

where α is initialized as 0 and gradually learns to assign more weight.
The pixel value of the output featuremapE is aweighted sumof the features across

all pixels and original features. E integrates the local features and the long-range
global features. The similar semantic features achieve mutual gains, thus improving
intra-class compact and semantic consistency. Intuitively, as shown in Fig. 4c, the
inaccurate features in A are optimized by the PAM, which contributes to the final
output.

3.3.2 CAM

Each channel map of high-level features can be regarded as a class-specific response,
and different semantic responses are associated with each other. The CAM updates
the feature value at a position by aggregating feature values of all channels in the same
position with a weighted sum. The interdependencies between channels of feature
maps are captured, which improves the feature representation of specific semantics.

The structure of CAM is illustrated in Fig. 5. As shown in Fig. 5a., let H, W, and
C represent the width, height, and channels, and A∈ R

H×W×C is a local feature map
extracted from the model inputs, Fig. 5a. The channel attention map X ∈ R

C×C is
calculated from the original features A∈ R

H×W×C , Fig. 5b. A is reshaped to A1 ∈
R

N×C , and is reshaped and transposed to A2 ∈ R
C×N . Then, a matrix multiplication

between A2 and A1 is performed. Then, a softmax layer is applied to obtain the
channel attentionmapX. Themore similar feature representations of the two channels
contribute to a higher correlation between them, generating a larger value in X. The
sum of each row in X is 1. A1 is multiplied by the transpose of X to generate
Ax ∈ R

N×C :
ax
i j = A1

i · X j , j ∈ [1,C] (3)

where ax
i j is an element of Ax , A1

i is the i
th row of A1 and X j is the jth column of X.

Ax is reshaped to A3 ∈ R
H×W×C . For each position of A3, the element of a channel
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Fig. 5 The detailed calculation process of CAM in the DAU-Net. a Feature maps without CAM,
some water pixels are inaccurately encoded as sea ice pixels, marked in the red rectangle. b The
calculation process of CAM. c Featuremaps after CAM. Some inaccurate sea ice pixels aremodified
as water pixels, improving the accuracy of outputs

is the weighted sum of elements across all channels in the corresponding position of
A based on the weights in X. Therefore, A3 has long-range contextual dependencies
in channel dimensions. A3 is multiplied by a scale parameter β and added to the
input feature map A in element-wise to obtain the output FH×W×C :

F = βA3 + A (4)

where β gradually learns a weight from 0.
The final feature of each channel is a weighted sum of the features of all chan-

nels and original features. The long-range semantic dependencies between different
channels of the feature maps are modeled, which boosts feature discriminability.
As shown in Fig. 5a, many open water regions are inaccurately represented as sea
ice features in feature map A. After the channel attention procedure, most of the
inaccurate regions in A are corrected, Fig. 5c. The outputted feature map F is more
discriminating than A and helps to achieve a good classification result.

3.3.3 Fusion

The PAM output and CAM output are separately transformed by a CNN layer. An
element-wise summation is performed on the two transformed results. A CNN layer
executes convolutions on the summation to generate fusion features. Finally, the
fusion features are transmitted to the decoding part.



264 Y. Ren et al.

3.4 Decoder

Five decoder modules are stacked upon the features outputted by attention modules,
and each decoder module is composed of one up-sampling layer and two stacking
CNN layers. Each CNN layer is followed by a batch normalization layer and a ReLU
activation layer. The number of convolutional kernels in the four decoders is 256, 128,
64, 32, and 16, respectively. Three concatenations fuse the features generated from
the same level encoder and decoder. The kernel size of all CNN layers in decoder
modules is 3×3. After decoding, the 16×16 feature maps are rescaled to the same
size as the input image, 256×256.

3.5 Output

The feature maps output by the decoder are fed into the output module that consists
of one CNN layer with one 1×1 convolutional kernel. One sigmoid layer performs
non-linear activation on the convolutional outputs to predict the value of each pixel.
The activation value is between [0,1]. If it is larger than 0.5, the pixel is sea ice;
otherwise, it is open water. The loss function is binary cross-entropy.

4 Experiments

4.1 Experiments Setting

There are 4,684 SAR chips in the training set.We split 30% samples from the training
set as the validation set.We choose a typical imagewith rough sea surface and various
sea ice textures as the testing image. We divided the testing image into 672 256×256
chips. The developed model runs on a GPU workstation with one NVIDIA TESLA
V100 32 GB GPU. Its batch size is 16, and the initial learning rate is 0.0001. We use
Keras as the DL packages, and the ReduceLROnPlateau and early stopping strategies
in Keras are employed to accelerate convergence and avoid overfitting.

4.2 Evaluation Metrics

Accuracy, precision, recall and mean intersection over union (IoU) are employed
to evaluate the performance of the classification methods. The definition of these
metrics is shown in Fig. 6. Precision refers to the proportion of correctly predicted
pixels, both sea ice, and water, among all predicted pixels. Precision refers to the
proportion of pixels that are true sea ice and predicted as sea ice to all predicted
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Fig. 6 Definitions of accuracy ((TP+TN)/(TP+TN+FP+FN)), precision (TP/(TP +FP)), recall
(TP/(TP +FN)), and IoU (TP/(TP +FP+FN))

sea ice pixels. A higher precision value means the model extracts less false alarms.
Recall refers to the proportion of pixels that are true sea ice and predicted as sea ice
to all true sea ice pixels. A higher recall value means the model misses fewer sea ice
pixels. IoU means the proportion of pixels that are true sea ice and predicted as sea
ice to the union of true sea ice and predicted sea ice pixels. When the predicted sea
ice pixels coincide with the true sea ice pixels completely, the IoU is the maximum
value of 1.
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4.3 Comparison Experiments Against Other Models
Performances

To validate the performance of the proposed DAU-Net, two recently proposed DL-
based sea ice classification models are selected for comparison: 1) CNNwang , which
is the CNN-based detection model proposed by Wang et al. [42] in 2018. It consists
of five CNN layers and three max-pooling layers; 2) DenseNetFCN , which has a
similar structure with the MLFN model proposed in 2019 [16]. To satisfy the pixel-
level segmentation and make a fair comparison, DenseNetFCN replaces the fully
connected layers in the original MLFN with fully convolutional layers and adds
upsampling blocks, forming a “U” shape segmentation model.

We also compare our model performance against the classic U-Net model that
has a similar structure with DAU-Net except that the CAM and PAM are removed.
It is worth noting that the CNN layers after two attention modules and the CNN
layer of the fusion part are retained to ensure a fair comparison. U-NetCAM means
the U-Net model with CAM but no PAM. U-NetPAM is the U-Net model with PAM
but no CAM. Similarly, the CNN layers are retained in these two models. We tune
the hyper parameters of all compared models and record the results with the best
accuracy.

The evaluation metrics of all models are shown in Table 2, and the correspond-
ing classification results are shown in Fig. 7. The accuracy, IoU, and precision of
CNNwang are lower than those of the other five models. However, the recall of
CNNwang is the largest one. The precision and the recall are very unbalanced, which
means CNNwang misses fewer sea ice pixels but misclassifies many open water pix-
els as sea ice (high false alarms). As shown in Fig. 7d, the classification results
of CNNwang , such as sea ice edges and ice blocks, are coarse-grained. Limited by
the model complexity, it is difficult for CNNwang to extract enough representative
features to achieve fine-grained classification, thus generatemany false alarms. Com-
paredwith CNNwang , the accuracy, IoU, and precision ofDenseNetFCN are improved
obviously, and recall is reduced. The gap between precision and recall is narrowed.
Fig. 7e shows that the classification results are much more refined than those of
CNNwang . However, there are still some false alarms in the region marked by the

Table 2 Evaluation results of all compared models

Model Accuracy(%) IoU Precision Recall

CNNWang 92.94 0.8428 0.8801 0.9520

DenseNetFCN 93.22 0.8451 0.9027 0.9298

U-Net 93.89 0.8573 0.9241 0.9222

U-NetCAM 94.03 0.8611 0.9203 0.9305

U-NetPAM 94.01 0.8606 0.9295 0.9207

DAU-Net 94.39 0.8673 0.9355 0.9225
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Fig. 7 a–c Inputs of the test SAR image, VV channel, and VH channel are scaled to 0-255 for
better visualization. d–i classification results of different models

red rectangle. Although DenseNetFCN is more complicated than CNN, it is still not
enough to extract sufficiently characteristic features to accurately distinguish sea ice
and water, especially in areas where sea ice and water are mixed under complex sea
conditions.

The U-Net model outperforms CNNwang and DenseNetFCN in both accuracy
and IoU. Its recall and precision are also more balanced. Fig. 7f shows that the
U-Net obviously reduces the false alarms generated by DenseNetFCN (marked by
the red rectangle). By introducing attention modules, U-NetCAM and U-NetPAM

show improvements in accuracy and IoU. The precisions and recalls do not show
significant improvements. However, as shown in Fig. 7g-h, the classification results
of U-NetCAM and U-NetPAM are more refined, and the boundary between sea ice and
open water is more smoother. Finally, the DAU-Net, integrated with CAM and PAM,
obtains the most considerable accuracy, IoU, and precision (Table 2). Compared
with the original U-Net model, the accuracy, IoU, and precision of the DAU-Net
increased by 0.50%, 1.00%, and 1.14%, respectively. The accuracy and recall are in
balance. By comparing Fig. 7i and f, it can be found that the false alarms generated by
U-Net are reduced significantly, and the classification results of DAU-Net are more
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refined. The fine-grained objects such as small floes, sinuous ice-water boundaries,
and ice channels are classified more smoothly by DAU-Net. Therefore, the CAM
and the PAM can improve the representative ability of extracted features to promote
the classification results of sea ice and open water.

4.4 Effectiveness of IA

As the IA is ignored in existed DL-based models [16, 42], we design an experiment
to evaluate the effectiveness of employing the IA of SAR images as one input. Table 3
shows the experiment results. DAU-Net is the model with IA, and DAU-NetN I A is
the model without IA. The other experiment settings are unchanged. The accuracy
and IoU of DAU-NetN I A are less than those of the DAU-Net. The precision is much
larger than the recall, which means DAU-NetN I A misses many sea ice pixels. As
shown in Fig. 8c, some sea ice pixels are misclassified as open water in the upper left
part of the image. Thus, the IA is essential to obtain better classification results.

Table 3 Evaluation results of using IA

Model Accuracy(%) IoU Precision Recall

DAU-NetN I A 92.48 0.8183 0.9554 0.8508

DAU-Net 94.39 0.8673 0.9355 0.9225

Fig. 8 a and b, VV channel and VH channel of the testing set; c–f, classification results of the
model without IA, VH, VV as inputs, separately
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4.5 Effectiveness of Dual—Polarization Information

We design an experiment to evaluate the effectiveness of dual-polarization inputs.
DAU-Net uses the VV channel, VH channel, and IA as the inputs. DAU-NetVV uses
VV channel and IA as the inputs, andDAU-NetV H uses VH channel and IA as inputs.
The other experiment settings are unchanged, as shown in Table 4. The four metrics
of DAU-NetV H are smaller than those of the other two models. As Fig. 8e shown,
DAU-NetV H misclassifies many sea ice pixels as open water, mainly the pixels in
the upper left part of the image. DAU-NetVV performs better than DAU-NetV H , but
it still misses some sea ice pixels in the middle part of the image, Fig. 8d. Finally, by
combining VV and VH as inputs, DAU-Net achieves the best performance. Thus, the
dual-polarization information of SAR image is helpful to obtain better classification
results.

Table 4 Evaluation results of using Dual-Polarization Information

Model Accuracy(%) IoU Precision Recall

DAU-NetV H 91.21 0.7956 0.9136 0.8603

DAU-NetVV 93.25 0.8375 0.9523 0.8742

DAU-Net 94.39 0.8673 0.9355 0.9225

4.6 Performances of Different ResNet-Based Encoders

The encoder in DAU-Net is ResNet-34. We design an experiment to evaluate the
performances of the other two ResNet-based encoders. DAU-Net18 is the model
using ResNet-18 as the encoder, and DAU-Net50 is the model using ResNet-50 as
the encoder. The other parts of these two models are the same as those of the DAU-
Net. As shown in Table 5, the performances of the three models do not show much
difference. DAU-Net with ResNet-34 as encoder slightly outperforms the other two
ResNet-based encoders. For our classification mission, ResNet-34 is a more suitable
encoder than the other two ResNet models.

Table 5 Evaluation of different ResNet encoders

Model Encoder Accuracy (%) IoU Precision Recall

DAU-Net18 ResNet-18 94.08 0.8598 0.9374 0.9121

DAU-Net50 ResNet-50 93.72 0.8523 0.9292 0.9115

DAU-Net ResNet-34 94.39 0.8673 0.9355 0.9225
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5 Discussions

To validate the robustness of the proposed model, we employ the DAU-Net to clas-
sify sea ice and open water from a series of SAR images in the Bering Strait and
compare the classification results with the sea ice products provided by NSIDC. As
the DenseNetFCN represents the existing DL-based classification model for sea ice,
we take the results of DenseNetFCN as comparison targets. The image series con-
sists of six images, each of which is mosaiced from three Sentinel-1A images, and a
total of 18 Sentinel-1A images. Their details are shown in Table 1. The image series
covers the process from freezing to melting of the Bering Strait, including a variety
of sea ice textures and sea surface conditions. As shown in Fig. 9a-f, sea ice partially
appeared in the Bering Strait on Dec 13, 2018, and it covered the entire region until
Mar 19, 2019. Then, onMar 31, 2019, the sea ice started tomelt, and byMay 6, 2019,
most of it had receded. The most recent data (generally from the previous day) of the
1 km products appear in the archive at approximately 10:00 p.m. (Greenwich Mean
Time, GMT). The 18 Sentinel-1A images in the Bering Strait are acquired around
06:00 p.m. (GMT). Due to the time difference, the date of the MASIE-NH products
we employed is one day later than the date of the Sentinel-1A images. The cell size
of the DAU-Net result is 30 m. The spatial resolution of the two data is too different,
so it is unreasonable to compare their evaluation metrics quantitatively. Here, we
discuss the performance of DAU-Net through the visual comparison of classification
results.

