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1 Introduction

Biological control of plant diseases, involving the use of (micro-)organisms or
compounds of biological origin, is now considered one of the most promising
alternatives to the use of chemical pesticides. Sales of so-called biocontrol
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2 Bacillus spp. as biocontrol agents

agents (BCAs) are expected to reach circa 10% of the overall global crop
protection market in the near future with an annual growth rate estimated
between 15% and 20% (Parnell et al., 2016; Nishimoto, 2019; Zaki et al.,
2020). Biocontrol can provide plant protection against many diseases and is
environment friendly. Since it often involves several modes of action to restrict
the growth of microbial pathogens, biocontrol may limit the development of
resistance mechanisms in pathogens but further studies are needed to assess
their durability (Geiger et al., 2010; Bardin et al., 2015; Borel, 2017; Kim et al.,
2017).

BCAs may actagainst pathogens via a number of mechanisms: competition
for space and nutrients, parasitism, antibiosis and/or by stimulating the host
plant defences (K&hl et al., 2019). Biocontrol organisms are natural enemies
of plant pathogens including viruses, bacteria, fungi, insects and nematodes.
Non-living agents of biological origin include semiochemicals (pheromones,
plant volatiles) and biochemical products mainly secreted or extracted from
plants and microorganisms (Raymaekers et al., 2020).

Microbial products currently dominate the BCA market, particularly
bacteria such as Bacillus thuringiensis which is widely used as a bio-insecticide.
Selected beneficial bacteria naturally living in close association with plants, and
referred to as plant growth-promoting rhizobacteria (PGPR), are also used as
BCAs against plant pathogens (Savary et al., 2019). PGPRs constitute a diverse
group of bacteria isolated from the rhizosphere and belonging mainly to the
genera Pseudomonas, Streptomyces, Acetobacter, Azospirillum, Paenibacillus,
Serratia, Burkholderia, Herbaspirillum, Rhodococcus, Rhizobium and Bacillus
(Backer etal., 2018).

Like other PGPR, some Bacillus spp. can improve plant growth by nitrogen
fixation, phosphate solubilization, phytohormone production or by mitigating
the impact of some abiotic stress factors (Kumar et al., 2011; Saxena et al.,
2020). This genus includes species that are particularly effective in controlling
plant diseases, representing some of the most popular BCAs with global sales
of US$ 160 million in 2016 (Chen, 2017).

Even though reduction of insect and nematode infection has also been
occasionally reported (Mnif and Ghribi, 2015; Engelbrecht et al., 2018; Ruiu,
2020), the biocontrol activity of Bacillus species has been mainly established
against plant diseases. This chapter illustrates the diversity of pathosystems
in which BCA based on Bacillus spp. have proved effective. It describes the
mechanisms underpinning this biocontrol activity via the production of a wide
range of enzymes, proteins and small-size bioactive secondary metabolites
(BSMs). As these BSMs are clearly involved in pathogen control, we emphasize
the importance of understanding the ecological factors influencing their
production. In the last part of the chapter, we highlight the potential interactions
between Bacillus spp. and other soil microorganisms in developing consortia
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of biocontrol agents combining species with synergistic activities for plant
health improvement.

2 Bacillus spp. as biocontrol agents (BCAs)

Most of the Bacillus spp. reported as effective BCAs have been isolated from the
rhizosphere, occasionally from the phyllosphere, and belong to the so-called
Bacillus subtilis complex (Cawoy et al., 2011; Fan et al., 2017a). These bacteria
may be very competitive in their natural niche. They form populations on plant
tissues, as illustrated by B. velezensis FZB42, and are able to colonize roots of
different monocot and dicot species (Fan et al., 2011, 2012). Root colonization
ability contributes to the secretion of antimicrobial compounds and plant
resistance elicitors. This metabolite secretion allows to combat a diverse range
of bacteria, viruses and fungal pathogens with different lifecycles and modes
of virulence (biotrophic, hemibiotrophic or necrotrophic) as illustrated via
selected examples in Table 1 (Fira et al., 2018; Miljakovi¢ et al., 2020). Bacillus
spp. biocontrol efficacy has been demonstrated in greenhouse (Fousia et al.,
2016; Beris et al., 2018) and field conditions (Matzen et al., 2019; Cucu et al.,
2020), as well as at the post-harvest stage for fruit diseases (Punja et al., 2016;
Gava et al., 2019).

The ability of Bacillus spp. to antagonize Gram-negative bacteria and
reduce diseases caused by these pathogens has been established mainly in
vitro and under controlled conditions (Table 1). A single strain can act against
several bacterial pathogens. For example, B. velezensis LS69 has been shown
to display antibacterial activities against Erwinia carotovora and Ralstonia
solanacearum (Liu et al., 2017). Species can counteract Gram-positive bacterial
pathogens such as Clavibacter michiganensis by B. amyloliquefaciens S1
(Gautam et al., 2019) and Streptomyces scabies by B. amyloliquefaciens Ba01
(Lin etal., 2018).

Bacillus spp. have been shown to exhibit antagonistic activity against
most economically important fungal plant pathogens (Dean et al., 2012) such
as Botrytis cinerea (Jiang et al., 2018), Magnaporthe oryzae (Rahman et al.,
2015), Fusarium graminearum (Ntushelo et al., 2019), Fusarium oxysporum
(Elanchezhiyan et al.,, 2018), Blumeria graminis (Matzen et al, 2019),
Zymoseptoria tritici (Kildea et al., 2008) or Colletotrichum acutatum (Wang et al.,
2020b). A single strain can antagonize different fungi, such as B. velezensis Y6
and F7 which inhibit both F. oxysporum and Colletrichum gloeosporioides in
vitro (Cao et al., 2018). Antagonism of Bacillus strains against oomycetes such
as Pythium aphanidermatum (Zouari et al., 2016) and Phytophthora infestans
(Caulier et al., 2018) has also been demonstrated.

Several Bacillus spp. have also been reported to control diseases caused
by viruses. This has been illustrated on different pathosystems including
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6 Bacillus spp. as biocontrol agents

tomato plants infected by the tomato yellow leaf curl virus counteracted by
B. amyloliquefaciens Ba13 (Guo et al., 2019) or pepper and tobacco plants
infected by the cucumber mosaic virus and controlled by B. amyloliquefaciens
5B6 (Lee and Ryu, 2016).

These bacilli have been commercially used as BCAs partly because of
their ability to combat disease and partly because of technological advantages
(Table 2). Species belonging to the so-called B. subtilis complex are, for
example, considered GRAS (‘generally regarded as safe’) (Schallmey et al.,
2004) and can be produced at an industrial scale. These bacteria are aerobic
with relatively high growth rates, low nutritional requirements and are able to
grow on various nutrient sources. They usually produce a range of enzymes
(cellulases, amylases, proteases) degrading various substrates derived
from naturally abundant sources such as lignocellulose, starch, proteins,
hydrocarbon and biofuels (Chen et al., 2018; Elisashvili et al., 2019). This allows
their cultivation in low-cost media such as plant raw materials in industrial
bioreactors or in solid-state fermentation (Khardziani et al., 2017; Berikashvili
et al,, 2018). An important advantage of Bacillus spp. is their ability to form
endospores which make them particularly resistant to abiotic stresses such as
heat and drought (Piggot and Hilbert, 2004; Mutlu et al., 2020). The endospore
allows the formulation of Bacillus-based products with good long-term storage
due to resistance to industrial processing (lyophilization or spray drying of the
spore suspensions collected from the fermentation broth) and the ability to mix
endospores with appropriate additives, adjuvants or surfactants (Schisler et al.,
2004; Stamenkovic-Stojanovic et al., 2019). Products can either be sprayed on
aerial parts of the plants, delivered into soil or coated on seeds according to
the disease targeted and farmers needs (Rahman, 2016; Toral et al., 2020).

