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1 �Introduction
Rice is a nutritious staple crop for over half of the global population, even 
though rice fields cover only 9% of global cropland (Maclean et al., 2002). 
Rice paddies are widely distributed from tropical to temperate climatic 
regions on all continents (except Antarctica), with high concentrations in 
South-East Asia. Global rice demand is predicted to grow by around 28% by 
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2050 compared to the early 2000s (Alexandratos and Bruinsma, 2012). Paddy 
rice soils are important carbon (C) sinks, compared with upland soils, since 
the anaerobic conditions in flooded rice paddies slow down organic matter 
(OM) decomposition, consequently favoring soil organic carbon (SOC) stock 
increases (Yan et al., 2013; Chen et al., 2021).

However, due to cultivation under submerged conditions, rice cropping 
fields act as major greenhouse gas (GHG) emission sources in the form of 
methane (CH4) and nitrous oxide (N2O). Globally, 8.2% of anthropogenic CH4 
(which has 28 times higher global warming potential (GWP) than carbon dioxide 
(CO2) over a 100-year period; IPCC, 2013) is emitted from rice cultivation 
(Saunois et al., 2020). IPCC estimated an average of 0.3% of applied nitrogen 
(N) to be converted into N2O which has 298 times higher GWP than CO2 over 
a 100-year period (Klein et al., 2006; IPCC, 2013). However, total N2O flux from 
rice paddies has not been properly accounted for.

SOC stock is significantly affected by agricultural management practices 
(i.e. crop rotation, fertilizer and organic amendment applications, irrigation, 
tillage management, etc.) (Windeatt et al., 2014; Vicente-Vicente et al., 2016; 
Paustian et al., 2019; see also Chapter 16 of this book). The periodic application 
of organic amendments (i.e. crop residues, farmyard and livestock manure, 
compost, biochar, etc.) is accepted as the most beneficial practice to increase 
SOC stock in upland soils (Goyal et al., 1999; Diacono and Montemurro, 2011; 
Huang et al., 2014). In paddy rice soils, cover cropping and straw recycling were 
historically recommended to increase SOC stock and improve soil quality.

However, as noted, the anaerobic conditions of paddy rice systems 
facilitate microbial methanogenesis and convert rice paddies into a main CH4 
emission source (Chen et al., 2013), particularly after OM applications under 
flooded conditions (Hwang et al., 2017; Jiang et al., 2019; Song et al., 2021). 
Rice has the highest GHG intensity (GHGI) which indicates net GWP per grain 
yield among major cereal crops (Linquist et al., 2012; Carlson et al., 2017). 
In particular, management practices intended to increase SOC stocks, such 
as organic and/or inorganic fertilizer use can provide energy sources and/or 
substrates for methanogens and denitrification in anaerobic soils, and thus 
amplify GHG emissions during rice cultivation (Neue et al., 1996; Le Mer and 
Roger, 2001; Lee et al., 2020a,b). This should be considered for mitigation of 
global warming through enhancing soil C sequestration (Lee et al., 2020a,b; 
Song et al., 2021). In rice paddies, the overall changes of SOC stock and GHG 
fluxes should be estimated together when evaluating the impact of agricultural 
management practices on environmental sustainability.

In this chapter, we present the specific conditions leading to high SOC 
stocks and low CH4 and N2O emissions of paddy rice soils. We indicate how 
to evaluate their GWP considering both SOC stock and GHG emissions under 
different management practices.
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2 �Carbon sequestration potential of rice paddy soils
Rice paddy soils have a significant potential to sequester atmospheric CO2 
through increasing SOC storage (Lal, 2004; Pan et al., 2004; Yan et al., 2013; 
Chen et al., 2021). According to a recent global meta-analysis (Liu et al., 2021), 
rice paddy harbors over 14% of land SOC stocks, proportionally more than 
any other crop type (Table 1), mainly due to higher biomass productivity 
and reduced OM decomposition under anaerobic conditions. The SOC 
sequestration potential of rice is, at 401 kg C ha1 year1, much higher than that of 
barley, corn, and wheat residues, which amounts to 247 kg C ha1 year1, 292 kg 
C ha1 year1, and 272 kg C ha1 year1, respectively (Fig. 1) (Jarecki and Lal, 2003).

Rice paddies are flooded before transplanting, and water is drained several 
days before harvesting. In traditional rice cropping systems, the soil is managed 
under submerged conditions for at least 85–90% of the cropping period. Under 
these soil conditions, both the mineralization of OM inputs and decomposition 
of native SOC are slower than those under upland soil conditions (Witt 
et al., 2000). Indeed, under anaerobic conditions, OM decomposition partially 
affects labile compounds whilst recalcitrant aromatic and aliphatic compounds 
accumulate (Herndon et al., 2015). This leads to changes in SOC quality and 
may slow down soil organic matter (SOM) decomposition in flooded paddy 
soils. In addition, the formation of recalcitrant complexes with OM can make 
them less available for microbial decomposition (Six et al., 2002). Moreover, 
biological N fixation, coupled with decreased overall humification and higher 
primary productivity, could lead to a net accumulation of SOM (Liu et al., 2018). 
On the other hand, the availability of biologically fixed N may also provide 
substrates for N2O emissions under reduced conditions.

In rice paddy fields, hydrologic regimes that rotate periodical flooding 
and drying may drive iron (Fe) cycling (Sahrawat, 2004) and thereby impact 
the formation of organo-mineral interactions, which were shown to be stable 
SOM forms in upland soils. Under the dried soil condition, Fe species may 
be oxidized, and during the flooding period, Fe species may be reduced. Fe 
cycling has the potential to stabilize SOC and reduce C oxidation and CH4 

Table 1 Estimates of global land use and SOC storage

Ecosystem
Global 

area (ha)

Contribution 
of rice 

paddy (%)

Mean SOC stock 
(Mg ha1) Global SOC storage (Pg C)

0–30 cm 0–100 cm 0–30 cm 0–100 cm
Contribution of 
rice paddy (%)

All soils 1.49×1010 1.1 45 98 710 1456 1.2

Cropland 1.87×109 8.9 41 89 58.4 127 14.2

Rice paddy 1.67×108 - 51 108 8.5 18.0 -

Note: Data was modified from Liu et al. (2021).
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formation by reacting as an oxidizing agent and an electron acceptor for 
microbial respiration. In contrast, the formation of SOM can be maximized 
in partially oxidizing environments. High mineralization rates occur under 
completely aerobic conditions, but oxidative polymerization is favored by lack 
of oxygen (O2). Therefore, repeated wetting and drying prevent the stagnation 
that appears in either oxidizing or reducing environments and promotes the 
oxidative polymerization that stabilizes OC compounds in soils (Post et al., 
2004). These processes may have led to the net retention of OM and plant 
debris in most wetland soils (Mitsch and Gosselink, 2007).