Figure9g-l show the classification results of DAU-Net and Fig. 9m-r are the cor-
responding MASIE-NH products. Overall, the DAU-Net results are consistent with
theMASIE-NH products. The sea surface in Fig. 9a, d, and f is very rough and bright,
mixing with the sea ice, especially the regions marked as red rectangles. As shown
in Fig. 9g, j, and l, the DAU-Net classifies the sea ice and open water well, which
demonstrates that the proposed model can deal with the complex sea surface. There
are many water gaps, small sea ice floes, and sinuous ice-water boundaries in Fig. 9c
and f, which are finely classified by the DAU-Net, as shown in Fig. 9i and l. The
separate water channels in Fig. 9e are also successfully classified by DAU-Net, as
shown in Fig. 9k. As the spatial resolution of the MASIE-NH products is 33.3 times
lower than that of DAU-Net results. Many fine-grained objects cannot be classified
in the MASIE-NH products. As shown in Fig. 9i, k, and l, the classification results
of DAU-Net are more consistent with the SAR images than the MASIE-NH prod-
ucts, especially in the regions marked by the yellow rectangles in Fig. 9c, e, and f.
Taking the region marked by the yellow rectangle in Fig. 9f as an example, we show
the detailed comparisons between the classification results of DAU-Net and 1km
MASIE-NH products in Fig. 10. Our classification results show obvious advantages
over MASIE-NH products in spatial resolution, Fig. 10b-d.

However, DAU-Net performs not very well in some regions. As marked by the
green rectangles in Fig. 9a, some sea ice pixels with dark textures are misclassified as
open water. Some open water pixels with extremely rough surfaces are misclassified
as sea ice. The misclassifications may be due to the lack of these two types of
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Fig. 9 Comparison between results of DAU-Net, MASIE-NH products, and results of
DenseNetFCN of a time series (Dec 13, 2018-May. 06, 2019) in Bering Strait. a–f SAR images, VV
channel. g–l classification results of DAU-Net. m–r 1km MASIE-NH products. s–x classification
results of DenseNetFCN

samples in the training set. The misclassifications mainly exist in the SAR image on
Dec 13, 2018, the early stage of sea ice in the Bering Strait, with some very dark
sea ice textures. These textures are rare during the freezing and melting stages. In
addition, the extremely rough sea surfaces are also rare in the training set, resulting in
misclassifications. As shown in Fig. 9s-x, the results of DenseNetFCN are generally
consistent with the MASIE-NH products. However, DenseNetFCN performs worse
than DAU-Net, especially in the regions marked by red circles. Some rough sea
surface pixels are misclassified as sea ice pixels.



272 Y. Ren et al.

Fig. 10 A detailed comparison between results of DAU-Net and MASIE-NH products in a repre-
sentative region marked in Fig. 9f. a The SAR image on May 6, 2019. b–d the detailed SAR image,
classification results of DAU-Net, and 1km MASIE-NH products corresponding to the marked
region

In summary, by validating the applicability of DAU-Net through a series of SAR
images in theBering Strait, we demonstrated that theDAU-Net performswell inmost
sea conditions. The proposed is capable of dealing with various sea ice textures. Due
to the advantages of SAR image resolution and model performance, the results of
DAU-Net aremore refined thanMASIE-NHproducts.DAU-Net also outperforms the
existing DL-based sea ice classification model, DenseNetFCN .However, the DAU-
Net performs not well on some unusual textures. To further improve the model
applicability, we will collect more training samples to supplement the rare texture
types.
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6 Conclusions

This study proposes a DAU-Net model to classify the sea ice and open water from
SAR images.We combine the ResNet34with the U-Net to form themodel backbone.
SAR images are obtained from Sentinel 1A. The dual-polarized information and the
IA of SAR images are utilized as the model inputs. We integrate the dual-attention
mechanism, PAM and CAM, into the original U-Net model to extract more char-
acteristic features, which helps to achieve more accurate classifications. We use 15
Sentinel-1A SAR images acquired near the Bering Sea to train the model. We eval-
uate the model performance by one SAR image and compare the DAU-Net with the
typical DL-based ice classification models. Further, we use the well-trained model
to classify a series of SAR images of Bering Strait, which covers the process from
freezing to melting. We make a comparison between the classification results of
DAU-Net and the 1km MASIE-NH products of NSIDC. Experiments show that:
1) the dual-attention mechanism enhances the representative ability of features and
help the DAU-Net outperforms the origin U-Net and typical existing DL-based ice
classification models, especially in the classification of fine-grained targets; 2) the
three-channel inputs, dual-polarized information (VV and VH) and IA, contribute to
high accuracy classifications; and 3) the DAU-Net is capable of dealing with com-
plex sea state conditions from freezing to melting, showing good robustness and
applicability.

In the future, to address the misclassifications on unusual sea ice textures, we
will collect more training samples from a wide range of space and time. We will
also explore the possibility of integrating few-shot learning to solve the mentioned
problem. Besides, the multi-category classification models to discriminate MYI, sea
ice, and open water will be will become a follow-up work.
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Detection and Analysis of Marine Green
Algae Based on Artificial Intelligence

Le Gao, Xiaofeng Li, Yuan Guo, Fanzhou Kong, and Rencheng Yu

1 Introduction

Harmful algal blooms (HAB), e.g., Yellow sea green algae, are disastrous ecological
events in coastal oceans. During the blooming period, the rapid biomass increase
severely impacts the coastal ecosystems and even the Olympic regatta games in
2008 [6, 13–15, 17, 20, 22, 23].

Satellite remote sensing is a suitable means for green algae (U. prolifera) obser-
vation and analysis because of the frequent data acquisition and broad coverage area
[5, 7]. Existing studies mostly use passive optical-sensor images of 250-1,000 m
resolution., e.g., Moderate Resolution Imaging Spectroradiometer (MODIS). The
floating U. proliferamodulate the ocean color properties to make sea surface appear
the prominent algae features in optical images [2, 8, 10, 21]. Active Synthetic aper-
ture radar (SAR) images provide sea surface roughness with a resolution of tens
of meters. The floating algae on the sea surface behave like a volume-scattering
hard object, and the algae patch area’s reflected signal is much stronger than that
backscattered one from the surrounding water, which appears as brighter regions
in SAR images. SAR has become another option for detecting algae because some
SAR images have become free and open, e.g., the European Space Agency (ESA)
Sentinel-1 and Chinese Gaofen-3 data. For optical-sensor images, biological index
methods, e.g., NDVI (Normalized Difference Vegetation Index) and FAI (Floating
Algae Index), are commonly used [1, 5]. For SAR-sensor images, previous studies
usually use grey, roughness or backscatter coefficient difference to identify the tar-
get [4, 12]. However, these methods cannot effectively fuse the information from the
optical and SAR images since the physical mechanisms of optical- and SAR-sensors
forU. prolifera detection are very different. Based on the algae’s characteristics in the
two sensors’ images, deep-learning (DL) offers a possibility to perform data fusion
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[12]. U. prolifera algae have the thalli’s hollow tubular structure. During its blooms,
some parts of the algae body are exposed above the sea surface, while other parts are
submerged below the surface. An optical sensor can collect spectral information at a
certain sea depth to effectively capture the floating and underwater part of the algae
[7, 11]. The SAR sensor captures only the floating part on the sea surface. Thus, we
can define the floating and submerged algae ratio (FS ratio), i.e., part of SAR-sensor
detection/part of optical-sensor detection. The objectives of this research include 1)
proposing a DL network to detect U. prolifera from optical and SAR images better,
and 2) using the defined FS ratio to represent algae life stages.

2 Data and Methodology

2.1 Satellite Images and Labels

We collected geometrically and radiometrically corrected 250 m spatial resolution
MODIS true-color imagery (Bands: 1/4/3) containing algae patches in the Yellow
Sea, and these MODIS images are under clear sky conditions from 2008 to 2021.
Compared to the surrounding seawater, the U. prolifera algae show more prominent
green slick/patch features (Fig. 1a–d). Using the Labelme software [16], we can label
sample image slices containing different algae shapes forDL algorithmdevelopment.
Finally, 1,055 pairs ofMODIS labelled samples were obtained, and 680/292/83 pairs
were used as training/validation/testing sets.

We also collected Sentinel-1 Level-1 GRD (Ground Range Detected) dual-
polarization (VV, VH) interferometric wide images with 10 m spatial resolution
and 250 km swath and the Chinese GaoFen-3 SAR Fine Stripe Mode II (FSII) dual-
polarization (HH, HV) image with 10 m resolution and 100 km swath between 2015
and 2019. All SAR images were processed with speckle filtering and geometric,
radiometric, orthometric, and terrain corrections to improve image quality using the
Sentinel Application Platform (SNAP) 7.0 software. The algae patches show bright
spots/slicks in SAR images (Fig. 1e). We marked 4,071 pairs of the algae labelled
samples; 2,086/895/1,090 pairs were used as training/validation/testing sets.

2.2 UNet-Based Algae Detection Network (AlgaeNet)

We propose a DL-based model, AlgaeNet, to detect the algae patches better. Figure2
shows the model’s system diagram based on the U-Net framework [12, 16]. Optical
and SAR images are input to the DL model separately,and the corresponding detec-
tion result of the optical (SAR) image is Algae coverage-1 (2) through the improved
model. Then the model can perform data fusion based on the two sensors’ detection
results, and the FS ratio can be estimated by Algae coverage-2/Algae coverage-1.
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Fig. 1 U. prolifera algae blooms in Yellow sea and algae detection examples at the pixel level in
green tide bloom period. a the random selected MODIS true-color images on June 25, 2008; b
is the marked ground truth by manual; c is the predicted value of the classic U-Net model; d is
the corresponding predicted value of the AlgaeNet model; the white dots are algae pixels, and the
black are the background ocean; e is an algae detection example based on the AlgaeNet model in
Sentinel-1 SAR images

Fig. 2 AlgaeNet model design. Algae coverage-1 (2) is based on MODIS (SAR) images

During the DL architecture design, we should pay particular attention to main-
taining the tradeoff between optimization and generalization of the network. The
overfitting of the algae detection model is usually prevented mainly through the fol-
lowing three methods: dropout, weight regularization, and batch normalization. We
found that batch normalization (BN) andweight regularizationwere beneficial for the
network of the three technologies. BN provided any layer with zero mean/unit vari-
ance in the DL model [9]. The initialization type of weights could cause a digression
to gradients, meaning the gradients have to compensate for the outliers. BN regular-
izes the gradient by normalizing activations throughout the network. It prevents small
parameter changes from amplifying into more significant and suboptimal changes in
gradients’ activations. L2 weight regularization is also added to each hidden layer.
During optimization, L2 regularization adds penalty items to model parameters or
activation values in the hidden layer, limiting the model parameters too much/too
large to avoid the network being too complicated. These penalty terms will be used
as the network’s ultimate optimization goal.
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Table 1 Performance of AlgaeNet model

Input data AI-Model Output (%)

Accuracy Precision Recall F1 score IoU

MODIS Classic
U-Net

96.37 62.96 53.84 58.04 37.89

AlgaeNet 97.51 66.61 55.41 60.50 42.62

Sentinel-1/GF-3
SAR

99.83 95.35 92.04 93.67 88.09

Random
Forest

99.39 72.95 87.96 79.96 66.60

2.3 Model’s Performance

The performance evaluation of the AlgaeNet model includes the assessments of
the algae detection performance for MODIS and SAR images, respectively. For
evaluating the AlgaeNet-MODIS model, Table I shows that the performance of the
AlgaeNet-MODIS model is better than the original U-Net model; the AlgaeNet-
MODIS (U-Net) model reached 97.51 (96.37)%, 66.61 (62.96)%, 55.41 (53.84)%,
60.50 (58.04)%, and 42.62 (37.89)% in the five commonly used indicators of Accu-
racy, Precision, Recall, F1_Score, and Mean Intersection over Union (IoU). For the
evaluation of AlgaeNet-SAR, the model reached 99.83, 95.35, 92.04, 93.67, and
88.09% in the five indicators, which are significantly better than AlgaeNet-MODIS.
Figure1 also gives a visual presentation of the algae detection performance in the
U. prolifera blooming period. Finally, we compared the model’s further with the
recent neural networks: Random Forest (RF) models. Table 1 shows that our model
has significantly higher performance than the RF model and indicates the excellent
portability of the particular improvement strategy in the networks.

3 Results and Discussion

The AlgaeNet model was used in MODIS and SAR images to examine the algae
coverage changes in 2020 and 2021. Figure3 shows that the maximum biological
coverage in 2021 is nearly four times that of 2020. This significant difference has
attracted widespread attention, and it is related to nutrients, sea surface temperature,
sea surface salinity, seaweed planting valve area and valve frame recovery time,
species competition, etc. [3, 18, 21].

Weused theAlgaeNetmodel to process the collectedMODISandSAR images and
acquired twelve pairs of spatiotemporally matchingMODIS and SAR images/slicks.
Figure4 shows that the algae patches captured by MODIS and SAR sensors have a
highly consistent spatial distribution pattern (Fig. 4b-c). In addition, we also found
one interesting detail: for the big algae patches/slicks with a high aggregation degree,
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Fig. 3 The detected maximum algae coverage in 2020 a and 2021 b in Yellow Sea

the margin of the algae patches observed by the MODIS sensor is broader than that
observed by the SAR sensor. That is due to the unique floating mechanism of the
algae body. The U. prolifera algae has the thalli’s hollow tubular structure and floats
on the sea surface; some parts of the algae body are exposed above the sea surface,
while others are submerged below the surface. Therefore, optical sensors can collect
spectral information at a certain sea depth to effectively capture the underwater part
of the algae [7, 11]. On the other hand, the SAR sensors capture only the floating
part on the sea surface. Thus, we can estimate the floating and submerged algae ratio
(FS ratio) of U. prolifera algae.

As shown in Fig. 5, the FS ratio reflects the changes in the floating status of
U.prolifera. Based on the algae distribution, coverage, and biomass results of the
collected MODIS and SAR images from 2008-2021/2015-2019, the U. prolifera
bloom originated from the Subei Shoal and drifted northward experienced different
phases from initiation, development, maintenance, and decline. At the various stages
of theU. prolifera bloom, the floatingU. prolifera underwentmorphological changes.
At the initiation phase in the Subei Shoal, theU. prolifera algae had a large proportion
submerged in seawater [19] and rare algae biomass. Based on the two matching
MODIS AND SAR image pairs, the FS ratio of the algae body was less than 5%
(Fig. 4). During the development phase, the biomass ofU. prolifera rapidly increased.
A large proportion of U. prolifera became floating due to the optimal illumination
and temperature, and therefore FS ratio quickly increased to 24.75%, and some
local areas even reached more than 40%. During the maintenance phase of the U.