3 The diversity of Bacillus spp. metabolites involved in
biocontrol

The biocontrol activity of Bacillus species has mainly been linked to their
ability to produce a wide range of chemically diverse compounds (Fig. 1).
Comparative genomics has revealed that species of the B. subtilis group,
including plant-associated clades, are particularly rich in biosynthetic gene
clusters (BGCs) encoding bioactive secondary metabolites (BSMs) (Grubbs
et al., 2017; Harwood et al., 2018). Up to 12% of the genome is devoted to
the synthesis of those compounds (Chowdhury et al., 2015a; Molinatto et al.,
2016; Liu et al.,, 2017; Pandin et al., 2018). Some BGCs are widespread across
species in the B. subtilis group while others seem to be more species-specific.
B. velezensis has the highest number of different genes coding for BSMs (Fan
etal., 2018), making this species one of the most efficient and commonly used
bacilli in biocontrol (Ye et al., 2018; Rabbee et al., 2019). Other species of the
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B. subtilis group produce fewer BSMs in terms of diversity, for example, B.
amyloliquefaciens and B. subtilis (Harwood et al., 2018; Andri¢ et al., 2020).
Many of the commercialized strains have been registered as B. subtilis or B.
amyloliquefaciens. However, according to recent re-classification based on
phylogenetic analyses at the whole genome level, most of these strains actually
belong to B. velezensis species (Dunlap et al., 2016). This is the case for the
strains GBO3, MBI600, QST713, FZB42 or D747 mentioned in Table 2 (Fan
etal., 2017a; Dunlap, 2019).

BSMs formed by Bacillus spp. originate either from classical ribosomal
synthesis or from non-ribosomal synthesis involving mega-enzymatic
complexes. Bacillus species are able to synthesize both ribosomal peptides that
can be post-translationally modified (RiPPs) and non-ribosomal metabolites
(Fig. 1) (Arguelles Arias et al., 2011).

Among RiPPs, B. subtilis and related species produce bacteriocins,
including lantibiotics, (Abriouel et al., 2011; Lajis, 2020) such as plantazolicin,
subtilin, ericin, mersacidin, amylolysin, subtilosin and amylocyclicin (Abriouel
et al., 2011; Scholz et al.,, 2011, 2014; Arguelles Arias et al., 2013). Some
antimicrobial peptides such as LCl peptides are also considered bacteriocin-
like inhibitory substances because their structure has not been elucidated yet,
or they cannot be classified in an existing group (Abriouel et al., 2011; Salazar
etal, 2017).

Unlike RiPPs, non-ribosomally synthesized molecules seem to be much
more conserved within the species. These molecules are synthesized by large
modular enzymatic complexes (non ribsosomal peptide synthetases and
polyketides synthetases) which are classified into two different types: non-
ribosomal peptides (NRPs) and polyketides (PKs) (Dutta et al., 2014; Winn et al.,
2016; Bozhiyik et al., 2019). These molecules are synthesized using amino
acids (for NRPs) and carboxylic acids (for PKs) as building blocks (Chen et al.,
2009a; Winn et al., 2016).

There are three main types of PKs produced by species of the B. subtilis
group: bacillaene, difficidin and macrolactin (Chen et al., 2006; Caulier
et al., 2019). Structural variants can often be coproduced by the same strain.
For example, transcription of the difficidin operon results in the production
of difficidin and its oxidized form oxydifficidin (Caulier et al., 2019). Cyclic
lipopeptides (cLPs) of the iturin, surfactin, and fengycin families are the best-
studied compounds among NRPs. These share amphiphilic properties due to a
similar structure composed of a peptidic moiety (seven amino acids for iturins
and surfactin, and ten amino acids in fengycin) linked to a fatty acid tail (ranging
from 12 to 19 carbons) (Ongena and Jacques, 2008).

cLPs biosynthesis allows great structural diversity such as the incorporation
of non-proteogenic amino acids or D-amino acids. Variants exhibiting
differentiations in fatty acid chain length, branching type or amino acids
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Figure 1 Overview of bioactive secondary metabolites (BSMs) produced by the Bacillus
subtilis complex. The antimicrobial compounds can be synthesized by the classical
ribosomal synthesis, such as the lantibiotics amylolysin (1, R1: aminobutyrate) or ericin A
(2,R2: 2,3-didehydroalanine) and the cyclic bacteriocins amylocyclicin (3). Besides, some
are produced by a non-ribosomal biosynthesis, the non-ribosomal peptides (NRPs), as
the unusual peptides (dipeptides and oligopeptides), the cyclic lipopeptides (cLPs), and
the polyketides (PKs). The dipeptides and oligopeptides include bacilysin (4), rhizocticin
(5), chlorotetain (6), and bacitracin (7). The three main polyketides are synthetized by
this genus, macrolactin (8, macrolactin A, R: H or COCH,COOH or COCH,CH,COOH),
difficidin (9, R: H or OH for oxydifficidin) and bacillaene (10, unsaturated or bacillaene
glycosylated or dihydrobacillaene glycosylated). Likewise, the three main families of cLPs
produced by Bacillus sp. are iturin (11, iturin A, C13 to C17), surfactin (12, surfactin, C12
to C16) and fengycin (13, fengycin A, C14 to C19).
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12 Bacillus spp. as biocontrol agents

substitution can also be coproduced by the same strain. Surfactin is the only
cLP that can be found in all species of the B. subtilis group. Some lipopeptides
such as lichenysin or pumilacidin are specific to the producing species (B.
licheniformis and B. pumilus, respectively). This structural diversity is also present
in the iturin family, regrouping peptidic variants such as bacillomycin, iturin
and mycosubitilin, or in the fengycin family that includes fengycin A, fengycin B
and plipastatin (Ongena and Jacques, 2008; Raaijmakers et al., 2010; Caulier
et al.,, 2019). Unlike surfactin, these two cLPs families are not produced by all
members of the B. subtilis group and structural variants do not seem to be
linked to the species (Andri¢ et al., 2020).

Several oligopeptides are known to be produced by non-ribosomal
synthesis pathways, including bacilysin, chlorotetain, bacitracin and rhizocticin.
These are not synthetized by the NRPS machinery and de facto are referred to
as unusual peptides (Konz et al., 1997; Ming and Epperson, 2002; Rajavel et al.,
2009).

4 Bacillus spp. biocontrol mechanisms: root colonization

The effectiveness of Bacillus spp. as a BCA relies on three main mechanisms
that are (i) establishment on plant tissues, mainly roots, that prevent or reduce
colonization of pathogens via competition, (ii) antibiosis towards microbial
pathogens, (iii) induction of systemic resistance in the host plant.

Various approaches (comparative studies of strains with very different
patterns, specific knock-out mutants, tests of purified molecules) have been
used to understand the roles of the molecules involved in these mechanisms
(Fig. 2).

4.1 Chemotaxis

Plant roots that provide physical support and nutrients via exudates are
colonized by a plethora of microbes. As with other members of this root-
associated microbiome, a successful Bacillus spp.-plant association is based
on a fine-tuned molecular ‘dialogue’. This is driven by root exudates, the
composition which varies according to plant genotype and growth stage (Van
Overbeek and Van Elsas, 2008; Zhang et al., 2013; Sasse et al., 2018). The
proximity of the root is first sensed by the bacterium which moves towards
root tissues via chemotaxis (Yssel et al., 2011; Sourjik and Wingreen, 2012). B.
velezensis FZB42, for example, is attracted by root exudates of maize which
act as a chemoattractant and facilitate motility and biofilm formation (Jin et al.,
2019).