3 �Methane production, oxidation and emissions in rice 
paddy soils

Flooded rice paddy fields are an important anthropogenic CH4 emission source 
(Newton, 2016; Nisbet et al., 2016; Saunois et al., 2016; Schaefer et al., 2016). 
Global CH4 emissions from rice fields were estimated at an average of 30 Tg 
CH4 year−1, accounting for around 8.2% of total anthropogenic CH4 emissions 
(average 364 Tg CH4 year−1) (Saunois et al., 2020). Rice production has been 
estimated as increasing from 97 million tons in 1990 to a predicted 145 million 
tons by 2025, leading to an estimated proportionate CH4 flux increase of 1.1% 
per year from paddy rice systems (Anastasi et al., 1992).
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Figure 1  Potential of SOC sequestration by crop residues. (Data was modified from 
Jarecki and Lal, 2003.)
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CH4 flux in rice fields is the result of the difference between CH4 production 
and consumption (oxidation). Soil flooding prevents gas exchange between the 
soil and the atmosphere. Methane is formed by methanogens under extremely 
anaerobic conditions (less than −200 mV of Eh value), and this CH4 can also 
be oxidized by methanotrophs at conditions over −200 mV of soil Eh value 
(Garcia et al., 2000; Conrad, 2007). Rice fields are generally flooded during 
the cropping season while being kept dry during a succeeding fallow season. 
In addition, a small amount of CH4 is oxidized during the dry fallow season, 
but this flux is not comparable with the big CH4 fluxes during the flooded rice 
cultivation period (Fig. 2). At the early rice growth stage, CH4 is emitted at a 
lower rate, but its flux steadily increases with plant growth and development of 
anaerobic soil conditions (Ali et al., 2009a; Kim et al., 2015; Haque et al., 2016; 
Jeong et al., 2018; Song et al., 2019; Lee et al., 2020a,b; Song et al., 2021).

Methanogenesis is strongly affected by the availability of C substrates, and 
therefore OM addition strongly stimulates CH4 formation. Under anaerobic 
conditions where nitrate (NO3

-) and sulfate (SO4
2-) concentrations are low, OM 

[(CH2O)n] can be completely mineralized into CH4 and CO2 via methanogenic 
fermentation (Le Mer and Roger, 2001). This change needs successive reactions 
from four populations of microorganisms that degrade complex organic 
molecules into simpler compounds:

	• hydrolysis of polymeric organic compounds into monomers by a hydrolytic 
microflora;

	• acidogenesis by a fermentative microflora;
	• acetogenesis by a homoacetogenic or syntrophic microflora;
	• CH4 formation by methanogens.

Figure 2 Annual changes of CH4 emission rate in a mono-rice paddy.
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Methanogens belonging to the Archaea domain (Woese et al., 1978) include 
strictly anaerobic, specialized microflora that can develop in synergy with other 
anaerobic bacteria. The two major pathways of CH4 formation are acetotrophic 
and hydrogenotrophic (Schütz et al., 1989). In paddy rice soils, acetotrophy is 
believed to be responsible for approximately two-thirds of the CH4 produced 
(Le Mer and Roger, 2001).

Methane is consumed in soils by microbial oxidation. This reaction takes 
place in the aerobic zone of dried soils and methanogenic soils. In dried 
rice paddies, small amounts of CH4 can be oxidized mainly during the fallow 
season. Methanotrophy is most highly developed in soils that are often water 
saturated or submerged and where methanogenic activity develops (Nesbit 
and Breitenbeck, 1992). Paddy soils for rice cultivation often have a very high 
potential for methanotrophic activities. However, rice paddies generally have 
a positive balance between CH4 production and oxidation and consequently 
react like a huge CH4 source, not a sink (Table 2).

In rice fields, variations in CH4 flux are mainly caused by differences in 
methanotrophic bacteria activity (Schütz et al., 1989; Sass et al., 1990). The 
contribution of CH4 oxidation to the net CH4 budget varies, depending on 
agricultural practices like the management of irrigation water and organic 
amendments. Methanogens and methanotrophs are ubiquitous, and both 
population densities have a highly positive correlation with each other. It is 
known that cultivable methanotroph densities and potential methanotrophic 
activities are greater than cultivable methanogen densities and potential 
methanogenic activities (Joulian et al., 1997).

Methane is oxidized by two different methanotrophs (high and low CH4 
affinity). In general, O2 availability is the main factor controlling methanotrophs’ 
activity. The high-affinity CH4 oxidation occurs at a low CH4 concentration (<12 
ppm) close to that of the atmosphere (Topp and Hanson, 1991). Approximately 
10% of total CH4 consumption is contributed by methanotrophs (Topp and 
Pattey, 1997). In comparison, low-affinity CH4 oxidation appears at high CH4 
concentrations (>40 ppm). In flooded rice cropping soils, over 90% of the 

Table 2 Annual CH4 fluxes in a typical mono-rice paddy field under different fertilization

Treatment

Total CH4 flux (kg ha1)

Rice cropping Fallow Total

Chemical fertilizer (NPK)a 220 −1.6 218
Green manureb 904 22.7 881

a Chemical fertilization: N-P2O5-K2O = 90-45-57 kg ha1.
b The mixture of barley and hairy vetch was cultivated during the cold fallow season, and its whole 
biomass (8.4 Mg ha1 on dry weight) was applied for rice cultivation.
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CH4 formed may be reoxidized by methanotrophs in aerobic soil areas (Sass 
et al., 1990; Frenzel et al., 1992; Oremland and Culbertson, 1992). Methane 
oxidation in the rhizosphere most strongly influences net CH4 flux but varies 
according to rice growth stage (Van der Gon and Neue, 1996). Methanotrophs’ 
activity and root oxidation activity show a highly positive correlation (King 
et al., 1990).