282 L. Gao et al.

Fig. 4 Algae FS ratio estimation. a detected algae pixels between MODIS and SAR images; b and
c corresponds to the enlarged view of two randomly selected sub-areas

proliferabloom, theU.prolifera algaemovednorthward, and thebiomass andFS ratio
remained at a high level, basically unchanged, shown as the dotted box of ~21.35%.
During the decline phase of the bloom, there were almost no algae near Subei Shoal,
and the FS ratio of algae patches in the Yellow Sea decreased rapidly to 14.33%.
Therefore, in the entire life phase, the FS ratio of the U. prolifera had a parabolic
process from increasing, maintaining, and then decreasing. The rates of increasing
(initiation phase) and decreasing (decline phase) were high-speed compared to the
development and maintenance phases.
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Fig. 5 FS ratio: a life status indicator of U. prolifera algae

4 Conclusions

This chapter establishes an improved DL model for detecting U. prolifera algae in
MODIS and SAR images, and the model has a high detection accuracy, i.e., 97.51%,
and Mean IoU to 42.62% for MODIS images and 99.83% and 88.09% for SAR
images. The detection results show that the maximum biological coverage in 2021
is almost four times that of 2020 due to various natural and manufactured reasons.
Besides, we can take the FS ratio as an excellent indicator to reflect the life status of
floating U. prolifera algae.
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Automatic Waterline Extraction
of Large-Scale Tidal Flats from SAR
Images Based on Deep Convolutional
Neural Networks

Shuangshang Zhang, Qing Xu, and Xiaofeng Li

1 Introduction

Coastal zones are ecologically essential and exceptionally dynamic.Monitoring these
regions is essential for coastal environmental protection and development. Thewater-
line, also called shoreline or coastline in the coastal zones, is defined as contact
between land and the water body. It plays an essential role in analyzing land/water
resources, monitoring coastal erosion [3], as well as global sea-level rise.

Clouds easily contaminate optical remote sensing waterline detection. Waterline
extraction from synthetic aperture radar (SAR) imagery is becoming more common
due to the radar’s all-weather and all-day capability. However, distinguishing the
waterline in SAR images is not as simple a procedure for visible-band sensors. The
wind-roughed and wave-modulated water return can frequently equal or exceed the
return from a nearby land area, resulting in an inadequate contrast for unambiguous
land-sea separation. In addition, affected by the moisture of the sandy sediments
[6], this phenomenon is more evident in some tidal flat areas. Besides, the speckle
noise generated by the coherent signal-scattering complicates thewaterline extraction
problem for SAR images.

Since the remote sensing data has been growing exponentially and the manual
delineation is labor-intensive and subjective, several automatic or semi-automatic
waterline extraction methods for SAR images have been proposed based on two
conventional approaches: edge detection [10, 13, 16, 19, 28] and image segmentation
[9, 14, 22, 24]. However, nomatter which one they are based on, thesemethodsmore
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or less require preprocessing andpostprocessing for an accurate extraction result from
SAR images [9, 24].

Recently, deep convolutional neural networks (DCNN) have widely been
employed to extract information from remote sensing images [11]. Several machine-
learning-basedmethods havebeenproposed forwaterline or coastline extraction from
SAR images, which all show far better results than the conventional edge detectors
[1, 8, 29]. However, unlike regular land or ice regions, the SAR imaging of tidal flat
areas shows dramatic brightness changes under different sea conditions.

In this chapter, amodifiedU-Net has beenused to create a framework for automatic
waterline extraction from Sentinel-1 SAR images of a large-scale tidal flat at Subei
Bank in theSouthernYellowSea. The extractedwaterlines are continued to be applied
to construct the digital elevation model (DEM) series in different years for evolution
analysis of tidal flat using the waterline method. In this chapter, we first describe our
study area, the unique palm-like Radial Sand Ridges along the Jiangsu coast, and the
various sandbanks’ SAR imaging features under different sea conditions. Afterward,
we introduce our input data and the DCNN-based method. Finally, after testing the
trained model’s performance, we developed a processing chain for constructing the
tidal flats DEMwith the automatically extracted waterlines and an assimilative ocean
tide model.

2 Study Area and Data

The Jiangsu coast is located in the western part of the South Yellow Sea, and its
offshore area is characterized by palm-shaped radial sand ridges (RSRs). The RSRs
consist of more than ten prominent submarine sand ridges and have a unique radial
palm shapewith the central apex near Jianggang. This giant system is well-developed
owing to the active tidal processes and abundant sediment supply from the river runoff
[4]. It has a length of 200km in the north-south direction and a width of 90km in the
east-west direction, with the water depth ranging from 0 to 25m [27]. The complex
hydrodynamic system [20, 30] makes the area’s topography changeable. As shown
in Fig. 1b, there are several large-scale tidal flats distributed in the study area.

Compared to optical imaging systems, the active microwave sensor acquires data
independent fromnight and cloud cover, ensuring continuous study area acquisitions.
The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites,
operating day and night performing C-band SAR imaging, enabling them to acquire
imagery regardless of the weather [26]. The two satellites, Sentinel-1A (launch on
3 April 2014) and Sentinel-1B (launch on 25 April 2016), complement each other
allowing six days revisit times or even less (in polar regions). With the support of
Google Earth Engine [7], we collect 140 pre-processed Ground Range Detected
(GRD) IW (interferometric wide-swath) mode with dual-band cross-polarization
(VV and VH) and 10m spatial resolution Sentinel-1 SAR imagery from 2015 to
2019 for the waterline extraction analysis in this chapter. Among the 140 images, 52
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Fig. 1 a Overview of the study area. The elevation data are from the ETOPO1 (NOAA National
Geophysical Data Center, 2009). b Sentinel-1B SAR image of the study area at low tide, imaged at
Greenwich Mean Time (GMT) 09:54, 26 November 2019

acquired in 2019 are used for training and testing our DCNN model and the remains
for constructing the large-scale tidal flats’ DEM in Subei Bank.

Besides the speckle noise, the accuracy and efficiency of the automatic extraction
of waterlines in the study area are mainly interfered with by two other factors: the
rapid local brightness changes in seawater and tidal flats. The SAR image represents
a two-dimensional radar backscatter map of the ocean surface roughness. Therefore,
some related processes (such as winds, internal solitary waves, currents, underwater
topography, oil spill, rainfall, and eddies) that cause local roughness changes will
drive apparent brightness or darkness in imaging. According to Zhang et al. [31],
affected bywind and tidal currents, the imaging features of shallowwater topography
in our study area can often be captured by SAR. As shown in the northeast corner
of Fig. 1b, the three underwater sand ridges are shown as narrow bright stripes (1km
wide) in this SAR image. The non-uniform SAR imaging of the sea surface is more
evident in Fig. 2. These four sub-images are acquired under different sea conditions
and show a considerable imaging difference from each other both on seawater and the
tidal flats. The uncertain changes bring great difficulties to the automatic extraction
of waterlines for these large-scale tidal flats.
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Fig. 2 Four typical Sentinel-1 VV-polarized SAR image examples acquired at the different tidal
level: a Sentinel-1B image acquired at GMT 09:54, 19 March 2019; b Sentinel-1A image acquired
at GMT 09:55, 26 December 2019; c Sentinel-1A image acquired at GMT 09:54, 23 November
2016; d Sentinel-1A image acquired at GMT 09:55, 21 July 2017

3 Methodology

3.1 U-Net

The DCNN to extract pivotal information from remote sensing images has been suc-
cessfully applied in oceanography. Recently, Li et al. [11] established an improved
U-Net network to efficiently and automatically extract different ocean process sig-
natures in optical and radar images. The U-Net [23] is a modified fully convolutional
network [15] initially developed for biomedical image segmentation. The network is
based on the Fully Convolutional Network but extended to work with fewer training
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Fig. 3 The U-Net architecture specially tailored for this chapter

images to yield more precise segmentation. The network consists of a contracting
path and an expansive path, giving it a U-shaped architecture. As shown in Fig. 3,
the left contracting path is a typical convolutional network that consists of repeated
application of convolutions, which are followed by a rectified linear unit (ReLU)
and a max-pooling operation. During the contraction processing, the spatial infor-
mation is reduced while the image feature is increased. The right expansive pathway
combines a sequence of up-convolutions and concatenations with high-resolution
features from the contracting path. One crucial modification in U-Net is that there
are many feature channels in the upsampling part, allowing this network to propagate
context information to higher resolution layers. Consequently, the expansive path is
more or less symmetric to the contracting path, yielding a U-shaped architecture of
this network. The main idea is to supplement a usual contracting network by suc-
cessive layers, where upsampling operators replace pooling operations. Hence these
layers increase the resolution of the output. A successive convolutional layer is able
to learn to assemble precise output based on this information.

As shown in Fig. 3, the U-Net’s last layer is 1×1 convolution with the Sigmoid
activation. Traditionally, the loss function of the original U-Net is the cross-entropy.
However, in the task of waterline extraction, the samples are highly unbalanced, i.e.,
the background samples’ numbers are much higher than those of waterline samples
(less than 1% points in whole SAR images). Motivated by Lin et al. [12], we adopt
the α-balanced cross-entropy in this task.

3.2 Data Preparation

The original spatial resolution of the dual-polarized Sentinel-1 SAR imagery down-
loaded from Google Earth Engine is 10m. After statistical analysis, we found that
the boundary lines between land and water on the VV polarization images are more
apparent than those of the VH images. To save computing resources and training
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time, we only use the VV polarization images and downsample them to a resolu-
tion of 50m. Finally, a full SAR image of the study area is 2229 pixels high and
2005 pixels wide. We further crop the images and their corresponding ground truth
into sub-images with 256×256 pixels size to keep memory consumption low during
training (the edge is filled with black when it is less than 256 pixels). In the end, we
acquired a total of 3024 pairs of images for training the U-Net. In addition, before
training the network, data augmentations are performed to compensate for a lim-
ited number of images in the training dataset. Data augmentation is a technique to
increase the amount of data by adding slightly modified copies of already existing
data, including random contrast, brightness change, image rotation/cropping, noise
injection, etc. It may help the network learn more tidal flat waterline features in the
SAR imagery with protean brightness and shapes.

Ground truth labels are necessary when we train a machine learning classifier.
Since there is no correspondingwaterline product and amethod that can automatically
extract these edges, we use manual drawing to obtain the ground truth value of the
waterline of the 52 Sentinel-1 SAR images acquired in 2019 (the depicted result
is shown as the output in Fig. 3). In practice, we use a stylus and touch screen to
represent the position of the waterlines accurately. We first randomly select 1/5 of
52 pairs of images, that is, ten pairs as the testing set, to examine the accuracy of
extracting the waterlines in the independent data of the trained model. The remaining
42 SAR images with their labels are used for U-Net model training.

3.3 Training

The cropped sub-images from 42 Sentinel-1 SAR imagery are divided into 80% for
training and 20% for validation in the training process. The training and testing of
the network are implemented by Keras/Tensorflow framework (on NVIDIA Tesla
V100 GPU, 32 GB). As mentioned above, we adopt the α-balanced cross-entropy as
the loss function (α is set to 0.99) and the classification accuracy as the performance
metric. Furthermore, the batch size is set to 16, and the number of epochs is 4000.
Finally, the classification accuracy of the 20% validation images is 94.45% after
nearly ten hours of training.

4 Results

4.1 Model Performance

The binary classification accuracy is estimated by calculating the precision and recall
of the automatically extracted waterlines to manual ones. The mean precision and
recall of the ten testing images are 0.92 and 0.77, respectively (see Table1 for details).
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Table 1 Details of ten testing Sentinel-1 SAR images

Image ID Satellite Imaging time
(MM/DD
HH:mm,
GMT)

Tidal level(m) Precision Recall

1 Sentinel-1A 02/17 09:55 −3.32 0.96 0.76

2 Sentinel-1A 04/30 09:55 −1.39 0.93 0.78

3 Sentinel-1B 05/30 09:54 −1.40 0.93 0.75

4 Sentinel-1A 06/05 09:55 −1.28 0.91 0.69

5 Sentinel-1A 06/17 09:55 −2.40 0.92 0.83

6 Sentinel-1A 06/29 09:55 −1.52 0.89 0.78

7 Sentinel-1A 07/11 09:55 0.97 0.93 0.84

8 Sentinel-1B 07/29 09:54 −1.95 0.94 0.79

9 Sentinel-1A 09/09 09:55 −0.47 0.95 0.81

10 Sentinel-1A 12/26 09:55 −3.02 0.93 0.74

Mean 0.92 0.77

Four examples of the ten testing results under different sea conditions are shown
in Fig. 4. We use three-color lines to compare the difference between the model
results and the true values. Yellow represents the waterlines accurately extracted by
our DCNN-based model. Red indicates the missing parts of the model, while blue
means the false detected lines that shouldn’t be there. The fluctuation of the tides
causes drastic changes in the shape and distribution of the waterlines. Figures4a-
c show the results under three typical tidal levels: high, medium, and low, which
can also be judged from the exposed area of the tidal flats. What’s interesting here
is that Fig. 4c captures a small amount of Enteromorpha information shown as the
little bright spot in the northern sea. As shown by the yellow lines in Fig. 4, most of
the obtained extraction results from the DCNN-based model correspond well to the
manually annotated ground truth waterlines.