The presence of pathogens modifies root exudates, increasing their
attractiveness for Bacillus spp. In cucumber plants infected by F. oxysporum
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Bacillus spp. as biocontrol agents 13

f. sp. cucumerinum, the proportion of chemoattractant compounds (citric
acid and fumaric acid) is higher compared to non-infected plants, resulting
in enhanced root colonization by B. velezensis SQR9 (Liu et al., 2014b, 2020).
Better colonization of B. velezensis 32 on Rhizobium radiobacter-infected
tomato roots has also been reported compared to uninfected seedlings,
correlated with changes in root exudate composition (Abdallah et al., 2020).
Arabidopsis thaliana foliar infection by Pseudomonas syringae also induced
root secretion of L-malic acid, attracting B. subtilis FB17 and stimulating biofilm
formation (Rudrappa et al., 2008). So far, up to ten specific chemoreceptors/
chemoattractants of root exudate compounds, such as amino acids, organic
acids or sugars, have been characterized in B. subtilis NCIB 3610 and B.
velezensis SQR9 (Tan et al., 2013; Zhang et al., 2013; Allard-Massicotte et al.,
2016; Feng et al., 2019).

4.2 Motility and biofilm formation

Biofilm formation capacity is widely distributed through the Bacillus genus.
Biofilms can be defined as a multicellular community encased within an
extracellular matrix of self-produced polymers such as exopolysaccharides
and proteins (e.g. TasA or Bsla) (Vlamakis et al., 2013; Pandin et al., 2017).
Exopolysaccharides promote mobility and nutrient capture. This form of
communal life constitutes a divergent lifestyle of planktonic cells in which
metabolism remodelling occurs through a complex regulatory network (Kearns
et al., 2005; Pisithkul et al., 2019). Biofilms are composed of heterogeneous
subpopulations organized through this regulator network. Different
communities of cells are present in the same biofilm, including matrix-producing
cells, surfactin-producing cells, flagellated motile cells and sporulated cells.

Biofilms provide a strong ecological advantage for Bacillus spp.,
promoting migration (Vlamakis et al., 2013; Flemming et al., 2016). They allow
Bacillus spp. to colonize and survive on the surface of plant roots. Bacillus spp.
have been shown to form biofilms on plant roots, for example, B. velezensis
FZB42 on Zea mays, A. thaliana and Lemna minor plantlets (Fan et al., 2011).
The plant stimulates biofilm formation both through root exudates and the
presence of polysaccharides derived from the plant cell wall which act as
signal molecules. Maize and cucumber root exudates, or individual exudate
compounds such as glucose, fructose, citric acid, malic acid and fumaric acid,
have been shown to stimulate biofilm formation in B. velezensis SQR9 and in
B. velezensis S3-1 (Zhang et al., 2015; Jin et al., 2019; Liu et al., 2020). Biofilm
establishment is also triggered in the presence of pectin and arabinogalactan,
two important plant polysaccharides, in B. amyloliquefaciens S499 and SQY
162, and B. subtilis NCIB 3610 (Beauregard et al., 2013; Debois et al., 2015;
Wu et al., 2015a).
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Figure 2 Implication of the different bioactive secondary metabolites (BSMs) in the three
main mechanisms of plant protection: by colonization and competition for ecological
niche/substrate (in purple), by direct growth inhibition (in red) and/or as an elicitor of
induced systemic resistance (ISR) (in green).

Some small-size BSMs, particularly those belonging to the lipopeptide
family (especially surfactin), are essential in reducing surface tension and acting
as a wetting agent. Surfactin helps to organize cells in bundles to increase
biofilm surface area. When deprived of surfactin, for example, mutants of B.
subtilis 6051 and OKB120 and B. atrophaeus ATCC 9372 show impaired biofilm
formation (Bais et al., 2004; Aleti et al., 2016). Surfactin plays an important
role in the ecological fitness of Bacillus spp. for root colonization, both as a
surfactant and as a quorum-sensing (QS) molecule (Kearns et al., 2004; Chen
etal., 2013; Aleti et al., 2016). Iturin and, to a lesser extent, fengycin have also
been reported to facilitate biofilm formation. In vitro studies of B. velezensis
Y6 have shown that these two lipopeptides play important roles in cell motility
(Cao et al., 2018). In the case of B. subtilis 916, it has been suggested that
bacillomycin L (a variant of the iturin family) and surfactin can synergistically
contribute to biofilm formation and so to the ecological fitness of Bacillus spp.
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Bacillus spp. as biocontrol agents 15

(Luo et al., 2015). However, a recent study has shown that surfactin production
is not required for biofilm formation by B. subtilis 3610 (Thérien et al., 2020).
The lipopeptide arsenal of B. subtilis 3610 is less diverse and contains only
surfactin. The involvement of surfactin in biofilm formation may be more
complex than expected and could be linked to the lipopeptidome richness of
each Bacillus species.

Biofilm lifestyle also allows Bacillus spp. to resist the presence of other
microorganisms. Biofilms act as a fortress to block antimicrobials produced by
other competitors (Flemming et al., 2016). The biofilm extracellular matrix has
been shown to protect B. subtilis 3610 colonies from infiltration by competitors
such as Pseudomonas chlororaphis (Molina-Santiago et al., 2019). Biofilm
formation can also be boosted by the presence of other microorganisms. In B.
subtilis ATCC6051, the expression of sinR and tasA genes involved in biofilm
formation is modified in contact with the pathogen Fusarium culmorum,
stimulating matrix multicellular production (Khezrietal.,2016). Biofilm formation
also promotes the production of compounds involved in many biocontrol
activities (Vlamakis et al., 2013; Pandin et al., 2019; Pisithkul et al., 2019). The
biofilm extracellular matrix improves the competitiveness of Bacillus spp. in the
rhizosphere and thus its biocontrol capability (Pandin et al., 2017). Deficiency in
matrix production has been associated with a decrease in biocontrol efficacy by
B. subtilis 3610 on tomato root against R. solanacearum (Chen et al., 2013) and
by B. subtilis 6051 against P. syringae on A. thaliana (Bais et al., 2004).

5 Bacillus spp. biocontrol mechanisms: antagonistic

activity
Bacillus spp. have great potential to control infection through direct inhibition
of pathogen growth via antibiosis and/or by interfering with pathogen fitness,
notably via quorum quenching (QQ). Bacillus spp. antimicrobial potential is
related to the synthesis of different classes of metabolites, enzymes, and low-
molecular-weight compounds including RiPPs, PKs, NRPs and volatiles (Fig. 2).

5.1 Enzymes

Antagonistic activities of enzymes rely on several modes of action, such as
QQ or cell lysis. QQ is an important strategy in plant disease suppression by
interfering with QS molecules used by most Gram-negative pathogens. As an
example, lactonases, which interfere with the well-known QS molecules N-acyl-
L-homoserine lactones (AHL), have been found in numerous Bacillus spp. and
are considered as QQ enzymes (Dong et al., 2002; Chandra Kalia et al., 2011;
Raafat et al., 2019). By blocking cross-talk (via degradation of AHL by QQ) of P
syringae, B. cereus INT1c reduces pathogen motility, leading to inefficient root
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16 Bacillus spp. as biocontrol agents

colonization (Ananda et al., 2019). QS interference by several Bacillus spp. has
also been reported to decrease the hypersensitivity response of tomato plants
caused by P, syringae due to degradation of pathogen AHLs (Jose et al., 2019).

A second enzymatic mode of action involves cell-wall-degrading enzymes.
These include chitinases, which degrade chitin (a major component of fungal
cell walls) and other enzymes such as chitosanases, glucanases, cellulases and
lipases (Caulier et al., 2019; Miljakovi¢ et al., 2020). These lytic enzymes have
been reported to reduce plant pathogen growth. Chitinase produced by B.
subtilis ATCC1774 and B. cereus CRS7 decreases the growth of Rhizoctonia
solani(Saberetal., 2015)and B. cinerea, respectively (Kishore and Pande, 2007).
Alkaline protease purified from B. amyloliquefaciens SP1 and heterologously
expressed in Escherichia coli has been reported to inhibit F. oxysporum growth
(Guleria et al., 2016).