Most of CH4 is emitted through the rice aerenchyma channel to the 
atmosphere, but a small portion of CH4 is emitted as bubbles from soils via 
ebullition and diffusion. Rice plants’ aerenchyma acts as a chimney, allowing for 
gaseous CH4 exchange from soil to the atmosphere (Neue and Roger, 1994). 
Paddy fields with rice plants generally emit more CH4 than flooded paddy fields 
without plants, due to easier transfer to the atmosphere and higher organic 
substrate availability for methanogenesis (Schütz et al., 1989).

Methane passively transfers from soils to the atmosphere (Nouchi et al., 
1994). The CH4 fluxes vary with rice varieties, mainly due to differences in root 
exudate production, oxidation potential, and morphological characteristics 
(Adhya et al., 1994; Butterbach-Bahl et al., 1997; Gutierrez et al., 2013). At the 
early rice-growing stage, CH4 is emitted through a vertical movement of gas 
bubbles in the soil, but the diffusion through the aerenchyma becomes the 
dominant CH4 transport pathway as plants grow. At the rice reproductive stage, 
over 90% of CH4 is transported via the aerenchyma channel (Cicerone and 
Shetter, 1981; Schütz et al., 1989; Tyler et al., 1997).

4 �Nitrous oxide emissions in rice paddy soils
The impact of N2O emission from rice paddies on net GWP was found to be 
negligible. IPCC (Klein et al., 2006) proposed 0.003 kg N2O-N kg1 N as the 
emission factor of N2O for flooded rice fields. Nitrous oxide formation is 
influenced by many factors including soil redox, available N and OM, but N2O is 
principally produced via microbial denitrification and nitrification (Butterbach-
Bahl et al., 2013; Shakoor et al., 2021; Thilakarathna and Hernandez-Ramirez, 
2021).

In flooded rice paddies, soil redox conditions are not ideal for biological 
N2O formation. Water drainage for mitigating CH4 formation does not lead 
to high amounts of N2O formation (Hou et al., 2000; Johnson-Beebout et al., 
2009). More intermittent flooding or midseason drainage can lead to higher 
nitrification and denitrification rates and consequently increase N2O emissions 
(Harrison-Kirk et al., 2013; Lagomarsino et al., 2016; Liang et al., 2016). However, 
intermittent irrigation over five cycles increased seasonal N2O fluxes by only 
three times over continuous flooding of rice fields (Kritee et al., 2018), but the 
GWP of these fluxes is much lower than CH4 fluxes.
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5 �Evaluation of the net global warming potential and 
greenhouse gas intensity of rice paddy soils

Since paddy rice soils can be a GHG source and sink, the effect of agricultural 
management practices on global warming should be measured by net GWP. 
This can be done through the integration of two GHG fluxes (CH4 and N2O) 
and SOC stock changes measured in CO2 equivalents (Mosier et al., 2006). 
The closed static chamber method is broadly utilized to estimate CH4 and N2O 
fluxes in paddy rice soil (Fig. 3) (Schütz and Seiler, 1989). Diffusive GHG fluxes 
are directly quantified using the change of gas concentrations over short time 
intervals multiplied by the chamber volume (m3) per area (m2) ratio (Rolston, 
1986). Because rice plants significantly influence CH4 production, oxidation, 
and emission dynamics, the rice seedling inside the chamber should be 
properly planted to reflect the way that they experience representative growth 
conditions in rice fields. To calculate net GWP (Eq. 1), SOC stock change (ΔSOC) 
should be properly estimated along with CH4 and N2O fluxes. The yield scaled 
GHG emission impact can be compared using GHGI (kg CO2-eq. Mg1 grain) 
that indicates the net GWP (kg CO2-eq. ha1) per grain yield (Mg ha1) (Li et al., 
2006; Weller et al., 2016):

	 Net GWP CH flux N O flux SOC= ´ + ´ ´4 225 298 44 12– /D 	 (1)

SOC stock changes are conventionally used to estimate CO2 exchange in 
arable lands. However, this practice is not precise enough to represent short-
term SOC stock changes, mainly because of the big background pool and large 
spatial variation of SOC contents (Ciais et al., 2010; Conant et al., 2011; Smith 
et al., 2020). Theoretically, SOC change can be estimated using net ecosystem 
C budget (NECB) representing the balance between C input and output under 

Figure 3 Installation of the closed static chamber to determine CH4 and N2O flux during 
rice cultivation.
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the limited system boundary (Smith et al., 2010; Jia et al., 2012; Ma et al., 
2013). For example, in rice paddies, the C input source includes the net primary 
production (NPP) of rice and weeds, organic amendments, fertilizers, etc. In 
comparison, the C output source includes harvest C removal and heterotrophic 
respiration (CO2-C and CH4-C fluxes) (Eq. 2). NPP implies total C uptake by 
plant biomass via photosynthesis. Organic amendments lead to the C addition 
via organic materials. Harvest C removal means the removed C via crop plant 
harvesting. Respired C loss indicates heterotrophically respired C losses (CO2 
and CH4 fluxes) from soils:

	 NECB C input C output= å - å 	 (2)

The NPP (kg C ha1) of rice and weeds can be quantified by their C uptakes 
(Smith et al., 2010) (Eq. 3).

	 NPP NPP NPP NPP NPPabove ground root litter rhizo deposit= + + + 	 (3)

The NPP of aboveground biomass can be calculated using biomass productivity 
and its C content. The NPP of root biomass is calculated as 10% of the NPP 
of aboveground biomass (Huang et al., 2013). The NPP of litter accounts for 
the average 5% of whole biomass’s NPP (Kimura et al., 2004). Rhizosphere-
deposited NPP is estimated to range within 7–15% of total biomass’s NPP 
(Mandal et al., 2008).