4.2 Automatic Topographic Mapping of Tidal Flats

Knowledge of a waterline’s orientation, position, and outline is essential in sea
autonomous pilot, verification of coastal platform’s attitude and place, the geolo-
cation of ships, geographic mapping, etc. It also has a specific application for con-
structing a digital elevation model (DEM) of an intertidal zone by the waterline
method [16]. This method is first introduced by Mason et al. [17]. The waterline can
be regarded as a quasi-contour line of the topography. This method was proved to
be one of the best methods that provide an excellent trade-off between accuracy and
cost-effectiveness for the DEM generation of tidal flats [18, 24, 32].
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Fig. 4 Four examples of the ten testing images overlaid with their corresponding trained model
extraction results and ground truth waterlines: a Sentinel-1A image acquired at GMT 09:55, 11 July
2019; b Sentinel-1B at 09:54, 29 July 2019; c Sentinel-1A at 09:55, 17 June 2019; d Sentinel-1A
at 09:55, 05 June 2019. The mean precision and recall of the ten testing images are 0.92 and 0.77,
respectively
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Fig. 5 The flowchart of the method for automatic topographic mapping of the tidal flats developed
in this study

This study further attempts to establish a method for automatic topographic map-
ping of tidal flats based on the waterline method and the DCNN-based waterline
extraction model for SAR images. The flowchart of this method is shown in Fig. 5.
The elevation generation process can be divided into four steps:

1. Gaining the waterline information in a series of Sentinel-1 SAR images showing
different tidal levels automatically by the trained DCNN-based model;

2. Discreting the lines into points and estimating their Lon/Lat position fromoriginal
images;

3. Evaluating the water level of each point by the ocean tidal prediction model at
the SAR imaging time;

4. At last, interpolating the resulting grid of quasi-contour lines to a DEM map.

According to the previous subsection, theDCNN-basedmodel performswell,with
little or no postprocessing required to obtain accurate waterlines, even for large-scale
tidal flats like the Subei Bank. In addition, our method has extremely high extraction
efficiency, with an average of two seconds per SAR image (2229 × 2005 pixels,
based on the NVIDIA Tesla V100 32GB GPU). According to Zhang et al. [31], the
TPXO tide model [5] perform well in the tidal phase in our study area. However,
this tidal model presents a systematic underestimation of tidal amplitude. Then, the
in-situ water level data from two tidal gauge stations in our study area were used
to calibrate this tide model (see [31] for details). The corrected TPXO tide models
with Tidal Model Driver software are employed as the ocean tidal prediction model
to evaluate the tidal level for each point of each waterline on this method.

We first used the waterlines of 2019 to verify the accuracy of the waterline method
in measuring tidal flats elevation in our study area. We eliminated five scenes with
wind speed greater than 10m/s, which have a large offset from their original location
caused only by tidal fluctuation [25]. Then the remaining waterlines from 47 SAR
images was assigned with the tidal level value using the corrected ocean tidal model
(see Fig. 6).
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Fig. 6 Assembled tidal level
evaluated waterlines
extracted manually from all
SAR images acquired in
2019

Finally, as shown in Fig. 7, these points/lines were interpolated to obtain gridded
DEM of the large-scale tidal flats in our study area. One transect line of measured
topographic data, which were acquired by an in-situ survey in May 2019, was used
to test the accuracy of the derived DEM. The mean absolute error along this transect
line is about 0.3m (see Fig. 8).

Among the waterline method steps, the most time-consuming one is to extract
the waterline, especially for SAR images. With the support of the DCNN-based
automatic waterline extraction model, the efficiency of implementing this method
can be significantly improved.We took the generation of the tidal flats’DEMfor 2018
as an example. A total of 29 pre-processed Sentinel-1 SAR images throughout the
year were collected with Google Earth Engine and used as inputs to the DCNN-based
model to obtain the geolocation of waterlines quickly. The final gridded DEM result
for 2018 is shown in Fig. 9a after the same subsequent processes such as tidal level
evaluation and spatial interpolation. In addition, interannual topographic changes can
be analyzed by subtracting these two waterline-derived DEMs. As shown in Fig. 9b,
the topography of these large-scale tidal flats changes significantly in two years under
the action of strong tidal currents [2]. The erosion-deposition balance showed a net
deposition of 0.12km3 from 2018 to 2019. It implies our presented methodologies
are also suitable for rapid monitoring the morphological and sedimentary changes
of large-scale intertidal areas.
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Fig. 7 The derived DEM
result of Subei Bank for 2019
using the waterline method
(overlaid on the Sentinel-1A
SAR image acquired at GMT
09:55, 20 November 2019)

Fig. 8 Topography profile
comparison between the
derived DEM and the in-situ
transect (solid black line in
Fig. 7)

5 Discussions

Because of the frequent lack of consistent, sufficient intensity contrast between land
andwater regions and the complications of distinguishingwaterline fromother object
boundaries, waterline extraction is harrowing with most general-purpose edge detec-
tors or image segmentation techniques, especially for radar images in the intertidal
areas. Previous studies used edge detection methods where a thresholding process
was necessary at some point under relatively complex imaging conditions (such as
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Fig. 9 a The derived DEM result of Subei Bank for 2018 using the waterline method based on
the waterlines automatically extracted by our DCNN model; b Tidal flats DEM of difference map
between 2019 and 2018 (both overlaid on the Sentinel-1A SAR image acquired at GMT 09:55, 20
November 2019)

the methods developed by [16, 21], and [9]). In addition, with the unprecedented
amount of data containing waterline information available, an automatic extraction
method should be prioritized. The DCNN-based method developed in this study
performed well for automatic waterline extraction from SAR imagery in large-scale
tidal flats area under changeable imaging conditions.

With the support of big data platforms such as Google Earth Engine and the ocean
tidal prediction model, we developed a waterline method-based workflow that can
quickly obtain relatively accurate DEM of tidal flats after extracting multi-temporal
waterlines from SAR images under different tidal levels. This technique provides an
efficient method for the rapid analysis of large-scale tidal flat topography evolution,
which is of great significance for applying SAR images tomonitoring coastal terrains.

6 Conclusions

This chapter proposes a DCNN-based method to extract waterlines automatically
from SAR images. Our approach shows a relatively high extraction accuracy for the
waterlines in complicated large-scale tidal flats (themeanprecision and recall are 0.92
and 0.77, respectively) and efficiency (several seconds per image) simultaneously.
This chapter also presents the first attempt for intertidal DEMgeneration of the Subei
Bank using the waterline method by analyzing high spatial resolution SAR images.
TheDEM results show that, in general, there is a good agreement between the derived
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elevation and in-situ topographic data, implying that the waterline method based on
SAR images can be used for large-scale tidal flats such as the Subei Bank area.
Furthermore, based on the waterline extraction model and the waterline method,
we developed a novel workflow for automatic topographic mapping of large-scale
tidal flats, which has excellent potential for rapid analysis of intertidal topography
evolution.
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Extracting Ship’s Size from SAR Images
by Deep Learning

Yibin Ren, Xiaofeng Li, and Huan Xu

1 Introduction

Ship detection is very important to marine transportation [5]. Space borne Synthetic
Aperture Radar (SAR) has been one of themost critical data source for ship detection
because it can penetrate the clouds and track objects in all kinds of weather [28].
In marine applications, ship recognition from SAR imagery has long been a hotspot
[4, 9, 19]. With the advancement of image analysis technology, SAR images can be
used to derive more detailed ship information [8]. The size of a ship provides basic
information for ship classification [11]. And the size information can provide useful
information for ship classification. The intricate geometric parameter estimate is also
a part of the interpretation of SAR image. A method for extracting ship size that is
both efficient and precise will bring a new concept for SAR image interpretation.

Ships, in general, aremetallic objects thatmay reflect SAR sensor electromagnetic
radiation significantly more strongly than the surrounding ocean. On SAR images,
one ship can be identified as a bright back scattering intensity targetwith high normal-
ized radar cross-section (NRCS) values. The minimum bounding rectangle (MBR)
is a geometric characteristic of the ship’s NRCS that offers a preliminary size for
determining a ship’s ground size. In the meantime, the ship’s superstructure, sea-ship
interaction, and imaging conditions all have an effect on the NRCS. Li et al. [11].
These factors lead to a large gap between the initial size and the ground size. Figure1
shows several examples of ship’s signature on SAR images, the size of the MBR,
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Fig. 1 Examples of ships on SAR images. a/d/g/j ship signature on SAR image; b/e/h/k labeled
MBR of ship signature and the MBR’s size; c/f /i/l the ship’s ground size

and the ground size of the ship. The MBR is labeled by visual interpretation. The
difference between the MBRs and the ground size appears to be clear. As a result,
precisely extracting ship size from SAR images is difficult.

2 Traditional Methods

2.1 Typical Procedure of Traditional Methods

The majority of classic techniques for extracting ship size from SAR images have
three stages (Fig. 2): (1) binarization, (2) initial size extraction, and (3) accurate
size estimation. Binarization divides the pixels in the SAR image into two groups:
ship signatures and non-ship signatures. The binary result is then converted into an
MBR in the second phase. The length and width of the created MBR are used to
determine the ship’s starting size. Finally, a regression model is used to determine
the accurate ship size using the initial size and other relevant factors such as the
maximum and minimum NRCS of the ship signature. Statistical/machine learning
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Fig. 2 The procedure of the traditional algorithm for ship size extraction from SAR images

(ML) methods, such as linear regression, non-linear regression, and kernel-based
methods, are commonly used in regression models.

2.2 Representative Traditional Methods

Stasolla and Greidanus [26] used Constant False Alarm Rate (CFAR) to binary the
SAR image. CFAR is a common method [21, 29, 30] that separates ship signatures
and backgrounds. Further, to extract the ship’s MBR, they used the mathematical
morphology method to refine the signature. They adopted the MBR’s length and
width as the ship’s final length andwidth without a third step. They tested their model
with 127 available ship samples from Sentinel-1 images. The mean absolute error
(MAE) of length is 30 m (relative error 16%), and theMAE of width is 11 m (relative
error 37%). In 2018, Li et al. [11] estimated the ship’s size of the OpenSARShip [7].
The ship signature was obtained using a threshold-based approach. They use an
image segmentation procedure to refine the ship signature and determine the original
ship size. Finally, the gradient boosting model is employed to estimate the accurate
ship size. The MAE of the length and width, according to experiments, is 8.80 m
(relative error 4.66 percent) and 2.17 m (relative error 7.01%), respectively.

2.3 Issue to be Further Addressed

The accuracy of ship size extraction is improving as years roll on. The standard
three-step procedure is quite complicated. Binarization and initial size extraction
need advanced image processes in order to meet the next estimation stage [11]. The
third stage is similarly difficult [20]. The inaccuracies caused in each stage will add
up and eventually compromise the accuracy of the final size extraction. It is possible
to build new approaches to increase ship size extraction accuracy and efficiency in
the era of big data.

Deep learning (DL), as the cutting-edge AI technology, has made great achieve-
ments in computer vision [10].Multiple neural network layers make up a typical DL
model. It accepts raw data as input and learns the essential characteristics automat-
ically to perform classification or prediction [25]. End-to-end learning is the term
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for this process. DL simplifies feature engineering and is well suited to modeling
massive data and complex interactions when compared to traditional machine learn-
ing. DL has been successfully employed in oceanography, geography, and remote
sensing in recent years [12, 13, 22, 24, 31, 32]. DL proposes novel approaches to
the problem of estimating the size of a ship.

3 Deep Learning Method

3.1 Ship Detection Based on DL

A deep convolution neural network (CNN) is a subtype of DNN that is made up
of CNN layers. CNN-based models have had a lot of success in target detection.
Researchers proposed CNN-based ship detection models, such as models based on
faster region-based convolutional network (Faster-RCNN) [23], single-shot multi-
box detector (SSD) [15], and you only look once (YOLO) [2]. Orientation is an
important characteristic of a ship. Several researchers suggested a rotatable bounding
box (RBB) to replace the usual non-rotating RBB, such as DRBox [14] and DRBox-
v2 [1].

For the ship detection task, DL has become the first choice. DL-based models
achieve end-to-end detectionswith higher accuracy and robustness over conventional
models. However, for ship size extraction, there is almost no application of deep
learning. Therefore, developing an end-to-end DL model is necessary.

3.2 SSENet: A Deep Learning Model to Extract Ship Size
from SAR Images

SSENet is a new end-to-end DL model that replaces the previous three-step process
for extracting ship size from SAR data. The model uses DRBox-v2 to create the
ship’s RBB from the SAR image and a DNN-based regression model to estimate the
accurate ship size. TheDNN-based regressionmodel is proposed using a hybrid input
and a loss function termed mean scaled square error (MSSE), which considerably
increases ship size estimation accuracy.

3.2.1 Overall Structure of SSENet

SSENet’s overall structure consists of three phases (Fig. 3): (1) RBB generation; (2)
accurate ship size estimation; (3) MSSE loss calculation and overall model opti-
mization. The SAR chip is used as input in the first stage, which uses a deep CNN
model called DRBox-V2 to automatically detect the ship’s RBBs. The RBB with
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Fig. 3 Structure of SSENet

the highest confidence is chosen as the initinal RBB. A DNN model is used in the
second stage to estimate ship size. The DNNmodel takes two types of data as inputs:
(1) the initial length, width, and orientation angle, and (2) the SSD feature map. The
accuracte ship’s length and width are generated using the DNN model.

3.2.2 Generating RBB for the Ship

The DRBox-v2 is used to generate RBB for the ship [1]. Its input is a 300 × 300
pixels SAR image, and its output is a series of RBBs. DRBox-v2 contains two sub-
modules: a feature extraction module and an output module. The feature extraction
module extracted abstracted features. Here, the VGG16 is employed as the feature
extractionmodule. TheVGG16 consists of five feature extraction units. Two stacking
CNN layers make up the first feature extraction unit, while a max-pooling layer and
two stacking CNN layers make up the others. Each feature extraction unit produces a
three-dimensional feature map as its output. Five feature maps named F1, F2, ……,
F5 are generated. The number of channels in the F1-F5 feature maps is 64, 128, 256,
and 512. The pooling kernel is 2 × 2. After on max-pooling layer, the spatial size of
a feature map is downscaled as 1/2 size of its original size. As the input SAR image
is 300 × 300 pixels, the spatial size of F1-F5 feature maps is 300 × 300, 150 × 150,
75 × 75, 38 × 38, and 19 × 19 pixels.

The output module generates output maps by convolutioning feature maps Of,
Fig. 2b. There are two outputs for one SAR image: the confidence of being a ship,
as well as the geographic offsets of prior RBBs. A softmax function activates the Of

to obtain the confidence output. A sigmoid function activates the Of to obtain the
location offsets. Three feature maps (F2, F3, and F4) are fused to generate Of.FPN
is used to combine different feature maps. The cross-entropy and the smooth L1 loss
[15] are used as the confidences loss and geographic loss for DRBox-v2.
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Following the first process, a ship’s candidate RBBs are collected, providing
beginning references for the future exact size estimation.