5.2 Bacteriocins and lantibiotics

Several RiPPs produced by Bacillus spp. are effective as antibacterial agents.
Bacteriocins exhibit a broad spectrum of antibacterial activity acting by cell
lysis, pore formation or inhibition of cell wall biosynthesis (Abriouel etal., 2011;
Lajis, 2020). Bacteriocin activity has been occasionally reported against Gram-
positive and Gram-negative bacterial plant pathogens. Amylocyclicin, produced
by B. velezensis FZB42, appears to exhibit activity against C. michiganensis,
while Bac IH7 and Bac14B inhibit the growth of R. radiobacter (formerly
called Agrobacterium tumefaciens), and Pseudomonas spp., E. carotovora and
Alternaria solani (Hammami et al., 2009, 2012; Scholz et al., 2014). LCI peptide,
purified from B. subtilis AO14 and considered as bacteriocin-like inhibitory
substances, have antibacterial activities against Xanthomonas campestris and
R. solanacearum. The APC2 protein, a so-called LCl-like peptide produced by
B. amyloliquefaciens FS6, has been shown to prevent Fusarium solani infection
(Gongetal.,, 2011; Fan et al., 2018; Saikia et al., 2019; Wang et al., 2020a).

5.3 Non-ribosomal metabolites

The activity of dipeptides and oligopeptides against plant pathogens has
been little studied. Dipeptide bacilysin, a non-ribosomal synthesized molecule
produced by B. velezensis FZB42, has been reported to inhibit growth of
bacteria such as Erwinia amylovora, Xanthomonas oryzae and oomycete P.
infestans (Chen et al., 2009b; Wu et al., 2015b; Caulier et al., 2018). PKs are
known for their antibacterial activity. A mutant, for example, of B. velezensis
FZB42, impaired in difficidin, has been found to inhibit E. amylovora (Chen et al.,
2009b) and X. oryzae (Wu et al., 2015b) less than the wild-type strain. Purified
macrolactin has also been reported to be active against R. solanacearum and F.
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oxysporum (Yuan et al., 2012a). Bacillaene has been shown to protect Bacillus
spp. cells against the degrading-enzymatic activity caused by competitors
(Streptomyces sp. Mg1 and Myxococcus xanthus) (Barger et al., 2012; Mller
et al., 2014, 2015). Bacillus PK type difficidin also shows antimicrobial activity,
depending on the structure. The oxydifficidin derivative is approximately three
times more active against R. solanacearum as compared to difficidin (Im et al.,
2020) showing the importance of structural variations among Bacillus spp.
BSMs.

The antimicrobial activity of lipopeptides is mainly related to members of
the fengycin and iturin family. These two families have been reported to damage
hyphae and conidia of several fungal pathogens including F. graminearum (Gu
etal.,2017; Hanifetal.,2019)and Monilinia fructicola (Liu etal.,2011). The effects
of lipopeptides depend on their amphiphilic nature and chemical structure.
Fengycins are active against filamentous fungi such as Rhizopus stolonifera (Tao
etal., 2011), Magnaporthe grisea (Zhang and Sun, 2018) or R. solani (Guo et al.,
2014). lturins are efficient not only against filamentous fungal pathogens such
as C. gloeosporioides (Jin et al., 2020) and Aspergillus flavus (Gong et al., 2014)
but also against the oomycete P. infestans (Wang et al., 2020c). Fengycin can
also inhibit damaging mycotoxin synthesis produced by F. graminearum (Hanif
et al., 2019). Iturins and fengycins are mainly active against fungi. However,
the antibacterial activity of iturins and fengycins has also been occasionally
reported against X. campestris and Pectobacterium carotovorum (Zeriouh et al.,
2011) and Xanthomonas axonopodis pv. vesicatoria (Medeot et al., 2020) or
R. solanacearum (Villegas-Escobar et al., 2018). Mode of actions of iturins and
fengycins are still partially unknown but are most probably related to their
capacity to disrupt fungal pathogens plasma membranes by forming pores,
leading thus to cell death (Deleu et al., 2008; Wise et al., 2014; Zakharova et al.,
2019). Small structural variations can impact bioactivity. Different homologues
of bacillomycin D have thus different antimicrobial activities against the same
pathogen according to the physiological stage of the fungi (Tanaka et al.,
2015; Luna-Bulbarela et al., 2018). Differential activities of these variants can be
viewed as a strategy by Bacillus spp. to increase the antibiotic spectra of one
molecule family.

Surfactin has been found to have antimicrobial activity but in the 50-200 uM
range, a higher concentration than in natural conditions (Jourdan et al., 2009;
Raaijmakers et al., 2010; Debois et al., 2014; Liu et al., 2014a; Fan et al.,, 2017b;
Sarwar et al., 2018). The inhibitory effect of surfactin is probably not due to direct
antagonism butratherthe interference with the colonization process of pathogens
such as P syringae (Bais et al., 2004) and R. solanacearum (Almoneafy etal., 2014).
Even if surfactin cannot be considered as an antimicrobial molecule, it still has the
ability to interact with biological membranes to induce structural modifications
(Deleu et al., 2013). Its antimicrobial activity can be linked to a synergistic effect
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18 Bacillus spp. as biocontrol agents

with other cLPs. The combination of surfactin with bacillomycin D or mycosubitilin
leads to more efficient control of F. oxysporum f. sp. iridacearum (Mihalache et al.,
2018) and B. cinerea (Tanaka et al., 2015). Combining surfactin and fengycin is
effective against F. oxysporum f. sp. iridacearum (Mihalache et al., 2018) and P
infestans (Wang et al., 2020c). Co-production of two antifungal compounds (i.e.
iturins and fengycins) by Bacillus improves its antifungal properties since these
antifungal compounds are active against different pathogens.

5.4 Volatiles

The antimicrobial activities of Bacillus spp. are also linked to volatiles. The most
relevant group of volatiles are volatile organic compounds (VOCs) including
alcohol, aldehydes, ketones, hydrocarbons, acids and terpenes. The majority of
VOCs are derived from Bacillus spp. metabolic pathways such as 2-nonanone
produced by B-oxidation of fatty acid (Korpi et al., 2009; Fincheira et al., 2017).
Some of these metabolites have been reported to affect motility and biofilm
formation of bacterial pathogens (Raza et al., 2016) and/or decrease fungal
spore germination and growth (Yuan et al., 2012b). Antimicrobial activities of
VOCs have been extensively studied (Caulier et al., 2019; Kai, 2020), including
against fungal pathogens such as Sclerotinia sclerotiorum (Lim et al., 2017), B.
cinerea (Jiang et al., 2018), A. solani (Zhang et al., 2020) or M. fructicola (Liu
et al., 2018a). VOCs synthesized by Bacillus spp. also display antimicrobial
activity against R. solanacearum such as 2-nonanone and 2-undecanone (Raza
etal., 2016).

The BSM arsenal of Bacillus species such as B. velezensis includes many
antimicrobials with broad-spectrum activity. However, recent studies strongly
suggest no marked and durable effect of these bacteria on the microbiome
of the treated crop (Correa et al., 2009; Chowdhury et al., 2013; Krober et al.,
2014; Qiao et al., 2017). Those bacilli thus provide protection to their host plant
but have no detrimental effect on the microbiome, which is of prime interest for
future application as BCAs.

6 Bacillus spp. biocontrol mechanisms: induced-systemic
resistance

Bacillus spp. can protect plants by triggering an immune response which
is systemically expressed in all organs of the host plant called induced
systemic resistance (ISR) (Yu et al., 2017; Ranf, 2018; Schellenberger et al.,
2019). ISR involves activation of a latent defence process called priming and
characterized by activation of defence responses only after infection. Priming
provides an enhanced level of protection and a faster/stronger activation of
defences by the whole plant (Pieterse et al., 2014). ISR activated by Bacillus
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spp. protects plants against a broad spectrum of pathogens (Kohl et al., 2019;
Miljakovi¢ et al., 2020). ISR can, de facto, complement resistance induced by
pathogen attack such as recognition of pathogen- or microbial-associated
molecular patterns (PAMPs or MAMPs, respectively) (Van Wees et al., 2000).
Bacillus spp. are not generally a source of MAMPs, even though some Bacillus
spp. can trigger ISR in host plants (Vanthana et al., 2019; Rajamanickam and
Nakkeeran, 2020). BSM induction of ISR by Bacillus spp. involves different
types of metabolites, degradation products due to bacterial activity or secreted
molecules and volatiles (Prsi¢ and Ongena, 2020). However, the molecular
mechanisms driving recognition of these elicitors of Bacillus spp., especially
for BSMs, are poorly understood.