6 �Effect of water management on global warming 
potential of rice paddy soils

Since CH4 is biologically produced by methanogens under strongly anaerobic 
soil conditions, water-management techniques (i.e. midseason drainage 
and intermittent irrigation) are expected to be the most promising measure 
to suppress CH4 fluxes in flooded rice cropping fields (Yagi et al., 1997). For 
instance, midseason drainage decreased total CH4 flux by around 50% in a 
Japanese rice field (Kimura et al., 1992). To minimize the negative effects of 
soil flooding and reduction in rice growth and development (i.e. sulfide toxicity 
and excess tillering, Kanno et al., 1997), short-term floodwater drainage is 
commonly used in rice cropping regions. However, water drainage during rice 
cultivation also increases microbial activity, which can increase N2O emission 
and microbial respiration (CO2 emission) (Miyata et al., 2000).

Similar results were obtained in our 2-year field study in South Korea 
(Haque et al., 2016), where single midseason drainage practice for 3 weeks 
during the high CH4 emission period considerably increased soil redox (Eh 
value) (Table 3). During paddy rice cultivation under continuous flooding 
conditions, the soil C stock (NECB) was increased by around 3.0 Mg ha1 year1, 
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but one single midseason drainage decreased this C stock by around 60%. 
Midseason drainage also increased seasonal N2O flux by approximately 30% 
over that in the continuous flooding conditions (Table 3).

However, to evaluate the net effect of water management on global 
warming, the trade-off between GHG (CH4 and N2O) emissions and soil C 
stock change must be assessed. A trade-off between GHG emissions and soil 
C stock changes is frequently reported in rice cropping systems changing 
from continuous flooding to midseason drainage or intermittent irrigation 
(Cai et al., 1997, 1999; Yagi et al., 1997; Zheng et al., 2000; Zou et al., 2005). 
Despite increased SOC loss and N2O emissions, our single midseason 
drainage considerably decreased the net GWP value by around 50% over that 
of continuous flooding, mostly due to a big suppression of CH4 fluxes.

In addition, the midseason drainage did not influence rice growth and 
yield properties (Table 3). As a result, the single midseason drainage for 3 
weeks can reduce GHGI by approximately 50% over continuous flooding. Such 
practice may be beneficial for the GWP of rice systems, because rice plants 
require plenty of water during their root development stage, whereas flooding 
may not be required at the other growth stages (Minamikawa and Sakai, 2005). 
Therefore, midseason drainage might be a very useful water management 
practice to mitigate the impact of GHG emissions without rice productivity 
changes.

7 �Effect of green manure management on global 
warming potential of rice paddy soils

In rice paddy fields, cover crop cultivation during the fallow season and 
its biomass recycling as green manure (GM) for rice cultivation is broadly 
recommended to improve soil quality via SOC stock increase and to replace 
chemical fertilizers (Garcia-Franco et al., 2015; Yao et al., 2019). In temperate 

Table 3  Changes of GHG fluxes, soil C stock, and rice productivity by midseason drainage 
under chemical fertilization (NPK) during rice cultivation

Irrigation system

Seasonal flux (kg CO2-eq. ha1)
Grain yield 

(kg ha1)

GHGI (kg 
CO2-eq. kg1 

grain)CH4 N2O ΔSOC Net GWP

Continuous 
flooding

6438 145 3012 3570 6650 0.54

Midseason 
drainage

3313 185 1775 1723 6650 0.26

Statistical analysis *** *** *** *** ns ***

Note: Data was modified from Haque et al. (2016).
ns and *** denote not significant and significance at 0.1% level, respectively.
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mono-rice cropping paddies like Korea and Japan, winter cover crops (i.e. hairy 
vetch and Chinese milk vetch as a leguminous crop, rye, barley, and wheat as 
nonleguminous crops) are cultivated during the cold fallow season, and their 
biomass as GM is incorporated before rice transplanting.

In general, cover crop biomass productivity determines nutrient 
accumulation under the same management (i.e. cultivar selection, growing 
stage, fertilization, water management, etc.) and then directly affects subsequent 
crop (rice) productivity and its NPP as the main C sink (Hwang et al., 2015). 
Recently, the mixing cultivation of leguminous and nonleguminous cover crops 
has been recommended to improve biomass and nutrient accumulation. For 
example, the mixed seeding of barley and hairy vetch significantly increased 
cover crop biomass and their nutrient contents compared to those of hairy 
vetch or barley monocultures (Table 4) (Hwang et al., 2015). The increased 
biomass productivity accumulated enough nutrients to fulfill the recommended 
fertilization level (N-P2O5-K2O = 90-45-57 kg ha1, RDA, 2017) for rice cultivation, 
and significantly increased rice productivity without chemical fertilization.

However, fresh biomass application also provides large amounts of readily 
available organic C substrates for methanogens and thus strongly increases CH4 
emission in flooded rice fields (Conrad, 2007; Yang et al., 2010; Li et al., 2013; 
Kim et al., 2015; Hwang et al., 2017; Lee et al., 2020b; Song et al., 2021). Cover 
crop biomass incorporation increased the annual CH4 flux by 2.6–4.2 times over 
that of chemical fertilization within the rice cropping boundary (Table 5).

Compared with CH4 flux in a rice paddy, very small N2O fluxes were detected 
during the rice cultivation period. Compared with chemical fertilization (NPK), 
seasonal N2O flux was not increased by GM application, even though its flux 
was significantly affected by cover crop species choice (Table 5). Low N2O 
emissions were observed when barley with a high C/N ratio was used as a cover 
crop, whereas seasonal N2O flux was significantly increased when hairy vetch 

Table 4 Effect of mixed seeding of hairy vetch and barley on biomass and nutrient productivities

Seeding ratio (%)
Biomass yield (Mg 

ha1, dry weight) Nutrient accumulation (kg ha1)

Hairy vetch Barley
Hairy 
vetch Barley Sum C N P2O5 K2O

100 0 4.80 0 4.80 1983 110 53 101
75 25 5.79 1.27 7.06 2933 143 72 142
50 50 4.92 2.32 7.24 3020 132 68 140
25 75 4.56 3.30 7.86 3287 132 70 149
0 100 0 5.89 5.89 2501 50 36 94
Statistical analysis *** *** *** *** *** *** ***

Note: Data was modified from Hwang et al. (2015).
*** denotes significance at the 0.1% level.
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with a low C/N ratio was used as a cover crop. Whilst chemical fertilization alone 
slightly decreased SOC stock, biomass application with a high C/N ratio (barley, 
and a mixture of barley and hairy vetch) significantly increased SOC stock. As 
far as GWP is considered, cover cropping and its biomass application as GM 
significantly increased net GWP by around 60–80% compared to chemical 
fertilization (NPK).