3.2.3 Estimating Ship Size Based on a DNN Model

There are two elements to the DNN model’s inputs, as shown in Fig. 3c. The initial
ship size and orientation angle, which are determined from the best RBB and give
primary and direct information for correct ship size regression, are the first part. The
DRBox-v2 generates a sequence of ship RBBs. As the best RBB, the RBB with the
highest confidence value is chosen. The initial ship size is the length and width of
the best RBB. Furthermore, the best RBB’s orientation angle is the ship’s orientation
angle, as shown in Fig. 4. It has an impact on the SAR image’s ship signature [7, 11].
As the orientation does not distinguish between the bow and the stern of one ship,
we transform the angle’s range to (−90◦, 90◦].

The other component of the inputs is the feature map derived from the input SAR
image. In typical environmental conditions, the ship’s signature in the SAR image
reflects the sea clutter. It indicates whether the ship is moving or stationary. During
the SAR integration time, a moving target is frequently found in several resolution
cells. Smearing and brightness loss in the SAR image are caused by the dispersion of
backscattered energy. A moving ship’s signature reveals an azimuth displacement.
The SAR system receives the Doppler signal from the scatter in the azimuth direc-
tion. A stationary ship’s azimuth position is identical to the azimuth position of a
SAR platform. The Doppler shift, on the other hand, has an extra component for a
moving ship, resulting in an azimuth change in the ship signature. The environmental
conditions during satellite imaging, such as wind fronts, ocean waves, and rain cells,
alter the ship’s signature on the SAR image. Under typical conditions, the sea-ship
interaction produces a complicated ship motion in the real world and a polarimetric

Fig. 4 Illustration of the ship orientation. a Coordinate system; b An example of a ship chip
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Fig. 5 Transforming the feature map F5 as inputs. a F5 feature map. b Compressing F5 in the
channel dimension and obtain the F5M . c Compressing F5M in the spatial dimension and obtain F6.
d Flattening F6 as one-dimensional input vector

scattering signature with a wide range of polarimetric scattering processes [14, 16,
17]. In reference [11], the relationship between the status of the ship, the surround-
ings, and the ship’s size has been demonstrated. The abstracted feature map derived
from the input SAR image contains the factors stated above. Therefore, the feature
map F5 in Fig. 3b is employed as the other component of the input.

F5 is a three-dimensional feature map with 512 19 × 19 pixels channels. The
input vector contains 184,832 (512 × 19 × 19) elements, which brings training
difficulties for the fully connected DNN regression model. It is necessary to make
some transformations to reduce the dimension of F5.

As shown in Fig. 5a ,b, we transform F5 by a CNN layer with 1 × 1 × N convo-
lutional kernels, obtaining F5M. Compared with F5, the channel number of F5M is
reduced from 512 to N, Fig. 4b. F5 is compressed in channel dimension. Then, an S
size max-pooling is performed on the new feature map F5M, and a new feature map
F6 is obtained, Fig. 5c. The spatial size of the F6 is �19/S�. The values ofN and S are
defined by experiments. Finally, F6 is flattened as a one-dimensional feature vector.
The flattened vector is concatenated with the initial width, length, and orientation to
form the inputs of the DNN model, Fig. 3c.

As shown in Fig. 3c, to perform regression, three hiddenNN layers are used. There
are 256 neurons in each NN layer. The parameter-tuning experiment produces the
number of hidden NN layers and the number of neurons. The rectified linear unit is
the activation function of each layer. Two neurons are stacked on the last hidden NN
layer to form an output layer. A sigmoid function is stacked one the output layer to
transform the estimated values to 0–1 and output the estimated width Wp and the
estimated length Lp, Fig. 3c.

3.2.4 Calculating MSSE Loss and Optimizing SSENet

The MSSE loss function is used in the DNN regression model. For most regression
issues, themean square error (MSE) is a commonly used loss function. The definition
of MSE is shown in Equation (1): yi represents the ground truth, y

′
i represents the

prediction value, and N means the number of values to be predicted. The loss value
calculated by MSE and the ground truth value have no relation. Assume a ship’s
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ground length and width are 100 and 50 m, respectively, and the predicted length
and width are 80 and 30 m, respectively. Both the length and width MSE values are
400. Because the model is optimized based on loss values, both the length and width
losses contribute equally to the model’s optimization. In practice, a ship’s length is
much greater than its width. In most cases, the length is more concerning than the
width. In order to increase the length estimate accuracy, we hope that the length loss
helps to optimize the model more than the width loss.

MSE = 1

N

N∑

i=1

(
yi − y

′
i

)2
(1)

MSSE = 1

N

N∑

i=1

yi ·
(
yi − y

′
i

)2
(2)

SizeLoss = MSSEL + MSSEW (3)

MSSE loss function solves the mentioned issue. MSSE incorporates the ship
length and width ground truth into the traditional MSE. The ground truth is utilized
as a dynamic parameter to scale the square error. The definition of MSSE is shown in
Eq. (2): yi, y

′
i and N is the number of all samples. The MSSE length and width losses

in the example are 40,000 and 20,000, respectively. The loss in length is substantially
greater than the loss in width. As a result, the penalty for the model’s length will be
increased during the training phase. Therefore, the optimization procedure is more
conducive to length estimation. Based on Eq. (2), the loss of length MSSEL and the
loss of width MSSEW are calculated. The size loss (SizeLoss) is the summation of
MSSEL and MSSEW, Eq. (3).

Besides SizeLoss, the confidence loss (Conf Loss) and the location loss (LocaLoss) are
another two losses calculated in the first stage, Fig. 3b. Conf Loss is the cross-entropy
loss, and LocaLoss is the smooth L1 loss [1, 23]. Their definitions are as follow:

Con fLoss =
N∑

i=1

ci log c
′
i + (1 − ci ) log (1 − c

′
i ) (4)

LocaLoss = 1

N

N∑

i=1

smoothL1(xi )=
{

0.5x2i , if ‖x | < 1
|x | − 0.5, otherwise

(5)

where N is the number of predicted targets, ci is the ground confidence of a sample,
c

′
i is the predicted confidence of a sample, and xi is the element-wise difference
between the ground RBB and the predicted RBB. The three losses, SizeLoss,Conf Loss,
and LocaLoss, are added to form the final loss that optimizes SSENet integrally.
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3.3 Experiments on SSENet

3.3.1 Experiments Data

The OpenSARShip dataset (http://opensar.sjtu.edu.cn/) is a Sentinel-1 ship inter-
pretation dataset that includes 11,346 SAR ship chips and automatic identification
system (AIS) messages. The ground size for each ship is provided via the AIS. The
ground range detected (GRD) of IW is the picture mode of Sentinel-1. The spatial
resolution of the SAR image is around 20m, with a pixel spacing of 10m. SNAP
3.0 performs radiometric calibration and terrain correction. The amplitude values of
pixels for VH (vertical emitting and horizontal receiving) and VV (vertical emitting
and vertical receiving) polarizations are stored on each SAR chip, which has one
ship and two channels. The experiment set for SSENet includes 1,890 samples in
the VV mode. Figure 6 shows the distributions of ground ship’s length and width.
The length ranges from 28 to 399m. The width ranges from 6 m to 65 m. Each SAR
chip is 300 × 300 pixels in size. We transform the values of SAR images to [0, 255].
The training set consisted of 1,500 SAR chips chosen at random. The remaining 390
chips will be used for testing.

The ground truths for the experimental set include two parts: the ground ship size
and the RBB for each ship. The ground size is obtained from the OpenSARShip. The
RBB for each ship is labeled manually by a Matlab tool shared in DRBox-v2. The
DRBox-v2 is trained to generate accurate RBB based on the ground RBB.

Fig. 6 The range of length and width of the testing set

http://opensar.sjtu.edu.cn/
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3.3.2 Experiments Setting

A workstation with one GeForce RTX 2070 8GB GPU is used in the experiment.
Python 3.6 is the programming language used. TensorFlow is a deep learning pack-
age. For training, the batch size is six. 0.0002 is the initial learning rate. The learning
rate reduces by half every 5,000 training epochs during the training procedure. When
the SizeLoss < 0.001, the LocaLoss < 0.005, and the composite loss< 0.01, the train-
ing procedure stops.

MAE and the mean absolute percentage error (MAPE) are employed as metrics.
MAE is a typical absolute error, andMAPE is a widely used relative error. Assuming
yi is the ground truth, y

′
i is the estimation value, and N is the number of samples, the

definitions of MAE and MAPE are as follow:

MAE = 1

N

N∑

i=1

∣∣∣yi − y
′
i

∣∣∣ (6)

MAPE (%) = 100

N

N∑

i=1

∣∣∣∣∣
yi − y

′
i

yi

∣∣∣∣∣ (7)

3.3.3 Performance of SSENet

The hyper-parameters of SSENet are determined by parameter tuning, and a well-
trained model is picked up to be evaluated. The 390 samples of the testing set are fed
into thewell-trained SSENet. The outputs are the scaled lengths andwidths estimated
by the model. The scaled values are rescaled to normal values.

The estimated ship sizes are shown in Fig. 7a, b. The length and width MAEs
are 7.88 and 2.23 m, respectively. The MAEs of the estimated length and width are
pushed under 0.8-pixel spacing. The MAPE of estimated length and width are 5.53
and 8.93%, respectively. The R2 score are 0.9773 and 0.9093. This indicates that the
estimated ship length/width is quite close to the ground length/width. The R2 score
of widths is smaller than that of length, which means the width is difficult to estimate
than the length. There are two factors that contribute to this phenomena. A ship’s
width is far smaller than its length. The width of the ship’s signature on the SAR
image is more ambiguous than the length [26], which causes random errors in the
width of the labeled RBB. Second, the MSSE loss function makes the model fit the
length better.

We plot the relationship between the labeled RBB’s size and the ship’s ground
size, as shown in Fig. 7c, d. The labeled RBB is treated as the RBB closest to the
ship’s signature for visual interpretation. As shown in Fig. 7c, the MAE of length is
nearly 40 m, and the MAE of width is more than 50 m. The gap between the labeled
RBB’s size and the ground size is large. By adding the regression model, SSENet
pushes the MAEs under 8 m. Therefore, the proposed regression model based on
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Fig. 7 Relationships between the SSENet’s estimated size, and the size of the labeled RBB. a and b
The relationships between the ground size and the SSENet’s size. c and d The relationships between
the ground size and the labeled RBB’s size

DNN is necessary and effective. Figure8 shows some examples of SSENet’s results.
The outputs of one sample include the detected RBB, the confidence score to be
a ship, and the estimated ship size. For most ship samples, the estimated sizes are
consistent with the ground sizes.

3.3.4 Effectiveness of the Inputs

The efficiency of the inputs for the DNN regression model is tested. The results are
shown in Table 1. Three compared models employ different inputs. The inputs for
SSENet1 include initial ship size, without feature map F6. For SSENet2, the inputs
are initial ship size and F6. Based on the three inputs, SSENet3 adds the initial
orientation as another input.
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Fig. 8 Some examples of SSENet, the outputs include the detected RBB, the confidence score to
be a ship, and the estimated ship size

Table 1 Model performance with different inputs

Models Inputs of DNN MAE (m) MAPE (%)

Length Width Length Width

SSENet1 Xl , Xw 10.01 2.65 6.87 9.89

SSENet2 Xl , Xw , F6 8.14 2.27 5.82 9.22

SSENet3 Xl, Xw, cos θ ,
F6

7.88 2.23 5.53 8.93

The results are displayed in Table 1. SSENet1 obtains the largestMAE andMAPE
among the three models. By adding F6, SSENet2 reduces the length’s MAE about
2 m compared with SSENet1. This finding illustrates that the feature map of a SAR
image is an important input for estimating ship size. Adding the feature map as
an input improves the accuracy of size estimation. Finally, by explicitly including
the ship’s initial orientation as another input, the estimation errors are significantly
minimized. Therefore, each element of the inputs for SSENet shows contributions to
the final size estimation. Figure8 shows several results of SSENet3, and the red/green
rectangle is the labeled/detected RBB. The estimated confidence score to be a ship
and estimated the size by SSENet are also displayed.
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Table 2 Performance of with MSE or MSSE

Models Loss Function MAE (m) MAPE (%)

Length Width Length Width

SSENetMSE MSE 8.85 2.20 5.99 8.81

SSENetMSSE MSSE 7.88 2.23 5.53 8.93

3.3.5 Effectiveness of MSSE Loss

An experiment is conducted to test the effectiveness of the new loss function,
MSSE. The results are shown in Table 2. SSENetMSE is the model with MSE loss.
SSENetMSSE is the model with MSSE loss. The other parts of the two models are
the same.

The results are shown in Table 2. The length MAE of SSENetMSSE is nearly 1m
less than that of SSENetMSE , reducing by 11%. For the width, SSENetMSSE per-
forms slightly worse than SSENetMSE . The reason for this is that MSSE emphasizes
a significant loss and drives the model to focus on length rather than width. The
difference in width between the two values, however, is only a few centimeters. The
disadvantages of MSSE are not overshadowed by the aforementioned constraint. As
a result, our MSSE loss is helpful, particularly when evaluating the ship’s length.

4 Discussions

4.1 ML versus DL

SSENet’s regression model is a DNN model. We choose three typical ML models,
Gradient Boosting Regression (GBR) [6], Support Vector Regression (SVR) [3],
and Linear Regression (LR) [18] to discuss their performances. GBR and SVR are
applied in ship size extraction [8, 11]. LR is a baseline model [27]. Because these
three ML models aren’t NN-based, they can’t be combined with the SSD to create
an end-to-end model. The SAR images cannot be fed into the three ML models. The
inputs for these three models are the initial ship size and orientation of the labeled
RBB. The parameters of GBR, SVR, LR are tuned and the estimation results with
the best metrics are recorded. The DNN model is used by SSENet.