Bacillus spp. can produce some protein elicitors of plant defence. The AMEP
412 protein in the Bacillus genus triggers ISR in tobacco against P. syringae
pv. Tomato (Shen et al., 2019). The PeBA1 protein from B. amyloliquefaciens
NC6 induces resistance in tobacco against infection by B. cinerea and by the
tobacco mosaic virus (Wang et al., 2016).

cLPsarekeyISRelicitorsin arange of pathosystems. Surfactin and, to alesser
extent, iturin or fengycin, are powerful inducers of plant systemic resistance
(Crouzet et al., 2020). Application of surfactin at the root level decreases
disease severity due to the necrotrophic fungus B. cinerea on bean, tomato
and A. thaliana leaves (Ongena et al., 2007; Debois et al., 2015). A comparative
analysis using different Bacillus strains revealed a strong correlation between
the amounts of surfactin and its ability to trigger defence immunity in a plant
(Cawoy et al., 2014). Studies with B. velezensis FZB42 surfactin deficient
mutant demonstrated the importance of this lipopeptide in the induction
of plant defences in lettuce against R. solani (Chowdhury et al., 2015b). ISR
activation by surfactin has been reported for several other pathosystems such
as melon/Podosphaera fusca (Garcia-Gutiérrez et al., 2013) and wheat/Z. tritici
(Le Mire et al., 2018). Several iturin variants have also been shown to trigger ISR
in different pathosystems, such as strawberry/C. gloeosporioides (Yamamoto
et al., 2015), chili pepper/Phytophthora capsica (Park et al., 2016) or wheat/
Z. tritici (Mejri et al., 2018). The iturin variant mycosubitilin has been reported
to induce an immune response in grapevine against B. cinerea (Farace et al.,
2015). Fengycin has been shown to trigger ISR in tomato against B. cinerea
(Ongena et al.,, 2007), and more recently in grapevine and in tomato against
Plasmopara viticola and S. sclerotiorum, respectively (Farzand et al., 2019; Li
etal., 2019).

Lipopeptide activity has been shown to be plant and even organ-
dependent (Prsi¢ and Ongena, 2020). Surfactin is more efficient on dicots than
on monocots (Ongena etal., 2007; Rahman et al., 2015; Mejri et al., 2018). Iturin
treatment is more efficient when applied on leaves rather than roots (Han et al.,
2015; Yamamoto et al., 2015). Iturin and surfactin have been shown to trigger
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20 Bacillus spp. as biocontrol agents

an immune response by interacting with plant membrane lipids, but the precise
mechanism remains unclear (Henry et al., 2011; Deleu et al., 2013; Fiedler and
Heerklotz, 2015; Balleza et al., 2019). It appears that surfactin activity is related
to plant plasma membrane composition and is also affected by lipopeptide
structure. Structural changes in fatty acid chain length (long chains are more
efficient), as well as the substitution in the peptidic cycle, modulate their ability
to trigger ISR (Jourdan et al., 2009; Kawagoe et al., 2015).

Volatiles produced by Bacillus are also involved in the induction of plant
immunity. Exposure of roots of A. thaliana seedlings to VOC mixtures, produced
by B. subtilis GBO3 or by B. amyloliquefaciens IN937a, resulted in fewer lesions
from the pathogen E. carotovora subsp. carotovora due to immune resistance
induction (Ryu et al., 2004). The majority of cases showing VOCs as inducers
of systemic resistance relate to acetoin and 2,3-butanediol (Ryu et al., 2004;
Rudrappa et al., 2010; Peng et al., 2019). Commercially available compounds
such as 3-pentanol are involved in the induced resistance in pepper plants
against X. axonopodis pv. vesicatoria (Choi et al., 2014).

7 Factors influencing the production of bioactive secondary
metabolites: cellular regulation

The conditions under which optimal production of BSMs is achieved by
Bacillus spp. are still poorly understood and studied in a restricted number of
metabolites. Evidence for efficient in situ production of these metabolites by
Bacillus spp. inoculants mainly concerns lipopeptides. Surfactin and/or iturin
have been recovered in biologically relevant quantities from cucumber roots
inoculated with B. velezensis strain QST713 (Kinsella et al., 2009) and from the
tomato rhizosphere after treatment with B. subtilis BGS3 (Ongena et al., 2007;
Nihorimbere et al., 2009) and strain RB14-C (Asaka and Shoda, 1996). Surfactin
synthesis ad planta by B. velezensis FZB42 has been demonstrated in Lemna
plantlets (Fan etal.,2011) and in lettuce together with fengycin and bacillomycin
(Chowdhury et al., 2015b). Fengycins and iturins have also been detected on
leaves and in fruits, illustrating that these plant tissues may also support cLP
biosynthesis (Touré et al., 2004; Romero et al., 2007; Zeriouh et al., 2011, 2014;
Debois et al., 2015). This limited research on the production of BSMs under
natural conditions reflects the inherent difficulties in detecting and quantifying
these small-size compounds in complex environments like soil. These
molecules can be chemically unstable, degraded by other (micro)organisms
or adsorbed on the surface or within soil particles. Whether BSMs accumulate
to biologically efficient concentrations in the rhizosphere is, therefore, still
a matter of debate. However, it is crucial to measure such concentrations in
order to better understand the real impact of these molecules in eliciting plant
defences and/or in the direct biocontrol of pathogens.
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Recent studies mainly on B. subtilis suggest that regulation of the
expression of BGCs at the cellular level is quite complex, at least for NRP/PK
products. It involves a range of pleiotropic regulators or transcription factors
driving developmental processes such as QS, biofilm formation or sporulation.
Natural conditions are also far from in vitro cultural conditions in artificial
media. Root-associated bacteria feed almost exclusively on plant exudates,
cross-communicate with other organisms (with positive or negative outcomes)
and have to face multiple abiotic factors in the soil. Production of BSMs may,
therefore, also be modulated by multiple ecological parameters.

The regulation of lipopeptides biosynthesis at the cellular level has been
quite well studied. Two QS regulatory systems; that is, ComQXPA (Lopez
et al., 2009) and Rap-Phr (Auchtung et al., 2006), are key players in surfactin
regulation. Phosphorylated ComA is required to initiate srfA gene transcription,
while the Rap phosphatases dephosphorylate ComA act as repressors.
Additional transcription factors such as Spx (Zhang et al., 2006) or codY (Coutte
et al.,, 2015) interfere with the role of ComA (Han et al., 2015) and others, such
as CIpX/P, (Nakano et al., 2000) display a chaperone activity to facilitate ComA
DNA binding. DegU, another master regulator, has also been shown to have
a positive effect on surfactin production (Ogura, 2001). The AbrB/Abh system
seems to affect lipopeptide synthesis in a more specific manner depending on
the physiology of the cell (Zhi et al., 2017).

Environmental factors such as phosphate limitation or oxidative stress also
have an impact on surfactin regulation via transcription factors such as PhoP and
PerR (Ogura, 2001; Hayashi et al., 2005). The regulation of iturin and fengycin
shares some regulators with surfactin. DegU, ComA, AbrB and GInR, which are
involved in glutamine synthesis (Koumoutsi et al., 2007; Zhang et al., 2017b;
Xu et al., 2020), regulate iturin biosynthesis together with YczE, presumably
acting at the post-transcriptional level (Koumoutsi et al., 2007; Dang et al.,
2019). DegQ, PhoP and AbrB drive fengycin synthesis (Wang et al., 2015; Lu
etal, 2016; Guo et al., 2018). Two extra-factors LutR and SinR, both involved in
cellular mechanisms, are also positive regulators (irigiil-Sénmez et al., 2014).