Interestingly, short-term aerobic predigestion of biomass applied to 
soils before irrigation strongly reduced CH4 emission during rice cultivation 
(Table 6) (Lee et al., 2020b; Song et al., 2021). Since the same biomass was 
applied at different time intervals before irrigation for rice cultivation, aerobic 
decomposition of labile organic C substrates under dried soil conditions might 
effectively mitigate CH4 emission during flooded rice cultivation. Only 10 days 
of aerobic predigestion of cover crop biomass incorporated in soils decreased 
seasonal CH4 flux by 55–60% as compared to flooding without aerobic 
predigestion (0 days). This mitigation effect was significantly increased with 
longer aerobic periods. Moreover, short-term aerobic predigestion of biomass 
applied soils before irrigation did not influence seasonal N2O fluxes.

Short-term aerobic predigestion of GM-amended soils did not influence 
seasonal SOC stock changes estimated by NECB analysis (Table 6). The same 
volumes of cover crop biomass were amended as the C input source, and the 
rice plant’s NPP did not change. As a C output source, rice harvest C removal 
was not affected by aerobic predigestion. The respired C loss thus worked as 
the main determinant of the NECB scale. In aerobic predigestion plots, high C 
output through CO2 emission was observed, but the CH4-C flux was decreased, 
resulting in no statistical differences of total respired-C loss among different 
aerobic predigestion treatments.

In addition, short-term aerobic predigestion in soils with cover crop 
biomass effectively decreased net GWP, but was not significantly affected by 

Table 5 Changes in GHG fluxes and rice productivity under different fertilization regimes

Fertilization

Annual flux (Mg CO2-eq. ha1)
Grain yield 

(Mg ha1)

GHGI (Mg 
CO2-eq. Mg1 

grain)CH4 N2O ΔSOC Net GWP

Chemical fertilizer 5.5 3.0 −2.1 10.6 6.7 1.6
Green manure
  Barley 14.4 1.5 5.3 10.6 6.2 1.7
  Hairy vetch 15.8 3.5 −0.2 19.5 7.1 2.7
  Mixture 23.2 3.4 8.8 17.8 8.1 2.2
Statistical analysis *** ** ** ** ** ***

Note: Data was modified from Hwang et al. (2017).
** and *** denote significance at the 1% and 0.1% levels, respectively.
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Table 6  Effect of aerobic predigestion of biomass amended soils on GHG fluxes and rice 
productivity

Days before 
flooding

Seasonal flux (Mg CO2-eq. ha1)
Grain yield 

(Mg ha1)

GHGI (Mg 
CO2-eq. Mg1 

grain)CH4 N2O ΔSOC Net GWP

30 8.6 2.8 10.9 0.4 5.7 0.1
20 13.6 3.0 10.9 5.6 5.8 1.0
10 18.1 3.4 10.4 11.1 5.8 1.9
0 43.4 2.4 10.1 35.7 5.9 6.1
Statistical 
analysis

*** ns ns *** ns ***

Note: Data was modified from Song et al. (2021).
ns and *** denote not significant and significance at the 0.1% level, respectively.

the duration of aerobic predigestion (10–30 days) before flooding. We found 
that aerobic predigestion of cover crop biomass over 10 days considerably 
decreased GHGI by 65–98% as compared to the cover crop treatment without 
aerobic predigestion (Song et al., 2021). As a result, in GM-amended rice 
paddies, aerobic predigestion before flooding may be essential to reduce net 
GWP and GHGI.

8 �Effect of straw management on global warming 
potential of rice paddy soils

Straw recycling is regarded as the most effective management practice to 
increase SOC stock in rice fields. However, most straw has been removed for 
livestock feeding and burnt for site preparation, thereby depleting SOC stocks 
(Wang et al., 2015a; Xia et al., 2018). In Korean rice paddies, straw application 
level officially decreased from 3.7 Mg ha−1 in 1992 to 1.1 Mg ha−1 in 1998 (Kim 
et al., 2003), which consequently resulted in depletion of SOM contents in 
nationwide rice paddies from the average of 26 g kg−1 in the 1960s to 24 g kg−1 
in the 2000s (RDA, 2010).

In soil C balance (NECB) analysis in a typical rice paddy (Lee et al., 2020a), 
only chemical fertilization (NPK) without straw return decreased SOC stock by 
0.24–1.12 Mg C ha−1 year−1. This was caused by harvest C removal (65–73% of 
total C output) and the respired C loss (27–35% of total C output). However, 
straw retention as an organic amendment considerably increased SOC stocks 
by 1.48–2.82 Mg C ha−1 year−1. Straw spreading over the soil surface was more 
efficient than straw incorporation to increase SOC stocks, due to favorable 
microbial decomposition of incorporated rice straw during the dried fallow 
season. Moreover, straw incorporation significantly increased CH4 fluxes during 
flooded rice cropping. Its addition also increased N2O emissions, but this 
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enhanced flux was still too small to influence the net GWP. SOC stock increase 
via straw recycling may conflict with CH4 flux increase in a rice paddy (Hsu et al., 
2009), and both fluxes must be considered to evaluate net GWP in rice paddies 
(see above; Table 7).

In the conventional rice cropping system in which straw is removed 
and chemical fertilizer is applied, CH4 flux and SOC stock change represent 
approximately 65% and 25% of the annual net GWP (average 9.8 Mg 
CO2-eq. ha−1), respectively. However, straw retention did not only increase CH4 
flux but also SOC accumulation. In contrast to the general assumption that 
organic amendments in rice fields significantly increase GHG fluxes and global 
warming impact (Le Mer and Roger, 2001), rice straw incorporation into soil 
and aerobic decomposition during the dried fallow season were very effective 
in decreasing net GWP by around 50% over NPK, primarily due to SOC stock 
increase. In addition, rice straw addition stimulated rice growth and increased 
rice grain productivity by 10–20% as compared to paddies managed with 
straw removal. In contrast, although straw spreading over the surface layer and 
aerobic decomposition during the long fallow season was effective as a way to 
increase SOC stocks, it also strongly increased CH4 emissions. As a result, this 
kind of straw management was not effective in decreasing net GWP.