The results are shown in Table 3. The result of SSENet is in the last row. GBR per-
forms the best among four models (LR, SVR, GBR, and DNN). GBR is an ensemble
learning model with good performance in the three-stage procedure [26]. However,
GBR is unable to extract features from SAR images automatically. GBR cannot be
combined with a DL-based ship detection model, such as DRBox-v2, to create an
integrated ship size extraction model. The premise of using GBR is that the SAR
image should be binarized accurately, and the initial RBB is well extracted by tra-
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Table 3 MAE and MAPE of different models

Models Inputs MAE (m) MAPE (%)

Length Width Length Width

LR RBB 10.60 2.86 6.97 10.47

SVR RBB 10.16 2.48 6.61 9.50

GBR RBB 9.69 2.39 6.93 9.27

DNN RBB 10.79 2.83 7.27 10.22

SSENet Images 7.88 2.23 5.53 8.93

ditional methods. As stated in Sect. 2, the traditional method faces big challenges.
Practically, GBR is not an end-to-end model: feeding the SAR image and obtaining
the ship size.

The error of DNN model is large. However, a DNN model can be combined
with any deep learning models based on CNN or NN to extract size from the SAR
image from beginning to end. In contrast to traditional techniques, the DL model
optimizes all parameters globally. The DNN regression model can use the feature
maps extracted by the DL model to increase the accuracy of the estimated ship size.
As shown in Table 3, the SSENet reduces theMAE of length by nearly 2m compared
with the GBR, about 18.68 %. Therefore, compared with traditional methods, the
ship size extraction model based on deep learning is more practical.

4.2 Errors’s Sources

This section delves into the details of estimation errors and attempts to determinewhat
causes large inaccuracies. The ship’s direction and transit speed are two elements
that need to be investigated, according to previous research [10, 26].

4.2.1 Ship Orientation

Theestimated errorswith respect to the ship’s orientation angle is displayed. Figure9a
and b show the results of the length. Fig. 9c, d show the results of thewidth. TheMAEs
vary with the ship orientation variation. Large MAEs occur when the orientation
angles are closer to 0◦ (0◦ means the azimuth direction) in the range of (−45◦, 45◦].
The reasons for the above phenomenon include two aspects. The first one is the ship
motion. When the ship moves in a direction that is near to the azimuth direction,
the azimuth direction’s speed component is large. Because of the large component,
the ship signature appears to be smeared, increasing the estimation error. The other
reason is the unequal resolution during imaging, 5 m × 20 m for range and azimuth
directions, respectively. The low resolution in the azimuth enlarges the errors [26].
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Fig. 9 The trend of errors with respect to the orientation angle. a Trend of length’s MAE; b Trend
of length’s MAPE; c Trend of width’s MAE; d Trend of width’s MAE

As shown in Fig. 9, when the initial orientation angle (cosθ ) is added to the
DNN model, the errors are reduced. This finding also proves that using the original
orientation angle as an input is valid.

4.2.2 Ship Speed

Figure10 shows the errors corresponding to the ship’s speed. Because the Open-
SARShip’s SAR images are mostly from ports, around 83% of the ships are still
there. Figure10a shows that the MAEs are small in the range of (0, 1) knot (1.852
km/h). With the increase of ship speed, the MAE fluctuates slightly. When the speed
is greater than 15 kn (27.780 km/h), the MAEs increase apparently: 19.04 and 4.71
m. These two values are far greater than those of other speed intervals. The ship’s
speed cannot be derived from the SAR image signature. Therefore, it is difficult to
refine the estimated sizes of ships by pre-input the ship’s speed parameter.
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Fig. 10 Figure10. The trend of errors with respect to the travel speed. a The trend of MAE; b
Trend of MAPE

Fig. 11 The distribution of AE with respect to the ground size. a The AE of length; b The AE of
width

4.2.3 Ship Size

Figure11 shows the absolute error (AE) of each estimated and the ground size.
The AE of a estimated size takes the absolute value of the difference between the
predicted value and the true value. As shown in Fig.s 11a and b, there are no obvious
relationships between AE and ground size. Therefore, the ship size is not a source
of errors.
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5 Conclusions

SSENet, a DL-based model for extracting ship size from SAR data, is proposed in
this chapter. A DNN-based regression model and an SSD-based model make up the
SSENet. The DNN model is fed the initial ship size and orientation angle derived
from the RBB, as well as the high-level features extracted from the input SAR
image. The OpenSARShip trains and validates SSENet. Experiments show that: (1)
the SSENet can straight extract ship size from SAR images with MAE less than 0.8
pixels; (2) the new MSSE loss reduces the length’s MAE nearly 1 m than the old
MSE loss; (3) SSENet shows obvious advantage over the GBR model; (4) SSNet
exhibits robustness over four separate data sets.

Acknowledgements TheOpenSARShip is downloaded from“OpenSARPlatform” (http://opensar.
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Benthic Organism Detection,
Quantification and Seamount Biology
Detection Based on Deep Learning

Yuhai Liu, Yu Xu, Haining Wang, and Xiaofeng Li

1 Overview

1.1 Backgrounds

Deep-sea organisms are those living below the ocean belt, and they can be divided
into three categories according to their living styles, including plankton, swimming
organisms and benthos. Deep-sea biological resources are an essential part of the
marine ecosystem and play a vital role in the formation, maintenance, and develop-
ment of marine ecosystem. The deep-sea biological resources are the foundation of
marine ranch construction and aquatic development [34]. The problems such as the
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establishment of deep-sea protection areas, the sustainable utilization of resources,
and the maintenance of vulnerable marine ecosystems based on species diversity
have become the hot spots in global deep-sea research. The research on the distri-
bution and diversity of deep-sea organisms is helpful to promote human cognition
of the ecosystem and plays a vital role in the maintenance of the marine ecosystem.
Due to the year-round darkness of the deep-sea area where the sunlight is difficult to
penetrate, the high salinity, the considerable pressure, the low water temperature, the
number of biological species is relatively small. In contrast, the biological quantity
is numerous in some intensive biological areas. Therefore, it is crucial to solving the
practical problems by using modern technology.

Species discovery and identification are crucial ways to explore deep-sea biodi-
versity. To better protect marine ecology, we can monitor the health status and bio-
diversity of the benthos ecosystem by analyzing the species, quantity, and growth.
Traditional methods of marine biological identification are based onmorphology and
molecular genetics and sometimes even need to use the advanced DNA sequencing
technology supported by electron microscope. Although this method is accurate,
there are still two main problems for marine species classification. On the one hand,
it costs a large amount of human and financial resources to cultivate professional
taxonomy experts for marine species, and artificial identification has low efficiency.
On the other hand, the special ocean environment is unsuitable for in-situ detec-
tion during scientific research using molecular and electron microscopy methods,
and heterotopic detection can lead to biological inactivation and species death. To
solve the problems above, the application of the target detection technology based
on the deep neural network in marine species identification and quantitative analysis
emerged.

Considering the problems, including the difficulties in underwater target recogni-
tion caused by complex marine imaging environment, brutal penetration of sunlight,
high salinity, the high similarity of some detected targets, and uneven distribution
of biological density [26], the static counting of dense marine biological communi-
ties, and automatic real-time dynamic detection and counting algorithm of marine
benthos were explored and studied in this paper. It is significant in helping marine
biologists identify marine species, evaluate the population density, improve the oper-
ational performance of underwater autonomous robots and promote the underwater
operation and the development and ecological protection of marine resources.

Seamounts are relatively isolated conical peaks or groups of peaks in the various
oceans and are also an essential part of the marine environmental system. Seamounts
rise from the seafloor but donot protrude fromsea level. There are an estimated30,000
seamounts worldwide, but only a few have been studied. However, seamounts have
become one of the most popular systems in deep-sea research in recent years because
of their unique topographic and hydrological features and their unique ecosystems,
rich biodiversity, and excellent resource value.

Recently, our country has successfully carried out a series of seamount explo-
rations represented by ‘Jiaolong’ manned HOV and ‘FaXian’ ROV, and obtained
many first-hand submarine image data and samples in the South China Sea, Western
and Central Pacific. It not only significantly improves the level of deep-sea detection
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of our country but also provides data support for automatic detection of benthos in
seamounts. Section 4 will use deep learning technology to identify and detect the
giant benthos in seamounts.

1.2 Related Works

Due to the influence of themedium, the propagation distance of light and radio waves
is very limited in seawater. In contrast, the propagation performance of sound waves
in water is much better, covering a wider sea area. However, the acoustic signal
will propagate along different paths because of the reflection, refraction, and other
phenomena, so the underwater target recognition based on sonar echo technology has
many interferences and low accuracy. The target recognition method of sonar image
has the characteristics of high resolution and real-time performance. Therefore, in
underwater target recognition and detection, the current research mainly focuses on
the underwater target detection of sonar images for a long time.

Traditional sonar image detection algorithm mainly extracts features from sonar
images and then classifies and locates the target. Extracting enough information fea-
tures is the key to detect the underwater target. In this way, researchers proposed a
series of hand-designed feature extraction methods, such as Scale Invariant Feature
Transform (SIFT) [24, 25], Histogram of Oriented Gradient (HOG) [5]. The features
are extracted effectively, and then recognized by algorithms like Morphology, Fuzzy
Clustering and Markov Random Field [29]. The manual feature extraction, classifi-
cation, and detection methods have a good recognition effect in specific application
scenarios. Still, these algorithms have poor scalability and low generalization ability,
which different features need to be designed for different problems. Therefore, the
application value of the algorithm is limited.

With the development of underwater high-definition imaging technology such
as ROVs (Remote Operated Vehicles) and AUVs (Autonomous Underwater Vehi-
cles), the data of close-range targets collected by optical imaging equipment can be
analyzed by computer vision algorithm without sonar images. It makes the feature
information of the targetmore fully retained and used, and the accuracy and efficiency
of target detection are greatly improved. In this trend, Fish4Knowledge [7] project
has collected 115 TB of underwater high-definition image/video data and proposed
many methods to detect fish in the underwater video for assessing fish biodiver-
sity [39]. In fish detection, SIFT [1, 28, 37] or SC (Shape Context) [35] algorithms
have been widely used to calculate marker features. But in the reference [47], the
author concludes that HOG algorithm is better than SIFT and SC algorithm. Marcos
et al. [27] used Normalized Chromaticity Coordinates (NCC) histogram to extract
color features, and Local Binary Pattern (LBP) feature descriptor to extract texture
features of the coral image. Stokes and Deane [40] proposed coral classification Dis-
crete Cosine Transform and K-Nearest Neighbor classifier algorithm. Although the
upgrades of underwater acquisition devices improve the quality of data, the analysis
algorithm continues to use SIFT and HOG to extract features and then use Support
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Vector Machine (SVM) [4] and Adaptive Boosting (AdaBoost) [42] to classify. The
problem of poor robustness of manual feature extraction has not been effectively
solved.

Due to the continuous development of deep learning in recent years, all aspects of
computer vision are have been promoted. Especially, Convolutional Neural Network
(CNN) algorithm, Fast R-CNN algorithm, and Feature Pyramid Network (FPN)
algorithm, which are widely used in image classification, image annotation, and
multi-target detection, enable people to obtain rich deep semantic information of
images and improve the accuracy of image classification and recognition signifi-
cantly. The target detection and recognition method based on deep learning benefits
from CNN’s strong feature autonomous learning ability on large-scale data sets and
can effectively solve feature extraction in the above method. Therefore, it has been
successfully applied tomany underwater target detection and recognition scenes [18].
Kratzert and Mader [16] used the marine fish channel monitoring platform based on
CNN algorithm to detect targets without using any artificial features, and the final
fish classification accuracy reached 93%. Huang et al. [15] applied Faster R-CNN to
detect and identify marine organisms, expanded a small number of samples through
three data enhancement methods and verified the effectiveness of Faster R-CNN
in biological detection in different marine turbulent environments. Xia et al. [43]
proposed a sea cucumber detection scheme based on YOLOv2 model, which has a
good detection effect on sea cucumbers with a regular shape or simple natural scene
coverage. Although these methods have achieved some success, they are applied to
specific target scenarios and do not include the study of target quantity statistics.

1.3 Research Content and Innovation

With the change of economic and marine environment, the value of marine bio-
logical resources is enormous. To further improve the ability of marine resources
utilization and marine ecological protection, advanced information technology, and
data analysis ability are needed to provide accurate data support and decision sup-
port for relevant personnel. After in-depth research on big data technology, artificial
intelligence, and other technologies, combined with the existing business needs, the
deep-sea biological identification quantitative model was designed and realized in
this chapter.

The key to the success of the deep-sea biometric quantitative system is the extrac-
tion and application of data. The fast extraction of data and big data requires a stable
and reliable algorithm basis. Data acquisition, extraction, conversion, cleaning, and
data loading are used to enter the data storage layer. A deep-sea biometric quanti-
tative database is formed by deep learning technologies such as data analysis. The
computing layer can provide robust image classification and recognition, realize
deepseated analysis of deep-sea biological data, fully excavate the hidden value of
data, and provide support for quantitative recognition of deep-sea organisms. In this
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chapter, Faster R-CNNandSSDare adopted respectively to achievemarine biometric
identification and quantification for different scenarios.

Considering the current situation of deep-sea biological resources, and in order to
realize the requirements of automatic identification and quantitative analysis of deep-
sea organisms and detection of giant benthic organisms in seamounts, the following
functions are studied and realized mainly in this chapter:

1. The deep-sea biological recognition and quantitative analysis system is con-
structed to process a large number of deep-sea biological image data, analyze
the deep-sea biological data, extract biological features, classify and quantita-
tively analyze the deep-sea biological recognition by using deep learning and
other artificial intelligence technology.

2. According to the high-definition seamount image data taken by the research ship
during the investigation of a seamount in theWestern Pacific Ocean, the seamount
biological training library is constructed. On this basis, the SSD target detection
model is trained. The feasibility of automatic real-time seamount species detection
and counting was studied under the condition of the trade-off between speed
and accuracy. 63 high-quality images of seamount macrobenthos in the Western
Pacific are constructed and manually labeled. They can be used to train various
deep learningmodels, which alleviates the lack of training data for marine species
to a certain extent, and is helpful for other people in the same field.

2 The Target Detection Techniques

2.1 Introduction on Target Detection

In computer vision and image processing, Target Detection is an image segmentation
technology that scans and searches for specific semantic targets (such as people,
buildings or cars) in digital images or videos and marks them. Generally speaking,
it is not only to identify which category the target belongs to, but also to get its
specific position in the picture. Target Detection is widely used in computer vision
tasks, such as automatic image annotation, behavior recognition, face recognition
and video target segmentation. It can also be used for target trackings, such as the
ball in a football match or the players on the court.