The regulation of lantibiotics is determined by cell density. They act
as autoinducing peptides via a typical two-component regulatory system
composed of a sensor (histidine kinase) and a response regulator (LanRK)
present in their operon (Kleerebezem et al., 2004; Schmitz et al., 2006).

The complexity of BSM regulation in Bacillus spp. is illustrated in the case of
the dipeptide bacilysin. It involves several pleiotropic regulators depending on
the physiological state of the cells in culture. In B. subtilis, bacilysin biosynthesis
is under the control of the ComQXPA and PhrC QS system (Yazgan et al., 2001;
Yazgan Karata et al., 2003). ComA binds directly to the promoter region of the
bac operon and initiates a basal expression of this BGC (Kéroglu et al., 2011).
The LutR regulon and the two interconnected regulators (DegU and DegQ) also
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regulate bacilysin synthesis (Kéroglu et al., 2008; Mariappan et al., 2012). ComA
may also act indirectly on bacilysin production by influencing DegU through
DegQ activation. AbrB acts as a repressor of bac during the exponential growth
phase, but its negative regulatory effect is silenced by SpoOA (Kéroglu et al.,
2011). The other transcription factors CodY and ScoC also negatively regulate
bacilysin production by binding directly to the promoter region.

Less information is available regarding PKS regulation. In B. subtilis,
expression of the bae operon, which is the only PK cluster conserved among
species of the B. subtilis complex (Fan et al., 2018), is under the control of
several transcriptional regulators. Full expression of this operon requires
ComA, Degl, the ScoC regulon and CodY, which binds multiple sites in the
cluster (Belitsky and Sonenshein, 2013; Vargas-Bautista et al., 2014). The dfn
and min operons, responsible for the synthesis of the two other PKs (difficidin
and macrolactin, respectively) are only present within the B. velezensis species,
explaining the low number of studies dealing with their regulatory pathways.
The antiterminator LoaP, encoded by a gene positioned directly upstream of
the dfn operon, has been shown to regulate the transcriptional readthrough
of termination sites located within the dfn and mIn operons in B. velezensis
(Goodson etal., 2017). Upon loaP deletion, the production of both difficidin and
macrolactin is abolished, but bacillaene synthesis is fully conserved (Goodson
et al., 2017). Difficidin production is also impaired in mutants not expressing
the DegU regulator (Mariappan et al., 2012).

8 Factors influencing the production of bioactive secondary
metabolites: biofilm formation

Agitated liquid cultures are commonly used to assess the effect of a given
factor on secondary metabolite synthesis. However, the physiology of
planktonic cells, when undergoing fast ‘latence-exponential-stationary’
growth typically observed in batch cultivation, does not reflect the physiology
of bacteria developing in the close vicinity of roots. PGPR form biofilm-
structured multicellular communities at the surface of roots in nutritionally
limited conditions very different from the optimized laboratory conditions. The
inoculated strain establishes on plant tissues as biofilm-structured patches.
Biofilm formation is associated with the diversification of the cell community
into sub-populations with distinct roles and activities (metabolically active
vegetative cells, matrix producers, cannibals and spores). This formation results
in phenotypic heterogeneity that may influence the synthesis of secondary
metabolites (Nihorimbere et al., 2009).

The effect of biofilm formation on the pattern of lipopeptides produced
by B. amyloliquefaciens has been assessed by growing the bacterium in static
liquid cultures conducted in wells of microtiter plates. In these conditions, cells
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readily aggregate to form pellicles at the liquid-air interface. LC-MS profiling
of the secreted lipopeptides revealed clear differences compared to agitated
cultures with enhanced production of surfactin production but not iturins and
fengycins. The proportions of the three lipopeptide families were similar to
those secreted after root colonization and clearly differed from planktonic cells
secreting much higher amounts of iturins and fengycins (Nihorimbere et al.,
2012; Deboisetal., 2014). The formation of biofilm isaccompanied by metabolic
changes under the control of regulators such as SpoOA. These transcriptional
modifications may also influence the production of BSMs like the bacABCDEF
and sbo-alb operons coding, respectively, for bacilysin and subtilosin A that are
up-regulated during biofilm formation (Pisithkul et al., 2019). The production of
other BSMs under biofilm conditions has not yet been investigated.

The formation, organization and functioning of this complex multi-cellular
structure have been extensively studied in B. subtilis and related species but
almost exclusively in vitro by forming macrocolonies on gelified media or as
pellicles developing at the air-liquid interface. However, biofilm formation
on plant tissues is very different compared to an inert surface, taking into
account interactions with the host. In natural conditions, Bacillus cells evolve
in the middle of other microbes and interactions with other microbial species
can modulate motility and biofilm formation (Andri¢ et al., 2020) (see below).
Biofilm formation and functionality have been poorly investigated in planta,
including all these biotic parameters that may interfere with this process.
There is a need to develop new cultivation methods in the lab to mimic biofilm
formation by bacterial cells colonizing roots or influenced by plant factors.
This initially requires gnotobiotic conditions where the bacterium and the
plant interact under controlled physico-chemical settings such as temperature
and pH. Population diversification and phenotypic heterogeneity should be
studied using fluorescent transcriptional reporters designed to highlight the
phenotype of interest using confocal laser-scanning or other microscopy
techniques. The use of flow cytometry on microbial cells extracted from biofilm
structures may also provide a dynamic view of the microbial population of
interest.

9 Factors influencing the production of bioactive secondary
metabolites: abiotic factors

The potential of BCAs such as Bacillus spp. to produce BSMs has been, in most
cases, evaluated in vitro using optimal growth conditions for key parameters
such as temperature, pH and oxygen availability. However, these conditions
fluctuate in soil and may significantly influence BSMs production in planta.
Research so far has mainly focused on the impact of these abiotic factors on
lipopeptide production.
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Oxygen depletion is common in the rhizosphere due to consumption by
roots and microbes (Dubern and Bloemberg, 2006). Under oxygen-starvation
conditions, surfactin production remains unchanged, suggesting that a low
oxygen level is not detrimental for surfactin synthesis in the rhizosphere
(Nihorimbere et al., 2009, 2012). A positive effect of O, limitation has even been
reported for surfactin production but under bioreactor conditions (Yeh et al.,
2006; Yietal,, 2017). In contrast, expression of iturin and fengycin operons is O,-
dependent (Guez et al., 2008; Nihorimbere et al., 2012; Rangarajan et al., 2015).

Temperature stress is a key factor affecting basal and secondary metabolism
production in microbes, significantly affecting the survival and effectiveness of
plant-associated microbes used as microbial inoculants. Little is known about the
effects of low or fluctuating temperature on the production of BSMs by Bacillus
spp. Several studies have reported an increase in lipopeptide production with
decreasing temperatures (Fickers etal.,2008; Pertot etal., 2013; Pereira Monteiro
etal.,2016; Chenetal., 2019). Growth atlow temperatures (15°C) led to a marked
increase in surfactin production in comparison to high temperatures (>35°C)
(Pertot et al., 2013). Low temperatures may affect the expression of ComK and
furtherdown-regulate genes codingforthe RapF and RapH repressors of surfactin
gene expression (Budde et al., 2006; Jacques, 2011). Enhanced production at
low temperature may also rely on post-transcriptional events, such as NRPS
protein turn-over or modifications in the lipopeptide export process (Fickers
et al., 2008). Data from in planta assays performed in greenhouses have also
suggested that enhanced surfactin production at low temperature may counter-
balance the reduced growth of B. amyloliquefaciens S499 on roots, maintaining
its ISR triggering potential under cold conditions (Pertot et al., 2013). The effect
of cold/heat on the production of other Bacillus spp. lipopeptides has been little
investigated but enhanced iturin synthesis by lowering the temperature from
37°Cto 25°C has been observed (Ohno et al., 1995; Jacques et al., 1999; Fickers
et al., 2008). The consequences of temperature fluctuations on cLP production
seem to vary between strains. Results obtained for surfactin in B. velezensis
5499 and FZB42 could not be confirmed for B. velezensis QST713 (Pertot et al.,
2013). It has also been shown that increased temperature can cause a higher
production of surfactin in B. velezensis FIAT-46737 (Chen et al., 2020). Further
investigation covering a wider range of temperatures and evaluating the impact
on the whole secreted metabolome is required to better appreciate its impact
on the production of BSMs.