In conclusion, straw recycling may be essential to improve soil productivity 
through SOC stock increase without an equivalent increase in GHG emission 
impact. However, straw should be incorporated into the mineral soil, not spread 
over soil surface, to be aerobically decomposed during the long fallow season.

9 �Effect of fertilizer management on global warming 
potential of rice paddy soils

Intensive cropping systems may increase crop productivity but have a 
negative environmental impact. Of all rice management practices, appropriate 

Table 7  Characteristics of GHG emissions and rice productivity under different rice straw 
management strategies

Fertilizer 
management

Straw 
application

Annual flux (Mg CO2-eq. ha1) Grain 
yield 
(Mg 
ha1)

GHGI (Mg 
CO2-eq. 

Mg1 grain)CH4 N2O ΔSOC
Net 

GWP

NPK 6.4 0.9 −2.5 9.8 5.1 1.9
NPK + straw Mixing 10.2 1.6 7.1 4.8 6.0 0.8

Spreading 17.8 1.3 8.8 10.4 5.7 1.8
Statistical 
analysis

*** ** *** ** ** *

Note: Data was modified from Lee et al. (2020a).
*, ** and *** denote significance at the 5%, 1%, and 0.1% levels, respectively.
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fertilization is one of the most effective ways to improve crop productivity and 
quality. Proper fertilizer management can improve rice plants’ photosynthetic 
capacity, resistance to biotic stress, nutrient uptake, and productivity. For 
example, in a long-term fertilized rice paddy in Korea, N fertilizer application 
enhanced rice grain productivity by an average of 45%, which was much higher 
than 9.8% and 5.1% of grain yield increase by phosphorus (P) and potassium 
(K) fertilization, respectively (Lee et al., 2008).

However, high N fertilization exceeding plant requirements can decrease N 
use efficiency (NUE) (Peng et al., 2006; Liu et al., 2015) as well as cause resource 
loss and environmental pollution. Appropriate N fertilization is important to 
improve crop productivity and sustain high environmental quality (Tilman et al., 
2002; Yousaf et al., 2014). Furthermore, N fertilizer application may increase 
GHG fluxes from soils (Schimel, 2000; Ma et al., 2007; Liu et al., 2015; Yang et al., 
2015). Generally, the N fertilization level shows a highly positive relationship 
with N2O emission levels (Ma et al., 2013), because it provides the substrate 
necessary for biological N2O formation through nitrification and denitrification 
(Paul et al., 1993).

There were many contrasting findings related to the influence of N 
fertilization on CH4 fluxes in rice paddies (Bodelier et al., 2000; Shrestha et al., 
2010; Kim et al., 2019). In several studies (Xie et al., 2010; Dong et al., 2011; 
Yao et al., 2012), N fertilization considerably decreased CH4 fluxes, mostly 
because of enhanced CH4 oxidation in the rice rhizosphere. However, in many 
other cases, N fertilization strongly increased CH4 formation and emissions, 
due to stimulation of methanogen activity (Schimel, 2000; Cai et al., 2007). In 
our 2-year field study (Kim et al., 2019), N fertilization significantly increased 
seasonal N2O fluxes (Table 8). Moreover, seasonal CH4 fluxes also increased 
with N fertilization increase, peaking at around 130 kg N ha−1 of urea addition 
and thereafter decreased. Consequently, N fertilization has a considerable 

Table 8 Characteristics of GHG emissions and rice productivity under different N application 
levels

N application 
(kg N ha1)

Annual flux (Mg CO2-eq. ha1)
Grain yield 

(Mg ha1)

GHGI (Mg 
CO2-eq. Mg1 

grain)CH4 N2O ΔSOC Net GWP

0 6.2 0.17 −5.0 11.3 4.6 2.5
45 6.6 0.23 −4.8 11.7 5.6 2.1
90 7.4 0.27 −4.6 12.2 6.8 1.8
180 7.1 0.33 −4.7 12.2 5.9 2.1
Statistical analysis * *** *** ** ** *

Note: Data was modified from Kim et al. (2019).
*, ** and *** denote significance at the 5%, 1%, and 0.1% levels, respectively.
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effect on GWP, but in contrast to what may be expected, net GWP was mostly 
influenced by the CH4 flux, which represents more than 90% of the total GWP.

Similar to changes in GWP, GHGI is increased by N addition (Kim et al., 
2019). In a typical Korean rice paddy, the lowest GHGI was observed at 104–
112 kg N ha−1 of urea application, and thereafter, the GHGI was increased 
with N fertilization increase, mainly due to a decrease in grain productivity 
at high N fertilization. Theoretically, any soil management practice that can 
decrease N fertilization levels without changing crop productivity will result in 
the lowest GHGI (Mosier et al., 2006). Consequently, N fertilization should be 
carefully managed to achieve sustainable rice cultivation systems with high rice 
productivity and low GWP and GHGI.

10 �Effect of soil amendments on global warming 
potential of rice paddy soils

Methane is produced through the anaerobic decomposition of organic 
substrates when CO2 is used as an electron acceptor. Soil microorganisms, 
which can reduce energetically more favorable electron acceptors (i.e. O2, 
NO3

-, Mn4+, Fe3+, SO4
2-) may outcompete methanogens using the less favorable 

electron acceptor (i.e. CO2) (Lovley et al., 2004). Methanogenesis may thus be 
suppressed by adding alternative electron acceptors to extremely reduced soils. 
This suppression might result in a combination of inhibition and competition 
effects for common electron donors (Achtnich et al., 1995; Jakobsen et al., 1981).