Traditional target detection is usually based on the traditional machine learning
method, which is generally divided into two stages: firstly, SIFT, HOG, and other
methods are used to extract features, and then, SVM,AdaBoost, and other algorithms
are used for classification. However, there are twomain problems in traditional target
detection methods: (a) feature extraction is not targeted, and time complexity is high;
(b) the features designedmanually are not robust to the change of diversity. Therefore,
when the detection task changes, the features need to be redesigned.

In recent years, with the help of Deep Neural Networks (DNN), the target detec-
tion algorithm based on DNN has gradually replaced the traditional target detection
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algorithm. In computer vision tasks, DNN based target detection and recognition
algorithms are mainly divided into two categories: one is a region proposal-based
target detection algorithm, that is, a two-stage detection algorithm. In the first step,
a series of sparse candidate regions are generated by a certain method, and in the
second step, the candidate regions are further classified and regressed. Typical repre-
sentatives of such algorithms are R-CNN [9], Fast R-CNN [8], Faster R-CNN [33],
Mask R-CNN [14], etc. Due to the low recognition error rate andmissing recognition
rate, the two-stage target detection algorithm has achieved excellent performance on
several challenging benchmarks including Pascal VOC [6] and MS COCO [21]; The
other is the single-stage target detection algorithm, which skips the stage of gen-
erating candidate regions and directly generates the class probability and position
coordinate value of targets. The final detection result can be obtained through a single
detection. Therefore, compared with the two-stage algorithm, it has a faster detec-
tion speed. There are many typical algorithms, such as YOLOv1 [32], YOLOv2 [30],
YOLOv3 [31], YOLOv4 [2], SSD(Single Shot Multibook Detector) [23], RetinaNet
[22], RefineDet [46], CornerNet [17], etc. The advantage of a single-stage target
detection algorithm is high detection efficiency, but its detection proficiency often
lags behind a two-stage algorithm.

2.2 The Single-Stage Target Detection

The core idea of the single-stage target detection algorithm is to take the whole image
as the input of the network, and apply regression on the position and category of
Bbox in the output layer directly. The primary representative is SSD [23] and YOLO
(You Only Look Once). In this paper, we use the SSD to complete the detection
of seamount macrobenthos. As a result, the model has a simple structure and fast
speed. The following focuses on the SSD algorithm and illustrates the principle of
single-stage target detection.

SSD (single shotmultibox detector) [23] is the first single-stage detector of a single
shot. It abandons the practice of FasterR-CNNusingRPN togenerate boundaryboxes
and classify themand puts forward the ideas ofmulti-scale features and default boxes.
Similar to other single-stage detectors, its speed is better than two-stage detectors.
SSD algorithm is an algorithmwith high speed, high accuracy, and high robustness to
scale change. Its main feature is to usemulti-layer convolution features with different
scales and receptive fields for target detection and recognition.

SSD algorithm is based on a feedforward convolutional neural network. The
algorithm first generates a series of fixed number of default boxes. It then uses the
corresponding feature graphs of different levels to predict the location and category
based on these default boxes. For all the predicted bounding boxes of each category,
the redundant and low probability bounding boxes are removed by the non-maximum
suppression algorithm. Finally, the detection results are generated. This method is
a target detection algorithm based on regression, which imultaneously predicts the
location and category within a network framework. Compared with R-CNN series



Benthic Organism Detection, Quantification … 329

algorithms, SSD is a single-stage, end-to-end target detection algorithm, and the
detection speed is greatly improved. Moreover, multi-layer convolution layers with
different scales are used for target detection and recognition due to their unique
design. As a result, the detection performance has been improved to a certain extent.

SSD network framework is divided into the base net and extra feature layers.
The basic network is a truncated VGG network. The additional layer is the CNN
layer with a gradually decreasing scale, and the detection of targets is carried out
simultaneously on these characteristic maps with different scales. Feature maps of
different scales are used to predict targets of different scales.

The input of the SSD is a 3 channel RGB image. Firstly, the algorithm will
map a series of default bounding boxes (default boxes), according to the size of the
featuremap, and then convolute through a series of convolution cores. Each layer will
produce a fixed number of predictions, including 4 position predictions and several
category predictions. The default box mechanism is similar to the anchor boxes
mechanism in theRegion ProposalNetwork (RPN) in Faster R-CNN. For a p-channel
feature map with m × n size, the convolution kernel with scale 3 × 3 × p is used
to predict the category and location information at each location m × n. Category
prediction will predict a score value for each category, representing the category
target’s possibility in the corresponding box. The position prediction will predict the
scale scaling and displacement change based on the corresponding default box,which
is the position adjustment based on the default box according to the characteristics
of CNN. The default box is a series of rectangular default boxes corresponding to
each position m × n on the original map according to the scale of different levels of
the feature map. These default boxes have different sizes and aspect ratios to adapt
to the scale transformation of the target to be detected.

For the K default boxes of each position, the SSD algorithm uses convolution
operation to predict c + 1 category scores (including C target category and a back-
ground category) and 4 coordinate positions. That is (c + 1 + 4) × K , each position
needs a convolution kernel, so for a scale of m × n. The characteristic graph of n
needs a convolution kernel corresponding to (c + 1 + 4) × Kmn prediction output.
Each location corresponds to a fixed number of default boxes, which have different
sizes and aspect ratios according to the location and scale of the layer.

During training, you need to match the truth value with the default box to produce
positive and negative samples. SSD matches the positive and negative samples by
calculating the Jaccard overlap of the default box and the truth box. The threshold is
0.5. If the Jaccard overlap in the truth box is greater than 0.5, it is set as a positive
sample, otherwise it is a negative sample. A truth box can match multiple default
boxes.

SSD has the following main features:

1. Inherit the idea of transforming detection into expression from Yolo to complete
target positioning and classification at one time.
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2. Based on anchor in Fast RCNN, a similar prior box is proposed.
3. Add the detection method based on the feature pyramid, that is, predict the target

on the feature map of different receptive fields.

2.3 The Two-Stage Target Detection

Among the two-stage target detection algorithms, the R-CNN series is the most
famous. This chapter mainly focuses on Faster R-CNN, and its predecessor is Fast R-
CNNandR-CNN.Wefirst briefly introduceR-CNNandFast R-CNN target detection
principles, and then focuses on the Faster R-CNN target detection algorithm.

Given the two problems existing in traditional target detection algorithms (see
Sect. 2.2), Girshick proposed the R-CNN algorithm in 2014 [9]. Its principle is ele-
mentary, mainly by extracting multiple candidate regions to determine the target’s
position. The R-CNN target detection process is shown in Fig. 1.

Because the traditional algorithm for detecting each sliding window is a way of
wasting resources, the R-CNNmodel uses SS (selective search) image segmentation
algorithm [41] to extract 1k-2k candidate regions from the bottom to up. These
regions are converted into fixed-size images and sent to CNN respectively to extract
the features of each candidate area. Then, the SVM classifier is used to classify the
feature vectors extracted by CNN. Then the regression of the coordinates of the upper
left and right lower corner of the candidate region is made to modify the location
of the candidate region to achieve the target classification and get the boundary.
R-CNN uses SS algorithm to generate higher quality ROI and CNN instead of the
sliding window used in traditional target detection as ROI andmanual feature design.
It makes the target detection field achieve a significant breakthrough and open the
upsurge of deep learning target detection.

Fig. 1 The target detection process of R-CNN



Benthic Organism Detection, Quantification … 331

Fig. 2 Fast R-CNN model structure

But the classical R-CNN has the following problems:

1. Due to the need of calculating features for each candidate region, the amount of
calculation is very tremendous.

2. The candidate regions are highly overlapped and there are too many repeated
calculations.

3. Not end-to-end.
4. Strict size requirement for the input image.

In this case, SPPNet proposed by He et al. [12] successfully solves the problem of
repeated convolution in R-CNN. However, the problems of multi-step training and
large memory consumption still exist. Therefore, Girshick proposed the Fast R-CNN
target detection algorithm in 2015 [8], and the target detection process is shown in
Fig. 2.

Fast R-CNN can input any size of pictures into CNN and get the feature map
by convolution and pooling operation, which avoid the time-consuming operation
of generating candidate regions before convolution in R-CNN. Like R-CNN, Fast
R-CNN also uses an SS algorithm to obtain about 2K candidate regions, and then
find the corresponding feature boxes of each candidate region in the feature map.
However, different from that, Fast R-CNN introduces ROI (Region of Interest) pool-
ing operation. Its input is the feature map and the frame of candidate regions with
different sizes obtained by CNN. The size of the output is fixed. The role of the ROI
pooling layer is to pool the corresponding region into a fixed-size feature vector in
the feature map according to the position coordinates of candidate regions, to carry
out the following softmax classification and Bbox (Bounding box) regression.

Fast R-CNN abandons multiple SVM classifiers and Bbox regressors in RCNN
and combines classification and regression in one network using a multi-task loss
function. It also trains the whole network end-to-end and outputs the target’s Bbox
value and category label, which improves the model’s accuracy. In addition, Fast R-
CNN solves the problem of repeatedly extracting features by R-CNN, so the training
speed has been significantly improved.
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Fig. 3 Faster R-CNN model structure

In 2016, Ren et al. [33] proposed the Faster R-CNN target detection algorithm
based on Fast R-CNN. Compared with Fast R-CNN, the most critical point of Faster
R-CNN is using RPN (Region Proposal Network) instead of the SS segmentation
algorithm to generate candidate frames, which significantly improves the speed of
detection frame generation. In addition, Faster R-CNN integrates feature extraction,
candidate region extraction, Bbox regression, and softmax classification into one
network, which significantly improves speed and accuracy. Generally speaking, the
improvement of FasterR-CNN toFastR-CNN is that the speed of obtaining candidate
regions is much faster. The Faster R-CNN target detection process is shown in Fig. 3.

The network structure of Faster R-CNN is similar to that of Fast R-CNN. Firstly,
the backbone network is used to extract the features of the input image. The backbone
network can use ResNet [13], VGG16, etc. Then, the RPN network is used to obtain
the offset of the candidate box relative to the anchor box and the probability of
containing targets. The specific operation is: the RPN takes the output feature map
of the backbone network as the input and convolutes it using the kernel of 3 × 3, and
then performs 2 times of 1 × 1 convolution. The number of output channel is 2 × k
and 4 × k respectively. Among them, k represents the number of prior frames anchor
on each grid point, and RPN uses this k anchor to make k predictions; The output
2 × k is the target score, which represents whether the predicted candidate box on
each grid point contains the target and the probability of containing the target; The
output 4 × k is coordinate information, which represents the offset of the predicted
candidate frame on each grid point relative to the anchor frame; In Faster R-CNN,k
is usually taken as 9. Finally, neural network and maximum pooling are used to
calculate the pooled ROI feature map, and the result is reshaped into a vector 1 × n.
Two fully connected layers are used for classification and regression to obtain the
target location and classification information.



Benthic Organism Detection, Quantification … 333

2.4 Summary

This section introduces the theory of target detection firstly, then focuses on two-
stage R-CNN series target detection algorithm and single-stage YOLO series target
detection algorithm, especially Faster R-CNN algorithm and SSD algorithm, and
introduces the advantages and disadvantages of single-stage algorithm and two-stage
algorithm. Combining the different characteristics of the two algorithms, this chapter
provides the basis for the subsequent discussion on target detection counting mod-
els. Specifically, in Sect. 3, the Detection and Quantification of Benthic Organisms
(DQBO) is introduced. Section4 presents Detection of Macrobenthos in Seamounts
(DMS).

3 DQBO Based on Faster R-CNN with FPN

3.1 Introduction on DQBO

Benthic density has always been an indispensable part of benthic target detection.
By analyzing the images of marine benthic density, we can understand the social
habits of organisms, help estimate the number of organisms and carry out a series
of applications such as aquaculture and biotope protection. With the development of
artificial intelligence technology and the depth of computer vision theory, intelligent
image processing has become a critical research area. Although CNN-based target
detection algorithms are widely used in many scenarios, the detection results do
not meet all requirements and usually require more in-depth exploration. As shown
in Fig. 4, the number of organisms is dense and numerous. Counting the number
is cumbersome and has a high labor cost, so it is of great practical significance to
automatically count the image targets.

Fig. 4 Benthic organisms density images
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3.2 The Faster R-CNN with FPN Framework for DQBO

How to deal with the large-scale change of objects is a fundamental problem in apply-
ing target detection. Whether the RPN in Faster R-CNN or Fast R-CNN, it is both
based on a single high-dimensional feature,which generally has a poor effect on small
object detection. FPN mainly solves the problem of detecting small and medium-
sized objects in object detection scenes. Connecting high-dimensional features with
low resolution and high semantic information and low dimensional features with
high resolution dramatically improves the performance of small object detection.

This section embeds the FPN structure into the Faster R-CNN, combining it with
the high-dimensional and low-dimensional feature extraction. Without increasing
the amount of calculation of the original model, we successfully solve large-scale
change and small object missing detection problems. The FPN network structure is
shown in Fig. 5.

Figure5 1© shows the forward propagation process of the neural network from
bottom to top. After convolution operation, the size of the feature map becomes
smaller and smaller, and more and more abstract. A pyramid level is defined for each
stage of FPN. The output of the last layer of each stage is selected as the reference
set of the feature graph because the deepest layer of each stage has more robust
semantic information. 2© is a top-down process, making the higher-level feature
graph more abstract and more semantic to enhance the higher-level feature. Because
the feature maps used in each layer are fused with features of different resolutions
and semantic intensities, it can detect objects with corresponding resolutions and

Fig. 5 The structure of FPN
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Fig. 6 The structure of Faster R-CNN with FPN

ensure that each layer has appropriate resolution and solid semantic features. 3© is
a horizontal connection process, which uses a convolution kernel 1 × 1 to fuse the
result of 2© with the output feature graph of 1© without changing the size of the
feature graph.

In the detection process, the FPN structure is embedded in the Faster R-CNN
feature extraction part. The framework of the target detection and counting model
based on Faster R-CNN consists of the following three parts: feature extraction,
candidate region generation and classification, and Bbox regression. The network
structure of Faster R-CNN with FPN is shown in Fig. 6.