The effect of pH on BSMs production is poorly documented. Surfactin
production has been reported to be inhibited at pH 5 (Vi et al., 2017). Efficient
synthesis of lipopeptides is favoured in mild-acidic to neutral environments,
which is often the case for rhizosphere due to multiple processes related
notably to plant exudation and root/microflora activity (Cosby et al., 1998; Akpa
etal.,, 2001; Hinsinger et al., 2009; Wang et al., 2020a).
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10 Factors influencing the production of bioactive
secondary metabolites: biotic factors

10.1 Interactions with the host plant

Root exudates are primarily used as nutrients by plant-associated bacteria to
sustain growth but may also stimulate flagella motility, chemotaxis and biofilm
formation. They are, therefore, essential for rhizosphere establishment (Kierul
et al., 2015; Pandin et al., 2017). The chemical nature of these exudates also
influences the production of BSMs.

cLPs production is impacted both qualitatively and quantitatively by
changes in exudate components. Carbon (C) sources in root exudates support
B. amyloliquefaciens S499 growth. Surfactin secretion (but notiturin or fengycin)
has been shown to be significantly higher in the presence of organic acids as
compared to sugars (Nihorimbere et al., 2012). The relative proportions of
different homologues may vary in relation to carbon sources. The synthesis
of C,; surfactins is promoted in the presence of organic and amino acids
compared to sugars.

In response to maize root exudates, the expression of genes involved in
the synthesis of bacillaene, difficidin, macrolactin, fengycin and surfactin was
up-regulated in B. velezensis FZB42 and in B. velezensis SQR9 (Fan et al., 2012;
Zhang et al., 2015). Root exudates of Eruca sativa (rocket salad) have been
shown to induce pks operon expression, responsible for bacillaene synthesis
in B. subtilis, allowing the bacterium to attack other root-associated bacteria
(Ogran et al., 2019). In B. velezensis SQRY, comparative proteomic analysis
revealed that PKs, fengycin and surfactin were overproduced upon colonization
of cucumber roots (Qiu et al., 2014).

Physical contact with the root surface and, more specifically, perception
of plant polymers may initiate processes such as biofilm formation in Bacillus
species. It has been shown that polymers of the plant cell wall (xylan, pectin)
also act as cues for triggering the synthesis of surfactin (Beauregard et al., 2013;
Debois et al., 2015; Wu et al., 2015a). The srfAA gene is induced when Bacillus
spp. are placed in contact with rice seedlings (Xie et al., 2015). As surfactin
is involved in swarming motility and biofilm formation, improved production
may contribute to spread on root tissues and aggregation in biofilm-related
multicellular communities.

10.2 Interactions with microbial pathogens

Bacillus spp. have to compete with other microorganisms in the rhizosphere.
Bacillus spp.thus haveto adaptandimprove theirecologicalfitness by modulating
BSM production in response to fungal and bacterial competitors. The presence
of chitin or S-glucan has been found to increase the production of fungal cell wall
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degrading enzymes such as chitinase and glucanases by B. subtilis JF419701,
(Alamri, 2015). It has been shown that co-cultures between plant beneficial
bacilli and oomycetes or fungi (including P aphanidermatum, F. oxysporum or
S. sclerotiorum) increase iturin and fengycin production, both known for their
antifungal properties (Cawoy et al., 2015; Farzand et al., 2020). Fengycin synthesis
by B. velezensis S499 has also been reported to be upregulated in the presence
of Rhizomucor variabilis, suggesting that the bacterium is able to perceive some
molecular trigger(s) emitted by the pathogen (Zihalirwa Kulimushi et al., 2017).

In addition to these two antifungal cLPs, surfactin production has also been
induced when Bacillus spp. are confronted to Phytophthora parasitica, R. solani,
F. solani, S. sclerotiorum, R. stolonifera, Fusarium sambucinum and Trichoderma
aggressivum (Chowdhury et al., 2013; DeFilippi et al., 2018; Pandin et al., 2019).
Surfactin overproduction could promote competition for nutrients and space
(Molina-Santiago et al., 2019; Andri¢ et al., 2020). Surfactin is involved in QS,
stimulates biofilm formation, and contributes to plantroot colonization (Kinsinger
et al,, 2003; Lopez et al., 2009; Raaijmakers et al., 2010). The isoform profile of
cLPs changes depending on the competitor pathogen (Cao etal., 2018; DeFilippi
et al., 2018). This suggests that bacteria modulate BSM synthesis depending on
signals emitted by specific fungal pathogens (Frey-Klett et al., 2011).

Variation in BSM production in response to bacterial competitors has been
poorly studied and mostly limited to transcriptional analyses. Expression of
genes belonging to iturin, fengycin and surfactin operons has been shown to be
up-regulated in the presence of R. solanacearum (Almoneafy et al., 2014; Cao
et al., 2018). Expression of lipopeptide operons and bacilysin in B. velezensis
BK7 has been reported to be significantly upregulated in the presence of
Pseudomonas fuscovaginae (Kakar et al., 2014). Bacterial competitors also
stimulate B. subtilis motility and biofilm formation, but the causal link between
overproduction of biofilm in the presence of some competitors and surfactin
production has not yet been demonstrated (Grau et al., 2015; van Gestel et al.,
2015; Liu et al., 2018c).

11 Interactions of Bacillus spp. with other beneficial
microorganisms and their use in biocontrol

Interactions between Bacillus spp. and other microorganisms do notalways lead
to competition and antagonism but may be compatible and result in synergistic
effects. The application of Bacillus spp. with other beneficial microbes has thus
emerged as a promising biocontrol strategy.

Synergistic effects in protecting plants against pathogens and promoting
growth have been reported using combinations of Bacillus spp. with
Trichoderma species (Wu et al., 2018; Karuppiah et al., 2019; Izquierdo-Garcia
et al., 2020), another BCA acting via competition, mycoparasitism, antibiosis
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and triggering of ISR (Vinale et al., 2008; Ghorbanpour et al., 2018). Higher
production of BSMs, as well as cryptic compounds (depending on specific
conditions), has also been reported in liquid co-cultivation of B. subtilis 22 and
Trichoderma atroviride SG3403 as compared with the two microorganisms
cultivated individually (Li et al., 2020).

Arbuscular mycorrhizal (AM) fungi are also key microorganisms in
soil, forming symbiotic associations with more than 70% of vascular plant
species (Brundrett and Tedersoo, 2018). They improve plant nutrition (mainly
phosphorus and nitrogen) and water uptake. Plants forming associations with
these soil fungi have been found to resist biotic and abiotic stresses better
(Bonfante and Genre, 2010; Plouznikoff et al., 2016; Mathieu et al., 2018), partly
due to the ability of AM fungi to induce ISR (Gallou et al., 2011, 2012; Fiorilli
etal., 2018; Deja-Sikora et al., 2020). Some synergies and improved functionality
of PGPR-AM fungi consortia have been reported for plant growth and health
(Armada et al., 2018; Zhang et al., 2018; Yadav et al., 2020). Co-inoculation of
B. subtilis or B. amyloliquefaciens with AM fungi did not affect fungal growth
but improved resistance to biotic and abiotic stresses due to more efficient
nutrient supply in Artemisia annua L., Allium sativum L. and Triticum aestivum
L. (Awasthi et al., 2011; Agnolucci et al., 2019; Rashad et al., 2020; Yadav et al.,
2020). Metabolism markers such as succinate dehydrogenase and alkaline
phosphatase showed a positive impact of Bacillus spp. on AM fungi metabolism
(Vivas et al.,, 2003). However, there remains a lack of data demonstrating
enhanced biocontrol activity of formulations combining bacilli and AM fungi.