Soil amendments that contain electron acceptors (i.e. ammonium nitrate, 
ammonium sulfate, iron slag-based amendments, etc.) can be utilized to 
mitigate CH4 production in flooded rice fields. For example, iron oxide (Fe2O3) 
can react as an important oxidizing agent and control the formation of organic 
acids (Asami and Takai, 1970) and CH4 (Watanabe and Kimura, 1999) in 
anaerobic soils.

For example, blast furnace slag (BFS, also known as iron slag) based 
silicate fertilizer contains around 4.8–5.4% and 0.3–1.1% of Fe and Mn oxides, 
respectively (Ali et al., 2009a; Lim et al., 2021). In Korean and Japanese rice 
paddies, silicate fertilizers have been used as alkaline amendments to improve 
acidic soil pH and provide valuable elements for rice over 50–100 years (Datnoff 
et al., 1997). During rice cultivation, silicate fertilization strongly increases 
dissolved Fe contents in soils (Ali et al., 2008a; Wang et al., 2015b), which 
suppresses methanogens` activity and CH4 emissions.

Moreover, the addition of silicate fertilizer stimulates rice root activities 
(Zhang et al., 2020). The solubility of Fe and Mn oxides can be expected as the 
anaerobic condition continues to develop (Gotoh and Patrick Jr, 1974; Miao 
et al., 2006). Rice roots emit a high amount of O2 to reduce Fe and Mn toxicity, 
thus decreasing their solubility (Mei et al., 2012), as the solubility of oxidized 
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Fe and Mn is much lower than those of the reduced Fe and Mn compounds 
(Schwertmann, 1991). Hence, CH4 inside the rice rhizosphere can be indirectly 
oxidized by methanotrophic bacteria. Therefore, silicate fertilizer application 
was effective in suppressing CH4 emission during rice cultivation, probably due 
to the added Fe3+ and Mn4+ as an electron acceptor and the improved oxidation 
potential in rice roots (Liang et al., 2007; Ali et al., 2008a,b; Ali et al., 2009a,b; 
Lee et al., 2012; Das et al., 2020). By analyzing data from several studies, Lim 
et  al. (2021) showed that the CH4 flux index (%), which is used to compare 
the total CH4 flux from blast furnace slag treated plots to that of control plots, 
considerably decreased as the fertilization increased (Fig. 4).

Silicate fertilizers have alkaline pH and contain high amounts of calcium 
oxide (CaO) and silicate (SiO2) as their main components (Proctor et al., 2000; 
Gwon et al., 2018; Lim et al., 2021). In irrigated paddy fields, rice accumulates 
SiO2 by around 10% of the total biomass on dry weight (Savant et al., 1996; 
Ma et al., 2006). Silicate fertilizer enhances rice plant erectness and reduces 
lodging damage (Idris et al., 1975; Hossain et al., 2002). This improvement 
in rice plants’ physical properties increased rice productivity and improved 
rice quality. Rice grain productivity may be maximized at around 4 Mg ha−1 of 
silicate fertilizer application with an average of 18% increase (Lim et al., 2021). 
Therefore, application of soil amendments containing electron acceptors and 
silicate can be an effective soil management strategy to reduce CH4 emission 
in rice fields and concomitantly increase rice productivity via improvement of 
soil properties.

Silicate fertilizer application (Mg ha–1)
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Figure 4 Changes of CH4 flux index (% of control) under different levels of silicate fertilizer 
(blast furnace slag) application as soil amendment in rice paddies (Lim et al., 2021).
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11 �Effect of biochar and compost addition on global 
warming potential of rice paddy soils

To simultaneously increase SOC stocks and decrease CH4 emission in rice fields, 
the utilization of stabilized organic amendments (i.e. biochar and compost) has 
been recommended (Woolf et al., 2010; Feng et al., 2012; Weng et al., 2017: Qi 
et al., 2018; Jeong et al., 2019). However, in most studies, the effect of stabilized 
organic amendment applications on GHG fluxes and SOC stock changes was 
evaluated only within the cropping system but did not consider additional GHG 
fluxes from industrial processes when producing biochar and compost (Zhong 
et al., 2013; Jeong et al., 2018). It is largely unknown if biochar and compost 
amendments in rice soils can fully reduce GHG emission impacts within the 
whole process from their production to land utilization.

To assess the impact of organic amendment applications on GHG 
emissions (taking into account their production and application) (Canatoy et al., 
2022), three different types of swine manure (fresh, compost, and biochar) were 
selected for comparison. Air-dried swine manure was mixed with sawdust (50% 
of dried weight) and used to make compost and biochar. To make biochar, 
the manure mixture was pyrolyzed at 400°C for 4 h. To investigate GHG fluxes 
in rice cropping systems, the three different types of organic amendments 
(fresh, compost, and biochar manure) treatments were applied with the same 
rate (12 Mg ha1 on dry weight) under the same fertilization and managements. 
The whole system analysis was divided into industrial and cropping processes. 
During the industrial process, to produce compost and biochar, direct GHG 
fluxes were evaluated by the closed chamber method. Additional GHG fluxes 
from transportation and electricity consumption were taken into consideration 
by using European Emission Standards 3 and 4 (European Parliament Council, 
2000). In the rice cropping process, biogenic GHG (CH4 and N2O) fluxes were 
directly monitored using the closed chamber method, and SOC stock changes 
were evaluated by analyzing the NECB which means the difference between C 
input and output (Smith et al., 2010).

In comparison with fresh manure, compost showed a high potential to 
increase SOC stocks and reduce CH4 fluxes after soil application. Although 
compost application reduced net GWP by around 43% over fresh manure, it also 
showed huge GHG emissions, amounting to 25.8 Mg CO2-eq ha1 of net GWP. 
Biochar was much more effective than compost in decreasing net GWP in a rice 
paddy, via strong reduction in CH4 emissions and a high increase in SOC stocks 
(Agegnehu et al., 2016; Phuong et al., 2020). Biochar amendment resulted 
in favorable environmental conditions for methanotrophic proteobacteria to 
proliferate, which resulted in an enhanced rate of CH4 oxidation (Feng et al., 
2012). Moreover, biochar functionally reduced N2O as it aged in the soil due to 
an enhanced sorption of nitrate and ammonium via oxidative reactions on its 
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surfaces (Singh et al., 2010). SOC stocks increased under biochar addition by 
around 57% and 13% over fresh manure and compost, respectively. As a result, 
biochar application converted rice paddy into a GHG sink with minus 119 kg 
CO2-eq. ha1 of net GWP. Similar results were reported in several rice cropping 
studies (Liu et al., 2016; Mohammadi et al., 2020).