1. FPN: Feature extraction
To improve the recognition accuracy of different sizes of organisms in the image,
the backbone in Faster R-CNN is replaced by ResNet50 which combines FPN
instead of VGG16. Feature maps of different scales are obtained by the FPN
and then sent to the RPN to generate candidate regions. The fusion of deep and
shallow features makes the FPN structure effectively improve the detection rate
of small targets. The multi-resolution feature map detection design makes Faster
R-CNN have a better detection effect for different scale targets.

2. RPN: Get candidate region
RPN is a complete convolution network, which can be trained end-to-end, to
generate the suggestion bounding box, which can predict not only the boundary
of the object but also the probability score of the object. The network structure
contains two types of outputs: Softmax classifier and Bounding box, a multi-task
model. The core of RPN is the anchor. RPN is mainly used to generate candidate
regions. However, the different sizes and aspect ratios of targets make it necessary
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to set multiple-scale windows. RPN generates a large number of anchor boxes
firstly. After clipping and filtering, Softmax further determines whether these
anchors belong to the foreground or background, whether there are objects in the
box. The foreground represents containing objects and the background represents
not containing objects. At the same time, the other branch begins to modify the
anchor frame to form more accurate candidate regions.
The implementation process of RPN is as follows: firstly, a small network is
used to perform sliding scanning operation on the feature image obtained by
convolution, and it is connected fully with the window on the feature image, then
it is mapped into a low dimensional vector, and finally, the vector is fed into the
Bbox regression layer (reg) and Bbox classification layer (cls). The reg layer is
mainly used to estimate the candidate output (x, y, w, h) corresponding to the
candidate anchor. The cls layer is used to judge whether the candidate region is
foreground or background.

3. Target classification and Bbox regression
Before the target classification and bounging-box regression, we need to carry out
the pooling operation. This layer uses the candidate regions generated by RPN
and the feature maps of different scales generated by the backbone network to
get the fixed-sized candidate feature maps and inputs them into the subsequent
network.We can use the full connection operation to identify and locate the target.
In the classification process, Softmax is used as the classification function to
classify the fixed-size feature image formed by the ROI pooling layer according
to the specific category. At the same time, the L1 loss is used to complete the
candidate regression operation on the bounding box for position verification to
obtain the accurate position of the object. The loss function equations of thewhole
network is shown in Eq.1.

L ({pi } , {ti }) = 1

Ncls

∑

i

Lcls
(
pi , pi

∗) +λ
1

Nreg

∑

i

pi
∗Lreg

(
ti , ti

∗) (1)

Pi is the probability of the category of anchor calculated by the Softmax. When the
IOU between the anchor and the target window is greater than 0.7, the value of pi ∗ is
1, and when the IOU is less than 0.3, the value is 0. ti ∗ is a scaling parameter, which is
the real scaling value for regression, including coordinate scaling and size scaling. ti
is used to represent the scaling value predicted by the network in the training process.
Faster R-CNN completes the regression task by learning the scaling value. The loss
function consists of two parts: classification loss and regression loss. See Eq.2 for
the calculation of classified loss:
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See Eqs. 3 for the calculation of regression loss:

Lreg
(
ti , ti

∗) = R
(
ti − ti

∗) (3)
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Where is the loss value is calculated by smooth L1 function, see Eqs. 4:

SmoothL1 =
{
0.5x2 |x | < 1

|x | − 0.5others
(4)

The general implementation process of the whole network is as follows: First, the
input image is represented as Height × Width × Depth. The tensor is processed by
the backbonenetworkwith anFPNstructure to obtain featuremaps of different scales.
Then, the RPN is used to extract candidate regions. After obtaining the possible
related objects and their corresponding positions in the original image, the features
extracted from the backbone network and the bounding box containing the related
objects are pooled by ROI, and the features of the related objects are extracted to
obtain new vectors. Then it is sent to the subsequent classification and regression
network to complete the target recognition and positioning.

3.3 Experimental Results and Discussions

In this experiment, the iterations are 120 and the batch size is 1. We set the learning
rate and weight decay to 0.0001. Set the size and scale of anchor to (8, 16, 32) and
(0.5, 1, 2). The impulse gradient descent method is used to reduce overfitting, and
the impulse is set to 0.9.

For the static image data, a total of 630 samples were obtained. Labeling image
annotation tool is used to calibrate these samples manually, and then we divide the
training, validation and test sets according to the ratio of 7:2:1. We used the test set
to evaluate our model.

In this paper, Recall, Precision and AP were used to evaluate the results of this
experiment. The results are shown in Table 1.

The definition of recall and precision is as follows: Eq. 5:

Precision = T P

T P + FP
, Recall = T P

T P + FN
(5)

Among them, the definition of T P, T N , FP, FN is shown in Table 2, which respec-
tively represents true positive, true negative, false positive, and false negative recog-
nition, Precision represents the correct proportion of all predicted targets, Recall

Table 1 The experimental result

Class Recall Precision AP

Mussel 0.745 0.719 0.720

Shinkaia 0.876 0.755 0.756
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Table 2 Obfuscation matrix for specified categories

Ground truth Predictive

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Fig. 7 Marine benthos detection and quantification results. The tag 33/34 indicates that the real
quantity of mussel is 34 and the detection quantity is 33

represents the proportion of correctly located and recognized targets in the total
number of targets.

Finally, the mean average precision (mAP) of 73.8% is obtained on the marine
biological data set.Among them, the accuracyofFPNmethod formussels recognition
is 72.0%, and the accuracy of shinkaia is 75.6%. The visualization of experimental
results is shown in Fig. 7. It can be seen that FPN is an excellent static image counting
model for marine organisms.
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3.4 Summary

This section first introduces the overall structure of the Faster R-CNN model and
describes the network structure in detail. Next, the structure of the convolution neural
network used for feature extraction is introduced, and 441 images are trained by this
network. The experimental results show that the Faster R-CNN recognition has good
effect, and canbe applied to the quantitative analysis ofmarine biological recognition.

4 DMS Based on SSD

4.1 Introduction on DMS

In a narrow sense, seamount refers to the submarine uplift with a height of more than
1000 m below sea level. In a broad sense, the sea-knolls with a height of 500–1000
meters and hills below 500 m are called seamounts. Seamounts are the significant
ecological landscapes in the deep ocean. It is estimated that the global seamounts
account for 21% of the global seabed area [3, 45]. With the unique topography and
hydrological characteristics, as well as the unique ecosystem, abundant biodiversity,
and colossal resource value, seamounts havebecomeoneof themost concerning areas
in deep-sea research. Compared with the surrounding deep-sea area, seamounts have
high productivity, high biomass, and high biodiversity.

With the change of water depth and sediment types, the biological communities
of seamounts show obvious biota replacement, and different sediment types often
distribute different biota. For example, in soft bottom sediments, sea gills, starfish, sea
urchins, and sea cucumbers are more common, while in hard rock bottom sediments,
sponges, black corals, gorgonians, and sea anemones are dominant. The research on
seamounts primarily focuses on the macrobenthos, whose individual is more than 2
cm and can be identified through the seabed image.

With their unique biological communities, rich biodiversity, and huge resource
value, seamounts have become the focus of deep-sea biodiversity protection. At
present, the protection of marine Biodiversity Beyond National Jurisdiction (BBNJ)
has become an issue of global concern. Scientific understanding of the biological
composition and distribution of seamounts is the key to the development, utilization,
and protection of this fragile deep-sea ecosystem. It is the most concentrated among
the seamounts globally and has the most significant number in the Western Pacific
Ocean. The Western Pacific is the area with the most densely distributed seamounts
and the most developed trench-arc-basin system globally. The cross-linking area of
the Yapu Trench, Mariana Trench, and Caroline Ridge is the most representative. It
is also one of the areas with minor research on seamounts in the world.

Themost considerable difficulty in studyingdeep-sea biodiversity lies in the acqui-
sition of deep-sea specimens and data. Due to the complex topography of seamounts,
biological sampling is more complicated than the general deep-sea. Among the more
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than 30000 seamounts globally, only 1% of them have been carried out in biological
sampling, and only about 50 seamounts have been sampled comprehensively. As a
result, seamounts are still one of the “least known biological habitats” for humans.
The research on the biodiversity of seamounts is limited to the macrobenthos, and
most of the research only focuses on the species composition, while a few focus on
community structure and distribution. Due to the limitation of sample acquisition
and insufficient sampling, a considerable part of the classification and identifica-
tion of seamount organisms is based on the analysis of video and image of benthic
organisms. Many novel organisms cannot be identified due to the lack of samples.

In recent years, our country has successfully carried out some seamount explo-
rations represented by ‘Jiaolong’ HOV and ‘FaXian’ ROV and obtained many first-
hand submarine image data in the South China Sea, Western and Central Pacific. It
significantly improves the deep-sea detection level of our country and provides data
support for automatic detection of benthos in seamounts.

4.2 Seamount Macrobenthos Dataset

Supported by the strategic leading science and technology project of the Chinese
AcademyofSciences(A) “material and energy exchange and its impact on the tropical
western Pacific Ocean system”, the Institute of Oceanology, Chinese Academy of
Sciences has established a research system for the detection of marine biodiversity in
seamounts through the construction of technical platformand team.Acomprehensive
survey of the deep-sea environment, biodiversity, and ecosystem structure of three
seamounts in the cross-linking area of Yapu andMariana Trench and Caroline Ridge
in the Western Pacific Ocean was carried out (as shown in Fig. 8). More than 1000
giant and large biological samples were collected through the sampling of seamount
detection by using “FaXian” ROV, and more than 880 GB in situ imaging data of
seabed organismswere obtained. In Fig. 8, the peak of Yapu seamount (Y3) is located
in 8◦51′N , 137◦47′E ; the peak of the Mariana seamount (M2) is located in 11◦19′N ,
139◦20′E ; the peak of the Caroline seamount (M4) is located in 10◦29′N , 140◦8′E .

Based on the in-situ image data of macrobenthos obtained from the above three
seamounts’ surveys, the 63 in-situ image data were labeled as Paskal VOC format
data byLabelImg, an image annotation tool. This images data includePheronemoides
fungosusGong&Li, 2017 [10],Paragorgia rubraLi, Zhan&Xu, 2017 [20],Chryso-
gorgia ramificans Xu et al., 2019 [44], Paraphelliactis tangi Li & Xu, 2016 [19],
Poloipogon distortusGong & Li, 2018 [11] and Chrysogorgia binataXu et al., 2019
[44]. These six species are newly discovered in recent years. Then we check all data
manually to ensure that all image resolutions are 1920 × 1080.

In computer vision, the typical annotation method is annotating the object on
the image with a rectangular bounding box. In seamount data, the bounding box is
labeled with (xmin, ymin, xmax, ymax), and (xmin, ymin) and (xmax, ymax) are the two
vertices on the diagonal of the rectangular label box. The whole macrobenthos data
set of seamounts are collected, and each image corresponds to an XML annotation
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Fig. 8 Seamount data acquisition location and discovery ROV

file. Finally, stratified random sampling is used to divide the labeled data into the
training set and test set according to the ratio of 8:2.

4.3 The SSD Framework for DMS

The experimental framework of macrobenthos detection in seamounts with the SSD
model is shown in Fig. 9.

Fig. 9 The entire process of underwater species detection by SSD
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SSD is based on VGG16 [38], which is pre-trained on the ILSVRC CLS-LOC
dataset [36]. We convert FC6 (sixth fully connected layer) and FC7 to convolutional
layers, subsample parameters from FC6 and FC7, after that remove all the dropout
layers and the FC8 layer using SSD Weighted Loss Function [23]. We adjust the
outcome model using SGD with initial learning rate 10−4, 0.9 momentum, 0.0005
weight decay, and batch size 32. The entire process can be seen in Fig. 9.

4.4 Experimental Results and Discussions

Part of the output of our SSD model is shown in Fig. 10. Among all the six different
marine species, our SSD model achieved 98.04% mAP (mean Average Precision)
and the average value of IOU (Intersection-over-Union) over 0.8 on the test dataset
with 63 images.

In our experiment, although we have verified that the implementation of SSD
on our marine species data is feasible, SSD still often fails to detect small objects.
Besides, our sample size and marine species categories are not enough. In the future,
wewill improve the SSD, and improve the ability to detect small objects in the camera
further. Our ultimate vision is to build an AI system that can identify hundreds of
thousands of marine species in real-time.

Fig. 10 a Pheronemoides fungosus Gong & Li, 2017, b Paragorgia rubra Li, Zhan & Xu, 2017, c
Chrysogorgia ramificans Xu et al., 2019, d Paraphelliactis tangi Li & Xu, 2016
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4.5 Summary

This section first introduces the overall structure of the SSD model applied and
describes the network structure in detail. Next, the structure of the convolution neural
network used for feature extraction is introduced, and 63 images are trained by this
network. The experimental results show that the SSD recognition effect is good and
it can be applied to the detection macrobenthos in seamounts.

5 Conclusions and Future Works

Target detection is one of the three major tasks in the field of computer vision.
Computer vision algorithms are gradually applied to underwater scenes with the
continuous development of deep learning technology and its wide application on
land. In this chapter, the application of deep learning algorithm in target detection
is extended to detecting marine organism. The detection and counting of marine
organisms are studied in detail. First of all, inmarine static image biological detection
and counting, we explore the network architecture based on Faster R-CNNwith FPN.
Then, we verify the feasibility of SSD in the detection of giant benthic organisms in
seamounts.

This chapter has completed the critical technologies of quantitative analysis sys-
tem of artificial intelligence for marine benthos, realized the integrated development
of marine big data, marine artificial intelligence and marine Internet of things, pro-
moted the comprehensive development of marine artificial intelligence application,
and filled the lack of artificial intelligence application in the deep-sea field partly.

Based on the above research, our subsequent work includes the following aspects:

1. Further expand the species richness. In addition,manual tagging is time-consuming
and labor-consuming. The active learning method will be used for tagging in the
subsequent expansion of the deep-sea biology training database.

2. The following research will focus on the dynamic video object detection and
counting algorithm based on the static image.

3. Promote the AI algorithm model’s landing and start developing the deep-sea
macro-organism recognition and quantitative analysis system.
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