Co-inoculation of Bacillus spp. with bacteria belonging to the Pseudomonas
or Streptomyces genera is also promising. These BCA species are competitors,
producing antimicrobials affecting Bacillus growth. Antagonistic interactions
have been reported between Pseudomonas protegens PF-5 and B. subtilis
NCIB3610 (Powers et al., 2015; Molina-Santiago et al., 2019) or between
Streptomyces sp. MG1 and B. subtilis 3610 (Barger et al., 2012; Traxler and
Kolter, 2015). However, co-inoculation of B. licheniformis B642 and the
beneficial Pseudomonas fluorescens strain FAP2 may have beneficial effects
on the host plant (Ansari and Ahmad, 2019). The combination of these two
genera enhanced resistance against X. campestris pv. campestris compared to
their use individually (Mishra and Arora, 2012). The combination of B. subtilis
GBO3 with P, fluorescens CECT 5398 has been shown to improve the control
of F. oxysporum and R. solani in tomato and pepper (Domenech et al., 2006).
However, the molecular basis underpinning synergistic effects still remains to
be deciphered.

Combining strains belonging to the Bacillus genus can also enhance
disease suppression. The combination of B. amyloliquefaciens, B. sphaericus,
B. pumilus strains or of B. altitudinis and B. velezensis strains exhibited higher
levels of biocontrol against X. axonopodis pv.vesicatoria, P. syringae pv. tomato
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and R. solanacearum on tomato butalso against Pythium ultimum and cucumber
mosaic virus on cucumber compared single bacteria (Jetiyanon and Kloepper,
2002; Liu et al., 2018b). Studies in greenhouses have demonstrated that a
mixture of Bacillus species (B. pumilus and B. amyloliquefaciens) significantly
improved control of P. capsici on squash compared to individual strains (Zhang
etal., 2010).

Some products combining other PGPR species with Bacillus spp. have been
commercialized as BCAs. Products include LS213 by Gustafson Inc. (combining
B. subtilis strain GB0O3 and B. amyloliquefaciens strain IN937a), Bio Protector by
Bacto Agro Culture Care Pvt Ltd (2 strains of Trichoderma, Ps. fluorescens and
B. subtilis) or BioYield™ by Bayer Crop Science (B. amyloliquefaciens GB99 +
B. subtilis GB12), though most are described as biofertilizers or biostimulants
(Domenech et al.,, 2006; Woo et al., 2014; Le Mire et al., 2016; Borriss, 2020).

Further research is needed to better understand the molecular dialogue
existing between Bacillus and other BCAs to evaluate factors that inhibit or
enhance synergistic interactions. Interaction-mediated variations in colony
morphology, motility, biofilm formation, or sporulation illustrate how soil bacilli
can protect themselves from antimicrobials emitted by bacterial competitors.
The effect on these developmental processes could be coupled with significant
modulation in the production of specific BSMs. These BSMs would then act
as antimicrobials or in promoting cooperative interspecies communication
processes which do not affect growth (Bleich et al., 2015; Liu et al., 2018c).
This understanding would help design combinations of Bacillus with other
microbes for more efficient biocontrol products.

12 Conclusions and future trends

The potential of some Bacillus species to control plant diseases caused by
a range of pathogens has been amply demonstrated from lab to field, and
selected isolates have been successfully commercialized. However, as for other
microorganisms, the success of Bacillus-based products has been hampered by
their highly variable or poor performance across agro-ecological environments
and host plant species. There is a need to optimize/adapt their production and
formulation (addition of prebiotics) at an industrial scale. It is also crucial to
improve our basic knowledge of the processes influencing the expression of
biocontrol traits and their persistence in plants following application in the field.

The biocontrol potential of Bacillus species mostly relies on their
capacity to synthesize a wide range of BSMs involved in the three processes
underpinning biocontrol. Some BSMs viewed as ‘specialized’ metabolites
having a single main function may actually play multiple roles. As illustrated
for surfactin, many BSMs may be multifunctional and act as signals or
antimicrobials depending on the concentration. It is necessary to combine
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approaches such as loss/gain of functions of mutants and the effect of purified
BSMs to clearly identify bioactivities, depending on the concentration and the
type of microbial pathogen (for antagonism) or plant genotype (for ISR). Better
characterization of the molecular mechanisms of key bioactivities compounds
acting individually or in combination is required if we want to understand
why they inhibit some pathogens but not others or why they can stimulate
immunity in some plants but not others. There is a need to combine carefully
designed biotests with other approaches such as experimental and in silico
biophysics to investigate effects on cellular membranes (depending on lipid
composition) and thus on the target organism (Deleu et al., 2014; Balleza et al.,
2019).

As they can be affected by abiotic factors and multitrophic interactions,
we also need to improve our knowledge on the timing, amount and diversity
of BSMs when produced in planta under natural conditions. This would help to
understand whether these BSMs act as signals at sub-inhibitory concentrations
or if they can play antimicrobial functions upon reaching threshold amounts
at least locally around the plant tissues. It will also help in determining to
what extent effects differ according to plant species, age and physico-
chemical conditions. We need to develop new ex vivo approaches and exploit
technologies like imaging mass spectrometry to spatiotemporally resolve the
dynamics of production of those small molecules produced upon colonization
or during microbial interspecies interactions (Debois et al., 2014; Boughton
etal., 2016; Spraker et al., 2020).

Integrating all those data is necessary to predict the pathosystems against
which these bacilli would work as BCAs. This will benefit the practical use of
Bacillus-based products as sprays to treat aerial parts of the plants or as soil
inoculants to protect seedlings from attack by soil-borne microbial pathogens.
Even if results are promising (Parnell et al., 2016; Meng and Hao, 2017),
prophylactic applications such as soil drenching or seed coating to protect
crops in the first stage of their development remain a major challenge for large-
scale biocontrol, notably for cereals.

B. velezensis is among the best candidate species for the development
of biocontrol agents. Several products with different strains of this species are
already on the market (Table 2) but all these strains are genetically close and
have a similar arsenal of bioactive metabolites. Soil represents an un-tapped
reservoir from which new Bacillus species/strains forming unknown but highly
active compounds can be isolated, based on rationally designed screening
procedures (Kohl et al., 2019).

Another attractive alternative is the development of products with Bacillus
spp. metabolites as active ingredients (Glare et al., 2012; Heimpel and Mills,
2017). Lipopeptides are naturally formed in high amounts by species such as
B. subtilis and B. velezensis and optimization of their production in bioreactors
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at pilot scale has been thoroughly investigated (Rangarajan et al., 2015; Motta
Dos Santos et al., 2016; Brick et al., 2019). There are methods available for
extraction and (semi-)purification, allowing cost-effective processes to obtain
bio-sourced products with reasonable purity and good stability (Coutte et al.,
2017). If formulated metabolites are developed, their (eco-)toxicological risks
need to be carefully assessed in relation to doses used to treat crops and
stability in the environment.
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14 Where to look for further information

The International Organisation for biological and integrated control (IOBC) is
a very active society headed by (academic) experts in the field who organizes
symposia, workshops, and congresses on all aspects of the biocontrol science.
The website https://www.iobc-wprs.org/ also provides valuable information on
integrated production and integrated pest management.

For more information about the biocontrol industry and a comprehensive
view of biocontrol technologies are used (or being developed) as alternatives
to control pests and diseases effectively in an environmental friendly way in
agriculture, forestry: https://ibma-global.org/.
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