In the industrial process (compost and biochar production and transport 
processes), large amounts of GHGs were emitted (Table 9). Composting takes 
place under aerobic conditions, which lead to decomposition of labile organic 
substrates, resulting in their transformation into a more stabilized form via 
enzymatic biochemical degradation, releasing mainly CO2 during the conversion 
process (Fukumoto et al., 2003; Mehta et al., 2014). In our study, a total of 34.3 
Mg CO2–eq. of biogenic GHGs were released to make 12 Mg of compost from 
24.2 Mg of manure mixture. This net GWP consisted of nearly 55%, 37%, and 8% 
of CO2, N2O, and CH4 fluxes, respectively. Although CO2 is an intrinsic byproduct 
of composting not accounted for by IPCC calculations, it is still important for 
implementing abatement technologies to reduce global warming (Sánchez 
et al., 2015). Without gas capturing facilities during the compost production 
process, these levels of GHGs could markedly influence global warming and, 
therefore, overall GHG emissions should be carefully considered in evaluating 
the effect of compost utilization on GHG emissions in paddy fields.

In our study, without a syngas recycling system during the pyrolysis 
process, a total of 19.2 Mg CO2–eq. syngas GHGs were emitted to make 12 Mg 

Table 9  Life cycle analysis to evaluate GWP and GHGI under different types of manure 
amendments

System boundary
Fresh 

manure
Compost 
manure

Biochar manure

Statistical 
analysis

Without 
syngas 

recycling

With 
syngas 

recycling

Industrial process (Mg CO2-eq. ha1)
    Net GWP 0.07 34.5 32.6 13.5
Cropping process (Mg CO2-eq. ha1)
    CH4 flux 54.9 40.9 17.9 17.9 ***
    N2O flux 2.2 1.7 1.1 1.1 **
    ΔSOC 12.1 16.8 19.0 19.0 **
    Net GWP 45.0 25.8 −0.12 −0.12 **
Whole process
    Net GWP (Mg CO2-eq. ha1) 45.1 60.3 32.5 13.4 **
    Grain yield (Mg ha1) 7.8 8.4 8.2 8.2 **
    GHGI (Mg CO2-eq. Mg1 grain) 5.8 7.1 3.9 1.6 ***

Note: Data was modified from Canatoy et al. (2022) (under revision in Science of the Total Environment).
** and *** denote significance at the 1% and 0.1% levels, respectively.
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of biochar from 24.8 Mg of manure mixture (Table 9). This net GWP consisted 
of around 66% and 34% of CO2 and CH4 fluxes, respectively. However, the use 
of a syngas recycling system was reported to impede CO2 and CH4 formation 
and further convert them into non-GHGs like CO, H2, and water (Shen et al., 
2017; You et al., 2018; Schmidt et al., 2019). Conversely, N2O emission during 
pyrolysis negligibly influenced net GWP of the industrial process (Pennise et al., 
2001; Clark et al., 2017). As a result, pyrolysis with syngas recycling can reduce 
this net GWP by 59% over a no syngas recycling system.

Considering the whole life cycle from industrial to rice cropping processes, 
compost utilization as organic amendment significantly increased net GWP 
compared to fresh manure and biochar treatment, due to huge amounts of 
biogenic GHG emissions during the composting process. In comparison with 
fresh manure, compost application was very effective in reducing GHG emission 
impact during the rice cropping process (Islam et al., 2020), but the additional 
GHG fluxes from composting process markedly increased net GWP within the 
life cycle analysis (Table 9). In the biochar treatment, although similar levels 
(32.6 Mg CO2-eq.) of GHGs were released during pyrolysis with the composting 
process, the longevity of biochar after soil application and the use of syngas 
recycling system may have positive effects on decreasing GWP. Hence, when 
the whole life cycle is considered, biochar application significantly reduced 
net GWP by a minimum of 28% and 46% and a maximum of 70% and 78% 
over fresh manure and compost, respectively. The minimum and maximum 
reductions were estimated from industrial processes without and with a syngas 
recycling system, respectively. Irrespective of the syngas recycling system, 
lifecycle analysis showed that biochar application to rice paddies may convert 
them into a huge GHG sink.

Compost manure application considerably increased rice grain productivity 
over fresh manure which might be due to higher available nutrients and 
improved soil qualities (Sadegh-Zadeh et al., 2018). No statistical difference 
was noted among the three selected manure treatments, only a trend to 
higher rice productivity in compost treatments (Table 9). In comparison with 
fresh manure, compost application significantly increased GHGI, while biochar 
highly decreased GHGI by 33% and 72% over fresh manure without and with a 
syngas recycling system, respectively. Therefore, biochar utilization rather than 
compost as organic amendment could be a promising option to maintain soil 
quality and suppress GHG emissions in rice cultivation systems.

12 �Conclusion
Anaerobic conditions in paddy soils during flooding lead to SOC accumulation 
but also significantly increase CH4 emissions, which has a much greater impact 
than changes in SOC stock or N2O emissions on GWP of rice cropping systems. 
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In these systems, agricultural management practices must consider trade-offs 
in the form of CH4 emissions, which could outweigh SOC sequestration.

The combined management of aerobic decomposition of rice straw 
or predigestion of organic amendments before flooding and irrigation of 
water drainage during rice cropping can significantly decrease net GWP over 
conventional soil management. In addition, careful management of fertilizers 
and utilization of soil amendments that have electron acceptors can reduce 
CH4 emissions and net GWP, in addition to improving soil productivity. As a 
stable organic amendment, biochar (rather than compost) is effective to 
mitigate GHG emission impact and improve soil quality. In conclusion, more 
stable organic amendments like biochar may be useful to decrease the global 
warming impact and improve soil quality in irrigated rice fields. The combined 
management of organic amendments with water and soil amendments, which 
impede methanogenesis, can also be an important option to mitigate GHG 
emissions of rice paddies.
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